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ABSTRACT

Sorne analytical properties of the load flow problem are examined in

this work. In order to facilitate this, the load flow equations are expressed in

reclangular co-ordinates.

Each load flow equation is formulated as a fully quadratic form and the

nature of these quadratic forms is studied in detaiI. The eigenvalues and

eigenvectors of the matrix in each equation are derived and their significance to the

nature and existence of load flow solutions is discussed.

An experimental study is also done on the load flow feasibility region

which is defined. in the space of net real and reactive powers as weil as the voltage

magnitudes squared. for a general power network. The network is assumed to consist

of a slack bus, voltage control buses and load buses. This region is characterised by

aU injections for which there is a real voltage solution to the load flow equations.

The geometric nature of the region and its relationship to the number of load flow

solutions are examined.
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RESUMÉ

Cette thèse se concentre sur certaines propriétés analytiques du

problème d'écoulement de puissance. Afin de faciliter l'analyse, les équations

d'écoulement de puissance sont exprimées en coordonnées rectangulaires.

Chaque équation d'écoulement de puissance est formulée de façon

quadratique complète et la nature de ces équations quadratiques est étudiée en

détail. Les valeurs et vecteurs propres de la matrice de chaque équation sont dérivés

et leur sigl'lification quant à la nature et l'existence de solutions au problème

d'écoulement de puissance est abordé.

Une étude expérimentale est également effectuée sur la région de

faisabilité du problème d'écoulement de puissance qui est définie, dans l'espace des

puissances réelles et réactives ainsi que du carré des grandeurs de tension, pour un

réseau de puissance quelconque. Il est entendu que le réseau est constitué d'une

barre d'oscillation, de barres à tension contrôlée et de barres à charge. Cette région

est caractérisée par toutes injections pour lesquelles il y a une solution réelle de

tension aux équations d'écoulement de puissance. La nature géométrique de la région

et sa relation avec le nombre de solutions du problème d'écoulement de puissance

sont analysés.
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CHAPTER 1

INTRODUCflON

1.1 General

A modern power system is a very complex electrical network which

usually includes generation sites, transmission !ines, substations, interconnections,

distribution networks and a variety of loads. Its function is to convert non-electrical

energy into electrical energy and make this electrical energy available to consumers.

The increasing size and complexity of these systems have made their operation very

challenging - a challenge that has been met, in part, by the use of sophisticated

control and communications systems.

In recent years, the demand for a re!iable and secure electric power

supply has had to be balanced against dwindling natural resources, a depressed

econornic climate and growing environmental concerns about the electric power

industry. These often conflicting factors have made the operation of large power

networks even more chaUenging. As a result, in spite of an expected modest growth

in the demand for electric energy over the next decade (in the U.S.A., only 1.3 to

1.9% annually up to 2010 [64)), people involved in power systems planning and

operation must continue to devise ways of resolving these conflicting factors.

1.2 Background and Motivation
Several computational problems are associated with the planning and

operation of power systems [28]. Among these are fault analysis, for selecting the

protection equipment; transient stability studies, used in assessing the impact of

disturbances on the system; state-estimation, to provide data for use in on-line

monitoring and control; econornic dispatch, which seeks to maximise the efficient use
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of resources; and the load flow, which analyses the steady state performance of the

power network.

The load flow is one of the most frequently used of the above­

mentioned tools. For a specified network and loading condition, the load flow

analysis determines the complete state of the system. This information determines

whether or not a specified power demand can be met by the given network and, if

it can, whether the operating conditions satisfy predetermined engineering and

security constraints. These constraints include bounds on the system voltages as weIl

as limits on the .;apacity of transmission lines and the reactive power sources. These

constraints must be satisfied for both the intact system and the system resulting from

any probable contingency.

The importance of load flow studies in power system analysis is

underscored by the volume of research that has been done in this area. A sample

of these works can be found in references [1-27,29,33-35,37-59]. Although there is

a sentiment that not many new contributions can be made to such a widely

researched field of study, new insights can always be gained from approaching the

same problem in a different way.

Therefore, this study has been undertaken with the purpose of

expanding our basic knowledge about the nature of the load flow problem.

1.3 Dermition of the Load Flow Problem
1.3.1 General

The components of an interconnected power system include numerous

transmission Iines and "buses". At such buses, power is being injected into the

2
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network by generators or is being drawn from the network by the system loads. The

transmission Iines serve as a route for the flow of power from one bus to another.

A constant system frequency indicates that a balance is kept between the generated

real power and the real power demand as weil as the system losses [36].

Power flow or load flow analysis is concerned with determining how a

given set of loads can be supplied by a given set of generators. The load flow

problem involves the formulation of a suitable mathematical model of the network,

the specification of power and voltage constraints at the buses and the numerical

computation of the power flow equations subject to the specified constraints [36].

1.3.2 Load Flow Equations

The load flow equations express the net injected bus powers as a

function of various bus voltages and, as such, are non-Iinear. In addition, since they

describe the behaviour of a static system, they are algebraic. The equations are

developed using network theory and full d.:tails are given in Chapter Ill. A brief

introduction is now provided.

The complex power, Si' injected into bus i of the network is givcn by

(1.1)

•

where Pgi and Qgi are the generated real and reactive powers, while Pdi and Qdi are

the real and reactive load powers. Equation (1.1) can also be written as

3
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(1. 2)

where Vi is the complex voltage at bus i, Vk' is the complex conjugate of the voltage

at bus k and Yik is the (i,k)th element of the bus admittance matrix. Separating (1.2)

into its real and imaginary parts yields, in polar coordinates,

(1. 3)

(1.4)

where Iii is the voltage phase angle at bus i and 6ik is the angle of the (i,k)th element

of the admittance matrix. In rectangular coordinates, these equations are expressed

by

(1.5)

(1. 6)

•

where el and fi are the real and imaginary parts of the complex voltage and Gik and

Bik are the real and imaginary parts of the (i,k)th element of Y.

There are therefore 2N such relations for an N-bus system.

1.3.3 Classification of Variables

Each of the above load flow equations contains six variables, PBi' OBi'

Pdi, Odi' Vi and Iii' The classification of these variables as given and unknowns is

4
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dictated by the different buses in the system. In general, there will be different

known and unknown quantities associated with each bus. For a given set of these

quantities, the load flow calculation determines the remaining unknown variables.

This is discussed in more detail in Section 3.2.

1.4 Scope ofWork
The work in this thesis addresses itself to an investigation of sorne basic

analytical properties of the load flow equations. To this end, each equation is

formulated as a fully quadratic form in rectangular co-ordinates. The nature of this

quadratic form is exarnined as weil as its relationship to the multiplicity and the

existence of load flow solutions.

In addition, an experimental study is done on the nature of the /oad

flow feasibi/ity region. This region characterises ail the possible injections for which

there is a real voltage solution to the load flow equations. The study is based on

concepts presented in [9,25,26). Special emphasis is placed on how the structure of

this region deterrnines the general nature and the number of multiple load flow

solutions.

1.5 Outline of the Thesis
The thesis is organised as follows:

Chapter n
This chapter contains a review of sorne of the work that has been done

on the analytical aspects of the load flow equations. Included in this review are

5
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algorithms to find multiple load flow solutions, the relationship between multiple

load flow solutions and voltage stability and conditions for the existence of load flow

solutions.

Chapter III

The formulation of the load flow equations in rectangular co-ordinates

is presented in this chapter. The quadratic nature of this formulation is examined

in detaii and the way in which this property impacts on the solution of the load flow

equations is examined.

Chapter IV

In this chapter, general properties of the load flow feasibility region are

presented and the structure of this region is examined. The relationship between the

structure of this region and the nature as weIl as the number of load flow solutions

is also studied. The results of numerical simulations are provided.

Cha,pter V

This chapter contains the conclusions of the research and

recommendations for further study.

6
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REVIEW OF LITERATURE

2.1 Introductory Remarks
The load flow problem has been an active field of research for more

than three decades and numerous contributions have been made to this important

area of power systems analysis. The research effort can be c1assified broadly into two

areas - the development of numerical tools required to solve the load flow equations

and the comprehensive understanding of sorne of the analytical properties of these

equations.

The work on these two aspects of the load flow problem has often

complimented each other. More efficient numerical algorithms have been conceived

as a result of a better understanding of the analytical properties of the load flow

equations [43] and also observations on the behaviour of numerical procedures for

solving these equations have been the motivation for work on theoretical

explanations for certain load flow phenomena [5].

Foremost among the analytical properties of the load flow equations

are the non-uniqueness and existence of solutions. There is an abundance of

Iiterature on this subject and in this chapter, a brief review of sorne of the work that

has been done on these two important questions in load flow studies is presented.

The evolution of the numerical procedures is outlined in Appendix A.

7
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2.2 Multiple Load Flow Solutions

2.2.1 General

The load flow equations are a set of simultaneous nonlinear equations

and in general, such equations will have more than one solution. Very often, for a

given set of operating parameters, oruy one of the solutions of the load flow

equations corresponds to a practical stable equilibrium point in the sense that the

solution will persist even when the system is subjected to small perturbations [6].

Such a solution is usually referred to as a "valid" operating point.

The other solutions are more than just a mathematical curiousity and

their engineering significance has been confirmed by studies done on voltage stability,

for example the work reported in [6]. One interpretation of multiple load flow

solutions is that they represent ail the possible states through which a network may

pass in response to a disturbance [17]. It is important to note that the load flow

equations satisfy the fundamental laws (namely Ohm's and Kirchoffs) of circuit

theory and as such, ail the states described by the multiple solutions can be physically

realised [1]. Of course, most of them can exist oruy under abnormal operating

conditions.

2.2.2 Methods for Finding Multiple Load Flow Solutions

In this section, sorne of the numerical techniques for finding multiple

load flow solutions are discussed. It must be mentioned that most of these methods

were developed as a result of a sound understanding of sorne of the basic properties

of the load flow equations. The rectangular version of these equations highlights

sorne of these properties and was used in one of the earliest algorithms to find the

multiple solutions [1]. Since then, this formulation of the load flow equations has

been used in numerous other numerical schemes [2,3,4].

8



•

•

C/Ulpter li: Rel'iell' of Lilemlllre

One of these numerical procedures [2] has been designed specifically

to locate a pair of solutions which are close to each other. Such a situation arises

when the operating point is near to a point at whieh the load flow jacobian is

singular. The authors use, as the basis of their algorithm, the interesting faet that

these two solutions and the singular point lie approximately in a straight line.

The more general methods described by Tamura et al, [3,4], have been

developed to find a11 the possible solutions. The success of these methods depends

on the robustness of the numerical algorithm used and the availability of suitable

initial guesses. The authors use the Newton-Raphson technique with the optimal

multiplier [7] to make the algorithm more robust. In [8], it is argued that even this

improvement is not enough to guarantee that the approach in [4] would find al/the

solutions.

The algorithm in [3] uses the fact that, in rectangular co-ordinates, each

load flow equation describes a quadratic form. Based on the general solution of

quadratic equations, it is assumed that any two solutions of the load flow can be

represented by the sum and difference respectively, of two vectors. Conditions which

these two vectors must satisfy are derived and those conditions are used to generate

suitable initial guesses to find a11 the load flow solutions. Results are presenled for

a 3 and a 6 bus systems.

It is known that sorne load flow solutions are characterised by unusually

low voltage magnitudes at various buses. Tamura et al [4] use this property as the

basis of another algorithm. This approach is similar to the one proposed in [1].

Assuming that at least one solution is known, a local analysis is performed at each

bus, again exploiting the properties of the rectangular load f1ow, in order to obtain

an analytical expression for a guess of the low voltage solution at that bus. This

9



•

•

C/zapter II: Review of Literature

procedure provides a systematic way of obtaining Z(N.l) initial guesses. Tne authors

report the greatest success when the initial guess contains a low voltage guess at only

one of the buses. This observation led to a simplified method which required the use

of fewer initial guesses and found solutions which are similar to a "valid" operating

point.

A different approach reported by Salam et al [10] uses a homotopy

method to find the multiple solutions. An augmented form of the load flow

equations and a polynomial with known solutions are used to construct an homotopy.

The load flow solutions are found by tracing 2NCN homotopy curves, starting at the

solutions of the polynomial. This method requires a fairly large computational effort.

One of the latest contributions in this area, by Thorp [8], uses a

continuation method with a parameterised version of the load flow - a formulation

which is similar to the one used in reference [11]. The theoretical foundation of the

algorithm is based on the topological structure of the solution set of these

parameterised equations. This solution set consists of a set of smooth curves which

connect the load flow solutions to each other. AIl the solutions may therefore be

found by tracing a number of these smooth curves which forrn a connected graph.

The curves are traced by the continuation method using a known solution of the load

flow as the initial and termination point.

The method is guaranteed to find ail the solutions in a maximum of

(Ns/Z) steps, where s is the number of solutions and N, the number of buses in the

system. The resuits from a 5-bus and a 7-bus system show that a smaller number of

traces is required to find all the solutions when the reactive power is included in the

parameter set that is used. The efficiency of the method would be even better if the

number of solutions were known a priori.

10



•

•

C/zapter Il: Review of Literatllre

There are other methods which, although not designed specifically for

tïnding the multiple solutions, can do so. One such method [12], and a modification

of it [11], are used to generate quasi steady-state load f10w trajectories. A

parameterised version of the load f10w equations is also employed. This method was

applied to small systems and in the course of producing the solution loci, ail load

flow solutions were found.

2.2.3 Analytic Approaches to the Multiplicity of Load Flow Solutions

The non-uniqueness of the load f10w solutions has been analysed in

many different contexts. The need to investigate this question first became evident

in the course of transient stability studies [13]. The relationship between transient

stability and multiple load flow solutions is due to the fact that the solutions of the

load f10w equations represent the equilibrium or singular points of the "swing"

equations which describe the dynamic behaviour of the power network [15]. These

equilibrium points are usually classified as either stable or unstable and are used to

define a hypersurface enclosing the initial states for which transient stability is

guaranteed [11].

Korsac [14] and Baillieul and Byrnes [15] showed that stable load f10w

solutions are not necessarily unique. The argument used is that the load flow

equations define a topological manifold and the dynamic equations define a vector

field on this manifold. The solutions of the load flow are therefore the critical points

of this vector field on the manifold and may be studied by a global analysis of vector

fields on manifolds. The stability of the solutions must be checked by methods such

as Lyapunov functions. The stable solutions are defined as points at which the

energy functions are at a minimum.
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A less mathematical approach to the multiple solutions, in particular

non-unique stable solutions, is presented by Johnson [16]. The physical

characteristics of the system and the way in which reactive power limits are handled

by system models are used to explain the occurrence of multiple solutions. Cases are

cited where multiple solutions occur due to deficiencies in the representation of

certain system components. It is also suggested that sorne physically realisable

multiple solutions may not be found by the traditionalload flow.

