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Abstract 

The gut microbiome is a complex biological system that impacts many aspects of human 

health. While several studies have identified long lists of microbes implicated in disease, why 

they are associated with differential host phenotypes remains unclear. Metabolomics can 

complement sequencing-based approaches by providing a snapshot of host-microbial co-

metabolism, however, its use in the field of microbiomics is still in its infancy. The objectives of 

my project are therefore to (i) to become proficient in metabolomics data processing and analysis 

and translate this knowledge into the development of bioinformatics tools for metabolomics data, 

(ii) to improve biological insights obtained from untargeted metabolomics data in an open-source 

and transparent matter, and (iii) to implement a novel bioinformatic framework to integrate 

untargeted metabolomics data and taxonomic microbial data to model changes in microbial 

metabolism. Ultimately, this framework will permit researchers to understand metabolic 

mechanisms of the gut microbiome and aide the design of novel therapeutics. 
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Abrégé 

Le microbiome intestinal est un système biologique complexe qui a un impact sur de 

nombreux aspects de la santé humaine. Bien que plusieurs études aient identifié de longues listes 

de microbes impliqués dans les maladies, la raison pour laquelle ils sont associés à des 

phénotypes d'hôtes différentiels reste incertaine. La métabolomique peut compléter les approches 

basées sur le séquençage en fournissant un apérçu du co-métabolisme hôte-microbien, 

cependant, son utilisation dans le domaine de la microbiomique en est encore à ses debuts. L’un 

des principaux objectifs de la recherche sur le microbiome est de définir la fonction d’un 

microbe et son impact sur l’hôte. Les objectifs de mon projet sont donc de (i) acquérir une 

compréhension globale de la métabolomique de bout en bout et d’analyser des données 

microbiologiques, (ii) déterminer les microbes clés liés à d'importants changements 

métabolomiques, et (iii) mettre en œuvre une méthode basée sur un réseau métabolique pour 

prédire les fonctions du microbiome. Finalement, cette structure permettra aux chercheurs de 

comprendre les mécanismes métaboliques du microbiome intestinal et aidera à la conception de 

nouvelles thérapies. 
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Further, how to gain functional insights from untargeted metabolomics and taxonomic 

microbial signatures has yet to be addressed. With microMum, microbiome researchers are 

now able to use taxonomic microbial signatures to build a metabolomic model, predict 

changes in microbial metabolism, and form hypotheses whether such changes contribute to 

disease pathogenesis. 
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Chapter 1. Introduction and Literature Review 

1.1 Background 

Owing to advances in high-throughput sequencing technologies, the past decade has seen a 

wealth of research highlighting the importance of the human microbiome towards human health, 

development, disease susceptibility, and behavior (Integrative, 2014). Here, the term 

‘microbiome’ refers to the set of microorganisms inhabiting a shared environment, as well as 

their genomic content and metabolic products. These complex assemblages of microorganisms 

inhabiting the body’s mucosal surfaces and cavities have evolved with their human hosts over 

millennia to form a variety of relationships, including mutualistic, symbiotic and even parasitic 

(Foster, Schluter, Coyte, & Rakoff-Nahoum, 2017; Mazmanian, Round, & Kasper, 2008). 

Humans are rapidly colonized by microbes at birth, and their microbiota show great interpersonal 

variation due to several factors such as age, lifestyle, environment, and genetics (Bäckhed et al., 

2015; Fierer, Hamady, Lauber, & Knight, 2008; Goodrich et al., 2016; Human Microbiome 

Project, 2012; Yatsunenko et al., 2012). Further, it has been estimated that humans are home to 

over 5000 different genera of bacteria, with a 1:1 ratio of human to bacterial cells (Rojo et al., 

2017; Sender, Fuchs, & Milo, 2016). Understanding the complex interplay between gut 

microbiota and its human host is paramount to uncover the role the microbiome plays in 

maintaining host homeostasis.  
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1.2 Overview of the human gut microbiome 

The human intestinal tract is home to the greatest density and diversity of microbes, 

containing archea, bacteria, fungi, viruses, and eukaryotes (Y. K. Lee & Mazmanian, 2010). 

Bacteria are the most predominant microorganisms in the human gut, consisting of 

approximately 1000 species largely belonging to the phyla Firmicutes and Bacteriodetes (Human 

Microbiome Project, 2012; Qin et al., 2010). The gut microbiome is intrinsically involved in 

maintaining homoeostasis and performs several vital functions that are otherwise inaccessible to 

its human host. For instance, the gut microbiota metabolize host-indigestible polysaccharides and 

synthesize essential vitamins (Thursby & Juge, 2017); maintain the integrity of the intestinal 

epithelial and mucosal barriers (Natividad & Verdu, 2013); provide protection against 

opportunistic pathogens; and shape the development of the host immune system (Belkaid & 

Hand, 2014). Its reach also extends well beyond the gastrointestinal (GI) tract, affecting host 

processes such as bone homeostasis (Sjögren et al., 2012), adiposity (Bäckhed et al., 2004), brain 

function and behavior (Cryan & Dinan, 2012). Moreover, the gut microbiome encompasses an 

immense toolbox of biochemical and metabolic capacities, containing 150-fold more genes than 

the entire human genome (Human Microbiome Project, 2012; Ursell et al., 2014). Due to these 

rich functionalities that greatly expand that of its host, the gut microbiome is considered a virtual 

organ within the human body (Baquero & Nombela, 2012; O'Hara & Shanahan, 2006; Ursell et 

al., 2014). Despite its importance, microbiome research towards understanding mechanisms 

underlying the gut microbiota’s influence on human health and disease is still in its infancy. 
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1.3 Composition and structure of the gut microbiome 

Taxonomic profiling of the gut microbiome permits researchers to pinpoint species as 

biomarkers of disease and gain insight into ecological processes driving its composition. 

Numerous large-scale studies have demonstrated that the human gut microbiome is highly 

personalized and relatively stable after infancy, with considerable intra-individual taxonomic 

diversity even amongst healthy individuals (Flores et al., 2014; Human Microbiome Project, 

2012; Kostic et al., 2015; Lozupone, Stombaugh, Gordon, Jansson, & Knight, 2012; Zhernakova 

et al., 2016). Remarkably, it has been shown that twins can share only 50% or less of their 

microbial genera (Shafquat, Joice, Simmons, & Huttenhower, 2014; Peter J Turnbaugh et al., 

2009). While high taxonomic diversity is considered an indicator of a ‘healthy’ gut microbiome, 

reduced taxonomic diversity has been associated with poor health outcomes such as frailty 

(Jackson et al., 2016), type 1 diabetes (T1D) (Kostic et al., 2015), irritable bowel syndrome 

(IBS) (Zhernakova et al., 2016), and obesity (Peter J Turnbaugh et al., 2009). Several studies 

have also highlighted the potential for microbial biomarkers as non-invasive targets for early 

detection of various diseases including Inflammatory Bowel Disease (IBD) (Rooks et al., 2014), 

hepatocellular carcinoma (Ren et al., 2018), and T1D (Davis-Richardson et al., 2014). More 

recently, a large-scale population study attributed increased abundance in Enterobacteriaceae 

with a greater mortality risk (Salosensaari et al., 2021). Overall, taxonomic profiling can provide 

some insight into how the microbiome changes in association with phenotype. 

Despite substantial taxonomic variability between individuals, metagenomics has revealed 

that in the absence of disease, humans share a functional core microbiome (Human Microbiome 
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Project, 2012; Lozupone et al., 2012; Peter J Turnbaugh et al., 2009). This set of conserved 

functions consists of (i) housekeeping functions required for universal maintenance of life such 

as transcription and translation (Human Microbiome Project, 2012), (ii) shared human-associated 

microbial processes such as transportation of small molecules and biosynthesis of host-required 

compounds (i.e. amino acids, lipids), and finally (iii) functions specific to the gut including 

carbohydrate processing and vitamin biosynthesis (Shafquat et al., 2014). Functional redundancy 

amongst different taxa residing within the same shared environment may have evolved to 

maintain gut homeostasis permitting their colonization (Backhed et al., 2012; Levy, Thaiss, & 

Elinav, 2016). For instance, functional redundancy would permit a microbial community to 

withstand perturbations from environmental impacts such as antibiotics (resistance), or to return 

to equilibrium following stress-induced changes (resilience) (Backhed et al., 2012). Tian et al. 

recently demonstrated that high-functional redundancy in recipient’s gut microbiota pre-fecal 

microbiota transplantation (FMT) increases resilience, thus reducing the transplantation efficacy 

(Tian et al., 2020). In comparison, recipient’s gut microbiota with low functional redundancy 

prior to FMT had a better chance of returning to a healthy state following transplantation. 

Ultimately, gut microbiome function is important to maintain a healthy host state and alterations 

in this function likely play an important role in disease progression and treatment. 

1.4 Plasticity of the gut microbiome 

While specific mechanisms may be unclear, several environmental and genetic factors are 

known to shape the gut microbiome (Candela, Biagi, Maccaferri, Turroni, & Brigidi, 2012; 

Maurice, Haiser, & Turnbaugh, 2013; Quercia et al., 2014). A large-scale twin study of over 
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1000 twin pairs demonstrated the genetic heritability of ~83 taxa (1% of the overall gut 

microbiome composition) that were stable across repeat samplings (Goodrich et al., 2016). 

Compared to environmental factors, the effect of host genetics on shaping the gut microbiome is 

relatively modest (Kurilshikov, Wijmenga, Fu, & Zhernakova, 2017). A recent study of >1000 

individuals with divergent genetic backgrounds yet living in similar environments demonstrated 

that it was non-genetic factors such as household sharing, diet, and age that shaped the 

composition of the gut microbiome, explaining ~20% of observed variance (Rothschild et al., 

2018). In comparison, genetic ancestry was not significantly associated with gut microbiome 

composition. Of the environmental factors, diet is known to be one of the most important 

modifiers of the gut microbiome (Singh et al., 2017; Zmora, Suez, & Elinav, 2019). A landmark 

study of gnobiotic mice demonstrated that transitioning from a plant-rich, low-fat diet to a 

‘Western’ high fat, high-sugar diet can alter the microbial community structure and function 

within a single day (P. J. Turnbaugh et al., 2009). Another study comparing the fecal microbiome 

of children from Burkina Faso and Italy demonstrated clear differences in their microbial 

community compositions attributed to their diet, including a decrease in microbial richness for 

Italians and an increase in short-chain fatty acids (SCFAs) in Africans (De Filippo et al., 2010). 

Significant efforts are now being put forward to leverage such immense plasticity to manipulate 

the microbiome through interventions such as antibiotics, probiotics, fecal microbiota and phage 

therapy to restore imbalances and improve host health (David et al., 2014; Kau, Ahern, Griffin, 

Goodman, & Gordon, 2011; Kuntz & Gilbert, 2017; S. S. Li et al., 2016; Mirzaei & Maurice, 

2017; Quigley & Gajula, 2020). 
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1.5 Dysbiosis: moving beyond associations towards causation 

Perturbations of the gut microbiome, known as ‘dysbiosis’, are characterized as changes 

to its composition and/or functions that negatively affect the host’s health. Dysbiosis of the gut 

microbiome has been linked to a wide-array of diseases from GI-related disorders including IBD 

(Lewis et al., 2015), type-2 diabetes (T2D) (X. Li, Watanabe, & Kimura, 2017), and obesity 

(Carding, Verbeke, Vipond, Corfe, & Owen, 2015), to central nervous system (CNS) related 

disorders such as Alzheimer’s (Vogt et al., 2017), autism (Strati et al., 2017), and depression 

(Luna & Foster, 2015). Notably, microbiome-wide association studies (MWAS) have provided a 

wealth of information linking various microbiome features to disease (Gilbert et al., 2016). For 

instance, a recent large-scale investigation of ~3400 individuals identified >1500 significant 

associations between 102 bacterial genera and 142 host factors (Manor et al., 2020). While 

microbiome studies have provided long lists of implicated microbes and/or genes, their 

functional role within the gut microbiome is largely unknown (Schmidt, Raes, & Bork, 2018; 

Surana & Kasper, 2017). Specifically, how these microbes impact host physiology is required to 

refine such lists into experimentally validated causal features and ultimately translate this 

knowledge into actionable therapies.  

1.6 Inferring the functional potential of the gut microbiome 

The majority of studies highlighting the functional importance of the gut microbiome 

have focused on gene-based approaches, extrapolating from relative abundances of species and 

their genes to enriched functions and pathways in a microbial community (Abubucker et al., 
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2012; M. G. Langille et al., 2013). These methods, however, are inherently limited in their ability 

to identify which functions are conferred by specific microbes, and are incapable of directly 

measuring functional activity (Heintz-Buschart & Wilmes, 2018). Functional profiling of the 

microbiome from 16S rRNA sequencing/metagenomes requires mapping reads to annotated 

genes, proteins or genomes. The accuracy of functional predictions thereby depends on the 

accuracy of a priori functional annotations. DNA-based techniques usually do not differentiate 

between microbes that are dead or alive, confounding interpretations of processes important to 

host-microbiome interactions (Bajaj et al., 2018; Blazewicz, Barnard, Daly, & Firestone, 2013; 

Cangelosi & Meschke, 2014).  

A functional microbiome is a product of its expressed genes, reflected upstream of the 

functional hierarchy by transcripts, proteins, and metabolites. Functional profiling of the 

microbiome using DNA-based omics assumes that all functionally predicted genes are expressed 

equally - a flawed notion that has been disproven with other omics technologies including 

metatranscriptomics and proteomics (Franzosa et al., 2014; Verberkmoes et al., 2009). 

Moreover, DNA-based techniques provide a taxonomic classification of a microbial community, 

yet taxonomic resolution of 16S rRNA gene sequencing is at best to species-level (Drewes et al., 

2017), and strain-level taxonomic resolution of metagenomics is just emerging (Nayfach & 

Pollard, 2016). The lack of high-resolution characterization is important as there can exist great 

functional differences at the strain level of identical microbial species, with major consequences 

to host’s health (Noecker, McNally, Eng, & Borenstein, 2017; Rosen & Palm, 2017). For 

instance, some strains of Propionibacterium acnes are shown to be enriched in acne, while others 

are associated with healthy skin (Fitz-Gibbon et al., 2013). Therefore, inferring the functional 



24 

 

 

 

capacity of the microbiome is predicated upon precise and accurate mapping of the microbiome. 

Despite its shortcomings, DNA-based strategies have yielded important insight into the 

composition and functional potential of the microbiome, aptly answering “who is there?” and 

“what can they do?”.  

1.7 The gut metabolome as a functional readout of microbial activity  

Many biological processes that occur within the gut and are important to host-microbial 

interactions far exceed the taxonomic and genomic contributions of the gut microbiome 

(Noecker et al., 2017). From an evolutionary standpoint, humans and their native gut microbiota 

have formed a mutually beneficial relationship where gut microbes contribute to the production 

of biologically active small molecules, termed microbial-derived metabolites, that are believed to 

enhance host fitness (Nicholson et al., 2012). These metabolites serve as signaling molecules, 

mediating vital host-microbial interactions through a dynamic crosstalk involving numerous 

molecular pathways. The host and its resident gut microbiota work together to coproduce 

metabolites through nutrient and xenobiotic metabolism (Nicholson et al., 2012). These small 

molecule products greatly impact biological processes with important consequences to human 

health including digestion, immune system development and regulation, inflammation, and 

neurodevelopment (Hsiao et al., 2013; Sharon et al., 2014). For instance, Prevotella copri and 

Bacteroides vulgatus were recently shown to influence circulating levels of branched-chain 

amino acids (BCAAs), likely inducing insulin resistance in humans (Pedersen et al., 2016). 

Another study demonstrated that treatment of B. fragilis in mice displaying features of autism 

spectrum disorder (ASD) corrected anxiety-like behavior, attributed to reductions in the levels of 
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the microbial-derived metabolite 4-ethylphenylsulfate (4EPS) (Hsiao et al., 2013). The gut 

metabolome therefore reflects the interplay between the host and its microbiota, providing a 

functional readout of gut microbiome activity (Marcobal et al., 2013; Zierer et al., 2018).  

Perturbations in cellular processes are rapid and leave metabolic fingerprints, 

representing the physiological state of the host and its microbiota (Gilbert et al., 2016; Zierer et 

al., 2018). These metabolites are the start and end products of various microbial-mediated 

processes, enabling systems-level insight of the gut microbiome. Metabolites are also the 

universal language of the microbiome, providing a detailed functional assessment of host-

microbiome-disease interactions. As mentioned above, different assemblages of the gut 

microbiota can alter the metabolome. A recent large-scale study has demonstrated that the 

observed variance of the fecal metabolome can be significantly explained by the gut microbiome 

structure (86). Therefore systematically linking changes in metabolomic profiles to 

compositional shifts in the microbiome has great potential to deliver cutting-edge functional 

understandings of a complex ecosystem (Noecker et al., 2016; Noecker et al., 2017). 

Furthermore, by unearthing changes in functional activity and attributing it to a microbe, targeted 

therapeutics can be created to regain functional homeostasis. The gut metabolome thus 

complements DNA-based approaches, enabling researchers to gain mechanistic insights into 

functional processes underlying differential phenotypic states.  

1.8 Application of metabolomics towards characterizing the microbiome 

Metabolomics is the comprehensive quantification and analysis of small molecules 

(<1500 Da) within a biological system. The central dogma of metabolomics is that one’s 
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metabolic profile closely represents his or hers health status, reflecting not only genetic 

influences but impacts from their lifestyle, environment, and native microbiota (Beger et al., 

2016; D. S. Wishart, 2016). For this reason, it has been designated as the “link between genotype 

and phenotype” (Fiehn, 2002). There exist two main metabolomic approaches, untargeted and/or 

targeted. While untargeted methods aim to measure the global set of metabolites within a sample, 

targeted metabolomics aim to quantify a predefined set of metabolites (C. H. Johnson, J. 

Ivanisevic, & G. Siuzdak, 2016). A wide range of sample types can be analyzed, including 

common biospecimens such as urine, tissues, blood, and stool. In recent years, metabolomic 

approaches are becoming increasingly popular in microbiome studies, particularly (i) to 

characterize diseases/disorders or (ii) to investigate the impact of dietary and xenobiotic 

interventions on the host’s metabolic profile (Ryan et al., 2017; Sanguinetti et al., 2018; F. Wang 

et al., 2018). For instance, Cui et al. performed an integrative metagenomic and metabolomics 

approach to evaluate the role of the gut microbiota in chronic heart failure (CHF). They 

correlated distinctive changes in the gut microbiota composition, namely Faecalibacterium 

prausnitzii and Ruminococcus gnavus, with differential fecal and plasma metabolic profiles 

between healthy controls and CHF patients, highlighting the significant impact of gut microbiota 

dysbiosis on human health (Cui et al., 2018). Marrying other molecular layers of the microbiome 

with the metabolome permits not only the understanding of mechanisms underlying host-

microbial activity, but the exploration of genetic, epigenetic, and environmental impacts on 

host’s health (Rojo et al., 2017). 

Obtaining and characterizing the metabolic profile of a sample is not without its 

challenges. Despite advances in high-throughput mass spectrometry technologies, only a small 
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fraction of metabolites is measurable by current technologies. The human metabolome has been 

estimated to consist of 1-3 million compounds, however current targeted metabolomic 

approaches can only detect about 300-700 metabolites (Uppal et al., 2016). Poor coverage of the 

human metabolome (<1%) is due in part to the inherent nature of these compounds - they can 

exist in undetectable levels, they have very high turnover rates, and are vulnerable to chemical 

modifications (Nielsen, 2017). Attributing the origin of metabolites to specific microbes or the 

host is also incredibly challenging as core metabolic processes are universally conserved, 

therefore important small molecules are structurally indistinguishable between species (Newsom 

& McCall, 2018). Finally, metabolite identification remains a significant challenge in the field of 

metabolomics (Vinaixa et al., 2016). Biological interpretation and contextualization of 

metabolites predicates on their proper identification, requiring researchers to manually compare 

the exact mass (m/z) or processed spectra against comprehensive MS-based spectral databases. 

