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_ABSTRACT —- <

P

This thesis deals with the synthesis of unequally spaced linear arrays with
nonuniform current distributions, It has been established in the literature that /
allowing freedom in the element positions yields an additional design parameter / ”
whereby the specified results can be achieved more efficiently. The synthesis o '
process presented here is such that desired a radiation pattern, as specified a ’L ./

—
°

priori, is achieved by determining unequal element spacings as well as non-
uniform element excitations. A two step iterative numerical process is presented - .
whereby such linear arrays can be synthesized. Examples are presented which |
validate the method in terms of known cases and demonstrate it through an

"open-ended" case. ) o
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ABSTRAIT

Cette these est sur le sujet de synthese des antennes lineaire dont I'espacement
& des elements est variables et aussi la distribution de l'intensite des courants est
non uniforme. Il ete etabli dans la litterature qu’en permettant du liberte dans

les positions des elements, on recoit une parametre de calculation additionelle

avec laquelle on peut obtenir des resultats plus efficaces. Le proces de synthese

present er ceci est tel que la patterne de radiation desire comme il est specifier

“'en avance, est obtenu en permettant des espacements des elements non
uniforme et aussi des courants non egales. La methode presente est un proces
numerique a deux etapes par lequel tel antennes lineaires peut etre synthetiser.

' Des examples sont presenter qui verifies 1a methode en utilisant des resultats

deja connue et qui demontre la methode en presentant des resultats unique.
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1. INTRODUCTION

The subject of this thesis is the synthesis of linear antenna arrays with
non-uniform current excit:ftions_as well as unequally spaced elements®
The complex excitations and the posltioﬁs. of the array antenna
elements are to be determined such that a specified radiation pattern
is achieved. \

-The element spacings of unequally spaced- arrays provide an additional

deslgn parameter which, along with the amplitude and phasing of the
element current, are used to control the radiation pattern of the
system. In arrays with equally spaced elements each element can be
thought of as having one degree of freedom, that is, its complex
excitation. HoweveP, for the case of arrays with arbitrarily distributed
elements another degree of freedom is added to each element, namely
its position along the axis of the array. By taking advantage of this
additional degree of freedom in the synthesis I;rocess it should be
expected that arrays falling into this latter category would need, in
general, fewer elements to achieve the same performance than their
equally spaced counterparts. Or, if it is decided that a fixed number of
elements are to be used, better results should be obtained when taking
into consideration the freedom in element positions. ,These advantages
will be reiterated once again when discussing the results obtained in
the synthesis procedure presented in this thesis.

The analysis of an array antenna, of course, presumes that the
geometry and excitation are specified and hence the radiation pattern
can be determined. In the inverse process of synthesis, the specification
of the radiation pattern is used to invoke the array configuration.
Synthesis techniques generally assume either a particular geometry or a
certain current distribution. In this thesis, however, a mathematical
and a numerical process is presented allowing for control of both the
geometry and excitation.
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' A form of optimization thus resultssuch that if in a particular case the
pumber of elements is fixed then an optimum pattern is pbtained for
that number of elements. Conversely, if the pattern is to be optimized,
this can be achieved by utilizing the least number of elements by

determining the most advantageous spacing geometry.

&T%bject of this thesis is to establish the opportunity and need for -
sich a synthesis technique, to present the® mathematical basis of its

formulation, to produce the algorithms apd software for its
implementation and to demonstrate the utility by pres.ent'mg a series of

examples.

Thus, Chapter Two contains a historical review and a symmary of
currently available synthesis methods relevant to the objectives of this
( " work. It is noted that in approaching this problem, other workers have
¢ demonstrated that controlling element spacing as well as element

excitation can substantially improve the effectiveness and economy of

linear arrays. The need for further improyement and for an
.-optimizdtion of ngh designs thus forms the basis for the present work.

’ Ch;pter Three( presents theimathematical basis for the numerical
processes developed in the current work. The algebraic formulation is
developed first. The second part of the chapter outlines the manner in
which the inversion of the problem can be carried out. This thus
provides the foundation for the numerical algorithms and the
P consequent software needed to execute the synthesis procedure.

Chapter Four describes the key work of this thesis, namely the
numerical techniques and the software which has been developed for
© this synthesis process, First the structure of the process is established. _
" and the necessary algorithm described. Next the software required is
spmmarized and the tests, »erforme\i to determine the convergence
( properties, are described. Despite the synthesis process complexity, it is
shown that it can be accommodated on an enhanced IBM PC XT level -

'l
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Chapter Five contains a series of results obtained by using the
synthesis procedure. First are presented results for known cases which ’
are also predictable analytically and these serve as a validation of the
process. Results are then presented for an 'open ended’ case in which
the required pattern is specified and the solutions to it obtained. The
effectiveness of the synthésis procedure is thus demonstrated.

Chapter Six summarizes the work and results of this thesis, discusses
the contributions made and suggests further work- which has been
made possible as a consequence.

In summary, this thesis presents a process foy the synthesis of lidear
antenna arrays ih which optimization is achieved by controlling both
the array geometry (inter-element spacing) and excitation. The
principal contributions are the concept of the method and its
mathematical formulations, the development of the necessary
numerical process and its inplementation and finally its validation and
practical demonstration by synthesizing a number of cases. .




— 7,

-

AL R P .
) . ‘ \
2. HISTORICAL REVIEW

This ‘chapter is a survey of previous relevant work on linear array
synthesis. The 'subject of linear arrays received first major attention
well before the Second World War. At that early stage, however, the
approach was largely analytical or experimental. Schelkunoff and
others developed- a general theory for arrays for determining radiation
patterns. Early synthesis techniques such as that by Dolph [16], were
based on this theory and are well described in the literature. Therefore
the survey presented here concentrates on work on synthesis
techniques since the early 1960’s. The survey is categorized into three
sections. The first is about equallyspaced linear arrays where only the
complex element excitations are allowed to vary. The second contains
work on unequally spaced lmear arrays where the current distribution
is assumed to be uniform. The third and final category is about Qhe
cases in which both the element spacing and the complex excitations
are sllowed to wvary. Tables 2.1 - 2.3 , located at the end of this
chapter, are listings of the literature considered and their appropriate
classifications. These can give the reader a ready comparative overview
of the type of research carried out so far and of its direction.

2.1 Equi-Spaced Linear Arrays

3

Initially most of the work carried out on linear arrays was concentrated

on those having equal spacing. Much theoretical and analytical work

was done to arrive at formulations of the radiation pattern function.
These pattern functions in turn were examined and methods were

‘ pmpm%d for the solution of the element excitations that would yield

either an optimum beam (optimum in the sense of lowest sidelobe

levels for a specified beamwidth or vice versa) or one closest to a

specified pattern. o
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Dolph, (18], used the minimal property of Chebyshev polynomials to
determine the element currents that produce array patterns yielding
equi-level sidelobes that are at the lowest level for a particular
beamwidth. Ma, [36], considered various synthesis methods using three
different expressions to describe the desired pattern. First, he used the

Bernstein polynomial to model the desired power pattern. Equating .

this to the array polynomial yielded 2 solution for the element
currents. Secondly, he used interpolation formulae such as Lagrange
and the trigonometric formulae to represent the radiation pattern.
Lastly, Legendre polynomials were used to approximate the array
pattern.

Stutzman, [74], introduced an iterative sampling procedure to achieve
the desired radiation pattern. At each iteration a series of correction
patterns were added to the array pattern of that iteration in an
attempt to bring it closer to the desired pattern. The correction
pattern is a function of increments to the original element currents
thus enabling their solution. Convergence is demonstrated by‘
examples. Inagaki and Nagai, [26], used circuit theory to arrive at an
integral expression relating the current distribution to the radiation
pattern. Sirnov, [68], applied the regularization principle to determine
the phase distribution of an egually spaced linear array, using the
criterion that'the deviation of the resulting pattern from the desired

omne is minimized. The deviation is measured in terms of the LY :::SB!”‘

(see Appendix 1).

