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ABSTRACT 

We study the problem of externally guarding or inspecting a polygonal environment 

with a mobile guard (watchman) in both unlimited and limited visibility models. A survey 

of the literature on guarding problems is presented for both stationary and mobile guards, 

as well as for both interior and exterior workspaces. 

Our research concentrates on the external inspection of a single, convex or simple, 

polygon. In particular, we study the relationship between the interior angles of convex 

polygons and the length of an external inspection route under unlimited visibility. We then 

propose a method for computing the shortest external inspection route for convex polygons 

under limited visibility, and also an approximate solution for simple polygons. Finally, we 

present experimental work which was performed on random convex polygons to evaluate 

the results and validate the findings under both types of visibility assumptions. 
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ABRÉGÉ 

Nous examinons le problème de l'inspection externe dun environnement polygonal 

avec un garde mobile selon des modèles de visibilité illimitée et limitée. Un aperçu de la 

littérature sur des problèmes d'inspection est présenté pour des gardes immobiles et gardes 

mobiles, ainsi que pour l'intérieur et l'extérieur des environnements polygonaux. 

Notre principal sujet d'étude est l'inspection externe d'un polygone convexe ou sim­

ple. En particulier, nous étudions le rapport entre les angles intérieurs des polygones 

convexes et la longueur d'un itinéraire externe d'inspection avec visibilité illimitée. Nous 

proposons alors une méthode pour obtenir l'itinéraire d'inspection externe le plus court 

pour les polygones convexes avec visibilité limitée, ainsi qu'une solution approximative 

pour les polygones simples. Finalement, nous présentons le travail expérimental ayant été 

effectué sur des polygones convexes aléatoires pour valider les résultats selon les deux 

types de modèles de visibilité. 
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CHAPTER 1 
Introduction 

Guarding problems have been a topie of interest in the computational geometry com-

munit y for a considerably long time. Given a polygonal region, the optimal placement of 

stationary guards or cameras so that the entire region is visible has been a popular problem 

of study, referred to as the Art Gallery problem. With the passage of time and the de-

velopment of technology, as the idea of moving robots with sensing or vision capabilities 

became more plausible, the obvious next question that arose is how mobile robots can be 

utilized for the same task instead of a set of stationary guards. However using a mobile 

robot would mean mapping a path for the robot to follow along whieh the entire region is 

visible. This problem is referred to as the Watchman Route problem. 

Originally the definition of visibility in computational geometry and motion plan-

ning problems stated that two points are visible to each other as long as the straight line 

connecting them does not intersect the exterior of the region in whieh they are contained. 

However, real-life robots are limited in their capacity of sensing and this definition of 

visibility is not appropriate. Most practical robots would have a maximum viewing dis-

tance, outside of which the sensing measurements may be inaccurate and details in the 

environment less or not at aH visible. This necessitates casting the original art gallery and 

watchman route problems under the more restricted definition of visibility to make the 

solutions more usable in practical applications. 
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While the problem of inspecting the interiors of polygonal regions by mobile robots 

have been studied extensively over the years, a related problem that has not received as 

much scrutiny is that of inspecting the exterior of polygons using mobile robots. An area 

that has undergone even less analysis is what occurs if the inspection route is constrained 

by the mobile robot having a limited vision or sensing range. Hence, a major area of 

interest in the work presented in this thesis is composed of this topic. 

1.1 Problem Statement 

This thesis is mainly concemed with the problem of finding a shortest route for a robot 

that aims to inspect the exterior of a polygonal region. We consider the problem under 

both the c1assical definition of visibility, which we will refer to as unlimited visibility, as 

weIl as the more realistic limited visibility definition, where the robot's maximum viewing 

distance is sorne fixed constant. 

An obvious solution to the extemal inspection route problem may seem to just be a 

route that follows the boundary of the polygonal region, undoubtedly ensuring that each 

point on the external boundary is seen by the robot, and hence also saving computation al 

time. However, in the case of sorne polygonal environments, the optimal extemal in­

spection route may be significantly shorter than the route following the boundary of the 

polygon, especiaIly if the visibility range is relatively large. Reducing the distance trav­

eIled by the robot may be an important consideration when the consumption of energy, 

fuel or other such resources needs to be minimized and controlled. 

We look into the cases where the best solution is to follow the boundary and what 

properties of the polygon determine this factor. We also investigate the converse case to 

2 



detennine what, if any, properties allow the optimum route to be shorter than the route 

following the boundary of a polygon. 

We study the computation of the shortest route for convex and simple polygonal en­

vironment exteriors un der varying visibility ranges. We also examine how limiting the 

visibility range of the robot affects the length of the shortest external inspection route. 

1.2 Approach 

We study the external inspection of a polygonal region using two visibility models: 

i) the unlimited visibility model assumes that the mobile guard is equipped with a camera 

or sens or with infini te visibility along an unobstructed line of sight, and ii) the limited 

visibility model assumes that the camera or sensor has a finite visibility range, fixed at a 

certain constant. 

For both models we assume that the viewing can be done omni-directionally; there 

are no constraints on the guard's field of view, which is assumed to be 360°. We also 

assume that the guard has a priori infonnation of the map of the environment. The external 

inspection is limited to guarding a single polygon in this work, and the polygonal size, 

shape, angle and distance infonnation is available to the guard from the start. 

Our approach is to begin quite naturally with the unlimited visibility assumption, or 

in other words, an ideal situation. We study the solution presented for computing external 

watchman routes for convex polygons given in [64] un der unlimited visibility. We attempt 

to improve on sorne proofs given in [64] by introducing sorne new lemmas and proofs that 

support the daims in the paper and by elaborating on details for increased clarity. 

We then examine what properties of the structure of convex polygons affect the length 

of the external inspection route under unlimited visibility, and propose a few conjectures 
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that the size of the interior angles of the polygon may be a factor. We narrow down the 

investigation by specifically showing the effects of the size of the interior angles of convex 

quadrilaterals on an external watchman route, and disprove the initial conjecture made. 

We also briefty discuss the difference between computing external watchman routes under 

unlimited visibility on simple polygons from that of convex polygons. 

After the thorough investigation of the unlimited visibility model, we move on to 

incorporating a limited visibility range on the robot. We study the effect of reducing the 

visibility range from an infini te to a finite range, down to zero visibility. We examine how 

this causes the length of the route to increase on convex polygons. We also propose an 

approximate solution for computing a short external route for inspecting simple polygons 

under limited visibility, by using disks of radius equal to the visibility range. 

In the experimental work, we generate random convex polygons and use these to 

both validate the findings on the unlimited visibility model, as well as to test the effect 

of different values of the visibility range on specifie convex polygons un der the limited 

visibility mode!. We use the experimental evidence to support a theory that the optimal 

solution for a convex polygon in the unlimited visibility modelleads to the optimal solution 

in the limited visibility mode!. 

1.3 Applications 

In this era of modem technology, the application of mobile robots for particular in­

spection tasks that cannot be easily carried out by humans has become a necessity in 

several scenarios. Robots do not have many of the limitations of the human body, which 

makes certain environments often inaccessible for human inspection. Thus, inspections 

that need to be performed in outer-space, underwater or even hazardous environments 
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such as nuclear plants, may be made more safely and efficiently by utilizing mobile robots 

with vision sensors. 

External inspection is often a required function when endeavoring to inspect the outer 

rim of sea-going vessels, space stations, nuclear generators or oil pipelines, to name a few 

examples. The AERcam (Autonomous Extra-vehicular Robotic Camera), which is a free­

ftying inspection robot in space, described in [22] and [23], can be an example of one of the 

motivations of this work. This robot could be used to inspect the exterior of a space station 

for damage, leaks and other such problems. Similarly, a collaborative project developed at 

the Universities of McGill, York and Dalhousie is the AQUA robot described in [30]. This 

is an amphibious legged robot capable of swimming and visually navigating underwater. 

One of the many applications of this robot can be underwater inspection tours of the hulls 

of ships or submerged oil rigs. 

Co st and efficiency may be a major factor of consideration in such projects, for which 

reason shorter inspection routes would be greatly useful. AIso, limited visibility becomes 

an even greater con cern in surroundings such as underwater, where visibility is signifi­

cantly reduced. 

1.4 Outline 

This thesis deals with the external inspection problem of polygonal regions under 

unlimited and limited visibility. In Chapter 2, related work is discussed, by first describ­

ing the previous work that assumed unlimited visibility in art gallery and watchman route 

problems, together with their many variations, and then the work where limited visibil­

ity has been considered. Other problems where limited visibility has been addressed is 

also briefty discussed here. Chapter 3 describes the external watchman route problem for 
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convex and simple polygons with the assumption of unlimited visibility, while Chapter 

4 discusses the problem under the limited visibility range constraint. We present sorne 

experimental work and the results on convex polygons for both the limited and unlimited 

visibility models in Chapter 5. We conc1ude in Chapter 6, where we discuss the signifi­

canee of the results and present ideas for future work and improvements on this topie. 

1.5 Statement of Originality 

l present an extensive study of the literature related to the art galIery, watchman route, 

and inspection problems in this thesis, together with previous work in sorne other related 

areas. AlI the references are cited in the text, mostly in Chapter 2, with a few in other 

chapters where they are relevant. An exposition of sorne of the work presented in [64] is 

given in the beginning of Chapter 3 and Section 3.1, in my own words, for increased sim­

plicity and c1arity, and sorne new lemmas and proofs are introduced, as original work, to 

support claims made without adequate proofin [64]. The conjectures and their arguments 

(Section 3.1.1 and 3.1.2), the work on the limited visibility problem (Chapter 4) and the 

experimental work (Chapter 5) presented are also my own original contributions, inspired 

by joint discussions with my thesis supervisor, Professor Whitesides. 
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CHAPTER2 
Related Work 

Art gallery and watchman route problems have been a well-known, well-researched 

topic of study for computer scientists involved in the fields of combinatorial and compu-

tational geometry, motion planning and also computer graphies, to name only a few areas 

where it has sparked interest. The problems have generated an enormous amount of liter-

ature in past and recent years. The sc ope has spread into several related problems such as 

polygon decomposition, visibility problems and several variations on the original problem. 

In this chapter, the original formulation of the art gallery problem is described and 

sorne of the significant results that subsequently came out. Section 2.1 deals with the tra­

ditional version of the problem, where it is assumed that the guard, typically a camera 

or robot with vision sensors in practice, has unlimited visibility, i.e. a point is visible if 

the straight line between the point and the guard lies entirely inside the polygonal environ­

ment. Several variations of the art gallery problem, that spawned from the originally posed 

question, are described in Section 2.1.1. In Section 2.1.2, sorne of the literature dealing 

with the watchman route problem is discussed, followed by the variations of the problem 

that have been studied over time, but all with the assumption of unlimited visibility along 

an unobstructed line of sight. 

Section 2.2 goes into the literature related to the art gallery and watchman route prob-

lems where the work assumes a limited visibility constraint, so that the guard or watchman 
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has a visibility range within which the surrounding details can be viewed c1early, and out­

side of which visibility may be poor. A brief description of other problems related to 

limited visibility has also been introduced here. 

To study the properties of the solution to the extemal watchman route problem on 

convex polygons, it was necessary to generate random convex polygons for the experi­

mental work. We defer the discussion of the previous work related to random convex 

polygon generation to Chapter 5. 

2.1 Unlimited Visibility 

2.1.1 Art Gallery Problems 

The original art gallery problem was posed in 1973 by Klee in conversation with 

Chvatal. His question was: 

What is the smallest number of guards necessary to guard an art gallery of n 

walls? 

An art gallery can be considered a polygon in the plane, with the walls as edges of the 

polygon. Thus, the problem is to find the sm aIle st number of guards needed to coyer or 

supervise any polygon of n vertices and n edges. 

In this original formulation of the problem, the guards are considered stationary 

points, and they cover a polygon if every point in the polygon is visible from at least one 

of the guards. A point is said to be visible from another point if the line segment joining 

them is completely contained in the polygon. The guards are also assumed to see in every 

direction, or have a 3600 field of view. Hence, visibility of the guards is not considered 

to have any physical constraints, and visibility is blocked only if there is an obstruction 
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or wall in view. Therefore it can be said that it is assumed that the guards have unlimited 

visibility in this sense. 

Soon after the c1assical art gallery question was posed, Chvatal showed that L n/3 J 

guards are always sufficient and sometimes necessary to guard a polygon of n vertices 

[24]. This result has come to be known as Chvdtal's Art Gallery Theorem. Chvatal es­

tablished this theorem using a relatively complex inductive pro of on triangulation graphs 

of polygons. Later, Fisk proved the theorem using a mu ch simpler, concise method [36]. 

