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CHAPTER 1.

INTRODUCTION.

The theory of élmost periodic functions was created by
H.Bohr two decades ago.
1. A (complex-valued) function f(x) defined for all real
X is almost pericdic if
(a) f(x) is continuous for all x.
(b) Given €0, there is a relatively dense set of translation
numbers corresponding to E,ﬂ'=ﬁi(5), such that
\K(X-PT)*ﬂ(l)\é & for every x.

A set of points on the‘real axis is said to be relatively
dense if we can find‘ﬂ such that every interval of Lengthil
contains a point of the set.

Any a.p. function is bounded and uniformly continuous in
E*D<*“<“ﬂ . The set of a.p. functions is closed under addition, -
and multiplication. If a sequence of a.p. functions converges,
uniformly in [-G)<2xf@ﬂ 4 to-f(x), then f'(x) is a.p. X

_m-g;cé.mlf(x)\ >Oand £ (x) is a.p. then 31'(2) is a.p. LIf the deriv-
ative of an a.p. function is uniformly continuous, it is a.p.
If an indefinite integral of an a.p. function is bounded, it is
a.p.

If the trigonometric series
(€8]

) L )“
2 CL“Q_L A’

nel

ls are complex and the jAIS real Jmuniformly convergeht

(where the a
in E«D<x<+ﬂﬂ, its sum-function is almost periodic.
If f(x) is a.p. the mean value 5
Yt
v
Q?\{gf }1vm7d yﬁ

L



oo
*

exists uniformly in VY .
Moreover a( N\{_@(x) "’“7‘1
dlffers from zero for an at most enumerable set of values
’/\,)7\1

If a(A) = a,,» the formal infinite series

W
Q : LX &
Q.-l

nei

is called the Fourier series of f(x). We write
0 o

§l)~), 0at

n =l
It is easily seen that if f(x) is periodic this Fourier series
is its ordinary X Fourier series.
The sum-function of a uniformly convergent trigonometric
series has that series as its Féurief series.
The Fourier series of a sum or a uniform limit ig the
formal sum or limit of the corresponding Fourier series,

Theorem of Identity: If two a.p. functions have the same

Fourier series, they are identically equal.

Parseval's Theorem: If f(x) is a.p. and

f(x)’ﬁdﬁaclna
b

@
then MRS =5 1a,

Multiplication Theorem: The Fourier series of two a.p.

functions may be multiplied term by term, i.e., if

R
) dt”
nel
S LAnX
then £(x) g(x) ~ ) ¢ o ™

Where  C, = Z\O;Yﬂ‘,ﬁs
W -H.j‘:?ih
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. : %
Approximation Theorem: If f(x) NE a“_yf?““

N

we can find a sequence of polynomials’

Y _P)(\N) il
Nl
uﬂ
(where O < &\ s\, for any fixed N only a finite number of

the -ﬁ(N are different from zero, and lim -& =\ for a fixed
N-=®

value of n) such that

S, (x) =>f(x), uniformly in [-®< 1<°°-} , as N > ;
In fact, we can construct these approximating sums by a
generalization of the Fé’ijer summation used for ordinary Fourier

series, For a periodic function
a—‘int

%(X)NZ Qﬁ ¢

we construct a series of approximating suus
LA

(N) e
£, G0 = MO K (3L)] 2 O s
X

L

by means of the Fejer kernel

t)-z\(w‘“‘)i

v=-N
This sequence has the properties described above.
Let By , Bg, ... be a rational base of {7\“_3 y L., & set
of numbers such that T R oy +rn Bp=0 , T, rg.es ¥y
% ;

rational, implies 4 r;1 - .-.Vn = 0)

and any A n can be expressed in the form

P IR 1 TR N B, where r,, rg.L ry are rational,

We define
Ry (t) = KN,N(B_ﬁ_t e -WN(BN§
Ay () = M fa-trk, (0] - }:44\ i

n=|



Then SBI {x) is the required sequence of approximating

sums .

(N)

n

The coefficients k' ’‘depend only oniBI} and N, and not
otherwise upon f(x). |

In the particular cases when (a) the exponents ﬂ;} are
linearly independent, or (b) the Fourier coefficients {Qn} are

positive, the Fourier series is absolutely convergent.

T The set of points 8 = 6+ it with' @<e<B is called the
strip (%X, B). A closed strip is denoted by %#, p} : e
property holds in every strip (Nl, @l], where'u<oq<@1<§ ;fis
said to hold in <¥,8/,

Let f(s) be a function analytic in a strip (&3 B). A
real number 7T such that

I£{s + 17 } - £ (8}] £ E
At all points s of the strip is called a translation number of
f(s) belonging to & . If the set of these translation numbers
is relatively dense for every € >0 , the function f(s) is called
almost periodic in (cX,P). We may define functions a.p. in
{¢, B} or i <«, B7 similarly.

A function f{s} a.p. in (% ﬁ) is an 8.p. funetien of %
on any line N =6t of the strip.

If f(s) is analytic in.('d, 3), bounded in <o,82 and an
a.p.function of £t on the line s, of (M)B)h; then it is a.p. in<uw,

If £(s) is a.p. in<¥f2,- it is bounded in <«;B) . Hence
it is uniformly continuous in <%, together with all its
derivatives,

The set of functions a.p. in a strip <«,8” is closed under

addition, wultiplication, differentiation, and integration if
4 R i



the integral is bounded, and division by an a.p. function with
no zeros in the strip. If a sequence £, (s) of a.,p. functions

in & strip (¥, B)comverys briferelydo f(5) thon f(a) boop. on X,8).

The Sum of an exponential series
Q
£isd & Yougtifn s
o,

uniformly convergent in a strip ( u’,@J;-is a.p. in ( B)-
If £(s) is a.p. in (o, ﬁ) then f(s), considered as a

function of t, has the Fourier series

m : ';\“S ,\’f\-,\t
fles w1k ) ~AL L
i, |

for each G'in.(‘xgp). The series

% A 17\.,\0
nol
is called the Dirichlet series of f(s) in the strip (o B).
The sum=-function f(s) of an exponential series
uniformly convergent in some strip has this series as its
Dirichlet series,
To any a.p. function corresponds a Dirichlet series,
and if two functions, a.p. in the same strip, have the same
Dirichlet series, then théy are identical.