Synthesis methods described as “beam shaping”, have been presented
by some authors, [45),[83],[19],(12], and have similar principdes as those
described above. "Beam shaping”, however, implies more stringent
requirements because arbitrary patterns rather than simple
"rectangular” pencil beams are required. Salahos, (56, introduced a
synthesis method in which Chebyshev polynomials are used to model

.the desired pattern.
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2.2 Unequally Spaced Linear Arrays with Uniform focita.tion

Arrays with unequal element spacing are much more difficult to deal
with. They introduce nonlinearities into the formulae used for
radiation pattern calculations and thus make the  synthesis problem
more-complex. In spite of this, however, they have been found to have
definite advantages. King, Packard, and Thomas, [32], undertook a
study which compared unequal spacing with equal spacing. The results
obtained pointed favourably towards unequal element positioning.
Brown, (8], indicated that a practical alternative to current tapering is

nonuniform spacing.

One method of overcoming the difficulties brought about by non-
linearities is to choose an initial equi-spaced position vector for the
array, assume this vector is to be.perturbed and then solyve for the
perturbation vector. Additional assumpt@pns that the P tﬁrbation is
small lead to simplifications in the method which in turn

solution possible. Harrington, [24], and Hodjat and Hovanessian,
utilize itergtive perturbation techniques to reduce sidelobe levels.
Baklanov, Pokrovsky and Surdutovich, [3], have also used a
perturbation technique for the spacing. The element positions are
deviated by an amount dz; . By fixing a priori the desired sidelobe
levels, these deviations are solved. They also give a brief outline of a
method using Chebyshev currents with unequal element spacing.
Schuman and Strait, [64] have introduced a method with constraints
placed upon the relative positions. Ishimaru and others [13],[27],(28],
use Poisson's summation formula to model the radiation pattern
enabling them to solve for the position vector that will yield the
desired pattern. Ishimaru and Chen, [27), further use Anger functions
to model the system. Thomas, (77}, makes the nulls of the desired
pattern correspond to the nulls of an equivalent Chebyshev pattern.
The resulting non- linear system of equations is solved using a least-
square optimization technique based on methods of Gauss and

’




. s 4
R T Ry AL L e R AR o A R R

A R R (L S B
] s l a e oA XL v

¥

-

Lavenberg. Several authors, [50],(69],(7], have used the method of
dynamic programming. It is a systematic search procedure that utilizes
computers to find the optimum solution. It was found, however, that
the results although favourable are not truly optimal. Lau and
Wegrowicz,[34], used Rosenbrock’s algorithm in 2 direct search method.
A performance function is established such that the search is for
nfinimum sidelobe levels. Patel, {46], used a direct search method. Here
the optimllm value of the element positions are obtained by successive
three-point parabolic minimization along a speciﬁéd direction.
1

Tantaratana, {76}, uses a l;) norm, along with the Fletcher and Powell

method of minimization.

In all cases it was found that by allowing freedom in the element
positions, comparable results were obtained in relation to the case of
equal spacipg with-variable current distribution, and better results in
comparison with the case with both equal spacing and equal current
distribution.

2.3 Unequal Spacing’and Non-uniform Current Distribution

Evidently the next step is to investigate the case in which both the
element currents and the element positions are allowed to vary. This
gives each element more degrees of freedom and is shownvto give better
results.

Unz, (80|, formulated a methed for nonuniform arrays based upon the
eigenvalue method. The radiation pattern of the array is assumed to be
of the form:

F(u) = i Ay cos(uz;) -
[=0 .

lM

where, A is the current excitation of the {** element




z; is the element distance from the center, measured in half

wavelengths

u = 7sin® , where O is the angle normal to the array axis.

EY

Consider the following integral equation

£

r

Iz, 2,) = —fcos(uz:,)cos(u:rm) du

By setting this integral to zero and evaluating, using trigonometric
identities, one obtains the relationship for the eigenvalues

(zym)tan(zym) = (2, 7)tan(z,m)

For these eigenvalues, the integral equation will have orthogonality
properties. Using these properties along with the radiation pattern
expression yields the following:

sin2zm | T
'A,=-1— —— [ F(u)cos(uz;) du
2x,1r Zr

Thus in using the above two equations to determine the element
spacing and excitations, one could obtain a linear array which would
approximate a required radiation pattern. However, depending upon
the desired function F(u), the resulting pattern may be only a crude
approximation. In addition, the desired pattern is specified only in
terms of a desired beamwidth and a specific sidelobe level. Therefore
the results are not always satisfactory. Sanzgiri and Butler, [60],
similarly utilized the eigenvalue method, subject, however, to a

as, constraint placed on the sidelobe levels. This method has been shown
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to give results that are compara¥le to those obtained using the Dolph-
Chebyshev technique. In addition, although the method can be applied
to unequally spaced elements, it cannot be used to determine the
spacing itself. B

Popovkin and Scherbakav, [51], and Maffett and Curtz, [39], expressed
the desired radiation pattern in terms of a Fourier-Stieltjes integral.
From this an orthogonal polynomial resulted whose roots correspond to
the element coordinates. The results obtained indicate that unequal
spacing of the elements is better, than equal spacing in terms of
achieving a closer fit to the desired pattern. The method, however, can
become very complex depending on. the desired radiation patterns.
Perini and Idselis, [48], and Butler and Unz, [10], used the method of
steepest descent in an iterative procedure. Initial position and current
vectors were first chosen and then new ones:computed by moving
against the gradient. ) B lﬂ\

Goad and Stutzman, [22], used a two step iterative procedure based
upon perturbations to firstly, the posit:ion vector and secondly, the
current vector. An equally spaced array was used as the initial
approximation. Since only the synthesis of symmetric radiation
patterns was considered, the array factor is given by, - ’

v« N

FO(u) =2 22; I, cos[ku(n—"%)d]

ne]

where, [, are the element currents

~ Nisthe number of elements ,

d is the élement spacing
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The difference between the improved pattern to be obtained and the
initial pattern is taken. Imposing the condition that Ad be small and
using also a trigonometric identity to approximate the cosine term, the
following is achieved:

N
Fl{u)—F%u) = —2 i'lcuAd,,-—I,,sin[ku[(n-—'/z)d]]

nwl fy

where, Ad, are the unknown element perturbations for the first
iteration. The method used here gives the best solution in the discrete
linear norm, {, (See Appendix 1). Ideally one would want to set F}(x)
equal to the desired pattern Fy(u) . These aré equated at sample
points u,, and the process is generalized to the p®™ iteration.

1

N
W( U [ F ()= FP~ 1) = — 2ku, }2: LAdisinfku,|[(n—'%)d+ Ady+ Adi+ - - - +AdE™!]

Rwi

N - >, . .. . .
-5- sample points were chosen resulting in 2 square matrix equation to

olve for the Ad . A similar process was applied to determine the
- element current perturbations. The resulting pattern will not equal
exactly the desired pattern at the sample points since an
approximation to linearize was made. Also, there are limitations in
taking a.discrete linear norm as a measure of the deviation since its
accuracy is highly dependent on the number of points considered.
Convergence of the process was shown with numerical results.

Abramovich and Sverdlik, (1], Ma and Walters, [37], and Schjaer-
Jacobsen and Madsen, [85], utilize an iterative synthesis technique
based on the minimax method which applies the concept of minimizing
the maximum deviation using approximation theory. This deviation is



. \defined more explicitly as the lg, norm which is a discrete linear norm.
The latter two methods do not explicitly determine the excitations but
rather start from a Dolph-Chebyshev distribution. The Schjaer-
Jacobsen procedure is described as follows: If Pp = Pp(¢) is the
desired pattern and P = P{z,%) is the obtained pattern, where z is the
n-dimensional vector of design parameters, then f(z) is the m-
dimensional vector of residuals such that

f](x) = wJ[P(mim‘)j) —PD('/)J)] ’ J=1v ceeym

-

q
we

The problem js to minimize the maximum error F(z) where

fe) = [ @] = max |m)

The technique used here is iterative and is based on successive linear
approximations to the non-linear residuals. At the k' stage of the
process, define

>

Fk(h) =

S (=) + ﬂk(h)‘ N
where f; is an apbfoximation to tixe-derivqtive matrix
N :2ik - '
oz, | ’

The increments i are then found by solving the constrained linear
minimax problem’

¥

Fi(hy) = |;f?i<nxk[F"(h)]
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The bound \; can be adjusted during the iterations.

