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Abstract

There is a large field of research dedicated to the development of biomarkers for
an early diagnosis of Alzheimer’s disease (AD). Predicting AD dementia within an
individual, especially at a prodromal stage like mild cognitive impairment (MCI),
is complicated by the vast amount of heterogeneity present in populations. This
thesis explores heterogeneity in brain organization with magnetic resonance imaging
(MRI) in order to develop biomarkers to identify individuals who will progress to
AD dementia. Chapter 1 provides a brief introduction to the problem at hand and
lists the specific aims of this thesis. Chapter 2 provides a review of the literature of
biomarker development for AD, with a focus on MRI-based studies and prediction
of cognitive trajectories with machine learning. In chapter 3, we present a study
that explored whether there were functional connections in resting-state networks
that could consistently discriminate between patients with MCI and cognitively
normal older adults in the face of heterogeneity from methodological procedures.
We identified functional connections that were robustly altered in the default mode
network and the cortical-strial-thalamic loop, albeit with small to medium effect
sizes, in MCI patients compared to controls in several independent datasets. We
also provide sample size estimates to obtain adequate statistical power in a multisite
study setting. Chapter 4 presents a study describing resting-state networks at various
spatial resolutions in a heterogeneous sample of older adults with and without
cognitive impairment. In chapter 5, we describe a study in which we developed
a signature based on brain atrophy patterns and cognitive deficits that is highly
predictive of future progression to AD dementia in a subgroup of individuals with
MCI. By harnessing the heterogeneity in brain structure, we were able to achieve
higher positive predictive values and specificity compared to previous works at
predicting progression to dementia from the MCI stage. Lastly, a discussion of the
contributions and future developments from these studies is presented in chapter 6.
This thesis provides novel insights into the heterogeneity of structural and functional
brain organization and the use of MRI as a tool to develop biomarkers for AD.
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Résumé

Il y a un grand domaine de recherche dédié à l’identification précoce de la maladie
d’Alzheimer (MA). La prédiction de la démence liée à la MA chez un individu,
surtout dans ceux qui sont atteints des troubles cognitifs légers (TCL), est compliquée
à cause de la variabilité au niveau des populations. Cette thèse explore l’hétérogénéité
dans l’organisation du cerveau avec l’imagerie par résonance magnétique (IRM) pour
l’objectif de développer des biomarqueurs capables d’identifier des individus qui
seront atteints de la démence liée à la MA. Chapitre 1 introduit le problème et les
objectifs spécifiques de la thèse. Chapitre 2 consiste en un survol de la littérature du
développement des biomarqueurs pour la MA, avec un emphase sur les études d’IRM
et la prédiction des trajets cognitifs avec l’apprentissage machine. Chapitre 3 offre
un étude où on examine la présence des connections fonctionnels dans les réseaux
d’état de repos qui pourraient discriminer systématiquement entre les patients avec
des TCL et les personnes âgées cognitivement sains, malgré l’hétérogénéité des
procédures méthodologiques. On a identifié des connections fonctionnels dans le
réseau mode par défaut et le circuit entre le cortex, striatum et thalamus qui étaient
altérés de manière robuste dans les patients avec des TCL comparés aux contrôles
dans plusieurs jeux de données indépendants. Nous offrons aussi des estimations
des tailles d’échantillon pour obtenir le pouvoir statistique adéquat dans un contexte
de recherche multisite. Chapitre 4 présent un étude qui décrit les réseaux d’état de
repos à travers de nombreux résolutions spatiaux dans un échantillon hétérogène de
personnes âgées avec et sans des troubles cognitifs. Dans chapitre 5, on a développer
une signature basée sur les patrons d’atrophie du cerveau et déficits cognitifs qui est
hautement prédictive de la démence liée à la MA dans un sous-groupe d’individus
avec TCL. En employant l’hétérogénéité de la structure du cerveau, on rapport des
valeurs prédictive positives et des spécificités plus hausses que les études antérieures
qui ont visé à prédire la progression vers la démence de l’étage des TCL. Finalement,
le chapitre 6 porte sur une discussion des contributions et développements futurs
de ces études. Cette thèse apporte des nouveaux apprentissages par rapport à
l’hétérogénéité de l’organisation structurelle et fonctionnelle du cerveau et l’utilité
de l’IRM comme un outil pour le développement des biomarqueurs de la MA.
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Chapter 1

Introduction

1.1 General context

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and the most
common cause of dementia. As AD is an age-related disorder, more and more
individuals will develop AD as the population ages. For instance, there are currently
53 million adults aged 65 and older in the United States in 2018. This segment of
the American population is projected to increase to 88 million by 2050, followed by
an expected doubling of the number of AD cases (Alzheimer’s Association, 2018).
Under current circumstances for diagnosis and treatment, the cost of medical and
long-term care expenditures for American individuals who will develop AD in 2018
is projected to be $47.1 trillion USD (Alzheimer’s Association, 2018). AD clearly
presents a public health crisis that requires imminent solutions.

Unfortunately, there is currently no disease-modifying drug for AD that can
reverse or slow down the course of the disease. The failures for clinical trials of
disease-modifying agents have been blamed on lack of efficacy, among other reasons
(Cummings, Morstorf, and Zhong, 2014). The lack of efficacy could be due to drugs
being tested too late in the disease process when irreversible neurodegeneration has
already occurred in clinical trial participants (Aisen, Vellas, and Hampel, 2013). The
pathology of AD develops over decades prior to the emergence of clinical symptoms.
Individuals who develop AD dementia typically experience an intermediate prodro-
mal phase called mild cognitive impairment (MCI), where some cognitive deficits
are apparent but not severe enough to impede daily function. There is therefore a
push to target pre-symptomatic individuals with disease-modifying agents to try to
prevent disease progression. A second reason for a lack of demonstrated efficacy
could be heterogeneity within clinical populations. AD exists in several forms, and
an individual’s risk for developing AD depends on a variety of factors including, but



CHAPTER 1. INTRODUCTION 2

not limited to, genetics, cardiovascular health, and brain reserve. This heterogeneity
may explain why inclusion criteria for clinical trials have had low to moderate posi-
tive predictive value for diagnosing MCI subjects who would develop AD dementia
(Visser, Scheltens, and Verhey, 2005). The failure of clinical trials at the MCI stage in
order to prevent dementia may be partially attributed to the incorrect inclusion of
individuals who will not develop AD dementia. The development of a biomarker for
early and precise diagnosis that would account for this heterogeneity could greatly
improve patient selection for clinical trials and could identify high-risk individuals
for earlier interventions.

1.2 Objectives

A promising tool that is already widely used in clinical settings to aid in the diagnosis
of AD is magnetic resonance imaging (MRI). The overall objective of this thesis was
to explore heterogeneity within MRI-based biomarkers in order to discover a brain
signature that is highly predictive of Alzheimer’s dementia. Such a signature could
include, for example, atrophy in the medial temporal lobes and specific nodes of the
default mode network, dysconnectivity within those regions, and cognitive deficits.
We focused on two MRI modalities, structural and functional MRI, and examined
their potential to explain cognitive outcomes. Specific objectives from each chapter
that presents original research are described below.

Chapter 3 objectives

Chapter 3 of this thesis assessed the robustness of resting-state connectivity derived
from functional MRI as an early biomarker for AD, in the face of heterogeneity from
different image acquisition and diagnostic protocols. To this end, we combined
multiple independent datasets of resting-state functional magnetic resonance images
from MCI and cognitively normal subjects to test the consistency of functional
connectivity differences between these two diagnostic groups.

Chapter 4 objectives

Chapter 4 was a companion paper to Chapter 3 and described resting-state network
parcellations that are present in a large heterogeneous population of older adults
with or without MCI.
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Chapter 5 objectives

Chapter 5 of this thesis characterized the variability in brain atrophy patterns, derived
from structural MRI, and characterized the heterogeneity to develop a signature that
has high positive predictive value at predicting incipient AD dementia in MCI
subjects. We achieved this by identifying subtypes of brain atrophy in AD and
control subjects. We then applied a machine learning algorithm to classify AD and
controls based on brain atrophy subtypes and cognitive test scores. This resulted in a
signature that was common to AD patients but not represented in controls. We then
transfered the predictive model to identify a subset of individuals who carried the
signature and who would progress to AD dementia from a dataset of MCI subjects.
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Chapter 2

Review of the literature

2.1 Alzheimer’s disease

Alzheimer’s disease (AD) is an age-related neurodegenerative disorder and the
leading cause of dementia, representing between 60% to 80% of cases (Alzheimer’s
Association, 2018). Dementia is a syndrome characterized by deficits in cognition,
such as memory or language problems, that impair an individual’s ability to live
independently and to perform daily activities. Dementia represents an end-stage
of AD as cognitive impairments are only apparent after the pathology of AD has
developed within an individual for decades. The pathological markers of AD are
amyloid beta (Aβ) plaques and neurofibrillary tau tangles in the brain. The "amyloid
cascade hypothesis" (Hardy and Selkoe, 2002) is currently the most widely accepted
disease model for AD. This hypothesis posits that excess Aβ in the brain is the
primary driving force behind AD. It is believed that an imbalance between producing
and clearing Aβ leads to an increase in the Aβ peptide and plaque formation, which
disrupts synaptic function and accelerates tau phosphorylation and neurofibrillary
tangle formation. This eventually causes synaptic failure and neuronal death, which
subsequently results in dementia. Note that this hypothesis is yet to be proven and
that it might not fully capture the complexity of AD. The cascade of events leading
to AD dementia is illustrated by Figure 2.1.

Amyloid precursor protein (APP), presenilin 1 (PSEN1), and presenilin 2 (PSEN2)
have been identified as causative genes associated with a familial form of AD that
presents with an early onset of symptoms (before the age of 60 to 65 years). AD cases
arising from mutations in APP, PSEN1, and PSEN2 account for about 1% of all AD
cases (Bekris et al., 2010). Mutations in these genes all lead to an overproduction of
Aβ42 (Bekris et al., 2010), a form of Aβ that is more prone to aggregating together
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Figure 2.1: Model of dynamic biomarkers of the Alzheimer’s disease pathological cascade. Neu-
rodegeneration is measured by FDG PET and structural MRI, which are drawn concordantly
(dark blue). By definition, all curves converge at the top right-hand corner of the plot, the point
of maximum abnormality. Cognitive impairment is illustrated as a zone (light green-filled area)
with low-risk and high-risk borders. People who are at high risk of cognitive impairment due
to Alzheimer’s disease pathophysiology are shown with a cognitive impairment curve that is
shifted to the left. By contrast, the cognitive impairment curve is shifted to the right in people
with a protective genetic profile, high cognitive reserve, and the absence of comorbid patho-
logical changes in the brain, showing that two patients with the same biomarker profile at a
given time can have different cognitive outcomes. Aβ=amyloid β. CSF=cerebrospinal fluid.
FDG=fluorodeoxyglucose. MCI=mild cognitive impairment. MRI=magnetic resonance imaging.
PET=positron emission tomography. Figure and adapted caption from Jack et al. (2013).



CHAPTER 2. REVIEW OF THE LITERATURE 6

and forming the amyloid plaques that are associated with AD (Snyder et al., 1994).
These cases of AD are called autosomal dominant forms of AD.

The large majority of AD cases present with a later onset of symptoms (after
the age of 60 to 65 years). Unlike the autosomal dominant forms of AD, the cause
for late-onset AD is less clear. The greatest risk factors for this form of AD are age,
carrying the ε4 allele of the apolipoprotein (APOE) gene, and having a family history
of AD. Of these risk factors, age is the greatest risk factor as the prevalence of AD
increases significantly with advancing age: 3% of individuals between 65-75 years
have AD, but this number jumps to 32% in those aged 85 years or older (Hebert
et al., 2013). So far, a polymorphism in the APOE gene is the single greatest genetic
risk factor for developing late-onset AD. The APOE gene has three common alleles:
APOE ε2, APOE ε3, and APOE ε4. APOE ε3 is the most common allele (Farrer et al.,
1997). Compared to ε3, carrying the ε2 allele may confer a protective effect against
developing AD, while the ε4 allele is a major risk factor (Farrer et al., 1997). The
risk of AD increases by a factor of 2.84 for each ε4 allele that an individual carries,
which means that an individual with a 4/4 genotype is more than 8 times as likely to
develop AD compared to subjects with 2/3 or 3/3 genotypes (Corder et al., 1993).
However, there are still other genetic (and non-genetic) factors that remain to be
discovered as having first-degree relatives afflicted with AD dementia also increases
one’s risk for AD, even after accounting for APOE genotype (Martinez et al., 1998).
This thesis will focus on the late-onset form of AD.

2.1.1 Mild cognitive impairment

Mild cognitive impairment (MCI) is a clinical entity that encompasses the grey
area between intact cognitive function and clinical dementia (Petersen et al., 2014).
Individuals with MCI experience a degree of cognitive impairment that is not so
severe as to impede activities of daily living. MCI was previously seen as a transient
stage on the path toward dementia. However, the heterogeneity within this clinical
entity actually makes prognosis rather challenging. A meta-analysis reported that
only up to 36% of MCI patients will develop AD dementia within a span of two years
(Ward et al., 2013). This shows that while MCI can be a significant risk factor for AD
dementia, many MCI patients will remain cognitively stable.

Different subtypes of MCI have been described based on symptomatic expression.
Often, MCI patients are categorized as amnestic MCI, patients who have memory im-
pairment, non-amnestic MCI, those who have impairments in non-memory domains,
and multi-domain MCI, patients with concurrent impairments in multiple kinds of
cognition (Petersen, 2003). Evaluating an individual’s prognosis can be improved
by placing the patient in a specific subgroup because certain subgroups may have
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higher or lower risks for dementia. Amnestic MCI subjects are more likely to be
diagnosed with dementia than non-amnestic MCI (Aggarwal et al., 2005; Busse et al.,
2006), but the group at highest risk of conversion is multi-domain MCI (Tabert et al.,
2006). Of multi-domain MCI subjects, 59% progressed after two years of follow-up,
while only 18% of amnestic single domain MCI progressed, and 70% of non-amnestic
single domain MCI actually improved. This is evidence that outcomes can vary
substantially among MCI subpopulations.

2.1.2 Diagnosis of Alzheimer’s disease

It used to be argued that the only definitive method for determining whether an
individual has AD is through post-mortem neuropathological examinations. During
such an assessment, a pathologist will look for amyloid plaques and neurofibrillary
tangles inside the brain of an individual to determine whether the cause for one’s
dementia is AD. In living individuals, only clinical diagnoses of "probable AD
dementia" or "possible AD dementia" are possible. A clinical diagnosis of probable
or possible AD dementia is based on cognitive assessments and a patient’s history
(McKhann et al., 2011). Brain imaging with magnetic resonance imaging (MRI) is
often used for differential diagnosis from other conditions that could cause dementia.

Interestingly, clinical diagnoses often do not match with pathology, which reveal
that the previous gold standard of a pathological diagnosis may be an oversimplifica-
tion. About a third of cognitively normal older adults had significant AD pathology
when examined after death (Bennett et al., 2006). Beach et al. (2012) found that 17%
of clinically diagnosed AD dementia patients did not meet criteria for a neuropatho-
logical definition of AD. The same study also found 33% of cases were unclassifiable
because neuropathological guidelines were too restrictive (Beach et al., 2012). It is
becoming increasingly clear that AD is a complex and heterogeneous disorder, and
we need to study the variability within populations if we are to ever reach the level
of personalized medicine.

In fact, it has been shown that there are neuropathologically defined subtypes of
Alzheimer’s disease. Autopsy studies have characterized AD subtypes based on the
density and distribution of neurofibrillary tangles in the cortex and hippocampus
(Murray et al., 2011). Murray et al. (2011) described "typical", "hippocampal sparing",
and "limbic predominant" cases of AD. Compared to typical cases, the hippocampal
sparing subtype had less neurofibrillary tangles in the hippocampus than in the
cortex, whereas the limbic predominant subtype had more hippocampal tangles
than in the cortex (Murray et al., 2011). Given that tau causes neurodegeneration
(Spillantini and Goedert, 2013), the variability in tau deposition may account for the
heterogeneity seen in brain atrophy and symptomatic expression in AD.
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2.2 Biomarkers of Alzheimer’s disease

A biomarker is an objective, accurate, and reproducible measure of indications of
a medical state that can be observed from outside a patient (Strimbu and Tavel,
2010). According to the National Institutes of Health Biomarkers Definitions Working
Group, a biomarker can be used to evaluate normal biological processes, pathogenic
processes, or pharmacologic responses to a therapeutic intervention (Biomarkers
Definitions Working Group et al., 2001). There are several biomarkers that have been
or are currently being developed to detect or track the progression of AD. These
biomarkers include measures of molecular pathology, neuroimaging, and cognitive
assessments.

2.2.1 Amyloid and tau markers

Biomarkers for Aβ and tau are regarded as core biomarkers for AD as these two
proteins form AD pathology. Aβ and tau can be quantified through the cerebrospinal
fluid (CSF). In AD, there is a marked reduction of Aβ in the CSF, which reflects
greater Aβ plaque formation in the brain (and by consequence, less diffusion of Aβ

into the CSF) (Blennow et al., 2010). Tau, on the other hand, is present in higher
concentrations in the CSF in AD, and reflects the degree of neuronal degeneration
(Blennow et al., 2010). More recently, positron emission tomography (PET) imaging
is increasingly being used to quantify Aβ and tau. While these biomarkers directly
measure the underlying pathology of AD, their usage outside of research settings for
diagnosis is currently not recommended (McKhann et al., 2011).

2.2.2 Magnetic resonance imaging markers

Magnetic resonance imaging (MRI), on the other hand, is a widely used clinical
tool. With different MRI techniques, we can measure brain structure and function.
This thesis will focus on two forms of MRI: T1-weighted structural imaging and
T2*-weighted task-free functional MRI (fMRI).

2.2.2.1 Structural imaging of brain atrophy

Structural imaging of the brain through T1-weighted MRI has become an important
aspect in the clinical assessment of AD as it can capture neurodegeneration and
because the degree of atrophy measured with MRI correlates well with tau deposition
and cognitive deficits (Frisoni et al., 2010). Brain atrophy can be measured with
different metrics extracted from structural MRI. Two common measures are grey
matter volume and cortical thickness. It is well known that extensive neuronal
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loss occurs in the medial temporal lobes in AD patients (Jack et al., 1997). Medial
temporal lobe atrophy may be an early marker of AD as it can also be seen in MCI
patients (McDonald et al., 2009). As the disease progresses and clinical symptoms
become more severe, atrophy typically spreads to the parietal and frontal lobes,
while leaving the sensorimotor and visual cortices relatively intact (McDonald et al.,
2009); see Figure 2.2. Although this represents a stereotypical pattern of AD-related
neurodegeneration, there is actually substantial variation in atrophy patterns among
individuals, which is likely due to heterogeneity in tau pathology. A number of
works have reproduced a subtype characterized by primarily medial temporal lobe
atrophy, a second subtype characterized by parietal, occipital, and lateral temporal
lobe atrophy, and a third subtype with diffuse atrophy (Noh et al., 2014; Hwang et al.,
2016; Park et al., 2017; Varol et al., 2017); see Figure 2.3. These atrophy subtypes
correspond well to the neuropathological subtypes that were characterized by Murray
et al. (2011).

Figure 2.2: Annual atrophy rates as a function of degree of clinical impairment (i.e., baseline
Clinical Dementia Rating Sum of Boxes score [CDR-SB]). Mean atrophy rates are represented as a
percent change in neocortical volume and mapped onto the lateral (left), ventral (middle), and me-
dial (right) pial surface of the left hemisphere. These data demonstrate that atrophy rates are most
prominent in posterior brain regions early in the course of disease, spreading to anterior regions
as the level of impairment increases, with relative sparing of sensorimotor regions. MCI=mild
cognitive impairment; AD=Alzheimer disease. Figure and caption from McDonald et al. (2009).
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Figure 2.3: Images of cortical thinning patterns in three subgroups of Alzheimer’s disease demen-
tia patients, compared with cognitive normal subjects. Gray areas indicate brain regions showing
no statistical significant in cortical thickness compared to control groups. Darker blue areas indi-
cate areas with more cortical thinning in AD patients compared to controls. Figure and adapted
caption from Hwang et al. (2016).

Similarly to the different types of MCI, subtypes of atrophy may carry varying
degrees of risk of developing dementia. The subgroup with parietal, occipital, and
lateral temporal lobe atrophy tended to be younger and had the worst cognition
(Noh et al., 2014; Park et al., 2017), while the medial temporal lobe atrophy subtype
contained a greater proportion of carriers of the APOE4 allele (Varol et al., 2017),
and the diffuse atrophy subtype had the least Aβ and tau burden (Varol et al.,
2017). Expressing specific patterns of brain atrophy may be predictive of cognitive
trajectories. Zhang et al. (2016), for example, found that subjects with more temporal
lobe atrophy had steeper declines in memory, while subjects with diffuse atrophy
across the cortex had steeper declines in executive function. Additionally, Dong
et al. (2017) described subjects with widespread brain atrophy, and especially those
who also express greater loss in the temporal lobes, progress faster from MCI to AD
dementia compared to subjects with more localized atrophy (Dong et al., 2017).

2.2.2.2 Resting-state functional neuroimaging

Functional magnetic resonance imaging (fMRI) is a tool that measures oxygenated
blood flow, which we can use as a proxy for neural activity. A localized increase
in neural activity is directly reflected in a localized increase in the fMRI signal
(Logothetis et al., 2001), as oxygenated blood will rush towards areas with sustained
neural activity to replenish depleting resources of the active neurons. Resting-state
connectivity in fMRI captures the coherence of spontaneous fluctuations in blood
oxygenation across different brain regions. This can enable us to examine brain
networks, formed from regions that are said to be functionally connected when they
exhibit the same fluctuations in blood flow. Common resting-state networks are
shown in Figure 2.4.

In research contexts, MRI images typically go through some preprocessing before
any statistical analyses are done. For example, T1-weighted structural images will
usually undergo as a spatial normalization so that the brains of all subjects within a
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Figure 2.4: A 7-network cortical parcellation from resting-state fMRI. Common names associated
with each network in the neuroimaging literature are included in parentheses. Figure and caption
adapted from Yeo et al., 2011.

dataset will be in the same space. This enables us to make inferences a group level
about localized effects, such as atrophy in a specific brain region. In resting-state
fMRI, not only does spatial normalization occurs to align the brains of different
subjects as in T1-weighted image preprocessing, but other preprocessing steps are
applied to correct for potential artifacts that could influence subsequent analyses.
Physiological activity (e.g. heart beat, respiration, head motion) may impact the
resulting fMRI signal, for example. Common preprocessing steps for resting-state
fMRI images include: 1) slice timing correction to correct for sampling different layers
of the brain at slightly different times, 2) rigid-body motion estimation to correct for
motion, 3) coregistration of the fMRI image to a reference space, 4) resampling the
fMRI image to the reference space, 5) regression of nuisance covariates from the fMRI
time series, such as slow time drifts, white matter signal, and ventricle signal, and 6)
spatial smoothing to improve the signal to noise ratio.

The seminal work of Greicius et al. (2004) found that functional connectivity in
the default mode network (DMN) (illustrated as the "red" network in Figure 2.4)
may be able to distinguish AD patients from controls, which spurred interest in
developing resting-state fMRI as a biomarker tool for AD. Since then, many groups
have reported decreased functional connectivity between nodes of the DMN in AD or
MCI patients compared to controls (Bai et al., 2009; Koch et al., 2012; Liang et al., 2012;
Sorg et al., 2007; Zhang et al., 2010) (also see Badhwar et al. (2017) for a meta-analysis
of 37 studies). The value of resting-state fMRI as an AD biomarker may be even
greater when we consider the evidence that Aβ deposition occurs in DMN regions
(Buckner et al., 2005) and that AD-related neurodegeneration preferentially spreads
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through the DMN (Seeley et al., 2009). There is also evidence that aberrant DMN
connectivity appears prior to any measurable amyloid plaques in cognitively normal
APOE ε4-carrying individuals (Jones et al., 2016; Sheline et al., 2010b), which may
place DMN function at the epicentre of the AD cascade.

Although there is a semblance of consistency in the resting-state fMRI literature in
AD, substantial variation exists. For example, when we examine studies individually,
we can find reports of increased connectivity between the middle temporal lobe and
other DMN areas in MCI (Qi et al., 2010), as well as reports of decreased connectivity
between these same regions (Bai et al., 2009), and others have reported no significant
differences between MCI and controls (Koch et al., 2012). While low sample sizes can
be a simple explanation for this variability, there are also methodological differences
that should be considered. For example, variability from subject selection or image
acquisition may make comparisons of results across independent studies difficult.
The robustness of functional connectivity changes in AD populations must be first
tested if resting-state fMRI is to be used as a potential biomarker.

2.3 Predicting clinical trajectories with machine

learning

There is a growing body of literature dedicated to using machine learning to predict
clinical outcomes. Broadly speaking, machine learning can be divided into different
subcategories: supervised and unsupervised. The learning is considered to be super-
vised when input-output labels are given to the predictive model during the training
phase (Jain, Murty, and Flynn, 1999) so that the resulting classifier will be able to label
new unseen data. A classification problem that would use a supervised algorithm
could be the automatic diagnosis of AD based on features such as clinical symptoms
and brain atrophy. Commonly used supervised machine learning algorithms include
support vector machines, logistic regression, decision trees, and k-nearest neighbours
(Dreiseitl and Ohno-Machado, 2002).

Unsupervised learning, on the other hand, is completely data-driven and aims
to find meaningful structure in data that is unlabeled or uncategorized (Jain, Murty,
and Flynn, 1999). Data mining, for example, finding subgroups within data when it is
unknown how the data is divided, would use an unsupervised algorithm. Clustering
algorithms (e.g. k-means, fuzzy k-means, hierarchical, mixture Gaussian) are popular
examples of unsupervised learning (Jain, Murty, and Flynn, 1999).

Ensemble methods in machine learning combine multiple algorithms with the
aim to achieve better predictive performance compared to any of the individual
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member algorithms (Dietterich, 2000). An ensemble of classifiers will classify new
unseen data by taking a weighted vote of the predictions by the individual classifiers
(Dietterich, 2000). Popular ensemble methods include Bayesian averaging, bagging,
and boosting (Dietterich, 2000).

One advantage to applying machine learning to the medical field is the potential
to produce a tool that could automatically detect progression to AD dementia with
high predictive power in a data-driven fashion. Metrics that are commonly used to
evaluate the performance of a predictive model include accuracy, positive predictive
value, sensitivity and specificity. Accuracy represents the proportion of subjects
that were correctly identified as either positives or negatives. Positive predictive
value is the proportion of true positives out of all subjects that were classified as
positive, and it depends on the prevalence of a condition in a population. Sensitivity
is the proportion of individuals with the condition (e.g. progressive MCI) who
were correctly identified as positives by the model. Specificity is the proportion of
individuals without the condition (e.g. stable MCI) who were correctly identified as
negatives by the model.

This thesis will focus on building a predictive model with MRI markers and
cognition to classify MCI subjects who will progress to AD dementia (i.e. progressive
MCI (pMCI)) and those who will remain cognitively stable (i.e. stable MCI (sMCI)).

2.3.1 Cognition-based predictive models

Given the central role cognitive testing plays in the diagnosis of dementia, a number
of studies have used neuropsychological assessments to identify pMCI. Cognitive
test scores have tended to be the strongest predictors of incipient dementia when
compared to other types of features, such as imaging or CSF (Korolev et al., 2016;
Eckerström et al., 2013).

Memory impairment is an important feature in AD dementia and has often been
thought of as a defining symptom of the disease. Previous works have shown that
certain delayed recall tasks have high predictive power to identify progression to
dementia, with the best performances to date reported at ≥92% accuracy, ≥92%
sensitivity, and ≥83% specificity (Kluger et al., 1999; Eckerström et al., 2013; Irish et
al., 2011). A meta-analysis of 21 studies also found that verbal episodic memory tests
consistently report over 70% sensitivity and specificity and are among the features
with the highest predictive power at identifying pMCI (Belleville et al., 2017).

While memory tests appear to have good predictive value by themselves, better
performance can be achieved by combining multiple kinds of neuropsychological
assessments. Belleville et al. (2017) found that the specificity and sensitivity for
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individual cognitive domains can vary and recommend that a combination of neu-
ropsychological measures could yield high predictive accuracy with a good balance
between specificity and sensitivity. The combination of memory tests with language
and/or executive function tests seems particularly promising (Dickerson et al., 2007;
Belleville et al., 2017; Belleville et al., 2014). The best performance by a multi-domain
model, so far, used logistic regression and reported 87.7% accuracy, 86.2% sensitivity,
and 88.9% specificity (Belleville et al., 2014).

2.3.2 Imaging-based predictive models

There has also been a large amount of research with respect to predictive models using
features derived from structural MRI. Of these features, there are generally three
types that have been used in the literature for AD classification: voxel-segmented
tissue probability maps, cortical thickness, and pre-defined regions of interest.

With voxel-segmented tissue probability maps, patterns of atrophy can be mea-
sured by examining grey matter, white matter, and/or CSF, which could be quantified
by voxel-based morphometry (VBM) (Ashburner and Friston, 2000) for example.
Previous works that have used voxel-segmented tissue probability maps as features
for classifying AD can be further divided into two categories: 1) studies that used
voxels from the entire brain tissue maps as features, and 2) studies that used reduced
features extracted from the tissue probability maps. Studies that have used voxels
across entire brain with different classifiers (e.g. support vector machine (SVM),
regularized logistic regression, linear discriminant analysis (LDA)) have achieved
81-95% accuracy in AD classification and 62-75% accuracy in predicting progression
to AD from the MCI stage (see Rathore et al. (2017) for a review). One of the issues
with using the whole brain is that the number of features is typically much larger
than the number of available data points (i.e. subjects). In this situation, an algorithm
will often fail to generalize to new data. Feature-reduction methods (e.g. principle
component analysis) can be used to reduce the dimensionality to overcome this issue
and generate fewer, yet potentially more meaningful, features. The dimensionality of
whole brain maps can also be reduced by parcellating the brain into regions defined
by an atlas and use the grey matter volume for each parcel as a feature. Studies that
have used reduced features have reported 76-95% accuracy in AD classification and
66-82% accuracy in predicting progressive MCI (Rathore et al., 2017).

While cortical thickness is typically extracted from all vertices on the cortical
surface, the majority of classification studies using cortical thickness as features have
used feature reduction methods or extracted features from pre-defined atlases. This
is likely due to the high dimensionality problem that is present in cortical thickness
studies in a similar way to studies that use voxel-segmented tissue probability maps.
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Park et al. (2012) reported that using reduced cortical features yielded better classifi-
cation accuracy than using raw vertices by a margin of 10-13%, which suggests that
many features across the entire brain are uninformative and classification is improved
when such features are removed. Studies using cortical thickness as features have
achieved 87-95% accuracy for AD classification and 71-81% accuracy for predicting
progressive MCI (Rathore et al., 2017).

Of studies that make classifications based on pre-defined regions of interest,
most have used hippocampal morphometry (e.g. shape, volume) as features. These
studies have reported 81-94% accuracy for AD classification and 74-80% accuracy for
predicting progressive MCI (Rathore et al., 2017).

2.3.3 Impact of machine learning algorithms on predictive

performance

Different machine learning algorithms may perform differently on the same task (e.g.
one algorithm may be more accurate than another). The choice in algorithm may
therefore account for some of the variability in AD classification, in addition to the
variability due to the choice of features.

For the studies that used cortical surface-based AD classification frameworks
that were reviewed in Rathore et al. (2017), half used SVM, while a bit less than half
used LDA, and one used logistic regression. The studies that used SVM reported, on
average, higher classification accuracy than the LDA studies (by a margin of 2-3%)
when distinguishing between AD and CN, although the highest accuracy of 95% was
reported by Desikan et al. (2009), which used logistic regression. The result from
Desikan et al. (2009) outperforms the highest performing SVM by Wee et al. (2013),
which reported 92.3% accuracy, by a margin of 3-4%.

Of the studies that used VBM-based AD classification frameworks that were
reviewed in Rathore et al. (2017), the majority (90%) used SVM as their classification
algorithm. As such, it is difficult to assess if there are significant differences in
performance across different algorithms with VBM features because there are few
examples of non-SVM models and there was a very wide range in classification
accuracy (while predicting AD vs CN) of the SVM models that overlapped with the
non-SVM models.

Lastly, of the studies reviewed in Rathore et al. (2017) that used hippocampal
volumes as the feature set to classify AD vs CN, 5 out of 6 used SVM, while one used
logistic regression. The SVM models reported accuracies ranging from 88-95%, while
the logistic regression model reported 81% accuracy, which may suggest that with
this smaller feature set, SVM may yield better accuracies.
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The most compelling evidence illustrating the impact of machine learning al-
gorithms on AD classification comes from a recent work by Samper-González et
al. (2018). Samper-González et al. (2018) directly compared different algorithms
(SVM, logistic regression, and random forests) to automatically classify AD pa-
tients with T1-weighted MRI and PET images measuring glucose uptake as features
across three different large datasets. In this work, the authors found that linear
SVM and L2-regularized logistic regression gave similar performances, but they
both outperformed random forests, and no influence was found from feature types
(Samper-González et al., 2018).

2.3.4 Identifying high-risk subgroups

Given the complexity of predicting incipient AD dementia in individuals with MCI,
80% accuracy may seem good enough. However, relying on accuracy as a perfor-
mance metric can be misleading. A model could have high accuracy yet moderate
positive predictive value if the prevalence for disease is low. Relatively speaking, few
MCI subjects progress to dementia (up to 36% within two years (Ward et al., 2013)).
In a situation like this where there are imbalanced classes, a model may favour the
larger class by ignoring the misclassification of the smaller class in order to obtain a
high accuracy. This issue has been largely ignored in research to predict AD. Despite
promising accuracy in imaging-based models to predict AD progression, the positive
predictive values remain moderate, ranging from 50 to 75% across the literature
(Dansereau et al., 2017). This implies that up to half of the individuals who were
labeled as progressors in previous studies did not actually progress to AD dementia.

An ideal model to predict conversion to AD dementia would have both high
sensitivity and high specificity, so that it would be able to detect all progressor
MCI and reject all stable MCI individuals. In practice, there is a trade off between
sensitivity and specificity, such that optimizing for one will negatively affect the other.
Selecting the optimal balance will depend on the specific problem at hand. In the case
of predicting AD progression, the pathophysiological heterogeneity of the disease
will prevent highly accurate prediction linking brain features to clinical trajectories.
Given this heterogeneity, it is necessary to sacrifice sensitivity to focus on identifying
a subgroup of individuals with similar brain abnormalities and cognitive deficits
who would be at the highest risk of progressing to AD dementia. This would result
in higher specificity and positive predictive value. Characterizing the heterogeneity
that is present in the AD spectrum to predict cognitive trajectories in a high-risk
subgroup can have important implications for situations that require highly precise
predictions, like subject selection for clinical trials or identifying individuals for an
early diagnosis.



17

Chapter 3

Common effects of amnestic mild
cognitive impairment on resting-state
connectivity across four independent
studies

Angela Tam, Christian Dansereau, AmanPreet Badhwar, Pierre Orban, Sylvie Belleville,
Howard Chertkow, Alain Dagher, Alexandru Hanganu, Oury Monchi, Pedro Rosa-
Neto, Amir Shmuel, Seqian Wang, John Breitner, Pierre Bellec

3.1 Preface

At the onset of this study, there had been many groups that reported resting-state
functional connectivity differences between cognitively normal individuals and pa-
tients with MCI and AD dementia. Some of these findings, especially those reporting
dysfunction in the default mode network in patient groups, seemed consistent across
the literature (see Badhwar et al. (2017) in Appendix A for a meta-analysis which I
co-authored), but there have been conflicting reports. Inconsistencies in this field
may be due to low sample sizes, as the majority of the literature had performed their
experiments with 20 subjects per group, leading to a lack of statistical power. How-
ever, there is a substantial amount of heterogeneity with respect to methodology (e.g.
subject selection, image acquisition and preprocessing, analytical strategies) that may
account for a lack of consensus. This study tested for the consistency of functional
connectivity alterations in MCI patients compared to controls across a multi-site
setting, where independent cohorts were combined together despite variations in
scanner manufacturer, imaging protocol, and subject recruitment. The purpose was
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to assess whether there are functional connections that are robust enough in the face
of heterogeneity that could be used to consistently discriminate between normal
aging and MCI. A biomarker must be reliable enough to overcome methodological
variation. This work therefore has significant implications for biomarker develop-
ment. While we did find consistent functional connectivity alterations across the
different MCI cohorts when compared to controls, heterogeneity across the samples
was substantial. It is apparent from the results of this study that small samples
cannot produce findings that will generalize well to the population. This article was
published in Frontiers in Aging Neuroscience in 20151.

