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ABSTRACT

Some analytical properties of the load flow problem are examined in
this work. In order to facilitate this, the load flow equations are expressed in

rectangular co-ordinates.

Each load flow equation is formulated as a fully quadratic form and the
nature of these quadratic forms is studied in detail. The eigenvalues and
eigenvectors of the matrix in each equation are derived and their significance to the

nature and existence of load flow solutions is discussed.

An experimental study is also done on the load flow feasibility region
which is defined, in the space of net real and reactive powers as well as the voltage
magnitudes squared, for a general power network. The network is assumed to consist
of a slack bus, voltage control buses and load buses. This region is characterised by
all injections for which there is a real voltage solution to the load flow equations.
The geometric nature of the region and its relationship to the number of load flow

solutions are examined.



RESUME

Cette thése se concentre sur certaines propriétés analytiques du
probléme d’écoulement de puissance. Afin de faciliter 1'analyse, les équations

d’écoulement de puissance sont exprimées en coordonnées rectangulaires.

Chaque équation d’écoulement de puissance est formulée de fagon
quadratique compléte et la nature de ces équations quadratiques est étudige en
détail. Les valeurs et vecteurs propres de la matrice de chaque équation sont dérivés
et leur sigpification quant 2 la nature et I'existence de solutions au probléme
d’éconlement de puissance est abordé.

Une étude expérimentale est également effectuée sur la région de
faisabilité du probléme d’écoulement de puissance qui est définie, dans 'espace des
puissances réelles et réactives ainsi que du carré des grandeurs de tension, pour un
réseau de puissance quelconque. Il est entendu que le réseau est constitué d’une
barre d’oscillation, de barres a tension contrélée et de barres & charge. Cette région
est caractérisée par toutes injections pour lesquelles il y a une solution réelle de
tension aux équations d’écoulement de puissance. La nature géométrique de la région
et sa relation avec le nombre de solutions du probléme d’écoulement de puissance
sont analysés.
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CHAPTER I
INTRODUCTION

1.1 General

A modern power system is a very complex electrical network which
usually includes generation sites, transmission lines, substations, interconnections,
distribution networks and a variety of loads. Its function is to convert non-electrical
energy into electrical energy and make this electrical energy available to consumers.
The increasing size and complexity of these systems have made their operation very
challenging - a challenge that has been met, in part, by the use of sophisticated
control and communications systems,

In recent years, the demand for a reliable and secure electric power
supply has had to be balanced against dwindling natural resources, a depressed
economic climate and growing environmental concerns about the electric power
industry. These often conflicting factors have made the operation of large power
networks even more challenging. As a result, in spite of an expected modest growth
in the demand for electric energy over the next decade (in the U.S.A,, only 1.3 to
1.9% annually up to 2010 [64]), people involved in power systems planning and

operation must continue to devise ways of resolving these conflicting factors.

1.2 Background and Motivation

Several computational problems are associated with the planning and
operation of power systems [28]. Among these are fault analysis, for selecting the
protection equipment; transient stability studies, used in assessing the impact of
disturbances on the system; state-estimation, to provide data for use in on-line

monitoring and control; economic dispatch, which seeks to maximise the efficient use
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of resources; and the load flow, which analyses the steady state performance of the

power network.

The load flow is one of the most frequently used of the above-
mentioned tools. For a specified network and loading condition, the load flow
analysis determines the complete state of the system. This information determines
whether or not a specified power demand can be met by the given network and, if
it can, whether the operating conditions satisfy predetermined engineering and
security constraints. These constraints include bounds on the system voltages as well
as limits on the capacity of transmission lines and the reactive power sources. These
constraints must be satisfied for both the intact system and the system resulting from

any probable contingency.

The importance of load flow studies in power system analysis is
underscored by the volume of research that has been done in this area. A sample
of these works can be found in references [1-27,29,33-35,37-59]. Although there is
a sentiment that not many new contributions can be made to such a widely
researched field of study, new insights can always be gained from approaching the

same problem in a different way.

Therefore, this study has been undertaken with the purpose of
expanding our basic knowledge about the nature of the load flow problem.

1.3 Definition of the Load Flow Problem
1.3.1 General

The components of an interconnected power system include numerous

transmission lines and "buses". At such buses, power is being injected into the

2
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network by generators or is being drawn from the network by the system loads. The
transmission lines serve as a route for the flow of power from one bus to another.
A constant system frequency indicates that a balance is kept between the generated

real power and the real power demand as well as the system losses [36].

Power flow or load flow analysis is concerned with determining how a
given set of loads can be supplied by a given set of generators. The load flow
problem involves the formulation of a suitable mathematical model of the network,
the specification of power and voltage constraints at the buses and the numerical

computation of the power flow equations subject to the specified constraints [36].

1.3.2 Load Flow Equations

The load flow equations express the net injected bus powers as a
function of various bus voltages and, as such, are non-linear. In addition, since they
describe the behaviour of a static system, they are algebraic. The equations are

developed using network theory and full details are given in Chapter III. A brief
introduction is now provided.

The complex power, S, injected into bus i of the network is given by

S; = (Pgi_ Pu) o+ j(Qgi" 0Oq4;) (1.1)

where P; and Qy; are the generated real and reactive powers, while P,; and Qg are

the real and reactive load powers. Equaticn (1.1) can also be written as
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P; + JO; v; I;'

V. BV ¥ (1.2)
i 2V Tki

where V; is the complex voltage at bus i, V,~ is the complex conjugate of the voltage
at bus k and Y;, is the (i,k)th element of the bus admittance matrix. Separating (1.2)

into its real and imaginary parts yields, in polar coordinates,

N

p; = |Vi|kzllyik[|Vklcos(6k-ai+eik) (1.3)
N

Qi = |Vi|k}:"llyikl|Vk[Sin(6k-ai+eik) (1.4)

where &, is the voltage phase angle at bus i and 8,_is the angle of the (i,k)th element
of the admittance matrix. In rectangular coordinates, these equations are expressed
by

N N
Py = & E’l(ekgik - LBy + £ kz_:l(fkgik + eBy) (1.5)

N N
Q, = £, le(e“G“‘ - £,.By) - ey kzl(kaik + eBy,) (1.6)

where e; and f; are the real and imaginary parts of the complex voltage and G, and
B, are the real and imaginary parts of the (i,k)th element of Y.

There are therefore 2N such relations for an N-bus system.

1.3.3 Classification of Variables

Each of the above load flow equations contains six variables, Py, Q;

Py Qg V; and 6, The classification of these variables as given and unknowns is
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dictated by the different buses in the system. In general, there will be different
known and unknown quantities associated with each bus, For a given set of these

quantities, the load flow calculation determines the remaining unknown variables.
This is discussed in more detail in Section 3.2.

1.4 Scope of Work

The work in this thesis addresses itself to an investigation of some basic
analytical properties of the load flow equations. To this end, each equation is
formulated as a fully quadratic form in rectangular co-ordinates. The nature of this

quadratic form is examined as well as its relationship to the multiplicity and the
existence of load flow solutions.

In addition, an experimental study is done on the nature of the load
flow feasibility region. This region characterises all the possible injections for which
there is a real voltage solution to the load flow equations. The study is based on
concepts presented in [9,25,26]. Special emphasis is placed on how the structure of

this region determines the general nature and the number of muitiple load flow
solutions.

1.5 Outline of the Thesis

The thesis is organised as follows:

h r 1l

This chapter contains a review of some of the work that has been done
on the analytical aspects of the load flow equations. Included in this review are
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algorithms to find multiple load flow solutions, the relationship between multiple
load flow solutions and voltage stability and conditions for the existence of load flow

solutions.

hapter IT1
The formulation of the load flow equations in rectangular co-ordinates
is presented in this chapter. The quadratic nature of this formulation is examined
in detail and the way in which this property impacts on the solution of the load flow

equations is examined.

h rlV
In this chapter, general properties of the load flow feasibility region are
presented and the structure of this region is examined. The relationship between the
structure of this region and the nature as well as the number of load flow solutions

is also studied. The results of numerical simulations are provided.

hapter V
This chapter contains the conclusions of the research and

recommendations for further study.



CHAPTER 11
REVIEW OF LITERATURE

2.1 Introductory Remarks

The load flow problem has been an active field of research for more
than three decades and numerous contributions have been made to this important
area of power systems analysis. The research effort can be classified broadly into two
areas - the development of numerical tools required to solve the load flow equations

and the comprehensive understanding of some of the analytical properties of these
equations.

The work on these two aspects of the load flow problem has often
complimented each other. More efficient numerical algorithms have been conceived
as a result of a better understanding of the analytical properties of the load flow
equations [43] and also observations on the behaviour of numerical procedures for
solving these equations have been the motivation for work on theoretical

explanations for certain load flow phenomena [5].

Foremost among the analytical properties of the load flow equations
are the non-uniqueness and existence of solutions. There is an abundance of
literature on this subject and in this chapter, a brief review of some of the work that
has been done on these two important questions in load flow studies is presented.

The evolution of the numerical procedures is outlined in Appendix A.
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2.2 Multiple Load Flow Solutions
2.2.1 General

The load flow equations are a set of simultaneous nonlinear equations
and in general, such equations will have more than one solution. Very often, for a
given set of operating parameters, only one of the solutions of the load flow
equations corresponds to a practical stable equilibrium point in the sense that the
solution will persist even when the system is subjected to small perturbations [6].

Such a solution is usually referred to as a "valid" operating point.

The other solutions are more than just a mathematical curiousity and
their engineering significance has been confirmed by studies done on voltage stability,
for example the work reported in {6]. One interpretation of multiple load flow
solutions is that they represent all the possible states through which a network may
pass in response to a disturbance [17]. It is important to note that the load flow
equations satisfy the fundamental laws (namely Ohm’s and Kirchoff’s) of circuit
theory and as such, all the states described by the multiple solutions can be physically
realised [1]. Of course, most of them can exist only under abnormal operating

conditions.

2,2.2 Methods for Finding Multiple Load Flow Solutions

In this section, some of the numerical techniques for finding multiple
load flow solutions are discussed. It must be mentioned that most of these methods
were developed as a result of a sound understanding of some of the basic properties
of the load flow equations. The rectangular version of these equations highlights
some of these properties and was used in one of the earliest algorithms to find the
multiple solutions [1]. Since then, this formulation of the load flow equations has
been used in numerous other numerical schemes [2,3,4].
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One of these numerical procedures [2] has been designed specifically
to locate a pair of solutions which are close to each other. Such a situation arises
when the operating point is near to a point at which the load flow jacobian is
singular, The authors use, as the basis of their algorithm, the interesting fact that

these two solutions and the singular point lie approximately in a straight line,

The more general methods described by Tamura et al, [3,4], have been
developed to find all the possible solutions. The success of these methods depends
on the robustness of the numerical algorithm used and the availability of suitable
initial guesses. The authors use the Newton-Raphson technique with the optimal
multiplier [7] to make the algorithm more robust. In [8], it is argued that even this
improvement is not enough to guarantee that the approach in [4] would find all the

solutions.

The algorithm in [3] uses the fact that, in rectangular co-ordinates, each
load flow equation describes a quadratic form. Based on the general solution of
quadratic equations, it is assumed that any two solutions of the load flow can be
represented by the sum and difference respectively, of two vectors. Conditions which
these two vectors must satisfy are derived and those conditions are used to generate
suitable initial guesses to find all the load flow solutions. Results are presented for
a 3 and a 6 bus systems.

It is known that some load flow solutions are characterised by unusually
low voltage magnitudes at various buses. Tamura et al [4] use this property as the
basis of another algorithm. This approach is similar to the one proposed in [1].
Assuming that at least one solution is known, a local analysis is performed at each
bus, again exploiting the properties of the rectangular load flow, in order to obtain

an analytical expression for a guess of the low voltage solution at that bus. This
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procedure provides a systematic way of obtaining 2N initial guesses. The authors
report the greatest success when the initial guess contains a low voltage guess at only
one of the buses. This observation led to a simplified method which required the use
of fewer initial guesses and found solutions which are similar to a "valid" operating

point.

A different approach reported by Salam et @/ [10] uses a homotopy
method to find the multiple solutions. An augmented form of the load flow
equations and a polynomial with known solutions are used to construct an homotopy.
The load flow solutions are found by tracing *NCy, homotopy curves, starting at the

solutions of the polynomial. This method requires a fairly large computational effort.

One of the latest contributions in this area, by Thorp [8], uses a
continuation method with a parameterised version of the load flow - a formulation
which is similar to the one used in reference [11]. The theoretical foundation of the
algorithm is based on the topological structure of the solution set of these
parameterised equations. This solution set consists of a set of smooth curves which
connect the load flow solutions to each other., All the solutions may therefore be
found by tracing a number of these smooth curves which form a connected graph.
The curves are traced by the continuation method using a known solution of the load

flow as the initial and termination point.

The method is guaranteed to find all the solutions in a maximum of
(Ns/2) steps, where s is the number of solutions and N, the number of buses in the
systemn. The results from a 5-bus and a 7-bus system show that a smaller number of
traces is required to find all the solutions when the reactive power is included in the
parameter set that is used. The efficiency of the method would be even better if the

number of solutions were known a priori.

10
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‘There are other methods which, although not designed specifically for
finding the multiple solutions, can do so. One such method [12], and a modification
of it [11], are used to generate quasi steady-state load flow trajectories. A
parameterised version of the load flow equations is also employed. This method was

applied to small systems and in the course of producing the solution loci, all load
flow solutions were found.

2.2.3 Analytic Approaches to the Multiplicity of Load Flow Solutions
The non-uniqueness of the load flow solutions has been analysed in
many different contexts. The need to investigate this question first became evident
in the course of transient stability studies [13]. The relationship between transient
stability and multiple load flow solutions is due to the fact that the solutions of the
load flow equations represent the equilibrium or singular points of the "swing"
equations which describe the dynamic behaviour of the power network [15]. These
equilibrium points are usually classified as either stable or unstable and are used to

define a hypersurface enclosing the initial states for which transient stability is
guaranteed [11].

Korsac [14] and Baillieul and Byrnes [15] showed that stable load flow
solutions are not necessarily unique. The argument used is that the load flow
equations define a topological manifold and the dynamic equations define a vector
field on this manifold. The solutions of the load flow are therefore the critical points
of this vector field on the manifold and may be studied by a global analysis of vector
fields on manifolds. The stability of the solutions must be checked by methods such
as Lyapunov functions. The stable solutions are defined as points at which the

energy functions are at a minimum.

11
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A less mathematical approach to the multiple solutions, in particular
non-unique stable solutions, is presented by Johnson [16]. The physical
characteristics of the system and the way in which reactive power limits are handled
by system models are used to explain the occurrence of multiple solutions. Cases are
cited where multiple solutions occur due to deficiencies in the representation of
certain system components. It is also suggested that some physically realisable

multiple solutions may not be found by the traditional load flow.

A novel method presented by Price [17] uses a numerical technique to
produce a two-dimensional graphical display that predicts the occurrence, nature and
number of multiple solutions, among other things. It also shows the effects of
parameter variations and changes in system structure on the nature of the solutions
and on the overall performance of the system. This method is a generalisation of the
elementary circle diagram and uses a set of constraints which are different from the
"bus-type" constraints employed in the conventional load flow. This is one instance
where local geometry is used to obtain global information about power system
behaviour [18].

