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Abstract
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The success of pre-trained language models (PLMs) in language understanding tasks has at-

tracted attention to these models being applied as building blocks in information retrieval systems.

Indeed, due to the application of these PLMs, the retrieval accuracy has improved considerably

over traditional approaches. This improved retrieval has led to a big boost in the performance of

downstream knowledge-intensive tasks such as question answering (QA). However, the training

methods of these systems still suffer from a number of shortcomings, some being–—reliance on

thousands of aligned question-document pairs, dependence on the output of BM25 retriever to

mine hard-negative examples, multi-stage training, etc. In this thesis, we propose several methods

to address these drawbacks and further improve the underlying systems. Specifically, our contribu-

tions include: (i) a unifying approach of unsupervised pre-training of dense retrievers followed by

supervised finetuning to improve retrieval accuracy, (ii) an end-to-end training approach to jointly

train a system consisting of a language model and a dense retriever for QA tasks, (iii) using frozen

large language models as unsupervised passage re-rankers to improve retrieval accuracy, and (iv)

a simplified yet accurate approach to train a dense retriever without aligned question-document

pairs and without using hard-negative examples. Our proposed approaches are more robust and

have achieved new state-of-the-art results on multiple retrieval and QA benchmarks.
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Résumé

par

Devendra Singh Sachan

Soumis au School of Computer Science, Université McGill

en satisfaction partielle des exigences de la degree of

DOCTOR OF PHILOSOPHY

Le succès des modèles linguistiques pré-entraînés (PLM) dans les tâches de compréhension

du langage a attiré l’attention sur l’application de ces modèles comme éléments de base dans les

systèmes de recherche d’informations. En effet, grâce à l’application de ces PLM, la précision de

la récupération s’est considérablement améliorée par rapport aux approches traditionnelles. Cette

récupération améliorée a conduit à une forte amélioration des performances des tâches en aval à

forte intensité de connaissances, telles que la réponse aux questions. Cependant, les méthodes de

formation de ces systèmes souffrent encore d’un certain nombre de lacunes, certaines étant : la

dépendance à l’égard de milliers de paires question-document alignées, la dépendance à l’égard

du résultat du récupérateur BM25 pour extraire des exemples fortement négatifs, la formation en

plusieurs étapes, etc. Dans cette thèse, nous proposons plusieurs méthodes pour remédier à ces in-

convénients et améliorer davantage les systèmes sous-jacents. Plus précisément, nos contributions

comprennent : (i) une approche unificatrice de pré-entrainement non supervisée des récupérateurs

denses suivie d’un réglage fin supervisé pour améliorer la précision de la récupération, (ii) une

approche d’entrainement de bout en bout pour former conjointement un système composé d’un

modèle de langage et d’un récupérateur dense pour les tâches d’assurance qualité, (iii) utiliser de

grands modèles de langage figés comme reclasseurs de passages non supervisés pour améliorer la

précision de la récupération, et (iv) une approche simplifiée mais précise pour former un récupéra-

teur dense sans paires question-document alignées et sans utiliser d’exemples strictement négatifs.
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Les approches proposées sont plus robustes et ont permis d’obtenir de nouveaux résultats de pointe

sur plusieurs tests de récupération d’information et de question-réponse.
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Contribution to Original Knowledge

This thesis makes several contributions toward improving passage rankings in open-domain re-

trieval tasks and improving the accuracy of question answering (QA) models. Our proposed ap-

proaches include better training mechanisms for dense retrievers, end-to-end training of QA mod-

els, and leveraging large language models to improve passage retrieval. Specifically, we make the

following contributions:

(i) To train dense retrievers, we propose a unified approach of unsupervised pre-training fol-

lowed by supervised finetuning. We explore two pre-training strategies and show that they

impart substantial gains in zero-shot retrieval accuracy over masked language models which

aids the finetuning process leading to improved overall results (Chapter 3).

(ii) We propose an end-to-end training method, EMDR2 to jointly train a reader and retriever

pipeline for the task of open-domain question answering. EMDR2 trains the network in

a single training cycle and requires just question-answer pairs without the requirement of

intermediate document annotations (Chapter 4).

(iii) We introduce an unsupervised re-ranking approach, UPR, which leverages large language

models as a black box to improve the rankings of a document list from a first-stage retriever.

We conduct extensive experiments across diverse retrievers, language models, and datasets

to empirically quantify UPR’s performance (Chapter 5).

(iv) We propose ART, a denoising approach to train dense retrievers by distilling question recon-

struction feedback from large language models. ART requires only questions and unaligned
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document collections during the training step eliminating the requirement of hard-negative

examples. We compare ART’s performance against prior supervised and unsupervised re-

trieval models and also perform extensive ablation studies to understand its training process

(Chapter 6).
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Contribution of Authors

• Chapter 1 provides an introduction to the thesis contributions and Chapter 2 contains the

technical background for the thesis. Both these chapters were written by me, and are loosely

inspired by the thesis of Ryan Lowe.

• Chapter 3 is based on Sachan et al. (2021a), which is a paper published at the conference

of the Association for Computational Linguistics (ACL) 2021. I came up with the original

idea of pre-training retrievers, implemented all the approaches, performed model training,

designed experiments, conducted the evaluation runs, and wrote the first version of the paper.

Mostofa Patwary and Mohammad Shoeybi were the other core contributors who helped in

idea brainstorming, planning, technical supervision, debugging code, and were involved in

paper writing. Neel Kant helped in implementing an early version of the inverse cloze task

training and the functionality to embed documents. Wei Ping assisted in paper writing and

contributed to the experimental plan. William Hamilton and Bryan Catanzaro provided the

overall technical supervision, set up the research direction, and contributed to paper writing.

• Chapter 4 is based on Sachan et al. (2021b), which is a paper published at the conference

Neural Information Processing Systems (NeurIPS) 2021. I conceived the idea of end-to-

end training of a retrieval-augmented system, implemented the EMDR2 approach, and per-

formed the experiments. Dani Yogatama was involved in every other aspect of the project,

contributed to brainstorming, technical guidance, and project facilitation. Chris Dyer pro-

vided the overall technical supervision, contributed to idea refinement, and formulated the

expectation-maximization interpretation of the end-to-end training. I, Dani, and Chris wrote
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most of the paper. William Hamilton contributed to the idea formulation and both William

and Siva Reddy were involved in writing the paper.

• Chapter 5 is based on Sachan et al. (2022), which is a paper published at the Empirical

Methods in Natural Language Processing (EMNLP) 2022 conference. I implemented the

underlying re-ranking approach, conceptualized and conducted the experiments, and was

involved in writing the paper. Mike Lewis suggested the idea of zero-shot question genera-

tion, helped in implementation, code debugging, planning, execution, and writing the paper.

Wen-tau Yih contributed to the experimental methodology, discussions, writing the paper,

and drawing analogies with related approaches in statistical language modeling literature.

Mandar Joshi contributed to the writing of the paper and Armen Aghajanyan helped in code

debugging. Joelle Pineau contributed to the technical supervision, experimental plan, and

writing the paper. Luke Zettlemoyer was involved in project initiation, overall supervision,

discussions, designing experiments, and contributed to writing the paper.

• Chapter 6 is based on Sachan et al. (2023), which is a journal paper published in the Trans-

actions of the Association for Computational Linguistics, Vol. 11, 2023. It was presented at

the Association for Computational Linguistics (ACL) 2023 conference. I proposed the ART
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volved in paper writing. Mike Lewis came up with the idea of distilling question generation

scores from the language model to the retriever, contributed to experiments, code debug-

ging, and helped in writing the paper. Dani Yogatama contributed to the idea refinement,

autoencoding interpretation of the underlying training process, and writing the paper. Luke

Zettlemoyer contributed to the experimental design and was involved in writing the paper.
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Chapter 1

Introduction

Textual information needs, such as seeking answers to information-seeking questions, are funda-

mental to our modern human society and hence tools or services that serve these needs are of

critical importance. As digital data especially text becomes rapidly available online, it presents

an attractive opportunity to provide answers to these questions by automated approaches. Indeed,

services such as search engines offer this functionality and as a result, their application has become

ubiquitous in our daily lives.

Central to the functionality of search engines are information retrieval algorithms. These re-

trieval algorithms are designed such that they are fast and accurate which allows them to search

over large text collections and then return relevant documents. Often, top-ranked results are pro-

cessed by an answer extraction module to produce short text snippets as the answer to the question.

More formally, in the ad-hoc retrieval setting, given a question, the task is to retrieve a ranked list

of relevant documents from a large collection of documents such as web pages. This is a challeng-

ing task because the queries are often imprecise and there can be millions of candidate documents.

For a rich user experience, it is crucial to return the most relevant documents which in turn would

also lead to producing the correct final answer.

Given the critical importance of ad-hoc retrieval methods in serving information-seeking queries,

a lot of progress has been made in the sub-fields of information retrieval and question answering
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(QA). Numerous approaches have been proposed over the course of the last few decades with the

recent excitement being centered around pre-trained language models (PLMs) (Manning et al.,

2008; Chen, 2018; Zhu et al., 2023). Despite impressive progress, prevailing algorithms still suffer

from several limitations such as being dependent on thousands of annotated examples and com-

plicated training processes. Addressing these limitations to improve the performance of retrieval

systems lies at the core of this thesis. In the following sections, we first cover the traditional meth-

ods for information retrieval including QA and their evolution towards PLM-based methods (§1.1).

Then, we expand on the limitations of the prevailing models (§1.2) following which we provide a

preview of our research contributions that are included in this thesis (§1.3).

1.1 Setting the Stage

Early successful approaches for information retrieval represented documents using bag-of-word

features where each entry denoted the occurrence of a key-term in the document. It was found

that a more useful feature representation of a document is the product of its term frequency and

inverse document frequency (tf-idf; Sparck Jones, 1988). These led to the vector space models for

text, where the documents were ranked based on their cosine similarity with the query (Manning

et al., 2008). Subsequent approaches such as Okapi BM25 additionally incorporated document

lengths into the tf-idf ranking function which led to a better estimation of document relevance to a

query (Robertson and Zaragoza, 2009).

Although BM25 has been very popular, it tends to fail on semantic matches, i.e., it ignores

relevant documents which do not have term overlap with the queries. To circumvent the problems

arising due to reliance on lexical matching, approaches were proposed to represent documents as

a collection of semantic topics (Deerwester et al., 1990; Wei and Croft, 2006). Another popular

class of approaches for ad-hoc retrieval were based on the learning to rank framework that trained

classifiers according to pairwise or listwise ranking losses given queries, documents, and relevance

judgments as the training data (Burges, 2010).
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While methods like BM25 and learning to rank helped to propel the field forward they were

based on leveraging hand-crafted features. An alternative direction is to devise objectives to au-

tomatically learn input features from textual data. This was pioneered by neural network models

that were trained to learn distributed word representations which is also known as word embed-

dings (Collobert et al., 2011; Mikolov et al., 2013). In the embedding space, semantically similar

words lie closer to each other and vice versa. Word embedding approaches were also extended to

learn embedding representations at the document level (Le and Mikolov, 2014; Dai et al., 2015).

Document embeddings are useful as representing both the query and document with embeddings

has been shown to lead to faster retrieval on compute accelerators (Johnson et al., 2021).

Building over word embeddings, the next series of approaches considered the sequential order-

ing of words in the text. Representative approaches of this kind to process sequences include recur-

rent neural networks such as LSTM networks (Melis et al., 2018; Merity et al., 2018), convolutional

neural networks (Kim, 2014; Johnson and Zhang, 2015), and self-attentional models (Parikh et al.,

2016; Vaswani et al., 2017). In parallel, there were also efforts to extend these sequential models

of text for the question answering tasks (Lee et al., 2017; Chen et al., 2017).

Over the last few years, language models consisting of neural networks when trained using

lots of data have brought significant advances in the natural language processing (NLP) field.

These models when pre-trained using self-supervised learning objectives such as masked token

prediction or next token prediction leads to improved text representations. Prototypical examples

of these models include BERT (Devlin et al., 2019) and GPT (Radford et al., 2019). Often referred

to as pre-trained language models (PLMs), they provide a powerful foundational or set of base

weights that can be finetuned to improve performance on language understanding and generation

tasks sometimes even rivaling human performance (Brown et al., 2020; Chowdhery et al., 2022).

Of particular importance is the fact that these PLMs can be assembled to provide useful mod-

ules that can be adapted for ad-hoc retrieval tasks. In the following sections, we describe how these

PLMs have led to the emergence of modern retrievers and associated retrieval-augmented systems

that in turn have shaped the contributions presented in this thesis.
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1.2 Focus of this Thesis

This thesis focuses on building systems that can accurately answer information-seeking questions

with the help of textual documents. Designing such a system naturally decomposes itself into two

sub-tasks of open-domain retrieval and question answering (QA). In open-domain retrieval, the

goal is to select a small subset of relevant documents from a large array of text data while in open-

domain question answering, the task is to read these retrieved documents to answer the question.

It is worth mentioning that for a system to achieve good performance, it requires both the retrieval

and the QA models to be accurate.

Due to the importance of these tasks in both research and practical applications, they have been

extensively studied and thus have a rich history in the NLP field (§1.1). In late 2018, the success

of pre-trained language models (PLMs) in language understanding tasks motivated researchers to

apply PLMs as building blocks in retrieval and QA models. Subsequently, these efforts led to

PLMs forming the backbone of modern retrieval and QA approaches. In the following paragraphs,

we elucidate the key ideas that led to advances in these tasks post the introduction of PLMs while

also highlighting the limitations associated with them. Finally, based on these limitations, we

outline the research questions that we delve into in this thesis (§1.2.3).

1.2.1 Open-Domain Retrieval

In open-domain retrieval, given a question, the task is to retrieve a set of relevant documents from

a large collection of documents. This is a challenging task because the queries are often imprecise

and search space typically consists of millions of candidate documents. Directly leveraging PLMs

such as BERT for retrieval presents an appealing option because they can be used to represent

both queries and evidence documents in a latent (or dense) embedding space. However, due to the

rather poor discriminative ability of BERT representations, they have been shown to underperform

traditional methods in large-scale retrieval tasks.

A successful recipe to improve document retrieval has been to adapt the PLM weights by fine-
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tuning them on examples consisting of positive (and negative) question-document pairs. In this

method, a dense retriever which is generally modeled according to a dual-encoder network (Brom-

ley et al., 1994), is first initialized with BERT weights. Then, the retriever is finetuned using

contrastive training to maximize the similarity score of the positive question-document pairs (Lee

et al., 2019). Incorporating additional tricks such as using in-batch negative examples and hard-

negative examples during training further improves the retrieval accuracy (Karpukhin et al., 2020).

This training process has resulted in dense retrievers obtaining an improvement in document rank-

ings compared to BM25 on benchmark datasets.

The approach of finetuning a PLM to train dense retrievers has been instrumental in accelerat-

ing the progress in open-domain retrieval tasks. However, it is unclear if initializing the retriever

with the PLM weights (such as BERT) is an optimal strategy or not as by default BERT achieves a

very low recall in text ranking tasks. This is also reflected in the training objective of BERT where

it is required to predict the masked tokens among all the tokens in the vocabulary. This presents

a very different learning challenge as compared to the retrieval task, where the model needs to

distinguish the correct document against a large number of candidates. Consequently, we argue

that using the PLM weights to initialize retrievers is a rather suboptimal choice. In this thesis, we

systematically study the question of how to best initialize the retriever weights in order to improve

the overall effectiveness of the finetuning step.

Finetuning-based approaches to train retrievers are dependent on the availability of labeled

training examples, i.e., positive question and document pairs. Specifically, to obtain peak perfor-

mance, these retrieval models require thousands of human-annotated question and document pairs

for training, which is expensive as well as time-consuming to obtain thus limiting their rapid adop-

tion. Furthermore, retrieval models tend to have poor generalization properties and as a result,

separate models need to be trained for each dataset (Thakur et al., 2021). In order to address these

bottlenecks, it is desirable to have a robust approach that does not require any kind of training data

or finetuning step and yet improves document rankings. To this end, in this thesis, we propose

an unsupervised re-ranking method that only requires performing inference over large language
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models without any finetuning.

Although our approach of using large language models as a re-ranker has been effective (Sachan

et al., 2022), we found it to suffer from two main limitations. First, performing inference using

large language models can be expensive. Second, the maximum accuracy of the re-ranker is depen-

dent on the first-stage retriever. An ideal solution to these limitations should also be unsupervised

in spirit, i.e., it should not require either positive question-document pairs or hard-negative exam-

ples. This leads to our next contribution, in which we present a zero-shot approach to distill the

retrieval knowledge contained in large language models into dense retrievers.

1.2.2 Open-Domain Question Answering

The task of open-domain question answering requires reading retrieved documents to output the

correct answer. Reader models based on PLMs can be broadly categorized as either extractive or

generative. Extractive readers such as the ones based on BERT identify a text span from one of

the documents to output an answer (Devlin et al., 2019). They are trained to predict the highest

scoring start and end answer tokens in a document (Alberti et al., 2019).

On the other hand, generative readers generate answer tokens autoregressively conditioned on

the question and retrieved documents (Raffel et al., 2020). These models are typically based on

PLMs consisting of encoder-decoder architecture, in which the decoder attends to the question and

document representations from the encoder to produce an answer (Lewis et al., 2020c). Jointly

attending to independently computed document representations has been shown to benefit answer

generation (Izacard and Grave, 2021b). In combination with better retrieval, generative retrieval-

augmented models have led to an overall improvement in producing correct answers and thus have

been the method of choice for the question answering task.

Although the above methods have been successful, these models need to be trained in two

separate stages via a pipelined approach making the training and inference process complicated.

Training the retriever is prone to the challenges of obtaining positive documents and hard-negative

examples. Furthermore, as a result of the pipelined nature of the system, erroneous signals prop-
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agate from the retriever to the reader without the possibility of self-error correction. To address

these limitations, we propose a novel training paradigm for retriever-augmented models that facil-

itates the end-to-end training of both the reader and retriever networks, requiring no intermediate

document annotations.

1.2.3 Research Questions

Based on the above discussion, we outline the specific research questions that we investigate in

this thesis:

• What is the optimal strategy to initialize the parameters of dense retrievers so that finetuning

using supervised datasets results in a better performance? (Chapter 3)

• How to jointly train a system consisting of reader and retriever networks for the task of

open-domain question answering? (Chapter 4)

• How can we improve passage rankings obtained from a first-stage retriever without using

any training data or finetuning any model? (Chapter 5)

• How can we remove the dependency on aligned question-passage data to train dense retriev-

ers? (Chapter 6)

1.3 Preview of Contributions and Results

At its core, this thesis contains four contributions in which we seek to further probe the above-

mentioned research questions. These contributions include several approaches: a pre-train then

finetune pipeline to train dense retrievers, an end-to-end training framework for retrieval-augmented

models, an unsupervised approach to improve document rankings, and a method to train dense

retrievers using unpaired question-document pairs. In the following paragraphs, we provide a pre-

view of our research contributions alongside key results.
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In Chapter 3, we focus on improving the training process of dense retrievers. We propose

a unified approach of unsupervised pre-training of retriever parameters followed by supervised

finetuning. For unsupervised pre-training, we explore two tasks that are based on using large-

scale textual datasets such as Wikipedia. In the first task, we consider a sentence as the query

and train the retriever to predict the neighboring context paragraph. In the second task, we pre-

train the retriever by predicting the masked salient entities in a sentence using a language model

conditioned on retrieved documents. Such pre-training results in drastic improvements in zero-

shot recall when evaluated on popular question answering datasets. When the retriever is adapted

to retrieval tasks by supervised finetuning using question-document pairs, we obtain state-of-the-

art results in retrieval accuracy.

In Chapter 4, we present an end-to-end differentiable training method for retrieval-augmented

question answering systems that combine information from multiple retrieved documents when

generating answers. We model retrieval decisions as latent variables over sets of relevant docu-

ments. Since marginalizing over sets of retrieved documents is computationally hard, we approx-

imate this using an expectation-maximization algorithm. We iteratively estimate the value of our

latent variable (the set of relevant documents for a given question) and then use this estimate to

update the retriever and reader parameters. We hypothesize that such end-to-end training allows

training signals to flow to the reader and then to the retriever better than performing stage-wise

training. This results in a retriever that is able to select more relevant documents for a question

and a reader that is trained on more accurate documents to generate an answer. We evaluate our

proposed training method on three benchmark datasets for open-domain question answering and

show that it leads to new state-of-the-art results.

In Chapter 5, we propose an unsupervised re-ranking method for improving passage retrieval

in open question answering. The re-ranker re-scores retrieved passages with a zero-shot question

generation model, which uses a pre-trained language model to compute the probability of the input

question conditioned on a retrieved passage. This approach can be applied on top of any retrieval

method (e.g., neural or keyword-based), does not require any domain- or task-specific training,
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and provides rich cross-attention between query and passage (i.e., it must explain every token in

the question). When evaluated on a number of retrieval datasets, our re-ranker improves both

unsupervised and supervised retrievers.

In Chapter 6, we introduce a new corpus-level autoencoding approach called ART for training

dense retrieval models that does not require any labeled training data. Dense retrieval is a central

challenge for open-domain tasks, where state-of-the-art methods typically require large supervised

datasets with custom hard-negative mining and denoising of positive examples. ART, in contrast,

only requires access to unpaired inputs and outputs (e.g., questions and potential answer passages).

It uses a new passage-retrieval autoencoding scheme, where (1) an input question is used to retrieve

a set of evidence passages, and (2) the passages are then used to compute the probability of recon-

structing the original question. Training for retrieval based on question reconstruction enables

effective unsupervised learning of both the passage and question encoders. In our extensive exper-

iments, we demonstrate that ART obtains state-of-the-art results on multiple question answering

retrieval benchmarks with only generic initialization from a pre-trained language model.

In order to better understand the above contributions, we also present technical background in

Chapter 2. Finally, in Chapter 7, we summarize our key contributions and results including the

impact of our work within the field. We also highlight limitations arising as a result of specific

choices that were made in these contributions. We conclude by proposing several future research

directions on how to make retrieval systems efficient, widely applicable, and integrate additional

capabilities.
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Chapter 2

Background

In this chapter, we present a technical background that is tailored according to the contributions

presented in this thesis. First, we cover language models (§2.1), followed by a description of

recurrent neural networks (§2.2) and transformer architectures (§2.3), and pre-trained language

models (§2.4). We then introduce traditional retrievers and common evaluation metrics used in

information retrieval (§2.5).

2.1 Language Models

2.1.1 N-gram Language Model

The task of autoregressive or forward language modeling consists of predicting the next word con-

ditioned on the previous sequence of words. In n-gram language modeling, n− 1 previous words

are used to predict the next word (Shannon, 1948). N-gram language models are probabilistic

models where a large text corpus is used to estimate the prediction values by applying the principle

of maximum likelihood estimation (Manning and Schütze, 1999). This translates to estimating the

empirical probability of the sequence with n words which requires calculating its frequency in the

corpus. These counts are then normalized to ensure a valid probability distribution.

N-gram language models were successfully applied to tasks like speech recognition (Jelinek
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et al., 1990), grammatical error correction (Bergsma et al., 2009), and grouping data into word

clusters (Brown et al., 1992). These word clusters were very useful in improving the performance

on end tasks such as named entity tagging (Miller et al., 2004). Reliable estimations can be ob-

tained by using a higher order n-gram conditioning, but it exponentially increases the number of

parameters to be estimated, an issue that is further compounded by data sparsity. Techniques such

as linear interpolation and data smoothing have been proposed to minimize the impact of data

sparsity (Church and Gale, 1991; Kneser and Ney, 1995).

2.1.2 Neural Network Language Model

Neural network language models (NNLMs) predict the next word based on a parametric probability

distribution function, which typically consists of a word embedding layer, multiple hidden layers

with non-linear activation, and a word prediction layer (Bengio et al., 2000). The word embedding

layer represents each word of the vocabulary using a learnable vector, which is also known as “dis-

tributed representation of words”. The whole network is trained using backpropagation (Rumelhart

et al., 1988) by minimizing the next word prediction loss and teacher-forcing (Williams and Zipser,

1989). To condition the prediction of the next word on the previous words, concatenating the pre-

vious word embeddings was found to be an effective approach. Representing words using word

embeddings also helps to alleviate the data sparsity issue of the n-gram language models.

NNLMs were also proposed to learn a good embedding representation of words. Collobert

and Weston (2008) pre-train the parameters of a neural network model by predicting if the middle

word in a text segment is related to the context words or not. This training revealed that in the

embedding space, semantically similar words lie closer to each other. Further finetuning the model

in a multi-task training setup by sharing the embedding parameters led to better performance on

downstream tasks. Later, it was shown by Mikolov et al. (2013) that high-quality embedding

representations can also be learned by training simple log-linear models (Ratnaparkhi, 1996) to

predict the surrounding (context) words conditioned on a (current) word.

Building over word embeddings, powerful neural network architectures for processing sequen-
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tial data such as LSTM (Hochreiter and Schmidhuber, 1997; Greff et al., 2017) and self-attentional

transformer models (Vaswani et al., 2017) have been proposed. These networks have led to a lot

of progress both in language modeling (Melis et al., 2018; Dai et al., 2019) as well as end tasks in

NLP (Wu et al., 2016; Peters et al., 2018; Shaw et al., 2018). In the following sections, we present

details of LSTM and transformer networks.

2.2 Recurrent Neural Network

Recurrent neural networks (Werbos, 1988) such as LSTM (Hochreiter and Schmidhuber, 1997)

have been widely used because they can model the long-range dependencies present in the lan-

guage structure with their memory cells and explicit gating mechanism.

The dynamics of an LSTM cell are controlled by an input vector (xt), a forget gate (ft), an

input gate (it), an output gate (ot), a cell state (ct), and a hidden state (ht), which are computed as:

it = σ(Wi ∗ [ht−1,xt] + bi)

ft = σ(Wf ∗ [ht−1,xt] + bf )

ot = σ(Wo ∗ [ht−1,xt] + bo)

gt = tanh(Wg ∗ [ht−1,xt] + bg)

ct = ft ⊙ ct−1 + it ⊙ gt

ht = ot ⊙ tanh(ct),

where ct−1 and ht−1 are the cell state and hidden state, respectively, from the previous time step,

σ is the sigmoid function ( 1
1+e−x ), tanh is the hyperbolic tangent function ( e

x−e−x

ex+e−x ), ⊙ denotes

element-wise multiplication, and W∗ are trainable weight parameters. The hidden state ht is

passed as input to the subsequent layers for further processing. The recurrence is inherent in the

LSTM as the computation for the next timestep is dependent on the cell state and hidden state of

the previous timestep. The parameters of the LSTM are shared for all the time steps.
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Another popular variant of the LSTM is the bidirectional LSTM network where the sequence

encoder consists of a forward LSTM and a backward LSTM (Schuster and Paliwal, 1997). The

input to the backward LSTM cell is the reversed order of words in the sequence. When applied

to end tasks, the input to the LSTM typically consists of the word embeddings and character-level

features. These LSTM networks have been successfully applied to a wide range of NLP tasks such

as text classification (Dai and Le, 2015; Johnson and Zhang, 2016), information extraction (Ma

and Hovy, 2016; Zhang et al., 2017), and machine translation (Luong et al., 2015; Johnson et al.,

2017).

2.3 Transformer Network

The transformer network was originally proposed for the task of machine translation (Vaswani

et al., 2017). It avoided having recurrent layers for sequence processing in favor of attention

modules that can process the sequence in parallel. Since their inception, transformer models have

enjoyed wide popularity in a range of NLP tasks and have acted as a catalyst to the current large

language model revolution.

The transformer model consists of an embedding layer, multiple encoder-decoder layers, and

an output layer to generate tokens. Each encoder layer consists of two sublayers: self-attention

and feed-forward networks. Each decoder layer consists of three sublayers: masked self-attention,

encoder-decoder attention, and feed-forward networks. These layers primarily consist of different

trainable weights to compute affine transformations of their inputs. Given input sequences to

the encoder and decoder, first, an embedding layer obtains their word vectors. To capture the

relative ordering of words in the input sequence, fixed position encodings are added to the word

embeddings.

The first sublayer of the encoder performs multi-head self-attention. For the single-head case,

let the input to the sublayer be x = (x1, . . . ,xT) and the output be z = (z1, . . . ,zT), where

xi, zi ∈ Rd. The input is linearly transformed to obtain key (ki), value (vi), and query (qi) vectors
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as

ki = xiWK,vi = xiWV, qi = xiWQ.

In the next step, similarity scores are computed by performing a scaled dot-product between the

query and key vectors

eij =
1√
d
qik

T
j .

Attention coefficients are then computed by applying softmax over these similarity values

αij =
exp eij∑T
l=1 exp eil

.

Self-attention output (zi) is computed by the weighted combination of attention weights with value

vectors as

zi = (
T∑

j=1

αijvj)WF.

In the above equations, WK,WV,WQ,WF ∈ Rd×d are trainable parameters. Single-head at-

tention can be extended to multi-head attention by chunking the key, value, and query vectors,

and performing the attention computation in parallel for each of them followed by concatenat-

ing them. The second sublayer consists of a two-layer feed-forward network (FFN) with ReLU

activation (Glorot et al., 2011).

