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Abstract

Existing OO modeling methodologies prescribe notations, processes, and guidelines
that, if followed, ensure that analysis-leve’ OO model reflect application semantics.
As we move into design, implementation-level considerations may distort analy.is-
level models, and the transition is scamless no more. In this thesis, we describe data
definition facilities in SoftClass  an experimental CASFE tool for software reuse— that
aim at maintaining the integrity of application data models throughout the develop-
ment lifecycle, while maximizing opportunities for code reuse. In Soft Class, analysis-
level data models describe application-semantics and are organized in an inheritance
hicrarchy based on shared application-semantics. At the design-level, we maintain
two kinds of data models: 1) generic data structures, used as implementation tem-
plates for analysis-level models, and organized along “implementation inheritance”
hierarchies, and 2) realizations of analysis-level application models, which consist of
mapping an analysis-level model to a generic data structure. Design-level representa-
tions of application objects may be seen as belonging to two independent hierarchies,
and we show how cach hierarchy offers some opportunities for reuse. We show how
data abstraction supports a high-level program design language that is both easy-to-
use and that supports some design validation. We conclude by outlining directions

for further research.




Résumé

Les méthodologies de modéhisation orientée-objet stipulent que les modeles objet du
niveau analyse refletent la sémantique du domaine @applications.  Au moment de
passer a la conception, des considérations d'implantation telles que la réutilisation
de code et la performance, peuvent entrer en jeu et modifier la structme d’héritage.
Ceci a pour effet de nuire a la clarté conceptuelle des modeles, et de erder une fissure
entre Panalyse et la conception; reproche que Pon fait souvent aux méthodologies de
développement traditionelles. Dans ce mémoire, nous proposons des mécanismes de
définition de données aux niveaux analyse ot conception, qui permettent de séparer,
conceptuellement, et dans les faits, 1" hémtage sémantique, iplicite dans le domaine
d’applications, de I'héridage dunplantation, permettant de réutiliser les structures
d’implantation telles la représentation des données o les algorithmes. e travail
s'est effectué dans le contexte d'un outil CASE expérimental appeld Soft(lass. Dans
SoftClass, les modeles objet du niveau analyse représentent la sémantique du domaine
d’applications. La représentation des objets du domaine d"applications au nivean
conception est faiic en projetant les modeles correspondants du niveau analyse sur
des structures de données géniriques. Ces structures sont elles mémes organisées sclon
une hiérarchie d’implantation. Nous montrerons que cette représentation des donndes
offre plus de flexibilité au niveau de la conception, tout en assurant le maxinnm
de réutilisation possible. Cette représentation sert aussi de base 4 un langage de
conception de programmes (“pscudo-code”) qui est & la fois facile d’nsage et qui
supporte certaines validations. Nous coneluerons le mémoire en sonlignant quelques

directions prometteuses de recherche,
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Chapter 1

Introduction

Software reuse has been recognized as an effective solution to the software Crisis, as
far as improving software productivity and quality [GogS 1, Coxdo, Mey’7]. How-
ever, software reuse is still far from common. Some of the reasons are nontechnical
but managerial/organizational problem, while the main obstacles ave still technical
[Mey87].

Several tenets of object-orientation make OO software more reusables 1) imforma-
tion hiding, which shields clients (objects, modules) from fmiplementation changes in
servers, 2) genericity and overloading, which parameterize functionality by abstract-
ing out some type-dependencies, and 3) mherdance, which provides a conceptual
framework for reusing software components.

Most object-oriented development methodologios make the distinetion hetween
object-oriented analysis and design. The purpose of OO analysis is to model Lhe
application domain in terms of objects and pattieins of ac tivities/interactions between
objects. Existing OO development methodologics (c.g. [Coa91, Rum9l, Wii90}))
prescribe that design builds on the basic class structure identified at the analysis level
- one aspect of the much vaunted seamless transition by adding, high level (control)
and low level (utility) application-independent classes, Methodologies recognize that
in some cases, some reconstructing of the basic application classes may bhe wartant ed

to accommodate some implementation-level concetns such as performance and code




reuse. A number of researchers have observed that existing class hierarchies at the
design or the code level do not always “make sense” (see [('0092, Cox90]). In [Coo92],
Cook thoroughly studied Smalltalk-80s collection classes and found a number of
discrepancies between the protocols that classes implement and their place in the
code class hierarchy. In [Cox90], Cox studied a commercial class library and dwelt on
the extent to which the place of some classes in the hierarchy did not make sense. Both
authors explained the disciepancies by the fact that a 1euser/user of a class library
is a chenl who approaches the class library more fiom a requirements (analysis-level)
|xﬁnt0kawv.ln(HJNW‘wouhgth;ﬂuﬂyMsJovdinhvrhdncvlﬁvran4ﬁosthatcarnyon]y
application-semantics may be distorted or reconstiucted when pure “computation-
semantics” (the data structure representations of analysis-level objects) are taken
into account at the design and the implementation level.

In the traditional object-oriented programming, the programnung language level
inheritance requires thai subclasses reuse superdasses’ data rcpresentalions, meaning
that the common data members of subclasses should have the same data represen-
tations as that of superclasses. Therefore, it precludes partial reuse of superclasses
using different data representations and implenientations. When we explore high
level functions that usually depend only on the application, or that depend slightly
on the data structures, we find that such functions (operations) can be and should be
reused despite their different underlying data representations [Mil93]. For example,
for Adult objects, we may want Adult to have the Get_Num_Of_Sons (Adult)

operation that may look like:

Get_Num_0f_Sons (self: in Person, Num: out INTEGER)
{
local each_child : Person;
local counter : INTEGER;

counter = 0;
For_Each (each_child, Get_Children (self))
{




1f (Is_Male (each_child)) then
counter = counter + 1;
};

Num = counter;

No matter how Adult is represented, this operation can be reused by different
implementations of Adult, if some discipline is followed accessing Adult’s data
components.

The language level inheritance hierarchy, as an wple me ntation hie rarehy, is orga-
nized according to implementation-related information. 1'he application-dependent
information is mingled with the specifics of the data structures chosen {o represent
the application objects. We feel that the two orthogonal dimensions  the application-
semantics of analysis-level concerns and the pure data structures representations of
design-level concerns should be kept separately during the design and implementa-
tion, with each keeping their own inheritance hicrarchies.

‘The motivation of this thesis is to build a 1epresentation of objects that distin-
guishes between application inheritance hierarchies and implementation inheritance
hierarchies so as to reuse objects with the same application-semantics even if they
have different underlying data structures.

Our approach may be summarized as follows:

1. Extend parameterized class concept by intioducing name parameters which
are formal parameters for ficld names. With Loth name parameters and type
parameters together, traditional parameterized classes become fully param
eterized classes. We call them Generie Data Stractures or GDSs. GDSs are
design level classes and support only computation-related operations such as
accessors and iterators. GDSs are organized in an inheritance Ierarchy based
on common field types and operations, [ ¢. based on shared anplementation

characteristics.




2. Distinguish data objects at the analysis level (A pplication Objects or AQs) from
their des gn level (Application Data Structurcs or ADSs). The latter are im-
plementation of the former using GDSs. Tustead of having one single design-
level class hierarchy which mixes application-semantics and implementation-
specifics, we maintain a design-level hictaichy of the GDSs based on shared jm-
plementation characteristics and an analysis-level hierarchy of the AOs based on
shared application-specific external behaviour. The AQ hierarchy carries only
application-semantics; GDS hierarchy focuses only on computation-semantics.
In consequence, the ADSs can be seen as belonging to the two hierarchies. They
inherit application-semantics from AOs’ hicrarchy and inherit data representa-

tions and other computation-semantics from (iDSs’ hierarchy.

3. Combine the data abstraction mechanisms such as overloading and information

hiding along with genericity and inheritance which are already mentioned, to

support class design at the design level.
The benefits from our approach are:

e Design level application-dependent operations can he reused even if the under-

lying implementations are different.

1) It may be desired to have multiple implementations for the same analysis-
level class for different performance requirements. Application-dependent op-
erations of one implementation can be reused by anot her implementation using
a different data representation.

2) When a subclass at analysis level is implemented using different data rep-
resentations from its superclass(es) at the design level, it has no inheritance
relationship with its superclass(es), but it can reuse design level application-

dependent operations from its superclasses.

e Computation-related operations can be reused by application-specific classes.




Basic operations such as accessors/sclectors, constiuctors/destructors, itera

tors, can be obtained from generic data stiuctures, where the basie functions
are in a parametric fashion. The application-specific classes can reuse these

functions by instantiating formal name parameters and type parameters.

This work was inspired and conducted in the SoftClass project which is catied
out at the University of Quebec at Montreal. Soft('lass is an experimental QO CASL
tool for software rcuse. Responsible for designing a 1epresentation of data objects
and code representation at the detailed design level, the author implemented the data
object definition/classification/transformation tools and the PDL (Program Design
Language ~ for detailed design) compiler for Solt('lass, using the approach which is
summarized above and will be presented in details in this thesis.

This thesis can be divided into two parts: the fivst part (Chapter 2 to Chapter
4) presents the literature review that is related to our approach; the second part
(Chapter 5 to Chapter 7} is an claboration of o approach.

