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ABSTRACT

?

The design and implementation of vector quantizers have recently attracted considerable

attention 1n the speech coding field Previous work concentrated mainly upon the theoretical
)

capabilities and asymplotic performance of vector quantizers Litlle investigation concerning

the actual implementation of vector quantizers was performed It was only rccently that

practical algonithms have been developed for veclor quantizer design

This thesis presents an investigation i1nto the field of vector quantization Commencing

with a review of one-dimensional quantization Lheory, an extension of quantization pnncuples“

to several dimensions s presénted This 1s coupled with a survey of currept work in the
field of vector quantizalion Based on this discussion, a vector quantizer structure, designed
using the Linde-Buzo-Gray algorithm, is chosen for the block quantization of the remdual
signal derived from the linear prediction of speech The performances of the residual vector
quantizers are evaluated for various biock sizes and transmission rates and compared to those
of uniform and Lloyd-Max scalar quantizers A subjective evaluation of residual-encoded
hinear predicive coders using scalar and veclor quantizers is made Finally, a sub]ec}xvc
comparison of the hiiear predictive coders using vector quantization of the residual to Log-

PCM coders is performed
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SOMMAIRE

La conception et la réalisation de quantifieurs vectoriels & en ce moment considérablement
attiré 'attention dans le domaine du codage de la parole. Les ouvrages précédents sont
concentrés principalement sur les capacités théoretique et la performance asymtotique de
quantifieurs vectoriels. Peu d’inves)tlgat:ons ont été accomplies concernaut la réalisation
actuelle des quantifieurs vectoriels. C’était seulement tout récemment qu’une algorithme

pratique a été dévelopée pour la conception de quantifieurs vectorels.

Cette thése présente unme investigation dsns le domaine du quantification vectoriel.
Débutant avec une revue de la théorie de quantification 3 une dimension, une extenmsion
des principes de quantification & plusieurs dimensions est présentée. Ceci est coupié avec
une étude des ouvrages courants d'ans le domaine des quantifieurs vectoriels. Basé sur cette
discussion, une structure de quantifieur vectoriel, congue en utilisant I'algorithme Linde-
Bum.-Gmy, est chosie pour la quantification collective des échantillons residuels dérivés de
la prédiction ‘hinéaire de la parole. Les rgndementa des quantifieurs vectoriels résiduels sont
évaltués pour des collections de dimensions et de taux de transmission divers et comparés 3
ceux de quantifieurs scalaires Lloyd-Max et uniformes. Une évaluation subjective de codeurs
prophétiques hinéaires codés-résiduels en utilisant des quantifieurs vectoriels et scalaires est
faite Finalement, une comparison subjective des code‘ura prophétiques linéaires en utilisant

la quantification vectoriel des résidus des codeurs Log-MPIC est exécutée.
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CHAPTER 1 s
INTRODUCTION

The main objective of speech coding is to aliow the transmission, over u digital channel, of
the highest quality speech possiblie using the least possible bit rate. Essentially, speech coders
may be diwded\into two different classes waveform coders and source coders. Waveform ’
coders attempt to transmit a good representation of the actual speech waveform. Source
coders attempt to estimate and transmit a linear model of the speech process rather than an
actual waveform. In general, source coders allow lower transmission rates, while waveform
coders typically provide higher quality and more robustness against backg;ound noise,

multiple speakers, and speaker variations Flanagan et al [FLAN79] provide an excellent

survey of the various speech coding systems.

The most common form of source coding is the linear predictive coding (LPC) of
speech A considerable number of researchers have written about this popular speech coding
technique. Makhoul [MAKH75] has provided a good review of the subject and Markel and

Gray [MARK76] discuss LPC techniques in great depth.

Y

In general, LPC systems transmit only a model of the speech process. no use is made of
the residnal, or error, signal In adaptive predictive coding (AP C) systems, the residual signal
is coded and transmitted to the receiver as well as the speech model Atal ‘and Schroeder
[ATAL70] describe the APC coder and Makhoul and Berouti [MAKH79b] provide a good,

‘survey of developments in APC techmiques.

Whether the residual signal 18 transmitted or not, the linear prediction technique may

be vﬁewed as a two step process The first step involves the identification of a model for the
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speech process. The second step is the compression, or quantization, of the model parameters
and, if present, the residual signal. In general, the compression step directly affects the
transmission rate of the coder and the quality of the reconstructed speech. New methods
are constantly being sought which will allow more eflective information compression and
lower transmission rates.
1

Traditionally, the model parameters and residual samples are quantized individually,
This approach 1s referred to as scaler quantization. Recently, a new practical design ap-
proach to quantization has been developed. It involves the simuitaneous quantization of
scveral model paramcz'u or residual samples. For this reason, 1t is called vector, or block,

quantization This desiga approach is discussed 1n considerable detail by Linde et al {LINDSO,

P

GRAYB80a] and its cflectiveness is demonstrated

Before studying quantization in several dimensions, an understanding of one-dimensional,
or scalar, quantization is essentital The basic theory of one-dimensional quantization is
reviewed by Gersho |[GERS77] Jayant [JAYAT78] is the editor for a collection of selected

reprints which provide in-depth discussions of various aspects of scalar quantization. Gray

.et al [GRAY77} compare various schemes for the quantization of speech reflection coefficients;

‘n
the LPC model parameters for the speech process Lloyd [LLOY82] and Max [MAX60]
develop an algorithm for the design of optimal one-dimensional quantizers, and which
forms the basis for the vector quantizer design algorithm mentiongd previously {LINDB8O]

~

Once an understanding of scalar quantization 18 obta;\;ed, it 15 then necessary to
extend these concepts to several dimensions A sumple concept of vecter quantization 1s
presented by Huang and Schuitheiss [HUANB3| for correlated Gaussian random variables
Essentially, a transform 18 found so that the transformed variables are independent These
independent vanasbles may then be quantized individually using scalar quantizers The
quantized variables are then inversely transformed to provide a quantized output of the
original vector. llowever, individual quantization of independent variables may not always
produce optimal performance. Newman [NEWM82] shows the optimal property of the
regular hexagonal array for uniforrg quantization in two dimensions. This optimality cannot

be obtained if the values are quantised independently
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The concept of optimality predominates in the study of vector quantizers and their
properties. Zador [ZADOB8?], in a previously unpublished paper, studies the asymptotic
properties of multidimensional quantizers Gersho [GERS79] extended this work and intro-
duced the companding approach to veclor quantization. The block compandor was further

hdevelopod by Gallagher and Bucklew [GALL80] New proofs of the asymptotic theory of
vector quantization were recently developed by Bucklew and Wise [BUCK82] Gallagher and
Bucklew [GALLS2] show some simple proofs on the properties of optimal vector quantizers
A great deal of the above work was based on a mean-square error criterion. Yamada et al

[YAMAB8O] extend this Lo more general distortion measures

While considerable study has been done on vector quantization theory, it 1s only
recently that the actual design of vector quantizers has been attempted The design of vector
quantizers generally involves the use of one of two structures either a lattice structure or a
random codebook Gersho [GERS81, GERS82] reviews these basic structures and discusses
the advantages and drawbacks of both forms

The major advantage of the lattice structure is the ease with which arbitrary encoding
may be performed. Conway and Sloane [CONWS81] present explicit algorithms for quantizing
in four, eight, and twenty-four dimeunsions and later generalu:é the Procedures [CONWB2b]
to a wider range of lattice forms and dimensions Essentially an extension of the uniform
quantizer, the characteristics of the lattice structure are important. These characteristics are
listed by Sloane [SLOAS1] and the normalized mean-square error 18 tabulated by Conway

and Sloane [CONWB82a] for various lattice structures

The major disadvantage of the lattice quantizer anses from the same characterstic
that provides its advantages its uniform structure Because of its uniform nature, a large
number of output points are required to effectively cover the input vector sp:;ce. Areas-where
no input vectors lie cannot be eliminated without destroying the lattice structure and thus
the ease of coding Thus, a large number of cutput vectors must be coded which 1n turn
results 1n a high (ransmission rate. Furthermore, unless the input sequence 13, or can be

transformed to be, umformly distributed, the lattice structure will not be optimal.

AP o
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The only effective method for the design of multidimensional quantizers is through the
use of a clustering algorithm. This approach is developed in detail by Linde, Buso, and Gray
[LIND86] who present algorithms for the design of vector qum‘xtizers. A companion paper
[{GRAY80a] present a theoretical development of the algorithm. The algorithm is extended
to include tree-searched quantizers by Gray et al [GRAY82a, GRAY82c]. The algorithm
generates z; random codebook structure which mu:;t be searched to find the closest match
to the input vector. The main advantage of the random codebook is that advantages may
be taken of correlations between the elements in th;e vector. Areas of the input vector
space which contain no vectors may be effectively ignored since no structure is required.
This results in lower transmission rates than may be obtained through the use of a lattice

structure. This also leads to the major disadvantage of the random quantizer Because no

. Blructure exists, the output vectors must be stored since there is no way of calculating

them Furthermore, there are no easy algorithms for determining tlie output vector which
18 the closest match to the input vector Despite these drawbacks, tiﬁ%lmtering algorithm
has {)een apphied with_some success to the quantization of the linear prediction parameters
[BUZOS80, BUZO79, WONG81, WONGS82|, and speech and speech-like waveforms [ABUTS1,
ABUTS2, JUAN82, GRAY82a, MABI81] This algorithm also formsgt.he basis for the work

presented in this thesis.

One of the major intentions of this thesis 1s to present a survey of the vector quantisation
field This review includes a discussion on one-dimensional quantisation concepts and extends
them to several dimensions. Another purpose of this thesis 1s to extend the work performed
on the quantisation of the linear prediction parameters in LPC systems to inciude the block
aquantization of the residual signal as well. The resulting residual-encoded linear prediction
coder 15 an stiempt to 1mprove the quality of the reconstructed speech while maintaning

moderate (9 0 kbps - 18kbps) transmission rates

This thesis 1s divided 1nto six chapters Chapter 2 discusses quantisation theory. The
theory of one-dimensional quantization 18 discussed and then extended to several dimensions.
T
Once the multi-dimensional quantisation principles are discussed, different structures for

vector quantizers are presented and compared as to their ease of design an%‘iﬁ‘plementation.

_/
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i Finally, some algorithms are prese¢nted for the design of vector quantizers.

Chapter 3 15 a review of linear predictive and adaptive predictive techniques. Methods
of coding and trausmitting the residual, including methods for improving the quality of the
reconstructed specch, are presented. This is followed by a discussion on the quantization

and coding of the spectral information, 1.e. the reflection coefficients or related parameters,

including the use of vector quantizers.

The remaining chapters represent the area of investigation of the thegis The use of vec-
tor quantizers is extended to the block quantization of the residual signal The effectiveness
of vector quantizalion of the residual 1s investigated and a simulation of a residual-encoded
’ coder based upon Linear predictive techniques is developed Chapter 4 presents the coder
structure and describes its operation. Chapter 5 contains the experimental results derived
from the simulations Finally, Chapter 6 presents conclusions drawn from the experimental

results and indicates areas for further investigation.
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CHAPTER 2
THE THEORY OF VECTOR QUANTIZATION

2.1 INTRODUCTION

In one-dimensional scalar quantisation, the quantizer operates on a single sample value
of an analog signal The sample is replaced by one of a set of reprensntstive walues which
best approximate the original value. In vector, or block, quantization, a k-dimensional input
vector is mapped into one of a finite set of k-dimensional representative veclors. The ’input
v?ctor is replaced by the output vector which approximates, in so:ne sppropriate way,
the original input vector. In either case, a digital codeword can becused to identify the

representative scalar or vector which best reproduces the original data.

A quantiter may be viewed as the cascade of a coder and a decoder. The coder identifies
in which: partition of the input space the input vector hes and assigns & corresponding
codeword. The decoder takes this codeword and gbnerates the output vector drawn from a
“codebook™ or look-up table For a N.level quantiser, an input vector x = (2o, ..., Za-1),
where k is the dimension of the vector, is assigned a reproduction vector ® = ¢(x) drawn
from a finite reproduction alphabet ¥ = {y;; s = 1,..., N }. The quantizer, g, is completely
described by the reproduction alphabet Y together with the partition § = {§.; § =
1,. ., N} of the input vector space. The sets S; = {x : g(x) = yi } consist of input vectors
mapped into the i*h r;prodnction vector. These are chosen to minimize some distortion

criterion d(x,y,) < d(x,y,) for all 5.
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Figure 2-1: Quantizser Decomposition

This decomposition is illustrated in Figure 2-1. A cell assignment function e, is defined
a8 3 binary valued function

1, ifxe S;

2i(x) = { (2.1.1)

0, otherwise p
which is an indicator function for the set §;. The binary valued variable a; == s(x) is the i**
element of the binary valued vector a = {ay,...,an }. Only a single element of this vector

is non-sero. Thus an N-level quantiser may be expressed as

N N
gx) =3 yasi(x) = Y yias. (2-1.9)
famn [ 3 .

-



In order to characterize the structure of the coder and decoder, an index function G

! are used. G is a mapping from the set of binary N-

and an address generator function G~
element vectors a to the index set J of integers from 1to N and G=! is the inverse mapping.
Specifically, G(a) = j, if 7 is the largest index ¢ with 8, = 1 and G~!(j) = (&, ..., 5N\,‘)
where 8y, is the Kronecker delta (i == 1, 1 = j, 6,; = 0, otherwise). With these dt:_ﬁnitiona,

the coder C can be represented as C == G - S such that
C(x) = G(a) = G(81(x), ..., Sn{x)) (2.1.3)

and the decoder D is represented as

N
D=Zm¢5 (2.1.4)
twn]
g0 that
D(y) =y;. (2.1.5)

In other words, C gives the index of the codeword which lies closest to x while D uses this

index to obtain the representative value for x. The quantizer Q may then be defined ss

Q=D.C. (2.1.6)

The reproduction alphabet of a vector quantiser may be represented as a scattering of
points in k-dimensional space. These points generally lie within the regions S; of the partition
S of tl;e input vector sequence For example, if a mean-square error:criterion is used, these
points become the centroids of these regions. The placement of these points and the geometry

of the partition is of fundamental interest in the theory of optimal quantization.

2.2 ONE-DIMENSIONAL QUANTIZATION

An N-level one-dimensionsal quantizer ¢ may be defined by a set of N + 1 decision levels
20,21, ..., zN and a set of NV output levels yy,ys,. ., yn. When an input sample £ hes in the

i** quantiser interval §; = {2,_; < = < z,} the quantizer produces the output value

\{’,
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g(x) = y;. The value of y; is usually chosen to liz within the interval 5;. The end levels z,
and zy are generally chouep to be the smallest and largest values the input samples may
obtain For unbounded signals, these become zo —+ —00 and zy — co. The N output levels
generally have a finite value and if N == 2", a unique n-bit binary word can identify a

particular output level.

i !

For a fixed bit rate transmission, the number of hits necessary to speciff a quantiger
level 18 equal to the smallest integer greater than or equal to log; N. This represents simple
scalar quantization. For a fixed bit rate, it is only necessary that the total number of bits
per frame be integer valuved. For example, in LPC there are several reflection coefficients,
or some other parameters, generated for each analysis frame Thus, in the analysis of a
quantizer, an integer number of bits 18 not required and the relationship between bits, 8,

and quantization levels, N, is simply

B =logy N. (22.1)

If lossless source coding, such as Huffman coding, is used, the tranamission rate need
no longer be fixed The average transmission rate can then be reduced from log, N to be
arbitrarily close to the quantizer output entropy with little or no loss of fidelity

|GALL#S8, Chap 3]. The quantizer output entropy is denoted by

N-—1 .

H=-Y plog;p, < log N bits, (2.2.2)

-
where p, 18 the probability that the guantizer output g(z} = y,. The upper bound is achieved
if and only if the probabilities p, are all equal so that p, = 1/N. For » fixed fidelity
criterion, minimizing the entropy minmimises the achievable bit rate [GALLSS, Chap. 9], thus

the entropy places a lower bound on the possible bit rate.

A}

A\

2 2 1 UNIFORM AND NONUNIFORM QUANTIZATION .

PRI WY

“

. The input-output charactenstic of a one-dimensional quantizer resembies 3 staircase.

The quantizer intervals, or steps, may ‘vary i smze. The sumplest quantizer form is the

T

Vis, _wgt
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Figure 2-2 Nonuniform Quantizer Modelled Using a Compandor

'
I

uniform quantizer In the uniform quantizer, the step sizes are identical except for the end
intervals. The output points are located at the mid-point of these intervals If the step size
158 denoted by A, then the maximum error iz gives by A/2. The end regions, 5, and Sy,
are generally unbounded If the quantization error exceeds A/2 when the input sample falls

within either end region, the quantizer 15 said to be overioaded

In general, uniform quantization s not the most effective way to obtain good quantizer
performance For a fixed number of leveis, a nonumform spacing 'ol' decision levels, based
upon the input probability density, can result in lower average quantization error and less
sensitivily Lo vanations 1n input signal statisties Bennett [BENN48] modelled the non-
uvniform quantizer, as shown in Figure 2-2, as a non-hnear compression function F(z),
followed by a umform quantiter, followed by an inverse expansion function F~'(z) The
combined function of compression, quantization, and expansion 15 termed companding It 1s

simply an equivalent way of viewing the operation of a nonuniform quantizer

Companding 1s useful for quantizing speech samples In general, low amphitude speech
samples occur with greater probabihity than high amplitude samples The compandor non-
hnearity 1s used Lo spread the low amplitude signal over a larger range of amphtudes while

compressing Lhe high amplitude signals into a smaller range. After uniformly quantizing

- 10 -
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Figure 2-3 A Quantizer Mode!

the transformed sampie, the inverse function 1s used to produce an approximation to the

original signal

The companding charactenistic F'{z) 1s a monotonically increasing function having odd
symmetry The nonlinear operation 1s thus completely invertible Because of this, there is no
loss of information due to the operation of F{z) itsell The combined eflect of the non-linear
function and its inverse, ajong with the uniform quantizer, i1s equivalent to the operation of a
nopuniform quantizer whose characteristics are determined by the shape of the compressing

function

222 A QUANTIZER MODEL

The quantization process can be modelled as in Figure 2-3. A random error, or nénse,
component ¢ = g{z) — z, dependent upon the amphtude of the input signal z, 1s added
during quantization to form the output signal The quantization noise can be categorized
intec two forms The first. granular nose, 1s bounded in magnitude and occurs when the
input sample lies within the finite region defined by decision levels z; < 2 < zy-; The
amphtude of the noise signal 1s restricted by the size of the interval the input signal hes

within The second noise form, overload noise, occurs when the signal hies 1n one of the end

- 11 -
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regions and is unbounded in amplitude.

For simplicity, quantization noise is modelled as the sum of granular and overload noise
8s if they are two distinct nowse sources [GERS77}.’ R is usually convenient to treat the noise
as having a flat spectral density and as being un:orrelated with the input samples [WIDR586].
Bennett [BENN48] shows that the quantization noise is approximately white if the number
of output levels is large, if the output levels lie :lose to the midpoints of the corresponding

quantization intervals, and if successive input samples are only moderately correlated.

2.2 3 QUANTIZER PERFORMANCE

A fidelity measure must assign some value to the effects of quantiration based upon the
fact that the input and the output of a quantizer are not equal. One of the most common

messures 15 the r** moment of quantization error. The r*® moment is given by
b
M, = Efjz — q(z)|'] = /; Iz — q(z)|"p(z)dz. (2.2.3)

Because of the discrete nature of the quantizer output and the staircase form of the mmput

’

output relation, (2.2.3) may be rewritten as

N i
p=M=3 [ le-ulpae), - (224)

g
where z; and z,; are decision levels bounding the interval S, corresponding to output level
¥, When r =1 or r = 2, equations (2.2.3) and (2 2.4) reduce to the familiar mean absolute

or mean-square quantization error respectively.