He showed this by first triangulating the polygon, and then 3-coloring the vertices of the 

triangulation, ensuring that no two adjacent vertices have the same color. Choosing any 

of the three color sets results in a set of vertices from which the who le polygon is visible. 

The smallest of the three color sets can contain no more than L n/3 J vertices. 

Such guards, placed at the vertices of a polygon, are called vertex guards. Guards 

that can be placed anywhere in the interior of the polygon are known as point guards. 

Lee and Lin showed that finding the minimum number of vertex guards necessary to 

guard a given polygon is an NP-hard problem [59]. Aggarwal showed that the problem for 

point guards is also NP-hard [1]. However, Avis and Toussaint do find a polynomial time 

(O(nlogn)) guard placement algorithm in [6], by decomposing a polygon into star-shaped 

pieces, since the region seen by each point guard has the property of being star-shaped. 

Tarjan and van Wyk, in [81], came up with an O(nloglogn) time algorithm for triangu­

lating polygons, and since the guard placement algorithm depends mainly on the triangu­

lation time, this improved on the previously achieved running time. However, Chazelle's 

linear time algorithm for polygon triangulation [17] finally gave way to an 0 (n) algorithm 

for the art gallery theorem. 
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In 1987, J. 0' Rourke published a book dedicated to studying the art gallery theorem 

and algorithms [66]. The tremendous interest in this topic also gave rise to several more 

papers and surveys in the area, including Shermer's comprehensive survey paper on the 

problem and its variations [73]. 

Art gallery problems are often referred to as illumination problems where instead of 

placing guards, the problem requires placing light sources that will illuminate the entire 

polygonal region. Sorne of these problems assume that the illumination may come from 

both direct rays and reflected rays. There are many variants of the illumination problem 

including polygonal illumination [33], illuminating families of convex sets ([82]), and 

floodIight illumination problems ([10], [34], and [84]). 

The classical art gallery theorem branched to give rise to several related questions, 

including problems focused on different types of guards, or with different classes of poly­

gons for the art gallery. While the traditional problem considered vertex guards (guards 

positioned at the vertices of the polygon) or point guards, in 1981 Toussaint introduced 

edge guards. Such guards are allowed to move along the edges of a polygon rather than 

being stationary at one point. 0' Rourke introduced mobile guards, which are guards al­

lowed to move along closed line segments inside the polygon [65]. Over the years, several 

forms of the art gallery problem using these guards have been studied. 

Polygon classes 

The classical art gallery problem considered only simple polygons as the transforma­

tion of art galleries to a geometric shape. Following this, varied scenarios for the form of 

art galleries were studied, as described below. 
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Rectangular art galleries: In [84] and [26] it was proved that exactly ln /2 J guards 

can cover any rectangular art gallery with n rooms. Here, a more realistic form of an 

art gallery is assumed, housed in a rectangular building, divided into rectangular rooms, 

where any two adjacent rooms have a door connecting them, and guards can be placed in 

doorways as weIl as inside rooms. 

Figure 2-1: A rectangular art gallery 

Orthogonal polygons: Kahn et al [51] showed that an orthogonal n-gon can always 

be guarded by ln/4J vertex guards and this is sometimes necessary (which means that this 

is the maximum number of vertex guards necessary). This led to studying the problem 

of breaking down an orthogonal polygon into convex quadrilaterals ([68], [70] and [60]). 

Culberson and Reckhow showed in [25] that partitioning an orthogonal polygon with a 

rectangular cover is NP-complete. It was also proved in [71] that both the minimum vertex 

guard and point guard problems for orthogonal polygons are NP-hard. Guarding rectilinear 

art galleries was also studied in detail in [31], [44] and [34]. 
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Figure 2-2: An orthogonal polygon where ln/4J guards are necessary 

Polygons with holes: A polygon P with a set of h disjoint polygons Pl, P2 , ... , Ph 

contained inside it is called a polygon with holes. 0' Rourke showed that polygons with 

holes can always be guarded by l(n + 2h)/3J vertex guards [66]. In [9] it was shown 

that in the case of point guards, f(n + h)/31 guards are always sufficient and sometimes 

necessary to guard a polygon with n vertices and h holes. 

Orthogonal polygons with holes: 0' Rourke proved that l(n + 2h)/4J guards can 

always coyer any orthogonal polygon of n vertices and h holes [66]. In [47] it was shown 

that ln/4J point guards are always sufficient to guard any orthogonal n-vertex, h-hole 

polygon. More work on orthogonal polygons with holes has been done in [48]. 

Edge and Mobile guards 

The edge guard problem can be defined as: Given a polygon P (with holes allowed) 

with n vertices, find a smallest subset S of edges of P such that every point on the bound­

ary of the polygon P can be seen from at least one point on an edge in S. The edges in S 

are called edge-guards. The art gallery problem for edge guards is also NP-hard, even for 

polygons without holes [59]. 

Mobile guards were first studied in [65] and [1]. Mobile guards are generalized ver­

sions of edge guards, since they can move along diagonals or edges of a polygon. 0' 
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Rourke [65] proved by induction that the minimum number of mobile guards necessary 

and sufficient to guard a polygon is l n/ 4 J. He also showed that the minimum number of 

mobile guards necessary and sufficient to guard an orthogonal polygon is l(3n + 4)/16J. 

A polygon that can be guarded with one edge guard is called a weakly edge visible 

polygon. In [69] Sack and Suri gave a linear time algorithm to determine if a polygon is 

weakly edge visible. An algorithm for computing the shortest edge guard that can guard 

a polygon is given in [18]. And an 0 (nlogn) algorithm for determining if a polygon is 

guardable by a one line-segment guard is given [53]. 

Fortress problem 

The fortress problem is a variation of the art gallery problem where it is neeessary to 

guard the outside of the art gallery, rather than the inside. Henee the fortress problem may 

be stated as the following question: 

How many guards are needed to see the exterior of a polygon? 

0' Rourke and Wood showed that r n/21 vertex guards are neeessary and sufficient to see 

the exterior of any polygon with n vertices [65]. In [1] it was shown r n/ 4 + Il vertex 

guards are necessary and sufficient to see the exterior of any orthogonal polygon with n 

vertices. These proofs give linear time algorithms for guarding the polygon exterior. 

Aggarwal and 0' Rourke showed that r n/31 point guards are sufficient and some­

times necessary to cover the exterior of polygons with n vertices [66]. Shermer's proof of 

this is given in [65]. 

Further study of the fortress prob1em was done in [87], where the problem is studied 

with edge guards, and in [86] vertex guards were studied. 
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Prison yard Problem 

The prisonyard problem arises when it is required to guard both the inside and the 

outside of the art gallery simultaneously. Hence the fortress problem asks: 

How many guards are needed to see the interior and the exterior of a polygon 

with n vertices? 

In [65] it was proved that minU n/21 + 2, l(n + fh/21) /2 J, l2n/3 J) guards are always 

sufficient, where r is the number of reflex vertices and h is the number of convex vertices 

of the polygon. 

The prisonyard problem is studied at length in [38] and it was shown that f n/21 

vertex guards are always sufficient and sometimes necessary to guard both the interior and 

exterior of a simple polygon simultaneously. It can be seen that this number is the same as 

that for the fortress problem. 

Polyhedral Terrains 

The 2D polygonal version of the art gallery problem has also been extended to guard­

ing 3D polyhedral terrains as a relatively new computational geometry problem. This 

problem is also known to be NP-hard. Bounds on the number of guards needed and algo­

rithms for vertex and edge guards were given in [12]. Further study of this topie can be 

seen in [35] and [11]. Approximation algorithms have also been proposed in [32]. 

2.1.2 Watchman Route Problems 

While the art gallery problem deals with placing a set of stationary guards in a way 

so that they see the en tire gallery, the watchman route problem is a variation that aims to 
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Figure 2-3: A watchman route for polygon P 

achieve the same goal, but by placing one moving guard that takes a route in the gallery 

along which it sees everything. 

Formally, a watchman route for a polygon can be defined as a closed walk, curve or 

polygonal chain within the polygon with the property that every point in the polygon is 

visible from sorne point along the route [19]. Thus, the shortest watchman route problem is 

to find the shortest curve that does this for a given polygon. This problem has been called 

a hybrid visibility problem [73], since it not only involves visibility but also combines this 

with other geometric and conceptual properties. 

Chin and Ntafos showed that the problem is NP-hard for polygons with holes, even 

if the polygon and holes are convex and orthogonal. They also showed that it is NP-hard 

for 3-dimensional simple polyhedra. They do give a linear time algorithm for orthogonal 

polygons without holes [19]. In [20] they gave an O(n4 ) algorithm for simple polygons if 

a starting point s is specified. Tan et al. improved on this bound to give an O(n3 ) algo­

rithm using incremental techniques [78] and further improved this to O( n2 ) in [79] using 
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a divide-and-conquer approach. However Hammar and Nilsson showed that these time 

bounds have errors in them and presented a modified O(n2 ) time algorithm [45]. This 

solution itself was shown to contain sorne inconsistencies by Tan, and he subsequently 

proposed a correct O(n4
) time algorithm [80]. Dror et al. recently showed that the re­

sults for touring a sequence of polygons in [29] implies a simpler algorithm for the fixed 

watchman route that fUns in O(n3Zogn) time. However to achieve a faster, more practical 

solution, Tan also presented a simple, linear time approximation algorithm that outputs a 

watchman route at most J2 times the 1ength of the shortest watchman route [76]. 

AlI the above algorithms work only when the route is forced through a specified 

starting point. Such routes are referred to as fixed watchman routes [45]. This restriction 

can pose a significant hindrance in certain cases when it causes a route to be arbitrarily 

longer than the shortest watchman route with no restrictions, referred to as the floating 

watchman route [45]. 

Carlsson et al. gave the first polynomial time algorithm, with an O(n6 ) bound, for 

fin ding the shortest watchman route without forcing the route through a given starting point 

([15], [61]). The complexity of the aigorithm did prompt them to develop an O(n4 ) time 

approximation algorithm for the problem, which finds a watchman route at most a constant 

factor longer than the shortest watchman route [14]. However, Tan later came up with an 

O(n5
) algorithm for the unrestricted shortest watchman route problem, by showing that 

the floating shortest watchman route requires time O(n) times that of the fixed watchman 

route [74], which improved on the previous O(n6 ) bound. 
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External Watchman Routes 

The external watchman route can be defined as the problem of detennining a watch­

man route where it is necessary to guard the exterior of a polygon. Ntafos and Gewali 

gave an O(n4 ) algorithm for finding the shortest external watchman route without a given 

starting point [64]. They also provided linear time algorithms for convex, star-shaped, 

monotone and orthogonal polygons, which belong to a cIass called weakly externally visi­

ble polygons. This concept as weIl as details on external watchman routes will be discussed 

in subsequent chapters. A significant portion of this thesis has been dedicated to the results 

from this paper ([64]) and its extensions. 

Gewali and Stojmenovic studied the computation of shortest external watchman routes 

using parallel algorithms as weIl; they gave an O(logn) time algorithm with the help of 

O(njlogn) processors in CREW-PRAM models. They also showed that for a convex 

polygon the shortest external watchman route can be found in O(logn) time using O(n) 

processors on a hypercube [39]. 

In [40] the problem of finding the shortest external watchman route for a pair of 

convex polygons, with a total of n vertices, is studied and an O(n2 ) time algorithm is 

described. 

Computing Vision Points on Watchman Routes 

The problem of computing vision points is a variation of the watchman route problem 

in which the watchman is restricted to remain on a cIosed curve in the polygon P and 

surveys the polygon only at sorne selected points (or vision points) of the curve, which 

together should see aIl of P. 
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Carlsson et al. [16] showed that finding the minimum number of vision points along 

a shortest watchman route is NP-hard. The problem is studied at length in [61], includ­

ing sorne restricted polygon classes such as spiral, doughnut, histogram and monotone 

polygons. 

The Robber Route Problem 

The robber route problem is that of finding a route R, given a starting point s on the 

boundary of polygon P, that sees every point on a set of partial edges S of the polygon, 

but such that R is not visible from any point on a set of threat points T. This problem 

was introduced by Ntafos [62]. It was shown to be solvable in O(n4 ) time for arbitrary 

polygons and in linear time for orthogonal polygons. 

Zookeeper and Safari Routes 

Another variant of the watchman route is finding a route that has to visit a number of 

subpolygons in the polygon P. The Zookeeper Route is restricted to touch but not enter the 

subpolygons, much like a zookeeper might visit each animal cage at the zoo. The Safari 

Route is, however, allowed to enter the subpolygons, just as visitors might go inside the 

animal habitats in a safari trip. An example of the se routes is illustrated in Figure 2-4. 