A novel method presented by Priee [17] uses a numerical technique to

produce a two-dimensional graphical display that prediets the occurrence, nature and

number of multiple solutions, among other things. It also shows the effects of

parameter variations and changes in system structure on the nature of the solutions

and on the overaIl performance of the system. This method is a generalisation of the

elementary circle diagram and uses a set of constraints which are different from the

"bus-type" constraints employed in the conventional load flow. This is one instance

where local geometry is used to obtain global information about power system

behaviour [18].

Another approach to the study of the multiple solutions has focused on

the role of the singular jacobian matrix. Tavora and Smith [19] reported results on

such a study for a lossless three bus system with generators at all buses. They

showed that the conditions which make the jacobian singular, define surfaces in the

state space and that the maximum possible number of load flow solutions is equal

to the number of "central" points in that space. The properties of these surfaces and

their mapping into the parameter space are also exarnined. It was established that

two solutions are introduced whenever a boundary of any surface in the parameter

space is crossed.
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In a recent work, Galiana and Zeng [5] provided a theoretical analysis

of the mechanism producing multiple solutions in the vicinity of a jacobian

singularity. It was established that the pair of solutions which was observed to occur

close to such a point, is due to the fact that a change in the system parameters

produçes a corresponding change in the system variables which contains components

in both the positive and negative directions of the null vector of the singular

jacobian. This is an extension of the earlier results presented by Galiana [9] and

Tamura et al [3] that solutions to the load f10w are given by the sum and difference,

respectively, of a point of jacobian singularity and a vector in the null space of the

singular jacobian.

A more formai mathematical treatment of multiple load f10w solutions

has used bifurcation theory to analyse their existence and characteristics [20].

Conditions are derived which define the bifurcation points in the state space. At

these points, the nature of the solution set changes and new solutions "appear" or

"disappear". The bifurcation points correspond to points where the jacobian is

singular.

2.2.4 Number of Solutions

It is known that the number of solutions of the load f10w equations

depends on the topology of the network and the position of the given injection in the

injection space and a1so, for a given network, the number of solutions decreases as

the load increases. However, there has been no reported method to pre-determine

the number of solutions except for very small systems.

The number 2(N'!l, where N is the number of buses in the system, has

been proposed as an upper bound on the maximum number of solutions. However,

this is contradieted by a thorough analytical treatment of the subject for a lossless
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three bus system consisting of three generator buses [11,15,19] which revealed that

for certain injections and network structures, up to six solutions may exist. Baillieul

and Bymes [15] apply sorne results from intersection theory and algebraic geometry

to establish an upper bound, (2N-2)C(N.])' on the number of solutions for lossless

system with generator buses. In their analysis, the 2(N.]) solutions are considered to

be elementary solutions and they show that other non-elementary solutions may exist.

2.3 Voltage Stability and Multiple Load Flow Solutions

No discussion on multiple load fIow solutions is complete without a

mention of their relationship to voltage stability. Voltage stability is itself a very

complex phenomenon. It is generaIly agreed, that steady state methods cannot

adequately explain aIl the observed phenomena and dynamic considerations must be

inc1uded.

As mentioned previously, the multiple load fIow solutions correspond

to the equilibrium points of the dynamic equations of the network. As a result, there

have been efforts to use the relationship between the load fIow jacobian and the

system state matrix [21] to analyse the characteristics of the various equilibrium

points. This information is useful in explaining the different types of voltage

instabilities.

In most cases, there is at least one stable equilibrium point (not a/ways

the case [20]). At this point, aIl the eigenvalues of the load fIow jacobian have

negative real parts. The other equilibrium points may be classified by the dimension

of their unstable manifolds [15] or by the number of eigenvalues of the load fIow

jacobian that have positive real parts. At a "type one" solution the real part of only

one of the eigenvalues is positive. The other unstable equilibrium points define

14



•

•

Chapter Il: Review of Literatllre

jacobian matrices having more than one eigenvalue with a positive real part and are

regarded as being of type greater than one.

One type ofvoltage instability is voltage col1apse which is characterised

by a large drop in voltage magnitudes at sorne buses in the system with fairly

insignificant changes in the phase angles [6]. This results in loss of steady state

stability. For typical power system models, it has been shown [22] that such an

instability is caused by a saddle-node bifurcation between a stable operating point

and a "type one" equilibrium point.

In an approach to voltage collapse based on energy methods, Overbye

and DeMarco [6] use the properties of these "type one" unstable equilibria to predict

the most likely areas of voltage collapse in a given network. They report extensive

numerical results which indicate that these "type one" equilibrium points are in fact

the solutions found by the simplified method of reference [4].

Another type of voltage instability involves oscillation of the system

voltage. This is usually referred to as angular instability and occurs as a result of

Hopf bifurcations between a stable operating point and low voltage solutions of type

greater than one. A more thorough discussion of bifurcation phenomena in power

systems can be found in references such as [24].

2.4 Existence of Load Flow Solutions
The load flow equations describe a mapping of the entire voltage space

into a subset of the injection or parameter space. Therefore, for any given network,

there are sorne injections for which no inverse relation exists or in other words, no
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physically realisable voltage can satisfy the given operating constraints. This fact may

be deduced from physical as weil as mathematical considerations.

Those injections for which a real solution of the load f10w exists,

characterise the load f10w feasibility region. Points on the extreme boundary of this

region define points of maximum power transfer of the network. The precise

geometry of this region is unknown except in the simple case of a two-bus system.

However, it has been proposed [9,25] that the boundaries of the region consist of a

cone and a set of hyperplanes. A recent report [27] provides additional information

on the radius of curvature of this region.

In [19], one of the earliest efforts is made ta examine the characteristics

of the load f10w feasibility region. A conjecture is presented that this region may be

totally encIosed by a set of hyperplanes. A method to systematically characterise this

region was proposed by Galiana [25]. Jarjis, [26] expanded the method in [25] and

developed necessary and sufficient conditions for the existence of a load f10w

solution. A method was devised, quite apart from the numerical approach, to

determine whether a real voltage solution exists for any given injection.

The works reported in [11,17,19] aIl provide graphical methods of

predicting the existence of load f10w solutions and apart from [17], these methods are

amenable only to very small systems. Not much has been presented on this subject

for general power networks and very often, the existence (or lack thereot) of load

f10w solutions must be inferred from the divergence of the numerical procedure.

The challenge still remains to find a simple method, such as would be

applicable to on-Iine security assessment, which would determine whether or not

there is a solution to the load flow equations for any given operating conditions.
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ANALYTICAL PROPERTIES OF THE

LOAD FLOW EQUATIONS

3.1 Preliminary Remarks

The load flow equations describe conditions which must be satisfied so

that a balance is kept between the power that is generated and consumed in an

electric power network. These equations may formulated in either polar or

rectangular co-ordinates and while the polar formulation appears to be well suited

to numerical calculations [29], the rectangular version is more amenable to analytical

studies.

In this chapter, the equations are formulated in rectangular co­

ordinates in a way that specifically includes an equation for the specification on the

reference bus. This makes all the equations fully quadratic and the analytical

properties of these quadratic equations are analysed in detail.

3.2 Power System Mode)
The AC power network in its sinusoidal steady-state, is assumed to be

a balanced three-phase system. As a result, it may be represented by its single-phase

positive sequence network. The components of the network are usually modelled as

follows: the generators are considered to be constant-voltage power sources, the loads

are treated as power sinks and the transformers and transmission lines are

represented by lumped pi-networks [36].
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There are four quantities associated with each bus in the network - the

net real power, the net reactive power, the voltage magnitude and the voltage phase

angle. These are elements of the set of flXed constraints which must be satisfied and

two of them have to be specified at each bus. The choice is usually dictated by the

componems which are connected to the particular bus.

The buses are classified according to the quantities that are specified.

At a PV or voltage-control bus, those quantities are the net injected real power and

voltage magnitude. At a PQ or load bus, the net injected real and reactive powers

are both specified and at the reference bus the phase angle is specified. Because the

system losses are not known a priori, the real power injected into at least one bus

(one to which a generator is connected) cannot be specified. This bus is known as

the slack or swing bus. Generally, the slack bus is also chosen as the reference bus.

These modelling assumptions form the basis for predicting the power

flow on an electric power grid.

3.3 Formulation of the Load Flow Equations in

Rectangular Co-ordinates
3.3.1 2N Equations

In an N-bus system, let Zj denote a specified quantity (P, Q or V2) at

bus i. This quantity can be expressed as the following quadratic fonn in x,.

(3.1)

•
where x,. is the 2N x 1 vector of the real and imaginary components of the node

voltages,
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(3.2)

and where Ji is a 2N x 2N constant real symmetric matrix defined by the type of

injection and the admittance matrix [25].

Equation (3.1) is derived as follows: the complex current injected into

the buses of an N-bus network may be written as

l = YV (3.3)

(3.4)

where 1 is an N x 1 vector of complex current injections, Y is the complex N x N bus

admittance matrix and V is the N x 1 vector of complex bus voltages. In power

systems however, complex power.l', not currents are known. From circuit theory, the

net injected bus powers are given by

S = diag(V) l'
= diag(V) (y v)'
= P + jQ

where S is an N x 1 vector of complex bus powers, diag(V) is an N x N diagonal

matrix of complex voltages and P and Q are N x 1 vectors of net real and reactive

power injections respectively. If V is replaced bye + jf and Y by G + jB in equation

(3.4) and the resulting expression is simplified, the real and imaginary parts of S

become

and

P = diag(e) [Ge - Bf] + diag(f) [Gf + Be]

Q = diag(e) [-Gf - Be] + diag(f) [Ge - Bf]

(3.5)

(3.6)

•
where diag(e) and diag(t') are N x N diagonal matrices with diagonal elements equal

to e and r respectively.
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For any arbitrary N x 1 vector of real constants, y, and an N x 1 vector,

z, of specified injections, the following is true

(3.7)

If z is a vector of real power injections, a linear combination of these injections is

given by

T _ T 1 [diag(y) G+Gdiag(y) Bdiag(y) - diag(y) Bl (3. sa)
y p - x r "2 -Bdiag(y) +diag(y) B diag(y) G+Gdiag(y)J x r

Similarly, if z consists of reactive power injections it follows that

T = T .![-diag(y) B-Bdiag(y) Gdiag(y)-diag(y) G] (3.9a)
y 0 X r 2 -Gdiag(y) +diag(y) G -diag(y) B-Bdiag(y) X r

where diag(y) is an N x N diagonal matrix with y as the diagonal elements and x,. is

as defined in equation (3.2).

If Y consists of zeroes everywhere except for a one at position i, yTp

and yTQ are equal to PI and QI respectively and equations (3.Sa) and (3.9a) represent

the real and reactive powers at bus i. This particular y is now defined as Il and

(3.Sa) and (3.9a) may be simplified to

llTp = X T
r

(3.8)

•

and

where g and b are the ith column of G and B respectively.
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The square of the voltage magnitude at bus i may also be written in a

similar way as

T 2 T[diag(lX) 0]lXV =x . X
r 0 d~ag(lX) r

(3.10)

where V2 is an N x 1 vector of voltage magnitudes squared, diag(a) is an N x N

matrix with a as the diagonal elements and 0 is an N x N null matrix.

RecaU that one of the voltage angles is usually specified to provide a

reference for the other angles. The components of the reference bus vol tage, y., are

related to each other by [65]

where ô. is the reference angle and bus s is the reference bus. This equation may

be re-written as

or as

(3.12b)

•

where a. is a 2N x 1 vector of zeroes except for ils sth and (N +s)th entries which are

equal to tan Ô. and -1, respectively. Note that (3.12b) describes a hyperplane through

the origin.

At each of the PO and PY buses in the system, therefore, there are two

quadratic algebraic equations describing the specified injections. At the slack bus

there is one quadratic equation describing the voltage magnitude squared while at

the reference bus, there is an additional equation specifying conditions in equation

(3.12). The specified injections fOTm (2N-1) non·linear equations and along with
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(3.12) constitute 2N load flow equations, in 2N unknowns, which characterise the

static behaviour of the power system.

3.3.2 (2N-l) Equations

Equation (3.12) may be used to reduce the number of equations and

unknowns by one. In most cases, however, the slack bus is taken as the reference

bus and two unknowns are eliminated. The resulting (2N-2) equations are no longer

fully quadratic but have a linear term in x describing the specification on the

slack/reference bus [3,44].

The formulation here retains the equation for the slack bus and uses

equation (3.12) to eliminate the variable Cs which is the quadrature component of the

voltage at the reference bus. A generator bus is usuaIly chosen as the reference bus.

This produces (2N-1) purely quadratic equations in (2N-1) unknowns. This implies

that the dimension of the Ji matrices is reduced to (2N-1) x (2N-1). The reduced

matrix may be obtained from the 2N x 2N matrix as foIlows:

First, define a new variable, d = M x.. where

M = l - mm T + mu Ts (3.13)

1 is a 2N x 2N identity matrix and ID is a 2N x 1 vector of zeroes except for a "1" at

the (N +s)th position. The matrix M is similar to the identity matrix but its (N +s)th

row describes the condition in (3.12a). Equation (3.1) can then be re-written as

Zi = dT (M-l) T Ji M-l d
= dT JSi d

(3.14)

•
where Ji is as defined in (3.8), (3.9) or (3.10) and has dimension 2N x 2N and the

definition of JS j is understood.
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Since the (N +s)th element of d (c,tano, - f,) is equalto zero, it can he

deleted. The resulting vector is identical to the (2N-l) x 1 voltage vector, x. The

(2N-1) x (2N-1) J j matrix may be obtained by deleting the (N +s)th row and column

from Js j• Note that the reduced matrix is also symmetric but its sth row and column

now have elements containing the quantity tan 0,. Consequently, the structure of the

(2N-1) x (2N-1) matrices will be different for each different choice of reference hus.

Examples of such (2N-1) x (2N-1) matrices are provideJ in Appendix C.

In most formulations of the load flow equations, the slack hus is chosen

as the reference bus and the reference angle is set to zero, without loss of generality.

This choice of reference angle ensures that the initial guess used in sorne numerical

algorithms converges to the most stable load flow solution [11,29]. When 0, = 0, the

(2N-1) x (2N-1) matrix can be obtained simply by deleting the (N +s)th row and

column from the 2N x 2N Ji matrix.

3.4 Eigenvalues and Eigenvectors of the JI Matrices
Sorne of the analytical properties of the load flow equations may he

studied by expressing each quadratic equation in its canonical form and examining

the characteristics of these quadratic forms. This involves the derivation of the

eigenvalues and eigenvectors of the matrices defining each specified injection.

The special structure of the Ji matrix allows its characteristic

eigenvalues and eigenvectors to be evaluated by direct non-iterative means,

irrespective of the size of the matrix and consequently, of the size of the network.

Furthermore, when the matrix defines a power injection, it has only four non-zero

eigenvalues and four corresponding orthogonal eigenvectors [26,33]. Details of these
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dcrivations are provided in Appendix B. If the injection is a voltage magnitude

squared, then there are two non-zero eigenvalues and eigenvectors.