Manual identification can often lead to a number of false-positives (Tobias Kind & Oliver Fiehn, 

2006), as well metabolite databases can be improperly curated, incomplete, and not available to 

all researchers (Vinaixa et al., 2016). Furthermore, only 5-10% of all quantifiable compounds 

can be identified across MS-spectra databases (e.g. Human Metabolome Database (HMDB) and 

MassBank), requiring major efforts from researchers to query multiple databases to confirm their 

metabolite identities (Vinaixa et al., 2016). Novel computational and technological innovations 

are therefore required to facilitate and improve metabolite identification and interpretation. 

Notwithstanding these limitations, metabolomics provides researchers with an unprecedented 

and real-time approach to quantify systems-level alterations in the microbiome, reflecting 

community-wide shifts in functional activity.   
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1.9 Deciphering the Metabolic Function of the Gut Microbiome 

Pinpointing precise modifications of the gut microbiome responsible for phenotypic 

differences between healthy and diseased individuals is incredibly challenging. While taxonomic 

profiling can identify differentially enriched bacteria, alone it is ineffective to infer what features 

of these bacteria have important beneficial or detrimental impacts on its host. These features 

could be the production of microbial-derived metabolites such as trimethylamine-N-oxide 

(TMAO), which has been linked to adverse cardiac events and chronic kidney disease (D. Li, 

Kirsop, & Tang, 2015; Tang et al., 2015), or to their lipopolysaccharide (LPS) outer coating, 

which have immunoinhibitory effects on the host (d’Hennezel, Abubucker, Murphy, & Cullen, 

2017; Zhao, Cong, Jaber, & Lukiw, 2017). Consequently, microbiome function not only includes 

metabolic activities performed by native gut bacteria, but also their inherent characteristics. 

Moreover, assigning microbiome function to specific microbes is vital for translational insights 

(Louca, Parfrey, & Doebeli, 2016; Manor & Borenstein, 2017). Bauer et al. (Bauer, Laczny, 

Magnusdottir, Wilmes, & Thiele, 2015) demonstrated that metabolic function of microbial 

strains can greatly differ as predicted by their phylogeny, stressing the importance of linking 

known metabolic functions to the microbes performing them. Creation of microbial functional 

profiles, encompassing both who the microbes are and what they do is required to create targeted 

therapeutics aiming to manipulate microbiome functionality.   

Importantly, downstream interpretation of quantified or predicted causative metabolites 

and genes relies on proper contextualization. Here, the main approach is to perform pathway 

prediction utilizing existing reference pathway databases including the Kyoto Encyclopedia of 
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Genes and Genomes (KEGG) (Minoru Kanehisa, Furumichi, Tanabe, Sato, & Morishima, 2017) 

and MetaCyc (R. Caspi et al., 2014; Ron Caspi et al., 2020). These databases hold well-

characterized pathways known to play significant roles in host physiology, though the definition 

of these pathways is incredibly subjective. For instance, the average MetaCyc pathway contains 

4.37 reactions, yet the average KEGG pathway contains 28.84 reactions (Altman, Travers, 

Kothari, Caspi, & Karp, 2013). Moreover, roughly 50% of reactions are shared between the two 

databases, once again highlighting the necessity for users to utilize multiple knowledgebases to 

avoid bias. Limiting knowledge-based contextualization of metabolites and genes to only pre-

defined functional categories can result in missing specific functions that play key roles in 

disease. However, inferring novel metabolic pathways is computationally burdensome, requiring 

users to follow “rules” such as atom-mapping (Blum & Kohlbacher, 2008) and structural 

transformation (Moriya et al., 2010). For instance, a recent graph-theory based algorithm 

identified > 1000 pathways from glucose to pyruvate, capturing the well-known glycolysis 

pathway in addition to alternate pathways that are poorly studied yet important to maintain 

functional homeostasis (Ravikrishnan, Nasre, & Raman, 2018). Assigning functional units (e.g. 

metabolites, genes, and reactions) to pathways to gain insight into a given microbiome’s 

metabolism is a difficult yet vital task to facilitate interpretation. 

1.10 Future Perspectives 

Despite the abundance of available data characterizing the gut microbiome, there is a lack 

of true understanding of its dynamics, function, and interactions with its host. Omics have been 

widely used to profile this complex system at multiple levels, though the resulting big data 
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challenges have significantly limited researchers to make important discoveries and translational 

applications. A deep understanding of current knowledge and programming skills are required to 

use novel ‘omics approaches, which represent significant barriers for their wider applications. 

Easy-to-use bioinformatics tools, such as one to integrate metabolomics and microbial 

sequencing data, are needed to address this gap. Ultimately, obtaining metabolic perspectives of 

the gut microbiome can shine a light on underlying mechanisms that greatly impact human 

health and inform the rational design of novel treatments.  

1.11 Rationale and objectives 

Microbiome association studies typically result in lists of implicated microbes that 

require further curation to determine how they impact their host. DNA-based functional profiling 

is commonly used to gain mechanistic insights but is a measure of functional potential rather 

than true activity. Conversely, metabolomics provides a snapshot of host-microbial interactions 

and better represents a complex ecosystem such as the microbiome by reflecting both genetic and 

environmental inputs. However, the use of metabolomics data is complicated by the fact that 

only a small fraction of metabolic features can be annotated. Further, the use of metabolomics in 

microbiome studies is not yet commonplace. It is thus hypothesized genome-scale metabolic 

models, which are network reconstructions of an organism’s metabolism, can be used to predict 

alterations in microbial metabolism. The primary objectives of my project are therefore: 

1. To become proficient in metabolomics data processing and analysis and translate this 

knowledge into the development of bioinformatics tools for metabolomics data. 
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Processing and interpreting complex metabolomics datasets is challenging for novice researchers 

or those without bioinformatics training. I therefore first aim to become proficient in analyzing 

big metabolomics data by collaborating with other researchers in their data analysis and 

performing a literature review of existing analytical methods. I then aim to enhance the 

MetaboAnalyst platform (Chong et al., 2018), which is a freely accessible web-based tool for 

metabolomics data analysis. 

2. To improve biological insights obtained from untargeted metabolomics data in an open-

source and transparent matter. 

Untargeted metabolomics based on high-resolution LC-MS is increasingly employed in large-

scale omics studies. However, processing these complex metabolomics datasets is a key 

challenge in current computational metabolomics. Previous implementations had limited support 

for raw spectra processing and peak annotation. I thus aim to address two important gaps, 1) raw 

spectral processing and 2) functional interpretation directly from MS peaks. 

3. To implement a novel bioinformatic framework to integrate paired untargeted 

metabolomics and taxonomic microbial signatures to predict changes in microbial 

metabolism. 

A key goal of microbiome research is to define a microbe's function and its impact on the host. It 

is well known that microbial metabolism can influence a host’s phenotype. However, the 

integration of untargeted metabolomics and taxonomic sequencing data has yet to be tackled. To 

overcome this, I will create microMum, which leverages genome-scale metabolic networks to 
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combine the different data and obtain interpretable functional insights.  
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Preamble to Chapter 2 

Rapid advances in analytical chemistry, mass spectrometry and nuclear magnetic 

resonance (NMR) spectroscopy have dramatically increased the size and speed of which 

metabolomics data can be obtained. However, the inability of researchers to extract meaningful 

biological insights from these increasingly large and complex datasets has now become a major 

roadblock in current metabolomics research and applications. Furthermore, properly processing 

complex metabolomics data can be challenging for bench scientists and clinicians with minimal 

bioinformatic skills. Oftentimes users are required to use multiple tools to perform their analyses, 

necessitating they have coding skills to utilize the tools and format the data properly for each tool. 

Moreover, some popular tools are proprietary software that require paid licenses. These obstacles 

can be overwhelming and restricts users to basic statistics and visualizations. Therefore, to 

empower the field of metabolomics, the first objective of my thesis was to develop user-friendly 

and easily accessible bioinformatic tools to bridge the gap between metabolomics data generation 

and biological insights. The manuscript in Chapter 2 is the first of nine publications I have 

published in metabolomics, ranging from R packages, investigations of flesh quality of carp, a 

meta-analysis of COVID-19 metabolomics data, and web-based tools. 
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Abstract 

We present a new update to MetaboAnalyst (version 4.0) for comprehensive metabolomic 

data analysis, interpretation, and integration with other omics data. Since the last major update in 

2015, MetaboAnalyst has continued to evolve based on user feedback and technological 

advancements in the field. For this year’s update, four new key features have been added to 

MetaboAnalyst 4.0, including: 1) Real-time R command tracking and display coupled with the 

release of a companion MetaboAnalystR package; 2) a new module for pathway prediction from 

untargeted mass spectral data using the mummichog algorithm; 3) a Biomarker Meta-analysis 

module for robust biomarker identification through the combination of multiple metabolomic 

datasets; and 4) a Network Explorer module for integrative analysis of metabolomics, 

metagenomics, and/or transcriptomics data. The user interface of MetaboAnalyst 4.0 has been 

reengineered to provide a more modern look and feel that gives more space and flexibility to 

introduce new functions. The underlying knowledgebases (compound libraries, metabolite sets, 

metabolite-SNP associations, and metabolic pathways) have also been updated using the latest 

data from the Human Metabolome Database (HMDB). A Docker image of MetaboAnalyst is also 

now available to facilitate local download and installation of MetaboAnalyst. MetaboAnalyst 4.0 

is freely available at http://metaboanalyst.ca.  

  

 

  

http://metaboanalyst.ca/
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Introduction 

MetaboAnalyst is a comprehensive web server designed to help users easily perform 

metabolomic data analysis, visualization, and functional interpretation. It was first introduced in 

2009 with a single module for metabolomic data processing and statistical analysis (Jianguo Xia, 

Nick Psychogios, Nelson Young, & David S Wishart, 2009). Since then, it has been continuously 

updated to meet the evolving needs of the metabolomics research community. Version 2.0, which 

was released in 2012 (Jianguo Xia, Rupasri Mandal, Igor V Sinelnikov, David Broadhurst, & 

David S Wishart, 2012), incorporated three new modules for metabolite set enrichment analysis 

(MSEA (Jianguo Xia & David S Wishart, 2010b)), metabolic pathway analysis (MetPA (Jianguo 

Xia & David S Wishart, 2010a)), as well as advanced two-factor and time-series analyses 

(MetATT (Jianguo Xia, Sinelnikov, & Wishart, 2011)). Version 3.0, which was released in 2015, 

added support for biomarker analysis, power analysis, and joint pathway analysis (i.e. integrating 

genes/proteins and metabolites), coupled with a major upgrade of the underlying web framework 

(Jianguo Xia, Igor V Sinelnikov, Beomsoo Han, & David S Wishart, 2015).  

With each iteration, MetaboAnalyst has grown more popular. To better handle the growing 

user traffic, MetaboAnalyst has recently been migrated to a Google cloud server for improved 

performance and accessibility. According to Google Analytics, over the past 12 months, 

MetaboAnalyst has processed >1.8 million jobs submitted from ~60,000 users. For instance, 

MetaboAnalyst has been used to elucidate metabolic differences in breast cancer of African-

American and Caucasian women (Tayyari et al., 2018), to identify highly predictive biomarkers 

of ketosis in dairy cows (G. Zhang et al., 2017), to understand alterations in the intestinal 



37 

 

 

 

metabolome during enteric infections (Reynolds et al., 2017), as well as to study many other 

complex biological processes and diseases (Arts et al., 2016; Cox et al., 2016; Paglia et al., 2016). 

Based on our citation analysis for 2017, MetaboAnalyst has been used in at least 1/4 of all 

metabolomics publications for that year, attesting to its status as one of the preferred tools for 

metabolomic data analysis.  

However, the field of metabolomics continues to evolve and it is important that 

MetaboAnalyst also evolves to keep current with the field and its growing user base.  For this 

year’s update, MetaboAnalyst has been substantially upgraded to enhance its user interface, to 

improve reproducibility/transparency, to support batch processing, to provide improved pathway 

interpretation from untargeted mass spectrometry (MS) data, to support meta-analysis and multi-

omics analysis, to expand its underlying knowledgebase, and to support more facile local 

installations. In particular, the key features of this year’s update include: 

• A companion R package (MetaboAnalystR) and an accompanying R-command history 

panel to permit more transparent and reproducible analysis; 

• An expanded set of metabolite, pathway and metabolite-disease/SNP (single nucleotide 

polymorphism) association knowledgebases to support more accurate and comprehensive 

functional analysis and interpretation; 

• A new module based on the mummichog (S. Li et al., 2013b) algorithm for pathway activity 

prediction from untargeted metabolomics data; 

• A new module to support metabolomic biomarker meta-analysis; 

• A new module to support multi-omics data integration through knowledge-based network 

analysis and visualization; 
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• Other important updates including direct links to online tools for nuclear magnetic 

resonance (NMR), gas chromatography - mass spectrometry (GC-MS) and liquid 

chromatography - mass spectrometry (LC-MS) spectral analysis; as well as offering a 

Docker image for facile download and installation of MetaboAnalyst on local computers. 

These changes and updates are all contained in MetaboAnalyst 4.0, which is freely available at 

http://www.metaboanalyst.ca. For each new module, we have added frequently asked questions 

(FAQs) and additional functions for more comprehensive analysis report generation. A more 

detailed description of each of these updates and changes in MetaboAnalyst 4.0 is given below. 

 

Overview of the MetaboAnalyst 4.0 framework 

MetaboAnalyst’s user interface has been upgraded to provide a more modern “look and 

feel” that maintains the same easy-to-use modular analytical pipeline. To facilitate navigation, all 

functions are now organized into 12 analytical modules, which can be arranged into four general 

categories: 1) exploratory statistical analysis, 2) functional analysis, 3) data integration and 

systems biology, and 4) data processing & utility functions (Figure 1). The exploratory statistical 

analysis category (general statistics, biomarker analysis, two-factor/time-series analysis, and 

power analysis) can accept data from either targeted or untargeted metabolomics data sets. The 

functional analysis category has been expanded to include a new module on pathway activity 

prediction from MS data, in addition to the two existing modules for metabolite set enrichment 

analysis and pathway analysis of targeted metabolomics data. The data integration and systems 

biology category now includes three new modules (biomarker meta-analysis, joint-pathway 

http://www.metaboanalyst.ca/
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analysis, and network explorer). Finally, the data processing and other utilities category contains 

common data processing tools such as compound ID conversion, batch effect correction, as well 

as links to several web-based tools for spectra analysis such as Bayesil for automated NMR 

spectral annotation (Ravanbakhsh et al., 2015), GC-AutoFit and XCMS Online for LC/MS spectral 

processing (Huan et al., 2017).  
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Figure 1. Overview of MetaboAnalyst 4.0 framework. The current modules can be organized 

into four general categories: (i) exploratory statistical analysis, (ii) functional analysis, (iii) data 

integration & systems biology and (iv) data processing & utility functions. 
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MetaboAnalystR and improved transparency/reproducibility 

Thanks to continuing technological advancements in the field along with very helpful user 

feedback, many small updates and feature enhancements have taken place over the years to make 

MetaboAnalyst faster, more intuitive, and more robust. A potential downside associated with this 

continuous evolution is that it could lead to long-term reproducibility issues due to small changes 

in the interface or default parameter settings. While this flexibility is one feature that has made 

MetaboAnalyst so appealing, it has also made it inherently challenging to fully capture all steps 

required for reproducible analysis in the future. One possible way to alleviate this issue is to host 

multiple snapshots of the tool created at different time points. However, the maintenance costs 

associated with such an approach would be prohibitive. Another approach is to improve 

MetaboAnalyst’s transparency throughout the analysis process. Because most of MetaboAnalyst’s 

analytical tools are based on R functions, it would be much more efficient to capture the workflow 

using R commands (together with user-selected parameters). Furthermore, many computationally 

advanced users of MetaboAnalyst have requested improved support for its R functions in order to 

tailor their analysis to their data and to perform more extensive batch data processing.  

To address both of these needs (i.e. greater support for transparency and batch analysis), 

we have developed the MetaboAnalystR package. This is a companion R-package that permits 

users to “see” and save the R code that MetaboAnalyst is running in real-time, which can then be 

used locally to reproduce their analytical workflow. MetaboAnalystR is designed to support more 

transparent, reproducible yet flexible analysis of metabolomic data within MetaboAnalyst. The R 

code between MetaboAnalystR and the web server has been extensively modified to ensure that 
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they are fully interchangeable and have identical functionalities across either platform. During 

each session of data analysis, these R commands are displayed on the right side of each page in 

the “R command history” sidebar, and each command appears sequentially based on when the 

command was executed (Figure 2A). MetaboAnalyst also stores the entire R command history as 

an executable R script that can be downloaded following the completion of each module. This 

script contains all user-selected parameters and selected tests. We believe that revealing the R code 

behind MetaboAnalyst improves transparency and allows users to track each step of their analysis 

in a form (R script) that can be easily shared and reproduced either on the web or locally using the 

MetaboAnalystR package. Beginner R users will be able to quickly learn the basics of 

MetaboAnalystR by copying the commands generated via their web-based analysis directly into R 

and reproduce their analyses; while advanced R users will be easily able to incorporate 

MetaboAnalystR package into their analytical workflows or customize the code to suit their needs. 

We believe that the MetaboAnalystR feature not only captures the workflow for better 

reproducibility, but also offers greater flexibility for more refined analysis and batch processing.  

Obviously, with any major update to a resource like MetaboAnalyst, there is also some 

concern about the reproducibility (or return-accessibility) of data analyses performed using earlier 

versions of the server. For instance, due to updates to the underlying metabolite set libraries, the 

ranks and p-values of the top hits would change for the same input data. To help alleviate this 

issue, the previous version of MetaboAnalyst (version 3.0) will still be maintained, as long as there 

is sufficient interest and user traffic. 



43 

 

 

 

 

Figure 2. Summary of new features introduced in MetaboAnalyst 4.0. (A) An illustration 

showing the R command history panel and the companion MetaboAnalystR package will allow 

users to easily reproduce their analyses. In this case, the R command history captures all R 

commands leading to the generation the PLS-DA 2D score plot, which can then be reproduced in 

MetaboAnalystR using identical R commands (except the file path parameter for user input). (B) 

A zoomed-in view of the KEGG metabolic network showing the potential metabolite hits predicted 

from the mummichog algorithm. Clicking on a highlighted node will display all possible matched 

adduct forms of the corresponding compound. (C) An interactive Venn diagram showing the 

results froma biomarkermeta-analysis. Clicking on an area will show the corresponding hits. 

(D)An example of the metabolite-gene-disease interaction network created based on user input. 
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MetaboAnalyst’s knowledgebase update 

Considerable effort has been put in to update many of MetaboAnalyst’s knowledgebases. 

This has been done to address potential issues such as the decline in analysis quality due to a lack 

of updated annotations (Marco-Ramell et al., 2018; Wadi, Meyer, Weiser, Stein, & Reimand, 

2016). The most noteworthy updates are to the underlying compound databases, to the pathway 

datasets used for pathway analysis, and to the metabolite sets used for metabolite set enrichment 

(MSEA). The aim of these updates is to provide users more accurate and far deeper biological 

insights to help interpret their metabolomic data.   

Compound database. MetaboAnalyst performs in-house mapping of common compound 

names to a wide-variety of database identifiers including KEGG (Minoru Kanehisa et al., 2017), 

HMDB (Wishart et al., 2017b; Wishart et al., 2012), ChEBI (Hastings et al., 2012), METLIN 

(Smith et al., 2005), and PubChem (Sunghwan Kim et al., 2015) prior to performing any selected 

functional analysis. This knowledgebase has been updated with HMDB Version 4.0 (Wishart et 

al., 2012), including updates of HMDB identifiers and links to other databases.  As a result, 

MetaboAnalyst’s compound database has been expanded to ~19 000 compounds. They represent 

the core subset of HMDB compounds (~114 100) with more detailed annotations relevant for 

downstream functional analysis.   

