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CHAPTER l. 

INTRODUCTION. 

The theory of almost periodic functions was created b-y 

R.Bohr two decades ago. 

I. A (complex-valued) function f(x) defined for all real 

x is almost periodic if 

(a) f(x) is continuous for all x. 

(b) Given t.'>O, there is a relatively dense set of translation 

numbers corresponding to { , I : ~ (f.), such that 

\ {Cx t"r)- ~(:x.) \ ~ C. for every x. 

A set of points on the real axis is said to be relatively 

dense if we can find t such that every interval of length l 
contains a point of the set. 

An:y a.p. function is bounded and uniformly continuous in 

[-a:>< x< <J)J • The set of a.p. functions is closed under addition, 

and multiplication. If a sequence of a.p. functions converges, 

uniformly in [- 00 < x< oo] , to f(x), then f(x) is a.p. If 

~.~. \f(x)\>Oand f (x) is a.p. then k(:t) is a.p. lf the deriv-
-ca < x < .4-~ 1 \. .... 

ative of an a.p. function is uniformly continuous, it is a.p. 

If an indefinite integral of an a.p. function is bounded, it is 

a.p. 

If the trigonometric series 

~ ~""":( 
l.-J a.l\ JL 

'Y\ :I 

{w'11ere tl-}e a 1s are complexand the /\ 1s real)~uniformly convergent 

in fro< :c< +m], its sum-function is almost periodic. 

If f(x) is a.p. the mean value 
YtT 

M { O(k) }==Am? J i(t.'J J:t 
t ~ T~ y 
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exists uniformly in 1 . 

Moreover a( A) ~ Mt~ Cx) £~1\X} 
differs from zero for an at most enumerable set of values , 

- an, the formal infinite series -
CX) · ~'A-r..x 
L Q Jl 

"f\ 

l\:: I 

is called the Fourier series of f(x). We write 
00 ~/\'1\ :t 

~ ( xJ --v h, Q .,_.t 

It is easily . seen that if f(x) is periodic this Fourier series 

is its ordinary t Fourier series. 

The sum-function or· a uniformly convergent trigonometric 

series has that series as its Fourier series. 

The Fourier series of a sum or a uniform limit is the 

formal sum or limit of th:e corresponding Fourier series. 

Theorem o[_Identity: If two a.p. functions have the same 

Fourier series, they are identically equal. 

Parsevalts Theorem: If f(x) is a.p. and 

then 

Mult!P)ic~tio~~heorem: The Fourier series of t wo a.p. 

functions may be multiplied term by term, i.e., if 

00 

f(x) "" L, 
1'\ ~ I 

where • 
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we can find a sequence of polynomials · 

<X) (~ ) • A. X. 

f:J (x } -:. L ~ 0..,._ ~A. "" • ~ 
N 'Y\:.1 ""' 

o~) . 

(wl-Jere 0 ~ Pi" ~ \ , for any fixed N only a finite number of 

the .a,(N)are different from zero, and lim ~(N) = \ for a fixed 
n N~OO n 

value of n) such that 

sn (x) -7f (x), uniformly in [-eO< :x < ooj , as N ,ro • 

In fact, we can construct these approximating sums by a 

generalization of the F~xjer summation used for ordinary Fourier 

series. For a periodic function 
(j) . ~....!. "Y\ :(. 

'} (x) "'!;}-, t • P 

by means of the Fejer kernel 
-~"N · ~ ut 

K ( t) :: L ( I -- 11:} ) .Q_ 
N I.J=· N 

This sequence has the properties described above. 

Let B 1 , B2, ••• be a rational base of {"A)\,l , i.e. a set, 

of numbers such that rrB1 t .. +rn Bn = 0 , r 1 , r 2 •. ,Y 0 

~ ratio na 1, imp 1 i e s r 1 = r 'l = . . = Y n • 0 J 

and any A n can be expressed in the form 

l e define 
~N ( t) : KN!N(B + t ) • • .KNIN(l' 

/:)N ( x. ) :: '1' f f X. -f..J ~/t) 1 :: %' .Pa_~N)~ ~;_A~ X 
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Then is the required sequence of approximating 

sums. 

The coefficients k(~)depend only on t BJ .and N., and not 

otherwise upon f(x). 

In the particular cases when (a) the exponents { A)\.1 are 

linearly independent, or (b) the :B,ourier coefficients f a. 1 are . . . . . n 

positive, the Fourier series is absolutely convergent. 

IT. The set of points 

strip ( c( ' ~). A closed 

property holds in every 

s = o-t- it with D< <E>< ·~ is called the 

strip is denoted by fo<' , ~·1 . l.f a 

strip ( o(1 , ~1 ), where o< < <X 1 < ~,< ~ ;tis 

said to hold . in ~o( ) ~). 

Le t f ( s ) he a f unc t ion ana ly t i c in a s t r i p ( ot l ~ ) . A 

real number 1- such that 

\ f(s~i'l)- f (s) \ ~ E. 

At all points s of the strip is called a transl~tion number of 

f(s) belonging to f.. If the set of· these translation numbers 

is relatively dense for every ~ >0 , the function f(s) is called 

almost periodic in ( o< ,13). We may define functions a.p. in 

c~., f3) or in <o< , {B/ similarly. 

A function f(s) a. p . in (~, ~) is an a.p. function of t 

on any line IJ • 6'0+~t of the strip. 

If f ( s) ·is analytic in ( o<, ~), bounded in < o<)~) and an 
. .. ,., 

a.p.function of t on the line o-o of ( O(J ~) then it is a.p. in<~Jfl/• 

If f ( s) is a. p. in (o<J ~) , · it is bounded in< o<) ~) • Hence 

it is uniformly continuous in <o< J~) together with all its 

derivatives. 

The set of functions a.p. in a strip ( o( ) ~) is closed under 

addition, multiplication, differentiation, and integration if 
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the integral is hounded, and division by an a.p. functio n with 

no zeros in the strip. If a sequence fn (s) of a.p. functions 

in a strip (c< J ~)~ ~t-{( /)) 1 tR.u-_ ~(l))~o. . r . ~ C~J~) . 

The ~um of ap. exponential series 
(f) 

f ( s) =_L; QY\ l' 'rl_ IJ 

"1'\::: I . 

uniformly convergent in a strip ( C( J ~J; · is a.p. in (ex J ~). 

If f(s) is a.p. in .( 0< 1 ~) then f(s), considered as a 

function of t, has the Fourier series 

00 i\l'\ 6" ~ 7\Y\ t 
r ( (5" + J: J f"'.) J;A"' 9.._ Q.. 

~~ I 

for each cr- in ( 0( 1 ~). The series 

I:- A'(\ 9-A.../) 

"f\ ~ ~ 

is called the Dirichlet series of f{s) in the strip (eX)~). 

The sum-function f(s) of an exponential series 

uniformly convergent in some strip has this series as its 

Dirichlet series. 

To any a.p. function corresponds. a Dirichlet s.eries, 

and if two functions, a.p. in the same strip, have the same 

Dirichlet series, then they are identical. 