3.2 Abstract

Resting-state functional connectivity is a promising biomarker for Alzheimer’s dis-
ease. However, previous resting-state functional magnetic resonance imaging stud-
ies in Alzheimer’s disease and amnestic mild cognitive impairment (aMCI) have
shown limited reproducibility as they have had small sample sizes and substantial
variation in study protocol. We sought to identify functional brain networks and
connections that could consistently discriminate normal aging from aMCI despite
variations in scanner manufacturer, imaging protocol, and diagnostic procedure. We
therefore combined four datasets collected independently, including 112 healthy
controls and 143 patients with aMCI. We systematically tested multiple brain con-
nections for associations with aMCI using a weighted average routinely used in
meta-analyses. The largest effects involved the superior medial frontal cortex (in-
cluding the anterior cingulate), dorsomedial prefrontal cortex, striatum, and middle
temporal lobe. Compared with controls, patients with aMCI exhibited significantly
decreased connectivity between default mode network nodes and between regions
of the cortico-striatal-thalamic loop. Despite the heterogeneity of methods among
the four datasets, we identified common aMCI-related connectivity changes with
small to medium effect sizes and sample size estimates recommending a minimum
of 140 to upwards of 600 total subjects to achieve adequate statistical power in the
context of a multisite study with 5-10 scanning sites and about 10 subjects per group
and per site. If our findings can be replicated and associated with other established
biomarkers of Alzheimer’s disease (e.g. amyloid and tau quantification), then these
functional connections may be promising candidate biomarkers for Alzheimer’s
disease.

1https://doi.org/10.3389/fnagi.2015.00242

https://doi.org/10.3389/fnagi.2015.00242
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3.3 Introduction

Resting-state connectivity in functional magnetic resonance imaging (fMRI) captures
the spatial coherence of spontaneous fluctuations in blood oxygenation. Resting-
state fMRI is a promising technique that may be useful as an early biomarker for
Alzheimer’s disease (AD), a neurodegenerative process that develops over decades
before patients suffer from dementia. The possibility that disturbed resting-state
connectivity may be an early marker for AD is supported by studies of mild cognitive
impairment (MCI), a disorder characterized by objective cognitive deficits without
dementia, i.e., without impairment in activities of daily living, and more specifically
by studies of amnestic MCI (aMCI), the most common subtype of MCI characterized
by memory deficits (Petersen et al., 2001). These studies showed altered functional
connectivity in MCI compared with cognitively normal elderly (CN) (Bai et al., 2009;
Liang et al., 2012; Sorg et al., 2007; Wu et al., 2014), but they relied on small sample
sizes (n 40) and differed in many aspects of their protocols, e.g. recruitment and
image acquisition procedures. If resting-state fMRI is to serve as a useful biomarker of
AD, or any pathology, for clinical practice or research, we must determine if changes
in functional connectivity differences between groups of subjects are robust to such
variation in study protocols. Therefore, we sought to identify brain connections
that showed consistent MCI-related changes across multiple independent studies. If
such connections exist, they may be used as targets to be examined alongside other
established AD biomarkers (e.g. amyloid and tau measures) in order to validate
resting-state fMRI’s potential as a biomarker for AD.

Resting-state connectivity studies have consistently found decreased connectivity
between nodes within the default mode network (DMN) in patients with AD or MCI
compared with CN (Bai et al., 2009; Koch et al., 2012; Liang et al., 2012; Sorg et al.,
2007; Zhang et al., 2010). Less consistent are reports of alterations in the executive
attentional, frontoparietal, and anterior temporal networks (Agosta et al., 2012; Gour
et al., 2011; Liang et al., 2012; Sorg et al., 2007; Wu et al., 2014; Zhang et al., 2010)
due to the literature’s bias towards investigating the DMN. Further inconsistencies
can be found in some studies that have reported increased connectivity between the
middle temporal lobe and other DMN areas in MCI (Qi et al., 2010), while others
have reported decreased connectivity between these same regions (Bai et al., 2009)
and others have reported no significant differences between MCI and CN (Koch et al.,
2012).

One obvious explanation for such inconsistency may be these studies’ small sam-
ple sizes resulting in low statistical power (Kelly et al., 2012). Beyond this, however,
there are other methodological differences that may compromise the comparison of
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results across independent studies. For example, the criteria for recruiting subjects
with MCI, e.g. Petersen (2004) vs. NIA-AA recommendations (Albert et al., 2011) may
differ among studies. Different study samples may also reflect different socio-cultural
characteristics of recruiting sites, e.g., ethnicity, language, diet, socioeconomic status.
The fMRI measurements themselves can also be affected by differences in details
of the image acquisition such as scanner make and model (Friedman, Glover, and
Fbirn Consortium, 2006), sequence parameters such as repetition time, flip angle, or
acquisition volume (Friedman and Glover, 2006), experimental design such as eyes-
open/eyes-closed (Yan et al., 2009) or experiment duration (Van Dijk et al., 2010),
and scanning environment such as sound attenuation measures (Elliott, Bowtell,
and Morris, 1999), room temperature (Vanhoutte, Verhoye, and Linden, 2006), or
head-motion restraint techniques (Edward et al., 2000).

To identify robust changes in resting-state connectivity between aMCI and CN,
we implemented a meta-analysis of four independent resting-state fMRI datasets
(ADNI2 and three small single-site studies) using a weighted average implemented
by Willer, Li, and Abecasis (2010). Rather than relying on a priori target regions
or connections, we leveraged the large sample size to perform a systematic search
of brain connections affected by aMCI, an approach termed a “connectome-wide
association study” (Shehzad et al., 2014). In addition, we relied on functionally-
defined brain parcellations using an automated clustering procedure and we explored
the impact of the number of brain clusters (called resolution) on observed differences
(Bellec et al., 2015).

3.4 Methods

3.4.1 Participants

We combined data from four independent studies: the Alzheimer’s Disease Neu-
roimaging Initiative 2 (ADNI2) sample, two samples from the Centre de recherche
de l’institut universitaire de gériatrie de Montréal (CRIUGMa and CRIUGMb), and a
sample from the Montreal Neurological Institute (MNI) (Wu et al., 2014). All partici-
pants gave their written informed consent to engage in these studies, which were
approved by the research ethics board of the respective institutions, and included
consent for data sharing with collaborators as well as secondary analysis. Ethical
approval was also obtained at the site of secondary analysis (CRIUGM).

The ADNI2 data used in the preparation of this article were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu).
ADNI was launched in 2003 by the National Institute on Aging, the National Institute

adni.loni.usc.edu
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of Biomedical Imaging and Bioengineering, the Food and Drug Administration, pri-
vate pharmaceutical companies and non-profit organizations, as a $60 million, 5-year
public-private partnership representing efforts of co-investigators from numerous
academic institutions and private corporations. ADNI was followed by ADNI-GO
and ADNI-2 that included newer techniques. Subjects included in this study were
recruited by ADNI-2 from all 13 sites that acquired resting-state fMRI on Philips
scanners across North America. For up-to-date information, see www.adni-info.org.

The combined sample included 112 CN and 143 aMCI prior to quality control.
After quality control, 99 CN and 129 aMCI remained. In the CN group, the mean age
was 72.0 (s.d. 7.0) years, and 37% were men. Mean age of the aMCI subjects was 72.3
(s.d. 7.6) years, and 50% were men. An independent samples t-test did not reveal any
significant difference in age between the groups (t = 0.759, p = 0.448). A chi-squared
test revealed a trend towards a significant difference in gender distribution between
the groups (χ2 = 3.627, p = 0.057). Note that both age and gender were entered
as confounding variables in the statistical analysis below. See Table 3.1 for sample
size and demographic information from the individual studies after passing quality
control (for information about the original cohorts before quality control, see Table
3.4 in supplementary material).

Table 3.1: Demographic information in all studies after quality control

ADNI2 CRIUGMa CRIUGMb MNI Combined
CN N 49 18 17 15 99

Mean age (s.d.) 74.4 (6.8) 71.2 (8.0) 70.4 (4.6) 67.0 (5.7) 72.0 (7.0)
N male (%) 21 (43%) 7 (39%) 2 (12%) 7 (47%) 37 (37%)
Mean education (s.d.)a 16.9 (2.2) 14.9 (2.3) 15.1 (2.8) 15.0 (3.1) 16.0 (2.6)
MMSE mean (range) 28.7 (25-30) 28.8 (27-30) n/a 29.0 (27-30) n/a
MoCA mean (range) n/a 27.8 (22-30) 28.4 (26-30) n/a n/a

aMCI N 82 8 21 18 129
Mean age (s.d.) 71.2 (7.3) 79.9 (6.1) 74.8 (7.0) 71.2 (8.1) 72.3 (7.6)
N male (%) 43 (52%) 3 (38%) 12 (57%) 7 (39%) 65 (50%)
Mean education (s.d.)a 16.2 (2.6) 13.7 (3.8) 14.8 (4.2) 13.1 (3.1) 15.5 (3.2)
MMSE mean (range) 28.1 (24-30)* 26.1 (22-29)* n/a 26.1 (22-30)* n/a
MoCA mean (range) n/a 23.3 (20-29)* 24.6 (16-29)* n/a n/a

MMSE: Mini-mental state examination; MoCA: Montreal Cognitive Assessment.
*Significant difference between aMCI and CN (within study) for independent samples t-test at p ≤ 0.05.

aMissing values for years of education for subjects in ADNI2 (1 CN, 1 aMCI), CRIUGMb (2 aMCI), and MNI (3 CN, 6 aMCI).

All subjects underwent cognitive testing (e.g. memory, language, and executive
function) (see Table 3.2 for a list of specific tests used in each study). Exclusion criteria
common to all studies included: Contraindications to MRI, presence or history of axis
I psychiatric disorders (e.g. depression, bipolar disorder, schizophrenia), presence or
history of neurologic disease with potential impact on cognition (e.g. Parkinson’s dis-
ease), and presence or history of substance abuse. CN subjects could not meet criteria
for MCI or dementia. Those with aMCI had memory complaints, objective cognitive
loss (based on neuropsychological testing), but had intact functional abilities and
did not meet criteria for dementia. In ADNI2, the diagnosis of aMCI was made

www.adni-info.org
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based on an education adjusted abnormal score on the Logical Memory II subscale
(Delayed Paragraph Recall, Paragraph A only) from the Wechsler Memory Scale and
a Clinical Dementia Rating (CDR) of 0.5. In both CRIUGMa and CRIUGMb, the
diagnosis of aMCI was made based on scores equal to or greater than 1.5 standard
deviations below the mean adjusted for age and education on memory tests. At the
MNI, the diagnosis of aMCI relied on the Petersen criteria (Petersen, 2004). At both
CRIUGMb and MNI, aMCI diagnoses were made with input from a neurologist. See
the Supplementary Methods for greater details for each study.

Table 3.2: Neuropsychological tests that were used in each study

Test ADNI2 CRIUGMa CRIUGMb MNI
Mini-mental State Examination (MMSE) x x x
Montreal Cognitive Assessment (MOCA) x x x
Clinical Dementia Rating (CDR) x x
ADAS-Cog x
Everyday Cognition (ECog) x
Trail making x x x x

(Trails A and B) (Trails A and B) (Trails A and B) (DKEFS)
Boston Naming Test x x x x
Digit span x x x
Colour-word interference (DKEFS) x x x
Rey Auditory Verbal Learning Test x x x
Verbal fluency x x x x

(MEC) (DKEFS)
Clock drawing x x
Visual Object and Space Perception Battery x
Brixton Spatial Anticipation Test x
Hooper Visual Organization Test x
Rey Complex Figure x x x
Aggie Figures Learning Test x
16-item Free and Cued Recall (RL/RI-16) x
Pyramid and Palm Trees Test x
Weschler Memory Scale - logical x x x
memory subtest

MEC: Montréal évaluation de la communication; DKEFS: Delis-Kaplan Executive Function System.

3.4.2 Imaging data acquisition

All resting-state fMRI and structural scans were acquired on 3T scanners. We per-
formed analyses on the first usable scan (typically the baseline scan) from ADNI2
and applied clinical diagnoses from the same study time point as the first usable scan
for each participant in that dataset. See Table 3.3 for acquisition parameters for each
sample.

3.4.3 Computational environment

All experiments were performed using the NeuroImaging Analysis Kit (NIAK2)
(Bellec et al., 2011) version 0.12.18, under CentOS version 6.3 with Octave3 version

2http://simexp.github.io/niak/
3http://gnu.octave.org

http://simexp.github.io/niak/
http://gnu.octave.org
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Table 3.3: Structural and functional scan acquisition parameters

ADNI2a CRIUGMa CRIUGMb MNI
Scanner manufacturer Philips Siemens Siemens Siemens

Structural No. channels 8 32 32 32
No. slices 170 176 176 176
Slice thickness (mm) 1.2 1 1 1
In-plane resolution (mm x mm) 1 x 1 1 x 1 1 x 1 1 x 1
Matrix size 256 x 256 240 x 256 256 x 256 256 x 256
FOV (mm2) 256 240/256 256 256
TR (s) 6.8 2.3 2.53 2.3
TE(ms) 3.09 2.91 1.64 2.98
TI (s) n/a 0.9 1.2 0.9
FA (◦) 9 9 7 9
Slice gap 0 0 0 0
Imaging plane Sagittal Sagittal Sagittal Sagittal
NEX 1 1 1 1

Functional No. runs 1 1 3 3
No. channels 8 32 32 32
No. volumes 140 240 150 160
No. slices 48 33 42 38
Slice thickness (mm) 3.3. 4 3.4 3.6
In-plane resolution (mm x mm) 3.3 x 3.3 3 x 3 3.4 x 3.4 3.6 x 3.6
Matrix size 64 x 64 64 x 64 64 x 64 64 x 64
FOV (mm2) 212 192 218 230
TR (s) 3 2 2.6 2
TE (ms) 30 30 30 30
FA (◦) 80 90 90 90
Slice gap 0 0 0 0
Imaging plane Axial Axial Axial Axial
NEX 1 1 1 1
Total scan time (min:s) 7:00 8:00 19:30 16:00

ahttp://adni.loni.usc.edu/wp-content/uploads/2011/04/ADNI_3T_Philips_2.6.pdf.

3.8.1 and the Minc toolkit4 version 0.3.18. Analyses were executed in parallel on the
“Guillimin” supercomputer5, using the pipeline system for Octave and Matlab (Bellec
et al., 2012), version 1.0.2. The scripts used for processing can be found on Github6.

3.4.4 Pre-processing

Each fMRI dataset was corrected for slice timing; a rigid-body motion was then
estimated for each time frame, both within and between runs, as well as between
one fMRI run and the T1 scan for each subject (Collins and Evans, 1997). The T1
scan was itself non-linearly co-registered to the Montreal Neurological Institute
(MNI) ICBM152 stereotaxic symmetric template (Fonov et al., 2011), using the CIVET
pipeline (Ad-Dab’bagh et al., 2006). The rigid-body, fMRI-to-T1 and T1-to-stereotaxic
transformations were all combined to resample the fMRI in MNI space at a 3 mm
isotropic resolution. To minimize artifacts due to excessive motion, all time frames
showing a displacement greater than 0.5 mm were removed (Power et al., 2012). A
minimum of 50 unscrubbed volumes per run was required for further analysis (13
CN and 14 aMCI were rejected from the original cohort of 112 CN and 143 aMCI).

4http://www.bic.mni.mcgill.ca/ServicesSoftware/ServicesSoftwareMincToolKit
5http://www.calculquebec.ca/en/resources/compute-servers/guillimin
6https://github.com/SIMEXP/mcinet

http://adni.loni.usc.edu/wp-content/uploads/2011/04/ADNI_3T_Philips_2.6.pdf.
http://www.bic.mni.mcgill.ca/ServicesSoftware/ServicesSoftwareMincToolKit
http://www.calculquebec.ca/en/resources/compute-servers/guillimin
https://github.com/SIMEXP/mcinet


CHAPTER 3. RESTING-STATE DYSFUNCTION IN MCI ACROSS MULTIPLE SITES 24

Neither the rate of rejection nor the frame displacement values (before and after
scrubbing) varied significantly among the four samples or between CN and aMCI.
The following nuisance covariates were regressed out from fMRI time series: slow
time drifts (basis of discrete cosines with a 0.01 Hz high-pass cut-off), average signals
in conservative masks of the white matter and the lateral ventricles as well as the first
3 to 10 principal components (median numbers for ADNI2, CRIUGMa, CRIUGMb,
and MNI were 9, 6, 7, and 7 respectively, and accounting for 95% variance) of the six
rigid-body motion parameters and their squares (Giove et al., 2009; Lund et al., 2006).
The fMRI volumes were finally spatially smoothed with a 6 mm isotropic Gaussian
blurring kernel. A more detailed description of the pipeline can be found on the
NIAK website7 and Github8.

3.4.5 Bootstrap analysis of stable clusters (BASC)

We applied a BASC to identify clusters that consistently exhibited similar sponta-
neous BOLD fluctuations in individual subjects, and were spatially stable across
subjects. We first applied a region-growing algorithm to reduce each fMRI dataset
into a time x space array, with 957 regions (Bellec et al., 2006). BASC replicates a
hierarchical Ward clustering 1000 times and computes the probability that a pair
of regions fall in the same cluster, a measure called stability. The region x region
stability matrix is fed into a clustering procedure to derive consensus clusters, which
are composed of regions with a high average probability of being assigned to the
same cluster across all replications. At the individual level, the clustering was applied
to the similarity of regional time series, which was replicated using a circular block
bootstrap. Consensus clustering was applied to the average individual stability ma-
trix to identify group clusters. The group clustering was replicated via bootstrapping
of subjects in the group. A consensus clustering was finally applied on the group
stability matrix to generate group consensus clusters.

The cluster procedure was carried out at a specific number of clusters (called
resolution). Using a “multiscale stepwise selection” (MSTEPS) method (Bellec, 2013),
we determined a subset of resolutions that provided an accurate summary of the
group stability matrices generated over a fine grid of resolutions: 4, 6, 12, 22, 33, 65,
111 and 208.

7http://niak.simexp-lab.org/pipe_preprocessing.html
8https://github.com/SIMEXP/mcinet/tree/master/preprocess

http://niak.simexp-lab.org/pipe_preprocessing.html
https://github.com/SIMEXP/mcinet/tree/master/preprocess
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3.4.6 Derivation of functional connectomes

For each resolution K, and each pair of distinct clusters, the between-clusters connec-
tivity was measured by the Fisher transform of the Pearson’s correlation between the
average time series of the clusters. The within-cluster connectivity was the Fisher
transform of the average correlation between time series inside the cluster. An indi-
vidual connectome was thus a K x K matrix. See Figure 3.1a-b for an illustration of a
parcellation and associated connectome.

Figure 3.1: Application of general linear models to connectomes. (A) The brain is functionally
parcellated into K (e.g. 50) clusters generated through a clustering algorithm. (B) The connectome
is a K x K matrix measuring functional connectivity between and within clusters. (C) A general
linear model is used to test the association between phenotypes and connectomes, independently
at each connection, at the group level. (D) In a multisite situation, independent site-specific effects
are estimated and then pooled through weighted averaging (Willer, Li, and Abecasis, 2010).
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3.4.7 Statistical testing

To test for differences between aMCI and CN at a given resolution, we used a general
linear model (GLM) for each connection between two clusters. The GLM included
an intercept, the age and sex of participants, and the average frame displacement
of the runs involved in the analysis. The contrast of interest (aMCI – CN) was
represented by a dummy covariate coding the difference in average connectivity
between the two groups. All covariates except the intercept were corrected to a
zero mean (Figure 3.1c). The GLM was estimated independently for each scanning
protocol. In addition to distinguishing between CRIUGMa, CRIUGMb, MNI, and
ADNI2, ADNI2 was subdivided into five sub-studies based on the use of different
Philips scanner models (i.e. Achieva, Gemini, Ingenia, Ingenuity, and Intera). We
dropped all subjects scanned with Ingenuity (2 CN, 1 aMCI) due to the elimination
of all aMCI subjects within that site by the scrubbing procedure and its small sample
size. We therefore estimated 7 independent GLMs for each protocol (ADNI2-Achieva,
ADNI2-Gemini, ADNI2-Ingenia, ADNI2-Intera, CRIUGMa, CRIUGMb, MNI). The
estimated effects were combined across all protocols through inverse variance based
weighted averaging (Willer, Li, and Abecasis, 2010) (Figure 3.1d).

Resolutions containing fewer than 50 clusters have been suggested to have higher
sensitivity based on prior independent work (Bellec et al., 2015). The GLM was first
applied at an a priori resolution of K = 33, which was the lowest number of clusters
for which the default mode network could be clearly decomposed into subnetworks
(Supplementary Figure 3.7, visit Figshare for 3D volumes of brain parcellations and
see Supplementary Table 3.5 for a list of the 33 clusters and their numerical IDs). The
false-discovery rate (FDR) across connections was controlled at qFDR ≤ 0.1 (Benjamini
and Hochberg, 1995). In addition to the analysis at resolution 33, we assessed the
impact of that parameter by replicating the GLM analysis at the 7 resolutions selected
by MSTEPS (Supplementary Figure 3.8). We implemented an omnibus test (family-
wise error rate α ≤ 0.05) to assess the overall presence of significant differences
between groups, pooling FDR results across all resolutions (Bellec et al., 2015). If the
omnibus test across resolutions was not significant, then no test would be deemed
significant. Since this omnibus test was significant, we used the FDR threshold of
q ≤ 0.1 to explore single resolutions.
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3.5 Results

3.5.1 Functional connectivity differences between aMCI and CN

The omnibus test pooling significant differences in connectivity between aMCI and
CN across all resolutions was significant at α ≤ 0.05 (p = 0.0056). In line with prior
observations on independent datasets (Bellec et al., 2015), resolutions containing
fewer than 50 clusters were associated with a higher rate of discovery (Figure 3.2). At
resolution 33, significant group differences between aMCI and CN were seen across
the whole brain (Figure 3.3a). Four brain clusters were associated with 47% of all
significant changes found across the connectome: the superior medial frontal cortex
(including anterior cingulate), dorsomedial prefrontal cortex, striatum, and middle
temporal lobe (Figures 3.3b, 3.3c, Supplementary Table 3.6). Supplementary Table 3.6
contains a list of parcels that account for all non-redundant significant connectivity
differences between aMCI and CN. For example, the first-ranked seed (superior me-
dial frontal cortex) was associated with 13.4% of connections that differ between the
groups. The second-ranked seed (dorsomedial prefrontal cortex) was associated with
an additional 12.7% of connectivity differences that did not overlap with or were not
previously accounted for by the first seed. Note that if a given parcel was associated
with a significant effect with another region that ranked in the table, then that parcel
may not be listed in the table (i.e. this table is not a comprehensive list of parcels
that show significant effects, as a given parcel may involve a region in the table at a
higher rank which already accounted for its effects). Given that the top four clusters
explained nearly half of the findings, they were further characterized in seed-based
connectivity analyses, which revealed that aMCI showed decreased connectivity be-
tween default mode network nodes and between areas of the cortico-striatal-thalamic
loop (Figure 3.4). More specifically, in aMCI compared to CN, the superior medial
frontal cortex displayed significantly reduced connectivity with the ventromedial
prefrontal cortex, striatum, thalamus, temporal lobes, hippocampus, inferior parietal
lobes, and precuneus (Figure 3.4a). aMCI showed reduced connectivity between
the dorsomedial prefrontal cortex with temporal lobe regions, ventral frontal areas,
thalamus, striatum, and the cuneus (Figure 3.4b). The striatum in aMCI also exhib-
ited decreased connectivity with the sensorimotor cortex, thalamus, and frontal and
parietal regions (Figure 3.4c). Lastly, in aMCI, the middle temporal lobe displayed
significantly decreased connectivity with the posterior cingulate, precuneus, inferior
parietal lobes, hippocampus, and frontal areas (Figure 3.4d).
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Figure 3.2: Plot of the percentage of connections identified as significant by the statistical compar-
ison between aMCI and CN across the connectome (qFDR ≤ 0.1), as a function of the resolutions
selected by MSTEPS.

Figure 3.3: (A) Map of the percentage of connections associated with a given cluster and iden-
tified as significant by the statistical comparison between aMCI and CN, at a resolution of 33
clusters (qFDR ≤ 0.1). (B) Maximum absolute difference in average connectivity between aMCI
and CN, across all connections associated with a cluster, at resolution 33. F(r) signifies the dif-
ference in Fisher-transformed correlation values between the groups. (C) Four clusters of interest
(superior medial frontal cortex, dorsomedial prefrontal cortex, striatum, middle temporal lobe)
were selected out of 33 for further characterization.
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Effect maps in aMCI-CN (qFDR ≤ 0.1) of seeds and connections of interest
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Figure 3.4: Effect maps for a selection of four seeds that show effects related to aMCI at resolution 33. Effect
maps reveal the spatial distribution of the changes in functional connectivity for (A) the superior medial frontal
cortex, (B) the dorsomedial prefrontal cortex, (C) striatum, and (D) the middle temporal lobe. All connections
shown in the maps of difference in average connectivity between aMCI and CN are significant at qFDR ≤ 0.1. For
each panel, the top line maps the spatial location of the seed region in magenta, the second and third lines show
the connectivity (Fisher-transformed correlation values, F(r)) between the designated seed region and the rest
of the brain in CN and aMCI, respectively, and the fourth line shows a difference map between aMCI and CN
(difference in Fisher-transformed correlation values, F(r)). The numbers in parentheses refer to the numerical IDs
of the clusters in the 3D parcellation volume, as listed in Supplementary Table 3.5.
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3.5.2 Sample-specific effects

The statistical model we used to combine GLM analyses across sites was based on a
weighted average. The possibility thus existed that an effect would be significant in
the pooled analysis because it was driven by a very strong effect in a single sample,
instead of being consistent across all samples. When we examined effects in each
sample independently, we detected no findings or very few significant findings. We
then explored the whole brain connectivity of the top four seed regions (superior
medial frontal cortex, dorsomedial prefrontal cortex, striatum, and middle temporal
lobe) within each sample. The majority of effects found at each sample did not appear
to be consistent or reproducible across studies as the comparison between aMCI
and CN varied substantially among the seven samples (Figure 3.5, Supplementary
Figures 3.9 - 3.11). We assessed the extent at which findings among the seven samples
were similar by calculating correlation coefficients across the spatial maps for the
average connectivity values in CN, the average connectivity values in aMCI, and
differences in connectivity values between aMCI and CN among the samples. We
found that the difference maps, contrasting aMCI and CN, were weakly correlated on
average across studies and protocols (mean r = 0.06, min r = −0.64, max r = 0.69).
The average connectivity maps among studies in both CN and aMCI were generally
highly correlated with each other (for CN, mean r = 0.68, min r = −0.16, max
r = 0.95; for aMCI, mean r = 0.67, min r = −0.10, max r = 0.97). These results were
expected given the small sample sizes of most independent samples (Kelly et al.,
2012), but still sobering as the majority of the literature on aMCI and fMRI has used
small sample sizes.

However, despite the large observed variations in the spatial distribution of
aMCI vs CN contrasts, there were still clear consistent trends across studies and
protocols. We indeed found that aMCI-related connectivity changes that surpassed
the FDR threshold in the pooled analysis showed similar trends in the vast majority
of samples across seeds and connections, where the independent aMCI samples
consistently exhibited decreased connectivity compared to the CN samples (Figures
3.5 and 3.6, Supplementary Figures 3.9 - 3.11). For example, the pooled analysis
revealed that, compared to CN, aMCI exhibited significantly reduced connectivity
between the superior medial frontal cortex cortex (the region in which connectivity
was most affected by aMCI) and the middle temporal lobes. This change appeared to
be common to the majority of the independent samples (Figure 3.5 and Figure 3.6a).
For this particular seed, the change in connectivity was mainly due to regions with
positive correlations in CN having smaller correlation values closer to zero in aMCI
in the individual samples (Figure 3.5 and Figure 3.6a). For sample-specific effects in
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Figure 3.5: Comparisons of effects in the superior medial frontal cortex across samples. This figure illustrates functional connectiv-
ity changes between aMCI and CN, average connectivity in CN, and average connectivity in aMCI in each site (ADNI2-Achieva,
ADNI2-Gemini, ADNI2-Ingenia, ADNI2-Intera, CRIUGMa, CRIUGMb, MNI) independently of other sites and when samples are
pooled together (all samples). The number in parentheses refers to the numerical ID of the seed in the 3D parcellation volume, as
listed in Supplementary Table 3.5.
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other seeds and connections, please see Supplementary Figures 3.9 - 3.15.

3.5.3 Effect sizes and sample size estimates

We measured the effect sizes of the difference between groups at each significant
connection by calculating Cohen’s d, via a weighted average of the effect sizes per
individual sample. We found small to medium effect sizes, ranging from d = 0.10
to d = 0.48, with an average effect size of d = 0.32. Note that these effect sizes
are potentially inflated since we have focussed on significant results only. We also
calculated the sample sizes required to achieve 80% power, based on the effect sizes
estimated by Cohen’s d, the assumption of balanced groups, Gaussian distributions,
bilateral tests, and α = 0.05, for each connection. We found that the estimated sample
sizes ranged from 140 to upwards of 600 total subjects, which further suggests that
findings from small samples, similar to the seven samples we included when assessed
independently, are not expected to be reliable. As noted above, as we used the same
sample to estimate the location of effects and their size, these sample size estimates
are possibly optimistic, i.e. deflated compared to a replication on an independent
sample. See Figure 3.6 and Supplementary Figures 3.12 - 3.15 for Cohen’s d and
sample size estimates for each significant connection that was reported in Figure 3.4.

3.5.4 Effect of resolution on the GLM

The percentage of discoveries in significant differences between aMCI and CN across
the connectomes varied markedly as a function of resolution, as selected by the
MSTEPS procedure. Higher resolutions were associated with fewer discoveries,
especially beyond resolution 65 (Supplementary Figure 3.16a). By contrast, the
maximal amplitude of differences in average connectivity associated with a particular
cluster did not decrease substantially, and sometimes increased, when the resolution
increased (Supplementary Figure 3.16b). The decrease in percentage of discovery thus
likely reflected a cost associated with an increased number of multiple comparisons
in the FDR procedure, rather than a loss in signal quality. Regarding the clusters
that were selected for our seed-based analyses (the superior medial frontal cortex,
dorsomedial prefrontal cortex, striatum, and middle temporal lobe), the associated
effect maps (without statistical threshold) were highly consistent across different
resolutions (Supplementary Figures 3.17 and 3.18), with the potential exception of
very low resolutions where, for example, a relatively small cluster like the anterior
cingulate got merged with a large distributed cortical network. This also replicated
a prior study on the effect of multiresolution parcellations on GLM analysis (Bellec
et al., 2015).
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Comparison of aMCI-CN (qFDR ≤ 0.1) for seeds and connections of interest in the individual samples 

a  Superior medial frontal cortex (28) and middle temporal lobe (12) b  Dorsomedial prefrontal cortex (9) and inferior middle frontal gyrus (23)

c  Striatum (2) and pre/postcentral gyrus (31) d  Middle temporal lobe (12) and posterior cingulate (8)
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Figure 3.6: Mean connectivity between (A) the superior medial frontal cortex and middle temporal lobe, (B) the dorso-
medial prefrontal cortex and middle frontal gyrus, (C) the striatum and pre/postcentral gyrus, and (D) middle temporal
lobe and posterior cingulate in CN and aMCI in the independent samples. Each map displays the seed (pink) and a se-
lected cluster (blue) whose connectivity with the seed significantly differed between CN and aMCI in the pooled analysis.
The box-whisker plots display the mean connectivity (Fisher-transformed correlation values) between the seed and the
selected parcel, overlaid over individual data points, in the CN and MCI groups in the ADNI2-Achieva, ADNI2-Gemini,
ADNI2-Ingenia, ADNI2-Intera, CRIUGMa, CRIUGMb, and MNI samples. We also report the Cohen’s d (a weighted av-
erage of the effect sizes per sample) followed by a sample size estimate (for 80% power, balanced groups, bilateral tests,
Gaussian distributions, and α = 0.05) in square brackets in the top-right corner of each plot. The numbers in parentheses
in the titles refer to the numerical IDs of the seeds in the 3D parcellation volume, as listed in Supplementary Table 3.5. For
box-whisker plots for all significant clusters with each of these seeds, see Supplementary Figures 3.12 – 3.15.
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3.6 Discussion

We report resting-state functional connectivity differences in the superior medial
frontal cortex, dorsomedial prefrontal cortex, striatum, and middle temporal lobe
between aMCI and CN subjects when multiple studies were combined together. De-
spite protocol differences, we found that aMCI exhibited reduced connectivity within
areas of the default mode network and cortico-striatal-thalamic loop compared to
CN. Previous studies suggested these altered patterns of functional connectivity in
MCI may result from the coevolution of multiple AD-associated biological processes,
namely structural degeneration (Coupé et al., 2012; Pievani et al., 2010), neurofibril-
lary and amyloid pathologies (Small et al., 2006), and cerebrovascular dysfunction
(Villeneuve and Jagust, 2015).

The superior medial frontal cortex and middle temporal lobes, both of which
are default mode network nodes, were among the seed regions with the greatest
amount of aMCI-related connectivity changes with other brain areas. Decreased
connectivity in aMCI patients was found between these two nodes and other default
mode network regions, including the posterior cingulate, precuneus, inferior parietal
lobes, ventromedial prefrontal cortex, and hippocampus. Our findings support
previous studies that used small single-site samples and reported reduced default
mode network connectivity in MCI and AD patients (Agosta et al., 2012; Bai et al.,
2009; Koch et al., 2012; Sorg et al., 2007). Alterations in the default mode network
may reflect increased amyloid burden in aMCI patients as it has been shown that
amyloid plaques impair default mode connectivity (Hedden et al., 2009; Mormino
et al., 2011; Sheline et al., 2010a).

We found reduced connectivity within the frontal lobes, notably between ventral
and dorsal areas. Decreased functional connectivity between the ventral and dorsal
frontal regions could reflect degeneration in gray matter and in white matter tracts
connecting these areas. Longitudinal studies have shown greater prefrontal cortex
atrophy in MCI over time, as well as in those transitioning to AD, compared to CN
(Carmichael et al., 2013; McDonald et al., 2009). Cortico-cortical white matter bundles,
e.g. superior longitudinal fasciculus, have also been demonstrated to degenerate in
patients with MCI and AD (Pievani et al., 2010). Additionally, functional connectivity
changes may reflect the regional effect of increased amyloid burden (Sheline et al.,
2010a), and PIB-PET work has shown the frontal lobe to be one of the first regions in
which amyloid accumulates in autosomal dominant AD mutation carriers (Bateman
et al., 2012). Our results may also be due to neurofibrillary pathology as it typically
appears in the prefrontal cortex during MCI (Bossers et al., 2010). Lastly, cerebral
hypoperfusion in the frontal lobe of MCI (Chao et al., 2009) may have contributed to
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our results.
We also observed functional disconnection between the temporal and frontal lobes

in aMCI. Effects in the temporal lobes were expected given that the temporal lobe is a
region known to suffer from significant AD pathology in preclinical phases (Guillozet
et al., 2003). Structural connectivity may also explain the functional connectivity
changes between the frontal and temporal regions, since degeneration of white matter
tracts between these areas, e.g. the uncinate fasciculus, occurs with the progression
from MCI to AD and correlates with episodic memory impairment in MCI (Pievani
et al., 2010; Rémy et al., 2015). Furthermore, examining the integrity of the arcuate
fasciculus, a major language tract that connects the frontal and temporal lobes (Dick
and Tremblay, 2012), might reveal a biological basis for language impairments such
as word-finding difficulties in MCI and AD (Nutter-Upham et al., 2008). Brain areas
that subserve language function could be important targets to investigate given
recent evidence that multilingualism, like other forms of cognitive reserve, may help
delay the onset of AD (Chertkow et al., 2010).