Another procedure that has commonly been employed, [53],[41},(4], is
the least squares 'method. Redlich, [53], uses a two step iterative
procedure in which the Lé’ norm is minimized. Murthy and Kumar,
(41}, minimize either the L] or L!, norm. Balakrishnan et al, [4],
minimize the l{, norm subject to constraints imposed on either the
current distribution or the spacing. Redlich's, [53], two step process
uses one step to compute the optimum currents and a second to
compute the optimum spacings. The array factor is given by

N
F(©) = Ay + ¥ Apcos(S,sin® )+ B,sin(S,sinO)
n

where A, , B, are the element excitations
S, are the element positions
N is the number of pairs of elements

»

The problem is to solve for A, , B, and S, while minimizing the
squared error expressed as a L norm,

(P~ F)*d6

pa Y B

“E -

. ol

where P, is the specified pattern. In the first step, the excitations 4,
and B, are solved by setting the partial derivatives of E, with respect
to A, and B;, to zero.

a,
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The partial derivative of E with réspect to S; would lead to
transcendental equations. To avoid this, it is assumed the spacing is
perturbed by 6, i.e., S,=S,+0, . Assuming in addition that the 5, are
small, the corrected array factor is ;

°

. , :
Fy(8) = F(8) + ¥ 6,5in8[— A,sin(S,sinO)+ B, cos(S,sin)]
n - -

6, are determined by solving

(3 .
aa,.) =0, =Lg N
4 Q\ —‘ﬂ
where E, is'the error using Fq . - *

The results obtained show improvement over the Chebyshev array.
However, no information is given regarding convergence of the process

or of the uniqueness of the solution. In addition~tife theory is
applicable only to symmetric arrays. “‘7

Schjaer-Jacobsen, [85], uses 2 method similar to the minimax method.
Here, however, the parameters to be optimized, namely the element
positions or excitations, are subject to tolerances. This means that the
worst desired case is given for the required pattern in tefms of the
maximum allowable sidelobe level. Wei et al, [86], introduce two
methods whose objectives are to optimize with respect to high
directivity and to low sidelobe levels. The first uses matrix theory and
the second uses the iterative sampling method. For larger arrays the
matrix calculations require high computation times, making the
method impractical, For the iterative sampling method it is necessary
to choose the initial geometry of the array in terms of its radiation
pattern. The success of the method is dependent on how close this

initial pattern is to the desired one. Yur'ev and Goncharova, [88],
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synthesize nonequidistani arrays by minimizing the noise level in the
visible region which also ensures minimum mean sidelobe level. The
results indicate, though, that the efficiency is limited. Miller and
Goodman, [40], use Prony's method to solve the inverse problem. This
is a two step procedure where the roots of a characteristic equation -
determine the positions of the elements. A disadvantage to this
procedure is that complex ( i.e., non-real) source locations may be

b ‘obtained. _

The following tables are a summary of the results of key papers about.
synthesis, The tables show the Authors, the method used and the
essential results obtained. . :

( Table 2.1 is for equally spaced arrays,

Table 2.2 is for unequally spaced arrays with uniform currents.

Table 2.3 is for unequally spaced arrays with non-uniform curyent
_ distribution. -

The following chapter describes the mathematical basis of the synthesis

\

process that is proposed by this thesis.

BN




\a

&

.15-

Table 2.1 Literature summary of work on synthesis of equally spaced

arrays
AUTHORS 3 ¢
i METHOD RESULTS
{Biblio ref] ‘
C.L. Dolph "Chebyscheff improvement over
(18] 1946 polynomials equal current
. o distribution

W.L. Stutzman ~ iterative improvements over
[74] 1971 sampling method Woodward-Lawson
N. Inagaki & circuit theory is comparible to
K. Nagai used to solve for Dolph-Chebysheff
[26] 1971 the applied volt-

ages. Dipdles only
LV. Sirnov for a given ampli- decrease in the
(88] 1974 tude distribution first sidelobe level

the phase is -

. determined using

regularization ‘
V.A. Obukhovets Lagrange
D.M. Sazonov multiplers no examples presented
[45] 1978 ' ‘ .
A. Chakraborty method of results are compared
B.N. Das & stationary phase to those of a '
G.S. Sanyal 15 used to deter- continuous source .
(12] 1982 mine the phase

distribution
E.Van Lil & modification of obtained pattern is a
A.Van de Capelle a regularization close approximation
(83] 1983 method of desired pattern
R.S. Elliot & tbeam 1s shaped by better than the
G.J. Stern shifting roots Woodward synthesis
(19] 1984 on the Schelkunoff method

unit circle

J
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Tablc 2.2 Literature summary on synthesis of uneyually spaced arrays
with uniform current distribution

G.L.Surdutovich
(3] 1962

vector

AUTHORS -
METHOD RESULTS
[Biblio ref]
D.D. King a study of several advantages to unequal
R.F. Packard & methods involving element spacings
RK. Thomas unequal spacing
(32} 1960
R.F. Harrington a perturbation sidelobe reduction;
[24] 1961 technique better than equally
spaced arrays
F.W. Brown points out that an alternative to
(8] 1962 current tapering 1s nonuniform
spacing
Ye. V. Baklonov perturbation of reduced sidelobe v
V.L. Pokrovsky the position levels

M.G. Andreasan
[2] 1962

numerical methods;
for arrays with
large inter- -
element spacing

improvement over
Doiph-Chebyshef
ie. fewer elements
for same results

A. Ishimaru
[27] 1962

uses Poisson’s
formula to trans-
forkn radiation
pattern to that of

reduction of first
sidelobe level

4“ M.L Skolnik

G. Nemhauser &
J.W. Sherman
(69) 1964

dynamic
programming

not optimal but
favourable

A. Ishimaru &
Y.S. Chen
(28] 1965

Poisson’s formula
and Anger fncs

are used to model
rad. patt.; appl-
cable to large arrays

reduced number of
elements

Y

Y.L. Cl'\ow
{13] 1965

Poisson’s formula
with exponential
spacing assumed

reduction in grating
plateau

HK. Schuman &
B.J. Strait
[64] 1968

assumes the element
positions deviate
by dx

sidelobe reduction
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Table 2.2 Literature summary on synthesis of unequally spaced arrays
with uniform current distribution (Continued)

: )
4 AUTHORS .
METHOD RESULTS
[Biblio ref]
R.P. Dooley a numerical long run time
. [17] 1972 search technique
J.P. Basart conditions are | does not give optimum
(6] 1074 placed on the results

posmons result-
ing in simultan-
eous equations

V.1 Popovkin & dynammic positive
A.V. Mamorin programming '
[50] 1974 - \
D.T. Thomas nulls of the comparible to Dolph-
[77] 1976 desired pattern Chebysheff patterns
are made to
- correspond with
Chebysheff '
A. Kumar& a perturbation sidelobe reduction;
P K. Murthy technique using better than equal
(33] 1977 the Lp norm and element spacings
mini-max as error
¢riteria
F. Hodjat & a perturbation reduction in number
A. Hovanessian technique of elements and
[25] 1978 sidelobe levels
a continous source
M.G. Sarma & Anger functions; reduced number of
G.S. Sanyal applicable to elements __
(67] 1979 large arrays
D.C. Patel 11 norm is error reduced sidelobes;
[47) 1982 criteria; a better than equal
direct search spacing
method ‘
S. Tantaratana Lp norm is error sidelobe reduction
(78] 1984 criteria™ .