Chin and Ntafos showed that both these problems are NP-hard in general [21], but 

can be solved in polynomial time if the subpolygons inside P are restricted to be convex 

and attached to the boundary of P. They gave an O(n2 ) algorithm to solve the fixed 

version of the zookeeper problem, with a specified starting point, which was later reduced 

to O(nlog2n) in [46]. This was further reduced to an O(nlogn) algorithm in [7]. Tan also 

used his previous linear-time approximation scheme for finding a shortest watchman route 
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\+--+-- A safari route 

A-+-----lr-- A zookeeper route 

Figure 2-4: A safari and zookeeper route 

[76] to approximate the shortest zookeeper route that has to go through a specified starting 

point in O(n) time. 

For the floating zookeeper route problem, Tan gave an O(n2 ) time algorithm for find­

ing the shortest zookeeper route for arbitrary polygons with no specified starting point 

[75]. 

In the case of safari routes, Ntafos gave an O(n3 ) time algorithm to solve the safari 

route problem when the subpolygons are attached to the boundary of P [63]. However, 

in [77] it is shown that this time bound was erroneous and a corrected O(n3 ) algorithm 

is presented. Recently, Dror et al. suggested using their results in [29] to solve the fixed 

safari route problem in O(n2Zogn) time. For the floating safari route problem, Tan and 

Hirata removed the specified starting point restriction and gave an O( n4
) time algorithm 

for the problem [77]. 
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2.2 Limited Visibility 

The traditional definition of simple straight-line visibility is not a realistic model of 

the sensors used in applications of computer graphies or robot vision. AH the algorithms 

described so far in this chapter have assumed ideal conditions, where the physicallimita­

tions of real sensors are not taken into account. Hence, when these algorithms are applied 

using real cameras or robots with limited sensing capabilities, the algorithms do not suffice 

and frequently fail at the task. 

Recently the focus has changed from trying to find exact algorithms for idealized 

situations to trying to find reasonably accurate solutions in the presence of practical con­

straints. In this section, we discuss the solutions of the problems we have introduced in 

the last section, into which addition al considerations have been incorporated, including 

a limited visibility range, to make the algorithms work better in practice. Since the lim­

ited visibility version of the problems are known to be NP-hard, all the algorithms to be 

described give approximate solutions. 

For the art gallery or watchman route problems under unlimited visibility, a set of 

guards or a route that sees the who le boundary of a polygon also sees every point in the 

interior of the polygon. However, for limited visibility, this is no longer true. Hence 

sorne of the solutions to be discussed only inspect the boundary of the polygon while 

others inspect both the boundary and the interior, with the latter algorithms having higher 

computational complexity. 

2.2.1 Art Gallery Problems 

Ntafos introduced the notion of d-visibility, where two points are d-visible ifthey are 

visible to each other and are at most a distance d apart [63]. If a guard has d-visibility 

20 



capabilities, this means that it can see as far as a disk of radius d around it. Covering an 

art gallery with such guards requires covering a polygon with disks of radius d. This can 

be linked to the disk-cover problem, where a set of n points has to be covered with the 

smallest number of disks of radius d, which is known to be an NP-complete problem [50]. 

Gonzalez-Banos and Latombe studied the problem of using a mobile robot, equipped 

with range sensors, to acquire range-images so as to automatically build a visual represen­

tation of an environment [41]. The problem requires minirnizing the number of sensing 

operations which means solving an extended version of the art gallery problem. They 

developed two randomized algorithms that compute a near-optimal number of sensing lo­

cations for scanning the workspace. However, they used a model in which incidence and 

visibility range limitations are taken into account, i.e. the angle between the line-of-sight 

from a guard location and a surface cannot be greater than a specified angle, and the dis­

tance between them cannot be greater than a range d. The upper bound for the running 

times of the two algorithms given are O(nm2 ) and O(ngnlogngn) respectively, where n is 

the number of edges of the polygon, m is the number of random samples taken, and ng is 

the number of guard locations found by the algorithm [41]. 

Danner and Kavraki also studied a randomized solution to the inspection problem of 

computing a short path for a robot with vision sensors so that the entire boundary of the 

workspace is visible [27]. Here again, the model included the constraints of maximum 

angle of incidence and maximum viewing distance. In the solution they presented they 

used the same randomized approach described in the first incremental algorithm in [41] to 

select art -gallery guards that represent a set of potential sensing locations. In their method, 

the region each sample guard can see is clipped to both the incidence and the visibility 
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range constraints at each iteration of the algorithm. In this way, the set of samples that 

see the most new length of border is kept and the algorithm is repeated until the en tire 

boundary is covered by the limited-visibility sensors [27]. 

Another paper where a sensor placement strategy uses a randomized algorithm to 

solve a variant of the art gallery problem is [42]. The strategy tries to compute a set of 

sensing locations that might be most effective to build a 30 model of the workspace. The 

set of guards found satisfies both incidence and range constraints, similar to the previous 

two papers described. The idea is to use a random sampling scheme to transform the 

problem to a set coverage problem that can be computed using a greedy approach, leading 

to an approximate solution. The algorithm gives a set of sensing locations that with high 

probability is at most a factor O(log(n + h).log(clog(n + h))) from the optimal size c, 

where n is number of vertices and h is the number of holes in the polygonal workspace 

[42]. 

A different approach to the ones previously described is used in [52] to find a small 

number of guard positions that can visually inspect a 20 workspace. The computational 

time required by the algorithm depends on whether the whole workspace requires inspec­

tion or only the boundary. The guards are assumed to have cameras with a 360 0 field 

of view, but a predefined limited-visibility capability. The method uses a decomposition 

algorithm from [72] to divide the workspace into a number of convex polygons. Then 

each of these convex polygons are further divided into smaller polygons, using a divide­

and-conquer strategy, so that each of these can be inspected by only one guard. Rence in 

this way, a suboptimal yet fast and efficient solution is given for finding a set of limited­

visibility guard locations to inspect a 20 region [52]. 
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2.2.2 Watchman Route Problems 

The first paper that addressed the watchman route problem under visibility range con­

straints was by Ntafos [63]. Two versions of the watchman route problem are discussed. 

One is to find the shortest route so that each point in the boundary of a given polygon is 

d-visible from it, referred to as the d-watchman problem. The other is to find the short­

est route so that each point in the whole polygon is d-visible from it, referred to as the 

d-sweeper problem. 

The d-watchman problem is equivalent to finding a shortest route that visits a set of 

disks of radius d centered at the vertices of the polygon. In this paper [63], the authors 

approximated the circles by inscribing regular convex polygons of k sides inside them, 

and they described an O(k2n3 ) algorithm that finds the safari route that visits the set P' of 

k-gons attached to the boundary of the polygon P, where n is the total number of vertices 

in P and P'. 

The d-sweeper problem is equivalent to sweeping a polygon with a circular disk of 

radius d such that the entire polygon is covered with minimum travel distance of the disk. 

This is related to the Traveling Salesman Problem on simple grids. The authors gave an 

approximate solution to the TSP on grids prob1em, which also provides an approximate 

solution to the d-sweeper prob1em [63]. 

A problem equiva1ent to the d-sweeper problem is further studied in [5]. Here it 

is referred to as a lawnmowing or milling problem, where the shortest route has to be 

computed for a square or circular cutter of radius d, so that every point on a given region 

is covered by the cutter. The lawnmowing problem allows the cutter to exit the polygonal 

region whereas the milling problem restricts the cutter to stay inside. Hence the watchman 
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route under limited visibility is more related to the milling version of the problem with a 

circular cutter. The authors showed that the problems are NP-hard in general and gave a 

2.5-factor approximation algorithm for the milling problem [5]. 

2.2.3 Other Problems Related to Limited Visibility 

Besides art gallery and watchman route problems, several other problems have also 

been studied un der limited visibility in recent years. Several well-known problems have 

been recast under limited visibility to make them more practical and realistic in different 

applications. 

ln [55] Kim studied the notion of d-visibility when trying to find the kemel of a 

polygon P, which is the set of points in P from which every point in P is visible. He gave 

an O(n) algorithm for finding the d-kernel of P, which is the set of points from which 

every point in P is d-visible [55]. 

Kim et al. also studied the problem of finding the edge visibility polygon under 

limited visibility [56]. The d-visibility polygon from an edge e is defined as the set of aIl 

points in P that are d-visible from e. They presented a linear time algorithm for computing 

the d-visibility polygon from an edge e of a given polygon P [56]. 

Pursuit-evasion problems have been a popular subject of study in computational ge­

ometry, motion planning, and game theory, where one or more hunters seek to capture one 

or more preys on a graph or polygonal region. Isler et al. [49] studied the version of this 

problem on a graph when the prey is assumed to have limited visibility. Here, however, the 

notion of limited visibility in [49] is slightly different from d-visibility: the prey can only 

see nodes on the graph that are adjacent to the CUITent location of the prey. The authors 
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showed that two hunters are sufficient to capture a prey with limited visibility, and they 

presented polynomial time algorithms for the problem [49]. 

Several problems in robotics have been researched un der limited visibility and limited 

visibility problems continue to be of enormous interest in the field, as most sensors have 

limited sensing capabilities. A few references where a limited visibility range has been 

considered include [85] for mobile robot navigation, [8] and [13] for robot exploration 

problems, [54] for localization, and [2], [3], [4], [37] and [43] for formation, convergence 

and gathering problems of multiple robots with limited visibility. 
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CHAPTER3 
External Watchman Routes: The Unlimited Visibility Model 

InternaI watchman routes, where the watchman with unlimited visibility has to take 

a route in the interior of a polygon so that every point in the polygon is visible, has been 

studied extensively as mentioned in Chapter 2. The algorithm with the lowest computa­

tional time found to date is O(n3 logn) for the shortest fixed watchman route on simple 

polygons with n vertices, where a starting point is specified [29]. The algorithm with the 

lowest running time for the shortest unrestricted floating watchman route is O(n5) [74]. 

On the other hand, external watchman routes, where the watchman has to patrol the 

exterior of a polygon, has mainly been studied in [64], un der the unlimited visibility as­

sumption. Their algorithm for the shortest external watchman route on simple polygons 

has the same computation al complexity as that for the internaI watchman route problem, 

which they prove by converting the external problem to a set of internaI problems. 

The internaI watchman route can be reduced to the external watchman route; there-

fore, the externai problem can be said to be at Ieast as hard as the internaI one. The 

reduction is done in the following way [64]: In the internaI watchman route problem, a 

polygon P and a starting point s on the boundary of Pis given, and it is required to find the 

shortest route through s that sees aIl of P. To transform the problem, P can be enclosed 

in a rectangle, or even a triangle, as shown in Figure 3-1. Then a narrow corridor can 

be added by connecting s to the enclosing rectangle, producing a new polygon P', which 
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P' 

Figure 3-1: Reduction of the internaI watchman route problem to the external watchman 
route problem 

has the polygon P as an inner cave. Now if a shortest external watchman route W ' can 

be computed for P', this also solves the internaI watchman route W for P as a part of the 

route W'. 

In the following sections of this chapter, we study the external watchman route prob-

lem under the unlimited visibility model, specifically on convex polygons, in detail. 

3.1 Convex Polygons 

Although the external watchman route is very similar to the internaI one, in certain 

ways it is very different. For instance, the shortest internaI watchman route for a convex 

polygon P would be the starting point s. In fact, any point in the kernel of a polygon would 

suffice, and since the entire polygon can be seen from any point in a convex polygon, the 

27 



specified starting point s would constitute the shortest watchman route. However, the 

external watchman route for the same polygon P would not be as simple, and can be 

viewed more like a problem where the boundary of a polygon hole P has to be inspected 

in an internaI watchman route problem. 

A Iinear time aigorithm for finding the shortest external watchman route for convex 

polygons was presented in [64]. This work by Ntafos and Gewali was one of the only 

references we found for the external inspection problem, and it has been the basis and 

starting point for our work. In this chapter, we study the solution presented there in more 

detaii and provide an exposition of part of the paper, in areas where we found it lacked full 

clarity and precision of details. We also introduce a few lemmas and proof sketches of our 

own to support the claims in [64], and endeavor to extend the solution by making sorne 

conjectures. 

To begin, we note that there are two types of external watchman routes for convex 

polygons: 

• Convex-Hull Routes which are closed curves that wrap around the whole polygon 

P, so that they contain P. Since the route need not be simple, we consider that 

it encloses P if P belongs to sorne finite region created by the route. Thus, any 

ray outgoing from any point on the boundary of P will intersect with this route. A 

simple example is shown in Figure 3-2(a) . 