Chapter 2 provides a historical review of programming and shows the major devel-
opments that led to object-oricnted programming, and discusses in detail the concepts
and the promising features of object-oriented programiming,

In order to explain how the object-oriented models are applied to software devel-
opment cycle, in particular, how the seamless transformation from analysis level to
design level may be distorted and damaged because of nnavoidable design considera-
tions, we dedicate Chapter 3 to discussing object-oriented analysis (OOA) m general,
where only application-semantics are considered, and object-oriented design (O0OD)
in general, where purely implementation issues have to be taken into account, and
examining the different, foci and the different developing kuowledge involved at these
two stages, and finally raising the issue that the separation of application-semantics
from purely implementation tepresentation during the design andd the implementation

level is demanded.




Since we use genericity, inheritance and overloading to support our approach,
in Chapter 4, we discuss various polymorphisms in programming languages, show
how the roles they play in software reuse, and explain our extension of parametric
polymorphism  genericity to classes.

As this work is condncted in SoftClass, the framework and related context of
SoftClass are discussed in Chapter 5.

In Chapter 6 and 7, we elaborate our approach in detail and show how to embody
the rense method into software development. cycle.

We will conclude with discussion of further works related to our approach in

Chapter 8.




Chapter 2

Object-Oriented Programming

In this chapter, we first review programming history to see how abstraction played its
role and show major developments that led to obje t-orient ed programming. We then
discuss object-oriented programming in detail ftom botl concept and programming,

language point of view.

2.1 History Review of Programming

Programming has evolved from real machine-oricntation to virtual machine-oriented,

to real world-orientation (object-orientation). And it is a history of abstraction

[Wir90].
2.1.1 Assembly Languages

In the early days of computing, programmers wiote programs in binary digits. There
was no distinction between instructions and data. Asscmbly languages were abstiac-
tions that relieved people from remembering the exact bit sequences of which specific
machine instructions are composed. People used symbols instead. to temember the
code pattern that is an abstraction of the binary instinctions. However, at this stage,
programs were totally machine-dependent, i prograins written in one particular

assembly language could not be ported to other platforms.




2.1.2 High-Level Languages
Control Structure Abstraction and User-Defined Data Structures

‘To some extent, high-level languages freed people from machine-specifics. Structured
programming languages abstracted the contiol structures - sequence, branch and
loop that are the basics of human logic. The facilities to construct user-defined
data structures in high-level languages such as Pascal and C also make it easier for
programmers to design more complicated data structures than the ones provided in
the asseinbly languages. Fach statement of a high-level language corresponds to one
or several machine instiuctions, which are created by a compiler or an interpreter.

People can write the program without worrying abont. the underlying machines.

Procedure Abstraction

Procedure abstraction illustrates another application of abstraction in programnming,.
Programmers can group sequence of statements together into one unit - procedure
or function , and invoke the procedure or lunction by one statement. If we say
that contiol structures are high-level abstractions that are built into the languages,
the procedure abstraction offers a user-defined multi-level abstraction. Programmers
could deal with the computer at such abstract level they wished to have performed
with these user-defined procedures, and they can further construet higher level pro-
cedures until reaching the highest level such that the whole program can be invoked

by one procedme call (e.g.,*main()” in C).
2.1.3 Abstract Data Types and Modules

Abstract data types (ADTs) shifted the focus from function-hased approach towards a
data-based approach [Cox87). An ADT is composed of a data structure and associated
functions or procedures supporting the data structure. Because ADTS’ functions or

procedures offer stable external interfaces to users, AD7Ts allow programmers to write

on




code without worrying about the specifie form in which the data s represented, e,

programmers can code at the abstract level of what can be done with the data versos
how it is to be done. The details of the vepresentation of the data are hidden. The
users of the data only know the external behaviour of the data without necessarily
knowing how the data is implemented.

Ada [DOD83] implements ADTs by packages. The tollowmg example is an imple
mentation of geometric 2-D point ADT using Ada’s package with separated package
specification and package implementation [(‘aisn):
package pointi 1s

function makepoint(x:Real, y:Real) return Point;

function x_coord(P:Point) return Real,

function y_coord(P:Point) return Real;
end pointi;

package body pointl 1s
function makepoint(x:Real, y:Real) return Point;
-- 1mplementation of makepoint

function x_coord(P:Point) return Real;
-~ 1mplementation of x_coord

function y_coord(P:Point) return Real;
== implementation of y_coord
end pointti;

However, structured programming langnages (abstiaction of machine) and ADTS
(abstraction of data) have one thing in common they are both compuling-oricaled.

The Object-oriented approach focuses on the real world.

2.2 What is Object-Oriented

Object-orientation looks at a systemn as a a collection of objects that cacapsulate data
and functions together (like ADT). The use of objects allows additional abstraction

mechanisms, in particular, mherdance.

)




Object-oriented programming = ADTs + Object type + Inheritance [Dan38].

The concepts of obycel and mbertance come from classification and knowledge
representation theories [Str8, Kor90]. These concepts are extremely important when
doing analysis and design, and are preserved until coding level,

Structured programming is carried out by fitst finding all the things that need
to be done (functions), and then recursively decomposing cach function into smaller
functions until the language statements level is veached. Therefore, Structured pro-
gramming concerns itself with the implementation of the progran.ming: the sequences
that compose cach function and the data structuies manipulated by them. Its first
question is how [Wir90].

Object-oriented programming initially staits with the intent of the program: the
what. s goal is to find the objects and their connections. [t apportions responsibil-
ities of storing data and manipulating data to objects [Win90]. Iach object knows
how to store its own information and how to perform its own operations. A system
then is a collection of objects that know how to play their roles within the system.

Although object-oriented programmingonly reached the limelight in the nineteen-
cighties, its origins can be traced back to the sicties from Simula [DahG6], which is
as old as the principles of structured programming,.

Object-oriented is defined differently by diffeient people, nevertheless, the follow-
ing general concepts, which have been agreed on as basic to object-orientation, are
discussed here: objects, elasses, mheritance, and polymorphisne and dynamic binding.
Unlike conventional software development techuiques, object-oriented modeling is a
unifving paradigm that is consistent from analysis, design and implementation phases
of the soltware development life cycle [Kor90]. Objects, classes and inheritance are
identified and constructed at the beginning, and preserved and enriched during de-
sign and implementation. Polymorphism and dynamic binding are language-level

concepts. We will discuss these terms both [rom a conceptual point of view (high
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level - analysis and design) if any, and from  language™s point of view (low level)

2.2.1 Objects and Messages

Object-orientation models the real world in terms of obpets 1t views every thing as
an object, whether concrete or abstract.

From a conceptual point of view, cach objeet has its own fratures [Mey87] that are
composed by two parts: 1) atiridbutes or properties of the object, which desciibe the
characteristics, and 2) actions or behamour of the object, which specily ow at plays
its role and how it responds to the external envitonment.

From a language point of view, cach object is an entity that has the capabilty (o
store information, to manipulate the stored information, and/or to carry ont some
activities. Therefore, an object 1s an integrated unit of data and associated operations
- functions or procedures manipulating the data or performing some transformations
In fact, high level attributes or properties are represented by data, and operations
are used to elaborate the behaviour of the object!.

Objects communicate by sending each other messages. 'The objedt to which a
message is sent is called receiver. A message 15 a request asking the receiver to
perform some activity. A message may request activity and information the recciver
will need in order to complete the activity. An object must understand the imessapes
it receives. By understand, we mean that the objecl must have an action specified
which matches the action requested by the message. Froni a tan-tune perspective,
sending a message to an object is actnally invoking a function or procedure call
asscciated with that object. This will be disenssed in Section 2.2.4 1 detml,

Only an object can access its own data ditectly, When an object needs to ac-
cess other objects’ data, it must communicate with those objects by sending them
messages. The object hides its data from other objects and allows that data to be

accessed only via its own methods. This is called mformation hiding. 'This is im-

'Operations are called methods in object-oriented termnalogy
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portant because it protects the object’s data from atbitrary and unintended use and
among other things, it protects the object’s data from cotntuption.

Different kinds of objects store different Kinds of information and have different
capabilities to manipulate the data or perform different activities. Objects coordinate
with cach other by uniformly sending messages to accomplish all kinds of complicated
functionalities.

Objects and messages promote modular design. The implementation of an object
does not depend on the internal details of ot her objects; it only depends on how they
tespond to messages. This is called encapsulation.  Encapsulation is the result (or
act) of hiding the implementation details of an object. from its user?.

Fncapsulation separates an object’s interface from its implementation.  Other
objects only know what the object can do without knowing how it does it. This
allows objects implementations to be modified without requiring the applications
that use them to be modified.

David Taylor made an analogy of objects to cells [Tay88]. Cells are organized
packages that combine related information, which is contained in the DNA and pro-
tein molecules within the nucleus of the cell, and methods, which are carried out
by structures outside the nucleus. The cell is surrounded by a membrane that hoth
protects and hides the internals of the cell from outside intrusion. The membrane
hides the complex internal structures and presents a relat ively simple interface to the
rest of the cells and organism. Cells can not 1ead cach other’s protein molecules or
ditectly change each other’s structaies; they can only read and change their own.

Instead, they send chemical requests to one another.