Unexpectedly, we also found significant effects in the striatum, which showed
reduced connectivity in aMCI with sensorimotor cortex, frontal and parietal regions,
and thalamus. While not initially expected, these findings may reflect earlier obser-
vations that regions within the cortico-striatal-thalamic loops are vulnerable to AD
pathology. For example, previous work demonstrated the presence of substantial
amyloid burden in the striatum in both autosomal dominant and sporadic forms of
AD (Braak and Braak, 1990; Villemagne et al., 2009), and the striatum may be the first
region in which amyloid deposition occurs in autosomal dominant AD (Bateman
et al., 2012; Klunk et al., 2007). Furthermore, significant neurodegeneration is known
to occur with AD in the striatum and thalamus (Jong et al., 2008; Madsen et al., 2010),
so our results might reflect the brain’s capacity for functional plasticity in response
to amyloid or neurodegeneration in these regions. Motor cortex hyperexcitability
has also been shown in AD, and this suggests that inhibitory circuits leading to the
motor cortex may be affected in the disease (Ferreri et al., 2011). Patients with AD
also demonstrate changes in swallowing which have been associated with altered
cortical activity (Humbert et al., 2010). Our results may support these observations.
Additionally, our findings may represent a biological basis for the cognitive and
motor symptoms of MCI (Aggarwal et al., 2006) since the striatum and the rest of the
basal ganglia have been implicated in stimulus-response associative learning and
memory and motor skill acquisition and execution (Doyon et al., 2009; Packard and
Knowlton, 2002). Future research should examine the potential relationship between
connectivity in the cortico-striatal-thalamic loops and motor function in aMCI and
AD.
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Our findings contrasted with previous, smaller single-site studies that have var-
iously reported decreased and increased connectivity. The reports of increased
connectivity (Bai et al., 2009; Gour et al., 2011; Qi et al., 2010) may have reflected
unique attributes of particular protocols or the choices made with respect to pre-
processing steps, for example using global signal regression (Saad et al., 2012). Given
that our sample size estimates suggest the use of hundreds of subjects to obtain
adequate statistical power, it is not surprising that discrepancies between our results
and previous findings generated from smaller, likely underpowered, studies exist.
Even when we examined the samples in our study (ADNI2-Achieva, ADNI2-Gemini,
ADNI2-Ingenia, ADNI2-Intera, CRIUGMa, CRIUGMb, MNI) independently of each
other, we found inconsistent effects among the samples. It is only by combining
the studies together in a meta-analysis that we were able to find some common
differences in functional connectomes between patients with aMCI and CN. This
finding underscores the need for multisite studies with large sample sizes in order to
generate reproducible results, as previously suggested in the field of autism research
(Haar et al., 2014).

Among our study’s limitations is that it was not possible to model each of the 13
ADNI2 sites independently because the sites tended to be small and unbalanced in the
numbers of patients and controls. We therefore chose to model each scanner model
within ADNI2 separately based on the recommendation of a reviewer. A previous
version of the analysis (published as a preprint9) had not modeled the different
scanner models in ADNI2 and instead treated ADNI2 as a single site. This previous
analysis yielded fewer significant findings, but the results were still mostly consistent
with what is reported here. Our results suggest that modeling scanner models may
have a positive impact on fMRI association studies, but further experiments would be
required to confirm that this trend is reproducible. We must also note that the METAL
averaging is only representative of the specific samples that were averaged, especially
using only Philips and Siemens scanners, and it is unclear how our findings may
replicate in other studies that would employ a different combination of protocols, say
using GE scanners. In particular, our sample size estimates have to be interpreted
with caution. They may first be under-estimated, because they were not derived
from pre-specified locations, but rather associated with the connections showing the
largest effects in our particular sample. These sample sizes were also derived from a
meta-analysis combining particular types of studies. We only had 3T scanners from
two manufacturers, Siemens and Philips. For the Siemens studies, all were from the
same model. For the Philips studies, the scanning protocol was identical at every site,
and only the scanner model varied across scanners. Finally, a fairly large number of

9http://dx.doi.org/10.1101/019646

http://dx.doi.org/10.1101/019646
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patients and controls (generally more than 10 subjects per group) was scanned for
each variant of the scanning protocol. The sample size estimate may turn out quite
differently for a single site study or on the contrary for a study with a very large
number of sites and with only a few subjects per site.

Our study is also limited by its cross-sectional nature, which precludes inference
that the functional changes we found would necessarily predict progression towards
Alzheimer’s dementia. Furthermore, aMCI has many underlying causes aside from
AD. It is possible that some subjects in our cohort had cognitive impairments due
to Lewy Body dementia, for example. However, all samples in the current study
had inclusion criteria that enriched for subjects that had aMCI likely due to AD and
excluded aMCI subjects with other co-morbidities, such as depression or Parkinson’s
disease. Also, we did not account for structural atrophy, despite a bias for increased
detection in functional differences due to differences in underlying structure (Dukart
and Bertolino, 2014). However aMCI-related gray matter changes likely co-localize
to some extent with functional changes, and the aim of our work was to map out
functional changes rather than study their interaction with atrophy. We did not
account for other variables, such as APOE genotype (Sheline et al., 2010b), amyloid
deposition (Sheline et al., 2010a), presence of neurofibrillary tangles (Maruyama
et al., 2013), and cerebrovascular mechanisms (Villeneuve and Jagust, 2015). At least
some of these could potentially have explained the observed aMCI-related functional
connectivity changes as part of an underlying disease mechanism. Large-scale
multimodal studies, incorporating genomics, proteomics, and multimodal imaging
will be needed to identify the interactions between these and other physiological
facets of the pathology. Despite combining several samples together, we still only
achieved relatively limited power, given that sample size estimates required at least
140 to over 600 total subjects to consistently identify effects between groups. Lastly,
because of the explorative approach used in our study, the resulting estimates of effect
sizes may have been inflated and discussion of possible pathological mechanisms for
our findings was speculative. However, our discoveries may be used as follow-up
targets in future work. Upcoming research should not only attempt to verify our
findings by using these regions and their associated connections with hypothesis-
driven approaches (e.g. seed-based correlation analyses), but also to extend them to
cohorts that include Alzheimer’s dementia and other clinical populations (e.g. CN
with significant amyloid deposition) and to longitudinal studies that characterize
individuals’ progression to dementia. Finally, future studies should aim to determine
whether our findings are associated with established biomarkers of AD (e.g. amyloid
and tau quantification) in order to probe the potential of these functional connections
as biomarkers.
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Overall, our results supported previous findings of DMN connectivity changes in
AD and MCI (Greicius et al., 2004; Sorg et al., 2007), given that three of the identified
seeds (superior medial frontal cortex, dorsomedial prefrontal cortex, middle temporal
lobe) are part of this network. It is noteworthy, however, that our strongest observed
effects reported were not in the same DMN regions typically described in earlier
resting-state studies of MCI and AD, viz, posterior cingulate/precuneus (Sheline et al.,
2010a; Zhang et al., 2010). Unexpected changes were also found in the striatum, and
this may reflect the advantages of “mining” the whole-brain connectome to search for
new biomarkers of mild cognitive impairment and possibly the early progression of
the pathophysiologic substrate of Alzheimer’s disease. If confirmed, our results could
suggest the utility of these regions in resting-state fMRI as a biomarker endpoint in
clinical trials.
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3.8 Supplementary material

3.8.1 Supplementary methods

Inclusion/exclusion criteria by each individual study

ADNI2

Subjects must have been either English or Spanish-speaking and between 55-90
(inclusive) years of age. All subjects had a partner able to provide an independent
evaluation of functioning. Criteria for CN subjects were as follows: MMSE scores
between 24-30 (inclusive), a CDR of 0, non-depressed, non-MCI, and non-demented.
Criteria for aMCI were as follows: MMSE scores between 24-30 (inclusive), a memory
complaint, have objective memory loss measured by education adjusted scores on
Wechsler Memory Scale Logical Memory II, a CDR of 0.5, absence of significant levels
of impairment in other cognitive domains, essentially preserved activities of daily
living, and an absence of dementia.

CRIUGMa

All subjects must have been 50 years of age or older, French-speaking or bilingual,
and lived in Quebec for most of their lives. Exclusion criteria included history
of psychiatric or neurological disorders, history of substance abuse, and having
undergone anesthesia within the last six months of participating in the study. aMCI
must have subjective memory complaints, an objective memory deficit (measured as a
score at least 1.5 standard deviations below the mean considering age and education),
and intact functional abilities. aMCI must not have met criteria for dementia. CN
subjects must not have met criteria for MCI or dementia.

CRIUGMb

All subjects must have been between 65 and 80 years old, had normal audition
and vision at the time of study, and at least 8 years of education. Exclusion criteria
included family history of early-onset AD, use of psychoactive substances within last
3 months, intellectual disabilities, signs of depression. aMCI must have had memory
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complaints, an MMSE score equal to or greater than 24, a CDR of 0.5, and cognitive
deficits equal to or higher than 1.5 standard deviations on neuropsychological tests.
CN subjects must not have met criteria for MCI or dementia.

MNI

CN subjects were selected on basis of their neurological and clinical status. Initial
identification of patients was based on memory complaints substantiated by an
informant. A subsequent interview was conducted with a full neurological examina-
tion including the standard Mini Mental State Examination (MMSE). Routine blood
screening was done to rule out underlying metabolic disorder. aMCI diagnosis was
according to the Petersen criteria (Petersen, 2004) which included: (i) memory com-
plaint usually corroborated by an informant; (ii) objective memory impairment for
age; (iii) essentially preserved general cognitive function; (iv) largely intact functional
activities; (v) not demented. Exclusion criteria included co-morbidity with other
neurological disease such as stroke, Parkinson’s disease, other neurodegenerative
diseases, etc; the presence of any major structural abnormalities or signs of major
vascular pathology on the MRI evaluation; axis I psychiatric disorder or intellectual
disability; use of psychoactive substance; previous or present use of cholinesterase
inhibitor.
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3.8.2 Supplementary figures

Figure 3.7: The default mode network and its subcomponents across resolutions (or number of
clusters) selected by MSTEPS.
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Figure 3.8: Functional parcellations across resolutions (or number of clusters) selected by
MSTEPS.
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Figure 3.9: Comparisons of effects in the dorsomedial prefrontal cortex across samples. This figure illustrates functional
connectivity changes between aMCI and CN, average connectivity in CN, and average connectivity in aMCI in each site
(ADNI2-Achieva, ADNI2-Gemini, ADNI2-Ingenia, ADNI2-Intera, CRIUGMa, CRIUGMb, MNI) independently of other
sites and when samples are pooled together (all samples). The number in parentheses refers to the numerical ID of the
seed in the 3D parcellation volume, as listed in Supplementary Table 3.5.
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Figure 3.10: Comparisons of effects in the striatum across samples. This figure illustrates functional connectivity changes
between aMCI and CN, average connectivity in CN, and average connectivity in aMCI in each site (ADNI2-Achieva,
ADNI2-Gemini, ADNI2-Ingenia, ADNI2-Intera, CRIUGMa, CRIUGMb, MNI) independently of other sites and when
samples are pooled together (all samples). The number in parentheses refers to the numerical ID of the seed in the 3D
parcellation volume, as listed in Supplementary Table 3.5.
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Figure 3.11: Comparisons of effects in the middle temporal lobe across samples. This figure illustrates functional con-
nectivity changes between aMCI and CN, average connectivity in CN, and average connectivity in aMCI in each site
(ADNI2-Achieva, ADNI2-Gemini, ADNI2-Ingenia, ADNI2-Intera, CRIUGMa, CRIUGMb, MNI) independently of other
sites and when samples are pooled together (all samples). The number in parentheses refers to the numerical ID of the
seed in the 3D parcellation volume, as listed in Supplementary Table 3.5.
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Figure 3.12: Mean connectivity of the supe-
rior medial frontal cortex (cluster #28) with
its associated connections in CN and aMCI
in the independent samples. Each map
displays the seed in pink and the clusters
(in other colors) whose connectivity with
the seed significantly differed between CN
and aMCI in the pooled analysis. The box-
whisker plots display the mean connectiv-
ity (Fisher-transformed correlation values)
between the seed and a significant parcel,
overlaid over individual data points, in
the CN and aMCI groups in the ADNI2-
Achieva, ADNI2-Gemini, ADNI2-Ingenia,
ADNI2-Intera, CRIUGMa, CRIUGMb, and
MNI samples. Each plot is labeled with a
number in the top-left corner, correspond-
ing to the number assigned to the cluster
in Supplementary Table 3.5, and a colored
square corresponding to the parcel of the
same color from the map. We also report
the Cohen’s d (a weighted average of the
effect sizes per sample) followed by a sam-
ple size estimate (for 80% power, balanced
groups, bilateral tests, Gaussian distribu-
tions, and α = 0.05) in square brackets in
the top-right corner of each plot.
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Figure 3.13: Mean connectivity of the
dorsomedial prefrontal cortex (cluster #9)
with its associated connections in CN and
aMCI in the independent samples. Each
map displays the seed in pink and the
clusters (in other colors) whose connec-
tivity with the seed significantly differed
between CN and aMCI in the pooled
analysis. The box-whisker plots display
the mean connectivity (Fisher-transformed
correlation values) between the seed and
a significant parcel, overlaid over indi-
vidual data points, in the CN and aMCI
groups in the ADNI2-Achieva, ADNI2-
Gemini, ADNI2-Ingenia, ADNI2- Intera,
CRIUGMa, CRIUGMb, and MNI samples.
Each plot is labeled with a number in the
top-left corner, corresponding to the num-
ber assigned to the cluster in Supplemen-
tary Table 3.5, and a colored square corre-
sponding to the parcel of the same color
from the map. We also report the Cohen’s
d (a weighted average of the effect sizes
per sample) followed by a sample size es-
timate (for 80% power, balanced groups,
bilateral tests, Gaussian distributions, and
α = 0.05) in square brackets in the top-
right corner of each plot.
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Figure 3.14: Mean connectivity of the stria-
tum (cluster #2) with its associated con-
nections in CN and aMCI in the inde-
pendent samples. Each map displays the
seed in pink and the clusters (in other
colors) whose connectivity with the seed
significantly differed between CN and
aMCI in the pooled analysis. The box-
whisker plots display the mean connectiv-
ity (Fisher-transformed correlation values)
between the seed and a significant parcel,
overlaid over individual data points, in
the CN and aMCI groups in the ADNI2-
Achieva, ADNI2-Gemini, ADNI2-Ingenia,
ADNI2-Intera, CRIUGMa, CRIUGMb, and
MNI samples. Each plot is labeled with a
number in the top-left corner, correspond-
ing to the number assigned to the cluster
in Supplementary Table 3.5, and a colored
square corresponding to the parcel of the
same color from the map. We also report
the Cohen’s d (a weighted average of the
effect sizes per sample) followed by a sam-
ple size estimate (for 80% power, balanced
groups, bilateral tests, Gaussian distribu-
tions, and α = 0.05) in square brackets in
the top-right corner of each plot.
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Figure 3.15: Mean connectivity of the mid-
dle temporal lobe (cluster #12) with its as-
sociated connections in CN and aMCI in
the independent samples. Each map dis-
plays the seed in pink and the clusters
(in other colors) whose connectivity with
the seed significantly differed between CN
and aMCI in the pooled analysis. The box-
whisker plots display the mean connectiv-
ity (Fisher-transformed correlation values)
between the seed and a significant parcel,
overlaid over individual data points, in
the CN and aMCI groups in the ADNI2-
Achieva, ADNI2-Gemini, ADNI2-Ingenia,
ADNI2-Intera, CRIUGMa, CRIUGMb, and
MNI samples. Each plot is labeled with a
number in the top-left corner, correspond-
ing to the number assigned to the cluster
in Supplementary Table 3.5, and a colored
square corresponding to the parcel of the
same color from the map. We also report
the Cohen’s d (a weighted average of the
effect sizes per sample) followed by a sam-
ple size estimate (for 80% power, balanced
groups, bilateral tests, Gaussian distribu-
tions, and α = 0.05) in square brackets in
the top-right corner of each plot.
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Figure 3.16: Comparison of results across different resolutions (or number of clusters) selected by MSTEPS. (A) Maps of
percentage of discovery illustrating brain networks that are significantly different between aMCI and CN. (B) Maps of
maximum absolute effects show the magnitude of the differences between aMCI and CN of every cluster.
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Figure 3.17: Comparisons of uncorrected and FDR-corrected effects related to aMCI across multiple resolutions selected
by MSTEPS in the superior medial frontal cortex as the seed. The number in parentheses refers to the numerical ID of the
seed in the 3D parcellation volume for 33 clusters, as listed in Supplementary Table 3.5.
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Figure 3.18: Correspondence of effect maps comparing aMCI against CN across resolutions se-
lected by MSTEPS in four selected seeds. Correlation matrices show pairwise comparisons be-
tween the eight MSTEPS resolutions of the effect maps for the (A) superior medial frontal cortex,
(B) dorsomedial prefrontal cortex, (C) striatum, and (D) middle temporal lobe. The numbers in
parentheses refer to the numerical IDs of the seeds in the 3D parcellation volume for 33 clusters,
as listed in Supplementary Table 3.5.

3.8.3 Supplementary tables

Table 3.4: Demographic information in all studies before quality control

ADNI2 CRIUGMa CRIUGMb MNI Combined
CN N 59 20 18 15 112

Mean age (s.d.) 74.1 (6.8) 71.7 (8.2) 69.9 (4.9) 67.0 (5.7) 72.0 (7.0)
N male (%) 27 (46%) 7 (35%) 2 (11%) 7 (47%) 43 (38%)

MMSE mean (range) 28.8 (24-30) 28.8 (27-30) n/a 29.1 (27-30) n/a
MoCA mean (range) n/a 27.6 (22-30) 28.5 (26-30) n/a n/a

aMCI N 93 9 22 19 143
Mean age (s.d.) 71.7 (7.8) 80.7 (6.2) 74.9 (6.9) 71.6 (8.1) 72.7 (7.7)

N male (%) 47 (51%) 4 (44%) 13 (59%) 8 (42%) 72 (50%)
MMSE mean (range) 28.1 (24-30) 26.3 (22-29) n/a 25.9 (22-30) n/a
MoCA mean (range) n/a 23.6 (20-29) 25.0 (16-29) n/a n/a
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Table 3.5: Numerical IDs, labels, and volumes (mm3) of parcels in the symmetric and asymmetric
brain parcellations containing 33 clusters

ID Label Volume (Symmetric) Volume (Asymmetric)
1 Thalamus 20547 20547
2 Striatum 47574 47574
3 Cerebellum_8_9_10 25461 25461
4 Angular/Parietal_Inf 34587 34074
5 Temporal_Pole 28242 28350
6 Cerebellum_3_4_5_6 42822 42768
7 Frontal_Inf_Tri 31860 31671
8 Cingulum_Post 38934 39204
9 Prefrontal_Dorsomedial 36693 35748

10 Hippocampus 57024 56997
11 Frontal_Sup 30969 31239
12 Temporal_Mid 32184 32157
13 Frontal_Mid/Sup 38043 36909
14 Supramarginal/Parietal_Inf 32670 31185
15 Cerebellum_Crus_Ant 48762 48843
16 Frontal_Inf_Oper 58239 57888
17 Postcentral 29538 29403
18 Precentral 44496 44334
19 Prefrontal_Ventrolateral 58158 58077
20 Precuneus 30051 30024
21 Fusiform/Parahippocampal 83997 82917
22 Prefrontal_Ventromedial 46035 47493
23 Frontal_Inf/Mid 57240 58266
24 Occipital_Mid/Inf 58671 61020
25 Temporal_Sup/Insula 65205 63666
26 Cuneus 60669 67230
27 Cerebellum_Crus_Post 76086 76086
28 Frontal_Sup_Medial 62424 62262
29 Calcarine/Lingual 57564 57483
30 Precentral/Supplementary_Motor 54135 54891
31 Pre/postcentral 70173 69606
32 Calcarine/Lingual/Cuneus 77328 77382
33 Occipital_Sup 80919 80190

Table 3.6: Rank of parcels based on their associated percentage of non-redundant connections that
differ between aMCI and CN

Rank Parcel Additional percentage of
connections

Cumulative percentage of
connections

1 Superior medial frontal cortex (28) 13.44 13.44
2 Dorsomedial prefrontal cortex (9) 12.65 26.09
3 Striatum (2) 11.06 37.15
4 Middle temporal lobe (12) 9.89 47.04
5 Fusiform/Parahippocampal (21) 8.69 55.73
6 Angular/Inferior parietal (4) 7.12 62.85
7 Hippocampus (10) 6.32 69.17
8 Ventromedial prefrontal cortex (22) 6.32 75.49
9 Temporal pole (5) 4.75 80.24

10 Middle/Superior frontal cortex (13) 4.74 84.98
11 Superior temporal/Insula (25) 4.74 89.72
12 Inferior/Middle frontal cortex (23) 3.17 92.89
13 Prefrontal ventrolateral cortex (19) 2.37 95.26
14 Posterior cerebellar crus (27) 1.58 96.84
15 Calcarine/Lingual/Cuneus (32) 1.58 98.42
16 Anterior cerebellar crus (15) 0.79 99.21
17 Inferior frontal operculum (16) 0.79 100.00
Numbers in parentheses reference the number assigned to the cluster as per Supplementary Table 3.5
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Chapter 4

Multiresolution functional brain
parcellation in an elderly population
with no or mild cognitive impairment

Angela Tam, Christian Dansereau, AmanPreet Badhwar, Pierre Orban, Sylvie Belleville,
Howard Chertkow, Alain Dagher, Alexandru Hanganu, Oury Monchi, Pedro Rosa-
Neto, Amir Shmuel, John Breitner, Pierre Bellec

4.1 Preface

This article acts as a companion paper to the study described in Chapter 3. The
purpose of this paper was to describe and share functional parcellations derived
from heterogeneous sets of resting-state fMRI data in older adults with or without
mild cognitive impairment. We provide multiple parcellations at different spatial
resolutions, spanning from large distributed networks to smaller regions of interest.
These parcellations are available for download on figshare and Neurovault. These
parcellations may be useful for researchers who are interested in resting-state func-
tional connectivity in older populations. For example, a parcellation from this release
could be used to define nodes in a graph analysis. This paper was published in Data
in Brief in 20161.

4.2 Abstract

We present eight resolutions of group-level brain parcellations for clusters generated
from resting-state functional magnetic resonance images for 99 cognitively normal

1http://dx.doi.org/10.1016/j.dib.2016.11.036

http://dx.doi.org/10.1016/j.dib.2016.11.036
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elderly persons and 129 patients with mild cognitive impairment, pooled from four
independent datasets. This dataset was generated as part of the following study:
Common Effects of Amnestic Mild Cognitive Impairment on Resting-State Connec-
tivity Across Four Independent Studies (Tam et al., 2015). The brain parcellations
have been registered to both symmetric and asymmetric MNI brain templates and
generated using a method called bootstrap analysis of stable clusters (BASC) (Bellec
et al., 2010). We present two variants of these parcellations. One variant contains
bihemisphereic parcels (4, 6, 12, 22, 33, 65, 111, and 208 total parcels across eight
resolutions). The second variant contains spatially connected regions of interest
(ROIs) that span only one hemisphere (10, 17, 30, 51, 77, 199, and 322 total ROIs
across eight resolutions). We also present maps illustrating functional connectivity
differences between patients and controls for four regions of interest (striatum, dorsal
prefrontal cortex, middle temporal lobe, and medial frontal cortex). The brain parcels
and associated statistical maps have been publicly released as 3D volumes, available
in .mnc and .nii file formats on figshare and on Neurovault. Finally, the code used to
generate this dataset is available on Github.

4.3 Data

This data release contains group brain parcellations at multiple resolutions (4, 6, 12,
22, 33, 65, 111, and 208 parcels) generated from resting-state functional magnetic res-
onance images for 99 cognitively normal elderly persons and 129 patients with mild
cognitive impairment. This work also includes parcellations that contain regions-
of-interest (ROIs) that are spatially connected and span only one hemisphere at 8
resolutions (10, 17, 30, 51, 77, 137, 199, and 322 total ROIs). Labels based on typical
resting-state networks, and their decomposition into subnetworks or regions, are
proposed for all brain parcels. This release also includes unthresholded maps of con-
nectivity differences (t-maps) between patients and controls for four seeds/regions of
interest (striatum, dorsal prefrontal cortex, middle temporal lobe, and medial frontal
cortex).

4.4 Experimental design, materials and methods

4.4.1 Participants

We pooled resting-state functional magnetic resonance imaging (fMRI) data from four
independent studies: the Alzheimer’s Disease Neuroimaging Initiative 2 (ADNI2)
sample, two samples from the Centre de recherche de l’institut universitaire de
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gériatrie de Montréal (CRIUGMa and CRIUGMb), and a sample from the Montreal
Neurological Institute (MNI) (3). All participants gave their written informed consent
to engage in these studies, which were approved by the research ethics board of the
respective institutions, and included consent for data sharing with collaborators as
well as secondary analysis. Ethical approval was also obtained at the site of secondary
analysis (CRIUGM). The ADNI2 data used in the preparation of this article were
obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu). ADNI was launched in 2003 by the National Institute on Aging,
the National Institute of Biomedical Imaging and Bioengineering, the Food and Drug
Administration, private pharmaceutical companies and non-profit organizations, as a
$60 million, 5-year public-private partnership representing efforts of co-investigators
from numerous academic institutions and private corporations. ADNI was followed
by ADNI-GO and ADNI-2 that included newer techniques. Subjects included in
this study were recruited by ADNI-2 from all 13 sites that acquired resting-state
fMRI on Philips scanners across North America. For up-to-date information, see
www.adni-info.org. The final combined sample included 112 cognitively normal
elderly subjects (CN) and 143 patients with mild cognitive impairment (MCI). In the
CN group, the mean age was 72.0 (s.d. 7.0) years, and 38.4% were men. Mean age of
the MCI subjects was 72.7 (s.d. 7.7) years, and 50.3% were men. For more information
about recruitment or participant characteristics, please refer to Tam et al. (2015).

4.4.2 Imaging data acquisition

All resting-state fMRI and structural scans were acquired on Philips and Siemens 3T
scanners. For more detailed information on the imaging parameters, please refer to
Tam et al. (2015).

4.4.3 Computational environment

All experiments were performed using the NeuroImaging Analysis Kit (NIAK)2

(Bellec et al., 2011) version 0.12.18, under CentOS version 6.3 with Octave3 version
3.8.1 and the Minc toolkit4 version 0.3.18. Analyses were executed in parallel on the
“Guillimin” supercomputer5, using the pipeline system for Octave and Matlab (Bellec
et al., 2012), version 1.0.2. The scripts used for processing can be found on Github6.

2http://simexp.github.io/niak/
3https://www.gnu.org/software/octave/
4http://www.bic.mni.mcgill.ca/ServicesSoftware/ServicesSoftwareMincToolKit
5http://www.calculquebec.ca/en/resources/compute-servers/guillimin
6https://github.com/SIMEXP/mcinet

http://simexp.github.io/niak/
https://www.gnu.org/software/octave/
http://www.bic.mni.mcgill.ca/ServicesSoftware/ServicesSoftwareMincToolKit
http://www.calculquebec.ca/en/resources/compute-servers/guillimin
https://github.com/SIMEXP/mcinet
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4.4.4 Pre-processing

Each fMRI dataset underwent preprocessing as described in (Tam et al., 2015). A
more detailed description of the pipeline can also be found on the NIAK website7

and Github8.

4.4.5 Parcellation of the brain into functional clusters

After pre-processing, we generated functional brain atlases at eight resolutions, con-
taining 4, 6, 12, 22, 33, 65, 111 and 208 total parcels, as described in (Tam et al.,
2015). These eight resolutions of brain parcellations (Figure 4.1), registered to both
symmetric and asymmetric MNI templates, have been released on figshare9 and
Neurovault10. These eight resolutions were further processed to generate eight parcel-
lations that contain ROIs that are spatially connected and span only one hemisphere
(for an example, see Figure 4.2). These latter parcellations contain 10, 17, 30, 51, 77,
137, 199, and 322 total ROIs.

4 clusters 6 clusters 12 clusters 22 clusters

33 clusters 65 clusters 111 clusters 208 clusters

Parcellations across multiple resolutions

Figure 4.1: Functional parcellations across resolutions (or number of clusters).

We have provided labels for each parcel at every resolution, except for resolutions
4 and 6 due to the merging of networks at those low resolutions. At resolution 4,
we observed the sensory-motor network, visual network, a network that resembles
the endogenous network (6) and a network that merges the cerebellum and the
mesolimbic network together. At resolution 6, we observed the visual network,
cerebellum, mesolimbic network, sensory-motor network, a network that merges the
deep gray matter nuclei with the frontoparietal network, and a network that merges
the default mode network with the posterior attention network. For resolution 12,

7http://niak.simexp-lab.org/pipe_preprocessing.html
8https://github.com/SIMEXP/mcinet/tree/master/preprocess
9http://dx.doi.org/10.6084/m9.figshare.1480461

10http://neurovault.org/collections/1003/

http://niak.simexp-lab.org/pipe_preprocessing.html
https://github.com/SIMEXP/mcinet/tree/master/preprocess
http://dx.doi.org/10.6084/m9.figshare.1480461
http://neurovault.org/collections/1003/
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a  Clusters at resolution 6

b  Regions of interest for each cluster

Figure 4.2: Clusters at resolution 6 (cerebellum not shown) and their respective regions-of-interest.
Note how each cluster in (A) is bihemispheric prior to breaking down into multiple spatially
constrained regions-of-interest in (B).

we manually labeled each parcel (deep gray matter nuclei (DGMN), posterior default
mode network (pDMN), medial temporal lobe (mTL), ventral temporal lobe (vTL),
dorsal temporal lobe (dTL), anterior default mode network (aDMN), orbitofrontal
cortex (OFC), posterior attention (pATT), cerebellum (CER), sensory-motor (SM),
visual (VIS), and frontoparietal network (FPN)). Then, we decomposed the networks
at resolution 12 into smaller subclusters at all higher resolutions (for an example, see
Figure 4.3). Each parcel at higher resolutions was labeled in reference to the parcels
at resolution 12, with the following convention: (resolution)_(parcel label)_(#); for
example, at resolution (R) 22, the anterior default mode splits into two clusters, which
were named “R22_aDMN_1” and “R22_aDMN_2”.

4.4.6 Derivation of functional connectomes

Between and within-clusters connectivity was measured as described in Tam et al.,
2015.

4.4.7 Statistical testing

To test for differences between aMCI and CN at a resolution of 33 clusters, we used
a general linear model (GLM) for each connection between two parcels (Bellec et
al., 2015). Specific details of the GLM can be found in (Tam et al., 2015). From
this analysis, we present uncorrected t-maps illustrating functional connectivity
differences between patients and controls for four seeds/regions of interest (striatum,
dorsal prefrontal cortex, middle temporal lobe, and medial frontal cortex) (Figure
4.4). These maps have been released on figshare and Neurovault. These four seeds
were chosen for further analyses because, together, they were associated with 47% of
all significant group differences across all brain regions. Briefly, we found that MCI
patients exhibited reduced connectivity between default mode network nodes and
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between areas of the cortico-striatal-thalamic loop. For a more in-depth presentation
and discussion of results, please refer to Tam et al. (2015).
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a  Anterior default mode network at resolution 12

1

2

3

4

View 1

View 4

View 2

View 3

Resolution 22 Resolution 33 Resolution 65 Resolution 111 Resolution 208

b  Subclusters of the anterior default mode network at higher resolutions

Figure 4.3: The decomposition of the anterior default mode network into smaller subclusters at
higher resolutions in four different views. Resolution 12 was used as a reference for the labeling
of subnetworks at higher resolutions.
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a  Striatum (2) b  Dorsal prefrontal cortex (9) c  Middle temporal lobe (12) d  Medial frontal cortex (28)
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Effect maps in MCI-CN of seeds and connections of interest

Figure 4.4: Maps for a selection of four seeds that show effects related to MCI at resolution 33.
These effect maps reveal the spatial distribution of the differences in functional connectivity for
(A) striatum, (B) dorsal prefrontal cortex, (C) middle temporal lobe, and (D) the medial frontal
cortex. For each panel, the top line maps the spatial location of the seed region in red, the second
and third lines show the connectivity (Fisher-transformed correlation values (F(r)) between the
designated seed region and the rest of the brain in CN and MCI respectively, and the fourth line
shows a difference map between MCI and CN (t-test). The numbers in parentheses refer to the
numerical IDs of the clusters in the 3D parcellation volume at resolution 33.
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Chapter 5

A signature of cognitive deficits and
brain atrophy that is highly predictive
of progression to Alzheimer’s
dementia

Angela Tam, Christian Dansereau, Yasser Iturria-Medina, Sebastian Urchs,
Pierre Orban, John Breitner, Pierre Bellec

5.1 Preface

In Chapter 3, we found a large amount of variation in functional connectivity across
different samples of MCI patients and cognitively normal subjects. A number of
studies had also reported different subtypes of brain atrophy patterns within AD
patients. As brain structure and function are often related, it seemed plausible that
the heterogeneity across samples with respect to functional connectivity could be due
to variability similar to that found in atrophy. To explore this, we conducted a study
that examined subtypes of functional connectivity and whether certain subtypes may
inform an individual’s risk of developing AD from a preclinical stage (see Orban et al.
(2017) in Appendix B). We next conducted a second study combining functional and
structural subtypes with a novel machine learning algorithm to generate a predictive
model to identify MCI subjects who would eventually progress to AD dementia with
high specificity and positive predictive value (see Dansereau et al. (2017) in Appendix
C). This current study is a follow-up to these last two works. We aimed to develop a
multimodal signature, based on cognition and subtypes of grey matter atrophy, that
is highly predictive of progression to AD dementia in a subgroup of MCI patients. We
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chose to use tools that were regularly used in clinical settings (i.e. structural MRI and
neuropsychological assessments) in order to evaluate the complementarity of features
derived from cognition and atrophy patterns. We also applied the machine learning
algorithm from Dansereau et al. (2017) to validate it on several larger datasets. This
paper will be submitted for publication at a peer-reviewed journal.

5.2 Abstract

Individuals suffering from mild cognitive impairment (MCI) have an increased risk
of developing Alzheimer’s disease (AD) dementia; yet only a fraction of them do.
We explore here whether a high risk subgroup can be identified using a signature,
comprised of spatial patterns of grey matter atrophy and cognitive deficits. We
applied machine learning algorithms to identify such a signature that it is commonly
seen in ADNI1 patients with AD dementia but absent in cognitively normal subjects.
We validated the signature in an independent cohort of AD and control subjects from
ADNI2. We then applied the signature on two separate cohorts of MCI subjects,
from ADNI1 and ADNI2, with the hypothesis that it would distinguish individuals
who progressed to dementia from those who remained cognitively stable over three
years. In ADNI1, the model predicted progression to dementia in MCI patients with
80.4% positive predictive value, adjusted for a "typical" baseline rate of 33%, 95.6%
specificity and 55.1% sensitivity. These results were replicated in ADNI2, where
the model reached 87.8% adjusted positive predictive value, 96.7% specificity, and
47.3% sensitivity. This signature was optimized for high specificity, which resulted
in higher positive predictive values compared to previous work, at the expense of
sensitivity. The signature suggests that cognitive deficits across multiple domains
combined with more atrophy in temporal, parietal and occipital lobe regions are
factors that are highly predictive of future progression. Our signature, which used
non-invasive and widely available markers, could be used for subject selection in
clinical trials or identification of high-risk individuals for earlier intervention.

5.3 Introduction

Alzheimer’s disease (AD) is an age-related neurodegenerative disorder and a leading
cause of dementia worldwide. AD is marked by the abnormal accumulation of
amyloid β (Aβ) and hyperphosphorylated tau proteins in the brain, which leads
to widespread neuronal damage. These neurobiological events may develop years,
or even decades, before the emergence of mild cognitive impairment (MCI), con-
sidered a prodromal stage of AD. MCI is a clinical condition not specific of AD;
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many patients will remain cognitively stable over time or even revert to normal
cognition. A diagnosis of MCI is still a risk factor for AD dementia, with up to
36% of patients developing dementia within two years (Ward et al., 2013). Given
the long preclinical and prodromal phases in AD, there is interest in developing
treatments that could prevent further decline, which requires biomarkers predictive
of progression to dementia from preclinical stages. Identifying progressor MCI to
AD dementia with enough specificity has been a challenge for clinical trials, where
the inclusion criteria for MCI subjects have had low to moderate positive predictive
value (Visser, Scheltens, and Verhey, 2005). This lack of prognostic power could be
due to underlying heterogeneity among individuals. Dong et al. (2017) for example
showed four distinct patterns of brain atrophy, two of which were associated with
higher-than-expected rates of progression to dementia. Yet, one subtype was much
more at risk than the other. The implications for prognosis are profound: only a
subset of individuals will have clinical trajectories that can be predicted very reliably.
In this work, we propose to apply machine learning tools to identify subgroups at
very high risk of progression to AD dementia, using commonly available measures,
i.e. structural magnetic resonance imaging (MRI) and cognitive tests.