• Nonconvex-Hull Routes are aIl other routes, which are curves that do not wrap 

around the who le polygon P, i.e. P belongs to the infinite region created by the 

route. An example of this can be seen in Figure 3-2(b), where the watchman traveis 

back and forth on W between the tips of the arrows. 
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(a) A Convex-Hull Route (h) A Non-Convex-Hull Route 

Figure 3-2: Illustration of a Convex-HuU Route and a Nonconvex-HuU Route 

In [64], the shortest convex-huU route for any convex P is claimed to be the route 

following the boundary of the polygon. Furthermore, aU shortest nonconvex-hull routes 

are claimed to be of the form shown in Figure 3-2(b), caUed a 2-leg route. By definition, 

2-leg routes have two extreme points and consist of an inner path W, along which the 

entire exterior of P is visible, and a return path R, which completes the route. Both the 

inner path and return path of the route are said to connect the two extreme points of the 

2-leg route. (In the figure, W = R.) 

However, the daim that these are the only two types of shortest external watchman 

routes possible for convex polygons has not been adequately justified in [64]. Here we 

show that these two types are the only forms of shortest external watchman routes by 

introducing two new lemmas. But first, we explain a few key concepts. 

For an external watchman route to see the entire exterior of a polygon, it has to see 

all the edges. So, if unlimited visibility is assumed, we can say that for every edge in P, 

an external watchman route has to either contact that edge or the extension of the edge, or 

belong to the half-space from which the entire edge is visible, to be able to see every point 
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on the boundary of P. Thus, any external watchman route deterrnines an ordered sequence 

of intersection points of the path with an edge or extension of an edge. Note that not aIl 

edge extensions need to be intersected, and that the shortest external watchman route must 

satisfy the property that the path between any such two intersection points is as short as 

possible. 

Now, if we consider any arbitrary external watchman route for a convex polygon P, 

we can note that the route divides the plane into regions or faces. Only two cases are 

possible. 

) P lies in a bounded region. 

11 ) P lies on the infinite region. 

We now use each of these two cases, treated in separate lemmas, to sketch a proof that 

shortest routes have only the two forrns claimed in [64], namely, in the case of a convex­

hull route, the watchman follows the boundary of the convex polygon, and in the other 

case, the watchman follows a 2-leg route with W = R. 

Lemma 1 : The shortest external convex-hull watchman route for a convex polygon 

P is the route following the boundary of P. 

Proof : Let W be an external watchman route for a convex polygon P that bounds P 

but does not follow the boundary of P. By assumption, the polygon P lies in a bounded 

region of the curve, as illustrated in Figure 3-3, and any outgoing ray from a point on the 

boundary of P will intersect the curve, ensuring that every point on P is seen from W. 

Now, ex tend any edge e of P on both sides until it touches W on either side of e at points 

x and y, as shown in Figure 3-3. Now define route W' to be the route taken by traversing 

the subpath of W between x and y which wraps around P, but replace the other span of 
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Figure 3-3: Proof of Lemma 1 - Convex-hull route case 

W with the straight line segment xy, containing the edge of P. So W' is still an extemal 

watchman route and is shorter than W. 

It is clear that this procedure can be applied repeatedly to the obtained shorter route, 

by extending every edge on both sides and cutting off the regions not containing P, until 

we achieve the shortest route possible in this case: the route following the convex-hull or 

boundary of P. <> 

Now we tum to the second case, where the route does not enclose the polygon. 

Lemma 2 : The shortest external watchman route for a convex polygon P that lies 

on an infinite region created by the route is a 2-leg route. 

Proof : Suppose W is a curve from which the entire boundary of P can be seen, but 

does not enclose the polygon. We know from earlier descriptions that to see aIl edges, 

sorne edges are visible if the route lies in the half-space from which it can be seen, and 

sorne edges have to be seen by the route touching their extensions. Consider the shortest 
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subpath W' of the curve from which the entire exterior of P is visible. By minimality, this 

subpath must start from an intersection point of the curve with the extension of an edge 

(one of the edge extensions that have to be touched in order for the edge to be seen). We 

travel along the curve W' until every edge has been seen and stop at another intersection 

point of the curve with an edge extension. At this point, the subpath we traced out sees aIl 

of the exterior of P. The extreme points of this path must lie on edge extension lines, and 

these lines must be distinct (by minimality of the path). 

Consider these two edge extensions from which we start and stop (refer to them as 

l(ed and l(e2))' The polygon and path lie in the same half-space determined by the each 

of the two extensions; otherwise the path could be shortened, as it would not need to travel 

to at 1east one of l(el), l(e2))' Therefore, the polygon and the path lie in the intersection 

ofhalf-spaces determined by l(ed and l(e2))' C1early this intersection is not a strip, with 

l ( el) paraUel to l ( e2)), since the path sees aU of P. Therefore, both P and the path lie in a 

cone, or wedge, formed by l ( el) and l ( e2)). Furthermore, the vertex of the cone or wedge 

(i.e. the apex) is a vertex of the polygon; if not, the whole boundary would not be visible 

from W'. 

So now we have a path W' as illustrated in Figure 3-4. (The path W' shown here is 

in the form of an arc for ease of illustration.) The path ends at two extreme points, the 

starting and ending points, x and y, that lie on the two extensions of the adjacent edges el 

and e2. And the rays from point q = l(ed n l(e2) containing el and e2 create the cone or 

wedge that contains the polygon P and the path W'. 

If the path W' does not touch P, it can be moved or translated towards the point q (the 

vertex of the wedge), along the bisecting line L of this wedge, until it eventuaIly contacts 
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Figure 3-4: Proof of Lemma 2 - Non-convex-huU route case 

the boundary of P, either at a vertex or an edge. Now the points that touch the extensions 

of the edges el and e2 are m and n, and since aU other edge extensions cross W ', the 

subpaths m ~ x' and n ~ yi (as shown in the figure) do not see anything that is not 

already seen from the path m ~ n. Renee we can replace x' ~ yi by m ~ n to make a 

shorter path that sees aU of P, contradicting the minimality of W '. Rence W' contacts P. 

Thus, W ' travels across the wedge from a point on l(ed to a point on l(e2)' and touches 

P. 

Note that any path that touches P (but not its interior) and that travels across the 

wedge from l(ed to l(e2) sees aU of P. Renee, by rninimality, W ' behaves like a rubber 

band stretched across P between m and n. It therefore foUows along the boundary of P, 

and drops to m (or n) with a segment perpendicular to l (el) (or l (e2) ) if m (or n) is not a 

vertex of P. 
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To turn W' into a closed watchman route, we have to go back to the starting point, 

and since there is no shorter path between the two points, we take the same path back, thus 

completing the route. 

Hence, aIl nonconvex-hull routes are in the form of 2-leg routes. <> 

We define a leg in an external watchman route as a segment connecting a vertex or 

edge of a polygon P to an extension of an edge of P. Thus, a 2-leg route consists of 

at most two legs, which contact extensions of two adjacent edges of the polygon, and a 

middle part of the route, which follows the polygon boundary. However, note that a 2-leg 

route includes routes with zero, one, or two legs, and may or may not contain a middle 

body. 

Thus we can now characterize the shortest external watchman route for convex poly­

gons by rewriting Theorem J [64] more elaborately. 

Theorem 1 : A shortest external watchman route W for a convex polygon P can be 

one oftwo types: 

W follows the boundary of P to make a convex hull route 

ii W is a two-leg route, in which the two legs are the shortest segments (or perpendic­

ular segments) onto the extensions of two adjacent edges of P. W may consist of 

three parts: the middle body of the route W m whichfollows part of the boundary of 

P, and two legs, W 1 and W2• Any of these parts W m, W 1 or W2 may be empty in 

the route W. And the return path R, which completes the route back to the starting 

point, is such that R = W. 
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Prao! : The proof of this follows from the statements of Lemma 1 and Lemma 2 

presented earlier. 0 

. . . . . . . . 
. . . . . 

Figure 3-5: Shortest two-leg route for polygon P 

As can be seen from Figure 3-5 , the legs W I and W2 are always perpendicular to 

the extensions of edges (Pi. Pi+l) and (Pi, PI-I) to make them the shortest links to the 

extensions. However, if the interior angle of the vertices PHI or Pi-I is less than 90°, then 

the perpendicular segment falls inside the interior of P. Thus, in such cases, the shortest 

route would consist only of the inner body W m, and one or no legs. 

It was shown in [64] that the shortest external watchman route for convex polygons 

can be constructed in linear time. For a polygon P with n edges, computing the shortest 

2-leg route for a given pair of adjacent edges (or wedge) takes O(n) time. Using binary 

search on the boundary of P, the legs can be computed in O(logn). Once a 2-leg route 

for one of the wedges is computed, the rest can be computed by traversing around P, i.e. 
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for the next wedge, the contacts of the legs on the polygon advance around the polygon. 

AlI the 2-leg routes can be found in 0 (n) time in this way, since it takes 0 (1) time per 

edge during the advances, and each edge is only considered a constant number of times. 

Computing the convex-hulllength also takes O(n) time. Once aIl the possible 2-leg routes 

are found, the shortest one of these is compared to the convex-hulliength, and the route 

with the shortest length is selected. Thus the total computational time required is linear 

[64]. 

3.1.1 Our Conjectures 

In the previous section, it was seen that finding the optimal watchman route for a 

convex polygon, when unlimited visibility is assumed, entails determining whether the 

convex-hull route for that polygon P or the shortest two-Ieg route among aIl other two­

leg routes of P, is shorter. In other words, if the pair of adjacent edges, or the wedge, 

for which the two-Ieg route is the shortest among aIl others can be determined, then the 

process is simply to see if this gives a shorter route than the convex-huIl route. 

When the shortest external watchman route for a convex polygon P is a 2-leg route, it 

means there exists a certain wedge, which we can refer to as the best wedge, for which the 

2-leg route is as short or shorter than aIl others. This also means W(P) +R(P) ::; CH(P), 

where W(P) is the watchman path between the two extreme points of the 2-leg route that 

sees aIl of the exterior of P, R(P) is the return path that completes the route, and CH(P) 

is the length of the convex hull of the given polygon P. According to Theorem 1 (refer 

to section 3.1), R = W for the shortest external watchman route; therefore the above 

equation simply means 2W(P) ::; CH(P) for the 2-leg route to be the shortest external 
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watchman route for P. Thus the path W is required to be less than half the length of the 

convex hull of P to qualify it as the optimal path for the shortest route. 

If it were possible to determine what properties make a wedge the best one for a 2-leg 

watchman route, the algorithm for finding the shortest external watchman route for convex 

polygons could immediately identify the wedge, compute its 2-leg route and compare 

it with the convex-hull route, instead of finding the 2-leg route for every wedge of P. 

Although this may not improve the computational complexity of the overall solution from 

the linear time already given in [64], it would however simplify the solution as weIl as the 

programming complexity of the algorithm. 

Looking at the form of a 2-leg route (example Fig 3-5) under unlimited visibility for 

a polygon P, one may conjecture that the shortest 2-leg route may always come from the 

wedge where the sum of the lengths of the adjacent edges of the wedge is maximum. If 

the sum of the adjacent edge lengths is greater than aIl other adjacent pairs in the polygon, 

it may mean that the route W has to travel smaller lengths to see the entire exterior of 

polygon P. 

However such a conjecture can be easily disproved using the following counterexam­

pIe. As can be seen from Figure 3-6(a), edges pq and pv, which are incident on the vertex 

p, have the sum of lengths greater than aIl pairs of adjacent edges of P. However the route 

Wp (the route corresponding to the wedge incident on vertex p) has to travel over the span 

of every other edge of P to see the entire exterior of P, from point q to point v. However 

in Figure 3-6(b), the route Wq for the wedge on vertex q, whose adjacent edge lengths 

give a smaller sum, allows a shorter route for the same polygon P, starting from x to the 

vertex v and over the leg vy to point y. 
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Figure 3-6: Counterexample for wedges with the greatest sum of adjacent edge lengths 
giving the shortest 2-leg route 
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This example however can lead to a new conjecture. As it can be seen from Figure 

3-6, the sum of the adjacent edge lengths pq and vp is the largest. However, the interior 

angle of the wedge pis quite wide. In the wedge q, the sum of the pair of adjacent edge 

lengths is smaIler, yet the interior angle is much smaller. This may intuitively le ad to the 

question whether shorter external watchman routes come from narrower wedges. Hence 

we make the following conjecture, which we will follow up on and attempt to prove or 

disprove in the subsequent sections. 