For any function

£(s) Ni A“ 8,\0

oy

a.p. in a strip ( d,@) the Parseval equation
L W AN &
M 40 "Y =3 A1
b nel

holds for all s of the interval (« ,B).

Approximation Theorem: To.any function a.p. in a strip <&/,

corresponds a sequence of exponential polynomials converging to



the function uniformly in <<ch@)>.

The class of functions bounded and a.p. in a half-plane
(of, +® ) and the class of functions with non-positive exponents
are identical .

If a functioqb >
{Ln) A e
M~y

is a.p. in < o, ¥®) and if

AL LALO

n

for all n, then an indefinite integral of f(s) is a.p. iIl<<MJT&D .

If a function
@
y
/@(n) i 3y B,
n=i
is a.p. in <« ,8> and if one of the following conditions is

satisfieds .
(2). The exponents {4,jare linearly independent,

(b). The coefficients A  are all positive,

: (¢ 8} _17\“\%
(¢). The series 9 converges for any
7nei
$>0, then the series
& A ?\v\/)
2 nt converges absolutely in (& B).

nel

EIE. 3 .Bochner has developed the theory of almost periodic
functions of any number of real variables.
Given a function f(x;, .., X ) and an €>0 , a vector
A :(71,..,’Tn ) is said to be a translation vector belonging
te € if
Ll Mt B i) 5 EE X 15 E
for all (X1,..s%Xn).

A set of points (Xy,..,%x,) is said to be relatively dense



if there exists a number . guch that any interval
@ <% <ol L Qi
contains at least one point of the set.

A funection f(xl,.., xn) is called almost periodic if it
is continuous for all X, and the set of translation vectors
belonging to € is relatively dense for any €0 .

An almost periodic funetion is bounded and uniformly
continuous,

A necessary and sufficient condition for 2 continuous

function f(xl,..,x to be a.p. is that the set of 7 such that

3
[f(xl’ Wi X 0 B vy By pves Bak of(Eyeiasdp el

for all (x;,..X,) is relatively dense on the real axis for
i=1,..5 n'and ‘every £t >0.

Henee, if r of the variables have some constant value,
an a.p. function f(xl,.., xn) is a.p. in the remaining (n-r)
variables,

The set of a.p. functions is closed under addition,

multiplication and uniform convergence. If f(xl,..,xn) is

2.p. then

M ox) Xg ooX; {f(xl’--_’xn)}

is a,p. in (xiH ,..,xn). The mean value of f with respect to
i of the variables is independent of the order in which mean
values with respect to the individual variables are taken.

 $ o f(xl,.., X,) is a.p. and %E;ftxl,;.,xn) 18 uniformly
continuous then %%; is a.p. If f(xl,..,xn) is bounded and has

a.p. partial derivatives it is a.p.

The set of values of )\ « (;\h‘“¢_”‘q?\J for which

alA) = /_\f\ {ﬁ(i’) ‘p_'”'f}



differs from zero is at most denumerable, 1f we allow the

addition to this set of a denumerable number of values of

)\ for which a()\ ) = 0, we can obtain a set

{?\ '} {(A|m> “m\-} ur&ﬂw.wwf\'l ﬂ'W.L_lJ
We call the formal multiple series ?
ol e — '(‘f\ 7\|+‘..+} Ih_)
et o T e
2 Q L 5 = Z a'm m L
l¢mtcm W o M
S I LB )._oﬁ)"l'\

the Fourier series of f(X), and write

e

L
T wm
f(x) NZ\ Q- 2
If two functions have the same Fourier series they are
identically equal.

A 0 ‘L }"‘{\.i—
For any a.p. function f(x) AJzzﬁqR‘ the Parsevael equation

/V\{‘ﬁ(ll 2'0&...1

g, <uJ
.L

Approximation Theorem:

T f 13 a.p. and -

(%) 5
£Tx) ~L Ot

we can find a seguence of polynomials

(N) X
A= I
[ , 53 N
(where 0< A <l , B!  as N2® for fixed &, k_ for fixed
m
N differs from zero for only a finite number of values of m )
which converges uniformly to f(x).
In fact, we can take
<) (-x—-): M ‘ f(x ""t 30 b4 -~ t t l e
N ¥ { o s n! Ky (¥ ’tn_}

If a function f(x) is a.p. and if one of the following

conditions is satisfied:



(a)., The exponents i}Hum?% are linearly independent for
SieLlvun
(o). The coefficients Q.. are all positive,

LA
then the series i:(liiﬁ " is absolutely convergent.

zf. N.Brazma has discussed almost periodic functions of several
complex variables.
A functipn.f(zl,..,zn) analytic in the interval

I: a&*'g.xw(%‘ Yereo )y o"-r\< LS J2\?\

5 (yl’ =y yn ) unrestricted)

is said to be almost periodic in 1 if for any € >0 there exists
a relatively dense set of translation vectors 57 :(7h“;7£:

such that

. = \ -y i 3 <E
” . 4, A [ '(«:.. .-,‘f'r\ =
e Gt 1o a1 e

for all (zl,.., z,) in I.

These functions have properties analogous to those of
previous types. A Dirichlet series exists and is summable to
the function. A function is almost periedic if it is bounded
and has almost periodic partial derivatives.

In the following discussion, these functions are defined
in more general domains, and their properties are derived in-
dependently of Brazma's resudts. This more general point of
view makes it possible to obtain results on the analytic

continuatiecn of the functicns.
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Chapter 2.

STRUCTURAL PROPERTIES,

We shall consider functions of n complex variables
(al, Lk zn) analytic in tubes. A tube is a set of all
finite points'(zl, o % zn) such that (xl, Bas xn)-lies in
an open connected set in Rn or its closure,

We denote tubes by CLJJJ{Q , etc., and the corresponding
open connected sets in Rn by A, Al, B, ete.

If the closure of Al is contained in A, the tube CLIiS
said to be inside the tube (L. If a property P of tubes holds
for a tube CL,.it is said to hold in (. If it holds for every
tube (' tosibe Tae te will 26 ho1d tnatde O . W' sst®of
points (zl, o o zn) such that (xl, ++s X,) lies in the closure,
of A will be denoted bya.

If Q is inside QL, Al is bounded. Tor otherwise at

least one infinite point would lie in the closure of Als and

hence in A.