For any function 

a.p. in a strip ( ~,~) the Parseval equation 

?. m ~ ';)..'A <5" 'f' \ I { ( <5' -1-J: )l 1 -= 'J;, I AJ £_ ~ 

holds for all6of the interyal (c< ,~). 

To --I!ny function a.p. in a strip <cxJ~), 

corresponds a sequence of exponential polynomials converging to 
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the function uniformly in < 0< J ~) • 

The class of functions bounded and a.p. in a half-plane 

( D1, +(JJ) and the class of functions with non-positive exponents 

are identical . 

If a function 
((J 'A I) 

~ /J )rv1 A"" ~~ 
is a • p • in < eX) -tro ) and if 

for all n, then an indefinite integral of f ( s) is a. p. in < o<; -ro) • 

If a function 

is a.p. in <o< ) ~ > and if one of the following conditions is 

satisfied: 
(a) . The exponents { ~Jare linearly independent, 

converges for any 
(b). The 

(c) • The 

coefficients An are 

. ~ ()- li\J~ 
series ~ ~ 

all uositive, 

'Y\. ~ I 

~ ) 0 , then the series 

f' A..._ 11. r...J> converges ab so lu tely in lex) ~). 
')\ ; 1 

Ill. S.Bochner has develo-ped the theory of almost periodic 

functions of any numher of real variables. 

Given a function f{x1 , •• , xn) and an t>O , a vector 

..,... - ( 1. , .. , I ) is said to be a translation vector be longing 
1 - 1 n 

to t if 

L f ( x 1 + ;_ 'r l , •. ' Xn 4- ~ "r n) - f ( x l ·, •• 'xn) I <; £. 

for all (x1 , •. • ,xn). 

A set of points (xl,••,xn) is said to be relatively dense 
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if there exists a number 2_ a:uch that any interval 

Q._ ,;_ < X~ <_ 0... ;_ + 9._ ( l ~ ) " ) 1'\. ) 

contains at least one point of the set. 

A funation f(x , •. , x) is called almost periodic if it 1 n 
is continuous for all x, and the set of translation vectors 

belonging to £ is relatively dense for any E >0 • 

An almost periodic function is bounded and uniformly 

continuous. 

A necessary and sufficient condition for · a continuous 

function f(x1 ,, •• ,xn) to be a.p. is that the set of 't',:_ such that 

lf(xl, ~' •. ' x i.._, ' xi+ 'li. ' xi+l '. •' X:a) -f(xl, •• ,xnJI~ t. 
for a.ll (x1 , •• Xn) is relatively dense on the real axis for 

i • 1, .. , n and every · t. -:> 0 . 

Renae, if r of the variables have some constant value, 

an a.p. function f(x1 , •• , ~)is a.p. in the remaining (n-r) 

variables. 

The set of a.p. functions is ·closed under addition, 

multiplication and uniform convergence. If f(x1 , •• ,Xn) is 

a.p. then 

is a.p. in (xi+l , •. ,xn). The mean value of f with respect to 

i of the variables is independent of the order in which mean 

values with respect to the · individual variables are taken. 

If f(x~, •. , ~) is a.p. and ~ f(x1 , •·• ,Xn) is uniformly a :(.,.. 

continuous then ~ ... is a.p. If f(xl, •• ,xn) is hounded and has 

a.p. partial derivatives it is a.p. 

-The set of values of I\ : ( ~h·"· ..... ')~ ) for which 

o.CX)::: /If} { ~C~ ) £'-'A · Z } 
X 
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differs from zero is at most denumerable. lf we a llow the 

addition to this set of a denumerable number of values of 

- -
I for which a( ~ ) = 0, we can obtain a set 

t A "' 1 ~ f O\ "' ) ... .;A " "' ) 1 
) I ) "1'\. 

We crall t~e formal multiple series 

~ ~~·X: 
JL L Q 

l ~71\.~<.(l) ~ 
A_ ';. \I • •) 'Y\. 

the Fourier series of f(x), and write 

f(x) 

If two functions have the same Fourier series t hey are 

identically equal. 
~~ .x 

For any a.p. function f(x) rv ~ Q _ ~ ~ the .Parseva..l equation 
"' 

:x: t I ~ (). ) 1 '"'1 ~ ~~< J o..;;:; I~ 
;_~ l l .. )!'\. 

Approximatiog_Theo~.!. 

If f ( x ) is a . p • and _ - . x . A. "~ 
f\t) rv r: 0..-w\ 1L 

we can find a sequence of polynomials 
( ~ ) ~li _·~ 

~ N ( x ) = I; _p;;_ m a ~ .t w-

N) a..N) N 
(where 05 ~~ ~ I , ~-M..:::, I · as N -?Q) for fixed m, k for fixed 

m 
N differs from zero for only a fi n ite number of values bf m} 

wh ich converges uniformly to f(x). 

In fact, we ca n take 

s N (X) : Mt: { f ( x 1- t 1 , •. , xn - t n) 1\N ( t 
1 

, • . , t n } 

where K N ( x) : k N" ( x 1 ) ••• k N ( xn ) • 

If a function f(x) is a.p. and if one of t h e fol l owing 

conditions is satisfied: 
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(a). The exponents \ A~ 11' ' ~ are linearly independent for 
) .. 

i = l, •• ,n 

(b). The coefficients Q are all positive, 
- 'Tt\ 

'""' i.. 'A ·'i 
then the series LJ CA._ Q.. '\'f-. is absolutely convergent. 

'YI". 

lV. N.Brazma .has discussed almost periodic functions of several 

complex variables. 

A function f(z1 , •• ,z) analytic in the interval 
. n 

) (y 1 , •• , yn ) unrestricted; 

is said to be almost periodic in I if for any E >0 there exists 

-
a relatively dense set of translation vectors"' : ('~, J ·· ./'1,.__ 

such that 

for all (z1 , •• , zn) in I. 

These functions have properties analogous to those of 

previous types. A Dirichlet series exists and is summable to 

the function. A function is almost periodic if it is bounded 

and has almost periodic partial derivatives. 

In the following discussion, these functions are defined 

in more general domains, and their properties are derived in-

dependently of Brazma's resu~ts. This more general point of 

view makes it possible to obtain results on the analytic 

continuation of the functions. 
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Chapter 2. 

STRUCTURAL PROPERTIES. 

We shall consider functions of n complex variables 

(z.1 , •• , zn) analytic in tubes. A tube is a set of all 

finite points (z1 , .. , zn) such that (x1 , . . ' 
an open co~~ected set in Rn or its closure. 

x ) · lies in 
n 

t e denote tubes by CL)cl) 'Q , etc. and the corresponding 

open connected sets in Rn hy A, Al, B, etc. 
I 

If the closure of Al is contained in A, tbe tube OL is 

said to be inside the tube Cl. If a property P of tubes holds 

for a tube Q, it is said to hold in Cl. lf it holds for every 

tube Q
1 

inside Q it is said to hold inside Q . The set of 

points (z1 , •. , zn) such that (x1 , •• , xnJ lies in the closure, -of A will be denoted byQ. 

If a! is inside()_, Al is bounded. For otherwise a.t 

least one infinite point would lie in t~e closure of Al, and 

hence in A. 