K. Wolfenstetter
R¥Hornung
(87} 1984

mini-max error
criterion
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Table 2.3 Literature summary of unequally spaced arravs
nonuniform current distribution.

with

AUTHORS l
& METHOD RESULTS
[Biblio ref]
H. Unz by considering an an algorithm only
(80] 1968 orthogonal int- - no results °
egral and its
eigenvalues v
M.T Ma & muni-max error better than Dolph-
L.C. Walters criterion Chebysheff
(37] 1966
A.L.’Maffett & Fourier-Stieltjes better than uniform
T.B..Curtz transform 1s arrays; practical
[39] 1967 - applied to the limitations to method
. desired pattern for larger arrays
function
JK. Butler & method of steepest little difference in
H. Unz descent gain from uniform
[10] 1967 . array
W.A. Sandrin dfrect search
C.R. Glatt & technique desired sidelobe level
D.S. Hague is shown to be
{59] 1969 acheived
S.M. Sanzgiri & eigenvalue method comparible to
JK. Butler Taylor’s method
60} 1971
V.1 Popovkin & ¢lement positions shortening of array
G.I. Scherbakov correspond to length in comparison
[51] 1971 roots of a poly to equi-spaced array
J. Perini & method of steepest to a certain extent
M. Idselis descent is used beamshaping is
[48] 1971 to minimize error possible
R.W. Redlich 2 step iterative improvements over
{53} 1973 procedure; for Chebysheff array
" symmetric arrays
only
Y.I. Abramovich mini-max error
M.B. Sverdlik criterion presentation of method
(1] 1974 only - no results

\
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Table 2.3 Literature summaiy of unequally spaced arrays with
nonuuiform current distribution. (Centinued)

*

eters of a sum of
exponentials

AUTHORS
METHOD : RESULTS
[Biblio ref]
H. Schjaer- mini-max error comparible to
Jacobsen & criterion Dolph-Chebysheif
K. Madsen
[65] 1976
P.K. Murthy & L2or L normis results obtained are
A. Kumar used as error better than those for
[41] 1976 criterion equally spaced arrays
P.M. Russo an algorithm using
. [55] 1977 mean-square error algorithm presented
criterion only
N. Balakrishnan least-squares results obtained are
P.K. Murthy & method where error better than those for
S. Ramakrishna crtierion is the equally spaced arrays
(4] 1979 Ip norm
S.D. Goad & 2 step iterative
W.L. Stutzman perturbation better than
[22] 1979 technique; error Woodward-Lawson
is measured as a :
11 norm
H. Schjaer- mini-max error reduction in
Jacobsen criterion sidelobe levels
[66] 1980 )
W. Wei. iterative reduction in
H. Jingxi & sampling method sidelobe levels
H. Shiming
(88] 1983
EK. Miller & Prony’s method, a reduction in SLL,
D.M. Goodman procedure for est- however there is the
[40] 1983 imating the para- possibility of the

source positions being
complex
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3. GENERALIZED SOLUTION AND REGULARIZATION METHOD

This chapter presents the mathematical basis of the method used in
the thesis for the synthesis of an unequally spaced linear array. The
synthesis problem considered in this thesis is the design of a linear
array whose desired directional function is specified a priori. For some
given functions this may not be achievable, however, the objective is to
seek an approximation which is as close as possible. There are two
design parameters involved, namely, the unequal element spacing and
the nonuniforr'n complex current distribution. This problem, as for
other problems in antenna synthesis leads to an inverse problem which

consists of the inversion of the cause effect relationship.

The solution to the problem is constructed in two stages. The
philosophy of this is expressed by L. Wegrowicz in [85]. The first stage
is the direct problem. This consists of the mathematical analysis and
algebraization of the problem. The second stage consists of the inverse
problem and consists of formulation of the algorithm for the inversion
of the overdetermined system of equations obtained by algebraization.

This inverse problem belongs to the class of ill-posed problems and is
not directly solvable since threory does not exist for design. Therefore, a
direct problem is first formulated for which the exact solution is
known. Following the solution of the direct problem, however, there do
exist some remaining unknowns. Solving for these gives the solution of

the entire inverse problem.

The direct problem which consists of formulation and algebraization of
the problem is outlined in Section 3.1. The second stage is the inverse
problem. This involves the construction of a rational algorithm for the
inversion of the overdetermined system of equations obtained by
algebraic foruiulation‘7 The method used is the generalized matrix
inverse method, or if needed, Tikhonov's method of regularization.
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This second step is outlined in Section 3.2,
3.1 Algebraic Formulation

In order to find an geciive solution to the resulting inverse problem it
is necessary to algebrize the corresponding direct problem. To achieve
this, assume that the sources are located in a region V| that they are
independent of the z - coordinate and are a one dimensional array

along the z - axis. Assume also that their time dependence is e~ /* and
that their current density is of the form J == I,<I>(y)°f(§z), Le. that it is
separable. Note that in engineering practice the convention used is—
¢t 7%, However the (—jwt) convention usually used in mathematical
literature will be'followed. This does not affect the theory or results.

For discrete sources which are located along the z axis, the current

density is assumed to be

N
J = sz) = 210"6&2_ Zon) ——— {3.1)

where Nis the number of sources and 2y, and ¢, denote respectively

the position and the complex excitation of the n source.

/From Equation (7) of [83] the field at the point of observation P
excited by the sources from V may be represented as follows: _ -

nEP) = s, [ [ ) (IGQPIR
“—— (32)

-

Note that due to the z coordinate indepengence of the source
distribution, what is a volume integration over V becomes a double

o integration only.
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G(Q P) is the two dimensional Green's function and is required to be
chosen such that it firstly, satisfies the desired singularity at the source

locations R = 0 ang secondly, satisfies the boundary condition at
infinity. That is,

.+ GQP)— —2m(kR) . R—0

% T
N KR+ ~—
- [%1%] S i R — o0

.

~ ‘ "\
The following relation satisfies the required conditions:

<

G(Q.P) = st (kR2) ——— (33)

€

where R = (y2+(2—2z,,)?)*

Hf)”(/cR) is the zero order Hankel function of the first kind.

Substituting Equation 3.3 into Equation 3.2 yields

4 .
C —wpl, .
BlP) = == [ @)/ () kR)
——— (34)
®(y) can be dropped from both sides yielding,
~wul,
Edn @) = —— [ ({2)el) (kR) ¢2
z
——— (3.5)
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The addition theorem for Bessel ftumctions is, .
HP(kr) = 3 enHO(kr)In(kzo)cos(m®) ’
" —~~ (3.6)
where [kr| > |kzo ] ) {, ;
Jom is Bessel’s fufiction of order m E
¢m is the Neumann factor and is defined as follows:
bm =1 ,m=90
=2 ,m>1 ——— (37) o
* For large r, i.e. in the far field ‘
\
] HY (kr) ~ [ﬁ-r—]% S0 ——— (3.8) .
‘ Substituting Equations 3.8-and 3.6 into 3.6 we get )
P
Er#) = 2= [ [z zoe,,.<———>*" . L lnoeos(me) dzg
} ” | o —— 39)

Noting that the f'u?d\cin be written as
E.(r,®) = [((®) - folr) ,

one can eliminate the functions of r from both sides as just scaling

factors. Therefore, ' g
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—im% _
Jm(kzo )cos(m®) dzo

E®) = [flz) T ene

mm=0Q

——— (3.10)

Due to the uniform convergence of Equation 3.6, the order of the

integration and the summation may be interchanged, -

—~ imx

-
E.(®)= Y] Eme 2 ff(zo)fm(kzo)cos(m‘l’) dzg
m=0 2z
——— (3.11)
© Equation 3.11 can be rewritten a;,
e ’
4 v 00 .
, E(®) = ¥ (—j)"Amcos(m®) ——— (3.12)
4 me=0
N
where
Ap = €p ff(zo)’-’m(kzo) dzg —-—— (3.13)
z -
Using the f(z9) of Equation 3.1,
, Ay = €, V¢, Jpn(kzp,) R (8.14)
" .

A\ d

The radiation pattern as depicted in Equation 3.12 is written in the
same form as a Fourier series. E,(®) is the desired radiation pattern
and can itself be expressed as a Fourier series. -

F(@) = Y amcos(m®) ——— (@15),

n=Q

where a,, are the Fourier coefficients of the pattern. Equating 3.15

L}

.
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with 3.12 gives the following relation:

»

by = (—j)m Am ’ m 3/(_)9142’ tt Ty

o = (—J)" €m chjm(kZOn) —— (3'16)

"}tewr’lting Equation 3.16 in matrix form gives the [ollowing system of

equations: ' ~
A=K-C -~~~ (3.17)
& - where A is a column vector containing the~scomplex Fourier

coefficients of the desired pattern.
K is 2 rectangular matrix such that the elements are

- - kma = (— " €mIm(kzon)

3

. C'is a column vector containing the element complex’
excitations.