Another approach to the study of the multiple solutions has focused on
the role of the singular jacobian matrix, Tavora and Smith [19] reported results on
such a study for a lossless three bus system with generators at all buses. They
showed that the conditions which make the jacobian singular, define surfaces in the
state space and that the maximum possible number of load flow solutions is equal
to the number of “central” points in that space. The properties of these surfaces and
their mapping into the parameter space are also examined. It was established that
two solutions are introduced whenever a boundary of any surface in the parameter

space is crossed.

12
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In a recent work, Galiana and Zeng [5] provided a theoretical analysis
of the mechanism producing multiple solutions in the vicinity of a jacobian
singularity. It was established that the pair of solutions which was observed to cccur
close to such a point, is due to the fact that a change in the system parameters
produces a corresponding change in the system variables which contains components
in both the positive and negative directions of the null vector of the singular
jacobian. This is an extension of the earlier resulis presented by Galiana [9] and
Tamura et al [3] that solutions to the load flow are given by the sum and difference,

respectively, of a point of jacobian singularity and a vector in the null space of the
singular jacobian.

A more formal mathematical treatment of multiple load flow solutions
has used bifurcation theory to analyse their existence and characteristics [20].
Conditions are derived which define the bifurcation points in the state space. At
these points, the nature of the solution set changes and new solutions "appear” or

"disappear”. The bifurcation points correspond to points where the jacobian is

singular.

2.24 Number of Solutions

It is known that the number of solutions of the load flow equations
depends on the topology of the network and the position of the given injection in the
injection space and also, for a given network, the number of solutions decreases as
the load increases. However, there has been no reported method to pre-determine

the number of solutions except for very small systems.

The namber 2NV, where N is the number of buses in the system, has
been proposed as an upper bound on the maximum number of solutions. However,
this is contradicted by a thorough analytical treatment of the subject for a lossless

13
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three bus system consisting of three generator buses [11,15,19] which revealed that
for certain injections and network structures, up to six solutions may exist. Baillieul
and Byrnes [15] apply some results from intersection theory and algebraic geometry
to establish an upper bound, ®?#Cgy ,, on the number of solutions for lossless
system with generator buses. In their analysis, the 2" solutions are considered to

be elementary solutions and they show that other non-elementary solutions may exist.

2.3 Voltage Stability and Multiple Load Flow Solutions

No discussion on multiple load flow solutions is complete without a
mention of their relationship to voltage stability. Voltage stability is itself a very
complex phenomenon. It is generally agreed, that steady state methods cannot
adequately explain all the observed phenomena and dynamic considerations must be

included.

As mentioned previously, the multiple load flow solutions correspond
to the equilibrium points of the dynamic equations of the network. As a result, there
have been efforts to use the relationship between the load flow jacobian and the
system state matrix [21] to analyse the characteristics of the various equilibrium
points. This information is useful in explaining the different types of voltage

instabilities.

In most cases, there is at least one stable equilibrium point (not always
the case [20]). At this point, all the eigenvalues of the load flow jacobian have
negative real parts. The other equilibrium points may be classified by the dimension
of their unstable manifolds [15] or by the number of eigenvalues of the load flow
jacobian that have positive real parts. At a "type one" solution the real part of only
one of the eigenvalues is positive. The other unstable equilibrium points define

14
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jacobian matrices having more than one eigenvalue with a positive real part and are
regarded as being of type greater than one.

One type of voltage instability is voltage collapse which is characterised
by a large drop in voltage magnitudes at some buses in the system with fairly
insignificant changes in the phase angles [6]. This results in loss of steady state
stability. For typical power system models, it has been shown [22] that such an
instability is caused by a saddle-node bifurcation between a stable operating point
and a "type one" equilibrium point.

In an approach to voltage collapse based on energy methods, Overbye
and DeMarco [6] use the properties of these "type one" unstable equilibria to predict
the most likely areas of voltage collapse in a given network. They report extensive
numerical results which indicate that these "type one" equilibrium points are in fact
the solutions found by the simplified method of reference [4].

Another type of voltage instability involves oscillation of the system
voltage. This is usually referred to as angular instability and occurs as a result of
Hopf bifurcations between a stable operating point and low voltage solutions of type
greater than one. A more thorough discussion of bifurcation phenomena in power
systems can be found in references such as [24].

24 Existence of Load Flow Solutions

The load flow equations describe a mapping of the entire voltage space
into a subset of the injection or parameter space. Therefore, for any given network,

there are some injections for which no inverse relation exists or in other words, no

15
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physically realisable voltage can satisfy the given operating constraints. This fact may

be deduced from physical as well as mathematical considerations.

Those injections for which a real solution of the load flow exists,
characterise the load flow feasibility region. Points on the extreme boundary of this
region define points of maximum power transfer of the network. The precise
geometry of this region is unknown except in the simple case of a two-bus system.
However, it has been proposed [9,25] that the boundaries of the region consist of a
cone and a set of hyperplanes. A recent report [27] provides additional information

on the radius of curvature of this region.

In[19), one of the earliest efforts is made to examine the characteristics
of the load flow feasibility region. A conjecture is presented that this region may be
totally enclosed by a set of hyperplanes. A method to systematically characterise this
region was proposed by Galiana [25]. Jarjis, [26] expanded the method in [25] and
developed necessary and sufficient conditions for the existence of a load flow
solution. A method was devised, quite apart from the numerical approach, to
determine whether a real voltage solution exists for any given injection,

The works reported in [11,17,19] all provide graphical methods of
predicting the existence of load flow solutions and apart from [17], these methods are
amenable only to very small systems. Not much has been presented on this subject
for general power networks and very often, the existence (or lack thereof) of load
flow solutions must be inferred from the divergence of the numerical procedure.

The challenge still remains to find a simple method, such as would be

applicable to on-line security assessment, which would determine whether or not
there is a solution to the load flow equations for any given operating conditions.

16



CHAPTER III
ANALYTICAL PROPERTIES OF THE

LOAD FLOW EQUATIONS

3.1 Preliminary Remarks

The load flow equations describe conditions which must be satisfied so
that a balance is kept between the power that is generated and consumed in an
electric power network. These equations may formulated in either polar or
rectangular co-ordinates and while the polar formulation appears to be well suited
to numerical calculations [29], the rectangular version is more amenable to analytical
studies.

In this chapter, the equations are formulated in rectangular co-
ordinates in a way that specifically includes an equation for the specification on the
reference bus, This makes all the equations fully quadratic and the analytical
properties of these quadratic equations are analysed in detail.

3.2 Power System Model

The AC power network in its sinusoidal steady-state, is assumed to be
a balanced three-phase system. As a result, it may be represented by its single-phase
positive sequence network. The components of the network are usually modelled as
follows: the generators are considered to be constant-voltage power sources, the loads
are treated as power sinks and the transformers and transmission lines are
represented by lumped pi-networks [36].

17
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There are four quantities associated with each bus in the network - the
net real power, the net reactive power, the voltage magnitude and the voltage phase
angle. These are elements of the set of fixed constraints which must be satisfied and
two of them have to be specified at each bus. The choice is usually dictated by the

components which are connected to the particular bus.

The buses are classified according to the quantities that are specified.
At a PV or voltage-control bus, those quantities are the net injected real power and
voltage magnitude. At a PQ or load bus, the net injected real and reactive powers
are both specified and at the reference bus the phase angle is specified. Because the
system losses are not known a priori, the real power injected into at least one bus
(one to which a generator is connected) cannot be specified. This bus is known as

the slack or swing bus. Generally, the slack bus is also chosen as the reference bus.

These modelling assumptions form the basis for predicting the power
flow on an electric power grid.

3.3 Formulation of the Load Flow Equations in

Rectangular Co-ordinates

3.3.1 2N Equations

In an N-bus system, let z; denote a specified quantity (P, Q or V?) at
bus i. This quantity can be expressed as the following quadratic form in x_

2 =XITJi Xr (3.1)

where x, is the 2N x 1 vector of the real and imaginary components of the node
voltages,

18
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e

= (3.2)
s [f]

and where J; is a 2N x 2N constant real symmetric matrix defined by the type of

injection and the admittance matrix [25].

Equation (3.1) is derived as follows: the complex current injected into
the buses of an N-bus network may be written as

I = YV (3.3)

where I is an N x 1 vector of complex current injections, Y is the complex N x N bus
admittance matrix and V is the N x 1 vector of complex bus voltages. In power
systems however, complex powers, not currents are known. From circuit theory, the

net injected bus powers are given by

S diag(v) I *
diag(Vv) (Y v)* (3.4)

P+3jo

where S is an N x 1 vector of complex bus powers, diag(V) is an N x N diagonal
matrix of complex voltages and P and Q are N x 1 vectors of net real and reactive
power injections respectively. If Vis replaced by e + jfand Y by G + jB in equation
(3.4) and the resulting expression is simplified, the real and imaginary parts of S
become

diag(e)‘ [Ge - Bf ] + diag(f) [Gf + Bel (3.5)

fu
I

and

Q

diag(e) [-Gf - Be) + diag(f) [Ge - Bf] (3.6)

where diag(e) and diag(f) are N x N diagonal matrices with diagonal elements equal
to e and f respectively.
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For any arbitrary N x 1 vector of real constants, y, and an N x 1 vector,

z, of specified injections, the following is true

N
yTz = J:Zi‘. Y:24 (3.7)
=1

If z is a vector of real power injections, a linear combination of these injections is

given by

TP = x,T 1{diag(7) G+Gdiag(y) Bdiag(y)-diag(y) B] x, (3.82)

2|-Bdiag(y) +diagly) B diag{y) G+Gdiag(y)
Similarly, if z consists of reactive power injections it follows that

-diag(y) B-Bdiag(y) Gdiag(y)-diag(y) G] « (3.9a)
-Gdiag(y) +diag(y) ¢ -diag(y) B~Bdiag{y)] *

2

YTQ - er 1[

where diag(y) is an N x N diagonal matrix with y as the diagonal elements and x, is
as defined in equation (3.2).

If v consists of zeroes everywhere except for a one at position i, y'P
and y"Q are equal to P, and Q respectively and equations (3.8a) and (3.9a) represent
the real and reactive powers at bus i. This particular y is now defined as a and
(3.8a) and (3.9a) may be simplified to

T T _ by
aTP = x.7 1legi+ga’ -ab’+ba X, (3.8)
lebT-baT agT+ga?
and
-abT-baT -agT+ga
a™Q = x.T —1[ x (3.9)
* 2laggT-ga’ -ab?-bal F

where g and b are the ith column of G and B respectively.
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The square of the voltage magnitude at bus i may also be written in a
similar way as

«TV2 = x.T diag(a) o

(3.10)
* o, diag(e) *z

where V2 is an N x 1 vector of voltage magnitudes squared, diag(a) is an N x N

matrix with e as the diagonal elements and O is an N x N null matrix.

Recall that one of the voltage angles is usually specified to provide a
reference for the other angles. The components of the reference bus voltage, V,, are
related to each other by [65]

£, = e, tand, (3.11)
where &, is the reference angle and bus s is the reference bus. This equation may
be re-written as

e, tand, - f, = 0O (3.12a)

)
or as

aTx, =0 (3.12b)

where a, is a 2N x 1 vector of zeroes except for its sth and (N +s)th entries which are
equal to tan &, and -1, respectively. Note that (3.12b) describes a hyperplane through
the origin.

At each of the PQ and PV buses in the system, therefore, there are two
quadratic algebraic equations describing the specified injections. At the slack bus
there is one quadratic equation describing the voltage magnitude squared while at
the reference bus, there is an additional equation specifying conditions in equation
(3.12). The specified injections form (2N-1) non-linear equations and along with
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(3.12) constitute 2N load flow equations, in 2N unknowns, which characterise the

static behaviour of the power system.

3.3.2 (2N-1) Equations

Equation (3.12) may be used to reduce the number of equations and
unknowns by one. In most cases, however, the slack bus is taken as the reference
bus and two unknowns are eliminated. The resulting (2N-2) equations are no longer
fully quadratic but have a linear term in x describing the specification on the
slack/reference bus [3,44].

The formulation here retains the equation for the slack bus and uses
equation (3.12) to eliminate the variable f, which is the quadrature component of the
voltage at the reference bus. A generator bus is usually chosen as the reference bus.
This produces (2N-1) purely quadratic equations in (2N-1) unknowns. This implies
that the dimension of the J; matrices is reduced to (2N-1) x (2N-1). The reduced

matrix may be obtained from the 2N x 2N matrix as follows:

First, define a new variable, d = M x, where
M = I-nmm®+me,T (3.13)
I'is a 2N x 2N identity matrix and m is a 2N x 1 vector of zeroes except for a "1" at

the (N+s)th position. The matrix M is similar to the identity matrix but its (N +s)th

row describes the condition in (3.12a), Equation (3.1) can then be re-written as

dT ()T g, M d
d¥ Jgs; d

23 (3.14)

where J; is as defined in (3.8), (3.9) or (3.10) and has dimension 2N x 2N and the
definition of Js; is understood.
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Since the (N+s)th element of d (etané, - ) is equal to zero, it can he
deleted. The resulting vector is identical to the (2N-1) x 1 voltage vector, x. The
(2N-1) x (2N-1) J; matrix may be obtained by deleting the (N +s)th row and column
from Js,. Note that the reduced matrix is also symmetric but its sth row and column
now have elements containing the quantity tan §,, Consequently, the structure of the
(2N-1) x (2N-1) matrices will be different for each different choice of reference bus.
Examples of such (2N-1) x (2N-1) matrices are provided in Appendix C.

In most formulations of the load flow equations, the slack bus is chosen
as the reference bus and the reference angle is set to zero, without loss of generality.
This choice of reference angle ensures that the initial guess used in some numerical
algorithms converges to the most stable load flow solution [11,29]. When §_ = (), the
(2N-1) x (2N-1) matrix can be obtained simply by deleting the (N+s)th row and
column from the 2N x 2N J; matrix.

3.4 Eigenvalues and Eigenvectors of the J, Matrices

Some of the analytical properties of the load flow equations may be
studied by expressing each quadratic equation in its canonical form and examining
the characteristics of these quadratic forms, This involves the derivation of the

eigenvalues and eigenvectors of the matrices defining each specified injection.

The special structure of the J, matrix allows its characteristic
eigenvalues and eigenvectors to be evaluated by direct non-iterative means,
irrespective of the size of the matrix and consequently, of the size of the network.
Furthermore, when the matrix defines a power injection, it has only four non-zero

eigenvalues and four corresponding orthogonal eigenvectors [26,33). Details of these
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derivations are provided in Appendix B. If the injection is a voltage magnitude

squared, then there are two non-zero eigenvalues and eigenvectors.

3.4.1 The 2N x 2N Matrix

The J; matrix in equation (3.8), (3.9) or (3.10) is a sparse symmetric
real matrix consisting of two non-zero rows and columns. When x_ is as defined in
(3.2) and the dimension of the matrix is 2N x 2N, these non-zero elements are at

rows i and N+i and similarly at columns i and N+i [3,9,44].