It is often useful to describe the performance of a quantiter by a signal to noise ratio
defined as

SNR = 10log, (0% /D), (2.2.5)

where o2 is the variance of the input sigusl and D is the mean-square quantiser error. In
most applications, the number of levels N is very large so that a high SNR is obtained.
In the case D = M5, the mean-square error, for a large N each interval S; can be made

quite small with the exception of the overload regions. It is reasonable to approximate the
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probability density p(z) as being constant in S; so that p(z) = p(y;) and letting p(z) =5 0

for the overload regions. In this case, it is found [GERS77] that the quantiser error becomes

1 N-1 -
D=5 3 pn)al, (2.2.6)

(L]

where A; = z; — z,_; is the length of the intcrval S;. Equation {2.2.8) is based on the

.assumption that sufficient levels exist so that the overload noise is very small in in\tensit.y. )

This implies that the overload decision levels zo and zn are chosen 8o that overload noise
is negligible compared to the granular noise
In the special case of uniform quantization, the intervals S; are of a constant size so

that A, = A. The error becomes

A2 N-1
D=1 ) A (2.2.7)
g2
However,
Y r(v)a ~ / p(a)ds =1 - (2.2.8)
so that St
2
Dw %. ,. (2.2.9)

To avoid significant overload distortion, in speech applications the overload level

zN = —zg > 40 where o is the variance of the signal assuming a mean of zero. If the mean

18 not zero, the quantizer should be designed to be symmetrical about the mean. The step °

size then becomes A = 80/(N~2). It is found [OLIV48] that there is a linegr increase in SNR
with the number of bits of quantization. f N == 2", then for an n-bit quantizer, it is seen

that, using equations (2.2.9) and (2.2.5) that
SNR =6n—7.3 (2.2.10)

for the given step size.

Any ponuniform quantizer can be transformed into a uniform quantizer through a
change of variables [GRAY77] For convenience, the new variable will cover the interval
{0, 1] having quantization output levels

j, = (_‘iNl/l), i=0,1,.,N-1 (2.2.11)
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and decision levels

$; = -1:7 i=0,1,.,N. (2.2.12)

The random variable £ will be related to the original variable z through the transformation | °

£ = F(z). ' (2.2.13)

k)

F(z) is a differentiable monotonically increasing function so that
5

R dF(z) _ '
5 =@z (2.2.14)

‘Rg:e quartization levels and boundaries are related by
( §.=F(y), i=01,.,N-1 (2.2.15)

e

‘and
t;=F(z;),i=0,1,..,N. (2.2.18)
The limits on quuitiution, 2o = a and £ = b are trmformeh‘such that

F(z9) = F(a) = 0 and F(zn) = F(b) = 1. (2.2.17)
ﬂzb .
The probability density can be transformed to the new coordinate system using stan-

dard techniques. It should be noted that if £, and z,_y represent the decision levels bounding

an interval and %; and #,-; are the transformed levels then

\ LY 3 3
Prizi1 <z< %) =Prjziy <z < 1) = / plz)dz = -/; p(z)dz. (2.2.18)
x{-1 fmmy

The above relationships andotheir inverses allow any quantizer to be analyzed, at least in
theory, as a uniform quantizer. In practice, the relation F(z) may be difficult to determine.

Based on the preceding model of nonuniform quantizers, it is possible to derive [BENN48]
an -approximate formula for the mean-square error. For large N, the curve F (2) may
be approximated by a straight-line segment of slope F'(y,) which is the derivative of F(z)
evaluated at output value y;. Defining f(z) = F'(z) results in ‘

F(z)= F(zia) _ 2V
A, = Na,

’ flw)=Fy) = (2.2.19)

“
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"Theu sabstituting A; fu}u"(z.z.w) into (2.2.6) yields -
/

where V' is the value of the overload level.

A common compression function used in speech transmission is the p-law charscteristic.
This example is s member of the class of “robust” quantisers which are relatively insensitive

to changes in the probability density of the input signal.

To obtain robust performance, the SNR of the quantizer should be independent of the
probability density function of the input signal {GERS77]. If the slope of the compressor

curve is chosen to be

/(z) = i% - (2.2.21)
then equation (2.2.20) becomes :
i .

and the SNR, defined by (2.2.5), reduces to a constant independent of p(z). By integrating
(2.2.21) for z > O to give

F(z) =V + clog(z/V), ; (2.2.23)

where ¢ is a constant, it is seen that a logarithmic curve gives the desired robust performance.

'i‘he Ji-law compressor characteristic is of a logarithmic form and is defined as

log(1 + pz/V)
=V 2.2.24
Fiz) log(1 + p) ( )
for x > 0. The logarithm is shified in order to avoid complications when z == 0. The
mean-square granular noise can be calculated [GERST?7] to be approximately
2 2
”DE = ReglL 0] {1 + 2a¥ + V) } (2.2.25)

o 3N?2 po po g

where a is the ratio of mean absolute value to rms value of the input samples.
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2.2.4 OPTIMUM QUANTIZATION

While the robust quantizers described previously limit the quantization error for chang-
ing or unknown ;robablhty density Tunctions, in applications where the density function is
known ‘it s natural to seek the best possible qua‘%tizer characteristic for that density. The
optimumn quantizer 1s one that minimizes the error for some distortion measure.

There are two main approaches taken to obtain an optimal quantizer. The first is an

algonthmic procedure for finding the optimum decision and output levels and is vahid for

.- any number of quantfzer levels N The second approach assumes that N 1s large and leads

to an explicit solution

The first approach is the algorithm developed by Lloyd [ﬁLOY82] and Max [MAX80].°
For a mean-square error criterion and a quantizer with a fixed number of levels N, the
optimal values for the decision levels z;,1 =1, ., N—1and output points y,,1 = 1, ..., N are
to be found. The necessary conditions for optimality are obtained by setting the derivatives
of D in (2.24) with regard to each of these parameters to zero for r =\2 The resulting

conditions then become-

1 - Each output level y, must be the centroid of the interval S, with respect to the

input density p(z).
2 - Each decision level £, must be halfway between the two adjacent output points

The Lloyd-Max conditions may be summarized in the following equations:

__=zp(z)
= d .26
/,, . Pr[z,_l <2< 1, * (22.26)
énd
Vs +2V'+1 -z ’ (2.2.27)

o

where p(z) is the probability density of the nput signal and Pr{z;—y < z < z,] 1s the

probability z lies in the given quantization interval. Generally, the above equations are
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mathematically intractable leading to the development of approximate formulae for the

commonly used densities

These conditions do not give the optimum values explicitly since each decision level
z; is dependent upon the adjacent output pomnts y, and y,; and each output level y, is
the centroid of the region defined by z;—; and z,. However, it is possible to compute these
parameters [MAX80] with an 1iterative procedure, called the Lloyd-Max algorithm, that

simultaneously satisfies both conditions

Lloyd [LLOY82] observed that the above conditions, although necessary, were not
sufficient for optimality He showed this by means of a counter-example of a probability
density function and associated quantizer that satisfied the conditions but was not optimal.
Fleischer [FLEI84] obtained sufficient conditions which, if satisfied, will confirm that the

quantizer is optimal. In particular, if the input density p(z} satisfies the property that
d?
£z llogp(z)] <0 (2.2.28)

for all z, then only one quantizer exists that satisfies the Lloyd-Max conditions. The converse
is not necessarily true. it may be possible to have a density p(z) that does not satisfy (2.2.28)

and yet a unique optimal quantizer may exist

The second approach to obtaining an optimal quantizer commences with equation

—

(2.2 8) which 18 based on the assumption that N is [arge Panter and Dite [PANTS1] found
that the optimal compressor slope f,(z) 13 proportional to the cube root of the probabihity

density function
Jo(2) = clp(2)]3, (2.2.29)

which 1s an extension of equations (2.2 8) and (2.2.20}. By integrating (2.2.29) the compressor

charactenstic is obtained

7

Fo(z)=¢ /o ’[p(.)]%d:, 2> 0, (2.2.30)

where ¢ is a constant chosen so that F,(V) =V, the overload value.

Optimal quantizers have a number of 1nteresting properties. Wood [WOODGS] derived a

/
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result which states that the variance of the output of a minimum mean-square error quan-
tizer should be less than the input. This indicates that mgnal and noise are dependent and
the approximations considered in Section 2.2.2 may not be valid. Bucklew and Gallagher
[BUCK79, GALL80] extended these results to quantiters other than the Lloyd-Max quan-
tizer They also showed that the mean value of the signal 18 preserved by the quantizing
operation and ‘that the distortion is equal to the difference between the nput and output
variances for a mean-square error criterion For an m-deptl‘_t development of these results,

the reader is referred to the papers mentioned here

2.3 VECTOR QUANTIZATION

The extension of scalar quantization to several dimensions can be conceived of in several
ways A conceplually simple method was developed by Huang and Schultheiss [HUAN83] for
correlated Gaussian random variables Figure 2-4 illustrates this method in block diagram
form. Essentially, a nonsingular transformation T operates on the input vector x to yeld
a vector y of uncorrelated random variables. When the input vector x 15 Gaussian, the
output vector will also have a Gaussian distribution whose samples are therefore not cnly
uncorrelated, bu‘t inde pendent as well These uncorrelated elements may then be individually
quantized. An inverse transformation 77! is then be used to produce an appr?ximation to

the original input vector

The above procedure 1s optimal only if the input samples have a jointly Gaussian
prob'ﬁyht.y distribution [HUANB3]. le1 general, the input samples will not have this property
and 1t is difficult to find a simple and practical transformation that makes the samples
uncorrelated. Therefore other methods for vector quantization have been investigated as

discussed in the following seclions.

- 18 -
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Figure 2-4 Vector Quantizer for Correlated Gaussian Random Variables

2.3.1 PRELIMINARIES

For every fimite (or countably infinite) set of points y,,s = 1, ..., N in R¥, a Dirichlet
partition 1s defined such that each point in S, is closer to y, than to any other point y;, for

all 3 5£1 8, 15 thus defined as
So={x Ix=v.l <lix—y,] for cachj#1}. (2.3.1)

Ar; optimal quantizer that minimizes the distortion will clearly have a Dirichlet partition
For k£ = 2, Figure 2-5 shows an example of a Dirichlet partition In general, each bounded
Dirichlet region 1s a convex polytope bounded by segments of (k — 1)-dimensional hyper-
planes An effective partition for the quantizer would have the property that the unbounded,
or “overload”, regions would make a sufliciently small contribution to the distortion This
1s always possible when E{]|x]|"] < co This 1s simply an extension of the one-dimensional
casc where Lhe quantizer 1s designed so that the probability of the input sample falling 1nte

either end region s small

The centrord § of a convex polytope P 1n R* 15 the value of y that minimizes the

polytope error D, defined as

D, = /P Ix -yl dx. (2.32)

- 19 -
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Figure 2-5: A Dirichlet Partition of the Plane

For r==32, 9 is simply the usual definition for the centroid of a body with uniform mass
distribution. To minimize the distortion, it is necessary that each output point be the
centroid of the region in which it lies. In the case of a unif@oniﬁly distributed random vector
x, s quantizer will have a Dirichlet partition defined on the bounded set in R* where p(x) is
positive. To summarize, the two necessary conditions for optimslity are that the partition
be a Dirichlet partition and that the output points be centroids. This is an extension of the
one-dimensional case first developed by Lioyd [LLOY82).

A convex polytope P generates a tesselation if there exists a partition of R* whose
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Figure 2-6° A Partition of the Plane into Hexagons

regions are all congruent to P. For example, all triangles, quadrilaterals, and hexagons
generate tesselations for £ = 2. For N sufficiently large, the optimal quantizer for a
uniformly distributed random vector on some convex set S approaches a partition whose
regions are all congruent to some polytope P, 1.e. the optimal partition is a tesselation of
§ |GERS82). The poly't.opc Pin R* is sad to be in the class of admissible polytopes P* if
I" generates a tesselation thal is a Dirichlet partition with reapect to the centroids of each
region of the partition. In other words, the set of admissible polytopes P* includes only
those which form a tesselation of S and where the centroids are equvalent to the points
which generate the Dirichlet partition. For example, as shown in Figure 2-8, the ‘hexagon 18
an admissible polytope for k=2. The center of the hexagon 1s the centroid, as well as the
point used to generate the Dinchlet partition.In general, the points generating a Dirichlet

partition are not the centrouds of their respective regions

The normahized mnertia I(P) of a poiytope P 15 defined as

px - #1I"
I(P)= P[TIL?F)F;r/k v

(2.33)

-9 -
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where ¢ is the centtoid and V(P) 1s the k-dimensional folume of P This normahzation has

the property that
I@P) = I(P), @ >, (234)

where the polytope aP = {ax - x € P} Thus when the size of P is scaled, its normalized

inertia remains unchanged A coefficient of quantization may then be defined as

/

1
B Clkr) = ¢ ot 1(P) (2.3 5)

For a uniformly distri\butegi random variable, C{k, r) may be thought of as the mean distor-
tion of the normahized polytope for an r*® power distortion measure. An optimal polytope
\

P, 15 an admssible po\lytope which attains the mimimum 1nertia of all possible admissible”

polytopes with the same volume. Thus, from equation {2 3 5),

I(P,) = kCl(k, r) (238)

A classic isoperimetric result 18 that every convex polytope has a greater moment of
inertia with respect to its centroid than a A-dimensional sphere with the same volume This
leads to a lower bound on C(k,r) as follows If B s a umt radius sphere centered at the

onigin, then

k
/Buxil'dx =17 (23.7)

where V; 15 the volume of B The normalized 1nertia of B 1s then

k —rfk
s 1B)= ——V; (238)

Using (2 3 6) and (2 3 8}, a lower bound on C(k,r) is obtained as

Clhr) > Vi (239)

An upper bound may be obiained by calculating the normalized inertia of any admissible
polylope in PX. A simple choice 15 the k-dimensional cube € which has normalized inertia

)= ——27" (2310)
C(k,r)thus has an upper bound given by

C(k,f) S ‘l‘i‘—;z—', (2 311)
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which i1s independent of the dimension k.

2 3.2 OPTIMAL VECTOR QUANTIZATION

2 321 Derivation of the Distortion Integral '

Gersho {GERS79] defines the output point density function of a k-dimensional quantizer

gn(x) = ,xe S, fory=1,. ,N. (2312)

v

NV(S,)
where V(5,) denotes the volume of the region S, This 18 essentially a generahization of the
concept of “asymptotic fractional density of quanta” introduced by Lloyd [LLOY82] for the
one-dimensional case. Essentially, a asymptotically small k-dimensional region 1s found so
that the probability distribution s uniform over Lthe region andequal to the probability of the
centroid ,of the region. gn(x) = O if x is 1n a region of the partition having nfinite volume
If N s large, gn(x) can be expected to closely approximate a continuous density function
A(x) having umt volume The fraction of output points located in a fractional volume AV (x)
contamning x is then given as \(x)AV{x) The volume of the region §, associated with output

point y, s then given approximately by

1
VS) S 5550 (23.13)

for every bounded region 5, N)X(y,) 13 the number of points per unit volume in the

neighborhood of y, so that the reciprocal in (23 13) 18 the volume per output point.

—

The distortion may be expressed as
.
D = : Z L Ix — ¥ I"p(x)dx (2314)
[T} i
Then, analogous to the one-dimensional case, the partition is chosen so that the “overload”
distortion 1s neghigible Then for large N, assuming A(x) 18 smoothly varying, the probability

density 1n S, approximates a uniform density given by

p(x) ~ p(y.), x € §,. (2 3.15)



Substituting (2.3.15) into (2.3.14) gives

D =

-

N
3 ply.) /s Iyl (2.3.16)

Since S, may be approximated by a suitably rotated, translated, and scaied optimal polytope

P,, rearranging equation (2.3.3) resulis in

fs =yl = KRV S/ (23.17)

Equation (2.3.18) may then be written as

N
D= Y sty MP)VIS) (2318)

s 1

Substituting equations (2.3.8) and {2 3.13) into (2.3.18) rexults in

N
D= NCk,r) Y ply. D) 2V(S), (2.3.19)

vl

where #§ = r/k. Equation (2.3.19) may be approximately expressed by the integral
D = N"PC(k, [l(—’l-d . 9.3.20
&) powr® (3:320)

The region of integration is act ually the union of all the bounded regions of the partition, but,
since the distortion from the overload regions 18 assumed to be negligible, it may be taken
as the entire -dimensional space. Equation (2.3.20) is essentially an extension of Bennett’s

one-dimensional formula [BENN48|, piven 1n equation (3 2 20), extended to k dimensions.

2.3.2 2 Minimizing the Distortion Integral

Zador [ZADOS82], in an updated transcript of hus previously unpublished paper, separated
the description of the quantizer into two parts in order to minimize the distortion in-
tegral. For the first part, the distortion is minimized over all quantisers for a uniform
probability density function. For the seeond part, the distortion 18 mimimized over the
set of compressor functions which determine how the output pomts of the uniform quan-

tizer are redistributed to take into account the probability density function of the ran-

dom variable. This is essentially an extension to several dimensons, of Bennett's [BENN48)

-u~




work on one-dimensional quantizers culminating 1n equation (22 20) The results were

derived for the asymptotic case of a large pumber of levels (N — oc)

For the first part of the problem, Zador [ZADOS82] found that, for large N and an r**

moment distortion measure,

Dy(N) = Ak, r)N"""* i p(x)]lx(k+r), (2321)

where r 1s the moment, k 1s the dimension, A(k,r) 18 a function that is dependent only on

k and r and not the random variable, and

1/a
Ip(e = |12 32)
is called the L, norm of p(x)
For the second part of the problem, Zador (7 ADO82] found that
Dy(Hq) = B(k,,)c—r/klﬂo—ﬁ(p)}, (2.3.23)

where Hg 18 the output entropy of the quantizer, H(p) is the differential entropy of the
random vector x with probabilty density function p(x), and B(k,r) i1s a function of kand r

and not the random vector x.
Zador did not obtain A(k,r) and B(k, r) explicitly, but he showed that
| Y ! —¢/k
~~ P Ve S elkr) < Alk,r) <T(L+r/E)V, 5, (2.3 24)
where Vi 1s the volume of a unit sphere 1n & dimensions and I'(z) is the gamma function A

derivation of the upper and lower bounds 1s presented in later sections

Gersho [GERS79] derives an expression for the minimum distortion D, obtained by the

use of the best quantizer The minimum distortion 1s given as

D, = N="%C(k, Mo (xMx (x40 (2325)

where C(k,r) may be taken as equal to A(k,r). In that case equation (2 3.25) becomes

the same as (23 21) Since A(k,r)1s independent of the probability density of the random

- 95 _
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variable and |[jp(x), = 1 if p(x) is unity in a bounded region of unit volume and ero

elsewhere, then A(k,r) is determined by the optimal quantizer for a uniformly distributed

L1

random variable. Equation (2.3.25) then becomes

D, = N~"*C(k,r). . (2.3.26)
C{(k,r) is called the coefficient of quantization. In general, C(k, r), like A(k, r) and B(k,r),
is unknown. There are two special cases, evaluated by Gersho [GERS79], for which Cl(k,r)
“ is known exactly. These are
- 1 g—r
cl,r) = -y 12 (2.3.27)
and .
- 5
c2,2) = —. (2.3.28)
36v3
s ‘
g
2.3.2.3 The Lower Bound i
Using equation (3.2.20), Gersho [GERS79] obtains a minimum value for D by separating
the quantizer description into two parts as described above. For the first part, Gersho
. obtained 2 minimum distortion given as
: Dy(N) = C(k, YN~ |lpG) k- (23.29)

with A\(x) in (3.2.20) proportional to [p(x)|*/(*+"). This corresponds to Zador’s resuit, (2.3.21),
if A(k,r) = C(k,r) Since \(x) is proportional to [p(x})]*/{**7), it may be seen that each term
in (2.3.18) reduces to a constant independent of 5. This indicates that each region S, of the

partition makes an equal contribution to the distortion for an optimal quantizer.