.., z) be analytic in a tube Cl. A vector n 

If:( J;, .. , '\"(\. ) in Rn is called a translation vector of f(z 1 ,.,ZnJ 

belonging to ( if 

1 ~ ( z, .,. ·~ '1, l .... 
1 
-z."'I\.J.; :..:l .. ) - ~Cz 1 1 ••. iz..,.,_ ) \ ~ E 

for all points (z
1

, •• , zn) of the tube 0-. 

If the set of translation vectors of f(z 1 , z J b 1 •• , n . e ong-

ing to E. is relatively dense in R for every E>O then n 
f(z 1 , . . ' z ) n 

is said to be almost periodic in Q. 

Then f(zl, . . ' z ) n · is a.p. inside Q ·~ l.L it is a.p. in 

every tube inside Q. 
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A function f(z 1 , • , , zn) a.p. in Q is an almost periodic 

function of then real variables (y 1 ~ •. , Yn) for any fixed 

( x1 , •• , x
0

) in A. 

Theorem 1. t\ function f{z. 1 ,. •• , z ) almost ueriodic inside Q 
n 

is ·bounded ins.ide Q. , 

Proof: Let 2.,. be an edge-length of an inclusion interval 0( 

corresponding t~ 1 of f(z 1 , .. , zn) in Q inside Q . Then 

f (zl, •. , zn) is analytic in the domain comprising that ~art 
- I 

of ~ for which 

Hence tr ( z 1 , •. , zn H < K 

l f ( x 1 , • • , zn) l < ~ *I 

f ( z 1 , .. • , z ) is bounded ins id e 0.. . 
n 

in this domain. Hence 

in Q 1 • That is , 

Tiieorem 2. If f(z1 , .. , z.n) is analytic in a tube Q_ and bounded 

inside CL , and is an almost periodic function of {Yl, •• , Yn) 

at a... p o in t ( x~ , • . , x ~) of A , then f ( z 1 , •• , z. n) is a lm os t 

periodic inside Q.. 

Proof: 

t~e theorem redu~es to proving t~at if F (zl, .• , zn) is analytic 

in Q and 

in Q1 
inside G.- and cont.aining ( x; +~ , )· ... .. . . 1 X: i-d ... I, then, 

given E)O , tYJ.ere exists a b)Q , such that if \'F (x ~() ~1 '>"·)::c:..:~J~o 

for all (y1 , •• , yn) t'len \F=(z1 , •• , zn_)\cS£ 
n* .. d n l c d d n, n'' (J_~ I in v.... 1ns.1 e V- • o epen s on V- v... and upon E.. and , , 

K, but not otherwise, upon F (z1 , •. , z.n). 

"'f e prove first, by an· induction on n, that if F (z
1

, •• , z J 
n ·. 
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is analytic and, \ F ( z 1 , • • , z n) \ ~ 1-< 

(i-_ -- ) I \ )"('._) 

in the interval 
I I 

0. ~ ~ )'.A. ~ ~~ 
I 0 I 

and 0.:._ < QA. < X.;_<~ i.. <- ~-.. 

then, given any E "/ () , there exists a ~ () such that, if 

l F ( x~ + i y 1 , • • , x~ -t i y n ) ~ b for all ( y 
1 

, • • , Y n J 

then F '-u· .. )-z...,._) .S ~ in the interval 

( ~ -:. ) .. )"'(\_) 

The number ~ depends upon the 
l I I ) I) 

a s , h s , a s and b s , and 

upon <t.. and K, but not ot'1.erwise upon F (z 1 , •• , zn). 

This t~eorem is known to be true for one variable. It 

follows that given ~ '> 0 , we can choose ~,>0, so that if 

t F ( z
1

, •• , zu) I~ b 
1 

~ ij ~ 

for a ~ 5 x ~ ~ b .i. ( i -: J.) ..... . , n) , x 
1 

e- x, , 
I 11 11 I 

(wl:1ere a· <. a. <. a· < b· < b · < b. ) tl-J.en, 
"" J... ),. A. J.. J... 

{ F ( z
1 

, • • , z ) t ~ £. n ( i • l, •• , n) 

but by induction hypothesis, we find S'>O so that if 

for 

for 

X· • J.. 
( i ~ 1 , •. , n) 

(zl' •. , znJ\~ ~ ~ 

then 

IIence this theorem is proved for all n. 

-No-w, given any point p of A and any interval I lying in 

At and containing the poiht, we can for each € >0 , find ~ )0 

suc'1 that if {F (z , • , , z )\.t5 ~ when (x1 , •• , x ) is 
1 n n 

the paint p, t 1:1en IF ( z 1 , •• , Z-n) I~ E. when (x1 , •• , xn) lies in T. 

By the Reine- Borel theorem, a finite covering 

of A*by the interiors of intervals lying in Al. Any one Iv of 

these intervals can be joined by a finite chain of intervals to 
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the interval containing (x~, .. , x~). Hence, by a finite 

number of applications of the theorem proved above, we can for 

each ~'>0 find ~v>Osuch that if 

IF (zt, . . ' z ) I ~ b0 n 

when x
1 

0 - xo then -x ' .. ' X t - 1 n - n 
IF (zl, . . ' zn) \ ~f.. 

in I LJ • For each ~ /0 
' we take ~ to he minimum of the 

finite number of ~v ){) • 

Then \ F ( z 1 , •• , z n) \ { f 

It follows from this theorem that if f(zl, •• , zhJ is 

analytic in a tube CL and a.p. as a function of ty
1

, .1, YnJ 

for x
1 

: x~, .. ' ~ : 
0 

X ' n 
h ( 0 0 )1' . A th w_ere x 1 , •• , xn 1es 1n .. , ere 

Q 0 0 
is a largest tube contained in and containing tx1 , •. , xn) 

inside whicb f(z 1 , .. , z ) is a.u. n ~ 
This is also the largest 

tu.be contained in 0.. inside which f(z 1 , 1 I, z ) is bounded. 
n 

Theorem 3. 

g ( zl' .. ' 

T~e sum and product of two f unctions f(z
1

, •• , znJ' 

z ) , a • p I ins id e a t u be Q , are a 1 p • i n s id e a._ • 
n 

' 

Proof: f ( z.
1 

, • • , z ) and g ( z 1 ,. • • , z ) are bound e d ins i de Q . 
n n 1 

~-r.ence f+ g and f x_ g are bounded inside 0- . Also, they are a.p. 

functi~ns of (y1 , •• , yn) for x1 = x~, .. , xn: x~, if 

(x~, •• , x~) lies in A . 'f-fence they are a.p. inside Cl • 

"L!ence any exponential ptlynomial 
N - ( A,7_, Jr . .. +/\"'(\ -z.."" r AY\ JL 

"'1\ -:. I 

is a.p. ·inside the tube 

_ 00 < x.1 < 00 ) , . , . . ) - (A < X ""' < • 00 • 



l 4 

Theorem 4. If {fm ( z 1 , •• , zn) 1 converges to f (z1 , •• , znJ 

in 0- for every uniformly in 0.. ' and f (zl, . . ' zn) is a.-p. m 
m, then f (zl, .. ' z ) n is a. p • in Q . 
Proof: Given E>O ' we find m such that 

If (z1 , •. , zn) -fm(z
1

, .. , znJI~ \ in Q . 