3.4.1.1 Eigenvalues and Eigenvectors of J;

In this case, the matrix defining the quadratic form of the real power

injection has two identical pairs of eigenvalues: 4, A5, 4,5, 4,. Each pair is given
by
A, = & \/“m"g)z*g’"g*b@ (3.15a)
N
Gz + \ Gi.iz"'k‘?l (G +By?) (3.15b)
= k#i
2
and
Ay, = gTa - \/-(arg)“g'*”g*b"b (3.16a)
2 ﬁ 2 2
Gy; = \ Gyy +£:i(ij +B;,2) (3.16b)
B 2
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One set of orthogonal eigenvectors corresponding to these eigenvalues
is

v = [9"_(1323(‘::1%)3] (3.17a)

or equivalently
1 |
TRy,

22
G.

i+11

v = (3.17b)

for the first pair 4, A, and

= | b-(ehla .
Vs g+(23\.—a""g)a] (3.18a)

or
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v = ' (3.18b)

G
2A
G.

ield

| G |

for the second pair 4, A,. The vector x, is as defined in (3.2).

pl’

3.4.1.2 Eigenvalues and Eigenvectors of Jg

The matrix defining the reactive power injection at bus i also has two

identical pairs of eigenvalues - A5, A5, A3, A;;. Each pair can be defined as
Ay = -bTa + - (a;g)“ng*-bTb (3.19a)

_ 2 .0 (2 oan2
By + | Bis+ E (Gix+ Bix)
= kni
2

(3.19Db)

and

A = -~bTa - /- (aTb)Z+gTg+b'b (3.20a)
-~ 2 2 *
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N
~B;;~ | B "‘kzl (Gf+Bi)
- kei
2

(3.20b)

A corresponding set of orthogonal eigenvectors is

v = [—b+(27«+a7b)u] (3.21a)
-g+{aTg) @

or expressed differently

ve| M (3.21b)

for the first pair of eigenvalues 4, A, and

- g-(aTg) a .
v [-b+(2).+aTb) a] (3.22a)

or
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Gy; W

Gy
0
G.

i+11
V = GNi
Ty 4

=Bi1i
2A
=Byt

L ~By; J

for the second pair. Again, x, is as defined in (3.2).

3.4.1.3 Eigenvalues and Eigenvectors of J?

(3.22b)

The matrix describing the square of the voltage magnitude at bus i has

two non-zero eigenvalues each of which is equal to one. The two eigenvectors

corresponding to these eigenvalues are given by

o
0

where "1" is in the ith position and

28
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v = (3.24)

where "1" is in the (N +i)th position.

3.4.2 The (2N-1) x (2N-1) Matrix
In the following analysis, the slack bus is taken as the reference bus
and the reference angle is assumed to be zero, as is normally done in load flow

studies. These assumptions hold for all future references to the (2N-1) x (2N-1) J,
matrices.

The (2N-1) x (2N-1) matrices describing the real and reactive power
injections also have two pairs of eigenvalues. One of the pairs is identical to the pair
found for the 2N x 2N matrices. However, the magnitude of the second pair is less
than that of the first one. This is true for N>2, For N=2, the dimension of the J;
matrices are 3 x 3 and therefore each matrix has only three eigenvalues and
eigenvectors.

3.4.2.1 Eigenvalues and Eigenvectors of J,,

For real power injections, these eigenvalues are 4, A5, A a1, A;p. The
pair 4, and A, is the same as in the case already described. The other pair is given

by
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_ g%+ J-(@ B 7 +g g+ bTb- (B B - (B g)’ (3.25a
A = : )

N
Gy + |Gy ch1 (G +Byy®)

\ kei,s (3.25D)
- 2
and
A = gTa -\/-(a"b)“g“"g;brb-(lﬂg)z-(BTb)“ (3.26a)
Gy~ |G, 2+ B (8,2 +B,?)
11 \ id kfgls 1k ik (3 . 26b)
N 2

where g is an N x 1 vector of zeros except for a “1" at position s and bus s is the

reference bus,

One set of eigenvectors corresponding to these eigenvalues is

g+(2A -a""g+a"b{—p-:§)) 11 -(Eg]b

v = L B"b (3.27a)
b+ . BTg) _os( BTGy o - _ﬁg)
b+(aTh+a” B"b) zl(ﬁrb))a (pr g

or equivalently
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Gyg- _'“_‘Blg :i
s
B,.G
Gy, - ZB ,31
51
By1;G
Gii~ g - =
)
22
Bi.1:G
Gi...li _ 1 gli s1
s
G BNJ: GS-i
Ni
Bsi
v = | _n _ GGy (3.27b)
i Bsi
G,:1Gsj
-BZJ:— B is
s
Gy-15Gsy
_.Bl-li- B.. 2
si
-21681
Bs.i
G G
Bi+1i- .it‘;.ii g1
3
Gy-11Gsj
-BN"I.i- B y = J
s

for Ay Ap and
(T r{ BTg)_ _LTQ) (_&)
b-(aTbh+e p"b] ZA(BTb ) o+ 87h g

v =
- BTg (BTg
g+(2A argﬂ:""b[prb )a 875 b

(3.28a)

or equivalently
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B i+ 1 ]
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3.4.2.2 Eigenvalues and Eigenvectors of Jo, and J,;’

The eigenvalues and eigenvectors of the matrix describing the reactive

(3.28b)

for A, and 4;,, When bus i is not connected to the reference bus, the term Gy / B
in equations (3.27b) and (3.28b) is set to zero.

power injection can be obtained from the expressions of those for the real power by
replacing G with -B and B with G respectively in equations (3.27b) and (3.28b).
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Those of the matrix describing the voltage magnitude squared are
unchanged.

3.4.3 Comparison of 2N x 2N and (2N-1) x (2N-1) J, Matrices

A close scrutiny of the eigenvalues and eigenvectors of the 2N x 2N
matrix and those of the (2N-1) x (2N-1) matrix reveals that the two sets of
eigenvalues are identical except when the matrices define power injections at buses

connected to the reference bus. This is also true for the eigenvectors if the (N+s)th
element is deleted from the 2N x 1 eigenvectors.

3.5 Nature of the Quadratic Surfaces Defined by the J,
Matrices

The four orthonormal eigenvectors of each (2N-1) x (2N-1) J; matrix
represent a set of principal axes of the particular quadratic surface [30]. It is
worthwhile to note that these eigenvectors or principal axes are in general not
unique. In Appendix B, it is shown that for buses not connected to the
reference/slack bus, two components of the eigenvectors (e, and fy, for an injection
specified at bus k) are completely arbitrary. In cases where the bus at which the
injection is specified is connected to the slack/reference bus, only one component of
the eigenvector is arbitrary.

The hypersurfaces representing the real and reactive power injections
are hyperbolic because the matrices describing them have eigenvalues of different
signs. The positive eigenvalues of the matrix describing the reactive power injection
are larger than those of the matrix describing the real power. Also, the ratio of the

magnitudes of the positive to negative eigenvalues is a lot larger for the matrix
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Figure 3.1, 8-Bus System
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describing the reactive power than for the one describing the real power. Since
reactive power injections are specified at load buses, they are negative. This
indicates that the surfaces describing the reactive power injections are "narrower”

than those representing the real power.

Table 3.1 shows the positive and negative eigenvalues of the (2N-1) x
(2N-1) matrices of the 8-bus example in Figure (3.1).

Table 3.1. Eigenvalues of Jj; and Jq; for an 8-Bus Network

A
-1444 -15.78
-35.08 -35.08
-20.46 -21.53
-3940 -41.94
-41.53 -57.56
-44.98 -44.98
-39.10 -39.10
-12.10 -13.30
-13.67 -21.62
-1548 -1548
-1220 -12.20

The extreme points of these hypersurfaces may be found by
determining their intercepts on the principal axes. This is done by first expressing
J, in its canonical form and rewriting equation (3.1) as

zZ; = k)‘i‘.lkk (v, Tx)? (3.29)
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where z; is any power injection and A, and v, are the eigenvalue and normalised
eigenvector respectively of the J; matrix. The points of intersection of the

hypersurfaces and their principal axes, ¢, are then given by

Zi (3.30)

Evidently, z; and A must both be of the same sign and so, the hypersurface

representing a power injection can intersect only two of the four principal axes.

The hypersurfaces are all symmetrical about their principal axes and

principal planes and each has a centre at the origin.

3.6 Load Flow Solutions and Intersection of Quadratic

Surfaces

The load flow equations may be solved by finding the intersection of
2N quadratic hypersurfaces and one hyperplane in a 2N-dimensional space or by
finding the intersection of (2N-1) quadratic surfaces in a (2N-1)-dimensional space.
A knowledge of the nature of the intersection of high-dimensional quadratic surfaces
can therefore be useful in providing information on the characteristics of load flow
solutions. However, the nature of this intersection is fully understood only for low-
dimensional surfaces. It has been stated [34] that this factor has restricted the full

exploitation of the quadratic formulation of the load flow equations.

The simple case of two quadratic surfaces in a 3-dimensional space
indicates how varied these intersections can be. This intersection can produce a
plane curve, a skew curve, two curves in different planes or a single point [31].
Nonetheless, authors [1,2,3,44] have, in different ways, extende.d what is known about
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the simple quadratic equation in one unkncwn to the multi-variable quadratic load

flow equations.

In [3], conditions are derived for the existence of multiple load flow
solutions based on the fact that the solutions of a quadratic equation can be
expressed as the sum and difference of two points. It is also shown if a matrix is
defined as the sum of the J; matrices in each load flow equation, then the
eigenvectors of that matrix satisfy at least one of those conditions. All the possible
combinations of the sums and differences of these eigenvectors are then used as the
initial guesses in the Newton-Raphson algorithm to find all the solutions of the load
flow equations.

During the course of this research, an attempt was made to utilise the
principal axes and principal planes of the quadratic hypersurfaces to develop an
algorithm to find the load flow solutions. The hypothesis was that since the load flow
solutions are given by the intersection of these quadratic hypersurfaces, then any load
flow solution must lie in a region enclosed by the principal axes and principal planes
of the quadratic surfaces. Conversely, any principal axis or plune must lie between

two load flow solutions. Figure (3.2) illustrates the idea in two dimensions.
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Principal axes

° Intersections

Figure 3.2, Intersection of 2-Dimensional Quadratic Forms

There was not much success in this regard, however. The challenge
was to systematically select one of the four eigenvectors from each of the matrices
describing the specified injections and find a way of expressing the solution as a

linear combination of the selected (2N-1) eigenvectors.

3.7 Load Flow Convergence and Quadratic Surfaces

It is known that factors such as choice of slack bus and the ratio of line
resistance to reactance affect the convergence of the load flow algorithms. These
factors may be considered in light of the nature of the hypersurfaces described by the
load flow equations. Recall that the reference angle is assumed to be zero and the

slack bus is taken as the reference bus.

Equations (3.27b) and (3.28b) show that for buses connected to the
slack/reference bus, the components of the eigenvectors of the matrices describing
the power injections depend on the ratio G, / B,. This indicates that the ratio of
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the admittance to susceptance of the line between the reference bus and the bus at
which the injection is specified, as well as the location of the slack/reference bus,
determines the orientation of some of the hypersurfaces in the voltage space. As a
result, these factors will also affect the nature of the intersection of these surfaces

since the position of each hypersurface has a direct beuaring on the nature of the
intersection.

It was also established that at buses not connected to the
slack/reference bus, two components of the eigenvectors of matrices describing those
specified injections are completely arbitrary. These components are ¢, and £ and

bus k is where the injection is specified.

These facts are consistent with reports in the literature that:
(i) Load flow convergence varies for different choices of slack/reference bus
[35] and

(if) The convergence of the load flow may be improved by having a distributed
slack/reference bus [46).

3.8 Bounds on the Real and Reactive Power Injections

The expression for the eigenvalues and eigenvectors of the J; matrices
was presented in reference [33). However, only the J; matrix of dimension 2N x 2N
was considered. Using the properties of symmetric quadratic forms and assuming the
voltage is known at a particular bus, the author derived expressions for the maximum
and minimum power injections that are possible at that bus. It is shown that these
limits depend on the difference between the positive and negative eigenvalues of the

J;, matrices describing the power injections. Potential applications in expansion
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planning, contingency analysis and determination of load flow feasibility were

proposed.

3.9 Illustrative 2-Bus Network

The two-bus system in Figure 3.3 is used to illustrate some of the ideas
presented. It consists of a PQ bus and a slack bus and although it is by no means
representative of a general power network, it allows a visualisation of the concepts

introduced in the preceding sections.

Figures 3.4 and 3.5 depict the quadratic surfaces defined by the real
and reactive power respectively. The surface representing Q, is a hyperboloid of two
sheets and that representing P, is a hyperbolic cylinder. The surface representing V,?
is obviously a pair of parallel planes and is not shown. The J; matrices defining P,
and Q, as well as their corresponding eigenvalues and eigenvectors are given in

“Tables 3.2 and 3.3.

Table 3.2, Eigenvalues And Eigenvectors of Jp,

I, 0.94 -0.94

0 0 094 0.7071 0.7071
0 0 094 0 0
094 0 0 " 0.7071 -0.7071
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Figure 3.3, 2-Bus Network (p.u. system)
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Table 3.3. Eigenvalues and Eigenvectors of Jq,

Jaz A 1.88 2.2693 -0.3894
0 094 O v 0 -0.3827 -0.9239
-094 188 0 0 0.9239 -0.3827
0 0 188 1 0 0

Figures (3.6a) and (3.6b) show the projection of these surfaces onto the planes

containing the eigenvectors.

The intersection of the three surfaces is shown in the e,-f, plane for
values of e, equal to 0 and 1.05. The circle in Figure 3.7 is the projection of the
hyperboloid describing Q, and the straight line is the projection of the hyperbolic
cylinder describing P,. The intersec..on of the circle and straight line are therefore
the intersection of the three surfaces and consequently, the two solutions of the load

flow equations for this system.

Table 34. Load Flow Solutions for 2-Bus System

Solutions | Sum and Difference of Solutions

2 || (1 + 2)/2 a-2)/2
1.05 0
0.5249 03421
0228 0

Although this example is rather simplistic, it provides a good insight
into the general nature of the load flow solutions for more complex systems. For
instance, Figure (3.7) demonstrates that the two solutions may be written as
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X, + X,. It is assumed that the multiple solutions for the multi-dimensional load flow
problem are of the same form [3,9]. Note that x; is equal to one half the sum of the
two solutions. The sum and difference of the two solutions each lie on a principal

plane of the surface describing the reactive power.

Figure (3.8) shows how the solutions change when the real power
demand is increased while the reactive power demand and slack bus voltage are
assumed to remain constant. The point at which the solutions coincide determines
the maximum real power that can be supplied for that level of reactive power
demand and the given slack bus voltage. If the real power demand is increased

further, the solution "disappears” and the load flow is said to be unfeasible.