For the second part of the problem, D is to be minimized subject to a constraint on
the quantizer output entropy Hg. For large N , since p; & p(y.)V (S} for each bounded set

.
Ho=-3_ 1—5—5\%{—) loglp(y.)/N X (y)]

. (2.3.30)
==Y p(y.)logle(y AV(y:) + Y p(yi) log[N A (¥ AV (¥y),
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where AV (y:)=1/NX\y). ° ’ °
As in the derivation of the distortion integral, thie sums in (2.3.30) may be approucimat.éd

by integrals for large N This results in

Hq = H(p) - / p(y) '°3[F;Ty‘)]d"' (2.3.31)

where H{p) is the differential entropy of the random vector x.

By rewriting equation (2.3.20) using Jensen’s inequality, D becomes
D = C(k,r) / ¢~ P slNA0llp(y)dy, (2.3.32)
where § = r/k. By then applying (2.3.31), Gertho [GERS79] obtains the result that

D > C(k,r)e~flHa=H) (2.3.33)
]

If X\y) is & qonstant corresponding to a uniform distribution of output points, equation
|

(2.3.33) becomes an equality. Thus the solution to the second part of the problem becomes
Do(Hg) = Clk,r)eP1Ha-H(p), (2.3.24)

This corresponds to Zador’s result, (2.3.23), if B(k,r) = C(k,r). It can be seen that, for

large N, the optimal quantizer for a constrained entropy is very nearl a uniform quantizer.

From equation (2.3.29) or (2.3.34),“% can be seen that Zador’s results are obtained if
C(k,r) = A(k,r)or C(k,r) = B(k,r) respectively. By using these relations and substituting

for C(k,r) from equation (2.3.9), it can be seen that .
Alk,r) > Blk,r) > vyl (2.3.35)
’ z 1 [ k +r k y \ D

which corresponds to Zador’s lower bound in equation (2.3.24).

1

2.3:.2.4 The Upper Bound

Gal,!agher and Bucklew [GALLS2] provide a relatively simple derivation of Zador’s
upper bo‘und. They begin by placing at random, N independent uniformly distributed k-

dimensional samples. These will be the quantizer levels. The input signal x is assumed to

.
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‘of radius p céntered about y,. This may be writien as

have a uniform distribution over the hypercube. N is assumed to be sufficiently large so
that there is small probability that the input sample is closer t> an edge of a hypercube
than to on(e of the output values. The probability that a particular output level y, is within

a distance p of the input sample x 1s given approimately by the volume of the sphere B, "

T
LR S 4

Prix € B,] = Vas*, ’ (2.3.36)

-

where if Vi-is the volume of the unit radius sphere, then Vi p* is the volume of the sphere
with radius p To compute the rprobabillty that the closest output level is within a distance

p of the input sample, classical order statistics is combined with the approach developed by

Yamada et al [YAMAS0]

. The probability density f(p) for the distance between the input sample and the nearest

output level 15 then computed as

1(p) = NIL= Vg ¥ Vekg =1, o (23.37)

. °

For large values of N, the probability density goes to zero rapidly as p increases, By

construction, p is the distance between the input and output level which may be written as

p=lx—y (2.338)
Thus,
v q E - "T=E — ¥ r; =Y
[l — g(x)[I"] [ll:c .l alx) =] (2.3.39)
= Elp’]
Using equations (2.3.38) and (2.3.39), the distortion ) may be written as '
1 1 ’
D=-E'=—/ rE-UNTL — Vi p* |V R Vi dp. .3 40
k [p] k hypcrcubcp ‘ [ kP ] k kap (234 )

Letting s = Vi p* and using the fact that s < 1, 1t 1s possible to write

1
D < N s k(1 — s)N-1ds

[14%
1\7' I'(1+r/E)T(N) (2.3.41) .

- kvi/E NN +1+r/k)

Qe oy

g
where T'(.) is the gamma function For large N, the following approximation may be used:

P(N)f o Nik+r)/k (2.3 42)
I‘(N +1+ "~:—r) -

s A B - .
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Therefore,

—r/k
D= N-7/kpr(1 +r/k).

2.3.43
Because D > D,, (2.3.26) may be used to wnite
I'(1+r/k .
C(krr) < —!—T/{-)'l . (2.3.“) \
SO kV,
which is Zador’s random upper quantization bound. ,

2.3.2.5 Properties of Optimal Vector Quantizers

’

For optimal one-dimensional quantizers, it was found [BUCK79, GALLS0] that the mean
o} the input equals the mean of the output and that the distortion equals the differences
between the input and output variances for a mean-square error criterion. Bucklew and
Gallagher [GALL8§] generalized these results to a k-dimensional quantiser in what is basi-
cally an {Eplicahon of the orthogo;lality principle. ‘

The quantizer is designed to minimize the mean-square error defined as

&

= £ Ellx - bl (2:3.45)

In order to investigate the properties of the quantizer, the parameters p; and x; are defined

as follows:
o
P = /; p(x)dx (2.3.46)
and -
1
x, = — [ xp{x)dx, " (2.3.47)
P /8
where the partition 5,1 = 1, ..., N need not be optimal. : .

To show that a quantizer q,(;:) is optimal for a given partition, consider two different
quantizers, defined as g,(x) = x, and ¢(x) =y, for the same partition S. The expected
error for g(x) 1s given by

N
Bl - gt = 3 [ = x+x, ~ yipixie (3.48)

N
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From equations (2.3.48) and (2.3.47), it can be seen that 4
[ = et = y i =0 (2.3.49)
1 -

Using this result, and substituling (2.3.48) and (2.3.47), (2 3.48) becomes

v
Ellix — g(x)|1%] = Eflix — q.()lI*] + 3 pulixi — yill*. (2.3.50)

pmel

This illustrates that the quantizer g,(x) produces an error no larger than any other quantizer

-

" g(x) for a given partition.

/

By using (2.3.46) and (2.3.47), it can be seen that the mean of the quantiser output
equals the mean value of the input. This follows from

N
\ z /; ‘ xp(x)dx = /; ‘ xp(x)dx, (2.3.51)

yoml
where the left side is the mean of the output and the right side is the mean of the input. It
can also be easily shown that the quantiser error equals the input variance minus the output

'
variance. Consider the input variance

E[lx ~ ElxJ|’] = E[fix — qa(x) + ga(x) — E[x]||*]

(2.3.52
= E{Ix - g(xl!] + E{Jlast) — ExI?], ’
where, from (2.3.49), the cross terms are sero Equation (2 3.52) shows that the input

variance 13 equal to the sum of the quantiser error and the output variance.

2.3.3 LATTICE QUANTIZERS

A vector quantiser i1s most easily designed as a set of points which lie upon a lattice 1n
k-dimensional space. The latticgis a regularly spaced array of points in k-dimensional space.
A lattice may be described {GERS81, GERS82] by a non-singular k£ X k matnx U such that
if m is any k-dimensional vector (colm:m matrix) of integers, the lattice A is the set of all
vectors of the form Um. The columns of U are points of the lattice and any
is formed by tsking a linear combination of these basis vectors with integer coeflicients
The.origm is always a lattice point and any translation to another lattice point results inp an

identical lattice. The Vorono: cell surrounding any lattice point x 18 the set of all points closer
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to x than to any other lattice point. Since each lattice point has an identical enviroment,

the Voronoi cells are all congruent and collectively fill the space mithout overlapping.

A lattice quantizer is a quantizer whose set of output points is a subset of the lattice A.
In one dimension, the only lattice quantizer is the uniform quantizer and the Voronoi cells
are equally-sized intervals in R!. A uniform nquant.izer in k dimensions is defined (GERS79]
as one whose cells are congruent translates of each other, i.e. a lattice quantizer Thus,

the lattice quantizer;s basically an extension of the one-dimensionpal umform quantizer to

&

several dimensions.

In order to characterite lattice quantizers, it is necessary to understand some of their
basic features. Three useful properties are the density of the lattice, the kisming nnmbe;,
and the normalized moment of inertia. The density of the lattice is defined as the largest
fraction of the space that may be filled with spheres centered about lthe lattice points that
are of maximum diameter without overlapping. The kissing number is defined as the number
of chede spheres that toucl} the sphere surrounding a given lattice point. The normalized
moment of mertia is the moment of inertia of the Voronoi cell around a lattice point
scaled so that the cell has unit volume. The first two properties give an indicshon’ of the
quality of a particular iattice for quantization. The third property directly determines the
‘performance of 3 lattice quantizer if the mean-square error criterion is used Conway and
Sloane [CONW82a] tabulate the normalized second moment of inertia for various lattices

and Vorono: cells up toten dimensions. The characteristics of a number of lattice structures

\ = of varying dimensionality are tabulated by Sloane [SLOABI1]| ,

The most m;,eresting aspect of lattices 18 the ease with which arbitrary encoding may
be performed. Given an arbitrary point x in k-space, 1t is relatively easy to identify the
lattice point lying closest to x. Conway and Sloane {CONWSI) give exphcit algorithmsa
for calculating the nearest lattice point 1o 4-, 8-, snd 24-dimensional lattices. In a later

paper [CONWS2b], they generalize these algorithms to a wider range of [attice forms and

dlwom .
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2.3.4 COMPANDING IN SEVERAL DIMENSIONS

A lattice quantizer is an elegant and simple method of quantizing in several dimensions.
However, as 1n the one-dimensional case, a unmiform quantizer 15 not the most effective
method of oblaining good quantizer performance For a fixed number of quantizer points,
a nonuntform distribution of points in k-dimensional space, based upon the input vector
probability, can result in improved quantizer perfofmance In a manner analogous to the
one dimensional case, a vector quantizer may be modelled as a block compression function
F(x), followed by a umform lattice quantizer, followed by a block expansion function £ (x)
as shown n Figure 3-D Gallagher and Bucklew [GALLB8O]| describe the block compandor

as follows F 15 a mapping function that maps R into X *{0,1), where *X*™ denotes the

Cartestan cross product in k dimensions The set x*(D,1) 15 a k-dimensional hypercube The

quantizer output levels, or pornts, are Lthen uniformly distributed within this hypercube The
chosen output level x 18 the point that hies closest to F(x), where x 1s the input data vector

The quantized output 1s then F~1(x)

et the quantization error in the hypercube be denoted as & = {1, .., &)T and impose

the condition that the expected value )

Elé.&,] = o6, (23.53)

\

where §,, 15 the Kronecker deita In other words, the elements of the error veztor are 1n-
dependent It may be shown that, as the number of output points N approaches nfimity, the
.error vector for an optimal quantizer converges Lo a k-dimensional, sphenically symmetric,
probabihty density which satisfies condition {2 3 53) Furthermore, for large IV, there are an
infinite number of quantizers which have approximately the same near optimum error and
which may be generated as translations of one another within the hypercube By making
an arbitrary choice from among this ensemble of pear-oplimum quantizers for ezch input
veclor x = {z, .,z4)7, the error vector e may be decoupled from the xdput 50 as to make
the error vector independent of the input vector. This is analogous to the techuique of as-
sigming a random time onigin to samphng operations n order o mwodel the rampled mignals

as wide-sensc stationary processes
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Let the input data be k-dimensional samples from a probability density function
p(x), x € R* If Sy 1s the support of distribution p(x), then the mapping F, where F =
[Fi(x), ..., Fe(x)]T, maps S,(mto the hypercube X*(0,1) such that F is regular and onto
Assuming very small distortion, a good approximation to the final error vector in the output
1s f~1(x)é, where f~1(x] represents the matrix of partial derivatives of the inverse operator
F~! and & is the error vector 1n the hypercube.

€

If the variable 1n the hypercube 18 y = F(x}, then the probability density for y may be

written as

_ pa(F'(y))
P = (i) | (2354)

In several dimensions, the mean-square error 1s given by

D= [ }ix - atlPpxiax (23.55)

Substituting x = F~'(y), e = x — q{x) = f~'(x)&, and (2 3.54) into equation (2.3 55)

resuits in

p=(F1(y)) y
| F(F-1(y))| '

where §, = x*(0,1), the support of y, 1s the transformed support of x
O

p= [ & FE) U o) (2:350)

If x = F~!(y), then dx =| f~!(y) | dy However, By the :nverse mapping theorem

1 Ko,

L) 1= (2 3.57)

PP ()]

Using the above transformations and (2 3 57), equation (2 3.58) becomes
p= [ TP TR RO eplxdx (2 3.58)
Se

with A7 (x) = {I"'(x)]"‘T[P‘(x)]‘l a symmetnc matnx for any x. Averaging D over the

~

ensemble of quantizers, the error & 1s decoupled from the input so0 as to be treated as an

independent random variable Consequently,

D= / tr{ A7 (x)eeT }p,(x)dx, (2.3.59)
SI
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where tr{ .} represents the trace of the matrix. Imposing the condition of (2.3.53), equation
(2.3.59) becomes

D =od} [5 ) tr{ A7} (x) }ps (x)dx. (2.3.80)

Thus the total error is the product of two terms operating independently. If the eigenvalues
of A(x) are denoted as \!(x), 1 = 1,..., k , then (2.3.60) becomes

= o? Z / i;g:) (2.3.61)

If a random vector has a uniform distribution over the hypercube and F~!(.) maps this
vector to a vector in R* with support S, and density | F*(x) ], then
/ [F () dx = f H M(x)dx ~ (2.362)
3, o ]
The problem becomes one of minimizing D in equation (2.3.81) subject to the condition
in (2.3.62). Assuming that except for \,(x), all of the \(x) are the optimum choice, use
a variational method to optimize A\ {x} subject to constraint (2.3.62). The result is that

Xi(x) = A{x) for all’i and the optimum X\(x) is given by

p(x) ™
)\(x):(“p"ﬁ_’) . (2.3.63)

Using these eigenvalues, the minimum error D,,,, 18 given by

Dpin = 6’?"?" ;-%; ’ (23M)
where ‘
1/
Il = | [ bb1"ax] (23.06)

is the L, norm of p(x).

2.3.5 RANDOM QUANTIZERS

When the multidimensional probability density is difficult to transform or unknown,

. the only.eflective method for the design of vector qusntisers is through the use of a clustering
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algorithm. The clustering algorithm utilizes the statisties of some training set and takediad-
vantage of coupling between the elements of the training vectors Combinations of elements

that occur very 1nfrequently may be eliminated from consideration 1n the quantizer design.

In scalar quantization, the full magmtude range of each element must be quantized
Effectively, this 18 the same as quantizing all possible combinations of elements 1n the vector
This would correspond to a umform vector quantizer with rectangular regions. Performance

would be improved using the lattice structures discussed in Section 23 3 but infrequently

occurring combinations are not ehiminated This gives an indication of why cluster designed

vector quantizers require fewer bits than a set of scalar quantizers or lattice quantizers for

equivalent performance

A main disadvantage of cluster designed quantizers is the complexity of the quantizer
implementation Since the output vectors are obtained in a random manner, the quantizer
has no nalural structure as s the case with lattice quantizers. Therefore, each output vector
must be stored in a codebook and an exhaustive search of the codebook must be performed
in order Lo locate the nearest output vector to the given input vector This results in costly
procesmng time and storage requirements The processing time may be reduced using a tree-
structured codeboak, as discussed 1n Section 2.4, at the cost of suboptimality and increased

storage requirements.

The clustering approach was thorcughly developed by Linde, Buzo, and Gray [LIND8&0!
Essentially an extension of Lloyd's Method I [LLOY82], the design algorithm 18 based on the
use of a training ae‘L of random vectors generated from a source for which the quantizer s
to be optimized The algorithm is discussed in greater detail in Section 2.8 A discussion of

cluster designed quantizers follows below

Given a quantizer ¢ described by a reproduction alphabet Y = {y,i=1 ,N}and
partition § = { S,, 1 =1, , N}, then the expected distortion, D{{ }-’,S}) == D(q), of the
quantizer may be writlen as

N
D{Y,5)) = Eldx,qx)] = ¥ Eld(x,y)Ix € S)\Prix € 5], (2 3.86)

1n §
t
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where E[d(x,y,)|x € §,] 15 the conditional expected distortion given x € S, or q(x) =y,. If
the alphabet ¥ is given but the partition 1s not specified, a partition optimum for ¥ may
be easily constructed by mapping each x into the y, € ¥ which minimizes the distortion
d(x,y,) for all © ln other words, by choosing the minimum distortion, or nearest nelghimur,
codeword for each x, an optimum partition for the alphabet may be generated In the
case that more than one codeword minimizes the distortion, some tie-breaking rule, such
as choosing the codeword with the smallest 1ndex, must be ‘used The partition, P()—’) =
{P,1+=1, N}, constructed in this way 15 such that x € P, only if d(x,y,) < d(x, ¥Yih

for all 7 3£ 1 and thus
i

D({)",P(i')}) =E

;nEl;l d(x,y)] (2367)

Equation (2 3 67) imphes that, for any partition S,
p((¥.5)) 2 D((¥.P(P)}) (2368)

and thus, for a fixed alphabet Y, P()-’) 1s the best possible partition.
Conversely, given a partition § = {S,, + = 1, .., N}, assume that the distortion
' measure and distribution age such that there exists a minimum distortion vector £(S) for

which
E(d(x, %(S)| x € 5] = mi Eld(x, U)jx € 5] (2 3 69)

for each set S with ponzero probability in k-dimensional Euchdean space. Analogous to
the case of the squared-error distortion measure, the vector (5) will be called the centroid
of the set § Thus the centroid of a partition is defined as tl;e vector which minimizes
the average distortion of all points in the set S for sume given distortion criterion. If such
centroids exast, then for a fixed partition .S, no reproduction alphabet Y can yield a smaller
average distortion than the rep;oduchon alphabet (8) = {%(S,), + =1, , N} containing
the centroids of the sets in § This occurs since

N
D({¥,5}) = 3 Eld(x,.)lx € S| Prix€ S
w X (2370)
> Z min Eldix,OVx € §,|Pr{x € §,]

= D[{&(5).§}]
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It may be shown [GRAY80a] that the centroids of (2 3.89) exist for quite general distortion

measures

For the quantizer to be optimal, it 18 necessary that it 18 a fixed point quantizer
[GRAYSOa]. If a fixed point quantizer s such that there 1s no probability on the boundary of
the regions, ve. if Pr{d(x,y,) = d(x,y,), + # 7] = 0, then the quantizer 1s locally optimum
[GRAY80a] This 1s always the case for continuous distributions, but can, in principle, be

<

violated for discrete distributions

Since there are no differentiabibty requirements, the algonthm 1s vahd for purely
discrete distributions This 15 of particular importance when a source has an unknown
probabibity distnibution In this case, the quantizer must be designed using a long training
sequence of the data to be compressed The training sequence, {xt, £=0, ,n—1} u:my
be used to form the time-average distortion D, defined as

n—}

1
- De= Y dix.,q(x.), (237)
1—0
which 1s exactly the expected distortion Eg, |d(x, g(x))] with respect to the sample distribu
tion G, determined by the training sequence In other words, G, is the distribution that
!
assigns a probability m/n to a vector x that occurs in the training sequence m times D, 1s
then the expected distortion based upon this distribution Thus the algorithm may be used

on the training sequence to design a quantizer which minimizes the time-average distortion

If the scquence of random vectors 18 stationary and ergodic, then as n — oo, G, goes
to the true underlying distribution F¥ Thus if the traiming sequence is sufficiently long, a
good quantizer for sample distribution G, should also be good for the true distribution F
and thus yield go;d performance on data outaside the tramning sequence It may be shown
[GRAY80a] that, subject to suitabie mathematical assumptions, a quantizer generated by
using a Lramming sequence converges, as the number of training vectors goes to infimty, to
the quantizer generated by using the probability distribution of the data source It may also

be shown [GRAYS80a] that for finite alphabet distributions, such as sample distributions,

the algorithm always converges to a fixed-point quantizer in a finite cumber of steps.
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2.4 PRACTICAL IMPLEMENTATIONS OF VECTOR QUANTIZERS

A number of factors govern the implementation of vector quantizers in either software
or hardware These include computational requirements, algorithm complexity, and memory
requircments The design of a practical vector quantizer generally requires a tradeoffl among

these factors usually at the cost of quantizer performance

There are two basic means of increasing the practnéahty of vector quantizers The first

method stems from the structure of the codebook containing the reproduction vectors The

second 15 apphcable when a parameter 1s only slightly coupled, or not coupled at all, to

the remaining parameters in the vector In either case, the quantizer obtained s suboptimal

compared to 025 where every reproduction vector 1s checked the full-search codebook

241 TREE-SEARCHED CODEBOOKS

For a mean-square distortion measure, a fuli-search vector quantizer requires, for each
input vector, roughly N(k + 1) multiplications, N(2k — 1) additions, and N comparisons,
where N == 2" 1s the number of quantizer output points, n 1s the number of bits, and & 1s
the vector length The number of calculations required can be seen to increase exponentially
with the number of bits The processing time required thus becomes 1mpractical except for

the smaller codebooks

One method of reducing computation time :3 by using a tree-searched codebook
IGRAY82a, GRAYS82¢] A tree-searched vector quantizer 1s most easily visualized as a tree
which 15 labelled with vectors and 1s searched by the encoder A tree of depth L has levels
| = 0 for the root node to | == L for the terminai lesel Each node inlevel {{ — 1), { =
1, I, has Ny = 27 branches leading to node- al the next level, where Hy is the number of
bits added at level | The tree structure 1s then completely described by an L-dimensional
rate vector R = (f{;, ,H.) Each node has 1 k-dimensional vector as a label For the

non-terminal nodes, these labels may te thought of as “keys” for searching the codebook
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Figure 2-7- Encoder for Tree-Searched Codebooks

consisting of the terminal nodes.

