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Abstract

The gut microbiome is a complex biological system that impacts many aspects of human
health. While several studies have identified long lists of microbes implicated in disease, why
they are associated with differential host phenotypes remains unclear. Metabolomics can
complement sequencing-based approaches by providing a snapshot of host-microbial co-
metabolism, however, its use in the field of microbiomics is still in its infancy. The objectives of
my project are therefore to (i) to become proficient in metabolomics data processing and analysis
and translate this knowledge into the development of bioinformatics tools for metabolomics data,
(i1) to improve biological insights obtained from untargeted metabolomics data in an open-source
and transparent matter, and (iii) to implement a novel bioinformatic framework to integrate
untargeted metabolomics data and taxonomic microbial data to model changes in microbial
metabolism. Ultimately, this framework will permit researchers to understand metabolic

mechanisms of the gut microbiome and aide the design of novel therapeutics.



Abreége

Le microbiome intestinal est un systéme biologique complexe qui a un impact sur de
nombreux aspects de la santé humaine. Bien que plusieurs études aient identifié de longues listes
de microbes impliqués dans les maladies, la raison pour laquelle ils sont associés a des
phénotypes d'hétes différentiels reste incertaine. La métabolomique peut compléter les approches
basées sur le séquencage en fournissant un apércu du co-métabolisme hote-microbien,
cependant, son utilisation dans le domaine de la microbiomique en est encore a ses debuts. L un
des principaux objectifs de la recherche sur le microbiome est de définir la fonction d’un
microbe et son impact sur 1’hote. Les objectifs de mon projet sont donc de (i) acquérir une
compréhension globale de la métabolomique de bout en bout et d’analyser des données
microbiologiques, (ii) déterminer les microbes clés liés a d'importants changements
métabolomiques, et (iii) mettre en ceuvre une méthode basée sur un réseau métabolique pour
prédire les fonctions du microbiome. Finalement, cette structure permettra aux chercheurs de
comprendre les mécanismes métaboliques du microbiome intestinal et aidera a la conception de

nouvelles thérapies.
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Chapter 1. Introduction and Literature Review

1.1 Background

Owing to advances in high-throughput sequencing technologies, the past decade has seen a
wealth of research highlighting the importance of the human microbiome towards human health,
development, disease susceptibility, and behavior (Integrative, 2014). Here, the term
‘microbiome’ refers to the set of microorganisms inhabiting a shared environment, as well as
their genomic content and metabolic products. These complex assemblages of microorganisms
inhabiting the body’s mucosal surfaces and cavities have evolved with their human hosts over
millennia to form a variety of relationships, including mutualistic, symbiotic and even parasitic
(Foster, Schluter, Coyte, & Rakoff-Nahoum, 2017; Mazmanian, Round, & Kasper, 2008).
Humans are rapidly colonized by microbes at birth, and their microbiota show great interpersonal
variation due to several factors such as age, lifestyle, environment, and genetics (Backhed et al.,
2015; Fierer, Hamady, Lauber, & Knight, 2008; Goodrich et al., 2016; Human Microbiome
Project, 2012; Yatsunenko et al., 2012). Further, it has been estimated that humans are home to
over 5000 different genera of bacteria, with a 1:1 ratio of human to bacterial cells (Rojo et al.,
2017; Sender, Fuchs, & Milo, 2016). Understanding the complex interplay between gut
microbiota and its human host is paramount to uncover the role the microbiome plays in

maintaining host homeostasis.
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1.2 Overview of the human gut microbiome

