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Abstract

This Thesis elaborates three aspects in the field of flow-induced vibrations
associated with annular geometries.

A method to find the unsteady fluid foices on a cylinder oscillating in annu-
lar turbulent flow is developed by considering the superposition of the turbulent
fluctnating quantitics on potential flow. The theory is compared with experiments.

Then, the unsteady fluid forces acting on the vibrating cylinder walls of non-
uniform annular configurations are computed by a method which performs the
accutate time integration of the Navier-Stokes equations. It is the extension for
unsteady flows of the method of artificial compressibility used for steady flows.
A time-discretization of the momentum equation using a three-point-backward
implicit scheme is introduced, and the addition of pseudo-time derivative terms to
the semi-discretized equations, including artificial compressibility in the continuity
equation, allows to use time-marching solution techniques thereafter.

Finally, the integration method used for the Navier-Stokes equations is com-
bined with the equation governing the dynamical behavior of a structure in order

to perform the fluid-structure stability analysis of this system in the time domain.



Résumé

Ceite thése traite de trois sujets originaux des études fluides-strnetures en
écoulements laminaires.

Une méthode détermne d'abord les forces flmide instationnanes sur un cylin-
dre vibrant daps un écoulement annulaire uniforme turbulent  Elle consiste en
la superposition des nuantités fluctuantes présentes dans les écoulements turbu-
lents, avec un écoulement potentiel. La théorie est comparée avee des tésultats
expérimentaux.

Les écoulements laminaires dans des géométries annulaes non uniformes
font pai la suite I’objet de la these, et les forces fluide mstationnanes swr les parons
vibrantes des cylindres sont calculées par une nouvelle méthode Elle consiste en
I'intégration temporelle des équations de Navier-Stokes par la méthode de com-
pressibilité artificielle généralisée pour résoudre les écoulements mstationnaites
Un schéma décentré a trois pas de temps est mtroduit a cette fin dans 'équation
de Navier-Stokes, et 'addition de dérivées en “pseudo-temps™ aux (quations, -
cluant de la compressibilité artificielle pour I’équation de contimuité, permet alors
d'utiliser les méthodes de solution temporelles existantes, en pseudo-temps

En dernier lieu, la méthode de compressibilité artificiclle développée pour les
équations de Navier-Stokes est combinée avec I'équation détermmant le comporte-
ment dyvnamique d'un svstéme fluide-st-ucture dans le but d'en étudier la stabilité

en domaine temporel
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Chapter 1

INTRODUCTION

1.1 Flow-induced Vibrations

Vibration problems that have been reported to have occured m different tvpes
of industrial installations such as heat exchangers and nuclear 1eactors have been
caused 11 many cases by fluid flow interacting with the stiuctural components i
the equipment concerned. Paldoussis (1] has compiled an interesting account of
some of the most frequently encountered problems, and he documented cases m
which such problems have occured.

These pioblems. due to flow-induced vibrations. are the object of ongong
studies, the aim of which 1s to arrive at a better understanding as to then causes

and mechanisms [2].

1.2 Vibration Induced by Annular Flow

One class of problems in which flow-induced vibrations are encountered mvolves
geometries with annular flow. the annular region bemng dehmited by two tubular

structures. In the core of the Advanced Gas Cooled Reactor depicted in Figure 11
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Figure 1.1: Core of Advanced Gas Cooled Reactor showing the annular flow con-

figuration (reprinted from Hobson's [3]).

The inner structure consists in the fuel assembly, whereas the outer body
is a graphite core, delimiting a non-uniform annular region in which the coolant
flows. Vibrations of the fuel assembly elements caused by the flow of coolant under
certain operating conditions (re-fuelling operation) have lowered the performance
of the reactor (Hobson [3]). The "control rods”, controlling the reaction rates in
other types of nuclear reactors, are also annular flow devices, and their problems

with regard to flow-induced vibrations have been documented [1).




Studies to explain the mechamsms causmg the detrimental vibrations
annular flow configurations have been mtiated by Hobson [4]. who developed a
semi-empirical numerical method m which expenmentally deternuned coetlicients
supplemented the analytical formulation

An analytical theory that did not requuze any expenimental coetlicient was
developed by Mateescu & Paidoussis [5]. It was based on potential flow theory
and the assumption of smooth variations i the annular flow passage, such that
no pronounced viscous flow effects were present (for example no flow separation)
They then completed their theory to treat in a simphfied manner the unsteady
viscous flow effects 1n the lamunar flow regune [6).

Mateescu. Paidoussis & Bélanger [7] then extended this theorv by the melu-
sion of unsteady viscous flow effects in the turbulent 1egin ». The presentation of
these results will serve to intioduce the topic which is the object of this Thesis,
as this work was 1nitiated at the very beginning of the Ph D program  Thus, m
Chapter 2 the theory [i. 8] used to describe the turbulent phenomenom is pre-
sented. along with the experimental tests performed at McGull [9, 10] to validate
it. Those experimental tests were carried out on an appatatus which was available
at McGill, and the new 1esults thus obtamed for the encumferential vanation of
the unsteady pressure were pait of the Ph D waork and seived to validate the tur-
bulent theory developed concurtently. In this theorv, the annular flow passage was
supposed to be uniform, and the purpose was to establish theoretical and expen-
mental foundations before tackling mote complex configurations The comparison

between theory and experniment was good as 1 shown m Chapter 2
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1.3 Modelling of Fluid Forces by the Navier-

Stokes Equations

The scope of applicability of the method developed in Refs [7. 8] is limited by the
requirement that the annular flow passage 1s uniform, or that variations in the
annular passage width are at least smooth and gradual. The theory expounded in
Chapter 2 teduces to the results obtained in Refs [7, 8] for the case of a uniform
annular geometiv, a different derivation is done in Chapter 2, which permits to
envisage the generalization of the method for non-uniform geometries. However,
the theory 1s based on the decomposition of the flow into potential and turbulent
paits. In order to generalize the modelling to better take into account geometries
in which pronounced diffuser sections or even abrupt discontinuities are present in
the annular region, see Figure 1 1, it was decided to model the fluid forces by the
direct use of the Navier-Stokes equations, instead of pursuing with the model of
Chapter 2 In this case, no assumptions such as flow decomposition are necessary.
Indeed, the Navier-Stokes equations can model the viscous effects present in the
more general configurations involving flow recirculation.

In order to develop a methodology. the first step undertaken was the treat-
ment of problems i the laminar flow regime, in which case the Navier-Stokes
equations can be solved accurately by numerical methods without the need for
mcorporating a tuthulence model m the equations Thus. the theory of Chapter 2
will be putsued no further m this thesis, and Chapter 2 will conclude the treat-
ment of uncteadv turbulent flows The nclusion of the work of Chapter 2 serves
to present the interesting results that have been obtained 1 the first stage of the
Ph.D progiam, namels the development of a method determuning the unsteady

pressure m turbulent flow and its validation on an alieady existing experimental
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apparatus having a umiform annular gap however, motder to develop more general
methods dealing with complex geometties a new approach was mitiated, namelv
the solving of the Navier-Stokes equations

The difficulty with that approach 1s that the fluid forees acting on the stiue-
ture cannot be determuned explhicitly in terms of the dynanncal parameters de-
scribing the structural motion. such as velocity  Indeed. the complexity of the
Navier-Stokes equations makes 1t impossible to obtain closed-form expressions for
the fluid forces for given boundary conditions and geometry, except i the sumplest
of cases.

The solution to that difficulty is to treat fluid-structure imteraction problems
in an interactive manner the equation govermmg the dynamical behaviour of the
structure is integrated simultaneously with the Navier-Stohes equations to obtiun
the temporal evolution of the structural motion The unsteady fhad forces acting
on the structure are determined as a function of the velocity of the strueture at the
fluid-structure interface Conclusions with regard to stabihty can thus be reached
as 1t is seen whether the structure has an oscillatory (flutter) mstability o1 one of
the divergence tvpe. The study of the stability of « fluid-stiucture system by this
method will serve as a conclusion to the present Thesrs, and the 1esults will bhe
presented in Chapter 9.

Before this. however. there 1s vet a challengmg aspect to the problem to
consider' the accurate time-integration of the unsteady Navier-Stokes equations
This problem is central to the present approach. and will be mtroduced first The
integration of the equations i1s done using a numernical method. specifically the fite
difference method 15 used to discretize the spatial differential operators appeanng,
in the equations However. the equations also have to be mtegrated m time, and
a new method has been developed to accomphsh that efficiently . 1t 15 presented i

Chapters 3 to 8.
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The Navier-Stokes equations considered desciibe the motion of an incom-
pressible flnd, wiich 1s the case of practical mterest for most problems in flow-
induced vibiations. Steady state solutions to these equations in the laminar flow
regime have been obtamed by vanons methods. Chorin [11] has introduced the
method of “artificial compiessibility”™. in which the continuity equation is aug-
mented by a pressure time-denvative term which allows to use time-marching so-
lution techniques to solve the system of equations as a whole. Indeed. the systemn of
meompressible Navier-Stokes eqquations contains a time derivative of velocity in the
momentum equation, but no tune denvative term in the continuity equation, and
special procedures are needed to implement time-marching solution techniques,
Chonn’s method 1s one of them: however, it is applicable only to steady state flow
solutions

Another method for solving the incompresible Navier-Stokes equations was
onginally developed by Harlow & Welch [12]. It 1s a pressure-correction type
method, and vanants of which, called projection method and fractional step method,
have subsequently been developed [13, 14, 15] It requires the 1terative solution
of a Poisson equation to obtain corrections to a guessed pressure field. It can
be apphed to the solution of buth the steady and unsteady incompressible flow
cquations, which 1s an advantage over Chornn's artificial compressibility method.
However. the latter is believed to be more efficient when it comes to obtaiming only
steady state solutions

Soh & Goodrich {16] have developed a method for solving the unsteady flow
equations which goes along the lines of the aitificial compressibility method. An
artificial time-denvative of pressure is added to the continuity equation, after the
momentum equation has been time-discretized and put in delta-form. A pseudo-
time relaxation procedure 15 introduced thereafter The formulation was com-

pheated and rendered necessary the introduction of simphifications in the solution




process. Indeed, the way time increments in the flow parameters are defined makes
for a cumbersome treatment vi the non-linear convective terms. Also, the time-
discretization scheme they chose did not resolve well the time-evolution solution
for pressure: numerical experiments conducted at McGill by the present author
revealed the presence of numerically-induced oscillations,

The present work has remedied these difficulties. The method of artificial
compressibility has been extended to so've unsteady imcompressible viscous flow
problems in straightforward fashion The equations are put m delta-form after
performing the time discretization of the momentum equation and mtroducing
the pseudo-time 1elaxation scheme, not before as in Ref. [16] This allows to
use the already existing time-marching solution techniques m standard manner, m
particular, Approximate Factorization and Alternating Direction Implieit methods
are implemented along the exact same lines as in the case of the method of attificral
compressibility applied to the solution of steady flow problems {17] Furthermore,
the time-discretization of the momentum equation is corrected m order to better
resolve the flow quantities and fluid forces, which 1esults in the introduction of the
three- point backward implhiat time-differencing scheme

The thesis contents can thus be summarized as follows. In Chapter 2 the
s.mplified theory is first introduced, which takes into account the unsteady viscous
effects in the turbulent flow regime; it is applied to the case of a umform annular
geometry Theorv and experiment are compared and the agreement 1s shown to
be good. Then. the extension of the flow theories to generahize their scope of
apphicabilty to more general configurations is the object of the other chapters,
where the treatment 1s for unsteady viscous laminar flow.

First, the method of artificial compressibility, as extended to also perform the
time-accurate integration of the unsteady incompressible Navier-Stokes equations

is presented [18]. The time-differencing scheme adopted is introduced in Chapter 3,
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and in Chapters 4 and 5 the theory is validated by applying it to some steady and
unsteady flow problemns in Cartesian coordinates; the finite difference method used
to discretize the spatial differential operators is described therein. The remaining
chapters apply the theory to the study of unsteady annular flow problems.

In Chapter 6, the solution technique adapted to cvlindrical coordinates is
described, in particular. imeanzed forms of the equations are introduced by using
the Galerkin method i which the basis functions are Fourier series expressed in
terins of the circumferential coordinate This is in fact a hybrid finite difference/
Founer expansion method which allows to obtain unsteady flow solutions in a very
cfficient manner, as three-dimensional domains (meshes) become two-dimensional.
Chapter 7 gives the particular forms cf the equations as well as numerical solutions
for a two-dimensional unsteady annular flow problem. There it is demonstrated
that the thiee-point-backward time-differencing scheme which has been introduced
in Chapter 3 1s superior to the Crank-Nicolson sheme Chapter 8 presents numer-
ical solutions for more general three-dimensional configurations, in particular the
unsteady Navier-Stokes equations are resolved on a three-dimensional mesh.

Up to this pomnt in the thesis, the unsteady viscous flow solutions have been
obtained by forced-vibration numerical experiments. In Chapter 9, the time-
itegration scheme developed for the Navier-Stokes equations is combined with
the equation govermng the dynamical behavior of a stiucture 1n order to perform
the fluid-structure stability analysis of this system in the time domain.

Finallv, Chap.ter 10 gives the main conclusions arr,ved at in the Thesis




Chapter 2

UNSTEADY TURBULENT
EFFECTS IN UNIFORM
ANNULAR GEOMETRY

2.1 Equations of Motion

The geometry for the problem treated in this chapter is shown in Figure 2.1

The present analysis considers the turbulent flow of an incompressible thud in the
narrow annular space formed between a cylindrical duct and a coaxially mounted
central cylinder of radius a. The inner radius of the duct is a+ H = a(1+h), whete
the relative annular gap h = H/a is generally small The rigid eviindrical center-
body of length L = al is considered to execute angular oscillations about a hinge
A situated at a distance L, = a [, flom the upstream end of the evlinder, which
is the origin of a cylindrical system of coordinates (X, R,6) For convemence,
the nondimensional cylindrical coordinates + = X/a, r = R/a and § will he

used, instead of the dimensional ones, in the formulation of the problem, and the



corresponding unit basis vectors are denoted by e,, e, and eq.
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Figure 2.1: Geometry of the oscillating center-body in the cylindrical duct.

We note that the characteristic length used to non-dimensionalize the equa-
tions in this chapter is taken to be a, the radius of the inner cylinder; in all
subsequent chapters where flow in annular geometry is considered the annular gap
width, H, will be chosen instead.

Two long fixed cylinders of the same radius a are situated upstream and
downstream of the inner cylinder to regularize the flow in the annulus, and the
mean axial flow velocity is denoted by U, see Figure 2.1, where U is used as the
characteristic velocicy.

Considering a harmonic oscillatory motion of the rigid cylinder, the angular
and lateral displacements of the center-body axis can be expressed in the complex

form
a(t) = aze™!, E(z,t)=ae(z,t) = a(z - 1,) a,e™",

where w and t represent the nondimensional frequency and time, which are defined

in terms of the dimensional time T and circular frequency Q (2 = 27 f) as

w=0a/U, t=UT/a.
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The nondimensional radial displacement, ¢, = E,/a, of the center-body surface at

any azimuthal position 6 (Figure 2.1) is
e(1.0,t) = (r —1,) a, cos o™,

In the present analysis, the flow in the narrow annulus is considered to be a
fully developed turbulent flow. and the unsteady turbulent effects on the dynames
of the center-body will be determined No steady effects of the turbulent flow, such
as pressurization (Ref. [19]). arc included since these do not affect the dynanies
of the rigid center-body (Ref [20]). We 1emark in passmg that the geometiy of
Figure 2.1 is aimed at idealizing certain aspects of annular flow configurations and
serves in a first approach to gauge the parametels governig annular flow

The equations governing the motion of an incompiessible viscous fluid are the

Navier-Stokes equation of momentum and the equation of conservation of nass,

MY - 2h -

—— .VV ) — — 2V = 2.

6t+v + Vp R(’V 0. (2.1)
V.V = 0. (2.2)

They are in non-dimensional form and Re = 2H U/ represents the Reynolds
number defined 1 terms of the hydraulic diameter, Dy, = 2H = 2ah, aud the char-
acteristic velocity. U, v is the flmd kinematic viscosity. V the velocity vector and p
the pressure. Since we are considering turbulent flows, we make the usual assump-
tion that the term —(2/:/1?(’)‘72\7 m the equation of momentumn conservation can
be dropped

To solve equations (2 1) and (2 2) and obtam the unsteady turbulent flow
effects. we proceed 1n the following manner We assume that the flow, including
the mean flow and the perturbations induced by the oscillating center-body wlich

are superposed on 1t, is basically a potential flow. and we denote by V and p

11
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those potential flow contributions to the flow picture. However, the presence of
turbulence in the flow is modelled, as is usually done for turbulent flows, by the
introduction of a fluctuating velocity component, v', and a fluctuating pressure
component, p’

At this stage, we have to observe that the unsteady turbulent flow consid-
cred is characterized by two distinct scales of time-dependence: (i) a macroscale
associated with the oscillatory motion of the center-body, and (ii) a microscale
associated with the turbulent fluctuations of the flow parameters. The microscale
time-dependence is modelled by v/ and p/, which are the usual fluctuating quanti-
ties mtroduced by Reynolds [21] for the study of turbulent flows. The time average

of both v/ and p' 15 zero:

=0T/ V(t+7)dr=0, 2T/ U471 dr=0,  (2.3)

where an overbar here denotes a time-averaged quantity and where the period of
time, 27T, during which time-averaging is performed is of the microscale order;
T is necessarily smaller than the macroscale period associated with center-body-
induced flow perturbations

Thus, the flow quantities V and p are separated into the following compo-

nents:

V=V4+v, p=p+Il+)p. (2.4)

where V and p represent the potential flow contributions, including the oscillation-
induced perturbation flow field. v’ and p’ are the fluctuating, or “eddy™ components
which account for turbulence at the micioscale level, and II 1s a macroscale un-
steady tuthulent pressure. The particular point about IT 1s that its time average is

not zero: indeed, it accounts 11 a “tume-averaged”, ~uacroscale sense for the pres-




ence of turbulence, which is modelled at the microscale by v/ aud p’' Thus, we
will denote the time-avoraged turbulent pressure, 1, by py:
1 7

])1: ﬁ - H(f+ T) ({T. (.

We note that in the macroscale sense we consider that V. = V. 5 = p. for the

(V
ot
—_—

potential flow contributions, such that the pressure on the surface of the oscillating,
cylinder is given by

p=p+p. (2.6)

In summary, the quantities v/, Il and p’ account for the presence of turbulenee
the flow and in this study they are superposed on an inviscid flow field, instead of
a “viscous” one.

Thus, equation (2.4) is substituted into (2.1) and (2.2). and the potential

flow contribution is extracted to obtain the following two sets of equations:

%\;,-+V~VV+V1) = 0, (2.7)
V-V =10, (2.8)

av’ ! ! ! / .
—a—t-+V-{v(V+v)+Vv}+V(H+p) = 0, (2.9)
Vv = 0. (2.10)

'In the original presentation of this work [7], a viscous contnibution, namely v, had also been
included in the decomposition of the velovity vector, e, we had V = V4 v, + v nstead of
(2.4). A discussion of the implications of this decomposition 1s made in the conclusion of this

chapter, Section 2.5.
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As pointed out earlier, the term —(2h/ Re)V2V has been dropped from the equa-
tions. Also. in equation (2.7) the writing of the convective term in that form
comes from wdentity V- VV = (V- V)V + V. VV, combined with (2.8). The
sclution to equations (2.7) and (2.8) for the potential flow contribution is given
in Section 2.2, wheteas the turbulent flow solution of equations (2.9) and (2.10) is
detailed in Section 2.3. Then, Section 2.4 shows how to combine the potential flow
and turbulent flow contributions in order to obtain the unsteady pressure; it also
gives the comparison of the theoretical results thus obtained with experimental

resilts.

2.2 Solution of Unsteady Potential Flow

The potential flow solution has previously been obtained in Refs [7, 20], and we
summarize here the results that are used in the present approach. namely the
solution as applied to a uniform annular gap geometry. We obtain the inviscid
contribution, p. to the unsteady pressure by linearized potential flow theory. It
is thus assumed that there 1s a steady mean flow in the annulus, which in the
present case is uniform and of magnitude U (or 1 in non-dimensional form), and
the perturbations in the mean flow introduced by the oscillations of the center-body
are small.

Then, in the case of potential flow, the fluid velocity derives from a velocity
potential, & = Ua(o + r). where ¢ is the perturbation potential which satisfies
IVol <« 1. in view of the small perturbation assumption. The dimensionless
velocity vector V in (2.4) is consequently given by

0d

o) 1 do
V':l'.r = —_ r+—e +-——ep,
e.+ Vo (1+6x)e +8re+r80e0

and upon substituting (2.11) into (2.8), we obtain a Laplace equation in ¢:

(2.11)

14




%0 4 0%0 4 1 do + 1 J%0
axr?  or? oy Or 2 92

Equation (2.7), which is Euler's equation of motion, is then mtegrated to obtain

Vio = =0. (2.12)

the perturbation form of the Bernoulli-Lagrange equation. namely

do  Jdo 1 )
p——W+E+§(VQ) ,

where p is the unsteady pressure perturbation corresponding to the potential (1n-
viscid) annular flow.

The solution to Laplace equation (2.12) has been obtamed m Ref [5] for the
general case of an axially variable annular passage by considenmg a convenent
Fourier expansion of the boundary condition on the oscillating center-body, 1 the

form

Jo de,  Oe, _ da ‘
da [ & V
= Z Dicoscrr + ) Exsmegr| +a(t)cosd,
dt & =

where D, and E; are the Fourier coefficients of the expansion and ¢ = 2zk/l.