-- - ~ Let 1' :: ~~.""'_{ ) ) be any one of the relatively dense set 

of translation vectors of f ( z
1

, •• , z ) be longing to E. • Then . . m n 

If (z 1 t i ~ l "·)"Z.'I\~ i 'I"') -£ (z 1}· ··;2""-) J 

f. \f ( z 1 + i 'r, ) ...... J 7.-v\ \-;_ 1'.,._) - ~ -w-.. (z., + ~ 'r, ) ... ) z"' ~ ~ 'rl\ ,1 
t \f m ( z 1 1- i 1'1 i:"'·"'"' J 'Z..l\ -t ~ 'i"') - ~~ ( z, P . •) '"') \ 

+ \fm ( z 1' .. ' zn) - f ( z l' .. ' z n) I 
r.iJ;. 

Rence, for any E' ::>O , there exists a relatively dense~ of 
1\ 

~(E.). 's. Hence f(z.1 , •• , zn) is· a.p. in O.. . 

It follows that the sum of a series 
<A "Z., -t •.. t 1\ 'tt- -z.."') 

~ A. J lf-- , ) 't\ 

0 fr\-~ .. :r{\.,._ JL 
~ "1'(\. 1~(/J , ,..,.., 

• ., f ' • • 0 

1 ~m" < <n 
uniformly convergent inside a tube Q , is a.p. inside Q_ • 

Theorem 5. If f (z 1 , •• , zn) is a.p. in the tuhe Q and has 

no zeros in Q , and Ct l is a tune inside 0- , then 

;_ , ~ . \f(z1 , .. ~., znJ \ >0 
(z, .• , z ) in a!· 

l .n 

Proof: By the ~eine-Borel theorem, we can find a finite number 

of inter.vals I covering Q' , and each inside anot~er interval 

contained in Cl . Thus we need only prove tl-J.a t the lower bound 

of fr(z1 , •• , zn)\ is positive in any one of the intervals r. 

We begin from a t~eorem on functions of one complex variable, 

w~ich states: If (1) a set of functions f(z) is uniformly 



bounded in the rectangle ' -
(2) each function is analytic and has no zeros in this rectangle, 

(3) the set does not have zero ·as a limit function, i.e. t~ere 

is no sequence of functions { fm (z) } of the set converging to 
I I 

zero uniformly in the rectangle, then if 

we can find m'> 0 such that 

{ . ~- \ f ( z ) l > m 

in t11e rectangle a < x ( b , -k < y < k 

f(z) in the set. 

0.. I < 0.. ( ~ < ~ ) 0 . f{ < ~' 

for each function 

It follows that if a set of functions f(z) is uniformly 

bounded and uniformly almost periodic in a stri~, 

no function of t~e set has zeros in t~e strip and there exist 

a point z 0 in tVJ.e strip o..< :x ~ ~ . and o.. ~~ sue~ t~at lf(z Jl>~ 
0 

for every function f(z) of the set, then if 0.. 1< a. <~< -€ 1 
we can 

find m > 0 -such. that 

Q . ~. If ( z.) l > m 

in the strip Q< x < b for each function f(z) of the set. To 

prove this, consider the set of functions f(z + iy~ J in the 

rectangle 
o..'" < X< .(j l ) - ~ - 1 < ~ < t ~I 

k 
where t is an inclusion interval corresponding to 2 of 

I 

( ) . ,..'< ..(<~ d set of functions f z in ~ , an the parameter 

the 

y>( 

assumes all real values for each function ft~). 

This set of functions obviously fulfills the first two con­

ditions of the above theorem, and since, for any f and any yt, 

we can find a value of ~ in t~e given rectangle for which 

!r(z 4--iy* ) J > .k , the third condition is also fulfilled. 
2 

We now prove the main theorem by an induction on n. The 
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function f(z , •• , z ) 
1 n 

is analytic and has no zeros in 
I I 

a.. < -x., < ~ . ) . ' . . 
I I 

o..Y\. < X. "- < f\ 
) 

and \ f ( z 1 , .. , zn) \ ~ K in this interval. We prove that 

• ,€ • \ f ( zl • • • • z n) \ is positive in 

Q <. x < ~ . 
~ ..,... .....,..._ where 

QY\.' < Cl"'-< Q1\ < ~.,__' • 
Take x~ such that 

. .g . I f ( x0 , z , • • , 
l 2 

,< 1. 1() < ~,. By the induction hypothesis, 

z ) I is pos.i ti ve in 
n 

o.. < :x. <::Jb . ~ x n ~ ~ ;t ) • . . . ) 0...""' ' "'< \() "/\.. 

The set of · functions f(z1 , •. , zn) of z
1 

in the strip 
I I 

0..1 < x.t < ~., depending upon (n-1) parameters z
2

, •• , z , which 
n . 

run t!Jrough the above interval, is uniformly bounded and 

uniformly almost ~eriodic i n t h e s t rip and no fu nct i on of t h e 

s et has, zeros in the strip. Also t . Qs • l rt.x~, z.2 , •• , ~nJ \ , 

.. ' z 
n 

runs t h rough the above interval, is posit·ive . 

Hence, by the previous theorem, there exists an m > 0 s uch that 

J f ( z
1

, •• , z ) I > m 
n 

when a. 1 < :X k. < ~ 1 > • • . ) CA. 1\. < i "' < ~ 'f\. 

Since the theorem is true for n : 1 it is true for every n. 

Theorem 6. If f(z 1 , •. , 

has no zeros in Q , then 

z ) is a. p • inside a tu he Q , and 
n 

1 i s a . p • ins id e Q . 
f'fZ'l' .. ' z.n 

Proof: Take () I a. O 0 . l 
r...J- inside , and ( x 1 , •• , xn) 1n .A • 

I 
is hound ed in 0. 
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Tbeor m?. An analytic function t(z1 , •• , zn) bounded inside 

a u • G- is unitqrmly oont inuous in ide Cl , as ia each ot 1 ta 

p rtial der1YatiTes, or any order. 

root a Sinoe any t\l • inaide (l_ can be covered ·o.y a finite 

r of 

I} 

ia in ida 

. I 1 

intervals, we need only proTe tba t if the lnterY l 

Q , - ~ < x, < ~\~), ) . . . ) 0-...._- ~ < X. "" < ~"'- ~ \ . 

Q , tben t(s1, •• • zn) ia anitorm.ly continuous in 

o.. , < x l < 16 ~ ) . .. . ) a.."'-<. x.""' <. ~~ 

toget er with its derlvatiwes. ow 

\ t' ( a 
1 

, •. • , z n ) \ s K 

in I. any two 

points 

Hence each der1Tat1Te is uniforml7 oontinaoua in 1. 

The partial deriv tives are clearly bounded inside Cl • 

Theorem 8. It t{s
1

, •• , zn) la a.p. inside a tube Cl , ao are 

ita partial deriTatiTes. 