2.2.2 Classes and Instances

An object is any thing, real or abstract, about which we store data and those oper-

ations that manipulate the data. Objects that 1espond to the same messages in the

o
“Fncapsulation 1s realized by class defimtion, which will be discussed m the next section,

12




same way are grouped together. A group of objects that are related in this way is
called a class, an object in a group is called an mstance of a class.

All the instances of a class share the same kind of attributes but do not share
the same values of attributes, and the same hehaviour®. Class is a static concept: it
is a definition of all the objects belonging to the class. For example, a Rectangle
class states that cach individual rectangle has such propertios as ortgin, crtent, color

. and a behaviour like compute_arca, draw .... However, cach individual rectangle
may have a different size, position ot color. Ilom a programming language’s point of
view, a class is an Abstract Datlo Type (ADT).

The Rectangle class example may be implemented as follows m C

class Rectangle : public Shape {

private:
Point extent;

public:
virtual void draw();
virtual float compute_area();

void Rectangle::draw()

{

//implementation of function draw()

float Rectangle::compute_area()
{

//1mplementation of function compute_area()

return ((extent.getX() - origin.getX()) *
(extent.getY() - origin.getY()))

3This is class-based object-orientation There are other approaches sueh as delegabion, which
allow instance-level inheritance [Lic86, Ste87]
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From the above example, we can notice that the attributes of objects are also
objects  ertent is of class point, and therefore, complex objects are composed of
other (simple) objects, these objects, in turn, may be composed of objects. The
operation of an object may 1equite that other objects cooperate and share responsi-
hilitics compute_area uses Point objects and associated operations getX, getY
to accomplish the computation.

Encapsulation gives us the advantages of data protection, it also brings about
other advantages such as 1educing complexity and minimizing dependency. Let us
consider how encapsulation is realized in class definition. But first, we introduce two
concepls  class as client and class as supplier. As we saw in the Rectangle example,
a complex object may be composed of other objects. This is defined at class level.
A class that relies on or uses another is said to be a client; the other class is the

supplier.

Protecting data
This is implemented by restricting the right to access the data portion of the
class. Only the instances of the class may directly access their data. Other
objects must access the data through the operations offered by the supplier

class. In C4+4, one can restrict the access right using private, restrict or public.

Reducing complexity
The implementation details of the class are private to the class. A supplier class
only exposes the interface to client classes. Some of the data or operations of
a class may be only for internal uses and therefore, should not be exposed to
outside objects. For example, a VCR class has a very comples structure and

a myriad of opeiations, however, a user is only interested in some particular
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features it offers, such as the state of the indicator and some operations such
as Play, Record, ctc.. This greatly reduces the complexity of classes from client

classes’ point of view.

Minimizing dependency
As we mentioned earlier, complex objects are composed of other objects, The
complex class uses other supplier classes to define its data portion. As the
implementation details are hidden from clients, supplier classes can be fiee to
modify their internal implementation detail without affec ting the dient classes,

provided that they keep the same external interfaces.

In some object-oriented langnages, such as Smalltalk, a class itsell is also treated
as an object. A class that defines class-like objects is called me taclass, Tn Smalltalk,
a metaclass has only one instance that is the class itself. Class-level objects also have
capabilities to store information about the class as a whole, and to support class-level
operations. For example, the Average_Height attiibute for Person class teflects an
attribute of all the instances of Person class, while the Get_Population operation

is a class-level operation.

2.2.3 Inheritance, Subclasses and Superclasses

Objects and classes can can he traced back to ADTs, but inheritance is a unique
contribution of the object-oriented paradigm. It is inheritance combined with the
object and class concepts, that characterize object-oriented programunung [Dan8y].
Inheritance is the ability of one class to define its data structure and hehavion of
its instances as specialization /extension of the definition of another class o1 classes.
A subclass describes a group of objects that inherit information and behavions
from an existing class. The class from which a subclass inheits is called superclass.
A superclass is also called a base class in C++, while a subclass is calle. derived

class. Let us elaborate on the inheritance relation by an example.




A (super class / base class)

(inherits from)

derived part

(inherited from A) B (subclass / derived class)

Incremental part
{new feature to B)

Figure 2.1: Inheritance

Supposing class B inherits from class A (sce Figure 2.1 [Kor90]). Class A is
referred to as the base class and class B is referred to as the derived class. Class B
is composed of two parts: the derived part, which is inherited from base class A, and
the incremental part, which are newly-added features, specific to B.

From this, we can see that inheritance actually reflects the generalization-
specialization relation among classes. A derived class is specialized from its base
classes. And a base class is a general form of its derived classes.

A derived class usnally adds its own attributes and behaviour to define its own
unique features in addition to those (attributes and behaviour) inherited {from its

base class, It may also modify those features inherited.

Inheritance and Reuse

Inheritance produces two major promising advantages: inheritance for extension and

inheritance for reuse.
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¢ Inheritance for extension (Reuse without Modification)

Inheritance allows us to design a new class of objects as a relinement of another
For example, when defining classes of geometrie figutes to be displayed on o
window system, a Shape class is defined first, then Rectangle and Circle
classes are added as subclasses of the Shape class. Later, somcone nught need
Triangle. Without affecting other classes, the class Triangle can be added
directly as a subclass of Shape, and Triangle inherits all the data structures
and operations fiom Shape, only new features specific to Triangle are added.

This is the way inheritance helps extend classes,

Inheritance for reuse (Reuse with Modification)

Actually, extension includes reuse. Here reuse has specific meaning: rense by
modifying (overriding, cancelling) features from existing classes. They have
the inheritance relation only for the purpose of 1cuse. For example, Array
and Stack class: a Stack can be implemented using an Array, therefore,
we can make Stack a subclass of Array, but Array and Stack ate not 1 a
generalization /specialization relation. Stack inherits only part of the featnres
of Array. ec.g., Stack only allows access to the first element, while Array
allows access to every element. Therefore, Stack needs to void part of the

operations offered by Array.

Abstract Classes

In cases of extension and reuse, abstract classes play an important role. An abstraet

class is a class which springs from a group of classes which shate one or more than

one features (data components or operations). It actually abstracts ont the common

features among classes, but itself does not make much sense as an ordinary class,

i.e., the instances of such class are meaningless and therefore should he never bhe

used in any program. Therefore, it exists just for the purpose of orgamzation of
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. inheritance relations between other classes. Abstract classes more often appear at
the late stages of design and implementation. they are rarely found at the analysis
sbage, since analysis focuses on understanding the objects that are “visible” in the
problem domain.

In the above example, when a new class Triangle is nceded, it can be added
directly as a subclass of Shape. We may realize that Triangle and Rectangle
share some common features, since they are both polygons. A better approach would
be to create an abstract class Polygon to abstract the common features/attributes
of the existing class Rectangle and the one to be created - Triangle, so that the
features in Polygon can be nsed by Triangle without duplication. Furthermore,
we could have other shapes other than polygons, such as circles, to be subclasses

of Shape, but they do not have common features/attributes with polygons besides

those from Shape.

Shape

common features

>

Figure 2.2: Abstract Class

In case of reuse with modification (overriding, cancellation), there are opportu-
. nities for misusing inheritance. For instance, most OOP languages allowed derived

classes to rename, re;mplement, duplicate or void the features inherited from its base
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class, to change its interface, and to support a behaviour which is completely unre-
lated to that of its base class. What constitutes the proper use of inheritance is a

widely debated topic [Cox90, Cloo92].

Multiple Inheritance

Student

Research_Assistant

Figure 2.3: Multiple Inheritance

When a class has more than one immediate parent, it may inherit features from
all of them. This is called multiple mheritance. For example, (Figure 2.3), a system
is being developed for a School Administration System, where a Student and Em-
ployee class have been defined, and a new lass whose instances are both Students
and Employees is required. The designer may cieate a Student-Employee class as
a subclass of both Student and Employee.

Multiple inheritance may bring conflicts such as name-clashes. This can be solved
by different app;‘oachcs renaming (Eiffel [Mey92]) or redefining features (C+4
[Str86, Lip92]) at the subclass.

Ducournau etc. introduced monotonic conflict resolution mechanisims for inheri-

tance [Duc92].
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2.24 Polymorphism and Dynamic Binding

There are many kinds of polymorphism. We will dedicate Chapter 4 to discuss fully
the various kinds of polymorphism with emphasis on a reuse perspective,

Generally, polymorphism means the ability of an object to take more than one
form. In OO, polymorphisim and dynamic binding are used at the language level.
Together they support the inheritance mechanism in object-oriented programming
languages [Carsh).

In an object-oriented progrannning language, a polymorphic reference is one which
refers Lo instances of more than one class over time. In strongly typed object-oriented
language, a polymorphic reference has both a static type and a dynamic type. The
static type is that specified in the declaration in the program - compile-time type.
‘The static type determines all the valid types acceptable to the reference — the class
itsell and all of its subclasses. The dynamic type of a polymorphic reference may
change during program execution but all within the valid types defined by the static
type.

For example, assume that a variable aPolygon is declared as an instance of Poly-
gon, and assume that Polygon has two subclasses Triangle and Rectangle. The
declaration of aPolygon is confined to refer to instances of Polygon, instances of
Triangle, and instances of Rectangle. The binding to actual type of the variable
is only determined at run-time. This is called dynamie binding. The static type of
aPolygon is always Polygon, while the dynamic type may be Polygon, Triangle or
Rectangle depending on run-time.