FFN(zi) = max(0, ziWL1 + b1)WL2 + b2,

where WL1 ∈ Rd×dh , WL2 ∈ Rdh×d, b1 and b2 are biases, and dh is the hidden size. The FFN

sublayer outputs are subsequently given as input to the next layer.

The transformer decoder layer consists of three sublayers. The first sublayer, similar to the
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encoder, performs self-attention where masks are used to prevent positions from attending to future

positions. The second sublayer performs encoder-decoder attention where the query vector is from

the decoder layer while the key and value vectors are from the encoder’s last layer. The third

sublayer consists of a feed-forward network. To generate predictions for the next word, there

is a linear layer on top of the decoder layer. Residual connections (He et al., 2016) and layer

normalization (Ba et al., 2016) are applied on each sublayer for better training.

2.4 Pre-trained Language Models

From 2018 onwards, pre-trained language models (PLMs) have brought a revolution in the NLP

field as they have led to consistent performance improvements on a number of end tasks (Howard

and Ruder, 2018; Peters et al., 2018; Devlin et al., 2019; Brown et al., 2020). The pre-training

process essentially involves training a transformer network using massive amounts of text data

by optimizing self-supervised loss functions (Devlin et al., 2019; Lewis et al., 2020b; Radford

et al., 2018). Axis of variations among PLMs include the type of self-supervised objective used

for training and the model itself — either the transformer encoder, decoder, or both. After pre-

training, these weights are directly finetuned using training examples for a particular task (such as

entailment, reading comprehension, etc.) or are used as building blocks for more complex modules

(such as dual-encoders).

In the following sections, we provide more details covering different aspects of PLMs tailored

according to the contributions presented in this thesis.

2.4.1 Bidirectional Transformer Encoder Pre-training

BERT (Devlin et al., 2019) proposes to pre-train the parameters of the transformer encoder fol-

lowing the setup of the Cloze task (Taylor, 1953). The guiding principle behind BERT training is

that it should be able to leverage the bidirectional context information that is essential to perform

reasoning in tasks such as question answering. In addition, as many tasks also require reasoning
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over two text segments such as textual entailment and coreference resolution, it is important to

model the coherence relationship between pairs of text. Keeping this into consideration, BERT’s

training objective consists of masked language modeling and the next sentence prediction tasks.

In the masked language modeling task, a small fraction of tokens in the input text sequence

is replaced by special “masked tokens”. Then, the model is trained to predict the original tokens

by conditioning on the remaining tokens in the sequence. This conditioning enables the model to

use bidirectional context around the masked tokens during the pre-training process resulting in a

powerful set of pre-trained weights. As the masked tokens are not present during the finetuning

step, there is a chance of input distribution mismatch during the pre-training and finetuning steps.

To reduce this mismatch, a small fraction of the masked tokens are replaced with random tokens

sampled from the vocabulary, and some of the predicted tokens are also not masked.

In the next sentence prediction task, the model is fed with two sentences as the input and is

required to predict if the second sentence is a continuation of the first sentence or not. The training

data for this task is created in a balanced proportion with two potential target labels, i.e., that of

the next sentence being a continuation of the first sentence or being a random sentence from the

training corpus. Binary cross-entropy loss is applied in order to train the model for this task.

2.4.2 Variants of BERT

Transformer encoder when finetuned after pre-training according to the BERT objective has shown

impressive results across a variety of language understanding tasks (Wang et al., 2019a) and thus

has been widely adopted. However, a potential drawback of BERT is that it under-utilizes its

training data as the masked language modeling objective masks just 15% of the tokens in the input

sequence and thus seems inefficient. Therefore, to improve upon the data efficiency of BERT, Yang

et al. (2019) proposed XLNet that trains the model on all valid permutations arising from the

factorization order of the input sequence tokens. Being an autoregressive model, XLNet also

avoided the pre-training finetuning discrepancy of BERT.

Clark et al. (2020b) demonstrated that pre-training of the transformer encoder can be made
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more data-efficient by first corrupting a sequence of tokens and then training the model to dis-

criminate if a token in the corrupted sequence is original or corrupted. This objective was found

to outperform original BERT training, especially at smaller model sizes. Furthermore, in their

study, Liu et al. (2019) remarked that the next sentence prediction task may not be critical to

achieving good performance as it can have adverse effects on the learning process. Instead, other

factors such as scaling up the training process to use larger batch sizes and training data are more

important. Finally, it was shown by Lan et al. (2020) that parameter sharing among transformer

layers during pre-training tends to have a regularization effect leading to gains in performance.

2.4.3 Generative Pre-training of Transformers

Another approach is to train the transformer decoder using the forward language modeling objec-

tive, which is also known as generative pre-training (GPT). When training a large multi-billion

parameter decoder using textual data consisting of billions of tokens, the GPT series of mod-

els (Brown et al., 2020; Chowdhery et al., 2022) have shown strong zero-shot and few-shot per-

formance on NLP tasks. An appealing property of these GPT models is that they can be adapted

to any task by providing task-specific instructions along with a few examples avoiding the need to

perform finetuning of parameters.

Encoder-decoder pre-training: These approaches include text-to-text transformers (T5; Raffel

et al., 2020) which pre-trains both the transformer encoder and decoder. In T5, spans of tokens

are first replaced by sentinel tokens and are given as input to the encoder. The decoder is trained

to autoregressively generate the original text spans by attending to the encoded sequence. Models

trained at scale have been shown to perform quite well on generative tasks such as summarization

and closed-book question answering (Roberts et al., 2020).

Instruction-tuned language models: This involves finetuning a pre-trained (generative) lan-

guage model using training examples of unrelated tasks defined by natural language instructions

and then evaluating the performance on a held-out task. For example, a model can be trained us-

36



ing examples from machine translation, and commonsense reasoning tasks, and then evaluated on

entailment tasks. It is expected that such instruction-based finetuning would lead to a better trans-

fer and thus improved zero-shot generalization than multi-task training. This approach has been

shown to be effective for both encoder-decoder (Sanh et al., 2022) and decoder-only models (Wei

et al., 2022).

2.5 Traditional Retrievers and Evaluation Metrics

Text retrieval is an essential component in applications such as information-seeking conversa-

tional agents and open-domain question answering systems. These systems primarily consist of a

retriever module that intakes a question, compares it with millions of evidence passages (or doc-

uments), and returns relevant passages (Frakes and Baeza-Yates, 1992; Singhal, 2001; Manning

et al., 2008). Traditional retrievers based on sparse (or non-trainable) bag-of-words representation

of documents have been the workhorses of information retrieval systems and have remained a pop-

ular choice ever since. In the following paragraphs, we provide examples of two such retrievers.

2.5.1 Tf-idf

Tf-idf represents a document in a (sparse) vector space where each dimension denotes a key-

word (or term). The ordering information of words in the document is ignored and hence this

is also known as the bag-of-words representation. For each term in the document, its value at

the vector dimension is the frequency of the respective term times the inverse document fre-

quency (Sparck Jones, 1988). Factorizing the tf-idf representation of documents has been shown

to produce (dense) semantic embeddings in a smaller-dimensional vector space (Deerwester et al.,

1990).
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2.5.2 BM25

BM25 is a widely used retrieval approach defined based on the bag-of-words representation of the

terms present in the query and the evidence documents (Robertson and Zaragoza, 2009). A popular

formulation of the ranking algorithm is to add the score of each unique term in the question, where

the score is proportional to the product of the inverse document frequency of the term and a factor

based on the term’s frequency in the document.

More formally, given a question (q = {q1, . . . , qn}) consisting of n terms and a document (d),

the BM25 score is computed as:

score(q,d) =
n∑

i=1

log
N

df(qi)
· f(qi,d) · (k1 + 1)

f(qi,d) + k1 · (1− b+ b · |d|
avgdl)

,

where N is the text collection size, df(qi) is the number of documents in which the query term qi

occurs, f(qi,d) is the frequency of the term qi in the document d, |d| denotes the number of terms

in the document d, ‘avgdl’ denotes the average document length in the text collection, k1 and b

are hyperparameters to control for the term frequency scaling and document length normalization,

respectively.

Due to its reliance on the sparse representations of text, BM25 succeeds in cases involving

lexical matching, i.e., when the question and document terms overlap while it fails at semantic

matching. Despite this limitation, the BM25 retriever is still a competitive baseline and has been

used in the contributions included in this thesis.

2.5.3 Evaluation Metrics

We cover three evaluation metrics that are common in the information retrieval literature. These

metrics have been used to measure the performance of retrieval systems presented in this thesis.

Top-K accuracy: It is defined as the fraction of queries for which one or more of the documents

within the top-ranked K documents contain an answer to the query or is a relevant document. This
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metric is sometimes also referred to as Recall@K.

Normalized discounted cumulative gain (nDCG): In contrast to the top-K accuracy metric,

the nDCG metric considers the positions of the relevant documents in the retrieved list of docu-

ments (Järvelin and Kekäläinen, 2002; Wang et al., 2013). It penalizes a system if the relevant

documents are ranked lower and vice versa. nDCG is based in turn on the discounted cumulative

gain (DCG) measure which is defined as:

DCG =

p∑
i=1

2reli − 1

log2(i+ 1)
, (2.1)

where i denotes the position of a document in the retrieved list consisting of p documents, reli

denotes the graded relevance value of the document at position i in the retrieved list. nDCG is

computed by normalizing the DCG score of the retrieved documents with the DCG score computed

by assuming an ideal ranking of documents, i.e., when the relevant documents are placed at the top

of the document list.

Exact match (EM): This metric is used to measure the performance of question answering sys-

tems. A credit of one is assigned to the system if the model outputs an answer for a query that

exactly matches one of the reference answers. Then, the exact match score is computed as the

fraction of queries for which the system generated the correct answer.
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Chapter 3

Pre-training Dense Embedders to Improve

Passage Retrieval

The task of open-domain question answering (OpenQA) consists of finding answers to the informa-

tion-seeking questions using a large knowledge source such as Wikipedia. This knowledge source

is also referred to as evidence and it typically contains millions of documents. Most approaches

for OpenQA consist of a two-stage pipeline (Chen, 2018). In the first stage, given a question, a

retriever module identifies the most relevant documents (or passages), which is often a very small

subset of the evidence. Traditionally, bag-of-words approaches based on sparse text representations

such as BM25 (Robertson and Zaragoza, 2009) have been used as the retriever. In the second stage,

these relevant documents are given as input to the reader module, which understands them and

extracts the answer for the question (Figure 3.1).

Although successful, the main drawback of the BM25 method is that it is not trainable and

hence it cannot be adapted to open-domain document retrieval tasks that require semantic match-

ing. Recent work has addressed this limitation by building upon advances in self-supervised learn-

ing (Gillick et al., 2018). These approaches model the retriever using masked language mod-

els such as BERT (Devlin et al., 2019), allowing the retriever to be trained using task-specific

datasets (Lee et al., 2019; Karpukhin et al., 2020). Typically, the retriever model consists of a dual-
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Document 1: Bowling is a target sport and recreational activity in 
which a player rolls a ball towards pins (in pin bowling) or another 
target (in target bowling) …

Document 2: “Hall of Fame” is a song by Irish pop rock band the 
Script. It is the lead single from their studio album #3. The track 
features American hip-hop artist will.i.am of The Black Eyed Peas.

Document 3: The World Bowling Writers (WBW) International 
Bowling Hall of Fame was established in 1993 and is located … on 
the International Bowling campus in Arlington, Texas.

Question: Where is the bowling hall of fame located?

Stage 1: Retriever

Stage 2: Reader

Answer: Arlington, Texas

Figure 3.1: An example illustrating the two-stage OpenQA pipeline.

encoder architecture (Bromley et al., 1994), where each encoder computes dense embeddings of

the question and evidence documents, respectively.

Prior work has investigated both unsupervised and supervised approaches to train the retriever.

Unsupervised approaches include separately training the retriever with inverse cloze task (ICT; Lee

et al., 2019) or jointly training the retriever and reader by predicting masked text spans using re-

trieval augmentations (Guu et al., 2020). Supervised approaches such as dense passage retrieval

(DPR; Karpukhin et al., 2020) train the retriever using human-annotated sets of question and doc-

ument pairs.

However, there is no study that investigates the comparative advantages of using these two

styles of training when the retrieval task is challenging, i.e., when the evidence contains millions

of documents. It is unclear if the unsupervised approaches can further help to improve the perfor-

mance of strong supervised approaches, and, if so, under what conditions. A core focus of this

work is systematically studying these aspects of retriever training.

We propose a unified approach to train the retriever: unsupervised pre-training followed by

supervised finetuning. We also investigate key design choices—such as retriever score scaling

and longer training—and showcase their effectiveness. Our results demonstrate that the proposed

approach obtains substantial accuracy gains when evaluated on benchmark QA datasets. Extensive
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experiments also highlight the relative importance of different pre-training strategies, revealing

important trade-offs when varying the amount of supervised data available to train the retriever.

Furthermore, motivated by recent work (Guu et al., 2020), we also explore supervised train-

ing of the language model and retriever for answer generation. The language model attends to

each retrieved document separately and the retriever is trained based on the usefulness of these

documents in answer generation. We show that this approach leads to an improved retrieval per-

formance, which in turn results in an improved answer extraction. We outperform the previous

best models to obtain new state-of-the-art results on retrieval accuracy and answer extraction. We

also perform experiments by scaling the model size to a large configuration for both retriever and

language models and observe consistent improvements, compared with smaller models.

The rest of this chapter is organized as follows. §3.1 presents the background on dense re-

trievers along with their training methodology and §3.2 details our proposed approach. §3.3-3.6

describe the experimental details with the results. §3.7 reviews the related work followed by dis-

cussion in §3.8.

3.1 Background: Dense Retriever

Given a question and a large collection of documents (or passages) in the evidence, the task of the

retriever is to select a relevant subset of documents that answers the question.1 To achieve this, the

retriever matches the question with the evidence documents and outputs the top-ranked documents.

It is crucial for the retriever design to be efficient as it needs to search against tens of millions

of documents. This flexibility is offered by dense retrievers, which are essentially neural networks,

where both the question and document are represented by low-dimensional dense embeddings.

These dense embeddings allow the document representations to be pre-computed and then cached

in the accelerator’s memory leading to faster inference.

Their scalable design combined with the recent advances in pre-trained text representations

has motivated researchers to train improved dense retriever models. This has led to considerable
1We use the terms documents and passages interchangeably in this chapter.
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progress with dense retrievers outperforming popular sparse models such as BM25 on many pop-

ular benchmarks.

In this section, we first review the retriever architecture and then discuss methods to train it,

followed by our proposed approach.

3.1.1 Dual-Encoder Retriever

Let the question be denoted as q and evidence set by D = {d1, · · · ,dM}, where M is the number

of documents. For the retriever, we use the dual-encoder model (Bromley et al., 1994) which

consists of two encoders, where

• one encoder computes the question embedding fq(q; Φq) : X 7→ Rd, and

• the other encoder computes the document embedding fd(d; Φd) : X 7→ Rd.

Here, X = Vn denotes the universal set of text sequences, V denotes the vocabulary consisting of

discrete tokens, and Rd denotes the (latent) embedding space. We assume that both the question

and document embeddings lie in the same latent space. The retrieval score for a question-document

pair (q,d) is then defined as the inner product between their respective embeddings,

s(q,di; Φ) = fq(q; Φq) · fd(di; Φd), ∀di ∈ D, (3.1)

where Φ = [Φq,Φd] denotes the retriever parameters.

We use the transformer network (Vaswani et al., 2017) with BERT tokenization (Devlin et al.,

2019) to model both encoders. To obtain the question or document embedding, we do a forward

pass through the transformer and select the last layer hidden state corresponding to the [CLS]

token. As the input document representation, we use both the document title and text separated by

[SEP] token.
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3.1.2 Training Process

Each training example consists of a tuple of question and its corresponding positive document

(qi, yi), where yi ∈ [1,M ] represents the document indexed in D. Let the training set be denoted

as T = {(q1, y1), · · · , (qn, yn)}, where n is the number of training examples. To train the retriever,

we minimize the softmax cross-entropy loss of the positive question-document pairs

L(T ,D; Φ) = − 1

|T |
n∑

i=1

log
exp(s(qi, zyi ; Φ)/τ)∑M
j=1 exp(s(qi, zj; Φ)/τ)

, (3.2)

where τ is a scaling parameter.2 The above loss can also be understood from the viewpoint of

contrastive training as it encourages the dual-encoder to learn improved representations by align-

ing together the embeddings of the question and positive document while pushing further apart the

embeddings of unrelated documents.

Computing the partition function in the above expression requires a forward pass for all the

evidence documents using the current retriever parameters. As the evidence consists of millions of

documents, computing the partition function in each training step and then backpropagation would

be prohibitively expensive. A more tractable option is to sample a small subset of documents (S)

from the evidence, i.e., S ⊂ D, such as using uniform sampling (Jean et al., 2015). This modified

loss can be expressed as

L(T ,S; Φ) = − 1

|T |
n∑

i=1

log
exp(s(qi, zyi ; Φ)/τ)∑|S|
j=1 exp(s(qi, zj; Φ)/τ)

. (3.3)

However, uniform samples often lead to poor estimates of the partition function and thus are

ineffective in practice. Another preferred choice to approximate the partition function is to use pos-

itive documents of all other training examples in the batch as negative documents. This method is

often referred to as in-batch sampled softmax loss and has shown to perform well in practice (Hen-

derson et al., 2017; Gillick et al., 2018; Chen et al., 2020). It is also efficient as the document
2τ is also referred to as the temperature parameter.
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embeddings only need to be computed once per batch.

3.2 Proposed Approach: Unsupervised Pre-training and Su-

pervised Finetuning

Most of the previous retriever training methods initialized dual-encoder parameters using masked

language model weights such as those of BERT. Although successful, it is not apparent if this

is a good strategy as BERT suffers from poor discrimination ability when the evidence contains

millions of documents. This is reflected in BERT’s low recall scores on QA retrieval tasks (§3.5.1).

In light of these findings, we propose to pre-train retriever such that its zero-shot retrieval qual-

ity improves significantly as compared to BERT. We argue that finetuning a pre-trained retriever

on QA datasets will lead to better training dynamics that will in turn improve retrieval accuracy,

especially in low-resource settings. In order to pre-train the retriever, we propose two unsuper-

vised tasks (§3.2.1). We then adapt the pre-trained retriever for each dataset by finetuning using

dataset-specific training examples (§3.2.2).

3.2.1 Unsupervised Pre-training

For unsupervised training, we only use the text of evidence documents such as that of English

Wikipedia. We propose two variants of existing approaches for unsupervised pre-training of the

retriever that are described next.

Inverse Cloze Task (ICT)

In this task, we try to mimic the human-annotated question-document pairs using evidence docu-

ments. Specifically, we first extract paragraphs from the Wikipedia corpus. A randomly sampled

sentence from a paragraph is considered as a pseudo-question while all remaining sentences in the

paragraph are considered as its context document. The objective is to predict the context condi-

tioned on the selected sentence. Training retrievers with this objective improves both the encoders
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McGill's main campus is on the slope of [MASK1] in downtown [MASK2]

   Sentence with salient spans replaced with special mask tokens

Retriever (ICT Initialized)

Language Model 
(T5 Initialized)

[MASK1] Mount Royal [MASK2] Montreal

Generated spans

Retrieved Documents

Evidence Documents

Figure 3.2: An example illustrating the masked salient spans (MSS) pre-training task.

as they need to learn both semantic and lexical matching abilities.

This task resembles the popular cloze task where the goal is to predict masked words in text

while in ICT the objective is to predict the context from a sentence and hence the name. This

approach to pre-train dual-encoders was originally proposed in Lee et al. (2019). We train the

network by optimizing in-batch sampled softmax loss (§3.1.2). We train with a large batch size to

increase the pool of negative examples which results in an improved performance.

Retriever score scaling: We initialize the parameters of both the question and document en-

coders using BERT weights as implemented in Megatron-LM (Shoeybi et al., 2019).3 In our ex-

periments, we set the scaling parameter as τ =
√
d, where d is the model’s hidden size. This is in

contrast to previous work that used the setting of τ = 1 (Karpukhin et al., 2020). A larger scaling

factor helps in better optimization when the model size is large (§3.5.3).

Masked Salient Spans (MSS)

In this task, we seek to further improve the zero-shot performance of the ICT-initialized retriever

by jointly training it with a language model. Masked salient spans (MSS) training is a variant of
3We also experimented with random initialization but it vastly underperformed BERT initialization.
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the masked language modeling task where the language model predicts masked text spans with the

help of retrieved documents (Guu et al., 2020).

To construct the training data for the MSS task, we segment sentences from English Wikipedia

containing one or more named entities. We replace one or more named entities in the sentence with

masked tokens and the task is to predict these masked entities, which is also depicted in Figure 3.2

for reference. Masked sentences can be considered as pseudo-questions while entity spans can be

considered as the answers, resembling a typical open-domain QA setup. We next detail the MSS

training method.

The trainable components consist of the retriever (Φ) and generative language model (Θ). We

initialize the retriever with ICT weights and the language model with pre-trained T5 weights. The

inputs to train the model are masked sentences (x) and original entity spans (e). Given a masked

sentence, first the retriever selects top-K documents (Z = {z1, . . . ,zK}) with maximum inner

product scores according to Eq. 3.1.4

Each retrieved document (zi) along with the masked sentence is given as input to the T5 lan-

guage model which autoregressively generates the masked entity spans, whose likelihood is defined

as

p(e | x, zi; Θ) =
T∏
t=1

p (et | e<t,x, zi; Θ) , (3.4)

where T denotes the number of tokens in entity spans. We jointly train the retriever and language

model by maximizing the marginal log-likelihood as

L(e | x; Θ,Φ) = log
∑
zi∈Z

p(e | x, zi; Θ)p(zi | x,Z; Φ), (3.5)

where p(zi | x,Z; Φ) is computed by applying softmax to Eq. 3.1. During training, we update

all the parameters of the retriever (both the question and document encoders) and the language

model. This joint training formulation rewards those retrievals that improve the likelihood of

correct salient span prediction while penalizing incorrect retrievals. Such a dynamic feedback loop
4As the selection operation requires performing inner-product with millions of document embeddings, this can be

efficiently performed on accelerators such as GPUs or TPUs.
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from the language model forces retrieval quality to improve at every training step. Overall, the

MSS training process leads to better pre-trained retriever weights.

3.2.2 Supervised Finetuning

In the supervised setting, human-annotated questions, short answers, and sometimes positive doc-

uments are provided. If the positive document is not included, then a common approach is to

use distant supervision (Mintz et al., 2009) to obtain the positive document. Specifically, we se-

lect the top-ranked document using BM25 (Robertson and Zaragoza, 2009) from the evidence that

contains the answer as the positive document. We also consider other top-ranked documents that

do not contain the answer as hard negative examples (Gillick et al., 2019). These hard-negative

examples in addition to in-batch negatives lead to a better approximation of the partition func-

tion thereby forcing the retriever to learn improved question-document representations (Karpukhin

et al., 2020).

Let the training batch be denoted as B. A training example in the batch can then be written

as (qi, yi, ỹi), where yi and ỹi denotes the indices of the positive and hard-negative documents in

the evidence, respectively. We finetune the retriever by minimizing the following sampled softmax

loss

L(B,D; Φ) = − 1

|B|
∑
i∈B

log
exp(s(qi, zyi ; Φ)/τ)∑

j∈|B| exp(s(qi, zyj ; Φ)/τ) + exp(s(qi, zỹj ; Φ)/τ)
, (3.6)

where for each question qi ∈ B, the partition function is computed using all the positive and

hard-negative documents contained in the batch, i.e.,
⋃

i∈B(zyi , zỹi).

End-to-End Supervised Training

We also explore end-to-end finetuning of the language model (also referred to as reader in the QA

literature) and retriever. In this setup, the training data consists of question-answer (q,a) pairs.

Similar to the MSS pre-training objective, the language model is tasked to predict the answer
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conditioned on retrieved documents (Z). Specifically, we maximize the following marginal log-

likelihood of answer generation

L(a | q; Θ,Φ) = log
∑
zi∈Z

p(a | q, zi; Θ)p(zi | q,Z; Φ), (3.7)

where the likelihood of answer generation conditioned on each retrieved document p(a | q, zi; Θ)

is computed using a language model. This joint training setup iteratively improves the retriever

quality using feedback from the language model and also adapts the language model to read the re-

trieved documents for answering the question. As this approach involves conditioning the language

model on each retrieved document separately, we term it as Individual Top-K. During inference,

we generate the answers using greedy search.

We note that the RAG model (Lewis et al., 2020c) also proposed a similar approach, but there

are two main differences. The first is that while we update all the parameters of the retriever (both

the question and document encoders), RAG just updates the question encoder. The second is that

we use the pre-trained T5 model as the language model while RAG uses BART (Lewis et al.,

2020b). These enhancements help us obtain substantial gains over the RAG model, which we will

discuss in §3.6.

3.3 Experimental Setup

In this section, we describe the datasets and model settings.

3.3.1 Datasets

We perform experiments using two widely used question answering datasets whose details are

provided below and their statistics are shown in Table 3.1.
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Dataset Train Filtered Train Dev Test

NQ-Open 79,168 58,880 8,757 3,610
TriviaQA 78,785 60,413 8,837 11,313

Table 3.1: Dataset statistics. The training set is used for end-to-end training experiments (§3.5.2).
The filtered train version is used for supervised retriever finetuning. The filtered set ignores those
examples where the passages (or documents) retrieved from the evidence using BM25 does not
contain the reference answer or align with the ground-truth passage.

Natural Questions (NQ-Open): This corpus consists of real anonymized questions issued to

the Google search engine (Kwiatkowski et al., 2019).5 Ground truth annotations are provided for

these questions using the top-ranked Wikipedia pages. These annotations are in the form of long

answers (such as a paragraph that answers the question) and short answers (such as one or more

text spans including boolean ‘yes’ or ‘no’ answers). Human annotators can also mark a question to

be unanswerable if the Wikipedia page does not contain sufficient information. The original dataset

consists of 307,373 training examples, 7,830 development examples, and 7,842 test examples. In

our experiments, following convention (Lee et al., 2019; Karpukhin et al., 2020), we use a subset

of the short answer questions such that each question is answerable with the answer containing a

maximum of 5 tokens. For the development set, 10% of the training examples are selected while

for the test set, the short answers’ subset of the original development set is selected.

TriviaQA: This corpus consists of a large collection of diverse trivia questions and their answers

scraped from multiple sources in the Web (Joshi et al., 2017).6 Originally introduced for the task

of reading comprehension, the dataset also contains top-ranked documents mined from the Bing

search engine. There are two versions of the dataset: (i) filtered set containing around 95,000

question-answer pairs and over 650,000 question-answer-document triples, and (ii) an unfiltered

set of 110,495 question-answers and 740,000 evidence documents. In our work, we only consider

the question-answer pairs from the unfiltered set and ignore its evidence documents.

5https://ai.google.com/research/NaturalQuestions/download
6http://nlp.cs.washington.edu/triviaqa/
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Evidence data: As the information source containing world knowledge, we make use of English

Wikipedia. Following Karpukhin et al. (2020), we use the Wikipedia database from December

2018 and extract its text-only portion.7 During pre-processing, we discard semi-structured infor-

mation such as those from tables, infoboxes, or images. Each article is greedily segmented into

100-word long non-overlapping sequences, resulting in a total of 21,015,324 passages.

3.3.2 Model Details

We use BERT and T5 models of two different configurations, base and large, for the experiments.

The base configuration consists of 12 layers, 768 dimensional hidden size, and 12 attention heads.

The BERT-base contains 110M parameters while the T5-base contains 220M parameters. The

large configuration consists of 24 layers, 1024 dimensional hidden size, and 16 attention heads.

The BERT-large contains 330M parameters while the T5-large contains 770M parameters.

3.4 Training Details

We provide training details for all the experiments below. We extend the open-source Megatron-

LM toolkit (Shoeybi et al., 2019) to implement the models.8 For both the base and large model con-

figurations, we use the same training settings. To train the models, we employed mixed-precision

training (Micikevicius et al., 2018) and leveraged distributed training features as implemented in

the PyTorch framework (Li et al., 2020). All our experiments were performed on a cluster contain-

ing A100 GPUs.

3.4.1 Language Models Training

We train BERT (Devlin et al., 2019; Lan et al., 2020) and T5 (Raffel et al., 2020) language models

from scratch closely following the settings from the original papers. The training hyperparameters

for both the base and large configurations are detailed in Table 3.2. For training language models,
7Wikipedia dump is available at: https://archive.org/download/enwiki-20181220
8https://github.com/NVIDIA/Megatron-LM
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Hyperparameter BERT T5

Dataset Wikipedia, BookCorpus Wikipedia, CC-Stories, RealNews, OpenWebText
Hidden Size {768, 1024} {768, 1024}
Attention Heads {12, 16} {12, 16}
Dropout 0.1 0.1
Attention Dropout 0.1 0.1
Optimizer Adam Adam
Training Steps 1M 1M
Warmup Steps 10k 10k
Peak Learning Rate 1e-4 1e-4
Weight Decay 1e-2 1e-2
Batch Size 256 2048
Learning Rate Decay Linear Linear
Gradient Clipping 1.0 1.0

Table 3.2: Hyperparameters for pre-training BERT and T5 models.

we used both data and model parallelism (Xu et al., 2021)—32 GPUs to train BERT and 128 GPUs

to train T5.