A flowchart for a quantizer encoder using a tree-searched codebook is illustrated in
Figure 2-7 The encoder first examines the source vector and seeks the vector y3, in the
set A = {p,, b =0, , 271 — 1} of available codewords which minimizes the distortion
measure The index b, becomes.the first entry 1n the path map b == (b, ..,b.) describing
the sequence of nodes followed mn the tree The encoder advances to the node iabelled by
tLe best codeword It then views a new collection Y (b1) = {y,55; b2 = 9,... 2% _ 1}

and again selects the best codeword. This process 1s continued until the L' level is reached,
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Figure 2-8: A Binary Encoder Tree .

where the encoder has selected a final reproduction codeword yy, 3,,....8. € Y (b5, b2,...,01—1)

and a path map b = (4, ..., b1).

The quantizer codebook obtained using the tree-searched method may be suboptimal
in the sense that the quantizer structure is constrained to a particular form which may
not be the “best” form for obtaining the closest output point to the input vector. The

. . . - -l
tree-searched codebook obtained may be the optimal choice for quantizers which -use a

tree-searched codebook

-~ Figure 2-8 15 an example of a binary encoder tree. The codebook at the transmitter is
spht nto levels The first level contains only two codewords and 15 used to sphit the data
space 1nto two KEach of these subspaces, or cells, 15 then also spiit into two for a total of
four cells at the second level The process 1s repeated, each level regresenting one bi;., until
the desired number of bits 18 obtained The size of the codebook has been increased but the
savings 1n calculations are considerable The number of calculations required 18 roughly 2n
comparisons, 2n{k — 1) multiplications, and 2n{2k — 1) additions. It 15 seen that the mimber

of operations grows hoearly with the number of bits as opposed to exponentially for the

full-search case

4
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Aside from increased complexity, there is an increase in storage requirements. For an
n-bit quantizer, the number of storage locations required 1s Nk, the number of output levels
multiplied by the vecs,or length For the binary tree-search codebook, there must be a total

of ‘ o !

24224 42m =212

vectors stored or (2"*! — 2)k storage locations required. This is nearly double that required

for the full—searéh codebook

It is not necessary to limit the codebook structure to the above two forms. Gray and
Linde [GRAY82a] found that three-level 10-bit'codes with (Ri, Rz, Rs) = (4,4, 2) provided
a uscful compromise of quantizer performance, complexity, and calculational requirements.
Wong et al [WONGS81] used a two-level 10-bit code with (R;, R2) = (5,5) which achieved
an average distortion close to that of a full search codebook but required only 1/16 of the

computations

2.4.2 PARAMETER SEPARATION

&lf a parameter 15 only slightly coupled with the othe; parameters, some time and storageT\J
savings may be realized by quantizing this parameter separately from the others. If m bits
are assigned to t‘he parameter and n bits to the remainder of the vector, then a total of n4+m
bits are required for the quantization of all the parameters. For a full-search codebook, this
would require 2™ *(k+1) storage locations. By sepa\rating the slight]y coupled, or decoupled,
parameter and quantizing it individually, the number of x;torage locations is reduced to
9™ 4 97k The savings in storage requirements is offset by a decrease in optimality since the

codebook is now constrained to a particular form [BUZ080].
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(" 2.5 ALGORITHMS FOR VECTOR QUANTIZER DESIGN

2,

2.5.1 AN ALGORITHM FOR QUANTIZER DESIGN

4 Based upon equations (2.3.53) and (2.3.56), Linde et al [LINDS80] dﬂ;loped an algorithm
for designing a good quantiser by taking any given quantiser and iteratively improving it.
Essentially an extension of Lloyd's Method I [LLOY82], the basic aigorithm for‘desigmng |

vector quantizer 15 outhned below

~

Initialization. Given N, the number of levels, a distortion threshold ¢ > 0, an initial
N-level reproduction alphabet Yy and a training sequence {x;, 3 =0, .,n—1}, where n
is the number of vectors in the traiming sequence, set the iteration m = 0 and the mitial
average distortion D_; = oo The infinite initial distortion ensures the operation of the
algonthm as afier each iteration the average distortion 1s less than or equal to the average

distortion after the previous iteration h

4

~

Step 1- Given the reproduction alphabet Yo = {y,, s = 1, .., N}, find the mimmum

distortion partition P(Y.) = {8, + = 1, ,N} of the truning sequence: x, € S, if

are the output alphabet vectors Compute the average distortion

n—1
Dm = D({Ym, P(Yn)}) = ’11 Y jmin dix,,y)
, ‘ & yer.

Step 2' Find the optimal reproduction alphabet R(P(Y o)) = {#(S,);i=1,...,N} for
P(Yw) £(S.) s the centroid of all trainming vectors x € S, Set Yo,y = R(P(Y.a))

Step 3. If (Dp—) ~ Dpu)/Dm < ¢, halt mith Y., as the final reproduction alphabet.

Otherwise replace m by m + 1 and go to Step 1

Q . This algorithm s illustrated in the flowchart of Figure 2-9.
- 42 -
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d(x,,y,) < d(x,,ys), for all k£ # 1 The distortion measure is denoted by d(x,y) and the y, "
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Figure 2-9: Flowchart for Vector Quantiser Design
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h

codeword for S, 15y, = (1 + §)¥, where § 18 some small perturbation factor.

From equations (2.3.53) and (2.3.55), it can be seen that the quantizer distortion, D, is

'
A e o}

If ai some point, there exists a cell S, such that i’r[x € S.] = 0, then the sigorithm
assigns a small vanation from the centroid of the training set as the output of the cell S;

and the algorithm continues Thus, if the centroid of the data set 15 §, then the new output

Y
less thap or equal to the distertion, Dy, , from tl&e previous iteration. Thus Step 3 provides
a useful check on the program execution time since it allows termination of the program

when there 18 no longer any ’igmﬁcant improvement in quantiser performance. In practice,
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a second check on the algomﬁu'x,xﬂsrl;rovidcd by limiting the number of iterations While this
can result in poorer performanc;, it was found that a hmit of fifty 1iterations aflected the
final quantizer performance only slightly while a significant decreas; in computation time
was oblained

Since D 13 Domncereasing and nonnegative, ahmit D, must exst as m — oo. [t can
be shown [GALLS2| that f a hmiting ;quant.n._er Yoo, exists, such that ¥, — i’w as m — éo,
then D({ ;’x,P(i’x)}) = Dy, and Y, = #(P(V)), 1e Yo 13 exactly the centrord of its
own optimal partition Thus the set {)"x,P().’m)} 1s a fixed point under further 1terations
of %hc algorithm If the distortion threshold ¢ 1s chosen to be zeto and the algorithm haits
for finte 2. then such a fixed point has been obtained [GRAY80a]

1

2.5.2 OBTAINING THE INITIAL QUANTIZER
"o ' ) J

There arc a number of methods for obtaming an intial quantizer for use with the
algorithm of the previous section One method, for use on sample distributions, 1s by taking
the first N vectors of the traming sequence This may not be a good approach since 1t 15
desirable that the vectors be well separated and N consecutive training vectors may not be
very disperse. A second mcthod 1s based upon the usc of a k-dimensional uniform quantizer
on 1 k-dimensional Cuchidean cube which includes all or most of the training vectors A third
techmque 1avolves generating quantlze:s of successively higher rates u;ml a given rate or

performance level 1s obtained This technique, described by Linde et al [LIND80, GRAY82a]

ts outlined below

Intialization Set M = 1 and define Yo(]\) = RX(Y), the centroid of the traning

sequence

Step1 Given the reproduction alphabet Yo(M) contaiming M vectors {y, 1t =1,.. , M},
“spht” cach vector y, into two close vectors y, and y,(1 + &) where 0.< [§] < 1is™
some perturbation scalar. The collection ¥ = {yo,y(1+6),r =1, ., M)} has 2M

vectors. Replace M by 2M.

)
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Step 2. If M = N, the desired number of levels, set Y; = ¥ (M) and halt with Y, the e
initial reproduction alphabet for an N-level quantizer If not, run the design algorithm on

ln’(M) to produce a good reproduction alphabet Yy(M) and then return to Step 1 S

The sphtting algornthm starts with a one-level quantizer consisting of the centroid of

2

the traiming sequence This vector 1s then split into two vectors which serves as an imtial
. two-level quantizer for the design algorithm Once a3 good two-level quantizer 18 obtained,
each vector 1s spht to form a four-level quantizer which 15, 1n turn, used 1n the design

algorithm This iterative process of spiitting and quantizer design 18 continued until the

-desired number of levels or quax;t.u.er performance 1s obtained

253 QUANTIZER TREE DESIGN

'
1

A flowchart for the design of a (Ry, ., Ryz) tree-sear‘ched vector quantizer is depicted
. in Figure 2-10-
PM(t) = PM(t-1)x {0,1,. 2R — 1}, t=1, ., L }
18 the collection of all path maps through lt;vel L of the tree. PM(0) 18 null and *X" denotes

the Cartesian product

Yoy =Y (b), be PM(2),
18 the collection of ail node labels 1n level £, where b == {(b,, ,b;) 15 3 path vector and
Y)Y ={ys.b={(b, b by=0 2"—1 b4 =0, -1}

18 the set of available labels for the path map A tree-searched véctor quantlt‘cr with node
label set N and the encoder of Figure 2-8 1n Section 2 4 13 denoted by g The operation

of the algonthm 1s as follows

Imitiahization Design (R;) full-search vector quantizer'Y using the algorithm of Section

2.5.1 Set the first level of the tree-searched quantizer ¥ (1) = Y and =1

Step1 Given atraining sequefice { z,,7 = 1, ,n} andatree-searched vector quantizer

Y& = '{y., b € PM(£) }, the set of all node levels at depth £, set the node labels y,

» SR ~ | &
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al the next level such that y, 5 == y3, all b € PM({{) Set the new path map collection
PM'(t +1)= PM({) x {0}, the Cartenian product of the colection of path maps at level
¢ with the set of paths leading to the next level Since at this point there 1s only a single
branch le:adlng to the next level, the set contains 'asmgle element Imitiahize the rate at the
next level to R' = 0 and the number of branch nodes N' = 27" = 1 Set the collection of

node labels
Y(£+1,R)={ys, bEPM' (L +1)}

Finally, set £ = £ + 1 and proceed to the next step

Step 2 The collection @f the node labels ¥ (£, R’} 1s split such that
)’b,+N'=(1*5))’5,,b€PM(£‘1)’J=0. ,N'—l,

where § is a perturbation scalar Each node label at level £1s perturbed slightly to create
two nodes In a toanner similar to the sphitting technique of Section 2.5.2 Set the collection

of path maps \
PM'(t) = PM(L-1) x {0,1, .2N' —1}.
Set the intermediate collection of node labels
Yo, R' ~ 1) = {y:,, be PM'(0)},
the set of “split” node labels Set the rate R’ = R'+ | and replace N’ by 2N’ Set the

iterations m = 1 and the 1mtial distortion Dy = oo

Step 3 Set the node label set
-1
No = Yo Jrae. R),
71
the union of all label collections at each level £ Using the encoder scheme of Figure 2-7, find
the nmimmum distortion partition P(Ym) = { S, b € PM'(£)} of the training sequence

x, & Se 1l dix,,¥s) < d{x,,ys) for all b # b’ € PM'(t) Compute the average distortion

- 48 -
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Demgn (R1) Ful! Sesrch
Vector Quantiser ¥
Set ¥() e ¥ €=

e

L

Civen Y{f) = {7, » € PM(O}
Set yao =1y, 3l b€ PM(O
PAM'({t+1) = PN(O X {0}

R =0 AMe=2® =

F(e+1LB)={y, b€ PMt+]1)}

L=t 4]

tﬁ

Given Y(L,R)={ys, b€ PM(L}}
Set yu,on =(14+8)y,,, siibe PM'(t—1),
1=01 ,N -1
PM{6) = PM(t) x - 0,1, ,2N'- 1}
V(LR +1)={y,, bE PM'(() }
R=R+1 N=IN m=1 Dy== oo

m=m+]

Da =0 7=1
count{d) = 0, b € PM'(f)
centrowd(b) = 0, b € PM'(()

23]
N = |JrmUratr)

yomt

I

Civen x,, find b = ¢{x,) = y,
Set D= Do + d{x,,y)
coust{b) = count{b) + |
centrod(d) = centrowd(b) + x,
1=3+1

Forb € PM'(0)
If count{b} 5 0
¥p = centrord(b)/count(b)
H count{b) =0
={1+85yn 4,

Yult. R)={yi. b€ PN'(0)}

I >t

k—{ (D - Du-s)/Das > o]
*x

[raemr= (e Parin) |

Figure 2-10 Flowchart for Tree-Searched Quantizer Design

i
{ Halt with  N{L) = U Y
i (]
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Step4 If (Dne1 —Dum)/Pm < € the distortion threshold, continue to Step 5 Otherwise,

replace yp, b € PM'({) by &(Ss), the centroid of the mimimum distortion partition If

a partition 1s empty, replace yp by (14 8)¥s,, 5, Set
Ym(&,R) = {ys, bE PM'(0)}

and return to Step 3

Step 5- Set'Y (£, R') = Yu(¢, R') If R' 5 Ry return to Step 2 Otherwise, set PM(l) =

PM'(f) and continue to the next step

Step 6 Set the tabel collection Y(£) =Y(t,R) ML L, return to Step 1 If L= L,

the final Ievel of the tree, then halt with

. L
N =J Y

Lnee |

the final collection of node labels and Y {L) the final reproduction alphabet

- 48 -
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CHAPTER 3
THE THEORY OF RESIDUAL ENCODED LPC

3.1 INTRODUCTION

In time series analysis, a signal 8, can be considered as the output of some system with
mput u, The system 15 often modelled by the relationship
L q
2, =——Z a,s, , +UZ bk, bp = 1, (311)
y=—1 ko
wherea,, 1 < 3 <p, b, 1 € k£ < ¢, and the gain o are the parameters of the system
From equation (3 11), it 1s seen that the output signal, 8, can be predicted from a linear

combination of past outputs and inputs, giving rise to the name linear prediction

By taking the z-transform of both sides, equation (3 11) may then be specified 1n the
frequency domain If H{z) is the transfer function of the system, then F(z) 18 represented

as

H(z) = (), w= (312

‘where )
8(z) = }: 2,z " {313)

1s the z-transform of &, and U(z) 1s the z-transform of u, This 15 a general pole-zero
model for [ (z), where the poles and.teroes are the roots of the denominator and numerator

polynomals respectively.

-9 -



There are two special cases of the prediction model of equation {3.1.2) that are of
interest These are the all-pole and all-zero models In the formercase, by = 0, 1 <k < ¢
This 1s known as the autoregressive (AR) model. The all-zero, or moving average (MA),
model occurs when a, = 0, 1 < § < p Because the all-pole model 15 a good model for
speech, 1t is of psrticular interest in the hinear prediction of speech and will 't,hus be the

focus of the following discussion.

3.2 LINEAR PREDICTION

In the all-pole model of hnear prediction, the output signal a,, is given as a linear
combinalion of past values and some input u, such that
P
8, = — Za,s,,-,+au,., 321
y-l ‘

where o is the gain factor. The transfer function of equation (3.2 1) becomes

-4

1+ i: 8,277

FRad

H(z) = (3.2.2)

The problem becomes one of determining, in some manner, the system parameters: the

&

prediction cocfficients a, and the gan o

Assuming the Wmpul u, to be totally unknown, the signal s, can be predicted only
approximately from a hinear combmat@t samples I the predicted value of the signal

is denoted by 3,, where

p
=) Gyin~y, (323)

=1

then the error between the actual value s, and the predicted value 7, 18 given by
- )
Cp ST 8p — 8p = 8n t Zo;’n—’- (3 2.4)
1=-1
The error signal, ¢,, 18 also known as the residual The parameters g, are obtained as a
result of minimizing the mean or total square error with respect to each of the parameters

This 13 known as the method of least squares.