Introducing a new nondimensional coordinate, z, across the annular passa e,
8

R—-a

a

=r -1, (2.13)

-
~

the solutions for ¢ and p on the cylinder surface (: = 0) in the case of a narrow

uniform annulus are obtained as

¢(z,0,6,t) = at) {(1+wDy) Gy(h)

N
+ w Z Gi(h) [Dy cos crx + Ej. sin ckx]} cosf,
k=1




A

{r,0.0.t) = «t) {(sz(, - zw) Golh) + Z [ (Dg coscrx + Ej sin i)

+ wey (Dysinepr — Eg cos ck‘r:)] cosf , (2.14)

| S —

where

. 1 2 . -
Gi(h) = - .4(“ - v Qe = \/5+4Cf.. (2.15)

Go—1lewh—1 g +1
A simplified unsteady potential solution was also obtained in Ref. [5]. which

is based on t e slender body assumption, and the solutions for ¢ and p are obtained

in the following closed forms:

h—=z da
@(.L‘,:.()J) = —--g-(-g’(T)) [( lo) it +O( )J cos b . (216)
(h) d*a da
= Y — — 0
(r,0.6,1) 70 (@ IO)dtZ +2— pTy cos
where

2 {q+1)(h~2) 2 -3(g—1)(h~z) -
gh=2z) = q+lez" +q-—162 . oq=vV5, (217)
g'(h) = extatih _ omila=Dh (2.18)

This solution will be used in the next section in the derivation of the turbulent

perturbation solution.

2.3 Solution of Unsteady Turbulent Flow

The procedure used to solve equations (2.9) and (2.10) is the one usually used for
turbulent flows, in which the microscale fluctuations are averaged out. Thus, we

time-average (2.9) and (2.10) as
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1 T ov’ , , ' ’ o
§'f/T=_T[{—5t—+V-{v(V+v)+Vv}+V(n+p)}(r+r)} dr = 0.

1 /7

5T r:*r[v-v'(fﬁ-r)}:lr = 0,

where all the vectors are functions of (t + 7). Now, by making use of (2 3) and

(2.5) these last two equations can be 1ewritten as

V- (vVV4+vvV+Vv)+Vp = 0, (2.19)
V.v =0 (2 20)

We note from (2.3) that the continuity equation (2.20) 15 automatically satisfied
Also, if we assume that the velocity components V and v/ are uncorrelated, which

is reasonable. we obtain Vv/ = V v/ = 0. Then (2 19) teduces to

V==V (VV') (221)
Here, we have that the term —v’v’ represents the turbulent Revnolds stresses [21],

equation (2.21) is written, in component form, as

. [o(=4%)  o=uv) O(-uw) —ue
VP: -— er b 31: + 01‘ + r(?() + -
C[o(=7V) o=V O-vw) 0%+ w?
T | O T T T r ]
_[o(=ww’) A=vw) d(=w?) = .
+ eo- oz t or t rof t= r ' (2.22)

where «/, ¢' and w' are the components of the turbulent velocity fluctuations
the z-, r- and #-directions. The different terms in the Reynolds stresses —v'v/

in (2.22) are known to be all of the same order of magnitude [21].
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Since the gap 1s small. b €« r, we have 9/0x « 9/dr. 0/r 86 < 0/0r,
and we retain only the partial derivatives with respect to r in (2.22): also, we are
mterested in the pressure on the surface of the inner cylinder where the Reynolds
stresses are zero, Equation (2.22) thus reduces to

H=ut") | Of—=vw) 1 071,

_ w) - , 2.23
Vin=e, =5 te =5 pl? 9 (229)

where = = r—1 1s the nondimensional coordinate across the annular gap introduced

m (2.13), and we have denoted 7, = —pU%(e, W'V + e 1u’) as the dimensional
turbulent sitess veetor m the plane tangent to the surface of the cylinder. Hence
we note that the radial component of the pressure gradient is omitted from the
equation since, as we will see below, we are only interested in Vp, in the plane
tangent to the surface of the oscillating center-body. as the unsteady turbulent
pressute, py, will be obtamed by integrating the circumferential component of Vp,
over the perimeter of the eylinder.

For this channel-tvpe flow. the turbulent stress vector 7, can be expressed.

using an eddy viscosity model for the Reynolds stresses [21], in the form

Tw
1Y

where ¢ is the turbulent eddy viscosity, and W = e, u + ég w: u and w are the ve-

oUw)
ANaz) ~

= U2 [6,(=W7) + ép(~VW0)| = &y e 5—

locity components in the axial and circumferential directions which, in the general
case of equation (2.24), are the macroscale, time-averaged “viscous” components.
However, in this study we now show how the potential flow solution comes into
play to supplement the information supplied by the « and v velocity profiles.
Proceeding in a similar manner as Ref. [6] for the case of unsteady laminar
flow, let us consider the average values across the annular gap of the nondimen-

sional axial and circumferential velocity components, u and w, defined as
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h
i(r,0,t) = -’1;/ u(r,2,0,t)d:,
0

h
(. 0,1) i—/o w(x, 2,0, t)dz, (2 25)

and let us denote by W = &, @ + &, ' the average velocity of the fluid actoss the
gap, where the radial component is omutted.

One should note that W~ ~ 1 (or, dimensionally, UTT ~ U') in the assumption
of small amplitude oscillations of the cylinder; at the same time one can consider
that the velocity profiles across the gap are similai for the velocity components u

and w, in which case

v w ingd >~ (2 26)
— = = =singd >, 29
W ‘

where 3(x,6,1) is the angle made by the average velocity across the gap, W, with

the r-axis, see Figure 2.2.

/x

Figure 2.2: Direction, f, of the flow velocity, W, in the annular space, in the plane

tangent to the surface of the center-body and along the coordinate X.




Hence, the average velocity of the fluid across the gap, W, remains prac-
tically constant in magnitude (7 = 1), while its direction. defined by the angle
(. 60.1). osallates 1w time with the fiequency of the center-body oscillation. In
this teatment of unsteady turbulent effects. the quantity sin 3 is precisely deter-
mined using the unsteady potential flow solution of Section 2.2. Upon considering
equations (2.11). (2 25) and (2.26), we thus obtain

1 1 0¢ -

h
sin/’izu‘r(.r,(),t)zl—/ 5 (2.27)
1 JO pot

Using the slender-body solution of the potential given by (2.16), sin 3 is obtained

by integrating (2.27):

sin 3 = B(z,t)sin 6, (2.28)
where
1 g,(h) |da
I, = == —(x =1 t)], 2.
Br.t) = 5 | She — )+ att) (229)
4 1 4 _1 16q
} — 2 Te+)h _ : g(q—”h + :
= e TER (@17

¢'(h) and g are defined in (2.17) and (2.18) and we have considered that h < 1.
Hence. denoting by X' the nondimensional coordinate instantaneously aligned
with the dizection of the gap-average velocity W, where W makes an angle 3 with

repect to the z-axis (Figure 2.2), equation (2.23) can be wntten in the scalar form

QPL 1 97,

ox pl't 0z

Observing that the angle 3 is small (cos3 =~ 1, tan/ = sin3) in the case of
small amphitude oscillations of the cylinder, the scalar projection of (2.23) in the

cvhindncal svstem of coordinates leads to
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dp, 1 Ory apy
e~ pU? 0 M ox
%I;)i = RI—E%Z}L- sin J ~ gl-;—'- DB(ar.t) smé . (2.30)

where the expression for sin 3 from (2.28) has been used.

Now, in order to complete the solution, the value of Ip/ON ~ dp/dr has
to be found. One can use simplified models of turbulence for channel Hows, such
as Prandtl’'s mixing length theoty, von Karman's similarity rule, or the simple
(1/n)th-power law rule describing the turbulent velocity profile. Comparable re-
sults were obtained using either methods, and the power law rule has been preferred
here since the results can be expressed in sumpler form, similar to that obtained
for laminar unsteady flows (Ref. [6]).

For the narrow channel-type flow under cousideration, the power law for the

velocity distribution in a half-height channel is expressed as

Uvw u 1/n
=C(—ia:) , (231)
U, v
where u, = \/7,/p is the wall friction velocity. v = p1/p 1s the kinematic viscosty,

and where the constant C and exponent n depend on the Reynolds number of the
flow. The coordinate = has been introduced in (2.13) and 15 measured from the
oscillating center-body surface. Equation (2.31) is valid from between @ =0 to

: = h/2. The gap-averaged velocity UTV calculated from (2.31) is

§174 ¢ h. I/n L/n
uw = 12-/ /ZC (ir-a:) / dz = L. C s Q . (2.32)
Hy h Jo v n+1 v 2

Applying now the momentum equation to an infinitesimal volume of the annula

gap, corresponding to an elemental angle df and length d(aX'), defined over the

whole height of the gap, one obtains
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o Op 2 2
Pl = = =2 pdl .
PV ax = R = "pPw (2.33)
Combining (2.32) and {2.33) and observing that UTW =~ U. as discussed above, one
obtains
ope K o omin . - _ [ 1n 111 1]2"/("“)
% =T Re ., Where K =2 |4 —C . (2.34)

Considering n = 7 and C = 8.56 (specified by Blasius), which provides good results
for turbulent flows with Re < 10° as shown in Ref [21], the resultant value of the
above constant i1s K = 0.084

The turhulent pressure pertiirbation can now be obtained by substituting (2.34)
into (2.30) and integrating with respect to 6, leading to

o= pole) + R Bz, ) cos, (235)

where

dpgo K

— R -2/(n+1).
dr ¢

This 15 the turbulent pressure, p,, on the surface of the oscillating center-
body, which now has to be combined with the potential flow pressure, p, in order
to obtain the total pressure as per equation (2.6). This is uone 1 the next section
whete the theoretical method 1s also compared with experiments.

We note 1 passing that the formalism adopted here permits to envisage the
genetalization of the method to treat problems with more complex geometries, not
limited to umform annular gaps Indeed. the equation obtained, equation (2.21).
15 valid even when non-uniform, smooth geometries are considered. Then. 1t is

realized that potential flow theory comes 1nto play



to determine the perturbations in the steady mean low: once the wall shear stress
associated with the steady mean flow is known, it is projected on the wall accord-
ing to the instanteneous mean velocity vector in the annulus, which s expressed
by (2.30), and the unsteady turbulent pressure contribution p, can be obtained.
In the present problem, the wall shear stress was determined by means of equa-
tions (2.31)-(2.34), using results particular to channel flows. In the general case,

it could be calculated numerically.

2.4 Theoretical Results Compared with Exper-

iments

2.4.1 Theoretical solution

In order to compare the theoretical results with experiments. we need the pressute
difference between two points diametrically situated with respeet to the plane
of oscillation, at the same cross-sectional plane of constant . Applyving (2 6).
this pressure difference is defined in terms of the potential and turbulent pressure

contributions as
AP(r,0.t) = pU? [p(x,0,t) + pe(z.0,t) — pla, 7 —0,t) — plr,m — 0.1) .

Considering (2.14) and (2.35), the dimensional differential pressuie AP can be

expressed in the form

AP(2.0,t) = 2pU%q [PR(.B) + wPy(r)] cosd et (2.36)

where
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N
ﬁ,g(.z') = W?DyGolh) + w? Z Gr(h) [Drcoscit + Ejsincy 2]

k=1
% %‘% Re ~%/(nth) (2.37)
N
Pi(z) = —=Gylh) + Z cxGi(h) [Dysincrz — Ey cos ]
k=1
Boh) gy Re -2y, (2.38)

h? ¢'(h)
The Fourier coefficients Dy, and Ej, have been computed using Fast Fourier Trans-
form [20].
In order to facilitate the comparison with the experimental results obtained

in terms of the measured amplitude and phase of the differential pressure AP,

equation (2.36) will also be expressed in the form
AP(r.0.t) = AP(z,0) e'lttv®)]

where the amplitude AP(x,6) and phase angle y(x) are calculated as

AP(z.0) = 2pU? a'o\/[PR(x)]Q + [wf’;(a:)]2 cos¥, (2.39)
P -1 wPy(z)
w(r) = tan __—13’3(1') : (2.40)

2.4.2 Experimental apparatus

A schematic representation of the experimental apparatus is shown in F igure 2.3.
It consists of a rigid cylindrical center-body of length L = 421 mm and diameter 2a

= 88.9 mm (3.5 in.), pendularly supported by a hinge inside a coaxia: cylindrical
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Figure 2.3. Schematic diagram of the experimental apparatus.

duct of 98.6 mm diameter. The annular gap is 4.85 mm, so that h = 0.109 Two
elongated ogives, shown to scale in Figure 2.3, are rigidly mounted on cither side
of the center-body, so as to render the flow about the central part of the appatatus
as uniform and axisymmetric as possible.

The center-body is forced to execute harmonic angular oscillations about the
hinge via a motion-transmission mechanism connected to a shaker (not shown).

The hinge could be located at one of three different positions: Ly = 115, 210 or

306 mm.
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The air flow is upwards and is provided by a blower through a fairly long,
flexible hose system, and is controlled by a valve (not shown). The flow rate
is measured by an orifice plate, with appropriate length of piping upstream and
downstream for accurate measurements. To further improve flow uniformity and
reduce flow fluctuations, a honeyer ub screen and several wire meshes were placed
upstream of the test-section. The flow was further regularized and smoothed by
the contraction provided by the upstream ogive.

The unsteady pressure in the annular flow is measured differentially at two
diametrally opposed points on the fixed outer pipe, in the plane of oscillation and
at various circnmferential locations, namely at 8 = 0°, 30°, 45° and 60°. M\lore
details on the experimental procedure can be found in References |7, 9, 20].

The following, main parameters characterized the experiments performed:

Relative annular clearance: h =0.109.

Mean flow velocity range: U=>524-73m/s.
Frequency of oscillations: f=9Q/27 =15- 75 Hz.
Reynolds number range: Re = (3.3 - 1.8) x10%.
Centre-body relative length: l=L/a=946.

2.4.3 Comparison between theory and experiments

The theoretical amplitude .’.\P(.L',()) and phase ¥(z) of the differential pressure,
calculated from (2.39) and (2.40), are compared in the following with the exper-
imentally measured ones for various frequencies of oscillation. (No significance
should be attached to the form of variation of AP with frequency, f. of oscilla-
tions: this is related to the amplitude-frequency limitations of the shaker [9]).

In Figure 2.4, the comparison is made with the differential pressure measure-

ments taken at a nondimensional distance &+ = 5.60 from the upstream extremity




of the center-body and at four circumferential locations: = 0°, 30°, 45° and 60°
In this case, the center-body was forced to oscillate harmonically about a hinge
situated at [y = 2.59 from the upstream end of the evlinder, with frequencies from
15 to 75 Hz. Figure 2.4(a) shows the results obtained with a mean flow velocrty
U" = 52.4 m/s, and Figure 2.4(b) corresponds to another magmtude of the mean
flow velocity, U = 73 m/s.

A very good agreement is observed in Figure 2.4 between the theoretical
turbulent solution derived in Section 2.3 and the experimental results, for both the
amplitude AP and phase angle v'. With regard to the phase angle. the theoretieal
solution (2.40) does not depend on #, while the experimentally measuted phase
slightly varies with #: however, the differences are small, specially for the upper
range of frequencies tested.

This generally good agreement between the theotetical predictions and the
experimental results is observed for all tests, except when the pressute measnre-
ments are taken close to one of the center-body extremities: m this case, the ex-
perimental results are strongly influenced by the peculianties of the expenmental
apparatus, which are discussed in more detail in Refs [9, 20]

Figure 2.5 shows a comparison between theory and experiments for another
axial location, r = 6.23, and another hinge position, {y = 4.73. In this case. the
unsteady turbulent solution and the experimental results are also compared with
the inviscid-only solution, obtained by introducing ' = 0 in (2.37) and (2 38).
One can notice that the unsteady turbulent solution is i much better agreement
with the experimental results than the potential solution, especially with regand
to the phase angle.

The influence of the mean flow velocity in the annulus. for various cirenmfer-
ential positions, is shown in Figure 2.6 for x = 6.23 and {; = 2.59. The agreement

between theory and experiments appears to be slightly better for the lower flow ve-
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locity. One can notice that the unsteady turbulent solution is in better agreement
with the experiments than the potential (inviscid) solution; this is most markedly
so for the phase angle results, which are expected to be more sensitive to turbulence

effects. More detailed experimental testing is reported in Ref. [9).
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Figure 2.4: Comparison between theoretical and experimentally measnred un-
steady pressures (amplitude AP and phase ¥) versus oscillation fiequency, f,
showing the influence of the circumferential position, for § = 0°, 30°, 45°, and
60°, and for Iy = 2.59, r = 5.60. Lines' present unsteady turbulent analysis; the
theoretical phase does not depend on # Experiments: O 0 = 0°, O 6 = 30°,
060 =45, A0 =60°. (a) U =324 m/s,(b) U = 73.0 m/s.
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Figure 2.5: Theoretical and experimentally measured unsteady pressures (ampli-

tude AP and phase ¢) versus oscillation frequency, f, showing the effect of cir-

cumferential location 6, for Iy = 4.73, r = 6.23 and U = 52.4 m/s. —— present

unsteady turbulent analysis, and — — — potential theory of Ref. [5]. Experiments:

(a) Q8 =0°08 =4,

(b) O 6 = 30°, A 6 = 60°.
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2.5 Conclusions

In this chapter, an expression for the unsteady turbulent pressure acting on a
center-body oscillating in annular flow has been obtained (the results can be used
for the stability analysis of the flmd-structure system by using the approach de-
veloped in Ref [6]) We considered a uniform cross-section annular region, and
an approximate method has been designed in which the fluctuating small-scale
turbulent quantities are superposed on a potential flow, instead of a “viscous” one.
We remarked at one point that the formulation adopted here is slightly different
from that developed in Ref. [7], although the same results obtain for the partic-
ular case of a uniform annular configuration. In Ref. [7], the decomposition of
the velocity vetor in (2.4) included a “viscous” contribution, v,, which rendered
necessary the intioduction of simplifications in the solution process. However, the
addition of this “viscous term” might contribute to making the description of the
flow phenomenom more complete, and more study is required in that direction.
The present formulation leads to a theory which is more straightforward in its
development, and furthermore it can be generalized, as was mentioned earlier,
although this remains to be done.

At this point, instead of generalizing the results for turbulent flow to more
complex configurations, we will do so for laminar flow; this chapter thus concludes
the treatment of unsteady turbulent flows. The rest of this thesis is devoted to
the computation of unsteady laminar flows using the incompressible Navier-Stokes
equations Unsteadiness in the flow patterns comes from interaction with struc-
tural walls which undergo oscillations. and this leads to the development of a

methodology to study fluid-structure interaction problems.




Chapter 3

A TIME INTEGRATION
METHOD USING ARTIFICIAL
COMPRESSIBILITY FOR
UNSTEADY FLOWS

3.1 Introduction

The study of fluid-structure interaction problems requires mathematical modelling
of the physics at two levels. First of all. one is concerned with the mathematical
representation of the dyvnamical behaviour of a structure which 1s submitted to a
set of externally applied forces. In flow-induced vibrations. the externally apphed
forces are fluid forces and these cannot be tieated independently of the response
of the structure. Indeed, as the structure responds to the fluid forces, the latter
are precisely determined as functions of the dyvnamical parameters desenibing the

structural motion.
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Hence, at the second level of physical modelling the fluid forces must be
determined as functions, for example, of the velocity of the structure at the fluid-
structure interface. The approach that we adopt here is one in which the fluid
forces are calculated from the incompressible Navier-Stokes equations — or lin-
carized forms thereof. The boundary conditions required to solve the Navier-Stokes
equations are the velocity of the walls bounding the fluid domain, namely the veloc-
ity of the structural parts in contact with the fluid. The solving of these equations
then allows for computing the fiuid forces at the fluid-structure interface.

We delay until Chapter 9 how the interactive response of both the fluid
and structure is effectively treated, as the problem that we first tackle is of the
forced-vibration type. Indeed, an important aspect of fluid-structure interaction
problems is the accurate determination of the fluid forces acting on the structure,
and a method for doing so is developed and tested in Chapters 3 to 8. Thus,
we ate first concerned with the determination of the unsteady fluid forces which
result from a time-accurate integration of the unsteady incompressible Navier-
Stokes equations. The boundary conditions will be assumed to be known for all
time, for example the structure will be imposed a harmonic vibration, and the
fluid forces acting on it will be determined therefrom. This chapter presents the
time integration method used for solving the Navier-Stokes equations, which is the

method of artificial compressibility for unsteady flows.

3.2 Time Discretization of Navier-Stokes Equa-
tions

The equations governing the motion of an incompressible viscous fluid are the

momentum and continuity equations,
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ov
— V. = 0, 3.
5 +G(V.)p) (3.1)
V-V = 0, (3.2)
where we have
G(V,p)= V-VV-{-V})—T?I—CVQV. (3.3)

The equations are in non-dimensional form and Re represents the Revuolds
number defined for each ~pecific problem in terms of « charactenistic length and
velocity, V is the velocity vector and p the pressure These equations must be
integrated in both time and space. This chapter details the time mtegration scheme
developed as part of the present work, where the method of artificial compressibihty
is used in straightforward fashion to solve unsteady How problems.

We remark first that a time derivative appears only m the momentum cqua-
tion (3.1). The discretization of that time derivative is accomphshed as follows,

introducing the three-point-backward implicit time-differencing schemie,

3 Vn+l — 4V + Vn-l
2 At

where At is the time step and G"*! = G (V'*!, pnt!)