Equation 3.17 is the exact solution to the direct problem. The problem
is well posed. Hence, given the matrix K and the vector C, the
determination of A is straightforward and yields exact results. In
. addition, the convergence of the solution is assured. Consequently, this
) - - equation is used as a base for further considerations.

3.2 The Inverse Problem

\ ° o The matrix relation presented in 3.17 represents the system to be
‘ solved for the synthesis problem. Thus 3.17 and 3.15 together form the
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algorithm for the solution of the inverse 'pr‘oblem. The array

characteristics such as the properties of the sources and element
positions are contained in the matrix K which is explicitly expressed in
terms 9(' Bessel functions while the array current distributions are
exhibited -in the vector C. For the inverse problem, the desired
radiation pattern in terms of its complex Fourier coefficients is given in

vector A.

Algebraic formulation of the problem led to the system of equations

* depicted in Equation 3.18. The dimension of vector A is dependent

upon the number of terms, M, maintained in the Fourier series of the

 desired pattern.” This dimension M is in turn chosen such that the

resulting function is satisfactory. Due to the linear independence of the
Bessel functions, K is a maximal rank matrix. The number of columns
N in K as well as the dimension of vector C is determined by the
chosen number of elements in the system. The number of rows in K is
infinite thereby inhibiting the process of its inversion. Consequently,

- for the purposes of computation, a matrix K, is formed from K by

dropping the rows with indices m > M, , where M; > M. The
elements of K exhibit asymptotic behavior. Due to this asymptotic
behavior one can always find M such that the contribution of the
neglected part is arbitrarily small. Hence for all practical engineering
purposes the system is finite. In the actual calculations, a choice must-
be made of the point at which matrix K is truncaged to form K. This
may require several triaJs to reduce the truncation error to an
acceptable level. ;<

The type of sources and the initial geometry of the array are required

to be chosen and hence the matrix K is considered to be known. The
inverse problem consists of kiowing a priori the directional function
F(®) in terms of its Fourier coefficients in matrix A and determining
both the excitation matrix C and the position matrix Z. However, the
directional function has a nonlinear dependence on the element
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spacing. This leads to a procedure that involves a two step iterative .
process. In the first step of a given iteration the position vector is kept
constant while the optimized current vector is determined. This is the
linear part of the problem. In the second step of the iteration the
current vector is maintained constant. Due to the nonlinear
dependence on the position vector,g

h%re are no available direct

methods for its solution. Therefore 2 linsarization approach is applied

and the Newton—Raph}Qn-Kantorowich method is first applied. The

system is then reweitten maintaining only the linear terms. This thus
enables a solutio@‘ﬂ:he position vector increments.
O

The element type and the initial geometry of the array being already
chosen, the first step involves the solution of the system depicted in
Equation 3.17. An exact solution of this system exists only in the
special case when the given directional function F(®) can be expressed
exactly as a sum of N partial functions F, where the F, correspond to
the columns of K. Note that K is always a maximal rank matrix and
hence it is always nonsingular. The system is overdetermined and has
only one generslised inverse solution which will minimize the quadratic
deviation. This solution is,

C=[K K" K'A ——— (3.18)

where K * is the transpose conjugate of K. The quadratic deviation
that is minimized is

1A= KC[]2 ‘=== (3.19)

The solutions for element excitations in 3.18 however may yield values
which would lead to superdirectivity ( i.e. exceptionally high maximum
current to minimum current ratios) which is undesirable. There is no '
px;otection against superdirectivity. If, however, the solution is found to
display such properties, the regularized approach is used. According to
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Tikhonov [73], in order tg find a regularized solution to Equation 3.17
,

it is sufficient to find a vector C that minimizes the following .
functional:
) N
m?(C)= | |KC — A||z + a||C| ], ~—— (320) .

This minimum corresponds to:
C=[K'K+e 'K'A - (3.21)

_ In the second step, which constitutes the determination of the element
position increments, the position vector, Z,' is perturbed. This
increment vector is denoted by AZ . The Newton- Raphson-
Kantorowich method is first applied to the systein for lineariz?.tion. An
assumption of this method is that AZ be small. Equation 3.17 is then
rewritten, expanding the matrix K with respect to the powers of AZ.‘
Retaining only the linear term, we get

A = K.IAZ—O - C + J[K]AZ-O ¢ D(Cn) ‘ AZ
~—— (3.22)

where J[K| is the derivative matrix ‘of K such that its elements are
described by: i o ‘

’ . dknn
J mna dzn

and D-denotes the diagonal matrix.

The generalized inverse approach is once again applied on the
following: )

! —

JIK|'D(C,;AZ = A — K+C .
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If it is seen that the results are not converging, i.e. if the residual of a - .
given iteration is not less than the residual of the previous iteration,
only then is regularization applied. In this case the L, norm that is
minimized is,

m®(AZ)= | |JK-D(C,)AZ—A~-KC ||y + B||AZ] |, '

. 3

——— (3.23)
- where fis the regularization parameter. The minimum corresponds to
the solution of
o S |
‘ [(JK-D(C,)}* [VK-D(C,)|AZ + pAZ = [JK-D(C,)|" [A — KC) -

%

v ' ——— (324) -

The generalized solution is

AZ = [JK-D(G,)|" [JK-D(C,) + I [JK-D(C,))" (4 = KC)

o~

——— (3.25)

If A; characterizes the residual in the right hand side of Equation 3.17

after the ith iteration, then if, as i increases, the error A; goes to zero,

the solution is converging. It is not proven that the two step process

does converge. A mathematical proof of the convergence would seem

difficult due to the complex nature of the expressions. It is, however,

known that the linear part gives the exact solution. In addition, it is

an'icipated that by keeping the increments small enough, the non-

o . lipear part can always remain within the bounds of convergence. For
: 4ny practical problem convergence can be verified numerically. It
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should be expected that the solution converges to a local minimum

since due b the non-linear nature of the equations even the r{otion of a

global minimum cannot be applied. A different initial vector Z will
probably give rise to convergence to another local minimum. However,
if the results obtained at a possible local minimum are satisfactory
enough one can stop at this point.

In this chapter, the mathematical basis for the problem and the
algebraic formulatjon was presented along with a rational algorithm for
the inversion 6 the overdetermined system that resulted.

In the chapter that follows, the software implementation of the above
described mathematical process is presented.

L
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4. SOFTWARE IMPLEMENTATION ‘

A
This chapter details one of the msajor contributions of this thesis.

Described here are the numerical techniques and the software which
has been developed for the synthesis process. First, a generalized block
diagram- is presented to outline the basic structure and logic of the
program. Secondly, this is followed by a descnptlon of some of the
major software components. Thirdly, the verification of the
convergence of the process is outlined in the presentation of the
various tests performed throughout the execution of the program.
Finally, the opt,lons avallable m the logic of the program execution are
outlined. . Y

[

4.1 Generalized Block Diagram

The mathematical process described in the ‘preceding chapter is
implemented using Fortran V on an IBM XT personal comp uter. Figure
4.1 depicts a generalized block diagram of the program. As mentioned
in Chapter 3, the first iteration computes only element excitations

since the given initial positions of the elements are used. In all

subsequent iterations both new position and new excitation values
are computed for each element. Upon completion of the desired
number of iterations, the results are {)rinted A much more detailed
and explicit flowchart is included in Appendix 2. This mcludes all the

rd

paths and computations undertaken. -

The inputs to the program are:

7 1. number of elements in the array _ .

2. an initial position vector, 7

3. the desired pattern in terms of its Fourier coefficients, A,
9

s
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SOLVE FOR NEW ELEMENT
POSITIONS USING ELEMENT
CITATIONS OF PREVIOUS ITERATI%N_

READ INPUT DATA

y

, SOLVE FOR NEW ELEMENT
- EXCITATIONS USING PREVIOUSLY .
COMPUTED ELEMENT POSITIONS

]

( CHECK FOR CONVERGENCE

, GO TO NEXT ITERATION

y

« , - SPECIFIED NUMBER OF no
' ITERATIONS COMPLETE?