Let f(zl, her g’ zn) be analytic in a tube (l. A vector

—

PN, aveing sy Rp is called a translation vector of f(zy,.,2n)

belonging to € if
: | :
lg(zq*lww‘“qzﬂngm3-%CZXT_Vzvj\, £

for all points (z,, .., z;) of the tuve (-,

If the set of translation vectors of f(zl, ses 2.) belong-
ing to € is relatively dense in Rn for every €>(0 then
f(zl, Ag zn) is said to be almost periodie in @, .

Then f(23, .., 3,) is a.p. inside QL if it is a.p. in

every tube inside (),.
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A function £(zy, .., z,) a.p. in (L is an almost periodic
function of the n real variables (yl, o ey yn) for any fixed

(xl’ » 0y xn) in A.

Theorem 1, A function f(z.l, ooy zq) almost periodic insidea-
is bounded inside QL ,
Proof: Let L be an edge-length of an inclusion interval af

=1

corresponding to 1 of f(zl, P z.nj in QU inside OL . Then

£ (By, sy 2,) is analytic in the domain comprising that part
..—4, .
of L for whicgh
0y ¢ L sl
Henee  if(z,, .., z )1 < K in this domain. Hence
ORI W L4 in Q.!. That is,

4§ SRR z.n) is bounded inside (L.

THeorem 2. If f(zl, - zn) is analytic in a tube (L z2nd bounded

inside (L , and is an almost periodié function of (y1s «s» yn)

0
1

periodie inside (L.

s wiE X
Proof: Putting F(2z,..,2.) = %(Z.ﬂ Ty e et AT "{{ & RS

2% o point (= ». .:» xQ‘) of A, then (zl, s zn) is almost
n

the theorem reduces to proving that if F (23, .., 2z ) is analytic

in O_ and
l F(?-un-;l“\)\é K

——

0
in (L‘ inside O and containing ( X, “"3\ ).....\,.;,Ii-xl,xzﬂ), then,
siven €>0 , there exists a 8)0 s Such that if \F(i?*l»ﬁ.)..,}l:;‘r}“igﬁ
for a]*.]'. (y]_, sy yn) then H:(z]_’ » 0y zn)léi
| / X
in O inside (L . & depends on a, A, Q" andg upon £ and !

K, but not otherwise upon F (zy, .., z.n).

We prove first, by an induction on n, that if ¥ (24 z )
» LR A
Yl

-



is analytic and, |F (21, .., 24) 4K in the interval
/ ! i ‘ Y "
0‘1 5‘3(;_ 6%1. (k———\)..ff\j and O‘L<Q'A.<1:.<%L.<bk
then, given any € >0 , there exists a { >0 such that, if
P + iyy, ..o x) viyy )43 for all (¥, «vs ¥y)
then S T E in the interval

CLL‘:‘I- é@

(‘__. ~
4 g, L-'\J..)"\'\)

The number $ depends upon the als, b«\s, a” s and ‘on s, and

upon % and K, but not otherwise upon F (Zl, e zn).
This theorem is known to be true for one variable, it
follows that given €20 |, we can choose S,>0, so that if
Ir (2,5 .0 zn)légl

/i fi = (S
for a, < e £ S TR i S N

A
/ i i ‘ ,
(where @ < &.408:4:b. < B < b} then,
[F (z.l, s zn}léi for (L;Lé x;_é@,; Cioms. Loy ihye 15
but by induction hypothesis, we find $>0 so that if

b, 0T 5L 125

l’
£ . i o= 1 ) tn
or xi.xi' (1 - ) ..,n yNen
|F (Zl’ LI | Zn)‘é%\
] 7 ; Yrnys
for Oj. L 1‘_(, : : (L-" 3-1.‘)"'\) )1|'xl

Hence this theorem is proved for all n.

Now, given any point p of A and any interval I lying in
B0 solihinine the poillwe sEn Tor eabh (ESO Voring §50
such that if (7 N SR )‘53 when (X.5 .., % } in
1 n 1 n
the point p, then |7 (Zl’ ) Znﬂéﬁ when (Xls & xn) lies in I.
By the Heine- Borel theorem, we find &% a finite covering
of Z*by the interiors of intervals lying in A". Any one I, of

these intervals can be joined by a finite chain of intervals to



LS

the interval containing (xi, i xo). Hence, by a finite

n
number of applications of the theorem proved above, we can for

each €>0 find § >0 such that if

W, .., 2 )l <5,

]

’ LI X xn 9 then

n
| ® (215 o z.n)\’:'i

in I ,,. For each € 70 , we take § to be minimum of the

when X, =X

~ 0O

o )
finite number of $, 7/ .

X
Ten IPi(s. .., zn)\gg id O ar irle., ii, m LS e

]_!
R X X
l-l,.., n:n.

It follows from this theorem that if f(zy, .., 2,) 18
analytic in a tube CL and a.p. as a function of Lyl, vy Nl

(o} [ R .

foF = 2 xg, vs Xy z X, Where (xi, i xn)lles in A, there
is a largest tube contained in CL and containing (xi, Cry x;)

inside which f(zl, Cov zn) is a.p. This is also the largest

tube contained in (L inside which f(zl, sid 5 zn) is bounded.

Theorem 3. The sum and product of two functions f(zl, Uhes zn),

g (Zl’ % zn), a.,p. inside a tube (L , are a.p. insideCL :

Proof: f(zl, % 3 zq) and g (zl, >o9 Zn) are bounded insided .

4

Tence £+ g and £xg are bounded inside (L. Also, they are a.p,
functions of (¥3, «.s ¥,) for x, = xg, ey Xz X if
(xi, T xo) lies in A. Yence they are a.,p. inside (L .

n

Tence any exponential pélynomial

B (A2, * N 2w
Dy et |
i ), Sl]

is a.p., inside the tube
I, TR 8 - AP T Ly 5.0

-



L4

)

Theorem 4. If{?m (27, «0) zn)} converges to £ (2, .., 2,

uniformly in (. , and fn (245 .oy 2) is a,p. in (L for every
m, then f (31, viny zn) ia a.p. in (ke s
Proof: Given €>0 , we find m such that

i v )I.‘.% i 1l

Let"’l:;"'f:g

of translation vectors of fm(z

l,
( & ) be any one of the relatively dense set

TIEE zn) belonging to &€ . Then

'f(z “"J'x,r”,..)z,,\‘\' LIT-'\> — 8 (Z‘j--- ‘.Z-‘r\“:,

1
& W(Zr“ﬁb“JZW@“Q"@m(?*iﬁr“,zw;mgj

R i 7 ST - Lo 2oz

+\fm(zl’ gk Zn) Nl e TR znJI
ak

Hence, for any €>(0 , there exists a relatively densexﬂof

’E(€Y 's. Hence f(zl, B zn) is a.p. inck .