 Metabolite sets and pathway libraries. MetaboAnalyst’s metabolite set libraries are 

primarily used by its metabolite set enrichment analysis module (MSEA). Many MetaboAnalyst 

users utilize the MSEA module to provide appropriate functional analysis and biological context 
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to their uploaded metabolomic data. Six metabolite sets, and one newly created metabolite set, 

were updated using HMDB version 4.0 (Wishart et al., 2012). The updated metabolite sets include 

disease sets in blood (344 diseases, increased from 330 diseases), cerebral spinal fluid (166 

diseases, increased from 108 diseases), and urine (384 diseases, increased from 290 diseases), as 

well as location-based metabolite sets (73 organs, biofluids and tissues, increased from 57 organs, 

biofluids and tissues), pathway-based metabolite sets (147 metabolic pathways, increased from 80 

metabolic pathways), single nucleotide polymorphisms (SNPs) metabolite set (4598 SNPs, 

increased from 4501 SNPs), and a new metabolite set consisting of drug-related pathways (461 

pathways). It should be noted that these metabolite sets were derived from human-only data. We 

are currently updating the Pathway Analysis module to support interactive visual analysis of the 

extensive list of pathways from SMPDB (Jewison et al., 2013).  

New module #1: Mummichog and MS peaks-to-pathways 

High-throughput analysis and functional interpretation of untargeted MS-based (mass 

spectrometry-based) metabolomics data continues to be a major bottleneck in metabolomics. 

Conventional MS-based procedures typically include peak identification, spectral deconvolution, 

and peak annotation. A number of excellent methods have been developed to deal with the first 

two tasks (Lommen & Kools, 2012; Tomáš Pluskal, Castillo, Villar-Briones, & Orešič, 2010), 

which typically yield a list of “clean” MS peaks. Peak annotations are then performed manually 

by searching through a variety of spectral or compound databases. This process can often generate 

a number of false positives, due to redundancies in masses or the lack of unique MS spectral 

signatures for many small compounds (T. Kind & O. Fiehn, 2006; Kind & Fiehn, 2007). High-
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resolution MS instruments are increasingly used to reduce these false hits analytically. 

Computationally, a promising approach is to shift the unit of analysis from individual compounds 

to individual pathways (or any groups of functionally related compounds which collectively 

produce more distinctive spectral footprints) - a concept similar to the widely used gene set 

enrichment analysis or GSEA (Subramanian et al., 2005). The mummichog algorithm was an 

elegant and efficient implementation of this concept that enables direct prediction of pathway 

activities from high-resolution MS peaks, without performing accurate peak annotation upfront (S. 

Li et al., 2013b). Currently, the algorithm lacks a graphic interface, thus limiting the access to 

many bench researchers. Due to its popularity and repeated user requests, we added a new module 

(called “MS Peaks-to-Pathways”) in MetaboAnalyst to support mummichog-based MS peak 

analysis through user-friendly interface. We re-implemented the mummichog (version 1.0.10) 

algorithm in R to be consistent with MetaboAnalyst workflow and the aforementioned strategy of 

reproducibility. The knowledge-base for this module consists of five genome-scale metabolic 

models obtained from the original Python implementation which have either been manually 

curated or downloaded from BioCyc, as well as an expanded library of 21 organisms derived from 

KEGG metabolic pathways. The inclusion of SMPDB pathways for other model organisms will 

occur in the next few months (Jewison et al., 2013). While compound identification is generally 

de-emphasized in mummichog, the post hoc analysis of the matched compounds is critical for 

downstream validation and interpretation. To address these needs, we implemented a KEGG style 

global metabolic network to allow users to visualize the global peak matching patterns as well as 

to interactively zoom into a particular candidate compound to examine all of its matched isotopic 

or adduct forms.  
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 To use this module, users must upload a table containing three columns - m/z features, p-

values, and statistical scores (e.g. t-scores or fold-change values). If these values have not yet been 

calculated, users can use MetaboAnalyst’s exploratory statistical analysis module to upload their 

raw m/z peak tables and perform their statistical analysis of choice, then upload these results into 

the mummichog module. Users also need to specify the mass accuracy, the ion mode (positive or 

negative), and the p-value cutoff to delineate between significantly enriched and non-significantly 

enriched m/z features. Following data upload, users must select an organism (library) from which 

to perform the untargeted pathway analysis. For a detailed explanation of the pathway analysis, 

please refer to MetaboAnalyst’s web server FAQs, or to Li et al. 2013 (S. Li et al., 2013b).  

 The output of the mummichog module consists of a table of results containing ranked 

pathways that are enriched in the user-uploaded data. The table includes the total number of hits, 

their raw p-values (Fisher’s exact test or Hypergeometric), their EASE score, and the p-value 

modeled on user data using a Gamma distribution. Users can click the “View” link to view the 

detailed hits for each pathway. A comprehensive table containing the compound matching 

information for all user-uploaded m/z features is also available for download. Importantly, all of 

this information (pathways, compounds, and matched hits) can be intuitively explored within the 

KEGG global metabolic network (Figure 2B). The page consists of three sections: 1) a top toolbar 

containing different menus to control various visualizations, 2) a left-hand section showing the 

pathway analysis results, and 3) a central view for interactive visual exploration of the metabolic 

network. Users can scroll their mouse to zoom in and out of the network view. Clicking on a 

pathway name will highlight all of its compounds within the network. Double-clicking a node will 
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show all the matching details for the corresponding compound as shown in the dialog (Figure 2B). 

The current view can be downloaded as either a PNG or SVG file.  

New module #2: Meta-analysis of metabolomics data 

Biomarker identification continues to be an important area of research in metabolomics 

(Caroline H Johnson, Julijana Ivanisevic, & Gary Siuzdak, 2016). However, a major challenge in 

many metabolomics-based biomarker discovery efforts is the validation of potential metabolic 

markers (Hanash, Pitteri, & Faca, 2008). Questions have been raised about biomarker consistency 

and robustness across different metabolomics studies conducted on the same disease. As a result, 

the importance of external validation to improve statistical power for biomarker validation has 

been increasingly emphasized (Goveia et al., 2016; Tzoulaki, Ebbels, Valdes, Elliott, & Ioannidis, 

2014). To address this issue of biomarker validation and reproducibility, there is growing interest 

among researchers to combine multiple published metabolomics datasets collected under similar 

conditions. The idea is that this approach would reduce study bias to enable more robust biomarker 

identification. This practice is often referred to as biomarker “meta-analysis” (Tseng, Ghosh, & 

Feingold, 2012). When executed properly, biomarker meta-analysis can leverage the collective 

power of multiple independent studies to overcome potential biases and small effect sizes 

associated with individual datasets. This can significantly improve the precision in identifying true 

patterns within the data (Haidich, 2010; Patti, Yanes, & Siuzdak, 2012; Walsh, Hu, Batt, & Santos, 

2015). However, user-friendly tools dedicated to support biomarker meta-analysis of metabolomic 

data are currently lacking (Cambiaghi, Ferrario, & Masseroli, 2016). To address this issue, we 

have implemented a new module in MetaboAnalyst 4.0 called “Biomarker Meta-analysis”. The 
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primary goal of the Biomarker Meta-analysis module is to provide a user-friendly tool for the 

integration of individual metabolomics studies to support the identification of robust biomarkers. 

The main steps for using this Biomarker Meta-analysis module are as follows:  

i. Prior to uploading the data, the user should clean all datasets to ensure consistency amongst 

feature names (compound IDs, spectral bins, or peaks) as well as consistency in the class 

labels (two groups only) across all included studies; 

ii. Once the data is cleaned and uploaded, the user can perform standard data processing, 

normalization, and differential analysis for each individual data set; 

iii. Once each individual data set has been processed via step (ii) above, meta-analysis can be 

performed using one of several statistical options: a) combining p-values, b) vote counting, 

or c) direct merging of data for very similar datasets (Walsh et al., 2015); 

iv. After step iii has been completed, the result table containing summary statistics for all 

significant features is then displayed. Users can then click to view a boxplot summary of 

any feature across the different datasets;  

v. After completion, users can explore the results in an interactive Venn diagram to view the 

shared features among all possible combinations of the datasets. An example is shown in 

Figure 2C.  

New module #3: Network explorer  

Metabolomics is increasingly being used with other omics platforms such as 

transcriptomics, proteomics, and metagenomics to study complex diseases and to gain functional 

insights into microbial communities. However, integrating multiple omics data and interpreting 
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these results at a systems level has become a significant challenge (Ritchie, Holzinger, Li, 

Pendergrass, & Kim, 2015). A commonly used strategy is to analyze each set of omics data 

individually using tools and methods already developed for each field, and then piece together the 

“big picture” using individual lists of significant features (metabolites, genes, proteins, etc.). In 

particular, biological networks are a very intuitive and flexible vehicle to convey our knowledge 

at a systems level. For instance, known relationships between genes, metabolites, and diseases can 

be easily represented as knowledge-based networks. By harnessing the power of networks and a 

priori biological knowledge, these lists of significant features can be co-projected onto the 

networks to reveal important links between them, as well as their associations with diseases or 

other interesting phenotypes. Such a comprehensive knowledgebase that connects metabolites 

with other molecular entities or phenotypes of interest, coupled with support for interactive 

network visualization, will be an essential asset to help address current data integration challenges 

(Cambiaghi et al., 2016; Charitou, Bryan, & Lynn, 2016). In MetaboAnalyst 4.0, this is addressed 

in the Network Explorer module. The aim of this module is to provide users with an easy-to-use 

tool that permits the mapping of their metabolites and/or genes (including KEGG orthologs or 

KOs) onto different types of molecular interaction networks. This network visualization can then 

be used to gain novel insights or assist users with the development of new hypotheses.  

This new Network Explorer analysis module complements MetaboAnalyst’s joint-Pathway 

Analysis module by allowing the identification of connections that cross pathway boundaries (e.g. 

metabolite-disease interactions) as well as enabling a more global view of the pathways which 

may not be obvious when examined individually. The Network Explorer module currently 

supports five types of biological networks including the KEGG global metabolic network, a gene-
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metabolite interaction network, a metabolite-disease interaction network, a metabolite-metabolite 

interaction network, and a metabolite-gene-disease interaction network. The last four networks are 

created based on information gathered from HMDB and STITCH databases (Yao et al., 2015), and 

are applicable to human studies only.  

 Users can upload either a list of metabolites, a list of genes, or both. For the metabolite list, 

MetaboAnalyst 4.0 currently accepts compound names, HMDB IDs, or KEGG compound IDs as 

metabolite identifiers. For the gene/protein list, Entrez IDs, ENSEMBL IDs, official gene symbols, 

or KEGG orthologs are currently supported. The uploaded list of metabolites and/or genes/proteins 

is then mapped using MetaboAnalyst’s internal databases. Following this step, users can select 

which of the five networks to begin to visually explore their data. On the network visualization 

page, users can use their mouse or touchpad to zoom in and out, highlight, drag and drop nodes 

(except the KEGG global metabolic network), or click on a node/edge for further details. Users 

can also perform functional enrichment analysis and then highlight those metabolites, genes or 

proteins involved in functions of interest on the network. The background color of the network 

and the colors of the nodes and edges can also be customized. An example of the output from 

MetaboAnalyst’s Network Explorer module is shown in Figure 2D. Each generated network can 

then be exported as an SVG or PNG image for publication purposes. We believe that the 

integration of interactive network exploration, network topological analysis, and functional 

enrichment analysis will provide users with more informative views and richer contextual 

information to facilitate the generation of testable hypotheses.  
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Other feature updates 

There have been many small updates based on user suggestions that have accumulated over 

the past three years. For instance, in the biomarker analysis module, many users indicated that they 

wanted to be able to select features that give information complementary to biomarkers they 

already selected. We have therefore added feature similarity information using the cluster 

membership from k-means analysis to enable this feature selection. Based on additional user 

feedback, we have also added two variants of the popular partial least square (PLS) methods, 

including orthogonal PLS (OPLS) and sparse PLS (SPLS) for improved data interpretation and 

more robust statistical analysis (Lê Cao, Boitard, & Besse, 2011; Thevenot, Roux, Xu, Ezan, & 

Junot, 2015). For the two-way analysis of variance (ANOVA), we have added support for both 

type I and type III ANOVA, as well as additional analysis options for different experimental 

designs. While it is well known that MetaboAnalyst only has limited support for raw spectra 

profiling, we have attempted to remedy this by adding a “Spectral Analysis” feature to point users 

to several easy-to-use, web-based tools that are freely available for raw spectra processing, 

analysis, and annotation. It currently contains links to Bayesil (Ravanbakhsh et al., 2015), GC-

AutoFit, and XCMS Online for NMR, GC-MS, and MS spectra processing, respectively. 

 

Implementation 

MetaboAnalyst 4.0 was implemented based on the PrimeFaces (v6.1) component library 

(http://primefaces.org/) and R (version 3.4.3). The interactive network visualization was 

implemented using the sigma.js JavaScript library (http://sigmajs.org). The entire system is hosted 

http://primefaces.org/)
http://sigmajs.org/
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on a Google Cloud server with 32GB of RAM and eight virtual CPUs with 2.6 GHz each. The 

server is capable of dealing with 5000~8000 data analysis jobs submitted from ~1000 users on a 

daily basis. For those who wish to use MetaboAnalyst 4.0 locally, we have provided the options 

to download the .war file or the MetaboAnalyst Docker image. Detailed instructions for download 

and installation of the Docker image are provided on the “Resources” page of the web server. The 

MetaboAnalystR package is available from the GitHub (https://github.com/xia-

lab/MetaboAnalystR) 

 

Comparison with other tools 

Several web-based as well as several web-enabled tools for metabolomic data analysis have 

been developed over recent years, including XCMS Online (Tautenhahn, Patti, Rinehart, & 

Siuzdak, 2012), Workflow4Metabolomics (Giacomoni et al., 2014), Galaxy-M (Davidson, Weber, 

Liu, Sharma-Oates, & Viant, 2016), and Metabox (Wanichthanarak, Fan, Grapov, Barupal, & 

Fiehn, 2017). Detailed comparisons between these tools and MetaboAnalyst 4.0, as well as its 

previous versions are shown in Table 1. Based on this table is evident that MetaboAnalyst offers 

the most comprehensive support for statistical analysis, functional interpretation and integration 

with other omics data. It is also evident that MetaboAnalyst supports real time interactive data 

analysis in way that no other tool currently can. While MetaboAnalyst has been limited in its built-

in support for raw spectral processing and annotation, the new “Spectral Analysis” module help 

address this shortcoming. Certainly, raw LC-MS spectra processing and analysis has been a major 

strength of XCMS online, Galaxy-M, and Workflow4Metabolomics, and these tools continue to 

be the “go-to” resources for LC-MS data analysis. Overall, the primary strength of MetaboAnalyst 

https://github.com/xia-lab/MetaboAnalystR
https://github.com/xia-lab/MetaboAnalystR
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is in its downstream data analysis, just as it is with Metabox. Indeed, the design of Metabox is 

similar to MetaboAnalyst in that it primarily accepts preprocessed metabolomics data for various 

statistical computing, functional analysis, and network-based integration. However, as noted in 

Table 1, no public server is currently available for Metabox and researchers must install it locally 

in order to use this tool.   

 

Table 1. Comparison of MetaboAnalyst with other tools. The table compares the main 

features of MetaboAnalyst (versions 1.0 - 4.0) with other web-based or web-enabled tools. 

Symbols used for feature evaluations with “√” for present, “-” for absent, and “+” for a more 

quantitative assessment (more “+” indicate better support). 

Tool name 

 

MetaboAnalyst XCMS 

online 

Galaxy-M W4M Metabox 

4.0 3.0 2.0 1.0 

Data processing 

Raw spectra ++ + + + +++ +++ +++ - 

Data filtering √ √ √ - √ √ - - 

Missing-value  √ √ √ √ - √ - - 

Normalization +++ +++ ++ ++ - ++ ++ ++ 

Statistical analysis 

Univariate +++ +++ +++ ++  + ++ ++  ++  

Multivariate +++ ++ ++  ++ ++ + +++ +  

Clustering +++ +++ ++ ++ + - + + 

Classification ++ ++ ++ ++ - - - - 

Power analysis √ √ - - - - - √ 

Biomarker 

analysis 

√ √ - - - - - - 

Functional analysis 

Enrichment  +++ ++ ++ - - - - + 

Pathway analysis +++ ++ ++ - √ - - √ 

Mummichog ++ - - - + - - - 

Data integration and systems biology 
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Joint pathway   

analysis 

√ √ - - √ - - - 

Knowledge -

based network 

analysis 

√ - - - - - - √ 

Correlation-based 

network analysis 

- - - - - - - √ 

Biomarker meta-

analysis 

++ - - - + - - - 

• XCMS Online: https://xcmsonline.scripps.edu 

• Galaxy-M: https://github.com/Viant-Metabolomics/Galaxy-M 

• Workflow4Metabolomics (W4M): http://workflow4metabolomics.org/ 

• Metabox:  http://kwanjeeraw.github.io/metabox/ 

 

Conclusions 

Perhaps the most visible change to MetaboAnalyst is its newly designed web interface, 

which allows new features to be more easily “plugged in”. It also gives more space to permit 

interactive exploration of large networks as well as to display R command history during a standard 

data analysis. We believe the latter feature, in combination with the release of the MetaboAnalystR 

package, will greatly improve reproducibility and transparency during metabolomics data analysis. 

Many advanced MetaboAnalyst users have felt constrained by the analysis boundaries defined by 

its web interface and have asked for a more flexible workflow design and batch processing 

capabilities. The MetaboAnalystR package addresses these limitations. Users can now create a 

workflow (R command history) through the web interface, customize the workflow by changing 

the order of the commands or their parameters, and finally execute the workflow in batch mode 

using the R package. For those researchers who are already familiar with R programming, it is also 

https://xcmsonline.scripps.edu/
https://github.com/Viant-Metabolomics/Galaxy-M
http://workflow4metabolomics.org/
http://kwanjeeraw.github.io/metabox/
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possible to directly modify MetaboAnalyst’s R code to suit their needs.  Another major focus of 

this MetaboAnalyst update is the addition of new modules to support further data integration 

(biomarker meta-analysis and multi-omics analysis), as well as functional analysis for high-

resolution untargeted MS (mummichog). These additions were made in response to frequent user 

requests and growing trends seen in metabolomic data analysis practices. Finally, to ensure that 

the biological interpretation of metabolomic data remains as current and insightful as possible, all 

of MetaboAnalyst’s underlying knowledgebases have been updated. These updates will allow 

metabolomics researchers to move beyond simply re-iterating common textbook interpretations of 

metabolism and give them much more useful insights into complex and relevant biological 

processes that are ultimately driven by metabolites. Overall, we believe these updates will allow 

MetaboAnalyst to remain at the cutting edge of computational metabolomics and systems biology, 

and that it will continue to enable new discoveries and greater insights for a growing number of 

metabolomics researchers.  
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Preamble to Chapter 3 

High-throughput analysis and functional interpretation of untargeted mass spectrometry 

(MS)-based metabolomics data continues to be a major bottleneck in current metabolomics 

research. Following peak picking and alignment, conventional procedures typically require 

annotation of peak lists to named metabolites prior to downstream analysis. This process of peak 

identification is known to be very time consuming and error prone. MS peak lists are defined by a 

combination of a mass-to-charge ratio (m/z) and retention time. Despite the high mass accuracy of 

modern instruments, it is not unusual for several metabolites to match a single MS peak. It is also 

possible that completely unknown metabolites may have identical m/z values to known 

metabolites. The use of tandem MS (or MS/MS) experiments, which provides additional 

information beyond m/z values or retention time, can be used to distinguish, or identify some 

compounds. However, MS/MS experiments adds additional time and cost, therefore most 

untargeted metabolomics studies still rely on high resolution MS data.  