- 50 -




321 OBTAINING THE PREDICTOR PARAMETERS

If the signal s, 15 a sample of a random process, then the resmdual signal, e, is also a
sample of a random process In the least squares method, the expected value of the square

of the error 18 mimmmuized The expected value of the error 13 given z<

2

D = Eld] = E[(a“ + i n,sn_,) } (325)

=1

- D 18 minimized by setting

8D
— <3< 2.
7, 0,1<;<p, (3.2.6)
which results in the normal equations
. e
Z 6, E[8n—;80-] = ~E[838,-i}, 1 <1< p (3.2.7)
y=1
The minimum mean square error i3 then
P
Donin = E[s2]+ Y a,E[8n80—,}. (328)
)1
i
. The method of taking the expectations in (3 2.7) and {3.2 8) depends on whether the random

-

process s, i8 stationary or non-stationary [MAKH75, MARK76]

322 STATIONARY PROCESSES

In the stationary case, the expected value becomes

, E["n—:’n-—l} = R(‘ - j): (32 9)
where -
R(s) = Z ndnts, (3 210

1s the autocorreiation of the process Under these corditions, equations (3.2.7} and (3 2 8)

are represented by

[ d
Y o,R( - 5) = -R(x) (3211)

=1

"“‘\
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and

Do = R(0) + 2’: a,R(5). . (3.2.12)°

y=1

In practice, the signal s, is buffered over a finite interval or is multiplied by some window

Tunction to oblain another signal i, which 18 zero outside some interval 0 < n < N — 110

that

hw, 0<n<<N~-1
bn = - (3213)

0 otherwise

In this case, the autocorrelation function 1s reduced to

\

N—-1—
R()= Y inbnse, i20. (3.2.14)

™0

3.2.3 NONSTATIONARY PROCESSES

For a nonstalionary process, the expected value of the error signal becomes
Elan_ o0~ = R(n—3,n-1i), {(3.2.18)

where R{t, t') 1s the nonstationary autocorrelation between times tand . R(n~k,n -1} s
a function of the time tndex n and, since n 18 arbitrary, without loss of generality n may be

set to rero. In this case, equations (32 7) and (3 2 8) become

P
S aR(=3,-1) = ~R(0,1) (3218
;—I
and
: \
Domun = R(0,0)+ 3 _ a,R(0,7). (3217)

=1

Bocause nonstationary processes are not ergodic, in estimating the coefficients g, the
time average cannot be substituted for the ensemble average. However, if the process 1s
locally slationary, 1t 18 reasonable to éstimate the autocorrelation function with respect to

a pomnt in time as 2 short time average Then, in a manner analogous to the stationary case,




B ]

&

®,, is used to estimate R(—7, —1) in equation (3 2 14), where -
N-—1
= taita, (3.2.18)
N (

15 the covariance of the process In the covarniance method, the error D 1s minimised over a

finite interval 0 < n < N — 1 so that equations (32.7) and (3.2 8) may be writien as

P
Y 6,9, =-,1<1<p (3.2.19)
=1
and
L4
Dain = ®00 + 2 a; P, {3.2.20)
=1

2

. For proper application of the covariance method, the vaiues of the signal 1, must be

1
known over the range ~p < n < N —1 atotal of p + N samples The covariance method

becomes the same as to the autocorrelation method as the range of summation becomes

infimte

3.2 4 SPEECH SIGNALS z

@

Speech tends to be in the class of locally stationary random processes indicating that
the covariance method would be best for obtaining the predictorgrpf:abmeters[ In practice
however, the speech 1s buffered and windowed thus allowing the autocorreiatjon method
to be used as given by equations {3 2 12) and (32 13) This technique 1s used in the coder
simulation presented i Chapter 4 In this case, the input speech 13 buffered to produce

a known frame of data This data 1s appropriately windowed and 15 used to obtain the

predictor parameters using the autocorrelation method

3.3 CODING AND TRANSMITTING THE RESIDUAL

331 THE ADAPTIVE PREDICTIVE CODER

- » S

Figure 3-1 shows a simple adaptive predictive coding (APC) system that includes a
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linear prediction filter A(z) and a pitch prediction filter B(z). The z-transforms of the input
and reconstructed speech waveforms are given by S(z) and S'(z), respectively. The residual

signal is denoted by E(z) and the quantized residual, £(z) is taken to be
E(z) = E(2) + Q(2), ‘ (3.3.1)

where @{z) represents the quantisation nose. From the figure, the following relations my be

determined

E(2) = S(z) + [A(2) - 1]S(2) (3.3.2)

S(z) = E(2)/Al2). . (3.3.3)
Substituting equations (3.3.1) and (3.3.3) mto (3.3.2) results in
E(z) = A(2)8(2) + [Al2) - 1]Q(2) (3.3.4)
and
E(z) = AR)S(2) + A2)Q(=), (3.3.5)
80 that the reconstructed speech signal is given by
S(z) = S(z)— +Q(z) - (3.3.6)
The gain o 18 chosen such that o? is the vaniance of the prediction residual.

If a pitch prediction loop is added as indicated in Figure 3-2, the reconstructed speech
3(z) is given by

© 3(2)=R(z)/B(2), (3.3.7)

where R(z) = E(z) /A(z) as in equation (3 3.3) The residual E(z) in equation (3.3.2) has an

extra term added which results n )
E(z) = S(z) + [A(z) - 1)R(2) + [B(z) - 1)$(2)- (3.3.8)
If the quantiser now adds guantisation noise given by Q'(z), equation (3.3.1) becomes

E(z)=E(z) + Q2). - (3.3.9)
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Figure 3-1: A Simple Adaptive Predictive Coder
X Equations (3.3.7) and (3.3:8) may then be used to derive equations corresponding to
C (3.3.4) and (3.3.5): :
E(z)= A(z)?(z)S(z) + [A(2) = 1]Q'(2) L (3.3.18)
and ’ “ !i
. E(2) = A(2)B(2)S(2) + A(2) B(z)Q'(z)- -(33.11)
The reconstructed speech signal is then found to be .
8(2) = S(2)+ Q'(2). (3.3.12)

Comparing equations (3.3.6) and (3.3.12), the only difference is in the quantization error.
The addition of the pitch prediction filter generally results in a smaller quantisation error
than in a\sy‘utem without the pitch filter [ATALY8]. The usé of a pitch prediction filter will
be discussed in more depth below.
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Figure 3-2 Addition of Pitch Prediction Loop
J
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3.3.2 THE CLIPPING PROBLEM :

When the input speech s voiced, the residual signal 1s characterised by a large pulse st

the beginning of each pitch period The puise 1s generally of much greater amplitude than the

remainder of the signal sampies in the period Because the puise 15 absent during unvoiced
sounds and 1t basically occurs oniy once per pitch period, high amphitude sample values occur
very infrequently Because of this low probability of necurrence uniform quamlization, using
the 40 ;neti}od, or e\;en the use of a Lioyd-Max quauu‘z)or, results 1o chipping of the pitch
pulse This poses a problem, since studw;s ,ATALS8O] indicate that accurale quantlization
of the high-amphiude portions of the residual, in particuiar the pitch pulise, 15 necessary
for achieving iow perceptual distortion n the reproduced speech This probiem may be
alleviated by increasing the number of quantizer ieveis at the expense of increased bit rate
Makhou! and Berout: {MAKH79a find that 2 19-level one-dimensional quantiter ;s sufficient
to completely elimnate chpping Simple coding of the output then requires at least five bits

per sample. In order 1o lower the bit rate, some aiternative Lo simpie coding s used
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"tion of the pitch 18 made Then, using the estimated pitch, an esimation of t.hc three filter
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A nnmbér of different methods have been proposed to reduce clipping, yet maintain a
low bit rate. Atal and Schroeder [ATALSO] proposed center clipping the residual and then
quantising the result to several levels. Entropy, or.Huffman, coding would then be used to

maintain a low bit rate. A similar scheme was proposed by Makhou!l and Berouti [MAKH79a),

except that the centre clipping was not performed. Makhoul and Berouti [MAKH79b] survey

a numb;ar of methods for reducing the'clipping. Of particular interest is the three-tap pitch

prediction filter, proposed by Atal and Schroeder [ATAL78], since n&’wavoids the complexities
L) a

associated thh‘aﬁy form of entropy coding.

3 33 PITCH PREDICTION v
\ 3 ”

'

The residual 'sxgnxl displays a marked periodicity whenever the input is voiced speech.
The ressdual from voiced speech 15 characterized by a2 large puise at the beginning of each
pitch period which represents the excitation of the speech model Since the piteh period
within a typical v%nced sound usually ;lrlel slowly over the duration of the sound, each pitch
peniod can be approximately predicted from the previous one. The excitation puise may then
be sx;bttantxally reduced by using a predictor centered at the pitch period [ATAL7S

The pitch prediction filter has three térms since the pitch period may not be an exact

multiple of the sampiing interval The error signal e(n) 1s thus related to the error at the

v

“previous period, m samples earlier, where m 1s the number of sampling intervals contained

na single pitch pertod This reistion may be written as

— 3 1 - - e

é(n)=be(n—m~+1)+breln — m]+ bge(n —m — 1}, (3.3.13)

wherehé(u) 15 the predicted value of e{n) and b,. + = 1,2, 3 are Lhe filter parameters The
prediction gain, the reduction 1o sighal energy by inverse filtering, 15 higher for the three

term filter than for a single term filter at the pitch Iag

The determination of the pitch prediction filter 15 2 two step process First, an estima-

DR o g e TR

coefficients 15 made using 3 minimum mean square error crilerion

b
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N A common technique for estimating the pitch period is the maximum correistion method.
( This method searches 2 range of sample delays looking for waveform usimilsnties The
range of pitch frequencies, for both male and female speakers, 18 roughly between 5¢ H:
and 300 Hz. This corresponds to sample delays of roughly 160 samples and 26 samples

respectively for speech sampled at 8 kHs.

/

@ The maximum correlation method calculates the sample correlstion of the residual over

the above range of sample delays The autocorrelation s calculated as

R() =Y e(n)e(n —1), . (3.3.14)
”
where n is the range of summation (generally the s;se of the dats frame) and ¢ varies over
the above range of sample deisys The maximum of R(s) occurs at a pitch period or multiple
' thereof. '

Once the pitch period 1s estimated, the fiiter coefficients are determuned by mimmiziog
C the mean square error between e(n) and é(n) as defined in (3.3.13} The pitch prediction

filter coefficients may then be determined from the matnix equation

1 (D) A2 ~r(m — 1)
B A1) 1 b= —rim) |, (3.4.18)
r{2) (1) 1 s —r(im + 1)

————where r{i) = R(1)/R(0) 1s 3 normalized sample correlation. by solving a set of Toeplitz

equations
o ‘ B
3.3 4 IMPROVING THE PERCEPTUAL QUALITY
v -Even though the chpping problem may be ehiminsted, there remains the granuiar nome

introduced by the quantizer Berouti and Makhoul [BERO78] survey a pumber of methods
& for reducing the perceptual distortion capsed by Lhus granular nowe Of particular interest

are the use of & preemphasis filter and a nowe shapang filter
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3.3 4.1 The Preemphasis Filter

Because of the granular néise introduced by tization, the output speech is percep-

\ tually different from the 1aput speeck. Atal and SchroeML?ﬂ] found that the output .

L,

noise spectrum 1s about equal to that of the speech signal at high frequencies They found
that for frequencies above 500 He, the frequency spectrum for voiced lound\: decreases with .
frequency with an average slope between -8 and -12 dB per octave. The spectrum of the

quantization noise 18 approximately umform The SNR of the reconstfucted speech can

\ thus aiso falls off with frequency Therefore, the quahity of the reconstructed speech can

be improved by a suitable shaping of the noise spectrum so that the SNR 1s more or less

umform over the enlire frequeucy range of the inpul speech As a2 solution, the speech 1s
preemphasized before the main body of the coder Then, at the receiver, s deemphasis filter
restores the signal spectrum anﬁ, at the same time, deemphasises the nowe spectrum at high -

frequencies.

Vo

L ©  Using preemphasis, the z-transform of the output reconstructed speech may be written

" 3(2) = S(z) + QU)/PL2), (3.3.10)

where P(z) 13 the preemphams filter and Q(z) 15 the nowe due to quantisation. The trans-
. mitter of a coding 'tytt.cm using & preemphasis filter 15 shown 10 Figure 3-3,7in which A(z)

«

1
is the inverse filter derived by Linear prediction of Lhe preemphasized speech sighal §'(z)
Fid

1t was found |ATAL70, BEROT78| that there was ao improvement in quality with the
use of a single-zero preemphasis filter However, Berout: and Makhoul {BERO78| found that

the one-pole deemphasis fiiter required at Lthe receiver emphasised the low frequency nose

This was perceived as a low [requency rumbie 1o the output speech %
‘ i
. :
3.34 2 The Nose Spectral Shaping Filter
-~ T
»
L ® To minimise the eflect of the grapular nowe, the outputl nowe spectrum must be below
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Figure 3-3' An APC Coder with Preemphasis Filter
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the signal spectrum at all frequencies Berouti and Makhoul [BERO78]| developed 3 noise-

haping filter as described below

It 1s required that the mgoal 5(z) be such that

$(z) = S(2) = C(=)Q2).

where C(z) 1s the nowse spectral shaping filter Using a basic APC system for demonstra-
tive purposes, the receiver 1s the sygthesis @T_I%pole filter 1/A(z) The syothesised sngnal‘ls

P thus miven by cquation (33 3) By substituting for S(z} n £33 17} using (3 3 3) and then
substituting for [2(z) using (33 1) E(z) s found to be

E(z) = A(2)5(z) ~ A(z)C(2) - 1 Q(2) (33 18)

Comparing (33 18) to (3 3 4), 1t 15 secn that the filter C(z) 1s introduced and may be used

to shape the noise spectrum as desired

Figure 3-4 shows a possible APC configuration using the noise-shaping filter C(z) While,

i practice, this configuration 13 not generaliy used, it allows easy companson to Figure 3-3

. ‘/ \7?2_ , )
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«

in which a deemphasis filter s used The two figures could be made identical if the following

equations are satuisfied

A(z) = AZ)C(2), (33.19)

) ¥
P(z) = 1/C(2), (3.3 20)

and 1If the same normalization gain is uscd in both systems

In practice, equation {3 3 18) s first restructured so that the filters A(z) and C(z) are

decoupied In order to do this, equation (3 4 18) should be rewritten as
E(z) = 8(z) ~ [Alz) — LE(Z)/Al2) + 1C(2) — 1]Q(z) 33121)

An APC system implementing this structure 1s shown 1n Figure 3-5

It 1s important that the impulse response ¢(n) of the filter C(z) be unity at n = 0. Thus

the filter must be designed such that it operates only on past values of the noise Therefore,
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Figure 3-5: An APC Coder with Noise Filter Decoupled from the Prediction Filter

where the summation over n may be 1nfimte, as in the case of a recursive filter.

Makhou} and Berouti found [BER?'H;] that the addition of a first ofder adaptive all-zero
nowse filter imtially resulted i1n an inerease in the output noise However, at the same time
the avernge it rate, given that Huffman coding was used, decreased due to a sharpening
of the probabihity density function of the residual Therefore, by increasing the average
bit rate back to its original level by decreasing the quantizer step size, the output noise 1s

‘

consequently reduced compuared to an equivalent rate coder without the noise shaping

In order to mamntam an uncompheated coder structure; a preemphasis filter 1s preferable
The number of calculations that must be performed is less than that for the adaptive noise
shaping filter and no parameters need be transmitted Consequently, for the coder described

1n Chapter 4, a precmphasis filter will be used instead of an adaptive noise shaping filter

'

s(2) . f E() Quanhzer %7 >
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3.3.5 BLOCK QUANTIZATION OF THE RESIDUAL

Mabilleau and Adoul [MABI81] discuss a coder which block encodes and transmits
the residual signal obtained from the linear prediction of input speech The predictor used
does not require the resolution needed for LPC, since the residual is to be transmitted. A

codebook of LPC filters 18 used and contains a fairly small set of filters

The filter codebook is designed using a mean square error criterion The codewords must
characterize the important features of the residual waveform. The location of the maximum
amphtude within a glock 18 1mmportant since 1t relates to the pitch pel:lbd 1 the case of
voiced sounds Thus the residual waveform codebuok mwust wubain o 1auge Ul cauiabion

impulses for voiced sounds as well as noise waveforms for unvoiced sounds.

As in the one-dimensional case, care must be taken to avoid clipping the important
large-amphtude pitch pulse Since the high-amplitudes occur with relatively low frequency,
the algorithms of Section 2 5 must be constrained to ensure codewords with excitation
pulses are included 1n the codebook. This may be accomphished by using separate voiced

and unvoiced codebooks

In order to avoid the increase 1n codebook complexity necessitated by the need for
accurate quantization of the pitch pulse, a three-tap pitch filter may be used reduce the

high-amphtude portions of the residual This may then be followed by a block quantizer

" designed using the algorithms of Section 2 5 for a mean-square error criterion

3.4 QUANTIZATION OF THE REFLECTION COEFFICIENTS

341 SPECTRAL SENSITIVITY OF THE REFLECTION COEFFICIENTS

In quantining the reflection coeficients, it 15 desirable to find 3 method that minimizes

the perceptual crror of the reconsiructed signal The spectral sensitivity of the reflection

+



coefficients has been studied in considerable depth by Viswanathan and Makhoul [VISW75].
Assuming that an accurate representation of the power spectrum minimizes the perceptual

error, the minimization of the maximum spectral error would be a suitable distortion

criterion for quantization.

If AS is the deviation i1n the spectrum due to a variation Ak, in the reflection coefficient

k;, then the spectral sensitivity of the coefficient k, may be defined as

as

= lim
8k| Aki—D

AS'

N (34.1)

which 158 always positive. The spectral deviation AS can be an arbitrary measufe but it
should relate 1n some proportional manner to the corresponding percéptual effect on the

reconstructed speech

The spectral sensitivity may be defined as

a5 _ o
dk, Al:; —0

11 [
AE [i); / i llog P{k,, w) — log P{k; + Aku“)'d‘d“

1[1 /" Pk, w)
'AE,[?.); /_. € ik, + Ak,,w) d“’”

the average of the absolute value of the difference between the log spectra under considera-

(3.42)

= hm
Ak;—0

tion, P(k,,w) 1 defined as g

%

Plk,,w) = {H(e!*) (343)

the spectrum of the all-pole speech model H(:) Experimentally, the spectral seomtivity
alk,) = {JS/3k,) s determined by replacsfxé the integral by a summation and by using a

sufficiently small value for Ak,

Viswanathao and Makhoul [VISWTS] found typical sensitimity curves for the reflection
coefficients as shown 1o Figure 3-6 Each curve is a plot of one of thevreflection coeflicients
as it s varied over the range (-1, 1) while Lthe others remain constant T"\xe sensitivity curves

each have tl e following properties 1n common

1} Fach sensitivity curve has the same general shape irrespective of the reflection,

&
coefficient plotted and of the values of the other reflection coeflicients at which the
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Figure 3-8: Typical Spectral Sensitivity Curves for Reflection Coeflicients [VISW75]

sensitivity is plotted. The actual value of the sensmtivity, in general, does depend

on the values of the other reflection coefficients.

2) Each sensitivity curve 1= | J-shaped and even symmetric about k, = 0. Each

curve has large values when the magnitude of k, 18 close to unity and small vilues

as k, approaches tero

4,
r

g

These properties are inherent to the reflection coefficients themselves and not ta any

particular speech sounds For example voiced sounds generally have higher spectral sen-,

sitivity than unvoiced sounds because the magmtudes of some of the reflection coefficients

are close to one Also, in general, pre-emphasis reduces the spectral sensitivity of voiced

sounds by reducing the magnitudes of the reflection coeficients which are close to unity
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3.4.2 QUANTIZATION SCHEMES

There exist a number of methods for the scalar quantisation of the reflection coefficients.
Fouyr common methods, studied in some depth [GRAY77, GRAY78], are uniform quantiza-
tion, uniform sensitivity quantization, equal area or maximum cutput entropy quantization,

and minimum deviation quantization. .

kY

:
X

Uniform quantization i1s probably the easiest to implement since the range of p%ub?e
values 13 divided into intervals of equal length For a large number of quantization Ievells y‘and
using the r'* moment fidehty measure defined in equation (2 2 3), the uniform quantiger
minimizes the entropy as defined 10 (2 2 2) [GRAY77] To fulty utilize the minimal entropy

of the ypiform quantiger, a lossiess source coding, lor example Huﬂpan coding, should be

used

U"mform sensitivity coding, as suggested by Viswanatbhan and Makhoul [VISWYS], 1n-
volves 3 change of variables which leads to a constant spectral sensitivity The change mn
variabies makes the spectrai deviation in the new coordinate system proportions! to a mean
absolute difference, the first moment M, defined by (32 3) with r = 1 Uniform l«emm'lt.yJx
quantizatjon minimizes the maxrmum spectral deviation bound and minimises the entropy

for a fixed expecled spectral deviation bound when there are a large number of quantization

levels

Equal area quantisation maximizes the entropy for a fixed number of quantization levels
When the number of quantization levels 18 small and single-frame, fixed-bit-rate transmission
18 used, a smaller expected spectral deviation bound for the reflection coefficients 1s obtained
than for the previous two quantization methods in the case of the first reflection coefficient
{GRAY77]

o~y

Finally, dunimum deviation quantization minimizes the expected spectral deviation

bound for z:il number of levels In the case of constant sensitivity, this minimizes the

mean absolute (first moment M;) qu;mtlzatnon error
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3.4.3 LOG AREA QUANTIZATION

i

chaime of the sensitivity of the reflection coefficients as their magnitude approaches
ope, 3 nonlinear quantization that 18 more sensitive near umty is desirable By transforming
the reflection coefficient to another parameter using a nonhnear operation, it can be shown
that linear quantization of the transformed parameter is optimal, 1n the sense of mimimiz-
ing the maximum spectral deviation, :f and only if the parameter has copstant spectral

!

sensitivity behavior [VISW7§)

'

Denoting the transformed parameter as ¢ and the reflection coefficient as &, g is related

to k by

0= M(k), - C (344

where M({ ) 1s the nonlinear mapping The optimal transformation 1s the one where the

1

transformed parameter g has constant spectral senmitivity so that

3:9 = [, = a constant, (3 4.5)
39

where the sensitivity i1s defined in a manner similar to (34 2) The spectral sensitivity may

be written as

A .
3S 8Sdk  8S /dM(k)
87 Odkdg Bk / dk (3-46)
Substituting (3.4 5) into (3 4 8) and rearranging resuits in
dM (k) 198
dk 7 L3k 347)

Equation (3 4 7} provides the condition for an optimal mapping !hnch may be obtained
by simple integration Each reflection coefficient may require a separate application of
equation (3’4 7} However, as indicated 10 SCEZtIOD"3 4 1, each reflection coefficient exhibits
similar spectral sensitivity properties Therefore, 1t 18 possible to derive a general mapping

that 1s optimal on the average for all the reflection coefficients

Viswanathan and Makhoul [VISW75] averaged the sensitivity curves of Figure 3-6 for
the reflection coefficients Lo produce an averaged spectral sensitivity curve as shown in Figure

3-7
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line) and Approximating Analytical Function [VISW75)

B

b t\
o Although it 1s possnbxl‘e\, using numerical techmques, to integrate the sohd curve in 3-7
to obtain the optimal transform, 1t 15 easier to approximate the curve by a well specified
mathematical function The function 1/(1— k%) approximates Lhe average sensitivity curve,

as indicated by the dashed curve in Figure 3-F, reasonably well within some multiplicative

constant Letting the spectral semsitivity be represented by 1/(1 — k?), equation (3 4.7)

becomes
dM (k) 1
dk  L{1 —k?) (348)
Integrating (3.4.8) resuits i1n
1 1+ &

Since L 18 arbitrary, by using L = 1/2, equation (3.4 9) becomes
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1+k

M(k) = log1 %

(3.4.10)

-

If the speech is modelled using an acoustic tube model, the relationship between the

cross-sectional areas of consecutive tubes may be described [AP] as

»

S

. 1+k,
A Itk i =1L1<i<p (3.4.11)

A|+l 1 - k

Therefore, (3.4.10) is simply the logarithm of the area ratios thus giving rise to the name

Log Area Quantization.