Yes

PRINT RESULTS

STOP

FIGURE 4.1: GENERALIZED BLOCK DIAGRAM
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The first input, the position vector, contains also the choice for the

number of elements in the array depicted indirectly by the dimension
of the vector. Given the position vector, Z, the matrix K is computed
using Bessel functions such that an clement ky, = (—3)™€mIn{kzon)-
The first iteration is half an iteration in the sense that only the

.'-’complex current distribution is determined. For all subsequent

iterations first, the change in the position vector, AZ, is solved
assuming the excitations arrived at during the previous iteration.
Second, maintaining these new positions, new excitations are
computed. Immediately following each of the above computations, the
residual, A, is calculated to verify convergence. As mentioned in
Section 3.2, A,<A;_, implies convergence of the solution and the
program continues on to the next iteration. Otherwise, the
regularization procedure is introduced -in a local loop so that the
parameter o or 3, whichever is applicable, is made non zero. This
regularization parameter of a particular iteration increases in a loop
until the convergence criteria are satisfied. ‘

4.2 Solution of an Overdetermined System of Equations
The system to be solved is of the form
A=K-C ——— (41)

where A and K are given and C ig to be determined. The dimension of
vector A is M. The rectangular matrix K is of dimension M; x N where
M, is finite and greater than M. Cis a vector of length N. In general M
is greater than N and hence the system is overdetermined. Matrix K is,

however, of maximal rank. Consequently, the matrix [K ’K] , which is.

of dimension N x N, is always invertible. ’
v
)

As seen in Section 3.2 the least squares solution is

C=[K'K|"'K'A ——— (4.2)
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Computationa'lly, however, the frequently ill-conditioned nature of
equations of this form can be the cause'of large errors. Therefore,it is
generally not advisable to use this expression directly to compute C. A’
better way to find the vector C which minimizes | |K-C—A||q is by
performing a QR decomposition [87] of matrix K. In theory, the values
of C obtained using Equation 4.2 or by using a QR decomposition
approach should be the same. )

The QR decomposition of K is

K=QR ‘ ,

where‘Q is 2 M1 x M1 unitary matrix (ie. Q°Q = jand Risan Nx N
upper triangular nonsingular matrix. Therefore, (4.1) can be written as,

Q'A= Q'KC
or,
Q'A=RC

»

Since'R is upper triangular, this is solved by backward substitution.

4,3 Bessel Functions

Matrix K requires the determination of Bessel functions of various
orders and arguments. The subroutine used to compute these functions
is based upon that by D.J. Sookne, [69].

4.4 Complex Matrices

All of the matrices involved are complex except for the position vectors
Z and AZ. For simplicity in computation the complex matrices are
written as partitioned matrices which are real. In this way all complex
computations are eliminated. A complex matrix K is modelled as

-
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ReK | —ImK
ImK | ReK

A complex vector C is modelled as

ReC
ImC

4.6 tl.‘est;ing° for Convergence

There are four consecutive tests that are exeéuted throughout the:j
process of a given iteration (except for the first which has, only one
test) to ensure the solution is converging.

4.5.1 Factor Test Although there is no analytical proof for the
convergence of the process, convergence is highly probable provided
the position increments, AZ, at each iteration are small. The value
Factor is a limit placed on the size of the norm of AZ. The Factor test
is the first test of the iteration and is performed immediately following

" the-determination of AZ. If the test is passed, i.e., if | | AZ| | <Factor,
the iteration continues. If the test is not passed th(\en the regularization
parameter 3 is activated in a loop and AZ is recomputed using
regularization.

4.5.2 Linear Intermediate Test This test is performed after the Factor
test using the new element positions. The residual Ay ;4 is given as

A&’,?,,‘,,) = | IA(,’,’B - JK(Z(p))'D(C(p))-AZ(P"'l)l l

where p is the previous iteration number

L

p+1is the current iteration number
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Ale) = 4 — K[z(P)}-Cl)
|]z]] isthe I3 norm

Afin is the residual measured at the end of the previous iteration. If
Agﬁﬁ,‘) < A(ﬂ,z the test is passed and the iteration continues. If the
test is not passed then the regularization method is used and AZ is
recomputed.

4.5.8 Nonlinear Intermediate Test This test is pel;formed after the
linear intermediate test. Matrix K is first recomputed using the new

position vector Z(P* 1) , AP+ is given by,

ALY = |14 — K(ZP+V)cP) ||

Once again the residual at this pointlis compared to A(f,’,} . I
A(,,’[.",,H < A(,f,z then the test is passed and the iteration continues on
to compute the new current excitations. If the test is not passed then
AZ is recomputed using the method of regularization. If regularization
has already been activated through a previous test of the same
iteration, (i.e., if # > 0 ) then A Z is recomputed while imposing a
stronger regularization parameter. ( 3 is increased).

{.5.4 Final Test The final test for convergence is performed after the
new excitations, C, are computed. A(f,’f 1) is given by,

A = |14 = K(Zr+V)clr0 |

If A%{" ) < A(ﬂ,z then the test is passed and the next iteration is
initiated. If the test is not passed, AZ is recomputed using
regularization. If regularization has already been used in the current

iteration, a stronger £ is imposed
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4.5.5 Test for Superdirectivity This test is optional and can be
activated when desired through a logical switch. It is used when the
element excitations are found to display superdirective properties. If
such is the case, then an additional regularizatibn parameter, a , is
introduced and regularization is used for the solution. of the element

excitations.
~

4.6 Software Structure and Logical Switches .

The detailed structure of the software is shown in the Appendix 2 ’
flowcharts. A mgajor aspect fo the software structure is that of t;heS
logical switches which allow a variety of options to be chosen subject to |

the progress of the computation. Since the switches form a crucial
aspect of the computational strategy, their purpose is described here.

There are seven logical switches in the program. These are denoted in
the detailed flowchart by the numbered triangles. Each switch gives
an option in the strategy of the computations, and an explanation of

each switch is given below:

(1) In computing the norm of the position increment veotor, AZ ,
there is an option of using either the {; or the [, norm. There will be
no major difference in the results obtained by either. However the [y

norm does impose a stronger restriction on the increment size.

(2) This switch comes into effect only if the Factor test does notoéss. k
he
vector AZ can be modified directly either by proportional decreasing or

L. this case, AZ can either be recomputed using regularization

by direct limiting.

(3) This switch also plays a role only when the Factor test fails. In
addition, it is used only when regularization is not chosen (;m switch 2.
The option here is the method with which to modify AZ . It can be
modified either by reducing those increments AZ, which are too large
or by decreasing the entire vector proportionally.
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(4, 5 & 6) These switches occur after each of the last three tests for
convergence and are used only upon failure of the tests for
convergence. Each presents the option of using or not using
regularization. .o

.

(7) This switch occurs at the beginning of an iteration and once again
presents a choice of using either regularization to control the size of
AZ or the parameter Fa&or. Accordingly, the appropriate parametef'é
are initialized.

It is useful to comment that the above described operations and their
associated software were developed for and executed on a readily
available enhanced IBM PC XT level computer system. The actual
system used contained two 360k floppy disk drives and 640 kB of
working memory. The program listing is stored on one diskette with a
second diskette used for storage of the compiled and linked version.

The software structure as given in Appendix 2 is described by five sub
flowcharts which indicate in great detail the internal structure of the

program. This includes all the subroutines which were developed.

In conclusion, the software is now in a state that is ready for use by
others but detailed comments and more precise documentation would

be needed to make the software available for application by

. professional designers.

The following chapter validates the numerical process that has been
developed and demonstrates it by a numerical example.
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5. RESULTS AND DISCUSSION v

In this chapter the effectiveness of the synthesis process is validated
and demonstrated. The validation’is carried out by using the process to
determine array parameters for well known cases determined
independently. The process is then demonstrated by choosixlg array
pattern specifications for a practical application.

The following cases were used:
For validation:

1. The pattern of a twenty element equally spaced array,
determined by the Woodward-Lawson method, was used as the
specified pattern.

2. The pattern of a twenty element array based on the Dolph -
Chebyshef method was used as the specified pattern.

For demonstration: ~

1. The beam of a hypothetical satellite system is used as the
specified pattern

Figure 5.1 depicts the geometry of a linear array with non-uniformly
spaced elements. ‘

5.1 Case I

As a first case the pattern of a twenty element equally spaced array,
whose excitations were determined by the Woodward - Lawson method
of synthesis, was used as the desired pattern. The number of elements
actually used in the process was then reduced to sixteen by using the

method developed in this thesis. This is a substantial decrease in the

ntumber of elements thus reiterating the advantages of allowing for
control of the element spacings.