Conjecture 1 : The best wedge, giving the shortest 2-leg route among ail other 2-leg 

routes for a convex polygon P, is the one with the smallest interior angle in P. 

This conjecture can be seen to clearly work for the base case, where n = 3 and the 

polygon P is a triangle. As can be seen from Fig 3-7, the smallest external watchman 

route for a triangle T cornes from the wedge with the smallest angle. The shortest external 

watchman route W for any wedge in a triangle is either the edge opposite to that angle, or 

the perpendicular leg to the extension of one of the adjacent edges. In the figure, W = ax 

for the wedge on c. In either way, sin ce the smallest si de is always opposite the smallest 

interior angle of a triangle, the conjecture works very weIl for the triangular case . 

.. _m~ 
C a 

Figure 3-7: A triangle to prove the base case of Conjecture 1 
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Figure 3-8: A convex obtuse polygon and one of its 2-leg routes 

Another interesting question that arises from this conjecture is how it rnight affect 

the shortest external watchman route if aIl the interior angles of a polygon are relatively 

wide. A Convex obtuse polygon is defined as a convex polygon whose interior angles are 

aIl greater than 90°, i.e. a polygon that has no acute angles. An ex ample is shown in Figure 

3-8. As can be seen from this figure, the length of the path W for the wedge on vertex 

p looks like it is greater than Ij2CH(P) and this may be said for aIl its wedges. As was 

established previously, if none of the 2-leg route lengths are less than half the convex-hull 

length, than the convex-hull route is the shortest external watchman route for that polygon. 

Therefore, now we make a new conjecture related to convex obtuse polygons. 
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Conjecture 2 : Ail convex obtuse polygons have convex-huil routes as their shortest 

external watchman routes. 

This conjecture will also be looked into in Chapter 5. 

3.1.2 External Watchman Routes on Convex Quadrilaterals 

To study the questions posed in the previous section regarding external watchman 

routes on convex polygons of n vertices under the unlimited visibility model, we investi­

gate the special case of convex polygons where n = 4. As was previously seen, Conjecture 

1 can be easily established for triangles (n = 3). If any of the conjectures can be proved or 

disproved in the case of arbitrary convex quadrilaterals, it would help further understand 

the problem for convex n-gons. Another motivation is that most convention al buildings 

are bounded by four walIs, and if these outer walls have to be externally inspected, the 

study of convex quadrilaterals may prove to be useful. 

Depending on the interior angles, convex quadrilaterals may be one of several shapes. 

The following are a few examples. 

• AlI interior angles are 90°, as in a rectangle or square. In such cases, aH routes, 

including the convex-hull route and two-Ieg routes on each of the four wedges of the 

rectangle, would have equallength (Figure 3-9). 

• Another example is a parallelogram, with two acute angles, two greater than 90°, 

and opposite sides parallei. As can be seen in Figure 3-10, the shortest 2-leg routes 

Wa and Wc for the wedges with angles greater than 90° have path length equal to 

(ad + ab) (or (bc + cd)). The routes W d and Wb for the wedges with acute angles 

have path length equal to (dx + dy), where dx is perpendicular to ab and dy is 
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Figure 3-9: External watchman route on rectangles 

perpendicular to be. It can be seen that (dx + dy) < (ad + ab), since dx < ad (ad 

is the hypotenuse of 6adx) and dy < ab (ab = de from the rectangle, and de is 

the hypotenuse of 6cdy). Thus in the case of parallelograms, smaller angle wedges 

pro vide shorter routes. 

P-______________ ~b 

d~--------------~, c , 

1 Y , 

Figure 3-10: External watchman route on parallelograms 

• Arbitrary quadrilaterals with non-parallel sides. 

We study the structure of external watchman routes on different types of convex 

quadrilaterals to work our way through to either constructing a proof for Conjecture 1 

or finding a counterexample to the conjecture, and so we examined quadrilaterals with 

two equal acute interior angles. A question related to the conjecture is whether wedges of 
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equal angles in a polygon always provide shortest 2-1eg routes of equallength. If not, this 

may lead us to the construction of a counterexample. 

A quadrilateral with two equal acute angles may have them placed either at adjacent 

vertices of the polygon, or at opposite vertices. We first look at the case where the two 

angles are at adjacent vertices of a quadrilateral. 

Case 1: Quadrilateral with two equal acute angles at adjacent vertices 

In quadrilateral ABCoD (Figure 3-11), side AB is parallel to si de CoD, and LA = 

LB = e. This wou Id mean AD = BCo. 

Now for the wedge B the route WB is of length AD + DY and the route WA for 

wedge A is of length BCo + CoXo. 

We can also say LDCoY = LCoDXo = e (corresponding angles) which means 

DY = CoXo = DCo sin e. Therefore, the route lengths for wedges A and B are equal, 

WA = WB, for the quadrilateral ABCoD. This proves that for a quadrilateral with two 

parallel sides and two equal acute angle wedges on adjacent vertices, the watchman routes 

are of equallength. 

Now let us consider the quadrilateral ABCD shown in Figure 3-11, where si de CD 

is not parallel to AB. The route for wedge A is now WA = (BC + CX) and the route for 

wedge B is WB = (AD + DY) (remains the same). 

To compare the lengths ofthe two paths, it suffi ces to compare (BCo + CoXo) with 

(BC + CX), as it was shown that (AD + DY) = (BCo + CoXo). 

If we ex tend a perpendicular li ne from point Co to line C X we get the intersection 

point P. Now, (BC + CX) = (BC + CP + PX) and (BCo + CoXo) = (BC + CCo + 
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Figure 3-11: Convex quadrilaterals with adjacent equal smallest angles 

GoXo). Clearly, PX = GoXo (sides of the rectangle XGGoXo). So, comparing GGo with 

GP, we can say GGo > CP as GGo is the hypotenuse of 6PGCo. 

Therefore, routes (BGo + CoXo) > (BG + CX), which equivalently means that 

the route for wedge A is not equal to the route for wedge B (WA =F WB), even though 

LA = LB. 

This shows that wedges of equal angles at adjacent vertices do not necessarily provide 

2-leg routes of equallength. <> 

Case 2: Quadrilateral with two equal acute angles at opposite vertices 

We now look at the case where the two equal acute angles of the convex quadrilateral 

are placed at opposite vertices. We propose a method that allows constructing a range of 

different convex quadrilaterals with equal acute angles opposite each other by changing 

the value of a variable cjJ. 
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(a) Wedge P 

(b) Wedge P and R (c) Rotating wedge R about PR 

Figure 3-12: Generating convex quadrilaterals with two equal opposite acute angles 
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We take a wedge located at a point P and fix the interior angle at 8. We place a point 

R somewhere within this wedge, so that the line P R divides the angle 8 into 81 and 82 as 

shown in Figure 3-12(a). Now we place a wedge of the same angle 8 on point R. If the 

wedge is placed in such away that L.SRP = L.RPQ = 81 and L.QRP = L.SP R = 82, we 

get a parallelogram (shown in Figure 3-12(b». However ifwe keep the wedge at P fixed, 

together with angles 81 and 82 , by keeping point R fixed, and we only rotate the wedge R 

about line P R, we can achieve several convex quadrilaterals with acute angles 8 opposite 

each other. The wedge Rean be rotated anti-clockwise at angles within 0 :::; cp < 82 and 

can be rotated clockwise at angles within -81 < cp :::; 0, where cp is the amount by which 

the wedge is rotated, as can be seen in Figure 3-12(c). 

Figure 3-13(a) shows an example of the transformation of the quadrilateral PQRS 

to the new quadrilateral PQlRSl when the wedge Ris rotated clockwise by an angle cp. 

The corresponding 2-leg routes for each wedge is also illustrated. The 2-leg route W R 

for wedge R of quadrilateral PQRS is (PM + P N), and WR for quadrilateral PQlRSl 

is (PMI + PNl ). The 2-leg route Wp for wedge P remains (RX + RY) even through 

rotation, as can be seen from the figure. Figure 3-13(b) sirnilarly shows the formation 

of the quadrilateral PQlRSl by rotating the wedge R anti-clockwise by angle cP, and its 

corresponding 2-leg routes. 

Now, we can define the path lengths for the wedges at P and R, with respect to the 

angles ()l, ()2 and cp. The path length for wedge P is 

Wp = P R(sin ()l + sin ()2) 
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Figure 3-13: Illustration ofrotating wedge R by angle <p 

and the path length for wedge R is 

W R = P R(sin(el + <p) + sin(e2 - <p)) 

where -el < <p < e2. 
We now define a function of <p that computes the difference between the path lengths 

of wedges P and R: 

P R(sin(el + <p) + sin(e2 - <p) - (sin el + sin e2 )). 

Since the length of diagonal PRis constant for a given quadrilateral, we can take it out, 

so that the function now becomes 

!(<p) = (sin(el + <p) + sin(e2 - <p)) - (sin el + sine2). 
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If (sin el + sin ( 2 ) = x and (cos el - cos ( 2 ) = y, then f (</J) can also be written as 

f( </J) cos </J(sin el + sin ( 2 ) + sin </J( cos el - cos ( 2 ) - (sin el + sin ( 2 ) 

x cos </J + y sin </J - x 

where x and y are constant values as the angles el and e2 are fixed. 

The value of </J is restricted between -el < </J < e2 so that the sides do not pass the 

diagonals during rotation. AIso, if we do not want the sides ta go beyond the perpendicular 

legs RX and RY ofwedge P, the value of </J has to also be restricted within -90 + (el + 

( 2 ) < </J < 90 - (el + (2 ). 

Using different data sets, the graph of this function was plotted to see the forrn of 

the function within the restricted values of </J. A generalized forrn of the function f( </J) is 

shown in Fig 3-14. As it can be seen, the function in this forrn gives a relative maximum. 

This can be easily proved using the second derivative test. Since this is an elementary 

mathematical proof, it is presented in Appendix A for reference, if needed. 
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Figure 3-14: Fonn ofthe function f(cP) 

From Figure 3-14, we can say the following: 

• Wh en cP lies between cP! and cP2 in Figure 3-14, or between cP3 and cP4, then the 

two-Ieg route for wedge R is shorter than that for wedge P. 

• When cP lies between cP2 and cP3, then the two-Ieg route for wedge P is shorter than 

that for wedge R. 

• When cP is equal to cP2 or cP3, only then the two-Ieg route lengths for wedge P and 

wedge R are equal. 

Thus, it can be said that equal acute angle wedges that are opposite each other in convex 

quadrilaterals also do not always give shortest 2-leg routes that are equal in length. <> 
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Now looking at Figure 3-14 we can see at certain points, such as the relative maxi­

mum point of f (cp), the difference between the route 1engths is locally maximum. We used 

this information to create a counterexample for Conjecture 1. 

Taking a data set where the wedges are of angle e = 60°, with el = 45° and e2 = 

15°, we found that the relative maximum occurs at cp = -15. Thus at cp = -15, the 

quadrilateral PQRS is such that routes for wedges P and R are significantly unequal 

ev en though LP = LR. Now we reduce the angle of wedge R by a small amount, e.g. by 

reducing (el - <p) by 2°, so that the angle at wedge R is now 58° instead of 60°. The route 

for wedge P remains the same length, but the route for wedge R consequently reduces in 

length. 

For this particular example, shown in Figure 3-15, the values found for a quadrilateral 

with a diagonal P R = 8.4 cm are as follows. 

When LP = LR at cp = -15 

Wp RX + RY = 8.114 

WR PMi + PNl = 8.4 

When LP > LR at cp = -15 

Wp RX + RY = 8.114 

WR PM' + PNl = 8.144 
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Figure 3-15: Counterexample of Conjecture 1 

Thus even though wedge P is of a larger angle, it gives a shorter route than wedge 

R of smaller angle - a counterexamp1e to Conjecture J. Thus Conjecture J has been 

disproved - smallest angle wedges do not a1ways give the shortest routes. However the 

range of values for which a counterexamp1e exists, and the amount by which the angle of 

a wedge can be reduced for the instance to remain a counterexamp1e, is found to be quite 

narrow in most cases. In Chapter 5, we generate random convex po1ygons to see how 

likely it is to randomly produce convex quadrilaterals that satisfy these conditions to give 

rise to a counterexample to the conjecture. It was found that su ch conditions are usually 

rare in a set of random convex quadrilaterals. 
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We further study the unlimited visibility model on convex polygons in Chapter 5, 

using the random generation of convex polygons of different sizes. Renee, in the next 

section we move on to the discussion of inspecting simple polygons un der the unlimited 

visibiIity model. 

3.2 Simple Polygons 

In this section, we present a brief discussion on the extemal watchman routes for 

simple, not necessarily convex, polygons. It is mostly an expository explanation of such 

routes using the unlimited visibility model; since it was not the focus of our work, no 

proofs or algorithms are given. 