3.4.2 Retriever Training

Inverse cloze task (ICT): We initialize the parameters of both the question and document en-

coders using BERT weights. We train the retriever using pre-processed English Wikipedia text

where each example is a paragraph with a maximum length of 256 tokens. We also keep the query

sentence in the context with a probability of 0.1. For training, we use a batch size of 4,096, a peak

learning rate of 1e-4 with linear decay, and train for 100,000 steps using Adam optimizer (Kingma

and Ba, 2014). This corresponds to training the retriever for roughly 20 epochs over the Wikipedia

dataset. We set the weight decay rate to 1e-2 and the warmup ratio of the optimizer to 0.01. For

scalable training and inference, up to 128 GPUs are used. In order to compute in-batch sam-

pled softmax loss, we collect the paragraph embeddings computed on different GPUs by applying

the all-gather communication collective in PyTorch distributed. However, applying an all-gather

operation detaches the computation graph thus leading to incorrect loss gradients. To fix this, we

multiply the loss in each GPU by the number of distributed processes used to compute embeddings

(also known as world size).
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Masked salient spans (MSS): We initialize the retriever with ICT training and pre-train the T5

language model on an aggregated dataset from Shoeybi et al. (2019). We use the pre-trained models

provided by the Stanza toolkit (Qi et al., 2020) to segment Wikipedia paragraphs into sentences and

extract named entities.9 The masked sentence is used as a query to retrieve evidence documents

with the help of which the T5 generates the original salient spans. We train the model for 100,000

steps with Adam optimizer using a learning rate of 2e-5 and a warmup ratio of 0.05. To prevent pre-

computed evidence embeddings from getting stale as the document encoder weights are updated,

following Guu et al. (2020), we compute the fresh evidence embeddings asynchronously every 500

steps and then update the evidence index. We implement this by maintaining one process group

for model training and a separate process group for evidence embedding computation. Training

was performed on up to 240 GPUs.

Supervised finetuning: We use Adam optimizer, a batch size of 128, a learning rate of 2e-5 with

a linear decay, and train for 80 epochs. The training was performed on 16 GPUs.

End-to-end supervised training: We initialize the retriever with finetuned ICT weights and use

pre-trained T5 as the language model. For all experiments, we train for 10 epochs using a batch

size of 64, a learning rate of 2e-5 with linear decay, and a weight regularization of 0.1. For the

Individual Top-K approach, the evidence embeddings are re-computed after every 500 training

steps. The number of retrieved documents is considered as a hyperparameter which is selected

based on model performance over development set. During training, we uniformly sample the

target answer from the list of reference answers. Training of Individual Top-K was performed on

240 GPUs. During training and inference, we retrieve the top-K documents from evidence (∼21M

documents) by performing an exact search.10

9We use the Stanza model trained on OntoNotes (Pradhan et al., 2012) to extract named entities for 10 NER
categories.

10As matrix multiplication is highly optimized on GPUs we observed that performing exact search was efficient
during training.
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Retriever NQ-Open TriviaQA

Top-1 Top-5 Top-20 Top-100 Top-1 Top-5 Top-20 Top-100

Base Configuration

BM25 – – 59.1 73.7 – – 66.9 76.7
BERT (zero-shot) 0.9 3.9 9.4 20.3 0.6 2.8 7.2 17.8
ICT (zero-shot) 12.6 32.3 50.6 66.8 19.2 40.2 57.5 73.6
MSS (zero-shot) 20.0 41.7 59.8 74.9 31.7 53.3 68.2 79.4

Table 3.3: Effect of unsupervised pre-training on retrieval accuracy when evaluated on test sets.

3.5 Results: Retriever Training

In this section, we compare different approaches to train the retriever. Retrieval accuracy is evalu-

ated using the top-k accuracy metric (k ∈ {1, 5, 20, 100}).

3.5.1 Importance of Retriever Pre-training

To assess the usefulness of retriever pre-training, we evaluate zero-shot retrieval recall, i.e., without

supervised finetuning, on NQ-Open and TriviaQA datasets. We present the retriever’s performance

when its weights are initialized with BERT, ICT, and MSS pre-training in Table 3.3. We also

provide the scores of the popular BM25 retriever (Robertson and Zaragoza, 2009).

We first note that BERT obtains a poor retrieval accuracy reaffirming the observation in Lee

et al. (2019) that masked language models do not perform well on QA retrieval tasks. How-

ever, retrieval quality benefits greatly from ICT pre-training as it provides a substantial gain of

40-50% absolute points in top-20 accuracy over BERT. Furthermore, MSS pre-training offers an

improvement over ICT by more than 8 absolute points. MSS also outperforms BM25 on TriviaQA

and matches or exceeds its performance on NQ-Open showcasing the effectiveness of MSS pre-

training as BM25 is a very strong baseline. These results demonstrate the importance of ICT and

MSS pre-training as they are effective in bootstrapping the retriever quality (almost from scratch).
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Setting Top-1 Top-5 Top-20 Top-100

Base Configuration

[CLS], 40 epochs 32.6 60.1 76.4 85.9
+ score scaling 34.1 60.9 77.6 85.9
+ 80 epochs 36.7 62.2 77.4 86.0
+ 1 hard negative 48.6 68.8 79.0 85.8

DPR (Official) – 67.1 78.4 85.4

Table 3.4: Exploring optimal training settings for supervised finetuning of the retriever when eval-
uated on the NQ-Open test set.

3.5.2 Effect of Retriever Initialization on Supervised Finetuning

Supervised Finetuning using BERT

We explore the best training settings for supervised finetuning of the retriever. To do so, we perform

a series of experiments on the NQ-Open dataset starting with the training settings from the popular

DPR model (Karpukhin et al., 2020) and then progressively improving it. DPR was initialized

with BERT, trained for 40 epochs, with a scaling parameter of 1.0, and utilized [CLS] token

embeddings from the retriever. Our result with this setting is shown in Table 3.4. We then observe

that incorporating retriever score scaling and longer training till 80 epochs helps to improve the

top-5 and top-20 accuracy by 1.5-2 points. These results also signify that the original DPR model

was significantly undertrained and not fully optimized.

In addition to score scaling, we further include 1 additional hard-negative example (similar to

DPR) for each question-document pair and train the model for 80 epochs. Our results, in sync with

the results of DPR, obtain substantial additional gains in performance. These findings highlight

that retriever score scaling, longer training, and including a hard negative example are essential

to improve the supervised retriever’s accuracy. These supervised training results can be considered

as a very strong baseline. Hence, we employ these settings in subsequent experiments.

55



Retriever NQ-Open TriviaQA

Top-1 Top-5 Top-20 Top-100 Top-1 Top-5 Top-20 Top-100

Base Configuration

BERT + Supervised 48.6 68.8 79.0 85.8 57.5 72.2 80.0 85.1
ICT + Supervised 48.4 72.1 81.8 88.0 58.4 73.9 81.7 86.3
MSS + Supervised 50.3 71.9 82.1 87.8 60.6 74.8 81.8 86.6

Large Configuration

BERT + Supervised 51.4 71.0 81.0 87.2 60.4 74.5 81.4 86.0
ICT + Supervised 52.4 72.7 82.6 88.3 61.9 76.2 82.9 87.1

Table 3.5: Effect of retriever initialization on retrieval accuracy in the full supervised finetuning
setting when evaluated on test sets.

Unsupervised Pre-training and Supervised Finetuning

We next empirically evaluate our proposed approach of unsupervised pre-training with ICT and

MSS tasks followed by supervised finetuning on the dataset-specific examples. Results are pre-

sented in Table 3.5. We observe both ICT and MSS pre-training provide absolute improvements of

2-3 points over the already strong BERT-based finetuning results. In addition, these gains are con-

sistent when scaling up the retriever size to a large configuration and also across top-1 to top-100

accuracy levels.

These results highlight that even after finetuning the retriever with thousands of labeled ex-

amples, it does not lead to catastrophic forgetting of the discriminative properties learned by the

retriever during the unsupervised pre-training process. Another merit is that being unsupervised,

large text collections can be leveraged to pre-train the retriever, a considerable advantage over

data-augmentation methods that rely on the availability of human-annotated question-document

pairs (Ma et al., 2021a). Furthermore, when comparing the impact of ICT and MSS retriever

initialization in the full supervised setting, we note that their accuracy gains are roughly similar.
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Figure 3.3: Sample efficiency analysis of different retriever initialization approaches. Evaluation
is done on the NQ-Open test set.

Effect of the Amount of Training Data

We study the effect on accuracy when the retriever is initialized with BERT, ICT, or MSS and the

amount of supervised training data is varied. We train the retriever with 1%, 2%, 5%, 10-50%, of

NQ-Open’s training examples and plot the top-20 accuracy in Figure 3.3. Results reveal that in

the low-resource regime, MSS pre-training is much more effective than ICT, consistently leading

to large gains. However, as the fraction of training data increases beyond 40% towards a high-

resource setup, the gains from the MSS pre-training saturate to that of ICT. We believe that these

findings will have important implications for future research—with only a few hundred supervised

examples, performing MSS pre-training is beneficial while if the training data has thousands of

examples, ICT pre-training is just as optimal as MSS pre-training.

End-to-End Retriever Training

For end-to-end training of the language model and retriever, we initialize the language model with

T5 weights and the retriever with finetuned ICT weights. The number of retrieved evidence docu-

ments is considered as a hyperparameter and is selected using cross-validation on the development
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Model NQ-Open TriviaQA

fq fd Top-1 Top-5 Top-20 Top-100 Top-1 Top-5 Top-20 Top-100

Base Configuration

DPR (Official) – 67.1 78.4 85.4 – – 79.4 85.0
ICT + Supervised 48.4 72.1 81.8 88.0 58.4 73.9 81.7 86.3
Individual Top-k ✓ ✗ 54.5 73.7 83.2 88.6 61.4 75.6 82.1 86.7
Individual Top-k ✓ ✓ 56.8 75.0 84.0 89.2 63.5 76.8 83.1 87.0

Large Configuration

ICT + Supervised 52.4 72.7 82.6 88.3 61.9 76.2 82.9 87.1
Individual Top-k ✓ ✓ 57.5 76.2 84.8 89.8 66.4 78.7 84.1 87.8

Table 3.6: Effect of end-to-end supervised training on retrieval accuracy. fq and fd denote if the
question and the document encoder weights are finetuned or not during training, respectively.

set. In this section, we focus on analyzing the end-to-end training’s effect on retrieval accuracy. We

train the Individual Top-K model using question-answer pairs for each dataset following Eq. 3.7.

We present the results for both base and large configurations of the model in Table 3.6 and compare

them with previous approaches. We observe that for Individual Top-K when only the query en-

coder is finetuned, it improves accuracy uniformly across both datasets. In addition, finetuning the

document encoder leads to additional gains. Specifically, accuracy improves to 75% at top-5 for

NQ-Open, a big gain of 8 points over the previous best DPR retriever. Larger models further help

to improve the scores leading to new state-of-the-art results (as of May 2021). These results high-

light that when the retriever is pre-trained, the objective function of Individual Top-K is designed

such that it improves the retriever.

3.5.3 Intuition for Retriever Score Scaling

Retrieval score scaling is used when computing the probability distribution of the retrieved docu-

ments according to Eq. 3.3, where the retrieval score is normalized by the scaling parameter (τ ).

To understand the effect of τ on the retrieval accuracy, we perform an ablation study with different

values of τ on the NQ-Open retrieval task, whose results are presented in Table 3.7. We choose

different values of τ as a multiple of
√
d, where d is the model hidden size. Our results indicate
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×
√
d Top-1 Top-5 Top-20 Top-100 Avg.

Base Configuration

0.25 48.8 69.3 78.7 85.5 70.6
0.5 51.4 71.6 81.5 87.7 73.1
1 51.1 71.8 82.1 87.7 73.2
2 50.2 71.5 81.9 87.9 72.9
4 50.6 71.7 81.7 88.0 73.0

Table 3.7: Effect of score scaling parameter (τ ) on the retrieval accuracy when evaluated on the
NQ-Open test set. The first column denotes the multiple (m) that is multiplied by

√
d to obtain τ ,

i.e., τ = m×
√
d in Equation 3.3.

that the choice of τ =
√
d offers a sweet middle ground among other choices and works well in

practice.

Here, we offer an intuitive explanation regarding the importance of the scaling parameter. In

our preliminary experiments on retriever pre-training with τ = 1, we observed that a few of the top-

K document’s similarity score with the query was very large. Such large scores skewed retriever

probability distribution with most of the mass being centered over the top-1 or top-2 documents.

A larger value of the scaling factor ensures a more even distribution of the probability mass over

the top-K documents, which results in better training dynamics.

3.6 Results: Question Answering

In this section, we empirically quantify the impact of retrieval on the task of open-domain question

answering. In this task, the reader (or language model) needs to output an answer given the ques-

tion and the retrieved documents as inputs. We evaluate our previous best model Individual Top-K

on NQ-Open and TriviaQA datasets, as it achieves the highest retrieval accuracy. During inference,

the language model first greedily generates an answer for each retrieved document. We then score

each answer using Eq. 3.7 and select the answer with the highest likelihood score. Results are

reported using the conventional exact match (EM) metric.

We compare our results as presented in Table 3.8 with other recent approaches from the liter-

ature. For the base configuration on NQ-Open, our model outperforms both REALM (Guu et al.,
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Model NQ-Open TriviaQA

Base Configuration

ORQA (Lee et al., 2019) 33.3 45.0
REALM (Guu et al., 2020) 40.4 –
DPR (Karpukhin et al., 2020) 41.5 56.8
Individual Top-k 45.9 56.3

Large Configuration

RAG (Lewis et al., 2020c) 44.5 56.8
Individual Top-k 48.1 59.6

Table 3.8: Question answering results with our proposed Individual Top-K approach. The grouping
under base and large configurations is based on the sizes of the language model and retriever.

2020) and DPR by more than 4 points. For the large configuration, we compare it with the RAG

model (Lewis et al., 2020c), where our approach outperforms it by 3.5+ points on NQ-Open and

by 2.8 points on TriviaQA. We remark that compared to previous approaches, our strong results

are due to a combination of several factors: (i) pre-trained retriever initialization, (ii) powerful T5

language model, and (iii) end-to-end retriever training updating both the question and document

encoders.

3.7 Related Work

Early successful approaches to learning dense representations for questions and documents relied

on using count-based estimates such as word frequency (Yih et al., 2011). Although successful in

retrieval tasks, this style of approaches proved inefficient and hence not scalable. More recently,

motivated by the success of masked language models such as BERT (Devlin et al., 2019) in lan-

guage understanding tasks, several approaches have been proposed to learn dense passage repre-

sentations by finetuning BERT using question-document pairs (Karpukhin et al., 2020). Although

BERT initialization is critical to finetune retrievers, it suffers from poor discrimination ability in

retrieval settings involving millions of documents. To improve this, unsupervised approaches have

been proposed to further pre-train BERT using contrastive training (Lee et al., 2019).

Mining hard negative examples to train retrievers has proven to be quite effective in improving
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retrieval accuracy as it results in a better approximation of the softmax partition function. One

option to collect hard-negatives is by retrieving top documents with BM25 as they contain lexical

similarities with the question (Karpukhin et al., 2020). Another promising alternative is to use the

model parameters itself to mine hard negatives (Gillick et al., 2019; Xiong et al., 2021).

An emerging line of work investigates task-specific pre-training of the language model using

retrieved documents. In the context of open-domain QA, Guu et al. (2020) predicts salient entities

in order to pre-train the language model to generate an answer. Similarly, Lewis et al. (2020a)

perform retrieval-augmented cross-lingual pre-training where the objective is to predict a text se-

quence conditioned on its retrieved paraphrases in different languages. This training objective

demonstrated improved zero-shot performance in document translation tasks.

Our work is also related to the work of Chang et al. (2020). They explore several paragraph-

level pre-training strategies in order to improve retrieval accuracy. However, our work differs

in several ways. First, our retrieval setup is more challenging as the evidence consists of 21M

passages while their evidence consists of 1M passages. Second, we pre-train with two strategies

consisting of ICT and MSS and finetune using strong supervised methods leading to outperforming

the strong DPR retriever. Finally, we further train the retriever with end-to-end supervised training

which leads to new state-of-the-art results.

3.8 Discussion

In this work, we propose novel training approaches to improve the retrieval accuracy of dense

embedder models for the task of open-domain question answering (OpenQA). We first propose

two variants of existing approaches for unsupervised pre-training of the retriever: (a) inverse cloze

task (ICT), and (b) predicting masked salient spans (MSS). We demonstrate the effectiveness of

retriever initialization with ICT and MSS pre-training for supervised finetuning of the retriever. We

then present an approach for supervised training of the retriever jointly with an encoder-decoder

language model for the OpenQA task. These methods help achieve state-of-the-art results on both
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retrieval benchmarks and the final answer extraction task.

In summary, the contributions of this work are:

• We demonstrate that our proposed method of unsupervised pre-training of the retriever with

ICT followed by supervised finetuning leads to absolute gains of more than 2 points in the

top-20 retrieval accuracy over the previous best result on NQ-Open and TriviaQA datasets.

• We show that masked salient spans-based pre-training of the retriever is more effective than

ICT pre-training when the supervised dataset sizes are small.

• Our end-to-end supervised training approach obtains new state-of-the-art performance on

retrieval accuracy. On the NQ-Open dataset, our top-20 accuracy is 84, which is a 5-point

absolute gain over DPR results.

• We achieve competitive results on answer extraction with gains of more than 3 points over

recent models such as REALM (Guu et al., 2020) and RAG (Lewis et al., 2020c).

• We scale up training to large models and show consistent gains in performance.

3.8.1 Limitations

Although our proposed approaches have been very effective in improving passage retrieval and

QA accuracy, they suffer from several limitations that we elaborate on in this section.

Reliance on supervised datasets: Although our proposed approaches have been successful in

achieving new state-of-the-art results on benchmark retrieval tasks, they still suffer from the same

limitations as the previous approaches — existence of tens of thousands of labeled question answer

or document pairs to finetune pre-trained retrievers. Collecting these human-annotated training

examples is expensive as well as time-intensive. Lack of quality training data can otherwise hinder

the application of finetuning-based methods in custom retrieval domains or tasks.
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Dependence on external retrievers: Another critical factor underlying the success of dense re-

trievers is the usage of hard-negative examples in the training step. Typically, these hard-negatives

are pre-computed using another retriever such as BM25. Such reliance on external modules for

training increases the overall complexity of the training data pipeline, thereby limiting the rapid

adoption of the approach.

Computationally expensive training: Unsupervised pre-training is computationally expensive

as ICT and MSS pre-training requires large batch sizes necessitating a lot of GPUs for data par-

allelism. As such, this unsupervised pre-training may not be feasible in a resource-constrained

setup. In addition, ICT pre-training requires performing an expensive all-gather collective opera-

tion at every step to aggregate embeddings from multiple GPUs. As such, using large batch sizes

results in a slow forward pass during training.

Assessing out-of-domain generalization performance: In this work, we have used English

Wikipedia as the pre-training dataset for both ICT and MSS tasks. Furthermore, our evaluations

are performed on QA datasets that are primarily Wikipedia-based, i.e., questions are supposed to

be answered using Wikipedia. However, in many practical applications questions and documents

are written in custom domain-specific terminology some examples being biomedical and finance

domains. This presents a challenging setting as technical terms in these domains might be un-

seen in Wikipedia texts. It remains to be seen how well can retrievers trained using corpora such

as Wikipedia transfer to to out-of-domain queries and texts. It will also be interesting to assess

generalization after domain adaptation, e.g., finetuning retrievers on a small number of in-domain

examples and also comparing with strong baselines such as BM25.

3.8.2 Follow-up Work

Our proposed idea of unsupervised retriever pre-training has been adopted as well as improved by

several follow-up works. We list a few selected such works below:
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• Adversarial retriever-ranker: Zhang et al. (2022) use a cross-encoder ranker to improve

dense retriever finetuning. Their proposed method first initializes the retriever using unsu-

pervised pre-training. Then, the retriever is finetuned using an adversarial training objective

such that feedback from the ranker improves retriever quality in successive steps.

• GPT embeddings: To pre-train retrievers, Neelakantan et al. (2022) employed varying con-

figurations of the GPT decoder (Radford et al., 2019; Brown et al., 2020) as the underlying

embedder. They leverage web-scale text data crawled from the Internet and use neighboring

sequences as positive examples. Similar to our work, they use sampled softmax loss with

in-batch negatives for training but with large batch sizes.

• Momentum contrastive retriever pre-training: Izacard et al. (2022) pre-train dense re-

trievers using unsupervised text data. Similar to ICT (§3.2.1), it constructs training examples

by sampling pseudo-queries and positive examples from a paragraph. The model is trained

using momentum contrastive learning (He et al., 2020) by maintaining a large cache of nega-

tive documents. These learned embeddings have been shown to improve document rankings

under the zero-shot setting.

• Supervised retriever pre-training: Oguz et al. (2022) pre-train retriever using a large set

of question-passage pairs consisting of millions of examples that were obtained by either

synthetically generated questions or using online Reddit conversations. This kind of training

data is more closely aligned with the finetuning task and hence is better suited for pre-training

retrievers.

3.8.3 Future Work

This contribution opens up several exciting directions for future work. Our work was one of the

early efforts to pre-train retrievers in an unsupervised manner to boost their zero-shot accuracy.

Follow-up works have made further progress but there remains a big gap between unsupervised and

supervised retrievers performance. Future work can investigate better strategies for pre-training
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such as the choice of input data, objective functions, etc. to further close this gap. Another option

is to explore the idea of universal pre-training by using a combination of multiple pre-training

strategies such that they are applicable to a range of end retrieval tasks.
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Chapter 4

End-to-End Training of Multi-Document

Reader and Retriever for Open-Domain

Question Answering

Open-domain question answering (OpenQA) is a question answering task where the goal is to train

a language model to produce an answer for a given question. In contrast to many question answer-

ing tasks, an OpenQA model is only provided with the question as its input without accompanying

documents that contain the answer. One of the most promising approaches to OpenQA is based

on augmenting the language model with an external knowledge source such as Wikipedia (often

referred to as the evidence documents). In this approach, the model consists of two core compo-

nents (Chen et al., 2017): (i) an information retrieval system to identify useful pieces of text from

the knowledge source (the retriever), and (ii) a system to produce the answer given the retrieved

documents and the question (the reader).

We can view such a model as a latent variable model, where the latent variables represent

retrieved documents that are used to produce answers given questions (Lee et al., 2019). End-to-

end (or joint) training of this model is challenging since we need to learn both to generate an answer

given retrieved documents and what to retrieve. Previous work considers two potential solutions
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(see Table 4.1 for a high-level summary). First, they adopt a stage-wise training, where the retriever

is trained while freezing the reader and vice versa (Karpukhin et al., 2020; Izacard and Grave,

2021b,a). Another alternative is to constraint the reader to condition on each retrieved document

individually1 (Guu et al., 2020)—sometimes with extra supervision for the latent variables in the

form of the relevant document for a question (Lewis et al., 2020c).

In this thesis, we consider a retrieval-augmented question answering model that combines in-

formation from multiple documents when generating answers. Expectation-maximization (Demp-

ster et al., 1977) offers a principled template for learning this class of latent variable models. We

present EMDR2: End-to-end training of Multi-Document Reader and Retriever (§4.1). EMDR2

iteratively uses feedback from the model itself as “pseudo labels” of the latent variables for opti-

mizing the retriever and reader parameters. We use two estimates of the latent variables: (i) prior

scores for updating the reader parameters, and (ii) approximate posterior scores given all observed

variables for the retriever parameters.

We evaluate our proposed method by experimenting with three commonly used OpenQA

datasets: Natural Questions, TriviaQA, and WebQuestions (§4.2). EMDR2 achieves new state-

of-the-art results for models of comparable sizes on all datasets, outperforming recent approaches

by 2-3 absolute exact match points. We also show that EMDR2 is robust to retriever initializa-

tion. It achieves high accuracy with unsupervised initialization, suggesting that supervised train-

ing of the retriever may not be an essential component of the training process as suggested in prior

work (Karpukhin et al., 2020).

In summary, our contributions are as follows: (i) we present an end-to-end training method

(EMDR2) for retrieval-augmented question answering systems, (ii) we demonstrate that EMDR2

outperforms other existing approaches of comparable size without any kind of supervision on the

latent variables, (iii) we provide ablation studies for a better understanding of the contributions of

different components of our proposed method, and (iv) we release our code and checkpoints to

1This makes marginalization over the latent variables easier since we only need to consider one document at a time
rather than multiple documents at once.
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Reader and Retriever Training

Model Multi-doc
Reader

Retriever
Adaptation

Disjoint End-to-end Multi-step
Unsupervised
Retriever

REALM ✓ ✓ ✓

DPR ✓

RAG ✓ ✓

FiD ✓ ✓

FiD-KD ✓ ✓ ✓

EMDR2 (Ours) ✓ ✓ ✓ ✓

Table 4.1: Bird’s-eye view of the recent OpenQA approaches. Multi-doc reader indicates whether
the reader architecture uses multiple documents or a single document. Retriever adaptation
shows whether the retriever gets feedback from the reader to update its parameters. Disjoint de-
notes that first the retriever is trained and then the reader is trained. End-to-end denotes that the
reader and retriever are trained jointly in one cycle. Multi-step indicates that the reader and re-
triever are trained iteratively in multiple cycles. Unsupervised retriever indicates whether the
retriever is initialized using unsupervised approaches or using supervised data. The references of
above models are REALM (Guu et al., 2020), DPR (Karpukhin et al., 2020), RAG (Lewis et al.,
2020c), FiD (Izacard and Grave, 2021b), FiD-KD (Izacard and Grave, 2021a).

facilitate future work and for reproducibility.2

EMDR2 is a framework that can be used to train retrieval-augmented text generation models for

any task. We believe that our estimation technique in EMDR2 is also useful for learning similar

latent variable models in other domains.

4.1 Model

Our proposed model EMDR2 consists of two components: (i) a neural retriever, and (ii) a neural

reader, which we train jointly in an end-to-end setting. Figure 4.1 shows an illustration of our

model and training procedure. We discuss each component and our training objective in detail

below.
2Our code is available at: https://github.com/DevSinghSachan/emdr2
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4.1.1 Retriever: Dual-Encoder

Let the collection of evidence documents be denoted by D = {d1, . . . ,dM}. Given a question q,

the goal of the retriever module is to select a subset of documents Z ⊂ D to answer the question.3

We model the retriever as a dual-encoder network (Bromley et al., 1994), where one encoder fq

encodes the question and another fd encodes the evidence document (to a vector). The retrieval

score is defined as the dot product between the two resulting vectors:

s(q,di; Φ) = fq(q; Φq)
⊤fd(di; Φd), (4.1)

where Φ = [Φq,Φd] denotes the retriever parameters. We select top-K documents for the ques-

tion q from D based on the retrieval scores. We denote the set of retrieved documents by Z =

{z1, . . . ,zK}.

We use transformer encoders (Vaswani et al., 2017) as our fq and fd. Our transformer archi-

tecture is similar to BERT with 12 layers and 768 hidden size (Devlin et al., 2019). We use the

final representation of the first token (i.e., the standard [CLS] token from BERT’s tokenization) as

our question (and similarly document) embedding. Initializing fq and fd with BERT weights has

been shown to lead to poor retrieval accuracy (Lee et al., 2019; Sachan et al., 2021a). Therefore,

we initialize the retriever with an unsupervised training procedure. We discuss our initialization

technique in detail in §4.2.2.

4.1.2 Multi-Document Reader: Fusion-in-Decoder

The reader takes as input a question q and a set of retrieved documents (to be read) Z to gen-

erate an answer. Our reader is based on the Fusion-in-Decoder (FiD; Izacard and Grave, 2021b)

model, which is built on top of T5 (Raffel et al., 2020). T5 is a pre-trained sequence-to-sequence

transformer that consists of an encoder ge and a decoder gd (§2.4.3).
3This material is analogous to the dense retrievers introduced in §3.1.1, and is included here for ease of reading

with additional notation.
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In FiD, each retrieved document zk is first appended with its title (tzk) and the question:

xk = [CLS]q[SEP]tzk[SEP]zk[SEP],

where [CLS] is used to indicate the start of a document and [SEP] is used as a separator for the

different parts of the document as well as the final token.

Each xk is then independently given as an input to the T5 encoder ge. The output representa-

tions corresponding to all of the retrieved documents are concatenated as:

XZ = [ge(x1); . . . ; ge(xK)] ∈ R(N×K)×H ,

where N is the number of tokens in each xk
4 and H is the hidden size of the T5 encoder ge. In this

work, we use the T5-base configuration with N = 512 and H = 768.