3.4.1 The 2N x 2N Matrix

The J j matrix in equation (3.8), (3.9) or (3.10) is a sparse symmetric

real matrix consisting of two non-zero rows and columns. When xr is as defined in

(3.2) and the dimension of the matrix is 2N x 2N, these non-zero elements are at

rows i and N+i and similarly at columns i and N+ i [3,9,44].

3.4.1.1 Eigenvalues and Eigenvectors of JPi

In this case, the matrix defining the quadratic form of the real power

injection has two identical pairs of eigenvalues: Âp1, Âp2, Âp1 , Âp2' Each pair is given

by

gTfl + .j-(a. Tb)2+ g Tg +bTb
2

(3.15a)

N
Gii + Gi /+ E (GiJ/+Bik2) (3.15b)k-l

= k~i.

2

and

- ,J-(fl Tb)2+ g Tg +bTb
Âp2 = gTa, (3.16a)

2

•
= 2
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One set of orthogonal eigenvectors corresponding to these eigenvalues

is

•

or equivalently

for the first pair Âph Âp2 and

or

v = [g+ (2}..-o:Tg)IX]
-b+ (0: Tb) 0:
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(3.17a)

(3. 17b)

(3.18a)



C/zapter II1: Analytical Properlies of the Load Flow Equations

v = (3.18b)

for the second pair Âp1J Âp2• The vector xr is as defined in (3.2).

3.4.1.2 Eigenvalues and Eigenvectors of JQ1

The matrix defining the reactive power injection at bus i also has two

identical pairs of eigenvalues ~ Âq11 Àq21 Àq1, Àq2• Each pair can be defined as

_bTtt + i- (ct Tg) 2 +gTg+bTb
2

(3.l9a)

-Bjj + 2 N 2 2
Bii+ E (Gik+Bik)

(3.19b)11:-1

= 1I:-i

2

and

Âq,2 =
-bTa. - i- (ttTb) 2 +gTg+bTb (3.20a)

2
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=
(3.20b)

2

A corresponding set of orthogonal eigenvectors is

(3.21a)

or expressed differently

•

for the first pair of eigenvalues Âq1, Âq2 and

v - [ g- (œ 7'g) œ ]
- -b+(2;'+œ7'b) ct

or

27

(3.21b)

(J.22a)



• Chapter fIl: Analytical Properties of the Load Flow Equations

G'i

Gi -li

0

Gi +1i

V = GNi (3.22b)

-Bli

-Bi-li

2À

-Bi " i i

-BNi

for the second pair. Again, xr is as defined in (3.2).

3.4.1.3 Eigenvalues and Eigenvectors of JVI
2

The matrix describing the square of the voltage magnitude at bus i has

two non-zero eigenvalues each of which is equal to one. The two eigenvectors

corresponding to these eigenvalues are given by

o
o

•
where "1" is in the ith position and

l
v = o

o

o
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a
a

a
v =

1

a

a

(3.24 )

•

where "1" is in the (N+i)th position.

3.4.2 The (2N-l) x (2N-l) Matrix

In the fo11owing analysis, the slack bus is taken as the reference bus

and the reference angle is assumed to be zero, as is normally done in load flow

studies. These assumptions hold for a11 future references to the (2N-1) x (2N-t) Ji

matrices.

The (2N-1) x (2N-t) matrices describing the real and reactive power

injections also have two pairs of eigenvalues. One of the pairs is identical to the pair

found for the 2N x 2N matrices. However, the magnitude of the second pair is less

than that of the first one. This is true for N>2. For N=2, the dimension of the Ji

matrices are 3 x 3 and therefore each matrix has only three eigenvalues and

eigenvectors.

3.4.2.1 Eigenvalues and Eigenvectors of JP1

For real power injections, these eigenvalues are Âpt• Âp2• Â""I' Â",,2' The

pair Âpt and Âp2 is the same as in the case already described. The other pair is given

by
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ÀPd1 =

=

and

=

gTa, + ";-(a, Tb)2+ g Tg +bTb- (PTb)2_ (pTg ) 2

2

2

gTa, - ";-(a, Tb)2+ g Tg +bTb- (lJTg )2- (PTb)2
2

2

(3.25a)

(3.25b)

(3.26a)

(3.26b)

where fJ is an N x 1 vector of zeros except for a 111 11 at position s and bus s is the

reference bus.

One set of eigenvectors corresponding to these eigenvalues is

v = (3.27a)

•

or equivalently
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for Âpal' Âpa2 and

v = (3.27b)

v = (J.28a)

•
or equivalently
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v ;:; (3.28b)

•

for Âp1 clnd Âp2• When bus i is not connected ta the reference bus, the term Gis / Bis

in equations (3.27b) and (3.28b) is set ta zero.

3.4.2.2 Eigenvalues and Eigenvectors of JQl and JVi
1

The eigenvalues and eigenvectors of the matrix describing the reactive

power injection can be obtained Crom the expressions of those for the real power by

replacing G with ·8 and 8 with G respectively in equations (3.27b) and (3.28b).
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Those of the matrix describing the voltage magnitude squared are

unchanged.

3.4.3 Comparison of 2N x 2N and (2N·I) x (2N·I) JI Matrices

A close scrutiny of the eigenvalues and eigenvectors of the 2N x 2N

matrix and those of the (2N-l) x (2N-l) matrix reveals tlUlt the two sets of

eigenvalues are identical except when the matrices define power injections at buses

connected to the reference bus. This is also true for the eigenvectors if the (N +s)th

element is deleted from the 2N x 1 eigenvectors.

3.5 Nature of the Quadratic Surfaces Detined by the JI

Matrices

The four orthonormal eigenvectors of each (2N-l) x (2N-l) Ji matrix

represent a set of principal axes of the particular quadratic surface [30]. It is

worthwhile to note that these eigenvectors or principal axes are in general not

unique. In Appendix B, it is shown that for buses not connected to the

reference/slack bus, two components of the eigenvectors (Ck and fk• for an injection

specified at bus k) are completely arbitrary. In cases where the bus at which the

injection is specified is connected to the slack/reference bus, only one component of

the eigenvector is arbitrary.

The hypersurfaces representing the real and reactive power injections

are hyperbolic because the matrices describing them have eigenvalues of different

signs. The positive eigenvalues of the matrix describing the reactive power injection

are larger than those of the matrix describing the real power. Aiso. the ratio of the

magnitudes of the positive to negative eigenvalues is a lot larger for the matrix
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Figure 3.1. 8-Bus System
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describing the reactive power than for the one describing the real power. Since

reactive power injections are specified at load buses, they are negative. This

indicates that the surfaces describing the reactive power injections are "narrowcr"

than those representing the real power.

Table 3.1 shows the positive and negative eigenvalues of the (2N-l) x

(2NM 1) matrices of the 8-bus example in Figure (3.1).

Table 3.1. Eigenvalues of Jl'i and JOj for an 8-Bus Network

Â+ Â.

P2 21.60 22.94 -14.44 -15.78
P3 47.68 47.68 -35.08 -35.08
P4 32.67 33.75 -20.46 -21.53

Ps 66.36 68.90 -39.40 41.94

P6 92.44 108.46 -41.53 MS7.56

P7 75.44 75.44 -44.98 -44.98

PB 49.29 49.29 -39.10 M39.l0

Qs 216.11 217.31 -12.10 -13.30

Q6 280.75 288.70 -13.67 -21.62

Q7 219.19 219.19 MI5.4S -15.48

Qg 157.92 157.92 M12.20 -12.20

The extreme points of these hypersurfaces may he found by

determining their intercepts on the principal axes. This is done by first expressing

Ji in its canonical form and rewriting equation (3.1) as

(3.29)
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where Zi is any power injection and Âk and Vk are the eiger.value and normalised

eigenvector respectively of the Ji matrix. The points of intersection of the

hypersurfaces and their principal axes, c, are then given by

rz:­
c=±~-t

(3.30)

•

Evidently, Zj and Â must both be of the same sign and so, the hypersurface

representing a power injection can intersect only two of the four principal axes.

The hypersurfaces are aIl symmetrical about their principal axes and

principal planes and each has a centre at the origin.

3.6 Load Flow Solutions and Intersection of Quadratic

Surfaces

The load fIow equations may be solved by finding the intersection of

2N quadratic hypersurfaces and one hyperplane in a 2N-dimensional space or by

finding the intersection of (2N-l) quadratic surfaces in a (2N-l)-dimensionaI space.

A knowledge of the nature of the intersection of high-dimensional quadratic surfaces

can therefore be usefuI in providing information on the characteristics of load fIow

solutions. However, the nature of this intersection is fully understood only for low­

dimensional surfaces. It has been stated [34] that this factor has restricted the full

exploitation of the quadratic formulation of the load fIow equations.

The simple case of two quadratic surfaces in a 3-dimensionaI space

indicates how varied these intersections can be. This intersection can produce a

plane curve, a skew curve, two curves in different planes or a single point [31].

Nonetheless, authors [1,2,3,44] have, in different ways, extended what is known about
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the simple quadratic equation in one unknown to the multi-variahle quadratic \nad

flow equations.

In [3], conditions are derived for the existence of multiple lnad now

solutions based on the fact that the solutions of a quadratic equation can he

expressed as the sum and difference of two points. It is also shown if a matrix is

defined as the sum of the Ji matrices in each load now equation, then the

eigenvectors of that matrix satisfy at least one of those conditions. Ali the possihle

combinations of the sums and differences of these eigenvectors are then used as the

initial guesses in the Newton-Raphson algorithm to find ail the solutions of the \oad

flow equations.

During the course of this research, an attempt was made to utilise the

principal axes and principal planes of the quadratic hypersurfaces to develop an

algorithm to find the load flow solutions. The hypothesis was that since the load now

solutions are given by the intersection of these quadratic hypersurfaces, then any load

flow solution must lie in a region enclosed by the principal axes and principal planes

of the quadratic surfaces. Conversely, any principal axis or plane must lie hetween

two load flow solutions. Figure (3.2) illustrates the idea in two dimensions.
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PrincipaJ axes

• Intersections

Figure 3.2. Intersection of 2-Dimensional Quadratic Forms

There was not much success in this regard, however. The challenge

was to systematically select one of the four eigenvectors from each of the matrices

describing the specified injections and find a way of expressing the solution as a

linear combination of the selected (2N-l) eigenvectors.

3.7 Load Flow Convergence and Quadratic Surfaces

It is known that factors such as choice of slack bus and the ratio of line

resistance to reactance affect the convergence of the load flow algorithms. These

factors may he considered in light of the nature of the hypersurfaces described by the

load flow equations. Recall that the reference angle is assumed to be zero and the

slack bus is taken as the reference bus.

Equations (3.27b) and (3.28b) show that for buses connected to the

slack/reference bus, the components of the eigenvectors of the matrices describing

the power injections depend on the ratio Gis / Bis' This indicates that the ratio of
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the admittance to susceptance of the line between the reference bus and the bus at

which the injection is specified, as weil as the location of the slack/reference bus,

determines the orientation of sorne of the hypersurfaces in the voltage space. As a

result, these factors will also affect the nature of the intersection of these surfaces

since the position of each hypersurface has a direct bearing on the nature of the

intersection.

It was also established that at buses not connected to the

slack/reference bus, two components of the eigenvectors of matrices describing those

specified injections are completely arbitrary. These components are ck and fk and

bus k is where the injection is specified.

These facts are consistent with reports in the literature that:

(i) Load flow convergence varies for different choices of slack/reference bus

[35] and

(ii) The convergence of the load flow may be improved by having a distrilJUted

slack/reference bus [46].

3.8 Bounds on the Real and Reactive Power Injections
The expression for the eigenvalues and eigenvectors of the Ji matrices

was presented in reference [33]. However, only the Ji matrix of dimension ZN x ZN

was considered. Using the properties of symmetric quadratic forms and assuming the

voltage is known at a particular bus, the author derived expressions for the maximum

and minimum power injections that are possible at that bus. It is shown that these

limits depend on the difference between the positive and negative eigenvalues of the

Ji matrices describing the power injections. Potential applications in expansion
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planning, contingency analysis and determination of load flow feasibility were

proposed.

3.9 IDustrative 2-Bus Network
The two-bus system in Figure 3.3 is used to iIIustrate sorne of the ideas

presented. It consists of a PO bus and a slack bus and although it is by no rneans

represenlative of a general power network, it allows a visualisation of the concepts

introduced in the preceding sections.

Figures 3.4 and 3.5 depict the quadratic surfaces defined by the real

and reactive power respectively. The surface representing O2 is a hyperboloid of two

sheets and that representing P2 is a hyperbolic cylinder. The surface representing Vt
2

is abviously a pair of parallel planes and is not shawn. The Ji matrices defining P2

and Q2 as weil as their corresponding eigenvalues and eigenvectors are given in

Tables 3.2 and 3.3.

Table 3.2. Eigenvalues And Eigenvectors of JP2

JP2 Â 0 0.94 -0.94

0 o 0.94 v 0 0.7071 0.7071

0 o 0.94 0 0 0

0.94 0 0 0 0.7071 -0.7071
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Table 3.3. Eigenvalues and Eigenvectors of J02

J02 Â 1.88 2.2693 -0.3894

0 -0.94 0 v 0 -0.3827 -0.9239

-0.94 1.88 0 0 0.9239 -0.3827

0 0 1.88 1 0 0

Figures (3.6a) and (3.6b) show the projection of these surfaces onto the planes

containing the eigenvectors.

The intersection of the three surfaces is shown in the ez-fz plane for

values of el equal to 0 and 1.05. The circle in Figure 3.7 is the projection of the

hyperboloid describing Q2 and the straight line is the projection of the hyperbolic

cylinder describing P2' The intersec..on of the circle and straight line are therefore

the intersection of the three surfaces and consequently, the two solutions of the load

flow equations for this system.

Table 3.4. Laad Flow Solutions for 2-Bus System

1

Solutions

1

Sum and Difference of Solutions

1
1

2 (1 + 2)/2 (1 - 2)/2

1.05 1.05 1.05 0

0.8674 0.1825 0.5249 0.3421

-0.228 -0.228 -0.228 0

Although this example is rather simplistic, it provides a good insight

into the general nature of the load flow solutions for more complex systems. For

instance, Figure (3.7) demonstrates that the two solutions may be written as
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XI'±' X2' It is assumed that the multiple solutions for the multi-dimensionalload flow

problem are of the same form [3,9]. Note that XI is equal to one half the sum of the

two solutions. The sum and difference of the two solutions each lie on a principal

plane of the surface describing the reactive power.

Figure (3.8) shows how the solutions change when the real power

demand is increased while the reactive power demand and slack bus voltage are

assumed to remain constant. The point at which the solutions coincide determines

the maximum l'eal power that can be supplied for that level of reactive power

demand and the given slack bus voltage. If the real power demand is increased

further, the solution "disappears" and the load flow is said to be unfeasible.

At the point where there is only one solution (Figure 3.8), the surfaces

describing the power injections share a common tangent. At the absolute maximum

power transfer limit (A in Figure 3.9b), the surface describing the reactive power

injection is tangent to the plane describing the voltage at the slack bus. Note that

this point is also the centre of ail the circles which represent the reactive power in

the e2 - f2 plane (Figure 3.9a).

