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ABSTRACT 

The design and implement.at.ion of vcclor quantaers have recently attract.ed cOillliderable 

aU.entlon ln tbe sp<!ech coding field PrevlOu8 work c:onc:enlrau-d rnamly upon the theoretlcal 

c:apablht.le! and asymplotlc p<!rformanc~_or vector quantll.ers LIWc IOvcstlgallOo concernlOg 

the ac:lual ImplementatIon of vector quantl1crs Wall performed Il was only rccently thal 

practtcal algonthms have been developed for v('{"tor quanLlter desigo 

ThIS t.heslIl presents an invesllga\.ion lOto \.be field of vcctor qu:m\.ir.allon Commeneing 

w/t.h a revlew of on~d/menslonal quaot/l.atlOn lhcory, ao extensIOn of quant/talion ppnc/pl~\ 

ta several dlmens/onll II presënted ThIl 18 cou pied w/th a survey of current. work ln the 

field of veclor quant.ltallon Based on t.hlll dlsc;uSlllOD, 3 vector qU30tu,er st.ruct.ure, deslgned 

ullmg t.he Lmde-Buw-Gray algortt.hm, Il chosen for the black quan\.lzalloo of t.he rt'Siduai 

sigoal deraved from t.he Imear prediction of speech The p<!rform3ncCII of the resldual vect.or 

quantiters are evaJuated for varlous block slzes and transmIssIon rat!'s and compared lo those 

of untrorm and Lloyd-Max scalar quantl!!'rs A subj{'ctlvc l'valuation of reSldual-cncodcd 

hnear predIctive coders usmg scalar and ve{'lor q\lanllwrs 15 made Flnally. a subJec.tl ve 

comparlson of the Itliear predic~lvc coders usmg vector quantlzatlon of the rcsldual to Log

l'CM coders is p<!rformed 
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SOMM.AlRE 

La conception et la réalisation de quantifieurs vectciriels li en ce moment comidérablement 

attiré l'attention d~ns le domaine du codage de la parole. Les ouvrages précédents sont 

concentrés principalement sur les capacités tMoretique et la performance asymtotique de 

quantllÎ~urs vectortels. Peu d'investIgatIons ont été ~complies concernant la réalisation 

actuelle des quantIfie urs vectoriels. C'était seulement tout récemment qu'une algorithme 

pratique a été dévelopée pour la conception de quantifieun vectorIels. 

Cette tbèse présente une investigatIon dam le domaine du quantmeation -yeeloriel. 

Débutant avec une revue de la th~rte de quantification à une dimension, une extenllion 

des prlDclpe5 de quantification à plusieunl dimemioIlJl est présentée. Ceei est couplé aTee . 
une étude des ouvrages courants dam le domaine des quantlfieunt vectoriels. Bw aur cetle 

dll~cuIISlOn, une structure de quantifieur vect()fIel, conçue en utIlisant l'algorithme unde-

RUJ.O-Gray, est chaste pour la quantIfication collective des échantilloDl residuels dérivés de 

la prédictIOn' hnéalre de la parole. Les r~ndements des quantlfieuTli vedoru~ls résiduels ~nt 

évalués pour des collections de dimenSions et de taux de transmlSlion divenl et. comparéa à 

reux de quantlfieurs scalaires Lloyd-Max et uniformes. Une évaluatIon subjective de codeun 

prophétiques linéaires codés-résiduels en utilisant des quanttfieurs vectoriels et scaJaJfea' est 

faIte Finalement, une compatison subjective des codeurs prophét.lques linéaires en utùisant 

la quantification vedorlel d~s résidus des codeurs Log-MPIC est. exécutée. 
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OHAPTER 1 

INTRODUCTION 

" . 

The main objeetive of speech coding is to allow the transmission, <ner n digital channel, of 

the highest quahty speeeh possibÎe using the least posaible bit rate. Eaent.ially, Ipc-ech coden 

~ay he dmded, into two difierent classes w8veform coden and source coders. Waveform 

coders' attempt to transmit a good representation or the actual speech waveform. Source 

coders attempt ta ~timate and transmit a linear model of the speech process rather than an 

actual wavt!form. In general, source coders allow lower transmission rates, while waveform' 

coders typlcally provlde higher quality and more robustness against background nOI&e, 

mult.lple speakers, and speaker variat.ions Flanagan et. al [FLAN79] provlde an excellent 

survey of the varions speech codmg systems. 

The most common form or source coding is the hnear predictive coding (LPC) ~r 

speeeh A conSiderable number of researchers have written about this popular speech codlDg 

technique. Makhoul [MAKH75) has provlded a good revlew of the subject and Markel and 

Gray !MARK76) dlscuss LPC t~chntques in great depth. 

In general, LPC systems transmit only a model of the speech process. no use is made of 

the residual, or error, Signai In adaptlve predictive coding (ArC) systems, the resldualsignal 

is coded and transmitted .to the recelver as weil as the speech model Atal 'and Schroeder 

IATAL70] descnbe the APC coder and Makhoul and Beroutl [MAKH79bl provide a gooo. 

survey of developments lU APC techntques. 

Whether the residual Signai 18 translD1tted or not, the linear prediction technique may 

he ~wed as a two step process The first step involves the IdentificatIOn or a model for tbe 
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speech procesa. The second step is the eompreuion, or quantitation, of the model parameten 

and, If present, the residual signal. In ~neral, the compression atep directly affecta ·the 

transmlDion rate of the coder and the quahty of the reeonatruded speech. New methodJ 

, are c:onatantly being aougbt wbic:h WIll a1low more eIJectiye informatIon compressIon and 

lower traosftllUlon rales. 

Traditionally, t.he model parameten and residual samplea are quant.lled indlyidl1ally, 

Thil approach Il referrcd ta as ,,01., .,..ntùatIOn. Recently, a new prac:tlc:a1 desIgn ap

proacb t.o quantllatlon has bcen deycloped. It inyolyes the slmultaneoul quantlullon of 

Ryeral model paramctys or rcsldual samples. For tbl! reaaon, Il II c:a1led tlretor, or 6locJc, 

qv.ntùahon ThiS deslJu approacb IS discussed ln c:onslderable det.all by Linde el al [LINDSO. 

GRAY80a) and Ils cfTcctlyene5S IS demonslrated 

Udore studylDg quantllatlon ln leveral dimensiOns, an underatandin, or one-dimensionaJ, 

or lCalar, quanllzatlon Il esaentlal The bUIC Lheory of oDe-dimenslonai quantllatlon i. 

reyiewed by Geraho [GERS17) Jayant [JAYA76) III the editar ror a collectIon of selected 

reprints whu:h provlde m-depth dIscussions or varloU!! aspecta or lCalar quantuatlon. Gray 

,ct al [GRAY71! compare Tarious schemes ror the quanlilatton of speech reflectlOn coeffiC:lenta; 
\, 

the LPC model paramelcrs for the s~h proc:esa Lloyd [LLOY82) and Max [MAX60] 

deyelop an algorlthm for the design of optimal one-dlmenslonsl quantllerll, and whlcb 

forms the basl! for the vector quantlzer deSign algonthm mentlOn{:d prevlously [LlND80) 

'0 
Once an understandlDg of scalar quanlltatlOn 18 obtalDed, it III then neces!lary to 

ext.end these concepls io 5everal dimenSIOns A simple concept. of vector quantltatlOn III 

presented by Huang and'Schult.helss [HUAN63) for correlat.ed Gauatllan random vanables 

Euenllally, a lraosform 18 found 50 lhat t.he transformcd variables are mdependent Theac 

independent variables may then he quantlzed mdlvldually uSlOg scalar quantlters The 

quantllcd variables are then inversely tranllformed 10 provlde a quant.lted output of the 

original vec:tor. lIowevcr, Indlvldual quanti talIon of tndependent. variables may nol always 

produce optimal perrormanc:e. Newman [NEWM82) sbows t.he optimal pro pert y of the 

regular hexagonal array for uniform quantlutlon in two dimensions. ThIS optlmallty cannot. . . 
he oblame<! If t.he values are quant.ilCd andependently 

- 2 -
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The eoneept of optimahty predominates in the study or veetor quantilers and thelr 

propertles. Zatlor [ZAD082j, in a prevlousl>: unpublished paper, studles the asymptotlc 

propertles of multldlmenslonal quantllers Gersho [GERS79J extended thls work and intro

duced lhe compandlOg approach to veclor quanLJution. Thé" black compandor was iorther 

developed by Gallagber and Rudlew [GALLBOj New proofs of the asymptotlc tbeory of 

veetor quantu:atlon were recentIy d('Velo~d by Rucklew and Wise [BUCK82j Gallagher and 

Bucklew [GALL82jshow SOIDe sImple proofs on the propertles of optImal vector quantllers 

Agrea!. de al of the above work Wall based on a mean-square error cnt.erron. Yamada et al 

[yAMA80j extend thls to more general dIstortIOn measuren 

Whrle conSIderable sludy h:u! been done on vedor quantltatlon theory, It IS only 

reeently tha!. tbe artual deSign oi vector quantlters bas been attempted The deSIgn of vector 

quantllers generally Involves the use of one of two structures elther a lattlee structure or a. 

random codebook Gersho [GERS81, GERS82j revlewa these baJ5le structures a.nd dlllCu!l!les 

t.he ad'll1otages and drawbacks of both forms 

The major adTa~tage of t.he lattlce structure IS the ease witb whlcb arbitrary eneodlng 

ma)' he ~rformed. Conway and Sioane [CONW81j present expliclt algorithml for quanti&lng 

" .. 
ln four, elghl, and twenty-four dimenSIons and later generahr.e tbe procedurea [CONW82b) 

to a wlder range of lattlee forms and dImenSIOns Essentlally an extension of the umform 

quantI 1er , the eharacterlstlc!I of the laitlce structure are Important. These characteristlci are 

Itsted by Sioane [SLOA81] an'd tbe normahted mean-square error 18 tabulated by Conway 

and Sloane [CONW82aJ for v:mous Jalllce struetures 

The major dlsadvantage of the laillce quantI 1er anses from lhe same charactenstlc 

that provldes Ils advanlages its umform structure Because of ItS uDl(orm nature, a large 

number of output polDts are required to effedlvely cover the Input 'Retor space. Areas-where 

no input vectors he cannot be climmated wlthout. destroYlllg tbe latllee strudure and thUll 

the ease of corllng Thus, a large number of output vedors must. he coded whieh ID turn 

results ln a high transmIssIon rale. Furthermore, unlelll t.he input sequence Il, or can he 

transformed lo he, umrormly dlstrlbut.ed, the lattlce structure Wlll not he optimal. 
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The only effective method for the design of multidimensional quantiRl'B ÏlI throngh the 

use of a c1ustering a1gorithm. This approach ill del'eloped in detail by Linde, Buzo, and Gray 

[LIND80] who present algorithms for the design of l'ector quantizers. A companion paper 

[GRAY80aj present a theoretical development of the algorithm. The algorithm is extended 

to include tree-searched quantlzers by Gray et al [GRAY82a, GRAY82c]. The a1gorithm 

generates a random code book structure which must he searched to find the c108est match 

ta the mput vectOf. The main advantage of the random codebook il! that advantages may 

be taken of correlatloWl between the elements in the l'cetor. Areat! of the input l'ector 

space whieh contain no vecton may he effectively ignored ,inee no structure is required. 

ThiS results in lower transml8llion rates than may be obtamed through the me of a lattice 

structure. This al80 leads to the major dilladvantage of the random quantizer Because no 

,. structure elOsts, the output l'eetora must he stored BlnCe there i8 no way of ealeuJating 

them Furthermore, there are no easl algOflthmll (or determiwng the output l'cetor which 
~ (;J C 

III th'1 closest match to the input vector Desplte tbese drawbacb, t~f Êustering algorithm 
1 

has been apphed Wlth...aome succeu to the quantization of the !inear prediction parametera 

[BUZOBO, BUZ079, WONG8l, WONG821, and speech and speech-hte wueforms [ABUT81, 

ABUT82, JUAN82, GRAY82a, MABI8l] ThllI algonthm allO forma the bUll for the work 
8 

presented }fi thls thesÎ!I. 

One of the major Intentions of this t.heslll Il ta preseni a lIurn!!y of the TeCtor quaniisat.ion 

field This reTlew Includes a discllHion on one-dtmewnonal quantisation concept. and ext4!nda 

them ta several dimen.elons. Another purpose of thls iheaia 11 to erlend the work performed 

on the quantllatlon of the hnear predJc:tion parametera ln LPC lIJ1Items to indude the black 

quantlzaLlOn of the retnduaJ SIgnal as weil. The result.mg retndua1-enc:oded tincar prediction 

coder Il an attempt ta ImproTe Lhe quallty of the reconat.rnc:ted speech whùe mamt..mmg 

moderate (9 a kbpa - l~kbpa) transmllllion ra.tes 
,A 

Thl. thesll Il dinded mto lix chaptera Chapter 2 dlSClWle1l quantillltion theory. The 

theory of one-dimewnonal quant.lI&tlOn III discUllled and then extended to lleftral dimenaiona. 
'\" 
Once t.he multi-dlmenalonal quantisation principles are diacuaaed, different. IItructures for 

vedor quantlzcr.,are presented and compared as to t.heir eue of design antitIiplementation. 
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Finally, some algorithms are presEnted for the design of vector quantizers. 

Chapter 3 18 a teview of linear predictive and adaptive predictive techniques. Methods 

of coding and traIlsmitting the residual, incJudmg metbods for improving the quality of the 

reconstructed spe(ch, are presented. This is fol\owed by a diScussion on the quantlzatlOn 

and coding of the spectralmformation, I.e. the reflection coefficients or related paramel.ers, 

mcludmg the use of vedor quantu,ers . 

The remammg I"hapters represent the area of investigatIOn of the thesis The use of vec

tor quantl2~ers is ext('~ded 1.0 the block quanl.lzatlOn of the resldual Signal The efJectlVeness 

of vedor quantu;ailOn of the relllduai 18 mvestlgated and a simulation of a resldual-encoded 

coder based upon hnear predictive techruques is developed Chapter .. presents the coder 

structure and descnbes its operat.lon. Chapter 5 contams the experlmental results dertved 

from the sImulatIOns Finally, Chapter 6 presents conclusions drawn from the experlmental 

results and IDdlca\es are as for further investigation. 
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CHAPTER2 

THE THEORY OF VECTOR QUANTIZATION 

2.1 INTRODUCTION 

In one-dimeIllional acalar quantiution, the quantiser operates on a single aample Talue 

or an anaIog lignai The _ample i. replaeed by one of a let of represen\atiTe Talues whieh 
~ 

beat approximat.e the original value. ln Teetor, or bloek, quantiution, a k-dimenaional input 

vee10r ia mapped inLe one of • finite aet of i-dimen.aional repreaentatift vectora. The input 

Tec:1or is replaced by the output TeC10r which approximatea, in acme appropriate way, 
'< 

the oricinal input nctor. In either eue, a digital codeword eau he used 10 identity the 

repreaentativé &calar or Tec10r which be8t reproduees the origmal data. 

A quantizer may he Tiewed BI the eaacade or a coder and a decoder. The coder ident.ift.es 

in whieh· partition or the input Ipace the input Tec:1or hel and uaigna • eorresponding 

codeword. The dec:oder tùel thil codeword and ~nerates the output vec10r drawu from a 

-eodebook" or look-up table For a N-leYel quantiser, an mput vec:tor x = (1:0, ...• 1:Ao-.), 

wbere k il tbe dimetl.lion or tbe ftCtor, il auigned a reproduction vector i = q(x) drawn 

rrom a fini\e reproduction alphabet Y = h.; i = 1 •...• N}. The quantiser, q, i. completely 

deseribed by tbe reproduction alphabet Y 10gether with tbe partition S = {SI; i = 

1, . . "N} or the Input vec10r .pace. Tbe leU Si = {x : q(x) = "f i } COtl.lilt or input Teetorl 

mapped inta the ith reproduction vec:tor. Theae are choeen 10 minimise acme distortion 

eriterion d(x,"f.) ~ d(X,7J} ror all j. 

- 6 -
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FilON 2-1: Quantiser Deeompolition 

Thil decompœition il illUltrated in FilW'e 2-1. A eell lllignment fundion 'i 11 defIned 

... binary TaJued fllnetion 

{

l, 
•• ~x) == 

0, 

ifxe Si 

oth8nrUe 
(J.1.1) 

wJùeh ÏI an indie&tor function for t.he aet S,. The binary nlued l'Viable Aï .- .,{xl ÏI the itl 

element of the binary Talued ftetor a == {Clt, ... , ClN}. Only a liDate element of thil 'ftet.or 

il noD-HrO. Thu an N-lfm!l quantiHr m&J he upreaed al 

N N 

q(x)::!II E )'i"(X) == E T,Ai· (J.1.2) 
ï-l ;-1 
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In order to characterize the structure of the coder and decoder, an index (unetior 

and an.addrells generator function G-1 are u8ed. Gis a mapping (fOr the set of binary -

element vectors • to the index set J of integers from 1 to N and G-1 18 t~e inverse mappi ~. 

Specifically, Ge.) = i, if j is the largcst index i with a. = 1 and G-1(i) = (6}h ... , 6N;) 

where 6;i is the Kronecker delta (6;i = l, i = i, 6.i = 0, otherwise). With these definitions, . 
the coder G can be represented as C = G . S such that 

CCx) = G(.) = G(SI (x), ... , SN (x») (2.1.3) 

and the decoder D is represented as 

(2.104) 

so that 

(2.1.5) 

In other words, C giYel the inrlmt of the codeword which liel eloaest te x ... hile D uses this 

index to obtain the representatiYe value for x. The quantiser Q ma,. then he defined as 

Q=D·G. (2.1.11) 

The reproduction alphabet. of a -rector quantiser ma,. be represented as a sc:attering of 

points in l-dime1lJionalapaee. These pointa generally lie Wlt.hin,the reglona S; of the partition 

S of the input vectar sequence For example, if a mean-square error"criterlon ie uaed, these 

points become the centrOlds of tbeae regiona. The pl~ement of tbese POinta and t.he ~metry 

of the partition is of fundamental inte~ in the theOJ'" of optimal quant.isation. 

2.2 ONE-DIMENSIONAL QUANTIZATION 

An N ·leYel one-dime1lJlonal quantiser q may be defi.mm by a let of N + 1 decision leYela 

%0,%1, ... , %N and a set of N output ICfl!I"'l, Vol,. " VN. When an input lample % bea in the 

i'lI quantiser interTa! Si = {%'-1 < % $ %.} the quantiser produces the output value 

- 8 -
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q(z) = Ifi. The value of Ifi ia uauapy choeen ta If" within the intemll Si. The end lnela %0 

and ZN are generally chOie? to he the smaIlest and largtlst values the input samples may 

obtain For unbounded signais, theae beeome %0 -+ -00 and ZN -+ 00. The N output levela 

generally have a fiBite value and if N - 2", a unique n-blt binary word can identify a 

partlcular output leve!. 

For a fixed bit rate transmlllion, the number 01 bita neceaaary to speeiri a quanti&er 

level 18 equal to the smallest mteger greater than or equal to log:! N. This repreaenta simple 

scalar quantizatlon. For 'a fixed bit rate, it is oruy necesaary that the total number or bits 

per frame be integer valued. For example, ID LPC there are several reflectlOn coefficients, 

or sorne other parameters, generated ror ea.ch analYSl1l frame Thua, III the analfllis of a 

quantlzer, an Illteger number of bits III not reqmred and the relatlonsbip hetween bita, {J, 

l'nd quantlzatlOD levels, N, ill 81mp.ly 

{J = log2 N, (22,1) 

If lossleaa Ilource coding, such as HufIman coding, ill uaed, the tranamiuion rate need 

no longer he fixed The aTerage tranamill8ion rate can then he reduced from log:! N to he 

arbltranly close to the quanti 1er output entropy wjth Iittle or no 10llS of lldelity 

[GALLM, Chap 31. The quantrzer output entropy is denoted by 

N-l 

H = - L P, log2 P. ~ log:! N bita, (2.2.2) .-0 
where p,iS the probability that the quantizer output q(%) = If,. The upper baund is aehieTed 

If and only If the probabllities P, are all equaJ 80 that P. = lIN. For a fixed Melity 

crlterlOn, mlllimuang the entropy mInimises the aehlevable bit rate [GALLGS, Chap. g), thua 

the entropy places a lower bound on the poMlble bit rate. 

22 1 UNIFORM AND NONUNIFORM QUANTIZATION 

• The mput-output charactenatlc of a one-dimenalonaJ quantiser resemblea a ataJ.rcue. 

The quantlZer intervaIa, or steps, may Tary ID Sise. The sJmplest quantiser form is the 

- .. -
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x-r~lv .. Unlform 19 .. 
Quantlzpr _ 

Compressor Expandor 

Figure 2-2 Nonunarorm Quantlter Modelle<! Usmg a Compandor 

uniform quantn;er 10 the unarorm quantlzt'r, the lltep Sires are Identlcal except ror the end 

lD~rnl •. The output paants are locaLed at the mld-poant of t.hese Inlerval. If the .tep lite 

III deoo\.ed by ~, then the maximum error Il glven by 6/2. The end reglOns, SI and SN, 

are gcnerally unbo.unded Ir t.he quantllat.lon error cxceedll 6/2 when t.be input. sam pie rails 

wlt.han l'Ilher ,"nd reglon, the quant.lter III sald ta he overloaded 

ln gl'nl'ral, unarorm quantlzallon 11\ not t.he most elTC<'llvc way to obtalO good quanttœr 

perrormance ,"'or a fixed number of levels, a nonunarorm spa..clng of decl!!lon levels, baaed 

upon the Input probablllty dcn!llty, can r('sult ID lower average quanLttatloo error and le88 

I\t'nsltlvlly lo varmtlons Hl IIlput signai .. tallstlcs Bennett fBRNN481 modt'iled the non-

unlrorm quantll.er, ru; shown ln Flgurl' :!-:!, all a non-Imear compre!lslOn functlOn F(z:J. 

rollowed by a unlform quant.lter, rollowed by an Inver'!e expanlllon functlon F-'(X) The 

combaned runctlOn of cOmprMlSIOn, quantl7.atlOn, and expaOlllon 15 termed compandlO(Il It 18 

sim ply an eqUlvalent wa'l or vlewlOg the operatIon of a nonulllrorm quantltcr 

1 

Compandmg IS Ulierul for quantltlOg spee~h samplcs In general, low amplitude speech 

sampi!'! accur Wlt.h great.er probablltly th an hlgh amplitude samples The compandor non

hneanty 15 u1!cd 1.0 IIpread t.he low amphtude signai over a larger range or amplitudes whtle 

comprMllllOg the high amphtude Ilignals iota a smallcr range. After untformly quantlZlng 
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Input 

Quantlzatlon 
NOise 

e 

x------~ 

Figure 2-3 A Quantlter Model 

--~~-------------------';w~~1 

Output 
x=x+e 

the transformed lIample, the Inverlle functlon III taed to produce an approximatloD ta the 

origInal IIlgnal 

The compandmg charactensllC F(x) 18 a monotonlcally increa.tllDg functlOn havmg odd 

sym metry The nonllnear opt'ratlon III thus corn pletely mvertible Beeause of thls, there is no 

10&8 of mformatlOn dul' ta the operation of F(x) Ilself The comblDed effecL of the non-linear 

functlOn and ItS Inverse, along wlth th!' umform quantlter, IS equlvalent to the operation of a 

nonUlllform quantlzer whoo;e characterlstlfs are determlDed by the shape of the compressmg 

functlOn 

22 2 A QIJANTIZER MODEL 

, 
The quallLIl.atloll pro('c8s can he modelled as ID Figure 2-3. A random error, or nOllle, 

romponent t = q(x) - I. dependen.t upon the amphtude of the Input Signal X, III added 

dlirlDg quantltatlon to farm tht' output signal The quanlaatlOn nOIse can he categorlzed 

lOto two forms Th .. first. granular D0I81', 18 bounded ID magmtude and acCUTS when the 

IOput sam pit· IH'S wlthm the finlt(' rt'glOll defined by decision levels XI < X ~ XN-I The 

am plltudt' of thc nOlsc signaI 15 restncted by the slze of the mtcrval the input Signal hes 

wlthtn Th .. se('ond nOlS<' form, overload nOIse, oceurs when the sIgnai Iles 10 one of t.he end 

- 11 -
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regioD8 and il unbounded in amplitude. 