' 3.4.4VECTOR QUANTIZATION OF THE REFLECTION COEFFICIENTS

Buzo et al [BUZOSO] propose a method for the vector quantization of the linear predic-
tion parameters which mlmmlzes the spectral error. Since the various forms,of the speech
parameters are related through recursive relations (see, for example [MAKH75, MARK76)),
the output parameter veétor may be the reflection coefficients or any3 other set of parameters.
The distortion measure used is the Itakura-Saito distortion measure. This distortion measure
is selected because it 18 implicitly minimized when the autocorrelation method is used to
obtain the optimal linear prediction parameters [GRAY80b] but it is generally not used

s AII.
during the compression, or quantizatien, step.

From equation (2.2.2), the all-pole speech model transfer function H(z) may be ‘written
1

as 13 . —
H(z) = -~ (34.12
7T ARy e
where
p .
A2)= ) 8277, ag=1. . (3.4.13)
j=0

If X(z) is the z-transform of the input signal, then the residual energy resulting from

passing X (z) through the inverse filter A(2) is given by

= — / |X‘°|A| dw, (3.4.14)
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] W
.Equation (3 ’{EH) may be expressed as

where .
X[ = (X (&) and |A] = [A(e)? (3.4.15)
are the energy density spectra of the input signal and the filter characteristac respectively

b
s

a=) runjr(n) (34186)

for the purposes of numerical evaluation, where r (n} is the autocorrelstion of the input data
o

frame and rq(n) 15 the autocorrelation ‘'of the filter parameters_ It can be shown [MARK78)],

that the optimum H(z) matches the signal X (z) in terms of the 2p + 1 term autocorreiation

sequence ,
o , L
p(n) = raln). n = 0,11, .., +p, (3.4.17)

L]

where r,(n) is the inverse s-transform of H(z)H(1/z2).

»

a

The Itakura-Saito distortion messure may be used to describe the spectral mstehing
effects of the linear predictor [GRAYB0b]. The distortion measure is defined as

i i
apxrar = & [/t -n(Er)-tla. | @a
For the purposes of calculation and interpretation, (3.4.18) may be expressed as

A X |H?] = ;‘12 +1n(0?) - In(a) = 1, ‘(3.4.19)

~ o

where o is defined in (3.4.12), a 1n {3.4.14) and

p— o0

- 1 T ' -
0o = Hm ap, = exp [5;/ lnIXIde]. (3.4.20)
-

is the limiting residual energy as the number of poles p increases.

)

$

Equation (3.4.19) may be shown [BUZOB80| to satisfy a form of “triangle equality” so

t hat - . ’

dIIXT B ?] = dIX%; | B, ") + dl| B, 5 1H ), (3.4.21)

&

where Hj is the optimal filter transfer function. Thus the total distortion may be viewed

as the sum of two distortions The first part is due to the error arising between the actual
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signal and the optimal predicted signal. The second part is due to the quantisstion of the
optumal parameters Furthermore, it can be seen that mxmxmvnng\id[lx 13, (H ] 15 equvalent
to minimising d[{H,[? |H?] since d[|X [*, |H,|?] 15.a fixed property of | X * for a constant p
Another useful éucadmg property is given by
_\\
di X7 HP =dIX?. /AR = dXF, a/|A] + dja; o?)] (34.22)

®

which divides the distortion into iwo parts The first distortion messure s independént of
{.he gun parameter 0 The second s dfpendem upon the polynomisl A(z) solely through the
residual energy a This lends 1o 3 gain-separated vector quantization scheme as dncn-ed
in 2 later section . ¢

i

3 4‘4 1 Nearest Neighbor Calculation

. s |

To assign 3 set of speech parameters to a specific codeword, it is necessary to find the
output vector which mimmuises d{|X {2, |H[?] where H 18 the selected filter charactenstic.
Since o, depends only on the speech frame, it is only necessary to find the H(z) = o/ A(s)

s

which minimizes

d[IX1% ] + 1+ ln(ae) = ;"5 + In(e?). (3.4.23)

For any given speech frame, the residual energy a must be calculated. This computation

is most efficiently accomphished [BUZO80] using

¥

. a = ry(0)rs(0)+2 Y ru(n)rs(n),  (34.29)
ne=]
where -
p—n
) re(n) = Z 46,40, n=0,1,..,p. (3.4.25)
y=0 '

Thus, to minimize (3.4.23), the right hand side of the equation must be evaluated for each
codeword, consisting of the gain and reflection coeflicients, using the tree- or full-search

algorithms discussed 1n Section 3.4. The codeword selected is the one that minimiszes (3.4.23).

¢
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“region, the fotal distortion for that region u gIven a

3.4.4.2 Centrord Caleulation

Duaring the design of the codebook, a centroid calculstion must be performed. i the
parameters for the speech frames X;{s), ,Xr{(z) are all conlained 1n the same quantiser

L
D=3 diX.l 8P (3.4.28)

[ T3]

This can be written in terms of the average spectrum

1 L
o X2 = Z‘Z_:fx"’ (3.4.27)
-
D = LAUXP; 1A+, ’ (3-;.28)'

where u fi{2 constant independent of the model H(z) for the cell. Thus to find the-centroid of

the region, in the sense of minimung (3.4.20), it 18 necessary to model the ave spectrum

using standard linear predictive methods Thus the autocorrelation sequences Yor each of
the speech frames may be averaged to find an average autocorrelation sequence which may
then be solved to give the parameters of H(z). The constant u 1s not needed for theses
caleulations and simply represents a distortion that will arise, no matter the filter order,

when dissimilar frames of speech ane assigned to the same cell [BUZOB80].

3.4.5 GAIN SEPARATED VECTOR QUANTIZATION

If, in order to *duce storage requirements, the gain is separately quantized instead of
with the reflection coefficients, a suboptimal but memory efficient quantization procedure
may be produced. Equation (3.4.22) 1llustrates the separation of the distortion into two parts.
The first 15 dependent only upon the polynomial A(z) and the second depends upon the the
gain apd indirectly upon A(z) through the residual energ} a. Rather than minimize the
overall distortion, 1t 18 possible to minimize (3.4.2?) by first finding A(z) atid then obtaining

g.
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3.45.1 Nesrest Neighbor Caiculation

In order to minimie the distortion of squation (3.4.22), first d[|X*;0*/|Af*] is mini-
mised. Suhtllhltln‘ 0? = a 1n equstions (3.4.12) and (3.4.19) pives the equivalent expression

d(IX?, a/|Al*] = In(a) - In(@e), (34.29)
where In(a,.) 18 a constant for each speech frame. Thus, as in the previous section, output
set of puameter; which mimmize @ may be found by evaluating (3.4.24) for each outp&

vector.

Once the set of.’ predictor parameters and subsequent residual energy a have been

determined, the results may be used 1n equation (3.4.18) to give
d(a, 0?) = ;"3 ~In(afe?) -1 .  (3.4.30)

which 18 mimmized by choosing a value of 0% from the gain parameter codebook.
Since the selection of the'gain 18 a one-dimensional problem, the codebook g’m‘n values
may be ordered and compared with 3 set of threshold values to determine the output. The

threshold values &,, 1 = 1, ., T — 1, where T 15 the number of quantiter levels, may be
o

obtained [BUZOB80] by solving

1 2 2
&? — nl(al-i‘l/;,-) (34.31)
ol ol

It may be more efficient to use the Taylor series expansion of (3.4.31), so that
® a

°

. 252 254 248
U?=“(U?+U‘2+l l—ﬁ—g——g—i‘—s— oy (3.4-§§
where .
2 g
6= Z—?’L-;—U_;' . (34.33)
1 ]

3.4.5.2 Centroid Calculation

In the gain separated case, two centroids are to be calculated. For the polynomial

p
9

: -18 -



parameters, it is desirable to minimise the total cell dis&oruon\u gven by (3.4.28). Using

(3.4.22) and (3.4.29), an attempt 1s first made to mimmise the sum of terms

L L
Dy = Y_diiXul"a*/|AF] = ¥ lin(a*) - In(at )], (3434
hme] Rom |
where
ot =t [ mare (3439

1s the “optimal™ energy choice for the individual speech frames and o, 1s defined in (3.4.20).

Thus the centrod pro?)lem 18 Lo choose a set of parameters which minitiges

L L v
§ 3 ia*) =) ln[él;/ ngl’M}zdu} : (3 4 30)
™ hem) -

The soiution of (34.38) is not a trivial task and :nstead an approximate and bounding

solution may be found as follows

Each individual X3(z) has an “optimal” model whose gain ia given by a::. Rewriting

(3.4.34) as

L : L
Dy = Y In(a*/af)+ Y infa}/at), . (3437

kol kol

1t may be scen that the secopd summation 18 indepepdent of the parameters of the polynomsal
A{z) and is sumply a function of the indimdual speech frames. The first summation in (3.4 37)
is the product of L and the logarithm of the geometric mean of the ratios a"/a': for k =

1, L

o

3

L L
Dy ="Lhn [% E a“/a:] + Z ln(a:/a:‘n). (3.4.38)

fee k=1

D, is approximated by and bounded above by D5, where

To minimize Dg exactly and thus Dy approximately, it 18 necessary to minimise the arith-

metic mean of the a"/a‘; ratios. This mean is defined as

L t r
1 K,k _1_/ 20 412
Lkgl otfay = o | IX*Afdw, (3.4.39)
where
<3 _ 1 L
YVI2 — 2 k .
IX]? = E?.‘.:l Xl fay (3.4.40)
1
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s the normalized average spectrum Thus the normahzed autocorrelation sequences for all

the speech frame 1n a given cell may be averaged and the result solved for the reflection
\I

" cocflicients or other parameter set

Comparing the gain-separated case with the optimal case, it can be seen that the only

difference 15 1n the averaging of the autocorrelation sequences In the gain separated ca.sg>

the autocorrelation sequences must be normahred by the optimal gain coefficients, the a;‘,

terms obtamed from the residual after passing the the speech frame through its optimal

inverse filter, In the optimal case. this normalization procedure 1s not necessary

Finding the centroids for the gam codebook 1s somewhat simplersonce the a* for cach
framc has been found A single gain term must be chosen to mimimize

12 L »
Dy = Y dla* 0’| =Y [a*/0® ~ In(a*/0?) - 1] (3.4 41)

2! k=

This can be minimized simply by taking the arithmetic mean of the :ndividual residual

encrgies as
1 L
9 1 k
/- ) o= da (3.4 42)
kw1
- -
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CHAPTER 4 L
CODER SIMULATION

4.1 BASIC STRUCTURE

»

The basic structure of the coder is shown in Figure 4-1 The sequential input speech
samples are passed through a preemphasis filter The filter output sequence 18 parsed
into data frames and temporarily stored within a data buffer Ap autocorrelation is then
performed on each individual data frame The autocorrelation coefficients are quantized and
then an analysis, or inverse prediction, filter 1s derived from the qua}ntwed parameters The
frame of preemphasized speech samples is passed through the analysis filter whose o(ﬂ.put
18 the residual signal The energy of the residual 1s calculated and the gain 18 set equal to
the square root of the result The gain 15 first quéyélzed and then used to normalize the
resndua[ signal Finally, the normahzed residual 13 itself “quantized prior to transmission
The quantized autocorrelation coefficients, gain, and resxdu‘al signal are then coded and

assembled into a data frame for transmission

To reconstruét the input signal, the received data frame 13 decoded to produce the
quantized res(ldual signal, theyautocorrelatlon coeficients, and the gain parameter. The
reconstructed residual is multiplied by the gain parameter This signal 1s then passed
through a prediction filter, the inverse of the analysis filter, which 15 generated from th'e
decoded autocorrelation coefficients The (?utput of the prediction filter 13 a reconstructed
approximation of the original preemphasized speech signal Finally, the signal 18 passed

through a deemphasis filter to produce the output speech.

- 16 - .
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Figure 4-1 Residual-Encoded Linear Predictive Coder

When pitch prediction of the residual 1s used, a pitch analysis filter 1s inserted between
the output of the analysis filler and the input of the normahzation process as shown in Figure
4-2 An autocorrelation of the residual 1s performed using a range of pitch lag values If the
signal s not periodic, 1 ¢ unvoiced, the filter parameters are set to zero and no filtering takes
place If the signal 1s voiced (periodieity 1s present), the pitch lag is determined and filter |

cocflicients are derived based on the determined lag value The pitch and filler parameters

Suonrman

arc quantized before passing the residual through the piteh filter
»

~ ° )

3tk bt

When the signal 1s reconstructed, the pitch prediction filter 1s inserted after the residual
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Figure 4-2: Residual-Fncoded Linear Predictive Coder with Pitch Prediction Filter
»

has been multiphed by the gain and before the signal is passed through the linear prediction

filter

In either case, all the filler parameters are quantized and the filter generated before
filtering of Lhe signal takes place. Similarly, the gain 1s quantized before normalization 1s
- performed This procedure has the effect of eliminating qu1antization errors in the parameters
when they are coded for transmission The only quantizalion errors occur during quantiza-

tion and coding of the final residual signal.
L3

)

n
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4.2 SIGNAL ANALYSIS AND RECONSTRUCTION '

4.2.1 REFLECTION COEFFICIENT CALCULATION

¥

In the calculation of the reflection coefficients, the input data sequence is first multiphed
by a Hamming window of length N This allows the use of the autocorrelation method for
obtaiming the predictor parameters as discussed in Chapter 2 The first M + 1 terms of
the autocorrelation R(m), m = 0, , M are calgulated from the windowed data se&iucnce
The autogorrelatlon cocfficients are quantized before calculating the \reﬂectlon cq\efﬁcmnts
and coded for transmission Lo the receiver The reflection coeflicients are obtained from
the autocorrelation terms E)y solving a set ol loeplitz equations using a torm of Durbin’s
algorithm [LERO77] The autocorrelation equations are solved recursively to give a set of

M reflection coefficients

4.2 2 INVERSE FILTER CALCULATION

The reflection cocfficients are used to generate an equivalent set of inverse filter coefficients.

«If H(z) 15 the z-transform of the filter characteristic, then for an ali-pole model, H(z)

may be written as '

¥,

(421)

where 0 1s the filter gain. The filter coeflicients are related to the reflection coefficients by
equations which are solved to give M +1 filter coefficients Designating the filter coeflicients

as a, and the reflection coefficients as k,, the relationship 1s as follows

4 dpp — 1
Gy—1,m, m =10
a, — Gy—1,m -+ k|a|_1'|_m, m = 1, ,‘l- -1

k,, m=1 (4.2.2)

fort=1,.., M. The synthesis filter is then given by

A(2) = Ay (2) = E:aM.'. (4.2.3)

10

i
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The prediction filter used in the decoder may also be calculated fromy the reflection

coefficients. Denoting the coeflicients of the prediction filter by P,, the prediction filter 18

related to the analysis filter by ‘

p=qa,8=1_.,M. (4.24)

4.2.3 PITCH FILTER CALCULATION

\

When a pitch filter is included, 1t 18 calculated using the method outlined in section

v

333 Denoting the maximum and minimum lags as Lmss and Lm., respectively, Lo,

samples from the end of the previous frame are stored 1n a data buffer An autocorrelation

of the residual signal 18 then performed using sample lags ranging from Lp,n t0 Lnay The
pitch lag is taken to be the sample lag at which the autocorrelation is maximum. If this
value 18 below a certain threshold value, the speech 1s assumed to be unvoiced and the filter
paramclers ‘are sel to zero. If the value is greater than the threshold, the Glter parameters
are calculated by solving the matrix equation in {3 4 15) The resulting values are then

q%antued before the residual smignal 13 passed through the filter

4124 GAIIN CALCULATION

. @

In the correlation matching method used, a mateh between the autocorrelation of the
inpllt sequence and the unit sample response of the inverse filter H(z) is desired at as many
points as possible. The gain o 18 calculated as a side result of solving the autocorrelation
equations. To determine the M + 1 parameters of the analysis filter, the first M + 1
autocorrelation samples of the filter umt sample response are chosen to exactly match the
first M +1 autocorrelation samples of the input sequence To match the energy of the input
signal spectrum to the energy of the inverse filter model umil sample response, the gan o 1
derived from

M .
o =Y a,R() . (425)

. =0
" \
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This 18 termed the prediction error energy and is essential}y the ener‘gy' contained in the
error signal. ’ '
-

A problem of the above method is that it is ouly applicable to LPC systems. In the
coder presented here, the residual signal is calculated and transmitted for use in the decoder.
Because the data is windowed in order o calculate the autocorrelation and sutgsequent
analysis filter, there is no longer a match between the data sequence passed through the
analysis filter and the data sequence used to calculate the analysis filter. For this reason,

the energy of the residual signal 1s not the same as that given by equation (4.1.5). Instead, a

separate calculation must be performed to calculate the energy of the residual signal itself.