+G"' =0, (34)

This second order time-accurate scheme 15 used to advance the solution to
time level t"*! = (n + 1) At. and requires that the solution be known at the
two previous tiume levels t" and t"~!  We also expenimented with another tune-
differencing scheme, namely the Crank-Nicolson one,

vntl S VA0 1
X +~2-(G"+]+G"}=O, (3"3)




which has been used by Soh & Goodrich {16]. We found problems with the time
solution of the pressure variable: these will be teported 1n Section 7.4. The scheme
(3.4) has thus been introduced to correct these difficulties and we can rewrite it.

together with the continuity equation which must be satisfied for all time, as

vitl o G = FR (3.6)
v.vl = o, (3.7)
where

9
a = :;: At, Fl= - (4 V" -y,

Wi r=

In oider to initiate the time integration procedure, initial conditions must
be specified for V! and p* throughout the fluid domain. which implies that the
solution is known at only one previous time level, namely ¢!. In order to advance
the solution to #2, a simple implicit Euler scheme can be used stead of the three-

point-backward scheme (3.4), which can also be put in equation form (3.6), with
a = At, F'=V",

Equations (3.6) and (3.7) represent the semi-discretized form of the Navier-
Stokes equations. They are solved for the flow quantities V**! and p"+! by impos-
g no-slip boundary conditions for the velocity components, namely the velocity
of the fluid is equal to the velocity of the wall at the fluid-structure interface.
Hence, 1f we know the velocity, V2, of the walls bounding the fluid domain at
time level #"+1, then (3.6) and (3.7). which are a non-homogeneous system of rion-
linear equations, can be solved for V**! and p"*!. In most problems, boundary

conditions also need to be imposed on the velocity and/or pressure at any inflow
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or outflow portion to the fluid domain, and their treatment will be discussed 1n
the next chapters when the finite difference method used to discretize the spatial

differential operators is introduced.

3.3 Pseudo-time Iterative Relaxation Technique

In order to solve equations (3.6) and (3.7), we tesort to a pseudo-time iterative te-
laxation procedure, whereby the continuity equation and the momentum equation
are augmented by pseudo-time derivative terms involving pressure and veloeiry, re-
spectively 6 (3p/d7) and OV /07, in which 6 15 the artificial compressibility, Thus,
introducing the pseudo-time 7 and denoting by V and p the pseudo-functions cor-
responding to the iterated velocity and pressure vanables during the relaxation

procedure between time levels t" and t"*!, equations (3.6) and (3.7) are replaced

by

Q——+V+(1G = F". (3 38)
or
on .
s 1w v = 0. (3.9)
or

These equations are integrated in pseudo-titne until a steady state s reached. An

implicit Euler scheme is used for the pseudo-time semi-discretization,

VV+1_VV . .

———A—T—-+V”+‘+(\G”“ = F". (3 10)
SUZ S T 1 .
P ATI’ +5V.vv+l = 0, (3.11)

where AT is the pseudo-time step and the superscript v indicates the solution at

the pseudo-time level 7¥ = v A7, Also, we have G**' = G(V**! '), The

37




‘3

initial conditions required to start the pseudo-time integration are taken to be V™
and p” inside the fluid domain, namely
v o=ve, | =p
v=l} v=1

whereas on the boundary of the fluid domain the known velocity V'*+1 of the walls
at the advanced time level t"*! are set as boundary conditions and kept unchanged
until steady state has been reached in pseudo-time. V! serves as a driving term
to advance the solution to time level (n + 1)At, along with the non-homogeneous
term F", which is also caleulated at the beginning of pseudo-time relaxation and
kept constant thioughout.

When steady state is reached in pseudo-time, at v = k. the pseudo-time
derivatives become zero (VA1 = V¥ and p*+! = p*), and equations (3.10) and

(3.11) reduce to (3.6) and (3.7), at which point
Vk-i-l = Vn+l . I;k+l —_ pn+1 .

Introducing the pseudo-time variations

AV = VV+1__“’/V‘ Ap=ﬁu+l~]ju,
AG = G -G,

equations (3.10) and (3.11) can be recast in delta form

(1+A7)AV+aATAG = AT(F"'= V' -a GY). (3.12)

A .
A1)+TTV-(AV) = -l%fv-v". (3.13)
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Equations (3.12) and (3.13) are an mmplicit system of equations, nonlinearlv
coupled by the term AG. In suramary, their solution proceeds as follows. The flow
variables are known everywhere in the fluid domain at the time levels " and ¢" -1
The term F" is calculated and the known velocity, Virtoof the walls bounding,
the fluid domain is imposed as a boundary condition V" and p" then serve as
initial conditions inside the fluid domain to iterate (3.12) and (3 13) in pseudo-time
until a steady state is reached, at which point Ap and AV are equal to zero and
V™t and p"*! are obtained. This solution process in congunetion with the spatial

discretization will be detailed in the following chapters as specific problems ate

treated.
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Chapter 4

METHOD OF SOLUTION IN
CARTESIAN COORDINATES

The time integration method used to solve the unsteady incompressible Navier-
Stokes equations was developed in the previous chapter. To proceed further and
obtain a numerical solution to these equations, we must introduce a discrccization
of the spatial differential operators. which we do here in two-dimensional Carte-
sian coordinates using finite differences. The implicit nonlinear system (3.12) and
(3.13) must then be appropriately linearized in order to facilitate the pseudo-time
iterative process. Furthermore, the effort required to invert the linearized equa-
tions can be reduced by the use of the Approximate Factorization and Alternating

Direction Implicit (ADI) methods. These are the subjects of this chapter.

4.1 Differential Form of Equations

In Cartesian coordinates, the nondimensional fluid velocity vector V, the convec-
tive, pressure and viscous terms included in G(V, p), and the velocity divergence

V -V (see equations (3.1-3.3)) are given by
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u G, (u v p)
V= \ G (V. 1)) = .
v G, (u, v, p)
d v ) 7 T
Gulwv.p) = (OU:) + (Olz;l) + 511—) " Re (5_13 * 01/“) Ly
d(uv dvy ap 1 (0% O
oo = G+ G p (G ge) o
Ju  Ov
Vo= 4 :
v o T oy (13)

Now, linearization of the termx AG which

enforces implicit coupling i (3 12)

is done by simply lagging the velocity components [22]. which in the psendo-tnne

variation form is expressed as

[ Au l- el — g
AV = =
AU l Iju+l —
A G, Gt — G
AG = =
A G, Grrl _ G
with
A du) P du) oNp) 1 [oHA O*(Au)
AG, = - )
Ox + dy * or Re | Or? + dy?
(1" Av) (u"Au) Odp) 1 [*Ae)  F*An)
AG, = — - -
* Re our? * dy*

or dy dy

This approximation is fitst-order accurate

of accuracy of the Euler pseudo-time semi-disc

41

. which is consistent with the orde

retization i (3.10) and (3 11) We




also note that Gy, = G, (@, &7, p*). G% = G,(#*.t,p*). We can now rewrite (3.12)

and (3.13) in global matrix form as

I+« A7(D, +D,)] Ad = ATR, (4.4)

where the matrices D, and D, which respectively contain the spatial derivatives

with respect to r and y of the variable A® = [Au Av Ap]”, take the form

M+1/ee 0 9/0r N 0 0
D, = 0 M o0 |, Dy=]0 N+1/a 30y |. (43)
(1/a6)d/0x 0 0 0 (1/aé)d/0y 0

and where

_o(vy) 1 PR

Mp=2020 0 2 28 Nu= -
M dx Re 0a? ¢ dy Re 0y?
F" Vu —a Gy
—-(1/6)V - V¥

The vector R is expressed in terms of its scalar components as

R, F'— i —aGY
R=| R, |= F'—# —aGv
R, —(1/6) V- V¥

in which

F!'= (4 u" — u"’l) . F! =

(4 l'" _ vn—-l) )

Note that A7 Au and A7 Ap, arising from the vector term A7 AV which ap-

Cof r—
Wi —

pears undifferentiated in (3.12), have been conveniently (but arbitrarily) included
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in the matrices D, and D,. respectively. Now. we apply an Approximate Factor-

ization to (4.4), thereby rewriting its implicit left-hand side as
I+aA7(D,+D,)] Ad=(T+aA7D,)I+0A7D,)A\P.

Equation (4.4) is thus rewiitten

(I+aA7D,)I+0d7D,;)A® = ATR

This last linear implicit system of equations can now be solved with the
Alternating Direction Implicit (ADI) method, whereby upon introducing the m-

termediate variable
Ad =(1+aA7D,) Ad,

the solution proceeds with the sequence of a y-sweep and a r-sweep [22, 23, 24]

The y-sweep is thus

(I+0A7D,)Ad = ATR, (4 6)

whercas the r-sweep is defined by

I+4+aATD,) AP =17 . (47)

Since. as we show shortly. we are using central differences to discretize the
spatial differential operators. only tndiagonal systems of equations need to he
solved, which 1s computationally eficient  We can now write the y-sweep and 1-
sweep matnx equations (4.6) and (4 7) mto their scalar form. namely we obtam

for the y-sweep
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o AT[

Oy

a(a"EI)_ 1 &*(3u)
Re 0y?

= AT (F' - " —a G"), (4.8)
N A, |0(8*Av)  (Ap) 1 P*(Av)
(1+AT)Av + a AT { a7y oy Tie
= AT (F' =" —a GY), (4.9)
—_ A7 I9(Av A7
el ek QU L R 722 1.10
Ap + 5 9 5 V.V ( )

whereas Au, A and Ap are solved subsequently in the r-sweep defined by the

equations

Aa*Adu)  AAp) 1 3*(Auw)]
(1 4+A7) du+a AT [ £ + p Te 9.2 |
a(u” Av) 1 9*(Av)]
Av+a At [—_6.1: ~ e The? J
Ar 9(Auw)
AIH-—&— dx

Au (4.11)
v, (4.12)
Ap. (4.13)

The variables @*! = @ + Au, ¥+ = # + Av, and p*+! = p¥ + Ap, are thus

obtained by solving (4.8-4.13) and the solution can proceed to another pseudo-

tune ateration step, until convergence when Au. Ar and Ap are equal to zero.

Note that Au and Ar are equal to zero on solid walls, as the values u"*! and p"+!

are imposed before pseudo-time iteration is started and kept constant.
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4.2 Spatial Discretization of Differential Oper-

ators

4.2.1 Stretched grid and grid stretching functions

The finite difference method was used to discretize the spatial differential operators,
which were centrally differenced on a staggered gnd In order to obtain a good
spatial resolution, stretched grids were used to concentrate more points in 1egions
of higher velocity gradients, for example near solid walls.

Hyperbolic tangent and hyperbolic sine stretching functions were used as
they provide best accuracy for the difference representation of differential opera-
tors [25). The hyberbolic tangent was used to concentrate giid points normal to
solid walls, and the hyperbolic sine was used in flow problems involving a pre-
ferred flow direction, to distribute the points in that direction. Figuie 4.1 gives
an example of the type of grid that was generated for a problem involving either

a Cartesian or an annular backstep.

1
hyperbolic
tangent
y(orr) stretching
|
T
- hyperbolic sine stretching ——————— ——»

Figure 4.1: Mesh generated for the study of fluid flow over backsteps.
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Given two walls parallel to each other and (J + 1) points spauning the region
between them, the hyperbolic-tangent stretching function gives the coordinates
Y, 7 =0,. ., J, of the grid points between the two walls by the relation

: 2-J

Y, =¥+ (41— W) %+ ti;:—;g—lf—;?) - (4.14)
The parameter 4 contiols the amount of stietching, and the larger it is, the more
the points are concentrated near the walls. If, on the other hand, we want to
stietch the grid i the r-direction, which in Figure 4.1 corresponds to the mean
flow direction, we can use the hypeibolic-sine stretching function. Denoting by z,
the coordinate of the point where the mesh is the finest, and by z; the coordinate
at the coarsest mesh location, the locations r, of the (I 4 1) points between x4 and
rypare given by
sinh (7%)

sinh vy (4.15)

ry=x9+ (1] — x9)
Other uses of the hyperbolic tangent and hyperbolic sine stretching functions

ate described in Vinokur [25].
Equations (4 14) and (4.15) define coordinate transformations and introduce
a computational space. Indeed, the fluid equations are now considered to be solved
on & notmahized domaim with coordinates § = /1, 0< <1, n=3/J, 0<n< 1,
mstead of on the onginal physical domain with coordinates r. 1y < r < 7, and

Y. ¥o €y < ys This has to be taken into account when solving the equations.

4.2.2 Differencing of spatial differential operators

In all of the present work the stretched meshes used were rectangular ones In that
case the coordinate transformation that defines the pont spacing in physical space

along one coordinate direction 1s a function of one transformed. computational
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coordinate. The mesh is stretched along one coordinate direction imdependently

of the other coordinate directions. The functional dependence of the coordinate
transformation along, say. the r-coordinate s of the form r = (). as for example
in (4.15). In order to evaluate the derivative with respect to . of a function f(r) we
thus have, in computational space and as a function of the transformed coordinate

£,

df _ df/dg
dr ~ dr/de’

*r—o— -& * ®
Lt Lie1/2 £ Lygpy2 Lyl

Figure 4.2: Portion of a one-dimensional stretehed grd.

The term dr /d€ in the denominator of the above expression is called the et
ric term of the transformation Referring to Figure 4.2 where the stietched portion
of a one-dimensional mesh 1s shown, and denoting by ., = 1(&,) the coordmate of
a mesh point and by f, = f(x,) the function value at that point. the numerical
evaluation at the point x, of the first derivative with respect to . of a function
f(x) is given by

fli - S = fio or ﬂ - Sz = o2

dx r=z, gl — Li dr r=r, Poprya = Tegy2

where central differences have heen used. Notice the alternative forms  Anmmpor-
tant aspect in these relations is that although the functional dependence r(€) mav
be known analytically, as for example 1n (4 15), the metric term detivative d e /dé

is evaluated numerically, not analytically. This results in a better acentacy of the
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differenced approximations [26]. Similarly. the evaluation of the second derivative

of the function f(z) 15 done as

_ d _(_I_f_
s = ldr \drx N

1 (ﬁf_ ) _ (i’[) (4.16)
Typrjz = To-1j2 |\ AT T.41/2 dx Ti-1/2

1 [fv-ﬂ"ft _ fz"ft—l]

d*f

dr?

T2 — Loy [Tl — T Ty = T4y

Notice that differencing at mid-point has been used for each of the first-derivatives.

4.2.3 Differencing of Navier-Stokes equations

The flow equations were centrally differenced on a staggered grid [12], indicated
schematically in Figure 4.3. In a staggered grid, the velocity components u and v
are defined at different grid points, namely at (r}', y}') and (z,.y;) for u,, and v,
which are also different from the grid point where the pressure p, , is defined, which
15 (1) u)) Fora cell (1, )) centered at the point (x],y}) where the pressure p, 1s
defined, the four sides correspond to grid points where u,_y,. u,,, v,,-1 and v,,
are defined Moreover. the 2- and y-momentum equations and the continuity one
are differenced about the points where u, ;. 1,, and p,; are defined. respectively.

Before performing the spatial discretization of the equations, we first intro-

duce the hmear mterpolates of the velocity components on the staggered mesh,

which are given by

u v .
r+ __ V'TH-I uhj + V'TH»I uH—l.J T __ V‘T:‘ U—1, + V‘T: th
u - K v u - / [y

AI.+1 AI'

u
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Figure 4.3: Schematic representation of the staggered grid used in the spatial

differentiation.
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where. in these last relations, A and V. which we

Vil w1 + V',
Ayyy

J

W . '
V.’1'+’ ”hj‘l + Vi :‘ 1'+1,J"l
U
Aurt

Variv o, + Vi,
AT"

1~

Vl/; Uy -1 + V'/‘;‘ ')
u
Ay,

. v.’/;‘.H Uy g, + V'/J U1 )41

Ayy

will sometunes refer to as the

delta’s and nabla'’s of the grid point coordinates, denote the central and backward
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difference operators applied to these grid point coordinates. They are defined as

Mo Rl v U U
Ar) =z, , -1, Az} =z} -1, ,

w oo r
ij - y_] y]—-—] N

v __ ,u 4
Vy =y -y_1,

A u u
Ay = U -y

W L v u
-, , Vay =a) -2,

Vi =y -y

The discretization of equations (4 1-4.3) is thus given by the following relations:

(Gu)y

(G,

1
Ar}

1 Uyl — Uy, Uy ) — U1,
Re Ary,, Ary

Wyt Y+ oy Y-
[lu u, v Uy

[(lli+)2 - (UT )2 +p:+l,] - p:,]

Ayy "

\ Uy j41 — Uy, ul]_ul]—l -

— - e : , 4.17

Re ( Ay; Ay (317
1

v [ufJ' e T T

1

Vil — Uy, Uiy — l'x—l,]
Re Ay Ary,

1 o 2
ey [(l':{+)- - (l'f’f )- +px,]+l —pl,_]

Ay;
1 Uigel — Uy Uy — vl]—-l)jl
Ry (LS L Ak SRS (4.18)
Ite ( ij‘+l Ay;‘
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Figure 4 4: Evaluation of viscous derivatives near solid walls. where the quantities

U, and vy, are defined.

Now. we rematk 1n passing that the evaluation of the viscons denvatives
near a solia wall requires special treatment. Indeed. m the staggered grd a wall
parallel with the r-coordinate passes thiongh the pomts where for example, ¢,
are defined. and similarly a wall parallel with the y-coordinate passes thiongh the
pomts whete u; , are defined. see Figuie 4 4. Henee the numencal evaluation of
9%u/dy* in the former case and of 8%¢/d17% i the latter case would requie points
defined outside the phvsical domamn To circumvent that difheulty, we use non
central differencing to compute the denvative of the term in (4 16) which would

otherwise require points outside the domain, and hence we have, for example
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It is tematked in these last two expressions that the second term in the square
brackets is precisely the one-sided evaluation of the first derivative at the solid wall,
and u,, and vy, are the wall velocity components which are given as boundary

conditions.

4.3 The y-Sweep

[t is seen in the y-sweep. equations (4 8-4.10), that Nu as obtained from solving
the r-momentum equation (4.8) 1s uncoupled from Ar and Ap. Hence (4.8) can be
solved for Xu independently of (4.9) and (4.10). However. these last two equations.
the y-momentum and continuity ones, couple 3¢ and 3p. It is nevertheless possible
to uncouple Av from Xp by elimination of Ap from the equations after differencing

on the staggered grid has been performed.

4.3.1 Discretization of z-momentum equation in y-sweep

The r-momentum equation (4 8) 1s written in differenced form as

— Qa AT[
Ay, A Ay Yyt _ (e y—
t, AV l(l T (Au) (T (AQu)Y
_ _L —-S_l-‘—l.ﬂ—l - S—Jx.y _ 3,_] — El.}—l
Re Ay; Ay

it
(%)




= AT (F' =" —aGY),,

When expressions for the interpolates of overbarred quantits: Mo snlar to those
found in Section 4.2.3 are introduced mto this last equation. we obtamn, after

regrouping terms,

9_'\1 I-(i’ru)y" V!/;‘ — ! 3—17, -1
Ay! 1 YAy Reldy), !
[ a N7 . Yt o VU4 I 1 ~
1 Ve J - { P ! + A '
+ | + A{f/}‘ {(l )11 _l_(/-;‘ (l )u .l!/;__l + R('A_’/}‘ [?"A)/}‘_l i J
(o AT Yy 1 —
+ *.U)_:/‘+__‘__JT _ ____}} A, = N7 (R,), (1209
Bk {( Ayt Redy ak !

where (R,),, =(F] — " — « C",}),,,. in which (C",j}w is obtamed from (4 17) and
(Fi) = (du] - 11,".1)/3. For a given r-coordimate location, oy, the setting up
of (4.20) for each y. 2 < ;) < J =1 . where J s the nmuber of gud pomts
the y-direction, gives a tridiagonal system of equations which has to be solved for
ELJ. This 1s done at each xz, 2 < Z <[ — 1, where [ is the number of grud
points in the r-direction. in order to obtain Su, . for all 1.; The fow quantities
at r7, T=1and Z = I, are specified as boundary conditions and this 1s why the
tridiagonal systems are set up only for r7, 2< 7 <] —1

Note that the implicit left-hand side of (4.20) comes from using central dif-
ferences for the viscons denvatives, Neat a solid wall, the use of non-cential differ-
encing as explained in Seetion 4 2 3 wall result in aslightly modified equation [21]
Also, Au is zero on a solid wall even when the wall has non-zeto veloeity  We recall
that this is because the veloeity, u"t!, ot the wall at 41 1s imposed as a bonndary

Lw *

condition and remains fixed dv.ng the psendo-tune relaxation
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4.3.2 Discretization of y-momentum and continuity equa-

tions in y-sweep

Proceeding as with the a-momentum equation, we can write down the y-momentum
and contimuty equations (4.9) and (4.10) m differenced form, after using expres-

sions hike those of Section 4 2.3 for the interpolates of Ar. and regrouping terms.

a AT - a A7 » V'/J‘ 1 .
A_I/J (*—\1)1 g+ Ap:.}) + [ij { ( )v AI/] R(’ ALI/;‘ }} Atl._]-—l

[ n AT A Vy 1 1 —
+ 1+ A7+ R R (il [ + v,
i Ayy {(l " Ay e Ay Redy),,  Reldyy T

r” A V(/J-H 1 L
g / _ ; -\ o 5
" | Ay) {(l o Ayt Redyd, Pig+l T(R.),, (4.21)
-~ A7 1 — —_ A
"\["1 + —"‘““"(—31'..1 - Al’,_,_l) = ___T. (V- V) (4.22)

(" AUM

As before, we have (R,),, = (F}' = #* —a G"),.J. where (G‘,’,),‘J and (V - V)ﬁ’d
are obtained from (4.18) and (4.19), repectively. and (F'),, = (4, ~ v,'L)/B. It
is seen that (4.21) requires the expression -\Pu+1 — 3}3,_]. which cau be obtained

from (4 22), namely

— —_— AV . .
Sty =30, === (V- V) = (V- V)]
Ardv, 0 Ar ( 1 1 ) — A7 3,
e L L . 30, — 2ol
6 Ay, 6 AJ/JH Az/j 5 Ay,

Upon sabstituting this last expression in (4.21). we thus obtain for the latter
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a AT AT - v o o
=T (Rody+ e g (Y V), = (W V)] (123)

This is the tridiagonal system of equations which has to be solved to obtain
(37),_1. which has been uncoupled from (:\7;),_j A similar procedure as i the
case of the y-sweep for Kﬁ,j is used, namely equation (4 23) 15 set up for each
). 2< ) € J=2() = J~1correspouds. f example. to asolid wall [17]). to obtamn
tridiagonal systems of equations which are solved for 1—;[‘1, where 2<7< [ — |

S;;.J is obtained from (4.22) after solving for :\T',J.