It follows that the sum of a series

(Ai‘x\‘z‘ T ;’\‘NMZQ
| Z Almi -r:;m“ 2'
|\ <& !
FENL

uniformly convergent inside a tube CL4 ie a.9. inside (1",

Theorem 5, 15 i (Zl’ .o Zn) is a.p. in the tube CL and has

- ne. seros in (l , and C[‘ is a tube inside CL , then
£.4. 18z, %, 2z ) >0

; : 1
s ey zn) in q*.

(z‘l’

Proof: By the Heine-Borel theorem, we can find a finite number
of intervals I covering (lf, and each inside another interval
contained in Cl.. Thus we need only prove that the lower bound
of lf(zl, 0 zn)\ is positive in any one of the intervals I,
We begin from a theorem on functions of one complex variable,

which states: If (1) a set of functions f(z) is uniformly



§ o
15

1
l""k<Y<kl’

(2) each function is analytic and has no zeros in this rectangle,

bounded in the rectangle al.< < W

(3} the set does not have zero as a limit function, i.e. there
is no sequence of functions -(fm(z)} of the set conv%;ging tol
zZero uniforﬁly in the réctangle, then if 0.'< a<f< L ) Oy&<$ﬁ
we can find m> 0 such that

1.4 \2(z) 1> w
in the rectangle a < x < b, «k <y< k for each funection
f(z) in the set,

It follows that if a set of functions f(z) is uniformly
bounded and uniformly almost periodic in a strip, a’l x< bl,
no funetion of the set has zeros in the strip and there exist
a point z, in the strip <*<% and a R0 such that |f(z_)I>R
for every function f(z) of the set, then if Q<<&<@<4f we can
find m »(0 Such that ‘

-Q.Q,|f(2-)( S i
in the strip @< x < b for each function f(2z) of the set. To

prove this, consider the set of functions f(z + iy%) in the

rectangle i
. / A L 4
k
where 4 is an inclusion interval corresponding to 2 of the

<
] / |
set of functions f(z) in f1-<"'(‘(j , and the parameter y"K

assumes all real values for each function f(z).
mhis set of functions obviously fulfills the first two con-
ditions of the above theorem, and since, for any f and any y¥,
we can find a value of 2 in the given rectangle for which

|£(z +iy™ }|> k& » the third condition is also fulfilled.

We now prove the main theorem by an induction on n. The



function f(zl, - zn) is analytic and has no zeros in
] / / ) A=
e RE g TS T J A< K <Hy
and ]f(zl, ++» 2.)| £ in this interval. We prove that

Luks. \f(zl, vey 2 )\ is positive in
n

L T AR 4 e S where
/ R ; .
o THORERL RS SR TS T

Take x® such that (L;<1f<g\. By the induction hypothesis,

1
Q.-g .l f(x;, 32, i znjl is positive in
Gy<t ey, o, a, <x,<0,

The set of functions f(zl, & h zn) of 2, in the strip

7 4 ]
o, <x<g , depending upon (n-1) parameters Zos aes B which
run through the above interval, is uniformly bounded and
uniformly almost periodie in the strip and no function of the

4 . . : { G | o ‘
set has zerecs in the strip. Also . . f(xl, zz, ons zn)l ”
where 32, . zn runs through the above interval, is positive.
Hence, by the previous theorem, there exists an wm > 0 such that

SE{C RS R P
n

Since the theorem is true for n z 1 it is true for every n.

Theorem 6, If f(zl, £ zn) is a.p. inside a tube C{ s and

has no zeros in (L y Shen L is a.p. inshheCL.
f(ZI’ R Zn

4 | 0
Proof: Take Ov inside &L , and (Xg, sy xn) inaAl.

Then g (315 vey 2 ) - 1 /
n f(zl, g zn) is bounded in (L

/
Ifence g (Zl, LA | sz isl a.p. in &



17.

Theorem 7. An analytic function f(zl. 9 zn) bounded inside
a tube (. is uniformly continuous inside (_ , as is each of its
partial derivatives, of any order.
Proof: Since any tube inside (J_ can be covered by a finite
number of intervals, we need only prove that if the interval
I a-SEGXS | 0 -% < A Tl
is inside (L,. then f(:l. oe an) is uniformly continuous in
Is 0 A TR WS 4 S
together with its derivatives. Now
lf(sl. s 3 ) 1<K
in Il, whence

'N\ ‘“\‘Y\‘l. ...\-W\*z\. K
‘___‘___--_—u—"'-_
w\{___#rﬂ\“\
| __T__..m %( e ) 2R) T

s i s( 2 ces B o) and(z{?).., z( )) are any two
points of I,

) \n ,a'd’\. am-h\ N f_ & (o)
\ ?——»T'b""’?n{\( e = _____;“‘; T“*\‘%Lzl""}z"\ /
e a, W
K.’W\ 'tu e N\,\ \\ k” (‘)
W V V2, ‘
p &

Hence each derivative is uniformly continuous in I,

The partial derivatives are clearly bounded inaide(ih .

Theorem 8. If f(2,, .., 2 ) is a.p. inside a tube . , so are
its partial derivatives.
Proofs r(zl. pad A ) is bounded inside (l. Yence

%%3(;1, N zn) is uniformly continuous inside O_s and, in
particular, i3 uniformly continuous as a function of (¥10 oos ¥,)

for x; s X 4 +es Xn = X3 » where (x,°, .., x °) lies in a.

Then | =3
?&,ﬁi’(”v ces 2n) = L 57 £(2), .., 25) 18 uniformly



8

conti - § N ' L
: inuous as a function of (y,, .., yn) for x; = X) s ees X o=

xn and I' i 1,.-’ nn

Then %f(zl, + b zn) and hence ?i_(f(z.l, S zn) is a.p. as
7
0

, 0
a function of (yl, ™ yn) for x_. - Xp s ves Xy = X Also

: 4
%va(zl, ay zn) is bounded inside O. Hence it is a.p.

inside (L .