There are several such points in the voltage space, alllying on the mid­

point of the segment connecting any two solutions (Figure 3.9a). Note that these

points also lie on one of the principal planes of the surface describing the reactive

power (Figure 3.Sb). These points define different injections corresponding to

maximum power transfer for various levels of real and reactive power. The injections

are on a surface in the injection space that divides that space into a region where a

real load flow solution is possible and another region where no real solutions can

exist (Figure 3.9b).
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In a large practical system, the load may be increased in any number

of ways. However, irrespective of the direction of load increase, a point will be

reached where one or more of the power injections reach a maximum in that

direction. That point is on a hypersurface in the injection space. At the

corresponding point in the voltage space, at least two of the load tlow solutions

coincide and the jacobian matrix is singular.

3.10 Additional Properties of the Load Flow

Equations

The load flow equations in rectangular co-ordinates are quite suited

to analytical studies. Sorne of their properties will be used in the next chapter and

they are surnmarised below.

Denote the load flow equations by

z = L(x) x (3.31)

where z is a (2N-l) x 1 vector of specified injections and x is as previously defined

and

L(x) = (3.32)

•
Note that L(x) is also equal to one half of the load flow jacobian matrix and since

the Ji matrices are symmetric
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(3.33)

for any two arbitrary vectors, XI and Xz.

Any linear combination of the specified injections may he defined as

2N-l
= x T E (ajJj ) x

i-l
(3.34)

where a is an arbitrary (ZN-l) X 1 vector. This expression can he written more

compactly as

(3.35)

•

where the meaning of J(a) is understood from (3.34).
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CHAPTER IV

EXPERIMENTAL STUDIES ON THE

LOAD FLOW FEASIBILITY REGION

4.1 Introductory Remarks
In order for power systems to operate normally, they must satisfy a

number of constraints. The load flow feasibility constraints are, by far, the most

restrictive of these because they define conditions on the specified injections

(generations and loads) for which a system state (voltages) corresponding to these

injections may be physically realised. In other words, the load flow feasibility

constraints describe the relationship among the specified injections which guarantees

a real voltage solution to the load flow equaf "lS. Such constraints arise because

there are limits imposed on the specified injections by the system structure (as

described by the bus admittance matrix and the bus types) and by the non-linear

relationship between the power and voltage [9,25]. If these limits are violated, there

would be no real solution to the load flow equations.

Load flow feasibility was first studied through the concept of feasibility

regions by Tavora and Smith [19]. Since then, other authors [9,25,60,61] have used

a variety of approaches to examine the question of feasibility. The pioneering works

in [9,25,26] studied the load flow feasibility constraints through a load flow feasibility

region defined in the space of real and reactive powers and voltage magnitude

injections for a general power network. This was done using an analysis based on

the generalised eigenvalue problem. More recent works [60,61] have used a power

system model which incIudes the dynamic equations of the system in addition to the
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load flow equations and have employed concepts from bifurcation theory to study

feasibility conditions. In [60,61], feasibility regiollS are defined for fixed parameter

values. In [60], the feasibility regions are defined in a space consisting of system

components and operating parameters and in [61], the feasibility regions me

considered in the space of real and reactive power demands.

The approach in [9,25,26] is adopted as the basis of the material

presented in this chapter. Therefore, a load flow feasibi/ify region is defined, in the

space of power and voltage magnitude injections, for a power network consisting of a

slack bus as weil as load and voltage control buses. The methods of [9,25,26] will

then be employed to conduct an empirical study of the characteristics of this region

and their relationship to the multiple load flow solutions.

4.2 Dermition and General Properties of~

4.2.1 Definition of R.
The non-linearity of the load flow equations (z = L(x)x) limits the

range of power injections that a power system can sustain. The load flow feasibility

region, R,., is then defined as the set of ail injections, z, for which there is a real

voltage solution, x, to these equations [9, 25,26]. The set R" can therefore be

described as

•

Rz = (z: Z = Llx)x, lz,x) e jR2N-l} (4.1)

•

Alternatively, R. can be viewed as a mapping of the entire voltage space, x, into a

subset of the injection space, z, through the function defined by the load flow

equations [25,57]. Any injection, z, in R" is said to be a feasible injection. As a

result, the entire injection space may be considered to contain two regions: R", which
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contains all feasible injections and another region of infeasible injections. The

hypersurface separating these two regions is now defined as the boundary of R,.

4.2.2 General Properties of R.
Using sorne characteristics of the load flow equations in rectangular co·

ordinates, IWO general properties of the (oad flow feasibility region have been

proposed [9,25]:

(i) R, is a cone stretching to infinity with its vertex at the origin of the

injection space

(ii) R. lies on or above a set of hyperplanes passing through the origin.

The first property is justified by the fact that if z is a vector of feasible

injections, then pz must also be feasible if p is a positive scalar. This is 50 because

each injection can be written as

(4.2)

•

where Ji has dimension (2N-!) x (2N-!) and x is a solution of the load flow equations

with z as the specified injections. Equation (4.2) implies that the feasibility of a

vector z is independent of the length of the vector and as such R, stretches to

infinity. This property is important because it suggests that the characteristics of the

load flow feasibility region may be determined by studying any "cross-section" of R,

that is representative of the entire region.

The second property stems from an assumption usually made in load

flow studies, that at least one of the specified quantities is the voltage magnitude at

the slack bus. ln rectangular co-ordinates, this corresponds to specifying an injection

which is the square of the voltage magnitude. Assume that z is of the forro
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z = [§2] (4.3)

where P, Q and V2 are column vectors of the specified net real powers, net reactive

powers and voltage magnitudes squared, respectively. Then for any feasible z, the

following is true

(4.4)

•

where a is a (2N-l) x 1 vector of zeroes except for a "1" in the position multiplying

the component of z corresponding to the slack bus voltage squared. Equation (4.4)

represents a hyperplane through the origin of the injection space which is tangent to

R. and is such that ail vectors z € R. lie on or "above" it.

There exist similar hyperplanes, one for each of the PV buses in the

system, such that R. lies on or above them. These hyperplanes characterise part of

the boundary of R.. The more interesting hyperplanes, though, are the ones which

describe the feasibility constraints on the voltage magnitude as weil as the real and

reactive power injections.

4.3 Feasibility Surface PzII

4.3.1 Definition

It was mentioned that since R. is a cone, its properties may be

determined by studying a "cross-section" that characterises the whole region. If a

hyperplane that cuts the entire boundary of R. can be found, then the resulting

intersection will constitute a valid "cross-section". The desired "cross-section", defined

as the feasibility surface PlOt is the intersection of R. and the plane .
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(4.5)

where k is a positive constant and Zo is a constant vector perpendicular to the

hyperplane. More precisely

(4.6)

It is important that aIl z € Rz satisfy (4.5) because this ensures that the feasibility

surface, Pzo, is bounded in every direction. If sorne z do not satisfy (4.5), then the

intersection of R, and the hyperplane will be an open surface.

Using (3.35), equation (4.5) can be re-wriuen in terms of x as

(4.7)

•

4.3.2 Finding Zo

In order to define PzO' a vector Zo as described in the preceding section

must be found. The existence of such a vector for a general power network (though

not for the lossless case) has been proven ar:d the following heuristic method to find

Zo has been developed [26].

Since the square of the voltage magnitude is always positive, the

components of Zo multiplying those injections are made equal to one. Il remains,

therefore, to find suitable constants to multiply the real and reactive power injections

such that (4.5) is satisfied.

Numerical experience indicates that a positive constant multiplying the

reactive power injections and zero multiplying the real power injections will satisfy
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(4.5). For system sizes ranging from 2 buses to 118 buses, the following Zo satisfy

(4.5)

(4.8)

where the dimension ofzois the same as that of z as defined in (4.3). From equation

(4.7), it can be deduced that when the matrix J(zo) is positive definite, the hyperplane

in (4.5), will cut the entire boundary of R.. The requirement that J(zo) be positive

definite provides a means of verifying that Zo is suitable.

The rationale for choosing Zo as defined in (4.8) is that in load flow

studies, the constraints on the reactive power injections are usually the most

prohibitive and very often load flow feasibility is violated when reactive power

sources exceed their Iimits. Also, keeping in mind the definition of J(zo) (3.34),

(3.35) and comparing the magnitude of the ratio Â+ / Â. where Â+, Â. are the positive

and negative eigenvalues of Ji' it is evident that this ratio is much larger for Jo than

for Jp• It seems reasonable to assume, then, that the proposed Zo would prove to be

satisfactory.

4.4 Illustrative Example
Given the fact that the load flow feasibility region is defined in a

(2N-!)·dimensional space where N is the number of buses in the system, it is

impossible to obtain a visualisation of the concepts discussed above except for 2- and

3-bus networks. In this section, a system consisting of a lossless transmission line

connected by a slack bus and a load bus (Figure 4.3) will be used to illustrate sorne

of the main ideas.
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The load flow feasibility eonstraints are well understood for sueh a

simple system. In faet, analytical expressions deseribing~ ean be obtained and are

given by

and

( V2) 2 + 4 X Q v. 2 - 4 X 2R 2 ~ 01 2 1 2
(4.9a)

(4.9b)

The nature of this load flow feasibility region ean be studied by rewriting (4.9a) as

and by examining the eigenvalues and eigenvectors of the matrix in (4.10).

Equation (4.10) is re-written for the system in Fig. (4.3a) and the

eigenvalues and eigenveetors of the matrix, referred to as A, are found.

•

[

-1.132 0 0]
Z T 0 0 1. 064 z ~ 0

o 1.064 1

Table 4.1. Eigenvalues and Eigenvectors of A

Â -1.1318 -0.6755 1.6755

v 1 0 0

0 -0.8442 0.5360

0 0.5360 0.8442

50
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Using well-known properties of 3-dimensional quadratic surfaces, it is

seen that the surface described by (4.11) is a hyperboloid of two sheets, centred at

the origin. The restriction on (Vif Iimits the feasibility region to the intersection of

only one of the sheets of the hyperboloid and the plane (V1)2 = 0 (Figure 4.3b).

In this simple example, Zo can be chosen intuitively as the eigenvector

corresponding to the positive eigenvalue (Figure 4.4a). This eigenvector is a

principal axis of the surface and is also the only principal axis that the surface

intersecls. Any plane to which this eigenvector is perpendicular will therefore cut the

enlire boundary of R.. Note that this rather obvious choice of Zo i.e. [0 0.5360

0.8442]T, has the same form as would a Zo found by the heuristic method. The

corresponding matrix J(zo) is positive definite.

The feasibility surface, p.o can also be determined analytically for this

example. Taking zoT z = 1 and changing to a new co-ordinate system defined by the

eigenvectors of A, PzO is shown (Figure 4.4b) to be an ellipse in the plane Zo = 1.

4.5 Sopporting Byperplanes of~
In the ensuing discussion, the feasibility surface, p.o, is assumed to be

representative of the load f10w feasibility region, R., and is used in a systematic

procedure to locate the supporting hyperplanes of R.. These hyperplanes are of the

form ST z = 0 and may be found by searching over the feasibility surface, PzO in any

arbitrary direction Zl provided Zl is not parallel to zoo The vector Zl defines another

hyperplane ZlT z = c which will intersect the feasibility surface for different values

of c (Figure 4.5).
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At the minimum and maximum possible values of c, the plane,

z? z = c will be tangent to the feasibility surface, PlO' Using this fact, the

hyperplanes tangent to R, can be found by solving the following optimisation

problem [9,25,26]

max
zeRz
s. t.

(4.12)

The problem can be re-formulated in terms of x by using (3.34) and (3.35). This

formulation has an advantage in that it guarantees that z will be in R,.. Equation

(4.12) becomes

max
xeR2N-l

s. t.

x T J(Z,) x = c

x T J(zo) x = k
(4.13 )

Forming the Lagrangian [62] of (4.13) and differentiating with respect to x results in

(4.14 )

The optimisation problem then reduces to finding the solution to

(4.15)

•

which is the equation of the generalised eigenvalue problem [63].

The eigenvalues of (4.15) are ail real and finite because the matrices

are real and symmetric and J(zo) is positive definite [63]. Let the maximum and

minimum these eigenvalues be "max and "min respectively. Then for "max and "min
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(4.16 )

(4.17)

This implies that the matrix in (4.16) is negative definite and the one in (4.17) is

positive definite.

Re-writing the equations in terms of Z (3.35), the following eX!Jressions

are obtained

(Zl - Àmax zo) T Z S 0
(Zl - Àmin zo) T Z :!: 0

(4.18 )

The condition in (4.18) may be written more compactly as

(4.19)

•

where a = ÀmaxZo - ZI or ZI • ÀminZO' This is a necessary condition for load f10w

feasibility and the equality defines two supporting hyperplanes of RI. for each

direction ZI'

4.6 Security Considerations Involving ~

4.6.1 Security Region

Sorne of the supporting hyperplanes of RI. can be used to define a

security region around R. since injections which l'ail to satisfy (4.19) are not feasible.

For a particular network structure, several vectors a can be calculated and for any

injection zi' if aT Z.>O, then z. is not feasible. This security region would be best

suited to a very heavily-Ioaded system which has an operating point close to the

boundary of R. because usually, other operating constraints become active before

load flow feasibility is violated.
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4.6.2 EfTect of Contingencies on ~

The supporting hyperplanes can also be used ta approximate the "size"

of ~ [9]. The angle between the two veetors defining 8, can be considered as a

measure of the ''widthll
~ in the given direction ZI' It is reasonable ta assume that

network contingencies will reduce the load flow feasibility region and it is expected

that this will be reflected in the angle between the supporting hyperplanes of the new

region.

4.6.3 Example

The 5~bus network in Figure 4.6 will he used to show the efieet of a

single !ine outage on the angles between the supporting hyperplanes of~. Line #1­

3 is removed. The different search directions are given in Table 4.2.

V -1.06 0.4+jo.05

4 Bea code bnptdQn~ Lint char{#ng
N =" !i;./2

1-2' 0.02 +jO.06 0,0 +jO.030
1-3 o 08 :+- JO. 2~ 0.0 +jO.025

2 5 2-3 0.06 +;0.18 0.0 +jO,020

d) Pt· 0.4
2-4 0.06 +jO.18 0.0 +jO.020
2-5 O. o-l + jO.12 0.0 + jO.015

0.2+10.1 V • 1.0 0.8 + JO.1 3-1 0.01 +jO.03 .0.0 +3"0.010
4-5 0.08 +jO.24 0.0 +;0.025 .,

Figure 4.6. 5-Bus Network
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Table 4.2. Various Search Directions Zl

1

" "1'

1

Zl = [P2 P3 P4 Ps Q3 Q.J Qs V2~ V.-]

A -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 0 0

B 0.2 -0.45 -0.40 -0.60 -0.15 -0.05 -0.10 1 1.1236

C 1 1 1 1 0 0 0 1 1

D 1 1 1 1 1 1 1 1 1

E 0.015 -2.153 -2.477 -1.568 -2.325 -2.665 -1.334 7.934 -5.791

F 0 0 0 0 -2 -2 -1 0 0

G 1 1 1 1 0 0 0 0 0

H 0 0 0 0 0 0 0 1 1

1 0.20 -0.45 -0.40 -0.60 -0.16 -0.06 -0.11 o 0.1236

25

2S

21

111

17

15
13

11

iii

7

S

3
ABC D E F G H

s-rch Dlr-.son

Figure 4.7. Angle between Extreme Supporting Hyperplanes of Rz - Base Case and

Single Line Outage
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Since the size of the feasibility region is expected to decrease with the

removal of the line, the angle between amax and ami. should be larger in the case of

the coiltingency than in the base case. This is seen to be true for sorne of the search

directions. The opposite is true when the direction includes reactive power demand

(B,E,F,I). It is also evident that this is not a very severe contingency because the

angles for the base case and the contingency are almost equal.