For lIimplicity, quantisation noise il modelled uthe aum of granulal" and overload noise 
• 1 

81 if they are two distinct DO lire sources [GERS771. It il U.!!ually cODvenient to treat the noise 

81 having a fiat 8pectral density and as being un:orrelated with the input lIamples [WIDR56]. 

Bennett fBENN48] shoWII that the quantitation noise ill approximately white if the number 

of output levela la large, If the output level! lie :Io~ to the mldpomts of the correaponding 

quantization mtervals, and if successive input sampi es are only moderately correlated. 

, 
2.23 QUANTIZER PERFORMANCE 

A fidelity measure must 3S8lgn some 'fBlue to the etrecu of quantization baaed upon the 

tact that the mput and the output ot a quantizer are not equal. One of the most common 

meuures II the' r t .\ moment of quantizatlon error. The ,th moment is given by 

M, = Elix - q{xWl = /."1% - q{:)I'p(:)dz. (2.2.3) 

Beeause of the rullCrete nature or the quantizer output and the staircase form of the Input 

output relation, (2.2.3) may be rewritten 81 

N ri 
D = Mr = L J~ 1% - v.l' p(x)d{z), 

,-1 ~i-l 

(2.2.4) 

where %i and :':-1 are decis\On levels boundlng the interval S. correeponding to output level 

V. When r = 1 or r = 2, equatlonll (2.2.3) and (2 2.4) reduce to the famlliar me an absolute 

or mean-square quanti ut ion error fespectlvely. 

It i. olten uaelul to deac:ribe the perf'ormance 01 a quantlzer by a signal to noille ratio 

defined 811 

(2.2.5) 

where cr2 ill the variance of the mput lIig'.J.al and D is the mean-square quantizer error. In 

mott applicatioJl.8, the nnmber or leve)s N il! very large so thst a high SNR is obtained. 

In t~e C~ D = M2' the mean-lIquare error, for a large N each interval Si cao be made 

quite amall with the exception of the over1oad regions. Il. is reasonable ta approximate tlie 

- 12 -
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probability deMity p(z) B8 being comtant in S, 1W that p(z) F::S p(V,) and letting p(z) F::S 0 

for the overload regions. In this case, it is found [ÇERS77] that the quanti"er error hecomes 

N-l 

D = 1~ 2: P(VI)Â~, 
1-2 

(2.2.6) 

where Âi = x, - Xi-l is the length of the intuval Si. ,uation (2.2.6) is based, on the 

,38sumption that sufficient levels exist 80 that the overload noise is very small in intensity. 

This implies that the overload decision levels Zo and ZN are chosen so that overload noise 

is negligible compared to the granular noise 

In the special case of uniform quantization, the intervals S,, are of a constant size 80 

that Â, = Â. The error becomes 

However, 

so tnat 
o ~ __ 

Â2 N-l 

D = 12 ~ p(V.)Â. 
1-2 

Â2 
D F::S -. 

12 

(2.2.7) 

(2.2.8) 

(2.2.9) 

Ta avoid significant overload distortion, in speech applications the overload level 

ZN = -zo > 4/1 where /12 is the variance of the signal 38Buming a mean of zero. If the mean 

IS not zero, the quantir.er should be designed to be symmetrical about the mean. The step 

size then becomes Â = 80' j(N -21. It is found [OLIV48] that there is a}ine3r increase in ~NR 

with the number of bits of quanti"ation,,;lf N = 2", then for an n-bit quantizer, it is seen 

that, using equations (2.2.9) and (2.2.5) that 

SNR = 6n-7.3 (2.2.10) 

for the given step Bize. 

Any nonuniform quanti"er can he traMfQrmed into a uniform quantizer through a 

change of variables [GRAY77] For convenience, the new variable will coyer the interval 

[0,1] having quanti"ation output levels 

'VI = (i +;/2), i = 0, 1, ... ,N -,1 (2.2.11) 

-f 19 -
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and decision levele 

ii ='~, i =O,l, ... ,N. (2J!.12) 

The random nriable 5: will be related to the original variable % through the tranaformation 

i = F(z). (2.2.13) 

F(z) il a ditl'erentiable monotonically increasing functicJD 10 that 

d~~Z) , fez) ~ o. (2.2.14) 

-,e quantization levels and boundaries aile rela~ by 

;i = F(V.), i = 0, 1, ... , N - 1 (2.2.15) 

'and 

(2.2,16) 

, ' 
The limita on quantisation, Zo = CI and %N = 6 are transformedaueh that 

F(%o) = F(o) = 0 and F(J:N) = F(b) = 1. (2.2.17) 

The pro~ability density can he tl;anaf'ormed te th,~w coordinate system using stan

dard techniques. It should he noted that if J:. and Z,-l represent the decision leTell boUDding 

an interval and Zi and %.-1 are the t.ransrormed levela then 

(2.2.18) 

The above relationships and their inveraes sUow any quanti 1er t.o he analy~, at least in 
o . 

theory, as a unitorm quantizer. In practice, the,relation F(z) may he difficult to determine. 

Baaed on the preceding model of nonuniform quantizers, it Îe polllible te der ive [BENN48] 

an 'approximate formula for the mean-squ~e error. For large N, the curve F(%) may 

be approximated by a Itraight-line llegment of slope F'(V,) which ie the derivat.ive of F(z) 

eTlÙuated at output Talue 'Ii. Defining fez) == F'(%) results in 

J( .) = F'{ .),..... F(z.) - F(zi-d "" 2V 
JI. - V. - ~. - N~.· (2.2.19) 

. 
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where V ia the ftIue of the Oftrload lnel. 

(2.t.20) C 

A common eompresaion (unction uaed in apeeeh traumi8lion il the ~Iaw~. 

Thi. example is a member of the cl ... of ·robut- quqisen whieh are relatiftly iue.itift 

to changes in the prohahilit}' densit.y of the input .ipal. 

To oot:lIn robust ~rformancf', the SKR oC the quantiser should he independent. of t.he 

probability density runctlOD of the input. signal [GERS77]. Il the .lope of t.he cOIDpreAOr 

cune i. chosen ta he 

t.hen equat.iOD (2.2.%0) beeom. ' 

*V 
I(z) '"'"' 'lsl' 

6' D=--,r 
3N2 

(t.t.21) 

(2.2.22) 

and the SNR, deflned bl (2.2.6), reducea ta a CODStaut iDdependeDt 01 ,(s). Dy ~ 

(2.2.21) for z > 0 to gîTe 

F(z) = V + c log(z/VJ, (2.2.23) 

where c ia a constant, it i~ Bee D. t.hat a ~ogarithmie eune giTeS the deaired raban performanc~. 

The p·law compreaaor characteriatic il or a logarithmic form and ia deft.ned as 

F(z) = V1og(1 + 1'ZfV) 
log(l +~) 

(2.2.~) 

for % > O. The logarithm is ahifted in order ta aYOid complicaliona when % = O. The 

mean-square granular noise calt he calculated [GERS771 ta he approximately 

D _ ~og(l + 1'))2 { 2aV (~)'} 
-;; - 3N' 1 + +, , r ~ pa 

,JI 

(2.2.26> 

where Q ia the ratio of mean abaolut.e value 10 rma value of the input aamples. 
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2.2.4 OPTIMUM QUANTIZATION 

Wbile the robust quantizers deseribed prenouslylimit the quantisation error for chang-, 
in« or unknown probablhly density functions, in applieatiolll where the density function ill 

known ït IS natural to seek the best p01uuble quant.iter charaeterlstlc for that denslty. The 
"\l'ij 

optimum quantl,er III one that mIDimitell the error ror sorne dlstort.ion measure. 

There are two maID approaehes taken to obt.ain an optimal quantlter. The firat ill an 

algorlthmlc procedure for findmg the optimum decision and output. levels and is vahd for 

.' .Dy number or quantIZer leTels N The second approaeh assumes that N IS large and leads 

t.o an explieit solution 

The first approath i. the algorithm developed by Lloyd [LLOY82! and Max [MAX80J. ~ 

For a mean-square errar criterion and a quant.iz.er with a 6xed number of Inel. N, t.he 

optimal Talues for the d~lsi'On leTel. Xi, i = l, . J N -1 aDd output pointa 1/., i = l, ... , N are 

\0 he found. The neceaaary conditions for optimalit.y are obtained by aetting the derivat.Tes 
\ 

or D ln (2.2.4) with regard ta eac:h of tbeae paramelers to ,ero for r = 2 The reaulting 

condition. then become' 

and 

1 - Each output levelll. must he the centroid of the IDternl S. wlth respect to the 

input density p(z). 

2 - Each decillion Jevel %. must he halfway between the two adjacent. output pointa 

The Lloyd-Max conditiolll "may he summari,ed ID the following equatlolll: 

l
~l xp(x) d 

1/. = % 
Sl-l Pr[x'-1 < % ~ x.! 

1/. + Il'+1 
--2- = Zi, 

(22.28) 

(2.2.27) 

whcre p(%) is the probability density of the mput Signal and Pr[z'_1 < x ~ %,1 II the 

probablJity % Iles in the given quantization mterval. GeneraHy, the above equatlonll are 
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mat.bemat.ically intractable le~ng ta t.he deTelopment of approximat.e formulae for the 

commonly lliIed derunties 

These conditions do not give the opt.imum values explieitly since each deciaion level 

:Z:i il dependent upon the adjacent output pomts V. and V ..... I and eaeh output level V, ia 

t.he centrold of the region çJefined by Zi-1 and Z" However, il. is possible to compute these 

parameters [MAX60] with an Iterative procedure, called the Lloyd-Max algorithm, that 

simultaneollilly satlsfies both conditions 

Lloyd [LLOY82] obscrved that the above conditIOns, although necesllary, werc not 

lufficient for optlmality He showed thls by means of a counter-example or Il probabihty 

density function and assoclated quanti ter that satlsfied the condItions but was not optimal. 

Fleischer [FLEI64J 0 htained sufficient condItions whlch, If satisfied, will confirm that the 

quantI ur il optimal. In partlcular, If the input density p(z) satlsfies the property that 

tP 
d:z;2 ~ogp(z)J < 0 (2.2.28) 

for aIl:z:, then only one quantiz.er exista that satisfies the Lloyd-Max' conditions. The converse 

i. not necelllarily true. il. may he possible to have a density p(:z:) that dOeA not. sati.fy (2.2.28) 

and :rel. a unique optimal quantizer may exist 

The second approach to ohtalnIng an optImal quantiz.er commences with equatlOn 

(2.2 6) whlch IS based on the alsumptlon that N is farge Panter and Dite [PANT511 round 

that the optimal compressor slope fo(z) IS proportional to the cube root of the probablhty 

denslty functlOn 

(2.2.29) 

",hich II! an extensIon of equatioDtl (2.2 6) and (2.2.20). By integratmg (2.2.29) the comprcslOr 

charactenstic i8 obtamed 

(2.2.30) 

where c il! a constant chOllen .0 that F.(V) = V, the overload nlue. 

OptImal quantizers have a number of IDteresbng properties. Wood [WOODDV) derived a 
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rel!lult whlch states that the variance or the output or a minimum mean-square error quan

tlter should be 11'88 than the input. This Illdicatell that signaI and nOIse are dependent and 

the apprOXlmatlODs considered in Section 2.2.2 may Dot be vahd. Bucklew and Gallagher 

[UUCK79, GALL80} extended these result! to quanti ms other than the Lloyd-Max quan-

tlter They also sbowed that the mean value of the signal III preserved by the quantIung 

operatIon and tbat the dIstortIOn is equal io the difference between the mput and output 

variances for a mean-square error entenon For an m-depth devel~pment. of these resulta, 
\ 

the n~ader III rderred ta the papera mentlOned here 

2.3 VECTOR QUANTIZATION 

The extensIOn of Bcalar quantu:ation to sever al dimenSIOns can be conceived of in sever al 

ways A conceptually simple melhod was developed by Huang and Schultheiu [HUAN~3) for 

corrclaled Gaussian Tandom variables Figure 2-4 illustraies this method in block diagram 

form. Essentially, a nonsingular transformatIOn T operate! on the mput vedor x ta Yleld 

a vedor )' of lIncorrelated random variables. When the mput vect.or x 1& Gauslnan, the 

output vecLor Will also have a GaUl!8lan distrIbution wholle sa.mples :m.' therefore not only 

uncorrelated, but mdependent as weil Thelle uncorrelated elemente may then he indlvldually 

quantlr.ed. An Illverse transformation r- I is then he used to produce an approximation to 
\ 

t.he origmal input vector 

The above procedure 18 optimal only if the input samples have a Joint.ly qauasian 

prot:i~~laty duJLrlbutlon [HUAN63]. In gencral, t.he IDput samplclI will not have th,s property 

and It is d.meult to find a simple and practical tramformation that maltes the samples 

uncorrelat.ea. Therefore other methods for vect.or quantlzation han been invcstigated as 

dlllcusscd an tbe followlDg sectioIUl. 
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Figure 2-4 Vector Quantu;er for Correlated Gaussian Random Variables 

2.3.1 PRELIMINARIES 

For every finIte (or countably mfinite) set of points y,,' = l, ... , N in Rie, 3 Dirichlet 

partltlOn 15 defincd sueh that each point In S, is doser to y, th an to any other pOlDt y j, for 

ail 3 #- t S, 15 thus defined as 

s, = {x Ilx-y,ll::; Ilx-y,1I for eachj t-'}. (2.3.1) 

An optimal quantlzer that mlDlIDlzes the distortIOn will c1early have a Dirichlet partitIOn 

For k = 2, Figure 2-5 shows an example of a Dlrlchl('t partitIOn ln general, each bounded 

Dirichlet relllOn IS a convex polytop!' boundeq by segments of (k - I)-dlmenslOnal hyper

planes An e1T!'ctlve partitIOn for the quantlzcr would have the property that the unbounded, 

or "overload", reglOns wOllld make a sufficICntly sm ail contributIOn to the distortion ThiS 

IS always possible when E[llxll'] < 00 ThiS IS sunply an extension of the one-dlmenslOnal 

cast' where the quanti7.l'r IS deslgned so that the probablllty of the IDput sample falhng mto 

ellher end reglon 15 small 

The ccntrold y of a convex polytope P ln RI< IS the value of y th3t minimizes the 

polytope crror D,. defined as 

(2.3.2) 
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Figure 2-5: A Dirichlet Partition or the Plane 

For r=2, , ia simp" the usual definitlon lor the centroid of a bod1 with uniform m ... 

diltribution. To minimi&e the d.in.ortion, it. ia neceaary that. each out.put point. he the 

eentroid of the region in which it lies. In the case of a uniloriiil1 diatributed random Tector 
~ 

x, a quantiser will haYe a Dirichlet partition <teflned on the bounded set in R" where ,(x) ia 

p<lIIit.iTe. To lu.mmarise, the h,o neceuary conditions for optimality are t.hat the partition 

be a Dirichlet partition and that. the output pointe he centroida. This i. an extension 01 the 

one-dimcll.Iional cue firat denloped by Lloyd (LLOY82]. 

A conTeX polytope P generates a t.euelation il there exiat.a a partition of R' whote 
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Figure 2-6' A Pa.rtltion of the Plane in~ Hexagona ... 

regions are aIl congruent. ta P. For example, aIl triangles, quadrilaterall!!, and hexagons 

gcnerate tesselations for A: = 2. For N sufficiently large, t.he optlDla1 quanti ter ror a 

uDirormly distributed random vccl.or on Borne cOllvex set S approacbes a partition wh08e 

rcglona are ail congruent ta aome polytope P, I.e. tbe optimal partition i. a tcslclation of 

S [GERS82]. The polytope Pin n" ill sald lo be in the class of admissible polytopes pt if 

l' generatcs a tessclat/on that i9 a Dirichlet partitIOn wltb respect to the centrolds or cach 

reglon of \.Ile partItion. In other words, the set of admIssible polytopes pit. lDcludea only 

those which rorm a tesselallOn of Sand wbere the centroids are equlValent. 1.0 the polDU 

whlch generate the Dirichlet partItion. For examplc, as sbown ID Figure 2-6, tbe bcxagon 18 

3n admiSSible polytope for k=2. The center of tbe hexagon III the centroid, al weil as the 

point tlsed Lo generale the DIrichlet partition.ln ~neral, the puiol!! generating a Dlfichlet 

partttion are not the centrolds or their rcspect.l've regions 

The Ilormahzed mert.ia 1(P) or a polytope P III defined 38 

(2.3.3) 
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where 9 is the centtOid and V(P) 15 the k-dlmensional1olume of P This normahr.atlOn has 

the properLy tliat 

I(CtP) = [(Pl, Q > 0, (234) 

where the polytope oP = {CtX . xE P} Thu5 when the size of P is scaJed, its normahzed 

Inerlla remalDs unchanged A coefficient or quantu.atlon may then be defined as 

1 
C(k, r) == L. Inr {(Pl 

'" PEP" 
(2.35) 

For a uniformly distr\bute~ random variable, C(k, r) may be thought of as the Mean distor

tIOn of the normahzed polytope for an r'b power distortIOn measure, An optimal polytope 
\ 
\ 

Po 18 an admissible polytope whlch attalDs the mlDlmum IDcrlla of ail possible admissible 

polytopes Will! th!' sarne volume. Thus, from equat.lOn (23 5), 

I(Po) = /cC(k, r) (236) 

A c:lassic isoperimetric result 18 that every convex polytope has a greater moment of 

inertla with respect. t.o lb cenlroid than a k-dlmens~onal sphere wlth the same volume Thil 

leads to a. lowcr bound on C(k,r) ail follow8 If B UI a. umt radius Iphere centered at the 

ongm, then 

[ IIxllrdx = ~V., 
lB '" + r 

(23.7) 

where Vl: 18 the volume of B The normahzed mert.ia. of B IS then 

I(B) = _le_V-r/l< 
ê le + r le 

(238) 

lflllng (2 3 6) and (2 3 8), a lower bound on C(k, r) III obtamed as 

C(k r) > -~ V-r/l 
, - k + r l: 

(2 3 ~I) 

An upper bound May be obtamed by calc:ulalmg the normalized mertla of any admisSible 

pol~t.ope ID pl:. A SImple chou:e 15 thc k-dlmensional cube C whlch h3JI normahzed IDCrtl3 

) 
le r I(c = --2-

r + 1 

C(k, r)'thus bas an upper bound given by 

C(k, r) < _1_ 2-" 
- 1 +r 
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whlch 15 IDdependent of ~he dimerullon k. 

23.2 OPTIMAL VECTOR QUANTIZATION 

232 1 Derivation of the DlstortlOD Integral' 

Geraho IGERS79j defines the output point denslty function of Il k-dimeuionai quantlzer 

1 
9N(X) = NV(S,)' If xE SIl for 1 = l, .. ,N. \ (23 12) 

where V(S,) denotes the volum€' of the reglOn S. This 18 essentlally a generaltzatJon or the 

concept or "asym platlc fractlOnal dcnslty of quanta" IOlroduced by Lloyd [LLOY82] for the 

one-dimenslonal case. Essenltally, a allymptotlcally small k-dlmenslOnal reglon 18 found so 

that the probablltty dlstrrbutlon II! unlform ovcr the reglOn and'equal to the probabtlity orthe 

ceilirold,of the reglon. UN(X) = 0 If X il! III a reglOD or the partition havtng mfimte volume 

If N 15 large, gN(X) can be expecled to c10sely approximate a contlOuou8 deDlllty functlon 

À(X) having umt volume The rractlOn or oulput points loeated lU a fractional volume a V(x) 

contatning x is lhen glven all À(x).6 V(x) The volume of the region S, assodated with output 

point Y. 15 then glven apprOlomately by 

1 
V(S.) ~ NÀ(y,) (2 3.13) 

for every bounded rcglOn S. NÀ(y,) 15 the number of points per unit volume ID the 

nClghbor hood of Y. 50 that the reclprocal ln (2 3 13) 18 the volume per output pomt. 

The distortion may be expressed lUI 

1 N [ 

D = k L J.~ /Ix - y.lI'p(x)dx 
._1 Si 

(2 3 14) 

Then, analogous t.o the one-dlmensional case, the partition Îs ehosen lIO that the "overload" 

dlst.ortlon 15 neghgl ble Then for large N, assuming >.(x) IS IImoothly varymg, the probabllaty 

dcoslty ln S. approXlmates a unlform dcnslty glvcn by 

p(x) ~ p(y.), x E S" (23.15) 
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Sub.t.it.uting (2.3.15) int.o (2.3.14) si..-

(2.3.18) 

Sine!! S, ID.,. he approximated by a luitably rotaLed, translat.ed, and lCaled optimal polytope 

Pe , rearranging equatlOD (2.3.3) reaults Hi 

( IIx - y.!!' dx = I(P"J[V(S,)j1+"l lSI 

Equation (2.3.111) may theD he WJ'ltten M 

N 

D = ~ E p()',)I(P.)[V(s,)]1+r/l 
,-1 

Subltituting equatlona (2.3.6) and (23.13) mto (2.3.18) resulta in 

N 

D = N-'C(i:, r) L p(y,/>,(y,)]--V(S,), .-1 
where fi =r/l:. Equation (2.3.19) may he approximately expreaed by the i.nteçaI 

D - N--C(L )/ -p(y) d 
- .. , r 1),(y)I')" 

(2.3.17) 

(2.3.18) 

(2.3.20) 

The region of integration is actuaIly the union of an the bounded regiODJI of the partit.ion, but, 

sinee the distortion from the overload regiom la Ulumed to he negligible, it May he taken 

as the entire t·dlmenslonal spa.ce. Equation (2.3.20) il ell8entially an extension of Bennett's 

one-dimensional tormula [BENN48], glven m equation (3 2 20), extended to li: dimellJioIlA. 

2.3.2 2 MimmulRg the Distortion Integra.! 

Zadar [ZAD082], in an updated tranacript of hl. prenollldy unpubli.hed paper, IIeparated 

the description of the quantizer 'int<> two parla in arder 10 minimize the diatortion in-

tegn.l. For the first part, the distortion ie mmimued OTer ail quantlserl for a uniform 

probabllity dellluty lunetion. For the second part, the distortion .. mimmlzed OTer the 

set of compreasor funetlons W'bIeh determine how the output pomta of the uniform quan

tiser are redistributed to take into account the pl'obabllity denalty functlon of the ran

dom Vlll'iabie. This is euentialiy an extenaion to several rumeDilom, of Bennett', IBENN48J 
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wor\e on one-dlmensional quantu:ers culmmatlng ID equatlon (2220) The results were 

denved for the asymptotlc case of a large number of levels (N -+ 00) 

For the first part of the problem, Zador [ZAD082] found that, for large N and an r'" 
~oment distortIOn measure, 

(2 3 21) 

where r IS the moment, 1: lB the dlmemslon, A(k,,.) IS a functlOn that is dependent only on 

le and rand not the random varIable, and 

(23.22) 

is called the La norm of p(x) 

~'or the second part of the problem, Zador [ZAD082] round that 

(2.3.23) 

where JI Q IS the output entropy of the quantI ter , JI(p) is the differential entropy of the 

random vector x wlth probabalty den!llty functJon p(x), and 8(Ie, r) 18 a function of le and r 

and not the random vector x. 

Zador dlcl not obtalO A(A:,r) and B(k,r) cxphcltly, but he showed that 

1 ---" IL)y-r/" k";;V le' S l1(k, r) ~ A(k,r) s: 1'(1 + r "''' , (2.324) 

where YA: 18 the volume of a Unit sphcre ID le dimenSIons and r(z) is the gamma fUDctlOn A 

deravatlon of the upper and lower bounds IS presented 10 later sections 
, . 