Proofs f(a
1

, •• , zn) la bounded inside Q . R nee 

~~(a1 , •• , an) 1a uniformly continuous inside CL. and, in 

particula~, 1 uniformly continuoua as • . tunotlon of ( 1 , •• , yn) 

0 0 ( 0 0 tor x1 • Xi , ••• Xn • xn , where x1 , •• , xn ) lies in • 

Then 
1& uniformly 
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continuous as a function of (y1 , •• , yn) for x1 
0 

xn and r: 1, •• , n. 

.• ' ~ = 

'nlen ~/(z.1 , •• , zn) and hence kvr(z 1 , .. , z.n) is a.p. as 
0 0 a function of (y 1 , •. , yn) for x

1 
= x 1 , .. , xn ~ xn. Also 

f-Zvr(z.1 , .• , zn) is hounded inside 0.. . 1Tence it is a.p. 

inside Q . 

Theorem 9. If f (z
1

, ... , zn) is analytic in a tube Q , 
bounded inside Q , and its partial derivatives are a. p. inside 

Cl, then f (z, •• , z ) is a.p. in&ide OL . 
1 n 

Proof: For x 1 = 
function of (y1 , 

0 0 
x

1 
, •• , xn : Xn , f ( z 1 , .• , zn) is an a. p • 

•• , y ) &.aide n· • • I-Ience it is a.p. inside a. . 
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CHAPTER 3. 

DIRICHLET SERIES AND ANALYTIC CONTINUATION. 

Theorem 10. If f(z 1 , •• , zn) is a~p. in a tube Cl tben the 

Fourier series of f(x1 ~ iy1 , •• ' -Xrt + iy ) considered as a 
n 

functi0n of (y
1

, •• , yn) has the same expression. 

.. ' . , .. 
• S ~<.o~ 

f or a 11 ( x 1 , •• , x ) in A • 
n 

Proof: We have to nrove that 

M { 0 ( x, Jr ~ 1 l , .. ) X"(\. ~ ~ ~ ) (_ 
~ lj .. J ~Y\ ~ 0 

is independent of (xl, •• , Xn). To prove this we need · only prove 

that it is independent of (x1 , •• , xn) in any interval inside 0... . 

That is, we must orove t~at if the interval 

< n. n <: :r < .{1 
Q. (. X \ ~ 1 J • • • · ) '-'\.f'\. T\. "\'\ 

I . 

n . (l) (lJ 
is inside \.,A, and the po1n ts ( x 1 , •• , xnJ , 

(2) (2) 
( xl' .. ' ~ J lie 

in this interval t~en the mean value above is t~e same for these 

two points. This follows from the corresponding theorem for 

functions of one complex variable if we consider the chain of 

ooints (2) (2) (1) (2) 
( xl' •• ' xn) ' { xl' ~' 

( 2) .. ' ~) (l) llJ (2) 
..... ' ( xl' .. 'xn -1' xn J ' 

(1) (l) 
( xl ' •. ' Xn.) • 

T~e mean value is uncr,anged as we go from any one of t~ese to 

tl1 e next. Hence it is the same for 
(l) (1) (2) 

( xl, •. , x ) and ( x , 
n 1 .. ' (2) 

X ) • n 
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·{ e as so c i a t e w i t h f ( z 
1 

, • • , z n ) t h e 'tD i r i c h 1 e t s er i e s tt 

j s -y~\< (j) 
l J J I • 

' <,~< (Yj 

and write 

f ( Zol' • • ' z. ) n 

It is co nvenient to use vector notation a nd write 

- -A ,z. 
f ( z: ) "V L A -w.. .Q. ;;\ 

The following theorems are i mmed iate consequences of tbe 

corresponding theorems for a.p. functi ons of n rea l variab les. 

" A .::-: .e.. ~ Theore~ll. Th e a.p. sum-func t ion of a series ~ ,., 

-.z_ 

uniformly convergent in a tube Cl has that series as its 

Dirichlet series in CL 

Theore~l2. (Uniqueness Theorem) . If t wo f unct i on s a .p. in 

a tu be Q 'J-}ave t h e s am e Di riah le,t s eri es i n Cl.... , they are 

identically equal. 

-
Theorem 13. If f(z) is a. p . i n a tube Q a nd - -" ;z. 

f(z) r-vf; A~~~ 

then t h e Parseval equati on 

h olds for all x in A. 
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Theorem ,14. (Approximation Theorem). If f{z) is a.p. inside 

a tube 0. , its Diric~let series 

f; A "' .e_ 7\ y;_ z. 
is svmmahle to f(-z) un1· formlyin-1. d& n 1· e there ex1· stc: a o\ ff"' \..}.... , •• J .... 

sequence of exponential pililynomials --(N) 1\ _· -z.. 
~::; Cz) =" _p; _ A- q_ "' N L ~ . 'l't\. ( N•l, 2 , .•••• ) 

(for which - i as N~<t> for fixed m,km = 0, ' 
for any fixed N, for all but a finite number of m) converging 

to f(z) uniformly inside 0... . 
Proof: Tl1.e sequence of polynomials 

I)N ( 'Z.} ~ ~{~ :x.t A.(j -f t) Ktt0 f 

(w11ose coefficients satisfy the above conditions) converges to 

f(z) uniformly in y for eac~ fixed x in A. The convergence 

is uniform in x in any interval contained in A ( tfJ_is follows 

from the generalised Phragmen- Lindelof theorem). Hence, by 

the ~reine-Borel theorem, it is uniform in any tu'be inside 0- . 

Th.eorem 15. If t _(z) is a. p. in.§ i!!_e Cl. , 
\' A 1\ ..:1._ 

f(z) rv LJ ~ Q ~ 

and one of these conditions is satisfied: 

1. The exponents [ {\"'' """"} 

fixed r, 

are linearly independent for each 

2. The coefficients .ALII'_ are all positive, 

3. The series ( l1 + + ,\ \'o ~ - I W\ • • • T\J ~1\ ) 
~ 1._ I I 

converges for each ~ 0 , 
- -

then the series converges absolutely in Cl , 
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and uniformly inside 0- . 
Proof: For the first two cases the absolute convergence 

follows fr.om the corresponding t~eor em for Fouri er s eries. 

T~e uniform convergence then follows by the Ph ragmen -

Lindelof and ~eine - Borel theorems. 

-o In case 3, let x be any fixed point of A. Choose 

suc'-1 that x 0 t ( :!:61 , _. ,. . . . 'J ±.b ) 

belong to 1. The series 

-- ·( i (I + (:l ~; ·· ·) ~~ ~ {. - ... · ~ r; A~ Jl m · - L .,.,_ 
.· 

are Fourier series of a.p. functions of y. Rence their ao-

efficients are bounded 

I A- 1L li. .... . ( i " 1" ( ± 'iJ ... J ~);)I I < K 
'l't\ . 

Therefore 

and 

so tl-Jat is absolutely convergent. The uniform 

convergence inside Cl follows immedia tely. 