4.7 Structure of the Voltage Space

4.7.1 Solution of the Generalised Eigenvalue Problem

Recall that the dimension of the Ji matrices is (2N-1) x (2N-1) and the

reference angle has been assumed, without loss of generality, to be equal to zero.

As a result, the solution of the generalised eigenvalue problem of (4.15) yields (2N-1)

real eigenvalues and their corresponding eigenvectors. These eigenvalues may or

may not be distinct depending on zo, ZI and the topology of the network.

The maximum and minimum of these eigenvalues, Âmax and Âmi., have

been used to define hyperplanes which are tangent to R. (4.19). The eigenvalues in

between these two extremes will be referred to as intermediate eigenvalues and the

focus of this section is to examine how they can be used to obtain a better

understanding of the nature of the load flow feasibility region.

4.7.2 Singular Surfaces in the Voltage Space

Each eigenvector defines a point in the voltage space, x., at which the

load flow jacobian is singular. This can be seen from the following: For any

arbitrary vectors ZI and Z2'
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(4.20)

Thus, using (4.20), equation (4.15) can be re-written as

(4.21)

which implies that J(ZI-ÀZO) = J(a) is singular. But from (3.35),

(4.22)

This means that [L(xs»)T is aiso singular and the vector a lies in its null space. Sincc

[L(x.W is singuIar, so are L(x) and the Ioad flow jacobian which is equal to one half

of L(xs)'

For a fIXed Zo, each different search direction ZI produces a different

set of eigenvalues and their associated eigenvectors, xs' The set of ail vectors, xs'

describe a collection of points in the voltage space where the Ioad flow jacobian is

singular. These points will be referred to as singular surfaces. Of course, the

existence of these surfaces is weIl known and their characteristics have been

documented [15,19,60). The approach presented here facilitates the experimental

study of these surfaces.

Consider the singular matrix L(xs)' Then, thcre exist veclors r, such

that

(4.23)

as weIl as vectors 1 such that
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(4.24)

•

The vectors rand 1 are known as the right and left eigenvectors, respectively, of

L(x,). Note that the vector a defined in (4.19) is just a scalar multiple of 1. The

vectors rand 1 are unique when the nullity of L(x,) is equal to one.

Since L(x)r = L(r)x, it is clear that r also defines a singular matrix L(r)

and as a result, r is also a singular point. The singular surfaces in the voltage space

can therefore be considered to consist of the set of ail singular points, x" and their

associated right eigenvectors, r.

4.7.3 Experimental Results

The results of numerical simulations done on the 5-bus system in

Figure 4.6 are now presented. Due to space restrictions, results from only one search

direction, ZI = [-0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 0 OlT, are shown. The vector Zo is

defined as [0 0 0 0 0.01 0.01 0.01 1 W. The eigenvalues, Â, and their associated

eigenvectors, x, along with the corresponding right eigenvectors, r, and left

eigenvectors, l, of the matrices L(x.) are given in Table 4.3.

4.7.3.1 Magnitude of the Eigenvalues

In the simulations carried out for different search directions, ZI' the

magnitudes of six of the nine eigenvalues were approximately equal to each other

and larger than the other three. This is iIIustrated in Table 4.3 for one direction.

In simulations done on larger systems (14, 30, 57 and 118 bus), it was also found that

approximately two-thirds of the (2N-l) eigenvalues had very similar magnitudes.
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Table 4 3 Eigenvalues, SinguJar Points, Right and leCt Eigenvectors of L(",)..
Jo 0.813 -1.Il64 -0.294 -13.405 -13.393 -13.351 -13.346 -13.336 -13.337

x =•
c, 0.6234 -05357 0.0000 -0.0089 0.0000 0.0066 0.0000 0.0000 0.0050

c, 0.2118 0.2517 0.6764 -0.0043 -0.135 -0.0018 -0.0017 -0.0002 -0.0004

e, 0.2243 0.1066 0.2918 -0.0036 05521 0.0007 -0.4766 0.6925 0.0001

c, 0.2183 0.1321 0.3117 -0.0035 05860 0.0004 -0.4230 -0.7203 -0.0003

CS 0.W19 0.2001 0.3642 -0.0028 05930 -o!J014 0.7707 0.0401 0.0001

f, -0.4869 -0.6035 0.2871 0.0125 -0.0046 0.0053 -0.0006 -0.0001 0.0011

f, -0.2414 -0.2257 0.1981 -0.6190 -1l.0026 0.4039 0.0005 -0.0002 0.3127

f, -0.2483 -0.2516 0.2116 -0.6086 -0.0028 0.2134 0.0005 0.0002 -0.8971

fs -0.2660 -0.3W1 0.2473 -0.4961 -0.0028 -0.8895 -0.0009 0.0000 0.3122

r=
c, 0.0000 0.0000 0.77W 0.244 0.0000 -0.985 -0.002 0.0000 -0.991 0.005 0.9991 -0.018 0.0000

c, -0.6321 0.4083 0.0506 -0.285 0.0125 0.000 0.005 -0.0053 0.0000 0.001 0.0000 0.000 -0.0011

e, -0.4167 0.1216 0.4176 -0.076 -0.6191 -0.144 0.002 -0.4039 -0.114 0.000 0.0374 -0.001 -0.3127

c, -0.4164 0.1183 0.3863 -0.099 -0.6086 -0.097 0.003 -0.2134 -0.068 0.000 0.0106 -0.000 0.8971

Cs -0.3996 0.1539 0.2476 -0.181 -0.4961 -0.019 0.003 0.8895 -0.011 0.001 0.0004 0.000 -0.3122

f, -0.2750 0.1703 -0.119 0.672 0.0043 -0.000 -0.013 -0.0018 0.0000 -0.002 0.0000 -0.000 -0.0004

f, -0.0282 05557 0.0342 0.317 0.0024 -0.001 0552 0.0000 -0.002 -0.477 0.0121 0.692 0.0000

f, -0.0465 05360 0.0322 0.337 0.0027 -0.001 0586 -0.0002 -0.002 -0.423 -0.013 -0.720 -0.0004

fs -0.1230 0.3946 -0.001 0.382 0.0026 -0.001 0593 -0.0015 0.0041 0.771 0.0007 0.040 0.0001

J =
P, 0.0846 -0.0656 0.2542 0 -0.0053 0.0075 0 -0.0053 0.0075 0 0.0075 0 -0.0053

P, 0.0846 -0.0656 0.2542 0 -0.0053 0.0075 0 -0.0053 0.0075 0 0.0075 0 -0.0053

P, 0.0846 -0.0656 0.2542 0 -0.0053 0.0075 0 -0.0053 0.0075 0 00075 0 -0.0053

Ps 0.0846 -0.0656 0.2542 0 -0.0053 0.0075 0 -0.0053 0.0075 0 0.0075 0 -0.0053

0, 0.0915 -0.0586 0.2467 0 0.0018 -0.0025 0 0.0018 -0.0025 0 -0.0025 0 0.0018

0, 0.0915 -0.0586 0.2467 0 0.0018 -0.0025 0 0.0018 -0.0025 0 -0.0025 0 0.0018

Os 0.0915 -0.0586 0.2467 0 0.0018 -0.0025 0 0.0018 -0.0025 0 -0.0025 0 0.0018

V{ 0.6878 0.6973 -0.748 0 0.7071 -0.9999 0 0.7071 -0.9999 0 -0.9999 0 0.7071

V' 0.6878 0.6973 0 1 0.7071 0 1 0.7071 0 1 0 1 0.7071,

• •
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4.7.3.2 Nullity of the Singular Jacobian

The simulations reveal that when the solution of (4.21) produces

distinct eigenvalues, the eigenvectors, x
S

' associated with N of the (2N-l) eigenvalues,

including Àmax and Àmin, define jacobian matrices with nullity one.

4.7.3.3 Observations on the Right and Lert Eigenvectors

It can be seen that the right eigenvector, r, of each matrix, L(xs), with

nullity one has the component corresponding to the slack bus, el' equal to zero. This

observation will become significant in a later discussion on multiple load flow

solutions. Another observation is that the x.'s corresponding to eigenvalues of similar

magnitudes and their associated r's are orthogonal to each other.

Note that there are only four distinct left eigenvectors (not including

the trivial one which has only one non-zero element). This implies that the nine

injections described by the vectors Xs can lie on only four different hyperplanes. Also,

the matrices, L(x-l, with nullity greater than one are the ones with two vectors, l,

spanning their null space. One of these vectors is on the plane Vs
2 = 0 and the

other is perpendicular to it.

4.8 Singular Surfaces of~
Each of the singular surfaces in the x-space is mapped by the function:

z = L(x)x, to a corresponding surface in the injection space. These surfaces in the

z-space are referred to in the literature as bifurcation surfaces and may demonstrate

different types of bifurcation phenomena (20). In general, though, theyare classified

as sadd/e-node bifurcation surfaces [60,61).
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So, although the precise geometric characteristics of Rz for a general

power network have not been proven, ~ is known to contain these singular surfaces

and their intersections. The approach used in this work provides a means of locnting

arbitrary points on these singular surfaces in Rl.'

4.8.1 Boundary of ~

The boundary of~ has been defined as a hypersurface separating the

injection space into regions of feasible and infeasible injections and it is therefcre

regarded as the outermost surface of the feasibility region. Injections on that surface

are denoted by Zb and are obtained from eigenvectors, xh, associated with the

maximum and minimum eigenvalues.

As mentioned in Section 4.6.2, the angle between the two vectors, n,

which are perpendicular ta the supporting hyperplanes of ~ (and consequently, ta

the boundary injections Zb) in a given direction ZI' is a measure of the lIwidthtl of Rz

in that direction. Figure 4.8 shows the relative positions of a and the boundary

injections. Note that the smaller the angle between the two vectors, n, the t1wider"

is ~ in that direction, ZI'

----4....~-

a mIn

~/ \
/ \

// \

arS \
max ~ a mIn

Figure 4.8. Boundary Injections of~ and the Vectors Perpendicular to them
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Eigenvectors associated with sorne of the intermediate eigenvalues may

also define points on the boundary of R,.. Simulations on two simple systems, whose

feasibility conditions can be derived analytically and for which the shape of R,. is

known, show that when this situation occurs, the points Zb are on the boundary

portion of R,. described by the hyperplanes Vj
2 = O.

4.8.2 Experimental Results

Table 4.4 shows the angle (6.) between the two extreme boundary

injections obtained from the eigenvectors associated with the maximum and minimum

eigenvalues for the search directions, ZI' defined in Table 4.2. The network is shown

in Figure 4.6.

Table 4.4. Angle Between Extreme Boundary Injections of R,. for a Variety of

Directions ZI: S-Bus Network
...

rE
A B C D E F G H 1

6. 99.3 100 80.4 99.3 96.8 102 81.1 101 100

Note that ail the angles are less than 180°. The angle is largest when

zi is in the direction (F) of only reactive power demand. The smallest angle occurs

when ZI is in the direction (C) of real power generation and increasing voltage

magnitude.

The simple two-bus example of Figure 4.3 is used to show that

intermediate eigenvalues may also define injections on the boundary of R,.. Solving

the generalised eigenvalue problem for this network produces three eigenvalues for

any ZI and zoo Table 4.5 shows the case where two of the three eigenvalues are

identical for a particular choice of ZI and Zo. Both injections lie on the boundary of
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R.. However, for a different choice of zoo the eigenvalues are distinct but the three

different injections also lie on the boundary of R,.

Table 4.5. Eigenvalues, Eigenvectors and Boundary Injections of 2-Bus Network for

Two Different Values of Zo

À 0.1038 -1 -1 0.0944 -1.0451 -1

"s = el 0.8165 0 0 0.8280 -0.0897 0

e2 0.4082 0.7071 0.4557 0.4141 -0.0448 1

f2 -0.4082 -0.7071 0.8901 -0.3783 -0.9950 0

Zb = P2 -0.6267 0 0 -0.5880 0.1677 0

O2 0 1.88 1.88 -0.0532 1.8573 1.88

VI
2 0.6667 0 0 0.6855 0.0080 0

ZI = [-0.1 -0.1 W; Zo = [0.1 0.1 O.W Zo = [0 0.1 I]T

Note that, for Zo = [0 0.1 1]'1', the injection corresponding ta the intermediate

eigenvalue, -1, has two components equal ta zero and lies on the 02-axis, but also on

the plane V12 =O. Observe, also, that there are three different x. for this injection

even though this is a two bus system.

4.8.3 Interior Surfaces of R.
Sorne of the eigenvectors associated with the intermediate eigenvalues

define injections, z., on surfaces which are within the boundary of the feasibility

region. These surfaces will be referred ta as interior singular surfaces of R..
Hyperplanes which are tangent ta these surfaces can be found in an analogous

manner ta that used for the boundary of R., i.e. by replacing Àmax or Àmin in

expression (4.19) with the intermediate eigenvalues, Àk•
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4.8.4 Experimental ResuUs

4.8.4.1 S-Bus Network

Results are now presented for the search directions defined in Table

4.2 and the network in Figure 4.6. Table 4.6a shows the angle (6zk) between the

boundary injection associated with Âmin (Zmln) and the injection (z.J associated with

the other eight Âk's found from a given search direction. In Table 4.6b the angle

between the boundary injection associated with Âmax (zn.ax) and the other zk'S are

given. In Table 4.7a, the angle between amln (ZI - Âmin zo) and ak (zl - Âkzo) is shown.

Similarly, Table 4.7b gives the angle between amax (zl - Âmax zo) and ak (zl - Âk zo)·

Recall that al is orthogonal to ZI'

For ail the search directions studied, the zk'S associated with the

eigenvalues of similar magnitude always lie on at least one of these hyperplanes

V2
2 = 0 and V/ = O. The injection Zmln also lies on these hyperplanes except when

ZI includes the direction of real power generation (C,D,G). In these three directions,

Zmax lies on these two hyperplanes. For some of the directions, the angle between

Zmax and zmln is smaller than the angle between zmax/min and sorne of the other zk'S.

In such cases, those Zk'S also lie on one of the two hyperplanes mentioned above.