Gersho [GERS79] derlves an expression for the minimum distortIOn Do obtained by the 

use of the best quantlzer The minimum distortion IS glven as 

Do = N-r/loC(k,rlllp(x)!ll/(Hr), (23 25) 

where C(Ic, r) may be taken as equal to A(k, r). In that case equation (23.25) becomea 

the same as (2321) SlDce A(Ic,r) III mdependent of the prohabillty derunty of the random 
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Tariable and IIp(x)Q = 1 if p(x) is unity in 8 bounded region of unit volume r and zero 

elsewhere, then A(k, r) is detertnined by the optimal quantir.er for a unifarmly distributed 

random TlU'iable. Equation (2.3.25) then becames 

(2.3.28) 

C(1,r) is ealled the coefficient of quantizatian. In general, C(k,r)"like A(A:, r) and B(l,r), 
" 

is unknown. There are two special cases, evaluated by Genho'[GERS79], for which C(k,r) 

is known exactly. These are 

and 

2.3.1.3 The :l.cnRr Bound 

C(l r) = _1_2-r , ,+1 

5 
C(2,2)=-. 

Silva 
'J 

.-" j~ 

(2.3.27) 

(2.3.28) 

Uaing equatlon (3.2.20), Geraho [GERS79] obtaina a minimum value for D br leparating 

the quantir.er description into two parts as described above. For the flnt part, Gellho 

obtained a minImum distortion given as 

.(2.3.2D) 

with >.(x) in (3,2.20) praportional ta [P(x)]"/(k+'), This corresponds to Zador's result, (2.3.21), 

, if A(k, r) = C(k, r) Smee >.(x) is proportional ta [P(x)}"/(l+'), it may be seen that each term 

in (2.3.18) reduces ta a constant independent of i. This indicates that each region S. of the 

partition makes an equal contribution ta the distortion for an optimal quantizer. 

For the second part of the problem, D is ta he minimized subject ta a constraint on 

the quantizer output entropy HQ. For large N, sinee Pi R1 p(y.)V(Si) for each bounded set 

s., 
~ p(y,) 

H~ = - L.J N)..(Yi) log[p(y.)/NÀ(Y,·)] 

= - Ep(y,)log!P(Yi)]AV(Yi) + LP(Yi)log[NÀ(Yi]~V(Yi}, 
(2.3.30) 
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where aV()"i) == 1/N'A(Yi). <> 

As in the derivation of the distortion integral, the Il1IIlS in (2.3.30) may he approximated 

by integrals for large N.I This results in 

where H(P) is the differentisl entropy of the r:mdom vector x. 

By rewriting equation (2.3.20) using Jensen's inequality, D becomes 

D = C(k,r) / e-Phl!:[N'>.(,l!p()")dY, 

(2.3.31) 

(2.~.32) 

where fJ = rlk. 'By then applying (2.3.31), Gereho [GERS79] obtains the resuit that , . 

D ~ C(k, r)e-PlHq-H(I'l]. (2.3.33) 

If >.(y) is a <i.0nstant corresponding to a uniform distribution of output ,points , equation 
l 

(2.3.33) becomes an equality. Thus the solution to the second part of the problem beeomes 

(2.3.24) 

This corresponds to Zador's result, (2.3.23), if B(k, r) = C(k, r). It can he seen that, for 

large N, the optimal quanti~er for a constrained entropy is very nearl a unirorm quanti~r. 

From equation (2.3.29) or (2.3.34),-it can he seen that Zador's results are obtained if 

C(k,r) = A(k, r) or C(k,r) = B(k, r) respectively. By using these relations and substituting 

for C(k, r) from equation (2.3.9), it can be seen tbat 

( ) -() 1 lT-r/1c Ak,r ?Bk,r? k+rrlc , (2.3.36) 

which corresponds to Zador'a lower bound in equation (2.3.24). 

2.3.2.4 The Upper Bound 

Gs\~agher and Bucklew [GALL82] provide a relatively simple derivation of Zador'! 

upper bound. They hegin by placing st randoJIl, N independent uniformly distributed k

dimensionsl 'samples. TheBe will he the quantizer leveill. The input !lignal x is aasumed to 
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have a uniform distribution ovcr the hypercube. N is assumed te be sufficiently large BO 

that there is small probability that the input sample is closer t, an edge of ,a hypercube 

than to one of the output values. The probability that a parl.icular output level y, is within 

a distance p of the input sam pie x 15 given appro . ..cimately by the volume of the sphere B, • 

'of radIUS p 'cimtered about y •. This may he writt en as 

(2,3.36) 

where if Vk~i's the volume of the unit radiUS sphel'e, then V.P'" is the volume of the sphere 

wlth radius p To compute the probabihty that t'Be closest output level il!- within a distance. 

p of the input sam pic, classlcal order statlstics is c(.mbined with the approach developed by 

Yamada et al [YAMA80] 

:The probabllity density !(p) for the distance betwe~n the input sample and the nearest 

output levcll& then computed as 

(2.3.37) 

For large values of N, the probability density goes to zero ,.àpittly as p increases. By 

constructIOn, p is- the distance between the input and output level whieh may be Wfltten aS 

Thus, 

p = IIx-y,1I 

E[\Ix - q(x)ln = E[lIx - y,II'; q(x) = )',] 

=E[p'] 

Using cquations (2.3.38) and (2.3.39), the dIstortion D may be written as 

Letting 8 = Ykl and uSlllg the fact that 8 :::; 1, It 18 poSSI ble to wnte 

D :::; .J'!_ [ ~r/k[l - I]N-l d8 
kyr/k 0 

Ir. 

N [(1 + ,./k)f(N) 
,= kyr/kq'V'+l+r/k)' 

k 
(' 

(2.338) 

(2.3.39) 

(2.3 -tO) 

(2.3.41) , 

where r(.) is the gamma functlOD For lirge N, the following approximation may he used: 

(2.342) 
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Thererore, 

D = N-r/'r(l + ~/k) 
IeVr

/' 

" Because D ~ D •• (2.3.28) may he used to wrlte 

C(i: r) < rel + ri 1:) 
, - '1'" 

i:V" 

which ill Zador's random upper quant.ization bound. 

2.3.~.5 Properties of OpLimal Vedor QuanLisefS 

(2.3.43) 

(2.3.«) \ 

1 

For optimal one-dimensional quanlizers, it W3S found [BUCK79, GALL80) that t.he mean 

of the Input equalll the mean of the output and that the distortion equals tbe dtfferences 

between the input and output Tarianees for a mean-square error criterlon. Bueldew and 

Gallagber IGALL821 generalized these results to a Ie-dlmensional quant.iser in wbat ÎI bui

cally an application of the ort.hogo~alit.y principle. 

-
:rbe q~anLiser il designed to minimise the mean-square error defined u 

(2.3.45) 

ln order to innlt.ipLe Uïe properties or t.he quant.iler, the parameten Pi and Xi are deflned 

as rollo .. : 

PI = 1 p(x)dx 
s, 

(2.3.48) 

and . 

(2.3.47) 

where t.he partition Sj,i = 1, ... ,N need not he opt.lmal. 

To lhow t.hat. a quantlr.er q.(x) ill optimal for a &inn partiLioa, coDlider two dilereat 

quantlr.era, de6ned as q.(x) = x, and q(x) =' 'Ti, ror t.he same parti~on S. Tbe expeded 
r 

errar for q(x) Il giTen by 

E!1Ix - q(x)U2) = t L (x - X. + X. -7i)'P(X)éx. .-1 1 

(:t3.4I) 
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From equationa (2.3.48) and (2.3.41), it. ean he seen t.hat. 

r (xi:- x.)(x - 7.)P(x)d:x: = O. 181, . 

Using t.hi. rellult, and lIublltituting (2.3."6) and (2.3.47), (23.48) becomell 

v 
E[IIx - q(x)1I 2

] = E[lIx - q,,(xJlI2] + ~~ p,lIxi -7iIl2
• .--1 

(2.3.411) 

(2.3.50) 

This illUlltrates that the quanti ter q,,(x) produces an error no larger than any other quantiser 

, q(x) for a given partition. 
1 

By UIIlng (2.3.48) and (2.3.47), it can he seen that the mean 01 t.he quantiHr output 

equala the mean nlue of the input. This followa from 

t 1 xp(x)d:x: = 1 xp(x)dx. 
.-1 8, 8, 

(2.3.61) 

where the left aide il t.he mean of the ontput and the ri«ht .ide ia the mean of the input It 

can al80 he euil,. shawn that the quantiler errar equalt the iI'lput ...riance minus the output 

Tariance. Conaider the Input nriance 

ElUx - Elx]1I2] = E[nx - q.(x) + q.(x) - Elx1l12] 
= E[IIx, - q,,(xIl2] + E[,IIq,,(x) - Elx1l12], 

(2.3.62) 

where, from (2.3."9), the crou terml are lero EquatIon (2 3.52) Ihows that. the Input 

YViance Il equal 10 the SUIII of the quantllef error and t.he out.put TarlaDce. 

2.3.3 LATTICE QUANTIZERS 

A ftCtor quantiler Il mœt euily deaiped u a.rt of pointa which üe upon • l.t1.lce ID 

~eDlionaJ .pace. The latticttÎl • resuJarly Ipaced lUT.,. of pointa lU i:-dimenaional Ipace. 

A 1û.1.ice ma,. he deacribed [GERS81, GERS82] b,. Il non-Imgular j: X t matru U luch that 

if DI ÎI any i:-dimenaional vee10r (column mat.rix) of mtegers, the lattlce A is the set of ail 

ftcton of tbe form Um. The columna of U are pomtll of the lattlce and any 

ÎI formed by talong a lmear combinatlon of these bU1I1 vectora with mt.eger coe c.enta 

The origm ÎI ahraya IL lattice pomt and any tranalatlon to another laLtlce pomt resulta ln an 

identlcallattlce. Tbe Voronol ceUlurrounding &nylattlce pomt. x Il the set or ail pointa closer 
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t.o x than t.o any other latti~ point. Sinee each lattiee point haa an identieal eDTiroment, 

the Voronoi eells are ail congruent and collectively fill the 'pace Wlthout ovedapping. 

A lattice quantizer is a quantir.er whose let of output points il a subset of the laltiee A. 

In one dimension, the only lattice quanti~r is the uniform quantiler and the Voronoi cells 

are equally-med mtervalll iD RI. A uniform quant.izer in A: dimenaioDll is defined [GER879j 

lUI one whose cells are congruent translateft of each other, Le. a lattice quanti 1er Thua, 

the lattice quantizer Il buically an extension al the one-dimensional uruform quantizer ta 
... f 

"''t-~ 

Ineral"dimenslOns. 

ln order to characterlZe lattlce quantizerll, it is necessary to underlltand BOme of their 

buic features. Three tlIIefui propertlC~tI are the density of the lattiee, the kI88IDg number, 

and the normalized moment of inertla. The dentlity of the lat.tice Îs defined lUI the largeat 

fraction of the IIpace ehat may be filled with IIpheres eentered about the.lattice pointa that 

are of maximum dl!uneter Wlthout overlapping. The killing number ia deftned as the number 
, 

of theSè Ipheres that touch the IIphere lurroundmg a gI'fen lattlce point. The normalised 

moment of IDertl8 il the moment of inertia of the Voronoi eeU around a lattlc~ point 
1 

acaled BO that the cell hu umt volume. The mt two propertiea gin an indicatIon of the 

quahty of a partleular iattice for quantilation. The third property direet.ly determmea the 

"performance of a lattlee quantizer if the mean-square error criteflon ia used Conwsy and 

Sioane [CONW82a] tabulate the normahzed second moment of m.ert!a for V'arioUII lattlcell 

and Voronol cella up toJen dlmen.aiona. The char~teri.tlclI of a numoor of Iattiee atrueturell 

.of nrJ1ng rumensionahty are tabulated by Sioane [SLOA8Ij 

The m03t IDteresting aspect of lattlces 18 the eue with which arbitrary encoding may 

he perlormed. Glven an arbitrary pomt x in A:-lIpace, lt i. relatrrely euy te identify the 

latt.lce pOInt. lylOg clOllest. 10 'X. Conway and Sioane [CONW81j gin exphclt algorithmll 
( 

for caJculatlng the nearest latt.lce pomt ID 4·, 8-, ând '2+-dlmeD.lJOnal latticea. In a later 

pa.per !CONW82b], they generahr.e theae algont.hmll ta a wider range of lattice (orml and 
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2.3.4 COMPANDING IN SEVERAL DIMENSIONS 

A laltlee quantlzer IS an elegant and simple ~ethod of quantiting in several dimensIOns. 

However, as 10 the one-dlmenslOnal case, a unlform quantlZer III not the most effective 

method of obtammg good quantu,er performance For a fixed number of quantll;er pomts, 

a oonuOl(orm distributIOn of pomts 10 k-dlmenslOoal space, based upon the IOput vector 

probabllity, can result in Improved quantu,er perfofmance ln a manner analogous to the 

one dlmenslOnal case, a vector quanti ter may be modelled as a black compressIOn functlOn 

F(x). rollowed by a umform lattlee quantl!er, rollowed by a block expansion functlOn F-I (x) 

as shown ID Figure 3-'11 Gallagher and Ruckll'w (GALL80] descrlbe the block compandor 

as follows FIs a mapplDg runcllOD thal maps RI lIJto X"(O, 1), where ·X k " denotes the 

'Carll'sian cross produclm k dimenSIOns Th~ set XA:(O, 1) IS a k-dllneDslonal hypf'rcube Tbe 

quanti ter output Icvels, or pOlOts, arc th('n uOirormly dlst.rlbuted wlthlD thl. hypercube The 

chosen outpu\ level x 18 tbe palOt that lien closest 1.0 F{x), where lit II t.he IOput data vedor 

The quantlzed output III then F-l(x) 

Let t.he quant.\r.at.lOn enOf in the hypercube he denot.ed as ê = (ê •• ...• ê.,)T and Impose 

the condition that the expeeted value 

(23.53) 

.here 5'1 15 t.he Kronecker delta In other words, the clements of the error ve:tor are In-

dependent It may be shawn that, as the number of output pOints N approachell Infinlty, the 

error vector for an optimal quantlter converges to a ,t·dlmeoslOnal, 8phencally ~ymmetrlc. 

probablhty denslty whJ(~h satlsfiell condition (23 53) Furthermore, for large N, there are an 

mliOlte number of quanti ter! whlch have approxlmately the lame near optimum error and 

whlch may be generaied as translatIOns of one another wlt.hm the hypercube B., maJung 

an arbltrary chOice rrom among lhls ensemble of near-opilmum quantllcfS for e<.ch lDput 

vedor x = (XI, ., X4)r, the error vedor e may he decoupled from the lDput 50 as to makI' 

the error vedor lDdependent. of the Input vedor. ThiS il anaiogoull ta the tecbmque of al

slgmng a random lime oflgln to samphng operations ID order to trodel the .. ~!!!pkd signala 

as wldc-sensc statlonary pracesses 
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Let the input data be k-dimenslonal samples from a probabllity' denslty functlOn 

p(x), x E RA: If SI' 18 the support of distrIbutIOn p(x), then the mappIDg F, where F = 

[Ft{x), ... , FA: (x)]T, maps S",lllto the hypercube X"(O,I) auch'that F 15 regular and onto 

Assuming very small dIstortion, a good approxImation to the final error vector in the output 

IS J-I(x)ê, where f-l(x) represents the matnx of partial derlvatives of the IDverse operator 

F-l and ê is the error veclor ID the hypercube. 

If the vlmable ln the hypercube 18 y = F(x), th(m the probabihty density for y May he 

wrltten as 

(235-4) 

ln se'feral dimenSIOns, the mean-square error IS glven by 

(23.55) 

Substltutmg x = rl(y), e = x - q(x) = rl(x)ê, and (23.5-4) into equatlon (2.355) 

results ID 

(2.356) 

where S, = XIt(O, 1), the support of y, II the transformed support of x 

If x = F-1(y), then dx =1 J-l(y) 1 dy However, By the IQverse mapping theorem 

1 1 r l
()') 1= ----

1 F'(F-I(y)) 1 

Ulmg the above transformatIons and (2 3 57), equatlon (23.56) becomes 

(23.57) 

(23.58) 

wlth A-I(x) = [F'(x)J-1 T[F'(X)]-I a symmetnc matnx for an,. x. Averaging D onr the 

ensemble of quantiters, the error ê II! decoupled from the input BQ as to he lreated as an 

IDdependent random van able Consequently, 

(2.3.50) 
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where tr{ .} representa the trace of the matm. Impoaing the condition of (2.3.53), equation 

(2.3.59) beeomea 
" 

D = (71 r tr{r1(x)}p,,(x)dx. lIS,. (2.3.M) 

Thws the total error il the produet of two terml operat.ing independently. If the eigennluea 

of A(x) are denoted as À;(x), i = l, "', k , then (2.3.60) becomea 

l 1 2 p,,(x) 
D = (1i E '\~( )dx. .-1 s. A, X 

(2.3.61) 

Ir a random vector has a uniform distribution over the hypercube and F-l(.) mapl tbil 

Yeclor to a veetor in R Ic with lIupport SI' and denaity 1 F'(x) l, then 

llF'(xl1dx = L il },,(x)dx = 1. 
S. S" __ 1 

(2.3 G2) 

The problem beeomea one of minimiling D in equation (2.3.1H) aubject te the condition 

in (2.3.82). Asauming that except ror À, (x) , ail of the À.(x) are the optimum ehoiee, u.ae 

a nriatlonal method to optimute À,(x) lIubject to c:oDJtr8Ïnt (2.3.82). The reDult il that 

À,(x) = À(x) for all'i and the opt.imum },(x) il given by 

( 
p(x) )*' >.(x)= ~ 

rl-ï 
(2.3.83) 

U.ing these eigennlueI, the minimum error D .... Il grnm by 

(2.3.M) 

where 

(2.3.&5) 

il the 4. Dorm of p(x). 

2.3.5 RANDOM QUANTIZERS 

When the multidimenaional probability .den.ity il dilIleuit te tnmform or unknown, 

the only.eft'ective method for the deaip ofvector quanti sera la through the \lie of a eluat.eriq 
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algorithm. The e1ustertng algorithm utilizes the slatistics of sorne training set and takeS\ad. 

vantage of couphng helween the elements of the training vectors Combinatlonll of elements 

thal occur very mfrequently may he elimlDated from consideration ln the quantu;er design. 

ln scalar quantu;ation, the full magmtude range of each element must be quanti1.ed 

Etrectlvely, thlS 18 the same a!! quantl1.lDg ail poslllbie comblDations of elementl! m the vector 

Thl8 would corrcspond to a umform vector quanll1.er wlth rectangular reglons. Performance 

would be Improvcd uSlng the lattice structures discullsed III SectIOn 233 but infrequently 

occurrlOg cornblllatlOnl arc not chmlDalcd This glves an indicatIOn of W'hy c1uster deslgned 

veetor quantltcrs requlre fewer bds than a set of scalar quantl7,ers or lattlce quantl1.ers for 

cqUivalent performance 

A mal n dlsadvantage of c1uster designed quantu:ers Il the complexily or the quanti1.er 

Implementation SlDce the output vectors are obtamed in a random manner, t.he quantuer 

ha!! 00 natural structure :uJ III the case wlth latllce <juantu,ers. Therefore, each output l'eetor 

must be stored in a codebook and an exhaustive search of the codebook must be per(ormed 

ID order to locale the nearest output veetor to the glven mput vector Thlll resulta in cOltly 

procesllng tlme and storage reuulremeots The procellSlDg tlme may be reduced usmg a tree-

struelured codebook, as discullsed ID Section 2.4, al the COllt of auboptimahty and Increased 

storage requlrements. 

The c!ustE'rmg approach Wa!! thoroughly developed by Lmde, Buzo, and Gray ILlND801 

Essentlally an exteDlllon of L1oyd'lI Method 1 [LLOY82J, the design a1gorithm III baaed on the 

use of a tralDlng set of random l'eetora generated from a source for whlch the quantlzer III 

to he optlmlzed The algorlthm is discussed ln greater detml m Section 2.5 A diSCUSSIOn of 

duster deslgned quantlzers follows below 

Glven a quantll:er q descrlbcd by a reproduction alphabet Y = {y" i = 1, ,N} and 

partition S = { S" , = l, , N }, then the expecled distortIon, D({ Y, S}) = D(q), or the 

quanti ter may he wrltlen as 

N 

D({ Y, S}) = E[d(x, q(x)J = E E[d(x, y,)lx ES,)] PrIx E S,1. (2 3.66) 
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where E[d(x, y .)Ix E 8.IIS the conditional expected dIstortion given x E S, or q(x) = y" If 

the alphabet Y is glven but the partition IS not speclfied, a partition optimum for Y may 

be easrly conslrucled by mapprng each x rnto the y, E Y whlch mlDimizes the distortion 

d(x, y,) for ail i In oLher words, by choosmg the miDlmum distortion, or nearest nelghbour, 

codeword for cach x, an optimum partition for the alphabet may be generated In the 

case that more lhan one codeword mlnamlzes the distortion, sorne tie-breakmg rule, such 

as choolllDg the codeword wlth the smallesl andex, must be used The partition, pey) = 

{P" , = l, , N}, conlltruded III thlS way III lIuch that x E P, only If d(x,)' ,) :S d(x, y J)' 

for ail J =1= 1 and thu! 

(2 3 67) 

Equation (2367) Imphes that, for any partition S, 

D( { Y, S }) ? D( { Y, P(Y)} ) (2 368) 

and thus, for a fixed alphabet Y, pey) 15 the best po!!lIible partition, 

Conversely, grfen a partition 8 = {S" ' = 1, .. , N}, ulume that the di.lortion 

measure and distributIOn 21'e luch lhat there exista a minimum distortion Tector i(S) ror 

E(d(x, i(S))I x E SI = min Eld(x, U)lx E SJ 
u 

(2369) 

for each lIet 8 wlth non zero probablhty ln k-dlmemllonal Euchdean space, Analogous to 

the case or the squared-error dustortlOn measure, the vector i(S) wIll he called the eentroid 

of the set S Thu!! the centrold or a partItIOn III d .. fined as the vector whleh mllllIDlteS 

the average dUltortion of ail po lOts III the set S ror some glven distortIOn erltenon. If luch 

centrOlds eXlst, then for a. fixed partItion S, no reproduction alphabet Y can yleld a 8wallèr 

average dll~lortlon lhan t.he reproduction alphabet ;c( S) == {i(S,), , = l, , N } contalDlDg 

the cenlrOlds of the !le!.s III S Thil' oeeurs slDce 

N 

D( {Y ,S}) = L E[d(x,y.)lx E S,l Pr[x E S,I 
,-1 

N 

~ L 3lJn E[d(x. m!x E S.I Prix E S.I 
(2370) 

.-1 
= D[{ !ilS), S}] 
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lt may he shown !CRAY80a] tht the centroida of (2 3.69) eXI!t for quite general distortion 

me8llures 

For the quantlzer to he optimal, il 18 necessary that It 18 a fuced point quanti ter 

(GRAY80a]. Ir a fixed palOt quantll:er 18 8uch that there 15 no probabllity on the bound-aryof 

the reglona, I.e. Ir Pr[d(x, r.) = d(x, r 1)' 1 i= J] = 0, then the quantu:er 18 locally optImum 

[GRA Y80a] ThiS 18 always the case for contlDuous dlstrl butIOns, but can, ID prlOclple, be 

vlolatcd for dlscrele distributIOns 

, SlDce there are no dlfferentlablhty reqUlrements, the algorlthm IS vahd for purel,. 

dl8cr('te dIstrIbutIOns This 18 of partlcular Importance when a source has an unknown 

probablllty dlstnbutJon ln thl8 case, the quantl~er must be designed uSlOg a long tralDlDg 

seqllence of the data to be compr('ssed The tralOlllg sequence, {IX ... , k = 0, ,n - l} may 

be used to form tbe tlffie-average dUltortlOn Dt defined as 

n-I 

De = ! 2: d(x" q(x.)), 
n 

.-0 

(2371) 

whlch 11'1 exactly the expected dIstortIOn EGJd(x,q(x))] wlth respect to the sample dlstrlbu 

tion Gn determlOed by the tralDing sequence In other words, Gn ia the distributIOn that 
, 

8lIsIgns a probabllity min to a vector x that occurs 10 the trainIDg sequence m t.imes D, III 

then the expected dIstortIOn based upon thls distributIOn Thus the algoflthm may he used 

on the training sequence to deSIgn a quanti ter wblcb mlDlmlteS the tlme-averaKe distortIon 

If the sequence or random veetors 18 statlOnary and ergodic, then as n -+ 00, Gn gacs 

to the true underlymg distrIbution Jo' Thus if the tralDlDg sequence ia lIufficlently long, a 

good quantlur for sam pie dlstnbutlon G n IIhould allKl he goOd ror the true dUltributlon F 

and tbus yleld good performance on data oullllde the tralDlDg seql.ience It may he shown 

IGHAY80a]tbat, slIbJect ta sUltable mathemallcal auumptlOns, a quantu.er generated by 

mllng a tramlDg scqucnre converges, as the number of tralDlDg veelors goes to IDfimty, ta 

the quantu:.er gl'nerated by usmg the probablhty distributIOn of tbe data source It may also 

be shawn IGRAY80a] that for fi ni te alphahet dlstflbutlOD.l!, Auch as sample dIStributIOns, 

the slgonl.hm slways converges ta a bed-palDt quantlur ID a fiDlte numher or steps. 
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2.4 PRACTICAL IMPLEMENTATIONS OF VECTOR QUANTIZERS 

A number or factors govern the ImplementatIOn of vector quantlzers III elther software 

or hardware Th!'se Include cornputatlonal requlrements, algonthm complexlty, and mem~ry 

requlrl'rneots Tite design of a practl(~al vpctor quanti ter generally requlres a tradeoII among 

the!e factors u5ually al lhe cost of quantI ter perrormanr(' 

There are two basIC means of Increa..~lllg the practl~allty of vector quantlters The 6rst 

ruethod 5t~'ms rrom t.he structure of tbe cod!'book contalnlllg the reproductIOn vpctor~ The 

second 15 appllcabl(' wht'n a parametl'r IS only sl.ghtly coupled, or not cou pied at ail, to 

lhe rematntng parameters ln thl' vector ln l'Ither case, the quantu,er obtalDed HI5uboptimai 

rom parl'd to 00l' where l'very reproductIOn vector III checked the (ull-search codebook 
t.:' 

2 -4 1 TREFrSEARCHED CODEBOOKS 

For a mean-square dIstortIon meMure, a rull-llearch TeCtor quantlzer reqUlretl, for eacb 

IOpul vedor, roughly N(k + 1) multiplicatIOns, N(2k - 1) additIOns, and N comparillons, 

where N = 2" 15 the number of quantlter output pOlOtll, n III the number of bita, and A: III 

lhe n'clor lengtb The number of calculatlons requlfcd can he sl'en to IDcrease exponentlally 

wlth lhe Ilunlher or bIts The proceslIlDg lime rl'qUired thull becomes Impractlcal excepl for 

the sm aller codebooks 

One method of reducmg computatIOn lIme :3 by Ulung a tree-searched codeboolc 

[GRAY82a, GRAY82c] A tree-searched vector quantlzer III moat easlly vlllUallzed 311 a lree 

whlch 15 labelled Wlt.h vect.or5 and 15 searched by the (ncoder A lree of depth L bas levelll 

1 = 0 for the root node to 1 = L for the l('rmmal le Tcl Each node ID level (1 - 1), t = 

l, , li, ha., N, = 2f(, brancbes lea,<hng to node~ al the oext level, wherE' R, 15 the number or 

blls addcd at levcl 1 The tree structure 15 then compl~tely dellCflbed by an L-dlmenalOnal 

rale vecl.or R = (Ill, ,Rd Eacb node bas l ,-dlmenslonal v!'ctor as a label For the 

non-termInai nodes, these labels may te lhoughl of as "keyll" for searchmg lhe code book 
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T, .. S',uclu,. ~=IR-1 Rm' 1 

Node Le::: v, I~b. .bm' 1 

1 
Se. / =1 

F,nd b, .uch the. 

dlx.y.,) ~ dlx,y.) 

tor .11 1 

• 15 1 = m? 