B
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The dimensions M and M; were chosen to be 30 and 45 respectively.
Neither of the regularization parame(ters, o or f needed to be
introduced for this particular example. Figure 5.2 shows the Woodward
- Lawson pattern (desired pattern) along with the pattern obtained
after the first iteration. Figure 5.3 shows the desired pattern along
with the pattern obtained after 20 iterations. Figure 5.4 is a
comparison after 75 iterations. It can be cleérly seen that in allowing
for unequal element spacing, the same results are achievable with a
twenty percent reduction in the number of elements. Figure 5.5 is a
plot of Ay, versus the iteration number, where A Jins 88 explained in
Chapter 4, is a measure of the residual between the desired and the
achieved pattern, The monotonically decreasing nature of this function
is an indication of convergence of the results. Table 5.1 gives the initial
and final geometry and initial and final current distributions. Note

- that all element positions are in terms of \, the wavelength of

operation. Also, for this case, the element excitations are co-phasor.

[y

5.2 Case I

The Dolph - Chebyshéff synthesis method is applicable to equally
spaced linear arrays. It is based on the Chebysheff polynomials and
yields optimum beamwidth - side lobe level performance. That is, for a
specified beamwidth the side lobe level is as low as possible or vice
versa, for a specified side lobe level the beamwidth would be as narrow
as possible.

’;‘o further illustrate the benefits of using both element excitations and
element spacings as design variables, a Dolph - Chebysheff array
pattern was used as t}xe desired pattern. The pattern of a twenty
element array designed for -30 dB side lobes was input as the desired
pattern. This pattern is depicted in Figure 5.6. Superimposed upon this
pattern is the pattern obtained after 15 iterations using 16 elements
instead of twenty. The dimensions M and M; were chosen to be 32 and
48 respectively. Once again this example was executed without the




need of activating the regularization parameters a and 8. Figure 5.7 is
a plot of Aj, versus the iteration number. Its menotonically
- decreasing characteristic is an indication of the convergence of the

process. .

This case again yielded a twenty percent reduction in the number of
elements over an equally spaced array for virtually identical directional
functions, It is obvious that using this method oi; synthesis and
allowing unequal element spacings, yields more efficient results.

5.3 Case I

As a more practical example, a beam for a conceivable spacecraft array
for remote sensing synthetic aperture radar was used as the design
objective. The antenna is required to provide a shaped beam in the
elevation plane with a nirrow azimuth beamwidth. The plan is to use
32 eiements, equally spaced with an inter-element spacing of 0.82)\.
The 0.82\ element spacing is the largest allowable before the
appearance of grating lobes.

Using the method described in this thesis, with 32 elements, the results
are depicted in Figures 5.8 and 5.9. Table 5.3 shows the element
current distributions and positions. The dimensions M and M, were

chosen to be 62 and 92 respectively.

To further demonstrate the advantages of using unequal spacing for
the elements, 28 elements were used instead of 32. These results are
shown in Figures 5.10 and 5.11. M and M, in this case were 60 and 90
respectively. For these cases neither a nor 8 were activated.

Plots for Ay, versus iteration number for both of the above examples
are depicted in Figures 5.12 and 5.13. Their monotonically decreasing
nature is an indication of the convergence of the process. Tables 5.3
and 5.4 gives the initial and final geometry as well as the initial and
final element excitations for both of the above examples.
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pattern (curve A) and the first iteration using only 16 elements (curve B).
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Figure 5.3 : The pattern of a 20 element Woodward-Lawson array as the desired
pattern (curve A) and the 20th iteration using only 16 elements (curve B).
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Figure 5.4 : The pattern of a 20 element Woodward-Lawson array as the desired
pattern (curve A) and the 75th iteration using only 16 elements (curve B).
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ELEMENT EXCITATIONS | ELEMENT POSITIONS
ELEMENT (amps) (kzy)
NUMBER ITERATION NUMBER ITERATION NUMBER
1 20 75 1 20 75
21 0.109 0.102 0.096 | -28.27 | -27.88 | -27.59
2 -0.080 | -0.086 | -0.094 | -24.50 | -24.40 | -24.27
3 -0.277 | -0.271 | -0.264 | -20.73 | -20.71 | -20.68
4 0.424 0.422 0.419 | -16.96 | -16.93 | -16.89
-5 0.237 0.237 0.233 | -13.19 | -13.23 | -13.36
[} -1.172 | -1172 | -1.163 | -9.42 | -90.43 | -9.43
7 .. 0.632 0.832 0626 | -5685 | -5.85 | -5.84
8 5.141 5.139 5140 | -1.88 | -1.89 [ -1.89
9 5.141 5.139 5.140 1.88 1.89 | 1.89
10 0.632 0.632 0.626 5.85 565 | 5.64
11 41172 | -1.172 | -1.163 9.42 9.43 | 943
12 0.237 0.237 0.233 | 13.19 | 13.23 | 13.36
13 0.424 0.422 0419 | 16.96 | 16.93 | 16.89
14 0.277 | -0271 | -0.264 | 20.73 | 20.71 | 20.68
15 -0.080 | -0.086 | -0.094 | 24.50 | 24.40 | 24.27
16 0.109 0.102 0.096 | 28.27 | 27.88 | 27.59

D e L LS T A AR
L IR AT <

Table 5.1 Spccifications of the 16 element array used tc achieve pattern of 20
element Woodward-Lawson array

Note: The element excitations are relative and that the uuits are amperes.
Element positions are in terms of k-z, where, k=21 /)
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Figure 5.5: A plot of A versus the iteration number.
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Figure 5.6: The pattern of a 20 element Chebycheff array with -30 dB sidelobe
levels 23 the desired pattern (curve A) and the achieved pattern after 15
iterations using only 16 elements (curve B). It should be noted that the two
patterns are virtually indistinguishable. )
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. Table 5.2 Description of 18 element array used tc achieve the radiation pattern
3% 2 20 element uniforml}; spaced Chebysheff array with sidelobe levels of -30 b §
= . )
, ELEMENT EXCITATIONS ELEMENT POSITIONS i
ELEMENT (amps) : (kza)
NUMBER ITERATION NUMBER ITERATION NUMBER
‘ 1 15 1 16 .
1 1.100 - 1.006 -4.750 -4.740 .
2 1.1901 1.195 -4.117 -4.120
3 1.753 1.740 -3.483 -3.484
4 2.239 2.253 -2.850 -2.849 . -
5 2.798 2.793 -2.217 2217
) 3.253 3.244 -1.583 -1.583
1 7 3.569 3.586 -0.950 -0.949 )
8 3.7111 3.750 0.317 -0.317
9 3.771 3.750 , 0.317 /0.317
10 3.560 3.586 0.950 70949
G 11 3.253 3.244 1.583 | 1.688
12 2.798 2.793 2.217 2217
13 2.230 2.253 2.850 2.849
) 14 1.753 1.740 3.483 3.484
15 1.191 1.195 4.117 4.120
16 1.100 1.096 4.750 4.740 ,
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Figure 5.7: Plot of A versus the iteration number for the 16 element array used
to achiéve the pattern of a 20 element Chebycheff array.
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x 1\
" Figure 5.8 : The desired pattern of a hypothetical satellite beam (cuive A) and
the pattern achieved after the 1st iteration using 32 elements (curve B).
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Figure 5.9: The desired pattern of a hypothetical satellite beam (curve A) and
the achieved pattern after 20 iterations using 32 elements {curve B).
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Figure 5.10: Plots of the desired pattern for a hypothetical satellite beam (curve
A) and the achieved pattern after the 1st iteration using only 28 elements (curve

B).
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Figure 5.11: Plots of the desired pattern for a hypothe{ical satellite beam (curve
A) and the achievad pattern after 15 iterations using only 28 elements (curve
B).
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Table 5.3 Description of the 32 elemer t array used to achieve the pattern of a
hypothetica! satellite beam