At the point where there is only one solution (Figure 3.8), the surfaces
describing the power injections share a common tangent. At the absolute maximum
power transfer limit (A in Figure 3.9b), the surface describing the reactive power
injection is tangent to the plane describing the voltage at the slack bus. Note that
this point is also the centre of all the circles which represent the reactive power in

the e, - f; plane (Figure 3.9a).

There are several such points in the voltage space, all lying on the mid-
point of the segment connecting any two solutions (Figure 3.9a). Note that these
points also lie on one of the principal planes of the surface describing the reactive
power (Figure 3.5b). These points define different injections corresponding to
maximum power transfer for various levels of real and reactive power. The injections
are on a surface in the injection space that divides that space into a region where a
real load flow solution is possible and another region where no real solutions can
exist (Figure 3.9b).
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In a large practical system, the load may be increased in any number
of ways. However, irrespective of the direction of load increase, a point will be
reached where one or more of the power injections reach a maximum in that
direction. That point is on a hypersurface in the injection space. At the
corresponding point in the voltage space, at least two of the load flow solutions

coincide and the jacobian matrix is singular.

3.10 Additional Properties of the Load Flow

Equations

The load flow equations in rectangular co-ordinates are quite suited
to analytical studies. Some of their properties will be used in the next chapter and

they are summarised below.,

Denote the load flow equations by

z = L{xX)x (3.31)

where z is a (2N-1) x 1 vector of specified injections and x is as previously defined
and

xTg,

T
L(x) = X.Jz (3.32)

T
X " oy

Note that L(x) is also equal to one half of the load flow jacobian matrix and since

the J; matrices are symmetric
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Lix)x, = L(x)x, (3.33)
for any two arbitrary vectors, x, and x,.

Any linear combination of the specified injections may be defined as

atz = aTL(x)x

2N-1
= (a;xTJ)) | x
i=1

2N=1
iw1

where a is an arbitrary (2N-1) x 1 vector. This expression can be written more

compactly as

aThi{x)x = xTJ(a)x (3.35)

where the meaning of J(a) is understood from (3.34).
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CHAPTER IV
EXPERIMENTAL STUDIES ON THE

LOAD FLOW FEASIBILITY REGION

4.1 Introductory Remarks

In order for power systems to operate normally, they must satisfy a
number of constraints. The load flow feasibility constraints are, by far, the most
restrictive of these because they define conditions on the specified injections
(generations and loads) for which a system state (voltages) corresponding to these
injections may be physically realised. In other words, the load flow feasibility
constraints describe the relationship among the specified injections which guarantees
a real voltage solution to the load flow equat’ .1s. Such constraints arise because
there are limits imposed on the specified injections by the system structure (as
described by the bus admittance matrix and the bus types) and by the non-linear
relationship between the power and voltage [9,25]. If these limits are violated, there

would be no real solution to the load flow equations,

Load flow feasibility was first studied through the concept of feasibility
regions by Tavora and Smith [19]. Since then, other authors [9,25,60,61] have used
a variety of approaches to examine the question of feasibility. The pioneering works
in [9,25,26] studied the load flow feasibility constraints through a load flow feasibility
region defined in the space of real and reactive powers and voltage magnitude
injections for a general power network. This was done using an analysis based on
the generalised eigenvalue problem. More recent works [60,61] have used a power

system model which includes the dynamic equations of the system in addition to the
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load flow equations and have employed concepts from bifurcation theory to study
feasibility conditions. In [60,61], feasibility regions are defined for fixed j);1r11111eter
values. In [60], the feasibility regions are defined in a space consisting of system
components and operating parameters and in [61], the feasibility regions are

considered in the space of real and reactive power demands.

The approach in [9,25,26] is adopted as the basis of the material
presented in this chapter. Therefore, a load flow feasibility region is defined, in the
space of power and voltage magnitude injections, for a power network consisting of a
slack bus as well as load and voltage control buses. The methods of [9,25,26] will
then be employed to conduct an empirical study of the characteristics of this region

and their relationship to the multiple load flow solutions.

4.2 Definition and General Properties of R,
4.2.1 Definition of R,

The non-linearity of the load flow equations (z = L(x)x) limits the
range of power injections that a power system can sustain. The load flow feasibility
region, R,, is then defined as the set of all injections, z, for which there is a real
voltage solution, X, to these equations [9, 25,26). The set R, can therefore be
described as

R, = {z:z=L(x)x, (z,x)e R¥1} (4.1)

Alternatively, R, can be viewed as a mapping of the entire voltage space, x, into a
subset of the injection space, z, through the function defined by the load flow
equations [25,57). Any injection, z, in R, is said to be a feasible injection. As a

result, the entire injection space may be considered to contain two regions: R,, which
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contains all feasible injections and another region of infeasible injections. The

hypersurface separating these two regions is now defined as the boundary of R..

4.2.2 General Properties of R,

Using some characteristics of the load flow equations in rectangular co-
ordinates, two general properties of the load flow feasibility region have been
proposed [9,25]:

(i) R, is a cone stretching to infinity with its vertex at the origin of the
injection space

(i) R, lies on or above a set of hyperplanes passing through the origin.

The first property is justified by the fact that if z is a vector of feasible
injections, then pz must also be feasible if p is a positive scalar. This is so because

each injection can be written as
pz; = (2/px)T J; (£/px) (4.2)

where J; has dimension (2N-1) x (2N-1) and x is a solution of the load flow equations
with z as the specified injections. Equation (4.2) implies that the feasibility of a
vector z is independent of the length of the vector and as such R, stretches to
infinity. This property is important because it suggests that the characteristics of the
load flow feasibility region may be determined by studying any "cross-section" of R,

that is representative of the entire region.

The second property stems from an assumption usually made in load
flow studies, that at least one of the specified quantities is the voltage magnitude at
the slack bus. In rectangular co-ordinates, this corresponds to specifying an injection

which is the square of the voltage magnitude. Assume that z is of the form
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P
o
V2

z = (4.3)

where P, Q and V2 are column vectors of the specified net real powers, net reactive
powers and voltage magnitudes squared, respectively. Then for any feasible z, the

following is true

aTz 2 © (4.4)

where a is a (2N-1) x 1 vector of zeroes except for a "1" in the position multiplying
the component of z corresponding to the slack bus voltage squared. Equation (4.4)
represents a hyperplane through the origin of the injection space which is tangent to

R, and is such that all vectors z € R, lie on or "above" it,

There exist similar hyperplanes, one for each of the PV buses in the
system, such that R, lies on or above them. These hyperplanes characterise part of
the boundary of R,. The more interesting hyperplanes, though, are the ones which
describe the feasibility constraints on the voltage magnitude as well as the real and

reactive power injections,

4.3 Feasibility Surface P,
4.3.1 Definition

It was mentioned that since R, is a cone, its properties may be
determined by studying a “cross-section” that characterises the whole region, If a
hyperplane that cuts the entire boundary of R, can be found, then the resulting
intersection will constitute a valid "cross-section". The desired "cross-section”, defined
as the feasibility surface P, is the intersection of R, and the plane
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2,7z = k V zeR,, z#0, k<o (4.5)

where k is a positive constant and z; is a constant vector perpendicular to the
hyperplane. More precisely

pP,, = (z:zeR,, 2z,7z=k, 0<k<w} (4.6)

It is important that all z € R, satisfy (4.5) because this ensures that the feasibility
surface, P, is bounded in every direction. If some z do not satisfy (4.5), then the

intersection of R, and the hyperplane will be an open surface.

Using (3.35), equation (4.5) can be re-written in terms of X as

xTJ(z)x = k V xeR¥1 (4.7)

4.3.2 Finding z,

In order to define P, a vector z; as described in the preceding section
must be found. The existence of such a vector for a general power network (though

not for the lossless case) has been proven ard the following heuristic method to find
2, has been developed [26].

Since the square of the voltage magnitude is always positive, the
components of z, multiplying those injections are made equal to one. It remains,
therefore, to find suitable constants to multiply the real and reactive power injections
such that (4.5) is satisfied.

Numerical experience indicates that a positive constant multiplying the

reactive power injections and zero multiplying the real power injections will satisfy
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(4.5). For system sizes ranging from 2 buses to 118 buses, the following z, satisfy
(4.5)

0
zy = {0.01] (4.8)
1

where the dimension of z is the same as that of z as defined in (4.3). From equation
(4.7), it can be deduced that when the matrix J(z,) is positive definite, the hyperplane
in (4.5), will cut the entire boundary of R,. The requirement that J(z,) be positive

definite provides a means of verifying that z; is suitable.

The rationale for choosing z, as defined in (4.8) is that in load flow
studies, the constraints on the reactive power injections are usually the most
prohibitive and very often load flow feasibility is violated when reactive power
sources exceed their limits. Also, keeping in mind the definition of J(z,) (3.34),
(3.35) and comparing the magnitude of the ratio A, / A_where A, A_are the positive
and negative eigenvalues of J;, it is evident that this ratio is much larger for J, than
for J,. It seems reasonable to assume, then, that the proposed z, would prove to be

satisfactory.

44 Illustrative Example

Given the fact that the load flow feasibility region is defined in a
(2N-1)-dimensional space where N is the number of buses in the system, it is
impossible to obtain a visualisation of the concepts discussed above except for 2- and
3-bus networks. In this section, a system consisting of a lossless transmission line
connected by a slack bus and a load bus (Figure 4.3) will be used to illustrate some

of the main ideas.
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The load flow feasibility constraints are well understood for such a
simple system. In fact, analytical expressions describing R, can be obtained and are

given by

(V)2 + 4X0,V,2 - 4X2P2 2> 0O (4.9a)
21 2

and

V2 2 0 (4.9b)

The nature of this load flow feasibility region can be studied by rewriting (4.9a) as

-4X2 ¢ 0
(p, 0, 21T o o0 2%X| [P, 0, ;3 =2 0 (4.10)
0 2X 1

and by examining the eigenvalues and eigenvectors of the matrix in (4.10).

Equation (4.10) is re-written for the system in Fig. (4.3a) and the

eigenvalues and eigenvectors of the matrix, referred to as A, are found.

-1.132 4] 0
zT 0 0 1.064|z 2 0 (4.11)
0 1.064 1

Table 4.1. Eigenvalues and Eigenvectors of A

o
A H 1318 | 06755 | 16755 “
1

0
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Using well-known properties of 3-dimensional quadratic surfaces, it is
seen that the surface described by (4.11) is a hyperboloid of two sheets, centred at
the origin. The restriction on (V,)? limits the feasibility region to the intersection of

only one of the sheets of the hyperboloid and the plane (V,)? = 0 (Figure 4.3b).

In this simple example, z, can be chosen intuitively as the eigenvector
corresponding to the positive eigenvalue (Figure 4.4a). This eigenvector is a
principal axis of the surface and is also the only principal axis that the surface
intersects. Any plane to which this eigenvector is perpendicular will therefore cut the
entire boundary of R,. Note that this rather obvious choice of z, i.e. [0 0.5360
0.8442]", has the same form as would a z, found by the heuristic method. The

corresponding matrix J(z;) is positive definite,

The feasibility surface, P,, can also be determined analytically for this
example. Taking z," z = 1 and changing to a new co-ordinate system defined by the

eigenvectors of A, P is shown (Figure 4.4b) to be an ellipse in the plane z; = 1.

4.5 Supporting Hyperplanes of R,

In the ensuing discussion, the feasibility surface, P, is assumed to be
representative of the load flow feasibility region, R,, and is used in a systematic
procedure to locate the supporting hyperplanes of R,. These hyperplanes are of the
form a” z = 0 and may be found by searching over the feasibility surface, P, in any
arbitrary direction z, provided z, is not parallel to z,. The vector z, defines another
hyperplane z," z = ¢ which will intersect the feasibility surface for different values
of ¢ (Figure 4.5).
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Figure 4.5. Intersection of P,  and the Plane z," z = ¢
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At the minimum and maximum possible values of ¢, the plane,
z,” z = c will be tangent to the feasibility surface, P, Using this fact, the
hyperplanes tangent to R, can be found by solving the following optimisation
problem [9,25,26]

max T, -
ZeR, z° 2z = ¢ (4.12)
s. t. z,Tz = k

The problem can be re-formulated in terms of x by using (3.34) and (3.35). This
formulation has an advantage in that it guarantees that z will be in R,. Equation
(4.12) becomes

max
xeR2N1 xTJ(z,) x

s.t. xT J(z,) x

c
k

(4.13)

[}

Forming the Lagrangian [62] of (4.13) and differentiating with respect to x results in

oL

% = 2[J(z) x - AT(z) x] (4.14)

The optimisation problem then reduces to finding the solution to

[7(2) - AJ(z)]x = 0O (4.15)

which is the equation of the generalised eigenvalue problem [63].
The eigenvalues of (4.15) are all real and finite because the matrices

are real and symmetric and J(z,) is positive definite [63]. Let the maximum and

minimum these eigenvalues be A, and A, respectively. Then for A, and 4,
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xT[T(2) = ApayI(Z) ] x < 0 (4.16)

xT[I(2) - Apgnd(zp) | x = 0 (4.17)

This implies that the matrix in (4.16) is negative definite and the one in {4.17) is
positive definite.

Re-writing the equations in terms of z (3.35), the following exoressions
are obtained

(2, - Ay 2072 < 0

4,18
(z, - Ay 2372 2 0 VzeRr, ( )

The condition in (4.18) may be written more compactly as

atz 2 0 V zeR, (4.19)

where & = A, 2y -2, O Z; - A,z This is a necessary condition for load flow
feasibility and the equality defines two supporting hyperplanes of R, for each
direction z,.

4.6 Security Considerations Involving R,
4.6.1 Security Region

Some of the supporting hyperplanes of R, can be used to define a
security region around R, since injections which fail to satisfy (4.19) are not feasible.
For a particular network structure, several vectors a can be calculated and for any
injection z,, if al z,>0, then z, is not feasible. This security region would be best
suited to a very heavily-loaded system which has an operating point close to the
boundary of R, because usually, other operating constraints become active before
load flow feasibility is violated.

53



Chapter IV: Experimental Studies on the Load Flow Feasibility Region

4.6.2 Effect of Contingencies on R,

The supporting hyperplanes can also be used to approximate the “size"
of R, [9). The angle between the two vectors defining a, can be considered as a
measure of the "width" R, in the given direction z;. It is reasonable to assume that
network contingencies will reduce the load flow feasibility region and it is expected

that this will be reflected in the angle between the supporting hyperplanes of the new

region.

4.6.3 Example
The 5-bus network in Figure 4.6 will be used to show the effect of a

single line outage on the angles between the supporting hyperplanes of R,. Line #1-
3 is removed. The different search directions are given in Table 4.2.