Th 16 A function f(z) a.p. inside a tuhe 0-. can he .. eorem • 

continued analytically into a convex tube, inside which it is 

a • p • • 

Proof: Vle nrove first the following lemma: 
(;: 

Lemma. If g(z) is analytic and bounded in a tub.e E. , t-he 
( l) _( 2) 

uoints x and x lie in B , and 

for x (I J ~{ ~ -
: x or x and all y , 



then 

and all y. 

Proof: By a change of variable -

here the Q .. are real and det ~· · • 
~ ~ ' 

becomes a function of w 

containing iJl) and (0, 

in a tube in the w suace 
( a) t I ; 

•. , 0), correspo~ding to x and x in 

0, •• ,0) • t~e z snace. .. 
-( l) l 

can c h o os e t b e 0.. ~ so that u = . t u 1 , 

Then \h c w )\s £ 
1 for u: (0, .• ,0) or (u1 , 0, . . ' 

values of V 2 , •• , V n' and u2 = ... 

analytic and bounded function of 

0) and all V. For any fixed 

un: O, h(i) becomes an 
0 <: < U) w,, in t'-1 e strip - .U.1 - )j,1 

whose modulus is ~ ~ on the houndary of t he strip. By the 

P~ragmen -Lindelof theorem, 

l h(w) l~t. 

in the s trip • Hence 

and all y. 
The main t h eorem can now be proved as follows: 

{ e can find a s equence f /)N '"Z.)} of exponential 

polynomials converging to f{z) uniformly inside Q . - 1f 
( 1 _ _ _t 0) _( l) 
1. /)N .z); converges uniformly in y for x = x and x , 

we can find N
0 

sucb that 

N ( z) - /)M ( ~ ) l ~ E 

~ X ~ ;:£•' t;y XC'! ~ ~ i ) .fra'r M J'I'-, >~a \, 



24 

"By the lemma, I [)N( i..)- /JM ( Z.) \ ~ <t. for any point x on 
- (o) (1) tbe line segment joining x and x , all y, and all N, M 

such that N 7 N
0 

, l1T > lt
0

• Hence the set of values of X , 

for which { {J~( z.)} converges uniformly for all y, is convex. 

Its interior is an open convex set containing A. The sequence 

converges uniformly inside the corresponding tub:e, and hence 

represents a function a.p. inside this tube,. and equal to 

f (Z') in Q . 

If M is any set in Rn' t!-Je +-Y extension of M consisting 

1 Of the points (xl' • ., Xn) SUCh that a point (xl' • , , X r' •. ,Xn} 
"R ' 

with x T ~ ~ lies in M is denoted by :M r· We define M_r 

similarly. The + s extension of l~tr is denoted by Mt r, t s' and 

we denote other extensions similarly . Clearly a multiple ex-

tension is independent of t·he order in w'0ich the extensions 

are taken, e.g. 1K+r,+-s = M~s, -t r• lf M is open or convex, the 

extensions of N are open or convex. 

Theorem 1?. If f0z) is a.p. inside a tube Cl , the exponents 

( l\..,.,m...,,1 1 • ·· · • • · 
are non-positive, tbe expo"nents 

{ 1\..,P"" -rflvpJ ) • . 
tube inside 0.. 

I (A l.. are non-negative, and Q is a . . ~ ~ Y. 'W\-y 5 ... ,} ~ 

, then f(z) can be continued analytically into 

a function a.p. and 'bounded in t'1.e tuhe corresponding to the 

. Al of Al. extens 1on + r ..,. -'Y,_, L - 'Y11 ' )" '] p) ,- ..-t) ·· ·) 11 

Proof: Since A1 can he covered by a finite number of interva ls 

I contained in A, we need only prove that f(z) is a.~. in 

• 
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We can find a sequence \hN (Z)1 of exponential polynomials 

converging to f(z) uniformly in I. It is known that for an 

exponential polynomial ~ (z) in one variable JA. . ~ . IDC i ) l 
- dJ 1 <' a? 

is a decreasing function of x if a.ll the· exponents of the 

polynomial are non-positive and an increasing function of x 

if all the exponents are non-negative. Applying this tbeorem 

~ times, it follows that if s(z)is an exponential polynomial 

with ex9onents from among those of f{t) and \s(~) \~ t in 1, 

then \s ( z) \ ~f _ in I y 
tYI) •'·J~"Yp, -'Y"p4> 1 ) · ··J" \ 

Now given 

t. >0 we can find N
0 

such that \ sN(z)-s11 (z) \~ f.. in r 

for N "> N
0 

, 1! "> N
0 

• Eence lsN (z) - 5_rvi (z) (~e. 

T-:ence t'he sequence r a l\T (z)1 converges uniformly in I l U +YIJ" . 1 -f;Y~;-"P'<\J • .. / 'Y ~ 

so that its sum-function, which is an analytic continuation of 
/ 

f(z), io ~. a.p. and bounded in r_~. -v ~y~-r ... r . 
"\' I)"~ p; P~\) ... \ 

Theorem_l~ If f(z) is a.p. inside a tu.be , and the ex-

Po ne n t s { /\..,, ,...._ ~ \ .... J { [\ .., P> "'~J ~ f 1\..,p+uw~ p.,l,. . . · · J f /\..,. ~ 1f\,.. t l 
are bounded above and below respectively, then f(z) is a.p. 

inside the tube corresponding to A+Y 
' 1 • • · ~ + -r r) ... ..,.. p +~ ; . · · ; .... Y ~ • 

Proof: 

for r: r 1 , •• , rp and all mr 

1. s · th tu be corresponding to A
1 

· • a.p. 1n _e tr 1 , .. ,-rq 
,..., . ulnce 

any tube inside the extension of Cl can be contained in a tube 

of t~is type, g(z) is a.p. inside tbis extension, the tube 

corresponding to Atr l, 
t h is tube. 

• ~ence f(z) is a.p. inside 

' 
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The£!:~19. If f(z) is a. p. in some tube Q and has all its 
exponents bounded then f(z) is a.p. inside the tube 

- 00 .. < :;(_\ < OJ ) " # • ' • ) - OJ < ~ "< 00 

Proof: This follows immediately from Theorem 18. 

Theorem 20. If f(z) is a..p. in a tuhe ~ such t~at A - A - +·r' and bounded in Q , then it has no positive exponents 
7\ -Proof: Suppose f(z) rv L Aw...9... ~·L.. 

and \ f ( z ) \ S C. in Q . 
Then I A"' 12. 7\,._·i 1 "' IN\ .if q er" j_ ~ J i ..: A~· ~ }I <: C 

1\ r ,mr • 

for fixed values of x1 , •• , x~ _1 , xr+ 1 , .. ,~ 

large values of xr. This is only possible if 

and arbitra:bily 

A -r m. ~ 0 for 
} y 

every mr • 

Combining Theorem 17 and . Theorem 20 we ohtain: 