F,nd b1o , 

dix ' • .0,.,' ~ dix lb " 
'or .111 

• 
,=/ +1 

Figure 2-7' Encoder ror Tree-Searched Codeboob 

cOll.listing of the termmal nodelo 

A flowchart for Il quantizer encoder using a tree-searched c:od.ebook il illunrated in 

Figure 2-7 The encoder first examme!! the source vector and seeks the Tector V6 1 in the 

set A = {If." b1 = 0, ,2R, - 1} of and able c:odewords which mlwmiles the diltortlon 

measure The mdex 61 becomes.the first entry ID the path map b = (61 , 00' bL) dellcriblDg 

the sequence of nodes followed III the tree The encoder advances to the node labelled by 

tle best codeword It then vlews Il new collectIOn Y(b1 ) = {V.1,1>2; 62 = 0, ... ,2R• - 1 } 

aI!d agsm seleds the best codewordo Thil! process III cont.mued untll the L\h level ÎII reached, 
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Figure 2-8: A Binary Encoder Tree 

111 

where the encoder has seleeted a final reproduction codeword 1/'1,'., ... ,6,. E Y(6lt 62, ... ,6'-1) 

and a path map b = (hl, ... , "L). 
f 

1 

The quantlrer code book obLed using the tree-searched method may he 8uboptimal 

in the sense that the quantlZer structure is constrained ta a particular form which may 

not he the "best" form for obtaining the c\osest output pomt to the input vector. The . . 
tree-searched codebook obtamed may be the optimal choice for quantizers which ,~~ a 

tree-searched codebook 

,-
Figure 2-8 IS an example of a binary encoder tree. The codebook at the transIDltter is 

split mto levels The first levcl contalns only two codewords and 18 used to splIt the data 

spacc lOto t.wo Bach of these subspace~, or cells, lB tben also spht int.o two for a total of 

four cells at the second level The process IS repeated, each level re~resenting one bit, until 

the deslrcd number of bits 18 obtamed The SI1,e of the code book bas been increased but the 

savlOgs ID calculatlOns are conSiderable The number of calculatlOns reqUlred IS roughly 2n 

comparlsons, 2n(k - 1) multlpllcatlOns, and '2n(2k -1) additions. It 18 seen that the Humber 

of operatIOns grows hnearly wlth the number of bits as opposed to exponentially for the 

full-search case 
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Aside from increased complexity, there is an increas~ in storage requirements. For an 

n-bit quantlzer, the number of storage locations required IS Nk, the number of output levels 

multiplied by the vector length For the binary tree-search codebook, there must be a total , 
of 

vectors stored or (2n+I - 2)k storage locations required. This is nearly double that require<! 

for the ruli-search codebook 

Il. is not necessary to limit the coqebook structure to the above two forms. Gray and 

Linde IGRAY,82aj round that three-level 10-bit:codes with (RI, R2, R3) = (4,4,2) provided 

a uscful compromisc of quanLiter performance, complexity, and calculational requirements. 

Wong ct al IWONG81j used a two-Ievel 100blt code with (R"R2) = (5,5) which achieved 

an average distortion close to tbat of a full search codebook but reqUlred only 1/16 of the 

computat.lons 

2.4.2 PARAMETRR SRPARATIO~ 

~f a parameter IS only s1ightly coupled with the othe~ parameters, some time and storage~ 
savings may be realized by quantizing this parameter separately from the others. If m bits 

are assigncd to the paramet!;!r and n bits 1.0 the remamder of tbe vector, then a total of n+m 

bits are rcqulrcd for tbe quantizatlon of ail tbe parameters. For a fuH-search code book, this 

would reqUire 2m+n(k+l) storage locations. By separating the slightly coupled, or decoupled, 

parameter and quantlzmg il. individually, the number of storage locatulnll is reduced to 

2'" + 2n k. The savings in storage reqUirements is offset by a decrease in optimàlîty since the 

codebook is now constralDed to a particular form IBUZ080]. 
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2.5 ALGORlTHMS FOR VECTOR QUANTIZER DESIGN 
~. 

2.5.1 AN ALGORITHM FOR QUANTIZER DESIGN 

Bued upon equatloDll (2.3.53) and (2.3.66), Linde et al [LIND80] deftloped &Il alrorithm , 
for designing Il good quantiser by taking any ginn qlWlti&er and iteratinly impr<mnc it. 

Essenllally an ext~nslOn of Lloyd'II Method 1 [LLOY82], the buic allO,rithm for ,deBipInc a 

vector quantller II! outhned below 
-, 

InitlalizatlOD. Glven N. the number of leve". a dIstortion threshold l ~ 0, an initlal 

N-level reproduction alphabet Yo and a trlllDlDg sequence {Xj, , = 0, ., n - 1 }, where n 

is the number of vectors ID the tralDlog sequence, set the IteratIOn", = 0 and the mitlal 

average ciistortlon D_I = 00 The IIlfinite Imtial distortion tmlures the operation of t.he 

algorlthm as alter each iteration the aTer. dIstortIOn 111 leu than or equ.aI kl the avence 

distortion alter the prevloUi IteratIon \ 

Step l' Glven the reproductIon alphabet y. = h'., i = l, .. ,N}, bd the mwmum 

dlstortion partition P(Y ... ) = {S .. 1 = l, , N} of the tralnÎq sequence: x, E S, if 

d(x,,)(.) :$ d(x/.n), for ail t::l: 1 Tbe distortIon meuure is denoted by d(x, y) and the 7.' 

are the out.put alpbabet vectors Compute the average dIstortion 

.. -1 

D ... = D({Y .... P(Y .. )}) =! L mIn d(x"y) 
, ft O)'EY-. ,-

St.ep 2' FlDd the optimal reproduction alphabet i(P(Y.l) = {~S,); i = l, ... , N} for 

P(Y.) ~S,) III the centrold of ail truDlng vectors x E S, Set Y _+1 == i{P(Y _». 

Step 3. If (D._ 1 - D.)! D. ::; l, hait 1I1t.h Y.+ 1 as the final reprodudlon alp~. 

Ot.herW11e replace '" by m + 1 and go to Step 1 

This aJgonthm 15 liluatrated lB the 80wchart of Fipre 2-9. 
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If al. BOme poInt, there eXISta a «II S. suth t.bat Prix ES,] = 0, t.hen the 8Ipithm 

uaips a amall Taflation from the centrold of the tl'alDln, set. al the output. of the œil Si 

and the algorlthm cont.lDues ThUJ , If tbe centrold or the data set. 11 t. then t.he new out.put. 

codeword for S, 15 Y. = (1 + .5")y, wbere 6 la some amall pert,a.rbatIOD factor. 

From equatlollS (2.3.53) and (t.3.55), il. can be aeen that t.he quantiser distortion, D., ÎI 
\ 

less th an or equal 1.0 the distortion, D.-l' from t~e preYloUJ it.erat.loD. ThUi Step 3 proYldes 

a uaeful check on the program executlon t.lme aiDee il. a1lows t.ermlnatlon of the PfOlBlll 

wben there la no longer anYligndicant improTement in quantiser performaDce. ln pract.iee, 
) 
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a second check on the algorrt.ritii~~-prOTidcd br hmltlBg the number of Iterations While this 
~ 

~ can result ID poorer performance, II. wu round tbat a hmlt of fifty ,Iterations aO'ec:ted the 

final quantizer performance only slightly wblle a slgnlficant dec:rease ID comput.atlon Lime 

was obLamed 

Sl~ce D ... 15 nonlDc.-easlDg and nonnegatlve, ahmlt Doc must ~X1st 3lI m -+ OCI. It can 

he shown [GALL82] that If a hmltlDg quantl~r Yoc" eXl5ts, such that y ... -+ Y"" 311 m. -+ ~, 

tben D( { Yex:: , Pt}' oc)}) = Doo and Yoc = x( P(Y",.,)) , 1 e Y 00 15 exactly the centrOid of Ils 
. . 

own optiMal partitIOn Thu! the set { Yoc , P(Yoc )} 15 a fuced polDt under further IteratIOns 

of the algorltbm If the distortIOn threshold ( 15 chosen to be zeto and tbe algorltbm halls 
l "-

for finit!! m. thcn such a fixcd polDt has been obtalDed [GRAYSOa] 

2.&.,2 OBTAINING THE INITIAL QUANTIZER 
., -

There arc a number of methods for obtalnlDg an Inlt.lal quanti ur for use with the 

algonthm of th<' prevlous sectJrJn One metbod, for use Of sam pie distributions, 15 by t.aklDg 

the first N TectOrs or the tralDlng sequence ThiS may not he a good 8proach slDce It 18 

d('Slrable t bat the vcct.ors be weil separated and N consecutive tralDlDg vecl.ors may not he 

very disperse. A second mcthod 15 based upon the use of a k-dlmenslonaJ unlform quanti ter 

on a /;-dlm<'Dslonal Cuchdean cube \~hlch mcludes ail or most of the tralDlng vectors A thlrd 
~ > 

t.N:nDlque IDvolves g('oeratlOg quant\ters of succCSlslvely hlgher rates uotil a glven rate or 

wrformance levclls obtalDt>d ThiS technique, des('rlbt-d by LlDde et al [LIND80, GRAY82a] 

IS outilOcd tx-Iow 

Inltl3hz.atlo,n Set AI = 1 and define ro(l) - i(Y), the centrOid of the tralDlDg 
\ 

sequence 

Step 1 Civen the reproduction alphabet Yo(M) contalDmg M vI'Cl.ors {y" t = l, _. ,M}, 

·spllt" cach vector y, IDto two close vectors Y, and )',(1 + 6) where O,~ 161 < l i'S

sorne perturbation scalar. The collection Y = {y" )',(1 + 6), t = l, .. ,M} has 2M 

vcetors. Repl~e M by 2 M: 

-.44-

\ 

. 
\ 
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Step 2. If M = N, the desired number of levels, set Yo = Y(M) and haIt Wlth Yo the 

init.laI reproduction alphabet for an N·lncl quantlter If not, run the design algorlthm on 

" n 
Y(M) to produce a good reproductIon alphabet Yo(M) and then return t.o Step 1 

Tbe sphtttng aIgorlthm starts wlth a one-Ievel quantlzer conslstmg of the centroid of 

the tr~ntng sequence ThiS vector IS then spht \Dto t",o vectors ",hlch serves as an imtlal 

two-Icvcl quantlzer for the design algonthm Once ,a good two-Ievel quantlzcr 18 obtamed, 

each veelor IS spht to form a four-Ievel quantuer whlch IS, ln turn, used IR the design 
, \ 

algorithm Tbis Iterative proces! of sphttmg and quantlzer design III contlDued until the 

,deslr~ number of levels or quanttr.er pe~rormance II obtalDed 

2 5 3 QUANTIZER TREE DESIGN 

A ftoWthart for the desIgn of a (RI, . , RL) tree-searched vec:tor quantlJel' il depicted 

in Figure 2-10· 

PM(l) = PM(I-I) X {O,l,. ,2Rt -I}, l= l, .. ,L 

li the collectIon of ail path maps through level lof the tree. PM(O) IS null and ·X· denotes 

the Cartcslan product 

Y(l) = U Y(b), b E P M(l), 

18 the collection of ail Dode labels ID lev!'1 l, where b = (b l , ,bt ) IS a path veetor and 

Il; the set of aV:lllable labels for tbe path map A tree-searched vêctor quaDtlt~r W1tb node 

label set N and the !'Dcoder of Figure 2-6 ID SectloD !! .. IS denoled by q N Th.e operation 

of tbe algonthm IS as follows 

lmt.iah&at-JOn D('$lgn (Rd full-search vector quantu,er'Y uSlDg t.he algoflthm of SectIon 

2.5.1 Set the tirst Icvel of the tree-searched quantlter Y (1) = y and l = 1 

Step 1 G Iven a tralDlDg sequence { %" J = l, ,n} and a tree-searched vector quantlzer 

y (l) = {Y., b E P M( l) }, the set of ail node levels al deptb l, set the node labels YU 



• 

( 

at the next le'Yel 8uch that ".,0 = n, ail b E PM(i) Set the ne. path map collection 

P M'(t + 1) = P M(l) X {O}, the Carlellla.n product of the colectlOn of path mapa al lenl 

i wltb the !ct of pat~ lead.Jng to the next leve! Smce at tilla pOlDt there 15 oruy a single 

brane b le:,dlng t.o tbe ne).t level, the set rontams ~ single element Imtlalu.e the rate at. the 

next level to R' = 0 and the number oi branch Dode! N' = 2R' = Set the collectIOn of 

nodl' !,abels 

Y(l+ 1,R') = {n, b E PM'(l + I)} 

Fmally, sel l = l + 1 and proceed to the Den 5~p 

SLep 2 The collection 9f the Dode labels Y (l, R') 18 split luch tnat 

".I+ N ' = (1+6),.." bEPM(l-I),] =0, ,N'-l, 

where ~ 15 a perturbation scalar Each node la.pel at leTeI III perturbe<! alightly ta create 

lwo nodes ln a manner simllar ta the 5plllt.IDg l.echnique of SeetloD 2.S.2 Sel the collection 

(,f pat.h maps 

P M'(i) = P M(l- 1) X {O,I, .. 'lN' -1}. 

Set the Inlermedlat.e collection of Dode labels 

Yo(l, R' -+ 1) = {:Yi .. b E P M'(i)}, 

till' S('t of ·spiJt~ nod!' labels Set tht> rate R' = R' + 1 and replace N' by 2N' Set the 

Il 'rations m == 1 and tbe 1 wtlal dlstortlOn Do = 00 

Step 3 Set t,he node label set 

l-I 

N(t) = U Y(J)UY",(l,R'), 
J-I 

lhe unIOn or aIl label collectIOns aL each levell t.:slllg lhe encoder acheme of Figure 2-7, find 

the TIlllImUIII distortIOn partitIOn P(Y ... ) = {S., b E P M'(t)} of the LraInlllg llequence 

x J é Sb If d(X}.)'b) ::; d(x].Yb') for ail b i= b ' E PM/ft) Compute the average rustortlon 

- 46 -

\ 

\ 



, 
V 
! 

i 

l 

,,-~,.. r-. ;-V--"""'!sO'!',''''tA_' ........ _@c_;l1I!!lI& ... a_= _________ •• 

o-p (lU) rail Sevcb 

Veel« Qu ... t .. ~r f 
Set Y(I) _ y- i"" 1 

"" .[ 
<:'ftn Ylt) = {,", ~ E PJl(l)} 

~ , ... - r., ':al b E PN(l) 
PAI'(t+ l}= PA/(ll X {O} 

ft =0 Jlrl = ZR' "'" 1 

Y(t+ I.R') = {J .. b E PM'lt+ III 

l =, ~ 1 

J; 
G'Yen Y(l,R')={n. bEPN'(l)} 

Sn T.,+ N = (I + l)r. J. all b E PM' (1 - ), 

1 = 0.1, ,N' -1 

PN'(l) - PN(I) 'X' 0,1, ,!N'-I} 

Y.(l, R' + 1) = {r., b E PM'(l)} 

R'=R'+I N' = 2N' m = 1 D. = 00 

D .. =O J = 1 

eout(t) = 0, b E PN'(l) 

<"ntrotd(b) - 0, b E l'N'(l) 

l "'=m+11 ,-, 
N(l) = U Y01 U Y.(l,lt) ,-, 

T 
l 

G'Y"en "" fiDd b = qI"l) - r. 
s"t D .. = D .. + d'(x"r.) 
count(b) = eouat{b) .. 1 

<@Dtrœd(bl = centtOld(b) .. ", 

J = J + 1 

For b E PM'(l) 

1 1 
11 tOWlt.(b) ;é 0 J > ,,' 1 

Tb = eeotrotd(b)/count(bj 
~ 

H (D .. - D.-.l/D .. -. > .' 1 
If comt(b) = 0 

.L 
T. = (1 .. 1 !J' .. '.-t Y .. (t,R')={,..,bEPN'(l)} 1 

Y .. (l, Il) = h., b E P N'(f) } ~,.' 

1 R' < Rf' 1 

r 
r Y(ll= Ylt.IlI] .. 
i t<.L' l 

1 

l 
1 H.n .. th NIL) = U Y(~ 

<-, 

Figure 2-10 Flowchart for Tree-Searehed Quantlrer Design 
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Step 4 If (Dm-l -Dm)f D", < (, the distortIOn threshold, contmue to Step 5 Ot~el'Wlse, 

replace Yb, b E P M'(l) by i.(Sb) , the centrold of the mina :num distortion partitIOn If 

a partitIOn IS cm pt y , repla.ce Yb by (1 + 6)Ybo , ,b, S,,~ 

y m(l,K) = {yb, b E PM'(in 

and return to St~p 3 

Stcp 5- Set'Y(l, R') = Y ... (l,R') If R' =1 Ri return to Step 2 Otherwlse, set PM(l) = 

P M'«() :md wnlJnlJc to th" next step 

Step fi Set the label collection Y(l) = Y(i, R') If l =1 L, return to Step 1 If l = L, 

the final Icvel of th(' trec, UH'n hait wlth 

- '-
N(L) = U Y(l) 

l-I 

the final collectIOn of node labels and Y (L) the final reproductIon alphabet 
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CHAPTER 3 

THE THEORY OF RESIDUAL ENCODED LPC 

3.1 INTRODUCTION 

In tlme senes analysis, a Signal "n can he consldered as the output of sorne system with 

Input Un The system IS often modelled by the relatlODshlp 

p q 

..... = - L al~n-l + CT 2::: blcun-I" bo = l, (3 Il) 
1-1 "-0 

where QJ' 1 ~ J :$ p, bic, 1 :$ le ~ q, and the gaIn (7 arc the parameter!l of the systt'm 

From equatlOn (31 1), It 15 seen that the output signai, ~n, can be predlctcd from a hnear 

combInatlon of past outputs and mputs, glving rlse to the name hnear predictIOn 

By takwg the z.transform of bolh sides, equation (31 1) may tben he specIfied ID tbe 

frequeney dom8m If El (z) 15 thp trsnsrer funellon of the syslf'm, then il (zJ lB represented 

as 

H(z) = Zt1 

-where 

S(z) = 

il 

1 + 2::::: blc Z-
k 

1-1 = CT- - p- ----

1+ La,z-' ,-1 

n--~ 

(312) 

(313) 

lB the z·trans(orm of 'n and U(z) 15 the z·transCorm of Un Thil Il a genersl pole-Iero 

model for ll(:), where the poles and,terol.'s arp tbe rools orthe denoIDlnat.or and numeralor 

polynommls respectIvely. 
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There are two special cases of the prediction model or equation (3.1.2) that are of 

interest These are the ail-pole and ali-zero models ln the former case, 6" = 0, 1 :$; Je ~ q 

This 15 known as the autoregresslve (AR) mode/. The all-tero, or movmg average (MA), 

modél occurs wben 0.1 = 0, 1 :$; j ~ p Because the ail-pole model 15 a good model ror 

speech, Il. is or p_tlcular mterest ID the hnear predIction or speech and will thus be the 

focus of the rollowmg dIscussion. 

3.2 LINEAR PREDICTION 

ln the ali-pole model of Imear prE'diction, the output SIgnai IJ n is glven as a hnear 

combtnntlon of past. valucs and sorne input Un such that 

p 

a" = - L (J,IIJn-J + (TU", 

,-1 
where (1' i8 tbe gain raclor. Tbe lransfer runction or equallon (3.2 1) becomes 

H(z) = __ (T __ 

p 

1 + L o., Z -] 

1-1 

(32 l) 

(3.2.2) 

Tbe prohlcm becomes one of determining, ID sorne manner, the ~tem parameters' the 

predIctIOn coefficients ai and tbe gam CI 

i\ssumlOg ÜIC mput Un ta I>e totally unkno,:"n, the Signal 'n can he predicted only 

approxlmalely from a hnear comblDat~t samples If the predicted value or the Signai 

18 denoted hy i", where 

" in = - L a,'n-J' (323) 
J-I 

~hen the error bct-ween the actual value ... and the predlcted value i .. Il' gi.,en by 

p 

en = /In - ;n = ' .. + L G'."-J' (32.") 
1- 1 

The error !ignal, t n , 18 also known a.s the resldual The parametenJ aJ are obtalOed as a 

result or mmiml1:lo,; the mean or total square error wlth respect ta each or the parameters 

ThiS 15 known lUI the method or leut squares. 
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321 OBTAINING THE PREDICTOR PARAMETERS 

Ir the signal 8", IS a sam pie of a random protess, then the retndual signal, tn is also a 

sam pie of a rapdom process ln the least squares method, the expeC'ted value or the square 

of the error 15 mlnlIDIZed The expected value of the error 18 glven r q 

D IS mlmmlted by settmg 

BD 
= 0, 1 :S J S; p, 

{Ja] 

WhlCh results III the normal equatlOns 

p 

L aJ E[8n- J 6 n -.] = -E(6n 6n-i], 1 $ i S; P 
1-1 

The minimum mean square error 18 then 

l' 

D .... n = E["~I + L llJEI6,.8n -,]. 