Dynamic binding also refers to method selection, which refers to the binding of a
message to the method code to be executed in response to that message.

Suppose that the procedure display is defined as an operation of class Polygon,
but redefined in Triangle. The message sent to aPolygon, aPolygon display, will

be invoked depending on the run-type dynamic type of aPolygon. 1If its run-time
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type is Polygon, the call will be bound to the method defined by Polygon. If the

dynamic type of aPolygon is Triangle, then the call would be bound to the method
as redefined in class Triangle.

The dynamic binding and polymorphic reference together realize the code reuse
by subclasses.

Suppose that another method called setColor is defined as an operation of class
Polygon, but not defined in Triangle. The message sent Lo aPolygon that refers
to an instance of Triangle - aPolygon display will actually invoke the operation

defined by Polygon, and therelore Triangle reuses the code form Polygon.

2.3 Object-Oriented Programming Languages

2.3.1 When Can a Programming Language Be Called an
00O Language?

An object-oriented programming language must support the following notions: 1)

classes, 2) inheritance, and 3) polymorphism and dynamic binding [Kor90, Dan88].

Stroustrup argued that there is an important distinction between a language sup-
porting certain features of programming style and a language cnabling such features.
“A language does not support a technigne if it takes exceptional effort or skill to
write such programs.” [Str88]

However, there is also a distinction between a language disciplining a program
style and a language supporting such style. For example;, Smalltalk forees® users
to write every single code by defining class (subelass relation, instance variables and
associated methods) and to invoke any action by sending messages to certam objects.
On the other hand, a claimed C4+4+ programmer can write programs without nsing
any object-oriented notions.

It is also true that object-oriented programming does not necessarily 1equire an

object-oriented programming language. For example, message passing can be ob-

10f course, there also exists good and bad style i Smalltalk programmng
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tained by message sehedule rs [Bla89], in which a function Send(x,p) is invoked, where

% is the object to which the message is sert, and p is a parameter record that contains
the actual message and its parameters. It is inevitable that efficiency is lost, since
the parameter record has to be assembled before each function invocation.
Dynamic binding can be simulated by linking each object x with the functions
possible upon it. Every objeet is implemented as a record with one operation pointing
to a table of all possible function variations. And polymorphism is achieved by
cocrcion (type conversion). The problem of unreliability is obvious and it can only

he reduced by extra disciplined programming guidelines.
2.3.2 Dynamic Binding vs Typing

Programming langnages can be classified according to the extent of type declaration
and type checking provided at compile time, such as strongly typed, weakly typed
and typeless. A type is viewed as a set of values. The type system is introduced to
impose constraints over the possible values [Dan88). When we say a variable helongs
to a certain type, we actually restrict the possible values it can carry and distinguish
it from other sets of values (types).

Type constraints are specified thiough the declaration of variables and arguments
of functions. The compiler may check whether the uses of the variables or functions
satisfy (are consistent with) the declarations. Most of the traditional languages are
strongly typed. At the other end of the spectruni, we also have untyped programming
languages. There ate two meanings to unlyped: 1) it means that there is no type or
only one kind of type such as Lisp; 2) it means that therve are different types, but the
user doesn’t need to specily types of variables, as type information can be inferred
at run-time or compile-time, ML [Mil34] belongs to this category.

The same distinctions apply to object-oriented programming languages. In object-
oriented programming languages, classes are types. Since objects not only have data

but also have associated operations, type checking involves both data type compati-
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bility and the determining proper operations applied to an object.

Since a reference of a certain class (static type) can refer to etther instances of the
declared class, or instances of its subclasses, type-checking would take place within

the class hierarchy.

2.3.3 A Comparison of Smalltalk, Eiffel and C++

A comparison of several programming langnages with object-oriented featuies is given
in [Bla89). In this section, we compare Smalltalk, Eiffel and C++ as representatives of
three trends: 1) C++ is a representative of object-oriented extensions of conventional
programming languages, 2) Eiffel is a new object-oriented language with multiple
inherttance, and 3) Smalltalk is the most consistent implementation of object-oriented
principles.

The following criteria were established for the language comparison by Blaschek

ctc [Blag9):

1. Inheritance mechanism: C++ and Liffel support multiple inheritance,

Smalltalk supports single inheritance but can emulate multiple inheritance,
2. Run-time reliability: Eiflel and Smalltalk are more reliable than C+4-.

3. Uniformity of data structure: Smalltalk is a pure object-oriented langnage,
all data types are classes. C++4 retains all the elements ftom conventional

languages. In Eiffel, basic data types are not classes.

4. Documentation valuc: The readability ol Fiffel programs is higher than the

Smalltalk and C++.

5. Memory management: C++ does not provide garbage collection but the other

two both have garbage collectors.

6. Efficiency: C++ has very high run time efficiency. Smalltalk has the lowest

efficiency. And Liffel stands between.
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7. Language complexity: Smalltalk’s syntax is very simple. Evervthing is done b
guag ] Yy y N ] Y g y

sending messages. C+4+4 is most complex among the three.

The choice of a particular language depends on the different application environ-
ment. C++ is the first choice OO language if programmers know C and if run-time
efficiency is the highly desired. If high safety and multiple inheritance top the priority

list, then Fiffel might be the best choice. Smalltalk can always be recornmended if

cefficiency is not the leading criterion.




Chapter 3

OOA and OOD, and the
Comparison of Inheritance
Hierarchies of Analysis and
Design

Compared to traditional structured analysis and design (SA/SD) methodology,
Object-oriented modeling is a unifying model, spannng, all phases of softwate devel
opment [Kor90]. However, the transformation fiom analysis to design is not trivial
[Cha92, Cha92a]. In this chapter, we first give a biief intioduction of the advantages of
object-oriented model over the traditional life-cycle models. Then we examine the Q0
analysis and OO design methodologies in general, illustrate the differences between
the two stages, and finally point out that in order to keep the dlarity of the inhetitance
relation of application-semantics during the design, a separated application-semantics

hierarchy should be maintained along with the pure implementation herarchy

3.1 Introduction

The fundamental weakness of the conventional hfe-cyele (waterfall) model is s un
balance between analysis and synthesis [Agr86]. The waterfall model was fotimnlated
on the basis of: 1) the fact that machine-time cost was very high (himited hardware

techniques available and limited opportunities of access computers), as a consequence,




lots of things were needed to be done hefore moving to hard coding on the machines,
2) lack of tools to support carlier development stages. The problem of the differences
between data flows in structured analysis and hicrarchies of tasks in structured de-
sign (no unifyimg model) makes it difficult to integrate the phases. The problem of
no emphasis on reuse is reflected by the fact that each system is built from scratch
and is difficult to maintain and to extend later on [Kor90].

The object-oriented paradigm addresses cach of these issues. Object-orientation
brings consistency throngh the software development life cycle: 1) the designer’s
model is similar to the analyst’s model, and 2) the development process is iterative
[Kor90).

Object otiented analysis and design model the world in terms of objects that have
propetties and behaviour, and events that trigger operations that change the state of
the objects,

As m other methodologies, analysis helps us understanding the problem domain,
and design fills in enough detail to generate code. Design is a realization of the
analysis, but implementation-language independent.

Martin and Odell give two types of object-orient ~d models for analysis and design:
a model of the object types and their structures (object schema) and a model of what
happens to the objects (event schema) [Mar91].

The first model, which is referied to as Object Structure Analysis (OSA) and
Object Structure Design (OSD), concerns object types, classes, relationships among
objects, and inheritance.

The other model, called Object Behavior Analysis (OBA) and Object Behavior
Design (OBD), concerus the behaviour of objects and what happens to them over
tine,

For different problem domains, we use different models. In some applications,

OSA and OSD are mote important than OBA and OBD. In others, it is the opposite.




In extremely complicated applications, both approaches are needed, since these two
models reflect the two aspects of the real world, and only by understanding both the
structure and behaviour can we really have deep insight about the problem

The model we present here is a hybrid object-oriented model for analysis and

design which is based on [Coad1, Coa9la, Boo9l].

3.2 Object-Oriented Analysis (OOA)

Analysis is the activity that yiclds a description of what the problem domain is com-
posed of, and of what the target system is supposed 1o do, detailing functional, per
formance and resources requirements. This concept could be the basis for a contract
between the client and developer and aims to produce clear input to the designer.

Object-oriented analysis (OOA) describes a target systen in terms of 1) objects
(entities) and their attributes and/or components, 2) descriptions of behaviour of
objects and 3) inheritance hierarchy of ohjects.

The steps of OOA can be divided into [Coa9l]:
1. Identify objects in the target system
2. Identify structures and relations among objects

3. Define attributes of each object

K

. Specify behaviour of ecach object

5. Classify inheritance interrelation among objects

3.2.1 Identify Objects

Objects need to reflect hoth the problem domain and the system’s responsibilitios
[Coal].

For example, a problem domain might include:
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Person
Name
Address
Weight
Height
Age
Salary

Yet, given system’s responsibility for a particular application may only include:
Person

Name

Address

Age

With QOA, an analyst studies the overall problem domain, filters those aspects
that are not within the system’s responsibilities, abstracts those aspects of interest
and models them accordingly.