There is a growing field of research dedicated to developing machine learning
algorithms to automatically detect progression to AD dementia in patients with
MCI. Cognitive tests measuring episodic memory and language have been identified
as features with high predictive accuracy (Belleville et al., 2017), with specificity
and sensitivity values of at least 70%. It has been suggested that the combination
of several cognitive domains, notably memory, language, and executive function
tests, yields the best performance and balance between specificity and sensitivity
(Belleville et al., 2017). With structural MRI, it is well established that significant
tissue loss occurs in the medial temporal lobes in AD patients (Jack et al., 1997).
Medial temporal lobe atrophy may be an early marker of AD as it can be seen also in
MCI patients relative to cognitively normal individuals (McDonald et al., 2009). As
the disease progresses and clinical symptoms become more severe, atrophy spreads
to the parietal and frontal lobes, while leaving the sensorimotor and visual cortices
relatively intact (McDonald et al., 2009). Grey matter volumes (GMV) of regions of
interest, typically defined by an atlas, have been used as features for the classification
of progressor MCI (pMCI) and stable MCI (sMCI) (Misra, Fan, and Davatzikos,
2009; Davatzikos et al., 2011). Cortical thickness of brain regions have similarly
been used as features to classify sMCI and pMCI (Eskildsen et al., 2013; Querbes
et al., 2009; Wee et al., 2013). Models using structural features alone have achieved
variable performance, ranging from 38-84% specificity and 63-95% sensitivity. Models
that have combined structural MRI markers with cognitive measurements have
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outperformed models with either structural MRI or cognition alone at predicting
progression to AD dementia (Devanand et al., 2007; Korolev et al., 2016; Moradi et al.,
2015). For models combining structural MRI and cognition, in terms of accuracy,
the best has been reported at 79% (76% specificity, 83% sensitivity) (Korolev et al.,
2016). Overall, the state-of-the-art, which used Aβ positron emission tomography
(PET) scans, has so far achieved 82% accuracy (87% specificity, 71% sensitivity)
(Mathotaarachchi et al., 2017). Note that accuracy is defined as the proportion of
subjects that were correctly identified, either as positives or negatives. Positive
predictive value, on the other hand, is defined as the proportion of true positives
out of all subjects that were classified as positive (including the false negatives).
A model could have high accuracy yet moderate positive predictive value if the
number of true positives is low relative to the number of true negatives. In the case
of predicting incipient AD, relatively few MCI subjects progress to dementia (up to
36% within two years (Ward et al., 2013)). Despite promising accuracy, the positive
predictive values of models predicting AD progression remain moderate, ranging
from 50 to 75% across the literature (Dansereau et al., 2017). This implies that up
to half of subjects who were identified as progressors by published algorithms did
not in fact progress to dementia. Furthermore, predictive power decreases as the
time to conversion increases (Eskildsen et al., 2013), so there is even more room for
improvement for long-term prognosis (beyond 2 years).

AD dementia prognosis may be difficult due to the inherent heterogeneity present
across the population. While brain amyloidosis is a defining feature of AD, it is clearly
insufficient at causing clinical impairment since 10-44% of cognitively normal subjects
aged 50 to 90 years are amyloid-positive, based on a meta-analysis of 55 studies with
PET and cerebrospinal fluid (Jansen et al., 2015). Furthermore, a meta-analysis of
29 cohorts revealed that, on average, 88% of clinically diagnosed AD patients have
amyloid-negative PET scans (Ossenkoppele et al., 2015). Similar prevalence rates
have been corroborated by post-mortem neuropathological assessments (Beach et al.,
2012; Bennett et al., 2006), revealing that clinical diagnoses often do not match with
pathology. Beach et al. (2012) also found that guidelines for a neuropathological
diagnosis of AD were too restrictive, rendering 33% of cases unclassifiable. It is
apparent that we need to better characterize heterogeneity within populations if we
are to reach the precision levels required for individualized medicine.

To address some of this heterogeneity, several studies have explored subtypes
of atrophy in AD, where homogeneous subgroups of AD patients show different
patterns of gray matter loss relative to healthy controls. For example, a number of
works have reproduced a subtype characterized by primarily medial temporal lobe
atrophy, a second subtype characterized by parietal, occipital, and lateral temporal
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lobe atrophy, and a third subtype with diffuse atrophy (Noh et al., 2014; Hwang
et al., 2016; Park et al., 2017; Varol et al., 2017). The subgroup with parietal, occipital,
and lateral temporal lobe atrophy tended to be younger and had the worst cognition
(Noh et al., 2014; Park et al., 2017), while the medial temporal lobe atrophy subtype
contained a greater proportion of carriers of the APOE4 allele (Varol et al., 2017), a
genetic risk factor for sporadic late-onset AD, and the diffuse atrophy subtype had
the least Aβ and tau burden (Varol et al., 2017). Heterogeneity is also present in the
symptomatic expression of MCI patients. Often, MCI patients are categorized as
amnestic MCI, subjects who have memory impairment, non-amnestic MCI, those
who have impairments in non-memory domains, and multi-domain MCI, subjects
with concurrent impairments in multiple kinds of cognition (Petersen, 2003). This
would result in a patient being labeled as one of four MCI subtypes: 1) amnestic single
domain MCI, 2) non-amnestic single domain MCI, 3) amnestic multidomain MCI,
4) non-amnestic multidomain MCI (Petersen et al., 2014). Amnestic MCI subjects
are more likely to be diagnosed with dementia than non-amnestic MCI (Aggarwal
et al., 2005; Busse et al., 2006), but the group at highest risk of conversion is multi-
domain MCI (Tabert et al., 2006). Mitchell et al. (2009) reported 59% of multi-domain
MCI subjects progressed after two years of follow-up, while only 18% of amnestic
single domain MCI progressed, and 70% of non-amnestic single domain MCI actually
improved, which illustrates how outcomes can vary substantially between subgroups.
Certain subtypes of brain patterns may predispose individuals to worse cognitive
trajectories. Subjects with widespread brain atrophy, and especially those who also
express greater loss in the temporal lobes, have worse cognitive decline compared to
other subjects with more localized atrophy (Dong et al., 2017).

While brain structure and cognition appear to offer complementary information
for prognosis of dementia, the complementarity of those modalities to identify high-
risk subtypes is unclear. It is possible that a predictive signature based on atrophy
may identify a subgroup of subjects that is separate from those labeled by a signature
based on cognition, for example. Then despite the many works that describe subtypes
of brain atrophy in AD populations (Noh et al., 2014; Hwang et al., 2016; Park et al.,
2017; Varol et al., 2017; Zhang et al., 2016; Dong et al., 2016), little has been done to
leverage the heterogeneity to predict incipient dementia from a subgroup of MCI
patients with high positive predictive value. We have previously shown that the
combined expression of certain subtypes of cortical thinning patterns, grey matter
volumes, and resting-state network functional connectivity was highly predictive of
future AD progression in a subgroup of MCI subjects with 90% positive predictive
value (Dansereau et al., 2017). While the results from Dansereau et al. (2017) are
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promising, they require further validation since the sample size was small as resting-
state functional MRI data is relatively uncommon compared to other measures.

The main aim of this work was to develop a multimodal signature, based on cog-
nition and subtypes of grey matter atrophy, that is highly predictive of progression to
AD dementia in a subgroup of MCI patients. We wanted to evaluate the complemen-
tarity of features derived from cognition and atrophy patterns. We applied a cluster
analysis on structural magnetic resonance images to identify subtypes of brain atro-
phy in a sample containing both patients with AD dementia and cognitively normal
(CN) individuals. We then used a two-step machine learning algorithm (Dansereau
et al., 2017) to train a model to identify three signatures that were highly predictive of
AD dementia: 1) an anatomical signature, 2) a cognitive signature, 3) a multimodal
anatomical and cognitive signature. After identifying MCI patients carrying these
signatures, we examined cognitive decline, Aβ and tau burden, and progression
to dementia in these individuals to explore whether a highly predictive signature
represented a prodromal stage of AD. We analysed whether these three signatures
identified separate subgroups of subjects and how they performed against each
other in terms of positive predictive value, specificity, and sensitivity at identifying
progressors.

5.4 Methods

5.4.1 Data

Data used in the preparation of this article were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI
was launched in 2003 as a public-private partnership, led by Principal Investigator
Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial
magnetic resonance imaging (MRI), positron emission tomography (PET), other bio-
logical markers, and clinical and neuropsychological assessment can be combined to
measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s
disease (AD). For up-to-date information, see www.adni-info.org. We took baseline
T1-weighted MRI scans from the ADNI1 (228 CN, 397 MCI, 192 AD) and ADNI2 (218
CN, 354 MCI, 103 AD) studies. For a detailed description of MRI acquisition details,
see http://adni.loni.usc.edu/methods/documents/mri-protocols/. All subjects
gave informed consent to participate in these studies, which were approved by the
research ethics committees of the institutions involved in data acquisition. Consent
was obtained for data sharing and secondary analysis, the latter being approved by
the ethics committee at the CRIUGM. For the MCI groups, each individual must have

adni.loni.usc.edu
www.adni-info.org
http://adni.loni.usc.edu/methods/documents/mri-protocols/
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Table 5.1: Demographic information for post-QC subjects in ADNI1 and ADNI2.

ADNI1 CN sMCI pMCI AD
N 205 89 155 172
Age ± SD 76.1 ± 5.0 73.9 ± 7.6 74.2 ± 7.1 75.3 ± 7.5
Female % 51.7 40.4 41.9 50.0
APOE4+ % 27.8 37.1 68.4 66.3
ADAS13 ± SD 9.5 ± 4.3 14.4 ± 5.5 21.3 ± 5.2 28.7 ± 7.1
MMSE ± SD 29.1 ± 1.0 27.7 ± 1.7 26.7 ± 1.7 23.4 ± 2.0
ADNI2 CN sMCI pMCI AD
N 188 182 55 90
Age ± SD 72.8 ± 6.1 70.8 ± 7.3 72.1 ± 7.1 74.6 ± 7.9
Female % 54.0 47.3 49.1 45.6
APOE4+ % 29.4 36.3 65.4 70.4
ADAS13 ± SD 9.1 ± 4.2 11.8 ± 5.3 21.4 ± 6.5 31.9 ± 8.7
MMSE ± SD 29.1 ± 1.1 28.4 ± 1.5 27.3 ± 1.9 23.1 ± 2.3

ADAS13 = Alzheimer’s Disease Assessment Scale - Cognitive subscale
(13 items); MMSE = Mini Mental State Examination

had at least 36 months of follow-up for inclusion in our analysis. We also further
stratified the MCI groups into stable (sMCI), who never received any change in their
diagnosis, and progressors (pMCI), who received a diagnosis of AD dementia within
36 months of follow-up. pMCI who progressed to AD dementia after 36 months were
excluded. After applying these inclusion/exclusion criteria, we were left with 280
and 268 eligible MCI subjects in ADNI1 and ADNI2 respectively.

Structural features from voxel-based morphometry

Images were processed and analyzed with the NeuroImaging Analysis Kit (NIAK)
version 0.18.1 (https://hub.docker.com/r/simexp/niak-boss/), the MINC toolkit
(http://bic-mni.github.io/) version 0.3.18, and SPM12 (http://www.fil.ion.ucl.
ac.uk/spm/software/spm12/) under CentOS with Octave (http://gnu.octave.org)
version 4.0.2. Preprocessing of MRI data was executed in parallel on the Cedar
supercomputer (https://docs.computecanada.ca/wiki/Cedar), using the pipeline
system for Octave and Matlab - PSOM (Bellec et al., 2012). Each T1 image was linearly
co-registered to the Montreal Neurological Institute (MNI) ICBM152 stereotaxic sym-
metric template (Fonov et al., 2011), using the CIVET pipeline (Ad-Dab’bagh et al.,
2006), and then re-oriented to the AC-PC line. Each image was segmented into grey
matter, white matter, and CSF probabilistic maps. The DARTEL toolbox (Ashburner,
2007) was used to normalize the grey matter segmentations to a predefined grey
matter template in MNI152 space. Each map was modulated to preserve the total
amount of signal and smoothed with with a 8 mm isotropic Gaussian blurring kernel.
After quality control of the normalized grey matter segmentations, we were left with
621 subjects in ADNI1 (out of 700, 88.7% success rate) and 515 subjects in ADNI2 (out
of 589, 87.4% success rate). See Table 5.1 for demographic information of post-QC
subjects.

https://hub.docker.com/r/simexp/niak-boss/
http://bic-mni.github.io/
http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
http://gnu.octave.org
https://docs.computecanada.ca/wiki/Cedar
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We extracted subtypes to characterize variability of grey matter distribution with
the CN and AD samples from ADNI1. In order to reduce the impact of factors of no
interest that may have influenced the clustering procedure, we regressed out age, sex,
mean grey matter volume (GMV), and total intracranial volume (TIV), using a mass
univariate linear regression model at each voxel. We then derived a spatial Pearson’s
correlation coefficient between all pairs of individual maps after confound regression.
This defined a subject x subject (377 x 377) similarity matrix which was entered into
a Ward hierarchical clustering procedure (Figure 5.1a). Based on visual inspection
of the similarity matrix, we identified 7 subgroups (Figure 5.1b). Each subtype was
defined as the average map of each subgroup. We then computed spatial correlations
between each individual’s map and each subtype, referred to as weights (Figure 5.1a).
These weights were used as features for the predictive models involving VBM in
the rest of this work. As in our previous works (Orban et al., 2017; Dansereau et al.,
2017), we chose to use weights, which can be interpreted as continuous measures
for subtype affinity, over discrete subtype membership because the latter is less
informative as most individuals express similarity to multiple subtypes (Zhang et al.,
2016). Note that although we chose to present our findings with 7 subtypes, we
examined how the number of subtype may impact our subsequent predictions. There
was no significant difference in model performance when we changed the number of
subtypes (see Table 5.3 in supplementary material).

Cognitive features

We took baseline neuropsychological scores for each subject from several cognitive
domains: memory from the composite score ADNI-MEM (Crane et al., 2012), execu-
tive function from the composite score ADNI-EF (Gibbons et al., 2012), language from
the Boston Naming Test (BNT), visuospatial from the clock drawing test, and global
cognition from the Alzheimer’s Disease Assessment Scale-Cognitive (ADAS13). We
chose measures that span multiple cognitive domains as it has been suggested that
the use of a combination of neuropsychological measures is likely the best approach
to predicting incipient dementia (Belleville et al., 2017). These scores were included
as features for the predictive models involving cognition.

Prediction of easy AD dementia cases in ADNI1

We trained a support vector machine (SVM) model with a linear kernel, as imple-
mented by Scikit-learn (Pedregosa et al., 2011) version 0.18 to classify AD vs CN
from ADNI1 to get a baseline prediction accuracy. A tenfold cross-validation loop
was used to estimate the performance of the trained model. Classes were balanced
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Figure 5.1: Subtyping procedure and resulting subtypes. a) A hierarchical clustering procedure
identified 7 subtypes, or subgroups, of individuals with similar patterns of grey matter topog-
raphy within the ADNI1 cohort of CN and AD subjects (top). A measure of spatial similarity,
called subtype weight, between a single individual’s grey matter volume map and the average of
a given subtype was calculated for all individuals and all subtypes (bottom). b) Maps of the 7 sub-
types showing the distribution of grey matter across all voxels relative to the average. CN* and
AD* denote significant associations between the subtype weights and diagnoses of cognitively
normal (CN) or Alzheimer’s dementia (AD) respectively.
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inversely proportional to class frequencies in the input data for the training. A nested
cross-validation loop (stratified shuffle split with 50 splits and 20% test size) was
used for the grid search of the hyperparameter C (grid was 10−2 to 101 with 15
equal steps). We randomly selected subsamples of the dataset (retaining 50% of
participants in each subsample) to replicate the SVM training 500 times. For each
50% subsample, a separate SVM model was trained to predict AD or CN in ADNI1.
Predictions were made on the remaining 50% of the sample that was not used for
training. For each subject, we calculated a hit probability defined as the frequency of
correct classification across all SVM replications in which the test set contained that
subject. Easy AD cases were defined as individuals with 100% hit probabilities with
the AD label. Next, we trained a logistic regression classifier (Fan et al., 2008), with
L1 regularization on the coefficients, to predict the easy AD cases. A stratified shuffle
split (500 splits, 50% test size) was used to estimate the performance of the model for
the grid search of the hyperparameter C (grid was 10−2 to 101 with 15 equal steps).
See (Dansereau et al., 2017) for more information about this two-step prediction. We
used the whole CN and AD sample from ADNI1 to obtain three highly predictive
signatures (HPS), one using VBM subtypes (VBM only), one using cognitive features
(COG only), and one using the combination of VBM and cognitive features (VCOG).
In all three signatures, age, sex, mean GMV, and TIV were also included as features.

5.4.2 Prediction of progression to AD dementia from the MCI

stage in ADNI1

The logistic regression trained on AD vs CN was used to identify MCI patients who
have a HPS of AD dementia in ADNI1. We re-trained our models on AD vs CN after
optimizing our hyperparameters (resampling size and resampling ratio) in order to
maximize specificity and positive predictive value while keeping a minimum of 30%
sensitivity for our classification of sMCI (n=89) vs pMCI (n=155) in ADNI1. This was
done for all three signatures. In brief, we used the AD and CN sample from ADNI1
as a training set, the MCI subjects from ADNI1 as a validation set, and ADNI2 served
as our test set.

5.4.3 Statistical test of differences in model performance

We used Monte-Carlo simulations to generate confidence intervals on the perfor-
mance (i.e. positive predictive value, specificity and sensitivity) of both base SVM
and HPS models for their predictions of AD vs CN and pMCI vs sMCI. Taking the
observed sensitivity and specificity, and using similar sample sizes to our experiment,
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we replicated the number of true and false positive detection 100000 times using in-
dependent Bernoulli variables, and derived replications of positive predictive value,
specificity and sensitivity. By comparing these replications to the sensitivity, speci-
ficity and positive predictive value observed in both models, we estimated a p-value
for differences in model performance (Phipson and Smyth, 2010). A p-value smaller
than 0.05 was interpreted as evidence of a significant difference in performance, and
0.001 as strong evidence. We also used this approach to compare the performance of
the combined features (VCOG) to the models containing VBM features or cognitive
features only. Note that, based on our hypotheses regarding the behaviour of the
HPS model, the tests were one-sided for increased specificity and positive predictive
value, and one-sided for decreased sensitivity.

5.4.4 Statistical tests of association of progression, AD

biomarkers, and risk factors in HPS+ MCI subjects

Based on the classifications resulting from the base SVM and HPS models, we
separated the MCI subjects into three different groups: 1) HPS+, subjects who were
selected by the HPS model as hits, 2) Non-HPS+, subjects who were selected by the
base SVM model as hits but were not selected by the HPS model, and 3) Negative,
subjects who were not selected as hits by either algorithm.

We tested statistically if the HPS+ subgroup was enriched for progression to
dementia, APOE4 carriers, females, and subjects who were positive for Aβ and tau
pathology. Positivity of AD pathology was determined by CSF measurements of Aβ

1-42 peptide and total tau with cut-off values of less than 192 pg/mL and greater than
93 pg/mL respectively (Shaw et al., 2009). We implemented Monte-Carlo simulations,
where we selected 100000 random subgroups out of the original MCI sample. By
comparing the proportion of progressors, APOE4 carriers, females, Aβ-positive, and
tau-positive subjects in these null replications to the actual observed values in the
HPS subgroup, we estimated a p-value (Phipson and Smyth, 2010) (one sided for
increase). A p-value smaller than 0.05 was interpreted as evidence of a significant
enrichment, and 0.001 as strong evidence.

One-way ANOVAs were used to evaluate differences between the HPS group-
ings with respect to age. Post-hoc Tukey’s HSD tests were done to assess pairwise
differences among the three classes (HPS+, Non-HPS+, Negative). These tests were
implemented in Python with the SciPy library (Jones, Oliphant, and Peterson, 2001)
version 0.19.1 and StatsModels library (Seabold and Perktold, 2010) version 0.8.0.

To explore the impact of HPS grouping on cognitive trajectories, linear mixed
effects models were performed to evaluate the main effects of and interactions
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between the HPS groups and time on ADAS13 scores up to 36 months of follow-
up. The models were first fit with a random effect of participant and then were
fit with random slopes (time | participant) if ANOVAs comparing the likelihood
ratio suggested a significant improvement in model fit. All tests were performed
separately on the ADNI1 and ADNI2 datasets. These tests were implemented in R
version 3.3.2 with the library nlme version 3.1.128 (Pinheiro et al., 2018).

5.4.5 Public code and data

The code used in this experiment is available on a Github repository: https://

github.com/SIMEXP/vcog_hps_ad.

5.5 Results

5.5.1 Prediction of AD dementia vs cognitively normal

individuals

A linear SVM model trained using the VCOG features achieved 94.5% positive predic-
tive value (95.6% specificity, 93.9% sensitivity) when classifying AD vs CN in ADNI1.
Such high performance was expected given the marked clinical deficits associated
with a clinical dementia. COG features only actually reached excellent performance
as well (97.6% positive predictive value, 98.0% specificity, 96.4% sensitivity), while
using VBM features only yielded markedly lower performances (86.4% positive
predictive value, 89.3% specificity, 79.6% sensitivity). Note that the performance
metrics in ADNI1 were estimated through cross-validation, and represent an average
performance for several models trained on different subsets of ADNI1. We then
trained a model on all of ADNI1, and estimated its performance on an independent
dataset, ADNI2. Using VCOG predictors, the ADNI1 model reached 92.0% positive
predictive value (96.3% specificity, 92.0% sensitivity), when applied on ADNI2, AD vs
CN data. Again the performance was comparable with COG predictors only (92.2%
positive predictive value, 96.3% specificity, 94.3% sensitivity), and lower performance
with VBM features only (57.3% positive predictive value, 79.8% specificity, 56.7%
sensitivity). Note that positive predictive value is dependent on the proportion of
patients and controls for a given sensitivity and specificity. Since the ADNI2 sample
has a substantially smaller proportion of AD subjects compared to ADNI1, the result-
ing positive predictive value is reduced. When we adjusted the baseline rate of AD
subjects in ADNI2 to the same rate in ADNI1, the positive predictive values were
95.2%, 95.3%, and 70.2% for the VCOG, COG, and VBM models respectively.

https://github.com/SIMEXP/vcog_hps_ad
https://github.com/SIMEXP/vcog_hps_ad
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5.5.2 Identification of easy AD cases for prediction

We tested the stability of the SVM prediction with VCOG features, using random
subsamples of ADNI1. We calculated hit probabilities, representing the frequency at
which a given subject would be correctly identified as AD, across all subsamples that
did not include that subject as part of the training of the model. When implementing
this procedure on all of ADNI1, we found that 88% of subjects had a 100% hit
probability, which we defined as easy cases. A logistic regression was then trained
to predict the easy AD cases. The logistic regression was regularized, and selected
a subset of features to perform the prediction. We called the combination of these
features a highly predictive signature (HPS) of AD. The VCOG HPS model achieved
99.2% positive predictive value (99.5% specificity, 77.6% sensitivity) in classifying
easy AD subjects in ADNI1. These performance scores were estimated by cross-
validation of the entire two-stage process (subtyping, traing of SVM, estimation of hit
probability, identification of HPS). The hyperparameters of the two-stage model were
optimized on classifying pMCI vs sMCI in ADNI1. We next trained a single model on
all of ADNI1, which we then applied on a independent sample (ADNI2). The ADNI1
AD VCOG HPS model reached 98.6% positive predictive value (99.5% specificity,
79.5% sensitivity) on ADNI2. Similarly to the SVM results, the VCOG HPS model
had similar performance to the COG HPS model (ADNI1: 100% positive predictive
value, 100% specificity, 87.3% sensitivity; ADNI2: 98.7% positive predictive value,
99.5% specificity, 88.6% sensitivity), and outperformed the VBM HPS model (ADNI1:
92.3% positive predictive value, 96.1% specificity, 54.6% sensitivity; ADNI2: 65.2%
positive predictive value, 91.5% specificity, 33.3% sensitivity), see Figure 5.2a. When
adjusted to the same baseline rate of AD subjects as ADNI1, the positive predictive
values in ADNI2 were 99.2%, 99.3%, and 76.7% for the VCOG, COG, and VBM HPS
models respectively.

The HPS models consistently outperformed the base SVM classifiers with respect
to specificity (p < 0.001) in the classifications of AD vs CN and pMCI vs sMCI in both
ADNI1 and ADNI2, regardless of the features that the models contained. The HPS
also had greater positive predictive value (p < 0.05) adjusted for a typical prevalence
of 33.6% pMCI in a given sample of MCI subjects (Mitchell and Shiri-Feshki, 2009).
However, these increases in specificity and positive predictive value for the HPS
model came at a significant cost of reduced sensitivity compared to the base classifier,
across all models in both ADNI1 and ADNI2 (p < 0.05) (Figure 5.2). Note that this
shift towards lower sensitivity and higher specificity and positive predictive value
could be achieved by adjusting the threshold of the SVM analysis (see ROC analysis,
Figure 5.7 in supplementary material).
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Figure 5.2: Specificity, sensitivity, and positive predictive value (PPV) for the base SVM and highly
predictive signature (HPS) classifiers in the classifications of a) patients with AD dementia (AD)
and cognitively normal individuals (CN) and b) patients with mild cognitive impairment who
progress to AD (pMCI) and stable MCI (sMCI) in ADNI1 and ADNI2. VBM represents the mod-
els trained with VBM subtypes, COG represents the models trained with baseline cognitive scores,
and VCOG represents the modelsprediction trained with both VBM subtypes and cognition. Sig-
nificant differences are denoted by ∗ for p < 0.05 and ∗∗ for p < 0.001). Positive predictive value
was adjusted (PPV (adj)) for a prevalence of 33.6% pMCI in a sample of MCI subjects for both
ADNI1 and ADNI2 MCI cohorts.
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5.5.3 High confidence prediction of progression to AD dementia

We next assessed whether the HPS AD model trained on ADNI1 could be used
to predict pMCI from sMCI (within three years of follow-up). We applied the AD
HPS model trained on ADNI1 on 235 subjects within the ADNI1 MCI sample. We
stratified the MCI patients into three categories: negative individuals were classified
as controls by the baseline SVM model, HPS+ individuals were identified as patients
by the AD HPS model, and non-HPS+ individuals were identified as patients by the
baseline SVM model, but not by the AD HPS model. When using the full VCOG
features, 87 MCI patients were selected as HPS+ in ADNI1, out of which 81 (93.1%
positive predictive value) were pMCI within 36 months follow-up. This represented
a large, significant increase over the baseline rate of progressors in the entire ADNI1
MCI sample (37.4%) (p < 0.001). This was also a significant increase over the SVM’s
predictions, where 83.9% of subjects that it had labeled as hits were true progressors
(p < 0.001). When adjusted to a 33.6% baseline rate of progressors, more typical of
MCI populations, the positive predictive value of HPS+ for prognosis of dementia
was 80.4% (93.2% specificity, 55.1% sensitivity). We replicated these analyses in the
MCI sample from ADNI2. Using VCOG features, 32 subjects were identified as
HPC+, 26 of which progressed to AD dementia within 36 months follow-up (81.2%
positive predictive value, specificity of 96.7%, sensitivity of 47.3%, 87.8% positive
predictive value adjusted to a 33.6% baseline rate). This represented a significantly
higher prevalence than the 30.6% baseline rate in the entire ADNI2 MCI cohort
(p < 0.001). This was also a significant increase over the SVM’s predictions, where
67.8% of subjects it had labeled as hits were true progressors (p < 0.001). As expected,
the HPS+ model had lower sensitivity and higher specificity/positive predictive
value than the baseline model, both in ADNI1 and ADNI2, and for all three feature
sets (VBM, COG and VCOG), see Figure 5.2b. The VCOG features also lead to higher
positive predictive value than VBM and COG features taken independently, both
in ADNI1 and ADNI2. That increase was large and significant between VCOG and
VBM (up to 17%) and marginal, non-significant between VCOG and COG (up to 8%),
see Figure 5.2b.

5.5.4 Characteristics of MCI subjects with a highly predictive

VCOG signature of AD

HPS+ MCI subjects with the VCOG signature were more likely to be progressors
(Figure 5.3a) compared to non-HPS+ subjects and negative subjects (ADNI1: p <

0.001; ADNI2: p < 0.001). HPS+ MCI subjects were also more likely to be APOE4
carriers (Figure 5.3b) (ADNI1: p < 0.005; ADNI2: p < 0.05). There was no difference
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in sex across the HPS groupings in the MCI subjects of either the ADNI1 or ADNI2
cohorts (Figure 5.3c). This was consistent with the whole sample, where there
were equal proportions of progressors across both sexes in each dataset (ADNI1:
χ2 = 0.015, p = 0.90; ADNI2: χ2 = 0.0002, p = 0.99). The HPS+ class was also
significantly enriched for Aβ-positive subjects in ADNI1 (p < 0.05). However, this
result was not replicated in the ADNI2 MCI subjects (Figure 5.3d). Similarly with tau,
we found a significant increase in tau-positive subjects in the HPS+ group of ADNI1
(p < 0.05), but not in ADNI2 (Figure 5.3e). We found a significant age difference
across the HPS classes in ADNI2 (F = 5.68, p < 0.005), where the HPS+ subjects
were older than the Negative subjects by a mean of 4.4 years. However, age did
not differ across the HPS classes in ADNI1 (Figure 5.3f). Finally, HPS+ subjects had
significantly steeper cognitive declines compared to the Non-HPS+ and Negative
groups (Figure 5.3g): there were significant interactions between the HPS groupings
and time in ADNI1: (HPS+ β = −0.147, t = −7.56, p < 0.001, Non-HPS+ β =

−0.055, t = −2.46, p < 0.05) and ADNI2 (HPS+ β = −0.194, t = −8.69, p < 0.001,
Non-HPS+ β = −0.072, t = −3.31, p = 0.001). The HPS+ in ADNI1 and ADNI2
respectively gained 1.8 and 2.3 more points each year on the ADAS13 compared
to the Non-HPS+ and Negative groups. Note that higher scores on the ADAS13
represent worse cognitive function.

5.5.5 COG, VBM and VCOG signatures

The COG signature was mainly driven by scores from the ADAS13, which measures
overall cognition, ADNI-MEM, which measures memory, and ADNI-EF, which
measures executive function (coefficients were 5.49, -4.80 and -2.50 respectively).
In this model, sex, age, mean GMV, and TIV contributed very little, relative to the
cognitive features (Figure 5.4b). Note that these coefficients should be interpreted as
pseudo z-scores as the features had been normalized to zero mean and unit variance.

Almost all grey matter subtypes contributed to the VBM signature. Mean GMV,
subtype 1 and subtype 6 had the highest weights in the model (coefficients were -5.07,
4.87, and 3.98 respectively) (Figure 5.4c). Subtype 1 was characterized by reduced
relative GMV in the occipital, parietal and posterior temporal lobes. Subtype 6 was
characterized by reduced relative GMV in the temporal lobes, notably the medial
temporal regions. We had anticipated the larger contribution of these two subtypes as
they have been described in previous AD subtyping work (Noh et al., 2014; Hwang
et al., 2016; Park et al., 2017; Varol et al., 2017). Diagnosis (CN, sMCI, pMCI, AD)
accounted for a substantial amount of variance in these subtype weights (subtype
1: F = 8.51, p < 0.001; subtype 2: F = 34.27, p < 0.001). Post-hoc t-tests showed
AD subjects had significantly higher weights compared to CN (Figure 5.1e), making
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Figure 5.3: Characteristics of MCI subjects with the VCOG signature in ADNI1 and ADNI2. We
show the percentage of MCI subjects who a) progressed to dementia, were b) APOE4 carriers,
c) female, d) positive for Aβ measured by a cut-off of 192 pg/mL in the CSF (Shaw et al., 2009),
and e) positive for tau measured by a cut-off of 93 pg/mL in the CSF (Shaw et al., 2009) in each
classification (HPS+, Non-HPS+, and Negative). f) Age and g) cognitive trajectories, measured by
the Alzheimer’s Disease Assessment Scale - Cognitive subscale with 13 items (ADAS13), across
the three classes. Significant differences are denoted by ∗ for family-wise error rate-corrected
p < 0.05.
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these subtypes associated with a diagnosis of AD (subtype 1: t = 2.88, p < 0.05;
subtype 6: t = 7.68, p < 0.001).

The ADAS13, memory (ADNI-MEM) and executive function (ADNI-EF) scores
contributed the most to the VCOG HPS signature (coefficients were 6.27, -7.43 and
-3.95 respectively, Figure 5.4a). Of the VBM features, subtypes 2, 3 and 7 contributed
the most to the signature (coefficients were 1.36, -2.12 and -2.83 respectively). Sub-
types 1 and 6, which had the highest positive weights in the VBM model, were
given marginal weights in the VCOG model, potentially indicative of redundancy
with COG features. Subtype 2, which was associated with AD, was characterized
by greater relative GMV in medial parts of the parietal and occipital lobes and the
cingulate cortex, but less GMV everywhere else. Subtype 3 was characterized by
greater relative GMV in the temporal lobes, insula and striatum. Subtype 7, which
was associated with healthy controls, was characterized by greater relative GMV in
the parietal, occipital and temporal lobes. Note that the weights for subtypes 3 and 7
were negative in the model, which means that predicted AD and pMCI cases had
brain atrophy patterns that were spatially dissimilar to those subtypes.

Figure 5.4: Coefficients of the high confidence prediction a) VCOG model, b) COG model, and c)
VBM model. ADAS13 = Alzheimer’s Disease Assessment Scale - Cognitive, MEM = ADNI-MEM
score; EXEC = ADNI-EF score, BNT = Boston Naming Test, CLOCK = clock drawing test, VBM
1-7 = VBM subtype weights, GMV = mean grey matter volume, TIV = total intracranial volume.
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5.6 Discussion

We developed a highly precise and specific MRI and cognitive-based model to predict
AD dementia. Our two-stage predictive model reached 93.2% specificity and 93.1%
positive predictive value (80.4% when adjusted for 33.6% prevalence of progressors)
in ADNI1 when classifying progressor vs stable MCI patients (within 3 years follow-
up). We replicated these results in ADNI2 where the model reached 96.7% specificity
and 81.2% positive predictive value (87.8% adjusted positive predictive value). With
respect to specificity and positive predictive value, these results are a substantial
improvement over previous work combining structural MRI and cognition on the
same prediction task, that have reported up to 76% specificity and 65% positive
predictive value (adjusted for 33.6% prevalence of progressors) (Korolev et al., 2016).
We also report the highest positive predictive value compared to the current state-of-
the-art predictive model using Aβ PET scans, which reported 74% (adjusted) positive
predictive value (Mathotaarachchi et al., 2017). Finally, our results are consistent with
our previous findings using structural MRI only as well also reproduced our past
work which developed a model that optimizes specificity and positive predictive
value (Dansereau et al., 2017). Our performance is close to the 90% positive predictive
value reported by Dansereau et al. (2017) using a combination of structural and
functional MRI measures and a two-stage predictive model, with the limitation of
a smaller sample size (N=56 MCI patients) due to limited availability of functional
MRI data in ADNI.

An ideal model to predict conversion to AD dementia would have both high
sensitivity and high specificity, meaning it would be able to detect all progressor
MCI and reject all stable MCI individuals. However, there is a balance between
sensitivity and specificity that should be considered depending on the context. In
the case of progression to AD dementia, the pathophysiological heterogeneity of
clinical diagnosis will prevent highly accurate prediction linking brain features to
clinical trajectories. We argue that, faced with heterogeneity, it is necessary to sacrifice
sensitivity to focus on a subgroup of individuals with similar brain abnormalities.
In a predictive model, one needs to choose a threshold to control the proportions
of false positives and false negatives. A receiver operating characteristic (ROC)
curve illustrates the trade off between the true positive and false positive rates
as the threshold for positivity changes and is often used to determine an optimal
threshold. Generally, increasing the threshold leads to higher specificity and lower
sensitivity. The high specificity of our two-stage model indeed came at a cost of
reduced sensitivity (55.1% in ADNI1 and 47.3% in ADNI2 for classifying pMCI vs
sMCI), which is much lower than sensitivity values of 64%-95% reported by other
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groups (Dansereau et al., 2017). The two stage procedure, based on prediction
stability, did not offer gains compared to a simpler SVM model, if the threshold
of the SVM model could be selected a priori to match the specificity of the two
stage procedure (see ROC curves in Figure 5.7 in supplementary material). The
two-stage prediction model offered the advantage of a principled approach to train
the prediction model in a high-specificity regime, based on stability. The choice
of a level 2 regularized logistic regression also lead to a compact and interpretable
subset of features for the HPS. Favoring specificity over sensitivity could be useful in
settings where false positives need to be minimized and positive predictive value
needs to be high, such as expensive clinical trials. Here, with our HPS VCOG model,
we report the high positive predictive values for progression to AD from the MCI
stage (up to 87.8%, adjusted for 33.6% prevalence of progressors). Importantly, the
proposed HPS+ model used tools that are already widely used by clinicians. The
present work could be used as a screening tool for recruitment in clinical trials that
target MCI subjects who are likely to progress to dementia within three years. The
implementation of an automated selection algorithm could also result in groups of
MCI subjects with more homogeneous brain pathology. However, we note that HPS+
subjects did not all present with significant amyloid burden (92.0% and 68.4% of
HPS+ subjects in ADNI1 and ADNI2 respectively, Figure 5.3), which means that not
all HPS+ individuals are likely to have prodromal AD, even when progressing to AD
dementia.