VvV -1.08 045+}0.15 0.4+]0.05

1@ 3 4 -T Buscode  Inpedance Line charging
-—r_ = - g pe !f"/2
1-2- 0.02 + j0.08 0.0 + ;0.030
-3 008 +70.2¢4 0.0 + j0.025
2- _ 5 23 0.08 + j0.18 0.0 + 50,020
47 é T g‘g g.g +J:0.18 0.0 <+ j0.020
<04 J =5 0.0440.12 0.0 +70.015
0240.1 = V- 1.0 08+]0.1 o5 0Ll 00t

Figure 4.6. 5-Bus Network
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Table 4.2. Various Search Directions z,

zp=[P, P; Py P; Q; Q Qs Vi V'
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Figure 4.7. Angle between Extreme Supporting Hyperplanes of R, - Base Case and
Single Line Outage

55



Chapter IV: Experimental Studies on the Load Flow Feasibility Region

Since the size of the feasibility region is expected to decrease with the
removal of the line, the angle between a_,, and a,;, should be larger in the case of
the contingency than in the base case. This is seen to be true for some of the search
directions. The opposite is true when the direction includes reactive power demand
(B,E,FI). It is also evident that this is not a very severe contingency because the

angles for the base case and the contingency are almost equal.

4.7 Structure of the Voltage Space

4.7.1 Solution of the Generalised Eigenvalue Problem

Recall that the dimension of the J; matrices is (2N-1) x (2N-1) and the
reference angle has been assumed, without loss of generality, to be equal to zero.
As a result, the solution of the generalised eigenvalue problem of (4.15) yields (2N-1)
real eigenvalues and their corresponding eigenvectors. These eigenvalues may or

may not be distinct depending on z;, z; and the topology of the network.

The maximum and minimum of these eigenvalues, A, and & _;,, have
been used to define hyperplanes which are tangent to R, (4.19). The eigenvalues in
between these two extremes will be referred to as intermediate eigenvalues and the
focus of this sectior is to examine how they can be used to obtain a better

understanding of the nature of the load flow feasibility region.

4.7.2 Singular Surfaces in the Voltage Space

Each eigenvector defines a point in the voltage space, x,, at which the
load flow jacobian is singular. This can be seen from the following: For any

arbitrary vectors z, and z,,
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J(z,) + J(z) = J(z, +z,) (4.20)

Thus, using (4.20), equation (4.15) can be re-written as

J(2, - Az))x, = 0 (4.21)

which implies that J(z,-Az,) = J(a) is singular. But from (3.35),

J@x, = [Li{x,)]1T a (4.22)

This means that [L(x,)]" is also singular and the vector a lies in its null space. Since

[L(x/)]T is singular, so are L(x) and the load flow jacobian which is equal to one half
of L(x,).

For a fixed z,, each different search direction z, produces a different
set of eigenvalues and their associated eigenvectors, x, The set of all vectors, x,,
describe a collection of points in the voltage space where the load flow jacobian is
singular. These points will be referred to as singular surfaces. Of course, the
existence of these surfaces is well known and their characteristics have been

documented [15,19,60]. The approach presented here facilitates the experimental
study of these surfaces.

Consider the singular matrix L(x,). Then, there exist veciors r, such
that

L(x)r = 0 (4.23)

as well as vectors 1 such that

57



Chapter IV: Experimental Studies on the Load Flow Feasibility Region
[L{x)]71 = O (4.24)

The vectors r and 1 are known as the right and left eigenvectors, respectively, of
L(x,). Note that the vector a defined in (4.19) is just a scalar multiple of 1. The

vectors r and 1 are unique when the nullity of L(x,) is equal to one.

Since L(x)r = L(r)x, it is clear that r also defines a singular matrix L(r)
and as a result, r is also a singular point. The singular surfaces in the voltage space
can therefore be considered to consist of the set of all singular points, x,, and their

associated right eigenvectors, r.

4.7.3 Experimental Results

The results of numerical simulations done on the 5-bus system in
Figure 4.6 are now presented. Due to space restrictions, results from only one search
direction, z, = [-0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 0 0], are shown. The vector z, is
defined as [0 0 0 0 0.01 0.01 0.01 1 1J*. The eigenvalues, A, and their associated
eigenvectors, x; along with the corresponding right eigenvectors, r, and left

eigenvectors, 1, of the matrices L(x,) are given in Table 4.3,

4.7.3.1 Magnitude of the Eigenvalues

In the simulations carried out for different search directions, z,, the
magnitudes of six of the nine eigenvalues were approximately equal to each other
and larger than the other three. This is illustrated in Table 4.3 for one direction.
In simulations done on larger systems (14, 30, 57 and 118 bus), it was also found that
approximately two-thirds of the (2N-1) eigenvalues had very similar magnitudes.
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Table 4.3. Eigenvalues, Singular Points, Right and Left Eigenvectors of L{x)

A 0.813 -1.064 -0.294 -13.405 -13.393 -13351 -13.346 -13.336 -13.337
X, =
€ 06234 | -0.5357 0.0000 -0.0089 0.0000 0.0066 0.0000 0.0000 0.0050
c, 02118 | 0.2517 0.6764 -0.0043 -0.135 -0.0018 -0.0017 -0.0002 -0.0004
(LN 02243 | 0.1666 0.2918 -0.0036 0.5521 0.0007 -0.4766 0.6925 0.0001
¢, 02183 | 01321 03117 -0.0035 0.5860 0.0004 -0.4230 -0.7203 -0.0003
es 02019 | 0.2001 0.3642 -0.0028 0.5930 -0.9014 0.7707 0.0401 0.0001
f, -0.4869 | -0.6035 0.2871 0.0125 -0.0046 0.0053 -0.0006 -0.0001 0.0011
fy -02414 | -0.2257 0.1981 -0.6190 -.0026 0.4039 0.0005 -0.0002 03127
f, -0.2483 | -0.2516 0.2116 -0.6086 -0.0028 02134 0.0005 0.0002 -0.8971
fs -0.2660 | -0.3201 0.2473 -0.4961 -0.0028 -0.8895 -0.0009 0.0000 03122
r=
c, 0.0000 | 00000 | 07720 0244 | 0.0000 | -0.985-0.002 | 0.0000 | -0.991 0.005 | 0.9991 -0.018 0.0000
c, 206321 | 04083 | 0.0506-0285 | 00125 | 0000 0.005 | -0.0053 | 0.0000 0.001 | 0.0000 0.000 | -0.0011
e, 04167 | 01216 | 04176 -0076 | -0.6191 | -0.144 0.002 | -0.4039 | -0.114 0.000 | 0.0374 -0.001 -03127
e, 04164 | 01183 | 03863 -0.099 | -0.6086 | -0.097 0.003 | 02134 | -0.068 0.000 | 0.0106 -0.000 0.8971
€ 03996 | 01539 | 02476 -0.181 } -0.4961 | -0.019 €003 | 0.8895 | -0.011 0.001 | 0.0004 0.000 | -03122
fy 02750 | 01703 | -0.119 0672 | 0.0043 | -0.000-0.013 | -0.0018 | 0.0000 -0.002 | 0.0000 -0.000 -0.0004
fy 00282 | 05557 | 00342 0317 | 0.0024 | -0.001 0552 | 00000 | -0.002-0477 | 0.0121 0.692 0.0000
f .0.0465 | 05360 | 00322 0337 | 00027 | -0.001 0586 | -0.0002 | -0.002-0423 | -0013-0.720 | -0.0004
fs 01230 | 03946 | -0.001 0382 | 0.0026 | -0.001 0.593 | -0.0015 [ 0.0041 0.771 | 0.0007 0.040
1=
P, 0.0846 | -0.0656 02542 0 -0.0053 00075 0 | -0.0053 00075 0 00075 0
P, 0.0846 | -0.0656 02542 0O -0.0053 00075 0 | -0.0053 00075 0O 00075 0
P, 0.0846 | -0.09656 02542 0O -0.0053 00075 0 | -0.0053 00075 O 00075 0
P 0.0846 | -0.0656 02542 0 -0.0G53 00075 0 | -0.0053 00075 0 00075 0
Q, 0.0915 | -0.0586 0.2467 0 00018 | -00025 O 00018 | -0.0025 0 -00025 0
Q, 0.0915 1 -0.0586 0.2467 0 00018 1 -00025 0O 00018 | -00025 O 00025 0O
Q, 0.0915 | -0.0586 02467 0 00018 | -00025 O 00018 | -0.0025 O 00025 0
\A 0.6878 | 0.6973 0748 0 07071 | -09999 0 07071 | 09999 0 09999 0
A 0.6878 | 0.6973 0 1 0.7071 0 1 0.7071 0 1 0 1
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4.7.3.2 Nullity of the Singular Jacobian

The simulations reveal that when the solution of (4.21) produces
distinct eigenvalues, the eigenvectors, x,, associated with N of the (2N-1) eigenvalues,

including A, and A, define jacobian matrices with nullity one.

4.7.3.3 Observations on the Right and Left Eigenvectors

It can be seen that the right eigenvector, r, of each matrix, L(x.), with
nullity one has the component corresponding to the slack bus, e,, equal to zero. This
observation will become significant in a later discussion on multiple load flow
solutions. Another observation is that the x.’s corresponding to eigenvalues of similar

magnitudes and their associated r’s are orthogonal to each other.

Note that there are only four distinct left eigenvectors (not including
the trivial one which has only one non-zero element). This implies that the nine
injections described by the vectors x can lie on only four different hyperplanes. Also,
the matrices, L(x,)", with nullity greater than one are the ones with two vectors, 1,
spanning their null space. One of these vectors is on the plane V.2 = 0 and the

other is perpendicular to it.

4.8 Singular Surfaces of R,

Each of the singular surfaces in the x-space is mapped by the function:
z = L(x)x, to a corresponding surface in the injection space. These surfaces in the
z-space are referred to in the literature as bifurcation surfaces and may demonstrate
different types of bifurcation phenomena [20]. In general, though, they are classified
as saddle-node bifurcation surfaces {60,61).
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So, although the precise geometric characteristics of R, for a general
power network have not been proven, R, is known to contain these singular surfaces
and their intersections. The approach used in this work provides a means of locating

arbitrary points on these singular surfaces in R,.

4.8.1 Boundary of R,

The boundary of R, has been defined as a hypersurface separating the
injection space into regions of feasible and infeasible injections and it is therefcre
regarded as the outermost surface of the feasibility region. Injections on that surface
are denoted by z, and are obtained from eigenvectors, x,, associated with the

maximum and minimum eigenvalues.

As mentioned in Section 4.6.2, the angle between the two vectors, a,
which are perpendicular to the supporting hyperplanes of R, (and consequently, to
the boundary injections z,)) in a given direction z,, is a measure of the "width" of R,
in that direction. Figure 4.8 shows the relative positions of a and the boundary

injections. Note that the smaller the angle between the two vectors, a, the "wider"
is R, in that direction, z,. |

Zh
2
Y 4 b b
//” a max
p r4 b
—P"” 4 \
4= i \\
2 min ars/ \
| max < @ min

Figure 4.8. Boundary Injections of R, and the Vectors Perpendicular to them
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Eigenvectors associated with some of the intermediate eigenvalues may
also define points on the boundary of R,. Simulations on two simple systems, whose
feasibility conditions can be derived analytically and for which the shape of R, is
known, show that when this situation occurs, the points z, are on the boundary

portion of R, described by the hyperplanes V? = 0.

4.8.2 Experimental Results

Table 4.4 shows the angle (6,) between the two extreme boundary
injections obtained from the eigenvectors associated with the maximum and minimum
eigenvalues for the search directions, z;, defined in Table 4.2, The network is shown
in Figure 4.6.

Table 44. Angle Between Extreme Boundary Injections of R, for a Variety of
Directions z,: 5-Bus Network

|| D E F G H I
0, ﬂ—99.3 100 804 993 968 102 811 101 100|

Note that all the angles are less than 180°. The angle is largest when

z, is in the direction (F) of only reactive power demand. The smallest angle occurs
when z; is in the direction (C) of real power generation and increasing voltage
magnitude.

The simple two-bus example of Figure 4.3 is used to show that
intermediate eigenvalues may also define injections on the boundary of R,. Solving
the generalised eigenvalue problem for this network produces three eigenvalues for
any z; and z,, ‘Table 4.5 shows the case where two of the three eigenvalues are

identical for a particular choice of z, and z;. Both injections lie on the boundary of
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R,. However, for a different choice of z;, the eigenvalues are distinct but the three

different injections also lie on the boundary of R,.

Table 4.5. Eigenvalues, Eigenvectors and Boundary Injections of 2-Bus Network for

Two Different Values of z,

Chapter IV: Experimental Studies on the Load Flow Feasibility Region

A 0.1038 -1 -1 | 00944 | -1.0451 | -1
| %=a 0.8165 0 0 0.8280 | -0.0897 | 0
' e, || 04082 | 07071 | 04557 | 0.4141 | -0.0448
f, | -0.4082 | -07071 | 0.8901 || -03783 | -0.9950 | o
2z, =P, | -06267 0 0 | -0.5880 | 0.1677 0
| Q, 0 188 | 188 || -00532 | 1.8573 | 188
vz2 | 0.6667 0 0 0.6855 | 0.0080 0
z, = [-0.1 0.1 0% z, = [0.1 0.1 0.7 | z, = [0 0.1 1]°

Note that, for zo = [0 0.1 1], the injection corresponding to the intermediate
eigenvalue, -1, has two components equal to zero and lies on the Q,-axis, but also on
the plane V2 = 0. Observe, also, that there are three different x, for this injection
even though this is a two bus system.

4.8.3 Interior Surfaces of R,

Some of the eigenvectors associated with the intermediate eigenvalues
define injections, z,, on surfaces which are within the boundary of the feasibility
region. These surfaces will be referred to as interior singular surfaces of R,
Hyperplanes which are tangent to these surfaces can be found in an analogous
manner to that used for the boundary of R,, i.e. by replacing A

expression (4.19) with the intermediate eigenvalues, A,.

max OF Arﬂirl n
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4.8.4 Experimental Results
4.8.4.1 5-Bus Network

Results are now presented for the search directions defined in Table
4.2 and the network in Figure 4.6. Table 4.6a shows the angle (6,,) between the
boundary injection associated with A, (z;,) and the injection (z,) associated with
the other eight A,’s found from a given search direction. In Table 4.6b the angle
between the boundary injection associated with A, (z,.) and the other z,’s are

given. In Table 4.7a, the angle between a,,, (z, - A, Zo) and a, (z, - A, zy) is shown.

min
Similarly, Table 4.7b gives the angle between a,, (2, ~ A, Zo) and a, (z; - A, Zy).

Recall that a; is orthogonal to z;

For all the search directions studied, the z,’s associated with the
eigenvalues of similar magnitude always lie on at least one of these hyperplanes
V,? = 0 and V;® = 0. The injection z,,, also lies on these hyperplanes except when
z, includes the direction of real power generation (C,D,G). In these three directions,
Zmax li€S ON these two hyperplanes. For some of the directions, the angle between

Zyue a0d Z,,;, is smaller than the angle between z and some of the other z;'s.

max/min

In such cases, those z,’s also lie on one of the two hyperplanes mentioned above.