4.4 The z-Sweep

The solution 1 the z-sweep proceeds in similar manner as m the y-sweep, namely
A which is uncoupled fiom Nu and Ap s first solved for throngh the difference
form of equation (4 12). and Ap is ehimunated fiom (4.11) with the aid of (1.13) 1o
obtain Mu. Here we wall thus only give the scalar tridiagonal systems of equations
that one sets up from the differenced forms of equations (4.11-4 13) First, we have

the equation for Av,
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and then the equation for Au

a AT (i)~ V! _ 1 _ A7 1 Au
Art Oy Azxl ReArt 6 Ar? =la

1

a AT VY A\
1+ A qv )it kL vy Y
e ars 2 {28
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+ [ Ard {(“ 2 Aryyy Reldxt,, 6 Arly, ity
_— aNT — .
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The solving of (4.24) and (4.23) is done as follows. The setting up of (4.24)
(o1 (425)) for cach 1, 2 <1 < 1-1, gives a tridiagonal svstem of equations which
15 solved for Au, 7 (o1 Ar, 7). and this is done at each yr. 2 < J < J-1 for
Auy and 2 <7 < J-2for Ar,, Funally, the pressure variation Ap 1s recovered

by the 1elation

A7 1

Ap, + TI\.T; [Qu, - Au,y, = A_pw :
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At this point, details will be given concernimg the trieatment of ttow or
outflow boundary conditions, whete we suppose that we have the intlow and outflow
at.r,. =] and =1, respectivelv. or at ¢y and oy Fluid s entening the domam at
the inlet. such that we impose the veloeity profile thete: the velocity components u
and ¢ will thus be set to known values at ry. for example m the form of developed
velocity profiles for laminar flow (see Sections 512 and 81)  Smee the veloerty
components u and ¢ are imposed at the inflow. we thus have that Au, , and Ary
are equal to zero there. Also. smee we are nsing a staggered mesh there s uo
need to mpose boundary conditions for pressure at the mflow  This can be seen
from (4.17), whete we only need the quantities oy oand pog g cand not pyoy ) wineh
represents the inlet pressure when (4 20) 15 set up for 1+ = 2

Now, at the outlet, &+ = ;. the flind leaves the domam and the veloenty
components are thus extrapolated from mside the Hud domain, using the following

formulas,

L4 ) 2 (4.26)
”I-J = -_— " ”I-—],J —_ " “I—LJ . 4.20
A"l—-l / A.l -1
Ary Arf
-1 -1 Rt
o, = (14 ===ty — 2=, (127)
) Ny, ) T T X

which are second-order accurate Thus, after cach psendo-tiune step the veloerty
components iy, and ¢y, are found from (4.26) and (4.27). which allows to compute
(4.17) and (4.18) when equations (4 20) and (4.23) are set up for + = [ — |, at
= r;_;. The values of Au;, and A¢y, can be set equal to zero. whieh mtroduces
an error which is of the same order as the Euler pseudo-time scheme chosen [27].
or formulas (4.26) and (4.27) can be incorporated in the implicit left-hand sides of
(4.24) and (4.25) [24]. As far as the pressure at the outlet 15 concerned. Pry. we

see that it is needed when writing (4.17) at o;_,, and it can either he sot equal

wn
b |




to ze1o or caleulated from the momentum equation normal to a wall at the outlet,

using the following formula.

B v [D(ur) = O(vr) 1 [0 0%
""’_””“’“_/y [ ar 0y Re (0I2+0y2 g B

The pressure point p;, would be for example that the nearest to the bottom wall,

and in the examples treated in this Thesis. it is set equal to zero in order to fix

the pressure level in the domain.




Chapter 5

VALIDATION TEST
PROBLEMS

Two benchmark problems wall first be solved by considering steadv flow prohlems,
the purpose of which is to test the accmracy of the difference representation of
the differential operators and the effectiveness of the psendo-tune iteration tech-
nique. Indeed. whether the artificial compressibility method 1s used to solve the
steady or unsteady flow equations. the procedure 1s exactly the same regarding the
spatial discretization and pseudo-time relaxation Thus, the How side a square
cavity with a lid moving at constant velocity is caleulated and comparison of the
present results with those published by Soh (Ref [17]) 15 done  The flow over a
backward-facing step 1s then computed and companson with Garthng's calenla-
tions (Ref. [28]) is made

The validation of the method as applied to actual nnsteady flow problems
proceeds as described in Section 5.2 Fust. the numerical results obtained with
the present aitificial compressibility method for the unsteady flow between two

oscillating plates are compared with the analytical solution derived for that par-
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ticular problem. Finally. the unsteady flow inside a cavity with an oscillating lid

is computed and the results compared with Soh and Goodrich [16].

5.1 Validation for Steady Flow Problems

In the case of a steady flow problem, the term 0V /3t disappears from (3.1) and

the equations to be solved are thus

G(V.p) = 0, (5.1)
V.V =0 (5.9)

The term G(V ., p) is given by (3.3), as before. The pseudo-time iteration is

introduced at this point (see also equations (3.8-3.9)),

>
+
q
<
i
[an]
o
>

and application of the implicit Euler scheme to semi-discretize (5.3) and (5.4)

pseudo-tinie grves

vu+l . Vl/
AT

o+l = 1 .
r — p +Zv_vv+1 = 0. (5.6)

+G" = o0, (5.5)

These last equations are finally arranged, after putting them in Delta form, as

60




AV+ATAG = -ArGY. (5 7)
A A :
A+ =V oAV) = -2 vV (5 8)
{

Eqnations (3.7) and (5 8) are thus obtammed when the method of artifical
compressibility is applied to the solution of steady flow problems [11.17.29] Notice
their great sumilarity with equations (3.12) and (3.13). the method of solution thus
proceeds in exactly the same manner. Hence (3.7) and (3.8) are also put 1 the
matrix form (4.4). with the difference hete that (i) o = 1. (1) the term /a8

dropped from both matrices A, and A, m {4 3). and (i) R 1s a1ven by

Ru "G'u
R = Rl' = - u"‘,.'
R, —(1/6) V. V¥

The rest of the method is as deseribed i Chapter 4. The seleetion of the psendo-
time step A7 and artificial compressibility 6 15 done as explained i Ref. [17]!

.

namely we have

1 CrAr
5’5}' . A7 = ‘-—/\ .

6=
where ¢ = VuZ + 12 is a representative flow speed, A = ¢+ /g2 + 1/6 15 a chanac-
teristic propagation speed introduced by the artificial compressibility, and Ar 1s
a typical mesh spacing. The Courant number C'r 1s chosen to he approxuimately

20 in order to select A7, and then both o and A7 are optimzed by numerieal

experimentation.

ISee also Section 5.2 where the procedure is outlined for unsteady ow problems.
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5.1.1 Driven cavity flow

1.0

Y

T 0.5 1.0

Figuie 5.1° Geometry of the driven cavity flow problem.

We consider a square cavity the upper wall of which is moving at constant velocity
and compute the steady flow pattern wside the cavity for three Reynolds numbers,
Re = 400, 1000. 5000. where Re is based on the length of the cavity sides and
the Iid velocity, see Figure 5.1 Hence in non-dimensional units the cavity sides
are of length T and the hd veloeity 15 1 as well. The initial conditions required
to start the pseudo-time 1teration procedure were taken to be zero velocity and
pressure mside the cavity whereas a hd velocity of u = 1 was imposed on the
upper wall - Velocity components were zero on the other walls and no boundary
conditions for pressute or for the velocity components at the upper two corners
are requured because a staggered mesh 1s used [17] Equations (5 7) and (5 8) were
then aiterated m pseudo-time until AV and Ap were equal to zero, at which point

the steady state solution was obtained.




[N

Typical variations, with y (the axis of coordinate normal to the lid) of the r-
component of velocity, u, at the cavity centerline, & = 0.3, are shown 1 Figure 5 2,
for three Reynolds numbers and for uniform ot stretched grids: i all cases the gnd
was defined by 40 x 40 points. The value, wu,. of the maximum reenculating
velocity at x = 0.3, and the corresponding location, #,,,v. ate shown in Table 5 1
and are seen to be in good agreement with Soh [17]. as expected, although a
different treatment was used for the boundaiy conditions, namely that desenibed
in Section 4.2.2. We note that the stretched grids used were such that the mmimmum

mesh spacing near the walls was 0.0125 at Re = 1000, and 0.0083 at e = 5000,

in non-dimensional units.

Ynax Wi
Grid Reynolds || 6 | A7 | no. time || Present | Ret [17] | Present | Ref [17)
number steps solution solution
Uniform 400 1.0 0.4 152 0.288 0.288 | -0312 | -0312
Uniform 1000 4.0 04 224 0.183 0181 | -0347 | - 0348
Stretched 1000 2202 314 0.175 0.185 | - 0371 | - 0372
Stretched 5000 2.2 10.05 2206 0.076 0.081 - 0396 | -0 HDS

Table 5.1: Location, Ymq,. aud value, iy, of the maximum recirenlating compo-

nent of velocity. u. for various Reynolds numbets and types of grid.

Convergence was reached and the iterations stopped in pseudo-timne when the
rms values of the numerical residuals of the momentum and contimnty equations
were all less than 107!, The residuals are the numerical evaluation of the nght-

hand sides of (5.7) and (5.8), at the grid points - actually, (3.7) must he divided
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by A7 ard (3 8) by A7r/é. Figure 5.3 shows the convergence history of the rms
testduals as a funetion of the iteration count for the computations performed at
[R¢ = 1000 with a stietched grid. Tables 5.2 and 5.3 list the values of the rms

residuals and maximumn residuals at convergence

Gnd Re mms(R,) rms(?,) rms(R,)
Cnaform | 400 ] 66 x 1077 ] 94 x 1077 | 8.0 x 107>
Untform | 1000 f 6.0 x 1077 |99 x 107> |93 x 1073

Stretehed [ 1000 | 7 4 x 107> | 10x 10771 x 1073
Stretched [ 3000 | 27 x 107" {30 x 107" 1.6 x 10~

and tvpes of grids

Table 5 2° Rius residual values at converge rce for different Reynolds numbers, Re.

Grud Re max( f?,) max(Rt,) max(R,)
Umiform | 400197 x 107"} 19x 107} ] 1.3 x 1073
Umiform | 1000 | 15 x 107" {37 x 107" 139 x 10~}

Stretched | 1000 || 20 x 1071 [ 34 x 107" | 2.8 x 107}
Stretched [ 3000 |91 x 107 | 19x107* |53 x 10™!

hers, Re, and types of guds.
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Table 5.3: Maximum residual values at convergence for different Revnolds num-
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Figure 3.2: Variation of r-component of veloerty, v, at cavity center-hme, 1 =105,

for various Reynolds munbers Re and types of grids
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Figure 5.3: Convergence history of the rms residuals of the momentum and conti-
nuity equations as a function of the iteration count, n. The computations are for
the diiven cavity flow problem at a Reynolds number Re = 1000. on a stretched

grid.
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5.1.2 Flow over a backward-facing step

AV

T

5

0
0.5

!

¥

- 30.0

Figure 5 4. Geometry of backwatd-facing step problem

A detailed benchmark solution for the flow over a backward-facing step an two-
dimensional Cartesian coordinates has been published by Gartling [28] The non-
dimensional geometry is shown in Figure 5.4 The downstream channel has a height
of 1 whereas both the upstream channel region and the step height are equal to
1/2. The channel portion upstream of the step 1s excluded m this benchmark
solution, and the system of coordinates s centered at the step corner {We remark
that the present method was also compared with the results of Benocer et al [29]
for the backward-facing step problem, in which the channel geometry meluded a
portion unstream of the step. Good results were also obtained [18], for example
the reattachment length at Re = 67 was found to be 2 1, compaied to values

in the range of 2.0-2.2 reported in Ref. [29]. Here, we only present a detailed
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comparison of our results with those of Gartling's. as he provided more data m s
presentation )

The boundary conditions associated with the geometiyv of Figure 5 4 are a
developed parabolic veloeity profile at the mlet. @ = 0, 0 < y < 0.5, which
gives a r-component of velocitv w(0.y) = 24y(1/2 = y). and a y-component of
velocity #(0.y) = 0. As was discussed 1 Chapter 4. no boundary conditions
for pressure are required at the let because of the use of the staggered mesh
The average non-dimensional r-component of velocity at the inlet 1s thus equal
to 1 No-shp boundary conditions apply on the walls, wheteas at the outlet the
velocity components are extrapolated to second-order acenraey from mside the
How domam. using the formulas (4 26) and (427) The pressute at the outlet
15 determined by itegrating the normal momentum equation from the bottom
wall [17]. using equation (4 28) in which the trapezoidal rule was emploved for the
itegration The pressure at (rfoyy ). which 1s pyo. was set equal to zeto during
the computations. after the computations wete completed. the pressure data was
normalized by takimg the point at which the pressuie was zeto to be at the step
cornet, as done by Gartling

The mesh was stretched by concentrating the grid points near the walls and
near the step region. and the resulting grid was much like that shown in Figure 4.1,
page 4o, except that the mesh portion upstieam of the step was omitted. as per
Figure 5.4. The hyperbolic-tangent stretching function was used normal to the
upper and lower walls, and the hyperbolic-sine function was employed along the
streamwise, r-direction.  The domaim had a non-dimensional length of 30. with
obd gid pomts spanmng the streamwise direction: this gave a minimum mesh
spacing of 0.08 at the step and maximum mesh spacing of 0.21 at the outlet, in
non-dimensional units. In the cross-stream direction (y-direction), 50 points were

included and the mimmum mesh spacing was 0.015 at the walls.
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The computations were petformed at a Revnolds number of 800, based on
downsticam channe] height and average mlet veloeity The mital conditions were
v = p = 0 throughout the whole domam. wheteas wir.y) = 24y(1/2 = y). 0
<3000 <y < 20and =000 << 30, <1/2 <y 0 The
artificial compressibility, 6, and pseudo-time step, A7, were set equal to 0 8 and 0 2,
respectively. The convergence eriteria was when *he rms values of the nmmenieal
tesiduals of the momentum and contimuty equations were all less than 3 < 10 °
which took 2006 iterations

Tables 5.4 and 5.5 present cross-channel profiles of the veloany components u
and . and of pressure p,at two different strcammwise locations, ¢ =7 and 1 = 15
Comparison 15 made with the tabulated 1esults of Gartling [23]

This problem has two recnculating eddies, one on the hottom wall, y = ~1 /2.
and one on the npper wall. y = 1/2. The length of the lower wall eddy was fonnd
to be 60 in the present calculations, compared to 61 m Ref [28]. whereas the
point of separation. point of reattachment and length of (he nupper wall eddy were
computed to be 4.80. 10.30 and 35.30. 1espectively, compated to 185 10 18 and
.63 in Ref. [28]

Finally. the pressure and shear stress profiles alone the upper wall and the
lower wall of the channel are plotted in Figures 33 and 3.6, 1espectivelv

All these results show good agreement with Gartling's results [28]. wlieh
allows us to proceed further and consider unsteady How ptoblemns This s done

the next section.
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n 100 » P

Y present | Ref [28] |f present | Ref [28] || present Ref.[28]
) 50 ) 000 (3.0060 0 000 0.000 0.1523 0.1562
045 -0 041 -0 038 -0.035 -0.027 0.1523 | 0.1562
040 -0 054 -0.049 || -0.107 -0 086 0.1523 0.1562
03511 -0037 1 -0032| -0.172 -0.147{ 01523 | 01562
1L.30 () 009 0.0154 -0198 0193 1 0.1523 | 0.1562
025 ) 089 0.0092] -0181 0225 11 0.1923 | 01562
)20 0202 0204 -0 140 -0.268 0.1524 0.1563
015 0.353 0349 -0128| -0.362 | 0.1328 { 01567
.10 0.532 0.3221 -0.200] -0.044 ) 0.1336 | 0.1574
0.05 0723 0709 -0.378] -0823 ) 0.1501 0.1590
0.00 0 899 0885 -0.624 -1.165 || 0.1575 | 0.1615
-0 05 1 034 1024 -0.886 -1.507 || 01610 016352
-0°10 1 169 1.105 || -1.110} -1.778) 0.1632 | 01697
-0.15 1.116 1118} -1.250| -1.925| 0.1697 | 0.1746
-0 20 1.0o8 1.062 || -1.274| -1.917( 01738 | 0.1792
-0.25 0.938 0.948 || -1.182{ -1.748Y) 01773 0.1831
-0.30 0.784 0792} -0.961 -1.423 11 0.1798 | 0.1839
-0.35 0.609 0.613 || -0.630 | -1.000| 0.1813 | 0.1876
-0.40 0.427 0428 | -0.2961 -0.504( 01821 | 0.1885
-0.49 .231 02324 -0053| -0.118| 01824 0.1888
-000 0.000 0.000 0.000 0.000 || 0.1824 { 0.1889

Table 5.4: Cross-channel profiles at + =7




u 100 ¢ P

y ptesent | Ref [28] I present | Ref [28] | present | Ret [28]
0.90 0.000 (000 (0 000 0000 ) 02150 (0 2160
0.45 0 104 0101 0020 0021 021450 0 2160
0.40 0.207 0202 0.069 Q072 02050 02109
0.35 0.311 0.304 0.132 0 140 {02450 (02159
030 0.416 0408 0.193 02071 0.2150 02159
0.25 0321 312 ) 210 02601 02150 02159
020 (622 0613 0259 D288 02150 02459
015 0712 0704 () 248 02831 02150 02159
010 0.785 0779 9200 02410 02100 02409
0.05 0.834 0831 0135 180§ 02450 1 02459
000 0.803 0.853 0 049 005, 02450 {2409
-0.05 0841 0 844 0041 00034 02450 02159
-0.10 0798 0.804 || -0.121 Q08T 02450 ) 02159
-0.15 0.729 0.7137 || -0181 S0 47 0.2450 1 02159
-0.20 0.640 0649 || -0211 | -0 185 021501 02159
-0.25 0.538 0.047 || -0.211 01910 0.2450 1 02459
-0.30 0.431 0438 || -0.178 { -0.166 ([ 0.2450 1 0 2459
-0.35 0.322 0.328 || -0.126 | -0 119 0.2450 | 0.2459
-0.40 0.214 0.218 || -0.067 | -0.065| 02451 02159
-0.45 0.107 0.100 || -0.020 | -0.019 ] 0.2451 | 0.2159
-0.50 0.000 0.000 0.000 0.000 ) 0.2451 0 2459

Table 5.5. Cross-channel profiles at r =15
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Figure 5.5: Pressure profiles along the upper wall and the lower wall of the channel.
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5.2 Validation for Unsteady Flow Problems

The equations have heen developed in Chapter 4 We first need to deveroune
the artificial compressinhity, 6. and the pseudo-time step. A7 To that end. we
consider the one-cimensional imviseid model problem from equations (3.8) and
(3 9). dioppg the undifferentiated and non-homogeneous terms: it is put in matrix

form as

) it 2ai a 3] i _
_,_(_.. + —_ =) (3.9)
arl g 1/6 0|90 ] p
The eigenvalues, Ay, of the square matix i (3 9) are
Ne = ad £ J(a @) +afs (5.10)

Equations (5.9) and (3.10) are wdentical to those obtained by Soh and Goodrich [16].
and the same conelusions apply in the present formulation, namely the system with
artifieral compressibality 1s hyperbolie m pseudo-time, sice the ergenvalues are real.
and 1t 1s “subsone” | siee they ate of opposite signs  The flow model defined by
(9.9) 15 thus sinmlar to a subsonic compressible flow characterized by an artificial
Mach number M, = ¢vVad = /2058 /3. m which ¢ represents a charactenstic
How speed, Le. ¢ = Va2 + 02 also a = 2At/3. The artificial compressibility
can be determned from (5.10) by considering M, ~ 1/3. which provides good

computing effictency, and we thus obtain

1
O = ——
242 At

where At s the real. physical time step. Now. an estimate of the pscudo-time step

(5.11)

A7 is made on the basis of the formula




anein e

CrAr
A

where Ax is a characteristic mesh spacug, and a Courant number Cr of approxi

Ar = . (o 12)
mately 30 to 401s chosen to evaluate A7, Numencal expernimentation is tequ »d

to optinize both é and A7

5.2.1 Unsteady flow between oscillating plates

This problem has an analytical solution. We consider two mfinite plates, parallel
with each other and aligned with the #-coordinate®  They are separated by a
distance H. The top plate 1s fixed while the hottom one has a harmonie oseillatony
motion of frequency
(G0 |,my = QH smQf, G
a5t ey = 0.
H and QH serve as characteristic length and veloeity to non-dimensionalize the
equations and a dimensionless parameter, s, called the Stokes number s mtio-

duced, namely

8§ = — (D 14)
where v is the fluid kinematic viscosity. We then have to solve the equation

du 10%

Jt s 0 )
subject to boundary conditions (5.13) XNotice that the problem shows no depen-
dence on tiie r-direction and that the y-component of veloeity is zero, laxmmnar How

1s considered. The solution is

%In this section, barred quantities are dimensional, non-barred ones non-dimensional.




uly. 1) =3 {F(y)e'} .

where '3 denotes the unaginary part and where

sinh ,3(1 ~ ¢
Fiyy = 22U

with ¢t = /-1 and .J = Vi s.