Simple polygons may be of two types - one where a watchman following the convex 

hull of the polygon would be able to see the entire exterior of the polygon, or one where 

it would not. Simple polygons of the former type are called weakly externally visible 

polygons. 

Del A polygon P is defined as being weakly externally visible if each point x on the 

boundary of P is visible from a circ1e at infinity. 

Del A cave is any region between the boundary of a polygon P and the convex hull 

of P, such that there is at least one point in it that is not visible from sorne point on the 

convex hull of P. 

The problem of determining if a polygon is weakly extemally visible was studied in 

[83]. From the above definitions it is apparent that a simple polygon that is no! weakly 

extemally visible has at least one or more caves. For such polygons, following the convex 

hull is not sufficient for extemal inspection. It is necessary for the watchman to enter the 

caves to see aIl the edges in si de it. 
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Figure 3-16: A shortest convex-hull route for a simple polygon 

As mentioned in Section 3.1, an external watchman route would either have to touch 

or cross over the exterior extension of each edge, or enter the region from which the entire 

edge is visible, to ensure seeing the the whole polygon exterior. Again, the two types of 

routes can be either the convex-hull route, which is a c10sed curve enc10sing P, or the 

nonconvex-hull route, which could be an open or c10sed curve that does not contain P. 

Theorem 1 proved that the inner path W of a 2-leg route would be the same as the return 

path R for the shortest external watchman route on a convex polygon. However this is not 

necessarily true for simple polygons. The inner path W might have to enter sorne caves 

to see aIl of the exterior of P, but the return path R could just take the shortest path back, 

which would follow the convex hull of P in those areas. 

In [64] an O(n4
) time solution was given to this problem by converting it to a set of 

internaI problems. An illustration of a solution instance is shown in Figure 3-16. In this 

example, it can be seen that there are two caves in the external boundary of the polygon, 
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and the extemal watchman route has to enter each of these caves to be able to see the entire 

exterior. As shown in the figure, the part of the route that enters these caves contacts the 

extensions of the edges of the polygon that are not weakly extemally visible. 
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CHAPTER4 
External Watchman Routes: The Limited Visibility Model 

4.1 Convex polygons: Route Length as a Function of the Visibility Range 

Although the internaI watchman route problem under limited visibility has been stud-

ied ([63], [5]), no such study has been published to date for the external watchman route 

problem under limited visibility. In this section, we examine the effects of incorporating 

a limited visibility range constraint on the watchman for the problem of inspecting the 

exterior of a convex polygon. 

To study this problem we observed what occurs when the visibility range dis reduced 

from infinity to zero. We can say: 

• When d = 00, the shortest watchman route for a convex polygon Pean be either a 

2-leg route or a convex-hull route (as seen in Chapter 3) . 

• When d ---.. 0 or is near 0, the shortest watchman route would have to be the convex-

hull route, following the boundary very c1osely, to be able to see the entire boundary 

ofP. 

For the polygons where the shortest route is the convex-hull route when d = 00, 

reducing the range d does not have any effect, since the shortest route for aIl values of d 

would be the same. However for those convex polygons where the shortest external route 

is a 2-leg route, a smaller d would affect the length of the route. 
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Figure 4-1: Reducing the visibility range on a shortest 2-1eg route 

From Figure 4-1 we can see the illustration of a convex polygon P with the shortest 

watchman route as a 2-leg route. We signify W(d) as the length of the shortest watchman 

path (the inner path of the 2-leg route) under visibility range d. 

where any of the components - the two legs W 1 and W2 , or the middle body W m, may be 

empty for arbitrary convex polygons. 

Let k be a point on the boundary of P, denoted as 8(P), and let D(k) be the dis­

tance from point k to the closest point on route W that is visible to k. For aU k, let 

l = max{D(k)}, where k E 8(P). Thus, l is the maximum distance of a point k on the 
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boundary of P to the c10sest d-visible point on W. As long as the range d is greater than 

the distance l, the shortest watchman route remains the same as the optimum route under 

the limited visibility model. 

For instance, suppose this longest distance the watchman has to see from the route 

W to the boundary of polygon P, in the case of the polygon in Figure 4-1, is the length 

l2 from point y to vertex p, where l2 > h; this means that as long as the range d ~ l2, the 

shortest external watchman route for P remains W ( (0). 

Now we look at an instance when dis reduced from l2; the path W(d) would have 

to change to adjust to the new visibility range. If d is reduced slightly so that d < l2 and 

the longest distance covered by the visibility range from point p is to the point c in Figure 

4-1, then the perpendicular leg W2 would have to move down to point c, in order to be 

able to see until the vertex p. This means the leg is no longer normal to the extension of 

the edge e7 and is longer than W2 • The more dis reduced, the longer the leg becomes, and 

at a certain value of d the leg absorbs edge e5, so that W m = e3 + e4 + e5 and W2 = ub. 

Similarly, at a certain value of d, edge e6 is also absorbed. If d is reduced even further, the 

path would have to ex tend from vertex v to sorne point a on the edge e7. 

Simultaneous to the changes taking place at the right part of W (d), as seen in Figure 

4-1, the left part of the route would also be similarly altering and adjusting, depending on 

the value of d. At a particular value of d, the path length, 

W(d) = Ij2CH(P) 

where CH(P) is the convex-hulliength. Thus, at this point, the totallength of the 2-leg 

route (which is 2W(d)) and the convex-hull route bec orne equal. We refer to the value of 
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d at this point as the critical value d*. Reducing the value of d further would not change 

the length of W(d) anymore, since the shortest route would be the convex-hull route for 

aIl d < d*. 

Length of the watchman route as a function of the visibility range 

When the shortest external watchman route for a convex polygon P is a 2-leg route 

W un der unlimited visibility, and l is the maximum distance that the watchman has to 

see from the route W to the boundary of P, or l = max{D(k)}, k E 6(P), then we can 

summarize and say that un der d-visibility, if 

• l :S d < 00, the optimal route remains the same 2-leg route. 

• d* < d < l, the optimal route length would depend on a function of d, increasing as 

d decreases. 

• O:S d :S d*, the optimal route length is equal to the convex-hull route. 

This concept has been illustrated in Figure 4-2( a). The shape of the function between 

d* < d < l is investigated in Chapter 5, in the experimental work. 

One question that arises is whether the wedge giving the optimal solution for a poly­

gon P using the unlimited visibility model always provides the optimal solution for aU 

values of d in the limited visibility model. 

To illustrate this, suppose the function f (d) giving the length of each 2-leg route with 

different values of d is plotted for every wedge of a polygon P. If there is a crossover 

of the curve for a wedge that gives a suboptimal route in the unlimited visibility model 

with the curve for the optimal wedge, as shown in the Figure 4-2(b), there may be a value 

d = x at which the suboptimal wedge gives a shorter route than the optimal wedge. This 

question is also investigated in the experimental work in Chapter 5. 
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Figure 4-2: Graph of the route length as a function of the visibility range d 
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4.2 Simple polygons 

It is known that the internaI watchman route problem for simple polygons under lim­

ited visibility is NP-hard [63], and so it can be said that the external watchman route 

problem under limited visibility is also hard (the external problem is at least as hard as the 

internaI one, as described in Chapter 3). Thus we propose an approximate solution for the 

external problem un der a visibility range of d. 

As mentioned in Chapter 3 (Section 3.4), externally inspecting simple polygons un­

der unlimited visibility means categorizing them into polygons that are weakly externally 

visible or not. The shortest route for weakly externally visible polygons would either be 

the convex-hull route or a 2-leg route. The shortest inspection route for a polygon that is 

not weakly externally visible would be one where the route has to enter each of the caves 

of the polygon P to see aIl the edges of P. 

Under limited visibility of range d, however, it is not important if the polygon P is 

weakly externally visible or not, because even if it is, that does not necessarily mean that 

following the convex hull of the polygon would be sufficient to see the entire exterior of 

P. If dis smaIl, then the route might have to enter each concave region of P, even if it is 

a weakly externally visible polygon. 

To construct an external watchman route under d-visibility would require placing 

circular sectors of radius d centered at each reflex vertex of P. The watchman route W 

would have to follow the convex hull between convex vertices and visit each d-radius disk 

at the reflex vertices in the concave regions of P so that the whole exterior is visible from 

W, as shown in Figure 4-3. The shortest route that does this would be the optimal external 

inspection route under d-visibility. 
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Figure 4-3: A shortest convex-hull route for a simple polygon under d-visibility 

This concept is similar to the d-watchman route described in [63] (also refer to Section 

2.2.2) for internaI watchman routes under d-visibility. Using the method described there, 

the solution can be approximated using convex regular k-gons inscribed in the disks of 

radius d. Thus, the approximate solution we propose entails finding the shortest safari 

route that visits the set of regular k-gons at each reflex vertex of P, for each concave 

region. 

Each cave or concave region of P can be considered a polygon itself. Hence the 

shortest external watchman route under limited visibility can be converted to a set of in-

ternal problems under limited visibility [63]. The shortest safari route that visits the set 

of k-gons centered at each reflex vertex can be found for each cave or concave region of 

P. The rest of the polygon is patrolled by simply following the convex-hull route (Figure 

4-3). 
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The shortest safari route problem can be solved in O(mn2
), where the route visits a 

set P' of m convex polygons attached to the boundary of the polygon P and n is the total 

number of vertices in P and P' [63]. Since we have O(n) inscribed convex k-gons for the 

external watchman route problem under d-visibility, and the total number of vertices is kn, 

the complexity of the algorithm should be similar to the O(k 2n3
) time given in [63] for 

internaI d-watchman routes. Similarly, the solution should approach the optimal solution 

as k is increased, since increasing the number of sides of the inscribed polygons better 

approximates the circular sectors of radius d. 
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CHAPTERS 
Experimental Work 

5.1 Generating Convex Polygons 

Generating random geometric objects is often necessary for testing and evaluating 

various computation al geometry and pattern recognition algorithms. The goal is to gener­

ate a wide and diverse collection of test data which would allow the algorithm to perform 

on aIl types of highly probable data. 

For testing the external watchman route under both the unlimited and limited visibility 

models, we required the generation of random convex polygons. However it is difficult to 

find an accepted definition of a random polygon. There even exists no polynomial time 

solution for uniform generation of random simple polygons with n vertices. 

Sorne very simple means to generate convex polygons would be to randomly generate 

a set of points and then to construct their convex hull, or to choose points randomly until 

their convex hull is an n-gon. However these methods are not very random unbiased 

procedures and do not produce a sufficiently wide range of polygonal data to work with. 

The generation of random convex polygons has been investigated in several papers, 

such as [28] where random convex hulls are generated, [88] where a random convex poly-

gon with vertices that are a subset of a given set of n points is generated, and many more. 

However, most of these do not allow specifying the number of sides of the generated poly­

gon. An algorithm presented in [67] does allow this option, but since the algorithm works 
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by randomly choosing an angle for each corner as it goes around the boundary, after the 

selection of the first few angles, the rest are forced to be very close to straight angles. 

We use the algorithm presented in [58] where this feature of specifying n for generat­

ing a random convex n-gon is present. The approach used is to select a random topological 

triangulation of a polygon and to build a convex polygon whose Delaunay triangulation is 

homeomorphic to this. The implementation of this algorithm generates convex n-gons in 

O(n) time [57]. 

Using this implementation of the algorithm [58] to generate random convex polygons 

of n sides aIlows us to experiment with different sizes of polygons and to test how the lim­

ited visibility and unlimited visibility models of the extemal watchman route algorithms 

perform on the generated polygons. We also tested the conjectures made in Section 3.2 

using the random convex polygons generated. The description of these experiments as 

weIl as the results are presented in the foIlowing sections. 

5.2 Evidence for Conjectures of Chapter 3 

In Chapter 3 (Section 3.1.1), we presented a few conjectures on the shortest extemal 

watchman routes on convex polygons and their computation. In this section, we will 

perform experiments on random convex polygons of n vertices, with n starting at 4 (the 

n = 3 case is trivial) to support these conjectures. 

In the previous section, the generation of random convex polygons was discussed. 

We implemented the method described in [58] to pro duce random convex polygons of a 

specified number of n vertices in time O(n). We then implemented the method described 

in Chapter 3 (and [64]) to find the 2-leg route for each pair of adjacent edges of a con­

vex polygon and computed its length. A Java application was written to implement both 
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these procedures. Hence, at each run of the program, the following is performed for the 

unlimited visibility model: 

• A random convex polygon with a specified number of n vertices is generated. 