Identifying objects can be carried out using vatious approaches, depending on the
scale of the target system. A small system only yields a “flat” set of objects. When
the target system is very large, ditectly identifying objects becomes tricky. Large
systems have various objects involved, and very complex interactions among objects.
The well-established divide-and-conquer stiategy has to be applied, which here means
top-down approach.

The target system can be divided into several relatively independent sub-systems.
Ilach sub-system is independent in the sense of its functionality. And all sub-systems
are coordinated within the whole problem domain in the way of communication and
cooperation to fulfill the functionality as a whole [Cha92a). If the problem domain is
so complicated that sub-systems need to he further divided into smaller sub-systems,
multiple layers of sub-systems may be used 1o understand and analyze the problem
domain.

There are several ways to investigate the problem domain and identify the objects:

1) observe first-hand, 2) actively listen to problem domain experts, 3) check previ-
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ous QOOA (reuse analysis level knowledge), and 4) obtain information from client’s
requirement docunientation [Coa9l].

Candidate objects can be found in the following categories:

o Structures: relationships among objects - generalization-specialization velation

and whole-part relation,

Other systems with which the systems under consideration will interact,

o Devices,

Thing and events remembered,

Roles played,

Operational procedures,

Sites,

Organizational units ctc.
A candidate object must satisfy the following criteria:

e Is it in problem domain?

Does it satisfy the domain-based requirement?

¢ Does the system need it to store data (information)?

Does it need to offer some behaviour required by the system?

o Can it be represented by another object or can it he obtained through special-

ization from an existing gencral object?

Does it need to be divided into a group of objects that are generaliza-

tion/specialization related?
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3.2.2 Identify Structures and Relations Among Objects

There are three kinds of relations among objects:

o Generalization/specialization relation

e Whole/part relation

o Association - instance connections

Generalization/Specialization Relation

Polygon

Center
Perimeter

getPerimeter
move: <pos>

Triangle

Height

Rectangle

getPerimeter
move, <pos>

Ornigmnation
Extension

Pentagon

getPerimeter

Ornentation

move: <pos>

Figure 3.1: Generalization/Specialization Relation

Generalization/specialization can be viewed as an “is a” or “is a kind of” rela-

tion. Figure 3.1 shows an example of a generalization /specialization relation where

Polygon is in generalization form and it has three specializations: Triangle, Rectangle

and Pentagon. A Triangle is a kind of Polygon. Within generalization /specialization,

inheritance applies such that specialized objects will inherits the attributes and be-

haviour from the general objects.
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To identify gencralization/specialization relations among objects, first consider
each class as a generalization, and examine its potential specializations using the

following criteria:
e Is it in problem domain and within system’s responsibility?

e Will there be inheritance?

Similarly, consider each class as a specialization, examine its potential generaliza-
tions using the same rules mentioned above.

A specialized class may be obtained from more than one generalized class, and
the hierarchy will contain multiple inheritance.

Generalization/specialization structures highlight additional specialization, ex-
plicitly capture commonalitics, encourage reuse and therefore reduce tedundancy of

attribute and behaviour specification.

Whole/Part Relation

Whole/part relation can be thought of as a “has a” relation. Figuie 3.2 shows an
example where a Text is consisted of Paragraphs. Whole/part relations help people
understand complex structures by decomposing them into parts, and help understand
functionalities as a whole by dividing responsilnlity and their coordinations among
the components [Coa91].

Whole/part relations take several formats in practice:

e Assembly-parts
o Container-contents

e Collection-members

The purpose of finding whole/part relations is to help decompose complex systems,
“whole” or “parts” need to be identified only they are in the problem domain and

share in the target system’s responsibilities.
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Text

Length
Language

Paragraph

NmrLinc

Figure 3.2: Whole/Part Relation

Object Connection — “Side-By-Side” Interrelation

Objects associate together to perform certain kinds of functionalities. In non-
trivial systems, ohjects need to have connections with other objects that are neither
generalization/specialization nor whole/part related, but “side-by-side” related. Ob-
jects coordinate and communicate with other objects, delegate other objects or com-
bine with other objects together to perform certain functionalitics [Coadl1]. Figure
3.3 shows an example where Person objects and Company objects are in an Employed

by/Employ relation.
3.2.3 Define Attributes

There is no fixed requirement to work from defining attributes to specifying behaviour.

Actually both perspectives are valuable. People usually work back and forth between
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Person Company
Employed in

\/

position
salary

Figure 3.3: Association - “side-by-side”

these two activities.

“Attributes are properties, characteristics and qualities that are aseribed to an
object” [Coa91]. Attributes arc used to describe states (values) kept within an object.,
These attributes must reflect both the problem domain and the system’s responsibil-
ities.

To define the attributes of an object is to specify the object in more detail in the
aspect of the states and information that are needed for the particular application
[Coa91].

At the analysis level, representation of the attributes should he of no concern. The
main job should focus on understanding the system and specifying the responsibilities.

When defining attributes, generalization /specialization relation should be consid-
ered at the same time in order to position attributes propetly to obtam inheritance

and clean structures among objects.

3.2.4 Specify Behavior

Objects are encapsulation of data and operation. The attributes reflect the states of
an object or information kept within the object, while the operations are manipulation
of these attributes and other 1clated objects. These operations perform a set of
functionalities and offer certain services responsible for exhibiting.

Attributes combined with hehaviour (operations or services) together specify a
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unique objeci.  Operations can be classified into algorithm-simple and algorithm-
complex categories.

Algorithm-simple operations are such operations as creating, connecling, access-
ing, rcleasing. Such operations are usually implementation-dependent at design and
implementation level, since they are closely related to underlying data representa-
tions.

The other kind of operations fall into caleulation, monttoring, transformation
categories.  Usually these kinds of operations are application-specific, but data-
representation-independent at the design or implementation level.

To specify an operation, two steps may be taken:

e krom the architectural point of view, message connection or processing de-
pendency has to be identified. i.e., all the related objects and their needed

behaviour required by the operation in order to fulfill the responsibility.
e For detailed logic sequence, each substep and the control structure are specified.

Similar to the process of defining attributes, when specifying behaviour, gener-
alization/specialization relations should be considered at the same time in order to

vosition behaviour properly to obtain inheritance and clean structures among objects.
l

3.2.5 Classify Objects within Inheritance Hierarchies

Generalization/specialization relations between objects yields a hierarchy (or a set of
hierarchies) called inheritance hierarchy. As discussed in the previous sections, the
classification of the inhetitance hierarchy may be done immediately, but it is done
within a small scope only local to the objects of interest. From the whole system or
subsystem point of view, reexamining the inheritance hierarchy is desired in order to
get a cleaner hicrarchy for easier understanding and potential reuse. This will affect

the following levels for the development cycle.
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3.3 Object-Oriented Design (OOD)

Design is the activity that yields an artifact description of how a target system will
work. The design satisfies the requirement. but remains implementation language
independent. Design can be viewed as an implementation of analysis. It provides a
computational description of a program that meets analysis requirements. It differs
from implementation. “Implementation activities are environmental, providing an
expression of the design suitable for the target envitonments; i.e., using particular
programming languages, particular tools and systems, and particular configurations”
[Cha92a).

Object-oriented design (OOD) can be viewed a mapping of analysis objects with
generic data structures along with detailed description of the behaviour identified at
the analysis level on the basis of the chosen data representation.

Although OOD uses the same model as OOA; the notions of QOOD are different
from those of OOA because design activities need to be performed with reference to
computational models. OOA involves in identifying application-semantics attributes
for each object, while OOD will choose a proper data structure to represent cach at-
tribute, and then each object. Furthermore, attiibutes and parts of analysis notions
are both mapped to components at the design-level. The design level inheritance
hierarchy is built based on both their attributes (application-specifics) and their un-
derlying data representations (data structure-specifics).

00D can bhe divided into the following steps:
1. Class design
2. Program design

3. Classify objects within an implementation hierarchy




3.3.1 Class Design

Class Design produces a definition of the representational and algorithmic properties
(attributes) of classes according to the declarative constraints specified within OOA.
The representations of classes are in a abstract fashion, i.e., high-level abstract data
structures independent of any programming languages.

At the analysis phase, the structures of objects are classified into generaliza-
tion/specialization relation, whole/part relation and “side-by-side” relation. At the
design level, the notions to express the structures of classes are restricted to compo-
sthonal notion.

Attributes and components identified at the analysis are replaced by components
at the design level. “Side-by-side” connections among several objects can be repre-
sented mone of the two ways: 1) Each object contains fields referring to other objects;
or 2) Association objects (tuples), which are design-level objects used to represent
and coordinate analysis-level association between objects.

FFor example, instances of the Company class and instances of the Person class
may have employer/employec association. At the design stage, we can let Company
have pointer references to Persons as their employees. It is another choice to create
an association object class Employer_ Employee whose instances consist of tuples
that refer to the instances of both Company and Person class.

At the design level, nearly all objects are both clients, i.e., using other objects
cither by reference o1 by sending messages, and servers, i.e, used by other objects
cither by being referred to or by being sent messages. Therefore, we have to consider
class design from either point of view. Champeaux etc. give some guidelines about

composition of components at the design-level [Cha92].
1. Classes as servers

The goal of designing classes as servers is to design each class to be amenable

for use as a component of other classes. Design for reuse is a key consideration.
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This involves:

e Design of (abstract) classes rather than one-shot objects  abstract out as
many attributes and operations as possible from subclasses so that it is

easy to extend later and to gain more reuse.

o Design of classes interfaces (accessor, operations) rather than of attributes
and transitions, because subclasses can override operations but can not

override attributes (components).

e Design of services and protocols (access control, locking, ete) so that ob-

jects may be used predictably and reliably by others [Cha)2].

e Minimization of representational and informational demands upon clients

(low coupling).