Theorem 9, 21 (zl, e 3 zn) is analytiec in a tube Cl. y

bounded inside G,, and its partial derivatives are a.p. inside

., then f (zl, Sy zq) is a.p. inside =

S

0 Q .
Proof: For X = xl » o3 X o= X - f(zl, e zn) is an a.p.

funetion of (yl, &' yn),-ﬁ-ﬁé—e ‘.. Tence it is &.p. inside L .
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CHAPTER 3.
DIRICHLET SERIES AND ANALYTIC CONTINUATION.

Theorem 10. If £(2,, .., 2 ) is a.p. in a tube (L  then the

Fourier series of f(x; + iyy, .., X, ¢ iyn) considered as a

function of (yl, g yn) has the same expression.

f(xl ¥ iyl, ces X% iyn)
A f\“m‘ll.\.n_ 'H\'“‘m;x“ F-L(Ah.m."ty'\'. o {-l\"'\i"\-:\\bh)
Pt E:. o e L =

e, <o T

14 WL R
for all (xl, NS W R T

n

Proof: We have to prove that "(A; Z, k. {./\‘n z‘\)k

M'au-.;‘ﬁ“{ etx‘ *'»3 s Jlﬂ*‘b \b\) .

is independent of (x;, .., X,). To prove this we need only prove
that it is independent of (Xl' "l xn) in any interval inside(]— ‘
That is, we must prove that if the interval
1. <
O’I<x\< Bl)..-- jo\\f\<1“ QVY\
5 (1) 1 (2) (3
iS irls'lde at and t’,’]e pOIHtS (Xl, s 9 §n3’ (Xl’ s ey Xn) ]-le
in this intervel then the mean value above 13 the same for these

two points. This follows from the corresponding theorem for

functions of one complex variasble if we consider the chain of

points  (2) (2) ((1) (2) (23 €1} (1)} - {®)
~ Kls se xn)’ Xys Xgs e e L ’ ‘xl""xn-l’ Xnlo
(1) (l}

(Il ’ [ ] xn *

The mean value is unchanged as we go from any one of these to

the next. Hence it is the same for

(xi}).., &;} and (&iz .o &i%.
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]

We associate with f(z., .., z_) the "Dirichlet series"

n)

E A ‘Q_l\hw\‘z‘l +“' J *I/\w\’ My z"f\
'W\l’_ b }W\,'\

1 €m0

e L A

and write >
f\ '1£ W r"\'\j w\“z"v\

f( ey
Z » . 4 A

1 3 9 n) ' 2 m\),gqu"f\
15"!‘\'\3<(}5

& 4 4 o oS
¥ MO

It_ is convenient to use vector notation and write

iz
rE) ~ ) A 27

The following theorewms are immediate consequences of the

corresponding theorems for a.p. functions of n real variables.

—

-

\

T~

/
Theorem 11, The a.p. sum-function of a series ZA;\L

uniformly convergent in a tube a, has that series as its

Diriehlet series in (L .

Theorem 12. (Uniqueness Theorem). If two functions a.p. in

a tuoe A have the same Dirichlet series in a. » they are

identically equal.

e

Theorem 13. If f(z) is a.p, in a tube (L and
L -
f(E) NZAKE LN

then the Parseval equation

e T
M 1 (4

holds for all x in A,



Theorem 14, (Approximation Theorem). If f(z) is a.p. inside

a tube (L | its Dirichlet series
nresghen
b

is summable to f(z) uniformlylgfdé (L , i.e. there exists a

sequence of exponential pdlynomials

() A2
ANLi) =Z\ﬁl,—,\ A,—;\Q EEE . By vl

(N\J( QW) L e
(for which OfR_ %l , A_-| as N7® for fixed @,k = O,

S

for any fixed N, for all but a finite number of m) converging
to £(z) uniformly inside (L .

Proof: The sequence of polynomials

By () 7= N\:E{ 6(: +L(«'a' KRR
(whose coefficients satisfy the above conditions) converges to
f(z) uniformly iny for each fixed X in A, The convergence
is uniform in X in any interval contained in A (this follows
from the generalised Phragmen - Lindelof theorem). Hence, by

the Jeine-Borel theorem, it is uniform in any tube inside CL P

Theorem 15. If f£{z) is a.p. inside =
s ‘Aﬁ:l
¥in} 2 A.’;\ “

and one of these conditions 1is satisfied:

1. The exponents {f\nmw§ are linearly independent for each
fixed r,

‘ icients A are all positive,
2. The coefficient _ -po tive

3. The series _(W“““\*h.+h\mmﬂsg
e
converges for each §>()_,

o

—&

0 K.
then the series 2 A,—,;' L converges absolutely in (1,



and uniformly inside CL..
Proof: For the first two cases the absolute convergence
follows from the corresponding theorem for Fourier series,
The uniform convergence then follows by the Phragmen -
Lindelof and Teine - Borel theorems,.
In case 3, let x° be any fixed point of A. Choose
Y20 such that X ° + (£3,....... &0

belong to A. The series

z\ A.. 9:'.?_“ ( B +(‘I’Sp“1£%‘-\ _,Q} / &“a
| ~

are Fourier series of a.p. functions of y. Fence their co-

efficients are bounded _
I A’__ ‘Q/\R. ( z X (i\‘u'" )xg}f l < K
™ :
- =0 N \ ::SK)
% I, £ N
Therefore l A;\.Q -5 l< K o=

sl I'\\,m\ A X ‘ \“‘M“\ l) S

N2 .
and ',\, ki {‘(lA L
™
Kﬁ"i : ; = 4
so that E l\R R is aasolutely convergent., The uniform

convergence inside CL, follows immediately.

.Theorem 16. A function.f(E) a.,p. inside a tube CL. can be

continued analytically into a convex tube, inside which it is

a.p' L]

Proof: We prove first the following lemmas

TLemma. I1f g(z) is analytic and bounded in a tube Ii , the

1) _(2)

points X and x lie in.,3 , and

I (% 2
éI‘ x( énd £31-¥%

lg(z)|$€ for x =X (



then I %(i) \ég %@/ X 'T" . B LIRS (/ﬁ%( T2l T3 )

and all y.