XZ is then given as an input to the T5 decoder gd. When generating an answer token, the

decoder attends to both previously generated tokens (i.e., causal attention) as well as the tokens

encoded in XZ (i.e., cross-attention). Since XZ contains information from multiple documents,

the decoder has the ability to aggregate useful signals contained in multiple documents and jointly

reason over them. We define the probability of the answer as:

p(a | q,Z; Θ) =
T∏
t=1

p (at | a<t, q,Z; Θ) , (4.2)

where Θ denotes the reader parameters (i.e., T5 encoder and decoder) and T is the number of

answer tokens. We keep generating answer tokens until the decoder outputs a special EOS token

or a pre-specified maximum answer length is reached.
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Figure 4.1: An illustration of the different components of EMDR2. Colored blocks indicate com-
ponents that contain trainable parameters.

4.1.3 End-to-End Training of Reader and Retriever

In contrast to previous work on generative question answering, we train both the reader and the

retriever jointly in an end-to-end differentiable fashion.

Denoting our latent variable which represents a set of retrieved documents by Z and let Z be

a possible value of Z. The marginal likelihood of an answer (marginalizing over all the possible

values of Z) is: p(a | q; Θ,Φ) =
∑

Z=Z p(a | q,Z; Θ)p(Z | q; Φ). The goal of our training proce-

dure is to find Φ and Θ that would maximize the above objective. Exactly optimizing this equation

is intractable as it is combinatorial in nature.5 For one particular value Z , the log-likelihood is

simpler to compute: log p(a | q,Z; Θ)p(Z | q; Φ) = log p(a | q,Z; Θ) + log p(Z | q; Φ).

Expectation-maximization (EM) algorithm (Dempster et al., 1977) offers a solution to learning

this latent variable model. In classical EM, we iteratively compute the posterior of Z given all

observed variables and use it to update Θ and Φ.

We propose using two estimates of Z—Zreader and Zretriever—for updating the two components

4We truncate and pad as necessary such that every xk has the same length N . See §4.2.2 for details.
5Contrast our objective with REALM (Guu et al., 2020), where the reader only conditions on one retrieved docu-

ment zk when generating an answer. In this case, the latent variable represents a document assignment instead of a set
of retrieved documents.
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of the model (reader parameters Θ and retriever parameters Φ):

log p(a | q,Zreader; Θ)︸ ︷︷ ︸
reader

+ log p(Zretriever | q; Φ)︸ ︷︷ ︸
retriever

. (4.3)

In the first term, we set the value of the latent variable Z = Zreader based on the prior scores. In the

second term, we seek to maximize an approximate posterior of Z = Zretriever. We discuss them in

more detail below.

Reader parameters Θ: For updating Θ (the first term of Eq. 4.3), we use the top-K documents

with the highest individual scores (as computed by Eq. 4.1 based on the current value of Φ) to

construct Zreader. This is equivalent to relying on the prior p(Z | q; Φ) to estimate Zreader (without

using information from the answer a). We choose to use the prior to train reader parameters since

the prior scores are also used at evaluation time to obtain the top-K documents. As a result, there

is no mismatch between training and test computations when computing p(a | q,Z; Θ) (i.e., Z

that is used at test time is obtained in exactly the same way as Zreader = Ztop-K).

Retriever parameters Φ: For updating Φ (the second term of Eq. 4.3), we propose to use the

posterior estimate. In other words, we use additional information from a when evaluating Zretriever

to train Φ. Using the posterior allows our retriever to learn from richer training signals as opposed

to relying only on the prior.

We need to be able to compute p(Zretriever | q,a; Θ,Φ) to maximize the retriever parameters.

However, computing this quantity is difficult since it is a probability of a set.6 Consider a set

of K documents (e.g., Ztop-K), where zk denotes a document in the set. We approximate the

maximization of the probability of the set by assuming that its probability is maximized if the sum

of the probability of each document in the set is maximized.7 With this approximation, we arrive

6This is true whether we choose to use the posterior probability or the prior probability.
7The intuition is that each element of the set contributes independently, which greatly simplifies the computation

to find the maximum of the set.
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at a simpler quantity:
∑K

k=1 p(zk | q,a; Θ,Φ). Note that using Bayes rule, we can rewrite:8

p(zk | q,a; Θ,Φ) ∝ p(a | q, zk; Θ)p(zk | q; Φ). (4.4)

The reader now only conditions on one document when computing the probability of an answer

p(a | q, zk; Θ). This simpler reader uses the same parameters as the more sophisticated one Θ, but

it only uses one document zk instead of a set of documents.

To compute Eq. 4.4, we first obtain K documents with the highest scores as computed by

Eq. 4.1 based on the current value of Φ. We compute the probability of document zk ∈ Ztop-K

using sampled softmax as:

p(zk | q,Ztop-K ; Φ) ≈
exp(s(q, zk)/τ ; Φ)∑K
j=1 exp(s(q, zj)/τ ; Φ)

, (4.5)

where τ is a temperature (or scaling) hyperparameter and the approximation assumes that docu-

ments beyond the top-K contribute very small scores so we do not need to sum over all evidence

documents M in the denominator (which is in the order of tens of millions in our experiments).

We then compute p(a | q, zk; Θ) similarly to Eq. 4.2.

Overall training objective of EMDR2: Combining the above derivations, our end-to-end train-

ing objective that we seek to maximize for a particular example becomes

L = log p(a | q,Ztop-K ; Θ)︸ ︷︷ ︸
reader

+ log
K∑
k=1

SG (p(a | q, zk; Θ)) p(zk | q,Ztop-K ; Φ)︸ ︷︷ ︸
retriever

, (4.6)

where SG is the stop-gradient operator so that the reader parameters Θ are not updated to also

perform well given a single document zk. The stop-gradient operator in the second term of EMDR2

has several benefits. First, the FiD reader is trained from the first term of the EMDR2 objective in

8We choose not to normalize with p(a | q; Θ,Φ) since computing this quantity would require summing over
all evidence documents M . While this makes the resulting objective that we optimize not correspond to a proper
probability distribution anymore, we observe that our training method still behaves well in practice.
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which its likelihood is conditioned on all the retrieved documents, similar to how the reader is used

at test time. Second, it also makes training faster since the backward pass which is computationally

more expensive than the forward pass is not needed, which in turn reduces the usage of GPU RAM

as intermediate activations need not be cached.

Given a training example, we update Θ and Φ by taking gradients of Eq. 4.6 with respect to

Θ and Φ in an end-to-end fashion. Intuitively, we train the reader to generate the correct answer

given K highest scoring documents Ztop-K . For the retriever, we train it to select K documents

which collectively has a high score of generating an answer (since the sum over K is inside the log

in the second term) while taking into account feedback from the reader. Algorithm 1 summarizes

our training algorithm.

Algorithm 1: End-to-end training of multi-document reader and retriever.
Input: Model parameters Θ and Φ, evidence documents D.
while not converged do

• Compute Ztop-K using the current retriever parameters Φ. // E-step
• Compute p(a | q, zk) for each zk using the current reader parameters Θ.
// E-step

• Update model parameters Θ and Φ to maximize the log-likelihood in Eq. 4.6.
// M-step

end

4.2 Experiments

4.2.1 Datasets

We experiment with three commonly used open-domain question answering datasets:

• Natural Questions (NQ-Open; Kwiatkowski et al., 2019): NQ-Open contains questions

asked by users of the Google search engine. Similar to Lee et al. (2019), we use the short

answer subset. We refer the reader to §3.3.1 for further details.

• TriviaQA (Joshi et al., 2017): TriviaQA is a collection of trivia question-answer pairs that
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Dataset Train Filtered Train Dev Test

WebQuestions (WebQ) 3,417 2,474 361 2,032
Natural Questions (NQ-Open) 79,168 58,880 8,757 3,610
TriviaQA 78,785 60,413 8,837 11,313

Table 4.2: QA dataset statistics. The training set is used for end-to-end training whereas the filtered
training set is used for supervised retriever training. The filtered set ignores those examples where
either the evidence document retrieved using BM25 (Robertson and Zaragoza, 2009) does not
align with the original positive documents or the top-100 BM25 retrievals do not contain reference
answers. We leverage the filtered training set as provided by Karpukhin et al. (2020).

were collected from multiple sources on the web (§3.3.1). For our experiments, follow-

ing Izacard and Grave (2021a), we select human-annotated answers for training the QA

model. We also filter out those questions whose answer length is more than 5 words. Over-

all, this filters out 2,362 examples from the training set.

• WebQuestions (WebQ; Berant et al., 2013): WebQ questions were collected using Google

Suggest API and are focused around a single named entity.9,10 The answers were annotated

by crowdworkers using the Freebase knowledge graph. We use the version from Chen et al.

(2017) where Freebase IDs in the answers are replaced by entity names.

Dataset statistics: For validation, we randomly select approximately 10% examples from the

training set. For all the datasets, we use the dataset splits from Lee et al. (2019). We provide the

size of the training, development, and test sets in Table 4.2.

Evidence documents D: We use the preprocessed English Wikipedia dump from December

2018 released by Karpukhin et al. (2020) as our evidence documents. Each Wikipedia article is

split into non-overlapping 100 words long segments. Each segment corresponds to a document in

our case. There are a total of 21,015,324 documents in total.
9https://nlp.stanford.edu/software/sempre/

10https://github.com/google-research/language/tree/master/language/orqa#getting-the-data
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4.2.2 Implementation Details

Hardware and library

We run all of our experiments on a machine with 96 CPUs, 1.3TB physical memory, and 16

A100 GPUs. We use PyTorch (Paszke et al., 2019) to implement our proposed model and relevant

baselines.

Model configurations

For both the retriever and reader, we use the base configuration that consists of 12 layers, 768

dimensional hidden size, and 12 attention heads. In all experiments, we retrieve 50 documents, un-

less stated otherwise. We only use the base configuration in our experiments due to GPU memory

constraints. However, we believe that our results would generalize to larger configurations as well.

Retrieval

To support fast retrieval, we pre-compute evidence document embeddings and store their shards

over all the GPUs in a distributed fashion. We refer to these document embeddings as the document

index. For each question, we retrieve documents in an online (on-the-fly) manner by performing

the exact maximum inner product search (MIPS), implemented using asynchronous distributed

matrix multiplication over the sharded document index.

Retrieved documents are tokenized to subwords according to BERT’s tokenization and are

given as input to the T5 reader. If a tokenized document is shorter than 512 tokens, it is padded

using the tokens from the surrounding documents until the maximum token limit is reached. Such

padding additionally helps to provide an extended context for answer generation.

Initialization and training details

We initialize the parameters of the model with unsupervised pre-training before supervised fine-

tuning of the model using question-answer examples. Unsupervised pre-training is essential as it
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Hyperparameter ICT MSS

Dataset Wikipedia Wikipedia
Number of Parameters 220M 440M
Hidden Size 768 768
Attention heads 12 12
Dropout 0.1 0.1
Optimizer Adam Adam
Batch Size 4096 64
Training Steps 100K 82K
Warmup Ratio 0.01 0.05
Peak Learning Rate 1e-4 2e-5
Weight Decay 1e-2 1e-1
Learning Rate Decay Linear Linear
Gradient Clipping (max L2 norm) 1.0 1.0

Table 4.3: Hyperparameters for pre-training with ICT and MSS tasks.

helps to warm-start the retriever so that it outputs related documents for a given question.

We closely follow the unsupervised pre-training approach as described in §3.2.1 which is

briefly described next. We first pre-train the retriever parameters with inverse cloze task (ICT)

training for 100,000 steps (Sachan et al., 2021a). Then, we extract sentences containing named

entities from the evidence documents. Next, we substitute 15% of these named entity spans with

masked tokens. The masked sentence can be considered as the question to retrieve evidence docu-

ments and its salient spans (i.e., named entities) can be considered as the answer to train the model

with EMDR2 (Eq. 4.6). During retrieval, we ignore the evidence document from which the masked

sentence was derived. We train the model on these question-answer (masked sentence-named en-

tities) pairs for 82,000 steps with a batch size of 64 using Adam (Kingma and Ba, 2014). We refer

to this initialization method as unsupervised pre-training with masked salient spans (MSS). We list

the hyperparameters for ICT and MSS training in Table 4.3.

After MSS pre-training, we finetune the model on the dataset-specific QA training examples

with EMDR2. We perform training for 10 epochs on NQ-Open and TriviaQA with a batch size of

64, and for 20 epochs on WebQ with a batch size of 16. During training, we save a checkpoint

every 500 steps and select the best checkpoint based on its performance on the development set.

We list the training hyperparameters in Table 4.4. Apart from the number of epochs and batch size
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Hyperparameter NQ-Open TriviaQA WebQ

Number of Parameters 440M 440M 440M
Hidden Size 768 768 768
Attention heads 12 12 12
Dropout 0.1 0.1 0.1
Optimizer Adam Adam Adam
Batch Size 64 64 16
Epochs 10 10 20
Warmup Ratio 0.01 0.01 0.01
Peak Learning Rate 2e-5 2e-5 2e-5
Weight Decay 1e-1 1e-1 1e-1
Learning Rate Decay Linear Linear Linear
Gradient Clipping (max L2 norm) 1.0 1.0 1.0
Temperate (τ ) 27.7 27.7 27.7

Table 4.4: Hyperparameters for supervised finetuning on QA datasets.

in WebQ, we use the same hyperparameters for all the experiments. For the temperature parameter

(τ ) in Eq. 4.5, we follow Sachan et al. (2021a) and set it as the square root of the hidden size.

During end-to-end training, since the parameters of the document encoder (fd(Φd)) are also up-

dated at every step, the pre-computed document embeddings become stale as training progresses.

To prevent staleness, we use the most recent document encoder checkpoint to compute fresh doc-

ument embeddings asynchronously with which the document index is updated after every 500

training steps. Asynchronous embedding updates are performed both during MSS pre-training and

supervised finetuning.

Inference

For each question, we retrieve the top-K documents using MIPS and then feed them to the FiD

reader. We use greedy decoding for answer generation at inference time.

4.2.3 Baselines

We compare our model to other approaches for OpenQA that can be categorized under the follow-

ing two classes:
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• Closed-book QA models: Large-scale language models capture a lot of world knowledge

in their parameters derived from the corpus they have been trained on (Petroni et al., 2019).

We compare with the work of Roberts et al. (2020) who show that larger T5 models—when

finetuned with question-answer pairs—can perform remarkably well. We also compare with

the few-shot results of GPT-3 (Brown et al., 2020).11

• Open-book QA models: Similar to this work, these models consist of retriever and reader

components and adopt the retrieve then predict approach for answering questions given a

collection of evidence documents. These models mainly differ in how the retriever is initial-

ized (ORQA; Lee et al., 2019, DPR; Karpukhin et al., 2020), whether the reader processes

a single document (ORQA, DPR, RAG; Lewis et al., 2020c) or multiple documents (FiD;

Izacard and Grave, 2021b), or whether the reader and retriever are trained jointly or in a

multistage process (REALM; Guu et al., 2020, FiD-KD; Izacard and Grave, 2021a).

4.3 Results

We follow standard conventions and report exact match (EM) scores using the reference answers

included in each dataset. Table 4.5 presents our main results. We divide the table into three main

sections: closed-book QA models, open-book QA models, and our implementation. The first two

sections contain results from other papers, which we include for comparison. The last section

includes results from our proposed model, as well as our reimplementation of relevant baselines to

control for our experimental setup.

Our reimplementation of the T5-base provides strong baselines when the number of retrieved

documents is set to 0 (no retrieval) and 1. From Table 4.5, we see that the setting of top-1 vastly

improves performance over the setting with no retrieved documents, signifying the importance

of retrieval for OpenQA tasks. When further increasing the top-K documents to 50, the perfor-

mance of the FiD models substantially improves over the top-1 retrieval, verifying the observation

11We note that GPT-3 is not trained on the full training examples that we use, so the results are not directly compa-
rable.
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Model top-K NQ-Open TriviaQA WebQ # of
dev test dev test dev test params

Closed-Book QA Models

T5-base (Roberts et al., 2020) 0 - 25.7 - 24.2 - 28.2 220M
T5-large (Roberts et al., 2020) 0 - 27.3 - 28.5 - 29.5 770M
T5-XXL (Roberts et al., 2020) 0 - 32.8 - 42.9 - 35.6 11B
GPT-3 (Brown et al., 2020) 0 - 29.9 - - - 41.5 175B

Open-Book QA Models

BM25 + BERT (Lee et al., 2019) 5 24.8 26.5 47.2 47.1 27.1 21.3 220M
ORQA (Lee et al., 2019) 5 31.3 33.3 45.1 45.0 36.8 30.1 330M
REALM (Guu et al., 2020) 5 38.2 40.4 - - - 40.7 330M
DPR (Karpukhin et al., 2020) 25 - 41.5 - 56.8 - 34.6 330M
RECONSIDER (Iyer et al., 2021)† 30 - 43.1 - 59.3 - 44.4 440M
RAG-Sequence (Lewis et al., 2020c)† 50 44.0 44.5 55.8 56.8 44.9 45.2 626M
Individual Top-K (Sachan et al., 2021a) - - 45.9 - 56.3 - - 440M
Joint Top-K (Sachan et al., 2021a) 50 - 49.2 - 64.8 - - 440M
FiD (Izacard and Grave, 2021b) 100 - 48.2 - 65.0 - - 440M
FiD-KD (Izacard and Grave, 2021a) 100 48.0 49.6 68.6 68.8 - - 440M

Our Implementation (Base Configuration)

FiD / T5-base 0 26.0 25.1 26.7 27.8 31.0 32.4 220M
FiD (DPR retriever, T5 reader) 1 37.3 38.4 50.8 50.4 40.2 38.3 440M
FiD (DPR retriever, T5 reader) 50 47.3 48.3 65.5 66.3 46.0 45.2 440M
FiD (MSS + DPR retriever, T5 reader) 50 48.8 50.4 68.0 68.8 43.5 46.8 440M

FiD (MSS retriever, MSS reader) 50 38.5 40.1 60.0 59.8 39.1 40.2 440M
EMDR2 (MSS retriever, MSS reader) 50 50.4 52.5 71.1 71.4 49.9 48.7 440M

Table 4.5: Exact match scores on three QA datasets. Top-K denotes the number of retrieved
documents that are used by the reader to produce an answer. To provide a fair comparison with
our reimplementations, we show results from other papers with the base configuration, except for
RAG-Sequence that uses BART-large (Lewis et al., 2020b). † indicates that their results on WebQ
use NQ-Open training data to pre-train the model.

from Izacard and Grave (2021b) about the importance of modeling the retrieved documents as a

set.

Comparing EMDR2 with our reimplementation of FiD illustrates the benefit of our end-to-

end training approach. The underlying model is similar in both cases, but the training method is

different. FiD adopts a two-stage approach to first train the retriever and then the reader. We have

three variants of FiD: (i) the reader and retriever are initialized with MSS training, (ii) the retriever

is initialized with DPR training, which is the setting used in the original paper (Izacard and Grave,
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2021b), and (iii) the retriever is initialized with MSS + DPR training from Sachan et al. (2021a),

as it further improves DPR recall. EMDR2 outperforms all the variants by large margins on all the

datasets.

The current best approach for training multi-document reader and retriever is FiD-KD (Izacard

and Grave, 2021a). FiD-KD is a complex training procedure that requires multiple training stages

and performs knowledge distillation with inter-attention scores. We take the results from the orig-

inal paper when comparing our model with FiD-KD. EMDR2 outperforms the reported numbers of

FiD-KD by more than 2.5 points on NQ-Open and TriviaQA to obtain new state-of-the-art results

on these benchmarks.

In addition to better performance, EMDR2 also has three other advantages compared to FiD-

KD: (i) EMDR2 is more efficient since it only uses 50 evidence documents, whereas FiD-KD lever-

ages 100 documents; (ii) FiD-KD is based on a distillation approach which requires multiple cycles

of retriever and reader training, while EMDR2 only requires one cycle of end-to-end training; and

(iii) FiD-KD relies on the supervised initialization of the retriever to achieve its best performance.

EMDR2 is more robust to the retriever initialization, as demonstrated by state-of-the-art results even

with unsupervised initialization of the retriever.

For the WebQ dataset, the training set size is much smaller compared to the other datasets (Ta-

ble 4.2). Previous approaches such as RAG rely on supervised transfer (i.e., they finetune a model

pre-trained on NQ-Open) to obtain good results. In contrast, EMDR2 improves over the results

from this RAG model by 3.5 points without the supervised transfer step. This result demonstrates

the applicability of our approach to the low-resource setting where we only have a limited number

of training examples.
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Figure 4.2: Effect on answer generation performance as the number of retrieved documents (top-
K) is increased.

4.3.1 Ablation Studies

Number of retrieved documents

We investigate the performance of EMDR2 and FiD as we vary the number of retrieved documents

K in Figure 4.2. We observe that when the number of retrieved documents is increased, both

EMDR2 and FiD lead to an improvement in performance. When K is small, the gap between

EMDR2 and FiD is larger. This indicates the efficacy of EMDR2 in a more constrained setting

where we can only retrieve a small number of documents (e.g., due to memory limitations).

Retriever initialization

We explore the effect of different parameter initialization strategies when training with EMDR2: (i)

unsupervised MSS pre-training, (ii) supervised retriever training (DPR), and (iii) MSS pre-training

followed by supervised retriever training (MSS + DPR; Sachan et al., 2021a). Table 4.6 presents

our results. We can see that on NQ-Open, MSS pre-training being unsupervised leads to a lower

initial retriever recall than DPR. After EMDR2 training, the recall improves by 20% (highlighted

in yellow cells). Training with DPR initialization leads to the same final recall as obtained by

MSS pre-training, suggesting that supervised initialization of the retriever may not be an essential

component to obtain good performance in OpenQA tasks. Similar trends are also observed on

TriviaQA and WebQ. Similarly, MSS + DPR initialization has a better initial recall but leads to

marginal or no improvements in answer extraction performance over MSS pre-training.
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NQ-Open (dev) TriviaQA (dev) WebQ (dev)

Retriever
Initialization

Reader
Initialization

R@50 EM R@50 EM R@50 EM
B.T. A.T. B.T. A.T. B.T. A.T.

MSS pre-training MSS pre-training 66.4 86.3 50.4 74.8 86.2 71.1 59.8 88.6 49.9
MSS pre-training T5 66.4 86.3 50.3 74.8 86.3 70.9 59.8 88.6 47.7
DPR training T5 82.3 86.3 50.0 83.2 86.2 70.5 84.2 88.6 49.0
MSS + DPR MSS pre-training 84.5 86.3 50.5 85.3 86.3 71.2 85.0 88.6 49.9

Table 4.6: R@50 denotes the retrieval recall from the top-50 retrieved documents. B.T. and A.T.
indicates R@50 score ‘before training’ and ‘after training’ the model, respectively.
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Figure 4.3: Comparison of reader training losses when the retriever is either initialized by MSS
pre-training and by MSS followed by supervised DPR training (MSS + DPR).

We also observe that MSS pre-training also provides an improvement of 2 points in answer

extraction on WebQ when compared to the T5 reader (shown in orange cells), highlighting the

importance of a pre-trained reader in the low-resource setup.

Effect on reader training: We plot the reader’s training loss when finetuned using QA pairs for

two cases: (i) when the retriever is initialized with MSS pre-training, and (ii) when the retriever is

initialized with MSS followed by DPR training (MSS + DPR). From the plots in Figure 4.3, we

notice that retriever initialization has a marginal effect on the final answer generation performance.

Specifically, for NQ-Open, MSS + DPR initialization leads to a lower training loss than MSS

initialization for the first 1200 steps after which the difference between these two losses diminishes.

Although surprising at first, this finding can be explained as MSS + DPR retriever being more

accurate results in lower training loss initially. However, as training progresses, EMDR2 updates the

MSS retriever more aggressively than MSS + DPR eventually leading to both retrievers receiving
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Question / Answer Retriever

MSS Pre-training EMDR2 Finetuning

Question: what type of reac-
tion occurs to form a dipep-
tide?
Answer: peptide bond

probability = 0.39
. . . Bornyl diphosphate synthase In en-
zymology, bornyl diphosphate synthase
(BPPS) () is an enzyme that cat-
alyzes the chemical reaction Bornyl
diphosphate synthase is involved in
the biosynthesis of the cyclic monoter-
penoid bornyl diphosphate. As seen
from the reaction above, BPPS takes
geranyl diphosphate as its only sub-
strate and isomerizes into the product,
(+)- bornyl diphosphate. This reaction
comes from a general class of enzymes
called terpene synthases that . . .

probability = 0.78
. . . Subsequent to this coupling reac-
tion, the amine protecting group P and
the ester are converted to the free amine
and carboxylic acid, respectively. For
many amino acids, the ancillary func-
tional groups are protected. The con-
densation of the amine and the car-
boxylic acid to form the peptide bond
generally employs coupling agents to
activate the carboxylic acid. The
Bergmann azlactone peptide synthesis
is a classic organic synthesis for the
preparation of dipeptides. . . .

Question: when was the
japanese videogame company
nintendo founded?
Answer: 23 September 1889

probability = 0.37
. . . contributed to the development of
the following games. Creatures (com-
pany) Ape, Inc. was founded in March
1989 and Shigesato Itoi became its
chief executive officer. Nintendo pres-
ident Hiroshi Yamauchi had wanted to
support new talent in game design. Lik-
ing Itoiś work, he proposed the idea
of the company to Itoi and invested in
it. Apeś staff included Tsunekazu Ishi-
hara, who later became the Pokémon
Companyś CEO, and Ashura Benimaru
Itoh, a renowned illustrator. They be-
gan work on "Mother", which released
in July. Its music was composed by Hip
Tanaka, who later became the second
CEO of Creatures . . .

probability = 0.61
. . . Nintendo Co., Ltd. is a Japanese
multinational consumer electronics and
video game company headquartered
in Kyoto. Nintendo is one of the
world’s largest video game compa-
nies by market capitalisation, creat-
ing some of the best-known and top-
selling video game franchises, such as
“Mario”, “The Legend of Zelda”, and
“Pokémon”. Founded on 23 Septem-
ber 1889 by Fusajiro Yamauchi, it orig-
inally produced handmade hanafuda
playing cards. By 1963, the com-
pany had tried several small niche busi-
nesses, such as cab services and love
hotels. Abandoning previous ventures
in favour of toys in the 1960s . . .

Table 4.7: Examples of top-1 retrieved documents from the NQ-Open test set when the model
is pre-trained with masked salient spans (MSS; first column) and then finetuned using NQ-Open
data (second column). If the answer exists in the document it is highlighted in blue color, and the
probability of the document (computed according to Eq. 4.5) is indicated in orange color.

similar gradient updates which reflects in both achieving similar training losses.12
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Figure 4.4: Reader and retriever training losses when the MSS pre-trained model is finetuned with
EMDR2 using dataset-specific examples.

4.3.2 Qualitative Analysis

In Table 4.7, we present some representative examples of the retriever output when it is initialized

with MSS pre-training and when it is finetuned with EMDR2 on NQ-Open. We observe that after

MSS pre-training, the top-1 outputs are related to the question but are not relevant enough to answer

them. However, when the retriever is finetuned with EMDR2 on NQ-Open examples, the retrieval

accuracy improves with the top-1 documents being much more relevant to answer the question. In

addition, the retriever’s likelihood of the top-1 document being relevant also improves.

Visualizing reader and retriever losses: In Figure 4.4, we show the trajectories of the reader

and retriever training losses as the EMDR2 training progresses.

4.3.3 Alternative End-to-End Training Objectives

We compare EMDR2 objective (Eq. 4.6) to three alternative formulations for end-to-end training.

In the first alternative formulation, when training the retriever parameters Φ, we simply factor-

ize p(Ztop-K | q; Φ) = ∏K
k=1 p(zk | q; Φ) to arrive at the following objective:

Lalt-1 = log p(a | q,Ztop-K ; Θ) +
K∑
k=1

log p(zk | q,Ztop-K ; Φ).

The second term in this objective is maximized by a uniform retrieval, in other words, by removing

12As the MSS retriever is further away from the optimal state than MSS + DPR, it is more aggressively updated.
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any discrimination between documents in the retriever. We include it to show the impact of an

adversarial objective.

In the second formulation, for each retrieved document, we approximate its posterior un-

der the assumption that we have a uniform prior over the set of retrieved documents: p̃(zk |

q,a,Ztop-K ; Θ) ∝ p(a | q, zk; Θ) × 1
K

. We use this to train reader and retriever parameters as

follows:

Lalt-2 = log p(a | q,Ztop-K ; Θ) +KL(SG (p̃(zk | q,a,Ztop-K ; Θ)) || p(zk | q,Ztop-K ; Φ)).

Intuitively, we try to match the probability of retrieving a document zk with the “contribution” of

that document to the generated answer a, regardless of whether the retriever is relatively more or

less likely to retrieve the document a priori.

In the third formulation, similar to Lewis et al. (2020a), we infuse the retriever likelihood score

within the FiD model. More specifically, we add retriever distribution (Eq. 4.5) to bias the encoder-

decoder attention as it helps facilitate end-to-end training. Intuitively such biasing constraints the

reader to attend strongly to the most relevant documents. The attention score during the encoder-

decoder attention is computed as:

attn(q,a, z1:K) ∝ Q(a)⊤K(z1:K , q) + λ[p(z1 | q,Ztop-K ; Φ), . . . , p(zK | q,Ztop-K ; Φ)],

where Q is the query vector computed from the decoder’s input, K is the key vector computed from

the encoder’s output, and λ is a trainable parameter. We train the model parameters by maximizing

the likelihood of answer generation using teacher-forcing as:

Lalt-3 = log p(a | q,Z, p(zi | q,Z; Φ);Θ).