2. Classes as clients

When composing a class using other defined classes, desetgn with reuse is one of

the main criteria. The concerns for designing classes as clients are following.

e Block-box reuse. Minimization of representational and informational de-
mands upon severs, thus allowing a broad range of conerete object types to
be employed as components. This includes the use of capability-based (ab-
stract) rather than implementation-based (conerete) specification of inter-
nally accessed objects. For example, we use “Next_Llement{aCollection)”
to get the next clement in a collection instead of using “aCollectionfi+1]”

for an ARRAY or “aCollection—next” for a LinkedList,

e Using implementation-independent delegation rather than concrete sub-
classing as the compositional technique of choice. e, if we want to 1euse
the functionality of a class A, instead of creating a snbelass of class A, we

build another class with its data containing the instance of class A.

37




e Minimization of protocol demands upon servers. This will reduce the

dependence on the server. When some changes occur in server, the client

will be affected at a minimal price.

e Design of coordination schemes such as trigger, transactions, to maintain
static and dynamic invariant both among components and between com-

ponents and self.

3.3.2 Program Design

Program Design produces the detailed algorithm for each operation on objects in an
abstract fashion (abstract control structures of programming languages). It requires a
more concrete reference model for describing the program logics - the computational
structure,

Operations on classes can be classified into two categories: 1) base functions or un-
computational functions, such as constructor/destructor, accessor/selector, modifier
and so on, and 2) computational or complex functions, which are usually application-
specific and use other base functions to perform a given functionality.

The base operations then include field operations that are used for access and
modification. Martin and OQdell examine two different categories of operations for
single-valued fields and multivalued fields [Mar91]. For single-valued field, only two
fundamental operations are needed: Assign and Get. Multivalued fields require at
least five fundamental operations: Add, Remove, Detect, Get_using and Apply.
Add, Remove and Detect aic all sclf-explanatory, Get_using operation allows the
programmer to select a specific method that retrieves objects that satisfy the given
hoolean function. Apply operation extends beyond the retrieve-only limitation of
the Get_using opetation, it allows users to sclect a specific method which updates
contained object.

Notice that such base operations are data structure dependent but application-
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independent. These operations can, therefore, be mapped directly to the operations
offered by the chosen data structure.

As for computation-loaded operations, the description of the logical sequences and
of the control structures is the most significant. The description can be either formal
and precise, or informal and coarse. Usually a Programming Deseription Language
(PDL) is used to formally describe a program.

When designing computed (unctions, the following issues need to adhered [Mari]:

e Function expression are 1eusable
e [unction expression can be cager or lazy
e Controlling redundancy

3.3.3 Classify Objects within an Implementation Hierarchy

The inheritance hierarchy at the design level is, first and foremost, an implementation
hierarchy. Second, the hierarchy at the design level should keeps the generalizational
hierarchy.

Some aspects that are related only to design are considered:

1. Abstract classes are introduced.

2. As fields are used to represent, attributes, components and referenecs, of objects
at the analysis phase, subclasses that share the fields from superelasses will

inherit all the characteristics including but not limited to attributes.

3. For efliciency reasons, classes that have no members and operations, but that
may help understand the system during analysis, may not be mapped to classes
at the design level, and may be replaced using flags in the subclasses.  For
example, given an application, we may identify two classes at analysis level:

class Vehicle and class Car, with class Car as a subclass of class Vehicle.
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However, in our application, we only deal with instances of class Car. In such

case, we may climinate class Vehicle during design and only keep class Car.

4. Access rights are considered during design such as making a class as private or

public.
The design level inheritance hierarchy should follow these guidelines [Wir90]:

e Model a “kind-of” hierarchy

Locate common attributes and operations as high as possible in the hierarchy

Abstract, classes should not inherit from concrete classes

Eliminate classes that do not add functionalities

3.4 Inheritance Hierarchy at Analysis Level ver-
sus Design Level

Although OOA and OOD use similar models so that the transformation from analysis
to design stage is casier than in traditional structured methodologies, the transfor-
mation is not trivial. 'The main reason is that the two levels focus on different
aspects. Analysis is most. concerned with understanding application-semantics, and
least concerned with the computational representations. Design, on the other hand,
is concerned with choosing a representation for the objects in the problem domain,
and considers more in the computer-perspective, although in an abstract form, since

it is independent of specific languages and systems.

3.4.1 The Difference between the Two Hierarchies

The different foci of analysis and design yicld different hierarchies, which can be

compared along the following perspectives:




1. The classification rule

The analysis-level hierarchy is a generalization/specialization hierarchy. Spe-
cialized classes (object types) inherit propertics and behaviour from general
class(es). The classification of generalization /specialization relation is based on

the common propetties and behaviour.
When moved to design level, analysis level classes are mapped to certain data
representations. Subclass relations are based on both analysis-level propetties

and data represcentations.

Classes deleted and added at the design stage

Some object types at the analysis level are helpful to decompose aud then to
understand the system, but they themselves add no members or operations,
Such classes may be deleted from design and therefore will not exist in the

hierarchy.

Design may also produce new classes that can not be found at the analysis stage.

Abstract classes and classes of association objects are such kinds of ¢lasses

3.4.2 What is Missing from Implementation Hierarchies

At the design level, subclasses inherit data structures and the application-semanties
from superclasses. If the shared attributes of superclasses and suby lasses (at analysis)
are represented using different data structures, then subclasses (at design) will not,
be able to inherit from superclasses'. In other words, the application-semantics may

yield to the data structure representations, with loss of some inheritance relations.

3.4.3 Keeping Two Separate Hierarchies

What has been missing from design hicrarchies can compensated hy keeping the

analysis-level hierarchy until design and making the implementation hierarchy only

! Although 1n untyped OO language, such as Smalltalk, there 13 no type declaration speaified for
the fields, the type restriction 1s implieitly required
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data representation-dependent. but application-semantics-independent so that the
application-specifics will be preserved no matter how the design implements the anal-
ysis, and that the inheritance relations of each hierarchy can keep their clarity.

An analysis-level class which is differently implemented in existing software from
the one we are currently developing, can not share the data representation. However,
the application-specifics are the same regardless the different implementation, and
therefore, the application-dependent operations should be reused.

An analysis-level subclass which is differently implemented from its superclass(es),
can not share the data representation. However, the subclass-relation that is identified
at. the analysis level, implies that the application-semantics should be inherited by the
subclass regardless the data 1epresentation, and therefore, the application-dependent
operations should also be inherited.

We will elaborate our approach in Chapter 5 and 6. Since a general genericity
will be used to deseribe application-independent data structure representations in
our approach, we first look at the various polymorphisms, especially genericity, in
the next chapter, and see how they play roles in software reuse. Finally we introduce

onr extension of genericity,




Chapter 4

Polymorphism and Reuse

4.1 Polymorphism

Polymorphism in general, means the ability to have more than one form. In pro-
gramming languages, polymorphism means the ability to have more than one type.

Polymorphism in programming languages is reflected in the following aspects [Car85):

o Polymorphic constants or values are values that may have more than one type,

e.g., “ 1" may be treated as an integer or a real value in different context.,

o Polymorphic variables are variables that may have more than one type. e.g.,
in C++, a variable declared as of class A, may be used to refer to instances of

class A and instances of all the subclasses of class A.

o Polymorphic functions are functions whose actual parameters can have more
than one type. e.g., * + ” operation can be used for integer addition or real

addition.

o Polymorphic types may be defined as types whose operations are applicable to
actual parameters of more than one type. e.g., a function whose parameters are
declared as certain types can be applied to all the subtypes of corresponding

declared types.
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Figure 4.1: Varieties of polymorphism

Cardelli and Wegner classified the different kinds of polymorphism [Car85] (see
Figure 4.1). This classification extends Strachey’s work [Str67] by introducing a new
form of polymorphism called inclusion polymorphism. Strachey distinguished infor-
mally, between two kinds of polymorphism: Parametric polymorphism and Ad-hoc
polymorphism. In the remaining in this section, we discuss the various kinds of poly-
morphism. In Section 4.1.1, we discuss overloading and coercion. Next, we examine

parametric polymorphism. And finally, we investigate inclusion polymorphism.
4.1.1 Opverloading and Coercion

In the above classification, ad-hoc polymorphism is further divided into two cate-

gories: overloading and coercion.
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Overloading

Overloading means that the same name is used to denote different functions, while the
compiler uses context to determine which actual function is denoted by a particular
instance of the name.

Overloading ifself is not true polymorphism in the sense that instead of an oper
ation applicable to many types of arguments, we allow the name of the operation to
be used for many types. The code actually executed is quite different from one to
an other. However, overloading is not just a syntactic construct allowing the same
name for different semantic objects: the desire to overload functions or procedures
reflects the similarities of their structures and behaviout semanties. For example,
the operation name “add” can be overloaded to denote to adding an element to an
array, to a link-list, to a queue or to a set. The use of the same name for these four
operations embodies the similarities of the container structures and the bhehaviour of

the four data types.