,-1 

(3 25) 

(3.2.6) 

(3.2.7) 

(3 2.8) 

The method of taking the expectatlODS in (3 2.7) and (3.2 8) de~ndll on whether the random 

process " .. 18 statlonary or non-stationary (MAKH75, MARK761 

322 STATIONARY PROCESSES " 

ln the statlOnary case, the ex~ted value liecomes 

(3.29) 

where 

(3210) 
n--~ 

III the autoeorrelatlOn of the proeess Under these COr.dltlonll, equatlons (3.2.7) and (3 28) 

are repre~nted by 
, 
L a,R(1 - J) = -R(l) (32 11) 
)-1 

51 -
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and 

" D .... = R(O) + L 4,R(i). (3.2.12) • 
1- 1 

In practlce, the signal ' .. is bufJered over a fiolte internl or i. multiplied bYlOme wlOdow 

functlon lo oblalD another signal ... whlch 18 tero outslde some mternl 0 ~ " ~ N - 1 10 . 
lhal 

othcrwlle 
(32 13) 

ln t.bis case, tbe au~orrelatJon fUDctlOn I!I reduced t.o 

N-I-. 

R(a) = L ';n; .. +11 i ~ O. (3.2.14) 
.. -0 

3.!.~ NONSTATtONARY PROCESSES 

For a Donltationary proc:esa, t.he expec:ted ftlue of the e1'J'Of' lip.al beeomH 

(3.2.15) 

~, where R(t, t') III t.be DonstatlODary aut.ocorr<,latlOn between tlmes t and t'. R(" - k, n - i) III 

IL functlon of tbe ltme IOdel( n and, !llOce n 18 arbltrary, wlthout 1018 of generahty n ma}' he 

lIet t.o lero. In thls case, equatlOD8 (327) and (3 2 8) become 

" L a,R(-], -1) = -R(O,.) (3 2 l~) 
,7-1 

and 
p 

V_ .. , = R(O, 0) + L: Il,R(O,]}. (3.2 17) 
1- 1 

s.'Ca\lle DOlIJtatlOnary proceues are not. ergodlc, lU estlmatlng the coeffiCients a, the 

tlme average cao Dot ~ 5ubst.lt. uted for the ensemble average. However, If the prote .. 1. 

q 
:o<:ally st.allOnary, Il III reasonable t.o esllmate t.he autocorrelatlon functlon wllh respeel to 

a point ID lIme as a short lime average Theo, ID a manner analogous to the stat.lonary case, 

. , . 
- 52 -
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.1' il used to estlmate R( -], -1) ID equatloD (3214), where 

N-l 

~., = L ' .. -.",,-, 
,,-0 

(3.2.18) 

11 t.he eor.manee of the procellll In the covariance metbod, the error D II ID.lDimiJed. over a 

finite int.ervaJ 0 ~ n ~ N - 1 50 that equat.lons (32.7) and (3.2 8) may he wrlt.ten as 

and 

, 
L 4, 4»1' = ~.o" 1 :5 , :5 P ,-1 

, 
D_.ft = .00 + L "j.Ol 

1-1 

(3.2.19) 

(3.2.20) 

For proper application of the covanance method, the nlues or t.he aignal n" mwrt he 

kDown OTer the range -p ~ n S; N - 1 a total or p + N samples The covarIance method 

becomes the same as to the autocorrelatlon method as the range of lIummatlOn becomes 

infimte 

3.2" SPEECH SIGNALS 

Speech tends to he ID the clus of locally statlonary random proeeues IDdieatmg thal .. 
the covartance method would b" best ror obtalDtng the pred,\~tor, parameters In practlce 

~' 1) < 'u 

howevcr, the speech IS buffered and wlndowed thus allowmg the autoeorrelatlOD method 

to be us cd as glVI'D hy f'quatlon~ (3 :! I:!) and (3213) This techntque IS used ID th" coder 

simulation prf'<wnt('d lU Chapter 1 In thls case, the IOput speech 18 buffered to produc!' 

a known framl' of data This data IS appropnately wlOdowed and 15 used to obtam the 

predlctor paraml'tcrs usmg thl' autocorrclatlon method 

3.3 CODING AND TRANSMITTING THE RESIDUAL 
" 

331 Tm~ ADAPTIVE PREDICTrvE CODER 

Figure 3-1 shows a simple adaptlve predictive codmg (APC) system tbat mcludes a 
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Iinear predietion filter A(z) and a pltch prediction filter B(z). The z-transforms oC the input 

and rec:oIlltructed speech waverorms are given by S(z) and S(z), respedively. The residual 

.ignal iB denoted by E(z) and the quantlred resldual, Ê(z) is taken to be 

Ë(z) = E(z) + Q(z), (3.3.1) 

where Q(z) represents the quantuation nOise. From the figure, the Collowing relatioIlI my he 

determlned 

E(z) = S(z) + (A(z) - I)S(z) (3.3.2) 

and 

S(z) = Ê(z)/A{z). (3.3.3) 

Substitut.lng equat.iou (3.3.1) and (3.3.3) mto (3.3.2) resu.lta in 

E(z) = A(z)S(z) + [A(z) - l1Q(z) (3.3.4)' 

and 

Ê(z) = A(z)S(z) + A(z)Q(z), (3.3.5) 

10 tbat the reeoutrueted speech Signal is given by 

Se,) = S(z) + Q(z) ~ (3.3.6) 

:rbe gain (1 lB chosen such that (12 18 the variance of the prediction residual. 

Ir a pltch prediction loop is added as indlcated in Figure 3-2, the recoutructed speech 

S(z) is given by 

Se,) = R(z)/B(Z), (3.3.7) 

where R(~) = È(z)/A(z) as in equatIOn (33.3) Tbe residual E,(z) in equation (3.3.2) bas an 

ex~ra term added whlcb results ID 

. 
E(z) = S(z) + [A(z) - lIRez) + [B(z) - l]S(z). (3.3.8) 

Ir the quant.iaer n~w &dds quantllation noise given by Q'(z), equation (3.3.1) becomes 

Ê(z) = E(z) + Q'(Z). (3.3.9) 
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S(z) 

Figure 3-1: A Simple Adaptiw Predicti'Ye Coder 

Equations (3.3.7) and (3.3.8) may then he uaed to derive equatioDi eorrelpOnding to 

(3.3.4) and (3.3.5): 

E(z) = A(z)B(z)S(z) + [A(z):" I]Q'(z) (3.3. le} 

and 

~(z) = A(z)B(z)S(z) + A(z)B(z)Q'(z). .(3.3.11) 

The reeoDltrueted lpeech lignai il then round to he 

S(z) = S(z) + Q'(z). (3.3.12) 

Comparing equationa (3.3.6) and (3.3.12), the only difference ÏI in the qUantilation error. 

The addition of the pitch prediction fUter generally reluits in a amaller quantilation error 

than in a system without the pitch filter [ATAL78]. The use of a pitch prediction fUter will 

he diacuaaed in more depth below. 
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S(z) 
>------4~ Quantlzer 

P'ipre 3-2 Addlt.lon of PI\cb Pred.ietaoa Loop 
1 

3.3.i THE CLIPPING PROBLEM 

,. 
When tbe Input. .peeeh \1 TOICed, the rt!IldllalllpaJ Il th~11ed. br a larre pulle at 

t.be belloning of ellCb pltch perlod The pu!~ Il generally of mucb greal.et amplItude thu the' 

remlUoder of the sIgnal samples ID tbp ~rJOd ~au&e th(' pulse 15 absent durlog unvolced 

aound. and Il baJ!lcally occun only once p!'r p,tch, per.od, hlgh amphtud(' samplr ralue1l occur 

verylDfrequenlly Becaulle of thls IOW probatHllty of DCCUrrl'DCf' uDlform quaw,ltaLlon, u'log 

tbe 417 ~elbod, or !'Vf'n the uSt' of a L1oyd·Max quanL"~l'r, fesulls ID dlppmg of tbe plt.<:b 

PUIK ThIl poses a problem, 51De[' studll'S ,ATAL80j IOdlcat.e that accurate quantu,aLloo 

of the hlgh-ampltlude portlOos of thl' rf'1'ldual, ID partlcular the pltch pulse. III Decesr.ary 

for achlevmg low perceptual,dJstortlOD ID the reproducf'd 5peet:h Thil probll'm ma, he 

allevlated by locreumg tbe oumber of quantlter leTl"l1I aL tbe l'xpeOIle of IDcre&Jl('jj bit rate 

Makhoul and Beroutl [MAKH79a fiod that a Ill-level oDe-du;;enlllooal quanLIr.er 18 lIuffiCleoL 

10 completel,. ehmloat.e chpplng SImple codlDg of the output theo requlres allea.sl live bll.a 

pet lample. In order Lo lo~r the bIt raLe, some a1t.f'rnatlve \.0 simple codln« Il u&ed 
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A number 9r different methoda haTe been proposed ta reduce clipping, yet maintain a 

low bit rate. Atal and Schroeder [ATAL80] propoeed center elipping the reslduaJ and then 

quanti,iog the result ta severalleTeIs. Entropy, or'~Rffman, eoding would then he used ta 

maintain a low bIt rate. A ,imilar scheme wu propoeed by Mathou! and Berou~i [MAKH7Da], 

except tbat the centre chpping wu not performed. Makhoul and Derouti [MAKH7Db]lIllfTey 

a number of methods for reducmg the'clipping. Of partlcular mterest ill the three-tap pitch 

predictIon filter, proposed by Atal and Schroeder [ATAL78], lIince ~~uoida the eomplexitiea 
1-

assoclat.ed wlth "any fQrm of entropy eoding. 

333 PITeH PREDICTION 

The relllduai IUgnal <lisp!.,.. a mark.ed periodicity .benner the input il TOieed lpeeeh. 

The retlldual from TOleed speech II charactetlled by a l~ pulse at the bepnniq of eaeh 

pitch penod .hleh representll t.he exCitation of tbe speech mode! Sinee the pltch penod 

wrt.run a typleal ~Iced lOund uaually ';"'Iei Ilawly over t.he duratlon oC tbe lOund, eaeh pitch 

pertod can he approxlmately precheted from the prenoUi one. The eltelta.t.loD pw.e may t.hea 

he lubatantlally reduced by tWng a pr-edJetor centered at tbe pltch penod [ATAL78] 

'he pltch predletlon lUter bu tbree ~rms alnee t.he pltch perlod may DOt he an e.uct 

mult.lple of tbe aampltDK IDt.erfaI The error Ilgnal t(ft) II t.bUl related ta the error al the 

". "preTÎous perlod, m sample! earher, wbere m Il the number of lamphq Int.ervals eontalDed 

~n a single plt.ch penod ThiS rela~lon may he wrrtten as 

(3.3.13) 

" 
where ê( ri) II the predlc:ted ni ul' of ~ ri) and ~ t. t = ]. %. 3 ~ l~ füter paramet.era Theo 

predIction pÂn. tbe reductloD III IlgbaI t'Del'(Y by IlIftl'M füterlDl. II lucher for the t.bree 

t.erm filter t.han for a Ilntle t.erm filt.er .1 t~ pltc'h lac 

The det.ermlnat.loll of tbe plteb pN!CÙet.ion lilter JI a 1.'110 st.ep procesa Fu_, aD ~ 

• 1.1011 of t~ pltcb III made Then. U.lng tbt' estlmated plteh. an es1.lmauon of ~ tJaree tilter 

eoetliclt'1lÙI '1 made UlIIII a mlwmum !DnD lCfuare errar cnt.erlon 
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A common technique for estlmatin« the pitch period il the maximum correlation method. 

" This method searches a range of lample delays 100 king for wayeform similarlties The 

range of pitch frequencles, for both male and femaJe speùers, III roughly between 50 HI 

and 3,00 Hz. ThIs correspond. to lIample del.ys of roughly HW lIamples and 2~ samples 

respectively for llpeech sampled at 8 kHz. 

The maximum correlation method calculates the lample correlation of the resldual. Oftr 

the abo'f range of lample delaYI Tbe aut.ocorrelatlon Il calculated .. 

(3.3.14) .. 
whére n ia the ~ of lummation (pnerally the SISI! of the data frame) and i ftrte. Oftr 

the aOOft faille of .ample del.,. The maximum of R(.) O«lU'II at. • ptt.ch period or multiple 

• thereor. 

Once the pitch period Il efiimat.ed, the fl.Jt.er codiae .... an! det.eraunect br mimmlziDl 

t.he meaD .are enor b4!t.~n e(-) and e(n) Il defined ID (3.3.13) The pltch precbd.JoD 

fil,ter coetlicleDts m.y then b4! det.ermlDed from the mat.nx equatlOD 

(3.f.li) 

--~w-:~ 1'(i) == R(')I R(O) Il a normallaod aamplt- correlat.lon. by IOITlq • eet of Taeplits 

equatlODI 

3.3 4 IMPROVlNG THE PERCEPTUAL QUALITY 

·Eftll ÙIOtIJb t.~ chpPl1lC pro~m may lit ehmtnat.ed, t.beft rem ... is ~ crannl., 00_ 

mLroduœd br t.he quamlzer BeroUt.1 and Nùboul rSERo781 luner a numb4!r of mPÛlods 

for redoclDl the perct>p1.uaJ d.st.ort.loll c.~ by th •• granular DOlIC! or partlcular ID~ 

an. t.he u.. of la preemph .... 6.1t.er aod a DOde IbapD« filloer 
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3.34.1 Tbe Preemphull Filur 

Becaule of the granular lKSi.e iat.roduced b.1 tiu.t.ion, the output IpftCh il perœ~ 

tuai l, dlfJ'erent from the Input lpeec:b. At.aI and Schroed~L701 round that the outPu~ . 

. ~ 
n011e lpecirum Il about equal 10 tbat of the speecb IIInai al hllb frequ!nclft They fouDd 

tbat for frequencle5 aboye :;00 11&, tbe frequenC1 lpectrum ror yoieM sound. dec:reues "'Ith 

frèquencY"'ltb an aYerage Ilope beL1I'een -8 and -12 dB per octaTe. Tbe lpectrum oL~be 

quantlutlon n011e Il approxlma1.ely unlform Tbè SNR of the reconat.ruct.ed lpeech c~ 
tbUi allO (alll ofT wlth frequency Thererore, the Quahty or tbe reconJtructed lpeech ean 

~ Improvl'd by :\ sUIt.able shapmg of the nOise spect.rum 10 tbat tbe SNR Il more or lesa 

Ufllrorm over the enltre frequcDcy range or the InpuL s~h Aa a solut.lon. t~e lpeech I~ 

preempb3J11ed before the malD body of t.he C'oder Theo.. at. the recel Ter , a deempbull filter 

rest.ores tb!! IIInallp«:trum and, at. t.he same t.lme, deempbulles t.be nOIH lpectruQ;l at. hllh 

rrequenCIIlI. 

, " 

Ut.lnl preempbUll, t.he z-lranIform of the output reeoDlt.naet.ed lpeech ID., br wnt.tea 

u 

S(z) == S(z) + Q(z)/ P(z), (3.3.111) 

wbere P(z) Il tb! preemph .... filLer and Q(z) Il the llOISe due t.o qaantaüUon. The t.rau

mlU.er of a CodID« 'IYlLem WlIIlI a preemphull filt.er Il lIhawn ln Fll'Ure 3-3,-ID whlcb Ajz) 
1 

Il I.h .. Inv!!r", filt..t-r d~rl~ed br IIDf'ar prt'd,rllOb or the pr~mph,,"ed llpe«h 11«0&1 5'( z) 
IJ 

II. wu round iATAL70. BER0781 lhal tb~rr wu aD ImpronmeDt ID quahlJ wllb t.br 

WIe of a IlDlI~Je1'o pF'ffmphUi' filler Ho~nr, BeraUt.1 and Makhow IBER0181 round tbat. 

the orae--polr deemphual (jll.er re-qulred al the rec~,n1' empbUl&ed Ul~ low frequrbcJ DO_ 

Tb ...... pef«'lYM u a low rreqUl'DCY rumble ID t.hto out.put .peecb 

3.34 % The No.- SJlft:Lrai ShaPIII, r.ILer 

To mllUIlUSI! tbe etlert of t.he crauul.,. IIOIW, lbe output DOIM lpectna _ .. be beIow 
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Fipre 3-3' An APC Coder Wlth Pr~mphulI Filt.er 

\he IÎpal lpeetrum at. all frequencles Bt!rout.i and Makhoul {BER078} ckTeloped â DOiIIe

baplD« lilter u deserlbed beJow 

.9(zl ::::= S(z) ..... C(z)Q(z). (3.3.11) 

where CI:) Iii th<.> nOIM' spE'Clral shap.!.!!,( filtRr Ul!lng a bUIC APC tI,ltem for demonslra

live purpos<". tb€' rN't'IVN 15 th!' sYQlh(>sls ~1f-'pole fiJt..er Il A(z) Tbe l!yDl.hesl~ signai " 

tbus glv-rn b~' r-quatlOn (333) By substllutrng for .~(:l ID !3 317) us mg (333) and tben 

subst.ltut,"g ror k(zl us'":; (331) El,;:) I~ round to lx-

E(z) = .1(=lS(=) + A(=)e(:) - 1,Q(z) (33 18) 

Comparmg (33 18) ta (3 3 4). Il 15 se<'D thal tbt' filter C(z) IS IDt.roduc~ and may he llM"d 

to sbap€' tnt' n011of> !lpt'Ct.rum as dnlred 

FI~r(' 3--4 tlbOWll a possIble APC configuration UllOg Lb .. nOlle'-lbaplng filt.4>r C(z) Wblle. 

ln prao:tl(,€'. thlS con",urat.lon Il Dot grnerally uRd, Il allo .. t'uy compafilOD lo Figurt' 3-3 
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Fi~re 3-<4: An APC Coder lfIth NOIse-ShaplDg Filter 

iD _hieh a deemphulJ lilter 18 use<! Tbe two figures could be made Identicallr the roUowinc 

equatloDl are satllfied 

A'(z) = A(z)C(z), (33.19) 

Pl:) = l/C(z), (3.320) 

and If the same normalu.atlOn gain IS u5ed ln both systems 

ln practlcc, ~uatlOn (33 IR) 15 firsl r('strurturcd sa that tbe filters A(z) and C(z) are 

dKOUplcd ln order ta do thn" ('quatlon (3 4 18) should be rewntten as 

E(:) = 8(:) .... !A(z) -liE(z)jA(z) + le(z) - I]Q(z) (3321 ) 

An APC $yst.em Impl<'mcnllng thls structure 15 shown ln .'Igure 3-5 

It 15 !mportant tbat tb~ Impulse response e(n) of the filt.er C(z) be unit, at ft = O. Thus 

the filt.c-r must I>l" deslgned sucb that Il operates only on past values of tbe nOIse Tbererore, 
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Figure 3-5: An APC Coder with Noise Filter Decoupled from the Prediction Fiiter 

l. where the summatlOn over n may be mfimte, as in the case of a recurslve filter. 

Makhoul and Beroutl found [BER078] that the additIOn of a first oider adaptlve ali-zero 
~ 

nOlsc fillN Illitially resulted III an Illerease lU the output nOIse lIowever, al the same lIme 

thc avC'r:!~e Illt rale, glven that lIuffman codlng was used, deereased due to a sharpenmg 

of t1J(' probabiilty denslty fundlOn of thc resldual Therefore, by Illcreasmg the average 

bit ratC' back to Ils ongmal lev"l by decreaslng thC' quanllzer fitep SI7,e, the output nOise 15 

ronSP<luelltly redllced rom pared to an eqlllvall'nt rate coder wlthout the nOise shapmg 

ln ord!'r to mamtam an unromphraied cod!'r strurturl'·, a pr(,l'mp~a.sls filter 18 preferable 

The numb<'f of calculallOlls tbat must bl' performed I~ 1(,:'5 than that for the adaptlve nOise 

sbaplllg flltrr and no param<,lers n('ed be transuutted Cons('(luently, for the coder d(·scri bed 

ID Chapter 1, a prC'C'mphaSls fdtcr \~11l be used IllsLead of an adaptlve nOise shapmg filte. 

r 

( 
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3.3.5 BLOCK QUANTIZATION OF THE RESIDUAL 

Mabilleau and Adoul [MABI81) discuss a coder which block encodes and transmits 

the residusl signal obtslDed from thè linear prediction of input speech The predictor used 

does not reqUlre the resolution needed for LPC, sinee the residual is to be transmitted. A 

code book of LPC filters IS used and contains a fairly small set of filters 

'the filter code book is deslgned using a mean square error eriterion The eodewords must 

eharactenze the Important features of the resldual waveform. The location of the maximum 

amphtude wlthlll a block IS Important slllce It relates to the pitch penod III t.he case of 

voiced sounds Thus the resldual wavci'urw I..uùcuuuh. Wlll!L I..Ull ... ;1J .. Idll~t: u~ t:J\.\.Ii. .. LIUlI 

Impulses for voiced sounds as weil as noise waveforms for unvOIced sounds. 

As ID the one-dîmensional case, care must be taken to aVOId clipplDg the important 

large-amplitude plteh pulse Sillee the high-amphtudes occur wlth relatlvely low frequency, 

the algorIthms of SectIOn 2 5 must be constrained to ensure codewords with excitatIOn 

pulses are IOcluded III the codebook. This may be accomphshed by USlDg separate VOICed 

and unvoiced code books 

ln arder to avold the mcrease III codebook complexlty nœessltated by the need for 

accuratc quantlzatlPn of the pltch pulse, a tbrl'e-lap pltch filter may be used reduce tbe 

hlgh-amphtude portIOns of tbe resldual ThIs may then be followed by a block quantll~r 

dcslgncd usmg the algonthms of S~tlOn 2 ;) for a mean-square error c:nterroD 

3.4 QUANTIZATION OF THE REFLECTION COEFFICIENTS 

34 1 SPECTRAL SE~5ITf\rITY OF THE REJo'LECTIO:-.l COEFfiCIENTS 

ln quautl1\ng the re[]~tlon coeffiCients, Il IS deslfable ta find a metbod that mlOUI1l1a 

tbe perceptual error of lbl:' reocolU~rue~ SIgnal Tbe I~lr:ù sensltll'lly or tbe refteetloD 
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coe~cienb has been studied ID considerable depth by Viswanathan and Makhoul [VISW75J. 

AssumlDg t.hat an aeeurate representatlOn of t.he power spectrum minimlzes the perceptual 

error, the mlDlmitation of the maximum spectral error would be a sUltable dIstortIOn 

crlterion for quantlzation. 

If Ll.S is the deviatlOn III the spectrum due to a variation l1k, in the reflection coefficIent 

Ici, then the spectral sensitlvity of the ~oeffielent Ic, may be defined as 

{J S . 1 Ll.S 1 
8k; = A~~O Ll.k, ' 

(34.1 ) 

which 18 always positive. The spectral devlatlon Ll.S can he an arbitrary measure but It 

should relate ln sorne proportional manner to the corresponding perceplual effect on the 

reeonstructed speech 

The speclral sensitlvity may he defined as 

{}!- = lim I-I;:-[~ f" IlogP(k"w)-logP(kt + àk"w)ldw]1 
Olc, A4,-O à"" 2~ J- .. 

I
l [ 1 1" 1 P( le" w) j JI = hm - - -- log----- dw , 

.u,-o Ll.k, 2. _Ir P(k, + Ll.J:"w) 

(3.4 2) 

the aYl!ra.ge of the absolute value or the dlfIerence belween the log spectra under cOQJidera-

tlon, 1'( le" w) Il defined as 

(343) 

the IIpedrum of the ail-pole .~h model !l( .. ) ExperJment.ally, the spectral leIlJIt.IYlll 

':', 

.(t,) = (I?.') lB"',) I~ d('termln~ by repla.clOg the IOtegral b, a lummatlon and by utlng a 

suffiw:,nll f limaI! Talue for Àk, 

( 
VlsW1nalhan and \b.khoul fVlSW751 round t.ypu:al senslt.1Tl\Y cu~ fOT the refiectlon 

eoellielent.s :1.11 shown 10 figure 3-0 Euh curTe Il a plot Dl on~ of the'\efle<:tloa coefficlent.l 

as Il 15 T:I.rtl!d onr the ranp;e (-l, 1) whde the olher!! remaw cOlUhat T~e SCDlIt.IVlly CUrT" , 
each hayc tt e followlng pr()l><,rll~ ID common 

Il Each sea'ILlYlty curTe hu the .ame seneral shape IrrespectlTc of the refiectlon, 

coeffiCient plotted lUld of the Taluet of tlle other refiedlOD coeffi(:lent.s at. "blch the 
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Figure 3-8: Typlcal Spectral SeusltiYlty Cunes for Reflection Coeffieient,a [VISW751 

setlAltiYlty is plotte<!. The actuaI Talue of the sensltlYity, ID generaI, don depend 

on the Talues of the other reOectlon coefficients. 