Table 4.8 presents our results on the development set of the QA datasets. We observe that

training with the adversarial Lalt-1 objective diverges, leading to poor performance, as expected.
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Method top-K NQ-Open (dev) TriviaQA (dev) WebQ (dev)

FiD 50 47.3 65.5 46.0
EMDR2 50 50.4 71.1 49.9

Lalt-1 50 14.1 11.9 28.0
Lalt-2 50 49.9 69.6 28.8
Lalt-3 50 47.8 64.8 –

Table 4.8: Exact match scores on the development set for alternative end-to-end training objectives.

This shows that harming the retriever during training can significantly harm the performance of

the QA system. In contrast, although it disregards the estimated prior, the Lalt-2 objective still

improves over the FiD baseline for NQ-Open and TriviaQA. However, it still lags behind EMDR2.

On WebQ, the Lalt-2 objective diverges and leads to a poor performance. We leave further analysis

on the convergence of Lalt-2 objective as a part of future work. Lalt-3 objective also leads to mixed

results: it provides a small gain over the FiD baseline on NQ-Open but does not improve on

TriviaQA. Overall, Lalt-3 significantly lags behind EMDR2, signifying that biasing the encoder-

decoder attention with retriever distribution may not be an optimal strategy for end-to-end training.

4.4 Related Work

Our work is based on end-to-end training of neural readers and retrievers, which we have discussed

in previous sections. Here we instead focus on discussing previous work related to standalone

neural retrievers, neural readers, and their application in other natural language processing tasks.

Neural retrievers: There are two broad classes of neural retrievers based on the number of

embeddings computed for a question and document: dual-encoders (Yih et al., 2011; Lee et al.,

2019) and multi-vector encoders (Khattab and Zaharia, 2020; Luan et al., 2021). To perform

retrieval, dual-encoders compute one embedding per evidence document while multi-vector en-

coders require multiple embeddings per document. Using multiple document encodings enables

the multi-vector encoders to have deep query interactions and thus are more accurate but at the

cost of being computationally expensive for large-scale settings. In this work, due to the large size
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of the evidence, we use the more efficient dual-encoder retriever. Sachan et al. (2021a) show that

the performance of dual-encoders can be improved by unsupervised pre-training of the retriever

weights using contrastive approaches or by jointly training them with language models.

Neural readers: Neural readers output an answer for a question given context documents

as its input. Neural readers can also be grouped under two categories: extractive and generative.

Extractive readers extract a text span from a document to produce an answer (Chen, 2018). These

are trained to predict the highest scoring start and end answer spans in a passage (Devlin et al.,

2019). For the case of multiple passages, normalizing the answer span likelihood across them has

shown to improve performance (Clark and Gardner, 2018; Wang et al., 2019b). On the other hand,

for cases where multiple occurrences of an answer exist within a paragraph, training with a hard

EM-based approach has proven to be effective (Min et al., 2019). Generative readers generate an

answer conditioned on the question and context documents. These models are based on pre-trained

encoder-decoder language models and are trained using teacher-forcing to autoregressively gener-

ate the answer tokens (Raffel et al., 2020; Lewis et al., 2020c). For the case of multiple retrieved

documents for a question, jointly attending to independently computed document representations

has been shown to benefit answer generation (Izacard and Grave, 2021b).

Other application areas: In addition to question answering, retrieval-augmented methods

have been successfully applied to other natural language processing tasks. In causal language

modeling, retrieving similar words from an external memory has been shown to improve perplex-

ity (Khandelwal et al., 2020; Yogatama et al., 2021). In machine translation, retrieving domain-

specific target language tokens has improved the performance of domain-specific texts (Khandel-

wal et al., 2021; Hoang et al., 2023). Finally, in dialog modeling, retrieving knowledge-informed

text has helped improve factual correctness in the generated conversations (Fan et al., 2021; Shuster

et al., 2021).
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4.5 Discussion

In this chapter, we have presented EMDR2, an end-to-end training method for retrieval-augmented

question answering (QA) systems. We first defined the marginal likelihood formulation of the

objective function by considering the set of retrieved documents to be a latent variable. As the exact

optimization of marginal likelihood is intractable, we then showed how to arrive at our approximate

training objective using the expectation-maximization algorithm. We demonstrated that our end-

to-end training setup achieves substantially better answer extraction results than separately training

retriever and multi-document reader. Below, we summarize our key contributions:

• We introduce a novel training framework, EMDR2, to jointly train a multi-document reader

and dense retriever system for the OpenQA task. The reader and the retriever are trained

jointly in a single run of the training algorithm presenting a much simplified setting than the

previous stage-wise trained models.

• When comparing similar-sized models, EMDR2 obtains new state-of-the-art results on three

benchmark datasets, outperforming the previous best method of FiD-KD by more than 2.5

absolute points.

• Our experiments signify that likelihood estimates of the answer conditioned on a single

document are useful in training the retriever and the resulting improved retrieval contributes

to more accurate answers.

• EMDR2 only requires question-answer pairs to train a retrieval-augmented model. It removes

the dependency on passage annotations that were previously presumed to be critical in train-

ing such a model.

• We conduct extensive ablation studies to analyze different aspects of the training procedure

including proposing several alternate end-to-end training objectives and characterize their

effectiveness on the OpenQA task.
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4.5.1 Limitations

Although EMDR2 successfully leverages language models to improve retrieval-augmented question

answering systems, it shares a few limitations with other similar systems that we highlight below.

Potential negative societal impacts: While EMDR2 has the potential to improve language mod-

els in the low-resource setting (as demonstrated by our results on WebQ in §4.3), it could exhibit

typical biases that are associated with large language models. For example, our model does not

have an explicit mechanism to generate answers that are calibrated for fairness across all spectra.

Additionally, as a retrieval-augmented method, it also could be more prone to generating fake an-

swers if an attacker manages to have access to and modify information in the collection of evidence

documents.

Model performance evaluation: In this work, we have performed model evaluation using the

exact match (EM) metric which matches the predicted answer with one or more manually anno-

tated reference answers. In EM, if there is an answer equivalence, the predictions get full credit

and vice versa. As the number of reference answers is finite and does not necessarily cover all pos-

sible variations, EM generally underestimates the performance of a QA system (Si et al., 2021).

As a consequence, it is plausible that the true performance gains of EMDR2 are higher than that

reported in our results. In light of this aforementioned issue, attempts have been made to use

token-level evaluation metrics such as F1 score but it also suffers from issues like limited cover-

age. Recent efforts aimed towards addressing this propose model-based evaluation metrics such as

BERT matching (BEM; Bulian et al., 2022) that uses BERT finetuned on human ratings to measure

answer equivalence but we leave its application as a part of future work.

Requires language model finetuning: A key idea contributing to the success of methods like

EMDR2 is to finetune the language model (or reader) to predict the answer tokens conditioned on

the question and retrieved documents. However, as the sizes of the language models continue to
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scale up (Chowdhery et al., 2022), finetuning them would prove expensive. An even more detri-

mental consequence of finetuning is that of the language model losing its generality when applied

to tasks other than QA. On the contrary, prompting the language models to generate the answer has

so far resulted in sub-par performance when compared to finetuned language models (Lazaridou

et al., 2022; Khattab et al., 2022). A common middle ground can be explored such as introducing

additional task-specific parameters for finetuning while preserving the original language model to

retain its general purpose usefulness (Li and Liang, 2021).

Computationally expensive: We store evidence documents in an uncompressed format, main-

taining evidence indexes, and searching for relevant documents can be expensive (both in terms

of compute and memory consumption), especially for web-scale datasets. However, it is worth

noting that this limitation can be partly addressed by using efficient data structures (Monath et al.,

2023) and approximate nearest neighbor search (Johnson et al., 2021; Guo et al., 2020; Chern

et al., 2022). We also remark that our training procedure is relatively resource-heavy (requiring 16

A100 GPUs), potentially having environmental concerns. With our hardware setup, experiments

on NQ-Open and TriviaQA took approximately 25 hours to complete. Before supervised training,

we also performed a one-time unsupervised MSS pre-training that took roughly 1 week.

4.5.2 Follow-up Work

The ideas and models presented in this contribution have been referenced and improved by several

follow-up works. We briefly describe a few of them as follows.

• Few-shot finetuning of retrieval-augmented models: Izacard et al. (2023) perform end-to-

end training of a retrieval system similar to the one in this work by distilling the normalized

answer prediction likelihood of an individual document to train the retriever. They demon-

strate that large-scale pre-training followed by few-shot finetuning of a retrieval-augmented

system using QA pairs outperforms larger parametric language models (Chowdhery et al.,

2022).
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• Large language models vs task-specific models for QA: In their study, Kamalloo et al.

(2023) compares the performance of instruction-tuned large language models (OpenAI, 2022)

and end-to-end trained systems such as EMDR2 on QA tasks. Human evaluation conducted

in their study reveals that large language models with few-shot prompting are becoming in-

creasingly accurate in generating answers to information-seeking questions often matching

task-specific models like EMDR2.

• End-to-end training of retrieval-augmented visual models: Hu et al. (2023) propose an

end-to-end training method for the task of answering visual queries. Their knowledge base

consists of both multimodal and text documents, which are retrieved and attended to by the

reader to answer questions. Retriever scores are used to bias the attention scores of the reader

to achieve end-to-end training.

• Synthetic data generation using large language model for input augmentation: Re-

cently, synthetic data generation has emerged as a popular method to leverage the knowl-

edge contained within the parameters of a large language model to augment data for the

end task (Lee et al., 2021). In particular, for the QA task, Yu et al. (2023) first generates

contextual documents using a large language model by giving a question as the input. Aug-

mented data obtained by combining generated documents with the documents retrieved from

Wikipedia has been shown to improve answer prediction scores over pure retrieval-based ap-

proaches.

4.5.3 Future Work

This contribution presents several directions for future work. One direction is to extend the EMDR2

algorithm to apply it to other important text generation tasks such as knowledge-grounded dialog

generation. Another interesting direction would be to train retrieval-augmented language mod-

els (Borgeaud et al., 2022) in an end-to-end fashion. This would require designing adaptable re-

trievers for large-scale retrieval tasks such that the retrieved text segments improve the likelihood
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of the next sequence prediction. Finally, it is worthwhile to recall that EMDR2 is a tractable approx-

imation to the marginal likelihood training objective. We feel that exploring tighter approximations

to improve training dynamics can also be a useful direction to pursue.
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Chapter 5

Unsupervised Passage Re-ranking

Text retrieval is a core sub-task in many NLP problems, for example, open-domain question an-

swering where a document must be retrieved and then read to answer an input query. Queries

and documents are typically embedded in a shared representation space to enable efficient search,

before using a task-specific model to perform a deeper, token-level document analysis (e.g., a docu-

ment reader that selects an answer span). We show that adding a zero-shot re-ranker to the retrieval

stage of such models leads to large gains in performance, by doing deep token-level analysis with

no task-specific data or tuning.

We focus on open-domain retrieval including question answering and introduce a re-ranker

based on zero-shot question generation with a pre-trained language model. Our re-ranker, which

we call Unsupervised Passage Re-ranker (UPR), re-scores the retrieved passages by computing the

likelihood of the input question conditioned on a retrieved passage.1 This simple method enables

task-independent cross-attention between query and passage that can be applied on top of any

retrieval method (e.g., neural or keyword-based) and is highly effective in practice (Figure 5.1).

In part, UPR is inspired by the traditional models of query scoring with count-based language

models (Zhai and Lafferty, 2001). However, instead of estimating a language model from each

passage, UPR uses pre-trained language models (PLMs). More recent work on re-rankers have

1In this chapter, we refer to the words documents and passages interchangeably. We consider the retrieval units as
short passages and not entire documents.
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Figure 5.1: After UPR re-ranking of the unsupervised Contriever’s (Izacard et al., 2022) top-1000
passages, we outperform strong supervised models like DPR (Karpukhin et al., 2020) on Natural
Questions and TriviaQA datasets.

finetuned PLMs on question-passage pairs to generate relevance labels (Nogueira et al., 2020),

sometimes to jointly generate question and relevance labels (Nogueira dos Santos et al., 2020;

Ju et al., 2021). In contrast, UPR uses off-the-shelf PLMs, does not require any training data or

finetuning, and still leads to strong performance gains (Figure 5.1).

Comprehensive experiments across a wide range of datasets, retrievers, and PLMs highlight the

strengths of UPR in both improving the performance on retrieval and question answering tasks.

To the best of our knowledge, this is the first work to show that a fully unsupervised pipeline

(consisting of a retriever and re-ranker) can greatly outperform supervised dense retrieval models

like DPR (Karpukhin et al., 2020). As language models continue to improve rapidly (Chowdhery

et al., 2022; Touvron et al., 2023; Anil et al., 2023), the performance of UPR may see corresponding

gains over time. UPR requires no annotated data and uses only generic pre-trained models, which

means it may be easy to apply to a wide range of retrieval problems.
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Figure 5.2: An illustration of the different components in UPR. For more details, please refer to
text.

5.1 Method

Figure 5.2 presents an overview of our approach for open-domain retrieval, which introduces a

new unsupervised re-ranker (§5.1.2) that can be applied to any existing text retriever (§5.1.1).

5.1.1 Retriever

Let D = {d1, . . . ,dM} be a collection of evidence passages (or documents). Given a question

(q), the retriever selects a subset of relevant passages Z ⊂ D, one or more of which will ideally

contain the answer to q. Our method will work with passages obtained from any retriever — either

based on sparse representations like BM25 or dense representations like DPR. We only assume

that the retriever provides the K most relevant passages. We denote this set of top-K passages as

Z = {z1, . . . ,zK}.

5.1.2 Unsupervised Passage Re-ranking (UPR)

Given the top-K retrieved passages, the goal of the re-ranker is to reorder them such that a passage

with the correct answer is ranked as highly as possible. The ordering is computed with a relevance

score p(zi | q) for each passage zi ∈ Z .

Our re-ranking approach is unsupervised, i.e., it does not use any task-specific training ex-

amples. We refer to it as UPR, for Unsupervised Passage Re-ranking. UPR uses a pre-trained
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language model to score the probability of generating the question q given the passage text z, as

described below. The question generation model is zero-shot, allowing for dataset-independent

re-ranking, and also incorporates cross-attention between the question and passage tokens while

forcing the model to explain every token in the input question. UPR is, therefore, more expressive

than using dense retrievers alone, even if both methods fundamentally build on top of the same (or

very similar) pre-trained models.

More specifically, we estimate p(zi | q) by computing the likelihood of question generation

conditioned on the passage, i.e., the quantity p(q | zi). This also naturally emerges when applying

Bayes’ rule to p(zi | q) as

log p(zi | q) = log p(q | zi) + log p(zi) + c ,

where p(zi) is the prior on the retrieved passage and c is a common constant for all zi.

As a simplifying assumption, we assume that the passage prior log p(zi) is uniform, and can

be ignored for re-ranking. With this, the above expression reduces to

log p(zi | q) ∝ log p(q | zi), ∀zi ∈ Z .

We estimate the quantity log p(q | zi) using a pre-trained language model (PLM) by computing

the average log-likelihood of the question tokens conditioned on the passage:

log p(q | zi) =
1

|q|
∑
t

log p(qt | q<t, zi; Θ) .

where Θ denotes the parameters of the PLM and |q| denotes the number of question tokens. We

apply the PLM in a zero-shot fashion with no finetuning by simply appending the natural language

instruction “Please write a question based on this passage” to the passage tokens as shown in

Figure 5.2.

The initial passage ordering is then sorted based on log p(q | z). This enables us to re-rank
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the passages by just performing inference using off-the-shelf language models avoiding the need to

label question-passage pairs for finetuning. Because the question generation model is applied zero-

shot, this overall approach can be applied to improve the retrieval accuracy of any test collection,

with no dataset-specific models or tuning data.

5.2 Experimental Setup

In this section, we describe the datasets, unsupervised and supervised retrievers, and language

models used for our passage re-ranking experiments.

5.2.1 Open-Domain QA Datasets

Following previous work on passage retrieval, we use the popular datasets of SQuAD-Open (Ra-

jpurkar et al., 2016), TriviaQA (Joshi et al., 2017), Natural Questions (NQ-Open; Kwiatkowski

et al., 2019), and WebQuestions (WebQ; Berant et al., 2013). Their statistics are presented in Ta-

ble 5.1. We refer the reader to §3.3.1 for more details on TriviaQA and NQ-Open and to §4.2.1 for

WebQ. We briefly describe the SQuAD-Open dataset as follows.

SQuAD-Open: This corpus was primarily annotated for the reading comprehension task. Crowd-

workers were assigned Wikipedia articles to frame questions from its paragraphs along with mark-

ing their answer text (Rajpurkar et al., 2016). Overall, SQuAD-Open contains more than 100,000

questions derived from 536 articles and was the largest dataset of its kind when it was released.

For our retrieval experiments, we just consider the questions and their answers and ignore the

associated paragraphs.

Evidence dataset D: We use the preprocessed English Wikipedia dump from December 2018

as released by Karpukhin et al. (2020) as our evidence dataset. Each Wikipedia article is split into

non-overlapping 100 word passages. There are over 21 million total passages.
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Dataset Train Filtered Train Dev Test

WebQ 3,417 2,474 361 2,032
SQuAD-Open 78,713 70,096 8,886 10,570
TriviaQA 78,785 60,413 8,837 11,313
NQ-Open 79,168 58,880 8,757 3,610

Table 5.1: Number of question-answer pairs in QA datasets. The training set is used for open-
domain QA experiments (§5.4). The filtered train version is used for supervised retriever training.
The filtered set ignores those examples where the passages (or documents) retrieved from the
evidence using BM25 does not contain the reference answer or align with the ground-truth passage.

5.2.2 Keyword-centric Datasets

To examine the robustness of UPR to keyword-centric datasets, we experiment with test collections

where dense retrievers struggle and when the questions are from different domains.

• Entity Questions contains 22K short questions about named entities based on facts from

Wikipedia. Previous work on this dataset has shown that dense retrievers struggle to retrieve

relevant passages while sparse approaches like BM25 are more successful (Sciavolino et al.,

2021).

• BEIR benchmark is a test suite for benchmarking retrieval algorithms and consists of mul-

tiple datasets, where each dataset consists of test set queries, evidence documents, and rele-

vance document annotations (Thakur et al., 2021). These datasets contain different kinds of

retrieval tasks like fact-checking, question answering, etc. and span diverse domains includ-

ing news, technical, and Wikipedia making it a challenging benchmark.

5.2.3 Retrievers

In our re-ranking experiments, we retrieve passages from both unsupervised and supervised re-

trievers, as detailed below.
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Unsupervised Retrievers

• BM25 ranks based on the term-frequency and inverse document frequency of the keywords

present in the question and passage (Robertson and Zaragoza, 2009). Prior work has shown

that BM25 is a strong baseline for the datasets we consider (Ma et al., 2021b). We refer the

readers to §2.5.2 for more details.

• MSS is a pre-training task to train dense retrievers by predicting masked salient spans like

named entities with the help of a language model (Sachan et al., 2021a). MSS pre-training

has also been shown to improve supervised retrieval performance. We refer the readers to

§3.2.1 for further details.

• Contriever performs unsupervised training of the retriever by maintaining a very large pool

of negative passages during training (Izacard et al., 2022). The passage embeddings from

the previous training batches are cached and are re-used during contrastive training. In order

to prevent a rapid change in the passage encoder weights, they are updated using exponen-

tial moving average of the previous weights which is also known as momentum contrastive

training (He et al., 2020). Training with a large pool of negative examples has shown to

improve the zero-shot ability of retrievers.

Supervised Retrievers

• DPR uses human-annotated question-document pairs and hard-negative examples to train a

supervised dense retriever (Karpukhin et al., 2020). We refer the reader to §3.2.2 for further

details on DPR training.

• MSS-DPR further improves DPR performance by first pre-training the dense retriever using

MSS followed by DPR-style supervised finetuning (§3.5.2; Sachan et al., 2021a).
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5.2.4 Pre-trained Language Models (PLMs)

To assess the relative strengths and weaknesses of pre-trained models in re-ranking, we experiment

with a range of PLMs for computing our re-ranking relevance scores. These PLMs vary along mul-

tiple axes: architecture (encoder-decoder or decoder-only models), training style (prefix language

modeling, autoregressive training, or instruction-tuning), and sizes.

• T5 series consists of encoder and decoder transformers pre-trained by denoising input text

sequences (§2.4.3). We experiment with the T5 model (Raffel et al., 2020), its language

model adapted version (T5-lm-adapt; Lester et al., 2021), and the T0 language model (Sanh

et al., 2022). T0 was trained by finetuning T5-lm-adapt with multiple tasks defined by in-

structions. For more details on instruction-tuning, please refer to §2.4.3. Unless specified

otherwise, we use the “xl” configuration that contain 3B parameters.

• GPT consists of a transformer decoder trained with the autoregressive language modeling

objective (§2.4.3; Radford et al., 2018). We use the GPT-neo model with 2.7B parame-

ters (Black et al., 2021).

5.2.5 Implementation Details

We run all the experiments on a cluster with V100-32GB GPUs. We use PyTorch (Paszke et al.,

2019) to implement the UPR approach and relevant baselines. To get the top-K retrieved passages,

we use the open-source implementations of the retrievers and their checkpoints. For BM25, we

use the pre-computed top-K passages outputs from the pyserini toolkit (Lin et al., 2021a).2 For

MSS, DPR, and MSS-DPR retrievers, we use the open-source implementations from Sachan et al.

(2021b).3 For Contriever and PLMs, we use their open-source checkpoints (Wolf et al., 2020).

For the dense retriever experiments, we use the base configuration, which consists of 12 atten-

tion heads, 12 layers, and 768 model dimensions. To experiment with supervised retrievers, we

2https://github.com/castorini/pyserini/blob/master/docs/experiments-dpr.md
3https://github.com/DevSinghSachan/emdr2
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Retriever SQuAD-Open TriviaQA NQ-Open WebQ
Top-20 Top-100 Top-20 Top-100 Top-20 Top-100 Top-20 Top-100

Unsupervised Retrievers

MSS 51.3 68.4 67.2 79.1 60.0 75.6 49.2 68.4
MSS + UPR 75.7 80.8 81.3 85.0 77.3 81.5 71.8 80.4

BM25 71.1 81.8 76.4 83.2 62.9 78.3 62.4 75.5
BM25 + UPR 83.6 87.4 83.0 86.4 78.6 85.2 72.9 81.4

Contriever 63.4 78.2 73.9 82.9 67.9 80.6 65.7 80.1
Contriever + UPR 81.3 85.6 82.8 86.4 84.7 87.0 75.7 83.5

Supervised Retrievers

DPR 59.4 74.5 79.8 85.1 79.2 85.7 74.6 81.6
DPR + UPR 80.7 85.4 84.3 87.2 83.4 88.6 77.7 84.1

MSS-DPR 73.1 84.5 81.9 86.6 81.4 88.1 76.9 84.6
MSS-DPR + UPR 85.2 89.4 84.8 88.0 83.9 89.4 77.2 85.2

E2E Supervised - - 84.1 87.8 84.8 89.8 79.1 85.2

Table 5.2: Top-{20, 100} retrieval accuracy on the test set of datasets before and after UPR
re-ranking of the top-1000 retrieved passages with the T0-3B model. Best results of the unsu-
pervised retriever are underlined while those of the supervised retriever are highlighted in bold.
For reference, we also include the state-of-the art supervised results in the last row, which is ob-
tained from end-to-end or joint training of the retriever and language model using question-answer
pairs (Sachan et al., 2021a,b).

train DPR and MSS-DPR for 3 epochs on SQuAD-Open, 40 epochs on NQ-Open and TriviaQA,

and 20 epochs on WebQ.4 We train with Adam optimizer (Kingma and Ba, 2014), a batch size of

128, 1 hard negative example for each positive pair, a learning rate of 2e-5 with a linear decay, and

a weight decay of 0.1. Model training was performed on 16 GPUs.

5.3 Results: Passage Retrieval

We evaluate the performance of our proposed Unsupervised Passage Re-ranker (UPR), conduct

ablations to better understand the approach, evaluate robustness on challenging test collections,

and discuss run-time efficiency.

Our goal is to improve the rankings of top-{20, 100} passages. Hence, in the first stage, a

4In contrast to previous work on SQuAD-Open, we train DPR and MSS-DPR for 3 epochs to prevent overfitting.
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larger candidate list is fetched by retrieving the top-1000 passages. Then, in the second stage,

these passages are re-ranked with the T0-3B PLM unless specified otherwise. To evaluate UPR

performance, we compute the conventional top-K retrieval accuracy metric. It is defined as the

fraction of questions for which at least one passage within the top-K passages contains a span that

matches a reference answer to the question.

5.3.1 Main Task

We experiment with the four datasets and five retrievers as introduced in §5.2.1 and §5.2.3, respec-

tively, and perform re-ranking with the T0-3B model. Table 5.2 reports the top-20 and top-100

retrieval accuracy before and after re-ranking. UPR provides consistent improvements across all

the retrievers and datasets, improving unsupervised models by 6%-18% absolute and supervised

models by up to 12% in top-20 accuracy.

Re-ranked Contriever outperforms DPR by an average of 7% in the top-20 and 4% in the

top-100 when considering all the datasets. This shows that a fully unsupervised pipeline of a

retriever and re-ranker can outperform strong supervised models like DPR. Sparse representations

still remain competitive, with BM25 outperforming Contriever and MSS on SQuAD-Open re-

ranking.

We also see that re-ranked MSS-DPR comes close to or matches the performance of state-of-

the-art supervised retrievers (last row in Table 5.2). Because these supervised models are based

on end-to-end training of the retriever and language model, they are memory-intensive and too

expensive to train for very large models. As such, UPR offers a viable alternative to expensive

joint training.

Intuition behind the performance gains obtained by UPR: The question generation step in the

re-ranker involves expressive cross-attention with the passage tokens. As a result, each question

token attends to all the passage tokens in each decoder layer before predicting the next question

token. This results in an accurate estimation of the relevance (or log-likelihood) scores than the
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original retriever scores, thus leading to an improved retrieval accuracy after re-ranking. This rea-

soning is further corroborated by our analysis presented next, where we present several examples

where UPR improves over the incorrect BM25 retrievals.

Qualitative analysis: In Table 5.3, we include some examples of questions and their BM25

retrieved and UPR re-ranked top-1 passages. While BM25 retrieves passages with high lexical

overlap, UPR owing to its cross-attention mechanism is able to better understand the relationships

between tokens in the question and passage and thus leads to an improvement in passage rankings

over the first-stage retriever. In the last example, we note that although the BM25 retrieved passage

contains the ground-truth answer, it should be considered a false positive result. On the other

hand, UPR leads to the correctly ranked passage but the exact match evaluation metric marks it as

incorrect as it does not match the full ground-truth answer.

5.3.2 Ablation Studies

Importance of Question Generation

To understand the importance of re-ranking based on question generation p(q | z), we compare it

with another unsupervised approach where re-ranking is based on passage generation conditioned

on the question p(z | q). This quantity can be estimated by computing the average log-likelihood

of generating the passage tokens using PLM and teacher-forcing as

log p(z | q; Θ) =
1

|z|
∑
t

log p(zt | z<t, q; Θ) ,

where Θ denotes the parameters of the PLM and |z| denotes the number of passage tokens.

For this analysis, we work with the NQ-Open development set and obtain the union of top-

1000 passages from the BM25 and MSS retrievers. These passages are re-ranked with two PLMs:

T0-3B and GPT-2.7B. Our results in Figure 5.3 demonstrate that question generation obtains sub-

stantial improvements over the BM25 and MSS retrievers, highlighting its usefulness in passage

re-ranking. On the other hand, re-ranking based on passage generation leads to a drop in retrieval
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Question / Answer BM25 BM25 + UPR

Question: when did
beauty and the beast come
out on dvd?
Answer: June 6 , 2017

Title: Beauty and the Beast: The Enchanted Christ-
mas
Passage: these traits were incorporated into Forte, the
pipe organ, who did not want the Beast to become
human again. Unlike the other characters, Forte was
animated entirely by computers. The film was first
released on VHS on November 11, 1997. A bare-
bones DVD was released on October 13, 1998. Both
editions were quickly taken out of print and the film
remained unavailable until Disney released the Spe-
cial Edition DVD and VHS on November 12, 2002,
just after the studio released the original filmś Special
Edition DVD release. The new DVD featured a re-
make music video of the song "As Long’

Title: Beauty and the Beast (2017 film)
Passage: Golden Globe Awards. Disney released the
final trailer on January 30, 2017. "Beauty and the
Beast" was released on Blu-ray, DVD and Digital HD
on June 6, 2017. The film debuted at No. 1 on the
NPD VideoScan overall disc sales chart, with all other
titles in the top 20, collectively, selling only 40% as
many units as "Beauty and the Beast". The movie re-
gained the top spot on the national home video sales
charts during its third week of release. The movie
became available on Netflix on September 19, 2017.
"Beauty and the Beast" grossed $504 million in the

Question: who sings i ’m
back in the saddle again?
Answer: Gene Autry

Title: Back in the Saddle (film)
Passage: remember her as "an interesting actress"
who had talent, but "seemed doomed to work in
nothing but B-westerns." Remembering her work on
"Back in the Saddle", Wells would later recall, "Actu-
ally, I didnt́ have much to do with Gene in the film, I
had more scenes with Edward Norris." Regarding the
singing sequences, she remembered, "Usually I was
dubbed but, occasionally, if it wasnt́ something too
difficult, I was allowed to do it. They prerecord the
songs, then a huge machine comes onto the stage and
you lip-sync to the recording." "Back in the Saddle"
was filmed January 21 to

Title: Back in the Saddle Again
Passage: "Gene Autryś Melody Ranch" which pre-
miered over the CBS Radio Network on January 7,
1940 where the show ran until 1956. The song also
became the title song for the Autry film "Back in
the Saddle" (Republic Pictures, March 14, 1941).
Gene Autry recorded "Back in the Saddle Again"
for the first time on April 18, 1939 in Los Angeles
for Columbia Record Corporation, matrix number LA
1865, which was originally issued on Vocalion 05080.
LA 1865 also issued on the Conqueror, OKeh, and
Columbia labels. Early Vocalion and Conqueror la-
bels say "BACK TO THE SADDLE". Conqueror was
a private.