425 RESIDUAL CALCULATION s

The residual signal is derived by applying the input sn@%l] :o the analysis filter. The
filter characteristic is convolved with the input sequence to préduce the residual In usual
LPC analysis, pitch prediction and a voiced/unvoiced decision 15 made In the case of this
coder this s not strictly necessary as the residual itself 1s coded and transmitted Inserting a
pitch prediction filter, as indicated 1n Figure 4-2, would have the effect of “smoothing” the
restdual signal by reducing the amphtude of the spikes present at the beginning of each pitch
period at the expense of increasing the number of bits required to transmit the mformation

In either case, the residual 1s normahzed by the gain

Once the residual has been normalized, 1t is quantized and coded for transmission along

with the quantized gam and reflection coefficients

42 6 SIGNAL RECONSTRUCTION

The synthests of the output signal 1s considerably simpler than the analysis of the
onginal input signal First the side information and restdual are decoded The decoded

residual 1s multiphed by the gain and the resulting signal 1s convolved with the prediction
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filter characteristic to produce an out put data frame. The prediction filter is obtained from

the det‘:oded autocorrelation coefficients as outlined 1o Section 4.2.2.
-

To reduce the eﬁec;t of frame boundary discontinuities, the reconstructed signal is mul-
tiplied by a trapezoidal wieg‘]ow which is unity between the overlap regions The traperoidal
window assigns greater weight to those samples‘fartherofron; the edge of the data frame
The samples in the overlap regions of successive frames are added as illustrated in Figure

4-3 It can be seen that the waightings of a given sample 1n the overlap regions sum to unity

Since the analysis of individual data frames can result in widely differing LPC
parameters, Lhere can be severe discontinuities at the frame boundaries. Overlapping l:rames
provides redundant information, at the cost of an increased bit rate, to smooth out the
discontinuities The extra bits required are due to the samples in the overlanp regions which

must be transmitted twice

427 PREEMPHASIS AND DEEMPHASIS
—_“I.

Before the speech signal is analyzed by the coder, it is passed through a preemphasis
filter as dlscusse:i 1n Section 33.41. Similarly, the reconstructed signal must be deem-

phasized to produce the output speech. If the 1nput to the ﬁ?eemphasis filter 18 given by z;

Y

and the output by s,, then -

LY

where S is the preemphasis factor. Then, |f 3, is the reconstructed signal, deemphasis

produces the speech signal Z; given as )
Z; =i+ BZi. (4.2.8)

Since g is a constant, it is not necessary to transmit the parameter value.

J
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4.3 QUANTIZER CALCULATION AND SIMULATION

4.3) THE RESIDUAL QUANTIZER

For comparative purposes, three types of quantizers are used for quantizing the residual.

The first is uniform scalar quantization using the 40 quantization range discussed in Section
3.2-3, where o® 18 the variance of the input signal and the quan;izer is designed symmetrically
about the expecied value of Lthe 1nput signal The second method is a uniform scalar Lioyd-
Max quantizer as described in Section 3.2 4 The final method is vector quantization. The
first two methods are used for comparnson with the vector quantizers. It is desirable to study
the eflects of varying block lengths and bit rales in the vector quant,iyers and compare the
gains made’over the scalar cases

vBoth types of scalar quantizers use full searcl; techniques which are easily implemented
in one dimension. The Lloyd-Max quantizers are obtained from the uniform quantizers by
using the Lloyd-Max algorithm presented in Section 3.2.4 with the uniform quantizer as the
1nilial quantizer for the algbrithm. Both quantizers are developed using a range of bit rates.
This allo;v:?comparison of quantizer performa;xce versus bit rates and block lengths between

the scalar and vector quantizers.

x

The vector quantizer 15 designed using the quantizer design algorithm described in
Section¥.5.3 using a mean-square error criterion. The quantizer 13 designed in tree-searched
form because the computati%n time req{xired for full-sea:rch quantizers was prohibitive and
unavailable on the computer. The vector quantizers are de8igned for a variety of block
lengths.

< b -~ ‘

4.3 2 THE PITCH PARAMETER QUANTIZER o

" The pitch predictor parameters are quantized using two quantizers. First the pitch is

quantized using a uniform quantirer Since the range of pitch frequencies, for both male and

femalc speakers, 1s between 50 Hz and 300 Hz, the range of lag values for 8 kHz speech is

-
-

A
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chosen to be between 26 and 153 samples. Thus seven bits are needed Lo code the piteh,
or lag, value. One codeword: is used used to indicate that the speech is unvoiced, ie. no

periodicity is evident.

’

¥

The three parameters of the pitch prediction filter are quantized as a block using".a
tree-scarched vector quantizer. The quantiter is designed using the algorithm of Section

2.5.3 for a mean-square error criterion.

4.33 THE GAIN QUANTIZER

The quantization of the gain is related to the quantization of the autocorrelation
coefficients, using the Itakura-Saito distortion criterion, as described in Section 3.4.5. In
order Lo make most effective use of the algorithm, the gain is quantized using a Lloyd-Max

quantizer.

4.3.4 THE AUTOCORRELATION COEFFICIENTS QUANTIZER

The autocorrelation coefficients are quantized using a tree-searched vector quantizer.
The quantizer is designed using the algorithm of Section 2.5.3 for the Itakura-Saito distortion

-

criterion as described in Section 3.4.5.
As discussed 1n Section 3.4.5, the analysis filter parameters used in the It.akura-Sait.o&
cistortion measure are derived from the quantizer output vectors, i.e. the quantized autocor-
relation coefficients. Since the filter parameters used in the coder are also derived from the ,
autocorrelation coefficients, the output of the quantiser may be the filter parameters instead

of the quantized autocorrelation coefficients. This eliminates the step of calculating the filter

patameters a second time from the quantized autocorrelation coeflicients.
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CHAPTER 5§
\ EXPERIMENTAL RESULTS *

~

The simulations of the coders were performed on a VAX-11/780 computer. A large library of
woding i oubines was svailable for performing the more common procedures, i.e. digital signal
processing, filtering, windowing, and so forth. An AP-120b array processor was available but
was not used in the simulations or for the generation of the vector quantizers.
[£)
Four different simulations were performed. Two coder simulations used a pitch predic-

tion filter while the other two were designed without the pitch filtersy,In both cases, one

.simulation was performed with only the residual signal quantized and in the second sigu]a—

W

tion all parameters were quantized as well as the residual.

For each simulation, a number of residual quantizers were generated. A training se-
q'uence consisting of successive frames of residual samplep,\calculated from a single male
speaker, was used for the quantizer design algorithm. ‘Each relsidual frame consisted of 240
samples. 25,600 vectors were used in the calculation of each quantizer The block lengths
were chosen to be factors of the frame length in order to avoid overlaps between successive
frames. In order to evaluate quantizer performance, one- to eight-bit/block vector quan-
tizers were calculated for block lengths of 1,2,3,4,5,68,10,12,15, and 18 samples. For the
coder stmulations, 1-bit/sample and 2-bit/sample vector quantizers were generated. For the .
I-bit/sample quantizers, block lengths of 1,2,3,4,5,8,8, and 10 samples were used Block
leugths of 1,2,3,4, and 5 samples were u?ed for the 2-bit/sample quantizers. In both cases,
it was decided that larger block lengths restiited in codebooks that were tao unwieldy and
generation limes that were excessive. The generated qua.ntuer/s were compared to uniform

u

)
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.Block” Size: ] 2 3 4 5 o
CPU Time (br'min): 1:57 335 4:19 501 518 5:39

Block Size 8 10 12 15 ., 18
CPU Time (hkr:min): 6:27 659 7:24 842 9:1 ~
Table 5-1: CPU Time vs. Block Size for 8-bit quantisers .,)

and Lloyd-Max scalar quantirers for performance evaluation.

Once the quantizers were generated, the coder simulations were evaluated. First, coders
x;sing vector quantizers were compared to identical coders using scalar quantization for the
residual signal Next, in order to obtain a s‘ubject,ive evaluation of the coder performance,
the coders were compared to log-PCM coders Listening tests were performed in order to

compare the various coders.

'5 1 QUANTIZER GENERATION

The generation of vector quantizers requires large amounts of time. Four sets of quan-
ticers were genecrated using different training sequences The tramning sequences were of
“equal length and contained 25,600 vectors For an 8-bit quantizer, this transiates to roughly
100 vectors per quantizer region Table 5-1 summarizes the average CPU times required to
calculate an 8-bit quantizer for daﬂ'erexat block sizes. Tables 5-2 and 5-3 contain the average
CPU times required to calculate quantizers at one- and two-bits per sample in the block,

for varying block lengths It should be noted that the times given are the average times

" required by the CPU for processing the quantizer design program For the larger quantizers,

1L was sometimes necessary to wait up to twenty-four hours for program termination, due

to the time-sharing nature of the computing facility.

' <
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Block Sise: 1 2 3 4
CPU Time (hr:min): 002 '0:18 0:38 1:30° »

Block Size- 5 6 8 10
: CPU Time (hr:min): 2718 3:13 6:27 904

Table 5-2: CPU Time vs. Block Sise for 1-bit/sample quantisers

Block Sise: 1 2 3 % 5
CPU Time (hr:thin): 0:08 1:02 2:29 5:01 7:03

Table 5-3: CPU Time vs. Block Sise for 2-bit/ssmple quantisers

b
-

A pumber of’fnceora coptributed to the quantiser generation time. Two general observations
can be made: the larger the block size, the longer the generation time for quantisers with
equal number of output levels, and the greater the number of cutput levels, the longer the
generation time Both of these observations are rather obvious and need not be discussed

in any great detail

Since the quantizer generation algorithm is an iterative procedure, another factor that
contributes to the generation time is the number of iterations thst take Place before the
procedure haits Table 5-4 shows the average number of iterations required st each split for
the 8-bit quantizers with varying block sizes In general, the first “split” at each level of
the quantizer tree {in this case, the levels correspond to bita 1 artd 5) requires the fewesat
iterations. Furthermore, there 18 a general mcrease in the number of iterations required
as the number of bits #i each level 18 inicreased This behaviour 18 most likely due to the
selection of the initial quantizer in the optimigation portion of the algorithm zs well as the
Idutnbution of the training sequence For the esrlier splits at each level of the quantizer tree,

the output vectors are few and relatively farther apart These vectors tend to obtain values
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Bits: © 1 2 3 4 S5 8 7 8

‘Block Size \

. 1 10 18 27 20 7 7 12 12
2 20 37 27 38 17 24 34 34

. 3 14 34 27 41 20 33 31 33
o 1 33 30 45 32 21 90 36 38

5 14 27 43 40 18 29 36 32

6 12 2 31 40 19 29 34. 31

8 18 2 31 40 20 28 31 31

10 16 24 38 30 16 26 29 29

12 18 23 30 36 13 24 20 26

15 15 18 25 48 15 21 26 95

16 15 21 23 31 14 25 27 95

Table 5-4: Iterations Required Per Split for Various Block Sises

which may vary only slightly over successive iterations compared to the distance between the
output levels themsaelves Thus, the decrease in quantization error with each iteration is very
small compared to the overall average quantization error which causes the procedure to halt
after only a few iterations As the number of outputpvecton at the particular quantizer tree
level increases, the average quantization error decreases and the centroids of the quantizer
regions can vary more over successive iterations in relation to the distance between them.

Therefore, a greater number of iterations can take place before the error difference threshold

18 reached

In order to limit the quantizer generation time, alimit of fifty 1iterations wa s introduced.
For the 8-bit quantizers, the generation procedure required eight applications of the splitting
algorithm Each time the splitting algorithm was apphed, it waa necessary to run the

optimization procedure. Since there were four sets of quantiters and eleven different. block
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Iterations Occurences Percent

0-4 0 0 ;s
5-9 17 483 ,
o
10-14 32 9.00
15-19 49 1302
. '20-24 54 15.34 )
25-29 67 19.03
30-34 59 16.76
° © 35-39 27 767 ‘
10-44 19 5.40
45-49 14 3.98
50- 14 3.98 .

: Table 5-5: Frequency of Iteration Number

b

lengths, the optimization procedure was run 352 times. hi)le 5-5 shows the distribution of
iterations required before the optimisation procedure terminated. As can be seen, less than
four percent of the time were 50, or possibly more, iterations required and less than twelve_
percent of the time were more than 40 iterations required. On the other hand, 15 or more
iterations were required mare than eighty-five percent of the time before the optimization

procedure ter minated

Figures 5-1 and 5-2 display the signal to nouse ratios (SQNR) versus the iteratipm for
a variely of block lengths. Figure 5-1 shows the increase in SQNR st the first level of the
quantizer tree (corresponds to bit 4 1n the table;) and Figure 5-2 shows the increase in SQNH
at the second level of the quantizer tree (bit 8). It can be seen the most of the increase in the
SQNR occurs within the first five to seven iterations. In general, the quantizer performance
obtains ninety percent of its final value within five iterations and ninety-five percent within

seven iterations
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Figure 5-1. Quantizer Performance Withou%h Prediction

5.2 QUANTIZER PERFORMANCE

Figures 5-3 and 5-4 display vector quantiser performance for residual quantizers. For
the results of Figure' 5-3, the coder used to derive the residual training sequence did not
include a pitch prediction filter. For the resuits of Figure 5-4, the coder includes a pitch
prediction filter. In baoth cases, vector quantizers of dimensions ranging from one to sixteen
are compared to one-dimensional uniform and Lloyd-Max quantizers. For each block sise,

one to eight bit vector quantizers were calculated.

The uniform quantisers were designed using the 40 method as discussed in Section2.2.3,
where o?is the variance of the training sequence. One-bit to eight-bit uniform quantisers were
calculated. According to the theory, the signal-to-quantisation-noise ratio should increase
at roughly 8 dB/bit. It can be seen from the graphs that the theory breaks down at the
fou;-blt. uniform quantizer This is not entirely unexpected since the mode] pfraented in

Section 2.2.3 is very approximate
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The Lloyd-Max quantizers were designed, using the Lloyd-Max algorithm [MAX60],
from a 250-point tabulated distribution obtained from the training sequence. Because of
this, a maxixgmn of seven bits could be amigned to the-Lioyd-Max quantiser and at seven
bits, there is less than two distribution‘mlue,t‘,foi' each outppt level.

Table 5-0 dispiays the bits/sample of the vector quantizers for varying block sizes and
bits/block. Since a single one to eight-bit codeword is used to represent each output vector,
the number of bits/sample is obtained ?y dividing the number of bita in the codeword by
the oumber of samples in the block. Table 5-7 lists the transmission rates, corresponding
to Table 5-8, for the residual signal. It should be noted that these rates are only for the

residual: the coding of the other parameters will add to these values.
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Bits/Block: 1 2 3 4 ‘ 5 6 7 8
Block Size
1 1 2 3 4 5 8 \7 8
2 0.5 10 1.5 2.0 2.5 3.0 3.5 40
3 333 667 1.000 1333 1.867 2000 2.333 2.667
4 0.25 050 075 1.00 125 150 175 200
5 020 040 060 080 1.00 1.20 140 160
6 0167 0333 v 0500 0.687 0833 1.000 1.167 1333
8 0125 0.250 * 0375 0500 "0.625 0750 0875 1.000
10 010 020 030 040 050 080 070 080
12 0083 0167 0250 0.335 O4i7 OGo0u 0Go83 U OGY
15 D067 0133 0200 0267 0333 0400 0487 0.533
16 0063 0125 0188 0250 0313 0375 0438 0500

Table 5-6 Bits/Sample for Various Block Lengths and Bits/Block

Since the vector quantizer design algorithm 1s a vanation of Lloyd’s Method I, a comparison
of vector quantizers, with block length one, to Lioyd-Max quantizers 1s desirable. From
Figures 5-3(a) and 5-4(a}, it can be seen, in both cases, that the performances of both
quantizers are very close for the one to six-bit quantizers, w;th the Lloyd-Max quantizer
performing shghtly better At seven bits, the Lloyd-Max quantizer shows a drop in perfor-

mance compared to the vector quantizer This probably occurred because there were not

.enough points in the tabulated distnibution used to generate the Lioyd-Max quantizer.

As can be seen from the graphs, the vector quantizers performed better th@ the uniform
quantizers at equivalent bit rates Compared to the Lloyd-Max quantizers, the difference in
performance 1s nol as greal. These results indicate that the use of vector quantirers for
the residual signal can result in some improvement 1n performar-e over scalar quantizers at

equivalent bit rates
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Bits/Block 1 2 3 4 5 6 7 8

Block Size ’
1 8000 16000 24000 32000 40000 48000 56000 64000
2 4000 8000 12000 16000 20000 24000 28000 32000
3 2667 5333 8000 10667 13333 16000 18667 21333
4 2000 4000 6060 8000 10000 12000 14000 18000
/ .5 1600 3200 4800 06400 8000 9600 11200 12800
6 1333 2667 4000 5333 6667 8000 9333 10667
8 1000 2000 3000 4000 5000 6000 7000 8000
10 800 1600 2400 3200 4000 4800 5600 6400
12 667 1333 2000 2687 3333 4000 4667 5333
IS 533 1077 16000 2133 2667 3200 3733 4267
16 500 1000 1500 2000 2500 3000 3500 4000

o «

Table 5-7. Residual Bit Rates for 8kHz Sampled Speech

Figures 5-3 and 5-4 seem to indicate an improvement over scalar quantization at
,equivalent bit rates It then becomes desirable to compare vector quantizers of et;uxvalent
bit rates Figures 5-5 and 5-6 compare the performances of four different quantizers with
varying block lengths In Figure 5-5, one-bit was assigned for every sample in the block
while 1n Figure 5-6, two bits were assigned This translates to a residual bit rate of 8 kbps
and 16 kbps respectively for 8 kHz sampled speech. In the first figure, there 15 roughly a
25dB ~gam, in all four examples, as the the block length varies from one to ten samples In

the second figure, there 1s a 2 5 dB gain 10 performance as the block size varies from one to

five samples

From the theory, an increase in the SQNR as the block length increases indicates that

there 1s some correlation between the samples 1n the block. This increase in SQNR with
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block sise thus indicates that, despite attempts to remove redundant informstion through
the use of a prediction filter, there still remains redundancy in the residual signal. The

vector quantisers take sdvantage of this redundancy.

‘

- .

5.3 EFFECT OF QUANTIZING PARAMETERS

As can be seen from the Figures 5-5 and 5-8, quantixing the coder parameters results in

a drop 1n the SQNR for the residual quantiser. Since the parameters are quantised before ——

they are used, the output residual signal is not minimal for the set of parameters, as would be

the case if the parameters were unquantized. Thus, there is greater variance in the residual

signal compared to the unquantised case which then resuits in grester quantiser error for

the same number of bits.
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5.4 EFFECT OF PITCH FILTERING

As can be seen from Figures 5-5 and 5-8, the addition of the pitch filter did little to
change the quantizer performance. As can be seen from the figures, the addition of the
pitch filter actually seemed to cause a drop in the performance of the residual quantiser.
The actual loas 1n the SQNR increased as the block length increased. At one-bit/sample,
the loas ranged from less than 0.1 dB at a block length of one, to 0.5 dB, in the extreme
case, at a block length of ten. At two-bits/sample, the loss ranged from about 0.2 dB at a
block length of one, to about 0.25 dB at a block length of five

The loss in quantizer performance may possibly be attributed to a combination of three
causes. First, the addition of the pitch preciction filter removes some of the redundant
information in the remdual signal. Thus successive samples in the pltCil filtered residual

Q are more independent and the correlation between samples in 3 block, which is used by the

vector quantisers, is reduced. Secondly, the pitch filter reduces the amplitude of the “spikes”

—/
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present at the beginning of each pitch period while not mignificantly affecting the remainder
of the signal Thus the aignal power 1s not affected significantly in comparison to the pewer
before quantization. Finally, unless the pitch period is a multiple of the quantizer block s ze,

samples in successive pitch periods will not lie at the same position in each block. This may

cause the characteristics of the residual signal to be noticeably affected

Becausc the residual samples may be more immdependent due to the pitch filter and
because the signal power 1s not significantly affected, a greater quantirer error may occur
due to less correlation between samples with a corresponding decrease 1n SNR. Further
quantization errors may be introduced if corresponding samples 1n succesaive pitch periods
vary their position within each block to be quantized Because of the limited number of
output vectors, a variation in the position of the sample can result in notizeable differences

in Lhe quantization error

55 SUBJECTIVE EVALUATION

A group of seven untrained listepers, four male and three female, was used to sub-
Jectively evaluate the reconstructed speech. The evaluation process was divided into four
parts In the first part, the hsteners were asked to comment on the characteristics of the
reconstructed speech In the second part, the listeners were asked to compare reconstructed
speech from residual-encoded hnear predictive coders using either scalar or vector quan-
tization of the residual signal In this case, no quantization was performed on the other
parameters of the coder, 1 e the gan, the predictive filter parameters, and, if present, the
pitch filter parameters This was done 1n order to obtain a subjective evaluation of the
restdual quantizer performance as opposed to the performance of the coder itself

N

In the third part, the coder, with all parameters quantized and using vector quantiza-

tion, was compared to a log-PCM coder This was done in order to compare the subjective

quality of the reconstructed speech from the hpear predictive coder to that produced from

a standard and well understood coding system This then produces an indication of the

» o

- 102 -

AL adase Bes

PR N R R



- — g -

possible savings 1o transmission bit rate for subjectively equivalent speech quality.