PR, | any 4 Ty
Z. ‘ W *l (L ll..-})r*\)
where the Q... are real and det OH = ! ’

B Lot .. Do o) = AT

SRR function of w analytlc in a tube in the w space
containing nfl) and (0, .., 0), corresponding to X and X in

= 8 5 | 1
the 2z space. Ve can choose the &% so that u( ;-(“l’ [ L
Then In (% )|4&
1

for @ = (0,..,0) or (ul el ies Q) and 213 ¥. Per any'fixed

values of V V., and us =.. u, = 0, h(W) becomes an

2’ L | n n J o
! Dﬂ
analytiec and bounded function of w, in the strip O< e Sk&,

whose modulus is < & on the boundary of the strip. By the

Phragmen -Lindelof theorem,

in(w)l<¢
— . i o --"\“ . -—-—K;-n' \ = n

in the atrip. Hence Lg(z)lii ier X w0 A4 Tgi_ (TEQﬁfgn(Eq;
and all y.

The main theorem can now be proved as follows:

P

We can find a sequence {UBNKZHJ} of exponential

polynomials converging to f£(z) uniformly inside (L .. if

P P L k1)
{A%“;i}j converges uniformly iny for x = x and x .

we can find NO such that
ID (E hs g (& hee
‘@T’ 5 il i”(a) -'(l) Md& ‘61,‘, ]\l N\\ >N0¥
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By the lemma, | O\( Z)- DM('ZM é 3 for any point x on

R ¥ 4 £
i) o 3 ) 11 ¥, and all N, M

the line segment joining x
such that N > Ny, » M> M . Hence the set of values of X,
for which {DN(E)} converges uniformly for all y, is convex.
Its interior is an open convex set containing A. The sequence
converges uniformly inside the corresponding tube, and hence
represents a function a.p. inside this tube, and equal to
£(z) in (_.

If M is any set in Rn’ the +Y extehsion,of M consisting
of the points (xl, < - xn) such that a point (Xl’ T xl

/ :
with xz.r € x,. lies in M is denoted by M r+ We define M

v s X
r’ 91,1)

o

similarly. The +s extension of Mtr is denoted by M s and

TP a8
we denote other extensions siwmilarly. Clearly a multiple ex-
tension is independent of the order in which the extensions

are taken, e.g..M*r,+s =M, g,yr. If M is open or convex, the

extensions of Il are open or convex.

Theorem 17. If £(Z) is a.p. inside a tube (L , the exponents

-positi nents
{/\nﬂﬂvﬂggt“”.‘_‘_. ‘q{AW})mY;E are non-positive, the exponent
i

|
ar on-negativ and A i
{/\YPJ»t)m'i’p-\-} TR S W ){/\Y%J,'W\-r;} e n‘n HES Ve, an 18 a
tube inside . , then f(Z) can be continued analytically into
a function a.p. and bounded in the tube corresponding to the

- 1 f Al
sion A : | 0 .
eXten + rl)”‘)«_ﬁfp J-?P*la"')’y

%

Proof: Since Al can be covered by a finite number of intervals

I contained in A, we need only prove that f(z) is a.p. in

.

I g
S L R TR RL
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We can find a sequence {A%J(Ef} of exponential polynomials
converging to f(z) uniformly in I. It is known that for an
exponential polynomial A (z) in one variable Mééglo(ijl
0 Y L

18 a decreasing function of x if all the exponeéis of the
polynomial are non—positive_and an increasing function of x
if all the exponents are non-negative., Applying this theorem

Cb times, it follows that if s(z)is an exponential polynomial
with exponents from among those of f(Z) and |s(z)|¢& in I,

then |s(z)\4€ in I . Now given

™, 32 %Vp, =Ypu :-“:"Y'i,

¢ >0 we can find N, such that \SN(E)‘%M (E)\SE. in I

> 1 Ten (X} - & (z}l4 in 1L ‘
for N> N, , M >N . FWence |sy (Z) - g (z)]4€ R S
Hence the sequence { Sy (Ei} converges uniformly in i , ’
L ‘l'y”-. ."typ;':yp'!‘\,‘-.‘/-"y.ﬂ

so that its sum-function, which is an analytic continuation of

f(z),»80 a.p. and bounded in I | ;
( ) E M = - *vl ) 15 ‘9*YPJ—TP“'“ u{r

4

Theorem 18, If f(z) is a.p. inside a tube , and the ex-

L
e ——Te

pOﬂGI’ltS {./\YUW\?I—%J“,.J{)\’YP)M.\',P’E O’V\‘(J\- {/\'Yfg_h_‘ﬂ\-yp:\%)_ el B {/\T%'-’m?.}

1

are bounded above and below respectively, then f(z) is a.p.

inside the tube corresponding to A

¥}

15 Vg~ Vo jueipiilig e
Proof:

/\”JT"\»-< K for r = Ty, .., T, and all m,

/\—Y;m_v)"&\ fOI‘ I"_ - rp*lg " 09 rq andall ;
[ o o e R 2y w520 R 5 )
mence if (' is inside A , g(z)= £(2)L p , 4
. 1 S
is a.p. in the tube correSpondlng to A +rl’--"rq . Since
any tube inside the extension of Ck, can be contained in a tube

of this type, g(2z) is a.p. inside this extension, the tube

corresponding to A . Hence f(z) is a.p. inside
+rl’ .”-rq
this tube,



Theorem 19, If‘f(E) 18 a.,p. in some tube(]h and has all its

€Xponents bounded then f(z) is a.p. inside the tube

=L L0,.,.. ,-0< X < ®

Proof: This follows immediately from Theorem 18,

SEEerom 80. If £(E)} i% a.p. in & tube 0. such thet & s & s
and bounded in (L,, then it has no positive exponents /\xumr'
Proof: Suppose f(Z) ~v Z\AW\L}\*“Z

and |f(z)|<C in (. b
Then | A_ W E | -_-)/\.\%{,gm;%m“ ~13<C

for fixed values of Kis ooy XY o xr+l,..,Xh and arbitratily

large values of X.. This is only possible if A?,m <0 for
every m, .