The human intestinal tract is home to the greatest density and diversity of microbes,
containing archea, bacteria, fungi, viruses, and eukaryotes (Y. K. Lee & Mazmanian, 2010).
Bacteria are the most predominant microorganisms in the human gut, consisting of
approximately 1000 species largely belonging to the phyla Firmicutes and Bacteriodetes (Human
Microbiome Project, 2012; Qin et al., 2010). The gut microbiome is intrinsically involved in
maintaining homoeostasis and performs several vital functions that are otherwise inaccessible to
its human host. For instance, the gut microbiota metabolize host-indigestible polysaccharides and
synthesize essential vitamins (Thursby & Juge, 2017); maintain the integrity of the intestinal
epithelial and mucosal barriers (Natividad & Verdu, 2013); provide protection against
opportunistic pathogens; and shape the development of the host immune system (Belkaid &
Hand, 2014). Its reach also extends well beyond the gastrointestinal (Gl) tract, affecting host
processes such as bone homeostasis (Sjogren et al., 2012), adiposity (Béckhed et al., 2004), brain
function and behavior (Cryan & Dinan, 2012). Moreover, the gut microbiome encompasses an
immense toolbox of biochemical and metabolic capacities, containing 150-fold more genes than
the entire human genome (Human Microbiome Project, 2012; Ursell et al., 2014). Due to these
rich functionalities that greatly expand that of its host, the gut microbiome is considered a virtual
organ within the human body (Baquero & Nombela, 2012; O'Hara & Shanahan, 2006; Ursell et
al., 2014). Despite its importance, microbiome research towards understanding mechanisms

underlying the gut microbiota’s influence on human health and disease is still in its infancy.
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1.3  Composition and structure of the gut microbiome

Taxonomic profiling of the gut microbiome permits researchers to pinpoint species as
biomarkers of disease and gain insight into ecological processes driving its composition.
Numerous large-scale studies have demonstrated that the human gut microbiome is highly
personalized and relatively stable after infancy, with considerable intra-individual taxonomic
diversity even amongst healthy individuals (Flores et al., 2014; Human Microbiome Project,
2012; Kostic et al., 2015; Lozupone, Stombaugh, Gordon, Jansson, & Knight, 2012; Zhernakova
et al., 2016). Remarkably, it has been shown that twins can share only 50% or less of their
microbial genera (Shafquat, Joice, Simmons, & Huttenhower, 2014; Peter J Turnbaugh et al.,
2009). While high taxonomic diversity is considered an indicator of a ‘healthy’ gut microbiome,
reduced taxonomic diversity has been associated with poor health outcomes such as frailty
(Jackson et al., 2016), type 1 diabetes (T1D) (Kostic et al., 2015), irritable bowel syndrome
(IBS) (Zhernakova et al., 2016), and obesity (Peter J Turnbaugh et al., 2009). Several studies
have also highlighted the potential for microbial biomarkers as non-invasive targets for early
detection of various diseases including Inflammatory Bowel Disease (IBD) (Rooks et al., 2014),
hepatocellular carcinoma (Ren et al., 2018), and T1D (Davis-Richardson et al., 2014). More
recently, a large-scale population study attributed increased abundance in Enterobacteriaceae
with a greater mortality risk (Salosensaari et al., 2021). Overall, taxonomic profiling can provide

some insight into how the microbiome changes in association with phenotype.

Despite substantial taxonomic variability between individuals, metagenomics has revealed

that in the absence of disease, humans share a functional core microbiome (Human Microbiome
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Project, 2012; Lozupone et al., 2012; Peter J Turnbaugh et al., 2009). This set of conserved
functions consists of (i) housekeeping functions required for universal maintenance of life such
as transcription and translation (Human Microbiome Project, 2012), (ii) shared human-associated
microbial processes such as transportation of small molecules and biosynthesis of host-required
compounds (i.e. amino acids, lipids), and finally (iii) functions specific to the gut including
carbohydrate processing and vitamin biosynthesis (Shafquat et al., 2014). Functional redundancy
amongst different taxa residing within the same shared environment may have evolved to
maintain gut homeostasis permitting their colonization (Backhed et al., 2012; Levy, Thaiss, &
Elinav, 2016). For instance, functional redundancy would permit a microbial community to
withstand perturbations from environmental impacts such as antibiotics (resistance), or to return
to equilibrium following stress-induced changes (resilience) (Backhed et al., 2012). Tian et al.
recently demonstrated that high-functional redundancy in recipient’s gut microbiota pre-fecal
microbiota transplantation (FMT) increases resilience, thus reducing the transplantation efficacy
(Tian et al., 2020). In comparison, recipient’s gut microbiota with low functional redundancy
prior to FMT had a better chance of returning to a healthy state following transplantation.
Ultimately, gut microbiome function is important to maintain a healthy host state and alterations

in this function likely play an important role in disease progression and treatment.