Question: who won the
big 10 football champi-
onship in 2016?
Answer: Penn State Nit-
tany Lions

Title: 2016 Big Ten Football Championship Game
Passage: 2016 Big Ten Football Championship Game
The 2016 Big Ten Football Championship Game was
played December 3, 2016 at Lucas Oil Stadium in In-
dianapolis, Indiana. It was the sixth annual Big Ten
Football Championship Game to determine the 2016
champion of the Big Ten Conference. The 2016 Big
Ten Championship Game pitted the Wisconsin Bad-
gers, champions of the West Division, who made its
fourth appearance in six years in the conference title
game, against the East Division champion Penn State
Nittany Lions, who made their first-ever appearance
in the conference championship game. Penn State and
Ohio State had identical 8–1

Title: 2016 Big Ten Conference football season
Passage: since the conference instituted divisions.
Wisconsin won the West Division for the fourth time
in the six years the division had existed. In the Big
Ten Championship held on December 3, 2016 at Lu-
cas Oil Stadium in Indianapolis, Indiana, Penn State
defeated Wisconsin 38–31 to win the Big Ten. Sev-
eral Big Ten teams changed head coaches in 2016.
Tracy Claeys at Minnesota had the "interim" tag re-
moved from his title and served as the permanent head
coach. D. J. Durkin was the new head coach at Mary-
land taking over for Randy Edsall after having spent
the previous year as the

Table 5.3: Selected examples from the NQ-Open development set of the top-1 retrieved passage
from BM25 and the top passage obtained by UPR re-ranking of 1000 passages. If the answer
exists in the passage it is highlighted in bold. UPR leverages powerful cross-attention between the
question and passage tokens and hence is able to obtain improved passage rankings.

accuracy in comparison to the baseline retrievers, empirically confirming that this approach does

not work well in practice.
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Figure 5.3: Comparison of two passage re-ranking approaches on the NQ-Open development set:
(1) when generating question tokens conditioned on the passage p(q | z), and (2) when generating
passage tokens conditioned on the question p(z | q). Results highlight the usefulness of question
generation in UPR for re-ranking.

Impact of Pre-trained Language Models

To understand how much the choice of PLM contributes to top-K accuracy, we compare the per-

formance of T5 (3B), T5-lm-adapt (different sizes), T0-{3B, 11B}, and GPT-neo (2.7 B) (as in-

troduced in §5.2.4) on the NQ-Open development set. We obtain the union of top-1000 passages

retrieved from BM25 and MSS and then re-rank them with UPR. Results in Table 5.4 reflect that

all the PLMs obtain significant improvements over the baseline retrievers, with the T0 models

achieving the best results. Scaling up the PLM size, especially the T5-lm-adapt models leads to

consistent performance improvements.

When comparing across PLMs, we see that the performance of T5 suffers especially on top-{1,

5} accuracy levels. This might be because it was trained to predict corrupted spans, which is not

ideal for text generation. On the other hand, autoregressive PLMs such as GPT-neo and T5-lm-

adapt tend to be better re-rankers. Furthermore, T0 obtains large improvements on top-{1, 5, 20},

demonstrating that finetuning with instructions on unrelated tasks is also beneficial for re-ranking.
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Retriever / NQ-Open (dev)
Re-Ranker Top-1 Top-5 Top-20 Top-100

BM25 22.3 43.8 62.3 76.0
MSS 17.7 38.6 57.4 72.4

T5 (3B) 22.0 50.5 71.4 84.0
GPT-neo (2.7B) 27.2 55.0 73.9 84.2
GPT-j (6B) 29.8 59.5 76.8 85.6
T5-lm-adapt (250M) 23.9 51.4 70.7 83.1
T5-lm-adapt (800M) 29.1 57.5 75.1 84.8
T5-lm-adapt (3B) 29.7 59.9 76.9 85.6
T5-lm-adapt (11B) 32.1 62.3 78.5 85.8
T0-3B 36.7 64.9 79.1 86.1
T0-11B 37.4 64.9 79.1 86.0

Table 5.4: Comparison of different pre-trained language models (PLMs) as re-rankers on the NQ-
Open development set. We re-rank the union of BM25 + MSS retrieved passages with UPR.
Results demonstrate that T0 PLMs achieves the best top-K accuracy among the compared PLMs.

Number of Re-ranked Passages (BM25 retriever)
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Top-20 Accuracy on NQ-Open (dev) Time (sec) / Question / A100 GPU

Figure 5.4: Effect of the number of passage candidates on top-20 accuracy and latency when
re-ranked with T0-3B PLM. Evaluation is done on the NQ-Open development set using BM25
retrieved passages.

Passage Candidate Size vs Latency

We study the effect of the number of passage candidates to be re-ranked on the retrieval perfor-

mance along with the time taken. For this, we consider the NQ-Open development set, re-rank
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Retriever Instruction Prompt NQ-Open (dev)
Top-1 Top-5 Top-20 Top-100

BM25 22.3 43.8 62.3 76.0

+ UPR ‘’ 28.3 56.1 73.2 82.4
+ UPR “Score the following question based on this passage.” 35.3 62.6 76.4 83.0
+ UPR “A possible question based on this passage is.” 33.8 61.6 76.2 83.1
+ UPR “This is a relevant document for the following question.” 33.7 61.8 76.0 83.0
+ UPR “Please write a question based on this passage.” 36.1 62.8 76.8 83.1

Table 5.5: Comparison of different instruction prompts when applied to the UPR framework and
evaluated on the NQ-Open development set. Results highlight that UPR works better with simple
instructions. Best results are highlighted in bold.

up to top-1000 passages obtained from BM25, and use top-20 accuracy as the evaluation criteria.

Results in Figure 5.4 illustrate that a larger pool of passage candidates indeed helps to improve the

performance. However, the gains tend to plateau as the number of passages is increased.

With more passages, the latency in re-ranking per question linearly increases reflecting the

trade-off between accuracy and throughput. The higher latency can be partly alleviated with

approaches like weight quantization, efficient implementations of the transformer kernel, model

distillation, caching passage embeddings, and using data parallelism. However, we leave these

explorations to future work.

Instruction Prompt Selection

We cross-validate using several prompts formulated as natural language instructions to aid in ques-

tion generation. We re-rank the top-1000 passages of the NQ-Open development set obtained from

BM25 using different instructions including the case with no instruction. Results in Table 5.5 re-

veal that when prompted via instructions, PLMs perform better than the case when not given any

instructions. We also note that simple but effective instructions can lead to a higher top-1 accuracy.

Due to its better accuracy, we have used the instruction “Please write a question based on this

passage” for all the experiments in this chapter.
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Retriever / NQ-Open (dev)
Re-Ranker Top-1 Top-5 Top-20 Top-100

BM25 22.3 43.8 62.3 76.0

UPR (T0-3B) 36.1 62.8 76.8 83.1
monoT5 (250M) 39.1 62.4 75.6 82.6
monoT5 (800M) 43.5 66.1 77.5 83.3
monoT5 (3B) 44.2 68.3 78.7 83.7

Table 5.6: Zero-shot supervised transfer results on the NQ-Open development set. We use
monoT5 (Nogueira et al., 2020) checkpoints of different sizes finetuned on the MS MARCO
dataset to re-rank the top-1000 passages retrieved by BM25. We also include the results of UPR
for comparison.

5.3.3 Zero-shot Supervised Transfer

To gain a better understanding of the relative strengths of UPR and supervised (or finetuned) re-

rankers, we perform zero-shot supervised transfer experiments and compare the results with UPR.

We adopt the approach of Nogueira et al. (2020), henceforth referred to as monoT5, who finetune

the T5 PLMs on the MS MARCO (Bajaj et al., 2016) passage ranking dataset. To train, question

and passage tokens are concatenated and fed to the T5 encoder. The decoder attends to the encoded

sequence and the T5 PLM is finetuned to maximize the likelihood of the “true” label. To re-rank

the passages during inference, the log-likelihood score of the “true” label is used as the relevance

score.

We use the open-source checkpoints of monoT5 to re-rank the top-1000 passages retrieved by

BM25 and report results on the NQ-Open development set (Table 5.6).5 Interestingly, we see that

supervised transfer improves the top-1 and top-5 retrieval accuracy by a large margin over UPR.

However, when the set of retrieved passages increases, such as 20-100, the results of UPR come

close to or match the results of monoT5. As end tasks such as open-domain question answering

rely on a larger set of passages to achieve good results (as demonstrated in §5.4), this highlights

the importance of UPR over supervised models as it does not require collecting annotated data for

finetuning.
5https://github.com/castorini/pygaggle
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Retriever Entity Questions
Top-20 Top-100

Baselines

MSS 51.2 66.3
DPR 51.1 63.8
MSS-DPR 60.6 73.7
Contriever 63.0 75.1
BM25 71.2 79.8
SPAR (Chen et al., 2022) 74.0 82.0

After Re-ranking with UPR (T0-3B PLM)

MSS 71.3 76.7
DPR 65.4 72.0
MSS-DPR 73.9 80.1
Contriever 76.0 81.6
BM25 79.3 83.9
BM25 + Contriever 80.2 85.4

Table 5.7: Top-{20, 100} retrieval accuracy on the Entity Questions dataset before and after re-
ranking. Following the original paper, we report macro-average scores.

5.3.4 Evaluation on Keyword-centric Datasets

Entity Questions

We re-rank the top-1000 passages from every retriever with UPR. As the training set is not provided

in this dataset, we use the checkpoints of DPR and MSS-DPR trained on NQ-Open. Results are

presented in Table 5.7. We observe that re-ranking leads to a gain of 8-20% absolute in top-20

accuracy and 4-10% in top-100 accuracy, with BM25 achieving the best results after re-ranking.

It also substantially narrows the gap between BM25 and dense retrievers. Re-ranking the union of

BM25 and Contriever outputs outperforms the current best results by 6% and 3% in the top-20 and

top-100, respectively.

We also note that multi-vector approaches specially tailored towards the robust representation

of textual entities (de Jong et al., 2022) are promising alternatives to dual-encoder retrievers as

they offer improved retrieval accuracy although at the expense of increased memory and compute

requirements. However, we defer the application of UPR to these retrievers as a part of future
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Retriever BEIR
nDCG@10 Recall@100

Baselines

BERT (Devlin et al., 2019) 9.3 20.1
SimCSE (Gao et al., 2021) 27.4 48.1
REALM (Guu et al., 2020) 25.8 46.5
Contriever 36.0 60.1
BM25 41.6 63.6

After Re-ranking with UPR (T0-3B PLM)

Contriever 44.6 66.3
BM25 44.9 68.0

Table 5.8: Macro-average nDCG@10 and Recall@100 scores on the BEIR benchmark. Perfor-
mance numbers of the baseline models are from Izacard et al. (2022).

work.

BEIR Benchmark

We re-rank the top-1000 documents from the BM25 and Contriever retrievers with the T0-3B PLM

and evaluate performance using nDCG@10 and Recall@100 metrics. Following convention, we

report the macro average scores in Table 5.8 and compare them with previous baselines. The

results on the individual datasets of BEIR are presented in Table 5.9. On both metrics, the average

scores of BM25 are much higher than those of Contriever. After re-ranking, the BM25 retriever

obtains improvements on 12 out of 15 datasets while Contriever obtains improvements on 13 out

of 15 datasets. On average, nDCG@10 improves by 3-8% and Recall@100 improves by 5-6%.

The performance gap between BM25 and Contriever also narrows down after re-ranking.

There is a considerable variation in the relative performance gains across the datasets in part

owing to the diversity in queries and evidence documents. When re-ranking BM25 outputs, the

highest relative gains are obtained on datasets containing information-seeking questions such as

FIQA-2018, NQ, and MS MARCO. Similarly, for Contriever, the relative gains are much higher

for Trec-Covid, NQ, and HotpotQA, where the queries are questions. On other datasets, the relative

gains from re-ranking are moderate to little.
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Dataset
nDCG@10 Recall@100

BM25 Contriever BM25 Contriever
original re-ranked original re-ranked original re-ranked original re-ranked

Scifact 66.5 70.3 64.9 69.6 90.8 94.2 92.6 94.3
Scidocs 15.8 17.0 14.9 17.3 35.6 39.0 36.0 39.0
Nfcorpus 32.5 34.8 31.7 33.3 25.0 28.0 29.0 31.3
FIQA-2018 23.6 44.4 24.5 45.0 53.9 67.7 56.2 72.8
Trec-covid 65.5 68.8 27.4 60.4 49.8 54.8 17.2 36.7
Touche-2020 36.8 20.6 19.3 21.3 53.8 45.7 22.5 42.4
NQ 32.9 45.4 25.4 44.2 76.0 87.7 77.1 88.4
MS MARCO 22.8 30.2 20.6 30.7 65.8 76.9 67.2 79.1
HotpotQA 60.3 73.3 48.1 72.2 74.0 82.5 70.4 80.8
ArguAna 31.5 37.2 37.9 50.3 94.2 98.2 90.1 97.5
CQADupStack 29.9 41.6 28.4 41.7 60.6 70.1 61.4 71.3
Quora 78.9 83.1 83.5 82.8 97.3 98.8 98.7 98.9
DBpedia 31.3 35.4 29.2 33.8 39.8 53.3 45.3 47.8
Fever 75.3 59.1 68.2 57.3 93.1 84.2 93.6 83.1
Climate-Fever 21.3 11.7 15.5 9.5 43.6 39.2 44.1 31.3

Average 41.6 44.9 36.0 44.6 63.6 68.0 60.1 66.3

Table 5.9: UPR re-ranking results on the BEIR benchmark (Thakur et al., 2021). Upon re-ranking
the top-1000 documents with the T0-3B PLM, on average, the performance of both BM25 and
Contriever improve on the NDCG@10 and Recall@100 metrics. We also observe a drop in scores
on some datasets which is highlighted in red.

For both these retrievers, we also observe a drop in performance on the fact-verification datasets

of Fever and Climate-fever (results highlighted in red color in Table 5.9). In addition, re-ranking

BM25 also results in a drop in performance on the Touche-2020 dataset. We note that in these

datasets, the queries are statements such as claims, which presents a challenging setting for re-

rankers. We anticipate that results can be improved on these datasets by experimenting with differ-

ent prompts such that they better suit the retrieval task and by cross-validating with the candidate

pool size to be re-ranked.

5.4 Results: Question Answering

Finally, we show that UPR improves the performance of full open-domain QA systems.
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5.4.1 Method

An open-domain QA system consists of a retriever and a reader component. The reader attends

to the retrieved passages to produce a final answer to the question. We use the Fusion-in-Decoder

(FiD; Izacard and Grave, 2021b) model as the reader. In FiD, each retrieved passage is concate-

nated with the question and is then passed as an input to the T5 encoder (Raffel et al., 2020). Then

the encoded representations for all the passages are concatenated which the T5 decoder leverages

for cross-attention.

We train the FiD reader using standard negative log-likelihood loss and teacher-forcing to gen-

erate an answer autoregressively. To understand the effect of UPR on answer generation, we then

do inference with the previously trained reader and the re-ranked passages for each question.

5.4.2 Experiments and Results

For our experiments, we train the FiD base and large models using the top-100 retrieved passages

from MSS, DPR, and MSS-DPR retrievers.6 We conduct experiments on SQuAD-Open, TriviaQA,

and NQ-Open datasets and train FiD models with a batch size of 64 using 64 GPUs. We use Adam

optimizer, a learning rate of 2e-5 with a linear decay, a weight decay of 0.1, gradient clipping with

a maximum value of 1.0, and train for 3 epochs on SQuAD-Open, 10 epochs on NQ-Open and

TriviaQA.

We re-rank the top-1000 passages with UPR using the T0-3B PLM and then perform inference

by feeding the top-100 re-ranked passages to FiD models. During inference, an answer is generated

using greedy decoding. In contrast to previous work that makes use of the 2016 Wikipedia dump

as evidence for SQuAD-Open, we use the same set of evidence passages for all the datasets. As

our evidence set is larger and newer, some questions may be unanswerable, which renders a fair

comparison difficult. However, to alleviate dataset-specific design choices, we adopt a common

experimental setup.

6Base and large configurations of FiD are based on corresponding base and large T5 models.
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Model top-K SQuAD-Open TriviaQA NQ-Open
dev test dev test dev test

Baselines

BM25 + BERT (Lee et al., 2019) 5 28.1 33.2 47.2 47.1 24.8 26.5
ORQA (Lee et al., 2019) 5 26.5 20.0 45.1 45.0 31.3 33.3
REALM (Guu et al., 2020) 5 - - - - 38.2 40.4
DPR (Karpukhin et al., 2020) 25 - 38.1 - 56.8 - 41.5
RAG-Sequence (Lewis et al., 2020c) 50 - - 55.8 56.8 44.0 44.5
Individual Top-K (large) (Sachan et al., 2021a) - - - - 59.6 - 48.1
Joint Top-K (large) (Sachan et al., 2021a) 50 - - - 68.3 - 51.4
FiD-base (Izacard and Grave, 2021b) 100 - 53.4 - 65.0 - 48.2
FiD-large (Izacard and Grave, 2021b) 100 - 56.7 - 67.6 - 51.4
FiD-KD-base (Izacard and Grave, 2021a) 100 - - 68.6 68.8 48.0 49.6
FiD-KD-large (Izacard and Grave, 2021a) 100 - - 71.9 72.1 51.9 53.7
EMDR2-base (Sachan et al., 2021b) 50 46.8 51.1 71.1 71.4 50.4 52.5

Our Implementation

FiD-base (MSS retriever, T5 reader)
100

36.2 39.6 60.9 60.3 43.7 44.5
+ Inference with UPR re-ranked passages 43.7 50.1 68.5 68.9 45.8 47.3

FiD-base (DPR retriever, T5 reader)
100

48.8 45.8 67.9 68.5 49.4 50.8
+ Inference with UPR re-ranked passages 51.5 54.0 70.1 71.2 49.8 51.3

FiD-base (MSS-DPR retriever, T5 reader)
100

50.1 52.2 69.9 70.2 49.7 50.8
+ Inference with UPR re-ranked passages 51.9 55.6 71.5 71.8 49.9 51.5

FiD-large (MSS-DPR retriever, T5 reader)
100

51.9 54.4 71.5 71.6 51.8 53.6
+ Inference with UPR re-ranked passages 53.1 58.1 72.7 73.2 51.5 54.5

Table 5.10: Exact match scores for the open-domain QA task. We train one FiD model for each
retriever as indicated and then perform inference with its respective re-ranked outputs. Top-K
denotes the number of retrieved passages that are used by the reader to produce an answer. We
report the baseline performance numbers from the respective papers. The best performing models
are highlighted in bold.

Our results are presented in Table 5.10 where we report the exact match (EM) scores for eval-

uation. More accurate passages after re-ranking improve the performance of the pre-trained FiD

models for all the retrievers. Performing inference on the FiD-large model with re-ranked MSS-

DPR passages achieves new state-of-the-art results, outperforming the pre-trained FiD model by

1-3 EM points. Overall, this provides a simple approach for obtaining performance gains without

the need to iteratively re-train (Izacard and Grave, 2021a) or perform computationally expensive

end-to-end training (Sachan et al., 2021b).

114



5.5 Related Work

Our work is based on re-ranking passages for open-domain retrieval using pre-trained language

models (PLMs) which we have covered in earlier sections. Here, we instead focus on covering

previous work related to generative pre-training, query likelihood for document ranking, and open-

domain QA.

Generative pre-training and instruction tuning: Recently, there has been an increased adop-

tion of the generative pre-trained transformer (GPT) series of models by the NLP community (Rad-

ford et al., 2019). Among the interesting properties of GPT models is their ability to understand

task instructions specified in natural language and then perform well on tasks in a zero-shot or few-

shot manner (Brown et al., 2020; Smith et al., 2022). The zero-shot performance of GPT models

further improves when finetuning them on multiple different tasks using task-specific instructions,

which is also known as instruction-tuning (Sanh et al., 2022; Wei et al., 2022; Min et al., 2022).

Document ranking based on query likelihood: In information retrieval, an appealing approach

to rank documents is by utilizing language models to compute relevance scores for a query (Ponte

and Croft, 1998). Prior approaches estimated a count-based language model for each document

that was used to compute query likelihood scores for ranking (Zhai and Lafferty, 2001). However,

these approaches suffer from issues such as data sparsity. More recent approaches utilize PLMs

such as GPT or T5 to compute query likelihood (Nogueira dos Santos et al., 2020). To improve

ranking accuracy, they perform supervised finetuning using query-document pairs (Ju et al., 2021).

Our work also utilizes PLMs, but instead, we leverage a larger instruction-tuned language model

and apply them in a zero-shot manner without finetuning.

Open-domain QA: This task involves producing answers to information-seeking questions from

large document collections. Typical approaches consist of retriever and reader networks, where

the retriever identifies a small number of documents to aid the reader in producing answers (Chen
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et al., 2017). To be scalable, retrievers are often modeled using dual-encoders (Lee et al., 2019)

as multi-vector encoders (Zhou and Devlin, 2021) are not scalable. To further improve retrieval

accuracy, re-rankers are employed (Nogueira et al., 2020). Given retrieved documents, a reader

is then trained to generate a short answer to the question (Izacard and Grave, 2021b; Lewis et al.,

2020c).

5.6 Discussion

In this chapter, we propose UPR, an approach to perform unsupervised passage re-ranking to im-

prove open-domain retrieval. To re-rank, UPR first computes a relevance score for each retrieved

passage by obtaining a question generation likelihood estimate conditioned on the passage using

pre-trained language models (PLM). Then, to obtain the re-ranked list, the original ordering of the

passages is permuted based on the maximum relevance scores. We summarize our key contribu-

tions and findings as follows:

• When re-ranking unsupervised retriever outputs, UPR obtains substantial gains in the range

of 6%-18% points absolute in top-20 accuracy across four popular passage retrieval datasets.

Interestingly, our work is the first to demonstrate that an unsupervised pipeline consisting of

a retriever and UPR greatly outperforms strong supervised retrievers like DPR.

• Our extensive experiments reveal that UPR achieves consistent improvements in retrieval

accuracy for both unsupervised and supervised retrievers. These results present UPR as a

promising alternative as it just uses off-the-shelf language models and is zero-shot, i.e., it

does not require any finetuning or data annotation.

• After re-ranking BM25 outputs, UPR also obtains large performance gains of 8%-14% on

datasets such as Entity Questions and SQuAD-Open where dense retrievers struggle. These

results highlight that UPR also generalizes well to sparse retrievers.

• We conduct an in-depth analysis of several factors to understand their importance in UPR
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such as the effect of PLM, candidate size of input passages, how to best estimate the rele-

vance of a passage, etc. Our experiments provide critical insights into which settings provide

the best gains for passage re-ranking.

• On the open-domain QA task, by just performing inference using re-ranked passages and a

pre-trained reader model, we achieve up to 3 EM points improvement over the existing best

results for the large configuration.

5.6.1 Limitations

In the previous sections, we have shown that UPR has been extremely effective in improving open-

domain passage retrieval. In addition, UPR also does not require any language model finetuning.

Although broadly applicable and flexible, UPR suffers from several challenges that we discuss as

follows.

Computationally expensive: In order to achieve good performance, using a large PLM and a

large number of candidate passages (for instance, top-K=1000) is desirable (§5.3.2). However,

it is worth mentioning that large PLMs lead to a slower inference procedure than their smaller

counterparts. Moreover, the inference latency is linearly proportional to the candidate size O(K),

i.e., more candidates increase the number of PLM forward passes thus overall requiring more

computation. Both these factors contribute to UPR being computationally expensive.

Upper bound on re-ranking performance: Generally, as the number of candidate passages are

increased, the re-ranking accuracy improves as well. This trend is also evident from Figure 5.4.

However, a fundamental limitation of any re-ranker including UPR is that the maximum achievable

performance is upper bounded by the accuracy of the set of candidate passages from the top-K

list of the first-stage retriever. This is consequential because if the recall of the top-K passages

(such as top-1000) from the first-stage retriever is low, then the re-ranker’s performance will be

bottlenecked by this recall.
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Sensitivity to input query types: In this chapter, we have applied UPR to a variety of benchmark

QA datasets and shown its effectiveness in improving retrieval accuracy. However, on specific

retrieval tasks such as that of retrieving supporting documents for factual claims (Thorne et al.,

2018), UPR has shown to struggle (§5.3.4) as re-ranking adversarially affects the original retrieval

accuracy. Another task where UPR leads to subpar results is that argument retrieval (Bondarenko

et al., 2020). This drop in performance post re-ranking is agnostic to the retriever type as UPR

underperforms for both sparse and dense retrievers. These findings illustrate that UPR is still not

a one-model-fits-all framework and more work is needed to devise robust re-ranking solutions for

ad-hoc retrieval tasks.

Requires access to language model logits: Our formulation of UPR is based on estimating

the relevance score of a passage by computing the question generation likelihood using teacher-

forcing. To obtain the log-likelihood of question tokens, logits are needed at every step for all

the tokens in the vocabulary. This necessitates either access to the language model weights or to

services that can score the target text given the input text. On the contrary, UPR will not work with

platforms that only provide the language model generation endpoint.

5.6.2 Follow-up Work

• Promptagator: In this work (Dai et al., 2023), the authors emphasize the importance of

training a custom retriever for specific types of queries differing in their search intent such as

for the diverse datasets included in the BEIR benchmark. Their proposed approach consists

of prompting a large language model such as PaLM (Chowdhery et al., 2022) using few-shot

query-passage pairs and the task instruction to synthesize new questions from the evidence

passages. These generated question-passage pairs are then used to train task-adapted retriev-

ers which are more accurate than generic pre-trained retrievers.

• Pairwise ranking prompting (PRP): Similar in spirit to UPR, this is also an unsupervised

re-ranking approach using large language models. However, instead of estimating the rele-
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vance of each query-passage pair separately, PRP prompts the language model to compare

the two input passages and output the passage identifier that is more relevant (Qin et al.,

2023). The positions of the two passages are swapped based on the language model output

and this process is repeated recursively to obtain the re-ranked list. Such pairwise contrasting

and reasoning using language models have been shown to improve passage rankings.

• Code re-ranking: The re-ranking idea proposed in this chapter has also been successfully

applied to improve the quality of generated programs by re-ranking the output of code gener-

ation systems (Zhang et al., 2023). More specifically, first, given a natural language instruc-

tion such as a code description, multiple programs are sampled after prompting a language

model that is trained to generate code (Chen et al., 2021). In the next step, the generated

program is given as input to the language model to score the language instruction. Finally,

the scores from both the previous steps are added to re-rank the programs from the first step.

5.6.3 Future Work

UPR presents several interesting directions for future work. First, its applications to other retrieval

tasks such as improving source-code retrieval based on textual queries can be explored. Second,

another promising direction would be to tune instructions according to the nature of the retrieval

tasks. For instance, when retrieving similar sentences in the BEIR benchmark, variations of the

instruction prompt used in UPR can be explored. Finally, it would also be interesting to investigate

the extent to which specialized language models such as the ones finetuned to generate questions

using passage-questions data would further help in improving retrieval.
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Chapter 6

Questions Are All You Need to Train a

Dense Passage Retriever

Dense passage retrieval methods (Karpukhin et al., 2020; Xiong et al., 2021), initialized with en-

coders such as BERT (Devlin et al., 2019) and trained using supervised contrastive losses (Oord

et al., 2018), have surpassed the performance achieved by previously popular keyword-based ap-

proaches like BM25 (Robertson and Zaragoza, 2009). Such retrievers are core components in

models for open-domain tasks, such as open-domain QA, where state-of-the-art methods typically

require large supervised datasets with custom hard-negative mining and denoising of positive ex-

amples. In this chapter, we introduce the first unsupervised retriever training method, based on a

new corpus-level autoencoding approach, that can match or surpass strong supervised performance

levels with no labeled training data or task-specific losses.