When we trained our model with cognitive features only, tests for general cog-
nition, memory, and executive function were chosen as the strongest predictors of
AD dementia. Our COG HPS model thus supports previous research that reported
general cognition, memory, and executive function as important neuropsychological
predictors of dementia (Dickerson et al., 2007; Belleville et al., 2017; Tabert et al., 2006;
Korolev et al., 2016). Compared to the state-of-the-art multi-domain cognition-based
predictive model, which reported 87.1% specificity and 81.8% positive predictive
value (77.5% when adjusted to 33.6% pMCI prevalence) (Belleville et al., 2014), our
COG HPS model achieved similar performance reaching between 87.5%-95% speci-
ficity and 72.3%-85.1% (adjusted) positive predictive value. As general cognition
was the strongest feature in our model to predict progression, this supports previous
findings that MCI patients with deficits across multiple domains are at the highest
risk for dementia (Tabert et al., 2006; Mitchell et al., 2009).

For our VBM model, we extracted a number of gray matter atrophy subtypes
that recapitulated previously reported subtypes, namely the medial temporal lobe
and parietal dominant subtypes (Noh et al., 2014; Hwang et al., 2016; Park et al.,
2017; Varol et al., 2017), which were associated strongly with a diagnosis of AD
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dementia. Weights for the parietal dominant and medial temporal lobe subtypes
(Subtypes 1 and 6 from Figure5.1b, respectively) contributed substantially to the
highly predictive signature in the VBM model. The atrophy pattern of subtype 6 is
spatially similar to the spread of neurofibrillary tangles in Braak stages III and IV
(Braak and Braak, 1991), which may support previous findings that tau aggregation
mediates neurodegeneration (Spillantini and Goedert, 2013). The contributions of
the parietal dominant and medial temporal lobe subtypes in the VBM model are
also in line with previous works, which have reported that cortical thickness and
volumes of the medial temporal lobes, inferior parietal cortex, and precuneus are
strong predictors of progression to dementia (Korolev et al., 2016; Eskildsen et al.,
2013).

When combined with cognitive tests in the VCOG model, the structural subtypes
were given marginal weights. This suggests some redundancy between atrophy and
cognition, and that cognitive features have higher predictive power than structural
features in the ADNI MCI sample. This conclusion is consistent with the observation
that the COG model significantly outperformed the VBM model, similar to previous
work (Korolev et al., 2016). Although cognitive markers were stronger features,
the VCOG model assigned large negative weights for the structural subtypes 3,
which showed greater relative GMV in the temporal lobes, and 7, which showed
greater relative GMV in the parietal, occipital, and temporal lobes. This means
that these features were predictive of stable MCI in the VCOG model, in line with
previous work showing that atrophy in these regions is predictive of progression to
dementia (Korolev et al., 2016; Eskildsen et al., 2013). Furthermore, we demonstrated
that combining MRI data with cognitive markers significantly improves upon a
model based on MRI features alone. This result is again in line with the literature
(Korolev et al., 2016; Moradi et al., 2015), yet was shown for the first time for a
model specifically trained for high positive predictive value. Note that in the current
study, the predictive model was trained exclusively on images acquired on 1.5T
scanners from ADNI1. Good generalization to ADNI2 with 3T scanners demonstrate
robustness of imaging structural subtypes across scanner makes.

While the VCOG model identified the majority of MCI subjects who were highly
likely to progress to dementia, there were sizable groups of subjects who were
uniquely identified as progressors by the unimodal signatures. For example, out of
all the MCI subjects that were picked up by the three HPS models, 12.9% and 35.3%
of subjects from ADNI1 and ADNI2 respectively were identified as progressors exclu-
sively by the VBM HPS model (Supplementary Figure 5.9). Although these subjects
presented an AD-like brain atrophy pattern, they may exert compensatory mecha-
nisms or have a high cognitive reserve that may allow them to maintain a higher level
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of cognitive function than subjects who were also selected by the COG signature.
Out of all the HPS+ MCI subjects across the three models, the COG HPS model also
exclusively labeled 20.4% and 10.8% of subjects from ADNI1 and ADNI2 respectively
as progressors (Supplementary Figure 5.9). As these subjects were not labeled by the
VBM model, they may represent subjects who have patterns of neurodegeneration
that are atypical of AD or subjects who have a non-AD pathology. Structural MRI
and cognition therefore provide complementary information about AD risk, and it
appears that brain atrophy can add to the predictive value of cognitive markers. Our
results converge with clinical practices that utilize both neuropsychological testing
and brain imaging to inform diagnosis and prognosis, although our approach has
the added benefits of being data-driven, automated and optimized for high positive
predictive value.

The VCOG highly predictive signature might reflect a late disease stage. We
looked at the ratio of early to late MCI subjects in the ADNI2 sample (note that ADNI1
did not have early MCI subjects). Of the MCI subjects identified as HPS+ by the
VCOG model, 84.4% were late MCI subjects, compared to a rate of 34.9% of late MCI
subjects in the entire ADNI2 MCI sample (Supplementary Figure 5.6. In both ADNI1
and ADNI2, the VCOG HPS+ subjects had on average the worst baseline cognition
and the worst cognitive decline over time (see Figure 5.3g and Supplementary Figure
5.5). The HPS+ subjects in ADNI1 also had significantly greater amounts of Aβ

and tau pathology compared to the whole sample, although these findings were
not replicated in ADNI2 (Figure 5.3d,e). Given that the majority of HPS+ subjects
were late MCI subjects and had worse cognition, the two-stage predictive model
appears to be effective at identifying individuals at later disease stages who are at
the cusp of progressing to dementia. This result is to be expected since the model
was built on cognitive variables that are designed to separate cognitively normal
and individuals with dementia at certain cut-offs. This approach may not be optimal
for early detection of future cognitive decline. Training a model to classify MCI
progressors and non-progressors to dementia could be done in order to capture
future progressors in earlier preclinical stages (e.g. early MCI). Finally, we focused
on structural MRI and neuropsychological batteries as features in our models due to
their wide availability and established status as clinical tools. However, we believe
adding other modalities such as PET imaging, CSF markers, functional MRI, genetic
factors, or lifestyle factors could result in higher predictive power, especially at earlier
preclinical stages of AD.
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5.7 Conclusion

In summary, we developed a highly precise and specific model to predict progression
from MCI to AD dementia within a time span of three years. Using structural MRI
and neuropsychological markers, we trained a model to recognize an anatomical
and cognitive signature that is highly predictive of AD dementia by learning the
difference between AD patients and controls. We validated the model in three
independent samples, a second sample of AD patients and controls, and two separate
cohorts that contained both stable MCI patients and MCI patients who progressed to
dementia. The model was able to predict progression to dementia in MCI patients
with up to 93.1% positive predictive value and up to 96.7% specificity. Our model
could potentially improve subject selection in clinical trials and identify individuals
at a higher risk of AD dementia for early intervention in clinical settings.
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5.9 Supplementary material

5.9.1 Supplementary results

Comparison of COG, VBM and VCOG HPS+ subjects

We found substantial overlap of subjects labeled as HPS+ in the MCI cohorts across
the VBM, COG and VCOG signatures (Supplementary Figure 5.9). There were very
few subjects that were labeled as HPS+ exclusively by the VCOG signature. As to be
expected, the majority of subjects labeled as HPS+ by the VCOG signature (ADNI1:
97.7%; ADNI2: 100%) were also labeled as HPS+ by either the VBM only or COG
only signatures or both. Of the subjects that were labeled as HPS+ by the VBM
only signature, 23.6% and 55.2% in ADNI1 and ADNI2 respectively were identified
exclusively by the VBM HPS. There were relatively few subjects (7 and 2 subjects in
ADNI1 and ADNI2 respectively) that were captured by VBM and VCOG but missed
by the COG HPS. The COG HPS actually identified the majority of all HPS+ subjects
across the three signatures (ADNI1: 106 of 132 total subjects, ADNI2: 40 of 65 total
subjects). From Supplementary Figure 5.9, we can see that the VCOG HPS acts as
a refinement of the COG signature, as the VCOG HPS captures a subset of subjects
that were labeled by the COG HPS.

Out of the HPS+ subjects labeled by all three signatures, 97.9% and 93.7% from
ADNI1 and ADNI2 respectively progressed to dementia (Supplementary Table 5.2).
These subjects had worse cognition based on the MMSE and higher proportions of
APOE4 carriers, Aβ positive and tau positive individuals, compared to the baseline
rates in all MCI subjects. Of the HPS+ subjects who were labeled only by the VBM

2https://computecanada.org/
3http://ccna-ccnv.ca

https://computecanada.org/
http://ccna-ccnv.ca
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model, 70.6% and 43.4% from ADNI1 and ADNI2 respectively were progressors.
This group of subjects had less Aβ and tau positive individuals compared to the
baseline rates. Of the HPS+ subjects who were labeled only the COG model, 70.4%
and 57.1% from ADNI1 and ADNI2 respectively progressed to dementia. This group
appeared to have a greater proportion of Aβ positive individuals compared to the
baseline rates in both ADNI1 and ADNI2 cohorts. The majority of these COG HPS+
subjects were also male. Given the distinct characteristics among the exclusively COG,
exclusively VBM, and VCOG HPS+ subjects, these groups may represent subgroups
with different risks for AD dementia. As it appears that a greater proportion of pMCI
is captured when cognitive and structural MRI features are combined, these findings
may support joining multiple modalities together in order to achieve higher positive
predictive value. However, these results are qualitative and of an exploratory nature
due to low sample sizes.

5.9.2 Supplementary figures

Figure 5.5: Cognitive trajectories for individual MCI subjects in ADNI1 and ADNI2 grouped by
HPS classifications (HPS+, Non-HPS+, Negative) by the VCOG, COG, and VBM high confidence
prediction models.
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Figure 5.6: Percentage of late MCI ADNI2 subjects within each HPS grouping (HPS+, Non-HPS+,
Negative) across each highly predictive model (VCOG, VBM, COG). In each model, there was a
significantly greater proportion of late MCI subjects in the HPS+ class compared to the Negative
class (VCOG: χ2 = 51.0, p < 0.001; VBM: χ2 = 21.8, p < 0.001; COG: χ2 = 59.9, p < 0.001).

Figure 5.7: Receiver operating curves (ROC) for each classification (AD vs CN; pMCI vs sMCI)
and model (Base: traditional SVM; HPS: two-stage highly predictive signature) in both ADNI1
and ADNI2 cohorts. The ROC plots are shown for models using the VCOG predictors.
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Figure 5.8: Coefficients of factors in the VCOG HPS models for a model featuring 3 VBM subtypes
and a model featuring 10 VBM subtypes.

Figure 5.9: Venn diagram depicting the number of MCI subjects labeled as HPS+ by the VBM,
COG, and VCOG HPS models in ADNI1 and ADNI2.
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5.9.3 Supplementary tables

Table 5.2: Characteristics of HPS+ subjects from the VBM, COG, and VCOG signatures in ADNI1
and ADNI2 MCI cohorts

ADNI1 Baseline VBM
COG

VCOG

VBM
COG

VCOG

VBM
COG

VCOG

VBM
COG

VCOG

VBM
COG

VCOG

VBM
COG

VCOG

VBM
COG

VCOG
pMCI % 62.6 70.6 70.4 100 100 57.1 93.5 97.9

APOE4 % 57.0 58.8 70.4 100 100 71.4 71.0 63.8
Aβ+ % 76.1 50.0 91.7 n/a 100 100 88.9 91.7
tau+ % 50.7 0.0 83.3 n/a 0.0 50.0 66.7 66.7

Female % 40.8 41.2 29.6 50.0 0.0 42.9 61.3 36.2
Age 74.1±7.2 74.4±5.5 73.9±6.0 80.0±6.2 79.3 69.3±4.1 73.9±7.0 74.4±7.3

Education 15.7±2.9 17.1±2.1 15.7±3.3 15.0±1.4 20.0 16.0±2.6 14.3±3.1 15.9±2.9
MMSE 27.0±1.8 27.8±1.4 27.6±1.2 26.5±0.7 29.0 25.4±0.5 25.9±1.5 26.0±1.6
ADNI2 Baseline VBM

COG
VCOG

VBM
COG

VCOG

VBM
COG

VCOG

VBM
COG

VCOG

VBM
COG

VCOG

VBM
COG

VCOG

VBM
COG

VCOG
pMCI % 30.6 43.5 57.1 n/a 33.3 0.0 78.6 93.7

APOE4 % 42.6 47.8 42.9 n/a 33.3 50.0 57.1 68.7
Aβ+ % 69.0 75.0 100 n/a 100 100 55.6 77.8
tau+ % 39.7 42.9 25.0 n/a 50.0 0.0 62.5 55.6

Female % 48.1 39.1 14.3 n/a 33.3 50.0 57.1 50.0
Age 70.7±7.3 71.4±5.9 74.8±6.6 n/a 67.0±13.7 73.6±2.5 71.7±8.6 77.1±4.8

Education 16.4±2.6 16.3±2.6 16.9±2.5 n/a 15.0±3.6 19.0±1.4 15.6±2.3 15.9±2.8
MMSE 28.2±1.7 28.3±1.5 28.0±1.3 n/a 28.7±1.5 27.5±2.1 26.7±1.8 26.1±1.7

The Baseline column represents values for all MCI subjects.
Age and education are presented in years (mean ± standard deviation).

Aβ and tau CSF measures were available for approximately one third of all subjects across both cohorts.

Table 5.3: pMCI vs sMCI performance metrics for VCOG HPS models with different number of
VBM subtypes

ADNI1 3 clusters 7 clusters 10 clusters
Specificity 0.8636 0.9310 0.8864
Sensitivity 0.5578 0.5510 0.5510

Positive predictive value (adjusted) 0.6743 0.8035 0.7105
Accuracy 0.6723 0.6936 0.6766
ADNI2 3 clusters 7 clusters 10 clusters

Specificity 0.9556 0.9667 0.9556
Sensitivity 0.4727 0.4727 0.4364

Positive predictive value (adjusted) 0.8433 0.8777 0.8324
Accuracy 0.8425 0.8511 0.8340

Positive predictive value was adjusted for a 33.6% prevalence of pMCI subjects.
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Chapter 6

Discussion

The studies in this thesis explored heterogeneity in structural and functional brain
organization with MRI in order to advance neuroimaging as a tool to measure
biomarkers for Alzheimer’s disease. Specific contributions and future works derived
from chapters 3, 4, and 5 will be discussed below.

6.1 Contributions

6.1.1 Functional connectivity as a robust biomarker

In chapter 3, we reported functional connections within the default mode network
and cortico-striatal-thalamic loop that were consistently diminished in MCI patients
compared to controls in several independent datasets. This result suggests that
these functional connections could be robust biomarkers of prodromal AD in spite of
variability from data acquisition. It is worth noting though that when we examined
each sample independently, there were few significant findings and that the majority
of effects found within each sample did not appear to be reproducible due to the
substantial heterogeneity among the samples. As a consequence, after pooling
the datasets together, we found small to medium effect sizes and our sample size
estimates recommend at least 140 to over 600 subjects to achieve adequate statistical
power. Overall, the major contribution from this study was identifying functional
connections which may be candidate biomarkers for AD. Functional parcellations
derived from this study are described in chapter 4, and we have also publicly released
the statistical maps so that they can be directly used in future studies.

Over the course of my thesis, I contributed to other studies that also examined
the relationship between resting-state functional connectivity and the AD spectrum.
This included a meta-analysis on the functional connections that were reported to
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be affected in AD and MCI patients in the literature (see Badhwar et al. (2017) in
Appendix A). Although there was consensus across the literature about decreased
connectivity within the default mode network in patient groups, we also noted high
variability between reported regions. Given the heterogeneity seen in chapter 3 and
in Badhwar et al. (2017), I also contributed to a study that investigated subtypes of
functional connectivity patterns and whether certain subtypes were associated with
a higher risk of AD (see Orban et al. (2017) in Appendix B). In this latter study, we
found subtypes of connectivity in default mode, salience, and limbic networks were
associated with cognitive impairments, and limbic subtypes were correlated with
amyloid pathology.

6.1.2 Automated diagnosis and precision medicine

In chapter 5, we combined machine learning with MRI and neuropsychological eval-
uations to automatically predict future progression to AD dementia in individuals
with MCI. We improve upon current diagnostic standards in terms of positive predic-
tive value and specificity by identifying a homogeneous subset of individuals who
are at a particularly high risk for AD dementia. In doing so, we found specific pat-
terns, or subtypes, of brain atrophy that were associated with cognitive impairment
related to AD. This study also assessed the predictive value of cognitive assessments
and structural MRI and evaluated the complementarity of these two modalities for
diagnostic and prognostic purposes.

I also contributed to Dansereau et al. (2017) (see Appendix C), where this study
introduced the two-stage predictive algorithm that was used in chapter 5. This
algorithm optimizes for high positive predictive value and specificity by learning
cases that are easy to classify. In Dansereau et al. (2017), we also found that the
combination of functional connectivity subtypes and atrophy subtypes yielded better
performance to predict future progression to AD dementia than either modality on
its own.

Our results, especially those of chapter 5, recapitulate the work flow of clinicians
to identify certain patterns of brain atrophy in order to supplement the diagnostic
information offered by neurospychological evaluations. The advantage of our work
is that this diagnostic process can be automated. Furthermore, by characterizing the
heterogeneity within populations along the AD spectrum, we were able to identify,
with high specificity, subgroups with particular brain characteristics that were highly
predictive of incipient AD dementia. Examining subtypes of brain organization
represents an incremental step towards customized healthcare that is tailored to
an individual. Lastly, optimizing for high specificity may be beneficial for future
diagnostic algorithms for AD given that the majority of individuals, even those with
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preclinical signs (e.g. amyloid burden, neurodegeneration), will never develop AD
dementia in their lifetime (Brookmeyer and Abdalla, 2018). Overall, the studies from
chapter 5 and Dansereau et al. (2017) make advances toward automated diagnosis
and precision medicine.

6.1.3 Subtypes of cortical atrophy

As previously mentioned, we reported the presence of numerous distinct patterns of
cortical atrophy in the AD spectrum in chapter 5. We described four patterns that
were associated with a diagnosis of AD dementia: 1) predominantly temporal lobe
atrophy, 2) grey matter loss in the parietal and occipital lobes, 3) reduced grey matter
in default mode regions, and 4) diffuse atrophy. This work reveals the heterogeneous
nature of neurodegeneration and corroborates previous works that have explored
structural subtypes in AD (Noh et al., 2014; Hwang et al., 2016; Park and Friston, 2013;
Varol et al., 2017; Zhang et al., 2016). More specifically, we were able to reproduce the
"medial temporal dominant", "parietal dominant", and "diffuse" atrophy subtypes
that have been described in the literature, which can be seen in Figure 2.3 from
Hwang et al. (2016).

Together, these works challenge the notion that AD-related neurodegeneration
occurs in a stereotyped manner that always starts in the temporal lobe and spreads
throughout the rest of the cortex. Although, it is notable that individuals expressing
structural subtypes with temporal lobe atrophy are more likely to progress to AD
dementia, as we demonstrated in both chapter 5 and Dansereau et al. (2017) (see
Appendix C). Furthermore, the presence of distinct subtypes of atrophy may shed
some light on the heterogeneity in functional connectivity differences between MCI
patients and controls across independent cohorts that we saw in chapter 3. It would
be very interesting to explore how much the variance in brain structure may impact
the variance in functional connectivity.

One reason behind this apparent heterogeneity in cortical atrophy could be the
spread of tau, given that the hyperphosphorylation of tau plays a key role in many
neurodegenerative diseases (Iqbal, Liu, and Gong, 2016). Subtypes of brain atrophy
actually correspond quite well to neuropathological subtypes of AD based on tau
deposition from Murray et al. (2011). It is thus possible that these subtypes of atrophy
are driven by the abnormal hyperphosporylation and spreading of tau from different
epicenters in the brain. Future works should consider examining these structural
subtypes along with tau imaging to decipher a potential mechanism for the variance
in neurodegeneration.
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6.1.4 Data sharing and reproducibility

This thesis also makes minor contributions to open science. The majority of the data
used in these studies was publicly available. In cases where there was a scarcity of
data, as was the case for the studies with resting-state fMRI in chapters 3 and 4, we
pooled data collected by collaborators. Given the small effect sizes we discovered
with respect to functional connectivity differences between MCI patients and controls,
we must note that the analyses in chapter 3 would not have been possible without
the amalgamation of several datasets in order to have a sufficient sample size. This
underscores the importance of data sharing in the scientific community in order
to obtain reliable results. Through chapter 4, we publicly released the functional
parcellations and statistical maps we derived from our analyses in chapter 3. Not
only will this sharing of data derivatives help other researchers reproduce our results,
but our functional clusters could be used as target regions in future studies. All of the
studies presented in this thesis were conducted with free open-source software and
we have publicly shared the code so that other researchers could use it and reproduce
our findings.

6.2 Future works

6.2.1 Multimodal models

As our results demonstrate that combining multiple modalities (e.g. cognition and
MRI) in a predictive model can be more powerful than models with single modalities
(e.g. MRI only, cognition only), a natural extension of our work would be to add more
modalities to our models. The addition of variables such as molecular biomarkers
of AD (i.e. Aβ and tau CSF or PET images), genetics, or lifestyle factors may enable
the development of a more comprehensive model for prediction. As MRI is a non-
invasive and relatively inexpensive imaging tool (compared to PET) that is already
widely used in clinical settings, I am personally interested in developing models
incorporating different MRI modalities (e.g. fMRI, anatomical T1-weighted images,
white matter tractography) to better understand the neural dysfunction that occurs
in AD and to create a biomarker that could be deployed faster in clinical contexts.

6.2.2 Applications to clinical trials

Chapters 3 and 4 of this thesis generated endpoints that could be used in clinical
trials for AD. Functional connectivity differences between MCI patients and controls
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in default mode and cortico-strial-thalamic regions were robust to site variability,
which may make for biomarkers that are well-suited for a clinical trial.

The predictive model from chapter 5 can be directly applied in a clinical trial
as a tool for subject selection. Current methods for enrichment of individuals who
are at high risk of AD dementia include amyloid measurement (via PET or CSF),
APOE4 carriage, and family history of AD. While the presence of amyloid, the APOE4
allele, and a family history of AD are all important risk factors to progression to
AD dementia, they are not particularly specific given that a substantial proportion
of individuals who are positive for any of these risk factors will never experience
AD dementia in their lifetimes. An advantageous feature of the predictive model
from chapter 5 is that it is highly specific (in this case, it is specific for selecting
patients with MCI who will progress to AD dementia). For example, if a clinical trial
is evaluating a treatment in prodromal individuals with the aim to prevent dementia,
the trial needs to have criteria that will correctly select subjects who will indeed
progress to dementia. This is where having a model with high specificity (and thus
high positive predictive value) can be beneficial. Optimizing for high specificity for
subject selection may have a large impact on whether a drug will be deemed effective.
If the selection criteria are not specific enough, many subjects who do not have the
targeted disease may erroneously enter the trial and obscure the intended effects
of the drug. Another advantage of our model is that we used features that were
easily accessible (i.e. neuropsychological assessements and MRI). If our model could
be used as a screening tool in lieu of amyloid PET, the financial savings would be
substantial.

6.3 Conclusion

In summary, this thesis explored heterogeneity in patterns of neurodegeneration
and functional connectivity in order to develop signatures with MRI that could
be predictive of individuals’ cognitive trajectories, namely future progression to
AD dementia. The results presented here demonstrate how different sources of
heterogeneity, ranging from data acquisition to individual variability, may impede
the development of a precise or reliable biomarker. By exploiting this heterogeneity,
we tested the robustness of functional connectivity as an early biomarker of AD
and we developed a signature with high specificity and positive predictive value at
predicting incipient AD dementia. The results from this thesis may be used for future
biomarker discovery and clinical trial applications.
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Abstract Introduction: We performed a systematic review andmeta-analysis of the Alzheimer’s disease (AD)
literature to examine consistency of functional connectivity alterations in AD dementia and mild
cognitive impairment, using resting-state functional magnetic resonance imaging.
Methods: Studies were screened using a standardized procedure. Multiresolution statistics were
performed to assess the spatial consistency of findings across studies.
Results: Thirty-four studies were included (1363 participants, average 40 per study). Consistent
alterations in connectivity were found in the default mode, salience, and limbic networks in patients
with AD dementia, mild cognitive impairment, or in both groups.We also identified a strong tendency
in the literature toward specific examination of the default mode network.
Discussion: Convergent evidence across the literature supports the use of resting-state connectivity
as a biomarker of AD. The locations of consistent alterations suggest that highly connected hub
regions in the brain might be an early target of AD.
� 2017 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).

Keywords: Resting-state fMRI; Functional connectivity; Alzheimer’s disease; Mild cognitive impairment; Meta-analysis

1. Introduction

Alzheimer’s disease (AD) exists on a continuum
comprising a lengthy preclinical stage, a middle stage of
mild cognitive impairment (MCI), and a final stage of
dementia [1]. Symptoms usually start around the age of 65

years, except in rare patients with early onset (33–60 years)
autosomal dominant AD (ADAD) [2,3]. Drugs currently
available for AD provide limited short-term treatment of
AD symptoms [4]. Trials of disease-modifying therapies
for AD dementia patients have been unsuccessful, likely
because intervention at this stage is too late to affect the
neurodegenerative process. The focus now is on therapeutic
intervention at the MCI and/or preclinical disease stages,
with delay of dementia onset constituting a major clinical
end point for clinical trials [1]. This approach depends on
the identification of biomarkers that can aid early AD diag-
nosis [1,5]. Currently, validated AD biomarkers are (1) low
cerebrospinal fluid (CSF) amyloid-b 42 levels and/or high
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amyloid tracer retention on positron emission tomography
(PET), indicating brain amyloidosis; (2) high CSF tau
levels, indicating neuronal injury; (3) temporoparietal
pattern of reduced 18F-fluorodeoxyglucose uptake on PET,
indicating brain hypometabolism, and (4) patterns of brain
atrophy on structural magnetic resonance imaging (MRI),
indicating neurodegeneration [1,6].

Connectivity in resting-state functional magnetic reso-
nance imaging (rsfMRI) is an emerging AD biomarker that
holds promise for early diagnosis [1,5,7]. RsfMRI
indirectly measures neural processing in the brain using
blood oxygenation and can be used to identify spatially
distributed networks [8]. The National Institute on Aging–
Alzheimer’s Association lists rsfMRI functional connectiv-
ity as a potential biomarker of neuronal injury, at an early
stage of validation [6]. The existing literature is indeed
mostly composed of proof-of-concept cross-sectional com-
parisons of cognitively healthy elderly individuals with
patients suffering from mild (MCI) or severe (dementia)
AD symptoms.

To date, multiple studies have reported intrinsic connec-
tivity network (ICN) disturbances in patients with AD
dementia and MCI, presymptomatic ADAD mutation car-
riers, and cognitively normal individuals carrying the at-
risk APOEε4 allele and/or showing evidence of amyloidosis
[9–12]. Despite such promising findings, the overall effect of
AD on ICNs remains poorly characterized because of
several inconsistencies in the literature, such as different
acquisition protocols, processing methods, and/or
exclusion/inclusion criteria [13]. Our aim was to perform a
systematic review and meta-analysis to examine the consis-
tency of intrinsic connectivity alterations in MCI and late-
onset AD (LOAD) dementia across the literature. We also
reviewed the burgeoning literature on connectivity abnor-
malities in ADAD and the at-risk APOEε4 genotype.

2. Methods

2.1. Literature search

We conducted a systematic review of PubMed articles up
to December 3, 2015 in accordance with the Preferred Re-
porting Items for Systematic Reviews and Meta-Analyses
guidelines [14]. Search terms and combinations used are
provided in Supplementary Table 1. Results were filtered
for duplicates within each of the two main search categories,
that is, AD dementia or MCI patients (Fig. 1). Unique search
results underwent further screening as described subse-
quently.

2.2. Study selection

Search results were subjected to two successive screen-
ings with increasingly stringent criteria. The initial screen
was performed on article abstracts. An article was included
if the abstract indicated that it was a peer-reviewed original
research article written in English and used rsfMRI to study

LOAD and/orMCI in humans. Reviews, letters, case reports,
and studies with subjects in whom MCI was associated with
other diseases were omitted. Following the initial screening,
we applied the following inclusion criteria: (1) used seed-
based or independent component analysis rsfMRI methods;
(2) investigated functional connectivity between patients
(AD dementia or MCI) and age-matched healthy controls
(HC); and (3) reported peak coordinates of significant statis-
tical differences in average connectivity between groups and
the direction of difference.

2.3. Data extraction

One reviewer (A.B.) conducted the searches and screened
for duplicates. Two reviewers (A.B. and A.T.) independently
screened all unique search results for potential inclusion in
the meta-analysis. Only articles passing both reviewers’
approval were considered for final inclusion. For each
“included” article, coordinate data of significant between-
group comparisons, such as AD versus HC, were transcribed
by one reviewer and checked by two others (second reviewer
[A.T.] and F.H.).

2.4. Meta-analysis

We performed complementary network- and voxel-based
quantitative meta-analyses on six main group comparisons:
pooled group with AD dementia and MCI patients termed
ADMCI , HC, ADMCI . HC, MCI , HC, MCI . HC,
AD , HC, and AD . HC. Although the voxel-based
meta-analysis has finer spatial resolution for findings with
high anatomic consistency, we assumed the network-based
approach would have better sensitivity for detecting consis-
tent involvement of anatomically distributed networks. Co-
ordinates from articles using the same cohort were pooled
under the PubMed unique identifier or PMID of the earliest
publication and treated as results from a single study to avoid
counting the cohort multiple times. Henceforth, an individ-
ual article will be referred to as a “study” and a group com-
parison yielding network and/or localization information
(e.g., ADMCI , HC) as a “contrast.”

2.4.1. Network-based statistics
We performed network-based statistics on seed coordi-

nates (seed statistics) to assess whether seed regions were
preferentially selected from within certain networks in the
literature.We also performed network-based statistics on co-
ordinate data of significant contrasts (contrast statistics) to
assess the consistency of network-level findings in the AD
literature. In particular, we performed three types of contrast
statistics: (1) all coordinates irrespective of seed network;
and given the focus on the default mode network (DMN) in
the literature, (2) coordinates associated with seeds inside
the DMN only; and (3) coordinates associated with seeds
outside the DMN, that is, non-DMN seeds. All analyses
were conducted using a multiresolution atlas of group-level
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functional brain parcellations derived from an independent
rsfMRI data set, the Bootstrap Analysis of Stable Clusters–
Cambridge atlas (https://dx.doi.org/10.6084/m9.figshare.
1285615.v1) [15]. This atlas consists of nine functional par-
cellations capturing successively finer levels of spatial detail,
of which we used parcellations at two resolutions: the first
comprised seven commonly used large-scale networks

(R7 atlas) and the second containing 36 networks (R36 atlas).
We used R7 and R36 atlases for contrast statistics and only
the R7 atlas for seed statistics. Because seeds were assigned
indirectly for studies where coordinates were not provided,
indirect assignment could not be performed with sufficient
precision to use the R36 atlas. Assignment of seeds to one
of the R7 networks was based on published coordinates,

Fig. 1. Flowchart of the study selection process. Selection process for AD and MCI studies included in the meta-analyses. Studies using rsfMRI methods dis-

similar to seed-based and ICA methods, such as degree centrality or graph theory, amplitude of low-frequency fluctuations, and regional homogeneity were not

included. Abbreviations: AD, Alzheimer’s disease; EEG, electroencephalogram; ICA, independent component analysis; MCI, mild cognitive impairment;

MEG, magnetoencephalography; rsfMRI, resting-state functional magnetic resonance imaging.
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when available. When only anatomic labels were provided
for seed regions, network assignment was based on (1) the
center of gravity in MNI space or (2) visual approximation
if no further information was available. For independent
component analysis-based studies, network assignment
was based on (1) network coordinates when provided or
(2) visual assignment to one or more of the seven networks
based on the degree of spatial overlap.

We tested the spatial consistency of both seed and peak lo-
cations using the following approach. For each study, we
computed the number of coordinates falling within each
network, after conversion of Talairach space coordinates
into MNI space using the Lancaster transform [16], when
necessary. Coordinates falling outside of the gray matter
mask (ICBM152) were assigned to the closest network. To
remain unbiased to the number of coordinates reported per
study, we computed the ratio of coordinates falling within
each network to the total number of coordinates reported
per study. This ratiowas then averaged across studies. The sig-
nificance of findings was assessed using Monte Carlo permu-
tation tests. Using the total number of coordinates per study,
we generated a random assignment of coordinates to net-
works, taking into consideration the volume of each network.
Coordinate counts per network were normalized as described
previously, followed by an averaging across studies. This
Monte Carlo sampling process was repeated 10,000 times.
Thereafter, we compared the distribution of the average fre-
quency obtained from the random sampling with the fre-
quency obtained from the meta-analysis, resulting in P
value estimates [17]. Multiple comparisons across networks
were accounted for using a false discovery rate (FDR) proced-
ure (qFDR, 0.05) [18]. TheP values less than .05 that did not
survive multiple comparisons were deemed as “trends.”

2.4.2. Voxel-based statistics
Voxel-level statistical analysis was performed using acti-

vation likelihood estimation (ALE), a widely used algorithm
for coordinate-based meta-analysis of neuroimaging studies.
ALE aims at delineating brain regions with above-chance
convergence of reported coordinates across experiments
[19]. Coordinates falling outside the gray matter mask
were removed from the analysis. We used the in-house
ALE algorithm implementation in MATLAB version
8.3.0.532, which treats each of the coordinates in a given
experiment as a three-dimensional gaussian probability dis-
tribution centered at the given coordinate. The probability
distributions acknowledge the spatial uncertainty associated
with each experiment. For any given study, the width of the
spatial uncertainty of its coordinates is determined based
on empirical data on the between-subject and between-
template variances representing the main components of
this uncertainty [19]. Then, the probability distributions of
all coordinates per included study are combined for each
voxel, generating a modeled activation (MA) map. To limit
the effect of multiple coordinates very close to one another
within a given study, we used the “nonadditive” approach,

which calculatesMAmaps by taking themaximumprobabil-
ity across overlapping gaussians [19]. ALE scores were
computed on a voxel-by-voxel basis by taking the union
across these MA maps. To distinguish between “true” and
random convergence between studies (i.e., noise), ALE
scores were compared with a null distribution reflecting a
random spatial association between experiments (10,000
permutations). Nonparametric P values were assessed at a
familywise error-corrected threshold of P, .05 on a cluster
level (cluster-forming threshold: P, .001 at voxel level) and
transformed into t scores for display purposes. Only contrasts
including more than 18 experiments were considered, as rec-
ommended in a recent large-scale simulation study [20].

3. Results

3.1. Search results

The results of the initial search, along with studies sys-
tematically excluded from inclusion in our rsfMRI meta-
analyses are presented in Fig. 1. Thirty-four studies totaling
1363 subjects (post pooling of identical cohorts) met our in-
clusion criteria and were included in the meta-analysis. The
total included 352 MCI, 378 AD dementia (specifically
LOAD), and 633 HC. Diagnostic criteria used per study
for MCI and AD dementia are provided in the
Supplementary Material (Supplementary Table 2 and Sec-
tion 2). The bulk (54%) of the studies had 20 or less subjects
per group. Twenty studies (66.7%) investigated rsfMRI con-
nectivity measures with other domains, cognition beingmost
frequent (n5 11/22 AD studies, n5 9/15 MCI studies), and
few with levels of amyloid burden using Pittsburgh com-
pound B (n 5 3), brain atrophy (n 5 3), and structural con-
nectivity (n5 1). Alterations in functional connectivity were
often (n5 5/9 studies) reported to be significantly correlated
with episodic verbal learning and memory in MCI cohorts.
Table 1 provides additional characteristics of the included
rsfMRI studies, including scanner make, model, and
strength, and seed region and/or ICN investigated. A sum-
mary of commonly used preprocessing steps utilized by
the studies present in our meta-analysis are provided in
Supplementary Table 3.

3.2. Network-based meta-analysis

3.2.1. Seed statistics
Using network-level statistics, we demonstrated that a

disproportionately large number of studies specifically tar-
geted the DMN (Fig. 2) irrespective of the population
(ADMCI, MCI, or AD dementia) being studied.