The multiple occurrence of some numbers in each row of Table 4.7a

and 4.7b indicates that in every search direction, there are more than one zk which

lie in the same plane. Of course, this has already been shown by considering the left

eigenvectors (Section 4.7.3.3). When "0" occurs more than once, it means that the

injections lie on the same plane as z..w. or Zmax. When a different number is

repeated, this implies the Zk'S lie on a plane which is different from the one

containing zml. or Zmax. The maximum number of hyperplanes found in any direction

is five (Direction 1)•
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Table 4.6a. Angle Between Boundary Injection, zmln and Injections on Other Singu\ar

Surfaces of Rz

Oz! Oz2 Oz) °z4 OzS °z6 Oz7 O,s 6zIJ

A 99.3 94.4 105 0 24.2 49.9 44.3 28.2 47.6

B 83.9 100 100 114 114 0.96 0.00 21.3 22.3

C 0 147 161 80.4 85.3 79.8 85.5 90.3 79.7

D 0 160 145 99.3 99.8 98.3 99.0 97.2 96.1

z! E 88.2 96.8 96.5 0.04 0 115 115 92.2 92.2

F 89.8 102 92.2 99.6 92.2 0 0 90.0 90.0

G 0 162 150 81.1 85.9 80.1 86.1 90.5 80.5

H 0 92.3 101 100 97.7 94.1 12.4 77.9 49.7

1 83.7 100 100 114 114 96.8 0 21.3 22.3

Table 4.6b. Angle Between Boundary Injection, zm"" and Injections on Other

Singular Surfaces of Rz

Oz! 0z2 Oz) °z4 OzS Oz6 Oz7 O,s 0.9

A 0 160 144 99.3 99.8 98.3 99.1 97.22 96.1

B 125 0 3.49 73.4 73.4 100 100 88.8 88.6

C 80.4 78.9 88.6 0 18.3 31.7 25.0 55.7 37.5

D 99.2 94.5 105 0 24.3 49.9 44.3 28.3 47.6

Zl E 63.8 0 96.8 96.8 96.8 91.4 91.4 97.4 97.4

F 40.7 0 106 9.46 106 103 103 102 102

G 81.1 89.5 81.1 0 19.0 31.7 25.8 55.8 37.1 .

H 101 44.2 0 107 6.82 108 101 106 104

1 125 0 3.49 73.4 73.4 100 101 88.8 88.6
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Table 4.7a. Angle Between the Vector ami. and Other Vectors Perpendicular to

Hyperplanes which are Tangent to the Singular Surfaces of R.

1
] 6.1

1
6.2

1
603

1

6.4
1

6nS
1

6.6
1

6.7
1

6.8
1

6.9
1

A 166 9.19 31.8 0 0 0 0 0 0

B 83.0 174 174 1.2 1.2 0.00 0.00 0 0

C 0 155 162 166 166 166 166 166 166

D 0 157 135 166 166 166 166 166 166

ZI E 50.3 157 157 0.0 0 0.33 0.33 1.20 1.20

F 94.6 163 0.64 162 0.64 0 0 0 0

G 0 163 155 167 166 166 166 166 166

H 0 95.3 164 0 163 0 0 0 0

1 83.1 174 174 1.20 1.20 0 0 0.20 0.20

Table 4.7b. Angle Between the Vector amax and Other Vectors Perpendicular to

Hyperplanes which are Tangent to the Singular Surfaces of R.

1 1
6.1

1
6.2

1
603

1
6.4

1
6nS

1
6.6

1
6.7

1
6.8

1
6.9

1

A 0 157 134 166 166 166 166 166 166

B 91.4 0 0.21 173 173 174 174 174 174

C 166 11.2 .4.116 0 0.01 0.11 0.14 0.15 0.15

D 166 9.12 31.3 0 0.01 0.00 0.00 0.00 0.00

ZI E 107 0 0.27 157 157 157 0.33 156 156

F 68.0 0 162 0.94 162 163 163 163 163

G 167 4.11 11.2 0 0.01 0.11 0.13 0.14 0.14

H 164 68.7 0 164 0.56 164 164 164 164

1 1 91.5 0 0 173 173 174 174 174 174
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From Table 4.7b it is seen that in directions A. E, F and H. the

hyperplane containing zmllX does not contain uny other injection (There is ollly one

zero in each of those rows). This implies that those injections, znuu,' are on the

boundary portion of~ which is not planar.

The results in Tables 4.7a and 4.7b may be combined to give an

indication of how close the hyperplanes which are tangent to the singular surfaces of

~ are, in the chosen directions. This is ilIuRtrated in Figure 4.9 for Zl = E and l.

Direction E

8 max

a min

Direction 1

91.4°

a max

83.1 0

8.min

•

Figure 4.9. Positions of the Hyperplanes Tangent to the Singular Surfaces of R7.

4.8.4.2 2-Bus and 3-Bus Examples

Due ta the generally high dimension of the problem, il is impossible

ta obtain a visualisation of these concepts except for very small systems. Two such

systems are now presented.
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(a) 3-Bus Network

(b) Feasibility Region of a Lossless 3-Bus Network

Figure 4.10. Feasibility Region of a 3-Bus AC Network



C/zapter IV: Experimental Studies on tlle Load Flow Feasibility Region

One of the clearest example of these interior surfaces of R7. is providcù

in the example presented by Tavora and Smith [19] and is reproduced in Figure

4.1Db. Note that this feasibility region is defined in the space of real powers only and

is a subset of the more general feasibility region considered :n this work [26].

A general 3-dimensional feasibility region with an interior surface can

be illustrated for a purely resistive 3-bus network. The system in Figure 4.11",il1 he

used. In this simple example, the singular surfaces in the voltage SPace Can be

derived explicitly by solving for ail the conditions which make the jacobinn matrix

singular. These conditions are

V1 =
v2 + V3

4 (4.25)
V; = 0
v3 = 0

Va_

Figure 4.11. 3-Bus Resistive Network

The mapping of these singular surfaces in the injection space is given by
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P, = -1. (V,' + 2.jV. 2 V. 2 + 11. 2 )
8 ' 3 3

V.' = 0 (4.26)
2

11. 2 = 03

The three equations in (4.26) define the boundary of the feasibility region. Note that

because of the square root in the first equation, the following expression is also valid

(4.27)

•

Equation (4.27) defines the interior surface of R..

The boundary and interior surface are shown in Figure 4.12. The

complete feasibility region is illustrated in Figure 4.13. Note that the feasibility

region is in only one quadrant of the injection space and the conical portion lies

entirely below the plane PI = O. This means that feasibility constraints become

active oruy if bus 1 is a load bus.

The interior surface of R. can be seen more dearly by examining the

feasibility surface, Pzo• Taking Z = [PI V2
2 V3

2]\ Zo = [1 1 I]T and changing to a

co-ordinate system with Zo as one of the axes, Pzo is shown in the plane Zo = 1

(Figure 4.14).

A projection of R. onto the V22.V32 plane (Figure 4.15) also shows the

interior surface quite dearly.
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(a) Boundary of ~

(b) Interior Surface of~

Figure 4.12. Surfaces of the Feasibility Region of a 3-Bus Resistive Network
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Figure 4.13. Complete Feasibility Region of a 3-Bus Resistive Network
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Figure 4.14. Feasibility Surface, Pzo, of a 3-Bus Resistive Network
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Figure 4.15. Projection of Feasibility Region in the vl- V3
2 Plane



•

Tuble 4.8. Summary of the EigenvuIue Analysis of a 3-Bus Resistiv~ Network

z, "'=["', "', "',)T X. =[V, V, V,) z" =[Pl vi V,') Surface

-0.2 -0.2 1 0 0 2 0 0 B
0.5 0.9097 0.3189 0.4319 0.8437 -0.2034 0.1865 0.7118 B
0.7 0.5569 -0.1385 -0.9201 0.3663 -0.0383 0.8466 0.1342 1

10.2 10.2 1 0 0 2 0 0 B
1.5 -10.2695 0.2942 0.2558 0.9209 -0.1731 0.0654 0.848 B
-7 0.4528 -0.2081 -0.9686 0.1361 -0.0866 0.9382 0.0185 1

-6 -6 1 0 0 2 0 0 B
-8.2 0.0297 0.2641 0.0967 0.9596 -0.1395 0.0094 0.9209 B
-0.8 -0.5297 -0.2520 -0.9668 -0.0412 -0.1270 0.9348 0.0017 B

-0.2 -0.2 1 0 0 2 0 0 B
-0.5 0.8446 0.2654 0.1031 0.9856 -0.1409 0.0106 0.9189 B
0.7 -0.5446 -0.2505 -0.9675 -0.0347 -0.1255 0.9360 0.0012 B

0 0 1 0 0 2 0 0 B 1-
0 0 0 1 0 0 1 0 B
1 1.1667 0.2722 0.1361 0.9526 -0.1481 0.0185 0.907~ B

0 0 1 0 0 2 0 0 B
1 1.1667 0.2722 0.9526 0.1361 -0.1481 0.9074 0.0185 B
0 0 0.7001 0 0.7140 0.4805 0 0.5098 B

1 1 1 0 0 2 0 0 B
0 -0.3333 0.3333 0.6667 0.6(;67 -0.2222 0.4444 0.4444 B
0 0 0 -0.7071 0.7071 0 0.5000 0.5000 1

0 0 1 0 0 2 0 0 B
1 1 0 0.7071 -0.7071 0 0.5000 0.5000 1
1 1.3333 0.3333 0.6667 0.6667 -0.2222 0.4444 0.4444 B

•
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Table 4.8 gives a summary of the eigenvalue analysis of the system in

Figure 4.11 for a variety of directions, Zl' It is seen in this case that intermediate

eigenvalues also define an injection on the boundary of RI." This injection is

zb =: [2 0 O]T which is on the intersection of the planes V/ = 0 and V:/' = O.

The "Surface" column in Table 4.8 indicates whether Zs lies on the

boundary (B) or the interior surface (1) of RI.'

4.8.5 Classification of Singular Points in Rx
As mentioned before, aIl the points on the singular surfaces in the x­

space may be regarded as singular points, xS' and their associated right eigcnvcctors,

r. Their mapping to the singular surfaces of ~ can aise be considered as ail the

pairs of injections Zs and Zr where Zr =L(r)r. This classification of the points on the

singular surfaces of~ is significant for examining the nature of multiple loud flow

solutions.

4.9 Convexity of~
A hypothesis is made in [26] that the interior of Rz is convexe The case

is made by showing that the interior of~ cannot be concave. Figure (4.16) shows

the feasibility surface~ PzO for a 3-dimensional load flow feasibility region.

Figure 4.16. Illustration of the Convexity Argument

71



• C/zapter IV: Experimental SlUdies on t/ze Load Flow Feasibility Region

This situation is possible if there is a search direction ZI such that the solution of the

generalised eigenvalue problem produces multiple eigenvalues.

However, it is shown that if there are multiple eigenvalues, then the

points Zbl and Zb2' on p.o, must lie in a straight line. This implies that in R" these

points lie on a plane or the intersection of two planes.

This argument is supported by the results from the three examples

presented in the previous section. In the case of the 2-bus system, when there are

multiple eigenvalues, the corresponding injections lie on an axis in the z-space and

on the plane V/ = O. In the resistive 3·bus and the 5·bus examples, the multiple

eigenvalues have corresponding injections on the planes Vi
2 = O. These planes form

part of the boundary of R,. Furthermore, in the 3-bus network, these boundary

portions of R, are paralle\ to the planes defined by the search direction: z? z = c.

4.10

4.10.1

Multiple Load Flow Solutions and Singular

Surfaces of~

Nature of Multiple Solutions

The multiple load flow solutions may be examined in the context of the

load flow feasibility region.

Let the load flow equations be z = F(x) = L(x)x. Now assume that

two vectors x' and (x·+ox) satisfy this set of equations. Then

•
which implies that

z = L(x·) (x·) = L(x·+&x) (x·+&x)
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(4.28)

The definition LO is given in (3.32). From equation (4.2S), it can he dcduccd thut

the vector (2x·+ ox) is a singular point. "s, and ox is its ussociuted right eigcnvcctor.

r. [9]:

2x· + ôx = X s
ôx = r

From (4.29), the two solutions are therefore

x· = 1:. (x - r)2 s

x· + ÔX = 1:. (x + r)2 s

(4.29)

(4.30)

From the foregoing discussion. it is seen thut uny two load flow

solutions x·, x·+oX must be of the form [9]

(4.31)

•

This means that the SUffi and difference of any two solutions make the jacobian

singular. Also, since the voltage at the slack bus must be identical for the two

_ ... :>:T•

......... -2x + 6 X............
.L::::.. X ............

* -------:~7~-------...................
............ X + L:::::..X..........

Figure 4.17. Relationship between Multiple Load Flow Solutions
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solutions, the component of either r or Xs corresponding to the slack bus must be

equal to zero. Numerical experience has supported this contention (See Table 4.3).

These results were also derived in [3] but by first assuming that the solutions are of

the form XI .±. X2'

The injection defined by the two solutions in (4.31) is

=

z = ~L(Xs)Xs ± ~L(xs)r + ~L(r)r

= ~L(Xs)Xs + ~L(r)r

Zs + zr

4

(4.32)

where Zs and zr are as previously defined. Again, due to the specification of the slack

bus voltage, the components of either Zr or Zs corresponding to the square of the

voltage magnitude of the slack bus should be equal to zero. From this it can be

concluded that at least one of the injections, Zs or z... in (4.32), must be a boundary

injection, Zb' which lies on the hyperplane Vs
2 = O. Consequently, any injection Z

having multiple solutions must be of the form

4.10.2 Numerical ResuUs

z = (4.33)

•

Numerical simulations support the reasoning of the previous section.

In Table 4.9, the various pairs of injections, Zs and z... found from a particular

direction ZI are given. The network is shown in Figure 4.6.