Coercion

Coercion is actually a semantic operation to convert the argument, to the type desited
in a situation that would otherwise resull in a type error. A coercion can be explicitly
specified by users, or implicitly deduced by the compiler. In both cases, the type
conversion operation is automatically inserted hefore invoking the expected function
or procedure.

Coercion is not true polymorphism either. An operation may appear to accept,
arguments of many types, but a type-conversion operation has to be applied first
before the operation can use them. Therefore, the operation actually has only one
type.

However, coercion allows users to omit semantically needed type conversions.

When properly used, such a form of abbrevietion brought by coercion may reduce
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source program size and improve program readability.

For example, considering the algorithmic addition operator “+” in an OO pro-

gramming language, we may have the following situations when only considering

INTEGER and REAL [Car85):

(1) 3 + 4

(2) 3.0+ 4
(3) 3+4.0
(4) 3.0+ 4.0

Without coercion, INTEGER class and REAL class will have to implement two

overloaded operations “+"!

cach. After introducing coercion, it is possible to have
INTEGER class implement INTIEGER addition (which applies to the only case where
both argument are INTEGERs), and REAL class implement REAL addition (which

applies to the situation where one of the arguments is REAL).

4.1.2 Parametric Polymorphism

Parametric polymorphism is obtained when a function works uniformly on a number
of types; these types usually have some common structures. In parametric polymor-
phisin, a polymorphic function may have implicit or explicit type parameters that
stand for the types of the arguments for cach instantiation of the function.

Polymorphic functions are also called generic functions. Ada’s generic packages
and C+4+ templates are cases of generic functions. It is not the generic function that
is executed directly, but the application of the generic function by instantiating ap-
propriate formal parameters of the generic function. Therefore, from a programming
language's point of view, generic functions are second-order notions, i.e., they are not
run-time notions.

Uunlike overloading, parametric polymorphism is a true polymorphism in the sense

'For a commutative operation, the receiver of the message can be either one of the arguments
determuned by the compiler or interpreter
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that the same code of a parametric function will be executed for arguments of any

allowed types after it has been instantiated.

4.1.3 Inclusion Polymorphism

Inclusion polymorphism is used to model subtypes and inheritance. The idea of a
type being a subtype of another type has already existed in traditional programming
languages such as Pascal, where a subrange type is a subtype of an ordered type
such as INTEGER. In object-oriented programming languages, mclusion subtypes are
applied to more complex data structures (classes). For example, a type representing
Rectangle, can be made a subtype of a more general type  Polygon. Every object
of a subtype can be used in a supertype context, in the sense that every Rectangle
is a Polygon. Therefore, a variable declared as a Polygon can be used to refer to
instances of Polygon and also to refer to instances of any subtype of Polygon such
as Rectangle.

In inclusion polymorphism, the functions (operations) defined for the supertype
can be applied to this type and also to all the subtypes of this type. In the above
example, any operation defined by class Polygon can be uniformly applied to Rect-

angle, unless it has been redefined by the class Rectangle.

4.2 Reuse by Function, Package and Class

Software reuse has becn categorized in different ways: 1) product reuse, 2) human
resource reuse, and 3) software components reuse, ete [Mey87]. With software com-
ponents reuse, the unit of reuse has evolved from routines (procedures or functions)
or routine libraries, to modules or packages (Modula-2 [Wir83] and Ada [DODS3]),

to classes in object-oriented programming,.
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4.2.1 Routines

A “reusable routine” is a single function which can be directly linked into a program.
Programmers do not need to code it repeatedly line by line. Functions such as data
conversions, arithmetical functions, and statistical routines, have been utilized since
the carly days of programming.

The limitations of reusable toutines are that:

e 'The range of reuse is limited to a few domains, such as mathematics, statistics,

basic data structure operations, I/O routines.

e It remains a very low level of 1euse. There are no good criteria to organize the
related operations together. In most cases, the reusable routines are organized

into libraries according to functionalities.

4.2.2 Packages

Ada and Modula-2 offer facilities to build modules or packages, which are units of
a group of associated functions for particular data structures. The organization of
functions has shifted from individual function to a group of related functions.

One of the limitations of reusable packages is that, short of introducing the in-
heritance mechanism, redundancy becomes inevitable.

Embley and Woodfield developed an environment that can record the Ada pack-
ages along with the relations - general/special, generic/instantiated, etc, — among

these packages [Emb87).

4.2.3 Classes

Classes and class inheritance overcome the shortcomings of the previous approaches.

The advantages of using classes are reflected in the following aspects:

o A class is a unit of data structure and associated operations. It provides a good

way to organize related functions together.
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¢ The encapsulation mechanism supplied by classes protects the object's data
from arbitrary and unintended uses, which among other things, protects the

object’s data from corruption (see Section 2.2.1)

o The inheritance mechanism reduces the redundancy between classes by using

subclass relations.

Chapter 2 and 3 have shown the advantages of reuse offered by the object-oriented
model - mainly the concept of class and inheritance (inclusion polymorphisim). In

the next section, we see how genericity plays the role in reuse.

4.3 Genericity and Reuse

The fundamental idea of using parameterization is to maximize program reuse by
storing programs in an as general form as possible. Programmers can later construct,
a new program module by instantiating appropriate parameters associated with the
generic module. Such capacity is available in Ada in the form of generie packages,
and in C++ in the form of templates.

Usually, the formal parameters of polymorphic functions are restricted to Lype
parameters, or some value paramelers. The actual application of a polymorphic
function is obtained by substituting the formal type and/or value parameters.

The generic functions concept has beeu extended to elasses generee classes
- when genericity and object-orientation are combined together, In this case, the
generic parameters are applicd not only to one individual function but also to the
group of functions (operations) that are associated with the genetic class. For exam-
ple, the generic class Array(element-type: type-parameter; size: INTEGER)
has one formal type parameter, element-type, and one value parameter, size, which
may appear in the operations associated with class Array such as Add(), Delete(),

Get(), etc. Examples of instantiation of application of the generic class Array in-
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clude Array(REAL, 20) or Array(Person,100) where Person is a user-defined

class,

One of the assumptions of genericity is operation overloading. With overloading,
the client programmer may wiite the same code when nsing different implementations
of the same data abstraction. With genericity, the implementer may write a single
module for all instances of the same implementation of a data structure, applied
to a number of types of data structures. i.e., the operations related to the generic
parameters within a generic operation have to be overloaded for the data types that
the generic operation’s formal parameters can accept.

Another assumption of genericity is that all the operations related to the generic
parameters within a generic operation should be valid, i.e., those operations should
be defined by the types that instantiate the formal parameters. However, neither
Ada’s generic packages nor C++'s templates features reliable use of parameterized
programming because neither has the mechanism to check whether the substitutions
are valid or not. OBJ and its descendant OBJ2, developed by Goguen, [Gog84, Fut87]
use the concepts of theories, news and module expressions to meet such needs. The
instantiation of a parameterized module to an actual parameter, using a particular
view will result in creating a new module. In OBJ and OBJ2, the only top level
entities are “modules”, which are cither “objects” or “theories”, and “views”, which
relate theories to modules. Objects contain executable code, while theories contain
nonexecutable assertions Theories and views make it possible to construct varieties

of module expressions. Specifically:

o Theories ave used to define the properties required of an actual parameter for
it to be meaningfully substituted for the formal parameters of a given parame-

terized module.

o Views are used to express that a given module satisfies a given theory in a

particular way.
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o Module expressions are used to modify modules, by adding, deleting or renaming

functionality.

An important feature of Goguen’s parameterized programming permits parame-
terized modules to be modified, cither before or after instantiation, so that they may
be applied to various applications. The possible modifications of a module include:
1) enriching it by adding new functionalities; 2) renaming some of its functions, and
3) restricting it by eliminating some of its functions. OBJ’s module expression mech-
anism accomplishes these modifications, and guarantees the satisfaction of selected

program properties given in the form of theories.

4.4 Our Extension of Genericity -
All Application-Specific Classes are Param-
eterized

Although genericity has been used in building a libraty of reusable conmponents for
some application domain, not only for the basic data structure components, it is only
meaningful in an organization that has a long-term management commitment to an
official reuse plan. In reality, genericity is more suitable for basic data structure-like,
application-domain independent, low-level components. This use of generieity frees us
from repeatedly coding purely computing-related, accessor/selector-like operations,
When genericity is extended to classes in object-oriented programming, we can benefit,

more from their combination.

4.4.1 Extending Generic Parameters to Name Parameters

Traditional generic parameters are 1estricted to type parameters; o value paramelers
We can extend the generic parameters to name paramclers  usually the field names

of record types. For example, we may define a generic class Record! by




Recordl = Record(fieldl : STRING; field2 : INTEGER; field3 :
Array(element-type))
where element-type s type parameter, fieldl, field2, field3 are name parameters.

An example of apphcation of the generic class Recordl is Owner =
Record(Name : STRING; ID : INTEGER,; Books : Array(Book)). Such
a dass could be obtained by instantiating all the formal parameters defined by
Recordl including traditional type parameters - element-type substituted by
Book and the newly mtroduced name parameters - fieldl, field2 and field3
siubstituted by Name, D and Books respectively. Another class Course =
Record(Title : STRING; Credit : INTEGER; Students : Array(Student))
can be obtained in the same fashion.