We propose ART: Autoencoding-based Retriever Training which only assumes access to sets

of unpaired questions and passages. Given an input question, ART first retrieves a small set of

possible evidence passages. It then reconstructs the original question by attending to these pas-

sages (see Figure 6.1 for an overview). The key idea in ART is to consider the retrieved passages

as a noisy representation of the original question and question reconstruction probability as a way

of denoising that provides soft-labels for how likely each passage is to have been the correct result.
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To bootstrap the training of a strong retriever, it is important to both have a strong initial re-

trieval model and to be able to compute reliable initial estimates of question reconstruction prob-

ability when conditioned on a (retrieved) passage. Although passage representations from pre-

trained encoders are known to be reasonable retrieval baselines, it is less clear how to do zero-shot

question generation. We use a generative pre-trained language model (PLM) and prompt it with

the passage as input to generate the question tokens using teacher-forcing. As finetuning of the

question-generation PLM is not needed, only the retrieval model, ART can use large PLMs and

obtain accurate soft-label estimates of which passages are likely to be the highest quality.

The retriever is trained to penalize the divergence of a passage likelihood from its soft-label

score. For example, if the question is “Where is the bowling hall of fame located?” as shown in

Figure 6.1, then the training process will boost the retrieval likelihood of the passage “Bowling

Hall of Fame is located in Arlington, ...” as it is relevant and would lead to a higher question

reconstruction likelihood, while the likelihood of the passage “Hall of Fame is a song by ...” would

be penalized as it is irrelevant. In this manner, the training process encourages correct retrieval

results and vice-versa, leading to an iterative improvement in passage retrieval.

Comprehensive experiments on five benchmark QA datasets demonstrate the usefulness of our

proposed training approach. By simply using questions from the training set, ART outperforms

models like DPR by an average of 5 points absolute in top-20 accuracy and 4 points absolute in

top-100 accuracy. We also train using all the questions contained in the Natural Questions (NQ)

dataset (Kwiatkowski et al., 2019) and find that even with a mix of answerable and unanswerable

questions, ART achieves strong generalization on out-of-distribution datasets. Our analysis further

reveals that ART is highly sample efficient, outperforming BM25 and DPR with just 100 and 1000

questions, respectively, on the NQ-Open dataset, and that scaling up to larger retriever models

consistently improves performance.
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Where is the bowling
hall of fame located? 

Pre-trained Language
Model

Passage soft-labels 
obtained by cross-attention

Evidence Corpus

Passage likelihood score  
obtained by retriever 

Question

Bowling is a target sport
and recreational activity ."Hall of Fame" is a song

by Irish pop rock band ...... Bowling Hall of Fame
is located in Arlington, ...

Retrieved Passages Passage Encoder

Question Encoder

Question reconstruction by teacher-forcing

KL Divergence

Figure 6.1: ART maximizes the retrieved passage likelihood computed from the dense retriever
by considering the language model question reconstruction score conditioned on the passage as a
soft-label. Colored blocks indicate trainable parameters. Red arrows show gradient flow during
backpropagation.

6.1 Method

6.1.1 Problem Definition

We focus on open-domain retrieval, where given a question q, the task is to select a small set of

matching passages (i.e., 20 or 100) from a large collection of evidence passages D = {d1, . . . ,dM}.

Our goal is to train a retriever in a zero-shot manner, i.e., without using question-passage pairs,

such that it retrieves relevant passages to answer the question. Our proposed approach consists of

two core modeling components (§6.1.2, §6.1.3) and a novel training method (§6.1.4).

6.1.2 Dual-Encoder Retriever

For the retriever, we use the dual-encoder model (Bromley et al., 1994) which consists of two

encoders, where

• one encoder computes the question embedding fq(q; Φq) : X 7→ Rd, and

• the other encoder computes the passage embedding fd(d; Φd) : X 7→ Rd.

Here, X = Vn denotes the universal set of text sequences, V denotes the vocabulary consisting of
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discrete tokens, and Rd denotes the (latent) embedding space.1 We assume that both the question

and passage embeddings lie in the same latent space. The retrieval score for a question-passage

pair (q,d) is then defined as the inner product between their respective embeddings,

s(q,di; Φ) = fq(q; Φq) · fd(di; Φd), ∀di ∈ D, (6.1)

where Φ = [Φq,Φd] denotes the retriever parameters. We select the top-K passages with maximum

inner product scores and denote them as Z = {z1, . . . ,zK}.2

We use the transformer network (Vaswani et al., 2017) with BERT tokenization (Devlin et al.,

2019) to model both encoders. To obtain the question or passage embedding, we do a forward pass

through the transformer and select the last layer hidden state corresponding to the [CLS] token.

As the input passage representation, we use both the passage title and text separated by the [SEP]

token.

6.1.3 Zero-shot Cross-Attention Scorer

We obtain an estimate of the relevance score for a question-(retrieved) passage pair (q, z) by using

a pre-trained language model (PLM). In order to do this in a zero-shot manner, we use a large

generative PLM to compute the likelihood score of a passage conditioned on the question p(z | q).

The quantity p(z | q) can be better approximated by the autoregressive generation of question

tokens conditioned on the passage and teacher-forcing (Sachan et al., 2022). More formally, this

can be written as

log p(z | q; Θ) = log p(q | z; Θ) + log p(z) + c (6.2a)

∝ 1

|q|
∑
t

log p(qt | q<t, z; Θ) , (6.2b)

where Θ denotes the parameters of the PLM, c is a constant independent of the passage z, and |q|
1This material is analogous to the dense retrievers introduced in §3.1.1, and is included here for ease of reading

with additional notation.
2As the selection operation requires performing inner-product with millions of passage embeddings, this can be

efficiently performed on accelerators such as GPUs.
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denotes the number of question tokens. Here, Eq. 6.2a follows from a simple application of Bayes’

rule to p(z | q) and in Eq. 6.2b, we assume that the passage prior p(z) is uniform for all z ∈ Z .

We hypothesize that estimating the relevance score using Eq. 6.2b would be accurate because

it requires performing deep cross-attention involving all the question and passage tokens. In a

large PLM, the cross-attention step is highly expressive, and in combination with teacher-forcing,

requires the model to explain every token in the question resulting in a better estimation.

As the input passage representation, we concatenate the passage title and its text. In order

to prompt the PLM for question generation, we follow Sachan et al. (2022) and append a simple

natural language instruction “Please write a question based on this passage.” to the passage text.

6.1.4 Training Algorithm

For training the model, our only assumption is that a collection of questions (T ) and evidence

passages (D) are provided as input. During training, the weights of the retriever are updated while

the PLM is not finetuned, i.e., it is used in inference mode. Our training algorithm consists of

five core steps. The first four steps are performed at every training iteration while the last step is

performed every few hundred iterations. Figure 6.1 presents an illustration of our approach.

Step 1: Top-K passage retrieval: For fast retrieval, we pre-compute the evidence passage em-

beddings using the initial retriever parameters (Φ̂d). Given a question q, we compute its embed-

ding using the current question encoder parameters (Φq) and then retrieve the top-K passages (Z)

according to Eq. 6.1. We then embed these top-K passages using the current passage encoder

parameters (Φd) and compute fresh retriever scores as,

s(q, zi) = fq(q; Φq) · fd(zi; Φd), ∀zi ∈ Z.
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Step 2: Retriever likelihood calculation: Computing the exact likelihood of the passage condi-

tioned on the question requires normalizing over all the evidence passages

p(zi | q,D; Φ) =
exp(s(q, zi)/τ)∑M
j=1 exp(s(q,dj)/τ)

,

where τ is the temperature (or scaling) hyperparameter. Computing this term is intractable, as

this would require re-embedding all the evidence passages using Φd. Hence, we define a new

distribution to approximate the likelihood of zi as

q(zi | q,Z; Φ) =
exp(s(q, zi)/τ)∑K
j=1 exp(s(q, zj)/τ)

, (6.3)

which we also refer to as the student distribution. We assume that passages beyond the top-K

contribute a very small probability mass, so we only sum over all the retrieved passages Z in

the denominator. While this approximation leads to a biased estimate of the retrieved passage

likelihood, it works well in practice. Computing Eq. 6.3 is tractable as it requires embedding and

backpropagating through a much smaller set of passages.

Step 3: PLM relevance score estimation: We compute the relevance score log p(zi | q) of all

the passages in Z using a large PLM (Θ). This requires scoring the question tokens using teacher-

forcing conditioned on a passage as described in §6.1.3. We then define a teacher distribution by

applying softmax to the relevance scores

p̂(zi | q,Z) =
exp(log p(zi | q; Θ))∑K
j=1 exp (log p(zj | q; Θ))

.

Step 4: Loss calculation and optimization: We train the retriever (Φ) by minimizing the KL

divergence loss between the teacher distribution (obtained by PLM) and the student distribution
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(computed by retriever).

L(Φ) = 1

|T |
∑
q∈T

KL(p̂(zi | q,Z) || q(zi | q,Z; Φ))

Intuitively, optimizing the KL divergence pushes the passage likelihood scores of the retriever to

match the passage relevance scores from PLM by considering the relevance scores as soft-labels.

Step 5: Updating evidence embeddings: During training, we update the parameters of both the

question encoder (Φq) and passage encoder (Φd). Due to this, the pre-computed evidence embed-

dings that were computed using initial retriever parameters (Φ̂d) become stale, which may affect

top-K passage retrieval. To prevent staleness, we re-compute the evidence passage embeddings

using current passage encoder parameters (Φd) after every 500 training steps.

6.1.5 ART as an Autoencoder

Since our encoder takes as input question q and the PLM scores (or reconstructs) the same question

when computing the relevance score, we can consider our training algorithm as an autoencoder

with a retrieved passage as the latent variable.

In the generative process, we start with an observed variable D (the collection of evidence

passages), which is the support set for our latent variable. Given an input q, we generate an index

i and retrieve the passage zi. This index generation and retrieval process is modeled by our dual-

encoder architecture. Given zi, we decode it back into the question using our PLM.

Recall that our decoder (the PLM) is frozen and its parameters are not updated. However,

the signal from the decoder output is used to train parameters of the dual-encoder such that the

log-likelihood of reconstructing the question q is maximized. In practice, this improves the dual-

encoder to select the best passage for a given question, since the only way to maximize the objective

is by choosing the most relevant zi given the input q.
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Dataset Train Questions Dev Test

Question Answering Datasets

WebQ 3,417 361 2,032
NQ-Open 79,168 8,757 3,610
SQuAD-Open 78,713 8,886 10,570
TriviaQA 78,785 8,837 11,313
Entity Questions – 22,068 22,075

All Questions Datasets

NQ-Full 307,373 – –
MS MARCO 502,939 – –

Table 6.1: Dataset statistics. During the training process, ART only uses the questions while
evaluation is performed over the canonical development and test sets.

6.2 Experimental Setup

In this section, we describe the datasets, evaluation protocol, implementation details, and baseline

methods for our passage retrieval experiments.

6.2.1 Datasets and Evaluation

Evidence passages: The evidence corpus includes the preprocessed English Wikipedia dump

from December 2018 (Karpukhin et al., 2020). Following convention, we split an article into non-

overlapping segments containing 100 words each resulting in over 21 million passages. The same

evidence is used for both training and evaluation.

Question answering datasets: Following previous work, we use the open-retrieval version of

Natural Questions (NQ-Open; Kwiatkowski et al., 2019), TriviaQA (Joshi et al., 2017), WebQues-

tions (WebQ; Berant et al., 2013), SQuAD-1.0 (SQuAD-Open; Rajpurkar et al., 2016), and Entity

Questions (EQ; Sciavolino et al., 2021) datasets. For further details on these datasets, we refer

the reader to §3.3.1 for NQ-Open and TriviaQA, §4.2.1 for WebQ, §5.2.1 for SQuAD-Open, and

§5.2.2 for EQ. In Table 6.1, we list their training, development, and test set sizes.
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All questions datasets: For our transfer learning experiments, we use all the questions from

Natural Questions (henceforth referred to as NQ-Full) and MS MARCO passage ranking (Bajaj

et al., 2016) datasets. Table 6.1 lists the number of questions. The questions in NQ-Full are

information-seeking, as they were asked by real users. Its size is four times that of NQ-Open. NQ-

Full consists of questions having just long-form of answers such as paragraphs, all the questions in

NQ-Open (which have both long-form and short-form answers), questions having yes/no answers,

and questions that do not contain the answer or are unanswerable. For MS MARCO, we use its

provided passage collection (around 8.8 million passages in total) as the evidence corpus.

Evaluation: To evaluate retriever performance, we report the conventional top-K accuracy met-

ric. It is the fraction of questions for which at least one passage among the top-K retrieved passages

contains a text span that matches human-annotated answer(s) to the question.

6.2.2 Implementation Details

Model sizes: We use BERT base configuration (Devlin et al., 2019) for the retriever, which con-

sists of 12 layers, 12 attention heads, and 768 embedding dimensions, leading to around 220M

trainable parameters. For the teacher PLM, we use two configurations: (i) T5-XL configura-

tion (Raffel et al., 2020) consisting of 24 layers, 32 attention heads, and 2048 embedding di-

mensions, leading to 3B parameters, and (ii) a larger T5-XXL configuration consisting of 11B

parameters.

Model initialization: We initialize the retriever with unsupervised masked salient spans (MSS)

pre-training (Sachan et al., 2021a) as it provides an improved zero-shot retrieval over BERT pre-

training (§3.2.1).3 We initialize the cross-attention (or teacher) PLM with the T5-lm-adapted (Lester

et al., 2021) or instruction-tuned T0 (Sanh et al., 2022) language models, which have been shown

to be effective zero-shot re-rankers for information retrieval tasks (Sachan et al., 2022).
3We use the open-source MSS retriever checkpoint from https://github.com/DevSinghSachan/emdr2.
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Compute hardware: We perform training on instances containing 8 or 16 A100 GPUs, each

containing 40 GB RAM.

Passage retrieval: To perform fast top-K passage retrieval at every training step, we pre-compute

the embeddings of all the evidence passages. Computing embeddings of 21M passages takes

roughly 10 minutes on 16 GPUs. The total size of these embeddings is around 30 GB (768-

dimensional vectors in FP16 format). For scalable retrieval, we shard these embeddings across all

the GPUs and perform exact maximum inner product search using distributed matrix multiplica-

tion.

Training details: When training with T0 (3B) PLM, for all the datasets except WebQ, we per-

form training for 10 epochs using Adam (Kingma and Ba, 2014) with a batch size of 64, 32

retrieved passages, dropout value of 0.1, peak learning rate of 2 × 10−5 with warmup and linear

scheduling. Due to the smaller size of WebQ, we train for 20 epochs with a batch size of 16.

When training with the T5-lm-adapted (11B) PLM, we use a batch size of 32 with 16 retrieved

passages. We save the retriever checkpoint every 500 steps and perform model selection by evalu-

ating it on the development set. We use mixed precision training to train the retriever and perform

inference over the PLM using bfloat16 format (Micikevicius et al., 2018).4 We set the value of the

temperature hyperparameter (τ ) using cross-validation.

6.2.3 Baselines

We compare ART to both unsupervised and supervised models. Unsupervised models train a sin-

gle retriever using unlabeled text corpus from the Internet while supervised models train a separate

retriever for each dataset. We report the performance numbers from the original papers when the

results are available or run their open-source implementations in case the results are not available.

4https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
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Unsupervised models: These include the popular BM25 algorithm (Robertson and Zaragoza,

2009) that is based on the sparse bag-of-words representation of text. Dense models typically use

Wikipedia paragraphs to create (pseudo-) query and context pairs to perform contrastive training

of the retriever. These differ in how the negative examples are obtained during contrastive training:

they can be from the same batch (ICT; Lee et al., 2019; Sachan et al., 2021a), or contexts passages

from previous batches (Contriever; Izacard et al., 2022), or by using other passages in the same

article (Spider; Ram et al., 2022). Context passages can also be sampled from articles connected

via hyperlinks (HLP; Zhou et al., 2022).

Supervised models: These consist of approaches that use questions and positive passages to

train the retriever. To obtain improved performance an additional set of hard-negative passages

is often used (DPR; Karpukhin et al., 2020), iterative mining of negative passages is done using

model weights (ANCE; Xiong et al., 2021), or the retriever is first initialized with ICT or MSS pre-

training followed by DPR-style finetuning (ICT-DPR / MSS-DPR; Sachan et al., 2021a). The pre-

trained retriever can be further trained by ANCE-style mining of hard-negative passages to further

improve accuracy (coCondenser; Gao and Callan, 2022). Previous methods have also explored

finetuning the cross-encoder PLM jointly with the retriever such that the cross-encoder provides

more accurate training signals to improve retrieval accuracy. Among them include the approaches

of end-to-end training of PLM and retriever which infuses supervision from the annotated answers

to a question (EMDR2; Sachan et al., 2021b), multi-stage mixed objective distillation approach

to jointly train re-ranker (Nogueira and Cho, 2019) and retriever (RocketQAv2; Ren et al., 2021).

A combination of adversarial and distillation-based training of re-ranker and retriever has been

shown to obtain state-of-the-art performance (AR2; Zhang et al., 2022).
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Retriever Pre-trained
Language Model

SQuAD-Open TriviaQA NQ-Open WebQ
Top-20 Top-100 Top-20 Top-100 Top-20 Top-100 Top-20 Top-100

Unsupervised Approaches (trained using Wikipedia / Internet data)

BERT 5.2 13.5 7.2 17.8 9.4 20.3 3.7 12.8
ICT 45.1 65.2 57.5 73.6 50.6 66.8 43.4 65.7
MSS T5∗ (220M) 51.3 68.4 68.2 79.4 59.8 74.9 49.2 68.4
BM25 71.1 81.8 76.4 83.2 62.9 78.3 62.4 75.5
Contriever 63.4 78.2 74.2 83.2 67.8 82.1 74.9 80.1
Spider 61.0 76.0 75.8 83.5 68.3 81.2 65.9 79.7
cpt-text S† – – 75.1 81.7 65.5 77.2 – –
HLP – – 76.9 84.0 70.2 82.0 66.9 80.8

Supervised Approaches (trained using question-passage aligned data)

DPR 63.2 77.2 79.4 85.0 78.4 85.4 73.2 81.4
DPR-Multi‡ 51.6 67.6 78.8 84.7 79.4 86.0 75.0 82.9
ANCE – – 80.3 85.3 81.9 87.5 – –
ICT-DPR – – 81.7 86.3 81.8 88.0 72.5 82.3
MSS-DPR⋄ 73.1 84.5 81.8 86.6 82.1 87.8 76.9 84.6
coCondenser – – 83.2 87.3 84.3 89.0 – –
RocketQAv2 ERNIE∗ (110M) – – – – 83.7 89.0 – –
EMDR2◦ T5∗ (220M) – – 83.4 87.3 85.3 89.7 79.1 85.2
AR2 ERNIE∗ (330M) – – 84.4 87.9 86.0 90.1 – –

Our Approach (trained using questions and Wikipedia text)

ART T5-lm-adapt (11B) 74.2 84.3 82.5 86.6 80.2 88.4 74.4 82.7
ART-Multi T5-lm-adapt (11B) 72.8 83.2 82.2 86.6 81.5 88.5 74.8 83.7
ART T0 (3B) 75.3 85.0 82.9 87.1 81.6 89.0 75.7 84.3
ART-Multi T0 (3B) 74.7 84.5 82.9 87.0 82.0 88.9 76.6 85.0

Table 6.2: Top-20 and top-100 retrieval accuracy on the test set of datasets. For more details regard-
ing the unsupervised and supervised models, please see §6.2.3 in the text. Best supervised results
are highlighted in bold while the best results from our proposed model (ART) are underlined.
ART substantially outperforms previous unsupervised models and comes close to or matches the
performance of supervised models by just using questions during training. ∗ indicates that the
cross-attention PLM is finetuned. † denotes that ‘cpt-text S’ model (Neelakantan et al., 2022) con-
tains around 300M parameters. ‡ denotes that DPR-Multi was not trained on SQuAD-Open. ⋄
indicates that the results on SQuAD-Open and WebQ are obtained by finetuning the open-source
MSS checkpoint. ◦ indicates that EMDR2 results are obtained using their open-source check-
points.
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6.3 Experiments and Results

6.3.1 Zero-shot Passage Retrieval

For the passage retrieval task, we report results on SQuAD-Open, TriviaQA, NQ-Open, and WebQ

and train ART under two settings. In the first setting, we train a separate retriever for each dataset

using questions from their training set. In the second setting, to examine the robustness of ART

training to different question types, we train a single retriever by combining the questions from

all four datasets, which we refer to as ART-Multi. For both these settings, we train ART using

T5-lm-adapted (11B) and T0 (3B) cross-attention PLM scorers. As our training process does not

require annotated passages for a question, we refer to this as zero-shot passage retrieval.

Table 6.2 presents the top-20 and top-100 retrieval accuracy in these settings alongside recent

baselines that train a similarly sized retriever (110M). All the variants of ART achieve substantially

better performance than previous unsupervised approaches. For example, ART trained with T0

(3B) outperforms the recent Spider and Contriever models by an average of 9 points on top-20 and

6 points on top-100 accuracy. When compared to supervised models, despite using just questions,

ART outperforms strong baselines like DPR and ANCE and is at par or slightly better than pre-

trained retrievers like MSS-DPR. In addition, ART-Multi obtains comparable performance to its

single dataset version, a considerable advantage in practical applications as a single retriever can

be deployed rather than training a custom retriever for each use case.

ART’s performance also comes close to the state-of-the-art supervised models like AR2 and

EMDR2, especially on the top-100 accuracy but lags behind in the top-20 accuracy. In addition to

obtaining reasonable performance and not requiring aligned passages for training, ART’s training

process is much simpler than AR2. It also does not require cross-encoder finetuning and is thus

faster to train. As generative language models continue to become more accurate (Chowdhery

et al., 2022), we hypothesize that the performance gap between state-of-the-art supervised models

and ART would further narrow down.
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Our results showcase that both the PLM scorers, T5-lm-adapt (11B) and T0 (3B), achieve

strong results on the QA retrieval tasks, with T0 achieving higher performance gains. This il-

lustrates that the relevance score estimates of candidate passages obtained in the zero-shot cross-

attention step are accurate enough to provide strong supervision for retriever training. We believe

that this is a direct consequence of the knowledge stored in the PLM weights.5

While T5-lm-adapt’s knowledge is obtained by training on unsupervised text corpora, T0 was

further finetuned using instruction-prompted datasets of tasks such as summarization, QA, text

classification, etc. However, T0 was not finetuned on the question generation task and was also not

trained on any of the datasets we have used in this work. We refer the reader to the original paper

for more training details. Hence, in addition to learning from instructions, the performance gains

from T0 can be attributed to the knowledge infused in its weights by (indirect) supervision from

these manually curated datasets. Instruction-based finetuning is especially helpful for smaller-

sized datasets like WebQ in improving the performance on lower values of top-K accuracy (such

as top-20).

Overall, our results suggest that an accurate and robust passage retrieval can be achieved

by training with questions alone. This presents a considerably more favorable setting than the

current approaches which require obtaining positive and hard-negative passages for such questions.

Due to its better performance, we use the T0 (3B) PLM for subsequent experiments unless stated

otherwise.

6.3.2 Sample Efficiency

To measure the sample efficiency of ART, we train the model by randomly selecting a varying

number of questions from NQ-Open training questions and compute the top-K accuracy on its

development set. These results are presented in Figure 6.2 and we also include the results of

BM25 and DPR for comparison. We see that performance increases with the increase in questions

until about 10,000 questions, after which the gains become less pronounced.

5We include more detailed comparisons of different PLMs as cross-attention scorers in §6.3.5.
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Figure 6.2: Top-K accuracy as the number of training questions (denoted as ‘Q’ in the legend) is
varied. When trained with 100 questions, ART outperforms BM25 and when trained with 1,000
questions, it matches DPR’s performance for top-K > 50 passages, illustrating that ART is highly
sample efficient.

When trained with just 100 questions, ART significantly outperforms BM25 and when trained

with 1,000 questions, it matches DPR performance levels for top-{50, . . . , 100} accuracy. This

demonstrates that ART in addition to using just questions is also much more data efficient than

DPR, as it requires almost ten times fewer questions to reach a similar performance.

6.3.3 Zero-shot Out-of-Distribution Transfer

In the previous experiments, both the training and test sets contained questions that were sampled

from the same underlying distribution, a setting that we refer to as in-distribution training. How-

ever, obtaining in-domain questions for training is not always feasible in practice. Instead, a model

trained on an existing collection of questions must be evaluated on new datasets, a setting that we

refer to as out-of-distribution (OOD) transfer.
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Retriever Training Dataset SQuAD-Open TriviaQA WebQ EQ
Top-20 Top-100 Top-20 Top-100 Top-20 Top-100 Top-20 Top-100

Training on answerable questions

BM25 – 71.1 81.8 76.4 83.2 62.4 75.5 71.2 79.8
DPR† NQ-Open 48.9 65.2 69.0 78.7 68.8 78.3 49.7 63.2
EMDR2 NQ-Open 66.8 79.0 79.7 85.3 74.2 83.2 62.7 75.1
Spider† NQ-Open 57.7 72.8 77.2 83.7 74.2 82.5 61.9 74.1
ART NQ-Open 68.0 80.2 79.8 85.1 73.4 83.1 64.3 75.5
ART MS MARCO 68.4 80.4 78.0 84.1 74.8 83.2 75.3 81.9

Training on a mix of answerable and unanswerable questions

ART NQ-Full 69.4 81.1 80.3 85.7 74.3 83.9 67.8 78.3
ART MS MARCO + NQ-Full 69.6 81.1 80.7 85.7 75.3 84.5 69.2 79.1

Table 6.3: Top-20 and top-100 retrieval accuracy when evaluating zero-shot out-of-distribution
(OOD) generalization of models on the test set of datasets. † denotes that these results are
from Ram et al. (2022). ART generalizes better than supervised models on OOD evaluation even
when trained on all the questions of the Natural Questions dataset (NQ-Full) which contains a mix
of answerable and unanswerable questions.

We train ART using NQ-Open and NQ-Full questions and then evaluate its performance on

SQuAD-Open, TriviaQA, WebQ, and EQ datasets. While it is desirable to train on answerable

questions such as the ones included in NQ-Open this is not always possible, as real user questions

are often imprecisely worded or ambiguous. Due to this, training on NQ-Full can be considered

as a practical testbed for evaluating true OOD generalization as a majority of the questions (51%)

were marked as unanswerable from Wikipedia by human annotators.6

Table 6.3 presents OOD generalization results on the four QA datasets including the results

of DPR and Spider models trained on NQ-Open.7 ART trained on NQ-Open always performs

significantly better than both DPR and Spider, showcasing that it is better at generalization than

supervised models. When trained using NQ-Full, ART performance further improves by 3 points

on EQ and by 0.5-1 points on other datasets, over NQ-Open. This highlights that in addition to

questions annotated as having short answers, questions annotated with long answers also provide

6The reasons for question unanswerability can be partly attributed to imprecise Wikipedia article retrieval during
the annotation process, ambiguity in information-seeking questions, information required to answer not being localized
to a single paragraph, etc (Kwiatkowski et al., 2019).

7We also include BM25 results for reference but do not directly compare with them because there is a high lexical
overlap between question and passage tokens in the SQuAD-Open and EQ datasets which renders dense retrievers at
a disadvantage over BM25, especially in the transfer setting.
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Retriever NQ-Open TriviaQA
Top-20 Top-100 Top-20 Top-100

D
ev

ICT 44.2 61.0 58.8 74.4
DPR 79.1 85.5 81.1 85.9
ICT-DPR 81.4 87.4 82.8 86.9
EMDR2 83.1 88.0 83.7 87.4

ART-base 80.6 87.4 83.6 87.4
ART-large 81.0 87.8 83.7 87.5

Te
st

ICT 49.3 66.1 58.5 74.1
DPR 81.0 87.2 81.4 86.0
ICT-DPR 82.6 88.3 82.9 87.1
EMDR2 85.3 89.7 83.4 87.3

ART-base 81.6 89.0 82.9 87.1
ART-large 82.1 88.8 83.6 87.6

Table 6.4: Top-20 and top-100 accuracy when training large configuration retriever, which contains
around 650M parameters. EMDR2 (Sachan et al., 2021b) (base configuration) contains 440M pa-
rameters. Best supervised results are underlined while the best unsupervised results are highlighted
in bold.

meaningful supervisory signals and unanswerable questions do not necessarily degrade perfor-

mance.

We also train ART using MS MARCO questions and perform OOD evaluation. Due to the

larger size of MS MARCO and a smaller number of evidence passages, we use a batch size of

512 and retrieve 8 passages for training. Quite surprisingly, it obtains much better performance

than previous approaches including BM25 on EQ (more than 10 points gain on top-20 accuracy

over training ART on NQ-Open). We suspect that this may be due to the similar nature of ques-

tions in MS MARCO and EQ. Further finetuning the pre-trained MS MARCO model on NQ-Full

significantly improves performance on WebQ.

6.3.4 Scaling Model Size

We examine if scaling up the retriever parameters can offer further performance improvements.