Note that the injection, zs' associated with the eigenvalues of similar

magnitudes alI lie on the hyperplanes VI
2 = V2

2 = O. This supports the hypothesis
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Table 49 Injeclions on the Singular Surfaces of R,..
). 0.8126 -1.0637 -0.2941 -13.4058 -133927 -133511 -1334 -13.3360 -133372

z =•
P, -4.0171 8.5445 3.1891 -0.0018 0.0006 0.0008 0.0000 0.0000 0.0001
P, -0.3208 0.2964 0.1056 1.2289 0.7271 1.2487 0.9152 11.1822 4.0736
p. 0.1156 0.0343 0.1129 0.6655 0.7925 -0.0404 0.7001 11.7259 13.553.
P, 0.1348 0.1233 0.1964 0.5775 0.9251 3.2278 2.6414 0.0422 0.7137
0, -0.3529 -0.4495 -0.5274 3.5540 2.1216 3.7148 2.7378 33.5194 12.1978
O. -0.3563 -0.3756 -0.5635 1.9307 23132 -0.1171 2.0947 35.1501 40.6099
0, -0.5498 -0.7406 -0.9861 1.6680 2.6921 9.6128 7.8893 0.1265 2.1401
y' 0.2819 0.4275 0.5399 0.0002 0.0002 0.0000 0.0000 0.0000 0.0000,
y' 0.3886 0.2869 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.00001

z =,
P, 4.6709 -1.7143 -2.20 7.2060 0.0002 0 0.0011 0.0002 0 -0.0002 0 0.000 0.0000
P, -O.66iO 1.8649 0.562 -0.2310 1.2149 -0.058 0.7232 1.2361 -0.113 0.908 0.03411.115 4.0643
p. -0.4736 1.3603 0.448 -0.2007 0.6601 -0.014 0.7923 -0.0398 0.0590.690 -o.0171L741 13.5572
P, -0.3947 0.9376 0.269 0.0168 0.5764 -0.001 0.9240 3.2299 -0.002 2.642 0.000 0.0421 0.7137
0, 0.3868 2.0836 0.510 -0.4038 3.5591 -0.142 2.1230 3.7192 -0.137 2.740 -0.109 33.530 l2.2013
O. -0.3709 03621 0.412 -0.3648 1.9327 -0.066 23140 -0.1174 -0.061 2.096 0.009 35.131 40.6097
0, ·0.7944 -0.1182 0.171 -1.0663 1.6685 -0.003 2.6922 9.6125 -0.000 7.889 0 35.132 2.1402
y,' 0.4752 0.1957 0.017 0.5323 0.0002 0 0.0002 0.0000 0 0 0 0.1264 0.0000
y' 0.0000 0.0000 0.596 0.0595 0.0000 0.969 0.0002 0.0000 0.982 0 0.998 0 0.00001

Z, = [-0.1 -0.1 -C.1 -0.1 -0.1 -0.1 -0.1 0 W

• • •
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in Section 4.9 that when there are repeated eigenvalues, the injections associated

with them lie on the hyperplanes which form part of the boundary of~. It is

assumed that the injections, zs' in Table 4.9 which do not lie on the hyperplanes

Vi
2 = 0, lie on the conical portion of~. This is the part of~ that describes the

constraints on the real and reactive power injections as weIl as the square of the

voltage magnitudes. These injections would be more similar ta a "typicall! operating

point.

Note that for the Xs and r which are orthogonal (Section 4.7.3.3), Zs and

zr are almost identical. This indicates that an injection formed by the sum of two

such injection has double solutions.

The ten known solutions [8] of the S-bus system in Figure 4.18 are used

ta verify sorne of the various relations presented in 4.10.1.

V -1.06

5

1

0.2+jO.1

Figure 4.18. 5-Bus Network

0.45 + j 0 .15

2
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Note that this network is tht: same as the one given in Figure 4,6 hut the huses are

numbered differently and the bus types are specified differently. Bus #5 is 1l0W the

slack bus and bus #2, the voltage control bus.

Solution #1 in Table 4.10 is the "valid" solution. This solution was first

added to each of the other nine solutions and the resulting vectors were used to l'mm

nine jacobian matrices. Similarly, the difference of the "valid" solution and each of

the other nine solutions were used in the formation of nine jacobian matrices. These

eighteen jacobain matrices were checked for singularity since l'rom the results in

Section 4.10.1, the sum and difference of any two load flow solutions should make

the jacobian singular.

Table 4.10. The l'en Solutions of the 5-Bus System

x Solutions

1 2 3 4 5

el 0.9994 -0.7543 -0.6237 0.9776 -0.5966

e2 0.9767 -0.3210 -0.1702 0.7736 -0.0581

e3 0.9735 -0.4140 -0.2303 0.7184 -0.1756

e4 0.9612 -0.6518 -0.û656 0.0181 -0.4799

es 1.06 1.06 1.06 1.06 1.06

fi -0.0360 -0.6565 -0.7817 -0.2104 -0.8025

1'2 -0.0798 -0.3846 -0.3364 -0.1740 -0.0217

1'3 -0.0850 -0.4161 -0.3392 -0.1775 -0.1239

1'4 -0.0958 -0.5155 -0.0066 -0.0540 -0.5068

1'5 0 0 0 0 0
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Table 4.10 c'td. The Ten Solutions of the 5-Bus System

Solutions

x
6 7 8 9 10

el 0.9587 0.9505 0.9567 0.9237 -0.4982

e2 0.1767 0.0270 0.0121 0.1685 -0.0691

e3 0.0042 0.0079 0.1454 0.0025 -0.1347

e4 0.5761 0.5707 0.6273 0.0149 -0.0749

es 1.06 1.06 1.06 1.06 1.06

fI -0.2841 -0.3106 -0.2908 -0.3830 -0.8670

f2 -0.0865 -0.0490 -0.0317 -0.1000 -0.0543

f3 -0.0297 -0.0483 -0.1127 -0.0359 -0.0952

f4 -0.2499 -0.2715 -0.2776 -0.0796 -0.0020

fs 0 0 0 0 0

In the case of the nine jacobian matrices Îormed from the sum of the

load flow solutions, the determinant of the jacobian was not equal to zero. However,

at least one of the nine eigenvalues of each matrix was equal to or very close to zero.

These results are shown in Table 4.11. It was reported in [3] that the determinant

of the jacobian is extremely sensitive around the singular points. Therefore it is

assumed that numerical inaccuracies are responsible for the determinant and sorne

of the eigenvalues not being equal to zero.

From equations (4.28) and (4.29), the difference of any two load flow

solutions should be in the null space of the jacobian matrix formed from the sum of

the two solutions. The simulations reveal that the difference of Solution #1 and the

other nine solutions were scalar multiples of the eigenvectors corresponding to the
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Table 4.11. Real Part of the Eigenvalues and the Determinants of the Jacobian Matrices formed from the Sum of Two Load Flow Solutions

Solu· 1+2 1+3 1+4 1+5 1+6 1+7 1+8 1+9 1+10

lion

22.735 24.914 35.353 16.270 28.348 27.628 29.212 29.060 21.044

-5.257 -12.28 13.013 8.323 10563 10.501 11.371 9.995 -13.00

-5.257 7.284 13.013 8.323 10.563 10.501 11.371 9.995 6.249

Eigen 6.921 7.284 -16.09 -7.507 -14.11 -14.79 -16.34 -12.43 6.249

value 6.921 3.440 3.471 -7.507 -7.308 3,818 3.766 -4.911 3.342

3.958 3.440 3.471 3.853 3.958 3.818 3.766 3.047 3.342

3.958 -1.022 -3.329 3.853 3.958 -6.147 -1.249 3.047 -2553

-1.806 ·1.022 -3.329 0.000 -0.896 -0.996 -5535 -0.823 0.002

0.000 0.001 -0.008 -0.495 0.001 -0.008 -0.008 -0.004 -0.096

Det 0.7772 ·978 1.223 x 10' -156 -5.101 x la' 2.449 x 10' 4.081 x 10' 3.742 x la' -487.931

• • •
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smallest eigenvalue of the jacobiail formed from the sum of those solutions. Recall

from the previous paragraph that the smallest eigenvalues were equal ta or very

closeto zero sa it is assumed that their associated eigenvectors are in the null space

of the jacobian. For the jacobian matrices found formed from the difference of the

load flow solutions, bath the determinant and one of eigenvalues of each rnatrix were

exactly equal ta zero.

Allowing for numerical inaccuracies, the given injection, Zg. also

satisfied equation (4.33) for a number of different pairs, Zb and z.. Results are shawn

in Table 4.12 for the pairs defined by the surn and diffe.rence, respectively, of the

"valid solution" and Solutions 2-5 of Table 4.10.

Table 4.12. Specified Injection as the Surn of two Injections on Singular Surfaces of

(Zb + zr)/4

Zg Sol (1±.2) Sol (1±.3) Sol (1±.4) Sol (1±.5)

0.20 0.20 0.20 0.20 0.20

-0.45 -0.45 -0.45 -0.45 -0.45

-0.40 -0.40 -0.40 -0.40 -0.40

-0.60 -0.60 -0.60 -0.60 -0.60

-0.15 -0.15 -0.15 -0.16 -0.16

-0.05 -0.05 -0.05 -0.04 -0.04

-0.10 -0.10 -0.10 -0.10 -0.10

1.00 1.00 1.00 1.00 1.00

1.1236 1.1236 1.1236 1.1236 1.1236
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4.10.3 Number of Solutions and Singular Surfaces of R.
It is known that the number of load flow solutions depends on the

topology of the network and the location of the given injection in the injection space.

It is also known that injections close to the zero injection vector have the most

solutions [15,19] and those close to the maximum power transfer capacity have a very

small number of solutions. These factors are now discussed in terms of the ideas

presented in the preceding sections.

4.10.3.1 Position of Injection in R.
Based on the above considerations, one can surmise that the number

of solutions to a given set of load flow equations z = F(x) depends on the numher

of pairs Zb and zr that satisfy equation (4.33). If there are Il solutions, there will he

ne; such pairs of vectors. This also suggests that the number of multiple solutions

should be even except when at lenst one of the solutions is a singular point.

One can attempt to explain the number of solutions in terms of the

relative positions, in R., of the various pairs Zb and zr' If the given injection is in a

portion of R. where the sum of many different pairs, Zb and zr intersect, then it is

expected that there is a good chance that many of them will satisfy (4.33). On the

other hand, if the injection is in a section of R. where there are not many such

intersections, then there will be fewer pairs satisfying (4.33) and consequently, fewer

solutions.

4.10.3.2 Example

Figure 4.19 shows a "cross-section" of R. for the network of Figure 4.11

and the relative positions of the pairs Zb and zr
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o.~

-o.S

O.!>o-O.!>

-1 1.-__--' ---' ---'- ---'-----'

-1

Figure 4.19. Feasibility Surface Pzo Showing the Pairs Zb and zr

Numerical tests on this simple network indicate that if Zb lies on the

plane Vl = 0, then its zr lies on the hyperplane V/ = 0 and vice versa. On the

other hand, if Zb is on the boundary portion of R.:. representing the constraints on the

power injection, its zr is on the intersectiol:' of the hyperplanes V j2 = O. It means,

therefore, that in the region of~ close to the origin of the z-space, in the vicinity

of the hyperplanes Vj
2 == 0, there are several pairs, Zb and zr' and consequently, the

sum of these pairs will also be in that region. Thus the likelihood of the sum of these

pairs intersecting is greater in that area of~. There are less pairs, Zb and zr' close

to the boundary portion of~ representing the constraints on the power injections.

As a result, there is less chance that the sum of this small number of pairs will

intersect in this area.

•
For this small system, itcan be seen that the injections close to the

boundary portion of R.:. describing the conditions on the square of the voltage

82



•

•

Clzapter IV: Experimelltal Studies 01/ tlze Load Flow Fe(Llibiiity Regio1/

magnitude would have more solutions than injections close to the houndary portion

of R. representing the constraints on the power injections.

4.10.3.3 Structure of R.
The relationship between the multiple load fIow solutions and the

singular surfaces of R. can be examined using a different approach. ln reference [5].

it was shown that any injection, z, which is "close" to a singular injection, ZS' has two

close solutions in the voltage space. These two solutions are in the neighbourhood

of a singular point, xS' which defines a jacobian matrix with nullity one. This fact will

be used to determine how the number of singular surfaces in R, is related to the

number of load fIow solutions.

The generalised eigenvalue approach used to characterise R, finds N

(where N is the number of buses in the system) singular points in the x-space, for

every direction Zl' which define jacobian matrices with nullity one. These singular

points define corresponding injections on singular surfaces in R.. Assume that these

N injections lie on m different surfaces in R,.. Recall that at least two of the

injections lie on the boundary of R. so m .:s. N-I.

Consider any injection, z, which is not feasible and therefore has no

real solutions. If z is moved in a direction such that it crosses the boundary of R,.,

at least two solutions will appear. As z approaches any interior singular surface,

every existing solution "separates" into two new solutions. Therefore when z has

moved across the m distinct interior surfaces there will be 2m solutions. Since m .:s.
N-I, the maximum number of load fIow solutions must be at least 2(N.!)•
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CHAPTER v

CONCLUSIONS AND

RECOMMENDATIONS FOR FURTHER

RESEARCH

5.1 Conclusions
An analytical study of the load flow problem was undertaken in this

thesis. In particular, the quadratic nature of the load flow equations in rectangular

co-ordinates was examined in detail. The importance of this formulation of the load

equations to the understanding of the nature of multiple load flow solutions as weil

as the nature of the load flow feasibility region was emphasised. Experimental

studies were done which confirm and expand on these concepts.

The main resuIts and conclusions of this work are:

(i) The load flow equations of an N-bus system describe (2N-!) [ully

quadratic hypersurfaces in a (2N-l)-dimensional space or alternatively, 2N quadratic

hypersurfaces and one hyperplane in a 2N-dimensional space.

(ii) The hypersurfaces defined by the real and reactive power injections are

hyperbolic. Furthermore, the surfaces defined by the reactive power injections are

"narrower" than those defined by the real power injections.

•
(iii)

four

The matrices describing the real and reactive power injections have

non-zero eigenvalues. The matrices describing the 2N-dimensional
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hypersurfaces have two identical pairs of eigenvalues. The matrices describing the

(2N-l)-dimensional hypersurfaces also have two pairs of eigenvalues but the two pairs

are identical only when the matrix defines an injection at a bus which is not

connected to the reference bus. The matrices describing the square of the voltage

magnitudes have two non-zero eigenvalues.

(iv) The eigenvectors of the matrices defining the (2N-l)-dimensional

hypersurfaces depend on the quantity Gis / Bis' This indicates that the position of

the reference bus, as weil as the admittance to susceptance ratio of the line between

the bus at which the injection is specified and the reference bus, determines the

orientation of these hypersurfaces in the voltage space and consequently, the nature

of the intersection of these hypersurfaces.

(v) If a set of load flow equations has multiple solutions, the solutions can

be expressed as the sum and difference of a vector that makes the load flow jacobian

singular and another vector in the null space of that singular jacobian matrix.

(vi) The sum and difference of any two of the multiple load flow solutions

make the load flow jacobian matrix singular.

(vii) Singular points in the voltage space may be obtained by finding the

eigenvectors of the generalised eigenvalue problem, [J(z.) - ÀJ(zo)] x = O. The

matrices J(z.) and J(zo) are linear combinations of the matrices describing the

specified injections and Zo is a vector which is perpendicular to a hyperplane that

intersects ail the boundary points of the load flow feasibility region.

(viii) The load flow feasibility region, R., consists of a convex cone lying on

or above a set of hyperplanes. The cone and hyperplanes define surfaces in R.. The
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Chapter V: Conclusions and Recommendations for Further Research

injections on these surfaces are defined by vectors which make the load flow jacobian

singular.

(ix) Any feasible injection can be expressed as the sum of two injections on

singular surfaces of R,. At least one of these two injections must lie on the

hyperplane V/=O where bus i is the slack bus.

5.2 Recommendations for Further Research
The work in this thesis demonstrated that the rectangular form of the

load flow equations highlights the relationship between, as weil as the properties of,

the multiple load flow solutions. The following are suggestions for further research

in this area:

(i) It was established that the solutions of the load flow equations may be

obtained by finding the intersection of (2N-l) quadratic surfaces, sorne of which

quadratic surfaces are hyperboloids. If (2N-l) Iinearly independent vectors, Zo, can

be found such that the Iinear combinations zl z are positive, then the solutions of

the load flow may be obtained by finding the intersection of (2N-l) elIipsoids. It may

also be possible to use algorithms designed for positive definite matrices in this

approach.