1.4  Plasticity of the gut microbiome

While specific mechanisms may be unclear, several environmental and genetic factors are
known to shape the gut microbiome (Candela, Biagi, Maccaferri, Turroni, & Brigidi, 2012;

Maurice, Haiser, & Turnbaugh, 2013; Quercia et al., 2014). A large-scale twin study of over
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1000 twin pairs demonstrated the genetic heritability of ~83 taxa (1% of the overall gut
microbiome composition) that were stable across repeat samplings (Goodrich et al., 2016).
Compared to environmental factors, the effect of host genetics on shaping the gut microbiome is
relatively modest (Kurilshikov, Wijmenga, Fu, & Zhernakova, 2017). A recent study of >1000
individuals with divergent genetic backgrounds yet living in similar environments demonstrated
that it was non-genetic factors such as household sharing, diet, and age that shaped the
composition of the gut microbiome, explaining ~20% of observed variance (Rothschild et al.,
2018). In comparison, genetic ancestry was not significantly associated with gut microbiome
composition. Of the environmental factors, diet is known to be one of the most important
modifiers of the gut microbiome (Singh et al., 2017; Zmora, Suez, & Elinav, 2019). A landmark
study of gnobiotic mice demonstrated that transitioning from a plant-rich, low-fat diet to a
“Western’ high fat, high-sugar diet can alter the microbial community structure and function
within a single day (P. J. Turnbaugh et al., 2009). Another study comparing the fecal microbiome
of children from Burkina Faso and Italy demonstrated clear differences in their microbial
community compositions attributed to their diet, including a decrease in microbial richness for
Italians and an increase in short-chain fatty acids (SCFASs) in Africans (De Filippo et al., 2010).
Significant efforts are now being put forward to leverage such immense plasticity to manipulate
the microbiome through interventions such as antibiotics, probiotics, fecal microbiota and phage
therapy to restore imbalances and improve host health (David et al., 2014; Kau, Ahern, Griffin,
Goodman, & Gordon, 2011; Kuntz & Gilbert, 2017; S. S. Li et al., 2016; Mirzaei & Maurice,

2017; Quigley & Gajula, 2020).
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1.5 Dysbiosis: moving beyond associations towards causation

Perturbations of the gut microbiome, known as ‘dysbiosis’, are characterized as changes
to its composition and/or functions that negatively affect the host’s health. Dysbiosis of the gut
microbiome has been linked to a wide-array of diseases from Gl-related disorders including IBD
(Lewis et al., 2015), type-2 diabetes (T2D) (X. Li, Watanabe, & Kimura, 2017), and obesity
(Carding, Verbeke, Vipond, Corfe, & Owen, 2015), to central nervous system (CNS) related
disorders such as Alzheimer’s (Vogt et al., 2017), autism (Strati et al., 2017), and depression
(Luna & Foster, 2015). Notably, microbiome-wide association studies (MWAS) have provided a
wealth of information linking various microbiome features to disease (Gilbert et al., 2016). For
instance, a recent large-scale investigation of ~3400 individuals identified >1500 significant
associations between 102 bacterial genera and 142 host factors (Manor et al., 2020). While
microbiome studies have provided long lists of implicated microbes and/or genes, their
functional role within the gut microbiome is largely unknown (Schmidt, Raes, & Bork, 2018;
Surana & Kasper, 2017). Specifically, how these microbes impact host physiology is required to
refine such lists into experimentally validated causal features and ultimately translate this

knowledge into actionable therapies.
1.6 Inferring the functional potential of the gut microbiome
The majority of studies highlighting the functional importance of the gut microbiome

have focused on gene-based approaches, extrapolating from relative abundances of species and

their genes to enriched functions and pathways in a microbial community (Abubucker et al.,
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2012; M. G. Langille et al., 2013). These methods, however, are inherently limited in their ability
to identify which functions are conferred by specific microbes, and are incapable of directly
measuring functional activity (Heintz-Buschart & Wilmes, 2018). Functional profiling of the
microbiome from 16S rRNA sequencing/metagenomes requires mapping reads to annotated
genes, proteins or genomes. The accuracy of functional predictions thereby depends on the
accuracy of a priori functional annotations. DNA-based techniques usually do not differentiate
between microbes that are dead or alive, confounding interpretations of processes important to
host-microbiome interactions (Bajaj et al., 2018; Blazewicz, Barnard, Daly, & Firestone, 2013;

Cangelosi & Meschke, 2014).