The multiple occurrence of some numbers in each row of Table 4.7a
and 4.7b indicates that in every search direction, there are more than one z, which
lie in the same plane. Of course, this has already been shown by considering the left
eigenvectors (Section 4.7.3.3). When "0" occurs more than once, it means that the
injections lie on the same plane as z,;, or z,,, When a different number is
repeated, this implies the z.’s lie on a plane which is different from the one
containing z, or z,,,.. The maximum number of hyperplanes found in any direction
is five (Direction I).
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Table 4.6a. Angle Between Boundary Injection, z,,;, and Injections on Other Singular

Surfaces of Ry

0. 6, 8,; 0,4 0, B, 0, 05 | By
Al 993 | 944 | 105 0 242 | 499 | 443 | 282 | 476
B 89 | 100 | 100 | 114 | 114 | 096 | 000 | 213 | 223
C 0 147 | 161 | 804 | 853 | 79.8 | 855 | 903 | 797
D 0 160 | 145 | 993 | 99.8 | 983 | 99.0 | 97.2 | 956.1
zy, | Ef 882 | 968 | 965 | 0.04 0 115 | 115 | 922 | 922
F | 898 | 102 | 922 | 996 | 922 0 0 90,0 | 90.0
G 0 162 | 150 | 81.1 | 859 | 80.1 | 8.1 | 905 | 805
H 0 923 | 101 | 100 | 97.7 | 94.1 | 124 | 779 | 497
I | 87 | 100 | 100 | 114 | 114 | 96.8 0 21,3 | 223
| - -
Table 4.6b. Angle Between Boundary Injection, z,,, and Injections on Other
Singular Surfaces of R,
‘ 6y | Oz | 85 | 84 | 85 | 04 | 8, | 6,
A 0 160 | 144 | 993 | 998 | 983 | 99.1 | 97.22
Bl 125 0 349 | 734 | 734 | 100 | 100 | 888
C |l 804 | 789 | 886 0 183 | 317 | 250 | 55.7
" D 992 | 945 | 105 0 243 | 499 | 443 | 283
z | E| 638 0 968 | 968 | 968 | 914 | 914 | 974
F I 407 0 106 | 946 | 106 | 103 | 103 | 102
G || 811 [ 8.5 | 811 0 19.0 | 317 | 258 | 558
H| 101 | 442 0 107 | 682 | 108 | 101 | 106
I || 125 0 349 | 734 | 734 | 100 | 101 | 888
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Table 4.7a. Angle Between the Vector a
Hyperplanes which are Tangent to the Singular Surfaces of R,

min

and Other Vectors Perpendicular to

eaI Baz eas ead eas eaﬁ ea'l eaa ea9
Al 166 [ 919 [ 31.8 | 0 0 0 0 0 0
B 80| 174 | 174 | 1.2 | 12 | 000 | 000 | O© 0
C| O | 155 | 162 | 166 | 166 | 166 | 166 | 166 | 166
Df o0 | 157 | 135 | 166 | 166 | 166 [ 166 | 166 | 166
zy | E| 503 [ 157 | 157 | 0.0 0 | 033 033 | 120 | 1.20
F || 946 | 163 | 064 | 162 | 064 | © 0 0 0
G|l 0 | 163 | 155 | 167 | 166 [ 166 | 166 | 166 | 166
H| 0 [93 ([ 164 | 0 | 163 | 0 0 0 0
I L8_3.1 174 | 174 | 120 [ 120 [ © 0 | 020 | 020

Table 4.7b. Angle Between the Vector a_,, and Other Vectors Perpendicular to

Hyperplanes which are Tangent to the Singular Surfaces of R,

6

al

>

| 0
914
166
166
107
68.0
167

=}

Zy

Q= muYon

i 91.5

eaz
157
112

9.12

4.11
68.7

65.3 834 985 936
134 | 166 | 166 | 166
021 | 173 | 173 | 174
406 | o | 001 on
313 | o | 001 | 000
027 | 157 | 157 | 157
162 | 094 | 162 | 163
12| o | o001 | on

0 | 164 | 056 | 164

0 | 173 | 1713 | 174

I

I
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ea?

166
174
0.14
0.00
0.33
163
0.13
164
174

eas

166
174
0.15
0.00
156
163
0.14
164
174

ea9

166
174
0.15
0.00
156
163
0.14
164
174




Chapter 1V: Experimental Studies on the Load Flow Feasibility Region

From Table 4.7b it is seen that in directions A, E, F and H, the
hyperplane containing z_,, does not contain any other injection (There is only one
zero in each of those rows). This implies that those injections, z,,,, dre on the
boundary portion of R, which is not planar.

The results in Tables 4.7a and 4.7b may be combined to give an
indication of how close the hyperplanes which are tangent to the singular surfaces of

R, are, in the chosen directions. This is illustrated in Figure 4.9 for z; = E and L.

Direction E Direction |

Figure 4.9, Positions of the Hyperplanes Tangent to the Singular Surfaces of R,

4.8.4.2 2-Bus and 3-Bus Examples

Due to the generally high dimension of the problem, it is impossible
to obtain a visualisation of these concepts except for very small systems. Two such
systems are now presented.
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(b) Feasibility Region of a Lossless 3-Bus Network

Figure 4.10. Feasibility Region of a 3-Bus AC Network
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One of the clearest example of these interior surfaces of R, is provided
in the example presented by Tavora and Smith [19] and is reproduced in Figure
4.10b. Note that this feasibility region is defined in the space of real powers only and

is a subset of the more general feasibility region considered in this work [26].

A general 3-dimensional feasibility region with an interior surface can
be illustrated for a purely resistive 3-bus network. The system in Figure 4.11 will be
used. In this simple example, the singular surfaces in the voltage space can be
derived explicitly by solving for all the conditions which make the jacobian matrix
singular. These conditions are

v, + V.
6 NI (4.25)
v, = 0 ‘
v, = 0
1 1

Figure 4.11. 3-Bus Resistive Network

The mapping of these singular surfaces in the injection space is given by
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B = v e 2T - )
Ve = o (4.26)
V2 =0

The three equations in (4.26) define the boundary of the feasibility region. Note that

because of the square root in the first equation, the following expression is also valid

p, = —% (V2 = 2JV2V2 + v;2) (4.27)
Equation (4.27) defines the interior surface of R,

The boundary and interior surface are shown in Figure 4.12. The
complete feasibility region is illustrated in Figure 4.13. Note that the feasibility
region is in only one quadrant of the injection space and the conical portion lies
entirely below the plane P, = 0. This means that feasibility constraints become
active only if bus 1 is a load bus,

The interior surface of R, can be seen more clearly by examining the
feasibility surface, Pz, Takingz = [P, V,* V', z, = [1 1 1]" and changing to a
co-ordinate system with z, as one of the axes, Pz, is shown in the plane z, = 1
(Figure 4.14).

A projection of R, onto the V,2-V,? plane (Figure 4.15) also shows the
interior surface quite clearly.
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(a) Boundary of R,

(b) Interior Surface of R,

Figure 4.12, Surfaces of the Feasibility Region of a 3-Bus Resistive Network
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Figure 4.13. Complete Feasibility Region of a 3-Bus Resistive Network
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Figure 4.14. Feasibility Surface, P,y of a 3-Bus Resistive Network
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Figure 4.15. Projection of Feasibility Region in the V,* - V,* Plane
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Trble 4.8. Summary of the Eigenvalue Analysis of a 3-Bus Resistive Network

2 A=A, A, AT x, = [Vi V, Vi) z =[P, V} Vi Surface
-0.2 -0.2 1 0 0 2 0 0 B
0.5 0.9097 03189 04319  0.8437 02034 01865 0.7118 B
0.7 0.5569 -0.1385 09201 03663 400383 08466  0.1342 I
10.2 102 1 0 0 2 0 0 B
15 -10.2695 02942 02558 09209 -0.1731 00654 0848 B
-7 0.4528 -02081 -0.9686  0.1361 00866 09382  0.0185 I
-6 -6 1 0 0 2 0 0 B
-8.2 0.0297 02641 00967 0959 01395 00094 09209 B
0.8 -0.5297 02520 -09668  -0.0412 -0.1270 09348 00017 B
-02 -0.2 1 0 0 2 0 0 B
0.5 0.8446 02654 01031 09856 -0.1409 00106 09189 B
0.7 -0.5446 -0.2505 -09675  -0.0347 -0.1255 09360  0.0012 B

0 ¢ 1 0 0 2 0 0 B

0 0 0 1 0 0 1 0 B

1 1.1667 02722 (01361 09526 -0.1481  0.0185 09074 B

0 0 1 0 0 2 0 0 B

1 1.1667 02722 09526  0.1361 -0.1481 09074  0.0185 B

0 0 0.7001 0 0.7140 0.4805 0 0.5098 B

1 1 1 0 0 2 0 0 B

0 -0.3333 03333 06667  0.6667 02222 04444 04444 B

0 0 0 07071 0.7071 0 0.5000  0.5000 I

0 0 1 0 0 2 0 0 B

1 1 0 07071 -0.7071 0 05000  0.5000 i

1 1.3333 03333 06667  0.6667 02222 04444 04444 B
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Table 4.8 gives a summary of the eigenvalue analysis of the system in
Figure 4.11 for a variety of directions, z,. It is seen in this case that intermediate
eigenvalues also define an injection on the boundary of R,. This injection is

z, = [2 0 0]" which is on the intersection of the planes V,> = 0 and V;* = 0.

The "Surface" column in Table 4.8 indicates whether z, lies on the
boundary (B) or the interior surface (I) of R,.

4.8.5 Classification of Singular Points in R,

As mentioned before, all the points on the singular surfaces in the x-
space may be regarded as singular points, x, and their associated right eigenvectors,
r. Their mapping to the singular surfaces of R, can also be considered as all the
pairs of injections z, and z_ where z, = L(r)r. This classification of the points on the

singular surfaces of R, is significant for examining the nature of multiple load flow
solutions,

4.9 Convexity of R,

A hypothesis is made in [26] that the interior of R, is convex. The case
is made by showing that the interior of R, cannot be concave. Figure (4.16) shows

the feasibility surface, P,, for a 3-dimensional load flow feasibility region.

Zy Iy

\/ _'B:z-O

a;z=0

Figure 4.16. llustration of the Convexity Argument
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This situation is possible if there is a search direction z, such that the solution of the

generalised eigenvalue problem produces multiple eigenvalues.

However, it is shown that if there are multiple eigenvalues, then the
points z,,; and z,,, on P,, must lie in a straight line. This implies that in R,, these

points lie on a plane or the intersection of two planes.

This argument is supported by the results from the three examples
presented in the previous section. In the case of the 2-bus system, when there are
multiple eigenvalues, the corresponding injections lie on an axis in the z-space and
on the plane V;* = 0. In the resistive 3-bus and the 5-bus examples, the multiple
eigenvalues have corresponding injections on the planes V> = 0. These planes form
part of the boundary of R,. Furthermore, in the 3-bus network, these boundary
portions of R, are parallel to the planes defined by the search direction: z,* z = ¢.

4.10 Multiple Load Flow Solutions and Singular

Surfaces of R,
4.10.1 Nature of Multiple Solutions

The multiple load flow solutions may be examined in the context of the
load flow feasibility region.

Let the load flow equations be z = F(x) = L(x)x. Now assume that

two vectors x_ and (x" + §x) satisfy this set of equations. Then

z = L{(x") (x*) = L(x"+&x) (x*+&6x) (4.27)

which implies that
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L(2x"+8x)8x = 0 (4.28)

The definition L() is given in (3.32). From equation (4.28), it can be deduced that

the vector (2x”+ &x) is a singular point, x, and &x is its associated right eigenvector,
r [9]):

2x*+ 8dx

= 4.29
6x = r ( )
From (4.29), the two solutions are therefore
x* = % (x, - 1)
2 (4.30)
x*+dx = —%(x$+.r)

From the foregoing discussion, it is seen that any two load flow
solutions x°, X"+ §x must be of the form [9]

Xg % I

X', x*+8x = >

(4.31)

This means that the sum and difference of any two solutions make the jacobian

singular. Also, since the voltage at the slack bus must be identical for the two

o

"2 +AX

Figure 4.17. Relationship between Multiple Load Flow Solutions
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solutions, the component of either r or x, corresponding to the slack bus must be
equal to zero. Numerical experience has supported this contention (See Table 4.3).
These results were also derived in [3] but by first assuming that the solutions are of

the form x; + x,.

The injection defined by the two solutions in (4.31) is

L
2
Lr(x)x, + ~L(r)r 4.32)
Tl. gl ‘g 4 (4.
z, + Z,

4

N
I

%L(xs)xsi Lix,)r + %L(r)r

where z, and z, are as previously defined. Again, due to the specification of the slack
bus voltage, the components of either z, or z; corresponding to the square of the
voltage magnitude of the slack bus should be equal to zero. From this it can be
concluded that at least one of the injections, z, or z,, in (4.32), must be a boundary
injection, z,, which lies on the hyperplane V2 = 0. Consequently, any injection z

having multiple solutions must be of the form

z = % (4.33)

4.10.2 Numerical Results

Numerical simulations support the reasoning of the previous section.
In Table 4.9, the various pairs of injections, z, and z, found from a particular

direction z, are given. The network is shown in Figure 4.6.

Note that the injection, z,, associated with the eigenvalues of similar
magnitudes all lie on the hyperplanes V,2 = V,2 = 0. This supports the hypothesis
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—
2 0.8126 -1.0637 -0.2941 -13.4058 -13.3927 -13.3511 -1334 -13.3360 -133372 ﬁ
z, =
P, -4.0171 8.5445 3.1891 -0.0018 0.0006 0.0008 0.0000 0.0000 0.0001
P, -0.3208 0.2964 0.1056 1,2289 0.72711 1.2487 0.9152 111822 40736
P, 0.1156 0.0343 0.1129 0.6655 0.7925 -0.0404 0.7001 11.7259 13.5531
P; 0.1348 0.1233 0.1964 0.5775 0.9251 32278 26414 00422 0.7137
o} -0.3529 -0.4495 -0.5274 3.5540 2.1216 3.7148 2.7378 33.5194 12,1978
Q. -0.3563 -0.3756 -0.5635 1.9307 23132 -0.1171 2.0947 35.1501 40.6099
Qs -0.5498 -0.7406 -0.9861 1.6680 26921 9.6128 7.8893 0.1265 2.1401
\ 0.2819 04275 0.5399 0.0002 0.0002 0.0000 0.0000 0.0000 0.0000
V,? 0388 | ~ 0.2869 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
z =
P, 4.6709 -1.7143 | -2.20 7.2060 0.0002 0 00011 0.0002 0 -00002{ ¢ 0000 0.0000
P, -0.6610 1.8649 | 0.562 -0.2310 12149 | -0.058 0.7232 1.2361 01130908 | 003411115 4.0643
P, -0.4736 13603 | 0.448 -0.2007 06601 | 001407923 | -0.0398 0.059 0.690 { -0.017 11,741 | 135572
P; -0.3947 09376 | 0.269 0.0168 0.5764 | -0.001 0.9240 3.2299 00022642 | 000000421 | 0.7137
Q, 0.3868 2083 | 0.510-0.4038 3551 | -0.142 21230 37192 -0.1372.740 | -0.109 33.530 | 122013
Q, -0.3709 03621 | 0412 -0.3648 19327 | -0.066 23140 | -0.1174 0061209 | 000935131 | 40.6097
Qs -0.7944 -0.1182 | 0.171 -1.0663 1.6685 | -0.003 2.6922 9.6125 0000789 [ 0 35132 2.1402
v, 0.4752 0.1957 | 0.017 0.5323 0.0002 0 0.0002 0.0000 0 0 0 01264 0.0000
Vi 0.0000 00000 | 0.59 0.0595 0.0000 0.969 0.0002 0.0000 0982 0 | 0998 0O 0.0000
z, = [-0.1 0.1 01 -0.1 -0.1 -0.1 -0.1 0 O] "
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in Section 4.9 that when there are repeated eigenvalues, the injections associated
with them lie on the hyperplanes which form part of the boundary of R,. It is
assumed that the injections, z,, in Table 4.9 which do not lie on the hyperplanes

V = 0, lie on the conical portion of R,. This is the part of R, that describes the
constraints on the real and reactive power injections as well as the square of the
voltage magnitudes. These injections would be more similar to a "typical" operating

point.