One promising approach to metabolite identification in untargeted high-resolution MS 

metabolomics studies is to leverage the collective power of metabolic pathways to help resolve the 

ambiguity of metabolite annotations. In particular, the mummichog algorithm bypasses the 

bottleneck of metabolite identification prior to pathway analysis by leveraging a priori pathway 

and network knowledge to directly infer biological activity based on MS peaks (S. Li et al., 2013b). 

The underlying assumption in mummichog is that if a list of significantly enriched features truly 

reflects biological activity, the representation of these true metabolites would be enriched on 

localized structures such as pathways, while false matches would be distributed at random. To use 
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the algorithm, users must first provide a list of m/z features and a p-value for each feature, hereby 

referred to as Lref. Two lists will be further drawn from Lref. One list is called Lsig, which contains 

only the significant m/z features and the other list is called Lperm, which is a list of randomly drawn 

m/z features from Lref, but is the same length as Lsig. The main steps are as follows: 

1. A list of randomly drawn m/z features are drawn from Lref to create Lperm. These m/z 

features are mapped to potential metabolites, considering all possible isotopic 

configurations and adducts (e.g. M+H[+] and M-H[-]). 

2. The list of potential compounds is then mapped to the user’s selected library of pathways 

and a p-value is calculated per pathway. 

3. Steps 1 and 2 are repeated many times to compute the null distribution of p-values 

(modelled as a gamma distribution). 

4. Lsig is then mapped to potential metabolites for pathway enrichment analysis, and the 

resulting p-values (Fisher’s or Hypergeometric, and EASE scores) per pathway are 

calculated and adjusted for the null distribution. 

The following chapter highlights one of several advancements I have made to this 

algorithm. Other enhancements include the inclusion of retention time to increase the accuracy of 

putative compound identification (Pang, Chong, Li, & Xia, 2020) and to enable meta-analysis of 

untargeted metabolomics data (Pang et al., 2021). 
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Abstract 

Global metabolomics based on high-resolution liquid chromatography mass spectrometry 

(LC-MS) has been increasingly employed in recent large-scale multi-omics studies. Processing 

and interpretation of complex metabolomics datasets have become a key challenge in current 

computational metabolomics. Here we introduce MetaboAnalystR 2.0 for comprehensive LC-MS 

data processing, statistical analysis, and functional interpretation. Compared to the previous 

version, this new release seamlessly integrates XCMS and CAMERA to support raw spectral 

processing and peak annotation. Additionally, it features high-performance implementations of 

mummichog and GSEA approaches for prediction of pathway activities. The application and utility 

of the MetaboAnalystR 2.0 workflow were demonstrated using a synthetic benchmark dataset and 

a clinical dataset. In summary, MetaboAnalystR 2.0 offers a unified and flexible workflow that 

enables end-to-end analysis of LC-MS metabolomics data within the open-source R environment.   
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Introduction 

Metabolomics is the comprehensive study of all small molecule metabolites (<1500 Da) 

detected within a biological system. An individual’s metabolic profile represents the functional 

product of interactions among genetics, lifestyle, environment, diet, and native microbiota, which 

closely reflects his or her health status (Beger et al., 2016; David S Wishart, 2016). The 

metabolome thus serves as the link between genotype and phenotype, and metabolomics plays a 

critical role in the development and implementation of precision medicine (Fiehn, 2002; Caroline 

H Johnson, Julijana Ivanisevic, & Gary  Siuzdak, 2016).  

There are two general approaches in conducting metabolomics. Targeted metabolomics 

aim to study a predefined set of metabolites, requiring familiarity with the system (Caroline H 

Johnson, Julijana Ivanisevic, & Gary  Siuzdak, 2016). Untargeted metabolomics, also known as 

global metabolomics, aim to measure the global set of metabolites within a sample without a prioi 

knowledge of the system. A typical metabolomics analysis workflow involves three main steps: 

raw data processing, statistical analysis, and functional interpretation (Figure 1). Global 

metabolomics requires more sensitive analytics platforms to achieve comprehensive measurement. 

High-resolution liquid chromatography-mass spectrometry (LC-MS) systems is currently the main 

workhorse for global metabolomics. The platform often generates thousands of signals, including 

true biological signals from metabolites, their adducts, fragments, and isotopes, as well as noise 

signals from contaminants and artifacts (Nash & Dunn, 2018). Computational tools able to 

significantly reduce noise in MS spectra are crucial for more meaningful downstream analyses 

(Uppal et al., 2016). 
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Figure 3. A typical metabolomics data analysis workflow. The workflow starts from the raw 

data input and flows to data preprocessing, data processing, and data analysis. 

 

There are several powerful computational workflows including commercial tools such as 

Mass Profiler (Agilent Technologies) and Compound Discoverer (Thermo Scientific), cloud-based 

software such as XCMS Online (Forsberg et al., 2018) and Workflow4Metabolomics (Giacomoni 

et al., 2014), desktop software such as MZmine2 (T. Pluskal, Castillo, Villar-Briones, & Oresic, 

2010), MS-DIAL (Tsugawa et al., 2015), and Open-MS (Rost et al., 2016), and finally R packages 

such as MAIT (Fernández-Albert, Llorach, Andrés-Lacueva, & Perera, 2014) and metaX (Wen, 

Mei, Zeng, & Liu, 2017). Most of these software focus on addressing one of the two main tasks - 

spectral processing and/or statistical analysis. Consequently, users must often learn several tools 

to meet their data analysis needs. Due to compatibility issues, it is often necessary to write scripts 

to convert outputs from one tool to the next.  
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Tools for functional interpretation of global metabolomics data is in general lacking or 

poorly addressed (Gardinassi, Xia, Safo, & Li, 2017; J. Xia, 2017). A prerequisite for 

metabolomics data interpretation is metabolite identification, thereby permitting the 

contextualization of annotated peaks in metabolic pathways and their integration with other omics 

data. However, even with high mass accuracy afforded by the current high-resolution MS 

platforms, it is often impossible to uniquely annotate a given peak based on its mass alone (Kind 

& Fiehn, 2007). Researchers usually need to manually search compound databases and then 

perform further experimental validations such as tandem MS. Novel bioinformatics tools are 

urgently needed to enable researchers to gain biological insights with a minimum amount of 

manual efforts. To get around this issue, a key concept is to shift the unit of analysis from 

individual compounds to individual pathways or a group of functionally related compounds (i.e. 

metabolite sets (J. Xia & D. S. Wishart, 2010)). The general assumption is that the collective 

behavior of a group is more robust against a certain degree of random errors of individuals. The 

mummichog algorithm is the first implementation of this concept to infer pathway activities from 

a ranked MS peaks (S. Li et al., 2013b). The original algorithm implements an over-representation 

analysis (ORA) method to evaluate pathway-level enrichment based on significant features. An 

alternative approach is the Gene Set Enrichment Analysis (GSEA) method, which is widely used 

to test enriched functions from ranked gene lists (Subramanian et al., 2005). Unlike ORA, GSEA 

considers the overall ranks of features without using a significance cutoff. It can detect subtle and 

consistent changes which can be missed from using ORA methods. Despite its widespread 

applications in gene expression profiling, it has not yet been used for global metabolomics.   
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MetaboAnalyst is one of the most widely used tools for statistical and functional analysis 

of metabolomics data (Chong et al., 2018; J. Xia, R. Mandal, I. V. Sinelnikov, D. Broadhurst, & 

D. S. Wishart, 2012; J. Xia, N. Psychogios, N. Young, & D. S. Wishart, 2009; J. Xia, I. V. 

Sinelnikov, B. Han, & D. S. Wishart, 2015). It was initially designed for targeted metabolomics, 

and subsequent releases gradually introduced many statistical methods applicable to both targeted 

and untargeted metabolomics. Due to its web-based implementation, there is very limited support 

for raw spectra processing and peak annotation. The most recent update (version 4.0) was released 

with a companion R package, MetaboAnalystR (v1.0), to help tackle issues associated with 

workflow customization, reproducibility, and handling large datasets (Chong & Xia, 2018).  

Here we present MetaboAnalystR (v2.0) to address the two important gaps left in its 

previous version: 1) raw spectral processing - we have implemented comprehensive support for 

raw LC-MS spectral data processing including peak picking, peak alignment and peak annotations; 

and 2) functional interpretation directly from m/z peaks - in addition to an efficient implementation 

of the mummichog algorithm (S. Li et al., 2013b), we have added a new method to support pathway 

activity prediction based on the well-established GSEA algorithm (Subramanian et al., 2005). We 

showcase the performance of these new functions through two case studies.  

Results 

MetaboAnalystR 2.0 consists of a series of flexible R functions that can take a variety of 

user-supplied data and parameters to perform end-to-end metabolomics data analysis. The source 

code is freely available at the GitHub repository (https://github.com/xia-lab/MetaboAnalystR). 

https://github.com/xia-lab/MetaboAnalystR
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Detailed instructions, tutorials, troubleshooting tips, example data, and analyses discussed in this 

paper are also available in this repository.  

To demonstrate the utility of MetaboAnalystR 2.0 workflow, we present the results from 

the two case studies: (i) a synthetic benchmark dataset to evaluate the raw MS spectra processing 

functions, with a focus on its peak detection and quantification performance; and (ii) a clinical 

pediatric inflammatory bowel disease (IBD) dataset to showcase the overall workflow, with a 

focus on its capacity to provide biological insights. The first case study consists of eight mzML 

files (~150 MB each) that were preprocessed using MetaboAnalystR 2.0 on an Ubuntu 18.04 

desktop computer with 24 GB RAM and an 8 core i7 processor, using two cores in parallel. The 

total running time was 18 minutes. The clinical case study consists of 48 mzML files (~75 MB 

each) that were preprocessed using MetaboAnalystR 2.0 on an Ubuntu 16.04 server with 128 GB 

RAM and a 32 core i7 processor, using 15 cores in parallel. The total running time was 40 minutes. 

All R scripts to perform the entire metabolomics data analysis pipeline are available from the 

MetaboAnalystR GitHub repository under the section “Case Studies” (https://github.com/xia-

lab/MetaboAnalystR). The accompanying vignette (“The MetaboAnalystR 2.0 Workflow”) 

provides a step-by-step tutorial to demonstrate to users how to use MetaboAnalystR 2.0 to perform 

an end-to-end metabolomics data analysis on a subset of 12 of the 48 clinical IBD samples. This 

tutorial was created on a Dell XPS 15 9570 laptop dual-booted with Ubuntu 16.04 and 16 GB of 

ram. The total running time of the tutorial was 14 minutes, averaging ~1.25 minutes per sample, 

using 6 cores in parallel and 10.5 GB of ram.          



66 

 

 

 

Benchmark Case Study 

We first demonstrate the accuracy of the raw data preprocessing module using a benchmark 

dataset comprised of a mixture of 1100 known compounds ranging in size from 100 to 1300 Da 

(Z. Li et al., 2018). The original study used a targeted analysis to obtain their benchmark feature 

list, which we used as the ground truth to evaluate our workflow. As shown in Table 1, the original 

study detected 35,215 peaks using XCMS Online, with 820 classified as true features.  Using the 

same data preprocessing parameters as published, MetaboAnalystR 2.0 detected 21,013 peaks 

from the benchmark data. Among them, 732 matched the true features based on m/z and retention 

time (10 ppm and 0.3 min RT tolerance). 

Table 2. Comparison of MetaboAnalystR 2.0 with XCMS Online. This table compares the peak 

identification and quantification accuracies using the benchmark dataset between MetaboAnalystR 

2.0 and the original manuscript using XCMS Online. 

 Methods 
Features 

detected 

True Features 

Total 
Accurately 

quantified 
Discriminating 

Li et al. 2018 (Z. Li et 

al., 2018) 
Targeted - 836 836 - 

 

Untargeted 

(XCMS 

Online) 

35215 820 731 45 

MetaboAnalystR 2.0 Untargeted 21013 732 632 45 
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Next, we compared the number of accurately quantified true features using 

MetaboAnalystR 2.0 to those from the original manuscript using XCMS Online (Table 1). 

Features were accurately quantified if their fold changes had a <20% relative error as compared to 

the benchmarked data. MetaboAnalystR 2.0 accurately quantified 632 features and identified 45 

truly discriminating features. 

IBD Case Study 

The 48 fecal samples were obtained from 24 pediatric Crohn’s Disease (CD) patients and 

24 pediatric healthy controls (Table S1). Our workflow detected 8187 features which reduced to 

6930 features after filtering out isotopes and missing features within >50% of samples. After 

exclusion of low-variance features, a total of 4113 features were statistically analyzed using the 

standard MetaboAnalystR functions.       

Mann-Whitney U test and fold change analysis detected 59 features that were significantly 

different between CD and healthy controls. Differences between CD and healthy controls were 

evaluated using PCA, PLS-DA, and OPLS-DA. The PCA showed an overlapping of clusters along 

the first two components, with CD exhibiting a wider data distribution (Figure S1). This indicates 

an overall similarity of the metabolic profiles between CD and healthy controls but larger 

heterogeneity within CD patients. The PLS-DA score plot showed a clear separation between the 

two groups (Figure S2). Ten-fold cross validation of two PLS-DA components gave an R2 of 

0.912 and Q2 of 0.424 (Figure S3). The OPLS-DA score plot shows a clear separation between 

CD and healthy controls (Figure 2). The R2Y and Q2Y values from the OPLS-DA were 0.501 

and 0.272 respectively, indicating a moderate goodness of fit but poor predictive ability. To further 
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evaluate the model, we performed permutation tests (n=1000). The R2Y and Q2Y values from the 

OPLS-DA permutation tests were 0.979 (p = 0.026) and 0.522 (p < 0.001). Altogether, a clear 

distinction between the metabolome of CD and healthy controls was observed.  

 

Figure 4. OPLS-DA Score plot. The OPLS-DA score plot based on the 4113 features from the 

stool metabolome of 24 pediatric Crohn’s disease patients and 24 healthy children, with a R2 of 

0.912 and Q2 of 0.424. 

 



69 

 

 

 

To gain potential biological insights from the global metabolomics data, we applied both 

mummichog and GSEA algorithms and integrated their results (Figure 5). Mummichog suggested 

that differentially abundant features between CD and healthy patients were associated with 

perturbations in bile acid biosynthesis and fatty acid activation, as well as vitamin E, fatty acid, 

and vitamin D3 metabolism. The GSEA algorithm also identified alterations in bile acid 

biosynthesis. Moreover, it identified differences in androgen and estrogen biosynthesis and 

metabolism, squalene and cholesterol biosynthesis, biopterin metabolism, and butanoate 

metabolism. More details of the top enriched pathways from both methods are given in Table 2. 

 

Figure 5. Scatter plot integrating mummichog and GSEA pathway analysis results. On the 

x-axis are negative log raw GSEA p-values, and on the y-axis are negative log raw mummichog 

p-values. The size and color of the circles correspond to the value of their transformed combined 
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p-values (ascending, from white to dark red). The blue and pink quadrants represent pathways 

that were significant using a single pathway analysis algorithm (blue = mummichog, pink = 

GSEA), and the purple quadrant contains significantly perturbed pathways identified using both 

algorithms. From the plot, bile acid metabolism and vitamin D3 metabolism show congruence as 

the top enriched pathways. 

 

Table 3. Top metabolic pathway alterations using MetaboAnalystR 2.0. The table shows the 

top five metabolic pathways identified between patients with pediatric Crohn’s disease (n=24) as 

compared to healthy controls (n=24), using the mummichog algorithm (PerformMummichog) 

and GSEA (PerformGSEA) implemented in MetaboAnalystR 2.0. 

 Mummichog  GSEA 

Pathway Name 

Compound 

Hits* 

P-Value Pathway Name 

Compound 

Hits 

P-Value 

Bile acid 

biosynthesis 

29/52 0.00282 Bile acid biosynthesis 52 0.001761 

Vitamin E 

metabolism 

20/33 0.00356 

Androgen and estrogen 

biosynthesis and 

metabolism 

10 0.01465 

Fatty Acid 

Metabolism 

9/11 0.00268 

Squalene and cholesterol 

biosynthesis 

7 0.02214 

Vitamin D3 

metabolism 

8/10 0.00616 Biopterin metabolism 14 0.07806 

Fatty acid 

activation 

10/15 0.01620 Butanoate metabolism 11 0.08318 

* The mummichog compound hits represent the number of significant compound hits divided by the total number of 

compound hits per pathway. 
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Interestingly, the GSEA algorithm identified Butanoate metabolism as a significantly 

enriched pathway (q = 0.01988), whereas the mummichog algorithm did not (q = 0.43279). The 

mummichog algorithm only utilizes significantly different m/z features, therefore only three 

features in Butanoate metabolism were used to calculate a pathway enrichment score. On the other 

hand, GSEA utilized all 20 compound hits (corresponding to 38 m/z features) to calculate 

enrichment (Figure S4). Of these features, 145.0496 m/z was putatively annotated as (S)-2-Aceto-

2-hydroxybutanoate (a deprotonated ion), as was 205.0710 m/z (a formic acid adduct). 

Furthermore, 124.0392 m/z corresponded to 2-Butynoate. This demonstrates the ability of GSEA 

to pick up on subtle changes, such as perturbations in Butanoate metabolism, and the utility of 

using both algorithms to gain biological insight.  

We further examined the 17 features that overlap between the putatively annotated features 

in the pathway analysis and the important features found in univariate statistical analysis. Notably, 

431.3164 m/z was putatively annotated as a deprotonated ion of 3-β, 7-α-dihydroxy-5-

cholestenoate (C17336) based on its correspondence to the exact mass of C17336 from the KEGG 

database (Minoru Kanehisa, Goto, Sato, Furumichi, & Tanabe, 2011). This compound is found in 

the primary bile acid pathway. Additionally, the same mass also corresponds to a deprotonated ion 

of 23S, 25, 26-trihydroxyvitamin D3 (CE2202). Exact identification of this feature requires further 

experiments, which is beyond the scope of this manuscript. In addition to this compound, five 

additional compounds out of the 17 have been previously found as stool metabolites in the context 

of IBD (Franzosa et al., 2019). Representative extracted ion chromatograms (EICs), boxplots and 

corresponding information, such as m/z, retention time and p-values are highlighted in 

supplemental information (Figure S5).  
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Discussion 

In this paper, we have described the new functions introduced in MetaboAnalystR 2.0 to 

support global metabolomics data analysis, covering raw LC-MS spectra processing to generation 

of biological insights. These functions were showcased through two case studies. For the 

benchmark dataset, despite applying the same parameters used by Li et al. (Z. Li et al., 2018), we 

were unable to reproduce the identification and quantification accuracy obtained by the original 

authors using XCMS Online. Their setup detected >14000 (68%) more features compared to those 

obtained using our pipeline. We tried several options, including the suggested parameters for a 

HPLC or UPLC coupled with a Q Exactive HF mass spectrometer. We posit this incongruity arose 

because the authors did not specify the exact peak width used, which is a critical parameter for 

peak picking. Additionally, the data conversion step from .RAW to mzML used in our workflow 

may have resulted in a slight difference in the input data when compared to the data conversion 

used in XCMS Online. It is also important to note that our workflow integrated the latest version 

of XCMS (version 3.4.4), which have introduced many new functionalities and updates in existing 

functions. Overall, our preprocessing workflow performed well, executing peak picking, 

annotation, and filtering on the eight benchmark samples in less than twenty minutes.  

For the IBD case study, we observed a clear separation in the metabolic profiles between 

pediatric CD patients and healthy controls using either PLS-DA or OPLS-DA. Furthermore, our 

analysis highlighted several metabolic pathways associated with CD, without performing accurate 

metabolite identification. For instance, alterations in bile acid biosynthesis is well known among 

CD patients as a result of inflammation in the terminal ileum, which is the critical site of bile acid 
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absorption (Duboc et al., 2013; Hofmann & Hagey, 2008). Combining the results of pathway 

analysis and statistical analysis also putatively identified some promising metabolic features that 

could be used to as potential biomarkers. In addition to bile acids, vitamin D has been shown to 

play an immunomodulatory role in IBD pathogenesis (Limketkai, Mullin, Limsui, & Parian, 2017). 