Now, in the numerical solution to that problem, 10 grid points were chosen

sinh 3

m the r-direction by applying periodic boundary conditions [24, 33]. Thus, even
though no dependence on the r-coordmate 1s actually present w the problem the
numencal grid was two-dimensional. In view of the chowce of charactetistic length
and veloeity made to non-dimensionalize the equations., the term 1/Rein (3.3) has
to be replaced by 1/s, whete s 15 the Stokes number given by (5.14).

To obtain numerically a harmonic solution, the equations were integrated
i time until a periodie solution was obtained, which was achieved after 8 har-
monie cyeles Convergence m pseudo-time was reached when the rms valies of the
residuals of the continuity and momentum equations (calculated from the right-
hand sides of (4.20), (4.21) and (4 22)) all fell below 10~%. which took around 15
pseudo-time tterations (see also Table 5 7 below).

In Figuies 57 to 5.9, the analytical results (full lines) are compared with
the numerical results, plotted with markers. Table 3.6 sununarizes the data that
apply to each of the figures The grid was stretched in the y-direction and the
entry Ay, in Table 5 6 1s the mimmum mesh spacing at the walls. J g1id pomts
span the y-direction: s 1s the Stokes number, N, the number of time steps per
harmonic eyele, and & and Ar are the artificial compressibility and pseudo-time
step, respectively.,

Figure 5 7 compares, for s = 1000 and J = 25, the influence of .V; on the

solution. In Figure 5.7(a). each harmonic cycle has been divided up into 9 time
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Figure s J L A | N 0 1A J
a.7(a) |l 1000 [2510.0140) 9 |57 ] 0.6
3.7(b) 1000 (25100140 19} 12 [ 12
3.8(a) || 10000 | 251001401 19| 12 ] 1.2
5.8(b) || 10000 | 25 { 0.0070 | 19 | 12 | 1.2
5.9 10000 1 511 0.0063 | 19} 12 | 12

Table 3.6: Values of the parameters used in the computation of the results of

Figures 5.7 to 3.9.

steps, whereas in Figure 5.7(b) there are 19 time steps per eyele, whieh effectively
corresponds to a smaller time increment.  As expeeted, this leads 1o a better
accuracy, which is seen by comparing Figuies 5 7(a) and 3.7(b)  The results of
Figures 5.8 and 3.9 have thus been computed with N, = 19 Note that each
analytical and numerical curve in Figures 5.7(h), 3.8 and 5.9, cotresponds to one
given istant. t". within the harmonic eyele, namely to

w2 M2 o
19 w

starting with the left-most curve, whereasin Figure 5.7{a) we have i = (n/9)( 27 /w).
n = 0,1,2. The motion is mostly confined to near the bottom plate. which 15 why
the results are plotted only for 0 < y < 0.2. Figures 3.8 and 5.9 present results
from between y = 0 to y = 0.1, for s = 10000

Figure 5.8 compaites, for J = 25, the influence of the mesh streteling on
the solution. It is seen that the results ar~ better i Figure 5.8(h). compared to
Figure 5.8(a), after decreasing the spacing near the wall. The agieement between
analytical and numerical results is similar to that obtained after doubling the

number of mesh points, as is shown 1n Figure 59, where J = 31 grid points have

-1
~1




been included in the y-direction.

Table 5.7 shows 1esults obtained with 1espect to the computations of Fig-
ure 5.9. At each n. corntesponding to time step t", the number & of pseudo-tune
steps required to converge and obtain the solution at "+! 15 shown, along with the
rms values of the residuals of the momentum and continuity equations, rms(R,,),
rms(R,), rms(R,), and along with the maximum values of the residuals., max{(f,).
max(R,), max(R,), at convergence. Results are for integration during the first
harmonic cycle. It is seen that convergence in pseudo-time 1s very quich for that
problem.

The method shows good performance for this simple test problen, both in
terms of the number of pseudo-time steps required between two real-time levels

and in terms of the accuracy obtained as compared to the analytical solution
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Figure 5.7: Variation with y of the r-component of velocity, v. The computations
are for s = 1000, J = 23, and three instants within the harmonic cycle have been

represented. Comparison is made for (a) Ny = 9, and (b) N, = 19.
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AYmn = 0.007.

80



e

0.10

0.08

0.06

0.04

/

.

! |

{

0.0 0.5

Figure 5.9: Variation with y in the x-component of velocity, u. The computations

are for s = 10000, J =51, .V, = 19, and three instants within the harmonic cycle

have been represented; Ay, is equal to 0.0063.
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Snfies

n k rms(R,) rms(R,) rms(R,) || max(R,) | max(R,) | max(/,)
2 |t 15 || 0.658E-04 | 0.153E-08 | 0.272E-09 {| 0.322E-03 | 0 154E-07 | 0.185E-08
3|l 15 || 0.892E-04 | 0.146E-06 | 0.202E-07 || 0.443E-03 | 0 201E-05 | 0 260E-06
4 )| 15 || 0.926E-04 | 0.956E-07 | 0.153E-07 |} 0.439E-03 | 0 103E-05 | 0 i 79E-06
5 ) 15 | 0.827E-04 | 0.187E-06 | 0.414E-07 || 0.357E-03 | 0 274E-05 | 0 407F-06
6 || 15 || 0.636E-04 | 0.314E-06 | 0.643E-07 || 0.282E-03 | 0.283E-00 | 0 722E-006
7 || 14 | 0.686E-04 | 0.216E-06 | 0.339E-07 {| 0.300E-03 { 0 1G0E-05 | 0 {39E-06
8 || 14 || 0.607E-04 | 0.17SE-06 | 0.235E-07 || 0 245E-03 | 0 160E-05 | 0 237E-06
9 || 14 || 0.948E-04 | 0.120E-06 | 0 131E-07 || 0 477E-03 | 0 S62E-06 | 6 [231-06
10 || 15 || 0.794E-04 | 0.126E-06 | 0.249E-07 || 0.412E-03 | 0 117E-05 | 0 251E-06
11 || 16 || 0.592E-04 | 0.564E-07 | 0.202E-07 || 0 295E-03 | 0 504E-06 | 0 161E-06
12 116 || 0 674E-04 | 0.958E-07 | 0.230E-07 || 0 321E-03 | 0 87GE-06 | 0 229E-06
13 |} 16 || 0 694E-04 | 0 192E-06 | 0 721E-07 || 0 313E-03 | 0.195E-05 | 0 751E-06
14 || 16 || 0 649E-04 | 0.118E-G6 | 0.311E-07 {§f 0 281E-03 | 0 LIGE-05 | 0 312E-06
15 || 15 || 0.902E-04 | 0.539E-07 | 0 984E-08 i 0.39 E-03 | 0.473E-06 | 0 738E-07
16 || 15 || 0.662E-04 | 0.622E-07 | 0 814E-08 || 0.287E-03 | 0.701E-06 | 0 590E-07
17 || 14 || 0 740E-04 | 0.7534E-07 | 0.422E-07 || 0 333E-03 | 0 602E-06 | 0 579E-06
18 || 14 || 0.754E-04 | 0.104E-06 | 0.341E-07 | 0.306E-03 | 0.108E-05 | 0 313E-06
19 || 15 || 0 627E-04 | 0.738E-07 | 0.131E-07 || 0.324E-03 | 0 T2JE-06G | 0 115E-06
20 (| 15 || 0.861E-04 | 0.412E-07 | 0.582E-08 || 0 445E-03 | 0 35CE-06 | 0 632E-07

Table 3.7: Number. k. of pseudo-tune steps tequired to converge at tine level 7.

and rms and maximum residual values at convergence The computations ate for

the results of Figure 5.9.

82




5.2.2 Unsteady driven cavity flow with oscillating lid

The second test case that we consider 1s the unsteady driven cavity flow problem the
geometry of which has been descnbed i Seetion 31 However. 1 the present case
the lid has a harmome oscillatory motion, mstead of constant velocity. Unsteady
periodic solutions will thus be obtained after the equations have been integrated
for a sufficient number of harmonic cycles — 8 cycles.

The hd veloeity U,.(t) is assumed to be of the non-dimensional form

U.(t)=u(l.t) = cosut , (5.15)

where w is the non-dimensional frequency of oscillation. Soh and Goodrich [16]
have performed calculations on a uniform 40 x 40 grid, at Re = 400 and for w = 1.
using, Ny = 40 time steps per harmonic cycle The Reynolds number Re is based
on the maximum hd velocity and the length of the cavity sides.

We will present results for the same values of Re, w, N;. and on a uniform
40 x 40 gnd as well  As imtial conditions, the converged steady state solution
obtained i Section 5 1 at Re = 400 has been used.

The diag coefficient, Cpy, on the oscillating lid as a function of time is first
computed. At a given wstant of time t", the drag D is given by integrating the

wall shear stress, 7, on the hd. 1.e. 1 non-dimensional form,

! 7k
D= / T, du, where 7, = = .
0 dy y=1

The non-dimensicnal drag coefficient is defined to be

D
CD——?.';-

and 1t is the latter which will be presented shortly. Now. Simpson's rule was used
to perform the mtegration i the previous equation, and the numerical evaluation

of du/0u was done as
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du _ %u,‘,, —3u g+ %M,J_l
- bt 1
Y|, Suy —3yy+ 3y

where yy =1 hete 1s the y-coordinate of the lid and u,, = U(f) 15 the hd veloein
given by (5.15).

The plot of the diag cocflicient. Cpy, as a function of time 15 presented m
Figure 5.10, for the first 8 harmonic cveles. It 1s seen that it quickly reaches a
periodic state  The maximum value of Cps 0.0671 and 1t has a phase angle of
-20 9 degrees with 1espect to the lid velocity Soli & Goodtich [16] found a value
of drag coeflicient, Cp, = 00783, aud a phase angle value of -31 5 degrees Then
results differ sensibly from ours  Oune reason to explaimn this difference mav be
related to the different treatment of the boundary conditions that was emploved
m the present formulation. see Section 4.2.3. compared to Soh & Goodnieh [16)
Also. we imposed here that the wall shear stiess was equal to zeto i the upper twao
cotners, and we do not know the procedure adopted by Sobh & Goodnieh, which
may be different. In any case, those calculations were not the prmary ohjectives
of this thesis and a thorougl investigation was not putsued to clarify these detils

Next, streamline contours ate plotted for different mstants of time within
the harmonic cycle. after the solution has reached a peniodic state Remembenng,
that each cvcle. of period T. was divided mto 40 time steps. we thus have m
Figure 5.11(a) sticamlines for the time ¢ = 87, compared to t = 8T + 207 /40
in Figure 5.11(b). Similailv. s Figutes 5 12(a) and 5 12(b) the tumnes chosen are
t =87 +167/40 and t = 8T + 36T/40. respectively We remark that the parts
(b) in these figures are minor images of the parts (a) The tesults of Fignres 511
and 5.12 are this time very much similar to those presented by Soli & Goodnieli [16]
as well as other results plotted for different tumes. not preseuted here

The values of artificial compressibility, &, and psendo-time step, A7, chosen
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were 15.3 and 1.9 1espectively. compared to 50 and 20 by Soh and Goodrich [16]. As
for the previous problem m Section 5 2 1. convergence m pseudo-time was reached
when the rins values of the numerical residuals of the momentum and continuity
equations all fell below 1077 wlich took around 40 pseudo-time 1terations per
1eal-time step Table 5 8 shows, for integration during the first-half of the first
harmome cyele, the number, k. of pseudo-time steps required to converge as well
as the values of rms(RR,). 1ms(R, ). rms(R,), and max(R,). max(R,). max(R,), at

convergenece
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(b)

Figure 5.11: Streamline contours inside the cavity after periodicity has been at-

tained in the flow solution. The times are (a) t = 8T, and (b) t = 8T + 20T/40.
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(b)

Figure 5.12: Streamline contours inside the cavity after periodicity has been
attained in the flow solution. The times are (a) t = 8T + 167/40, and (b)
t = 8T + 36T/40.
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rins( RR,)

rms(R,.)

rms( )

max(R,)

max(R,)

max(R,)

ot

20

21

39
40
41
11
40
38
38
40

0 315E-04
0277E-04
0 304E-04
0 340E-04
0 306F-04
0.325E-04
0 316E-04
0 288E-04
0 279E-04
0.279E-04
0 250E-04
0 254E-04
0.253E-04
0.275E-04
0.288E-04
0 304E-04
0.292E-04
0.267E-04
0.282E-04
0.179E-04

0.836E-04
) 544E-04
0 GI8E-04
0.951E-04
0.887E-04
0.999E-04
0 981E-04
() 879E-04
0.8G8E-04
0 941E-04
0 930E-04
0 9G6E-04
0 897E-04
0.832E-04
0.879E-04
G 925E-04
0.919E-04
0.898E-04
0.955E-04
0.951E-04

0977E-04
0 4SE-04
0.944E-04
0 651E-04
0.439E-04
0.482E-04
0.564E-04
0.619E-04
0 T08E-04
0.832E-04
0.835E-04
0.832E-0-4
0.700E-04
0.601E-04
0.022E-04
0 {98E-04
0.483E-04
0 531E-04
0.677E-04
0 786E-04

0.393E-03
0.372E-03
0 4G5E-03
0.637E-03
0.635E-03
0 653E-03
0 613E-03
0.51GE-03
0.424E-03
0.504E-03
0.426E-03
0.462E-03
0.023E-03
0.516E-03
0.506E-03
0.622E-03
0.563E-03
0 482E-03
0.580E-03
0 329E-03

0.201E-02
0.109E-02
0 144E-02
0.245E-02
0.227E-02
0.267E-02
0.263E-02
0 206E-02
0.166E-02
0.198E-02
0.206E-02
0 207E-02
0.181E-02
0.179E-02
0.189E-02
G.248E-02
0 247E-02
0.189E-(2
0 234E-02
0.191E-02

0.758E-03
0.513E-03
0.608E-03
0.924E-03
0.633E-03
0.654E-03
0 939E-03
0.112E-02
0.126E-02
0.154E-02
0.153E-02
0.147E-02
0.142E-02
0.118E-02
0.890E-03
0.749E-03
0.709E-03
0.108E-02
0.157E-02
0.103E-02

Table 3.8: Number, k, of pseudo-time steps required to converge at time level #"

and mms and maximum residual values at convergence. The computations are for

the results of Figure 5.10 for the unsteady driven cavity flow problem.
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Chapter 6

METHOD OF SOLUTION IN
CYLINDRICAL
COORDINATES

6.1 Introduction

The time-integration method using artificial compressibility, which has been de-
veloped in the previous chapters for the incompiessible Navier-Stokes equations,
15 implemented in cylindrical coordinates 1 this Chapter The scalar form of the
equations is different than in Cartesian coordinates, and we expose the detals for

implementing the method m three-dimensional eylindnical coordinates

6.2 Differential Form of Equations

In three-dimensional cylindrical coordinates. if we denote by u. v and w the veloc-

ity components along the axial, radial and circumferential coordinates, r. 7 and 4.
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then the nondimensional fluid velocity vector V and the terms G(V,p)and V-V

from equations (3.1-3.3) are given by

y Gy (u,v,w,p)
V={yuy|, G(V.p) = | G, (u,v.w,p)
lU Gw (usviw’p)

, HNuu) 19(rvu 10(wu) 0Op
Gu(u,v,w,p) = P ) + - (ar ) + T + o

L [0, 10 (on), 10
" Re |02 ror \ or r2 062 |’

duv) 19(rvv) 1 wv) w?

Gl'(uv v, 'L’al)) = + - ar + 7“ 00 - ",""' + ar

Jdr r

LV

1 02“.*_1_(?_ .@ +_1_0_22__.____.___ (6‘))
" Re 0227 ror rdr rzo82  r296 2| -

' 1 1 Y ¥
R e L
! ?_224.1_(_?_. @. +_1_?_2ﬂ+____.__£ (63)
Re [ 0x2  ror ! Jr r2 962 2 I

du 139(rv) 10w
—_— + —_

V-V = dr r Or roo

(6.4)

Now, cquation (3.12) is again linearized by lagging the velocity components

in the term AG which is derived from (6.1-6.3), and equations (3.12) and (3.13)

can be put i the global matrix form

I+aA7(D, + D, +Dy)] Ad =ATR,

(6.5)

where the matrices D,, D, and Dy contain, respectively, the spatial derivatives
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with respect to &, r and 8 of the variable A = [Au Ne Aw Ap]”. They take the

form
[ L+1/a 0 0 0/0.1'-
0 L 0
D, =
0 0 L 0
| (1/e8)3/0x 0 0 0
[ M 0 0 0
D 0 M+1/a+1/(Rer?) 0 dfor
"o 0 MO0
L0 (1/adr)@for)r)y O 0O
-
N 0 0 {
D 0 N =’ [r+(2/Re r?)d/00 0
0:
0 —(2/Rer?)d/06 N+ 1/a+[r+1/(Rer?) (1/1)0/00
K 0 (1/aé 1)0/06 0
where
_aww) 1 9%y
v = = "®ae
a(rvvy) 1 J dw
My = S |
Ty ror Rer or (, 0/')
AN 2.,
Vo = o(w” w) 1 0%

rdd  Rerl0g?’

F' V" — o G
R = )
~(1/6)V - V¥
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As for Cartesian coordinates. the undifferentiated terms arising from A7 AV
have been included within D,. D, or Dy, as well as other undifferentiated terms
which arise in cylindrical coordinates, namely —@” Aw/r and Av/(Rer?) in the 7-
momentum equation and ™ Aw/r and Aw/(Rer?) in the -momentum equation.
Also, the off-diagonal terms [—i/r 4 (2/Rer?)0/06] and [-(2/Rer?)3/86] in
the Dy matrix will contribute coupling between the velocity components Av and
Aw in the r- and f-momentum equations. This means that scalar tridiagonal
systems of equations will not be obtained anymore when using the factored ADI
scheme and eliminating the pressure with the aid of the continuity equation. This
inconvenience 1s avoided by simply dropping those terms from the Dy matrix,
which does not affect significantly the overall implicit coupling and convergence
1ate of the method as the numerical examples presented in the next chapters show.

Thus, introducing the factored ADI solution scheme, we rewrite (6.5) in

factored form as
(I+aATD,)I+ a ATD,)(I+a ATDy)AP = ATR.

This last linear system of equations is now solved by the succession of the z-, 7-

and #-sweeps.

(I+aA7D,)Ad = ArR (6.6)
(I+aA7D,) 3¢ = Ad (6.7)
(I+aA™Dy)) Ad = 3. (6.8)

At this point we are ready to wiite down the actual scalar equations that
result from the matrix equations (6.6-6.8). Hence, we will have for the z-, 7- and

-sweeps the following equations. first for the r-sweep,
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— ‘ 0(17":\71) (')(S})) 10"’(.3\11)
a A7 [ ar + ar Re 0:2

(14+A7)Av +

= AT (F' =" —aGY) (6.9)

AaAr) 1 8%Ar)
or Re or?

Av +0AT[ - — =

= AT (F' =" —aGY), (6.10)

t

— Ai"Aw) 1 (Aw)
Aw —_—
w o+ aAr [ or Re 0Ox?

= AT (F"-o" —aGY), (6.11)
— AT 3(AY .
Ap4aran) g g (6.12)

—— [O(r#*Au) 1 3 [ BDuN] _ ~ .
Au + a AT - Rev o (r 5 )} =Au  (613)
(1+37)37 + aar |20@20)  dap)
| O or
1[0 ([ aAr) Ar ~
a E{rc’)l (7 or )_7?”_'3( (614)

- N ) N —
Au 4+ a AT [8(7 ' ) - —]- _C (7‘ 0(..\1!))] = Auw (G1))

=5 = Ap, (6 16)
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and fiually, for the #-sweep.

o’ Au) 1 62(Au) — -
St “ro8  Re o) v (047)
Nw'Av) 1 §%(Av) —
/ = ' 6.1
Av + a AT [ R YD ] At (6.18)

o(i* Aw) v"Au' 4 d(Ap)

(14+A7)Aw +

r 00 r r dé
1 [d*Aw) Aw —
_ __{ ST }] = &u (6.19)
A7 d(Aw)  —
Ap + el Ap . (6.20)

As usual, in the above equations the superscript v means that the quantity

is evaluated at pseudo-time level t*, and

F: - %(4 un__,un—l)’
Fn _ _1_(4 U" _ vn-—-l)
v - 3 )
1
F’f = Z(4u" — n-l1 .

6.3 Hybrid Finite-Difference/Fourier-Expansion
Method

The equations developed 1 last section must be solved on a three-dimensional

mesh, which is a costly undertaking. Here we derive simplified forms. whereby
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expansions of the flow variables V and p m terms of the circumferential coordinate

§ are made. Complex Foutier series are thus assumed for the How quantities,

N
u(r.r.0.t) = z w(a, rot)e (621)
p=-N
N
v(e,r0.t) = 3 bt (622
p=-N
N
wleor 0.8 = o 3 ai,(ar e (6.23)
p==V
v
plr,r.8,t) = Z 1),,(.1"1‘,1)(""”. {6.24)
=—N

The quantities i, ¢,. @, and p, are the Fourier coeficients The 1eason why
the factor 1 = /-1 has been included in (6 23) for w will be made clear  the
next sections. The number of circumferential harmonies chosen in the OXPrAlSIOnsS
is .V and we thus note that the Foutier series are truncated: they serve as biasis
functions for a Galerkin solution m which equations (6.21-6.24) arc substituted
in (6.9-6.20). the latter then being each in turn multiplied by (1/27) exp(—~ipf)
and integrated over 8 between 0 and 27. This is equivalent to taking the Founer
transform of the governing equations and getting them written down m terms of
the Fourier coefficients of the vanables involved (the domain 1s periodic in 8) The
following orthogonality relation is used in applying the Galertkin method.