Combining Theorem 17 and Theorem 20 we obtains

Theorem 21.' The class of a.p. functions such that

'YJ'W\).’O o = 5* 2 p’ =

5 : | SN, D
/\v,mYZO £8T T sn¥piara s 2 .

is identical with the class of functions analytic in some tube (L

auch that A = A, and bounded and 8.p. in

-r
tTlseeilpe=lpey,or ' Q

BRE tTrY, i.a 4T -rp+l, sSen tlg extension of any tube

pa
inside (L .
The Ty sy Ty section of a tube (L is defined to be the

/ / . .
set of points (zrq+l N i Zrn ) where T1» «+» Ty is a rearrange-

\

ment of |, .., n, for which some point:i .(Zl’ »es 2.), With
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zrq+1 s Zr;+l T . Zr; , lies in (L . Any section of a

tube is also a tube, in a space of fewer dimensions. Clearly,
if A is bounded, the T ¥e, rq section of(]v is actually the

Section of (1, -r by a hyperplane z

Tl, «sy I'p’ -rP‘\'l’o-v 9 rL

B v zrq = =K for all sufficiently large values of K. That
is, we can find K, such that if K > K, , the set of points

!

[ ) i { {
(zﬂV"” '-'”F%R) such that some point (Zyu~fzﬁ,4v% wzﬁ\)
lies in (l.is identical with the set of points (zrl PR T ; )

q+r L Tn
Such that the point (zl, .3 zn) with Zrl “eey = er :-er+l =
X 1 A -
sy = =8 = K z = 2 sey B - 2 lies in CL .
’ Tn vy o e Tp

Theorem 21A. If f(z) is any function of the class described in

Theorem 21, then

lim f£(Zz) R 2 | 4 548 Do) B5E, s il
X, =0

., -3~
k'

—

exists uniformly in yrl, ces Yo and uniformly in 2 -

q ;
(zrq+l’ i by zrn) (where ry, .., r_is a rearrangement of LS4, n)
in E: s the Tis o> rq section of (L . Moreover, this limit
is indepéndent of Ypp» * yrq and is a function O g(Z) of Z.

This function g (Z) is a.p. inside El , and

M\I “KR
g(Z) ~ 2, Aﬂi

—

2

/
where E; indicates a summaticn taken over all m for which

/\ :O (i=‘,-.,(]_)

')::ﬂ.“?-
A

Proof: The Dirichlet series of f(z) is summable to f (z)
uniformly in the ry, .., rp, -rp+1, ¢y ~rq extension of any

p _
tube (). inside Ly wa can find {k%(i)} such that



)
N (Z) = Eot—- A- {3(:{)

uniformly in this extension.

Given € >0 , there exists N, such that

‘f(i)-/:,N(Z)\é%- for N > N,z in the extension
of Q_I At
Now lim /) (Z) -EI w A"Q_AW:Z Cizlseeapod=pt] sssa8)
17{—903 i
x?é‘?—m
Hence we can find AN such that
l/bN(i) 2 :.iij;\m Q_A“"llé %— 6’« x"L>ANJL’é< Bt

; N) R .i\ < "E; ‘]-“./ >AT & -
Then \\f(E)-EJ\g\AﬁE 2 P f % N, r3-< AN

_ in
B i P S ) 2B s ees G)s NP,NO an.dallZme_
Then £(z) - £(Z)| €€ for x_ > A4, A
' l Ta™. No ’ xjr.ﬁ NO . xrj

<= Ay 1 <-4 » (izl,.c,p53=pt, .., q} and all
s 1 oK o 0 |
b4 d
Fain & .
Henge MR B02) 7 (o= legis cnip 132 Bl Tiog ¢) exints
X, >0

uniformly in yp. » «+» Y. uniformly in 2 in E s and depends

i 8. j{ﬁu Limi by o0 (Z)

only upon &Y. Then ,
7 IN) A
?(Z) E:OL_ A_se

R LAY
m

&'gfor K - N, and all E Iac .
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Hence g(z) is a.p. in E and
- / 100
(Z) Nz N
g Ax <
In the particular case when q = n, the theorem asserts

xlf% £(z) w1y s s pil st

o
a

is equal to the constant term of the Dirichlet series of f£(z).

f)
Theorem 22, If £f(z) is analytic in a tube(l,ggﬁithat

A=A where r.» «;5s . i ®
B e iy Py s s T i i

rearrangement of 1, 2, .., n and if the partial derivatives of
f(Z) are a.p. in the e T frp » "Toilr se -rnr extension

- of any tube inside CL » and moreover
L=< 0 for r = r S P 1Tm, <@
/\7,‘"\‘1— A - 1 ? ] p! ¥

l
/\‘rm >?\ >(/' fOI‘I‘:I‘

/

for the exponents of each of these derivatives,

then f(z) is a.p. in the TTys ses ™ extension of any tube
inside (L .

Proof: By Theorem 17, we need only prove that £(z) is a.p. inside
CL. By Theorem 9, we need only prove it to be bounded inside

Q,, and, by the Heine-Borel theorem, need only prove it to be

bounded in any interval

Iz a-lé*xlé bl! ‘o9 anéxné bn’

inside (1.. We prove it to be bounded in J_ y the -brl, ..,+rp,

«r extension of I,
p+l’ S n
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4 )
aA (2 % A ) — A
A(zy, "’r\) A (va*m*z— ftZ) is bounded

For e \ “'%J 5 %;
-

in I s by Theorem 17, s : <
Fhy kA T R

?\f‘Iﬂr‘-r"‘ ‘ :
Hence’ in j § ‘ EE—ZY‘Q(Z\)\ < K 2. P Pl w\
ser r & | ., iii &L It is then easily shown that for fixed values

szl L e

‘ y?: %YI&(Z) d=. \ i 3_}:(_*' 9\?\(QYI+.\.=«&YP\.‘ A (6?“5“;@7:)

A for ral,.. .0

——
St

) (2)
Wherw (&Y., Z.s e zn) and (zl, S Z_T" 25 zn) lie inj_

and '}\* R SN

Hence ;
].f(z) -f('z( )| e \:K\ @ X tas T : "me"'TG"’D

| - W Sl
for any z in T (z is some fixed point in 5 ) sa that

£(Z) is bounded in J .

The definition of the extension of a set in Rn can be
generalized to cover the notion of an extension in any direct-

ion, not simply in a direction parallel to one of the coordinate

axes,

If M is any set in R, the '/CC extension of M is defined

as the set which contains all the line segments

LR TR E S R t 20

originating at points (x,°, .., x,°) of M. This set is denoted

il |} — () )

by M-r; . Iur \i} i T" extension of M is defined as the_'}l(
éxtension of the '}I.(U extension of M. Extensions of higher
order are defined similarly. Multiple extensions of M are inde-
pendent of the order in which the extensions are taken, e.g.