Taken together, this use case demonstrates the ease of which MetaboAnalystR 2.0 can be utilized 

to gain mechanistic insights and generate hypotheses for future experimental validation. 

Conclusion 

The previous version (v1.0) of MetaboAnalystR features comprehensive normalization and 

statistical methods inherited from the MetaboAnalyst web server. The version 2.0 seamlessly 

integrates XCMS and CAMERA to support raw MS spectral processing and peak annotation, it 

also contains efficient implementations of mummichog and GSEA methods for prediction of 

pathway activities. The performance of this workflow was evaluated on a published benchmark 

dataset as well as a recent clinical study on IBD. The MetaboAnalystR package is maintained in 

conjunction with the cloud-based MetaboAnalyst web application and is under continuous 

development based on the community feedback. Our next focus is to support isotope-resolved 

metabolomics as well as development of a Galaxy-based platform for raw data processing (Afgan 

et al., 2018).  
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Materials and Methods 

Spectral Processing 

Three main wrapper functions have been implemented for metabolomics data processing 

based on XCMS (version 3.4.4) and CAMERA (version 1.38.1) (Benton, Want, & Ebbels, 2010; 

Kuhl, Tautenhahn, Bottcher, Larson, & Neumann, 2011; Tautenhahn, Boettcher, & Neumann, 

2008) including: (i) the ImportRawMSData function for reading in raw data files, (ii) the 

PerformPeakProfiling function for peak picking and alignment, and (iii) the 

PerformPeakAnnotation function for peak annotation. These functions are described below in 

further detail. 

The ImportRawMSData function reads in raw MS data files and saves it as an 

OnDiskMSnExp object. To avoid potential memory issues on a user’s desktop/laptop, the function 

will limit the number of cores used to half of the available number of cores. The function outputs 

two plots - the Total Ion Chromatogram (TIC) which provides an overview of the entire spectra, 

and the Base Peak Chromatogram (BPC) which is a cleaner profile of the spectra based on the 

most abundant signals. These plots are useful to inform the setting of parameters downstream. For 

users who wish to view a peak of interest, an Extracted Ion Chromatogram (EIC) can be generated 

using the PlotEIC function.  

The PerformPeakProfiling function is a wrapper of several XCMS R functions that 

performs peak detection, alignment, and grouping in a single step. The resulting peaks are 

outputted as a XCMSnExp object. The function also generates two diagnostic plots including a 
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retention time adjustment map, and a PCA plot showing the overall sample clustering prior to data 

cleaning and statistical analysis. Users can specify several parameters such as the mass accuracy, 

peak width, and retention time range using the SetPeakParam function to optimize the peak 

picking function. A detailed table of suggested parameters for common LC-MS platforms is 

provided in Table S2.  

The PerformPeakAnnotation function annotates isotope and adduct peaks using the 

CAMERA package (Kuhl et al., 2011). CAMERA matches m/z features to potential isotopes and 

adducts based on molecular mass using a dynamic rule set. It does not utilize any structural 

databases to perform annotation. It outputs the result as a CSV file (“annotated_peaklist.csv”) and 

saves the annotated peaks as an xsAnnotate object. Finally, the peak list is formatted to the correct 

structure for MetaboAnalystR and filtered based upon user’s specifications using the 

FormatPeakList function. This function permits the filtering of adducts (i.e. removal of all adducts 

except for [M+H]+/[M-H]-) and filtering of isotopes (i.e. removal of all isotopes except for 

monoisotopic peaks). The goal of filtering peaks is to remove degenerative signals and reduce the 

file size.   

Prediction of Pathway Activities  

Several metabolic databases are supported at the moment including KEGG (Minoru 

Kanehisa et al., 2011), BioCyc (P. D. Karp et al., 2017), etc. The main mummichog algorithm is 

available in the PerformMummichog function. Users need to specify a pre-defined cutoff based on 

either t-statistics or fold changes. The PerformGSEA function contains the GSEA implementation 

based on the high-performance fgsea R package (Sergushichev, 2016).  
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Benchmark Case Studies 

The benchmark data created by Li et al. 2018 (Z. Li et al., 2018) is comprised of two 

standard mixtures (A and B) consisting of 1100 known compounds, with four replicates per 

mixture. The Google Drive link to the raw data is 

https://drive.google.com/drive/folders/1PRDIvihGFgkmErp2fWe41UR2Qs2VY_5G?usp=sharin

g_eip&ts=5b8ab35f. For this manuscript, we selected the dataset that was generated from a Q 

Exactive HF mass spectrometry (Thermo Fisher Scientific) in positive ion mode, coupled with a 

Dionex UltiMate 3000 HPLC equipped with a ZORBAX Eclipse Plus C18 column (Agilent 

Technologies). Parameters for our workflow were selected based on the default values provided 

for HPLC-Q Exactive Orbitrap data on XCMS Online (mass error: 5 ppm and peak width: 10-60 

seconds). 

The second dataset consists of pediatric IBD stool samples obtained from the Integrative 

Human Microbiome Project Consortium (iHMP) (Consortium, 2014). The original study included 

samples longitudinally collected from IBD patients and non-IBD controls over 50 weeks. The link 

to the raw metabolomics data is https://ibdmdb.org/tunnel/public/summary.html, under the 

subheadings HMP2, Metabolites, 2017.23. For our evaluation purpose, we collected samples that 

meet the following criteria for the diseased group: (i) age between 6 and 19 and (ii) diagnosed as 

Crohn’s disease. Samples obtained at the earliest clinical visit of each patient who met criteria (i) 

and (ii) were included in our study. For the healthy control, samples of non-IBD individuals 

between age 6 and 19 collected during their first and second clinical visits were included. The 

dataset was generated from a Q-Exactive Plus orbitrap mass spectrometer (Thermo Fisher 

https://ibdmdb.org/tunnel/public/summary.html
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Scientific) in negative ion mode, coupled with a Nexera X2-U-HPLC system (Shimadzu Scientific 

Instruments) equipped with an ACQUITY BEH C18 column (Waters).  

All raw data in .RAW format were converted into .mzML format using ProteoWizard 3.0 

MSConvert (Holman, Tabb, & Mallick, 2014) with parameters summarized in the supplemental 

materials (Table S3). Following the spectral processing described earlier, data cleaning and 

statistical analysis of the clinical data was performed on the clinical data using various functions 

within MetaboAnalystR. Firstly, missing value imputation was performed by replacing them with 

half of the minimum value found for each feature. Features containing more than 50% missing 

values across all samples were removed. Features with nearly constant values across samples were 

also filtered out based on the inter quantile range (IQR), which removed approximately 25% of 

total features. Subsequently, value of each feature was normalized with the median value of all 

features per sample to account for variable water content of stool samples. Finally, generalized 

log-transformation and auto-scaling were applied to data prior to multivariate statistical analysis. 

For univariate analysis, non-parametric methods (i.e. Mann-Whitney U test and fold change 

calculation) were applied to untransformed data to avoid false positives due to data manipulation 

(Di Guida et al., 2016). A minimum fold change >2 and <0.5, and a false discovery rate (FDR) 

adjusted p-value of 0.05 were used as cut-off values. To infer pathway activities, we applied both 

mummichog and GSEA to predict pathway activities. The human BiGG and Edinburgh Model 

(hsa_mfn) library was selected as the knowledge base, with the p-value cutoff set to 0.05 and the 

instrumentation accuracy set to 5 ppm.  
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Supplemental Information: MetaboAnalystR 2.0 

Table S1. Characteristics of pediatric IBD patients and healthy controls included in this study. 

 CD Healthy 

n 24 24 

Female gender (n) 9 15 

Median age, years (range) 14.5 (8-19) 11 (6-17) 

 

Table S2. Suggested peak picking parameters for commonly used LC-MS platforms.  

  
SetPeakParam() 

Vendor Instrument ppm min_pkw max_pkw 

Agilent HPLC/Q-TOF 30 10 60 

Agilent HPLC/UHD Q-TOF 15 10 60 

Agilent HILIC_HPLC/UHD Q-TOF 

neg1 

15 10 120 

Bruker HPLC/Q-TOF neg1 10 10 60 

Bruker HPLC/Q-TOF pos1 10 5 20 

ABSciex UPLC/TripleTOF 15 5 20 

Waters UPLC/HRMS 15 2 25 

Waters HPLC/TOF 30 10 60 

Thermo UPLC/Q-Exactive 5 5 20 

Thermo HPLC/Orbitrap 3 10 60 
1 neg = negative ion mode, pos = positive ion mode  

Parameters are extracted from XCMS Online default settings (PMID 29494574) 

 

Table S3. Parameters used to convert .RAW files to mzML format on ProteoWizard MSConvert.  

Filter category  Parameter  

Peak picking  Vendor msLevel = 1 -  

Threshold Peak Filter  Absolute 1000 most-intense  

Subset  msLevel 1 – 1 
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Figure S1. PCA plot of pediatric IBD stool metabolome. Data including 4113 features were 

median-normalized, log-transformed, and auto-scaled.  

 

 

Figure S2. PLS-DA plot of pediatric IBD stool metabolome. Data including 4113 features were 

median-normalized, log-transformed and auto-scaled.  
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Figure S3. 10-fold cross validation of PLS-DA model (Figure S3) generated from the pediatric 

IBD stool metabolome data.  
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Figure S4. Boxplots of m/z features used for functional interpretation. The m/z features with an 

asterisk were used by the mummichog algorithm, while all m/z features were used by the GSEA 

algorithm. The red boxes represent Crohn’s disease pediatric patients, and the blue boxes 

represent healthy patients.  
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Figure S5. Representative EICs and boxplots of compounds differentially excreted in stool 

samples of healthy children and pediatric CD patients based on pathway analysis and Mann-

Whitney U test (FDR adjusted p-value < 0.05). The m/z of all compounds highlighted above 

exactly matches with the m/z of compounds detected in the previously published study on adult 

IBD patients (PMID: 30531976). Putative IDs of each compound assigned in this study are 

shown above each boxplot.  
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Preamble to Chapter 4 

MicrobiomeAnalyst was the first project I worked on upon starting my PhD and is a web-

tool for comprehensive analysis of the microbiome. This work, as well as numerous 

collaborations with microbiome researchers, had provided me with a solid foundation in the 

current state of microbiome research. Using this knowledge, I further built upon this platform, 

streamlining the underlying R code, updating the internal knowledgebases, enhancing 

visualizations, adding algorithms, and creating a companion R package which supports 

processing 16S rRNA sequencing data. These updates were published as a well-documented 

protocol (Chong, Liu, Zhou, & Xia, 2020).  

Following my work in the fields of metabolomics and microbiomics, my goal was to 

marry these two worlds (Chong & Xia, 2017). From metabolomics I understood that metabolites 

reflect not just one’s environment and genetics, but also the interactions between a host and its 

microbiota. With microbiomics, I consistently saw that while the goal of most studies was to 

attribute the microbiota to a disease, they would fall short at just characterizing a list of bacteria 

associated with disease. However, why were these microbes associated with that phenotype? 

From an evolutionary perspective, an organism can be found in an environment where it can 

thrive. Therefore, a bacteria’s metabolism must play a significant role in their presence. 

Connecting these thoughts together, I created the microMum workflow, which will be presented 

in Chapter 4.  
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Chapter 4. Enhancing Biological Insights from Paired Microbiome 

and Metabolomics Data 

 

microMum: Enhancing biological insights from paired microbial and 

untargeted metabolomics data 
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Abstract 

Metabolism is fundamental to how an organism interacts with its community and its 

surroundings. Within the gut, the host and its resident microbiota have evolved over millennia to 

maintain homeostasis. Therefore, deciphering host-microbe and microbe-microbe interactions at 

the metabolic level is crucial to understanding the gut microbiome. Metabolomics is considered 

the most promising ‘omic technology to reveal deep mechanistic insights into the gut 

microbiome by providing a snapshot of host-microbial co-metabolism. However, the progress of 

integrating microbial taxonomic and metabolomics profiles is delayed due to difficulties in 

annotating mass spectrometry data into meaningful compounds. A method that bypasses this 

bottleneck, Mummichog, can be used to directly infer biological insights from untargeted 

metabolomics data, but is hindered by its inability to consider all products of host-microbe and 

microbe-microbe interactions within the gut. Previous Mummichog implementations use a single 

organism’s metabolic network to define the metabolic space from which peak annotations are 

obtained. Instead, we create community-scale metabolic networks (CMNs), combining both 

human and microbial metabolic networks, tailored specifically to a provided microbial 

taxonomic profile. CMNs are then leveraged to contextualize microbiome-specific metabolomics 

data and model community-wide metabolism. Using this method, we show how CMNs improve 

biological insights obtained from a multi-omic investigation of Inflammatory Bowel Disease as 

compared to previous Mummichog implementations. Overall, our improved algorithm is a 

powerful tool that can be added to the microbiome investigators toolbox to integrate multi-omics 

microbiome data.  
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Background 

The human gut microbiome plays a vital role in shaping human health, performing 

several roles otherwise inaccessible to its host including digestion, synthesis of vitamins, 

stimulation of proper immune system development, and protection against opportunistic 

pathogens (Belkaid & Hand, 2014; Clarke et al., 2014; Heintz-Buschart & Wilmes, 2018). 

Humans and their resident gut microbiota have evolved together over time and maintain a 

symbiotic relationship (Backhed et al., 2012). Disruptions to this relationship, known as 

dysbiosis (Hooks & O’Malley, 2017), has been attributed to several diseases including immune-

mediated inflammatory diseases such as Crohn’s Disease (CD), Multiple Sclerosis and 

Rheumatoid arthritis (Forbes, Van Domselaar, & Bernstein, 2016), as well as others including 

allergies, asthma, and cardiovascular disease (CVD) (Carding et al., 2015). 

Advances in high-throughput 16S rRNA sequencing technologies have revolutionized the 

ease and speed to which taxonomic profiles can be obtained from microbial communities (Bharti 

& Grimm, 2021; Jovel et al., 2016; M. G. I. Langille, 2018). These have led to our current 

understanding of the vast taxonomic array of microbes across different biological systems and 

their influences on host phenotypes. However, while taxonomic profiles do provide knowledge 

about which microbes are present, why certain microbes associated with disease or healthy states 

is not well understood (Doolittle & Booth, 2017; M. G. I. Langille, 2018). Intuitively, the 

rationale for a microorganism’s presence in a biological system lies not with who they are but 

what they do, with such functions having downstream effects on their host (Inkpen et al., 2017; 

Klassen, 2018; Krause et al., 2014). Gaining a better understanding of microbial function is 
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essential for research to move beyond characterizing lists of microbes towards actionable 

insights.  

Metabolic function is believed to underlie taxonomic variations in the microbiome 

(Louca et al., 2016). Gut microbes contribute to the production of biologically active small 

molecules, termed microbial-derived metabolites, that could enhance host fitness (Lavelle & 

Sokol, 2020; W.-J. Lee & Hase, 2014; Nicholson et al., 2012). These metabolites serve as 

signaling molecules, mediating vital host-microbial interactions through a dynamic crosstalk 

involving numerous molecular pathways. These small molecule products greatly impact 

biological processes with important consequences to human health including digestion, immune 

system development and regulation, inflammation, and neurodevelopment (Hsiao et al., 2013; 

Levy et al., 2016; Sharon et al., 2014). A classic example of a gut-microbial derived metabolite 

with negative consequences for its host is trimethylamine N-oxide, a derivative of dietary L-

carnitine and choline, which are found in red meat, that has been systematically linked to CVD 

(Koeth et al., 2013; Z. Wang et al., 2011), colorectal cancer (CRC) (Xu, Wang, & Li, 2015), and 

non-alcoholic fatty liver disease (NAFLD) (Tremaroli & Bäckhed, 2012). Another notable group 

of metabolites are the short chain fatty acids (SCFAs) acetate, propionate, and butyrate, which 

are metabolized by gut microbes from dietary fibers and starches. These metabolites confer 

several beneficial effects, such as maintaining intestinal homeostasis, providing protection 

against inflammation, and maintaining the blood brain barrier integrity (Braniste et al., 2014; 

Dalile, Van Oudenhove, Vervliet, & Verbeke, 2019; Parada Venegas et al., 2019; Silva, 

Bernardi, & Frozza, 2020; van der Hee & Wells, 2021). SCFAs are known to be decreased in 

patients with Inflammatory Bowel Disease (IBD) (Parada Venegas et al., 2019), provide 
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protection against diabetes (Mariño et al., 2017), and mediate microbial-gut–brain axis crosstalk 

(Dalile et al., 2019; Silva et al., 2020). Without a doubt, microbial-derived metabolites can have 

either beneficial or devastating consequences for the host.    

Perturbations in cellular processes are rapid and leave metabolic fingerprints, 

representing the physiological state of the host and its resident microbiota (Gilbert et al., 2016; 

Zierer et al., 2018). Metabolomics, which leverages mass-spectrometry technologies, can be used 

to obtain a comprehensive profile of metabolites within a biological system. Metabolomics can 

either be targeted, which accurately quantifies a pre-determined set of metabolites, or untargeted, 

which aims to profile all metabolites present within a sample without prior knowledge. Because 

human fecal samples are incredibly complex, containing the products of metabolism of food, 

medication, and even one’s environment, untargeted metabolomics is becoming routinely used to 

explore all molecules within the human gut (Melnik et al., 2017). An important challenge to 

interpreting untargeted metabolomics data is the sheer amount of data as well as the difficulty to 

properly annotate each peak (Bauermeister, Mannochio-Russo, Costa-Lotufo, Jarmusch, & 

Dorrestein, 2021). One solution to peak annotation is the Mummichog algorithm (S. Li et al., 

2013a), which bypasses the step of metabolite identification to obtain biological insights from 

high-resolution untargeted metabolomics data. In brief, the method leverages an organism’s 

genome-scale metabolic network (GEM) to define the metabolic space from which to pull 

metabolite annotations. It uses a peak’s mass-to-charge ratio and matches it to a compound based 

on its similarity to the compound’s molecular weight. From here, the putatively annotated peaks 

are used as input for pathway enrichment, which summarizes the important peaks into 
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interpretable biological pathways. However, this method is limited to a single GEM, which 

restricts the metabolic universe from which metabolite annotations are obtained. 

GEMs are comprehensive metabolic reconstructions of an organism, containing the entire 

set of metabolic reactions that can occur within said organism. Traditionally, GEMs have been 

used for constraint-based modeling of the microbiome, with their applications ranging from 

predicting gene expression, metabolic engineering to enhance the production of target chemicals, 

drug design, and modeling community dynamics (Chowdhury & Fong, 2020; Gu, Kim, Kim, 

Kim, & Lee, 2019; Magnúsdóttir & Thiele, 2018; Oberhardt, Palsson, & Papin, 2009). High-

quality GEMs exist for >6000 organisms, the majority of which are bacteria species (Gu et al., 

2019). As GEMs are designed to be accurate representations of an organism’s metabolism, a 

natural application would be to directly combine these models into a community metabolic 

network (CMN). Moreover, current work in prediction of microbiome function focusses solely 

on the contributions of the gut microbiota, losing important interactions between the host and its 

native gut microbiome (Douglas et al., 2020; Noecker et al., 2016; Wemheuer et al., 2020). 

Metabolites produced by host cells can be used or transformed by gut microbes, and vice-versa. 

We therefore posit that including host functional information will improve the predictive 

potential of an integrated metabolic network.  