55 -

ELEMENT EXCITATIONS ELEMENT POSITIONS
ELEMENT (amps) (kz,)
ITERATION NUMBER , ITERATION WUMBER
NUMBER 1 20 L %0
mag. phase mag. phase
1 0.541 212 0.512 212 -9.300 -0.337
2 0.737 208 0.711 2086 -8.700 -8.713
3 0.829 237 0.904 237 -8.100 -8.102
4 1.175 233 1.081 233 -7.500 -7.503
5 0.930 245 1001 245 -8.900 -6.903
6 1.193 268 1168 268 -6.300 -6 298
7 1.047 256 1.011 256 -5 700 -5 691
8 0.707 271 0.735 2N -5.100 -5.133
9 0.905 238 0.851 238 -4,500 -4 510
10 1.531 223 1.587 223 -3.800 -3.887
11 2.729 234 2.696 234 -3.300 -3.305
12 3.860 244 3815 244 -2.700 -2.700
13 5.955 213 6.004 273 -2.100 -2.104
14 8.052 288 7.970 288 -1.500 -1.495
15 8.516 331 8.577 331 -0.900 -0914
168 17,517 1 18.027 1 -0.300 -0.288
17 17517 359 18.027 359 0300 0.288
18 8.516 29 8.577 29 0.900 0.914
19 8052 72 7.970 72 1.500 1495
20 5.955 87 6 004 87 2.100 2101
21 3.860 118 3815 118 2.700 2.700
22 2729 126 2.698 126 3 300 3.305
23 1531 137 1.587 137 3900 3.887
24 0.805 122 0.851 122 4.500 4.510
25 0.707 89 01735 89 5.100 5,133
26 1.047 104 1.011 104 5.700 5.691
27 1.193 92 1168 92 8.300 6.208
28 0.930 113 1.001 113 6.90Q 6.903
29 1175 127 1.081 127 7.500 7.503
3 0.829 123 0.904 123 8.100 8.102
31 0.737 154 0.711 154 8.700 8.713
32 0.541 148 0.512 148 9.300 9.337




Table 5.4 Description of

9

the array used to achieve (he patt=rn of a
hypothetical satellite beam using 28 ¢lements instead Of 32 elements

ELEMENT EXCITATIONS ELEMENT POSITIONS
ELEMENT {amps) (kz,)
ITERATION NUMBER ITERATION NUMBER
- NUMBER 1 20
1 20
mag. phase mag. phase
. 1 0.650 | 203 0556 | 203 -8.640 -3.645
. 2 0.926 | 234 1045 | 234 ~8.000 -8.026
3 1,286 | 240 1271 | 240 7.360 7.356
1 1.010 | 215 0.973 | 245 6.720 -6.704
| 5 1.196 | 274 1228 | 274 -6.080 -6.107
| 6 1186 | 260 1117 | 260 -5.440 -5 442
| 7 0.580 | 232 0589 | 232 ~4.800 4743
| 8 1162 | 243 1188 | 243 ~4.160 4192
9 2.751 | 226 2677 | 226 -3.520 -3533
( 10 3404 | 237 3539 | 237 ~2.880 -2.868
11 6009 | 270 5846 | 270 -2.240 -2.244
12 8158 | 283 8181 | 283 _1.600 -1.596
13 9057 | 327 9038 | 327 ~0.960 0.977
14 17.961 | 360 | 18678 | 360 20.320 -0.305
15 17.961 0 | 18678 0 0320 0305
16 9057 33 9.038 33 0.960 0977
17 8158 | 77 8.181 77 1.600 1.596
18 6009 | 90 5.846 90 2.240 2.244
19 3404 | 123 3539 | 123 2.880 2.868
20 2751 | 134 2677 | 134 3520 3533
21 1162 | 117 1188 | 117 4160 4102
22 0580 | 128 0589 | 128 4800 4743
23 1.186 99 1117 99 5.440 5.442
24 1.196 86 1.228 86 6 080 6.107
25 1010 | 115 | 0973 | 115 6.720 6.704
‘ 26 1286 | 119 1271 | 119 7.360 7.356
27 0926 | 126 1045 | 128 8.000 8.026
28 0650 | 157 0556 | 157 8.640 8.645
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Figure 5.12: Plot of A versus Iteration Number for 32 element hypothetical
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6. CONCLUSIONS

This thesis has dealt with the problem of radiation pattern synthesis of
linear antenna arrays taking into consideration both the element
spacing and element excitation.

In the chapter dealing with the current level of development of array
synthesis techniques it was shown that while this problem has been
addressed in the past, it is nevertheless one meriting further
examination for a fuller exploitation of the advantages of obtaining
more effective designs through control of both the spacing and

excitation.

The objective of the thesis, thus, has been to develop a synthesis
process which would yield improvements over previously known
techniques. The results demonstrate that this has been achieved.

It has already been demonstrated by previous workers that combined
spacing and excitation control yields considerable advantages in array
design over the classical uniform spacing techniques such as those of
Shelkunoff and Dolph. However, such existing "combined” techniques
have various limitations as has been indicated in Chapter Two. For
example, these limitations include constraints on the patterns which
can be acheived or on the array geometry which can be used. The
results of the present work indicate that improvements have been

achieved over previous methods. x

For example, Un~, [43], presents a method where the desired pattern
can be specified only in terms of its beamwidth and sidelobe level. The
structure of Redlich's, [53], and Goad and Stutzman’s, [49], process is
similar to that presented here, however, it only allows for the synthesis
of symmetric arrays. In addition, no information is given regarding

convergence of the process.
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As described in Chapter Three, the present process is based on and benefits from
the application of the Generalized Inverse approach and the Tikhonov
Regularization Method. It is these methods and their application to inversion that
has made the synthesis procedure always possible. ' }

The synthesis process, the implementation of the synthesis process as a structured
numerical algorithm and its associated software, form the principal contribution of
this work and this has been described in Chapter Four. The entire synthesis
process is structured as an integral entity which can be readily adapted, to a software
package for use by practising designers.

The various software components as well as the total procéés have been validated
and demonstrated. The proces$ is operational and has been used to calculate a
number of test cases as described in Chapter Five. Two of these were chosen as a
validation by synthesizing arrays of two well known cases determined
independently. The third case was chosen as an "open ended” one to demonstrate a
practical application.

- Inthe two validation cases it is clearly shown that by using non-uniform element
spacing the same patterns can be achieved with approximately 20% fewer elements
than with uniform spacing for the number of elements used in these two cases. In
addition, the convergence of the process has been clearly demonstrated.

The techniques of others have traditionally been implemented on mainframe
computer systems. As yet, no indication appears in the literature of such techniques
- where both unequal element spacing and non-uniform current distribution are
allowed - being implemented on a PC. Here, however, from the onset the
synthesis process has been designed and developed successfully for such areadily

" accessible system and hence its conversion to a commercial, modular, user friendly
package can be easily implemented if desired.



el

In conclusion, this thesis has developed an array Synthesis process
whose effectiveness and advantages have been clearly demonstrated.

This now provides the possibility of examining the extension of such a
process to more general array cases. For example, extension to non -
linear (eg. curved, circular, planar) arrays would be highly desirable.
Additionally, in the light of present day needs, the requirements of
conformal arrays and of adaptive arrays would bear examination.

It should be noted that further intensive use and application of the
existing process should be undertaken and should, in addition to its
practical utility, establish more clearly the range and bounds of-the
benefits achievable. o )
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_~ APPENDIX 1-1

Definitions of Norms

If in a real linearsyace X, the norm of z (denoted by | | z| |) satifies:
@ Holl=0, Ijs|| >0ifazo0
() |z 4| S|zl + [|z2]| forall z;, zeX
(i) |laz|| = |a|||z|| forall ac R,z e X

then x is a normed linear space. Some special normed linear spaces are
defined as follows:

M

Ll= flell/’ dy

L= [ x| dy

y
r 1/p iy
Li"s l[ | X)* ay} -
y

These are continuous norms where it is required that X be known
continuously over y. Conversely there .are discrete linear norms.
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L=y |z|
H

=y
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) ’ APPENDIX 2-1

Program Flowchart

The next five pages contain a detailed flowchart of the program. Thé
following is an explanation of the variables: .

P i*teration number
H?®  element positions in the p* iteration

C{?)  element excitations in the p* iteration

6(") element position increments in the p® iteration i
A Fourier coefficients of the desired pattern
bt AP residual in the p™ iteration /
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