Note that for the x, and r which are orthogonal (Section 4.7.3.3), z, and
z, are almost identical. This indicates that an injection formed by the sum of two

such injection has double solutions.

The ten known solutions [8] of the 5-bus system in Figure 4.18 are used

to verify some of the various relations presented in 4.10.1.

VvV -1.06 045+j0.15 0.4+j0.05

5 2 3
1 4
v - .
0.2+{0.1 ':f - % 0.6 +j0.1

Figure 4.18. 5-Bus Network

76



Chapter IV: Experimental Studies on the Load Flow Feuasibility Region

Note that this network is the saume as the one given in Figure 4.6 but the buses are
numbered differently and the bus types are specified differently. Bus #5 is now the

slack bus and bus #2, the voltage control bus.

Solution #1 in Table 4.10 is the "valid” solution. This solution was first
added to each of the other nine solutions and the resulting vectors were used to form
nine jacobian matrices. Similarly, the difference of the "valid" solution and each of
the other nine solutions were used in the formation of nine jacobian matrices. These
eighteen jacobain matrices were checked for singularity since from the results in
Section 4.10.1, the sum and difference of any two load flow solutions should make
the jacobian singular.

Table 4.10. The Ten Solutions of the 5-Bus System

X Solutions

1 2 3 4 5
e 0.9994 -0.7543 -0.6237 0.9776 -0.5966
€ 0.9767 -0.3210 -0.1702 0.7736 -0.0581
e; 0.9735 -0.4140 -0.2303 0.7184 -0.1756
€4 " 0.9612 -0.6518 -0.0656 0.0181 -0.4799
e 1.06 1.06 1.06 1.06 1.06
f, -0.0360 -0.6565 -0.7817 -0.2104 -0.8025
f, -0.0798 -0.3846 -0.3364 -0.1740 -0.0217
fy -0.0850 -0.4161 -0.3392 -0.1775 -0.1239
s -0.0958 -0.5155 -0.0066 -0.0540 -0.5068
fs |_0 0 0 0 0
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Table 4.10 ¢’td. The Ten Solutions of the 5-Bus System

Solutions

X 6 7 8 9 10
e 0.9587 0.9505 0.9567 0.9237 -0.4982
e, 0.1767 0.0270 0.0121 0.1685 -0.0691
e 0.0042 0.0079 0.1454 0.0025 -0.1347
€ 0.5761 0.5707 0.6273 0.0149 -0.0749
e 1.06 1.06 1.06 1.06 1.06
f, -0.2841 -0.3106 -0.2908 -0.3830 -0.8670
f; -0.0865 -0.0490 -0.0317 -0.1000 -0.0543
fs -0.0297 -0.0483 -0.1127 -0.0359 -0.0952
fs -0.2499 -0.2715 -0.2776 -0.0796 -0.0020
fs 0 0 0 0 0

In the case of the nine jacobian matrices formed from the sum of the
load flow solutions, the determinant of the jacobian was not equal to zero. However,
at least one of the nine eigenvalues of each matrix was equal to or very close to zero.
These results are shown in Table 4.11, It was reported in [3] that the determinant
of the jacobian is extremely sensitive around the singular points. Therefore it is
assumed that numerical inaccuracies are responsible for the determinant and some

of the eigenvalues not being equal to zero.

From equations (4.28) and (4.29), the difference of any two load flow
solutions should be in the null space of the jacobian matrix formed from the sum of
the two solutions. The simulations reveal that the difference of Solution #1 and the

other nine solutions were scalar multiples of the eigenvectors corresponding to the
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Tahle 4.11. Real Part of the Eigenvalues and the Determinants of the Jacobian Matrices formed from the Sum of Two Load Flow Solutions

3.742 x 10 -487.931

Solu- 1+2 1+3 1+4 1+5 1+6
tion
22,735 24914 35353 16.270 28.348
-5.257 -12.28 13.013 8.323 10.563
-5.257 7.284 13.013 8323 10.563
Eigen 6.921 7.284 -16.09 -7.507 -14.11
value 6.921 3.440 3471 -1.507 -7.308
3.958 3.440 347 3.853 3.958
3.958 -1.022 -3.329 3,853 3.958 -6.147 -1.249 3.047 -2.553
-1.806 -1.022 -3.329 0.000 -0.896 -0.996 -5.535 0823 0.002
0.000 0.001 -0.008 -0.495 0.001 -0.008 -0.008 -0.004 -0.096
Det 0.7772 -978 1.223 x 10° -156 5101 x 20' | 2449x10° | 4081 x 10°
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smallest eigenvalue of the jacobian formed from the sum of those solutions. Recall
from the previous paragraph that the smallest eigenvalues were equal to or very
closeto zero so it is assumed that their associated eigenvectors are in the null space
of the jacobian. For the jacobian matrices found formed from the difference of the
load flow solutions, both the determinant and one of eigenvalues of each matrix were

exactly equal to zero.

Allowing for numerical inaccuracies, the given injection, z, also
satisfied equation (4.33) for a number of different pairs, z, and z.. Results are shown
in Table 4.12 for the pairs defined by the sum and difference, respectively, of the
"valid solution" and Solutions 2-5 of Table 4.10.

Table 4.12. Specified Injection as the Sum of two Injections on Singular Surfaces of

R,

|| (2 + 2)/4 |

“__ 2, Sol (1+2) | Sol (1+3) | Sol (1+4) | so1 (145) i
0.20 0.20 0.20 0.20 0.20
045 045 045 045 045
1040 040 040 040 040
060 060 2060 20,60 20,60
0.15 0.15 0.15 0.16 0.16
0.05 0.05 0.05 0.04 0.04
0.10 0.10 0.10 0.10 10.10
1.00 1.00 1.00 1,00 1.00

" 1.1236 1.1236 1.1236 1.1236
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4.10.3 Number of Solutions and Singular Surfaces of R,

It is known that the number of load flow solutions depends on the
topology of the network and the location of the given injection in the injection space.
It is also known that injections close to the zero injection vector have the most
solutions {15,19] and those close to the maximum power transfer capacity have a very
small number of solutions. These factors are now discussed in terms of the ideas

presented in the preceding sections.

4.10.3.1 Position of Injection in R,

Based on the above considerations, one can surmise that the number
of solutions to a given set of load flow equations z = F(x) depends on the number
of pairs z, and z, that satisfy equation (4.33). If there are n solutions, there will be
"C, such pairs of vectors. This also suggests that the number of muitiple solutions

should be even except when at least one of the solutions is a singular point.

One can attempt to explain the number of solutions in terms of the
relative positions, in R,, of the various pairs z, and z,. If the given injection is in a
portion of R, where the sum of many different pairs, z, and z, intersect, then it is
expected that there is a good chance that many of them will satisfy (4.33). On the
other hand, if the injection is in a section of R, where there are not many such

intersections, then there will be fewer pairs satisfying (4.33) and consequently, fewer
solutions.

4.10.3.2 Example

Figure 4.19 shows a "cross-section” of R, for the network of Figure 4.11
and the relative positions of the pairs z, and z,.
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=
AN
<

—o.5 kg2 N
z

-1

Figure 4.19. Feasibility Surface P,, Showing the Pairs z, and z,

Numerical tests on this simple network indicate that if z, lies on the
plane V;* = 0, then its z, lies on the hyperplane V;* = 0 and vice versa. On the
other hand, if z, is on the boundary portion of R, representing the constraints on the
power injection, its z, is on the intersection of the hyperplanes V2 = 0. It means,
therefore, that in the region of R, close to the origin of the z-space, in the vicinity
of the hyperplanes Vi = 0, there are several pairs, z, and z,, and consequently, the
sum of these pairs will also be in that region. Thus the likelihood of the sum of these
pairs intersecting is greater in that area of R,. There are less pairs, z, and z,, close
to the boundary portion of R, representing the constraints on the power injections.
As a result, there is less chance that the sum of this small number of pairs will

intersect in this area.

For this small system, it can be seen that the injections close to the
boundary portion of R, describing the conditions on the square of the voltage
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magnitude would have more solutions than injections close to the boundary portion

of R, representing the constraints on the power injections.

4.10.3.3 Structure of R,

The relationship between the multiple load flow solutions and the
singular surfaces of R, can be examined using a different approach. In reference [5],
it was shown that any injection, z, which is "close” to a singular injection, z,, has two
close solutions in the voltage space. These two solutions are in the neighbourhood
of a singular point, x,, which defines a jacobian matrix with nullity one. This fact will
be used to determine how the number of singular surfaces in R, is related to the
number of load flow solutions.

The generalised eigenvalue approach used to characterise R, finds N
(where N is the number of buses in the system) singular points in the x-space, for
every direction z,, which define jacobian matrices with nullity one. These singular
points define corresponding injections on singular surfaces in R,. Assume that these
N injections lie on m different surfaces in R,. Recall that at least two of the

injections lie on the boundary of R, so m < N-1.

Consider any injection, z, which is not feasible and therefore has no
real solutions. If z is moved in a direction such that it crosses the boundary of R,
at least two solutions will appear. As z approaches any interior singular surface,
every existing solution "separates” into two new solutions, Therefore when z has
moved across the m distinct interior surfaces there will be 2™ solutions. Since m <

N-1, the maximum number of load flow solutions must be at least 2™,
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CHAPTER V
CONCLUSIONS AND

RECOMMENDATIONS FOR FURTHER
RESEARCH

5.1 Conclusions

An analytical study of the load flow problem was undertaken in this
thesis. In particular, the quadratic nature of the load flow equations in rectangular
co-ordinates was examined in detail. The importance of this formulation of the load
equations to the understanding of the nature of multiple load flow solutions as well
as the nature of the load flow feasibility region was emphasised. Experimental

studies were done which confirm and expand on these concepts.

The main results and conclusions of this work are:

(i) The load flow equations of an N-bus system describe (2N-1) fully
quadratic hypersurfaces in a (2N-1)-dimensional space or alternatively, 2N quadratic

hypersurfaces and one hyperplane in a 2N-dimensional space.

(ii) The hypersurfaces defined by the real and reactive power injections are
hyperbolic. Furthermore, the surfaces defined by the reactive power injections are
"narrower” than those defined by the real power injections.

(iii) The matrices describing the real and reactive power injections have

four non-zero eigenvalues. The matrices describing the 2N-dimensional
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hypersurfaces have two identical pairs of eigenvalues. The matrices describing the
(2N-1)-dimensional hypersurfaces also have two pairs of eigenvalues but the two pairs
are identical only when the matrix defines an injection at a bus which is not
connected to the reference bus. The matrices describing the square of the voltage

magnitudes have two non-zero eigenvalues.

(iv) The eigenvectors of the matrices defining the (2N-1)-dimensional
hypersurfaces depend on the quantity G, / B,. This indicates that the position of
the reference bus, as well as the admittance to susceptance ratio of the line between
the bus at which the injection is specified and the reference bus, determines the
orientation of these hypersurfaces in the voltage space and consequently, the nature
of the intersection of these hypersurfaces.

v) If a set of load flow equations has multiple solutions, the solutions can
be expressed as the sum and difference of a vector that makes the load flow jacobian

singular and another vector in the null space of that singular jacobian matrix.

(vi) The sum and difference of any two of the multiple load flow solutions

make the load flow jacobian matrix singular.

(vii) Singular points in the voltage space may be obtained by finding the
eigenvectors of the generalised eigenvalue problem, [J(z;) - AJ(zy)] x = 0. The
matrices J(z,) and J(z,) are linear combinations of the matrices describing the
specified injections and z; is a vector which is perpendicular to a hyperplane that
intersects all the boundary points of the load flow feasibility region.

(viii) The load flow feasibility region, R,, consists of a convex cone lying on
or above a set of hyperplanes. The cone and hyperplanes define surfaces in R,. The
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injections on these surfaces are defined by vectors which make the load flow jacobian

singular.

(ix) Any feasible injection can be expressed as the sum of two injections on
singular surfaces of R,. At least one of these two injections must lie on the

hyperplane V*=0 where bus i is the slack bus.

5.2 Recommendations for Further Research

The work in this thesis demonstrated that the rectangular form of the
load flow equations highlights the relationship between, as well as the properties of,
the multiple load flow solutions. The following are suggestions for further research

in this area:

(i) It was established that the solutions of the load flow equations may be
obtained by finding the intersection of (2N-1) quadratic surfaces, some of which
quadratic surfaces are hyperboloids. If (2N-1) linearly independent vectors, z;, can
be found such that the linear combinations z,* z are positive, then the solutions of
the load flow may be obtained by finding the intersection of (2N-1) ellipsoids. It may
also be possible to use algorithms designed for positive definite matrices in this

approach.

(ii) The fact that any given injection can be expressed as the sum of two
injections on singular surfaces of R, can also be used to find the load flow solutions.
If a systematic method can be devised to find all such pairs for a given injection, then
the solutions of the load flow are simply the sum and difference of the vectors which
define these pairs of injections.
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APPENDIX A
REVIEW OF LOAD FLOW CALCULATION

METHODS

Al Introductory Remarks

The complexity of the load flow problem may be assessed by the fact
that after more than three decades of research, new results are still being presented.
One of the result of the tremendous amount of work that has been done in this area
is that the numerical tools for solving this problem have been very well developed
and documented [2]. The main considerations in the development of the numerical
techniques have been improving the rate of convergence, robustness of the algorithm,

storage requirements and computing time.

A.2 Numerical Methods for Load Flow Calculation

Load flow calculations were done by analog simulation techniques [36]
until the advent of digital computers in the 1950°s [37,38]. This provided the
motivation for developing iterative numerical techniques and fuelled indepth research

into all aspects of the load flow problem.

The first digital methods were based on the Y-matrix approach and the
Gauss-Siedel algorithm is a typical example. Its main feature is a low storage
requirement due to the sparsity of the admittance matrix, However, it is not very
robust and the number of iterations required for convergence increases with network

size. The convergence problems of the Y-matrix approach gave way to the Z-matrix
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methods [39]. These methods have better convergence properties but require a large

amount of memory because the impedance matrix is full.

The draw-backs of these early iterative techniques led to the
implementation of the Newton-Raphson method [40]. This method is based on the
solution of simultaneous non-linear equations and exhibits quadratic convergence.
The number of iterations is almost independent of the size of the network but the
iteration time is longer than that of the Gauss-Seidel algorithm. This is due to the
fact that the jacobian matrix has to be inverted. The introduction of optimally
ordered sparsity programming [41] made this task more efficient and the Newton-

Raphson method has now become the method of choice in the power industry.