Here, we introduce microMum, a method for knowledge-based integration of microbial 

taxonomic and metabolomics profiles. This method enables àla carte creation of CMNs from a 

provided taxonomic microbial profile which is later used as scaffolding for the metabolomics 

data. This microbiome-focused analytical pipeline for untargeted metabolomics data enables fast 

and more accurate biological insights into the human gut microbiome than its predecessors. In 
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addition, this method associates metabolic changes with specific microbiota and/or the human 

host, providing jumping off points for further investigations of important host-microbiota 

interactions. 

 

Methods 

The microMum workflow is illustrated in Figure 6 and requires a multi-omic dataset 

consisting of a taxonomic microbial profile and an untargeted metabolomics dataset from the 

same set of samples. As a first step, the provided taxonomic microbial profile is matched to the 

internal microMum library of GEMs. Matched GEMs, consisting of both the microbial and host 

GEMs, are directly merged to create a community metabolic network. This method assumes that 

all metabolites are shared (i.e. excreted across cell membranes). Next, the untargeted 

metabolomics data is processed to identify differentially abundant peaks between the user’s 

groups of interest (e.g. cases versus controls). Differentially abundant peaks are then used as 

input for putative compound annotation, using all metabolites from the community metabolic 

network as potential matches. Putatively annotated compounds are then overlayed onto 

metabolic pathways for functional enrichment. These steps are further detailed in the methods 

below. All results and visualizations can be directly used for publication purposes. All core 

functions are written in R (V4.0.2) and visualizations were created using the ggplot (Wickham, 

Chang, & Wickham, 2016) and plotly R packages (https://plot.ly).  
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Figure 6. microMum workflow. The first step begins with matching the user’s taxonomic 

microbial signature to the internal database of genome-scale metabolic models (GEMs). The 

matched GEMs are then combined to create a unique community metabolic model. Meanwhile, 

feature selection is performed on the untargeted metabolomics data. Differentially abundant 

peaks are then used as input for putative compound annotation. Putatively annotated compounds 

are overlayed onto the community metabolic network and pathway enrichment is performed. 
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Further exploration of pathway activity results can be used to identify key organisms who 

contribute to enriched metabolic functions.   

 

Genome-scale metabolic models  

Two high-quality and independent resources of microbial metabolic reconstructions (Gu 

et al., 2019; Mendoza, Olivier, Molenaar, & Teusink, 2019), AGORA (Magnusdottir et al., 2017) 

and CarveMe (Machado, Andrejev, Tramontano, & Patil, 2018), are incorporated into 

microMum. Briefly, AGORA models are built using a bottom-up approach, where they are first 

assembled using genome annotations of the organism of interest and then further manually 

refined using experimental data and gap-filling algorithms. In comparison, CarveMe models are 

built using a top-down approach, whereby a universal metabolic model is constructed and from 

which organism-specific models are “carved”. To investigate the metabolome coverage by each 

GEM resource, enrichment analysis using chemical class ontologies was performed (Fahy & 

Subramaniam, 2020; Pang et al., 2021) (Supplementary Materials – Metabolome Coverage). 

Overall, each resource covered different chemical classes so both databases were kept ensuring 

that comprehensive metabolomic insights could be inferred. As for host GEMs, the most up to 

date human metabolic model, Human1, is also integrated into microMum (Robinson et al., 

2020). Metabolic annotations for all GEM models were manually enhanced using HMDB 

(Wishart et al., 2017a), PubChem (S. Kim et al., 2016), and BIGG (King et al., 2016). Finally, 

GEMs were converted into matrices and stored in an SQLite database.  
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Matching to genome-scale metabolic models 

 Dependent on the type of taxonomic microbial features, the internal matching function, 

match2gems, will be employed. For signatures that are species/strain names, NCBI Taxonomy 

IDs, Greengenes taxonomy/OTU IDs, an exact match search against the microMum GEM 

database will be performed. For SILVA taxonomy, a helper function was implemented to 

improve matching results by synchronizing taxonomy names in the user’s data such as by 

replacing “p__Bacteroidetes” to “p__Bacteroidota” or cleaning semi-colons from the user’s 

inputs. Finally for ASVs, sequence variants are converted to individual fasta files that are then 

used as input to vsearch (Rognes, Flouri, Nichols, Quince, & Mahé, 2016) to identify matches to 

GEMs. The 16S rRNA sequence database used as reference for AGORA and CarveMe models 

were obtained from the Borenstein lab (https://borenstein-

lab.github.io/MIMOSA2shiny/downloads.html). 

Creation of a community metabolic network  

Following GEM matching, a community metabolic network will be created using the 

CreateCMN function. The simplest method to create such a network is to treat the microbiome as 

an “enzymatic soup” and ignore species-specific boundaries. In this sense, CMNs are created by 

directly merging host and gut microbial GEMs. Here, all metabolites present within each GEM 

(0 = not present, 1 = present) is pulled from the SQLite database and merged to create a single 

table of metabolite names as columns and their presence in each matched GEM as rows. This 
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merged table, serving as the community metabolic network, will be used as the compound 

universe from which metabolite annotations will be pulled from.  

Available pathway libraries 

A recently published paper has demonstrated that the choice of pathway database used in 

enrichment analysis can have a greater effect on enrichment results than statistical corrections 

used in these analyses (Peter D Karp, Midford, Caspi, & Khodursky, 2021). We therefore have 

decided to support two popular metabolic pathway databases, KEGG (Minoru Kanehisa, 

Furumichi, Sato, Ishiguro-Watanabe, & Tanabe, 2021; Minoru Kanehisa & Goto, 2000; M. 

Kanehisa, Goto, Sato, Furumichi, & Tanabe, 2012) and MetaCyc (Ron Caspi et al., 2020). The 

KEGG resource was initiated in 1995 and now consists of 544 reference pathways with over 

18000 compounds. In comparison, MetaCyc consists of 2749 base pathways with over 15000 

compounds. Using the KEGGREST R package (Tenenbaum, 2021), we obtained 164 generic 

metabolic pathways containing 5917 compounds. As the number of MetaCyc pathways were 

much greater than in KEGG, we focused on pathways found in only bacteria and humans. Using 

the MetaCyc SmartTables tool, we thus obtained 1510 metabolic pathways belonging to bacteria 

and 350 belonging to humans. Compound annotations from both databases were enhanced using 

the internal compound database of MetaboAnalyst (Pang et al., 2021), and valid PubChem 

identifiers (CIDs) were first enhanced using WebChem R package and manual searching of 

ChEBI, HMDB, KEGG and PubChem.  
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Predicted pathway activity 

Following community metabolic network creation, the final step is to perform functional 

enrichment of the network using the PerformMicroPSEA function. The functional enrichment 

answers the question of which metabolic pathways are differentially active between cases and 

controls. Specifically, this function dynamically builds an internal library of compounds based 

on the provided CMN, including all potential adducts and a mass to compound dictionary for fast 

look-up. The function can also perform the original mummichog, GSEA or both methods for 

functional enrichment (Chapter 3).  

Various scenarios were investigated to evaluate whether the community metabolic 

network improves biological insights. First, to evaluate the composition of the CMN, we 

investigated whether using all microbes from a taxonomic profile versus only significantly 

enriched microbes between cases and controls would have any impact on the results. Second, to 

evaluate the value of the integrated CMN, we compared results obtained using only the human 

GEM, a CMN consisting only of all microbes, and the combined host and microbial CMN. 

Third, a robust permutation method was implemented to investigate whether the list of microbes 

used to create the CMN truly influences the results. This was achieved by randomly permuting 

the selection of GEMs and subsequently the predicted metabolite contents of the CMN, thereby 

removing the association between the taxonomic profile and disease phenotype. To accomplish 

this, functional enrichment was first performed using the provided list of microbes. Then, using a 

randomly permuted list of microbes the same length as the total number of matched GEMs from 

the user’s data, enrichment analysis results are obtained using the new randomly permuted 

CMNs. By default, the permutation was set to 1000 rounds. The empirical p-value is calculated 
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as the number of times the functional enrichment results using the permutations were more 

significant than using the original data.  

Data visualization 

We have added two functions to visualize the enrichment results. The first is the 

microMumLollipopChart function, which creates a lollipop chart that summarizes the results of 

the pathway enrichment. It includes a color-coding system to easily interpret KEGG of MetaCyc 

pathways into their higher categories. It can be used to plot the results of a single enrichment 

result, but also to compare enrichment results of the same CMN using either AGORA or 

CarveMe models. By plotting the comparison of the GEM model databases, one can easily see 

which pathways are consistently enriched across both databases and the rank of all enriched 

pathways according to either database. The second function is microMumBubbleChart, which 

outputs a bubble chart that is dynamically created based on a selected pathway. This plot shows 

all matched GEMs and the presence of the pathway metabolites across the organisms. The 

intention behind this plot is to permit visual exploration of the enrichment results and identify 

important organisms that contribute significantly to a certain function. For instance, one could 

see that organism X uniquely contributes 5 metabolites to an enriched pathway, suggesting it 

could play a key role in disease pathogenesis.  

Case Study 

 To demonstrate the utility of microMum, we used a large-scale investigation of Crohn’s 

Disease in the United States of America (Franzosa et al., 2019). Untargeted metabolomics data 
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(C8 pos and C18 neg) was obtained from the Integrative Human Microbiome Project 

(https://www.hmpdacc.org/ihmp/) and processed using the MetaboAnalystR workflow as 

described in Chapter 3. Species-level metagenomics data was directly obtained from the 

supplementary material included with the manuscript (e.g. Supplementary Dataset 4: Per-

subject microbial species relative abundance profiles). From the original manuscript, the 

taxonomic classifications were obtained using MetaPhlAn2 version 2.2.0 (Truong et al., 2015). 

The data was further analyzed on MicrobiomeAnalyst (Chong et al., 2020) using the LEfSe 

module to identify discriminatory microbes of CD from healthy controls. Following this, the list 

of species names (all or discriminatory only) were used as input to microMum and matched to 

GEMs using the species/strain names option of the internal matching algorithm.  

 

Results 

As a very first step to evaluate the benefit of creating a community metabolic network, 

we checked the number of metabolites that are shared between the human GEM and all 

microbial GEMs. In total, there are only 584 metabolites shared between human and microbial 

GEMs. There are 860 metabolites uniquely of microbial origin and 913 metabolites found only 

within the human. Of note, these numbers are current estimates from our library of GEMS as the 

origin of metabolites from microbes may not have yet been discovered. Nonetheless, these 

numbers confirmed our motivation to create an integrated community metabolic network that 

encompasses all potential metabolites for functional enrichment. Next, to illustrate the 
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microMum workflow, we showcase an investigation of Crohn’s Disease that is available as an 

example from the R package.  

Crohn’s Disease Case Study 

 The taxonomic signature of Crohn’s Disease in adult Americans was obtained from a 

recently published large-scale multi-omics study (Franzosa et al., 2019). The aim of this study 

was to understand the gut-metabolome mediated interactions between a host and its 

gastrointestinal microbiota. Initially, the entire taxonomic signature was used as input to the 

microMum workflow, consisting of 119 microbes. Of these, 86 had corresponding GEM matches 

to the AGORA database. This set of GEMs were used for the section below. 

Comparison of human-only, microbial-only and community metabolic networks 

 The validity of findings obtained using the Mummichog algorithm predicates largely on 

the selected metabolic model used to putatively annotate MS peaks. Therefore, we first evaluated 

whether there were differences in functional enrichment results when using either (i) only the 

human GEM, (ii) a community metabolic network consisting of only matched microbial GEMs, 

or (iii) the combined human and microbial community metabolic network as the underlying 

GEM model for peak annotation. For the human-only analysis, 13 pathways had a Gamma-

adjusted p-value < 0.05 (Supplementary Table 8). Using the microbe-only network, 21 

pathways had a Gamma-adjusted p-value < 0.05 (Supplementary Table 9). For the combined 

CMN, 15 pathways had a Gamma-adjusted p-value < 0.05 (Supplementary Table 10). Steroid 

biosynthesis, Steroid degradation, Linoleic acid metabolism, alpha-Linolenic acid metabolism, 
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Ether lipid metabolism, and Sphingolipid metabolism were uniquely enriched in the human-only 

and CMN results. Meanwhile, Folate biosynthesis and Ubiquinone and other terpenoid-quinone 

biosynthesis were unique to the microbe-only and CMN results. This motivates the use of a 

combined community metabolic network that captures different functional potential from the 

untargeted metabolomics data versus human-only and microbe-only networks. 

Differences between using all or significantly enriched microbes for community metabolic 

network creation 

 Once the motivation to use a combined community metabolic network was clear, we next 

evaluated whether all microbes (allCMN) or only differentially abundant microbes (deCMN) 

should be used for GEM matching. Identifying differentially abundant microbes is the first step 

towards understanding how certain microbial taxa are associated with various phenotypes (Lin & 

Peddada, 2020). If the metabolism of a microbe plays a large role as to why it is linked to a 

disease, we posit that the metabolic changes between phenotypes can be captured solely using 

differentially abundant microbes. Therefore, of the 38 differentially abundant taxa between 

Crohn’s disease and healthy controls as identified using LEfSe (Segata et al., 2011), 29 had 

matches to the AGORA GEM database and were used to build the CMN. The results of the 

functional enrichment analysis using the KEGG pathway library can be found in Supplementary 

Table 11 and visualized as a lollipop chart in Supplementary Figure 4. Overall, the number and 

rank of enriched metabolic pathways using the allCMN and deCMN were identical. Moreover, 

the differences in Gamma-adjusted p-values were inconsequential (e.g. for Steroid biosynthesis, 

a p-value of 0.0219 in allCMN and 0.0212 in deCMN). Together, this shows that using only 
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differentially abundant microbes to create the CMN can capture the same metabolic variation as 

using all available microbes.  

Contrasting results obtained using AGORA and CarveMe metabolic models 

 As shown in the Supplementary Materials, the metabolome coverage between AGORA 

and CarveMe were different enough to warrant keeping both sets of GEM models as options. We 

thus compared the pathway activity prediction using either the AGORA or CarveMe models. Of 

the 38 differentially abundant microbes, 27 had matches to the CarveMe GEM models. The same 

15 significantly enriched metabolic pathways were identified when using the CMN made from 

CarveMe models as compared to the AGORA models (Supplementary Table 12). There were 

minor changes to the rank of the pathways, owing to different numbers in compound hits across 

the pathways. The comparison of the pathway activity results is also visualized as a lollipop chart 

in Figure 7. From this plot, predicted pathway activity is consistent using either AGORA or 

CarveMe for this Crohn’s Disease use-case. 
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Figure 7. Lollipop chart of altered metabolic pathways using microMum. The Lollipop chart 

shows the enrichment of KEGG metabolic pathways in AGORA (yellow lines) and CarveMe 

(blue lines) matched microbes implicated in Crohn’s Disease. The x-axis is the -log 10 p-value 

(scaled from 0-5), and the y-axis are the pathways. The square colored boxes on the left of the 

plot shows the metabolic hierarchy of that pathway to aid interpretation. The length of the lines 

corresponds to the -log10 raw p-value and the dot at the tip represents the enrichment ratio 

(number of observed hits / number of expected hits). Lines with an asterisk at the end are 

pathways that were also observed to be significantly altered using real metabolomics data. 

 

Comparison with previous Mummichog analyses 

 Next, we compared functional enrichment results obtained using microMum and its 

preceding Mummichog implementation (ogMum) to determine whether microMum provided 

greater insights. Notably, ogMum permits the selection of a single GEM for peak annotation, 

with only 2 bacterial species known to be found in the human gut (Escherichia coli K-12 

MG1655 and Bacillus subtilis) as valid microbial options. For ogMum, we therefore performed 

the analysis three times using one of three GEMs; hsa_mfn (a manually curated human GEM 

from the original implementation), hsa_kegg (the KEGG human metabolic model), and eco_kegg 
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(the KEGG Escherichia coli K-12 MG1655 metabolic model). Comparing between the 

microMum (15 pathways < Gamma-adjusted p-value 0.05) and ogMum hsa_mfn analysis (13 

pathways < Gamma-adjusted p-value 0.05) (Supplementary Table 13), both identified 

alterations in bile acid and fatty acid metabolisms, as well as Vitamin E (microMum: Ubiquinone 

and other terpenoid-quinone biosynthesis) and Vitamin D3 (microMum: Steroid biosynthesis). 

ogMum hsa_mfn uniquely identified changes in Carnitine shuttle, Vitamin B6 and 

Glycerophospholipid metabolism. Meanwhile microMum uniquely pinpointed changes to Folate 

and Sphingolipid metabolism that were not captured using the previous implementation.  

Meanwhile, the ogMum hsa_kegg analysis had zero pathways with a Gamma-adjusted p-value < 

0.05 (Supplementary Table 14). Finally, while the eco_kegg analysis also did not have any 

pathways with a Gamma-adjusted p-value < 0.05, there were 10 pathways when the p-value 

threshold was increased to 0.1, including those related to amino acids, sugar, biotin, and 

porphyrin metabolisms (Supplementary Table 15). Importantly, alterations in bile and fatty 

acids were not captured using the ogMum KEGG analyses. 

Permutation of community metabolic networks 

 Finally, we evaluated whether the list of microbes used to create the CMN has a 

significant impact on the predicted pathway activity results. To achieve this, GEM models were 

randomly selected to build a CMN, the same number as the length of matched microbes from the 

input. The microMum algorithm was then performed using the permuted CMN and repeated 

1000 times. An empirical p-value was calculated as the number of times a pathway was more 

significant using the permuted CMNs versus the original CMN. The top 11 results of the 

permutation can be found in Table 4. Interestingly, Tyrosine metabolism was the only metabolic 



105 

 

 

 

pathway with a p-value < 0.05 (Empirical p-value 0.022). All other metabolic pathways had 

Empirical p-values greater than 0.05, with 7 pathways approaching statistical significance 

(Empirical P-Value < 0.15). This suggests that for some pathways, the taxonomic identity of 

microbial GEMs does not influence the interpretation of the predicted pathway activity results. 

The full table of results can also be found in Supplementary Table 16.  

Table 4. Top 11 altered metabolic pathways using microMum. The top 11 predicted pathway 

activity of untargeted metabolomics data showing the results of the community metabolic model 

(CMN) permutation.  

KEGG Pathway Hits FET Gamma 
Empirical 

Hits 

Empirical 

P-Value 
      

Tyrosine metabolism 47 0.79 0.235 22 0.022 

Secondary bile acid biosynthesis 17 8.4E-07 0.0212 119 0.119 

Steroid biosynthesis 25 1.7E-09 0.0212 120 0.12 

Primary bile acid biosynthesis 25 2.6E-07 0.0212 120 0.12 

Biosynthesis of unsaturated fatty acids 22 5.3E-06 0.0212 120 0.12 

Steroid hormone biosynthesis 53 3.4E-05 0.0212 120 0.12 

Linoleic acid metabolism 12 1.9E-04 0.0213 121 0.121 

Steroid degradation 5 2.4E-03 0.0227 131 0.131 

Fatty acid biosynthesis 8 1.1E-02 0.0241 168 0.168 

Folate biosynthesis 16 2.5E-02 0.0249 249 0.249 

Ubiquinone and other terpenoid-quinone 

biosynthesis 

22 3.7E-02 0.0258 479 0.479 

      

Note: The Gamma P-Value is from the original CMN model, while the Empirical Hits represents the number of times the pathway activity 

results using the randomly permuted CMNs was better than the original. The Empirical P-Value represents the Number of Empirical Hits 

divided by the number of permutations (1000 permutations). 

 
 

Visual exploration of microMum results 

 Another important plot to help visualize the results is the bubble chart. The intent of this 

plot was to explore the metabolic contributions of the microbiome and human host to each 

enriched pathway. Figure 8 depicts the presence of each metabolite belonging to the secondary 
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bile acid biosynthesis pathway, which was significantly enriched between Crohn’s disease 

patients and healthy controls. From this plot, Ruminococcus gnavus is an important contributor 

to this pathway, providing Isochendeoxycholic, Ursocholic and Ursodeoxycholic acids that were 

not present from the human host. This plot, which can be dynamically created for each enriched 

pathway, aides the comprehension of the enrichment results by allowing one to hone down on 

pathway-specific important organisms and serves as a jumping off point for hypothesis 

generation. 