2) Each sensltlVlty curve _ III U-shaped and even symmetrac about k, = O. Eacb 
, 

curve has large values when the magnttude of k, 15 close to uDlt.y and IImall.nlues 

as Ic, approach~s tero 

\. 

These propertaes arE' Inherent ta thè reflectlon coeffiCients ~hemllelve!! and not to any 

partlcular speech 50unds For example vOICed sound!! Kf'nerally have blgher spectral sen:~. 

!lItIVI,ty than unvOlced sound, because the magOitudes of sorne of the rcfiectlOD COC,ffiClcDts 
. . 

are closp to one Al!\O, 10 !i('neral. pr('-cmphasls reduccs tl:ic spectral sensltJvlty of· VOICed 

sounds by reduclDg the magDltude!! of the reflect!on coeffiCients whlch are dose tn uOity 

- 65 . 

l 



... " .. " ;..~.''''' .... _ .... <i'"",'" , ..... ' 

3.<4.2 QUANTIZATION SCHEMES 

There exllt a number of methoda for the scalar quantisatioD or the refleetion coefficient.. 

FOllr: common methodl, aludled ln some depth IGRAY77, GRAY76]. are uDiform qu\tua

t.ion, unlform aensltmt,y quantllation, equal are a or maximum output entropy quantu,tlon, 

and mlDlmum deysation quantlZatlon. 

Unl(orm quantllatlon 15 probably t.he eaalest to implement Ilnce the ranI'! of poIplble . . , 
~" 

nlues Il dlvlded lOto Inter.al. of equallength For a large number of quantllatlon lents and 

ullng tbe rI. mo.ment fide"ly meaaur~ de6ned ln equ~tlon (2 2 3), tbe uDiform quantller 

mtnlmlles the entropy aS defined ln (222) ICRAY771 To fut+,- ut.lhle tbe mlDlmal entropy 

of the ujllform quantller, a lossleN source eodlDg, for example HufJman codlng, ahould be . , 

use<! 

Ul!lIform 8eultiYlt.y codinl, as .ugest.ed by VIIWlUlathan and Makboul [VISW7S}, In-

yolnl a chance of Yarlables whlch leads to Il coutant 'J)«t.raJ IeUltlYILy The change ln 

Tarlables makes the apedral dnlal.lOn ln the new coordlnal.e .yl~m proport.ional to a mean 
ft 

at.olut.e dlfTerence, tbe firal moment MI defined by (323) wlth r = 1 UDiform aellSlt.IYlty 

quanl..n.at,on mlOlmlles lhe m:urmum IpeeLral devlatlon bound and mlnlmlles the entropy 

for a fixe<! expect.ed spectral deysation bound ",hen tbere are a large number of quantlutlon 

leyelll 

Equal are a quantllatlon ma'(lml!{'S the enlropy for a fixed number or quantuatlon level. 

When the number or qU3ntltation Icvels 15 sm al! and slDgle-rrame, fixed-blt-rale tran.mlMlon 

IS used, a smaller expected spectral devlatlon bound for tbe reHectlon coefficlenta la obtalDed 

lhan ror the preVIOUI two quantllatlOn methodJ ID the case of the firlt reHectlon coefficient 

ICRAY77j 

Flnally~nlmum devlatlon quantu:atlon mlDlmU.es the expect.ed spectral deYlaLlon 

bound for a fix~ number of level. ln tbe case of constant seDSI(lvlty, tbls mlDlmlUI the 

mean absolute (lirst moment MI) quantlzatlon error 
~ 
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3,4.3 LOG ~REA QUANTIZATION 

~auae of the selllutJVIty of the reflectlon coefficients as their magnit.ude .. pproae~et\ 

ope, a. nonlinear quantlzatlon that 18 more sensltlYe neac umty Il deBlrable By transrormlDl 

the refledlon coefficIent ta another parameter UBlng a nonllnear operation, )t can he shawn 

that IlDear quantltatlOD of the transformed parameter Il optImal, ID the sense of minlmu;-

mg the maxImum spectral devlation, If and only If the paramet.er has· co,nstant spectral 

sensltJVIty behavlor [VISW75J 

DenotlDg the transformed 'paramet.er a.a g and the reftedlon coefficient a.a k, 9 i. related 

ta k by 

9 = M(k), (3.44) 

wbere M( ) 15 the nonhnear mapplDl Tbe optImal t.ransformÙlon III the one "bere the 

trllnsrormed pacamett>r 9 has connant spectral IenBltl'''lty so t.hat , 
as 
fig = L = a constant, (34.5) 

wbere tbe seMltlVlty III defined ln a manner Iimllar to (3 4 2) Tbe spectral sensltl'rit, ma, 

he ",rltten as 

os 
(3.4.8) 

Substlt.utmg (3.45) 1Dt.0 (3 4 6) and rearranglng results ID 

dM(k) 1 as 
= (347) 

die L (Jk 

EquatIon (3 4 7) provlde! the .conditIOn for an optImal mapplng w~lch may he obtained ,,-
by sImple IntegratIOn Each reflectlOll coeffiCient may requlre a 5eparate applicatIOn of 

.'-- cquatlon (3 4 7) Howev~r, as mdlcated ln SectIon 3 4 l, cach reflectlOD coeffiCient exhlblts 
" " 

slmtlar spectral sensltlvlty propertles Therefore, It 15 pos,lble ta derlve a general mappmg 

thal 15 optimal on the avërage for ail the reflectlon coefficients 

Viswanathan and Makhoul [VISW75] averaged the sensltlvlty c~rves of FIgure 3-6 for 

the reftectlOn coeffiCients to produce an averaged spectral sensltlvlty curve a.a shawn ID Figure 

3-7 
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FiWe 3-7' . Anrapd Speetral SeD.lrtlTity Cllm! for the Reflection CoefBeienta (101id 

line) and Approximatlng Analytlcal Function [VISW7S] 

~ Il 
.. 1 

<) 
Although It Il po88lble\ ulmg numencal techmques, ta mtegrate the IIOhd cune ID 3-7 

ta obtam the optimal tranlform, It. ls easl~r to approxlmate tbe cune by a weil specified 

matbematlcal functlOn Tbe fun,cllOn 1/(1 - t Z ) approximates Lhe average senlltivlty curve, 

BI indlcated by tbe dashed cune ID Figure loF, reasonably weil wltbm sorne multiplicative , 

constant Lettlng the spectral sensltivlty he represented by 1/(1 - t 2 ), equatlon (34.7) 

becomes 

Integrating (3.4.8) mulla ln 

dM(k) 1 
~ = L(1-t2 ) 

1 1 + t 
M(!:) = -Iog--. 

2L 1- k 

Since L 18 arbitrary, hy using L = 1/2, equatlon (3.4 9) beeomea 
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8 
n i, 

1+1 
M(i) = log 1- l' (3.4.10) 

If the llpeech ie modelled using an acoustic tube model, the relationship between the 

crosB-sectional areas of consecutive tubes may be described [APl as 

A, 1 + k, A ' -- = --, pH .1, 1 ~ , ~ p. 
A'+l ,1- k; 

(3.4.11) 

Therefore, (3.4.10) is simply the logarit.hm of the are~ ratios thus giving rise to the, name 

Log Area Quantlzation, 

3A,~VECTOR QUANTIZATION OF THE REFLECTION COEFFICIENTS 

Buzo et al [BUz.08Ô] propose a method for thè vector quantization of the linear predic-
t 

tion parameters which minlmizes the spectral error. Smce the various forIIUl.of the speeéh 

parameters are related through recursive relations (see, for example IMA'KH75, MARK76]), 

the output parameter vector may be the reflection coefficients or any other set of parameters. 
~ 

The distortion measure used is the Itakura-Saito distortion measure. This di8to~tion measure 

is lIelected because it IS implicitly mimmized when the autocorrelation method is used to 

obtain the optimal linear predictioll par,smeters [GRAY80b] but it is generally not used 
~ 

during the compression, or quantizati6l'l, step. 

From equation (2.2,2), the ali-pole speech model trilDsfer func~ion H(z) may be 'written 

as .... 

where 

(f 

H(z) = A(z}' 

p 

A(z) == L aiz - i , ao = 1. 
i-O 

(3.4.12) 

(3.4.13) 

Ir X(z) is the z-transform of the Input signal, then the residual energy resulting from 

passing X(z) through the inverse filter A(z) is given by 

Cl: = 2
1 llrlXi2lAl2dw, 
'" -rr 

(3.4.14) 
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where 

(3.-4-.15) 

are ~ eDe~ deDilty .pect.ra œ ~~: Input .lpSI and ~ filt.er cbarac1.eristlc r.peetI'ntly 

,Equat.ioD (3 in4) ma,.- he expreued al 

0= L r.(n)r.(n) (3 4 111) 
n 

for the purpoees of numerJcaJ n"aiu.at.lon, wb~ r.{n) 1& t.he aut.oc:orrelatloD or t.be Input dm 
~ 

frame and r.(n) 1& the aut.ocorrelat..on 'of the filt.er parameterl. It can he .hOW1l !MARK7&]. 

that the optlm~m H(z) matche. tbe IIp&l X(z) ID t.erma ortbe 2p+ 1 term aul.ocorretatloll' 

sequence 

~ 
r,.(n)'= ,..(n)),n =O,±l, .. ,±P. (3.4.17) 

where ,.,.(ra) is the Ilrftne .I-trauform of H(z)H(I/%). 

The Itatur.Saito diaortioD melllure ma,.- he ued t.o deKribe the speetnl JUidUq 

etrects ofthe linear predidor '[GRAY80b]. The dl&tortloD meuve il deflned .. 

(3.4.18) 

For tbe purpœes of calculatloD and mt.erpretatloD, (3.4.18) m.y he expreued .. 

, (3.4.1V) 

where (1 ia defined in (3.4.12), Q ln {3.4.14) and 

• 0"" = lim op = exp [-21 [W 'ln IX12dw]. 
'-00 li" J-r (3.4:20) 

is t~e limiting ret!idual energy as the numoor of poles p increues. 
\ 

Equation (3.4.19) may he shawn (BUZ080] to latl8fy a rorm of "triangle equality" 10 

that 

(3.4-.21) 

where Hp is the optimal filter transfer function. Thus the total distortion may he viewed 

aB the lum of two distortions The rnst p:u-t is due to the error ansing hetween the actual 
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atp.a1 and t.he optimal prechct.ed Ilpal. The IeCODd part d du~ te t.he quanttsat.ion of \br 

optimal param@teR Furt.hl!J1Dore, It can be le@n t.hat m,mIDl~III';cl(lXII.liII2] sa eqw'lÙeDt 

to miniml&UII dl lB, 12 ,IB12]llDce dl!X!2 .18,12 ] .... a ftx~ propmy of IXI' for a CQDIWIt p 

1 

ADot.her uaeful cucadllll proJ)@rty Il l1~en by 

'\ 
d[j.Jîl', t812 = d[lX!2. t? 1~12~ = d11X12

• tt/lAI'] + ci!tt;cr'j (3 •. 22) 

whlt~h dtTld,ea th@ dlltOrtlon lDto two parti The tint d.m.ort.ton meuure II mdepeOOént of 

the pln paramet.er (! The ~ond II d~pend@nt upon the pol1Domlal A{ .. ) IOlel,. t.hroUJh t.he . 
realCil!!~L enel'l1 Cl Thil l~ada to a gatn-wparat.ed ~ector quantJ&at.lon ICh@me .. dlJc:u..d 

iD a la.t.er aectlon 

3 •• 1 Nearest Ne1lhbor Calculatlon 

To -lP, a ~ of lpeech pwamet.en t.o a ~llc codeword, rt ia DeCeIIary to bd the 

output ftCtor whu:h mmuluaes ctllXl2, IHI2] .here 8 la t.he aeleded fUter eharacter..t.ie. 

Slnee Œ"'; depench oruy on the lpeech frame, It i. oruy neeeuary to bd t.he H(z) == 11/A(Z) 

wiueh minImIses 

(3.4.23) 

For anJ gi'ren apeech frame, the residual enerc a must he ealeulat.ed. This computatioll 

il most. efficientl,. aecomphlhed IBUZ080] UlIDg 

where 

" Cl = r.(O)r.(O) + 2 E r.(n)r.(n), 
n-l 

~n 

r.(n) = E (Jj(JJ+n, n = 0, 1, ... ,p. ,,-0 1 

(3.4.25) 

Thus, ta minimize (3.4.23), the right hand side of the equation must he evaluated for each 

codeword, COIlBillting or the gain and relleetlon coefficients, using the tr'ee- or rull-search 

algorithms dl8cUBsed ID Section 3.4. The codeword selected is the one that minimi~1 (3.4.23). 
, ~ 
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3 .•.• .% Cem.rotd Cakulattoll 

DarlDl tbe deaap 01 \.he codebook, a ceDYoid ealculatloD mat. he performed. If the 

pat10IIaften for t.he .peech frames XI (.), ,X dz:) are all coDt.amed 1I1 the lame quantiHf' 

. recio~, tJae ÎotaJ ddtorttoD fo; t.hai J'eCl0D Il "Te~ U 

L 

D == L dlIX.12,IHI2] .-1 

.. 
( D = UliX!2; IBI'] + u, 

wbeft!. ~eonst.aDl iDdepeDdent of the mode! H(.&') 10r the œil. ThUl te bd th 

the recion, ID tbe teDle of mlDJmlllDl (3 .•. 20), it 1. nec:euary ta model the aTl! 

UlIDI at.andard hnear predlctiTl! methodJ Thus the autocorrelatlOn sequences 

\ 

(3.4.28) 

(3.4.%7) 

(3.4.28) 
~ 

the lpee<:h frames May he a .... erage<! t.o find an average autocorrelatlOn sequence whl may 

then he 80Ived t.o glVe the parameters of H(z). The constant U 15 not needed tor theset 

calc,ulatlons and simply represents a dIstortIOn that Will arl8e, no matter the filter order, 

when dlMimllar frames of speech arle asslgned to the same cell IBUZ080]. 

3.0f.5 GAIN SEPARATED VECTOR QUANTIZATION 
/ 

Ir, in order to ~uce storage requirements, the gain is aeparately quantised instead or 

with the reftedion coefficlente, a lIuboptlmal but memory efficient quantlZation procedure 

May he produced. Equation (3.4.22) Illustrates the separation of the dIstortion into two parts. 

The first IS dependent only upon the polynomial A(z) and the second depends upon the the 
"'-.. 

gam and mdirectly upon A(z) through the residual energy a. Rather than minimize the 

overall distortIOn, It 18 possible to minimize (3.4.22) by first finding A(z) aM then obtaming 
, . 

(1. 
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3.4.5.1 Near.t Netchbor CalcaJation 

ln order te DÙDÎmue t..he diMrLion or equaûcm (U.H), tint d(1X~i r I~) ia miDi

miMCi. Sut.tlt.utua. tr :::: a 111 equat.lODa (3.4.12) and (3.4.1V) liftS the equiTaleDt expr"oD 

(3,4.2V) 

... ben ln(aoo) Il a eolllt.ant for each apeech frame. Thua, al ln the pre'f1oua leC1.Ion, output. 

eet of paramet.e~ ... hlch mUllmlle Q ma, he found by naluatml (3.4.24) for each out~ 

nctor. 

Once the set of predictor parameters and lubeequent residual enerlO' Q h.~ been , 

determlDed, t.he resulta may he used ID equatlon (3.4.18) ta grre 

:2 0: 2 d(a,u ) = 2 -ln(a//1 )-1 
(J 

(3.4.30) 

which UI mlmml~ by choosmg a value of (f2 from the grun parameter codebook. 

Sance the seleetlon of the' galD 18 a one-dlmeDBlonal problem, the codebook. gal'n values 

may he ordered and compared wlth a set of threshold value1! to determlDe the output. The 

threshold values Ô .. t = 1, "T - 1, where T 18 the numher of quantiter levell, may he 
() 

obtalDed [BUZ080] by IOlvmg 

.2 ln(u;+du;) 
u, = 1 1 

2--2-
(f. U .+1 

It may he more effiCient ta Ille the Taylor eertes expansion of (3.4.31),110 that 
o ... {) 

r;2 = ! ((12 + u 2 1 )[1 _ 26
2 

- ~ - ~ - ] 
• 2' .+ 3 1 5 3 7·5 .. , 

where 

3.4.6.2 Centroid Calculation 

(3.4.31) 

(3.4.;J!) 

(3.4.33) 

In the gain separated case, two centroi~ are ta he ealculated. For the polynomial 
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parurmer., il ÎI deairable t.o miDJlDJH the t.oUI ee1I CÜS\or1.IoD,~ lJftD by (U.ta). UIiAI 

(3.4.%2) and (3.4.2iI), an attempl. 1& fim made t.o IIlllUJIlÎS«! the .um of tenu 

L L 

Dl = L clllX,I',o'/lAllfj = L [ln(a') -In(a:")!. (3.4.34) 
'-1 *_1 

(3.'.36) 

la the ·optimal- tnerl1 chulee for the in!Jmduallpe«:h frams and a'ao 1& debed in (3.'.20). 

(3" 38) 

The aoiutlOD of (34.36) lE Dot a triVial task and IMt.ead aD approrimate and boundlllg 

IOlutlon may he found as foHolO 

Each IDdiTldual X,(z) hu an ·optlmal- model whale gam ÎlIlTeD by a!. Rewriting 

(3.4.34) BI 

L L 

Dl = E In(a·/Q~) + L In(a:/o!.,), (34.37) 

Il may be seen lhat the second .ummatlon la independent. of the param~t.e,. orthe polynomIal 

A{z) and illllmply a funct.lon of t.he indmdual speech frames. The tint lIummation in (3.4 37) 

is the product of L and the loganthm of the geometnc mean of the ratloll 0* / Q~ for k = 

l, , L 

DI is approxlmated by and bounded above by D2' where 
" 

(3.4.38) 

Ta IDlDimÎLe D2 exactly and thu8 Dl approxlmately, it 18 nece88ary to minimise the arith-
, \ 

metic me an of the al: la! ratios. This mean is. defined as 

(3.4.39) 

where 

(3.4.40) 
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Il tbe normahr.ed 3'Yerage speetrum Tbus the normahr.ed aut.oeorrf"latlon sequences for aJl 

tb<> speech (rame> ln a glven ccii IDS! De averaged and tbe result solved for tbe reBectlon 

rocmC'II:~nt.s or othN parame1A!r set 

Comparmg the galil-sepatated case wlib tbr optimal case, It can hl' seeo tbat the ooly 

\ 

" 
dlfTerence lB 10 the averagrng of the autocorrelabon sequences ln the gam separated cast, . 

th€' autororrriatlon sequences must be normalu.ed by the optlIDal gam coeffiCients, tbe (l~ 

lcrms obtamcd from the r('sidual aft!'r passlng the the speecb frame tbrough ILs optImal 

rnv('ro;e filter, ln the optrmal case, thls normailzatlOn proCl'dure 15 not nec<'ssary 

l 
Frnrllng th<' centrolds for the garn rodcbook IS somewhat simpler,>,oncl" tbr ah for each 

frame has been found 1\. Single gain term must be chosen to mmlmltC 

~ ~ 

D~ = L d!(/: ,(12] = L [ok /(12 -ln(Q~/(1!) -1] (3.4 41) 

ThiS can be mtnlIDlzed slDIply by takmg the arlthmetlc mean of tbe mdiVldual resldual 

('nergles as 

r (3.4 42) 

. .. ~ " 
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4.1 BASIC STRUCTURE 

CHAPTER4 

CODER SIMULATION 

The basic structure of the coder lB shown in Figure 4-1 The sequential mput speech 

samples are passed through a preemphasis filter Tbe filter output sequence III parsed 

inta data frames and temporarily stored wlthm a data buffer An autocorrela.tlOn is then 

performed on each mdivldual data frame The autocorrelation coefficients are quantized and 

then an analysls, or mverse prediction, filter IS derlved from the quantlzed parameters The 
r 

frame of preemphaslzed speech samples Îs passed through the analysis filter whose output 

lB the resldual Signai The energy of the resldual IS calculated and the gam IS set equal to 

the square root of the result The galO IS first qua?t1zed and then used to normahze the 

resldua\ signai FlUaHy, the normahted resldual 18 Itself "quantl7.ed pnor to transmission 

The quantlzed autocorrelatlOn coefficients, gam, and resldual sIgnai are then coded and 

assembled mto a data frame for transmission 

Ta reconstruct the mput signal, the recelved data frame 18 decoded to produce the 

quantlzed resldual sIgnai, the autocorrelatlOn coefficients, and the gam parameter. The 
( 

reconstructed resldual Îs multlplied by the galO parameter This sIgnai 18 then passed 

tbrough a prediction filter, the inverse of the analysls filter, whlch 15 generated from the 

decoded autocorrelatlOn coefficients The output of the predIction filier 15 a reconstructed 

approXimatIOn of the onginal preemphasl7.ed speech SIgnai Fmally, the signal 18 passed 

through a deemphasÎs filter to produce the output speech. 
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Figure 1-1 Resldual-EncodJ!d Lmear Predictive Coder 

When pltch pred IcllOn of the rcsldual 18 u~ed, a pltch analysis lilter IS IDserted between 

the output of the analysis filter and the IDput of the 11OrmahzatioD proccss as shown in Figure 

4-2 An autocorrclatlon of the resldual 15 performed uSlDg a range of pltch lag values If the 

slgnalls not perlOdlc, 1 e unvolced, the filt{!r parameters arc set to zero and no filtering takes 

place If the sIgnal 15 VOIccd (penodlqty 15 present), the pltch Iag IS determllled and filter 

coefficIents are dcrlvcd based on the dctcrmlllcd Jag value Tbe pltch and tilter paramcters 

are quantlzecl bcfore paSSII'lg the reslclual through the pltch !ilter 
... 

Whrn the signaI 1<; rcc::Jnstrudcd, the pltch predictIOn tilter IS Illscrted after the residual 
" 
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Figure 4-2: Resldual-Encoded Linear Predictive Coder wlth Pltch Prediction Filter 

• 

has been multiplie<! by the gain and before the Signal is pallsed through the hnear predictIOn 

filler 

In either Calle, ail the !ilter parameters are quantized and the filter generated be'fore 

filtering of lhe signai takes place. Simllarly, the galD IS quantn:ed berore normalJzatlOo 18 

'performed ThiS procedure has the etrcct of ellIDloatmg qJlantlzatlOn errors ID the parameters 

when they are codcd for transmission The ou!y quant.zatlOn errors occur durmg quantlza.-

tion and codlIIg of the final rcsldual slgoa!. 
" 
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4.2 SIGNAL ANAL YSIS AND RECONSTRUCTION 

4.2.1 REFLECTION COEFFICIENT CALCULATION 

ln the caIculatlOn of the reflect.lon coefficients, the anput data sequence ia first mulLiphed 

by a Hammmg wlndow of lE'ngth N ThIs allows the use of the autocorrelatlon method for 

obtammg the predlctor parameters as dlscussed ID Chapter 2 The fint M + 1 terms of 

the autocorrelatlOn R(m), m = 0, ,M are calçulated from the wlDdowed data sequence 

The auto~orrclatlOn coefficients are quantlzed before calculatlOg the r~flectJon c~efliclents 

and coded for transmiSSIOn lo lhe recelver The reflectlOn coefficients are obtamed from 

the autocorrelatlO,n terms by solvmg a set 01 10eplItz equatlODs usmg a lorm 01 Uurbm's , 
algorathm [LER077] The autocorrelatlOn equatlons are solved recursJvely to glve a set of 

M reflectlOD coefliclènts 

·ù 2 INVERSE FILTER CALCULATION 

The reflectlOn coefficients are used to generate an equlvalent set of IDverse filter coefficients . 