A functional microbiome is a product of its expressed genes, reflected upstream of the
functional hierarchy by transcripts, proteins, and metabolites. Functional profiling of the
microbiome using DNA-based omics assumes that all functionally predicted genes are expressed
equally - a flawed notion that has been disproven with other omics technologies including
metatranscriptomics and proteomics (Franzosa et al., 2014; Verberkmoes et al., 2009).
Moreover, DNA-based technigues provide a taxonomic classification of a microbial community,
yet taxonomic resolution of 16S rRNA gene sequencing is at best to species-level (Drewes et al.,
2017), and strain-level taxonomic resolution of metagenomics is just emerging (Nayfach &
Pollard, 2016). The lack of high-resolution characterization is important as there can exist great
functional differences at the strain level of identical microbial species, with major consequences
to host’s health (Noecker, McNally, Eng, & Borenstein, 2017; Rosen & Palm, 2017). For
instance, some strains of Propionibacterium acnes are shown to be enriched in acne, while others

are associated with healthy skin (Fitz-Gibbon et al., 2013). Therefore, inferring the functional
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capacity of the microbiome is predicated upon precise and accurate mapping of the microbiome.
Despite its shortcomings, DNA-based strategies have yielded important insight into the
composition and functional potential of the microbiome, aptly answering “who is there?”” and

“what can they do?”.

1.7  The gut metabolome as a functional readout of microbial activity

Many biological processes that occur within the gut and are important to host-microbial
interactions far exceed the taxonomic and genomic contributions of the gut microbiome
(Noecker et al., 2017). From an evolutionary standpoint, humans and their native gut microbiota
have formed a mutually beneficial relationship where gut microbes contribute to the production
of biologically active small molecules, termed microbial-derived metabolites, that are believed to
enhance host fitness (Nicholson et al., 2012). These metabolites serve as signaling molecules,
mediating vital host-microbial interactions through a dynamic crosstalk involving numerous
molecular pathways. The host and its resident gut microbiota work together to coproduce
metabolites through nutrient and xenobiotic metabolism (Nicholson et al., 2012). These small
molecule products greatly impact biological processes with important consequences to human
health including digestion, immune system development and regulation, inflammation, and
neurodevelopment (Hsiao et al., 2013; Sharon et al., 2014). For instance, Prevotella copri and
Bacteroides vulgatus were recently shown to influence circulating levels of branched-chain
amino acids (BCAAS), likely inducing insulin resistance in humans (Pedersen et al., 2016).
Another study demonstrated that treatment of B. fragilis in mice displaying features of autism

spectrum disorder (ASD) corrected anxiety-like behavior, attributed to reductions in the levels of
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the microbial-derived metabolite 4-ethylphenylsulfate (4EPS) (Hsiao et al., 2013). The gut
metabolome therefore reflects the interplay between the host and its microbiota, providing a

functional readout of gut microbiome activity (Marcobal et al., 2013; Zierer et al., 2018).

Perturbations in cellular processes are rapid and leave metabolic fingerprints,
representing the physiological state of the host and its microbiota (Gilbert et al., 2016; Zierer et
al., 2018). These metabolites are the start and end products of various microbial-mediated
processes, enabling systems-level insight of the gut microbiome. Metabolites are also the
universal language of the microbiome, providing a detailed functional assessment of host-
microbiome-disease interactions. As mentioned above, different assemblages of the gut
microbiota can alter the metabolome. A recent large-scale study has demonstrated that the
observed variance of the fecal metabolome can be significantly explained by the gut microbiome
structure (86). Therefore systematically linking changes in metabolomic profiles to
compositional shifts in the microbiome has great potential to deliver cutting-edge functional
understandings of a complex ecosystem (Noecker et al., 2016; Noecker et al., 2017).
Furthermore, by unearthing changes in functional activity and attributing it to a microbe, targeted
therapeutics can be created to regain functional homeostasis. The gut metabolome thus
complements DNA-based approaches, enabling researchers to gain mechanistic insights into

functional processes underlying differential phenotypic states.