 

Figure 8. microMum Bubble chart of Secondary Bile Acid Biosynthesis. The bubble chart 

shows the predicted presence of metabolites belonging to the secondary bile acid biosynthesis 
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pathway across all AGORA matched microbes implicated in Crohn’s Disease and the human 

genome-scale metabolic network. 

 

Discussion 

This work is among the first efforts to integrate microbial sequencing and untargeted 

metabolomics data using a knowledge-based framework. We began by systematically breaking 

down the different ways to build the community metabolic networks, ultimately landing on using 

differentially abundant microbes and human host. The merit of the microMum algorithm was 

then demonstrated using a large-scale multi-omics investigation of Crohn’s Disease. The original 

investigation identified 8 metabolite classes that were significantly over-abundant in CD, 

including sphingolipids, bile acids, long chain fatty acids and cholesterols (Franzosa et al., 2019). 

This was highly consistent with our findings, and alterations in sphingolipids was uniquely 

identified using microMum as compared to previous Mummichog implementations. Importantly, 

sphingolipids are mediators of inflammation, thought to be required for intestinal homeostasis, 

and have become a novel therapeutic target for IBD treatment (Brown et al., 2019; Sukocheva, 

Lukina, McGowan, & Bishayee, 2020).  

Within the case study, we performed a robust permutation to create CMNs, randomly 

selecting GEMs from our internal database (the same number of microbes used to create the 

original CMN). The intent was to evaluate whether the taxonomic identity of microbes would 

impact the interpretation of microMum results. A p-value of 0 would indicate that the taxonomic 

identity significantly impacts the results, and a p-value of 1 would indicate that the taxonomic 

identity has no impact on the results. Ranking by the Empirical p-value, Tyrosine metabolism 
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was the only pathway with a p-value < 0.05, indicating that the set of original microbes did 

greatly impact pathway prediction for this pathway. Meanwhile, the permutation results for the 

remaining microbes were not significant, suggesting that the taxonomic identity of microbes had 

minimal/moderate influence on the interpretation of functional enrichment results.  

Non-significant p-values could be attributed to poor power or small effects. As we used 

1000 permutations, the sample-size should have been large enough to capture significant results. 

One possible reason for non-significant results could stem from the GEMs themselves, whereby 

the metabolic diversity of the microbes was not large enough. From the original publication, the 

average metabolic distance was 0.48 (Jaccard distance between the list of reactions between 

microbe pairs) and the largest metabolic distance was 0.78. This is not unexpected, as microbes 

living within the same environment should be metabolically similar enough to survive within 

their shared habitat (Mazumdar, Amar, & Segrè, 2013). Additionally, from the Human 

Microbiome Project, it has been previously reported that there is high metabolic similarity 

amongst gut microbial taxa, owing to the functional redundancy of core functions such as 

carbohydrate and amino-acid metabolism (Lozupone et al., 2012). Therefore, metabolic 

pathways that are common across the gut microbiome should have poor permutation p-values, 

while pathways that are unique to a few microbes would be greatly impacted by the taxonomic 

identity of microbes used to create the CMN. In our case-study, alterations in bile acid 

metabolism were amongst the top-identified metabolic changes in CD as compared to healthy 

controls but had non-significant permutation p-values (Empirical p-values were ~0.12). 

However, a publication from the authors of the AGORA resource identified 232 GEMs (from a 

total of 773 reconstructions) with bile acid reactions (Heinken et al., 2019). Due to the relative 
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commonality of bile acid metabolites amongst AGORA GEMs, it is not unanticipated that the 

bile acid pathways had Empirical p-values ~ 0.12.       

The benefit of integrating microbial data within the microMum framework is that results 

can now be attributed to specific microbes, which helps researchers plan future experiments. 

Previous Mummichog implementations required the selection of a single organism’s metabolic 

database, which limits the universe of compounds for peak annotation and thus the scope of 

results obtained from this method. With microMum, researchers can now visually explore 

whether enriched pathways were largely driven by the human host or by microbes, as well as 

identify which microbes likely contributed to the changes. Future enhancements to microMum 

include adding a methodological manner to attribute functional changes to specific organisms, as 

well as to support other hosts such as mice. Furthermore, the current algorithm only identifies 

whether a certain metabolite is present within an organism, disregarding whether it can produce 

or consume the metabolite. Another improvement would be to integrate this knowledge into the 

microMum visualizations to get a fuller and more dynamic picture of the results.        

The importance of multi-omics investigations towards better understanding of the gut 

microbiome has been continuously stressed over the years (Chong & Xia, 2017; Jansson & 

Baker, 2016; Son, Shoaie, & Lee, 2020; Q. Wang et al., 2019), with few methods tailored 

specifically towards integrating metabolomics and microbiome sequencing data. One important 

and well-used method is MIMOSA (Noecker et al., 2016) and its more recent upgrade 

MIMOSA2(Noecker, Eng, & Borenstein, 2021). MIMOSA/2 is intended for paired microbiome 

and metabolomic data, with the goal of linking changes in taxonomy to changes in metabolite 

measurements. Like microMum, it builds a taxon specific CMN, which underpins the rest of the 
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analysis. From the CMN, a metabolic profile is predicted, based on whether the taxa are capable 

of synthesizing or utilizing the metabolites. A linear regression is then performed between the 

predicted metabolic profile and actual metabolomic measurements. Finally, the model fit is 

decomposed into the predicted contribution from each taxon. Unlike microMum however, only 

microbial metabolic models are used to build the CMN. Moreover, while able to identify 

microbially-important metabolites and pinpoint important taxa to said metabolites, it does not 

provide further functional insights (e.g. changes in specific pathways) and requires already 

annotated metabolomics data (e.g. targeted).   

Another method for integrating multi-omics microbiome data is mmvec, which is a 

machine learning algorithm that builds a neural network to predict metabolite abundance from a 

single microbial sequence (Morton et al., 2019). Briefly, the neural network is trained on the 

microbiome sequencing data to best predict the actual metabolite abundances. In the end, the 

method was shown to outperform existing statistical methods such as Pearson’s correlation and 

SparCC (Friedman & Alm, 2012) to identify co-occurring microbe-metabolites. Unlike 

microMum and MIMOSA/2, this method is purely statistical and does not integrate any previous 

knowledge to make predictions. Moreover, the use of a black-box method makes interpretation 

of microbe-metabolite interactions difficult.  

Overall, microMum was able to capture true changes in the metabolism of CD (from the 

original publication), as well as provide hints as to how microbes may contribute to alterations in 

metabolism and ultimately disease pathogenesis. While a valuable tool, it is not without its 

limitations. First, as the underlying knowledgebase are GEMs, any insights obtained using our 

method are greatly impacted by the quality of the GEMs. Further, not all microbes had 
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corresponding genome-scale metabolic model matches. Whilst the matching algorithm has been 

refined to maximize matches between a user’s list of taxa to our GEM database, there may not 

yet exist GEMs for those microbes, or inconsistency between taxonomic annotations could lead 

to no matches. As high-quality GEMs become publicly available, we will continuously 

incorporate these into our tool to improve our GEM-matching percentage. Moreover, taxonomic 

classifications must at least be to species or better, strain level resolution. Microbial GEMs do 

not exist in our tool at higher taxonomic levels such as genus or class as there is too much 

functional variation between different species. Finally, while a community metabolic network is 

created, methods that leverage network topology other than pathway enrichment is not 

considered. Use of topological-based methods could improve insights such as identifying hub 

metabolites/species (Layeghifard, Hwang, & Guttman, 2017) or understanding the modularity of 

the network (Greenblum, Turnbaugh, & Borenstein, 2012).  

 

Conclusion 

microMum is a freely available R package and is the first, to our knowledge, that provides a 

means to integrate a microbial taxonomic profile and untargeted metabolomics data using a 

knowledge-based approach. We demonstrate its utility on a well-known IBD cohort study and 

successfully replicate their findings. microMum also produces several publication-ready key 

figures that enable users to investigate microbial contributions to specific changes in metabolic 

function. Finally, its simplicity allows for interpretable functional insights and empowers 

hypothesis generation for future experimental validation.  
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Supplementary Materials: Metabolome Coverage of AGORA Versus CarveMe 

Metabolic Models 

The goal of the supplementary materials shown here is to compare the metabolome 

coverage of AGORA and CarveMe metabolic models. As both databases were created using 

different resources, an objective method to compare their metabolite contents was needed. 

Therefore, enrichment analysis of the metabolic contents of each database underwent enrichment 

analysis using the RefMet chemical class ontology (Fahy & Subramaniam, 2020). PubChem 

Identifiers (CIDs) were used as input (Supplementary Table 1). The results are briefly 

summarized below. 

 

Supplementary Table 1. Number of metabolites in AGORA and CarveMe databases with valid 

PubChem Chemical Identifiers.  

 

Database # PubChem CIDs Database # PubChem CIDs 

AGORA 1137 CarveMe 1414 

 

Comparison of Super Chemical Class 

 



113 

 

 

 

The top three super chemical classes enriched (FDR-adjusted p-value < 0.05) were 

consistent between AGORA and CarveMe. Organic nitrogen compounds were only enriched in 

AGORA, and not CarveMe model metabolites (Supplementary Tables 2, 3, Supplementary 

Figure 1).  

 

Supplementary Table 2. Top 5 enriched chemical super classes in AGORA models.  

Pathway Total Expected Hits Raw p Holm p FDR p 

Nucleic acids 374 18.4 81 2.73E-30 5.73E-29 5.73E-29 

Carbohydrates 306 15 61 4.08E-21 8.16E-20 4.28E-20 

Organic oxygen compounds 322 15.8 35 9.85E-06 0.000187 6.9E-05 

Organic nitrogen compounds 145 7.12 18 0.000275 0.00495 0.00144 

Organosulfur compounds 37 1.82 4 0.106 1 0.447 

 

Supplementary Table 3. Top 5 enriched chemical super classes in CarveMe models.  

Pathway Total Expected Hits Raw p Holm p FDR p 

Nucleic acids 374 22.8 84 5.96E-26 1.25E-24 1.25E-24 

Carbohydrates 306 18.7 70 2.65E-22 5.31E-21 2.79E-21 

Organic oxygen compounds 322 19.7 37 0.000168 0.0032 0.00118 
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Organic nitrogen compounds 145 8.86 12 0.176 1 0.925 

Homogeneous non-metal compounds 6 0.366 1 0.315 1 1 

 

 

 

Supplementary Figure 1. Lollipop chart showing the enrichment of Super Chemical Classes in 

AGORA as compared to CareveMe metabolic models. The length of the lines correspond to the -

log10 raw p-value and the dot at the tip represents the enrichment ratio (number of observed hits 

/ number of expected hits).  
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Comparison of Main Chemical Class 

 

For AGORA models, 26 main chemical classes were enriched (FDR-adjusted p-value < 

0.1) whereas CarveMe model metabolites were enriched in 13 main chemical classes 

(Supplementary Tables 4, 5).  All enriched chemical classes from CarveMe models were also 

enriched in AGORA models. Main chemical classes enriched in AGORA and not CarveMe 

models include Tetrapyrroles, Amines and Oligosaccharides (Supplementary Figure 2).   

 

Supplementary Table 4. Top 5 enriched chemical main classes in AGORA models.  

Pathway Total Expected Hits Raw p Holm p FDR p 

Pyrimidines 152 7.59 43 3.96E-21 8.63E-19 8.63E-19 

Monosaccharides 202 10.1 43 4.24E-16 9.19E-14 4.62E-14 

Purines 165 8.24 28 1.27E-08 2.75E-06 9.26E-07 

Short-chain acids 8 0.4 6 3.94E-07 8.46E-05 2.14E-05 

Aldehydes 23 1.15 9 8.11E-07 0.000174 2.95E-05 

 

Supplementary Table 5. Top 5 enriched chemical main classes in CarveMe models.  
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Pathway Total Expected Hits Raw p Holm p FDR p 

Pyrimidines 152 9.44 49 1.39E-22 3.04E-20 3.04E-20 

Monosaccharides 202 12.5 55 3.04E-21 6.61E-19 3.32E-19 

TCA acids 9 0.559 7 1.13E-07 2.45E-05 8.24E-06 

Short-chain acids 8 0.497 6 1.43E-06 0.000307 7.78E-05 

Aldehydes 23 1.43 9 4.95E-06 0.00106 0.000216 
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Supplementary Figure 2. Lollipop chart showing the enrichment of Main Chemical Classes in 

AGORA as compared to CareveMe metabolic models. The length of the lines correspond to the -

log10 raw p-value and the dot at the tip represents the enrichment ratio (number of observed hits 

/ number of expected hits).  

 

 

Comparison of Sub Chemical Class 
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37 sub chemical classes were enriched (FDR-adjusted p-value < 0.1) in AGORA models 

as compared to 22 sub chemical classes in CarveMe models (Supplementary Tables 6, 7).  17 

sub chemical classes were enriched in AGORA but not in CarveMe models, including 

Metallotetrapyrroles, Acyl CoAs and Oligosaccharides (Supplementary Figure 3). Meanwhile 

Monosaccharides and Pyrimidine dNDP were enriched in CarveMe models but not AGORA 

models.    

 

Supplementary Table 6. Top 5 enriched chemical sub classes in AGORA models.  

Pathway Total Expected Hits Raw p Holm p FDR p 

Monosaccharide phosphates 36 1.84 21 1.73E-18 8.15E-16 8.15E-16 

Purine rNMP 25 1.28 11 1.38E-08 6.47E-06 3.24E-06 

Short-chain acids 8 0.409 6 4.54E-07 0.000213 7.12E-05 

TCA acids 9 0.461 6 1.3E-06 0.000609 0.000153 

Pyrimidine dNMP 6 0.307 5 2E-06 0.000932 0.000188 

 

Supplementary Table Table 7. Top 5 enriched chemical sub classes in CarveMe models.  

Pathway Total Expected Hits Raw p Holm p FDR p 

Monosaccharide phosphates 36 2.29 22 6.59E-18 3.1E-15 3.1E-15 

TCA acids 9 0.573 7 1.34E-07 6.28E-05 3.15E-05 
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Pyrimidine rNDP 25 1.59 10 1.43E-06 0.000668 0.000155 

Amino acids 545 34.7 64 1.61E-06 0.000753 0.000155 

Short-chain acids 8 0.509 6 1.65E-06 0.000768 0.000155 

 

 

 

Supplementary Figure 3. Lollipop chart showing the enrichment of Sub Chemical Classes in 

AGORA as compared to CareveMe metabolic models. The length of the lines correspond to the -
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log10 raw p-value and the dot at the tip represents the enrichment ratio (number of observed hits 

/ number of expected hits).  

 

Summary 

From this analysis, we can see the similarities and differences between the metabolome 

coverage of AGORA and CarveMe models. Overall, it seems that AGORA models had a greater 

coverage of chemical classes as compared to CarveMe, despite more CarveMe metabolites 

having a PubChem CID. Particularly at the main and sub chemical classes, these differences 

were more pronounced. Due to such observations, it is recommended that both model databases 

should be used to obtain better biological insights.  
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Supplementary Materials: Crohn’s Disease Case Study 

Below are supplementary tables for the comparison of human-only, microbe-only and 

community metabolic network microMum results. 

Supplementary Table 8. Top 10 predicted pathway activity of untargeted metabolomics data 

using the human GEM.  

KEGG Pathway Hits FET Gamma 

Steroid biosynthesis 25 1.8E-08 0.0152 

Primary bile acid biosynthesis 25 1.9E-06 0.0152 

Biosynthesis of unsaturated fatty acids 22 2.8E-05 0.0152 

Secondary bile acid biosynthesis 14 7.9E-05 0.0152 

Steroid hormone biosynthesis 53 3.3E-04 0.0152 

Linoleic acid metabolism 12 5.4E-04 0.0153 

Steroid degradation 5 4.2E-03 0.0170 

Fatty acid biosynthesis 8 2.0E-02 0.0188 

alpha-Linolenic acid metabolism 3 3.8E-02 0.0289 

Ether lipid metabolism 11 1.2E-01 0.0313 

 

Supplementary Table 9. Top 10 predicted pathway activity of untargeted metabolomics data 

using the microbial GEMs.  

KEGG Pathway Hits FET Gamma 

Secondary bile acid biosynthesis 11 9.8E-06 0.0083 

Primary bile acid biosynthesis 10 4.5E-03 0.0088 

Fatty acid biosynthesis 7 3.5E-03 0.0089 

Ubiquinone and other terpenoid-quinone biosynthesis 14 8.0E-03 0.0090 

Folate biosynthesis 12 1.4E-02 0.0096 

Steroid hormone biosynthesis 5 5.0E-02 0.0161 

Porphyrin and chlorophyll metabolism 19 1.3E-01 0.0181 

Cutin, suberine and wax biosynthesis 2 3.6E-02 0.0218 

Retinol metabolism 3 9.4E-02 0.0320 

Sesquiterpenoid and triterpenoid biosynthesis 3 9.4E-02 0.0320 

 

Supplementary Table 10. Top 10 predicted pathway activity of untargeted metabolomics data 

using the community metabolic network. 

KEGG Pathway Hits FET Gamma 

Steroid biosynthesis 25 1.3E-09 0.0219 
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Primary bile acid biosynthesis 25 2.0E-07 0.0219 

Secondary bile acid biosynthesis 17 7.0E-07 0.0219 

Biosynthesis of unsaturated fatty acids 22 4.4E-06 0.0219 

Steroid hormone biosynthesis 53 2.6E-05 0.0219 

Linoleic acid metabolism 12 1.7E-04 0.0220 

Steroid degradation 5 2.2E-03 0.0234 

Fatty acid biosynthesis 8 1.0E-02 0.0247 

Folate biosynthesis 16 2.3E-02 0.0254 

Ubiquinone and other terpenoid-quinone biosynthesis 22 3.4E-02 0.0263 

  

Below is the supplementary table of microMum results using only significantly different 

microbes when creating the community metabolic network using AGORA GEM models. 

Supplementary Table 11. Top 10 predicted pathway activity of untargeted metabolomics data 

using the community metabolic network created using differentially abundant microbes from the 

AGORA GEM database. 

KEGG Pathway Hits FET Gamma 

Steroid biosynthesis 25 1.7E-09 0.0212 

Primary bile acid biosynthesis 25 2.6E-07 0.0212 

Secondary bile acid biosynthesis 17 8.4E-07 0.0212 

Biosynthesis of unsaturated fatty acids 22 5.3E-06 0.0212 

Steroid hormone biosynthesis 53 3.4E-05 0.0212 

Linoleic acid metabolism 12 1.9E-04 0.0213 

Steroid degradation 5 2.4E-03 0.0227 

Fatty acid biosynthesis 8 1.1E-02 0.0241 

Folate biosynthesis 16 2.5E-02 0.0249 

Ubiquinone and other terpenoid-quinone biosynthesis 22 3.7E-02 0.0259 
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Supplementary Figure 4. Lollipop chart of the functional enrichment results of KEGG 

metabolic pathways using the community metabolic network of differentially abundant microbes 

between Crohn’s Disease and healthy controls. The x-axis is the -log 10 p-value (scaled from 0-

5), and the y-axis are the pathways. The square colored boxes on the left of the plot shows the 

metabolic hierarchy of that pathway to aid interpretation. The length of the lines corresponds to 

the -log10 raw p-value and the dot at the tip represents the enrichment ratio (number of observed 

hits / number of expected hits).  

 

Below is the supplementary table of microMum results using only significantly different 

microbes when creating the community metabolic network using CarveMe GEM models. 

Supplementary Table 12. Top 10 predicted pathway activity of untargeted metabolomics data 

using the community metabolic network created using differentially abundant microbes from the 

CarveMe GEM database. 