.. If H(z) IS the z-transform of the filler charactensttc, then for an ali-pole ,model, H(z) 

may be wrltten as 

Cf 

H(z) = A(z) , (42 1) 

where Cl IS the filter gain. The filter coefficients are related to the reflectlOn coefficIents by 

equatlons whlch arc solved to glve M + 1 filter coefficients Designatmg the filter coefficients 

as a. and the refiectioD coefficients as k" the relatlonship lS as follows 

aoo = 

{

a m=O 

a,= a:~:::'+k,a'-l,,-m, m=l, ... ,i-l 

kil m = l ( 4.2.2) 

for i = l, .. , M. The synthesis !ilter is then given by 

M 

A(z) = AM(Z) = L aM,z-'. ( 4.2.3) .-0 
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Tbe prediction filt.er used in the decoder may also he caleulated fro~ the reflection 

coefficients. DenotlDg the coefficients of the prediction filter by p., the prediction filter 18 

related to the analYlIl1I filt.er by 

l', = 4" i = 1, .... M. ( 4.2.4) 

4.2.3 PITCH FILTER CALCULATJON 

When a pltch filter i8 mcluded, It III calculated uslng the method outlined in section 

333 Deuotmg the maximum and mluimum lags as L~ and Lm.n respectlvely, L".,n 

samples from the end or the preVIOU8 frame are stored ln a data buffer An aulocorrelallOn 

of the resldual signai 18 theo performed uSlOg sam pIe lags ra.nglDg from Lmon lO Lm.,. The 

pltcn lag is taken to be the sam pie lag al whlch the autoc~rrelatlOn il maximum. If thl8 

value 18 below a certam threshold value, the speech IS assumed to be unvOiced and t.he filler 

pararnders 'are set t.o tero. Ir the value 18 greater than the threshold, the filter parameters 

are c:l.lculated by solvlng the matnx equatIOn in (3" 15) The resulting values an! then 

qtantlted before the residual 81gnal 15 pàssed through the filler 

42" CAIN CALCULATION 

ln the correlatIon matchmg method used, a mat.ch between the autocorrelation of the 

input sequence and the umt sam pIe response of the Inverse filter H(z) Îs desired at as many 

pOInts as pOSSI ble. The ~in (! 18 calculaled as a side resull of 80lving the autocorrelallon 

equations. To deterIDtne the M + 1 paramet.ers or the analysis filt.er, the firs\. M + 1 

autocorrelatlOD samples of the filler umt sam pie responSè are chosen to exactly match the 

first M + 1 autocorrelatJon samples of the mput sequence To match the energy of the Input 

signal spectrum to the energy of the IOverse filler model Ulllt. sam pie responee, the gam (! \8 

derived from 

(4 2.5) 

.~ 
.-0 

- 80 -

.' 



........ --------------------------------------------~,-~--------~-~ÇMwe~~ ... _ ~_ 

1 

This IS termed the prediction error energy and is essentially the energy' contained in the 
~ . 

error signal. 

A problem of the above method is th~t it is only applicable to LPC systems. In the 

coder presented here, the residual SignaI is calculated and transmitted for use in the decoder. 

Because the data is windowed in order to calculate the autocorrelation and subsequent 
1 

analysis filter, there is no longer a match between the data sequence passed through the 

analysis filter and the data sequence used to calculate the analysls filtér. For thls reason, 

the energy of thc resldual signalls not the s~me as that given by equatlOn (4.1.5). lnstead, a 

separate calèulatlOn must be performed to c,llculatc the energy of the rCBlduaJ signal Itself. 

-125 RESIDUAL CALCULATION 

The resldual signal is derived by applymg the input Sl~~ to the analysis lUter. 'The 
$ 

filter characterlstlc IS convolved wlth the mput sequence to prôduce t~e residual In usual 

LPC analysls, pltch prediction and a vOlcedjunvolcl'd deCISlon 18 macle In the case of thl8 

coder thls 18 not stncUy necessary as the resldualltselr 15 coded and transmltted Insertmg a 

pitch predictIOn filter, as Illdlcated III Figure 4-2, would have the efJect of "smoothlllg" the 

resldual signai by reducmg the amplitude of the splkes present at the begmning uf cach pltch 

pCrJ?d at thc expensc of Illcreasmg the ll1l1nber of bits reqUlred to transmit the mformatlOn 

ln clther case, the rcsldual 15 norma\i2;cd by the gaIn 

Once the resldual has been normah~ed, It,iS quant12:ed and coded for transmiSSion along 

with the quantlzed gam and reflectlOn c~effiCients 

42 6 SIGNAL RECONSTRUCTION 

The synthe51S of the output sibruai 15 conslderably simpler than the analysis of the 

original input signai Flrst the side informatIOn and resldual are decoded The decoded 

rcsldual IS multlphed by the gam and the rcsultmg signal 18 convolved wlth the prcdlctlOn 
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fi'lter charad.eristic to produee an output data rrame. The prediction filter is obtamed rrom 

the d~oded autoeorrelatlon coefficients as outhned ID Secti~n 4.2.2. 

Ta reduce the effect of frame boundary discontinuities, the reconstructed signal is mul

ti,plied by a trapezOidal wi~paw which is unit y hetween the av~r1ap regions The trapezoldal 

window assigns greater weight to tho8e samples < farther ofrom the edge of the data frame 

The samples ID the overlap reglOns or successive rrames are added as illustrated ID Figure 

4-3 II. can he seen t.hat the w~ightlDgs of a glveD sample ID t.he overlap regionll sum lo Unit Y 

Smce t.he anaIY!I! of IDdlVidual data frames can result ID widely dlffermg LPC 

paramcl.en, lhcre cao he severe discontinuilles at. the frame boundarles. Overlappmg ~rames 

provides redundant IDformatlon, at the cast of an iDcreased bit rate, to smaoth out the 

dllconllDUltl1'S The extra bits reqUired are due to the lamples ln the overlap reglo~1 which 

must he transmltted tWlce 

427 PREEMPHASIS AND DEEMPHASlS 

Before the speech signal is analyzed by the coder, it is pasaed through a preemphasis 
e 

filter as dlscussed ln Section 33.4 1. Simllarly, the reconstructed signal must _be deem-

phaslzed ta produce the output speech. Ir the Input. to the tff-eemphasill filter 18 gIven by Xi 

and the output by Il,, th~n ' 

where fi is the preemphasis ractor. Then, If i, is the reconstructed signal, deemphasls 

produces the speech signal Xi given as 

(4.2.8) 

Since fi is a constant, it is Dot necessary ta transmit the parameter value. 
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4.3 QUANTIZER CALCULATION AND SIMULATION 

4.3.1 THE RESIDl!,AL QUANTIZER 

For comparative purposes, three types of quantizers are WIed for quantizing the residual. 

The firs!. is umform scalar qu-antltation using the 411 quantir.ation range discuBBed in Section 

3.2--3, where (12 IS the variance of !.he input signal and the quanti ter is designed symmetrically 

about the cxpecled value of the Input signal The second method is a uniform scalar Lloyd

Max quantlter as descTlbed in SectIOn 3.2 4 The final method is vector quantlr.ation. Tbe 

first lwo methods are used for compaflSon with the vector quanti~ers. II. is deSifable to study 

t.he efJccls of varylllg block lengths and bit rates in the vedor quantir.ers and compare the 

gaID8 maàeover the scalar cases 

Both types of scalar quantizers use full search techniques which are easily implemented 

in one dimenSIOn. The Lloyd-Max quantizers are obt.ained from the uniform quantlzers by 

using the Lloyd-Max algorithm presented in Section 3.2.4 with the uniform quantir.er as the 

Ipitlal quant.lter for the algorithm. Both quantlzers are developed using a range of bit rales . 
• il . 

ThiS allows comparison of quantlr.er performance versU8 bit rates and block lengths be~ween 

the scalar and vector quantlzers. 

The vector quantizer 18 designed using the quantlter deSign algorithm described in 

Section \.5,3 uSlog a mean-square error criterlOn. The quantir.er 15 designed in tree-searched 

form because the computati~n time req~ired for full-sea!,ch quantizers was prohibitiv4! and 

unavailable on the computer. The vedor quantir.ers are designed <for 3 variety of block 

length~. 

4.32 THE PITCH PARAMETER QUANT1ZER 

The pltch predlclor pararoeters are qU3ntited using two qU3ntizerl!. Firet the pitch is 

quantlt<!d usmg a ullIform quantl7,<!r SlllCC the range of pltch frequencies, for bot~ male and 

female speakers,' IS betweco 501ft and 300 Hz, the range of lag values for 8 kHI; speech is 

" 
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chOi@n ta l)@ bKween III and 153 lamples. Tbua w'ftn bits are' needed ta eode the niteh , r • 

or lag, ..rue. One codeworà is used used ta Indieate that the speech il ,un~oiced, i.e. no 

perlodicity il eTide~t: 
.i 

Tbe tbree plU'ameLen or the pit.ch predietiQn filLer are quantised. al a block 11Iins"'a 

tree-aearched vector quanti~r.The quantller i. designed uainl the algorith~ or Sect.ion 

2.5.3 ror a mean-square error cri~erion . 

4.3.3 THE GAIN QUANTIZER 

The quantlzation of the gain is relate<! ta the quantilatio~ oC the autocorrelatioD 

- coefficients, uSlDg t.he Itakura-Saita distortion crit.erion, aB described in Section 3.4.5. In 

order ta make most etrect.lve use or the algoritbm, the gain is quantized uaing a Lloyd-Max 

quanti ter . 

4.3.4 TIIE AUTOCORRELATION COEFFICIENTS QUANTIZER 

The autocorrelation coefficients are quantized using a tree-aearehed TeCtor quantizer. 

The quanti 1er ia deaigned uaing the a1gorit.hm of Section 2.5.3 COt the Itakura-Saito distortion 

criLerion as described in Section 3 .... 5. 

As discussed ID Section 3.4.5, the analysia filter parameters used in the Itakura-Sai~ 

c iltartlon measure are derived Crom the quantl!er output vedors, Le. the quantiled autocor-

relation coefficients. Since the filter parameLera used in the coder are al80 derived lrom the 

autocorrelatlon coefficients, the output of tbe quantiaer may he the filLer parameters iDitead 
: . 

oC t.he quant.iled auto<:orrelat.ion coefficients. This eliminates the ILep oC ca~ulat.iDg the IlIter 

parameten a secona t.ime from t.he qu"antazed auto<:orrelation coefficientS. 
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CHAPTER5 

\ EXPERIMENTAL RESULTS 

The simulations of the coders were performed on a VAX-ll/780 computer. A large library of 

l.VJ;il6 ïû"t;"'''6"~ a.a.ilable for perforrning the more cornmon procedures, Le. digital signal 

processing, filtering, windowing, and so forth. An AP-120b array pracessor was available but 

was not used in the simulations or for the generation of the vector quantizers. 

(1 

Four difJerent simulations were performed. Two coder simulations used a pitch predic

tion filter while the other two were designed without the pitch filte~\ In bath cases, one 

. simulation was performed with only the residual signal quantized and in the second siroula
"ft/> 

tion all parameters were quantized as weil as the residual. 

For each simulation, a number of residual quantizers were generated. A training se-

quence consisting of successive frames of residual sample~" calculated from a single male 

speaker, was used for the quantizer design algorithm. Each residual frame consisted of 240 

samples. 25,600 vectors were used ID the calculatton of each quantirer The black lengtha 

were chosen to be fadors of the frame length in order to avoid overlaps between successive 

frames. In order to evaluate quantizer performance, one- to eÎght-bit/block vector quan-

t.lzers were calculated for black lengths of 1,2,3,4,5,6,8,10,12,15, and 16 samples. For the 

coder Simulations, I-blt/llample and 2-bitjsample vector quantizers were generated. For the, 

I-blt/sample quanLizers, black lengths of 1,2,3,4,5,6,8, and 10 samples were used Bloct 

Itugths of 1,2,3,4, and 5 samples were used for the 2-bit/sample qU;lntlZers. In bath cases, 
( 1 

IL was declded Lhat larger black: lengths resfllted in codeboob that were too unwieldy and , 

generation Limes thaL were eXCetlliTe. The «,!Derated quantlleri were compared ta uniform 
l ' 
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. Block Size: 2 3 of 5 ft 

CPU Time (h~~min): 1::;7 3:35 4:HI 5:01 5:18 5:39 

Blo.ck Size 8 10 12 15 , 16-

CPU TiDle (hr:min): 6:27 659 7:24 8:42 9:11 

Table S-l: CPU Time vs. BllilCk Size for 8-bit quanti sen 

.... 
and Lloyd-Max scalar qu,mtizers. for performance evaluation. 

Once the quantlrers were generated, the coder simulations were evaluated. First, coder. 

using vector quantizers were compared to identlcaJ coders uaing scalar quant.iz.tion for the 

resldual signaI Next, ln order to obtain a subjective evaluation of the coder performance, 
~ . 

the coders were eompared to log-PCM coden Listening tests were performed in order ta 

compare the VllrlOUS codera, 

,5 1 QUANTIZER GENERATION 

The generatlon of vector quant.lZen requlret large amounts of lime. Four sets of quan-' 

tu;ers were generated uSlDg different tra.lnlng sequences The training lIequences were of 

~eqlJallengtb and contamed 25,600 vectors For an 8-bit quantif,er, thls translates to roughly 

100 vcetors per quantll~cr rl'glOn Table 5-1 summarlf,e5 the average CPU tlmes requlred to 

calculate an 8-blt quantlf,l'r for dlfferent block Sites. Tables 5-2 and 5-3 contaln the average , 

CPU limes requlr!'d to calculate quantu.ers at one- and two-bits per sample ID the block, 

for varymg blork lengths It sb ou Id he noted that the tlmes glven are the average tlmes 

requlrE'd by the cru for processlDg the quantlter del'ugn program For the larger quantlura, 

IL was sometlmes neccssary to walt up t.o twenty·four ho urs for program termination, due 

to th!' llm('-sharlDg nature of the eomputing (acihty. 

'l 
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Blocle Sise: 1 2 3 4 

CPU Time (hr:min): 0:02 '0:18 0:38 1:30· -> 
" 

Siocle Slll!· S 8 8 10 

CPU Time {hr:min): HI' 3:13 &:27 g-o.t 

Table &-2: CPU Time n. Sloek Sile for Mm/-pie q1WI&iJen 

Black Sise: 1 3 5 

CPU Time (hr:mm): 0:08 1:02: 2:zg 5:01 7:03 

Table &-3: CPU Time n. Blocl: Si .. for 2-bit/_ple quanti .... 

... 

J 

A number of radon coutribut.ed to the quaotiaer pneration Ume. Two pnenl obeern&icma 

ean be made: the larpr the bJoek sise, the Jonpr the l'!neration Ume for quaniiaen wit.h 

equal number of output lenla, and the greater the number of output JeTela, the Joqer the 

II!neration time Both of these obeenatloDi are rather obnou. and need not he dilCuaed 

in any great det.all 

Sinee the quantizer genention algorithm i. an iteratin procedure, another factor Lbt 

eontflbut.es 10 the generatlon tlme Il t.he number of iteratlons that tan place before the 

procedure halte Table 5-. shOW! the anrage number of IteratIons required at each .plit. for 

the 8-blt quantllerl with varyIDg block SÎlet ln general, the fint -split- at each leTel of 

the quant.i~r tree (in tlua eue, the lenl, correspond 10 bita 1 lll1d 5) requirea the feweat 

iteratlona. Furthermore, there 18 a general IDcreue ID the number of lterationa required 

as t.he numher of bIla i each leTeI Il inr:;reued Thts behaTlour Il most Iikel,. due t.o t.he 
1 

selection of the lDitial quanti 1er ln the optImisation portion of the algorithm as "",n u tbe 

dlltnbution of the training sequence For the earlier .pHu at eacb leTel of the quantller tree, 

the output vect.ora are rew and relatinly farther apart These vectora tend t.o obtam nlues 
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IteratioDB Occurencell Percent .. 
0-4 0 0 

6-9 17 4.83 
<1' 

10-14 32 9.09 

16-19 49 1392 

.. ' 20-24 64 15.34 

25-29 67 19.03 

30-34 59 16.76 

0 . 35-39 27 767 

40-44 19 5.40 

45-49 14 3.9S 

50- 14 3.98 

Table &-5: Frequency of Iterat.ion Number 

~ 
lengths, the optimilation proeedure wu run 352 timts. Table 5-5 .hows the dinribution of 

Iterations required before the opt.imilation procedure termmated. A.. ean be seen, Iell than 

four percent of the time were 50, or poaibly more, it.eratioIII required and leu than twelTe, 

percent of the time were more thlln 40 IteratlODB required. On the other hand, 16 or more 

Iteratiollll were required more than elghty-five percent of the time before the optimimtion 

procedure termmated 

Figures 5-1 and 5-2 dtlplay the lignai ta noile ratiOll (SQNR) TeI'lUS the iterationtl for 

a vanety of block lengtha. Figure 0..1 IIhOW!! the inereaae ln SQNR at the fiI'It lenl of the 

quantllet t.ree (correllponds ta bit 4 ID the tables) and Figure 0..2 ahowa the mereue in SQNIt' 

at tbe lIecond le'fel of the quanti 1er Lree (bit S). IL can be aeen Lhe most. of the increue in the 

SQNR accura wlthin the firat fiye ta seven iteratioDII. In general, the quantiur performance 

obtainl nlnety percent. of lU flnal nlue within BYe lt.eratioDl and ninety-ftve percent within 

&eTen iUrationl 
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Figure 5-1. Quantizer Per1orman~ Withou~h Prediction 

5.2 QUANTIZER PERFORMANCE 

" 

Figures 5-3 and 5-4 display TeCtor quantiaer performance ror I:esidnal qu.ant.iHn. For 

the resuJta or Figure' 5-3, the coder u.ed to derlTe the residual training sequence did not. 

IDcJude a pltch prediction filt.er. For the resuit. or Figure 5-., the coder ineludes a pit.ch 

prediction filter, ln bqth eues, veetor quantizer'S 01 rumellllioDJI ranging rrom one to lixteen 

are eompared to one-dimenalonaJ uniform and Lloyd-Max quantizel1l. For eaeh block aise, 

one to eight bit veetor quantiul1I were eaJculated. 

The umtorm quantizers were dmgned uaing t.he 4a method al diKuued in Section 2.2.3, 

where 0-2ia the nria..nce of the training sequence. One-bit to eight.-bit uniform quantizer. were 

calculaLed. Aecording to the theory, t.he aignal-to-quantilat.ion-noiae ratio .hould· increue 

at rougb.Jy ft dB/bit. ft can be seen (rom the grapha that the theory breab down at the 
.Î 

four-bit umrorm quantlzer Thil ia not. entirely ~ted ainee the model praented in 

SectIOn 2.2.3 il 'fery approximate 
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The Lloyd-Max q9ntiul'II ftl'e designed, Uliq the Lloyd-Max a1goritJun [MAXaOJ, 

rrom a %S()..poiD~ tabulal.ed distribution obtaille<! rrom the trailling I4!q11ellce. Beeaue of 

Lbia, a maxi~um of IleTen bitA eould be auil11e<! to theoLloyd-Max guantiser and at leftn 

bita, there ia leu than Lwo distribution, nlIuri~Jor each outPet leftl. 

Table 5-6 di.plays tbe biu/aample or the TeCtor quantisen tor TarJing black: aileS and 

bita/bloclc:. Sinee a single one te eight-blt eodeword ia uaed to repreaent each out.put Teetor, 

t.he number of bita/sam pie i.a obtained by dividing the nom ber of bita in the codeword by , 
t.he Dumber 01 .amples in the black. Table 5-7 lista the t.ranamiuion rates, correaponding 

te Table 5-8, ror the res.idual sipal. It sb'ould be noted tut theae rates ~e only tor the 

residual: the coding 01 the other paramet.ers will add 10 these l'lÙues . 

...... 
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Blts/B1ock: 2 3 4 5 ft 7 8 

Block SIW 

2 3 " 5 6 7 8 

2 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 

3 333 .667 1.000 1.333 1.667 2000 2.333 2.667 

4 0.25 050 0.75 1.00 1.25 1.50 1.75 2.00 

fi 020 040 060 0.80 1.00 1.20 140 lM) 
\ 

fi 0167 0333 \ 0500 0.667 0.833 1.000 1.167 1.333 

8 0125 0.250 ' 0375 0500 '0.625 0750 0875 1.000 

JO 010 020 030 0-40 050 060 0.70 0.80 

12 0083 o 16i o 25û û.;;;;;; û .jii v ù\1V û :iô:i û ûüi 

15 0067 0133 0200 0267 0.333 0400 (H67 0.533 

16 0063 0125 0188 0250 0313 0375 0438 0500 

Table 5-6 Blts/Sample ror Various Block Lengthll and BitsjBlock 

Smt"e the vcctar quantlr.er design a1gorlthm LS a V':mation of Lloyd's Method l, a compaTÎlOn 

of veetor quantir.ers, wlth block length one, to Uoyd-Max quanti urs III dellirabie. From 

Figures 5-:I(a) and 5-4(a), It can be seen, ID both cases, that the performa.nces of both 

quantltcrs are very dose for the one to Six-bit quantl2~er8, wltb the Lloyd-Max quantlter 

perrormmg shghtly better At seven blt.S, the Lloyd-Max quantlr.er shows a drop ln perfor-

manrp rompared lo t.he vector quantl!cr ThIS probably occurred because there were not 

,enough pomts ID the tabulated distribution used to generate the Lloyd-Max quantiter. 

As ran be seen from the graphs, the vedor quantlurs performed better th~ the uniform 

quantl7.('r~ at equlvalent bit rates Compared ta the l.Ioyd-Max quantllel'S, the dltrerence in 

performancf' IS Dot as great. These results mdicate that the use of veetar quantir.ers ror 

the re!lIdual signai can result ln sorne Improvement ln perlormall~e over IIcalar quantil.ers at 

eqUlvalent bit rates 
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Bits/Block 1 2 3 5 6 7 8 

Block Sitc 

8000 16000 24000 32000 40000 48000 56000 MOOO 

2 4000 8000 12000 16000 20000 24000 28000 32000 

3 2667 5333 8000 10667 13333 16000 18667 21333 

4 2000 4000 6000 8000 10000 12000 14000 16000 

1 5 1600 3200 4800 6400 8000 9500 11200 12800 

5 1333 2667 4000 5333 6667 8000 9333 10667 

8 1000 2000 3000 4000 5000 6000 7000 8000 

10 800 1600 2400 3200 4000 4800 5600 6400 

12 667 1333 2000 2667 3.133 4000 4667 5333 

15. 533 1077 1500' 2133 2667 3200 3733 4267 

16 500 1000 1500 2000 2500 3000 3500 4000 

cr , 
Table 5-7. Rcsidual Bit Rates for 8kHz Sampled Speech 

Flgurl's 5-3 and 5-4 secm to 'md,cate an improvcment over scalar quantilstion at 

,eqUlvall'nt bIt rates It thl'n become5 deslrable to compare vector quantizers of eqUlvalent 

bit rates FIgures 5-5 and 5-6 compare the performances of four dlffcrent q\lantlzers wlth 

\arylIlg block Icngths ln FIgure 5-5, one-blt was asslgncd for every sample ID the block 

wh Ile ID FIgure 5-6, two bIts were asslgned This translates to a resldual bIt rate of 8 kbps 

and 16 kbps respcctlvcly for 8 kHz sam pied speech. In the tirst figure, there 18 roughly a 
'-. 

25 dB gam, ID ail four examples, as the the block length varIes from one to ten samples ln 

the second figure, ibcre 15 a 25 dB gam ln performance as the block slze vanes from one to 

live samples 

From the theory, an mcrease ID the SQNR as the block length lllcreases IDdi~ates that 

ther(' IS sOlne correlatIon beiwecD the samples ID the block. ThIS IDcrcase ID SQNR wlth 
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bloek aiR! tha indicata t.b.at, despite attempt.a \0 remon redundaDt. iDformat.ioa tIaroqIa 

~he ue of a prediction fllter, then! still remaina redundancy in t.he residual aipal. The 

n!!dor quant.isen tùe adnntqe of thil redundancy. 

, .. 
5.3 gF'ECT OF QUANTIZING PARAMETERS 

.A. ean he Men from the Figures 5-5 and 5-&, quantisiD' the coder paramet.en renlt.a in 

a drop ID the SQNR ~or the residual quanti 1er . Sinee t.he parametera are quant.i&ed belore 

they are uaed, the output reaidual signal is not minimal for the lM!t of param.etera, .. would he 

t.he cue If the parametera were unquantiaed. ThUl, there il çeater nrian.ee in t.he !Widual 

lipal compare<! to the unquantiaed eue wluch then retlulta in çeater quntiser error for 

t.he lI&IDe number of bita. 
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5.4 EFFECT Of PITCH fILTERING 

... 

M can be seen from Figures 5-5 and 5-&, the addition of the piteh ru. diœlittle ta 

change the quantlzer performance. M can be seen from the figures, the addition of the 

plteh Wter actually seemed te cause a drop ID the performance of the residual quant.iser. 