1.8  Application of metabolomics towards characterizing the microbiome

Metabolomics is the comprehensive quantification and analysis of small molecules

(<1500 Da) within a biological system. The central dogma of metabolomics is that one’s
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metabolic profile closely represents his or hers health status, reflecting not only genetic
influences but impacts from their lifestyle, environment, and native microbiota (Beger et al.,
2016; D. S. Wishart, 2016). For this reason, it has been designated as the “link between genotype
and phenotype” (Fiehn, 2002). There exist two main metabolomic approaches, untargeted and/or
targeted. While untargeted methods aim to measure the global set of metabolites within a sample,
targeted metabolomics aim to quantify a predefined set of metabolites (C. H. Johnson, J.
Ivanisevic, & G. Siuzdak, 2016). A wide range of sample types can be analyzed, including
common biospecimens such as urine, tissues, blood, and stool. In recent years, metabolomic
approaches are becoming increasingly popular in microbiome studies, particularly (i) to
characterize diseases/disorders or (ii) to investigate the impact of dietary and xenobiotic
interventions on the host’s metabolic profile (Ryan et al., 2017; Sanguinetti et al., 2018; F. Wang
et al., 2018). For instance, Cui et al. performed an integrative metagenomic and metabolomics
approach to evaluate the role of the gut microbiota in chronic heart failure (CHF). They
correlated distinctive changes in the gut microbiota composition, namely Faecalibacterium
prausnitzii and Ruminococcus gnavus, with differential fecal and plasma metabolic profiles
between healthy controls and CHF patients, highlighting the significant impact of gut microbiota
dysbiosis on human health (Cui et al., 2018). Marrying other molecular layers of the microbiome
with the metabolome permits not only the understanding of mechanisms underlying host-
microbial activity, but the exploration of genetic, epigenetic, and environmental impacts on

host’s health (Rojo et al., 2017).

Obtaining and characterizing the metabolic profile of a sample is not without its

challenges. Despite advances in high-throughput mass spectrometry technologies, only a small
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fraction of metabolites is measurable by current technologies. The human metabolome has been
estimated to consist of 1-3 million compounds, however current targeted metabolomic
approaches can only detect about 300-700 metabolites (Uppal et al., 2016). Poor coverage of the
human metabolome (<1%) is due in part to the inherent nature of these compounds - they can
exist in undetectable levels, they have very high turnover rates, and are vulnerable to chemical
modifications (Nielsen, 2017). Attributing the origin of metabolites to specific microbes or the
host is also incredibly challenging as core metabolic processes are universally conserved,
therefore important small molecules are structurally indistinguishable between species (Newsom
& McCall, 2018). Finally, metabolite identification remains a significant challenge in the field of
metabolomics (Vinaixa et al., 2016). Biological interpretation and contextualization of
metabolites predicates on their proper identification, requiring researchers to manually compare
the exact mass (m/z) or processed spectra against comprehensive MS-based spectral databases.
Manual identification can often lead to a number of false-positives (Tobias Kind & Oliver Fiehn,
2006), as well metabolite databases can be improperly curated, incomplete, and not available to
all researchers (Vinaixa et al., 2016). Furthermore, only 5-10% of all quantifiable compounds
can be identified across MS-spectra databases (e.g. Human Metabolome Database (HMDB) and
MassBank), requiring major efforts from researchers to query multiple databases to confirm their
metabolite identities (Vinaixa et al., 2016). Novel computational and technological innovations
are therefore required to facilitate and improve metabolite identification and interpretation.
Notwithstanding these limitations, metabolomics provides researchers with an unprecedented
and real-time approach to quantify systems-level alterations in the microbiome, reflecting

community-wide shifts in functional activity.
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1.9  Deciphering the Metabolic Function of the Gut Microbiome

Pinpointing precise modifications of the gut microbiome responsible for phenotypic
differences between healthy and diseased individuals is incredibly challenging. While taxonomic
profiling can identify differentially enriched bacteria, alone it is ineffective to infer what features
of these bacteria have important beneficial or detrimental impacts on its host. These features
could be the production of microbial-derived metabolites such as trimethylamine-N-oxide
(TMAOQ), which has been linked to adverse cardiac events and chronic kidney disease (D. Li,
Kirsop, & Tang, 2015; Tang et al., 2015), or to their lipopolysaccharide (LPS) outer coating,
which have immunoinhibitory effects on the host (d’Hennezel, Abubucker, Murphy, & Cullen,
2017; Zhao, Cong, Jaber, &