KEGG Pathway Hits FET Gamma 

Steroid biosynthesis 25 1.9E-09 0.0206 

Primary bile acid biosynthesis 25 2.8E-07 0.0206 
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Biosynthesis of unsaturated fatty acids 22 5.7E-06 0.0206 

Steroid hormone biosynthesis 53 3.8E-05 0.0206 

Secondary bile acid biosynthesis 14 2.4E-05 0.0206 

Linoleic acid metabolism 12 2.0E-04 0.0207 

Steroid degradation 5 2.5E-03 0.0221 

Fatty acid biosynthesis 8 1.1E-02 0.0235 

Ubiquinone and other terpenoid-quinone biosynthesis 23 5.5E-02 0.0270 

Folate biosynthesis 15 5.0E-02 0.0277 

  

 

Below are the supplementary tables of predicted pathway activity results using the 

previous Mummichog implementation from MetaboAnalyst. 

Supplementary Table 13. Top 10 predicted pathway activity of untargeted metabolomics data 

using the hsa_mfn manually curated metabolic model. 

Pathway Hits FET Gamma 

Bile acid biosynthesis 55 1.06E-10 0.0129 

Squalene and cholesterol biosynthesis 42 2.03E-07 0.0129 

Vitamin D3 (cholecalciferol) metabolism 14 5.93E-05 0.0130 

Vitamin E metabolism 41 0.001413 0.0131 

Carnitine shuttle 38 0.002926 0.0132 

De novo fatty acid biosynthesis 20 0.002805 0.0133 

C21-steroid hormone biosynthesis and metabolism 88 0.012006 0.0136 

Omega-6 fatty acid metabolism 7 0.040724 0.0193 

Linoleate metabolism 36 0.15926 0.0246 

Biopterin metabolism 12 0.16209 0.0311 

 

Supplementary Table 14. Top 10 predicted pathway activity of untargeted metabolomics data 

using the human KEGG metabolic model. 

KEGG Pathway Hits FET Gamma 

Steroid hormone biosynthesis 84 8.32E-14 0.127 

Steroid biosynthesis 41 1.37E-05 0.127 

Primary bile acid biosynthesis 34 0.000217 0.127 

Glycosaminoglycan degradation 17 0.023798 0.141 

Aminoacyl-tRNA biosynthesis 21 0.069181 0.157 

Biosynthesis of unsaturated fatty acids 11 0.04866 0.159 

Lysine degradation 14 0.066413 0.163 
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Arginine biosynthesis 10 0.070926 0.173 

Arginine and proline metabolism 34 0.14518 0.177 

Retinol metabolism 16 0.10724 0.177 

 

Supplementary Table 15. Top 10 predicted pathway activity of untargeted metabolomics data 

using the Escherichia coli KEGG metabolic model. 

KEGG Pathway Hits FET Gamma 

Arginine and proline metabolism 28 0.000786 0.0569 

Aminoacyl-tRNA biosynthesis 21 0.001869 0.0573 

Arginine biosynthesis 13 0.007416 0.0599 

Porphyrin and chlorophyll metabolism 14 0.019747 0.0635 

Ubiquinone and other terpenoid-quinone biosynthesis 11 0.023862 0.0660 

Lysine biosynthesis 11 0.023862 0.0660 

Arachidonic acid metabolism 5 0.025532 0.0756 

Galactose metabolism 30 0.12706 0.0834 

Amino sugar and nucleotide sugar metabolism 29 0.16819 0.0929 

Biotin metabolism 4 0.053361 0.0944 
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Supplementary Table 16. Predicted pathway activity of untargeted metabolomics data using 

microMum showing the results of the community metabolic model permutation. 

  Hits FET Gamma 
Empirical 

Hits 

Empirical 

P-Value 

Steroid biosynthesis 25 2E-09 0.021 120 0.12 

Primary bile acid biosynthesis 25 3E-07 0.021 120 0.12 

Secondary bile acid biosynthesis 17 8E-07 0.021 119 0.119 

Biosynthesis of unsaturated fatty acids 22 5E-06 0.021 120 0.12 

Steroid hormone biosynthesis 53 3E-05 0.021 120 0.12 

Linoleic acid metabolism 12 2E-04 0.021 121 0.121 

Steroid degradation 5 2E-03 0.023 131 0.131 

Fatty acid biosynthesis 8 1E-02 0.024 168 0.168 

Folate biosynthesis 16 2E-02 0.025 249 0.249 

Ubiquinone and other terpenoid-quinone 

biosynthesis 

22 4E-02 0.026 479 0.479 

Ether lipid metabolism 11 8E-02 0.034 434 0.434 

alpha-Linolenic acid metabolism 3 3E-02 0.035 264 0.264 

Sphingolipid metabolism 17 1E-01 0.035 575 0.575 

Cutin, suberine and wax biosynthesis 4 8E-02 0.047 408 0.408 

Insect hormone biosynthesis 4 8E-02 0.047 408 0.408 

Arachidonic acid metabolism 36 3E-01 0.052 900 0.9 

Sesquiterpenoid and triterpenoid 

biosynthesis 

5 2E-01 0.065 572 0.572 

Retinol metabolism 13 3E-01 0.086 467 0.467 

Terpenoid backbone biosynthesis 21 4E-01 0.102 846 0.846 

Biosynthesis of enediyne antibiotics 3 2E-01 0.108 561 0.561 

Lysine biosynthesis 15 5E-01 0.124 172 0.172 

Betalain biosynthesis 8 4E-01 0.142 819 0.819 

Novobiocin biosynthesis 4 3E-01 0.149 678 0.678 

Porphyrin and chlorophyll metabolism 21 6E-01 0.173 691 0.691 

Glycerophospholipid metabolism 18 7E-01 0.197 922 0.922 

Arginine biosynthesis 14 6E-01 0.199 902 0.902 

Monobactam biosynthesis 10 6E-01 0.209 862 0.862 

Glucosinolate biosynthesis 10 6E-01 0.209 862 0.862 

Tyrosine metabolism 47 8E-01 0.235 22 0.022 

Vitamin B6 metabolism 16 8E-01 0.262 632 0.632 

Nicotinate and nicotinamide metabolism 21 8E-01 0.281 933 0.933 

Phenylalanine metabolism 22 8E-01 0.310 785 0.785 

Biosynthesis of various secondary 

metabolites - part 2 

13 8E-01 0.318 482 0.482 

Tropane, piperidine and pyridine alkaloid 

biosynthesis 

18 8E-01 0.326 662 0.662 
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Fatty acid degradation 8 7E-01 0.330 815 0.815 

D-Arginine and D-ornithine metabolism 8 7E-01 0.330 815 0.815 

Limonene and pinene degradation 8 7E-01 0.330 815 0.815 

Isoquinoline alkaloid biosynthesis 8 7E-01 0.330 815 0.815 

Tryptophan metabolism 40 9E-01 0.339 949 0.949 

Phenylpropanoid biosynthesis 10 9E-01 0.414 445 0.445 

Riboflavin metabolism 10 9E-01 0.414 828 0.828 

Phenylalanine, tyrosine and tryptophan 

biosynthesis 

21 9E-01 0.420 270 0.27 

Biosynthesis of various secondary 

metabolites - part 3 

17 9E-01 0.457 897 0.897 

Cyanoamino acid metabolism 12 9E-01 0.490 837 0.837 

Styrene degradation 12 9E-01 0.490 850 0.85 

Alanine, aspartate and glutamate metabolism 19 1E+00 0.519 896 0.896 

Valine, leucine and isoleucine degradation 13 9E-01 0.524 945 0.945 

Valine, leucine and isoleucine biosynthesis 20 1E+00 0.547 954 0.954 

Histidine metabolism 21 1E+00 0.575 895 0.895 

Arginine and proline metabolism 47 1E+00 0.589 969 0.969 

Glutathione metabolism 16 1E+00 0.615 867 0.867 

Lysine degradation 24 1E+00 0.648 777 0.777 

Cysteine and methionine metabolism 34 1E+00 0.726 497 0.497 

Metabolism of xenobiotics by cytochrome 

P450 

80 1E+00 0.742 952 0.952 

Methane metabolism 26 1E+00 0.812 299 0.299 

Amino sugar and nucleotide sugar 

metabolism 

28 1E+00 0.838 927 0.927 

Purine metabolism 45 1E+00 0.863 924 0.924 

Pyrimidine metabolism 31 1E+00 0.869 852 0.852 

Glycolysis / Gluconeogenesis 14 1E+00 1.000 1000 1 

Fatty acid elongation 5 8E-01 1.000 1000 1 

Caffeine metabolism 2 5E-01 1.000 1000 1 

Glycine, serine and threonine metabolism 27 1E+00 1.000 1000 1 

Penicillin and cephalosporin biosynthesis 3 7E-01 1.000 1000 1 

Prodigiosin biosynthesis 2 5E-01 1.000 1000 1 

Phenazine biosynthesis 2 5E-01 1.000 1000 1 

beta-Alanine metabolism 17 1E+00 1.000 1000 1 

D-Glutamine and D-glutamate metabolism 5 8E-01 1.000 1000 1 

D-Alanine metabolism 4 8E-01 1.000 1000 1 

O-Antigen nucleotide sugar biosynthesis 7 9E-01 1.000 1000 1 

Peptidoglycan biosynthesis 4 8E-01 1.000 1000 1 

Glycosylphosphatidylinositol (GPI)-anchor 

biosynthesis 

1 3E-01 1.000 1000 1 

Glyoxylate and dicarboxylate metabolism 14 1E+00 1.000 1000 1 
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Thiamine metabolism 16 1E+00 1.000 1000 1 

Carotenoid biosynthesis 3 7E-01 1.000 1000 1 

Nitrogen metabolism 3 7E-01 1.000 1000 1 

Sulfur metabolism 12 1E+00 1.000 1000 1 

Biosynthesis of siderophore group 

nonribosomal peptides 

5 8E-01 1.000 1000 1 

Biosynthesis of vancomycin group 

antibiotics 

2 5E-01 1.000 1000 1 
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Chapter 5. Discussion 

Throughout all my work in this thesis and beyond was the theme to create user-friendly 

and freely accessible tools for omics data analysis, interpretation, and visualization to bridge the 

gap between bench and data scientists. With rapid advances in high-throughput omics 

technologies and decreasing costs, there is an ever-growing number of omics-centric studies. 

Multiple methods exist for data pre-/processing, which can be overwhelming for novice 

researchers. Thoughtful analytical pipelines that are intuitive, innovative, and easy-to-use are 

urgently needed.  

MetaboAnalyst, as discussed in Chapter 2, is a comprehensive, web-based tool suite for 

metabolomics data analysis, visualization, and functional interpretation. It was first released in 

2009 with a single module for metabolomic data processing and statistical analysis (Jianguo Xia, 

Nick Psychogios, Nelson Young, & David S  Wishart, 2009), with substantial updates in Version 

2.0 for functional analysis and data interpretation (Jianguo Xia, Rupasri Mandal, Igor V 

Sinelnikov, David Broadhurst, & David S  Wishart, 2012), and Version 3.0 for biomarker 

analysis, power analysis, and joint pathway analysis (Jianguo Xia, Igor V Sinelnikov, Beomsoo 

Han, & David S  Wishart, 2015). As the field of metabolomics continues to evolve, so should 

MetaboAnalyst. We therefore developed Version 4.0, in tandem with its companion R package 

(MetaboAnalystR), towards a more transparent and integrative metabolomic data analysis. This 

upgrade consisted of: (i) a major overhaul to its user interface towards a more modern design, (ii) 

improved reproducibility/transparency with the inclusion of a R Command History throughout a 

user’s session that can be used to recreate all analyses locally using the MetaboAnalystR 



130 

 

 

 

package, (iii) support for meta-analysis and multi-omics data analysis, (iv) an update of 

underlying knowledgebases in collaboration with HMDB 4.0 (Wishart et al., 2017a), and (v) a 

new module based on the mummichog algorithm for pathway activity prediction from untargeted 

metabolomics data (S. Li et al., 2013a). Together, these updates ensured that MetaboAnalyst 

remains on the forefront of computational metabolomics and enables researchers to make novel 

and insightful discoveries.  

Untargeted metabolomics, also known as global metabolomics, aims to measure all 

possible metabolites within samples without a priori knowledge of the metabolome. A typical LC-

MS based metabolomics experiment can generate 10,000s peaks (features) characterized by their 

mass and retention times. However, as a single peak can potentially match multiple compounds 

within the given mass range, peak annotation requires significant efforts to search through 

compound databases and perform tandem MS experiments. Due to this challenge, functional 

interpretation of global metabolomics data is not straightforward, as classical metabolic pathway 

enrichment analysis requires named metabolites as input, not MS peaks. To address this 

bottleneck, Li et al proposed a novel approach, named mummichog, to directly infer pathway 

activities from peak lists by leveraging the collective power of metabolic pathways, without 

requiring accurate metabolite identification(S. Li et al., 2013a). This algorithm assumes that a 

certain degree of random errors during individual peak assignment will not change the collective 

behavior jointly determined by all metabolites involved in the pathways. This concept has been 

recently adapted to the popular Gene Set Enrichment Analysis algorithm (Subramanian et al., 

2005) in MetaboAnalystR 2.0 (Chapter 3). The original mummichog algorithm is based on over 

representation analysis to test if certain pathways are enriched in the significant peaks as compared 
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to null models based on peak lists of the same size randomly drawn from the inputted peak list. In 

comparison, GSEA is a cut-off free method that evaluates the overall differences of two 

distributions based on Kolmogorov-Smirnov tests. The manuscript in Chapter 3 showcased the 

differences and similarities in functional interpretations of MS peaks using both versions of the 

algorithm.  

Since the publications of MetaboAnalyst 4.0 and MetaboAnalystR 2.0, substantial 

upgrades have been made to the mummichog algorithm, including support for multi-modal 

pathway prediction (i.e. positive and negative ion modes). This was an important enhancement as 

a mass spectrometer is run in either positive or negative mode, and different molecules will be 

ionized dependent on the mode. For example, nitrogen and oxygen bases are detected in positive 

mode, whereas molecules with acidic functional groups such as carboxylic acids are detected in 

negative mode (J. Liigand et al., 2020; P. Liigand et al., 2017).  In addition to this, adduct and 

currency metabolite customization was enabled, as different adducts may be formed dependent on 

the LC-MS system or solutions used. Other modifications to the mummichog code were the 

inclusion of retention times to strengthen peak annotations, and support for meta-analysis of 

multiple untargeted metabolomics datasets. These updates have been detailed in subsequent 

publications, MetaboAnalyst 5.0 (Pang et al., 2021) and MetaboAnalystR 3.0 (Pang et al., 2020). 

Ultimately, the ability to obtain biological insights from MS peaks has been refined and 

maximized.  

Despite the plethora of microbiome research, gaining biological insights beyond a list of 

significantly different taxa is not yet the norm. microMum, described in Chapter 4, is an R 

package for predicting changes in microbial metabolism by integrating paired untargeted 
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metabolomics and taxonomic microbial sequencing data. Bacteria in the gut communicate 

amongst themselves as well as with their host via the production of metabolites. Microbial-

derived metabolites, including SCFAs and bile acids, are known to have systemic effects on their 

host’s health. Therefore, if one has a list of taxa differentially abundant between two groups as 

well as corresponding untargeted metabolomics data, he or she can use microMum to predict 

alterations in microbial metabolism. This helps to answer why a set of microbes is linked to a 

disease and steers researchers towards understanding how that set of microbes affects host 

phenotype. Moreover, insights obtained are easily interpretable – there is no black box of 

complicated algorithms that can overwhelm users when trying to understand the results. Finally, 

the IBD use-case in Chapter 4 showcased how inferred metabolic function through microMum 

captured metabolomic differences in the original publication and provided further hints not 

previously reported on how certain microbes could have contributed to disease pathogenesis. 

 The validity of results obtained from microMum predicate upon several different aspects. 

One, that the majority of a user’s list of microbes is captured within the microMum GEM 

database. If only a small percentage of a user’s list has GEM matches, the insights obtained using 

microMum would not be close to the truth due to the lack of information. Second, it requires that 

the untargeted metabolomics data analysis to identify important peaks between cases and 

controls was properly executed. If done improperly, it could lead to false positives (signal there 

that does not truly exist) or inversely, false negatives (signal truly exists but was not picked up). 

Along the same thread, the differential abundance analysis to identify important microbes 

between disease phenotypes should also be done correctly to properly annotate changes in 

metabolism to the right microbes. If these prerequisites are met, microMum would be suitable for 
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a user’s multi-omic microbiome data analysis. Overall, the novel framework developed in 

Chapter 4 will enable fast and interpretable integration of untargeted metabolomics and 

taxonomic microbial signatures. 
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Chapter 6. Conclusion 

Bioinformatic pipelines created in Chapters 2 and 3 bring forward cutting-edge and user-

friendly platforms for metabolomics data processing and analysis. Moreover, the knowledge-

based platform created in Chapter 4 will help users functionally interpret and integrate their 

paired metabolomics and taxonomic sequencing data for further biological insights. For instance, 

say a user has collected untargeted metabolomics and identified a list of microbes enriched in 

their study of rheumatoid arthritis (RA). After using microMum, they identify nitrogen and 

sulfur metabolism to be different between RA and healthy controls, which could have negative 

consequences to human health (X. Zhang et al., 2015). Using microMum’s visualizations, they 

could then examine this pathway and find that it is largely driven by microbe X, making it a 

potential target for therapeutic interventions. The platform therefore fills an urgently needed gap 

by providing users a powerful tool to integrate paired untargeted metabolomics and taxonomic 

microbial signatures to perform function-driven hypothesis generation.   

Moving forward, I envision several steps that can be undertaken to enhance the utility of 

all tools developed throughout my PhD. For MetaboAnalyst/R, putative compound identification 

is a key step when performing functional interpretation of untargeted metabolomics data. This is 

a challenge as if solely the molecular weight of a molecule is used to predict peak identity, there 

will be numerous matches. For instance, searching for a compound in the Human Metabolome 

Database (Wishart et al., 2017a) with a range of 180.0 to 180.5 results in 81 potential 

metabolites. This can lead to an inflated false-positive identification rate. To address this, 

retention times, which is the time taken for a molecule to pass through a chromatography 
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column, can be used in tandem with chemical similarity metrics to improve this step. 

Mummichog (S. Li et al., 2013a), the original underlying algorithm for this module, leverages 

organism-specific metabolic pathways for functional interpretation. Because a pathway is 

essentially the chemical transformation of a metabolite, metabolites within the same pathway 

should be similarly structured, and therefore have similar retention times. My idea is therefore to 

incorporate retention time and chemical similarity cut-offs when performing the putative 

compound identification step. Altogether, I envision this would improve biological insights 

obtained using this module.  

In-depth understanding of community-wide metabolism is essential to gain mechanistic 

insights to community-level microbial ecology and further inform therapeutic manipulations of 

the gut microbiome. With microMum, the next step would be to leverage the custom community 

metabolic networks to further integrate other microbiome-specific multi-omics data, such as 

transcriptomics or proteomics. The goal here would be to refine the community metabolic 

network to add/remove genes that are not expressed and apply network-based topological 

algorithms to pinpoint key features of dysbiosis and investigate host-microbe interactions. 

Moreover, differentially enriched genes and metabolites can then be mapped (incorporated as 

weighted edges/nodes) to create representative disease-networks. Standard graph theory (e.g. 

hubs and modularity), and the prize-collecting Steiner tree (PCST) algorithm can then be used to 

identify important links, key players, and sub-networks within the microbiome. Ultimately, this 

integrative approach of CMNs, multi-omics data, and topological network-based algorithms will 

provide system-level resolution and deep mechanistic insights to microbiome function. Such 

updates would allow for the integration of multiple omics technologies to provide a holistic 
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overview of the gut microbiome, thereby taming the complexity of the system to identify core 

ecological principles and generate testable hypotheses for microbiome manipulation of metabolic 

function to improve health.  
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