1 27 9
— exp' P10 g = o
2m Jo

P
where 6,, denotes the Kronecker Delta. Thus. denoting by a circle. o. the convo-
lution products, defined shortly, and noting that /06 = 1, and *J00? = — 412,
after taking the Fourier transform, we have the following equations for the r-, r-

and #-sweeps, first for the r-sweep,
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(1+A7)Ai, +

Ay +

Aw, +

A+

then for the r-sweep,

A,

(I+ A7) Ae,

"AT[ oz ar  Re 0z

A [(Fl)u - i —a (GY),]

WAy i 0 Ab), 1 ¥Ad,)
or Re 0Ox?

AT [(B)u - = a (GY),]

(" o ‘szi'),, 1 02(&5“)
a AT [ or "~ Re 01?2

A7 [(F2) - - a (Gh),]

AT I(AT,) AT o
T = (V)

) or
+ aAr [0 r(t o Au),
ror
1 0 (’)(3-&-,‘) _ o
" Rero <r or )] = Ay
. [0r(@ 0 3F),  0(Ap,)
+ aar [ ror or
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|

(6.25)

(6.26)

(6.29)

(6.30)




3F, 4+ aAr [‘7

R A Y -
Rer Or ar ==

and finally for the f-sweep,

Ap, + — =\p
Pu & ror Pu
Au, + oldr :ﬁ(u'"’ o Air), + ’—I;ﬁ’_'i = Au,
r r~ Re
. (—u . ) 12 Ab, _—
Al‘“ + aAr --r—((l" o Al'),; + 757??{- = A,

(1+A7) Ny, + adr |5 o Ai), + ———t £y,

+ ) Tie = Au,
) Arp . —
Ap, - —6—;—..311',, = Ap,

In equations (6.25-6.36) we have the following relations

al) 1 -1 -1 -
(Fil = gl -
n 1 ~n s —
('), = 5(4 u — Uy l)
all] l -0 - -
R
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(6 33)

(6 34)

(G 35)

(G 36)



ikl

» N’ odt”), Or{i*od”), pn ap;,
(e = = YT et g
1 0211" 19 (')IAL:" /52 .y
- +-—=\|r—=—]-—u
Rel o 7 vor ar r2
w80 ), D r(i¥oi¥), “(u‘)" - (W o), . %
(G = ar + ror r # r ar
_ _1_ 02[’;: + i_(i al,l’ _ (ﬂ2 + 1) oy Q W
Re | Or2  ror 07 r2 R
S Nav o w”), Or(t*od*), pu, ., ., (Youw"), u .,
(G = py + or 7(([ ou’), + — + p P
_ 1 fofi+1_<'1 Lom ). +2_ﬂf,
Re | dr*  rOr or re

. auy,  ANriv)
;o 1 W (A
(V : V):z - or + ror - r ll: '

We note that a factor ¢« has disappeared from all the -momentum equations.
and we recall that superseript v in the above equations denotes quantities eval-
uated at pseudo-time level #7: for ease of notation, the breve symbol * denoting
the psendo-functions V and p during pseudo-time integration has been omitted,
and the superseript v alone is taken to represent these pseudo-functions during the
pseudo-time relaxation. Now, it is to be noticed that nonlinearities present in the
Navier-Stokes equations appear in the Fourier-transformed equations in the form

of convolution products, which are defined as

For example, if .V is equal to 2 in (6.21-6.24) we then have
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(0" o t")y = agry + ayry + uly

(@ o), = a4l vy 4+ gty + nyog + uset,

(0 Y = g0} + 00+ i + W + i
(0 P04 = gl 4 I+
(@0 ")y = @Y,00 + a0 + aget,

The convolution products provide the non-linear coupling hetween the diffe-
ent citcumferential harmonics and between - lie equations themselves, as it s to be
realized that equations (6.25-6.3G) have to be witten down (2.V + 1) tunes, since
there will be one such set of equations for each positive and negative harmonie
i, 1= ~=N, ... N The equations between the different sets are coupled by the
convolution products. The actual equations will be given for N = 1 hatmome
three-dimensional cyvlindrical coordinates i the next section, and for N = 2 luu-
monics for a special two-dimensional annular flow problem, in the next chapter

Originally, the system of incompressible Navier-Stokes equations contained
four equations and now. after using the Galerkin procedure, we m fact have four
times (2.V 4 1) equations to solve The Galerkin procedure seems unjustified
However. in the process the number of independent variables has gone from three
to two. 1 other words the coordinate # has been elimmated and the equations
need to be solved on a two-dimensional domain 1 the vanables o and 7. which 15 a
major advantage As we will see, the more the number of harmomes N we choose,
the more the equations become complicated. such that the method s fact mosth
useful for deriving linearized forms of Navier-Stohes equations and for investigating,
the importance of nonlmear effects 1 particular tvpes of flow problems These are

detailed in the next section and chapter
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6.4 Linearized Forms of Navier-Stokes Equations

The annular flow geometiies that will be considered throughout are composed
of two hodies of revolution which are concentnic with ecach other and delimit the
annular space Furthenmore, the vibration of either body is considered to take place
i one plane, the plane of oscillation. such that if the circumferential coordinate
is measured from the plane of oscillation, then the flow variables u, v and p are
even functions of § and w is an odd function of 8. This last constraint simplifies
the solution proeess hecause of symmetry with respect to the plane of oscillation
Indeed. 1t 1s known [30] that the negative and positive Fourier coefficients, f_,‘ and
f,,, of a real function f(#) are related to cach other by the 1elation f_,, = ; where
the star denotes compiex conjugate. Furthermore, if f(#) is an even function of 4
then all its Founier coefficients are also real and even. whereas if f(8) 1s odd then

its Founier coefficients are pure imaginary and odd. In other words we have

f_,, = ﬁ, . if f(8) is real and even

X . (6.37)
0o = =i1fu. if f(0) 1sreal and odd ,

whete f,, 15 1eal in both of the above relations. This means that the set of equations
(6.25-6.36) will have to be set up only for p = 0,1, . N. 1 order to obtan the
positive harmomies, and then (6 37) can be used to obtain the negative ones. We
note that this explains the factor ¢ in the series form (6 23) for w. and we conclude
i equations (6 21-6 24) that u,.7, and p, are real and even. and u', 15 1eal and
odd

Now, simee one of the objectives of fluid-strucure interaction study is to de-
ternune the stability of structures under the effect of fluid flow. we consider that
there is a mean fluid flow i the annular space. and the mean flow 1s axisymmetric

because the two bodies delimiting the annular region are concentric  We will be
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considering small amplitude oscillations of either the wmner or outer body dehim-
iting the annular space, and the perturbations m the flow vanables that are thus
produced are small with 1espect to the mean flow quantities The latter are de-
scribed exclusively by the quantities @y, ¢y and py when the inuer and outer bodies
are fixed (steady flow), aud any departute from axisymmetty brought about by
unsteady motion 15 reflected by the higher otder harmonies (note that wy 1s zero
whether the flow is steady or unsteady, because the @, are odd).

As a first step toward obtaimng a hnearized solution to the Navier-Stokes
equations. we take onlv .V = 1 cucumferential harmonie m (6 21-6 24). which s
justified for small departures from axisymmetry m the case of small perturbations
Thus for the simple case N = 1, we write down two timnes equations (6 25-6 36),
for = 0 and p = 1, and these two sets of equations must m prnciple be si-
multaneously mtegrated in time to reflect the nonlinear mteraction between the
zeroth-order quantities (¢ = 0) and the first-order ones (;t = 1) However, the hn-
ecarization 1s preciselv accomplished by computing the mean flow first, as a steady
flow and 1 the absence of vibration, and the quantities iy, vy and py, thus ob
tained are kept constant and not simultanconsly mtegrated with the second set of
equations for the quantities i, ¢, @ and p; The latter only are considered to
be time dependent and reflect the unsteady nature of the flow problem It 15 to he
noted that this method 15 only valid for concentric geometiies as any excentnaty
of the outer body with respect to the mner one causes the steady flow not to be
axisymmetric and requite infinite series in (6 21-6 24)

Thus, the mean flow is obtamned fitst by solving the axisvinmetne steady flow

equations. namely

= (M6 3K)

or rdr + Jdr Re| ort + r o

0(&0120)+0(ri-0ﬁ0) Ipe 1 [d%uy 10 ( 0:’:,,)
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=

0(7'107"0) + ol(r tyiy)

dr rdr

VL (200 (00 4
or

or  Re | or2 " ror r?
aﬂo 3(7'7:‘0)
or + ror

= 0(6.39)

0(6.40)

and the quantities iy, ¢y and iy are kept constant while solving the following equa-

tions for ay, f oy and py. They are obtained fiom (6.25-6.36) by writing them for
a0y ) A

N =1 harmome, with g = 1. Noting that @y = 0, because the @, are odd, and

Ay = Ay = 0, because they are kept constant in the linearization, we then have,

first for the - sweep,

(1+A7A30] +

Al'l +
iy +
A[i] +

then for the 1-sweep,

oig Adn) | (Ap) _ 1 &*Aiy)
or or Re 0Oxr?

aAT[

AT [(F1) = @) = a (G

iy Aiy) 1 3%(Ady)
or Re 0x?

a A7 {

AT [(F:)l - —a (G:)x]

Oay M) 1 9X(Ady)
Or Re Or?

a.AT[

Ar [(E2) =iy = a(GL))

A79(AE,) AT -~
¢ Or _—T(V'V)]’
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Alll +

(14 A7) A +
Ay +
YT

and finally for the @-sweep,

A'lf’) +

(14 A7)y +

o A7 [07‘(1*'(‘," 371_1_)
[ ror
1 0 i Ay e
Rer Or (1 or )] =S
(@A) | 9(Ap)
aar [ r Jdr adr
1 Jd ‘0(3—51) Ar, - 0
Re | i ! or T = =0
a AT [67(f)6 .’Sﬁ])
r Or
1 0 I(Ady) —~
— T = L\ un
Rer Or or

é_Ta(TKlr’l) Fv

& ror =P

a AT A —
— = Al

Re r? l
a AT A{’] —

Re w2 = -0
a AT i'(‘;Ali’l + A]-)[ -I-Z'-A’i’l - 37]

r T r Re

AT Aﬂ)l —_—
——— - )

6 1 Py
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As usual, in (6.41-6.52) we have the following relations:

2 1 ~ 11 A=
(Fih = 5(4 ay —ap~t)
” 1 ~n n-—-
(Fyn = gop -
Fn 1
(Fw)l = 5(4 wl - wl ) ’
Joapal) 19 . L, wYah Py
(Guh = 2—_0:;""+;57[1(110 @t + of af)) — + =
1 [o* 10 ( o ay
—_— — +—-——=—{r—-—]-—=
Re | 0x? ror ar r2
“p 0 N Ay oAy 2 0 AV AU lb;’i}g ajj‘l/
( ’u)l - b_;(u()l'l +U]U0)+ ‘;5(7 g1 ) — ; + o
1 [0% 10 ( awv\ 2% 2w
- S Ll e R
Re l ort  ror or r2 r2
2w dagwyy O(roywy) oyay | pY
(Gw)l - a.l' r or + ” + r
1 6211")‘1’ 10 owy 2wy 20
- =2, _ +
Re | Ox? ror or r2 r2
(V- V) guy  o(rey) wv
VY = =L .

or rar r

(6.56)

(6.58)

(6.59)

Now. as was mentioned in last section the mesh on which equations (6.41-

6.59) are discretized spans the coordinate directions r and r: it is a two-dimensional

grid (the independent variable 8 has been eliminated). As before, we use a stretched

staggered grid which is similar to the two-dimensional grid presented in Chapter 4
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for Cartesian coordinates. The details for the solution of these cquations are
presented in Appendix A.

We note that the linearized equations developed in this section can actually be
used without the presence of a steady mean flow in the annular region Indeed, one
then sets 4 = ©y = 0 in (6.41-6.59): it is then understood that the perturbations

uy, 01, Wy and p; are small, and no important non-hnear effects, such as would

arise if the solving of the full non-linear equations weie envisaged, are present.
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Chapter 7

TWO-DIMENSIONAL
UNSTEADY ANNULAR FLOW
BETWEEN CONCENTRIC
CYLINDERS

7.1 Two-Dimensional Equations of Motion

[n this chapter, we derive simplified forms of the equations for the two-dimensional
unsteady annular flow problem in which two concentric cylinders of infinite length
delimit a uniform annular region, see Figure 7.1. The inner cylinder is fixed while
the outer cylinder is assumed to undergo transverse oscillations, its axis always
remaming parallel with the axis of the inner cylinder. In that case, there are no
axtal vatiations in the flow parameters such that in the equation of motion (6.3)
all derivatives with respect to r are equal to zero. Furthermore, it is then realized

that the equation of axial momentum does not need to be solved either: this means




— o [
\
/

e— 0

Figure 7.1: Geometry of two-dimensional unsteady annular flow problem.

that the dynamics of fluid flow induced by the oscillation of the outer cylinder
does not depend on the presence or absence of axial flow in the annulus. Thus,
there only remains the radial and circumferential momentum equations and the
continuity one, and we can particularize the more general solution (6.9-6.20) to
obtain the following r-sweep and §-sweep equations (there is no r-sweep because

the derivatives with respect to = are zero). The r-sweep is
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— ar#’ Av)  9(Ap)
(1+AT)A1+QAT[ - + Ee

ror or 2

" Re

orrdw) 1 8 (Ta(Z\’EE))]

Aw+adr [ T Or " Reror or

= AT (F) —@* - a GY),

w

—  ATI(rAv) AT -
AP+-6_ r or é .

whereas the 8-sweep is

o(* Av) _Laz(Au)] —_—

Av + aAT[ r60_—Rer2302 = Av,

o(uwAw) vAw = I(Ap)
r o8 + r + r 08

1 (82(Aw)  Aw)] ——
- EE{ 2062 12 }] = A,

(1+A7)Aw + aAT[

A7 (Aw)  —
5 roe =P

Ap +
As usual. in the above equations we have the following terms:

F! =

1

w
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Arer)y  we)  w?  Op
G.(v,w.p) = f'Or + 5 .._r__+_(._)_1;

_ L [afeey 1o 2w o)
Re |ror ,01' r2o8%  r2of  r| (£

d(rvew) 4 dww) 4 v 19dp

ror 06 Tt i
1 1o 0wy 10% 200 w
Re |ror or 2062 0 Fron 2]

L0, 10
r or rog -’

Gulv, w,p)

V.V

l

(7.9)

u

and we have G¥ = G,(i, 0. "), G% = G (.0, ). These equations are solved
on a two-dimensional mesh spanning the radial and citenmferential coordinate
directions. The details for the discretization of (7.1-7.9) are given i Appendix B

The houndary conditions on the velocity components must now he specified
to solve the problem. Here, contrary to what we had m Cartesian coordinates
in Chapter 3, the geometry of the fluid domain is deforming with time as the
outer cylinder undergoes oscillation. This requires the use of a time-dependent
nonsteady coordinate transformation [26, 31, 32|, which maps the physical do-
main with moving boundaries into a computational domain with fixed boundauies
Thus, if the position vector in computational space is denoted by r. and that
physical space by r. we have a time-dependent transformation between physical

and computational space which is of the form

r=r(ft). (7.10)

This transformation is defined throughout the whole fluid domain and pre-

scribes uniquely the motion of moving boundaries in physical space as a function
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of fixed boundaries in computational space. For example, in the present twc-
dimensional unsteady annular flow problem, the computational space may be taken
as a cylindrical coordinate system whose origin corresponds with the axis of the
fixed inuer cylinder, of radius r,; the radius of the outer cvlinder is r,. In that
case, we denote by 7, the radial coordinate of the inner cylinder, and by 7, that of
the outer cylinder in the equilibrium, concentric configuration in which €(t) = 0.
see Figure 7.1. This concentric configuration defines the computational space in
which the equations are resolved, namely the Navier-Stokes equations are solved

on the computational domain

Pn<FLT,, 0§é§27r.

However, as the outer cylinder undergoes oscillation the actual physical do-
main in which the Navier-Stokes equations are defined no longer corresponds with
the original, concentric configuration. Instead, the physical space is defined be-

tween radial coordinates

and

2
.

r= ‘/{e(t) + Fy cosé}2 + (f'osiné) (7.11)

which correspond with the inner and outer cylinder, respectively. Hence, for our

problem the coordinate transformation (7.10) may take the form

HFOLE) = \/{E(f,t)+fcosé}2+(f'siné)2 (7.12)
. A Fsinf
6(r,0,t) = arctan( .), (7.13)
€(F,t) + Fcos 8
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where

§r. t) = (%) €(t) .

We remark that € is zero on the wner evlinder and equal to €(t) on the onter
cylinder. Also. the coordmate transformation (7.10) is defined uniquely only at
the boundaries of the lmid domain, whete the displacement of a moving wall must
be precisely prescribed. Inside the fluid domain. the transformation arbitrary

and ¢ could also have been defined as

N
{iit) = (LLL) (1) .
Fo — T,
which still satisfies (7.11) for the time-dependent outer evlinder radial coordinate
1n the physical domain.

Now., in the equations of motion every derivative with tespect to ror 6 must
be replaced by derivatives with respect to # and 6. namely by the cham tale we
have

d _0Fd 099 0 _0rd 980
o ~ordF Tarogt 99 9607 T o0

According to equations (7.12) and (7.13). we see that the physical coordinates »

(7 1)

and 6 differ from their computational counterparts # and by terms of order o,
and hence it easily follows by inversion of the transformation (7.12) and (7.13).
and evaluation of (7.14) [22] that the partial derivatives i the physical and com-
putational domains also differ by terms of order ¢

It is also to be noticed that the partial derivative with 1espect to time that
appears in the equations of motion and which 1s evaluated at constant phvsical

space location has to be replaced [31] in the computational space by

a d . -
—a—t'rzgzi—l”v, (l.l-))
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where r is the time derivative of the physical space position vector at constant
computational space position The coordinates of r arc given by (7.12-7.13).
From (7.15) and the previous remarks we conclude that if the displacement
€(t) is sufficiently small, then the error incurred by neglecting to use the non-
steady coordinate transformation is of order €. Since we are precisely considering
s nall displacements of the outer cylinder in the present work we will thus identify

throughout

0

. Ot

9 )

M~ Or o0~ 98’ ot

.

The boundary conditions associated with equations (7.1-7.9) are thus the
following ones. Since the motion of the outer cylinder is in one plane, the plane
of oscillation, we measure the circumferential coordinate with respect to the plane
of osciilation, Figure 7.1, and the velocity components. v,, and w,. of the inner

eylinder and outer cylinder are given by

ve(r,,0,1) = 0
wye(r, 6,1)

on the inner cylinder , (7.16)

I
=

U(re.0.t) = ¢€(t)cosé ) -

on the outer cylinder . (7.17)
Wy(ro,0.t) = —e€(t)sing

Equations (7.16) and (7.17) represent the velocity components on the inner and

outer cylinder walls as a function of time. In a forced vibration numerical experi-

ment, the function €(t) is a known function of time and hence V2+! = [pn+! yn+1]T

can be imposed as a boundary condition to solve the flow problem, as explained

in Chapter 3.
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7.2 Linearized Equations of Motion

The linearized one-harmonic solution presented m section 6 4 for the Navier-Stokes
equations can be particularized for the present two-dimensional problem  First,
we note that fy 15 zero in the present case because the anmla passage 1s umform.
Also, we will take ag equal to zero - we 1ecall that woy 15 equal to zero because w
is an odd function of §. We thus obtain the following r- and f-sweep equations for

the perturbation quantities ¢, 1, and p,. From (6.4G-6.48), the r-sweep is then

(1+AT)E1 + a AT [M 1 {,0 (’.O(Ai-,))_é’f_l_”

o  Re |ror or re
= AT [(F) - i - a (G)] T (118)
3—15 _ a AT 0 r a(m)
! Re ror ar
= A7 [(FI) — @) - a (GY))] (7.19)
-_— ATa(T'A—l{]) AT b -0
TR =/ : 20
Al)l + 6 r 07’ b (V V)l . (‘ ( )

and the #-sweep is derived from equations (6.50-6.52),

Ap 4+ 22720 < (7.21)
Re 1
Apy 2 Ady] —
1+ A7) A% + a AT[ o,z U'J:_\w, (7 29)
r * Re
AT A — .
Ap, - —-‘-51-—:-”—‘.:.3;), (7.23)
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As usual. in equations (7.18-7.20) we have the following relations:

v

CO| v LI =

(F™"), (487 — &7 h

(4@} —atty,

(FY), =

n

wr OB 1 10 [ A\ 28 2u -
(G = 5~ Re [‘o—( o) TR TR (+-24)
wy, = P L1090 [ ouf) 2uf 2§ 795
(Gulr = r Re [rar (, ar R (7.25)
(v.ovy = 20t et (7.26)

ror r
The method for solving (7.18-7.26) is a particular case of the more general
method presented in Appendix A for the three-dimensional linearized equations.
The mesh is then a one-dimensional staggered grid, Figure 7.2, where the velocity
component ¢, is defined at radial coordinate r}. and both velocity component
wyg;) and pressure py(,) are defined at radial coordinate ry. The procedure is

thus a particularization of that described in Appendix A for the three-dimensional

cquations and will not be repeated here.