• The interior angle between each pair of adjacent edges of the generated polygon is 

computed. 

• The length of the shortest 2-leg route for each of these wedges is computed. 

• The length of the shortest convex-hull route is also computed. 

The computation of the individual 2-leg route lengths for a convex polygon allows us to 

compare the lengths of the 2-leg routes for each wedge of a polygon, from a set of random 

convex polygons. Since the set is generated at random, we can see how likely it is that 

the narrowest wedge gives the shortest 2-leg route, thus supporting Conjecture 1, or how 

likely it is that the convex-hull route is the optimal route for convex polygons with no acute 

interior angles, thus supporting Conjecture 2. 

We performed the experiments on polygons of different sizes of n, ranging from 

n = 4 to n = 20. For lower values of n, such as n = 4, after fifteen or more runs, 

the structure of the convex polygons seem to become similar to previous runs, since the 

number of sides is few. And for higher values of n, such as n = 9 and higher, the convex 

polygons generated become more and more fiat or wide, and the results also begin to 

appear similar to previous runs. 

Table 5-1 shows a few samples of the data generated during experimental runs of the 

program. The output data for three sample random convex polygons are given. The first 

column defines the number of sides of the convex polygon for that particular run of the 

experiment and the second column shows the length of the shortest convex-hull route for 
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that polygon. This length gives an idea of the size of the polygon, since it is basically the 

length of the perimeter of the polygon. The third and fourth columns give each interior 

angle of the polygon and the length of the shortest 2-leg route for the corresponding wedge. 

As can be seen, the smaller angles seem to give shorter routes, and the larger the angle, the 

longer the route becomes. The fifth column gives the ratio of the length of the 2-leg route 

for that wedge to the length of the shortest convex-hull route for that polygon. This gives 

an idea of the length of the 2-leg route associated with each polygon wedge relative to the 

convex-hull route for the polygon. Sorne of the figures in the table have been rounded: 

the angle size (given in degrees) to the nearest integer, and the lengths (given in arbitrary 

units of distance measure) to the nearest second decimal place, for c1arity of illustration. 

The three polygons corresponding to the three convex polygons generated in Table 5-1 are 

shown in Figure 5-1. 

Table 5-2 gives sorne of the results found by running the program on convex polygons 

of different n, and comparing the lengths of the routes for each wedge for every polygon 

generated. The experiment was run 50 times for each value of n. The first column of 

the table gives the number of sides specified for the convex polygon during generation. 

The second column gives the average minimum angle over the fifty runs for that specific 

polygon size. This gives an idea whether the minimum angles of the polygons generated 

were acute or not. The third column states the percentage of times, out of the 50 times the 

experiment was run on each value of n, that the convex-hull route proved to be the shortest 

external inspection route for that polygon. And the fourth column specifies the percentage 

of experiments where the shortest route for a convex polygon with n vertices was achieved 

by the 2-leg route corresponding to the wedge with the smallest interior angle. 
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Table 5-1: Sample data generated for the unlimited visibility model 

No. of sides CH-route length Angle sizes 2-leg-route Ratio of 2-leg to 
length for wedge CH-route length 

45 1007.10 0.60 
90 1481.30 0.88 

n=5 1678.31 135 2431.58 1.45 
135 2429.38 1.45 
135 2429.48 1.45 
77 1624.84 0.95 
103 1775.85 1.03 
128 2039.75 1.18 

n=7 1719.60 129 2036.55 1.19 
154 2444.08 1.42 
154 2576.05 1.46 
155 2539.22 1.48 
104 2437.65 1.13 
114 2605.86 1.20 
123 2710.35 1.25 
133 2873.28 1.33 

n=lO 
2159.51 142 3088.55 1.43 

151 3045.44 1.41 
160 3343.04 1.55 
168 3398.29 1.56 
172 3401.07 1.58 
173 3497.50 1.62 
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Figure 5-1: The three convex po1ygons from Table 5-1 
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Table 5-2: Experimental data for the unlimited visibility model 

No. of sides Average Percentage of fUns Percentage of fUns the nar-
minimum CH-route is the rowest wedge gives the 
angle shortest route shortest 2-leg route 

n=4 36 0% 100% 
n=5 45 2% 98% 
n=6 67 4% 96% 
n=7 81 26% 74% 
n=8 87 58% 42% 
n=9 107 100% 0% 
n = 10 113 100% 0% 
n = 15 133 100% 0% 
n = 20 145 100% 0% 

Evidence for Conjecture 1 

In Conjecture 1 (refer to Section 3.1.1) it was proposed that the smallest interior 

angle of a convex polygon corresponds to the wedge that gives the optimal external watch­

man route for that polygon. However in Section 3.1.2, it was shown that it is possible 

to constfUct counterexamples to this conjecture. We use the experimental evidence found 

to evaluate how likely it is that the statement of the conjecture holds in a set of random 

convex polygons. 

From the results displayed in Table 5-2, the likelihood of the convex-hull route being 

the optimal external route for convex polygons can be seen to be very low for smaller 

values of n, while becoming more and more likely as the value of n becomes larger. From 

Table 5-2 it can be noted that for n = 9 and above, the convex-hull route is very likely to 

be the optimal route. 
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From the column in Table 5-2 giving the percentage of experiments where the wedge 

with the smallest angle gave the optimal extemal route, it can be seen that 2-leg routes give 

the optimal route more frequently for sm aller values of n. We observed that the sm aIle st 

interior angle of the polygon always gave the shortest 2-leg route in these cases, and the 

only times it did not was when the smallest angle was greater than 90°. It was observed that 

whenever the smallest angle was greater than 90°, the convex-hull route gave the optimal 

route. 

Hence for the convex polygons of n vertices with the smallest interior angle as an 

acute angle, the shortest extemal route for that polygon tended to be the 2-leg route for the 

wedge corresponding to that smallest angle. Thus even though it was possible to construct 

counterexamples for Conjecture 1 in Section 3.1.1, these exceptions occur only un der 

special circumstances, and only when the difference between the smaller angles of the 

polygon are only a few degrees. For most randomly generated convex polygons though, it 

is safe to say that the smallest acute angle wedge is likely to give a 2-leg route shorter than 

the convex-hull route and aIl other 2-leg routes for that polygon. 

Evidence for Conjecture 2 

The experiments showed that when an interior angle of a convex polygon is greater 

than 90°, the corresponding 2-leg route tends to be longer than the convex-hull route. In 

Conjecture 2 (refer to Section 3.1.1), it was conjectured that aIl convex obtuse polygons 

have convex-hull routes as their shortest extemal watchman route. Convex obtuse poly­

gons are those that have no acute interior angles. 

This conjecture is strongly supported by the experimental evidence. Almost aIl the 

random convex polygons produced, with larger values of n, were convex obtuse polygons. 
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Thus these polygons had no acute angles and it was seen that non-acute angles did not 

tend to produce 2-leg routes shorter than the convex-hull route in the experimental data. 

This can also be seen in the data displayed in Table 5-2. The column giving the number of 

experiments where the convex-huU route was the shortest of aU external routes shows that 

this number gets higher as the polygons tend to become more and more convex obtuse. 

And the shortest convex-hull route turned out to be the best route, shorter than aIl 2-leg 

routes, only when the smallest angle was greater than 90°. 

Thus, according to the experimental evidence, it can be claimed that Conjecture 2 

tends to be true for randomly generated convex polygons: the convex-hull route is likely 

to be the optimal external inspection route for convex polygons with no acute interior 

angles. 

5.3 Limited Visibility Experimental Work and Results 

We performed the experiments described in the previous section using the limited 

visibility model on random convex polygons. Thus in this section, we used an additional 

parameter, the visibility range d, to observe how the length of the 2-leg route for each 

wedge changed with the value of d. The procedure described in Section 4.1 is used to do 

this. 

In Section 4.1, it was mentioned that for the 2-leg route for each wedge under the 

unlimited visibility model, there was a maximum distance 1 that the watchman has to see 

from sorne point along the route (typically from one of the extreme points of the route), to 

be able to see the en tire exterior of the polygon. As long as the visibility range d is greater 

or equal to this maximum distance l, the shortest route corresponding to that particular 

wedge would be its shortest 2-leg route (if the route was shorter than the convex-hull 
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route). Therefore, starting from this value of d = l, and by entering smaller values of d 

at every step, it was possible to observe the increasing length of the 2-leg route of that 

wedge, until at a particular input value of d, the route length becomes equal to or greater 

than the convex-hull route length. In this way, it was possible to find the critical value of 

d, or d* as previously defined in Chapter 4, where the 2-leg route is no longer shorter than 

the convex-hull route for visibility range capacities lower than this. 

An example of this concept is illustrated for a basic quadrilateral that was generated 

by the program, and shown in Figure 5-2. The curve plotted in Figure 5-3 is for the route 

corresponding to the smallest wedge of the quadrilateral, which is 36°. The value of l (the 

maximum distance required to be seen from a point along the route) is computed to be 

602.7 unit distance measures, and the critical value d* is found to be 373.1 units, giving 

rise to the shape of the curve seen in Figure 5-3. 

In Section 4.l it was mentioned that this curve, or the graph of function f(d), can 

be plotted for each wedge of a polygon P, to see if it is possible to get any intersection 

points or crossovers between the different curves for each wedge. If such crossover regions 

were found, it would mean that the wedge giving the optimal 2-leg route in the unlimited 

visibility model does not necessarily provide the optimal solution in the limited visibility 

model for certain values of d. This was previously illustrated in Figure 4-2(b). 
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Figure 5-3: Function f( d) for the convex quadrilateral 
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However, in Section 5.2, it was found that for most random convex polygons, the 

2-leg route for a wedge is shorter than the convex-hull route when the interior angle of that 

wedge is less than 90°. Thus, in other words, the curves of function f (d) need to be plotted 

only for the acute angle wedges of a polygon, in most cases. For wedges with interior angle 

greater than a right-angle, the 2-leg route length was usually found to be greater than the 

convex-hull route length, as can be easily seen in the experimental data given in Table 5-1 

of Section 5.2. Hence the curve of function f(d) for the non-acute wedges of the polygon 

would be the straight line corresponding to the route length W = CH(P), where CH(P) 

is the convex-hulllength of the polygon P. This is because the convex-hull route would 

be the shortest route for aIl values of d for that wedge. Here W is used to denote the whole 

route, including both the inner and retum path of a 2-leg route. 

Now if we concentrate mainly on the function of the visibility range d for only the 

acute interior angles of a convex polygon, it is useful to note that the maximum number 

of acute angles possible for a convex n-gon is 3, for any n ~ 3. This can be easily shown 

using the following argument: 

It is a known mathematical fact that the sum of the exterior angles for any 

polygon of n vertices with n ~ 3 is always equal to 360°. For any acute 

interior angle x of a polygon, x < 90°, and hence the corresponding exterior 

angle y = (180 - x) > 90°. Thus, if there are more than three acute interior 

angles in a convex polygon, the sum of the exterior angles would be > 360° 

(for four exterior angles greater than 90°), which is not possible. Therefore, 

any convex polygon may have at most three acute interior angles. 
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The experirnents with different values of d for acute wedges of randornly generated 

polygons were performed for polygons of varying sizes. One sample convex polygon of n 

vertices with n = 5 is shown in Figure 5-4. Table 5-3 displays sorne of the experirnental 

data for this polygon and each of its wedges, and Figure 5-5 shows the curves of the 

function for the wedges A and B, where A = 45° and B = 88°, for different values of 

d. The other wedges with non-acute angles give 2-leg routes longer than the convex-hull 

route, as can be seen in Table 5-3, and so the convex-hull route is the shortest route for 

these wedges at aIl values of d. This is illustrated by the straight line W = CH (P) in 

Figure 5-5. 

8 .. ,5 •. 0 

C 

~ 
B 710 

Figure 5-4: A convex polygon with n=5 vertices 
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Table 5-3: Route lengths for each wedge of polygon in Figure 5-4 if d = 00 

Wedge Angle size 2-leg route length CH-route length 

A 
B 
C 
D 
E 

Length of route 
W = f(d) 

450 1208.05 
880 1777.46 
1350 2346.22 2013.08 
1370 2615.62 
1350 2348.96 

CH(P) 
=2013.1 1----+-""""'lIIo::::----.l...--...L-----f(d) for 

wedge C, D, E 

WB 
=1777.5 

WA 
=1208.0 

1 
1 

- - - - - -1- - - -1 
~;...-....., _____ f(d) for 

1 
1 

1 1 

wedge B 

______ 1 ____ L ______ I_ ....... + ____ f(d) for 

1 1 wedge A 
1 

1 

~---~I~-~~---------------~d 
d*(A) d*(B) I(B) I(A) 
=511.5 =594.5 =697 =766.7 

Figure 5-5: The route length as a function of the visibility range d for each wedge of the 
polygon in Figure 5-4 
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It can be seen from Figure 5-5 that there are no crossover points between the two 

curves for the wedges A and B. Suppose we are given a watchman or robot with a max­

imum visibility range of d, that has to extemaUy patrol the polygon in Figure 5-4. If we 

take that value of d on the x-axis or the horizontal axis, and then move vertically up till we 

hit a point on one of the curves, that would give us the length of the shortest route for that 

polygon corresponding to that specific visibility range. The curve we hit also indicates the 

wedge which would provide the the optimal 2-leg route for that visibility range d, unless 

we hit the convex-huU route line, in which case the convex-hull route would be the shortest 

route. 