To this end, we train a retriever of BERT-large configuration (24 layers, 16 attention heads, 1024

embedding dimensions) containing around 650M parameters on NQ-Open and TriviaQA. Results

are presented in Table 6.4 for both the development and test sets. We also include the results of
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Figure 6.3: Effect of retriever initialization on ART training. The plot reveals that the training
process is not sensitive to initial retriever parameters.

other relevant baselines containing a similar number of trainable parameters.

By scaling up the retriever size, we see small but consistent improvements in retrieval accu-

racy across both datasets. Especially on TriviaQA, ART matches or exceeds the performance of

previous best models. On NQ-Open, it comes close to the performance of EMDR2 (Sachan et al.,

2021b), a supervised model trained using thousands of question-answer pairs.

We also attempted to use larger teacher PLMs such as T0 (11B). However, our initial exper-

iments did not lead to any further improvements over the T0 (3B) PLM. We conjecture that this

might be either specific to these QA datasets or that we need to increase the capacity of the teacher

PLM even more to observe improvements. We leave an in-depth analysis of using larger teacher

PLMs as part of future work.

6.3.5 Analysis

Sensitivity to retriever initialization: To examine how the convergence of ART training is af-

fected by the initial retriever parameters, we initialize the retriever with (1) BERT weights, (2)

ICT weights (as trained in Sachan et al., 2021a), and (3) MSS weights, and train using NQ-Open

questions. Figure 6.3 displays the top-20 performance on the NQ-Open development set as the

training progresses. It reveals that ART training is not sensitive to the initial retriever parameters
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Number of
Retrieved Passages Top-1 Top-5 Top-20 Top-100

32 36.7 65.8 80.6 87.4

2 +2.4 +0.4 −0.9 −0.6
4 +1.9 +0.9 −0.6 −0.6
8 +0.8 +0.8 −0.5 −0.1

16 +0.9 +0.9 −0.3 −0.1
64 −0.5 −0.7 −0.3 0

128 −2.3 −1.7 −0.8 −0.2

Table 6.5: Effect of varying the number of retrieved passages during ART training as evaluated on
the NQ-Open development set. For each case, we list the absolute gain or loss in top-K accuracy
when compared to the setting utilizing 32 retrieved passages.

as all three initialization schemes converge to similar results. However, the convergence properties

might be different under low-resource settings, an exploration of which we leave for future work.

Effect of the number of retrieved passages: Table 6.5 quantifies the effect of the number of

retrieved passages used during training on performance. A smaller number of retrieved passages

such as 2 or 4 leads to a somewhat better top-{1, 5} accuracy, at the expense of a drop in top-

{20, 100} accuracy. Retrieving 32 passages offers a reasonable middle ground and beyond that,

the top-K retrieval performance tends to drop.

A closer inspection of ART with supervised models: In order to have a better understanding

of the tradeoff between supervised models and ART, we examine their top-1 and top-5 accuracy

in addition to the commonly reported top-20 and top-100 scores. Table 6.6 presents these results

for ART (large) along with supervised models of DPR (large) and EMDR2. Supervised models

achieve much better performance for top-K ∈ {1, . . . , 5} passages, i.e., these models are more

precise. This is likely because DPR is trained with hard-negative passages and EMDR2 finetunes

PLM using reference answers resulting in an accurate relevance feedback to the retriever. When

considering top-K ∈ {20, . . . , 100} passages, ART comes close or matches the performance of

EMDR2. As top-performing models for knowledge-intensive tasks such as open-domain QA rely

on a larger set of retrieved passages, such as top-K=100 (Sachan et al., 2022), this justifies the
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Retriever Top-1 Top-5 Top-20 Top-100

NQ-Open (dev)

DPR 50.1 69.6 79.1 85.5
EMDR2 55.3 74.9 83.1 88.0
ART 37.6 66.8 81.0 87.8

TriviaQA (dev)

DPR 59.6 74.4 81.1 85.9
EMDR2 63.7 78.0 83.7 87.4
ART 58.3 77.5 83.7 87.5

Table 6.6: Analysis reveals that ART (large) can even match the performance of end-to-end trained
models like EMDR2 when retrieving a larger number of passages. However, DPR (large) and
EMDR2 still outperform ART when retrieving a small number of passages such as top-K ∈
{1, . . . , 5} (highlighted in bold).

P N U IB Top-1 Top-5 Top-20 Top-100

0 0 32 ✗ 6.0 16.6 30.8 46.7
1 0 31 ✗ 31.8 58.9 74.8 84.4
1 1 30 ✗ 33.7 61.0 76.0 85.5
1 1 0 ✓ 32.6 59.5 75.1 84.9

Top-32 passages 36.7 65.8 80.6 87.4

Table 6.7: Effect of passage types on ART training when evaluated on the NQ-Open development
set. P denotes a positive passage, N denotes a hard-negative passage (mined using BM25), U de-
notes that the passages are randomly sampled from the evidence, and IB denotes in-batch training.

argument to adopt zero-shot ART over supervised retrievers.

Why training using passage retrieval? To assess the importance of passages in Z during the

training process, we train the retriever under different settings by varying the passage types. Specif-

ically, we train with a mix of positive, hard-negative, and uniformly sampled passages. We also

perform in-batch training by defining Z to be the union of positive and hard-negative passages for

all the questions in a batch. Results in Table 6.7 illustrate that when Z consists of uniformly sam-

pled passages, it leads to poor performance. Including a (gold) positive passage in Z leads to good

performance improvements. Results further improve with the inclusion of a hard-negative passage

in Z . However, in-batch training leads to a slight drop in performance. As the gold passages are

not always available, our method of selecting the top passages from evidence at every training step
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NQ-Open (dev)
Language Model (Θ) Top-1 Top-5 Top-20 Top-100

Models trained using Denoising Masked Spans

T5-base (250M) 12.8 30.9 47.8 63.0
T5-xl (3B) 25.0 53.9 74.4 85.3
T5-xxl (11B) 29.5 59.8 77.8 86.3

Models trained using Language Modeling Objective

T5-lm-adapt (250M) 29.4 56.6 74.4 84.7
T5-lm-adapt (800M) 30.9 59.1 76.5 85.9
T5-lm-adapt (3B) 31.8 61.0 77.9 86.5
T5-lm-adapt (11B) 32.7 62.6 78.6 87.0

Model trained using Natural Language Instructions

T0 (3B) 36.7 65.8 80.6 87.4
T0 (11B) 34.3 64.5 79.8 87.2

Table 6.8: Comparison of different pre-trained language models (PLMs) when used as cross-
attention scorers during training (§6.1.3). T0 (3B) PLM achieves the highest accuracy among
the compared PLMs showcasing that training language models using instruction-tuning provides
accurate relevance scores.

can be seen as an approximation to using the gold passages. With this, ART obtains even better

results than the previous settings, an improvement by 4 points absolute in the top-20 accuracy.

Impact of language model training strategy: We examine which PLMs can provide accurate

cross-attention scores during ART training. We compare across PLMs trained using three dif-

ferent objectives— (i) generative denoising of masked spans (T5 series; Raffel et al., 2020), (ii)

further pre-training using autoregressive language modeling objective (T5-lm-adapt series; Lester

et al., 2021), and (iii) finetuning T5-lm-adapt models on unrelated tasks using instructions (T0

series; Sanh et al., 2022). Our results in Table 6.8 highlight that PLM training methodology and

model size can have a large effect on retrieval performance. The T5 base model leads to low scores

possibly because pre-training using predicting masked spans is not ideal for question reconstruc-

tion. However, the accuracy improves with an increase in model size. T5-lm-adapt models are

more stable and lead to improved performance with the best result achieved by the 11B model.

Instruction finetuned T0 models outperform the T5-lm-adapt models. However, scaling up the size

of T0 to 11B parameters does not result in meaningful improvements.
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Dataset #Q #E nDCG@10 Recall@100

DPR† BM25† Contriever ART DPR† BM25† Contriever ART

Scifact 300 5K 31.8 66.5 64.9 55.2 72.7 90.8 92.6 88.0
Scidocs 1000 25K 7.7 15.8 14.9 14.4 21.9 35.6 36.0 32.4
Nfcorpus 323 3.5K 18.9 32.5 31.7 29.9 20.8 25.0 29.0 26.6
FIQA-2018 648 57K 11.2 23.6 24.5 26.5 34.2 53.9 56.2 55.4
Trec-covid 50 0.2M 33.2 65.5 27.4 50.3 21.2 49.8 17.2 36.9
Touche-2020 49 0.4M 13.1 36.8 19.3 16.2 30.1 53.8 22.5 44.7
NQ 3452 2.7M 47.4 32.9 25.4 40.5 88.0 76.0 77.1 88.7
MS-Marco 6980 8.8M 17.7 22.8 20.6 32.6 55.2 65.8 67.2 81.7
HotpotQA 7405 5.2M 39.1 60.3 48.1 61.0 59.1 74.0 70.4 73.9
ArguAna 1406 8.7K 17.5 31.5 37.9 32.2 75.1 94.2 90.1 95.3
CQADupStack 13145 0.5M 15.3 29.9 28.4 33.5 40.3 60.6 61.4 62.6
Quora 10000 0.5M 24.8 78.9 83.5 84.2 47.0 97.3 98.7 98.8
DBpedia 400 4.6M 26.3 31.3 29.2 36.3 34.9 39.8 45.3 47.2
Fever 6666 5.4M 56.2 75.3 68.2 72.4 84.0 93.1 93.6 93.1
Climate-Fever 1535 5.4M 14.8 21.3 15.5 21.4 39.0 43.6 44.1 47.1

Average Score 25.0 41.6 36.0 40.4 48.2 63.6 60.1 64.8

Table 6.9: Zero-shot results on the BEIR benchmark. #Q and #E denotes the size of the test set
and evidence, respectively. Best scores for each dataset are highlighted in bold. ART is trained
using MS MARCO questions. DPR is trained using NQ-Open. † denotes that these results are
from Thakur et al. (2021).

Ad-hoc retrieval tasks: While the previous experiments were conducted on QA datasets, here

we examine the robustness of the ART model trained using questions to different ad-hoc retrieval

tasks. For this analysis, we evaluate the performance of ART on the BEIR benchmark (Thakur

et al., 2021). It is a heterogeneous collection of many retrieval datasets, with each dataset consist-

ing of test set queries, evidence documents, and gold document annotations. BEIR spans multiple

domains and diverse retrieval tasks presenting a strong challenge suite, especially to the dense re-

trievers. We train ART using MS MARCO questions and report its nDCG@10 and Recall@100

scores on each dataset. For comparison, we include the results of three baselines: BM25, Con-

triever, and DPR trained using NQ-Open. Our results presented in Table 6.9 show strong gener-

alization performance of ART as it outperforms DPR and Contriever results. ART also achieves

at par results with the strong BM25 baseline outperforming BM25 on 8 out of the 15 datasets

(according to nDCG@10 scores).
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6.4 Related Work

Our work is based on training a dense retriever using pre-trained language models (PLMs), which

we have covered in previous sections. Here, we instead focus on other related approaches.

A popular method to train the dual-encoder retriever is to optimize contrastive loss using in-

batch negatives (Gillick et al., 2019) and hard-negatives (Karpukhin et al., 2020; Xiong et al.,

2021). Alternatives to using hard-negatives such as sampling from cached evidence embeddings

have also shown to work well in practice (Lindgren et al., 2021). Multi-vector encoders for ques-

tions and passages are more accurate than dual-encoders (Luan et al., 2021; Khattab and Zaharia,

2020; Humeau et al., 2020), although at the cost of increased latency and storage requirements.

PLMs have been shown to improve passage rankings as they can perform cross-attention be-

tween the question and the retrieved passages (Lin et al., 2021b). Supervised approaches to re-rank

either finetune PLMs using question-passage pairs (Nogueira et al., 2020) or finetune PLMs to gen-

erate question conditioned on the passage (Nogueira dos Santos et al., 2020) while unsupervised

re-rankers are based on zero-shot question scoring (Sachan et al., 2022). The re-ranking process

is slow due to the cross-attention step and is bottlenecked by the accuracy of first-stage retrievers.

To address these limitations, cross-attention distillation approaches from the PLM to the retriever

have been proposed (Qu et al., 2021). Such distillation can be performed either in a single end-to-

end training step (Guu et al., 2020; Sachan et al., 2021b) or in a multi-stage process (Khattab et al.,

2021; Izacard and Grave, 2021a).

An alternative approach to using PLMs is to generate data that can aid retrieval. The data can

be either the title or an answer that provides more information about the question (Mao et al.,

2021). Generating new questions to augment the training data has also been shown to improve

performance (Ma et al., 2021a; Bonifacio et al., 2022; Dai et al., 2022). In comparison, we do not

generate new questions but train the retriever using existing questions and PLM feedback. Data

augmentation is likely complementary, and can further improve accuracy.
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6.5 Discussion

In this chapter, we introduced ART, a novel approach to train a dense passage retriever using only

questions and a collection of evidence documents. ART does not require question-passage pairs

or hard-negative examples for training and yet achieves state-of-the-art results. The key to making

ART work is to optimize the retriever to select relevant passages such that conditioning on them,

the question generation likelihood computed using a large pre-trained language model iteratively

improves. We summarize our key contributions and results below:

• Using only questions as the primary training data, ART outperforms popular supervised

methods like DPR (Karpukhin et al., 2020) when evaluated on multiple QA benchmarks. It

also achieves better generalization performance on out-of-distribution evaluation sets than

previous approaches.

• ART exemplifies better sample efficiency properties than DPR and BM25 retrievers as it

outperforms them by training on a fraction of questions. Furthermore, ART is the first dense

retriever training approach to outperform BM25 on the SQuAD-Open dataset which was

previously assumed to be a challenging testbed for dense retrievers.8

• Another useful property of ART is that it can be trained on a mixture of answerable and

unanswerable questions without any adverse effects on end performance. This presents a

considerably favorable setting in real-world applications where the answerability of user

questions is unknown apriori.

• Our experiments reveal that ART is not sensitive to retriever initialization and can achieve

peak performance even when initialized with BERT weights. This finding presents an alter-

nate mechanism to bootstrap retrievers for end-to-end supervised training.

8SQuAD-Open has been considered to be a challenging dataset because of two reasons (i) its training examples
exhibit a high lexical overlap between questions and passages, and (ii) biased training distribution as the examples
were collected from just 536 Wikipedia articles, representing a very small subset of full Wikipedia.
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• On ad-hoc retrieval tasks such as the datasets included in the BEIR benchmark, the overall

performance of ART is comparable to BM25. This is especially encouraging as previously

dense retrievers had struggled to perform well on this benchmark.

6.5.1 Limitations

In the previous sections, we have covered the pros of using ART to train retrievers and discussed

its strengths in detail. In this section, we identify and describe the potential shortcomings of this

method.

Dependence on real information-seeking questions for training: To train, ART requires su-

pervision from both questions and evidence passages. The questions that we used for training were

relatively high quality in the sense that they were either written by crowdworkers or were posed

by users seeking information through search engines. As such when bootstrapping retriever train-

ing, obtaining a database of human-written questions may not be readily feasible. An alternate

option to using real questions is to generate questions by prompting a language model. However,

more work is needed to quantify the relative tradeoffs of this choice as it is unclear if training with

synthetic questions instead of real ones would cause performance degradation or not.

Less precise than supervised models for top-{1, 5} accuracy: ART despite being a simple

training method performs on par with state-of-the-art supervised methods especially in the setting

when retrieving 20-100 passages. However, when comparing the top-1 and top-5 accuracy, ART

underperforms achieving lower scores than supervised methods, i.e., it is less precise (Table 6.6)

thus limiting its adoption to tasks requiring a larger set of ranked passages. The strong performance

of supervised methods can be attributed to the use of hard-negative passages during their training.

On the other hand, it is non-trivial to define hard-negatives for ART training as it does not rely on

the existence of positive examples. It remains an open problem on how to improve the top-{1, 5}

accuracy for ART training.
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Pitfalls of relevance score estimation using PLM: During ART training, we calculate the rel-

evance scores separately for each candidate passage, which is also referred to as pointwise esti-

mation. However, these pointwise relevance scores may not be well calibrated to be used as a

supervisory signal in retriever training as the question generation step is conditioned on a separate

passage each time. This can in turn adversarially affect retriever training leading to suboptimal

retrievals. An option to mitigate this is to explore alternate PLM prompting approaches such as

pairwise prompting (Qin et al., 2023) in which the PLM jointly reasons among the candidate pas-

sages to output the most relevant passage.

Limited understanding of generalization on unanswerable questions: In this chapter, we

have demonstrated that ART training is robust even when a mix of answerable and unanswer-

able questions are provided as input (§6.3.3, Table 6.3). However, it is not apparent what is the

desired mixing ratio of the unanswerable questions which is required for the emergence of this

robustness. It is also not clear if the unanswerable questions should be related to the evidence

passages or not. As part of future work, systematic experiments are needed to further probe the

generalization of ART training to unanswerable questions.

6.5.2 Follow-up Work

• Retriever adaptation using frozen language models: This work augments large language

models with retrieved text in order to improve their predictions (Shi et al., 2023). Given a

query text, matching passages are retrieved from the evidence and are independently given

as input to the language model. Similar to ART, the retriever parameters are then finetuned

at every step using feedback from the language model such that the retrieved text lowers the

perplexity of the language model when generating the target tokens using teacher-forcing.

During training, the language model parameters are kept frozen. Results showcased that

adapted retrieval improves the original language model’s predictions on tasks such as ques-

tion answering, language modeling, etc.
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• Listwise permutation distillation: Recent work has shown that large language models es-

pecially their instruction-following variants (Ouyang et al., 2022) are effective document

re-ranking agents (Ma et al., 2023; Sun et al., 2023). These PLMs can jointly reason across

an input query and retrieved list of documents and output a permuted list reflecting a more

accurate ordering. However, as inference using large models is computationally expensive,

efforts have been directed towards training smaller compute-efficient BERT re-rankers by

applying ranking losses over the permutation list generated from larger models (Sun et al.,

2023).

6.5.3 Future Work

ART presents several directions for future work. It would be interesting to apply this approach

in low-resource retrieval including multi-lingual (Clark et al., 2020a) and cross-lingual question

answering (Asai et al., 2021). Our training framework can also be extended to train cross-modality

retrievers such as for image or code search (Li et al., 2022; Neelakantan et al., 2022) using textual

queries. Finally, other directions worth exploring would be to make use of labeled data when

available such as by finetuning PLM on passage-question aligned data and to train multi-vector

retrievers (Luan et al., 2021) with ART.
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Chapter 7

Conclusion

7.1 Summary of Contributions

In this thesis, we have introduced novel methods to improve open-domain retrieval especially

focused towards passage retrieval for question answering tasks. We have also proposed approaches

to perform well on the important task of answering factual questions. In the following paragraphs,

we summarize the contributions of this thesis. We also assess the impact of our contributions as

part of the broader scientific discourse.

In our first contribution (Chapter 3), we introduced the approach of unsupervised pre-training

of dense retriever parameters such that it results in improved training dynamics during supervised

finetuning. Our proposed pre-training tasks consist of predicting paragraph-level context using

sentences and predicting salient text spans such as named entities using retrieved documents. We

demonstrate that such unsupervised pre-training yields substantially better zero-shot recall than

BERT-initialized retrievers. When finetuned using supervised datasets, pre-trained retrievers lead

to significant gains in retrieval accuracy when compared to their non-pre-trained counterparts.

In our second contribution (Chapter 4), we proposed an end-to-end training method, EMDR2,

for retrieval-augmented question answering systems. EMDR2 jointly trains a system consisting of a

multi-document reader and a dense retriever. We first present a latent variable model of the system
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and demonstrate that the exact optimization of the marginal likelihood is intractable. We then

propose an approximate training objective using the expectation-maximization algorithm. When

evaluated on three benchmark datasets for the task of open-domain question answering, EMDR2

outperformed previous approaches by 2-3 exact match points. Contrary to the previous approaches

that emphasized the need for intermediate document annotations and stage-wise training, EMDR2

was the first method to showcase that state-of-the-art results can be attained with a single training

run and using just question-answer pairs.

Both these contributions have already had a considerable impact within the NLP community,

especially in terms of new techniques building upon them. Most notably, our work on unsu-

pervised pre-training has contributed to the emergence of a new task where the objective is to

attain the highest document rankings without supervised training, i.e., zero-shot retrieval. Rep-

resentative work proposing new pre-training methods include leveraging momentum contrastive

learning (Izacard et al., 2022) and constructing positive query-document pairs using recurrent text

spans (Ram et al., 2022) to learn robust document representations. EMDR2 has been influential in

spearheading the idea of end-to-end training of retrieval-augmented systems. An important follow-

up work to EMDR2 is ATLAS (Izacard et al., 2023) which showcased that end-to-end training of a

retrieval-augmented system using a few exemplars outperforms a substantially large model without

retrieval-augmentation.

Our next set of contributions addresses the training data dependency of state-of-the-art retriev-

ers. Concerning this, in our third contribution (Chapter 5), we propose an unsupervised passage

re-ranker (UPR) to improve the passage rankings of a first-stage retriever. UPR employs frozen

language models as the underlying re-ranker. It re-ranks passages based on relevance score esti-

mates obtained by computing the likelihood of question generation conditioned on the passage.

Although a simple idea, UPR serves as a powerful re-ranker being the first unsupervised approach

to convincingly outperform strong supervised retrievers. In our experiments, we show that the

advantages of UPR are multifold: requires no training data, works with off-the-shelf language

models, and obtains strong performance gains for both sparse and dense retrievers.
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In our last contribution (Chapter 6), we introduce ART, a novel training method to distill

large language model’s retrieval knowledge into compact dense retrievers. For its training data,

ART relies on questions and unpaired evidence documents as inputs. This presents a consider-

ably more relaxed requirement than obtaining aligned question-document pairs and mining hard-

negative documents. The retriever is trained by optimizing the retriever likelihood to mimic rele-

vance scores estimated from the teacher language model. When evaluated on benchmark datasets,

ART substantially outperforms unsupervised retrievers while coming close to the performance of

state-of-the-art supervised methods. Training dense retrievers with ART also alleviates the higher

inference cost associated with using large language models as re-rankers.

In terms of scientific impact, UPR has been influential in getting the community excited about

using language models as a black box to improve passage retrieval. Several follow-up works

have explored alternative techniques to prompt the language model such that it results in a better

estimation of the passage relevance score (Ma et al., 2023; Sun et al., 2023; Qin et al., 2023). These

techniques consist of either providing the passage list or pairwise inputs and prompting language

models to iteratively generate the ranked ordering. Even though the ART method is fairly recent,

its idea of distilling the relevance score from language models into smaller and more efficient

models has already been applied by others. Among them include distilling knowledge into smaller

re-rankers (Pradeep et al., 2023) and adapting retrievers by prompting language models to directly

generate an answer for a question (Shi et al., 2023).

7.2 Limitations

In this section, we discuss limitations that are more broadly associated with our contributions and

in some sense are fundamentally embedded into the recent retrieval-augmented models.

Our first point concerns the end-to-end training of retrieval-augmented systems. As mentioned

previously, these systems have been extremely effective in providing big gains over vanilla lan-

guage models, especially on question answering (QA) tasks in both full finetuning and few-shot
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settings. However, these improvements have come at the expense of their increased training com-

plexity. Specifically, these retrieval systems are composed of reader and retriever networks that

need to be first pre-trained separately. For instance, the retrievers themselves require initialization

using masked language models such as BERT. Then, they are further contrastively trained by pre-

dicting neighboring contexts from a sentence. The reader network also needs to be first trained by

denoising masked text spans. Finally, the reader and retriever are then jointly pre-trained using a

prefix language modeling task. We believe that such complicated training pipelines have hindered

the wide adoption of retrieval-augmented models. Contrast this with autoregressive language mod-

els that need to be pre-trained once using generative training. A more promising direction would

have been to explore simple pre-training methods for retrieval systems that are both easy to train

and obtain empirically better performance than non-retrieval systems.

Our second point is specific to the training objective formulations that have been devised to

distill from language model logits into the retriever. Specific cases of this distillation in this thesis

are during end-to-end training of the language model and retriever in EMDR2 and using language

models as a black box to train retrievers in ART. In order to simplify the training process, almost

all approaches consider the top-K matching documents from the evidence to calculate retriever

distribution. This results in a limited exploration of the space of evidence documents and leads to

biased retriever training. An alternative direction could have been to develop training objectives

that enable more exploration by sampling documents from the evidence. Designing objectives

that lead to a more principled training approach have the potential to further improve retrieval. A

recent effort in this direction includes approximating marginal likelihood in end-to-end training by

optimizing variational inference bounds (Liévin et al., 2023).

Our final point concerns the limited applicability of retrieval-augmented systems to a wider

range of language understanding tasks. In this thesis, our proposed models and training approaches

have been evaluated primarily on QA datasets. Apart from QA, success stories of retrieval-

augmented systems are limited to a few end tasks such as dialog generation (Shuster et al., 2021)

and machine translation (Khandelwal et al., 2021). Moreover, these systems are often task-specific
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and may not be readily transferable. This is in stark contrast to language models in which the

same model has been shown to perform remarkably well on a multitude of tasks (Chowdhery

et al., 2022). Although it is well understood that retrieving from large evidence sets has also

helped improve language modeling performance, these gains haven’t yet translated into down-

stream tasks (Borgeaud et al., 2022). One reason might be that retrieval as a tool has inherently

restricted usefulness or that there has been lack of sustained efforts to develop generic retrieval-

augmented systems. Given the huge potential of retrieval-augmented models in scaling down

parameter sizes, we feel that this is an opportunity. An interesting direction to pursue would be to

develop unified retrieval-augmented systems applicable to a large array of downstream tasks.

7.3 Directions for Future Work

In this section, we layout a broad set of directions for future work based on the limitations of current

retrieval systems and the additional capabilities that the next generation of retrieval-augmented

systems ought to have in order to enable their wider adoption.

Most of the retrieval-augmented generation work in this thesis has been oriented towards sys-

tems that generate factually correct short text span as answers. However, from the viewpoint of

user-facing systems they cater to a narrow subset of queries and thus overall have limited applica-

bility. Much more useful are dialog agents that can handle diverse sets of queries including those

that require generating long but factually correct text. However, even commercial dialog systems

such as ChatGPT (OpenAI, 2022) despite being custom-trained are still prone to hallucinations

leading to imprecise generations (Min et al., 2023). Current retrieval systems would offer limited

help because they are trained to retrieve content based on the query but do not condition on the

generated text. These limitations also present exciting future research directions on how to equip

dialog systems with adaptable retrieval models such that they can retrieve accurate knowledge

when conditioned on both the query and past generations. We believe that retrieval systems would

play a key role in future conversational agents as they have the potential to reduce hallucinations
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in the generated text while ensuring that factual entities are attributable to the retrieved knowledge

source (Bohnet et al., 2022).

Our next point addresses the computational overhead of current retrieval-augmented systems.

As a recap, these systems are designed to retrieve matching documents for every input query which

are then fed to the language models. Despite being effective these systems are associated with

additional computational costs. However, retrieval at every query may not be strictly necessary

as large language models store a lot of factual knowledge directly in their parameters (Brown

et al., 2020; Roberts et al., 2020). The next generation of retrieval models needs to be adaptive

based on the input query and their internal state (Mallen et al., 2023). Going forward, developing

principled approaches for identifying when to retrieve and when not to would be crucial in building

computationally efficient systems.

So far, we have proposed research directions to improve the performance of a retrieval system

based on textual queries. However, information-seeking queries can consist of multimodal inputs

as well, i.e., that of an image associated with a textual question (Mensink et al., 2023). For instance,

given an image containing a picture of a landmark. An information-seeking query can be “When

was this landmark constructed?” Designing retrieval systems that can answer multimodal queries

will require innovation at multiple levels. First, multimodal retrievers are needed that can jointly

embed both textual and visual inputs in a latent space. Then, the input query needs to be matched

with the evidence documents such as Wikipedia articles that can also contain both text and visual

content. Overall, the multimodal retrieval task is challenging as the retrievers need to encode four-

way inputs—image and text data from both the query and evidence. Although prior work has

proposed encoders such as CLIP (Radford et al., 2021), they often underperform in multimodal

retrieval tasks probably because they encode image and text inputs separately (Chen et al., 2023c).

We believe that more research in retriever architecture and their training are needed to make further

progress in multimodal retrieval.

Our field has been witnessing the rise of large foundation models in the fields of both lan-

guage understanding (Chowdhery et al., 2022; Ouyang et al., 2022) and visual-language under-
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standing (Alayrac et al., 2022; Chen et al., 2023b). These models have demonstrated astonishing

emergent capabilities on a myriad of evaluation benchmarks (Bommasani et al., 2021; Liang et al.,

2022). At the same time, there is a lot of excitement around retrieval or semi-parametric approaches

as they can often learn the data distribution more easily than fully parametric models (Izacard et al.,

2023; Chen et al., 2023a). However, it is not clear how to effectively adapt foundation models so

that they can attend to retrieved information and improve their predictions. It would be interesting

to explore new training methods for foundation models so that they can reason using retrieved data

consisting of both text and images. As such, we feel that developing multimodal retrieval foun-

dation models can be the next frontier towards improving the capabilities of generic foundation

models.
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