3.2.2. Contrast statistics
We first examined R7 network-level statistics and all

seeds combined. Aberrant functional brain connectivity
was observed in ADMCI, MCI, and AD, relative to HC
(Fig. 3). In the ADMCI cohort, we found both significant
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Table 1

Characteristics of rsfMRI studies included in the meta-analysis

Study N

AD HC AD

Scanner Method Seed region/ICN investigatedn M F Age SD n M F Age SD ,HC .HC

Wang et al. [63] 28 14 7 7 70.2 6.3 14 7 7 69.6 5.5 x 1.5 T S SB PCC

Zhang et al. [64]a 32 16 6 10 71.6 5.1 16 7 9 71.3 4.9 x x 1.5 T P SB PCC

Zhang et al. [65]a 55 39 18 21 73.4 16 7 9 71.3 4.9 x x 1.5 T P SB PCC

Sheline et al. [66] 83 35 48 x x 3.0 T S SB Precuneus

Zhou et al. [52] 24 12 5 7 63.3 7.7 12 5 7 62.0 x x 1.5/3.0/4.0 T S/GE/B SB and ICA AG (l), pregenual ACC (r)

Gili et al. [67]* 21 11 7 4 71.9 7.9 10 7 3 64.1 10.5 x 3.0 T S SB and ICA PCC, mPFC

Wu et al. [68]b 31 15 6 9 64.0 8.3 16 7 9 65.0 9.2 x 3.0 T S ICA DMN

Li et al. [69]b 31 15 6 9 64.0 8.3 16 7 9 65.0 9.2 x 3.0 T S ICA ATN (d, v)

Damoiseaux et al. [70] 39 21 9 12 64.2 8.7 18 12 6 62.7 10.3 x x 3.0 T GE ICA DMN (a, p, v), SMN

Binnewijzend et al. [71]y 82 39 23 16 67.0 8.0 43 23 20 69.0 7.0 x 1.5 T S ICA DMN, working memory (l, r), visuospatial

attention (d), spatial attention (v), SMN,

auditory language, prVIS, sVIS, basal

ganglia cerebellum

Kenny et al. [72] 32 16 77.3 8.9 16 76.3 8.3 x 3.0 T P SB Hippocampus (l, r), PCC, precuneus, prVIS

Zhu et al. [73]y 22 10 7 3 72.9 7.9 12 5 7 73.8 6.5 x 3.0 T GE SB ICC (l, r)

Balthazar et al. [74] 37 20 73.9 8.2 17 72.3 6.4 x x 3.0 T P ICA DMN (d, v), SN (a, p)

Yao et al. [75]c,y 62 35 12 23 72.4 8.5 27 16 11 69.2 6.5 x 3.0 T GE SB Amygdala (l, r)

Zhou et al. [76]c,y 62 35 12 23 72.4 8.5 27 16 11 69.2 6.5 x x 3.0 T GE SB T

Zhang et al. [77]c,y 62 35 12 23 72.4 8.5 27 16 11 69.2 6.5 x 3.0 T GE SB MrD (l, r)

Gour et al. [29] 28 14 6 8 75.1 2.9 14 4 10 72.8 3.0 x x 3.0 T S SB PCC, perirhinal cortex (l, r), dlPFC (l, r)

Weiler et al. [78] 48 22 6 16 73.4 5.7 26 6 20 70.0 6.6 x x 3.0 T P SB PCC, Wernicke’s (l); Broca’s (l), dlPFC

(l, r), saVC

Balachandar et al. [79] 30 15 9 6 67.3 6.6 15 9 6 64.4 8.9 x x 3.0 T S ICA DMN, thalamic, ECN

Pasquini et al. [80]* 43 21 8 13 72.3 8.6 22 6 16 66.3 9.0 x x 3.0 T P ICA DMN (a, p)

Adriaanse et al. [28] 59 28 17 11 72.0 4.9 31 17 14 72.0 4.3 x 1.5 T S ICA DMN, VIS (med, lat), AN, SMN, ECN,

dorsovisual (l, r)

Yi et al. [81]* 23 11 1 10 64.2 2.4 12 3 9 71.8 1.2 x 3.0 T GE ICA DMN, SN

(Continued )
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Table 1

Characteristics of rsfMRI studies included in the meta-analysis (Continued )

Study N

MCI HC MCI

Scanner Method Seed region/ICN investigatedn M F Age SD n M F Age SD ,HC .HC

Sorg et al. [82] 40 24 13 11 69.3 8.1 16 10 6 68.1 3.8 x 1.5 T S ICA VIS, AN, ATN (v), spatial attention, DMN

Bai et al. [83] 56 30 15 15 72.5 4.4 26 12 14 71.6 5.3 x x 1.5 T GE SB PCC

Gili et al. [67]* 20 10 6 4 71.2 4.1 10 7 3 64.1 10.5 x 3.0 T S SB and ICA PCC, mPFC

Bai et al. [84] 44 26 19 7 71.4 4.3 18 10 8 70.3 4.7 x 1.5 T GE ICA DMN

Xie et al. [85] 56 30 19 11 72.6 4.8 26 14 12 70.3 4.8 x 1.5 T GE SB Postcentral gyrus (l), hippocampus (l),

medialFC (l), middleFC (l), precuneus

(l, r), insula (l, r)

Jin et al. [86] 16 8 5 3 60.6 3.2 8 4 4 60.9 8.3 x x 3.0 T GE ICA DMN

Han et al. [87] 80 40 7 33 86.3 4.5 40 15 25 86.3 4.5 x x 1.5 T GE SB PCC

Liang et al. [88] 32 16 6 10 68.5 7.8 16 6 10 67.2 8.4 x x 3.0 T S SB AG (l, r), supramarginal gyrus (l, r),

intraparietal sulcus (r)

Hahn et al. [89]y 54 28 14 14 69.5 7.1 26 10 16 65.5 7.8 x 3.0 T P ICA DMN (a, p), ATN (d, v), ECN (l, r),

SMN, VIS

Myers et al. [90] 35 23 14 9 69.3 7.4 12 5 9 63.8 5.2 x 3.0 T P ICA DMN (a, p), ATN (l, r, d), SN, prAN

Koch et al. [91] 40 24 14 10 68.2 8.4 16 7 9 64.8 5.4 x 3.0 T P ICA DMN (a, p), ATN (l, r, d), SN, prAN

Pasquini et al. [80]* 44 22 11 11 65.3 8.7 22 6 16 66.3 9.0 x 3.0 T P ICA DMN (a, p)

Das et al. [92] 69 30 14 16 71.6 6.8 39 18 21 70.6 9.0 x 3.0 T S SB Hippocampal subregions

Gardini et al. [93] 42 21 13 8 70.6 4.7 21 7 14 69.8 6.5 x 3.0 T GE SB PCC, mPFC

Yi et al. [81]* 32 20 4 16 71.0 12 3 9 71.8 1.2 x x 3.0 T GE ICA DMN, SN

Abbreviations: a, anterior; ACC, anterior cingulate cortex; AD, Alzheimer’s disease; AG, angular gyrus; AN, auditory network; ATN, attentional network; B, Brucker; d, dorsal; dlPFC, dorsolateral prefrontal

cortex; DMN, default mode network; ECN, executive control network; F, female; GE, General Electrics; HC, healthy control; ICA, independent component analysis; ICC, isthmus of cingulate cortex; ICN,

intrinsic connectivity network; l, left; lat, lateral; M, male; MCI, mild cognitive impairment; med, medial; medialFC, medial frontal cortex; middleFC, middle frontal cortex; mPFC, medial prefrontal cortex;

MrD, marginal division; n, number of subjects; p, posterior; P, Philips; PCC, posterior cingulate cortex; prAN, primary auditory network; prVIS, primary visual network; r, right; rsfMRI, resting-state functional

magnetic resonance imaging; S, Siemens; saVC, secondary associative visual cortex; SB, seed based; SMN, sensorimotor network; SD, standard deviation; sVIS, secondary visual network; T, Tesla; v, ventral.

NOTE. Data provided in “bold” indicate seven studies using shared cohorts. Coordinates from these seven studies were subsequently pooled under four studies (indicated by superscript letters a, b, and c), under

the corresponding earliest publication using the cohort. In column “Method”, when both seed-based and ICA rsfMRI methods were used by a study, the method given in “italics” indicates the method associated

with reported coordinates. For column “Seed region/ICN investigated”, all seed regions and ICNs investigated are listed, irrespective of significant findings.

*Studies reporting significant coordinates for both AD and MCI patients, relative to matched HC.
yStudies investigating both AD dementia and MCI cohorts.
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hypoconnectivity and hyperconnectivity in the DMN. Sig-
nificant hyperconnectivity in the DMN and limbic network
(LIM) was observed in the MCI cohort. There was also sig-
nificant hypoconnectivity in the DMN for the AD group,
which appeared as a trend for the MCI group.

We then refined the spatial localization of effects found
in R7 using the R36 atlas. Significant DMN hypoconnec-
tivity in AD and ADMCI cohorts was detected in the pre-
cuneus (PCu) and posterior cingulate cortex (PCC)
(Fig. 4). A trend for DMN hyperconnectivity was observed
in the PCu for ADMCI and in both the PCu and PCC in
MCI (Fig. 4). The LIM hyperconnectivity was observed
as a trend in the hippocampus and entorhinal cortex in
MCI patients (Fig. 4).

Finally, we investigated the robustness of findings with
respect to the selection of seeds (DMN, non-DMN, or all
combined), using the R7 atlas. Significant network-level
findings derived from all seeds combined, as reported previ-
ously, replicated when using DMN seeds alone (Fig. 3A). In
addition, a trend toward hypoconnectivity in MCI became
significant using DMN seeds only. When focusing on non-
DMN seed studies, no significant effects were observed in
the DMN, as expected. The only significant result was
hyperconnectivity of the salience network (SAL) in
ADMCI, also present as a trend in AD subjects.

3.3. Voxel-based meta-analysis

ALE results demonstrated significant hypoconnectivity
in the PCC and PCu in the ADMCI and AD studies
(Fig. 5, Supplementary Table 4), consistent with our
network-level findings using R7 and R36 atlases. This obser-
vation was made both for all seeds combined and DMN-only
seeds (Fig. 5, Supplementary Table 4).

Unlike the network-level analysis, using ALE we found
diminished connectivity in the primary visual cortex, both
in ADMCI and AD. This was observed for all seeds com-
bined as well as for DMN-only seeds in ADMCI and
DMN-only seeds in AD. Finally, significant hyperconnectiv-
ity was observed in AD in the anterior insula (Fig. 5,
Supplementary Table 4), consistent with the trend in the
LIM observed using the R36 atlas.

4. Discussion

We report on a systematic meta-analysis of rsfMRI brain
connectivity dysfunction in LOAD, using voxel-, region-,
and network-level statistics. Our results demonstrated
consistent connectivity alterations both within and outside
of the DMN.

4.1. Connectivity changes in the DMN

4.1.1. Late-onset AD
Our results revealed a consistent decrease in DMN con-

nectivity in the ADMCI and AD cohorts, particularly in
the PCu and PCC, for all resolutions of meta-analysis.
This finding is in line with previous meta-analyses centered
on the DMN [21,22], and a recent study published after we
completed our analysis [23]. DMN deterioration appears
robust to the choice of analytical approaches, as previous
meta-analyses largely included studies measuring regional
homogeneity and amplitude of low-frequency fluctuation.
Moreover, our results support previous literature reporting
on the vulnerability of the DMN to multiple AD pathophys-
iology [24].

Unlike our robust findings in AD subjects, DMN
hypoconnectivity in MCI could only be demonstrated
using network-level statistics, suggesting a weaker, more
distributed effect in MCI. However, we recently reported
decreased DMN connectivity in a large multisite MCI cohort
with a connectome-wide approach [13]. The modest findings
of our present meta-analysis may be because of a lack of sta-
tistical power from having multiple, small, single-site sam-
ples. Clinical heterogeneity might also have played a role,
that is, only a subset of MCI patients develop AD dementia
[6,25], and there may be pathologic subtypes [26]. We also
demonstrated DMN hyperconnectivity in MCI and ADMCI
using network-level statistics. These changes may reflect
both functional disconnection and compensation in response
to damage at earlier stages of neurodegeneration, as well as
direct or indirect pathologic mechanisms [27]. Moreover,
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there is some uncertainty of the specific nodes that actually
show aberrant connectivity in our network-level analysis.
This may give rise to apparent contradictory results.

4.1.2. Early onset AD
DMN hypoconnectivity of similar magnitude to LOAD

was demonstrated in early onset non–ADAD [28,29],
whereas in ADAD, DMN hypoconnectivity was slightly
more pronounced than that in LOAD [30]. Altered DMN
connectivity was observed in asymptomatic mutation
carriers (PSEN1, PSEN2, or APP) many years before the
age at which they were expected to develop symptoms
[31–33], suggesting that aberrant connectivity may be a
very early biomarker for AD.

4.1.3. Cognitively normal individuals at genetic risk for
LOAD

Altered DMN connectivity has been reported in cogni-
tively normal APOEε4 carriers compared with non-APOEε4
carriers. These alterations were found across all age groups,
that is, elderly [12,34–36], middle-aged [37–39], and young

adults [40,41], and were associated with worse cognition in
middle-aged and elderly carriers [35,37,39]. Studies have
also reported connectivity changes in the DMN in the
absence of Pittsburgh compound B–detectable brain
amyloidosis [12,40,41], further validating the potential of
rsfMRI connectivity as an early marker of synaptic and
neuronal dysfunction in AD.

4.1.4. Cognitively normal elderly at risk for LOAD
Aberrant DMN dysconnectivity, particularly reduced

connectivity between the anterior and posterior DMN, has
been associated with aging and age-related cognitive decline
[33,42]. DMN hypoconnectivity may arise as early as
middle age [43,44], with decreases occurring at differing
rates between sexes [45] most likely due to the differential
effect of sex on AD risk [46]. Reduced DMN integrity has
also been reported in cognitively normal elderly with
abnormal levels of CSF amyloid or tau proteins [47], as
well as PET-detectable cerebral amyloidosis [48]. These re-
sults suggest that some of the effects related to normal aging
in the literature may be driven by preclinical AD. Very few
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studies examined the interactions between age, sex, LOAD,
and rsfMRI connectivity, which is clearly an important
avenue for future work.

4.2. Connectivity changes outside the DMN

Our meta-analysis confirmed that intrinsic connectivity
disruptions in LOAD are not confined to the DMN. We
found increased connectivity in the SAL in ADMCI and
AD. Abnormal SAL connectivity has now been reported in
another LOAD study [49] published after we completed
our meta-analysis and has also been demonstrated in
ADAD [30], APOEε4 carriers [36,37], and the elderly
[50], with connectivity increases highlighted in APOEε4
carriers. With the anterior insula as a key hub, the SAL plays
a pivotal role in network switching between the DMN and
frontoparietal network (FPN), two networks exhibiting
competitive interactions during cognitive information
processing [51]. Association of heightened SAL connectiv-
ity with reduced DMN connectivity in AD suggests that pro-
gressive DMN impairment may be deleterious to SAL
function [52].

We also found increased connectivity in the LIM in
MCI. Heightened LIM connectivity has been reported in

early onset, non-ADAD patients [29], and in individuals
with subjective memory impairment [53]. The effect of
APOEε4 carriage on LIM connectivity, however, lacks
consensus [54–56]. Since LIM hyperconnectivity in
early onset AD patients was shown to correlate
positively with memory performance, it is likely that
increased connectivity in this network contributes to
preserving function in the face of medial temporal lobe
pathology [29].

4.3. Selective vulnerability of multimodal networks in AD

The DMN, SAL, and FPN are multimodal networks
that interconnect cortical regions associated with various
cognitive functions, and they have been demonstrated
computationally to support integrative information pro-
cessing at the cost of being vulnerable to early and
fast spreading of insults [57]. Supporting this theoretical
finding is the recent observation that tau and amyloid-b,
despite their independent patterns of spatial deposition,
overlap with brain tissue loss in hub regions of multi-
modal networks [58]. These multimodal networks are
also metabolically expensive and display higher rates of
cerebral blood flow, aerobic glycolysis, and oxidative
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glucose metabolism [59]. The high-value/high-cost char-
acteristics of the DMN, SAL, and FPN may make
them vulnerable to AD-associated pathogenic processes,
such as metabolic dysfunction/oxidative stress, and accu-
mulation of toxic proteins, such as amyloid-b [59]. The
hypothesis that multimodal networks/regions are particu-
larly susceptible to AD-associated pathophysiological
processes may explain our finding of consistent alter-
ations of these networks.

4.4. Limitations

Our literature search did not identify an abundance of
rsfMRI literature in AD and MCI cohorts, which clearly
expresses the need for additional research. The relatively
low number of experiments that met our inclusion criteria
might have underpowered our voxel-level findings, espe-
cially for the MCI contrasts. In addition, our search
demonstrated that typical studies featured small samples,
and also that analytical methods were quite variable in
the field (a main reason for excluding an article was
due to methodology used). This setting is particularly
amenable to questionable research practices, including

“p-hacking” (testing several methods, reporting only
one). Given the near absence of negative results reporting
in the field, on one hand, and the large size of the
rsfMRI field, on the other hand, there is no question
that some amount of publication bias is also present.
Meta-analytical tools, such as funnel plots, are available
to detect both selective reporting and p-hacking but are
not feasible given current reporting practices in the
rsfMRI community [60].

Another limitation of our study is experimental heteroge-
neity, in terms of population recruitment, scan acquisition
(e.g., scanner make and model, scanning parameters), and
processing choices [13,20,61]. The prominence of the
DMN in our results partly reflects the focus on this
network in the literature, which we quantified using seed
statistics. Hypothesis-driven analyses on the DMN are
attractive for assessing connectivity changes in small sam-
ples; as such analyses will have good statistical power if
the DMN truly carries the larger effects in the brain. Howev-
er, full-brain studies will be required to get a more compre-
hensive view on AD-related changes in rsfMRI network
connectivity using meta-analyses. The current trend toward
large public samples [13,62] is enabling unbiased meta-
analyses, pooling neuroimaging data across many studies
instead of relying on published coordinates. This will
hopefully resolve most of the aforementioned limitations
in the future.

5. Conclusions

Our meta-analysis demonstrated consistent connectivity
alterations in the DMN, SAL, and LIM in the spectrum of
LOAD, supporting the use of resting-state connectivity as
a biomarker of AD.
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RESEARCH IN CONTEXT

1. Systematic review:We conducted a systematic review
of PubMed-indexed resting-state functional magnetic
resonance imaging (rsfMRI) studies in accordance
with the “Preferred Reporting Items for Systematic
Reviews andMeta-Analyses” guidelines.We included
studies that investigated differences in functional
connectivity, relative to controls, between patients
with Alzheimer’s disease (AD) and/or mild cognitive
impairment, and reported coordinates of findings.

2. Interpretation: Typical rsfMRI functional connectivity
studies in AD suffer from low statistical power. Our
meta-analysis quantifies if and where convergent find-
ings have been reported in the literature and strengthens
the evidence for the use of rsfMRI as anAD biomarker.

3. Future directions: A disproportionately large portion
of studies specifically investigated the default mode
network, based on well-grounded hypotheses on
AD pathophysiology. It is unclear if AD truly has
larger effects on default-mode connectivity because
of limited power to examine other networks. Future
research should aim for full-brain investigations us-
ing larger study populations.
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Highlights  
 
• Reliable functional brain network subtypes accompany cognitive impairment in AD 
 
• Symptom-related subtypes exist in the default-mode, limbic and salience networks  
  
• A limbic subtype is associated with a familial risk of AD in healthy older adults  
  
• Limbic subtypes also associate with beta amyloid deposition and ApoE4 

In Brief  
 
We found reliable subtypes of functional brain connectivity networks in older adults, 
associated with AD-related clinical symptoms in patients as well as several AD risk 
factors/biomarkers in asymptomatic individuals. 

Summary  
  
The heterogeneity of brain degeneration has not been investigated yet for functional 
brain network connectivity, a promising biomarker of Alzheimer’s disease. We coupled 
cluster analysis with resting-state functional magnetic resonance imaging to discover 
connectivity subtypes in healthy older adults and patients with cognitive disorders 
related to Alzheimer’s disease, noting associations between subtypes and cognitive 
symptoms in the default-mode, limbic and salience networks. In an independent 
asymptomatic cohort with a family history of Alzheimer’s dementia, the connectivity 
subtypes had good test-retest reliability across all tested networks. We found that a 
limbic subtype was overrepresented in these individuals, which was previously 
associated with symptoms. Other limbic subtypes showed associations with 
cerebrospinal fluid Aβ1-42 levels and ApoE4 genotype. Our results demonstrate the 
existence of reliable subtypes of functional brain networks in older adults and support 
future investigations in limbic connectivity subtypes as early biomarkers of Alzheimer’s 
degeneration. 
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Introduction 
 
Alzheimer's disease (AD) is a chronic neurodegenerative condition that gives rise to the 
most common form of dementia, with severe memory and cognitive impairments. 
Importantly, the clinical expression of AD becomes apparent only decades after the 
development of neuropathological processes, such as the accumulation of amyloid-β 
(Aβ) plaques and tau neurofibrillary tangles. The long preclinical buildup of AD 
pathology presents an opportunity to prevent, rather than repair, neurodegeneration 
(Dubois et al., 2016; Sperling et al., 2012). Functional brain connectivity measured with 
resting-state functional magnetic resonance imaging (rs-fMRI) may capture early 
synaptic dysfunction in AD (Selkoe, 2002; Tampellini, 2015) and is thus a promising 
candidate biomarker for AD (Badhwar et al., 2017; Brier et al., 2014; Jones et al., 2016; 
Vemuri et al., 2012). However, the current literature has largely relied on comparisons 
between group averages of patients and cognitively healthy individuals. Such cross-
sectional analyses neglect the considerable phenotypic heterogeneity present both in 
patient and control populations. The primary objective of this work was to characterize 
the heterogeneity of functional brain connectivity in older adults, and identify network 
subtypes associated with AD at the clinical and preclinical stages.  
  
A prevalent model of AD postulates that symptoms arise as a consequence of 
disruptions in distributed networks, rather than local, circumscribed alteration in neural 
processing (Delbeuck et al., 2003; Seeley et al., 2009). The seminal work of (Greicius et 
al., 2004) in symptomatic AD demonstrated alterations in functional brain connectivity in 
the so-called default-mode network (DMN), whose topography overlaps substantially 
with patterns of end-stage Aβ deposition (Buckner et al., 2005). A recent meta-analysis 
concluded to convergent evidence across over 30 publications looking at functional 
brain connectivity in clinical cohorts, i.e. patients with mild cognitive impairment or AD 
dementia, and confirmed the DMN as a key affected brain component (Badhwar et al., 
2017). Connectivity disturbances in other large-scale brain networks were also found 
consistently, in particular in the limbic and salience networks. At a preclinical stage, rs-
fMRI connectivity has been shown to be impacted in cognitively healthy older adults at 
risk of AD due to abnormal levels of cerebrospinal fluid (CSF) Aβ1-42 or tau proteins 
(Jiang et al., 2016; Wang et al., 2013), increased cerebral Aβ deposits (Elman et al., 
2016), and presence of apolipoprotein E ε4 allele - ApoE4 (Sheline et al., 2010), the 
major genetic risk factor in sporadic AD. A familial history of sporadic AD in first-degree 
relatives is the second most important risk factor of AD (Tanzi, 2012), and was shown to 
impact DMN connectivity even in ApoE4 non-carriers, thus highlighting additional 
genetic risk factors (Wang et al., 2012).  
 
Despite mounting evidence of rs-fMRI as an early marker of AD, the current literature  
neglects the considerable heterogeneity present in both patients and controls. Post-
mortem histological examination of AD pathology in brain tissue samples (Hyman et al., 
2012) indeed does not align closely with clinical diagnosis. Between 30 and 50% of 
patients diagnosed with AD dementia in fact do not present Alzheimer’s pathology, 
depending on the level of neuropathological confidence (Beach et al., 2012). 
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Conversely, the same study reported that close to 40% of patients diagnosed with non-
AD dementia show minimal signs of AD pathology. Some cognitively healthy persons 
included in control groups may also suffer from preclinical AD, with 10% to 30% of them 
having Aβ deposition in their brain (Chételat et al., 2013), and some of them exhibiting 
high loads of neurofibrillary tangles (Mufson et al., 2016). Data-driven analysis of 
structural MRI subtypes in AD further showed that symptomatic heterogeneity (Belleville 
et al. 2007; Scheltens et al. 2016) is at least partly related to different modes of atrophy 
spreading in AD (Dong et al., 2017; Zhang et al., 2016). Complementary to subtypes of 
brain atrophy, a recent work (Doan et al., 2017) showed that connectivity subtypes can 
also be observed using diffusion magnetic resonance imaging, in patients suffering from 
AD dementia, MCI or subjective cognitive impairment, with subtypes accompanying the 
severity of cognitive impairment. The established heterogeneity in structural brain 
degeneration calls to re-examine the current evidence for rs-fMRI as an AD biomarker 
using a subtyping approach.  
 
The overarching goal of the present work was to identify one or multiple subtypes of 
functional brain connectivity associated with AD, either at a clinical or preclinical stage. 
We first applied a data-driven cluster analysis to identify subgroups of subjects with 
homogeneous subtypes of brain connectivity within a mixed cohort of 130 subjects, 
including patients with AD dementia  (AD subjects, N = 21), patients with mild cognitive 
impairment (MCI subjects, N= 44), and elderly healthy controls (HC subjects, N= 65) 
(Figure 1, Table 1). This mixed cohort, referred to as the ADNI2-MTL 
sample,poolsdatafrom 2 sites of ADNI2 (ADNI2a and ADNI2b) and 3 studies conducted 
at Montreal sites (MNI, CRIUGMa and CRIUGMb), in an attempt to extract robust 
subtypes that will generalize well to new studies (Orban et al., 2017). For each brain 
network and connectivity subtype, we tested whether a particular subtype was 
associated with the presence of mild or severe symptoms. We then investigated if the 

 
 
Figure 1. Matching between ADMCI patients and HC 
(A) Patients and controls were matched with respect to sample size, gender, age and motion 
levels after scrubbing (residual frame displacement, rFD). (B) Between-site differences on 
such variables are shown irrespective of clinical status. (C) The number of patients and 
controls are perfectly balanced within sites. 
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subtype membership was a reliable quantity using test-retest data in an independent 
sample of 231 cognitively healthy older adults, with a familial history of AD (FH subjects) 
(Orban et al., 2015). As those subjects are at risk for AD, we tested if the subtypes 
associated with symptoms would already be overrepresented in the asymptomatic FH 
cohort. We further tested in these FH subjects the association between functional 
subtypes and known biomarkers/risk factors of AD, namely CSF Aβ1-42, Tau levels as 
well as ApoE4 genotype.  

Results 
  
Subtypes of functional brain networks 
  
To identify subtypes of functional brain networks, we first generated individual functional 
connectivity maps for seven large-scale networks together covering the entire brain 
(Figure 2A-B). These reference networks were obtained from an independent dataset 
from 200 healthy young subjects (Bellec et al. 2015), and were labeled as cerebellar, 
limbic, motor, visual, default-mode, fronto-parietal and salience networks. For each 
network, a hierarchical cluster analysis was applied on 130 individual network maps 
from the ADNI2-MTL dataset, after regression of phenotypic and site confounds, in 
order to identify subgroups of subjects with homogeneous brain maps. Visual inspection 
suggested the presence of at least three voxelwise connectivity subgroups (Figure 2C-
D). A brain map averaged across all subjects within a subgroup defined a subtype of 
network connectivity, highlighting specific brain areas that differed between that 
subgroup and the overall population average (Figure 2E). Subtype maps revealed high 
connectivity with their reference network, yet also exhibited noticeable variations. These 
differences were not only observed in the associated network (within-network 
connectivity) but also in other brain areas (between-network connectivity). For instance, 
subtypes of the DMN could be distinguished from one another not only in terms of 
connectivity levels within the precuneus or anterior medial prefrontal cortex, two key 
nodes of the default-mode network, but also with regards to connectivity strength in the 
anterior cingulate, associated with the salience network. For each network, we 
generated the spatial correlations between individual connectivity maps and each 
average subtype map, hereafter referred to as weights (Figure 2F). These continuous 
subtype weights revealed that some individual maps were highly correlated with the 
subtypes, while others had only milder correlations, sometimes of similar amplitude for 
different subtypes. The subtype decomposition was therefore a discrete approximation 
of a continuous distribution of individual maps, rather than a set of clear-cut entities. 
 
A comparison of clustering outcomes for the seven networks revealed that 3 subgroups 
of subjects at least could be evidenced in all networks (Figure 3A). As observed for the 
DMN, subtype maps showed distributed variations inside and outside the network of 
reference for all networks. While between-subject correlation values had similar 
amplitudes across networks, the size of the subgroups varied from one network to 
another. We tested the correspondence of subject clustering solutions between 

.CC-BY 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/195164doi: bioRxiv preprint first posted online Sep. 28, 2017; 

APPENDIX B. 127



 

6 

networks by computing the adjusted rand index (ARI) for all pairwise comparisons 
(Figure 3B). The near-chance level of this metric (0.04 ± 0.04) demonstrated that 
subjects with similar connectivity maps for a given network did not have particularly 
similar maps for other networks, thus highlighting heterogeneity in functional brain 
connectivity patterns.  

 
 
 
 
 
 

 
 
Figure 2. Extraction of subtypes and weights 
(A) Functional subtypes were identified separately for 7 networks delineated at the whole-
brain level in an independent sample of healthy subjects. The procedure is shown for the 
default-mode network (DMN). (B) Network-based connectivity maps were computed for each 
subject through the correlation of every voxel’s time course of activity with the average signal 
in the reference network. (C) Site, gender, age and motion were regressed out from 
functional connectivity maps across subjects. (D) A hierarchical cluster analysis was 
conducted to identify 3 homogeneous subgroups of subjects with similar connectivity maps. 
(E) Difference subtypes show how the average connectivity maps of each separate subgroup 
of subjects differ from the grand average. (F) Weights consisted in correlations between the 
connectivity maps of every subject with that of each subtype. 
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Brain network subtypes are associated with clinical symptoms 
  
Given the observation that subtypes reflected both continuous and discrete phenomena, 
we adopted a dual statistical evaluation of their association with clinical symptoms in 
ADMCI subjects (Figure 4). In the former case, differences in average subtype weights 
between ADMCI and HC were assessed independently for each subtype of the seven 
reference networks, using a linear regression model. Significant associations were 
found for one limbic, two default-mode and two salience subtypes (q < 0.05 with FDR 
correction over 21 network subtypes), in line with our expectations. An uncorrected 
effect was also seen for an additional limbic subtype (p < 0.05). Effects were of medium 
size (0.09 < Cohen's f2 < 0.25). Of these six subtypes, half of the associations with 
symptoms were positive (i.e. higher average weight load in ADMCI persons) and the 
remainder negative (i.e. lower average weight load in ADMCI patients). Instances of 
positive and negative associations with symptoms were observed in all three 
aforementioned networks.  

 
Figure 3. Correspondence of cluster (subtype) solutions across networks 
(A) For each of the 7 networks (columns) are given the similarity matrix that shows the 
similarity of network connectivity maps between all pairs of subjects (first row), the adjacency 
matrix that reveals homogeneous subgroups of subjects identified by cluster analysis 
(second row), the average network connectivity map for all subjects (third row), and the 
difference subtype connectivity maps obtained by differences between the group average 
and the average connectivity maps for each subgroup of subjects (fourth to sixth rows). (B) 
The adjusted rand index (ARI) reveals the correspondence of subject clustering solutions 
between all pairs of networks. CER, cerebellum; LIM, limbic; MOT, motor; VIS, visual; DMN, 
default-mode; FPN, fronto-parietal; SAL, salience.  
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Figure 4. Functional network subtypes 
associated with clinical symptoms 
Significant associations with ADMCI were found in 
the limbic (A), default-mode (B) and salience (C) 
networks. For each network are shown the group 
average connectivity map and the connectivity 
subtypes that are significantly more or less 
present in ADMCI patients than controls 
(difference maps are given). Pie charts report the 
distributions of subjects across subtypes in each 
group. Violin plots show the distribution of weights 
in the two groups for each subtype with a 
significant association. ** and * respectively 
denote significance at qFDR<0.05 and p<0.05 
(uncorrected). 
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A general observation was that subtypes positively associated with symptoms (PAS) 
had increased within-network connectivity but decreased between-network connectivity 
as compared to sample averages of networks. The PAS limbic subtype was notably 
defined by increased hippocampal connectivity (within-network) but decreased 
connectivity in dorsomedial prefrontal areas located in the DMN (between-network). An 
inverse pattern was seen in subtypes negatively associated with symptoms (NAS). The 
NAS limbic subtype had decreased connectivity in the hippocampus but increased 
connectivity in the insula. Subtypes of the default-mode and salience network provided 
mirror pictures of PAS and NAS connectivity profiles. Decreased connectivity in the 
posterior cingulate and medial prefrontal region relative to the sample average was NAS 
for the default-mode network but PAS for the salience network. Similarly, decreased 
connectivity in the insula and anterior cingulate cortex compared to the sample average 
was evidenced to be NAS for the salience network but PAS for the default-mode 
network.  

 
Statistics on discrete effects provided concordant effects at uncorrected thresholds. For 
each network, we evaluated with Chi2 tests whether ADMCI and HC subjects were 
distributed unevenly across subtypes. Unequal distributions were seen for the limbic (p 
< 0.05), default-mode (p = 0.1) and salience (p < 0.05) networks. Effect sizes were in 
the small-to-moderate range, with Cramer's V values of 0.27, 0.19 and 0.24 in the 
limbic, default-mode and salience networks, respectively. 
 
Connectivity maps in FH subjects are reproducibly matched to subtypes from the 
clinical cohort  
 
We assessed the reliability of matching connectivity maps in FH subjects from the 
PREVENT-AD cohort with the subtypes defined in the MTL-ADNI2. We thus generated 
individual functional connectivity maps separately for two runs, in each of the seven 
networks. Weights were computed for individual network maps, indicating their similarity 
with each of the 21 network subtypes previously defined in the MTL-ADNI2 sample 
(Figure 5). Intraclass correlations (ICC) indicated a fair-to-good correspondence of 
subtype weights between runs. Weights of all network subtypes had ICC values > 0.45 
(max = 0.68, mean = 0.56), except for the PAS salience subtype (0.29). The default-
mode and limbic PAS subtype weights had ICCs of 0.50 and 0.55, respectively.  
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Figure 5. Reliability of subtype matching 
in FH subjects 
(A) Matching of connectivity maps in FH 
subjects with subtypes found in the mixed 
population of ADMCI patients and controls is 
shown for the DMN in two separate runs. (B) 
Test-retest between runs was determined 
with intra-class correlation (ICC), showing 
fair-to-good correspondence across 
networks and subtypes. 
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Subtypes are associated with biomarkers of AD in FH subjects  
  
We next examined the possibility that cognitively healthy FH older adults already 
exhibited PAS subtypes, and more so than typical healthy elderly individuals. Individual 
functional connectivity maps were averaged for the two separate runs in 231 FH 
subjects from the PREVENT-AD cohort. For each of the three networks found to be 
associated with clinical symptoms, FH subjects were matched to network subtypes 
defined in the MTL-ADNI sample based on maximal weights. Distributions of FH 
subjects across subtypes were not significantly different than those of either ADMCI or 
HC participants in the default-mode and salience networks (Figure 6A). However, 
proportions of FH subjects across limbic subtypes differed significantly from those of 
typical HC older adults (q < 0.05) but not from ADMCI patients (p = 0.9). 
          
The idea that connectivity subtypes might reflect a covert pathological AD process in 
cognitively healthy elderly individuals would be reinforced by the observation that such 
connectivity profiles correlate with known biomarkers of AD. We thus further 
investigated the relationship between connectivity subtypes and APOE genotype (N = 
228) as well as CSF levels of Aβ1-42, tTau and pTau (N = 59) (Figure 6C). Surprisingly, 
APOE allele 4 carriers showed less association than non carriers with the limbic PAS 
subtype (q < 0.05), with a small effect size (Cohen's f2 = 0.04). However, findings 
consistent with predictions were observed for CSF Aß42 levels and another limbic 
subtype. Subjects with high levels of CSF Aβ1-42 had limbic connectivity maps that 
resembled more the NAS limbic network (q < 0.05; Cohen's f2 = 0.13). Low levels of 
CSF Aβ1-42 were associated with another limbic subtype that shared some similarities 
with the PAS limbic subtype, for instance increased hippocampal connectivity (q < 0.05; 
Cohen's f2 = 0.1). No associations were found between Tau or pTau CSF levels and 
any subtype of either the limbic, default-mode or salience networks.  
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Discussion 
 
Capturing heterogeneity through subtyping  
 
Our subtyping approach was motivated by the lack of specificity and sensitivity of a 
clinical diagnosis of AD dementia against a histopathological diagnosis of AD pathology 
(Beach et al., 2012) and the variability of cognitive and neurobiological alterations in AD 
(Lam et al., 2013; Scheltens et al., 2016). As done previously for structural atrophy 
patterns (Dong et al., 2017; Hwang et al., 2016; Zhang et al., 2016) and white matter 
structural dysconnectivity (Doan et al., 2017), we employed a subtype analysis that 
identified subgroups of subjects sharing similar functional brain connectivity, in a fully 
data-driven way and irrespective of clinical diagnosis. This is an important conceptual 
difference with more traditional cross-sectional comparisons between clinical cohorts, 
which assumes some homogeneity in connectivity within each group, e.g. (Badhwar et 
al., 2017, 2016; Jones et al., 2016; Korolev et al., 2016). Improved characterization of 
the inherent heterogeneity of brain dysconnectivity in AD will ultimately facilitate more 
personalized diagnosis and treatment. This new line of inquiry is made possible by large 
neuroimaging databases such as the ADNI, and will become increasingly important with 
the emergence of populational cohorts with associated neuroimaging repositories, such 
as the UK biobank (Miller et al., 2016).   
 