Finally, in the Iast patt of the evaluation, the listeners were asked to compare the linear
predictive coders with and without the inclusion of a pitch prediction filter. From thls,/an
indication may be obtained as to the desirability of including a pitch filter in the coding

system

Upon listening to the reconstructed speech, the histeners all found it to be 'mufﬂed"' and
“low pitched”,1 ¢ therev:‘as a lack of high frequency components. This lack of high frequency
components characteri¥ed the coder for 8 kbps and 18 kbps (1-bit/sample-and 2-bit/sample)
residual transmission rates It remained unaflected as the quantizer block length was varied
Despite the muflled quahity, the hsteners found the speech readily understandable

In comparison to log-PCM speech, using a transmission rate of 32 kbps, the hsteners
found there was less “static™, or “crackling” noise in the linear predictive coder. They also
found that there was less hiss introduced by the inear pr:dlctive coder. However, they found
there was more hn‘gh frequency components 1n the log-PCM speech, i e 1t was not as “low

pitched”, although there was more noise present

Tables 5-8 and 5-9 show the subjective evaluations of the linear predictive coder without
the pitch prediction filter, while Table 5-10 and 5-11 are for the coder with the pitch
preénctlon filter included In both cases, the use of vecto: quantizers for the remdual is
compared to the use of scalar quantizers, either uniform or Lloyd-Max. In the tables, the
first of each pair of numbers represents the number of histeners who preferred the speech
generated with the use of a vector quantizer The second value represents the number
of hsteners who preferred the speech reconstructed using a scalar quantizer. The vector
quantizers had block lengths of one to five samples with two bits assigned to each sample

1n the block. These quantizers are compared to uniform and Lloyd-Max quantizers of two

to four bits/sample
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; g» Vector Quantiver | Uniform Quantiser: Bits/Sample
g Block Length 2 3 1
1 7/0 2/5 0/7
g 2 7/0 3/4 0/7
3 7/0 8/1 0/7
E ' 7/0 .7/0 0/7 ,
" 5 7/0 7/0 o/7
Table 5-8 Subjective Comparison of Vector and Uniforin Scalar Quantisers (No Piteh
Prediction)
v)/ \‘
Vector Quantizer | Lioyd-Max Quantizer: Bits/Sample .
Block Length 2 T3 4
1 7/0 0f7 ' 0/7 ‘ , )
i 2 7/0 o7 o1 '
3 7/0 0/7 0/7 '
4 7/0 o/7 0/7 )
© 5 7/0 2/5 0/7
Table 5-9 Subjective Comparison of Vector and Lloyd-Max Scalar Quantisers (No

l Pitch Prediction)

As can be seen from the tables, for both the pitch filtered and non-pitch filtered speech,
the vector quantizers were preferred over the two-bit uniform quantiser. When compared
to the three-bit umform quantiser, the vector quantisers of block lengths three to five were

unanimousty preferred in the coder wmithout pitch prediction. For vector quantisers of biock

#=
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Vector Quantizer § Uniform Quantizer: Bits/Sample
{' . \ Block Length ) 3 .
1 7/0 2/5 0/7
! 2 710 3/4 0/7
3’ 7/0 8/1 0/7
4 7/0 6/1 0/7
) 5 7/0 6/1 0/7

Table 5-10: Subjective Comparison of Vector and Uniform Scalar Quantizers (With
Pitch Prediction)

Vector Quantizer | Lloyd-Max Quantizer: Bita/Sample ’ §
Block Length 2 3 ’ 4
p 7/0 ' 0/7 0/7
2 7/0 0/7 0/7 ’
{ 3 7/0 0/7 0/7
4 7/0 0/7 0/7
5 7/0 1/6 0/7

Table 5-11 Subjective Comparison of Vector and Lloyd:Max Scalar Quantizers (With
Pitch Prediction) N

o .
’ <

]

lengths one and two, more people preferre;:l the uniform quantizer. In the case of the coder

with pitch prediction, more peoplct preferred the vector quantizer over the three bit uniform
quantizer, except for the one-dimensional vector 'quantixfer where the opposite was true.
For both coders, the four-bit uniform quantizer was unanimously preferred over all vector

quantizers,

For the Lloyd-Max quantizers, the vector quantizers were unanimously preferred in
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most cases over the two-bit Lloyd-Max quantiser. The only exception was in the case of the
one-dimensional vector quantiter in the coder with the pitch prediction filter. The three-bit
Lloyd-Max quantizer was unanimously preferred in most cases over the vector quartizers.
The only exception in this case occurred for the five-dimensional vector quantizer in the
coder without pitch prediction. In all cases, the four-bit Lioyd-Max quantizer was preferred

over the vector quantizers.

From Figures §-3 and 5-4, it inay be seen that the performances of the-wector quantizers
of the different block lengths and two-bits/sample in the block generally ‘fell between that
of the two-bits/sample and three-bits/eample Lloyd-Max quantizers. The range of quantizer
performance was belween two-bits/sample and four-bita/samp‘le in the case of the uniform
quantizer. There seems to be a correlation in this case between quantizer performance and

subjective preference

Tables 5-12 and 5-13 compare the coder with no pitch filter andk using vector quantiters
of 1-bit and 2-bits respectively for each sample in the block, to a log-PCM coder of varying
bit rates. The procedure is repeated in Tables 5-14 and 5-15 for the coder with the pitch
prediction filter included.

In general, the linear predictive coder was preferred over the three-bits/sample log-PCM
when vector quantizers with one-bit/sample in the the block were used. When compared to
4-bit/sample log-PCM, more people preferred the hinear predictive coder when the vector
quantizers with larger block sizes were used. The opposite was true for the smaller block
sizes. Finally, the five-bit log-PCM coder was unanimously preferred in most cases over the

linear predictive coder

For the two-bit/sample in the block vector quantisers, the linear predictive coder was
unanimously preferred over the 4-bit log-PCM coder. The linear predictive coder and the
five-bit log-PCM coder were judged about the same with more people preferring the linear
predictive coder when the vector quantisers had the larger block iengths. In all cases, the

6-bit log-PCM coder was preferred unanimously over the linear predictive coder.

v
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Table 5-12

Table §-13

LP Coder Log-PCM  Coder Bits/Sample
Block Length 3 4 5
1 5/2 2/5 0/7
2 4/3 3/4 0/7
3 7/0 5/2 0/7
4 6/1 4/3 0/7
5 8/1 4/3 0/7
8 7/0 7/0 0/7
8 7/0 7/0 0/7 ’
10 7/0 6/1 0/7
Comparison of Log-PCM and Linear Predictive Coder Using 1-bit/sample \

for Residual (No Pitch Prediction)

LP Coder | Log-PCM Coder: Bits/Sample IR
Block Length 2 3 4 ‘, \

1 7/0 3/4 0/7 oo

2 7/0 3/4 0/7

3 7/0 3/4 0/7 ‘

4 7/0 5/2 0/7

5 7/0 4/3 0/7

I
.
| W

¥
I

‘ g
[L h /l//l’ .‘!,}‘, i
’ Y 1t

/ \\
ot !
Comparison of Log-PCM and Linear Predictive Coder Using 2-bit/nmpfﬁ
for Residual (No Pitch Prediction) .
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a i ° LP Code* | Log-PCM Coder: Bits/Sample
Blork Length 3 4 5
1 5/2 3/4 0/7
2 4/3 3/4 0/7
3 7/0 52 1/6
4 8/1 4/3 0/7 .
5 6/1 4/3 0/7
6 5/2 4/3 0/7
8 8/1 5/2 0/7
10 7/0 8/1 2/5
j
Table 5-14: Companson of Log-PCM and Linear Predictive Coder Using 1-bit/sample §
for Residual (With Pitch Prediction) g‘
(.‘ ' LP Coder | Log-PCM Coder Bits/Sample
' Block Length 2 3 4
\ 1 6/1 34 . o7
2 7/0 3/4 0/7 ) g
3 7/0 4/3 0/7
) 4 7/0 7/0 2/5
5 7/0 5/2 0/7

Table 5-15 Companison of Log-PCM and Linear Predictive Coder Using 2-bit/sample ‘
for Residual {(With Pitch Prediction)
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(: Block { Block Length (Coder with pitch filter)
Length | 1 P 3 4 5 ) 8 10 .
| o1 o i - - .- ’
2 8/1 1/8 0/7 - - - - -
3 - 5/2 1/6 o1 - . .« .
4 - ., 7/0  1/8 07 - . .
5 - - . 7/0 047 0/7 - L
6 - . - - s/2 2/5 . . :
’ 8 - . . . - Y.
10 - 2 - - - - =
Table 5-18:  Comparison of Coders With and Without Pitch Prediction (1-bit/sample
) for Residual)
(; ( Block |Block Length (with pitch filter) “ o
Length 1 2 3 4 5
1 0/7 0/7 - - -
2 6/1 0/7 0/7 - -
3 . 7/0 0/7  0/7 - ‘
4 - - 8/1 0/7 0/7
5 . . ; 5/2  0/7
¢ 2
Table 5-17: Comparison of Coders With and Without Pitch Prediction (2-bit/sample
o for Residual) v ‘
From the above results, ig, seems that as the block lengths of the vector quantizers increase,
the output of the linear predictive coder subjectively improves. This may be compared to
L the increase in quantizer performance with block length when compared to Figures 5-5 and
5-6.
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Tables 5-18 and :’)-17 compare the linear predictive coders with and wit.’hout the pitch . :,

prediction filter. In Table 5-18, vector quantizers ‘with one—bit/samiﬂe in the bl’ock are used "

in the coder. For the results in Table 5-17, the quantizers have two-bits/sample in the block. é

From the tables, 1t may be seen that, in general, the speech from the coder with pitch Eﬂ,

prediction was preferred over that Without the filter. However, the difference in quality, P

although noticeable, was small and, in most cases, the listening test had to be repeated

) ) several times before a decision could be made. Since the addition of the pitch filter added
17 bits/frame to the transmission rate, the loss in quality due to the exclusion of the pitch

\ filter may be acceptable in terms of reducing the bit rate. .
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CHAPTER 6
' CONCLUSIONS ‘ . .

It has been shown that the procedure of generating vector quantizers can bexﬂtime

consuming. A number of factors have been shown to affect the time required to generate

' . -+ each quantizer The most obvious of these factors are the number of levels in the quantizer
“and its block size, 1.e the number of elements in the vector

Tﬁe number of iterations at each “split” of the quantizer generation algorithm also affect

the duantxzation generation time. Obviously, the greater the number of iterations required,

l . - . Y
the longer it takes to generate the quantizer. If some manner of reducing the iterations could

(.. be found, there®*would be a éonsequent reduction 1n the quantizer generation time.
. ;( ‘ ; (
* The number of iterafons required is related to the error diﬂerence threshold and to ({
the initial quantizer used in the design algorithm. If a more accurate 1nitial quantizer could’
be found, the number of iterations required for the algonithm to “settle down” would be
. reduced. Since the algorithm is of a random nature, determining a more accurate imitial
quantizer would be difficult n pré?tlcc. This leaves the use of a lar;;er error difference

threshold If a larger threshold value was used, the number of 1terations would be less since

¢

the quantizer error would have to be reduced by a greater amount each iteration. eﬂ?le
drawback behind this, however, 1s, that by increasing the error difference threshold, the

quantizer error 1s increased .

j . ) It was found that, with an error difference threshold of 0 0001, the optimization procedure

required forty, or more, iterations to terminate only twelve percent of the time. On the

¢

. other hand, fiftecn, or more, iterations were required eighty-five percent of the time be-

s
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fore termination occurred. By comparing the quantizer performance at each iteration, it
was observed that the greatest increase in the 'signal-to-quantizat.ion-l/loise ratio occurred
within the first few iterations. In general, the SQNR obtained ninety percent of it final
value within five iterations, and MDety-ﬁve percent within seven iterations. Thus by ac-
cepting a relatively small decrease in quantizer performance by limiting the maximum

number of iterations to seven, the quantizér generation time could be reduced, on the

average, by more than seventy-five percent

°
i

It has been demonstrated that, at equivalent bit rates, vector quantizers perform as well,
or better, than scalar quantizers In companison to the umfpr_m quantizers, considerable gains
in performance are obtained These gains are not as great when compared to the Lloyd-Max
quantizers This is hardly surpnising since the Llovd-Max quantizers perform conmderably

better than the corresponding uniform quantizers

In particular, when the one-dimensional vector quantizer was compared to the Lloyd:
Max quantizer for varying bit rates, it was observed that the performances of the quantizers
were very close This verifies the operation of the vector quantizer design algorithm. Since
the vector quantizers are designed using‘a variation of Lloyd’s Method I and the Lloyd:Max
quantizers are designed using the Lloyd-Max algorithm, a variation of Lloyd’s Method 11, 1t

i1s expected that the two quantizers would perform similarly. Since the performances of the

two quantizers were so similar, this demonstrates that the vector quantizer design algorithxp//'\'

will produce a quantizer at least as good as a scalar Lloyd-Max quantizer of equivalent bit

rates.

When the output bit rate was held constant and the vector quantizer block length

was increased, it was observed ..at the quantizer performance increased. This indicates

. that there remains some correlation between samples 1n the residual signzal of attempts to

remoye redundant information through hnear predictive techniques have been made This
correlation between samples may thus be used to improve the coder performance through

the use of vector quantizers while maintaining the same transmission rate.

~

’

Since the quantizers were designed in a random manner through clustering, the quan-
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tizer performance may not have been as gn;od as possible. This is inherent to the'it;i\;n al-
gorithm itself and depends upon the choice of initial quantizer. Since there 1s no ‘1ntelhg?ance'
applied 1n the splitting alg):nt.hm there is no control over the selection of the 1mitial quan-
tizer A further problem 1s introduced through the use of the tree structure for the quan-
tizer The tree structure constrains the output points to particular regions of the data
space at all levels below the first level of the tree. This constraint becomes more restric-
tive the deeper one iravels m the tree structure This occurs because, at the first level, the
data space 1s divided into a number of regions The next level only subdivides these regions
without attempting to improve the region definition This continues to the lowest level
of the tree Thus if, for some reason, a region defined near the top of the tree has only a few

points, the final set of output points will not reflect the true distribution of the data space

When a subjective comparison of the coder using vector quantizers was made to the
coder using scalar quantizers, at equivalent bit rates, it was found that the listeners generally
preferred the coder which used the vector quantizers When compared to the Lloyd-Max
quantizers, 1t was found that two-bit/sample vector quantizers were preferred more than two-
bit, but less than three-hit, [.loyd-Max quartizers. In comparison to the uniform quantizers,
the range of preference ran from two-bit tq four-bit uniform quantizers In general, as the
block length increased, the preference increased This was further born out by comparisons
between the vector quantizers. The quantizers with larger block lengths were preferred over

the quantizers with the smaller vector sizes Thus the use of vector quantizers results in
a perceptual improvement as well as a quantitative improvement in comparison to scalar

quantizers

[

When compared to log-PCM speech, the hinear predictive coder, both with and without
pitch prediction, were scen to result in substantial savings 1n transmission rates for equiv-
alent perceptual quality The range of preference for the hnear predictive coder with one-
bit/sample for the residual was between three- and four-bit log-PCM For 8 kHz sampled
speech, this confcsponds to transmission rates of 8 6 kb;;s for the hnear predictive coder
without pitch szglctlon, 9 2 kbps with piteh prediction as compared to between 24 kbps

and 32 kbps for the log-PCM coder. For two-bits/sample for the residual, the range of
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preference was between four- and five-bit log-PCM or 16.6 kbps (17.2 kbps) as compared to
a range of 32 kbps to 40 kbps. Thus it can be seen that pérceptually equivalent speech may
be produced at considerably lower bit rates through the use of linear predictive techniques

and vector quantization of the residual.

It was found that the addition of the pitch prediction filter improved the perceptual
quality of the speech only shightly Since an extra 800 bits/second are required to transmit
the pitch information, it is donbtful that the perceptual improvement is worth the extra bits.

Instead, it would probably be more useful to distribute the bits among the other parameters

of the coder.

It was also observed that the addition of the pitch filter affected the performances of the
residual vector quantizers. In general, the pitch prediction caused a reduction in the SNR
of the vector quantizers. The addition of pitch predictiqn tends to reduce the correlations
hetween subsequent samples. Since the vector quantizers depend upon these correlations for
their gamns in performance, the addltion" of the pitch filter can cause a loss in quantizer

53

performance which becomes mare apparent as the block length increases.

6.1 Suggestions For Further Work

‘There is a wide range of topics for further investigation. First among these is an
extension of the work to multiple speakers. Since the quantizers were generated from a
traimng sequence derived from a single speaker, the quantizers match the characteristics
of that speaker Because of this, the quantizers may not perform as well with different
speakers since the characteristics wil be different It would be useful to determine to what
extent multiple speakers would affect quantizer performance, especially in the presence of

>

both male and female speakers.

Another topic of interest would be to observe the effect of splitting the residual codebook
into two codebooks containing vectors representing voiced and unvoiced residusal signals. It

would then be possible to allocate the number of quantizer output vectors to each codebook
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in such a way sa to maximize performance while maintaimng a relatively low bit rate.
Since the voiced residual signal generally has greater amplitude as well as a "spike” at the
begm;ung of each pitch period, the voiced codebook would contain vectors matching these
characteristics For unvoiced residual signals, the waveform 1s generally of a random nature.
In this case, a relatively small selection of random vectors may be sufficient. Thus, a greater
number of/v”e”c.tors could be asmigned to the voiced codebook in order t,o allow more variation

while relatively fewer vectors could be used where the residual 1s relatively random.

Another area of investigation would involve improving the coder design. The present
work involved the use of a very simpie coder 1t would be interesting to observe the effect of
different coder configurations or different coding techmques upon the perceptual quality of
the reconstructed speech In particular, different methods for generating the vector quantizer
should be investigated. For example, the generation of the initial quantizer could be done in
a different manner Another concept would be the 1mposition of certain constraints upon the
quantizer structure and performance. It would be interesting to see the effect of constraning
the maximum error (except in the overload regions). This 18 equivalent to ensuring the
centroids are never more than a gmiven distance apart. It would alse be posasible to ensure
that the centroids are not too close as well, sance this would have the effect of giving a more
umform coverage to the signal space. Finally, 2 combination of quantizer structures may
be investigated. By using a lattice quantizer at the top level of the codebook tree, it would
be possibie to constrain the maximum error as well a8 to decrease the search time for the

closest matching codeword.

.Finally, it would be of interest to compare the coder with prediction to the coder
without the pitch filter at equivalent bit rates. It has been shown that the coder with the
pitch filter was only slightly preferable to that without pitch prediction. Since the inclusion
of the pitch filter requires an extra seventeen bits per data frame, by eliminating the pitch
filter and redistributing the bits among the other data in the {frame, a better comparison
of the two coders could be made For instance, the extra bits could be used to increase the
number of levels 1n the codebook thereby allowing a better approximation to be made of

the residual sgnal. If the coder wath the pitch filter was still preferable, then 1t may be

f
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concluded that the insertion of the pitch prediction filter is desirable.
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