As can be seen in Figure 5-5, in this case the wedge A, which is the narrowest wedge 

for the polygon, gives the optimal route for an values of d ~ d*(A) (the critical value of d 

for wedge A). Below this value of d, the convex-hull route provides the optimal path. 

In aU the mns of the experiment carried out on the limited visibility model, using 

different generated convex polygons of varying sizes, we found no crossover points as 

was illustrated in Figure 4-2(b). Most of the graphs were found to be similar to Figure 

5-5. Hence, we can daim that it is most likely that the wedge that provides the shortest 

2-leg route in the unlimited visibility model also provides the shortest inspection route in 

the limited visibility model, for aU d 2 d*. 
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6.1 Overview 

CHAPTER6 
Discussions and Conclusions 

In this thesis, we have studied the problem of inspecting the exterior of a polygonal 

region using a moving guard or robot. The main goal of the problem is to achieve the 

shortest route for the guard along which the entire external boundary of the polygon is 

visible. We have studied two different models for this problem: the unlimited visibility 

model, in which the guard is assumed to have an infinite visibility range, and the limited 

visibility model, in which the guard can see only as far as a fixed maximum viewing 

distance. Both models assume a panoramic field of view and a priori information on the 

polygon's shape. 

Under the unlimited visibility model, we studied previous work in this area and elab-

orated on and extended the solution. We conjectured that the shortest inspection route for 

a convex polygon could be achieved using the wedge between the pair of adjacent edges 

that has the smallest interior angle. We were able to construct counterexamples to this 

theory. However our experimental work on convex polygons supports the conjecture, as 

long as the sm aIle st angle is acute. We also conjectured that if aIl interior angles of a con-

vex polygon are non-acute, then the shortest route is to simply foIlow the boundary of the 

polygon. This theory has also been strongly supported by the experimental evidence. We 
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also briefly described the external inspection problem for simple polygons under unlimited 

visibility. 

Under the limited visibility model, we studied how the length of the optimal route, 

computed under unlimited visibility, changes with the incorporation of a finite visibility 

range. We conjectured that the polygon wedge providing the optimal solution in the un­

limited visibility model also provides the best solution in the limited visibility model. This 

theory is supported by the experimental work performed on random convex under a vary­

ing visibility range. We also studied the external inspection of a simple polygon un der this 

model, and briefly described an approximate solution to the problem. 

6.2 Conclusions and Future Work 

The shortest external inspection route for a convex polygon may either be the route 

that follows the boundary of the polygon, or it may be a route that spans across the exten­

sions of two adjacent edges of the polygon, as was previously described. We were able to 

disprove the conjecture that the pair of adjacent edges that have the narrowest acute interior 

angle in the polygon provides the shortest inspection of the latter type by the construction 

of a counterexample. However, our experimental results on random convex polygons show 

that this conjecture is often true, since the counterexample arises only under special cir­

cumstances. As such, this would suggest that given a convex polygon, a good solution may 

be found by simply computing the shortest 2-leg route for the narrowest wedge, as long as 

it is an acute interior angle, rather than computing aIl routes and comparing to determine 

the shortest. This may be useful if a short route must be found quickly for each of several 

convex polygonal structures. It may also be the best way to go in cases where adequate 

information of the polygon is not available to determine the optimal external route. 
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We do note, however, that no proper definition of random polygons is currently avail­

able. And the structure of a building or establishment that might require external inspec­

tion is not randomly constructed. Hence, the special case where the conjecture does not 

hold may arise in such structures, and although choosing the 2-leg route of the smallest 

wedge might give a reasonably good solution, it may in such cases not be the best solution. 

We observed that the margin of values of the interior angles for which the counterex­

ample for convex quadrilaterals cornes up is very narrow. It was created by taking two 

equal interior angles opposite each other and rotating one wedge through an angle <p (see 

Section 3.1.2). Only within a certain range of values of <p can one of the wedges be re­

duced by a limited amount to create a quadrilateral where the narrowest wedge does not 

give the shortest 2-1eg route. For future work, it may be interesting to find the exact range 

of <p and the range of values by which the wedge angle can be reduced for it to remain 

a counterexample. This would give a better idea of exactly when the conjecture can be 

expected not to stand. 

One of the drawbacks of the random convex polygon generator used in the experi­

ments was that the angles were not very diverse after a number of iterations, especially for 

polygons with very large number of sides. If the randomness of the interior angles could 

be implemented more effectively during generation, this may provide a set giving more 

diverse results. 

Finally, we conclude with a discussion of a few more possible problems for future 

research related to this topie that we find especially interesting . 

• Different polygon classes: This thesis concentrated to a considerable degree on con­

vex polygons and hence the results are significant for structures such as buildings, 
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the boundaries of establishments in urban or rural settings, and even ship hulls at a 

given depth, which are aIl convex in nature most of the time. However the simple 

polygon case could be further studied for ways of improving the approximation al­

gorithm as weIl as its computation al complexity. Optimal extemal routes for special 

cases such as orthogonal polygons can also be a subject for future research, since 

orthogonal structures are one of the most common in everyday life. 

• External inspection of multiple polygons: The inspection route problem considered 

here has been for the exterior of a single polygon. The problem of extemally inspect­

ing more than one convex, simple or orthogonal polygon under limited visibility is 

an open problem and may be an interesting future research direction. 

• Multi-robot inspection: The basic single-polygon extemal inspection problem us­

ing a single mobile robot with limited visibility can also be extended to consider 

multiple mobile robots. If each robot is equipped with sensors having different visi­

bility ranges, it would be interesting to study the computation of an optimal way of 

utilizing these robots, to coyer sub-routes, that guard the entire extemal boundary. 

• 3D external inspection: A good idea for future work would also be extending the 

problem from planar extemal inspection to 3-dimensional inspection of workspaces. 

This would especially be useful where ground-Ievel inspection is not sufficient. An 

ex ample would be inspections in space or underwater where it is clear 3D-inspection 

capability would be essential. 
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Appendix A 

In Chapter 3 (Section 3.1.2), a function f (</J) was presented, and it was claimed that 

the function has a relative maximum. The proof of this, using the second derivative test, is 

given here. 

Proo!: 

The function f (</J) has been previously defined as 

f( </J) cos </J(sin 81 + sin 82 ) + sin </J( cos 81 - cos 82 ) - (sin 81 + sin 82 ) 

x cos </J + y sin </J - x 

where x = (sin 81 + sin 82 ) and y = (cos 81 - cos 82 ), and x and y are constant values as 

the angles 81 and 82 are fixed. 

The first derivative: l' (</J) = -x sin </J + y cos </J 

The second derivative: 1" (</J) = -x cos </J - y sin </J 

Now, if 1'(</J) = 0, then sin </J/ cos </J = y/x and </J = tan-1(y/x). 

Therefore, 

1" (</J) -x cos(tan-1(y/x)) - y sin(tan-1(y/x)) 

-x(l/ JI + (y/x)2) - y((y/x)/(I/ JI + (Y/X)2)) 

(-x/JI +y2/x2) - (y2/(x(I/Jl +y2/x2)) 

( _x2 / J x2 + y2) - (y2/ J x2 + y2) 
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(_x2 _ y2)jJX2 + y2) 

_JX2 + y2). 

This value of f" (<p) is always 1ess than 0 for aU values of x and y. When l' (<p) = ° and 

f" (<p) < 0, then f( <p) is a function with a relative maximum at <p = tan -1 (y j x), according 

to the second derivative test. 
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Glossary 
of Sorne Key Terrns 

Art Gallery Problem: The problem of fin ding the smallest number of guards 
necessary to coyer a polygon with n vertices. 

Cave: Any region between the boundary of a polygon P and the convex hull of P, 
such that there is at least one point in it that is not visible from sorne point on the 
convex hull of P. 

Convex Hull: The convex hull for an object or a set of objects is the minimal convex 
set containing the given objects. 

Convex Obtuse Polygon: A convex polygon with no acute angles. 

Convex Polygon: A polygon such that if u and v are any two points inside or on 
the boundary of the polygon then the entire line segment uv lies inside or on the 
boundary of the polygon. 

Delaunay Triangulation: The Delaunay triangulation for a set P of points in the 
plane is the triangulation DT(P) of P such that no point in P is inside the 
circumcircle of any triangle in DT(P). 

Diagonal Guard: A guard that can patrol on the straight line connecting non­
adjacent vertices of a polygon. This is sometimes also referred to as a mobile 
guard. 

Edge Extension: The infinite li ne on which the edge of a polygon lies. 

Edge Guard: A guard that may patrol one edge of a polygon. 

Exterior Visibility: Two points in the exterior of an arrangement are considered 
visible if the line segment between them contains only points in the exterior of 
the arrangement. 
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Fixed Watchman Route: The watchman route that is forced though a specified 
starting point. 

Floating Watchman Route: The watchman route that has no starting point specified. 

Floodlight Illumination Problem: The ftoodlight illumination problem asks whether 
there exists a one-to-one placement of n ftoodlights illuminating infinite wedges 
of angles al, .... , an at n locations Pl, .... , Pn in a plane such that a given infi­
nite wedge W of angle T located at point q is completely illuminated by the 
ftoodlights. 

Kernel: The set of aIl points in a polygon that can see every point in the polygon. 

Monotone Polygon: A polygon is monotone with respect to a line if it can be split 
into two polygonal chains such that each chain is monotone with respect to the 
line. 

Orthogonal Polygon: A polygon in which each pair of adjacent edges meets 
orthogonally. 

Point Guard: A guard that can stand at any given point of a polygon. 

Polygon Cover: A collection of subsets of a polygon P if the union of these subsets 
is exactly P. 

Polygon Decomposition: The problem of breaking up polygons into simpler pieces 
(for ex ample , refer to Triangulation). 

Polygon: An ordered sequence of at least three points, VI, V2, ... , Vn , in the plane, 
called vertices, and the n line segments VlV2, V2V3, ..• , Vn-lVn , VnVb called edges. 

Robot Exploration Problem: The problem in which a robot has to construct a 
complete map of an unknown environment using a path that is as short as possible. 

Robot Localization Problem: The problem for a robot determining its location in 
an environment. 

Robot Navigation Problem: Given a robot and specified initial and final locations, 
the task of finding a collision-free path with certain optimization criteria in a real 
environment, which could vary with time or be only partially known. 

Safari Route: The watchman route that has to touch or enter a number of subpoly­
gons inside an enclosing polygon. 
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Simple Polygon: A polygon with the constraint that non-consecutive edges do not 
intersect. 

Spiral Polygon: A simple polygon of which the boundary can be subdivided into a 
chain of reflex vertices, and a chain of convex vertices. 

Star-shaped Polygon: A polygon that contains a kernel from which aH points in the 
polygon can be seen (refer to kernel). 

Traveling Salesman Problem (TSP): The problem of finding the shortest closed path 
that visits every point in a given set. 

Triangulation Graph: A graph that represents a triangulated polygon. Each node of 
the graph corresponds to a specific vertex of the polygon. Each edge of the graph 
corresponds to a specific edge of a triangle in the triangulated polygon. (Also 
refer to Triangulation). 

Triangulation: A triangulation of a polygon is a decomposition or partitioning of 
the polygon into a set of triangles without adding vertices, do ne by chopping the 
polygon with diagonals between non-adjacent vertices. 

Vertex Guard: A guard that can be stationed only at the vertices of a polygon. 

Visibility Graph: A graph of inter-visible locations. Each node or vertex in the 
graph represents a point location, and each edge represents a visible connection 
between them (that is, if two locations can see each other, an edge is drawn 
between them). 

Watchman Route Problem: The problem of finding the shortest route from which 
every point in a polygon can be seen. 

Weakly Externally Visible Polygon: A polygon P such that each point x on the 
boundary of P is visible from a circle at infinity. 

d-visible: When visibility is limited within a maximum range of distance d. 
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