The load flow equations may be expressed in either polar or
rectangular co-ordinates for use in the Newton-Raphson algorithm and the
convergence characteristics are different for each of the two forms. In reference [29],
Abe et al showed that the region of convergence of the rectangular form is larger but

less stable than that of the polar form. The rectangular version also requires more
storage.

There are other variations of the iterative load flow technique. One
of them formulates the problem as a nonlinear optimisation scheme with the square
of the power mismatches as the objective function [42}. Another approach solves for
the voltage variables as an explicit power series of the specified injections [44]. This

latter method utilises the rectangular form of the load flow equations.
There has been considerable modification of the original Newton-

Rapson algorithm and some variations was due, in part, to the analytical work that
was done on the load flow problem.
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Most notable of these improvements was the development of the fast
decoupled load flow method by Stott [43]. It neglects the weak coupling between the
real power and the voltage magnitude as well as between the reactive power and the
voltage angle. This method is fast, relatively simple and requires considerably less
memory than the full Newton-Raphson method. It is used extensively in steady state

security analysis where speed is one of the most essential considerations.

The fast decoupled load flow is not as reliable as the full Newton-
Raphson because some of the simplifying assumptions made in developing the model
do not always hold true. In particular, it is prone to failure when used on systems
in which the ratio of line resistance to reactance is large. There have been some
proposals to overcome this difficulty [45,46]. One such scheme introduces a fictitious
node in the middle of the offending line while another uses the concept of the
distributed slack bus. There have also been some variations to improve the
performance of the basic algorithm [47-49]. The theoretical foundation for analysing
the performance of the method is provided in [50] and expanded in [51].

The Newton-Raphson algorithm utilises a linearised version of the load
flow equation. A more accurate model including a second-order term has been
employed in load flow calculations [20]. In fact, the load flow equations in
rectangular form may be expressed exactly by the sum of the first three terms of the
Taylor series [21-23]. The objective is to improve convergence and reduce
computation time.

The second-order model has also been used to solve the ill-conditioned
load flow when the jacobian matrix is close to singularity [55,56]. Other recent
approaches to overcome the problems associated with the jacobian singularity include
using a different load model [57,58] and homotopy methods [59].
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The numerical load flow is an indispensable tool in the planning and
operation of power systems. Nonetheless, there are problems associated with it that

are inherent to all numerical procedures and it should be complemented by other
analytical approaches to the load flow.
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APPENDIX B
DERIVATION OF THE EIGENVALUES AND

EIGENVECTORS OF THE J, MATRICES

B.1 Introductory Remarks

The J; matrices describing the power injections are symmetric and very
sparse - containing only two non-zero rows and columns. This allows their
eigenvalues and eigenvectors to be determined explicitly. The dimensions of the
matrices may be either 2N x 2N or (2N-1) x (2N-1) where N is the number of buses

in the system.

B.2 The 2N x 2N Matrix

Any linear combination of real power injections can be written as

N
1!.:1Yipi = YTP = XIT JTTP X: (B- 1)

where

T = 1|diag(y) G+Gdiag(y) -diag(y) B+Bdiag(y)
v 2|diag(y) B-Bdiag(y) diag(y)G+Gdiag(y)

v is an arbitrary N x 1 vector, P is an N x 1 vector of real power injections, x, is the
2N x 1 vector [e fT] and e and f are the real and imaginary parts respectively, of the
complex voltage. G and B are the real and imaginary parts of the bus admittance
matrix.
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If v consists of zeroes everywhere except for o1 one in the ith position,
this particular vector will be denoted by @, Then, a'P is equal to P, and diag(a)G
is equal to ag’ where g is the ith column of the matrix G, Similarly, diag(a)B is
equal to ab” where b is the ith column of the matrix B, Therefore Jy; can be written
as

T T _o T T
Ja = 4 g +ga’ -ab’+bo (B.2)
=e 2 labT-ba™ agT+ga”

The search for the eigenvalues and eigenvectors of Jp; requires the
solution of

Japx, = Ax, (B.3)
or
1 a87+gaT -ebT+bal [e] - [e] (B4)
2|labT-ba” agT+ga” | |f f
Simplifying (B.4) results in
1 algTe-b7f) + ga¥e + ba’f s [e] (BS)
2 abTe+gTf) + gaTf-baTe f

Both sides of equation (B.5) are pre-multiplied by [@” 0"] where 0 is an N x 1 vector
of zeros to give

%[ara(gre-bf)+argare+arbarf] = Aale (B.6)

Since a® @ = 1, (B.6) may be simplified to
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@Te-bTf)+(eTg-20)aTe + aTha’f = O (B.7)
Also pre-multiplying (B.5) by [0T «] results in

SlaTu(dTe+gf)+aTga’f - a"baTe] = A o'f (B.8)

Equation (B.8) may be simplified to produce the following result
(bTe+gTF)+(aTg-20)a"f - «TbaTe = o (B.9)

Pre-multiplying (B.5) by [g¥ -b] results in

gTaigTe-bT1) + gTgate + g7baTf-bTa(bTe+gf) - bTga’f + bTbaTe] = AlgTe-b7P) (B.10)
Re-arranging and simplifying (B.10) gives

@Ta-20)(gTe~b7f) + (gTg+bTbyaTe - (bTa(bTe+gTf) = 0 (B.11)
Pre-multiply (B.5) by [bT g'] to get the following

1{bTa(gTe-b7f) + bTga"e + b7ba’f + gTa(bTe+g”f) + gTguTf-gTha’e] = A (BTe+g’f) (B.12)
Again, simplifying (B.12) gives

bTagTe-bTf) + (bTb+gT)a’f + @Ta-W)(bTa+gH = 0 (B.13)

Equations (B.7), (B.9), (B.11) and (B.13) can be put in matrix form as
follows
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I (B.14)

The following expression can be derived from the first two equations of (B.14)

[(@Tg-22)  aTb 1 o |[ aTe
-oTb («Tg-21) 0 1 aTf
(gTg+bTh) 0 eTa-24) -bTa ||gTe-b7f

0 (gTg+b™h) bTa  (gTa-22)| |bTe+g7f]

o O O O

gle-bf
b7e+g"f

(«g-21) «b
-aTs  (eTg-2A

“T‘-’l (B.15)
o’f

Substituting the right-hand side of (B.15) into the third and fourth equations of
(B.14) produces the following

@5 +b78) “"] . [ts’a 23 b7 M @7z-23) o7 «’en ] [0] (B.16)
8 aTf bTa  (gTa-22) -aTh  (aTg-22))|aTf] a
Simplifying (B.16) results in
Tp _ 53324 (nThY T
(81'8 +brb)I__ (g o 22-) +((I b) 0 o elr'[O] (B-17)
0 (8T« -2-2)*+(a”b)*|] |a7f] 1O

and "I" in (B.17) is the 2 x 2 identity matrix. Finally, the determinant of equation

(B.17) can be set to zero and the resulting equation

gTg + bTh - (gTa - 222 -(aTH)? = 0O (B.18)

solved for A. The roots are repeated. Each pair of the repeated roots is equal to
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_ gTa s /("B +(g7g+bTh)

A 2

From (B.18), it is evident that all the elements of the matrix in (B.17)
must be equal to zero. This means that a"e and a'f are completely arbitrary. This
fact can be used in (B.S) to derive the eigenvectors of the matrix defining the real
power injections. Note that ae and o'f represent the real and imaginary
components, respectively of the voltage at the bus under consideration. Choosing
[«"e a™f} equal to [1 0] for the first pair of eigenvalues and [0 1] for the second pair
and substituting them in (B.5) gives two eigenvectors for each pair of the non-zero

eigenvalues. The general expressions are

) [g+(za. -afg)a]

-b+(aTb)e

for the first pair 4;, A, and

| b-(aTH)e
g+(2A -aTg)a

for the second pair A,, A,. It can be easily verified that the four vectors are mutually

orthogonal.
The eigenvalues and vectors of the J, matrix describing the reactive

power can be derived following the same procedure. This amounts to replacing g

and b in the expressions for the real power with -b and g respectively.
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B.2 The (2N-1) x (2N-1) Matrix
In most load flow studies, the reference angle is set to zero, This can
be done without loss of generality. In this case, the dimension of the J; matrix may
be reduced to (2N-1) x (2N-1) by deleting the (N+s)th row and column from the
2N x 2N matrix. The reference bus is taken to be bus s. Recall that the slack bus

is also assumed to be the reference bus. The eigenvalues and eigenvectors of this

smaller matrix are now derived.

Once again, assuming that & consists of zeroes everywhere except a one

in the ith position, the J; matrix describing the real power injection now becomes

Jrp=d agTrga’ baT-abD-(baT-abl)p)pT (B.22)
(abT-baT)-p(pT(abT-baT) (agT+gaT)-((ag T+ga”INPT-P(PNag e ga")

where g is N x 1 vector containing zeros everywhere except a "1" at the sth position
and bus s is the slack bus.

The system of equations to be solved is again

JrpX = Ax (B.23)

Using the fact that 8™f is equal to zero since f, is equal to zero and also that a8 is
equal to zero since power injections are specified for buses other than the slack bus,

equation (B.23) may be written as

1 a(@Te-bTN)+gaTe+a’f ] Y [;] (B.24)
2ladTe+gTf)-baTe+rga’f+P(PToaTe-pTga’s)

Pre-multiplying (B.24) by [«” 0], the following expression is obtained
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gTe - bIf+ (aTg-2M)a"e + «ThaTf =0 (B.25)
Pre-multiplying (B.24) by [07 <] and simplifying gives
bTe + g7f - (@Tg-2M)a"f - «Tba"e = 0 (B.26)
Again, pre-multiplying (B.24) by [gT -bT] and simplifying results in
(§7a-20)(g7e-bf)-bTalbTe+g /) +(gTg +bTb-(bTBY)aTe + (bTBgTPaTf = O (B27)
Pre-multiplying (B.24) by [b" g'] and simplifying gives
bTa(gTe-bT1)+(gTa-2AXbTe +g7f)+ (g TRbTR)aTe +(6Tb+g Tg - (BTgM)a’f = 0 (B.28)

Equations (B.25) - (B.28) can be put into matrix form as follows

(x7g-21) a’h 1 0 a’le 0
-aTh (aTg-22) 0 H a’f .o (B.29)

gTg+bTh-(pTH)? BTbpTe («Tg-23) -a"b |lgTe-b7f |0

BTbpTs  bTbegTg-(BTe)  oTb  (aTg-2M)[bTe+g”s) (O

The first two equations in (B.29) are identical to those in (B.14). Again, they are
used to find the expression given in (B.15). This expression is substituted into the
last two equations of (B.29) to get

aTe

aTf )

78 +b7b-(BTH -(uTB}-(aTg -2)9) BTgB7b ]
2 0

pTgp™s 8Tg +bTo-(pTg)* - (a¥b) -(aTg-21)

[O] (B.30)

Finally, the determinant of the matrix in (B.30) can be set to zero to solve for the
eigenvalues. There are two pairs, one of which is identical to the expression in
(B.19). The other pair is given by

) = 870 & VeTgrdTo-(ah) - (BT - (87D

2
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In this case, a"e and «'f are no longer arbitrary. For the pair of
eigenvalues in (B.19), the relationship between them is

afe = :—:_i alf (B.32)

Choosing a'f equal to "1" and substituting (B.32) in (B.24), the following expression

is obtained for the eigenvector corresponding to those eigenvalues

QA- arg+a7(:—:i]b) ®+g -(—'&)b

87b

(«7h+ a’(ﬂi)g —21(&))01 —b-(a—rx)g
pfb afb be

For the eigenvalues in (B.31), the relationship between ae and a'f is

oTf = _[ B_’g]are (B.34)

The eigenvector corresponding to these eigenvalues is

~(«Tb+ ar[a—r‘-)g -2 ).(B—"‘-})a +b +(°—r€)g
al‘b p'l'b ’Tb

T B’ _| 87
QRA-a g+a’(a—r‘b)b)a +g (,,_r:]b

As in the first instance, the eigenvalues and eigenvectors of the J;
matrix describing the reactive power injection may be obtained from those of the real
power injections by replacing g and b in the expressions for the real power with -b

and g, respectively. The derivation is identical.
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These expressions were checked against the Matlab function used to
obtain the eigenvalues and eigenvectors of a matrix, The derived eigenvalues were
identical for both the 2N x 2N and the (2N-1) x (2N-1) matrices were identical to
those found by the Matlab routine. The eigenvectors with only one arbitrary

component (smaller matrix) were also the same.
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EXAMPLES OF THE (2N-1) X (2N-1) MATRICES

DESCRIBING SPECIFIED INJECTIONS

Some examples of the symmetric matrices describing the specified

injections of an arbitrary 3-bus system are now presented.

With N being the number of buses in the system, the 2N x 2N matrices
(Jp;) describing the real power injections are:

26, G, G, 0 -B, -By
G, 0 0 B, 0
;- G, 0 0 -B, O (C.1)
o =
' 0 B, B, 2G,; Gy Gy
-8, 0 0 G, O
-B,, 0 0 G; O
and
0 G, 0 0 -B, 0
n 2Gy Gy -By, 0 -By
5 - G, 0 0 B, 0 (C2)
i "By 0 0 Gy
By 0 By G, G, Gy
0 -8, 0 0 G, 0
and
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(C3)

If bus s is chosen as the reference bus, the (2N-1) x (2N-1) matrix may
be obtained from the 2N x 2N matrix by deleting the (N +s)th row and column of the

matrix Js; which is defined as

I, = (MY Js, M (C4)

For a 3-bus system with bus 1 as the reference bus and the reference

angle equal to &, the matrix M is given by

1 00 0 00
0 10000
01000

P (C.5)
tand, 0 0 -1 0 0
0 00010

| 0 00 0 00

The inverse of the matrix M is equal to M so for P,, Js; as defined in equation (C.4)
is
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0 G, -B,tand, 0 0 B, +g,tand 0
G,; - B, tand, 2Gy, Gy By 0 By
0
5 - G,, 0 0 B, 0 ()
: 0 B, 0 0 -G,,
By, +Gytand, 0 B, -Gy 2Gy, Gas
0 -B,, 0 0 G, 0 |
Similarly, the matrix describing P, is
0 0 G,-B,tand, 0 0 B, +G,tand]
0 0 G,, 0 © B,
Is Gy, -Bytand; G;, 2Gy; B, -By 0 (C.7)
Fa 0 0 B,, 0 0 -Gy,
0 0 -B,, 0 0 G,,
By, +Gyytand, B;, 0 G; Gy, 2Gy,

The (2N-1) x (2N-1) matrix is obtained by deleting the 4th row and
column of Jsp. Note that only four elements of this matrix which are different from
the original J;, matrix with its (N+s)th row and column deleted: the (s,i)th, (i,s)th and
the (s,N+i)th and (N+i,s)th elements, where i is the bus at which the injection is
specified. The matrix for the reactive power may be obtained by replacing G and B

with -B and G respectively.
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