Py—1 & b, & Py+1
w1 w, J W41

U)+1

Figure 7.2: One-dimensional staggered mesh used to solve the two-dimensional

unsteady annular flow problem with the one- and two-harmonic solutions.
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The boundary conditions associated with those equations are denived by ap-

plving the Galerkin procedure to (7.16) and (7 17). and we readilv find

['l(u') = 0 . -y
on the mner cvlinder | (v 27)
Wiy = 0
i‘l(w) = F(t)/? -
on the outer evhuder (v 28)
Wyw)y = €(t)]2

7.3 Two-Harmonic Non-Linear Solution

Now. we consider .V = 2 harmonics in (6.21 6.24) for the series expansions of the
flow variables, such that we can detive the following two sets of equations from
(6.25-6.36). under the following assumptions, the usual ones for the problem at
hand. First. all detivatives with respect to r are equal to zeto, and thete 1s no need
to solve the axial momentum equation: also iy is equal to zero and we take wy equal
to zero as well. Then (6.25-6.36) teduce to the following two sets of equations,
one for u = 1 and one for g = 2, where we make use of relations (6.37) i wnting,
them down. The first set of equations for y¢ = 1 is thus, with (7.29 7 31) being the

r-sweep and (7.32-7.34) being the #-sweep,

— 1 (? s —T 0( l)l)
(1+AT) Al'l + a AT [,—0—, {, (v'Z‘AU‘ + (']'—\1'2)}’{" T
1 a * a(:ggl) _ﬂl ~n o 4 "ws -~
— I—?-é{r 0}' (’ 01' ) - 1.2 }] :AT [(F, )l —I‘l -— (Y ((,r’_)]] (129)
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;iﬁ*

~ 10 T
Ay +a AT [7—5’- {r (-—u._,Au'; + ] Au 2)}
Lo (@] _ ey e . i
" Rer Or (7 or )J = a7 [(FU‘)I —up —a (Gw)l] (7.30)
— A7 0(1 Avy) AT _
3 =-— (V- V)y 31
m+ F o 5 (V- V), (7.31)

i 1, . . Ab —
Aty + aAr .;(“’131'2“'w5Al’l)+Re;2}= 0y (7.32)

) [y Aty + WY Ay YA — B4 Ay
(14 A7)y + a A7 |2 : + - =

T T
Aﬁl 2 Ali)] -~ -
+ - + Ferz| = Ay (7.33)
. ATAW, — -
A])] - '6—'—"7"—1 = Apl . (134)

Then, we have the set of equations for 4 = 2, in which (7.35-7.37) represent

the r-sweep and (7.38-7.40) the §-sweep:

- = ; 1 a AN a(A—IB?)
(1+A/)._\I'Q+() AT [,—E' (Tl‘l.ll‘l)+ ar
1 0 ‘O(Aﬁ?) I5‘2 _ ~n ~v Al -~ 0=
A e R R G A




—_— 1 a Ny
Aws + a At [1—5—7- (7- i __\u'])

1 & R a(l_iﬁ)) _ i ~v ~ —-
- a (7 . = A7 [(Fl) = i —a (Gl (7.36)
— . ATI(r Ag) AT -
A7 —— = .V“;‘ 7.37
\pz'*' 6 rar 5 (V )_ (l 3l)
~ P_2 'li"]’Ai’] 4 L‘li’z ﬁ'— —
Aty + a AT - " e 7‘2] = Aby , (7.38)

(1+AT)Awe + a AT

—2 wyAw, + oy Ay

As usual in the last equations we have

(1:—'1:])1

(Ft? )2

b r 7
2Ap  5Aun] »
Y R = Awy , (7.39)
AT Ay —
Apy — 2-=2 =5, . (7.40)
b r
= F49F =857 (Fr) = Ydap—a)™)
(7 41)
= %(47}3"{’;_1) (Ff)z = %(411!72'—-11'7.:,"1)‘
A 26 U~V
(Gon = '-,‘--6-—;(7'1:21:1)

f)
“pap YT L iy oau
= (Wyt] — W{0y) — — Wy w
r 2] 1%2 r 241

opi _ 1 [3 (r av])-’r-?—(lb;'—z?j’)}

or Rel|ror or re
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(Gu )

(V- V)

19 AV AV | ol ~p
;5’;{7‘(“1’2“’1 + 0yy)}

2 1
et AWV _ sV
‘;%2101 + r (vl lU? v2w1

ror r’

6(7‘1';'{?;’ 2 AV Ap wlwl aﬁ‘é
ror ! + r +—67
178 (oY 1, ., ..
k’é[?’a_r ( ar)h—z(“"z*"’”z)
d(rivat) 2 ., ., Wit 2
A0 2 0

o(r vy 2 .
olr %) - =y .
T or r

-1-[—6- (r a"’"’) +i2(417§’—5w
T

The boundary conditions for the first-harmonic variables are exactly the same

as in the previous section, namely equations (7.27) and (7.28), whereas the second-

harmonic vaiables are solved by imposing 9, = 1, = 0 on both the inner and outer

cvlinders, which is also derived by applying the Galerkin procedure to (7 16) and

(7.17)

The mesh used to solve these equations 1s the same as that presented in the

previous section, Figure 7.2, for the N = 1 harmonic solution. The interpolates

of the variables t» and @y are defined as those for #; and w,;. However, here
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we have two sets of equations which are coupled. In order to deal with that
difficulty we do the following thing. In equation (7.29) for X7, we see that Ao,
and A7, are coupled. hence we diop the term mvolving A to uncouple the
velocity components  Similarly. in (7.30) the term involving S, is dropped, m
(7.32) the term containmg Ao is dropped, and in (7.33) the term contaning N,
is removed. Also, the terms coutaining Xo;, Xy, A&y and Awy ate dropped fiom
equations (7.35), (7.36), (7.38) and (7.39), respectively.

Note that the terms that are removed from the equations, which are m delta
form, only affect the coupling on the implicit left-hand sides of the equations,
which eventually might affect the convergence 1ate of the pseudo-time 1teration
procedure only Indeed, when convergence has been reached in pseudo-tume it s
to be noted that AV is zero, and all the terms that have been dropped would
then be zero in any case, as are the ones that are kept  The coupling hetween
the equations is ensured by the terms (G’,’,)l‘( ;'f:_ NGV )2 and (GY)y, whieh e on
the right-hand sides of equations (7.29), (7 30), (7.35) and (7.36), and which are
always calculated in their integrity.

The method of solution is thus the following one, after the nuphieit left-
hand sides of equations (7.29-7.40) have been decoupled. At a given psendo-
time iteration step t*. (7.29-7.34) are solved for Ay, Ny and App, ina manner
similar to what is done in the case of the .V = 1 harmonic solntion, and then

s+ v+l

the variables are updated to obtain #**! @*t! and ¥t equations (7 35 7.40) are
p 1 1 P |

solved thereafter for Ni, My and Apy in order to obtain #*! ik*! and pi+!,
The procedure is repeated until convergence. Note that a variable is updated as

soon as it is obtained, not only at the end of a pseudo-time step.




7.4 Numerical Results

As was the case in Chapter 3, the results presented in Section 7.4.1 have been
computed using the three-point-backward implicit time-differencing scheme de-
veloped in Chapter 3, equation (3.4). The results obtained with this scheme are
compared i Section 7.4.2 with the same method which uses a Crank-Nicolson time-
differencing scheme instead, as per equation (3.5). The comparison shows that the
present three- point-backward scheme is free of the spurious numerically-induced

oscillations present in the 1esults obtained with the Crank-Nicolson scheme.

7.4.1 The three-point-backward scheme

In the geometry of the problem which is shown in Figure 7.1, page 108, the two
cylinders delimit an annular 1egion containing a fluid which is initially at rest. Then
the outer cylinder, of radius r,, starts to undergo transverse harmonic oscillations
in one plane, its axis temaining patallel with the axis of the fixed inner cylinder,
of radius r,. If the citcumferential coordinate 6 is measured from the plane of
oscillation, then the velocity components #,(8,t) and @,(8.t) of the outer cylinder

are given by!

to(0, ) = 0(F,,0.1) (€, sin Qf cos ,

e(0,1) = w(i,,81) = —Q&sinQt sind,

(7.42)

where €, 15 the maximum transverse displacement of the cylinder axis and 0 is
the angular frequency of oscillation. Now, the Reynolds number appearing in the
fluid equations has to be defined for the problem at hand. We elect to chose H,
the annular gap width, as characteristic length, and the characteristic velocity is

taken to be QH. Then the Reynolds number is found to be equal to

'Barred quantities are dimensional.
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e

§ = Q— . (7.43)
v

Re

|

where v is the fluid kinematic viscosity. We remark that we identify the Reynolds
number, Re, with s. the Stokes number, for that particular problem. We will
actually use the Stokes number, for notation, in this chapter as it best describes
the frequency characteristics of the system. In view of the choice of charactenstie
length and velocity. the non-dimensional angular frequeney of oscillation becomes

1 and the boundary conditions (7.42) take the form

€0 .
vp{0,t) = —sint cosé ,
(8,t) T
€, . )
wy(f,t) = —-ﬁsmt sinf .

Numerical computations have been petformed on a non-dimensional geom-
etry of inner radius r, = 9 and outer radius r, = 10, for two Stokes nmunbers,
s = 300 and s = 3000. The presentation of the results is done i Figures 73 to
7.9, where the computations are made with the full non-linear solution described
in Section 7.1, the one-harmonic solution of Section 7.2 and the two-harmaonic
solution of Section 7.3. All the quantities 1 those figntes are dimensionless,

Initial conditions were zero velocity components and pressure m the fhud
domain and the equations were integrated until a periodic state was reached, which
took 8 harmonic cycles, where each cycle was divided up into 19 time steps. The
hyperbolic tangent function was used to streteh the grid in the radial direction and
we will denote by Ar,,,, the minimum mesh spacing neat the inner o1 outer eyhinder
walls. The one- and two-harmonic solutions require only a one-dimensional mesh
spanning the radial direction, and the full non-linear solution requires that the grid

be two-dimensional, the circumferential direction being included. In that case the
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dind

mesh spans the cirenmferential direction between § = 0 and # = 7, and is uniform
m that direction, see Anpendix B. When comparison is made between the three
solutions on one given figure, such as in Figures 7.3 to 7.6 and in Figure 7.9, all
three solutions have the same stretching and number of grid points in the radial
direction.

Figures 7.3 to 7.6 contain 15 curves each, representing the three solutions for

cach of 5 instants t" within the harmonic cyle. The five instants are

o 2w n
19

for the results involving the circumferential velocity component w, and

. o n=295,7,9,11,13, (T.44)

_ 2rn
19

for the results involving the pressure p. The mesh in Figures 7.3 to 7.6 was com-

n

n=1,,3,5709. (7.45)

posed of 24 x 24 grid points, where Arp,, is equal to 0.020 when s = 300 and
A = 00075 at s = 3000.

Figure 7.3 presents radial profiles of the circumferential velocity component
w, at an azimuth of 8 = 45°. Figure 7.3(a) is for s = 300 and Figure 7.3(b) for
s = 3000. It is seen that the one-harmonic solution differs from the two-harmonic
and non-linear solutions, the latter two being close to each other at s = 300 and
differing slightly at s = 3000, probably due to the stronger non-linearities present
at this higher Stokes number. In Figure 7.4, the radial profiles of pressure taken
at = 3.75° are plotted for s = 300 and s = 3000. All three solutions are seen to
be very close to one another for these pressure results.

In Figures 7.5 and 7.6 circumferential profiles of velocity component w and
pressure p, taken at r = 9.73, are plotted for two Stokes numbers, s = 300 and

s = 3000. Same remarks as before apply regarding the agreement between the
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three solutions for velocity or pressure.

In eacl of the previous figures, the number of grid points in both the radial
and circumferential directions was 24, even though stretching near evhinder walls
was different in solutions at s = 300 or s = 3000. In Figures 7.7 and 7 8 com-
parison is made using the non-linear solution between computations petformed on
coarse and fine meshes. Figures 7.7(a) and 7.7(b) present radial profiles of veloc-
ity component w taken at § = 45°, for s = 300 and s = 3000, 1espectively, and
Figure 7.8 gives circumferential profiles of w, taken at r = 9.75 for s = 300 1n
Figure 7.8(a). and taken at r = 9.80 for s = 3000 in Figme 7.8(h). The fine mesh
contained 24 grid points in both the radial and citenmferential directions for the
computations petformed at s = 300, with Ay, = 0020, and the coarse mesh had
12 grid points in both these directions with Ar,,,,, = 0045 For the computations
at s = 3000, the fine mesh had .J = 38 grid points . the cadial ditection, and
K = 36 grid points in the circumferential direction, with Ar,,, = 0.0040, whereas
the coarse mesh had both J and K equal to 24, with Ar,,,,, = 00075 1t is seen
from Figures 7.7 and 7.8 that the agreement between the coarse mesh and line
mesh results for w is very good, which was also the case for the pressute results,
not presented here.

Finally, Figures 7.9(a) and 7.9(b) are time-evolution curves of the thud foree
per unit length exeited on the oscillating outer eylinder, which includes the pressme
force and the viscous shearing force. It is detived as follows, where capital bold
letters denote second order tensors and where €, and ey are the unit veetors in the
radial and circumferential directions, respectively  The viscous stress tensor, X

1 an incompressible viscous fluid is given by [34]

=1
=

1 r
Z’:—])I%—??—e{(Vv)-{-(Vv) } , (
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whete p s the pressure, T is the sccond-order unit tensor and Vv the gradient of
the velocity vector, a second order tensor also; (Vv)7 is its transpose. To obtain
the stress vector on the outer eylinder, we dot (7.46) with the unit vector normal

to the cylinder sutface, which is —é,, and we obtain
~€. - X =0, +0,9&,

where

o2
T = PR or
1 [ow 1[ov o
Org = ——]-?;['574—;(-0—0—%)] . (1.41)

The axial component of stiess has been omitted for the present problem. The
force, f, per unit length on the oscill~ting cylinder is then given by projecting the

stress vecetor into the plane of oseil' wion and integrating over 8 between 0 and 27

f= / (e 080 — 0, sin 8) 1yl . (7.48)
0

When the one- or two-harmonic solutions are chosen, the integration in (7.48)
can be done analytically and we obtain the following expression for the force fr

at time t";

no_ .. ~n 1 (')i!{' 311‘){' -
f —Zﬂln[pl—Re (2-5——'}'—37-)]10, (7.49)

where the above expression is evaluated at the wall, indicated by the subscript w.
We note that the second haimonic vanables 7. @4 and p5 do not appear in the
expression for the force even when the two-harmonic solution is chosen because

of the orthogonality properties of the trigonometric functions. The non-linear
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solution requires that the integration in (7 48) be performed numerically: this has
been done in the present case using Simpson's rule.

Hence, Figure 7.9(a) is the force on the outer eylinder caleulated durig the
first 6 harmonic cycles at a Stokes number s of 300. It is seen that all three
solutions are perfectly supermmposed, as 1s the case in Figure 7.9(b) for the com-
putations performed at Stokes number s = 3000. This can be explained by noting,
that in the previous figures the pressure results were all very nearly equal, whether
onec-harmonic, two-harmonic or non-linear solutions were used, and the pressure
is the major contributor to the flmid force. Also, the radial denvative of the eir-
cumferential velocity component w at the wall, which is mostlv tesponsible for the
shear stress contribution to the fluid force, see equation (7.47). 1s neatly the same
for all three solutions, as is seen from Figure 7.3.

To conclude the present section, we discuss the choiee of the artificial com-
pressibility, 8, and pseudo-time step, A7, made tegarding the computations of this
problem. The formulas developed in Section 5 2, equations (5.11) and (5 12), were
applied in the present case, where the characteristic velocity was chosen to he, in
non-dimensional form,

N, & --
q=QH=—f—[-. (7.50)

Now, we note that correction factors had to be applied to the values of & predicted

by (5.11), namely 0.0001 for both the one- and two-harmonie solntions and 0.005
for the full non-linear solution. The new values of é are thus orders of magmtude
different from their estimates and one is tempted to question the validity of (5 11)
in this case. However, it is remarked that (7 50). which is the maximum veloeity
amplitude at the wall of either v or w, 1s mmch smaller than the actual value that

the velocity takes inside the fluid domain. Indeed, the value of ¢ determned from
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<y

(7.50) is 0.1, whereas we can see from Figure 7.3 that w gets to be of the order
of 1 in mid-annulus: the value of & is thus overestimated. Note that the smaller
correction factor of 0.005 in the case of the non-linear solution is likely to come
from the fact that after each time step an estimate of the "mean” velocity in the
annulus was done, based on the rms value of velocity calculated from the grid point
values. This was not done for the one- and two-harmonic solutions.

The optimal Courant number from equation (5.12) was found to be around
2000 for the one-harmonic solution, 13500 for the two-harmonic one and 500 for
the full non-linear solution.

We note that the unsteady flow problems treated in Section 5.2 in Cartesian
coordinates did not prescnt that difficulty, as the estimates were of the same order
of magnitude as the optimal values found from numerical experimentation, as is
also the case for the results presented in the next chapter: the Courant numbers
also took more reasonable values there, of the order of 40.

To give an indication on how well the method performed, Table 7.1 presents
data obtained from computations with the full non-linear solution at s = 3000,
on the 24 x 24 grid. The number, k, of pseudo-time steps required to converge as
well as the rms and maximum values of the residuals at convergence are tabulated
for integration during the first harmonic cycle. at the 19 time steps t", n =3,21.
Convergence was reached in pseudo-time wien the rms residuals of R,. R, and
R, were all less than 10", Results for the one- and two-harmonic solutions were

better as convergence in pseudo-time was achieved in around 30 steps.
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Figure 7.3: Radial profiles of circumferential velocity component w at 6 = 15°.
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at r = 9.80 are presented for (a) s = 300, and (b) s = 3000, at 5 instants t" within

the harmonic cycle — fine mesh results, and - - ~ coarse mesh results.
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n k ims(R,) | rms(R,) rms(R,) | max(R,) | max( R,) | max(R,)
311136 || 0.963E-04 | 0 289E-04 | 0 401E-05 || 0.530E-03 | 0.152E-03 | 0.643E-05
41l 781l 0907E-04 | 0 783E-05 | 0.101E-05 | 0.520E-03 | 0 415E-04 | 0.193E-05
51 64 || 0967E-04 | 0.325E-05 | 0.362E-06 || 0.609E-03 | 0.152E-0+4 | 0 127E-05
61l 81 |l 09GGE-04 | 0.256E-06 | 0.115E-06 || 0.496E-03 | 0.122E-05 | 0.913E-06
71 87 | 0.965E-04 | 0.227E-06 | 0.104E-06 || 0.542E-03 | 0.134E-05 | 0 106E-05
81 751 0.999E-04 | 0.267E-06 | 0.927E-07 || 0.543E-03 | 0.173E-05 { 0.708E-06
ol 62 |l 0884E-04 | 0 S09E-05 | 0.637E-06 || 0 489E-03 | 0.228E-04 | 0.108E-05
10 ]| 78 || 0.957E-04 | 0.133E-04 | 0.186E-05 || 0.545E-03 | 0.668E-04 | 0.280E-05
11 37 1l 0.990E-04 | 0.559E-04 | 0.340E-05 || 0.776E-03 | 0.331E-03 | 0.803E-05
12 [ 116 || 0 972E-04 | 0 363E-04 | 0.310E-05 || 0 577E-03 | 0.186E-03 { 0.781E-05
131 82 |l 0.964E-04 | 0.101E-04 | 0.133E-05 || 0.583E-03 | 0.524E-04 | 0.257E-05
144} 65 ]| 0.932E-04 | 0 429E-05 | 0 492E-06 || 0.453E-03 | 0.207E-04 | 0.116E-05
15 78 || 0.940E-04 | 0.261E-06 | 0.106E-06 || 0.613E-03 | 0.152E-05 | 0.724E-06
16 || 90 || 0.975E-04 | 0.263E-06 | 0.110E-06 || 0.546E-03 | 0.213E-05 | 0.7v8E-06
17 85 {} 0.996E-04 | 0.25GE-06 | 0.988E-07 || 0 453E-03 | 0.153E-05 | 0.655E-06
18 || 67 || 0.941E-04 | 0.573E-06 | 0.89TE-07 || 0.503E-03 | 0.250E-05 | 0.563E-06
19 || 66 || 0.022E-04 | 0.738E-05 | 0.981E-06 || 0.517E-03 | 0.348E-04 | 0.163E-05
20 || 85 || 0961E-04 | 0 241E-04 | 0.344E-05 || 0.555E-03 | 0.125E-03 | 0.498E-05
21 4 126 || 0993E-04 | 0 877E-04 | 0.124E-04 || 0.589E-03 | 0.454E-03 | 0.182E-04

Table 7 1° Number & of pseudo-time steps required to converge at time level t"

and rms and maximum tesidual values at convergence. The computations are for

the unsteady two-dimensional annular flow at s = 3000, on a 24 x 24 grid.




7.4.2 Comparison with the Crank-Nicolson scheme

Figure 7.10 presents results computed with the full non-linear solution of See-
tion 7.1, using either the three-point-backward time-differencing scheme (3.4) o
the Crank-Nicolson scheme (3.5). The mesh was a fine 24 x 24 pud with A1y, =
0.02. Time evolution curves of the circumferential velocity component w at s = 300
are plotted in Figure 7.10(a), for the eigth haimome eyvele of time integiation, at
position in annular space 7 = 9.75 and # = 90°. Similar time evolution curves at
s = 300 for the pressure p are plotted in Figure 7.10(b), at position i annular
space r = 9.75 and 8 = 3 75°. Theire were 19 time steps per hatmounie eycle for
those computations.

It is seen in Figure 7.10(a) that the results for u are neatly completely su-
perimposed, and both methods resolve the non-dimensional velocity component w
with the same accuracy. Howevet, the non-dimensional pressure results show gieat
differences. namely the Crank-Nicolson scheme gives 1ise to numerically-indueed
oscillations in the time evolution of pressure, which are superposed on the harmome
variation imposed by the oscillating outer cvlinder The three-point-hackward
scheme gives a smooth solution corresponding to the outer evhinder oscillations
Crank-Nicolson time-differencing thus has to be avoided for the present method
of artificial compressibihity applied to unsteady viscous flows We remianh that the
spurious numerical oscillations observed with the Crank-Nicolson scheme are not
related to a time-step hmitation of the scheme, since up to one hundred tiune steps
pet harmonic cyvele were mcluded 1 some computations (not presented here), and

the oscillations were still present at these very small time steps
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Chapter 8

COMPUTATION OF 3D
UNSTEADY FLOWS

This chapter presents the results of numerical computations performed on three-
dimensional unsteady annular flow configurations which are representative of ge-
ometries encountered 1n enginecring applications, and provides a major test for the
final validation of the method developed in the previous chapters.