Theorem 21. The c·lass of a.p. functions suc·h that 

for r = r 1 , •• , rp, 

for r: rptl' •• , rq' 

is identical wit't the class of functions analytic in some tuhe Q 
auch t11at A ~ r -r : A, and bounded and a.p. in +rl, •• ,rp~- ptl, •• , q 

the t r 1 , •. , 

inside Q . 
. . ' -r q extension of any tube 

The r
1

, •• , rq section of a tube Cl is defined to be the 
I I set of points (zrqtl , •• , zrn ) where r 1 , •• , rn ~s a rearrange-

ment of I , •• , n, for which some point,.; (z1 , •• , zn), rvi th 
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I I lies i n Q . Any section of z. - z .. ' z - zr ' a rq t l - rct ~ l ' rn - n 
tube is also a tube, in a space of fewer dimensions. Clearly, 

if A is the 
, 

section of Q is t he bounded, rl' . . ' r actually q 

section of (l r -r -r by a hyperplane z.r
1 

: , r1, •• , p, p +l, •• , q 
Ir, •• , z . : -K for all sufficiently large values of K . Th at rq 
is, we can find ~, such t hat if K > K

1 
I I 

(z.., ) ···· ·· . .. ·· )"1..,.,-y.._ ) such that some point 
~1 

lies in ()._ is identical with the set of 

suc'-1 that the point (zl' ... ' z ) n with zr :. .. ' - z. --z -l 
--r p - rp +l 

zl . . , - -z - K ' z. - ' . . ' zr - zl , lies in Q - rn - rq Jr l - rq 1-l - rn n 

Theorem 21A. If f(z) is. any function of t he clas s described in 

Theorem 21, then 

• 

lim f(z) 
::c,.._-700 

( i =· I ' • I ' p ' j :p +I ' •• 'q ) 
J.. 

::( 'Y . -t .:..00 
~ 

exists uniformly in Yrl' •• , 

(zrq+l, · •• , z.rn) (where r 1 , . . ' 
and uniformly in Z = 

r is a r earra.ngemen t of I , •• ,nJ n 

in E , the r 1 , •• , r sect i on of Q . Moreover, this limit 
q, 

is i nd e ue nd en t of Yr ' • • ' Yr and is a function 0( g(Z) of z. 
4 l q 

This· function g [Z) is a.p. inside E , and 

I 

where t 

- --
1 A ... 4 z. 

. g(Z) /'J r; A.;; t ~ 

-indicates a summation taken over all m 

1\ 0 ..,.. m : 
4 J . ,.. • 

.(. 

( i = I , •. , q) 

for which 

Pr 0 0 f : The D i rich 1 et series of f ( z ) is s u mma·b 1 e t o f t z) 

uniformly in the rl, 
I 

tub e Cl inside CL . 
•• , rp' -rptl' •• , -rq extension of any 

VIe can find (,<> ;.,.) } t ~ N '~ such that 
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\N) .: -z 
~N ( Z.) -:: L J:;;_ A.:;_ Q._ "' ~ (Z:) 

uniformly in this extension. 

Given €. >0 , there exists I'f
0 

such that 

\ r c iJ - IJ N ( z) \ ~ ~ 
of o_1 • 

for N ~ N , Z: in the extension 
0 

Now lim /J t\l 
x..,. .-7-oo 

{. 

:( ~ ...,. 
3 

- ~ l~l~)A i\_·z. 
(z): Lt (A_ _.JL "Yt\ 

,;;,_ m 

~ence we can find AN such that 

f 
(N) - -~ 

/:lt-l ( z ) - L 'J_nc A :w:. r;_ A~ .-z. f 

t i = l ' 

Then 

( i = I , •. , p; j::: p tl ' .. ' q)' 

Then 

t i: ~ ' .. 'p 'j =-o t / ' •• 'q) 

~ ~ 'A-y.) AM "A-y.< - A , ~-· . ~ ,, ) ~ ) 

. ,m • 
and all Z ~ E. . 

) f ( z) - f ( z') I ~ € for xr . '). AN 
~ . 0 ' 

(i: \ , •. , p; 

Z in E • 

: ' \ . - ... ., -,. 

rrence lim f(z) (i: l , .. , p; 
x Y. oo 

<\, 

. ~.~-00 ' ' .. 
~ -

j = p -rl ' .. ' q) and all 

j = P t l , .. , q) exists 

unifo~mly in Yr , •• , 
1 

, uniformly in Z in t_ , and depends 

only upon ~). 'rhen J 1 ~ t,.wt ~ J cz) 

and all Z in t_ • 
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.,.j __ ence g( z) is a. -p. in E, and -
g(z) rv 'L I A m ~ A-;;:·7:. 

In the uarticular case when q = n, the theorem asserts 

lim r(z) 
X )'C:O 

(i : I , .. , p ; j :. p-r l , •• ,nJ 
'Y· 

loo. 

~ ..,. -(J) 
')'. 

a 

is equal to t~e co~stant term of the Dirichlet series of f(z). 

Theorem 22. If f{z) is analytic in a tube Q_ ~ that 

.. ' ' •• , -r· n 

rearrangement of 1, 2, •. , n and if the partial derivatives of 

f(Z) are a.p. in the .. , t r P , -r P +1 , •• , 

· of any tube inside Q , and moreover 

for the exponents of each of these derivatives, 

-r 
n 

extension 

then f(z) is a.p. in the t r 1 , .• , -rn extension of any tube 

inside Q . 
Proof: By Theorem 1?, we need only prove that f(zJ is a.p. inside 

()L. By Theorem 9, we need only prove it to be bounded inside 

()_, and, oy t-he Heine-Borel theorem, need only prove it to be 

bounded in 

It al 

inside a . 
. . , 

any interval 

~ ~ bl a ~ x ~ - xl- ' •• t n n 
Ye prove it to be bounded 

-r extension of I. n 

b ' n 
in j 

' the -t- rl, .. '+r ' p 
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For - ~ ( z,., + . .. + "-~ P) - A ( z ..., * . . . .lr 7.. \ e p.,..1 Y...,.,) 

in T . , by Theorem 17. 

" :!ence, in J , I tz.JC Z:) \ < K .Q.. 

X ~ ffZ) is bounded 
dZ.y 

for r: \ , •• , n. It is then easily shown that for fixed values 

of' zl ' .• ' zr·l' z.r,.. 1' • •' zn ' 
(1..) 

I r; fi"~czJ Jzy \ < 3~ 
y 

( 1 J ( 2) 
where ( z 1 , •• , zr, .• ' z ) 

n 
and ( z 1 , •• , zr , lie in J_ 

and '\ * ~ 1\ 11:in (-A, iJ. 
Ire nee 

}f (i) 

. ( 0) 
for any i in :J_' (Z" is some fixed point in J' ) so tl:"Jat 

f(~) is bounded in T . 

The definition of t h e extension of a set in Rn can he 

generalized to cover the notion of an extension in any direct-

ion, not simply in a direction parallel to one of the coordinate 

axes. 

If 1! is any set in Rn' the F extension of M is defined 

as the set wl,ich contains all the line segments 

(i : 1, .. ' n)' t ~ 0 

( 0 0) originating at points x1 , •. ,. ~ of l~A: . This set is denoted 
- (0 - (?..) . • -(JJ 

by J! t . The \r. , f extens1on of M 1s defined as the . y-. 

extension of the p:.(t) extension of M. Extensions. of higher 

order are defined similarly. Multiple extensions of M are inde-

pendent of the order in which the extensions are take.n, e.g. 