 

 
 
Figure 6. Connectivity subtypes in FH subjects 
(A) Pie charts show that FH subjects differ from controls but not ADMCI patients in their 
distribution across subtypes for the limbic network (B). (C) Three distinct limbic network 
subtypes show either positive or negative associations with ApoE4 status or CSF Aβ1-42 
levels. ** denotes significance at qFDR<0.05 . 
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Association between connectivity subtypes and clinical symptoms 
 
Using rs-fMRI, we identified functional brain connectivity subtypes associated both 
positively and negatively with symptoms. A variety of causal mechanisms may explain 
such associations, which may co-exist. An association may reflect the direct 
progression of AD neurodegeneration in the brain (Jones et al., 2016), the presence of 
comorbidities (Profenno et al., 2010), as well as some form of cognitive reserve, or lack 
thereof (Stern, 2006). The existence of an association in itself is not enough to 
disambiguate between these different interpretations. Associations between connectivity 
subtypes and symptoms were selectively detected in the default-mode, salience and 
limbic networks. These three networks have consistently been reported in the literature 
as altered in patients with AD dementia or MCI, see (Badhwar et al., 2017; Vemuri et 
al., 2012) for reviews. The associated subtype maps pointed at changes both within 
networks, e.g. higher intra-network connectivity in PAS DMN subtype, and between 
networks, e.g. decreased inter-network connectivity in PAS DMN subtypes with regions 
of the salience network. 
 
Translation of connectivity subtypes from clinical to non-clinical individuals 
 
The distribution of connectivity subtypes in a group of cognitively normal FH individuals 
was found to resemble more the subtype distribution of a patient group than that of  a 
control group. This observation was made only for the limbic network, but not the 
default-mode and salience networks. Assuming functional connectivity subtypes partly 
reflect the progression of AD pathology, finding early dysconnectivity in the limbic 
network is consistent with the Braak staging of neurodegeneration (Braak and Braak, 
1991) and the increased risk of sporadic AD due to family history (Tanzi, 2012). 
Conversely, the limbic subtype negatively associated with symptoms was under-
represented in FH individuals, and was shown to positively associate with CSF Aβ1-42 
levels. Taken together, these associations support the notion that different subtypes of 
limbic connectivity reflect the progression of AD pathophysiology at a preclinical stage. 
A finding that was more difficult to interpret was that ApoE4 carriers had significantly 
less weight on the limbic subtype positively associated with symptoms. With previous 
literature on ApoE4 and resting-state connectivity sometimes reporting contradictory 
findings (Filippini et al., 2009; Sheline et al., 2010), we believe longitudinal data on a 
large cohort would be necessary to clarify the relationships among resting-state 
connectivity, Aβ deposition and ApoE4 status. 
 
Generalization of brain connectivity subtypes across datasets 
 
The translation of connectivity across cohorts raises the question of generalization 
across scanning sites. Research has indeed indicated that multisite scanning generates 
substantial site-specific bias in connectivity measures (Dansereau et al., 2017; Yan et 
al., 2013). In our multisite clinical sample, we took great care to control for confounding 
site effects on brain connectivity subtypes. The identification of network subtype was 
thus invariant to scanning site to a large extent. However, the cohort of individuals at 
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risk of AD due to their familial history was entirely scanned at a single site. The fact that 
we found associations with known biomarkers or risk factors of AD specifically in the 
limbic network supports that brain connectivity subtypes are fairly robust to site effects. 
Subtype weights also had good test-retest reliability in the PREVENT-AD cohort, 
although the subtype maps were generated on ADNI-MTL. Important areas for future 
work will be to identify imaging protocols that further minimize differences in brain 
connectivity subtypes across scanners.  
 
Finer subtypes 
 
Groups of patients that defined subtypes did not overlap a lot across networks, including 
for subtypes positively associated with symptoms. There is thus some degree of 
independence between subtypes across networks, possibly reflecting heterogeneity of 
neurodegeneration across patients. Even though we estimated only 3 subtypes per 
network, there are still a very large number of possible combinations of subtypes across 
7 networks. Subtype maps being an average of a subgroup of subjects, a minimum 
number of 20 subjects seems warranted to stabilize the subtype maps. The total sample 
size of our discovery dataset thus constrained the maximal number of subtypes we 
could feasibly investigate. We thus decided to use low numbers of subtypes and 
networks for this first evaluation of the feasibility of functional subtypes in AD, yet higher 
numbers could be explored in a larger sample.   
 
Multi-network and multimodal subtypes  
 
A natural extension of this work would be to integrate subtypes across multiple 
networks, imaging modalities and measures into a single predictor of AD status. 
Associations with clinical symptoms or AD biomarkers reported here had weak to 
moderate effect sizes, despite reaching statistical significance. Recent state-of-the-art 
model of progression from MCI to dementia indeed merge biomarkers across multiple 
domains, including cognitive evaluations, imaging and plasma markers (Korolev et al., 
2016). High-dimensional imaging biomarkers such as structural and diffusion MRI are 
amenable to subtyping (Doan et al., 2017; Hwang et al., 2016; Zhang et al., 2016). We 
believe that subtyping could be used in the near future to identify a highly accurate 
multimodal predictor of AD, both for diagnosis and prognosis purposes. Resting-fMRI 
will likely contribute to such a multimodal predictor, as it is uniquely sensitive to brain 
function, at least compared to other MRI modalities. Our findings suggest that limbic 
subtypes in particular are promising biomarkers for the purpose of early AD diagnosis.  
 
Conclusions 
 
The present work demonstrates that rs-fMRI can be used to subtype the heterogeneity 
of functional networks in older adults. We found that subtypes have a good test-retest 
reliability and associate with symptoms in patients suffering from MCI or AD dementia. 
We also found that subtypes associate with various biomarkers and risk factors of AD in 
cognitively normal individuals: familial history of AD dementia, beta amyloid deposition, 
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ApoE4 status. Our findings support the notion that rs-fMRI subtypes are sensitive to AD 
progression up to the preclinical stage, and may contribute to future efforts towards an 
accurate early diagnosis of AD using multimodal biomarkers.  

 
Experimental procedures 
 
Participants 
  
The MTL-ADNI2 multisite sample aggregated data from 5 different studies: 3 samples 
from the Montreal area (one from the Montreal Neurological Institute, MNI, and two from 
the Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, CRIUGMa 
and CRIUMGb), and 2 samples with distinct acquisition protocols from the Alzheimer's 
Disease Neuroimaging Initiative 2 (ADNI2a and ADNI2b) (Table 2). We selected 
subsamples of the MNI, CRIUGMa, CRIUGMb, ADNI2a and ADNI2b datasets such that 
patients and controls groups had identical sample size for each acquisition protocol or 
study, respectively 13, 13, 8, 20 and 11 subjects per group. The combined sample 
included 65 patients diagnosed with either amnestic MCI or AD dementia and 65 
cognitively normal controls. Patients and controls were selected from a larger initial pool 
such that they would be matched for age, gender ratio as well as motion (see rs-fMRI 
preprocessing section). Distributions of age, gender and motion were as follows for 
patients vs. controls: age (mean ± std) = 72.7 ± 7.9 vs. 72.6 ± 7.3 years old, 41/24 vs. 
41/24 females/males, residual frame displacement (mean ± std) = 0.22 ± 0.07 vs. 0.23 ± 
0.08. All subjects gave informed consent to participate in these studies, which were 
approved by the research ethics committees of the institutions involved in data 
acquisition. Consent was obtained for data sharing and secondary analysis, the latter 
being approved by the ethics committee at the CRIUGM.   
         The PREVENT-AD dataset used in the present analysis included 231 cognitively 
healthy older adults with a known family history of AD, as reflected by a diagnosis of AD 
dementia in parent or first-degree relatives. PREVENT-AD participants were younger 
(mean ± std: 64.1 ± 5.7 years old) than subjects in the MTL-ADNI2 multisite sample and 
were not balanced for gender (172/59 females/males). All subjects had given informed 
consent and the study was approved by the "Research, Ethics and Compliance 
Committee" of McGill University. 
 
Note on the cohorts 
 
The ADNI2 data used in the preparation of this article were obtained from the 
Alzheimer's Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The 
ADNI was launched in 2003 by the National Institute on Aging (NIA), the National 
Institute of Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug 
Administration (FDA), private pharmaceutical companies and non-profit organizations, 
as a $60 million, 5-year public-private partnership representing efforts of many co-
investigators from a broad range of academic institutions and private corporations. A 
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central goal of ADNI is to facilitate the discovery of biomarkers of very early AD 
progression, using MRI among other techniques. ADNI was followed by ADNI-GO and 
ADNI-2. In this study, we only included subjects from the two ADNI2 scanners (Achieva 
and Intera) associated with the largest samples. For up-to-date information, see 
www.adni-info.org. 
The PREVENT-AD data were obtained from the Pre-symptomatic Evaluation of Novel 
or Experimental Treatments for Alzheimer's Disease (PREVENT-AD) program data 
release 2.0 (November 30, 2015). The cohort of this program was composed of 
cognitively healthy individuals at increased risk of AD dementia because they have / 
had a first-degree relative (parent or sibling) who has / had dementia suggestive of AD.  
This cohort includes volunteers of age 60 or older (55 or older if current age is within 15 
years of affected relative’s estimated age at onset of dementia). One current project 
consists of an observational study where participants are followed longitudinally once a 
year with a battery of tests and imaging modalities. In the present work, we focused on 
baseline data. A subset of test-retest rsfMRI data in 80 PREVENT-AD subjects has 
been shared publicly (Orban et al., 2015).  
Clinical evaluation 
 
All subjects from the MTL-ADNI2 and PREVENT-AD samples underwent 
neuropsychological testing to assess cognitive function, including memory, language 
and executive abilities. However, the neuropsychological tests administered to 
participants varied across sites, as did criteria and clinical scales used for diagnosis of 
either MCI or AD. Briefly, patients with (amnestic) MCI had memory complaints and 
objective cognitive loss, yet showed intact functional abilities and did not meet criteria 
for a diagnosis of dementia in contrast with AD patients. HC demonstrated intact 
cognitive functions. Details on clinical evaluation for each cohort per site follow.  
In ADNI2, the Mini-Mental State Evaluation (MMSE) and Clinical Dementia Rating 
(CDR) were used to distinguish between HC, MCI and AD subjects. MMSE scores were 
inclusively comprised between 24-30, 24-30 and 20-26 for HC, MCI and AD subjects, 
respectively. MCI patients had a CDR of 0.5 and AD patients a CDR of 0.5 or 1. An 
objective memory loss was evidenced with the Wechsler Memory Scale Logical Memory 
II in MCI, yet other cognitive domains and functional activities were unaffected. In 
addition, there was an absence of dementia, by contrast with AD patients who met the 
National Institute of Neurological and Communicative Disorders and Stroke / 
Alzheimer's Disease and Related Disorders Association (NINCDS/ADRDA) criteria for 
probable AD (McKhann et al. 1984). The MNI sample only included MCI patients, who 
were similarly diagnosed using the MMSE, following Petersen Criteria (Petersen 2004). 
Subjects in the CRIUGM samples were administered the MMSE as well as the Montreal 
Cognitive Assessment (MoCA) (Nasreddine et al., 2005) and the Mattis Dementia 
Rating Scale (Schmidt et al. 1994). The diagnosis of MCI was made based on scores 
equal to or >1.5 standard deviations below the mean adjusted for age and education on 
memory tests, with input from a neurologist. A diagnosis of AD was determined 
according to the Diagnostic and Statistical Manual of Mental Disorders (4th ed.; 
American Psychiatric Association, 2000) and NINCDS/ADRDA clinical criteria, with 
input from a neurologist. Participants in the PREVENT-AD were evaluated for any 
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cognitive impairment and symptoms suggestive of AD using the Repeatable Battery for 
the Assessment of Neuropsychological Status - RBANS (Randolph et al., 1998), the 
CDR, the MoCA and the AD8 Dementia screening (Galvin et al., 2005). Exclusion 
criteria common to all participants included contraindications to MRI, presence or history 
of neurologic disease with potential impact on cognition (e.g., Parkinson’s disease), and 
presence or history of substance abuse.  
  
Genetic and CSF biomarkers in PREVENT-AD subjects 
  
In 228 PREVENT-AD subjects, DNA was isolated from 200 ul of whole blood using a 
QIASymphony apparatus and the DNA Blood Mini QIA Kit (Qiagen, Valencia, CA, USA). 
The standard QIASymphony isolation program was performed as per the 
manufacturer's instructions. APOE single nucleotide polymorphism (SNP) genotyping 
was performed using pyrosequencing (PyroMArk96) and processed with GenomeStudio 
(version 2010.3) using standard methods . 
  
         CSF samples were obtained by lumbar puncture in 59 subjects of the PREVENT-
AD cohort. For each subject, 25 ml of CSF was centrifuged 10 minutes +/- 2000g at 
room temperature and aliquoted in 50 vials of 0.5 ml and frozen at -80C for further 
analysis. Protein levels of Aβ1-42, total tau (tTau) and phosphorylated tau (pTau) were 
determined by enzyme-linked immunosorbent assay (ELISA) from Innotest technology 
(Fujirebio). These measurements were standardized with the European project 
BIOMARKAPD (Reijs et al., 2015), which intends to harmonize assays that are used to 
measure biological markers in neurodegenerative diseases.          
MRI acquisition 
  
The MTL-ADNI2 multisite resting-state dataset included brain imaging data acquired on 
3T MRI scanners (Table 2). Vendors differed between sites (Siemens Magnetom Tim 
Trio in MTL sites and Phillips Achieva or Intera in ADNI2). Analyses were performed on 
the first usable scan, typically the baseline scan when several scans were available. 
Functional scan acquisition parameters varied from one site to another, notably in run 
duration (ranges: 5min20s-8min), number of volumes (range: 140-240 vols), voxel size 
(range: 3-4x3-3.6x3.3-4mm3) and repetition time (range: 2-3s). Brain imaging data of 
the PREVENT-AD dataset were collected on a single 3T MRI scanner (Siemens, 
Magnetom Tim Trio). Two consecutive resting-state runs of 150 functional volumes 
were acquired, each run lasting 5min 04s. Spatial and temporal resolutions were as 
follows: voxel size = 4x4x4mm3 and repetition time = 2000ms. Table 2 reports scan 
acquisition parameters for all data.  
  
rs-fMRI preprocessing 
  
Datasets were preprocessed and analyzed using the NeuroImaging Analysis Kit - NIAK 
- version 0.12.17 (http://niak.simexp-lab.org), under CentOS with Octave 
(http://gnu.octave.org) version 3.6.1 and the MINC toolkit (http://bic-mni.github.io/) 
version 0.3.18. Analyses were executed in parallel on the "Guillimin" supercomputer 
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(http://www.calculquebec.ca/en/resources/compute-servers/guillimin), using the pipeline 
system for Octave and Matlab - PSOM (Bellec et al., 2012). 
  
         Each fMRI dataset was corrected for differences in timing of slice acquisitions; a 
rigid-body motion was then estimated using Minctracc (Collins and Evans, 1997) for 
each time frame, both within and between runs, as well as between one fMRI run and 
the T1 scan for each subject. The T1 scan was itself non-linearly co-registered to the 
Montreal Neurological Institute (MNI) ICBM152 stereotaxic symmetric template (Fonov 
et al., 2011), using the CIVET pipeline (Ad-Dab’bagh et al., 2006). The rigid-body, fMRI-
to-T1 and T1-to-stereotaxic transformations were all combined to resample the fMRI in 
MNI space at a 3 mm isotropic resolution. To minimize artifacts due to excessive 
motion, all time frames showing an average frame displacement (FD) greater than 0.5 
mm were removed (Power et al., 2012). The following nuisance covariates were 
regressed out from the fMRI time series: slow time drifts (basis of discrete cosines with 
a 0.01 Hz high-pass cut-off), average signals in conservative masks of the white matter 
and the lateral ventricles as well as the first principal components (accounting for 95% 
variance) of the six rigid-body motion parameters and their squares (Giove et al., 2009; 
Lund et al., 2006). The fMRI volumes were finally spatially smoothed with a 6 mm 
isotropic Gaussian blurring kernel. A more detailed description of the pipeline can be 
found on the NIAK website (http://niak.simexp-lab.org/pipe_preprocessing.html). 
  
Individual voxel-wise connectivity maps based on large-scale network templates 
  
For all 361 subjects included in the analyses, we computed voxel-wise connectivity 
maps associated with each of 7 network templates extracted from a functional brain 
atlas generated on 200 healthy subjects 
(https://doi.org/10.6084/m9.figshare.1285615.v1). The atlas included cerebellar, limbic, 
visual, motor, default-mode, fronto-parietal and salience networks. For each subject and 
each network, a network connectivity map was obtained by computing the Fisher-
transformed Pearson's correlations between the average time course within the network 
template and the time course of every voxel in the brain grey matter. For each network, 
subject by voxel connectivity matrices were defined at the group level,  separately for 
the MTL-ADNI and PREVENT-AD samples. Two general linear models were used to 
regress the following confounds on the group connectivity matrices: age, sex and 
residual (after scrubbing) FD, as well as acquisition protocols / study using dummy 
variables, i.e. MNI, CRIUGMa, CRIUGMb, ADNIa, ADNIb. The inclusion of constant 
terms in the models effectively normalized network connectivity maps to a zero grand 
mean across all subjects, separately for the MTL-ADNI and PREVENT-AD samples. 
  
  
Network subtypes defined by a cluster analysis in MTL-ADNI2 subjects 
  
For each of the 7 rsfMRI networks, a subject by subject similarity (Pearson's correlation) 
matrix summarized the between-subject correspondence of connectivity maps for all 
pairs of the 130 subjects in the MTL-ADNI multisite sample. A hierarchical cluster 
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analysis was performed to identify 3 clusters of subjects whose network connectivity 
maps were similar in terms of spatial extent and/or strength. For each cluster, we 
defined a subtype of functional connectivity as the average connectivity map for 
subjects within this cluster. In total, there were thus 21 subtypes being investigated. 
Subtype weights were obtained by calculating the correlation between individual 
connectivity maps and each of the network subtype maps. Weights thus range between 
-1 and 1, with 1 meaning perfect correspondence, 0 lack of correspondence and -1 
perfect but inverted correspondence.  
  
Statistical tests of association with clinical symptoms in MTL-ADNI2 subjects 
  
We tested the association between subtypes of network connectivity and clinical 
symptoms in the 130 MTL-ADNI2 subjects. To this end, we employed two distinct 
statistical approaches: one approach treated subtypes as discrete units, where each 
subject belongs to one and only one cluster;  a second approach used subtype weights, 
which are continuous measures. Despite these conceptual differences, we expected 
both statistical approaches to provide mostly concordant results. In the first approach, 
Chi2 tests were used to reveal unequal distributions of HC and ADMCI patients across 
the subtypes of each network. We report Cramer's V effect sizes for which values of 0.1, 
0.3 and 0.5 are respectively termed small, medium and large. In our second approach, 
we used general linear models to test separately the associations between the weights 
of each network subtype and clinical symptoms (HC vs. ADMCI). Because confounds 
(age, sex, rFD, sites) were regressed out prior to conducting this analysis, no factors of 
interest were entered in the general linear model. We provide Cohen's f2 effect sizes for 
which values of 0.02, 0.15 and 0.35 are termed small, medium and large, respectively 
(Cohen, 1988). In both statistical approaches, results were deemed significant if they 
survived false-discovery rate (FDR) correction at q<0.05 across networks and subtypes. 
  
Matching of FH subjects to PAS subtypes 
 
We next aimed to match connectivity maps in 231 cognitively normal FH older adults 
with PAS subtypes identified in the MTL-ADNI2 dataset. For each network and each 
PREVENT-AD subject, subtype weights were obtained by correlating his/her 
connectivity map (averaged over 2 runs) with each of the 3 subtype maps identified in 
the clinical sample. Each FH subject was assigned to the subtype for which the weight 
was maximal. We then tested, for each network, the similarity of subject distributions 
across subtypes between FH subjects in the PREVENT-AD cohort vs the distribution of 
ADMCI patients or HC subjects in the MTL-ADNI multisite sample. Chi2 tests were used 
to assess significance of differences in distributions and Cramer’s V values described 
effect sizes.  
 
Test-retest reliability of MTL-ADNI2 subtypes in FH subjects 
 
Intra-class correlation coefficients quantified the reproducibility of weights between the 
two consecutive resting-state runs of the PREVENT-AD cohort. With 7 networks and 3 
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subtypes, we thus obtained 21 ICC measures. ICC measures were interpreted as 
follows (Cicchetti, 1994): less than 0.40 = poor, between 0.40 and 0.59 = fair, between 
.60 and 0.74 = good, between 0.75 and 1 = excellent.  
  
Statistical tests of association with AD biomarkers 
  
We finally assessed whether the subtype weights of FH subjects would be associated 
with known biomarkers or risk factors of AD in PREVENT-AD. Namely, we investigated 
the possible association between APOE4 genotype, CSF Aβ1-42 and Tau levels with 
symptom associated network subtypes. Associations were tested in the framework of 
general linear models and were considered significant if they survived false-discovery 
rate (FDR) correction at q<0.05 across networks and subtypes. Because confounds 
(age, sex, rFD) were regressed out prior to conduct this analysis, no factors of interest 
were entered in the general linear models. Effect sizes are reported with Cohen's f2 
measures. 
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Tables 
  
      MTL-ADNI2     PREVENT-AD 

  MNI CRIUGMa CRIUGMb ADNI2a ADNI2b   

              

N controls 13 13 8 20 11 n/a 

Mean age (s.d.) 67 (5.8) 71.2 (4.8) 72.6 (7.8) 75.3 (6.5) 75.9 (8.7) n/a 

Number male (%) 5 (38.5) 4 (30.8) 5 (62.5) 9 (45) 1 (9.1) n/a 

              

              

N ADMCI patients 13 13 8 20 11 n/a 

N MCI patients 13 0 8 13 10 n/a 

N AD dementia 
patients 

0 13 0 7 1 n/a 

Mean age (s.d.) 71.6 (8.4) 75 (7) 79.9 (6.1) 72 (7.9) 67 (5) n/a 

Number male (%) 5 (38.5) 2 (15.4) 3 (37.5) 7 (35) 7 (63.6) n/a 

       

       

       

              

N FH subjects n/a n/a n/a n/a n/a 231 

Mean age (s.d.) n/a n/a n/a n/a n/a 64.1 (5.7) 

Number male (%) n/a n/a n/a n/a n/a 59 (25.5) 

N Aβ1-42 n/a n/a n/a n/a n/a 79 

Mean Aβ1-42 (s.d.) n/a n/a n/a n/a n/a 1079.7 (280.9) 

N ApoE4 n/a n/a n/a n/a n/a 228 

N ApoE4 carriers 
(%) 

n/a n/a n/a n/a n/a 78 (34.2) 

              

Table 1. Demographics  

Basic demographics (sample size, mean age, sex proportions) are given for the HC, ADMCI 

and FH groups. Levels of CSF Aβ1-42 and proportions of ApoE4 carriers are given for FH 

subjects. 
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      MTL-ADNI2     PREVENT-AD 

  MNI CRIUGMa CRIUGMb ADNI2a ADNI2b   

              

Scanner 
manufacturer 

Siemens Siemens Siemens Phillips Phillips Siemens 

              

              

Structural             

N channels 32 32 32 8 8 12 

N slices 176 176 176 170 170 176 

Voxel size (mm3) 1x1x1 1x1x1 1x1x1 1x1x1.2 1x1x1.2 1x1x1 

Matrix size 256x256 256x256 240x256 256x256 256x256 256x256 

FOV (mm2) 256 256 240/256 256 256 256? 

TR (s) 2.3 2.53 2.3 6.8 6.8 2.3 

TE (ms) 2.98 1.64 2.91 3.09 3.09 2.98 

FA (degrees) 9 9 9 9 9 9 

              

              

Functional             

N channels 32 32 32 8 8 12 

N slices 38 33 33 48 48 32 

Voxel size (mm3) 3.6x3.6x3.6 3x3x4 3x3x4 3.3x3.3x3.3 3.3x3.3x3.3 4x4x4 

Matrix size 64x64 64x64 64x64 64x64 64x64 64x64 

FOV (mm2) 230 192 192 212 212 256? 

TR (s) 2 2 2 3 3 2 

TE (ms) 30 30 30 30 30 30 

FA (degrees) 90 90 90 80 80 90 

No. volumes 160 240 240 140 140 150 (x 2) 

Scan duration 
(min:s) 

5:20 8:00 8:00 7:00 7:00 5:04 (x2) 

  
Table 2. MRI acquisition protocols 

Scan parameters are given for structural and functional data across the 5 MTL-ADNI samples 

as well as the PREVENT-AD dataset.  
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Abstract

Early prognosis of Alzheimer’s dementia is hard. Mild cognitive impairment
(MCI) typically precedes Alzheimer’s dementia, yet only a fraction (30%-50%)
of MCI individuals will progress to dementia. Even when a prognosis of demen-
tia is established using machine learning models and biomarkers, the fraction
of MCI progressors remain limited (50%-75%). Instead of aiming at precise di-
agnosis in large clinical cohorts known for their heterogeneity, we propose here
to identify only a subset of individuals who share a common brain signature
highly predictive of oncoming dementia. This signature was discovered using a
machine learning model in a reference public sample (ADNI), where the model
was trained to identify patterns of brain atrophy and functional dysconnectivity
commonly seen in patients suffering from dementia (N = 24), and not seen in
cognitively normal individuals (N = 49). The model then recognized the same
brain signature in 10 MCI individuals, out of N = 56, 90% of which progressed
to dementia within three years. This result is a marked improvement on the
state-of-the-art in prognostic precision, while the brain signature still identi-
fied 47% of all MCI progressors (N = 19). We thus discovered a sizable MCI
subpopulation with homogeneous brain abnormalities and highly predictable
clinical trajectories, which may represent an excellent recruitment target for
clinical trials at the prodromal stage of Alzheimer’s disease.
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1. Introduction

Alzheimer’s disease (AD) is the most common age-related neurodegenerative
disorder. The typical progression of late-onset, sporadic AD comprises a lengthy
preclinical stage, a prodromal stage of mild cognitive impairment (MCI), and
a final stage of dementia. Usually, by the time patients suffer from dementia,
severe and irreversible neurodegeneration has already occurred. In order to be
effective, therapies should likely be initiated at earlier stages of the disease. For
this reason, many works have aimed at finding biomarkers that can predict fu-
ture progression to AD dementia at the prodromal or even preclinical stages
(Rathore et al., 2017; Orban et al., 2017). Accurate prediction of progression
from MCI to AD dementia has however proven to be challenging, likely due
to the considerable heterogeneity in brain pathology underlying both of these
conditions (Rathore et al., 2017). We propose here to work around the het-
erogeneity issue by identifying a subset of individuals with MCI who share a
homogeneous brain signature highly predictive of progression to AD dementia.

A clinical diagnosis of Alzheimer’s dementia is primarily established on the
basis of amnestic (e.g. memory) or nonamnestic (e.g. language, visual, exec-
utive) cognitive symptoms that interfere with the patient’s activities of daily
living. The diagnosis also requires the absence of evidence for concomitant neu-
rological diseases that can substantially affect cognition, such as Lewy body
dementia, fronto-temporal dementia or vascular dementia (McKhann et al.,
2011). MCI show a noticeable and measurable decline in cognitive abilities,
including memory and thinking skills, yet this decline is not severe enough to
qualify for dementia (Petersen et al., 2014). While MCI is considered an inter-
mediate stage between the expected cognitive decline of normal aging and the
more-serious decline of dementia, not all MCI patients progress to Alzheimer’s
dementia. Across 41 robust MCI cohort studies, an overall annual conversion
rate of 6.5% to Alzheimer’s dementia was reported (Mitchell 2009). A modest
conversion to dementia of 30-50% even in long-term (> 5 years) observational
studies, highlights the heterogeneity present in the MCI population.

Imaging biomarkers and machine learning algorithms are increasingly used to
complement neuropsychological testing for AD diagnosis and prognosis (Dubois
et al., 2007; Rathore et al., 2017). Established imaging biomarkers of AD are
Positron Emission Tomography (PET) glucose metabolism, beta-amyloid and
tau deposits (Fodero-Tavoletti et al., 2011; Sperling et al., 2011), as well as non-
invasive structural magnetic resonance imaging (sMRI) brain atrophy (Lerch
et al., 2005). Currently the state-of-the-art performance on the most popular
reference dataset, assembled by the Alzheimer’s disease neuroimaging initiative
(ADNI), reaches 95% accuracy to classify AD vs cognitively normal (CN) (Fan
et al., 2008b; Zhu et al., 2014; Xu et al., 2015; Zu et al., 2016), and 80% accuracy
to identify patients with MCI who will progress to AD dementia in the next
three years (Mathotaarachchi et al., 2017; Moradi et al., 2015; Eskildsen et al.,
2013; Wee et al., 2013; Gaser et al., 2013; Davatzikos et al., 2011; Koikkalainen
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et al., 2011; Misra et al., 2009). Accuracy scores, however, are difficult to
interpret in isolation. Korolev et al. (2016) for example, separately reported the
specificity (76%, proportion of stable MCI being correctly identified), sensitivity
(83%, proportion of progressor MCI being correctly identified), and precision
(80%, proportion of actual progressors amongst individuals identified as such).
Precision is, in other words, the rate of progression in the subpopulation of
MCI patients for which the machine learning algorithm makes a prognosis of
dementia. Precision is thus a key metric for enrichment in clinical trials, as
it dictates how many patients will decline in the absence of treatment. For a
given sensitivity and specificity, the precision depends on the baseline rate of
progression in the original MCI sample. The progression rate observed in the
sample used in this paper (ADNI2) is 34%, and corresponds with the range
typically observed in other cohorts followed for over 3 years (Mitchell et al.,
2009). Adjusted to a 34% baseline progression, the precision levels reported so
far in the literature ranged from 50% to 75%, see Table 1. There is, therefore,
substantial margin for improvements in terms of prognostic precision for AD
dementia within 3 years, which is the focus of this work.

The precision of imaging-based diagnosis of AD in past studies is likely lim-
ited by the pathophysiological heterogeneity of clinical diagnosis. The actual
cause of dementia, AD or otherwise, can currently only be confirmed by a post
mortem brain examination. The hallmarks of AD are the accumulation of beta-
amyloid plaques and tau protein neurofibrillary tangles in the brain, as well
as marked atrophy of the medial temporal lobe. The analysis of Beach et al.
(2012) revealed an important mismatch between clinical and histopathological
diagnoses: sensitivity ranged from 71% to 87%, and specificity ranged from 44%
to 71%, depending on the level of confidence in the clinical and pathophysiolog-
ical examination. In particular, 30% of patients diagnosed with AD dementia
in that study had no or minimal signs of AD pathology, while markers of AD
pathology has been observed in 10% to 30% of cognitively normal (CN) individ-
uals, as well as 40% of patients diagnosed with non-AD dementia (Beach et al.,
2012). In the MCI population Petersen et al. (2014) reported prevalence of 4.8%
per year. In addition to such incorrect diagnoses, co-occurrence of other age-
related neurodegenerative diseases is common, including vascular brain injury,
Lewy body disease, or hippocampal sclerosis Rabinovici et al. (2017); Jellinger
et al. (2014). Individuals suffering from MCI in particular exhibit a wide range
of brain pathologies (Stephan et al., 2012). In summary, the clinical diagnoses
currently used are often incorrect (wrong underlying disease) and incomplete
(missing several interacting diseases). Brain markers likely cannot be linked to
clinical diagnoses with high precision in this context.

In this work, we proposed a new machine learning model that worked around
the issue of heterogeneity by identifying a subgroup of patients who (1) shared
homogeneous brain abnormalities; and (2) had a highly predictable clinical diag-
nosis or prognosis. A cluster analysis was first used on structural and functional
magnetic resonance images to identify subtypes of brain atrophy and functional
connectivity in a sample mixing CN individuals with patients suffering from AD
dementia. Using a novel two-step procedure, a model was trained to identify

3

APPENDIX C. 154



a brain signature mixing subtypes from different modalities, that was highly
specific of patients with dementia. We then identified a subset of MCI patients
presenting with this brain signature, and evaluated the rate of progression to
dementia within 3 years in these individuals.

2. Results

Simple simulation

Figure 1: Panel A show the identification of easy cases for each class, Panel B prediction of
clinical labels in a two-class problem, in the presence of heterogeneous labels in a subset of
the data. The first column shows the initial classification problem with the distribution of
the two classes. The second column shows a basic classifier decision hyperplane. The third
column shows the subjects that have been flagged as high hit probability in hard color and
the low hit probabilities with some transparency. The fourth column shows the final decision
hyperplane of the red subjects with the HPS signature.

We first illustrated the behaviour of the proposed method with a simple sim-
ulation (Figure 1A). The task was to classify two classes using a separation line:
blue dots for controls and red dots for patients. The distribution of both red
and blue subjects was heterogeneous, in the sense that each distribution was a
mixture of several Gaussian classes. Some of these classes were clearly separa-
ble, yet others were not, with blue and red points closely overlapping (maybe
because of incorrect or incomplete diagnosis). When a standard classifier was
applied on that data, it identified a separation line making a tradeoff in sensi-
tivity and specificity across all examples (see Figure 1B, second column). By
perturbing the data, it was possible to identify the “easy cases”, i.e. the data
point that can be reliably classified correctly: more opaque points are associated
with more reliable predictions and clearly identify the two well-separated classes
at the top in Figure 1B, third column. A separate model was then trained to
identify the“easy cases” red points (see Figure 1B, fourth columns). The re-
sulting prediction of red labels had limited sensitivity, as the problematic cases
were not being detected at all, but it had near perfect specificity and precision.
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Multimodal imaging markers

We extracted multimodal (structural and functional) measures of brain or-
ganization that could be used for automated AD diagnosis. The measures were
derived from the baseline MRI scans of the ADNI2 cohort, which included
anatomo-functional imaging for CN subjects (N=49) as well as patients suf-
fering from AD dementia (N=24) (available sample size post quality-control on
10/2016). We decided to include a range of different measures previously shown
to be sensitive markers of AD dementia. These included gray matter (GM)
thickness (Querbes et al., 2009; Eskildsen et al., 2013), GM volume of vari-
ous brain structures (Karas et al., 2004), as well as seed-based functional MRI
(fMRI) connectivity maps generated for 20 intrinsic connectivity brain networks
(Urchs et al., 2017).

Substantial inter-individual variations were observed in the distribution of
normalized brain imaging measures. For example, some subjects showed higher-
or lower-than average volumetric measures across extensive brain territories,
such as the right medial occipital cortex in subject 1 (lower) and subject 73
(higher), see Figure 2A. We investigated whether such patterns could be found
systematically in a subgroup of subjects. For this purpose, we quantified the
similarity of GM volume maps between all pair of subjects using a Pearson cor-
relation coefficient (Figure 2B). A cluster analysis revealed the presence of three
subgroups of subjects with homogeneous GM volume maps. These subgroups
were apparent as squares with high similarity values along the diagonal of the
inter-subject similarity matrix, Figure 2B. These squares outline the spatial
similarities of GM volume maps of subjects within a specific subgroup. By con-
trast, low similarity values were observed in elements outside of these squares,
which corresponded to pairs of subjects falling into different subgroups. A
subtype template was generated for each subgroup by averaging the maps of
individuals within that subgroup, Figure 2B). In particular, subtypes 2 and 3 of
GM volumetric maps reproduced the pattern observed in the occipital cortex of
subjects 1 and 73, respectively. The separation between clusters was not clear-
cut in matrix 2B, suggesting a continuum rather than discrete subtypes. We
thus extracted a continuous measure (Pearson’s correlation) of similarity, called
“subtype weights”, between each individual map and each subtype map, Figure
2D). The subtyping procedure outlined above was applied independently for
each type of measure (volumetric, cortical thickness, rs-fMRI) and each brain
network (for rs-fMRI). We confirmed by visual inspection the presence of at least
three subtypes for each modality/network, which we thus selected as a common
number of subtypes across all modalities/networks for subsequent analyses.