Two annular flow geometries are considered, which are schematically repre-
sented 1 Figure 8.1 The fitst one has a umform annular passage, m which case
hg = 0 in Figure 8 1. and by choosiug hy # 0 the second geometry studied had an
annular backstep According to the notation of Chapter 6. the flow 15 deseribed i
a cvhindrical coordinate system, i which r. 7 and € denote the non-dimen<sional
axial, radial and circumferential coordinate directions, with u, ¢ and w bemg,
respectively, the velocity components i those duections, p s the pressure The
characteristic length and velocity used to nondimensionalize the equations are the

annular gap width, H. and the mean flow veloeity, U, defined 1 the upstrean
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Figure 8.1: Three-dimensional annular geometry used for the unsteady flow com-

putations.

The Reynolds number, Re, is defined in terms of the hydraulic diameter of
the annular space at the inlet and is given by
Re = 2HU , (8.1)

v

where v is the fluid kinematic viscosity. The equations and method of solution
for the three-dimensional unsteady annular flow problems have been presented in
Chapter 6: Appendix C gives the details for their numerical solution. In view of
the present definition of the Reynolds number, we note that Rein (6.1-6.3) has to
be replaced by Re/2.

In the numerical computations that were performed, the outer cylinder, of
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radius 7,. is uniforin in cross-section and is composed of thiee portions: the cential
portion has length [ and is considered to have a harmonic oscillatory motion of
frequency Q, or w = QH/U m non-dimensional form  Two fixed portions ate
situated upstream and downstream of it: they have length 1, and lq. 1espectively,
In non-dimensional form. the radius of the inner evlinder at the mnlet 1s hy, = Fo—1.

and at the outlet it is r,, = r, = 1 = hy. The Stokes number. s. defined by

OH?
s = .

12

was used to describe the vibrational chatacteristics of the system

The solutions for the unsteady annular flow problems were obt amed by thiee
different methods. The fitst method consists 1 solving the full three-dunensional
unsteady Navier-Stokes equations, as described in Section 62, and 1s the most
demanding one 1 terms of computational time It requires a three-dimensional
mesh, which was stictched i the axial and 1adial directions and umform m the
circumferential direction  The following boundary conditions were mnposed At
the inlet, r = —1,, a developed lanmmar flow profile 18 mnposed, and hy setung

n=r,/r, .1t 1s given by

- 2(1 = (r/r,, )2+ (0% = 1)In(r/r,,)/(Inn)]

l n?+1-(n?2-=1)/(Inn)

There are no boundary conditions required for pressute at the mlet, and m the
cross-sectional plane of the domain situated at the outlet, & = + (. the pressure
Is set equal to zero.1e., p=0, r =1 +1,. r, 1 <1, 0<H <27 whereas all
velocity conponents are extiapolated to second order accuracy from nside the flow
domam. The procedute has been deseribed m Chapter 4 As mitial conditions,
the steady flow solution. obtamed in the absence of vibiation of the outer evhimder,

was imposed. and then the harmonic oscillation of the cvhinder was started. the
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equations were integrated for 5 harmonic cycles, until a periodic solution was ob-
tained. The details for the discretization of the equations for the three-dimensional
annular geometry are presented in Appendix C.

The second method of solution consisted in solving the linearized set of equa-
tions developed i Section 6.4: the solution procedure is described in Appendix A.
The two-dimensional grid that the method requires for the axial and radial di-
rections was the same as that used for the full three-dimensional Navier-Stokes
solution, in those directions. For this method, the steady annular flow in the ge-
ometries considered must be computed first by solving (6.38-6.40), and then the
unsteady solution corresponding to the perturbations in the flow quantities is ob-
tamed by wtegrating (6 41-6.52). The boundary conditions imposed to (6.41-6.52)
were that all perturbations in the flow quantities are equal to zero at both the
inlet and outlet of the domain, including velocity components and pressure. The
initial conditions were also to set the perturbations equal to zero: the vibration of
the outer evlinder is then started and the equations integrated until periodic state
15 achieved, which takes 5 harmonic cvcles

Finally, an unsteady potential flow solution was also computed and compared
with the viscous solutions, 1 the case of the calculations done on the uniform
annular geometry (hy = 0) An outline of unsteady potential flow theory can
be found m Appendix D. A finite difference method was used to resolve the flow
potential, tequinng a two dimensional grid which was the same as that used for

the hneanzed viscous solution

8.1 Uniform Annular Flow Geometry

The first geometiy considered 1s thus of umform cross-section and consists 1n two

concentrie cyvlinders delimiting the annular space: in this case hy = 0 in Figure 8.1.

141




The inner cylinder is taken to have radius r,, = r,, = 9. and 1 fixed., whereas
the central portion of the outer cylinder of length [ = 100, undergoes a transla-
tional vibratory motion, with its axis remaining parallel with the axis of the et
cylinder. The radius of the outer cvlinder is r, = 10. and two fixed portions of
the same radius r, are situated upstream and downsticam of it Their lengths are
ly, =13 =20.

Results were obtained on two different grids, one which was coatse and one
which was fine. They had the follow ing characteristics. whete a subscript ¢ denotes
the coarse grid and a subscript f the fine one. In the axial duection, the mesh
spacing Ar was uniform over 10 < r < 90, and equal to Au, = 3.64 and Ay =
2.42. Then, it was diminished going toward the extienmties of the oscillating
portion of the outer cylinder. to reach the minimum values of Ar, = 050 and
Ary = 0.30, at r =0 and r = 100. Mesh spacing was then imcreased moving, away
from either extremity of the oscillating cvlinder, toward the mlet and outlet of the
flow domain, to reach Ar, = 3.75 (or Auy =275) atr = =20 and 1 = 120 A total
number of 65 grid points thus spanned the axial direction i the case of the coarse
mesh, compared to 96 grid points for the fine mesh  Now, the radial dinection
was spanned by a stretched grid having 11 grid pomts i the case of the coarse
mesh, and 17 grid points for the fine one. and the minimum spacing at the walls of
the inner and outer cylinders was Ay. = 0066 and Ay, = 0042 The stretelhing,
functions used were the hvperbolic sine 1 the axial direction and the hvperbolic
tangent in the radial direction The three-dimensional solution also required that
the discretization mcluded the cucumferential direction. and the coarse mesh had
12 grid pomts wn this direction. compared to 20 for the fine mesh The gnd was
uniform in this circumferential direction Note that i all the computations of this
chapter, the time step At was equal to 27 /19w

The results of the numerical computations are presented i Figures 82 § 19
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where all the quantities are non-dimensional ones The figures in which the am-
plitude and phase of p or w are presented have been obtained by performing a
Discrete Fourier Transform (DFT) on the periodic flow solution in order to extract
the first time-hanmome, and it is the amplitude and phase of the latter which are
plotted m those figures, the phase being with respect to the displacement of the
outer eylinder  For the figures involving the velocity component w, the higher-order
tune-harmonics were 4 to 5 orders of magnitude smaller than the first harmonic,
for both the non-linear and linearized viscous solutions, which was also the case
for the pressure results computed with the linearized solution: the pressure results
computed with the non-linear solution had higher-order time-harmonics of the or-
der of one hundred times smaller than the first harmonic, and these relatively larger
hgher-order contributions, which capture the non-linear effects, can be explained
by the non-linear terms in the Navier-Stokes equations. However, these are still
small and neghgible and pont out to the essentially linear character of the flow
solution when small vibrations of the oscillating cylinder are imposed, which was
the case here (an exception is depicted in Figures 8.18 and 8.19)

In the case of small vibrations, we require that the perturbations introduced
m the veloeity field by the oscillation of the outer cylinder remam small with
tespect to the mean annular flow velocity, which 1s expressed in non-dimensional

form by

we KL 1,

where €15 the displacement of the outer evlinder and w15 its frequency of vibration.
In other words. the vibration-induced perturbations m the flow field have velocity
of order we, which must be smaller than the mean axial flow velocity, U = 1.
non-dumensional form Since we imposed € = 01 as boundary condition for all the

problems tested. and sice
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Re v 2HU U ¢
we must then have that
24
— & 10. 8.2
e (8.2)

Linear flow theory is thus valid as long as the Stokes number. s, 1s much smaller
than at least five times the Reynolds number, Re We remark that the full thyee-
dimensional non-linear Navier-Stokes equations which were also used m this chap-
ter to obtam solutions do not requite the assumption (8 2). m this chapter, we
will compare the nonlinear and lineanized solutions when (8.2) 15 satisfied, and
comparison will also be made for larger values of we, when (8.2) 1s not satisfied,
order to find cut the vahdity of a lmear fow theorv, as well as 1ts Linits

Thus, Figures 8 2 and 8.3 present pressure results for Re = 100, at s = 10
and s = 5. respectively. where the axial vanation s plotted for r = 993 and
§ = 7.5° It 15 seen that there are marked differences between the viscous flow
results and the potential ones; however, the viscous and potential solutions get
closer when the Stokes number 1s mereased The pressure amphtude m the case
of the potential flow results 1s symmetric with 1espect to the mid-seetion of the
oscillating outer cylinder, where the phase, in particular. is zeto For the viscous
flow results. 1t 1s non-symmetric: at s = 3, the pressure amphtude quickly reaches
its maximum value at r = (. then remains constant up to 1 = 80, hefore gradually
decieasing to zero at the outlet, & = 120: the phase 1s confined to negative values
over most of the cylinder length  We recall that the phase 1s with respect to the
displacement of the oscillating cvlinder

In order to make sure that these effects were not attributable to the numerical

scheme and staggered mesh, the mean flow direction was inverted and computa-
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tions were performed for the same Reynolds number of 100, at s = 5. Figure 8.4
shows that the results are now mirror images, with respect to the cylinder mid-
sechion, of the plots obtained w the previous figure. Hence the numerical method
shows consistency with regard to the direction of the mean flow velocity.

Compntations were also performed without axial mean flow 1 the annulus,
and the results are presented m Figures 8 5 and 8.6. In this case, the Reynolds
number, which is defined in terms of the mean flow velocity U, has no significa-
tion, since U = 0: thus. we choose instead QH as charactenistic velocity, and the
Reynolds mumnber in the equations of motion (6.1-6.3) becomes the Stokes number,
or Re = s = QH*/v. The procedure 1s the same as that described in Chapter 7
for the two-dimensional annular flow problem. Hence the results in Figures 8.5
and 86 for wlich U =0 are for s = 25 and s = 300, respectively. It is seen that
the higher the Stokes number. the closer the agreement between the potential and
viscous solutions becomes. Morenver, the results are now perfectly symmetric with
1espect to the evhinder mid-section  The results at s = 300 can be compared with
Figuie 7 4(a), m which computations are also performed at s = 300 for the two-
dinensional geometry Actually, in the present three-dimensional flow problem, if
we ate sutticiently far fiom the extremities of the vibrating outer cylinder, we find
ourselves 1 the situation of the two-dimensional problem of Figure 7.4(a), the end
effects not bemg felt far from the extremties. Thus, the pressure amplitude should
be the same. which 1t 15, at a level of shghtly more than 10. 1 non-dimensional
units An important remark is that in all of the present figures the hnearized and
nou-liear viscous solutions are nearly perfectly superimposed

Figure 87 presents results nvolving the circumferential velocity component
w, at Re = 100, s =5, and for + = 50, § = 45° Agam. the agreement between
the two viscous solutions 1s very good, as opposed to the potential flow results
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are different, although they represent relatively well in an average sense the flow
properties. We remark in Figute 8.7 that the amplitude of the flow veloeity s
of order 0.1, which is ten times smaller than the mean axial flow veloceity m the
annular region (' = 1). At s = 10 the amplitude of « is of order 02, and m
both cases we thus see that this is within the ordmarily accepted limits of a hinear
flow theory. (We notc in this chapter, as was the case in the previous one, that
the results involving the radial velocity component v are never presented, as the
corresponding velocity profiles do not have the same interest as those for @ The
radial gradients, for example, are not as pronounced as for w, whose amplhitude in
mid-annulus is seen to be much greater than its amphtude at the moving wall )

Figures 8.8 to 8.11 are results for p and w for calculations petformed at
Reynolds number Re = 250. for two Stokes numbets, s = 10 and s = 25, and for
position in annular space # = 9.93 and 0 = 75° for p, and 1 = 50 and 0§ = 45°
for w. It is seen that as the Stokes number 1s mcreased the viscous solutions and
the potential one become closer together, both in terms of the amplitude and the
phase results. We see again that the amplitudes of w at s = 10 and s = 25 are of
the oider of 0.1 and 0.2, 1espectively.

Figure 8.12 is a plot of the axial vanation of pressure, taken at 7 = 9.93
the annular space, but at a different circumferential position, namely at § = 52.5°,
and the agreement still goes along the lines of that in the previous figures  Also,
Figuie 8.13 1epresents the circumferential velocity component, w, taken at an az-

imuthal position 6 = 45°, as before, but at a different axial position than
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the previous figures, namely at » = 1. which is close to the upstream extremity
of the oscillating outer pipe. The results in both Figures 8.12 and 8.13 are for
Re =250, s =25. It 15 seen that the agreement between the different methods is
qualitatively as before

A comparison between results obtained on coarse and fine meshes is presented
m Figures 8.14 and 8.15 for Re = 250, s = 25, and for computations performed
with the non-hpear solution. It is seen from those figures that the coarse mesh
provided a good resolution of the flow solution as the fine mesh results are almost
perfectly superimposed on them, both i terms of the results involving the pressure,
p. and the veloeity component. w.

Finally, in Figuies 8 16 and 8.17 the results are presented in a different man-
ner, namely axial varations in p and radial variations in w are plotted for different
instants within the harmonic cycle, after the solution had reached a periodic state.
The five istants " chosen were

27 n
" = — n=3..057911
w

for the pressure results, and

2T n

r" —_

. n=2=y5,7911,13

w!

for the tesults with w. Only the two viscous flow solutions are presented, namely
the lineatized and non-linear ones, and the values chosen for Re and s were 250
and 25, 1espectively. Tt 1s seen that the agreement 1s good and consistent with the
previous tesults, which were precisely obtained by taking the DFT of data such as
those plotted m Figutes 816 and 8 17 In those figuies, r = 9.93. 8 = 7 3° for D.
and r =50, # = 45° for w.

To conclude the results part of this section. computations were performed at

Re = 100 and s = 80, which corresponds to a case for which linear flow theory

147




—'

is no longer valid. sce (8.2). The results are presented in Figures & 18 and 8.19.
and it is most surprising to see that no deterioration m the agreement between the
non-linear and linearized viscous solutions is noted  Furthermore, the potential
flow results are i better agreement with the viscous solutions than was the case
at s = 10 o1 & = 3. the results for which were presented in Figures 8 2 and 8 3.
respectively. We note fiom Figure 8 19 that the amplitude of veloeity component
w is of the order of 1. in non-dimensional form. which s comparable with the
mean annular flow velocity and pomts out to the fact that we no longer have small
perturbations m the flow field The pressute results fiom Figure 8 18 are seen not
to exibit a dependence on the flow ditection. as was the case i the previous figures
for lower Stokes numbers.

Now, to give an idea of the petformance of the method, Tables 8 1 8 3outhne
the convergence aspects of the computations  In all the computations of this
chapter, each harmonic eyvele was divided nup into 19 time steps. which gave actune
step size of At = 27 /19w, In Table 8 1. the data are for computations petformed
with the non-hinear viscons solution at Re = 250, s = 25, and they are compiled
for integration of the equatious duning the first hannome eyele (peniodienty m the
solution was obtained after 3 eveles) The mumber of psendo-time steps required to
converge at each time level is indicated. along with the nns values of the residuals
at convergence: convergence in psevdo-time was teached when the 1ms values of
the residuals all fll below 107% It is seen that the results are verv good as the
number of pscudo-timne steps 1s of the order of 40

Table 8 2 presents the same data pertammng to the same problem. bhut for
computations petfornmed with the lineatized Navier-Stokes equations  Agam, the
performance is observed to be very good regarding the number of psendo-time steps
required to converge and advance to a new tune level. Finallv, Table 8.3 presents

results calculated with the non-linear equations. but this tuime at Re = 100, s = ().
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for which case the perturbations mduced by the oscillating cylinder are no longer
small, see Figure 8.19. It 15 seen that on the average. three to four times more
pseudo-time steps are requured for convergence. The same quatitative results are
obtained when the computations are petformed with the linearized viscous solution.

In all the computations presented 1n this chapter, the estimates (3.11) and
(5 12) for the artificial compressibility 4 and the pseudo-time step A7 proved to
be aceurate. The Courant number m (3.12) was systematically chosen to be 40,
whereas the value predicted for ¢ m (5 11) had to be cortected by the factor
0.2, except for the computations petformed at the lhigher Stokes number of 80 in
Figures 8 18 and 8 19, and for the computations done withont mean axial flow
velocity, Figutes 8 5 and 8 6 In this case the value of & predicted by (3.11) had to

be corrected by factors of order 0 06 or 0 02, instead of 0.2.
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Figure 8 2: Axial vanation m the amplitude and phase of pressuie. tiken at
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the amplitude and phase of pressure, taken at r

There is no mean axial flow in the annulus.
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Figure 8.11: Radial profiles of w taken at r = 30, 8 = 45°. for Re = 250,

s = 23:
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n IS 1ms(R,) ims(2,) tms 7, mms( 1))

201 62 1 02205E-04 | O 921TE-04 | D 98TSE-01 | 0 9075E-01
3| 46 || 0.3084E-04 | 0 97HE-04 | 0 9082E-01 | 08261 E-01
4 43 | 02768E-01 | 0 9927E-04 | 0 8881E-01 | 0 8095E-01
5 {1 40 || 0.2858E-04 | 0 9509E-04 | 0 SGIIE-04 | 0 80031-01
G {f 40 || 0 3028E-04 | 0.9675E-04 | 0 9662E-014 | 0919 1E-01
T 40 0 2744E-04 | 0 9365E-04 | 0 9620E-01 | 0.9358E-01
§ 11 38 | 0237HE-04 | 0 9S3TE-04{ 0 9262E-04 § 0 9030F.-

—
—

91136 || 0.1773E-04 ] 0 991TE-04 | 0 SO30E-01 | 0 78131-01
10 {f 35 || 0 1261E-04 | 0.9618E-04 | 0 3380E-04 | 0 3665E-014
111 35 | 0.1004E-04 | 0 97T20E-0-4 | 0 1290E-04 | 0 1827E-01
12 4t 37 || 0.2604E-04 | 0 9517E-04 | 0 3802E-01 | 0 6006E-01
13 ] 39 || 0 2839E-04 | 0 OSIGE-04 | 0 T-H3E-01 1 0 T191E-01
144 41 || 0.2727E-04 | 0 9G49E-04 | 0 SI68E-01 | 0.748HE-01
15§ 41 }| 0.2812E-04 | 0 9693E-04 | 0.9017E-04 | 0 8260E-014
16 || 40 || 0.2946E-04 | 0.9737E-04 | 0 97T77E-01 | 0.9273E-04
17 4] 39 || 0.2729E-04 | 0.9488E-04 | 0 9598E-04 | 0 9348E-04
18 || 37 || 0.2214E-04 | 0.9851E-04 | 0 87T78E-04 | 0 848GE-0
19 || 37 |f 0.1225E-04 | 0.9497E-04 | 0 6248E-04 | 0 5865E-04
20 || 37 || 0 10T1E-04 | 0.9395E-04 | 0 3804E-04 | 0 3612E-04

Table 8.1: Number, k. of pseudo-time steps tequired to converge at tine level 1",
and rms values of residuals at convergence. The computations were performed
at Re = 250. s = 25, with the full non-linecar three-dimensional Navier-Stokes

equations.
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n k ms{ R,) rms(R,.) mms{ R,.) rms(/?,)
24l 57 0 2479E-01 | 0 9275E-04 | 0.9908E-04 | 0 8985E-04
3141 03310E-04 | 096TIE-04 | 0 887GE-04 | 0 7985E-04
4101 0 2881E-04 | 0.9422E-04 | 0 8827E-04 | 0.79G9E-04
54035 1 0 3103E-04 | 0 9640E-04 | 0 8943E-04 | 0 8074E-04
6 Il 36 1 0 3122E-04 | 0 9451E-04 | 0.9569E-04 | 0 8657E-04
T 3511 0 2981E-04 | 0 97S3E-04 | 0.9984E-04 | 0 9054E-04
S 1l 34 |l 02517E-04 | 0 9T31E-04 | 0 928GE-04 | 0 8432E-04
9 il 321 0 1914E-04 | 0 9855E-04 | 0.7920E-04 | 0 718GE-04
10 1l 31 || 0 1331E-04 | 0.9763E-04 | 0 3738E-04 | 0 3149E-04
11| 31 11 0 1842E-04{ 0 9930E-04 | 0 4775E-04 | 0.416G9E-0+4
12 40 33 {1 0 2580E-04 | 0 9739E-04 | 0.6133E-04 | 0 344CE-04
13 35 || 02919E-04 | 0.976TE-04 | 0 T387E-04 | 0 G800E-04
14 ] 36 || 0 30T2E-04 | 0 98T4E-04 | 0.3G49E-04 | 0 7794E-04
15 1| 36 || 0 3175E-04 | 0.9933E-04 | 0 9357E-04 | 0.8639E-04
16 || 36 {| 0<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>