(ii) The fact that any given injection can be expressed as the sum of two

injections on singular surfaces of R, can also be used to find the load flow solutions.

If a systematic method can be devised to find ail such pairs for a given injection, then

the solutions of the load flow are simply the sum and difference of the vectors which

define these pairs of injections.
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APPENDIXA

REVIEW OF LOAD FLOW CALCULATION

MEmOnS

A.t Introductory Remarks

The complexity of the load flow problem may be assessed by the fact

that after more than three decades of research, new resuIts are still being presented.

One of the result of the tremendous amount of work that has been done in this area

is that the numerical tools for solving this problem have been very weIl developed

and documented [2]. The main considerations in the development of the numerical

techniques have been improving the rate of convergence, robustness of the algorithm,

storage requirements and computing time.

A.2 Numerical Methods for Load Flow Calculation

Load flow calculations were done by analog simulation techniques [36]

until the advent of digital computers in the 1950's [37,38]. This provided the

motivation for developing iterative numerical techniques and fueIled indepth research

into ail aspects of the load flow problem.

The first digital methods were based on the Y-matrix approach and the

Gauss-Siedel algorithm is a typical example. Its main feature is a low storage

requirement due to the sparsity of the admittance matrix. However, it is not very

robust and the number of iterations required for convergence increases with network

size. The convergence problerns of the Y-matrix approach gave way to the Z-matrix
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methods [39]. These methods have better convergence properties but require a large

amount of memory because the impedance matrix is full.

The draw-backs of these early iterative techniques led to the

implementation of the Newton-Raphson method [40]. This method is based on the

solution of simultaneous non-linear equations and exhibits quadratic convergence.

The number of iterations is almost independent of the size of the network but the

iteration time is longer than that of the Gauss-Seidel algorithm. This is due to the

fact that the jacobian matrix has to be inverted. The introduction of optimally

ordered sparsity programming [41] made this task more efficient and the Newton­

Raphson method has now become the method of choice in the power industry.

The load flow equations may be expressed in either polar or

rectangular co-ordinates for use in the Newton-Raphson algorithm and the

convergence characteristics are different for each of the two forms. In reference [29].

Abe et al showed that the region of convergence of the rectangular form is larger but

legs stable than that of the polar form. The rectangular version also requires more

storage.

There are other variations of the iterative load flow technique. One

of them formulates the problem as a nonlinear optimisation scheme with the square

of the power mismatches as the objective function [42]. Another approach solves for

the voltage variables as an explicit power series of the specified injections [44]. This

latter method utilises the rectangular form of the load flow equations.

There has been considerable modification of the original Newton­

Rapson algorithm and sorne variations was due. in part, to the analytical work that

was done on the load flow problem.
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Most notable of these improvements was the development of the fast

decoupled load flow method by Stott [43]. It neglects the weak coupling between the

real power and the voltage magnitude as weil as between the reactive power and the

voltage angle. This method is fast, relatively simple and requires considerably less

memory than the full Newton-Raphson method. It is used extensively in steady state

security analysis where speed is one of the most essential considerations.

The fast decoupled load flow is not as reliable as the full Newton­

Raphson because sorne of the simplifying assumptions made in developing the model

do not always hold true. In particular, it is prone to failure when used on systems

in which the ratio of Une resistance to reactance is large. There have been sorne

proposaIs to overcome this difficulty [45,46]. One such scheme introduces a fictitious

node in the middle of the offending Une while another uses the concept of the

distributed slack bus. There have also been sorne variations to improve the

performance of the basic algorithm [47-49]. The theoretical foundation for analysing

the performance of the method is provided in [50] and expanded in [51].

The Newton-Raphson algorithm utilises a Iinearised version of the load

flow equation. A more accurate model including a second-order term has been

employed in load flow calculations [20]. In fact, the load flow equations in

rectangular form may be expressed exactly by the sum of the first three terms of the

Taylor series [21-23]. The objective is to improve convergence and reduce

computation time.

The second-order model has also been used to solve the ill-conditioned

load flow when the jacobian matrix is close to singularity [55,56]. Other recent

approaches to overcome the problems associated with the jacobian singularity include

using a different load model [57,58] and homotopy methods [59].

98



•

•

AppelldixA

The numerical load flow is an indispensable tool in the planning and

operation of power systems. Nonetheless, there are problems associated with it that

are inherent to ail numerical procedures and it should be complemented by other

analytical approaches to the load flow.
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DERIVATION OF THE EIGENVALUES AND

EIGENVECfORS OF THE Ji MATRICES

B.l Introductory Reml1.rks

The Ji matrices describing the power injections are symmetric and very

sparse - containing only two non-zero rows and columns. This aUows their

eigenvalues and eigenvectors to be determined explicitly. The dimensions of the

matrices may be either 2N x 2N or (2N-1) x (2N-1) where N is the number of buses

in the system.

8.2 The 2N x 2N Matrix

Any linear combination of real power injections can be written as

(B.l)

•

where

J. _ 1 [diag(y) G+Gdiag(y) -diag(y) B+Bdiag(Yl]
yTp - "2 diag(yl B-Bdiag(y) diag(yl G+Gdiag(yl

y is an arbitrary N x 1 vector, P is an N x 1 vector of real power injections, xr is the

2N x 1 vector [eT rT] and e and rare the real and imaginary parts respectively, of the

complex voltage. Gand B are the real and imaginary parts of the bus admittance

matrix.
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If Y consists of zeroes everywhere except for a one in the ith position.

this particular vector will be denoted bya. Then. al'p is equal to Pl and diag(a)G

is equal to agT where g is the ith column of the matrix G. Similarly. diag(a)B is

equal ta abT where b is the ith column of the matrix B. Therefore Jl'i C:1l1 he wrilten

as

= .! [agT+ga
T

-abT+ba
T
]

2 abT-baT agT+gaT
(8.2)

The search for the eigenvalues and eigenvectors of JI'; requires the

solution of

(B.3)

or

(B.4)

Simplifying (B.4) results in

(B.S)

Both sides of equation (B.S) are pre-multiplied by [a'l' Ôl'j where 0 is an N x 1 vector

of zeros ta give

(B.6)

•
Since al' a = 1, (B.6) may be simplified ta
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(B.7)

A1so pre-multiplying (B.S) by rOT al resuIts in

Equation (B.8) may be simplified to produce the following result

(B.9)

Pre-muItiplying (B.S) by CgT _bT] results in

(B.10)

Re-arranging and simplifying (B.10) gives

(B.11)

Pre-multiply (B.S) by [bT g'rj to get the following

(B.12)

Again, simplifying (B.12) gives

(B.13)

•

Equations (8.7), (B.9), (8.11) and (B.13) can be put in matrix form as

follows
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(aTg-2).) aTb 1 0 aTe 0

-aTb (a.Tg-2).) 0 1 aTf 0 (B.14)=
(gTg+bTb) 0 (gTa -2),) -bTa gTe -bTf 0

0 (gTg+bTb) bTa. (gTa.-2J..) bTe+gTf 0

The following expression can be derived from the first two equations of (B.14)

(B.15)

Substituting the right-hand side of (B.15) into the third and fourth equations of

(B.14) produces the following

(B.16)

Sirnplifying (B.16) results in

(B.17)

and "1" in (B.17) is the 2 x 2 identity rnatrix. Finally, the deterrninant of equation

(B.17) can he set to zero and the resulting equation

(B.18)

•

solved for 1. The roots are repeated. Each pair of the repeated Toots is equal to
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11. .À_=_g.T.".±•..;-.<".Tb./.+(g.T.
g
.'b.

T
.b
l

.(B•.•1.9).1

From (B.1S). it is evident that ail the elements of the matrix in (B.17)

must be equal to zero. This means that aTe and aTr are completely arbitrary. This

fact can be used in (B.5) to derive the eigenvectors of the matrix defining the real

power injections. Note that aTe and aTr represent the real and imaginary

components. respectively of the voltage at the bus under consideration. Choosing

raTe aTlJ equal to [1 0] for the first pair of eigenvalues and [0 1] for the second pair

and substituting them in (B.5) gives two eigenvectors for each pair of the non-zero

eigenvalues. The general expressions are

1
V_=_[g_+(2_À-_U.T_

g)Ul (B_.2...0) 1, -b +(uTb)u ,

for the first pair Â1• Â2 and

I
V -_[_b-_(U

T

_b)U_J (B._21)1- g+(2À-uTg)u ,

for the second pair Â1• À2• lt can be easily verified that the four vectors are mutually

orthogonal.

The eigenvalues and vectors of the Ji matrix describing the reactive

power can be derived folIowing the same procedure. This amounts to replacing g

and b in the expressions for the real power with -b and g respectively.
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B.2 The (2N-}) x (2N-}) Matrix

In most load flow studies, the reference angle is set to zero. This can

be done without loss of generality. In this case, the dimension of the Ji matrix may

be reduced to (2N-1) x (2N-1) by deleting the (N+s)th row and column from the

2N x 2N matrix. The reference bus is taken to be bus s. Recall that the slack hus

is also assumed to be the reference bus. The eigenvalues and eigenvectors of this

smaller matrix are now derived.

Once again, assuming that a consists of zeroes everywhere except a one

in the ith position, the Ji matrix describing the real power injection now becomes

(B.22)

where p is N xl vector containing zeros everywhere except a "1" at the sth position

and bus s is the slack bus.

The system of equations to be solved is again

(B.23)

Using the fact that pTfis equal to zero since fs is equal to zero and also that aTp is

equal to zero since power injections are specified for buses other than the slack bus,

equation (B.23) may be written as

(B.24)

Pre-multiplying (B.24) by laT OT). the following expression is obtained
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(B.25)

Pre-multiplying (8.24) by [DT aT] and simplifying gi'/es

(B.26)

Again, pre-multiplying (B.24) by [gT .bT] and simplifying results in

(B.27)

Pre-multiplying (B.24) by [bT gT] and simplifying gives

(B.28)

Equations (B.25) - (B.28) can be put into matrix form as follows

(8.29)

The first two equations in (B.29) are identical to those in (8.14). Again, they are

used to find the expression given in (B.15). This expression is substituted into the

last two equations of (B.29) to get

[gTg+bTb-(PTb)2_(aTb)2~«(J,Tg_2).)~ pTgpTb ][uTe] = rO]
pTgprb gTg +bTb-(pTg)2_(uTb)2_«lTg -2A)2 (lTf lo

(B.30)

Finally, the determinant of the matrix in (B.30) can be set ta zero to solve for the

eigenvalues. There are two pairs, one of which is identical to the expression in

(8.19). The other pair is given by

•
À = 8 ra .1·I8T8+bTb-<o.Tb>,,-(~T,>,,-(~Tb)2

2
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In this case, aTe and aTf are no longer arbitrary. For the pair of

eigenvalues in (B.19), the relationship between them is

(8.32)

Choosing aTf equal to "1" and substituting (8.32) in (B.24), the fol1owing expression

is obtained for the eigenvector corresponding to those eigenvalues

v = (B.33)

For the eigenvalues in (B.31), the relationship between aTe and oTr is

(8.34)

The eigenvector corresponding to these eigenvalues is

(8.35)

•

As in the first instance, the eigenvalues and eigenvectors of the Ji

matrix describing the reactive power injection may be obtained from those of the real

power injections by replacing g and b in the expressions for the real power with -b

and g, respectively. The derivation is identicaI.

107



•

•

Appelldix B

These expressions were checked against the Matlab function used to

obtain the eigenvalues and eigenvectors of a matrix. The derived eigenvalues were

identical for both the 2N x 2N and the (2N-l) x (2N-l) matricl::s were identical to

those found by the Matlab routine. The eigenvectors with only one arbitrary

component (smaller matrix) were also the same.
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•
APPENDIX C

EXAMPLES OF THE (2N-l) X (2N-l) MATRICES

DESCRIBING SPECIFIED INJEcrIONS

Sorne examples of the symmetric matrices describing the specified

injections of an arbitrary 3·bus system are now presented.

With N being the number of buses in the system, the 2N x 2N matrices

(Jp;) describing the real power injections are:

2Gl1 GZ1 G31 0 -Bz1 -B31

GZ1 0 0 BZ1 0 0

G31 0 0 -B31 0 0
(C.l)Jp =

1 0 BZ1 B31 2GII GZ1 G31

-BZ1 0 0 GZ1 0 0

-B31 0 0 G31 0 0

and

0 G21 0 0 -B21 0

G21 2G22 G23 -B21 0 -BZ3

0 G23 0 0 B23 0
(C.2)Jp =

2 0 -B21 0 0 G21 0

B21 0 B23 G21 G22 G23

0 -B23 0 0 G23 0

and
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0 0 G31 0 0 B31

0 0 G23 0 0 Bn

G31 G32 2G33 -B31 -Bn 0
(C.3)Jp, =

3 0 0 -B31 0 0 G31

0 0 -Bn 0 0 G23

B31 Bn 0 G31 G32 2G33

If bus s is chosen as the reference bus, the (2N-l) x (2N-l) matrix may

be obtained from the 2N x 2N matrix by deleting the (N+s)th row and column of the

matrix JS j which is defined as

(C.4)

•

For a 3-bus system with bus 1 as the reference bus and the reference

angle equal to ôs, the matrix M is given by

1 o 0 0 o 0

0 1 0 0 o 0

0 o 1 0 o 0 (C.S)M =
tan&, o 0 -1 o 0

0 o 0 0 1 0

0 o 0 o 0 0

The inverse of the matrix M is equal to M so for P2' JSj as defined in equation (C.4)

is
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0 G21 - B21 tanÔ. 0 0 B21 +g21 tan Ii. 0

G12 -B21 tan Ii. 2G22 G23 B21 0 -B23

0 G23 0 0 B23 0
(C.6)Jsp. =• 0 BI2 0 0 -G21 0

B21 +G21 tan Ii. 0 B23 -G21 2G22 G23

0 -B23 0 0 G23 0

Similarly, the matrix describing P3 is

0 0 G31 -B31 tan Ii. 0 0 B31 +G31 tan Ii.

0 0 Gn 0 0 831

G31 -B31 tanli. Gn 2Gn B31 -Bn 0
(C.?)JsP• =

0 0 B31 0 0 -G31

0 0 -B32 0 0 Gn

B31 +G31 tanô. Bn 0 G31 Gn 2G33

The (2N-!) x (2N-!) matrix is obtained by deleting the 4th row and

colurnn of JsPi' Note that only four elements of this matrix which are different from

the original Ji matrix with ils (N + s)th row and column deleted: the (s,i)th, (i,s)th and

the (s,N+i)th and (N+i,s)th elements, where i is the bus at which the injection is

specified. The matrix for the reactive power may be obtained by replacing Gand B

with -B and G respectively.
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