M.w-o = M-ay . If M is open or convex the extensions of M

e g



al

are open or convex. The tube in (Zl’ ) Zn) Space correspond-

ing to the Fl extension of a set A is denoted by (l?; and called

the ?; extension of (L.

Theorem 23,  1f £(Z) is a.p. inside a tube L » there exist

a4 vectors F£12.,§f3&ch that
P’-(L)i\"éo : i:I’--!q

— /
for all exponent vectors /\ 7 ¢ and O- is a tube inside (L ’
then f(z) can be continued analytically into a function a.p.
e 3 | "'(_f /
and bounded in the FE 2., FIQ) extension.of(J-.

Proof: We prove the theorem first in the important special case

=== p—
when ]L, ..,}k%l are linearly independent. Then g < n, and we
: — \%1‘-1 — () _ - () —_ ) ; 1
can find Pleoees B S0 that K, .., are linearly in-

dependent.
- We make the change of variable

n (é;
Z"ZM&W,, (izl, s oy n)

A 4 A
y A

L1 SR ¥

Then g(w) = f( le?pﬂ\ LW w; ) is a.p. inside the
o .

Rt TR S "'._i

tube Cl, in w Spéce into which (L is carried by the transformation,
‘ ‘ . 1 - ; —-—\” ....k%' x
(" is ecarriéd into Cl, inside (L , and the Wy ..y K extension

.
of Cl/ is carried into the «+~l,.., v+q extension of Cl, . Dy

Theorem 17, g(w) can be continued analytically into a function a.p.

and bounded in this extension. Hence f(z) can be continued analyt-
—\il —\f

ically into a function a.p. and bounded in the ,l i fx X~

tension of CL .
To extend the proof to the general case, we note that the

',x-,?\" <0

condition
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requires that the exponent vector A\ 1ie in the half-space on
One side of aﬁ (nul) space through the origin. If the q half-
Spaces of this kind have no common point except the origin,
then the only possible exponent vector is {6,0,..:;0} snd £(=)
i8 a constant. Otherwise, some vector -6[ lies in all these
half-spaces, whence all the vectors T: lie within an angle %f
of VEZ . We need therefore only prove the following lemma.

Lemmas If each of a finite set S of vectors in.Bn
makes an angle & %h with a vector ol y the extension of any
set M by means of the vectors of S is the sum of the

—) —@ : —() .
tk o5 0 o P- extensions of M, where o ees P is any

linearly independent set of Yectors from S .

Proof: The theorem will be proved for any set M if it
is proved for a single point, which we may take to be the origin,
We transform the theorem into a theorem on poinlsets by consider-
ing the section of the S - extension of the origin by the hyper-
plane H: v % ' |
The vectors of S go into points in H , some of which may be
at infinity, a vector extension goes into the convex closure of
the points corresponding to the vectors, the sets of lineerly
independent vectors go into sets of linearly independent points.
Hence we need only prove:

The convex closure of any finite set & of points (some
of which may be at infinity) in Euclidean n-space is the sum of
the convex closures of all linearly independent sets of points in S,
We prove this by induction. Lf there are q points in S of

which O_ is one, the convex closure of S is the convex closure

of O- and the set C which is the convex closure of the remaining
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(q-1) points of S . Now this convex clasure C is a convex
polytope of at most n dimensions, and its faces are convex
polytopes of at\most (n-1) dimensions, whose vertices are points
of 8 . Any point p which lies on a line segment joining a to
& point of € 1lies on a line segment joining o to a point of
Ssome face of C , By the induction hypothesis, this last point
lies in the convex closure of a linearly independent set of
points of S 1lying in this face. If & is linearly dependent
ugon these points, then p lies in an (n-l) space through the face,
and, by the induction hypothesis, p lies in the convex closure
of a linearly independent set of points of S . IfOQ is linearly
imdependent of these points we adjoin it to them, and p 1lies in
the convex closure of the linearly independent set of points
of S thus obtained.

It is clear from the proof of Theorem 2 , that if a vector
lies inside the S = extens%on_of the origin, it lies inside the
Fw, B i P$/ extension of the origin, where ﬁh, % F?‘ is

some maximum linearly independent set of fectors from S.‘ The
corresponding vector in Ik space lies inside the *, .., +p ex-
tension of the origin. Hence, as K -3 a].ong. any line in
the same direction as this vector, up2% ... - k=20 , Hence,

in the special case when S contains n linearly independent

vectors, we can apply Theorem 21 .A to the function g(w) to obtain:

, Theorem 24, If £(z) is a,p. inside a tube Q_ » there exisf g

~) -~ | ;
vectors r;' i ves T'Lm (containing n linearly independent vectors)

Such that

L) ; .
7oA <O (4o s a)

7y




—

for all exponent vectors /\;\, ® is a point of A, and F: lies
in the '?Fib,,,ifﬁ extension of the origin, then

£ oo FRE CLRD
tends to the constant term of the Dirichlet series of f(z) as

€ —® , uniformly in y , uniformly in G. when 3. ranges over

some bounded subset of A.

Theorem 25. If f(z)

is a.p. inside a tube (L » and

FRL< K

Ly «vs q)

for all exponent vectors /\-;—,\ then £(2) is a.p. inside the Fiu F\(@
=)y

extensions of (l.

—

proof: Take o such that pi“lx >K foriel
e = "‘;-2 A ] ; : ~Al) __.{c“
g(z) - £(z) e 18 a.p. inside the |k ,.., ." extension of

y »o3 38. THEN

09 , by Theorem 22, ¥Yence f(z) is also a.p. inside this tube.

Theorem 26. If f£(z) is a.p. in a tube (L which is identical

with its F. extension, and bounded in 3 , then
FARSO
ft;r- all the exponent vectors ]\-ﬁ of f(2z)
Proof: As in Theorem 22, we transform f£(z) to a function g(w).
Applying Theorem 20 to this function, we obtain the theorem.

Combining Theorem 22 and Theorem 25, we obtain:

b }* i ek 25 i
ntical with the class of functions analytic in soume tubeCL

() -~ (3
necides with its F—,).., r*‘ extension, and bounded and a.p.

J t
9 eey VL extension of any tube (L inside A .
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