The actuallosa ID the SQNR increaaed as the black length IDcreued. At one-bi~/lample, 

the losa range<! from leu than 0.1 dB at a black length of one, ta 0.6 dB, in the- extreme 

case, at Il black length of .ten. At two-bita/llample, the IOIIIJ range<! from about 0.2 dB at a 

black length of one, te about 0.26 dB at. a black length of fiTe 

The 10lIl in quant.ber performance may poaibly he a.ttributed ta a combination or three 

caUleS. Flfllt, the addition of the pit.eh prediction filter remam some of the redundant 

information In the re8ldual IIlgnal. Thull s~cces&i'Ye samples in the plteh flltered residual 

are more Independent a.nd the correlation hetween IIamples in a black, whieh is UlIed by the 

Teetar qutUltllen, ill reduced. Seeond1y, the piteh Wter reduees th,e amplitude of the -.ptba-
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present at the begtnDtng of eath pltch period while oot significantly aft'ectmg the remaioder 

of the sIgnai Thus the sIgnal power 15 not aft'ected IIlgnificantly m companSOD to the power 

berore quantuaLlOn. Fmally, unless tbe pltch përiad is a multIple orthe quantizer block 8 te, 

samples ID successIve pltch periods WIll not he at the same position in each block. This may 

cause the charactcrlstlcs of the resldual signaI ta he notlceably affected 

Because the resldual samples may be more mdependeot due to the piteh filler and 

because the signai power IS oot slgmficaotly affected, a grealer quantuH error may occur 

duc to less correlatIOn between samples Wlth a correspondmg decrease ln SN R. Further 

quantu:atlOn errors may be mtroduced if correspondmg samples ID SUCCeB11Ve pltch perlods 

vary thelr posItion wlthlll each block to be quantu;ed Because of the limlted nurnber of 

output vectors, a variatIOn În the position of the sam pie can result ln notJ.:eabk differences 

ID the quantJ~atlOn error 

5 5 SUBJECTIVE EVALUATION 

A group of seven untramcd lisleneu; four male and three female, wu used 10 sub

Jectlvely cvaluate the reconstructed speech. The evaluation proceS8 wu divided tnto four 

parts In the first part, the hsleners were asked ta commenl on the characteristlc8 of the 

reconstructed speech ln the second part, the listeners were asked 10 compare reconstructed 

speech from resldual-encoded hnear predictIve caders uSlDg ettber scalar or vector quao-

IlZatlOn of th!' resldual signai In thlS case, no quantuatlOn was performed on the other 

paramet!'rs of the coder, 1 e the gam, the predIctive filler parameters, and, if present, the 

pltrh filter paramett;rs ThIS was do ne ID order to obtam a subjective evaluatlOn of the 

;!'sldual quantlf.er performance as opposed to the performance of the coder Itself 

ln tbe thlrd part, the coder, wlth ail parameters quantlzed and USlDg vec10r quanti sa-

LIOn, was compared to a log-PCM coder ThiS was done ID order to compare the subjective 

qualtty of the rcconstructed speech from the hnear predictive coder to that produced from 

a standard and weil understood cadlng system This then produces an IDdlcatlOn of the 
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poaslbl~ saTlngB rn transmission bit rate for subJec:tl"vely equivalent speech quality. 

Fmally, in the lut part of tbe l'valuation, tbe hsteners were asked to compare the Iinear 

predictive coders with and w,'thout the inclusIOn of a pitch pr~lcllon filter. From th,!,' aD 

indicatIOn may he oblained as ta tbe demablhty of mcludmg a Pllcb tiller in tbe codlDg 

system 

Upon listenmg to the recon!ltructed speech, the hsteners ail round il. ta he -mumed" and 

-Iow pltcbed", 1 e there was Il lack of high frequency components. This lack or hlgb (r'!!quency 

companents rharacl.erlbd the coder for 8 kbps and 16 kbps (l-bit/sample-and 2-bit/sample) 

rcsldual transmission rates It 'rcmaincd unaffected as the quanti ter black length w;as V8r11'!i 

Dcspile the muffied qualJty, thc IJstencrs round the speech reMlly understandablc 

ln companson to log-peM speech, using a transmiSSion rate of 32 kbplI, the hstenera 

found there was less -stallc", or "crackling" noise ID tbe Iinear predictive coder. They also 
'( 

round that tbere was less hlss introduced by the hnear predictive coder. However, they round 

there was more h,gh freqllency componenls ID the log-PCM speech, i e Il was not as Mlow 

plt.ched" , althougb there was more DOise present 

Tables 5-8 and 5-9 IIbow the Ilubjective evaluatlonll of the linear predlct.in coder witboul 

the pll.ch prediction filter, wblle Table &-10 and 5-ll are for the coder wlth the pltch 
:) 

predIctIOn filler included ln both cases, t.he use of vectar quant"en (or tbe rel!ldual III 

comparcd lo tht' use or scalar quanllzers, elther uDlform or Lloyd-Max. In t.be tables, the 

first. of cach pair of numbers rI' presents t.he number or hstenern who preferred the speech 

generated wlth the use of a vector quant 11er Tbe second value represents the number 

or hsteners who prer~rred the llpeech reconstructed UlllDg 8 scalar quantizer. The vedor 

quantlZerll had block lengths of one ta live samples wlth two bita &IIIIigned to each sample 

ID t.he black. These quantiterll are compared to uniform and Lloyd-Max quantll~ers of two 

ta four bll.s/sample 
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Table &-8' 

Table &-11 

1 

-.J' 

Vector QllantiRr UnifOTm Quantiser: Bits/SampJe 

Black Length 2 3 • 
1 7/0 2/5 0/7 

2 7/0 3(4 0/7 

3 7/0 6/1 0/7 

.. 7/0 .7/0 0/7 

5 7/0 7/0 0/7 

Subjective Compariaon of Veetor and Uniforin Sealar Qtwrt.isen (No Piteh 

Prediction) 

1 \ 
\ 
) 

Veetor Quantizer Lloyd-Max Quantizer: Bitll/Sample 

Block Length 2 3 4 

1 7/0 '0/7 0/7 

2 7/0 0/7 0/7 

3 7/0 0/7 0/7 

-4 7/0 0/7 0/7 

5 7/0 2/5 0/7 

Subjective Compariaon of Veetor and LIoyd-Max ScaJar Quantisen (No 

Pitch Prediction) 

.M ean he seen from the tables, for bath the pitch 1lltered and non-piteh 1llWred lpeeeh, 

the veetor quantizers were prererred OTer the tlfOoobit UDiform quantiser. When compared 

ta the three-bit uruform quantizer, the TeCtor quantilerl of blod: Iengtb. t.hree ta fin 1ft!re 

unanlmously pre(erred in the coder Wlthout pitch prediction. For Tetter quantisert of black 
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Table 5-10: 

Table &-11 

Vector Quantizer Uniform Quantirer: Bits/Sample 

Block Length 2 3 .4 

1 7/0 2/5 0/7 

2 7/0 3/4 0/7 
tï 

3 7/0 6/1 0/7 

.. 7/0 6/1 0/7 

5 7/0 6/1 0/7 

Subjective ComparÏllon of Vector and Uruform Scalar QulllItisers (With 

Pitch PredictIOn) 

Vector Quantlscr Lloyd-Max QuantIscr: Bits/Sample 

Block: Length 2 ,3 .. 
1 7/0 0/7 0/7 

2 7/0 0/7 0/7 

3 7/0 0/7 0/7 

.. 7/0 0/7 0/7 

5 7/0 1/6 0/7 

Subjective ComparilOn of Vector and Lloyd~Max Scalar Quantisen (With 

Pltch Prediction) 

lengtha one and hm, more people preferred the ~form quantir.er. ln the cue of the coder . 
with pltch prediction, more people preferred the vect,or quant.ia.er over the three bit uniform 

quanti&er, except (or the one-dlmenaional vector 'quantir.er where the opposite wu truc. 

For both codcn, the (our-bit unirorm quantiser wu unanlmoualy preferred over ail vedor 

quanti sef!!. 

For the Lloyd-Max quanti~erll, the vector quantir.efll were unanimoualy preferred in 
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most cases OTef the hm-bit Lloyd-Max quantiser. The onJy exception waa in the case of the 

one-dimensional vector quantiser in the coder with the pit.c.h prediction fllter. The three-bit 

Lloyd-Max quantiser waa UDanimoualy preferred in most cues over the vector qua~t1terl. 

The only exception in this case occurred ror the five-dimenaionaJ vector quantlzer in the 

coder without pitch prediction. In all cases, the rour~bit Lloyd-Max quantizer '1f'lUI preferred 

over the Tector quantAzen. 

From Figures 1)-3 and 6-4, it tJ.1ay he seen that the performances of th~vector quantizera 

of the difIerent black lengths and tW'O-bita/sample in the black generally fell hfotween that 

of the two-bits/sample and three-bits/sample Lloyd-Max quantilers. The range of quantizer 

performance was hetween two-bits/llample and four-bita/sam pIe in the case of the uniform 

quantller. There 118emB to be a correlation in this case between quantizer performance and 

subjective preference 

Tables 6-12 and 6-13 compare the coder with no pitch filter and uaing vector quantiu1'l 

of I-bit and 2-bits respeetively for eaeh ,ample in the black, to a log-PCM coder of nrying 

bit rates. The procedure is repeated in Tabletl 6-14 and 5-16 for the coder with the piteh 

prediction filter included. 

In general, the linesr predictive coder W3II preferred OTer the three-bita/sample log-PCM 

when vector quantlzers with one-bit/sample in the the block were uaed. When compared ta 

4-bit/sample log-PCM, more people preferred the tIDear predictive coder when -the vector 

quantir.ers with larger black Bi~ '\Vere used. The opposite was true for the .maller block 

sizes. Finally, the five-bit log-PCM coder was unanimoualy preferred in most cues- over the 

Iinear predictive coder 

For the two-bit./sample in the black vector quantisen, the linear predictive «Kier wu 

unammoualy preferred over the .f.-bit Iog--PCM eoder. The linear predictive coder and the 

fh"e-bit log-PCM coder were judged about "he aame with more people p:-eferring the linear 

predictive coder when the vector quantisen had the larger black lengtbJ. In ail cuea, the 

f)...bit log-peM coder wall preferred unaD.imoUlly OTer the linear predictin coder. 
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LP Coder Log-PCM Coder Bi~II/Sample 

( Block Length 3 4. 5 

5/2 2/5 0/7 

2 4/3 3/4 0/7 

3 7/0 5/2 0/7 

4 6/1 4/3 0/7 

5 6/1 4/3 0/7 
f 

1 6 7/0 7/0 0/7 

8 7/0 7/0 0/7 

10 7/0 6/1 0/7 
.' 

Table 6-12- Compamon of Log-PCM and Lmear Predictive Coder U.mg I-bit/umpJe \ 

for Residual (No Pltch Prediction) 
) 

" 

LP Coder Log-PCM Coder- Bita/Sample \ '-

( Block Length 2 3 4 \ 
,l' , ~ 

-.. ~ "-.\ 

7/0 3/4 0/7 

2 7/0 3/4 0/7 

3 7/0 3/4 0/7 

4. 7/0 5/2. 0/7 
) 

5 7/0 4/3 0/7 

Tablt' 6-13 

l 
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(, 

\ 

Table 5-15 

( 

Companson of Log-PCM and Linear Predictive Coder Uaing I-bit/lample 

for ResldIJal (Wlth Pltch PredictIOn) 

LP Coder Log-peM Coder- Bits/Sample 

Block Length 2 3 .. 
6/1 3/4 0/7 

2 7/~ 3/4 0/7 

3 7/0 4/3 0/7 

4 7/0 7/0 2/5 

5 7/0 5/2 0/7 

Compamon of Log-PCM and Linear Predictive Coder Uaing 2-bit/lample 

for Resldual (Wltb Pltch Prediction) 
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Bloek Bloek Length (Coder with pitch fil ter) 

Length 1 2 3 4 5 8 8 10 

1- 0/7 0/7 

2 6/1 1/6 0/7 

3 5/2 1/8 0/7 

4 7/0 1/6 0/7 

5 7/0 0/7 0/7 

6 5/2 2/5 

8 0/7 

10 -' .. 0/7 

Table 5-1I~: Comparison or Coden Wit.h and Wit.hout. Pit.ch Predict.ion (I-bit/_ample 

for Residual) 

Bloek Bloek Length (with pitch filt.er) 

Lenrt,h 1 2 3 4 5 

0/7 0/7 

2 6/1 0/7 0/7 

3 7/0 0/7 0/7 

4 6/1 0/7 0/7 

5 5/2 0/7 

Cf 

Table 6-17: Compariaon ot Cod~ra With and Without Pitch Pr~iction (2-bit/sample 

for Residual) 

From the aboYe results, i} seem~ that as the black lengths of the vector quantizers increase, 

the output of the Iinear predictive coder subjectlvely improves. This may be compared ta 

the mcrease in quantizer performance wit.h block length when compared to Figures 5-5 and 

5-6. 
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Tables 5-16 and 5-17 compare the linear predictive codera with and without the pitch 

, , 
prediction filter. In ~~ble 5-16, vedor quantillers with onc-bit/aample in the block are used 

in the coder. For the results in Table 5-17, the quantlzers have two-bits/sample ID the block. 
o 

From the tables, It may be seen that, in general, the speech from the coder with plteh 

predictIOn was' prcferred over that ~ithout the filter. However, the difference in quality, 

although notIceable, was small and, in most cases, the Iistening' test had to be repeated 

seveul tlmes before a"decision c0'1Jd be made. Since the addition of the pitch filter added 

17 bits/frame to the transJDisslon rate, the loss in quality due to the exclusion of the pitch 

filter may be acceptable in terms of reducing the bit rate. 

.' 

'. 
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CHAPTER6 

CONCLUSIONS 

It has been shown that the procedure of generatmg ~ector quantizers ean be~ time 

consuming. A number of factors have been shown to affect the time required to generate 
• 

J each quantizer The Most obvlOus of these factors are the number of levels in the quantir;er 

o and its block SIr.e, I.e the number of elements m the vector 

The number of iterations at each "split" of the quantir;er generation algorithm al80 affect 

the quantlZation generation time. Obviously, the greater the number of iterations required, 
, 

the longer it takes to generate the quantIzer. If some manner of reducing the iterations eould 

be round, there-would be a ~onsequent reduction m the quantizer generation time. 

The numbor of lte;ations required is related to the error difference threshold and to 

the initIal quantlzer used in the deSign algorithm. If a more accurate Initial quantizer could' 

be round, the number of IteratIOns reqUIred for the algorIthm to "settle down" wouId be 

~ redueed. Sinee the algonthm is of a random nature, determming a more aeeurate imtial 
ç~ , 

quantizer would be dIflicult ID prâ.~lcc, This Icaves the use of a larger error dlfferens:c 

thrcshold If a larger threshold value was used, the number of Iterations would be less sinee . , 

the quantizer error would have to be reduced by a greater amount each it,eration, t{(te b . , 
drawback bchind this, however, IS, that by increasmg the error difIerence threshold, the 

quantlzer error 15 IDcreased 

It was found that, with an error difference thresh'old of 00001, the optimization procedure 

required rorty, or more, iteratlOns to terminate only twelve percent of the tlme" On the 

other hand, fifteen, or more, iterations were requlred eighty-five percent of the- time be-

J 
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fore termin~tion occurred. BI companng ~he quantizer performance al. each Iteration, il. 

was observed that t.he greatest increase in the 'lIignal-to-quantization-noise ratio occurred 

wllhin the first few iterations. In general, the SQNR obtained ninety percent of il. final 

value ,within five Iterations! and ninety-~ve percent W1thm seven iteratlolll'l. Thus by sc

cepting a relalively smaH decrease ID quantizer performance by liIDIling the maximum 

number of Iterations to seven, the quantlzer generation tlrne could he reduced, on the 

average, by more than seventy-five percent 

It has been demonstrated that, at equivalent bit rates, vector quantlzers perform as weil, 

or better, than scalar quantizers ln companson to the um(9r,m quantizers, considerable gains 

ID performânce are obtained These gams are not as great when compared to the Lloyd-Max 

quantlters ThIS is hardlv surprlsinlt smce the Llovd-Max quantizers perforrn cOnRlr!prllhly 

better than the correspondmg uniform quantizers 

In partleular, when the one-dimcnsional vector quantizer was compared ta the Lloyd: 

Max quantlzer for vary mg bit rates, it was observcd thst t.he performances of the quantizers 

werc very close This verifies the operation of the vector quantlzer desIgn algortthm. Since 

the vector quantlzers are deslgned using"a variatIOn of Lloyd's Method 1 and the Lloyd-Max 

quantlZcrs are deslgned usmg the Lloyd-Max algorithm, a variatIOn of Lloyd's Method Il, Il 

lB expccted that the two quantizers would perform similarly. Smce the performances of the 

two quantlzers were so simllar, thls demonstrates that the vector quantizer deSIgn algotit~ 

will produce a quantlzer at least as good as a scalar Lloyd-Max qUllntlzer of equlvalent bit 

rates. 

When the output bit rate was hcld constant and the véctor quantizer block length 

was IDcrcased, it was observed _~at the quantlzer performance increased. ThIS !Delicates 

that there rcmams some correlation bctween samples ID the resldual signai of attempts to 

rcm<?vc redundant mformatlOn through hnear predictIve techniques have been made ThIS 

correlatIOn between samples may thus be used to Improve the coder performance through 

the use of vertor quantlzcrs whlle mamtalDlllg the same transmIssion rate. 

SlDce the quantizers were designed lU a random manner through c1us~ering, the quan-
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tirer performance may not have been as good as possible. ThIs is mherent to the design a1-

" 
gorlthm itself and depen.ds upon the choice of iDitlal quantizer. Since there IS no -mtelhgence" 

-\. 
apphcd ID the splittmg algonthm there is no control over the selection of the InItIal quan-

titer A further problem 18 mtroduced through the use' of the tree structure for the quan

tizer The tree structure constrains the output points to partlcular regions of the data 

space at ail levels below the first level of the tree. ThIS constraint becomes more restnc-

tiv(' the deeper one iravels ID the tree structurg This occurs because, at the first level, the 

data space 18 dlvlded into a number of regions The next level only subdivldes these regIons 

wlthout attemptlDg to Improve the regIon definition ThiS contmues to the lowest level 

of the tree Thus If, for some reason, a reglon defined near the top of the tree has only a fe\v 

pomts, the final set of output pomts will not reflect the true dlstribut:oD of the data space 

Whcn a subjective compartson of the coder usmg vector quantizers was made to the 

coder usmg scalar quantlzers, at eqUivalent bit rates, it was found thaï. the hsteners generally 

preferred the coder whlch used the vcctor quantizers When compared to the Lloyd-Max 

quantlzers, It was found that two-blt/sample vector quantlzers were preferred more than two-

bit, but Jess than three- bit, Lloyd-Max quantlzers. In companson to the uniform quantlzers, 

th!' range of preference ran from two-bit tQ four-bit uniform quantlzers ln general, as the 

block Icngth mcreased, the preference iDcreased ThiS was further born oU,t by compaTlSons 

b<-tween the vector C1llantlzers. The quantl7;ers wlth larger block lengths w~re prcferred ovcr 

.J" the quantl7.er5 wlth the smaller v{!ctor SILes Thus the use of vector quantlzers results in 

a perceptual Improvement as weil as a quantitatIve Improvement III companson to scalar 

quantl7.ers 

When compared to log-PCM speech, the hnear predIctive coder, both wlth and wtthout 

pltch prediction, were seen to result ln substanttal savmgs ID tranSIDISSlOn rates for eqUlv-

aient per('pptual quahty The range of preference for the hnear predictive coder Wlth one-

bit/sam pic for the rcsldual was bctwecn three- and four-bit log-peM For 8 kHz sampled 

speech, thls corresponds to transmiSSIOn rates of 8 6 kbps for the hnear predictive coder 
\""") 

wlthout pltch pr·èdlcl1on, g 2 kbps wlth pltch predictIOn as compared to between 24 kbps 

and 32 kbps for the log-PCM coder. For two- bits/sam pIe for the resldual, the range of 
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preference W1III bet"Ween four- and the-bit 10g-peM or l1U~ kbpl (17.2 kbpl) u eompared. to 

a range of 32 kbps ta .0 kbps. ThUl it can he seen that pèrceptually equiTaient speeeh m.,

he produced at corunderably'lower bit rates through the \lie o( Iinear predictlTe teehniqutl 

and vector quantuatlon of the residual. 

ft wu found that the addition of the pitch prediétion fiUer imprOTed. the pereeptual 

quality of the speech only ahghtly Sinee an extra 600 hits/seeond are required ta tr&llJlmit 

the pltch mformation, it is dO)lhtful that the perceptual impronment i. worth the extra bits. 

IJll5tead, it would prohahly he more useful to dilltribute the bita among the other parameten 

of the coder. 

It wu aillo obllerved that the addition of the pitch filter affeeted the performanees of the 

rellidual vec10r quantlzers. In general, the pitch prediction camed a redudion in the SNR 

of the vec10r quantizers. The additIOn of pitch prediction tends ta reduce the correlationa 

between mbsequent samples. Since the vec10r quantizen depend upon these correlatioDi for 

their gams ID performance, the addJtion of the pltch filter can C31l.11e a 1088 in quantiser 

performance which becomes more apparent as the block length increaaes. 

6.1 Suggelltions For Further Work 

,There is a W1de range of topica tor further investigation. Fint among these ia an 

exteDlllon of the work ta multiple speakers. Since the quantuers were generated from a 

trammg sequence derlved from a tungle speaker, the quantizers match the charactenstics 

of that speaker Because of this, the quantisers may not perform u weil with different 
~ 

speakers sIDce the characteristics wIl he different It would he useful ta determme 10 what 

extent multiple speakers would affect quantuer performance, especlally in the presence of 

both male and female speakers. 

Another tOplC of interest would he ta ~ bserre the e1fect of splittmg the residual codebook 

mto two code books contammg vecton representmg vOICed and unvoiced residuaillignala. It 

would then he poB!lble ta allocate the number of quantizer output vectars to'each codebook 
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in sucb a way sa to maximlZe performance while maintalBmg a relatrrely low bit rate. 

Since the vOICed resldual Slgnal generally has greater amplitude as weil as a ·splke" at the 

hegmnmg of each pltch penod, the voired codebook would eontain veeton matching th~ 

characterllltIclI For unvoiced resldualsignals, the waveform III general\y of a random nature. 

ln thl!! CB..IIe, a relatively IImall selectIOn of random vecton may he suflicient. Tbus, a greater 
-' 

number of-feetors could he IlSSlgned to the voiced codebook in order to allaw more TlJ'iatlOn 

whtle relatlvely iewer vectors could he used where the resldual \S relatlvely random. 

Another area of Investigation would Involve improVlDg the coder design. The present 

work m~"Olved the use of a very simple coder It would be mterestmg to observe the effect of 

different coder configurations or dtfferent codtng techmques upon the perceptual quality of 

the reconsJructed speech ln partlcular, dtfferent methods for generatlllg the vector quantuter 

should he Investigated. For example, the generation of the irutial quantizer could he done in 

a dlfferent manner Another concept would be the Impoaltlon of certam eonatrrunta upon the 

quantiter structure and performance. It would he mterelltmg to llee the effect of constraming 

the maxImum error (except ln the oTerload region1l). This la equivalent to ensUllng the 

centrOids are never more than a glven distance apart. It would also be poSSible te ensure 

that the centrOlds are not too close 38 weil, IIlllce twa would have the effect of glving a more 

unlform coverage to the Signal IIpace. Finally, a combination of quanti ter structures may 

he IDvestigated. By Wling a lattlce quantu.er at the top level of the codebook tree, It would 

be pOSSible to constrain the maxJmum error 38 weIl as to decreue the search tlme for the 

clo8est matchlllg codeword. 

\ ,Finally, It would be of interest to compare the coder wlth prediction to the coder 

wlthout the pltch filter at equlTaient bit rates. It has been shawn that the coder with the 

pltch filter wa.a ouly shghtly preferable to that Wlthout piteh prediction. Since the Inclusion 

of the pltch filter requlres an extra seventeen bita per data frame, by elimlDating the plteh 

filter and redistrlbutlllg the bita among the other data ID the frame, a better compariaon 

of the two coders could he made For inatance, the extra bita could be nsed to IDcrease the 

number of levels ln the codebook thereby a1lowing a better approximation to be made of 

the re5ldnal signal. If the coder Wlt.h the plteh filter W38 still preferable, then It may he 
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concluded that the iDJlertion of the pitch prediction ftlter ia desirable. 

\.. 
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