• If M is open or convex the extensions of M 
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are open or convex. The· tuhe in (z1 , •• , zn) space correspond­

ing to the p:.. extension of a set A is denoted hy 0-~ and called 

the f extension of Q . 

Theore'!!_23~-- If f(z) is a.p. inside a tube Q_ , there exist 
-(1) -(a) q vectors ~ ' •• , y- suah that 

-p- L)A ::L... 0 . I I \ .. , i : ' • • t q 

-for all exponent vectors 1\ m , and 
I 

Q is a tube inside Q , 
then f(z) can he con_tinued analytically into a function a.p. 

. -(1) -~q) . I and bounded 1n the p-- , •• , r- extens1on of Q . 
Proof: e prove the theorem first in the important special case _ ,, - ~) when ~ ~ .. , ~ are linearly independent. Then q~ n, and we 

- "'t\' - ~ - \!_I - (Y\) can find ' I p- ' . . ' V.. so that y- , .. ' ~ are linearly in-
I 

dependent. 

- We make the change of variable 

(i ._ 1 , •• , n) 

"' a) - 'f\ Cil Then g(w) = f( L._~ , JJS~ ) · .•. . . . . . ··,I; ~1'\ us~ ) is a.p. i:ns;ide the ., a·· tube al in w space into which Q is carried b.y the transformation. n , n ' n - - u - _<,) v._ is carried into \A \ inside v- , and the ~ , •. , ~ extension 
I of al is carried into the ~ 1 , . •• , + q extension of Q, . By 

Theorem 17, g(w) can be continued analytically into a function a.p. 

and bounded in this extension. Hence f(z) can be continued analyt-
- I) - \ ) ically into a function a.p. and bounded in the f , .. , f ex-

tension of Q . 
To extend the proof to the general case, we note that the 

00 ndi tion 
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requires that the exponent vector 1\ lie in the half-apa.ce on 

one side of an (n-1) space through the origin. 1f the q_ half-

spaces of this l{~nd have no common point except. the origin, 

then the only -possiblle exponent vector is (0,0, .. ,0) and ftzJ 

is a constant. Otherwise,_ some vector -eA lies in. all these 

half-spaces, 
~ 

~ whence all the. vectors ~ lie within an angle 

-of ~ • e need therefore only prove the following lemma. 

Lemma: If each of a finite set S of vectors in Rn 

makes an angle ~ \ with a vector ~ , the extension of any 

set M by means of the vectors of S 

-~, 
•• , \l... extensions of M, where 

is the sum of the 
-(1) 

f ' .. ' 
- (r 
~ I is any 

linearly independent set of ~eaters from s . 

Proof:- The theorem will be proved for any set M if it 

is proved for a single point, whieh we may take to be the origin. 

We transform the theorem into a theorem on pointsets by consider-

ing the section of the S - extension of the origin by the hyper-

plane Ir: ~.x- .. \ 
The vectors of S go into points in H , some of which may be 

at infinity, a vector extension goes into the convex closure of 

the points corresponding to the vectors, the sets of . linee.rly 

independent vectors go into sets of linearly independent points. 

Rence we need only prove: 

The convex closure of any finite set S of points tsome 

of which may be at infinity) in E~clidean n-space is the sum of 

the convex C'losures of all linearly independent sets of points ih s. 

e orove this by induction. 1f there are q points in s of 
"' 

which Cl is one, the convex closure of S is the convex closure 

of 0- and the set C whic:~ is the convex closure of the remai~'1ing 
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(q-1) points of s • Now this convex closure C is a convex 

polytope of at most n dimensions, and its f a ces are convex 

polytopes of at most ('n-1) dimensions, whose vertices are points 

of S • Any point p which lies on a line segment joining Q to 

a point of c lies on a line segment joining a.. to a point of 

some face of C • By the induction hypothesis, this last point 

lies in t~e convex closure of a linearly independent set of 

points of S lying in this face. lf o... is linearly dependent 

ujon t~ese points, then p lies in an (n-1) space t~rough the face, 

and, by the induction hypothesis, p lies in the convex closure 

of a linearly indepe~dent set of points of s • If a., is linearly 

independent of these points we adjoin it to them, and p lies in 

the convex closure of the linearly independent set of points 

of S thus obtained. 

It is clear from the proof of Theorem 2 , that if a vect-or 

lies inside t~e S - extension of the origin, it lies inside the 
- \J -l 

f' .. , }Jv extension of the origin, where 
~l ) --(p, 
f- ' .. , ~ is 

some maximum linearly independent set of ~ectors frQm s. The 

-corresponding vector in JJ... space lies inside t.he +l , •• , +- p ex-

tension of the origin. !fence, as -J).. along any line in 

the same direction as this vector, JA~C'.Xl ) •• .• . . .. . u..f -=1-aJ • Hence, 

in .the special ca~e when S contains n linearly independent 

vectors, we can apply Theorem 2l .A to the function g(w) to obtain: 

Theorem 24. --
-(I) 

vectors· ~ , 

auch that 

If r(i) i s a. P . insi de a tube Q , t11ere exist q 

- l, J .. , t (containing n linearly independent vectors) 

(i = 1, ·~' q) 



J 4. 

-
1' or all exponent vectors /\;;;._ , 

- I - \l . 
in the t , .. ~ t extens1on 

-o.. is a point of A, and t" lies 

of the origin, then 

f ( 0- .\- ~ t. -\- .k ~ ) 

tends to the constant term of the Dirich lct series of f(z) as 

t ~ 00 , uniformly in Y , uniformly in 0:. when 0:. ranges over 

some bounded subset of .A. 

Theorem 25. If r (i) is a.u. inside a tube Q and ----- .... 
' 

~~f\:;.< K (i -- l, .. , q) 

-
for all exoonent vectors A- then f(i) is a.p. inside the - tr -'~) • "Yr\. ~) · ~ ~ 

Q. extension• of - ~~ )-
ci __ suc!-1 that P'- · fJ. > K for i :: 1, . . , ,q. Then Proof:- Take 

g(i) : f(i) 
-o(· 'Z 

e is a.p. inside the extension of 

OL , by Theore~ 22. ~ence f(z) is also a.u. inside this tube. 

The or em 26!.. If f(z) is a.p. in a tube Cl which is identical 

- extension, and bounded in Q , then with its \).., 

~ .i\_ ~ 0 

for all the exnonent veators !\ _ of f(z) • 
~ 

Proof: As in Theorem 22, we trans form f(z) to a function g(w). 

Applying Theorem 20 to thi3 function, we obtain the theorem. 

Combining Theorem 22 and Theor em 25, we obtain: 

'l'heorem 27. The class of a.p. functions such that 

- ~)T ~ o 
~ . \~ - t i: l ' .. ' q ) 

ia iden ical with the clas s of fu ncti ons analytic in some tube Ov 
- \IJ - (, ) 

its p-- , •• , f extension, and bounded and a. p. 

extension of any t ube Q_f insid e 0.. • 

Which coincides wi tlJ 

in h - (aJ - ~J 
~ , •• , lA. 
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