Prediction of AD

We established a baseline performance for automatic classification of CN
vs AD subjects using a well established machine learning model, i.e. a linear
support vector machine model (SVM) (Cortes and Vapnik, 1995). The model
reached 70% precision (specificity 86%, sensitivity 67%) using tenfold cross-
validation and multimodal (fMRI + sMRI) subtype weights, Figure 3. Training
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Figure 2: Demeaned gray matter volume measures of the right hemisphere. Panel A shows
individual maps and the correlation of every subject with all other subjects in Panel B. Panel
C shows the subtypes templates representing subgroups in the dataset. Panel D shows the
association of each individual map in A with each subtype template in C.

only on fMRI subtypes or only on sMRI subtypes yielded lower performances:
38% precision (specificity 47% and sensitivity 67%) for fMRI alone and 67%
precision (specificity 84%, sensitivity 67%) for sMRI alone. Note that, dur-
ing cross-validation, the training of the model included both the generation of
subtypes and the optimization of the SVM parameters.

Identifying easy cases

As we outlined in the introduction, the core idea of our approach was to
identify a subset of subjects for which clinical labels are easy to predict, such as
the points on the left in Figure 1A. To identify these “easy cases”, we randomly
perturbed the input data of the SVM model many times through subsampling,
and assessed the hit probability for any given subject to be properly classi-
fied. We found that 68% of individuals had a perfect (100%) hit probability,
with a small subset of subjects (18%) exhibiting less reliable predictions (hit-
probability < 90%), Supplementary material S1). We defined the “easy cases”
as the subgroup of individuals reaching perfect hit probability.
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Figure 3: Figure shows the precision, specificity and sensitivity of the three modalities (fMRI,
sMRI and fMRI+sMRI) at each stage (Base: basic classifier and HPS: highly predictive
signature). Significant differences are shown with ∗ for p < 0.05 and ∗∗ for p < 0.001).

Predicting easy cases

The next step of the method was to train a logistic regression (Fan et al.,
2008a) to predict the AD “easy cases” Figure 6B, analogous to the rightmost
column of Figure 1B. The full multi-stage process of subtype extraction, hit
probability estimation, and logistic regression was cross-validated using a ten-
fold scheme in order to generate the performance of the prediction of AD “easy
cases”. A perfect 100% precision (specificity 100%, sensitivity 36%) was reached
for AD “easy cases”, using multimodal structural and functional features. The
multimodal HPS performance was a significant improvement (in precision and
specificity, p < 0.001) compared to the model trained on fMRI only, precision
of 60% (specificity 96%, sensitivity 13%), and sMRI only, precision of 88%
(specificity 98%, sensitivity 29%), see Figure 3. Compared to the reference SVM
model, with multimodal features, the precision of our proposed HPS model was
improved by a wide margin (30%, p < 0.001), as well as the specificity (15%,
p < 0.001), at the cost of a marked loss in sensitivity (30%, p < 0.001). See
Supplementary material Table S2 for a list of the performance of each model.

Highly predictive brain signature

The logistic regression model used to predict AD “easy cases” is based on
a set of coefficients, which give more or less weight to a particular subtype and
modality. As such, the individuals flagged as AD “easy cases” can be seen as
sharing a brain HPS, composed of a combination of subtype maps. The lo-
gistic model may in theory ignore a subtype or a modality entirely, by setting
the corresponding weights to zero. In practice, we found that the HPS relied
on all three types of measures (functional connectivity, cortical thickness, and
gray matter volume), Figure 4A. To rank the contribution of each modality
in the decision process, we computed the absolute sum of the coefficients for
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Figure 4: Panel A shows the contribution of each modality to the decision, the ratios are
computed by the sum of the absolute coefficient for each modality. Panel B shows the co-
efficients of the high-confidence prediction model for each subtype map. Panel C shows, on
top, the average maps for each modality and on the bottom the subtype maps used for the
high-confidence prediction.

each measure, relative to the sum of all absolute coefficients (Figure 4B). The
thickness was the most important measure (60%), followed by the volumetric
measures (29%), and finally functional connectivity (11%). The highest con-
tributions came from four subtypes of thickness: bilateral patterns of cortical
atrophy in temporal, sagittal and frontal areas (one subtype per hemisphere),
and bilateral, opposite patterns of increased thickness (one subtype per hemi-
sphere), Figure 4C. Two lateralized volumetric subtypes showed gray matter
volume loss in the left motor, and right frontal areas as well as a gray volume
increase in the left frontal and limbic regions. Finally, one functional subtype
was very noisy and barely contributed to the model, while the other highlighted
a connectivity subtype connecting the visual network with frontal areas.

Prediction of progression to dementia

We applied the HPS model to patients with MCI from the ADNI2 cohort,
with the hypothesis that those with the signature would likely progress to AD
dementia. The imaging sample for this experiment included the baseline struc-
tural and functional scans of all MCI patients in the ADNI2 cohort (N = 79).
We further stratified the patients with MCI into stable MCI (sMCI, N = 37), i.e.
most recent clinical status remains MCI with at least 36 months follow up, and
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Table 1: Supervised classification of MCI progression to AD dementia using the ADNI
database. Progression time was establish if the the subject progresses to AD status in the
next 36 months. Significant improvement of our method compared to each paper for the ad-
justed accuracy and precision (adjusted for a pMCI ratio of 34% comparable to our sample)
and specificity are shown with ∗ for p < 0.05 and ∗∗ for p < 0.001) and conversely signifi-
cant decrease in sensitivity of our method compared to each paper. Adjusted accuracy (Acc),
adjusted precision (Prec), specificity (Spec), sensitivity (Sens)

N Acc Prec Spec Sens

Article sMCI/pMCI adjusted

Dansereau et al. (This paper)37/19 80% 90% 97% 47%

Mathotaarachchi et al. (2017) 230/43 82% 74% 87%* 71%*

Korolev et al. (2016) 120/139 79% 65%* 76%**83%*

Moradi et al. (2015) 100/164 78% 63%* 74%**87%**

Eskildsen et al. (2013) 134/149 67%**52%** 68%**66%

Wee et al. (2013) 111/89 77% 68%* 84%**64%

Gaser et al. (2013) 62/133 80% 70%* 84%**71%*

Davatzikos et al. (2011) 170/69 79% 63%* 71%**95%**

Koikkalainen et al. (2011) 215/154 73%* 58%* 71%**77%*

Misra et al. (2009) 76/27 67%**51%** 60%**80%*

progressors (pMCI, N = 19), i.e. individuals whose most recent known clinical
status is AD dementia, with progression from MCI to AD dementia occurring
within 37 months. The HPS model selected a subset of 10 MCI subjects. Using
the longitudinal follow-up clinical data provided by ADNI2, we found that 9 out
of 10 of these subjects were pMCI (precision of 90%, specificity of 97%, sensi-
tivity of 47%), compared to 34% pMCI in the whole MCI sample (p < 0.001),
Figure 5A. Within the HPS subgroup, the time to progression from baseline
to the first evaluation of AD dementia appeared uniformly distributed from 5
to 37 months, with 50% subjects progressing after 24 months (Figure 5C). In
addition, 100% of the MCI participants flagged as HPS were tested positive
for beta amyloid deposition with AV45 testing, compared to a 69% rate in the
whole MCI sample (p < 0.05), Figure 5A. The rate of ApoE4 carriers in the
HPS subsample was 78%, compared to 55% in the whole MCI group (p > 0.05),
Figure 5A. A similar observation could be made regarding the rate of male of
70% in the HPS subsample and 52% in the whole MCI group (p > 0.05). Finally
the average age in the HPS group was of 74 years ±7 and 71 years ±7 for the
whole MCI group (p > 0.05).
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Figure 5: Statistics on the MCI showing the signature. Panel A shows the percentage of MCI
who progress to AD, the percentage of subjects positive for beta amyloid deposits using the
AV45 marker and the percentage of carriers of one or two copies of the ApoE4 allele for the
entire MCI cohort. Panel B shows the same statistics for the selection of the base classifier
while Panel C displays statistics for subjects flagged as HPS. Panel D shows the clinical status
of each HPS subject over time from the baseline scan.

10

APPENDIX C. 161



3. Discussion

The main goal of this work was to develop an imaging-based AD diagnosis
model with high precision and specificity. The proposed HPS approach reached
excellent performance in these respects: 100% precision and specificity when
distinguishing patients with AD dementia from CN participants and 90% pre-
cision, 97% specificity when predicting which MCI patients will progress to
dementia, up to three years prior to onset (see Table S2). These results rep-
resent a substantial improvement in precision over the state-of-the-art on this
task, see Table 1. No data from MCI patients were used to train the model,
which removes the possibility of a bias due to improper cross validation. The
only HPS subject with MCI improperly classified as a progressor had a series
of four notes attached to his visits in the ADNI database, reporting declining
cognitive performance at each visit, with a marked decline at the last visit. This
decline was not severe enough for a diagnosis of AD dementia. The subject had
no follow up available after 36 months, for unknown reasons.

The high specificity of the HPS model came at the cost of a limited sensitiv-
ity: 38% when distinguishing patients with AD dementia from CN participants,
and 47% when predicting which MCI patients would progress to dementia, which
is significantly less than most recent published models, see Table 1. The HPS
model is not designed to be sensitive, as it is trained to recognize a particular,
homogeneous brain signature present in only a fraction of the participants. The
results of (Beach et al., 2012) suggest that only about half of patients diagnosed
with AD dementia have clear AD brain markers post-mortem. The observed
sensitivity of 38%- 47% is thus consistent with the idea that the HPS model
is picking on a typical brain presentation of AD that is already present at the
prodromal stage of the disease. Note that there was no need for patients with
MCI to have the same degree of atrophy as patients with AD dementia to be
recognized as HPS, as long as these patients presented with a similar spatial
distribution of the atrophy, relative to other brain regions.

The anatomical features selected by the method were in line with recent
subtyping works, e.g. (Hwang et al., 2015), showing predominant atrophy in
the temporal lobe, as well as the temporo-parietal juncture, in particular. The
functional maps were more difficult to interpret, and seemed to capture some
noise pattern. They still made a significant improvement in the performance of
the HPS model. Because of the regularization in the logistic regression used to
build the HPS model, features coming from different modalities did compete to
be selected in the model. If redundant features existed, the ones with largest
predictive power were selected by the classifier. This may explain why the
selected functional subtypes did not involve the regions showing atrophy in the
structural subtypes. We hypothesized that the HPS inferred from the AD vs
CN prediction would also be useful to predict if a subject at the prodromal
stage (MCI) would progress to dementia. Our results did validate this logic,
but alternative strategies may be investigated in the future, e.g. training a
model directly on the progressor vs stable MCI.

A limitation of the present study was a moderate sample size, with N = 56
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patients suffering from MCI. While the ADNI database is large, resting-state
fMRI has only been added to the protocol in the later stages of the study,
ADNI GO and ADNI2. In addition, fMRI was only acquired on a third of the
participants, even after it was added to the protocol. Because of the early role
of synaptic dysfunction in AD, and the potential ability of fMRI to capture
such dysfunction, we wanted to build an anatomo-functional diagnostic tool.
But this choice did limit the sample size of our study since the selected subjects
needed to have imaging data of the two modalities and pass their respective
quality control assessment. Even with a larger sample size, another limitation
of the ADNI dataset is that it does not reflect the diversity of cases observed
in real-life clinical practice. Participants were in particular screened to exclude
vascular dysfunction, which is a common comorbidity in AD (Gorelick et al.,
2011). Resources with more inclusive enrollment criteria will help to better
assess the generalizability of a biomarker-based AD diagnosis.

The most direct application of the HPS model is its use for population enrich-
ment in pharmaceutical clinical trials on AD (Woo et al., 2017; Mathotaarachchi
et al., 2017). By recruiting patients who would normally progress to AD demen-
tia, such an enrichment would increase the effect size of the drug while reducing
the sample size needed to demonstrate efficacy and therefore would also reduce
the cost of the trial. The HPS brain signature is not shared among all the AD
dementia population (making it a subtype), but is common enough to represent
a substantial portion of participants of interest (about a third of AD demen-
tia subjects and half of MCI progressors). An alternative enrichment strategy,
more geared towards generalizability, would be to only exclude subjects that
will very likely not progress to AD dementia. The HPS method thus brings us
closer to precision medicine by proposing a middle ground between traditional
clinical cohorts and an entirely individual medicine.

In this manuscript, we focused exclusively on two MRI modalities. Our ra-
tionale was that MRI is non-invasive and already widely used in patient care
of elderly populations. Beta amyloid and tau PET imaging, by contrast, are
more expensive and less available, while lumbar punctures are invasive. Never-
theless, as shown in our results the combination of multimodal factors may help
to improve precision, specificity and sensitivity. Since the sensitivity of each
modality to abnormality may vary across the disease stages it may be benefi-
cial to combine them to obtain complementary information. It will therefore
be important in the future to see if a combination of PET imaging, blood tests
targeting specific markers, cognitive scores, genetic factors, lifestyle factors, or
others can help create stronger or multiple HPS that would in effect increase
the sensitivity of the model at earlier stages of the of Alzheimer’s disease.
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5. Materials and methods

Dataset

All functional and structural data were obtained from the Alzheimer’s Dis-
ease Neuroimaging Initiative 2 (ADNI2) sample, a longitudinal standardized
acquisition including three populations: cognitively normal subjects (N = 49,
46% male, 74±7 years of age), patients with mild cognitive impairment (N = 56,
51% male, 72±7.5 years of age) and patients with dementia due to AD (N = 24,
46% male, 72 ± 7 years of age). All participants gave their written informed
consent to participate in the ADNI2 study, which was approved by the local
ethics committee of participating institutions across North America. The con-
sent form included data sharing with collaborators as well as secondary analysis.
The present secondary analysis of the ADNI2 sample was approved by the local
ethics committee at CRIUGM, University of Montreal, QC, Canada. All resting-
state fMRI and structural scans were acquired on 3T Philips scanners with 8

1www.fnih.org
2https://computecanada.org/
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channel head coils. We performed analyses on the first usable scan (typically
the baseline scan) from ADNI2.

The acquisition parameters were as follows: structural scan 170 slices, voxel
size 1x1x1.2 mm3, matrix size 256x256, FOV 256 mm2, TR 6.8 s, TE 3.09
ms, FA 9 degrees. A functional scan of 7 min, 48 slices, voxel size 3.3x3.3x3.3
mm3, matrix size 64x64, FOV 212 mm2, TR 3 s, TE 30 ms, FA 80 degrees,
No. volumes 140. For detailed information on the acquisition, see www.adni-
info.org.

Extraction of functional features

Each fMRI dataset was corrected for slice timing; a rigid-body motion was
then estimated for each time frame, both within and between runs, as well as
between one fMRI run and the T1 scan for each subject (Collins et al., 1994).
The T1 scan was itself non-linearly co-registered to the Montreal Neurological
Institute (MNI) ICBM152 stereotaxic symmetric template (Fonov et al., 2011),
using the CIVET pipeline (Ad-Dab’bagh et al., 2006a). The rigid-body, fMRI-
to-T1 and T1-to-stereotaxic transformations were all combined to resample the
fMRI in MNI space at a 3 mm isotropic resolution. To minimize artifacts due
to excessive motion, all time frames showing a frame displacement, as defined
in Power et al. (2012), greater than 0.5 mm were removed. An average residual
frame displacement was also estimated after scrubbing for further group anal-
yses. A minimum of 50 unscrubbed volumes per run was required for further
analysis (13 subjects were rejected). The following nuisance covariates were
regressed out from fMRI time series: slow time drifts (basis of discrete cosines
with a 0.01 Hz highpass cut-off), average signals in conservative masks of the
white matter and the lateral ventricles as well as the first principal compo-
nents (accounting for 95% variance) of the six rigid-body motion parameters
and their squares (Giove et al., 2009; Lund et al., 2006). The fMRI volumes
were finally spatially smoothed with a 6 mm isotropic Gaussian blurring ker-
nel. Datasets were preprocessed and analyzed using the NeuroImaging Analysis
Kit - NIAK - version 0.12.17 (http://niak.simexp-lab.org), under CentOS with
Octave (http://gnu.octave.org) version 3.6.1 and the MINC toolkit (http://bic-
mni.github.io/) version 0.3.18. Preprocessing of MRI data was executed in par-
allel on the Guillimin supercomputer (http://www.calculquebec.ca/en/resources/compute-
servers/guillimin), using the pipeline system for Octave and Matlab - PSOM
(Bellec et al., 2012). Seed-based fMRI connectivity maps were obtained using
a functional brain template of 20 networks covering the entire brain (Urchs
et al., 2017). The Pearson’s correlation between the average time series of each
network and every voxel of the brain was computed to derive one functional
connectivity map per network.

Extraction of structural features

Native individual T1-weighted MRI scans were corrected for non-uniformity
artifacts with the N3 algorithm (Sled et al., 1998). The corrected volumes were
then masked for brain tissues (Smith, 2002) and registered into stereotaxic space
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Figure 6: Panel A shows the feature extraction method called subtypes weights, Panel B frame-
work workflow: stage 1 shows the hit probability computation based on random sub-sampling
and stage 2 shows the training of dedicated classifier for each high-confidence signature. Panel
C shows the nested cross-validation scheme used in this method.
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(Collins et al., 1994). The registered images were segmented into gray matter
(GM), white matter (WM), cerebrospinal fluid (CSF) and background using a
neural net classifier (Tohka et al., 2004). The WM and GM surfaces were ex-
tracted using the Constrained Laplacian-based Automated Segmentation with
Proximities algorithm (Kim et al., 2005; MacDonald et al., 2000) and were re-
sampled to a stereotaxic surface template to provide vertex based measures and
lobar segmentation (Lyttelton et al., 2007). Cortical thickness was measured in
native space using the linked distance between the two surfaces across 81,924
vertices (Im et al., 2008). Surface-based cortical thickness, as well as regional
volume measures, were obtained using the structural MRI images processed us-
ing the CIVET 1.1.12 pipeline for each hemisphere as described in Ad-Dab’bagh
et al. (2006b). The AAL template was applied on each hemisphere (40 regions
per hemisphere) to extract the regional volumetric measures. The processing
pipeline was executed on the Canadian Brain Imaging Network (CBRAIN) plat-
form, a network of five imaging centers and eight High-Performance Computers
for collaborative sharing and distributed processing of large MRI databases
(Frisoni et al., 2011).

Multimodal imaging subtypes

We extracted subtypes that characterize the interindividual variability within
the sample comprising CN and AD participants (at the time of scanning), inde-
pendently for each type of measure (functional maps, cortical thickness maps,
and volumetric maps). In order to reduce the impact of some factors of no
interest that may influence the clustering procedure, we regressed out the age,
sex, and average post-scrubbing frame displacement from individual map, using
a mass univariate linear regression model at each voxel. For each type of brain
measure, we derived a spatial Pearson’s correlation coefficient between all pairs
of individual maps. This defined a subject x subject similarity matrix (of size
73 x 73), which was entered into a Ward hierarchical clustering procedure, as
implemented in SciPy version 0.18.1 (Jones et al., 2001–; Walt et al., 2011). We
selected three subgroups for each type of measure, based on a visual examina-
tion of the similarity matrix. For each type of measure, the average map of each
subgroup defined a subtype. For each individual, we computed the spatial cor-
relation of their map with each subtype. The resulting weight measures formed
a matrix of size (number of subjects) x (number of subtypes), which was used
as the feature space for all predictive models throughout the rest of this work.

Prediction of AD

The baseline prediction accuracy was obtained by training a SVM model with
a linear kernel, as implemented in Scikit-learn Pedregosa et al. (2011) version
0.18. A tenfold cross-validation loop was used to estimate the performance of
the trained model, including the entire subtyping procedure and regression of
confounds. Classes were balanced inversely proportional to class frequencies
in the input data for the training. A nested cross-validation loop was used
(stratified shuffle split (50 splits, 20% test size)) for the grid search of the hyper-
parameter C (grid was 10−2 to 101 with 15 steps). Note that the C parameter
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controlled how many misclassified examples the model will tolerate by adjusting
the margin size. The model was evaluated using fMRI features only, sMRI
features only, and the combination of fMRI and sMRI features.

Identifying easy cases

We randomly selected subsamples of the dataset (retaining 80% of partic-
ipants in each subsample) to replicate the SVM training 100 times. For each
80% subsample, a separate SVM model was trained to predict the clinical labels
(CN or AD), see Figure 6B. Note that the optimal C parameter was estimated
once using the whole available sample, as described above, and used across all
subsamples. This was done to avoid creating major uncontrolled algorithmic
variations. The linear discriminating weights of the SVM were still optimized
independently for each subsample. Predictions of clinical labels were then made
on the remaining 20% of subjects, that were not used for training. For a given
individual, the hit probability was calculated as the frequency of correct clinical
classification across all available SVM replications where the test set included
that individual. Easy cases were defined as individuals with 100% hit probabil-
ity.

Predicting easy cases

We trained a logistic regression classifier Fan et al. (2008a) to predict the
AD easy cases. The logistic regression was trained using a L1 regularization on
the coefficients, see Figure 6B. Class weight was balanced inversely proportional
to class frequencies in the input data. A stratified shuffle split (100 splits, 20%
test size) was used to estimate the performance of the model for the grid search
of the hyper-parameter C (grid was 10−0.2 to 101 with 15 equal steps). In this
case, the C parameter controlled the sparseness of the weights.

Cross-validation

A nested cross-validation was performed for accuracy estimation and pa-
rameters optimization. The outer loop used to estimate the generalizability of
the framework was a ten-fold cross-validation scheme. Each training fold in-
cluded the full multi-stage process of subtype extraction, SVM prediction of
clinical labels, identification of HPS and prediction of HPS with logistic regres-
sion. Sensitivity (true positive rate, TP), specificity (true negative rate, TN)
and precision (TP/(TP + (1− TN))) of the diagnosis were estimated across all
test folds, in the AD vs CN prediction. Cross-validation nested inside the outer
loop was used to search for the optimal hyper-parameters, Figure 6C.

Prediction of progression to dementia

The HPS was obtained by applying the subtyping and easy cases recognition
to the whole CN and AD sample, and considering all subtypes associated with
non-zero weights by the sparse logistic regression model in Figure 6C stage 2.
The logistic regression trained on AD vs CN was used to identify MCI patients
who have a HPS of AD dementia. The imaging sample for this experiment
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included the baseline structural and functional scans of all patients with MCI
in the ADNI2 cohort, with at least 36 months of follow-up (N = 56). We further
stratified the patients with MCI into stable MCI (sMCI, N = 37)), i.e. latest
clinical status is MCI, and progressors (pMCI, N = 19), i.e. individuals whose
most recent known clinical status is AD dementia, with progression from MCI
to AD dementia occurring within 36 months. Note that no AV45 imaging data
or genetic data, nor any data from the MCI cohort, were used to build the HPS
model.

Statistical test of differences in model performance

We generated a confidence interval on the performance (i.e. precision, speci-
ficity and sensitivity) of a given model using a Monte-Carlo simulation. Tak-
ing the observed sensitivity and specificity, and using similar sample size to
our experiment, we replicated the number of true and false positive detection
100000 times using independent Bernoulli variables, and derived replications
of precision, specificity and sensitivity. By comparing these replications to the
sensitivity, specificity and precision observed in other models, we estimated a
p-value for differences in model performance (Phipson and Smyth, 2010). A
p-value smaller than 0.05 was interpreted as evidence of a significant difference
in performance, and 0.001 as a strong evidence. This approach was first used in
Figure 3 to contrast the performance of the HPS model to the baseline (SVM)
model, both for AD vs CN and MCI progressor vs stable, as well as contrasting
the performance of multimodal (fMRI+sMRI) model vs models using only fMRI
or sMRI features. The same approach was used to contrast our proposed model
for MCI progressor vs stable with results from the literature, in Table 1. Note
that, based on our hypotheses regarding the behaviour of the HPS model, the
tests were one-sided for increase in specificity and precision, and one-sided for
decrease in sensitivity.

Statistical test of enrichment

The HPS model was used to select a subset of the MCI population. We tested
statistically if this subgroup was enriched for (1) progression to dementia; (2)
AV45+, and; (3) ApoE4+. We implemented for this purpose a Monte-Carlo
simulation, where we selected 100000 random subgroups out of the original
MCI sample. By comparing the proportion of progressors (respectively AV45+
and ApoE4+) in these null replications to the actual observed values in the
HPS subgroup, we estimated a p-value (Phipson and Smyth, 2010) (one sided
for increase). A p-value smaller than 0.05 was interpreted as evidence of a
significant enrichment, and 0.001 as a strong evidence.

Public code and data

The code used in this experiment is available on a GitHub repository at the
following URL3. An IPython Notebook is also provided with all of the figure

3https://github.com/simexp/hpc
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generation scripts. Scikit-learn Pedregosa et al. (2011) version 0.18 was used
for most of the machine learning algorithms and Nilearn Abraham et al. (2014)
version 0.2.6 for visualization purposes. S

ADNI dataset

Data used in the preparation of this article were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI
was launched in 2003 as a public-private partnership, led by Principal Investiga-
tor Michael W. Weiner, MD. The primary goal of ADNI has been to test whether
serial magnetic resonance imaging (MRI), positron emission tomography (PET),
other biological markers, and clinical and neuropsychological assessment can be
combined to measure the progression of mild cognitive impairment (MCI) and
early Alzheimer’s disease (AD).
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Gaser, C., Franke, K., Klöppel, S., Koutsouleris, N., Sauer, H., Initiative, A.
D. N., et al., 2013. Brainage in mild cognitive impaired patients: predicting
the conversion to alzheimers disease. PloS one 8 (6), e67346.

Giove, F., Gili, T., Iacovella, V., Macaluso, E., Maraviglia, B., Oct. 2009.
Images-based suppression of unwanted global signals in resting-state func-
tional connectivity studies. Magnetic resonance imaging 27 (8), 1058–1064.
URL http://dx.doi.org/10.1016/j.mri.2009.06.004

Gorelick, P. B., Scuteri, A., Black, S. E., DeCarli, C., Greenberg, S. M., Iadecola,
C., Launer, L. J., Laurent, S., Lopez, O. L., Nyenhuis, D., et al., 2011.
Vascular contributions to cognitive impairment and dementia. Stroke 42 (9),
2672–2713.

Hwang, J., Kim, C. M., Jeon, S., Lee, J. M., Hong, Y. J., Roh, J. H., Lee, J.-
H., 2015. Prediction of alzheimers disease pathophysiology based on cortical
thickness patterns. Alzheimer’s & Dementia: The Journal of the Alzheimer’s
Association 11 (7), P541.

Im, K., Lee, J.-M., Lyttelton, O., Kim, S. H., Evans, A. C., Kim, S. I., 2008.
Brain size and cortical structure in the adult human brain. Cerebral Cortex
18 (9), 2181–2191.

Jellinger, K. A., et al., 2014. Neuropathology of dementia disorders. J. Alz. Dis.
Parkinsonism 4, 135.

Jones, E., Oliphant, T., Peterson, P., et al., 2001–. SciPy: Open source scientific
tools for Python. [Online; accessed ¡today¿].
URL http://www.scipy.org/

Karas, G., Scheltens, P., Rombouts, S., Visser, P., Van Schijndel, R., Fox,
N., Barkhof, F., 2004. Global and local gray matter loss in mild cognitive
impairment and alzheimer’s disease. Neuroimage 23 (2), 708–716.

Kim, J. S., Singh, V., Lee, J. K., Lerch, J., Ad-Dab’bagh, Y., MacDonald, D.,
Lee, J. M., Kim, S. I., Evans, A. C., 2005. Automated 3-d extraction and
evaluation of the inner and outer cortical surfaces using a laplacian map and
partial volume effect classification. Neuroimage 27 (1), 210–221.

Koikkalainen, J., Lötjönen, J., Thurfjell, L., Rueckert, D., Waldemar, G., Soini-
nen, H., Initiative, A. D. N., et al., 2011. Multi-template tensor-based mor-
phometry: application to analysis of alzheimer’s disease. NeuroImage 56 (3),
1134–1144.

Korolev, I. O., Symonds, L. L., Bozoki, A. C., Initiative, A. D. N., et al.,
2016. Predicting progression from mild cognitive impairment to alzheimer’s
dementia using clinical, mri, and plasma biomarkers via probabilistic pattern
classification. PloS one 11 (2), e0138866.

21

APPENDIX C. 172



Lerch, J. P., Pruessner, J. C., Zijdenbos, A., Hampel, H., Teipel, S. J., Evans,
A. C., Jul. 2005. Focal Decline of Cortical Thickness in Alzheimer’s Disease
Identified by Computational Neuroanatomy. Cerebral Cortex 15 (7), 995–
1001.
URL http://dx.doi.org/10.1093/cercor/bhh200

Lund, T. E., Madsen, K. H., Sidaros, K., Luo, W.-L., Nichols, T. E., Jan. 2006.
Non-white noise in fMRI: does modelling have an impact? NeuroImage 29 (1),
54–66.
URL http://dx.doi.org/10.1016/j.neuroimage.2005.07.005

Lyttelton, O., Boucher, M., Robbins, S., Evans, A., 2007. An unbiased iterative
group registration template for cortical surface analysis. Neuroimage 34 (4),
1535–1544.

MacDonald, D., Kabani, N., Avis, D., Evans, A. C., 2000. Automated 3-d
extraction of inner and outer surfaces of cerebral cortex from mri. NeuroImage
12 (3), 340–356.

Mathotaarachchi, S., Pascoal, T. A., Shin, M., Benedet, A. L., Kang, M. S.,
Beaudry, T., Fonov, V. S., Gauthier, S., Rosa-Neto, P., Initiative, A. D. N.,
et al., 2017. Identifying incipient dementia individuals using machine learning
and amyloid imaging. Neurobiology of Aging.

McKhann, G. M., Knopman, D. S., Chertkow, H., Hyman, B. T., Jack, C. R.,
Kawas, C. H., Klunk, W. E., Koroshetz, W. J., Manly, J. J., Mayeux, R.,
et al., 2011. The diagnosis of dementia due to alzheimers disease: Recom-
mendations from the national institute on aging-alzheimers association work-
groups on diagnostic guidelines for alzheimer’s disease. Alzheimer’s & demen-
tia 7 (3), 263–269.

Misra, C., Fan, Y., Davatzikos, C., 2009. Baseline and longitudinal patterns
of brain atrophy in mci patients, and their use in prediction of short-term
conversion to ad: results from adni. Neuroimage 44 (4), 1415–1422.

Mitchell, J., Arnold, R., Dawson, K., Nestor, P. J., Hodges, J. R., Sep. 2009.
Outcome in subgroups of mild cognitive impairment (MCI) is highly pre-
dictable using a simple algorithm. Journal of neurology 256 (9), 1500–1509.
URL http://dx.doi.org/10.1007/s00415-009-5152-0

Moradi, E., Pepe, A., Gaser, C., Huttunen, H., Tohka, J., Initiative, A. D. N.,
et al., 2015. Machine learning framework for early mri-based alzheimer’s con-
version prediction in mci subjects. Neuroimage 104, 398–412.

Orban, P., Tam, A., Urchs, S., Savard, M., Madjar, C., Badhwar, A., Dansereau,
C., Vogel, J., Shmuel, A., Dagher, A., Villeneuve, S., Poirier, J., Rosa-Neto,
P., Breitner, J., Bellec, P., , , 2017. Subtypes of functional brain connectivity
as early markers of neurodegeneration in alzheimer’s disease. bioRxiv.
URL https://www.biorxiv.org/content/early/2017/09/28/195164

22

APPENDIX C. 173



Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos,
A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E., 2011. Scikit-
learn: Machine learning in Python. Journal of Machine Learning Research
12, 2825–2830.

Petersen, R. C., Caracciolo, B., Brayne, C., Gauthier, S., Jelic, V., Fratiglioni,
L., 2014. Mild cognitive impairment: a concept in evolution. Journal of inter-
nal medicine 275 (3), 214–228.

Phipson, B., Smyth, G. K., 2010. Permutation p-values should never be zero:
calculating exact p-values when permutations are randomly drawn. Statistical
applications in genetics and molecular biology 9 (1).

Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., Petersen, S. E.,
Feb. 2012. Spurious but systematic correlations in functional connectivity
MRI networks arise from subject motion. NeuroImage 59 (3), 2142–2154.
URL http://dx.doi.org/10.1016/j.neuroimage.2011.10.018

Querbes, O., Aubry, F., Pariente, J., Lotterie, J.-A., Démonet, J.-F., Duret,
V., Puel, M., Berry, I., Fort, J.-C., Celsis, P., et al., 2009. Early diagnosis of
alzheimer’s disease using cortical thickness: impact of cognitive reserve. Brain
132 (8), 2036–2047.

Rabinovici, G. D., Carrillo, M. C., Forman, M., DeSanti, S., Miller, D. S.,
Kozauer, N., Petersen, R. C., Randolph, C., Knopman, D. S., Smith, E. E.,
et al., 2017. Multiple comorbid neuropathologies in the setting of alzheimer’s
disease neuropathology and implications for drug development. Alzheimer’s
& Dementia: Translational Research & Clinical Interventions 3 (1), 83–91.

Rathore, S., Habes, M., Iftikhar, M. A., Shacklett, A., Davatzikos, C., 2017.
A review on neuroimaging-based classification studies and associated feature
extraction methods for alzheimer’s disease and its prodromal stages. Neu-
roImage.

Sled, J. G., Zijdenbos, A. P., Evans, A. C., 1998. A nonparametric method for
automatic correction of intensity nonuniformity in mri data. IEEE transac-
tions on medical imaging 17 (1), 87–97.

Smith, S. M., Nov. 2002. Fast robust automated brain extraction. Hum. Brain
Mapp. 17 (3), 143–155.
URL http://dx.doi.org/10.1002/hbm.10062

Sperling, R. A., Aisen, P. S., Beckett, L. A., Bennett, D. A., Craft, S., Fagan,
A. M., Iwatsubo, T., Jack, C. R., Kaye, J., Montine, T. J., Park, D. C.,
Reiman, E. M., Rowe, C. C., Siemers, E., Stern, Y., Yaffe, K., Carrillo,
M. C., Thies, B., Morrison-Bogorad, M., Wagster, M. V., Phelps, C. H.,
May 2011. Toward defining the preclinical stages of Alzheimer’s disease: Rec-
ommendations from the National Institute on Aging-Alzheimer’s Association

23

APPENDIX C. 174



workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s &
Dementia 7 (3), 280–292.
URL http://dx.doi.org/10.1016/j.jalz.2011.03.003

Stephan, B., Hunter, S., Harris, D., Llewellyn, D., Siervo, M., Matthews, F.,
Brayne, C., 2012. The neuropathological profile of mild cognitive impairment
(mci): a systematic review. Molecular psychiatry 17 (11), 1056–1076.

Tohka, J., Zijdenbos, A., Evans, A., 2004. Fast and robust parameter estimation
for statistical partial volume models in brain mri. Neuroimage 23 (1), 84–97.

Urchs, S., Armoza, J., Benhajali, Y., St-Aubin, J., Orban, P., Bellec, P., 2017.
Mist: A multi-resolution parcellation of functional brain networks [version 1;
referees: awaiting peer review]. MNI Open Research 1 (3).

Walt, S. v. d., Colbert, S. C., Varoquaux, G., 2011. The numpy array: a struc-
ture for efficient numerical computation. Computing in Science & Engineering
13 (2), 22–30.

Wee, C.-Y., Yap, P.-T., Shen, D., 2013. Prediction of alzheimer’s disease and
mild cognitive impairment using cortical morphological patterns. Human
brain mapping 34 (12), 3411–3425.

Woo, C.-W., Chang, L. J., Lindquist, M. A., Wager, T. D., 2017. Building better
biomarkers: brain models in translational neuroimaging. Nature neuroscience
20 (3), 365–377.

Xu, L., Wu, X., Chen, K., Yao, L., 2015. Multi-modality sparse representation-
based classification for alzheimer’s disease and mild cognitive impairment.
Computer methods and programs in biomedicine 122 (2), 182–190.

Zhu, X., Suk, H.-I., Shen, D., 2014. A novel matrix-similarity based loss function
for joint regression and classification in ad diagnosis. NeuroImage 100, 91–105.

Zu, C., Jie, B., Liu, M., Chen, S., Shen, D., Zhang, D., Initiative, A. D. N.,
et al., 2016. Label-aligned multi-task feature learning for multimodal classi-
fication of alzheimers disease and mild cognitive impairment. Brain imaging
and behavior 10 (4), 1148–1159.

24

APPENDIX C. 175



Supplementary Material – A brain signature highly predictive of future
progression to Alzheimer’s dementia

Table S2: Performance of the models. Prec: precision, Spec: specificity, Sens: sensitivity and
N: number of selected subjects.

Modality AlgoContrast Prec (%)Spec (%)Sens (%)N

fMRI BaseCN/AD 38.10 46.94 66.67 42

HPS 60 95.92 12.5 5

sMRI Base 66.67 83.67 66.67 24

HPS 87.50 97.96 29.17 8

fMRI+sMRIBase 69.57 85.71 66.67 23

HPS 100 100 37.50 9

fMRI+sMRIBasesMCI/pMCI73.33 89.19 57.89 15

HPS 90 97.3 47.37 10

Figure S1: Hit-probability distribution obtained from replicating the SVM training 100 times
from 80% of the training set.
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