The introduction of name parameters makes it possible to instantiate a number
of application-specifie classes by a single generic class. We will see the significance of

this concept in Chapter 6.

4.4.2 Introducing Inheritance to Generalized Classes

Parameterized polymorphism can be viewed as a horizontal reuse. A generic class
LinkedList(element-type) 1s the common structure of all the applications of
LinkedList such as LinkedList(INTEGER), LinkedList(STRING), etc. Af-
ter introducing the name parameters, any application-specific class can find its un-
derlying generic class common with some other application-specific classes. For the
example mentioned above, generic class Record1 is the same underlying generic class
for class Owner and class Course

Inclusion polymorphism is a mechanism for verfical reuse. Any operation defined
at a superclass can be uniformly applied to its subclasses unless it is redefined by its
subclasses. Generie classes also have inheritance relations among them. “Sub-generic-
classes” inherit computation-semantics (data components and related operations)

from “super-generic-classes”. We will see the details in Chapter 6.
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‘ Before moving to the detailed discussion of oar approach in the neat part of this

thesis, in the next chapter, we give an overview ol SoftClass project i which this

research is carried out and our approach is realized.




Chapter 5

SoftClass Project

Soft(!lass is an object-oriented CASE tool developed in the context of a software reuse
project financed jointly by the Centre de Technologie Tandem de Montreal (CTTM,
an R&D division of Tandem Computers Inc.), and government research granting agen-
cies. C'T'IM specializes in developing systems for managing Tandem’s distributed ap-
plications. The orientation of the project changed during the first months. Initially,
we intended to develop an object-oriented development methodology based on an
object-oriented model tailored to specifying what might be called “nearly decompos-
able” systems of collaborating agents [Mi190]. However, due to a number of factors,
including the lack of support for object-oriented languages on Tandem computers at
the time, and the expected lengthy feed-back loop for such a project, we chose a two-
pronged approach: 1) theoretical work on QOO software development, and in parallel,
2) exploring software adaptation procedures (i.e. specialization, composition, and
transformation, see section H.1), as independently of the underlying software devel-
opiient technology as possible, while ensuring that the abstractions embodied in the
model described in [Mil90] are supported; hence the strong object-oriented flavor in
both the underlying principles and implementation of SoftClass. In section 5.1, we
provide a brief discussion of issues in software reuse. Section 5.2 provides an overview
into Soft Class. The representation of software components in SoftClass is described

in section 5.3, Section 5.1 describes SoftClass’s representation of development kniowl-




edge in general, and develepment traces for specific products, with a view towards
automating maintenance. In section 5.5, we briefly describe the specifie contribution

of this work to SoftClass.

5.1 Software Reuse

Software reuse is seen by many as a key factor to improving software productivity
and quality [Fre87]. The software engineermg literature abounds with hotror stories
about low programmer productivity, poor software quality, and poor management
of large software projects [Tha81]. Several factors hinder software 1euse including,
the infancy of software development as an engineering disciphne, market pressunes,
management shortsightedness with regard to consenting, to the mitial investments
needed to implement software reuse methodologics, personnel training and education,
and the lack of methodologies and tools to support software reuse in particular  and
software development in general [IFis87). Research on reusing existing software has
traditionally focussed on reusing code, and tended to focus on library-onented issues
and techniques [Pri87]. While substantial code rense rates were sometinmes achieved
[Gru88], productivity gains remained marginal because of the diminishing share of
coding in the overall development. lifecycle [Hors4].

Interest in reusing softwate since the eatlier stage of development spurred a host
of new research problems and a myriad of solutions [Fre87]. In [Mil90], Mili provided
a general framework for the study of software rense in an attempt to identify the
important research issues and categorize existing rescarch in software reuse. View
ing software development as a knowledge intensive problem-solving activity, software
development involves using and rensing a body of development knowledge which -
creases with experience. Al 1escarchers and cognitive scientists have long divieed
problem-solving knowledge into procedural knowledge (shdlls) and declarative knowl-

edge (facts and semantic knowlcdge). In the context of software development,, skalls




consist. of development procedures, such as the process of deriving structure charts
from functional diagrams in stiuctured design. Semantic knowledge consists of things
such as application-domain knowledge, knowledge of programming concepts (e.g. al-
gorithms, data structures and their properties), while “facts” consists of instances of
previously solved “problems”. Accordingly, we identified a spectrum of reuse method-
ologies based on the range of knowledge reused, ranging from procedure-oriented reuse
to data-oriented reuse (e the reuse of facts). Procedure-oriented reuse is similar
to Horowitz’s reusable proccssor concept [Hor84] and includes things such as auto-
matic programming where development knowledge is embodied in automated proce-
dures that transform specifications in one form or another into executable programs
[FIs82]. Data-oriented 1euse focuses mainly on computer-based memorization and
tecall of past realizations of software products and is best exemplified by code reuse
efforts which focus on library-based techniques. In the between, we have a whole
range of knowledge-based approaches which apply more or less heuristic transforma-
tions to more or less generic development templates as in [Bas87]. In this paper, we
deal with the data-oriented end of the spectrum.

Roughly speaking, data-oriented reuse involves two major issues: 1) retrievability
of existing software components, and 2) the adaptability of those components. Re-
trievability of software components involves content-based indexing for which we need
a good indexing rocabulary. The quality of indexing vocabularies involves a set of
objective criteria as well as subjeetive ones. Objective criteria include: 1) the coverage
of the vocabulary, i.c., the extent to which all the concepts relevant to the domain
of discourse are represented, 2) the precision of the vocabulary, to the extent that it
discriminates between distinguishable concepts, and 3) consistency, i.e., the extent to
which each concept is represented by a single index term. Subjective criteria relate
to the ease of use of the indexing vocabulary and have to do with things such as the

choice of wording for indexing concepts, and the ease with which a user can locate
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the exact wording for a concept he is looking for. Designing indexing vocabularies
for software components is a major concern in the relatively recent rescarch trend
generically described as domain analysis [Pris7).

Retrievability also requires sophisticated retrieval algorithms. Within the realm
of controlled vocabulary indexing of software components, classification has been
shown to yield superior results to boolean retrieval [Pris7]. Pricto-Diaz used addi-
tional heuristics (bases) to break ties, by taking into account reuse related attiibutes
such as the length (and thus complexity) of retnieved components and the expetience
of the “reuser” [Pri87]. Keyword-based classification has heen constdered even in
object-oriented programming environments to complement browsmg of class hierar-
chies [Hel91]. SoftClass uses a keyword-based classification of software components,
as well as a number of graph-based concept matching algorithms [Mil9:ih, Mil93c].

Depending on the kind and level of geneticity of — usable components, the adapt-

ability of reusable components may take one of several forms:

1. specialization: a generic or parametetized software component 15 somehow
specialized to take into account the specifies of the problem at hand.  With
template-based approaches (e.g. [Bas87]) program templates are instantiated
for specific parametiic values  In object-oriented programming, subclassing is
used to drive new classes from existing ones. Inhetitance has historically heen
associated with specialization, although only restiicted forms of mheritance

imply specialization in the real sense (e.g. code wrappers in Flavors [Moos6)).

2. composition, whereby 1eusable components are reassembled to satisfy new re-
quirements, which are not satisfied, closely or remotely, with any dividual
component.  Work on module interconnection languages addiesses rense by
composition [Pri87], and relies on the standardization and transparency of maod-
ule interfaces. For these ieasons, rense by composition is one of the favorites

for object-oriented rense theoreticians, as exemplified by the works of Kaiser
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[Kai87] and Gognen [Gog86].

3. transformalions, which deal mostly with modifying existing, non-generic, soft-
ware components 1o adapt them to new requirements. There has been relatively

few efforts in this direction, with some notable exceptions [Ara86].

SoftClass is built, in part, to explore heuristic software transformations using ana-
logical operators.

Data-orniented reuse, be it with OO classes, development templates, or project-
specifie, non-genetic, software components, depends on the existence of a library of
reusable components  Retrievability tequires an attributed representation of software
components. Adaptability requites an explicit representation of those functional and
structural aspects of software components that need to be manipulated by adaptation

procedures.

5.2 Overview

The Soft(lass project was aimed at enhancing software reuse for distributed man-
agement. software  the industrial sponsor’s main line of products. We were to pri-
oritize one of two alternative tesearch goals: 1) research and develop methodologies
for reusing existing softw ue  developed using structured methods, and 2) rescarch
and develop methodologies and tools for developing reusable software- with a keen
interest in object-orientation. Both were retained, but with an emphasis on former
during the fitst half of the project (just ended), and an emphasis on the latter in
the second half, to accommodate both near-term returns (the former) and long-term
ounes (the latter). Providing for a paradigm shift half-way through the project posed
a number of problems, both conceptual and practical, which slowed our progress on
the first front, but that. we hope, will pay off handsomely in the long run if our

sponsors don’t run out of money and/or patience in the meantime!
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Figure 5.1: SoftClass’s overall architecture. SoftClass was developed in Smalltalk80.
Its interface to the database (INGRES) is wiitten in C. Soft'lext and Soltlndex
are developed in Lisp and C. “DM” means “Development Methodology”. Because
of SoftClass’s ohject-oriented architecture, DM-spedific tools are subdlasses of the
corresponding DM-independent tools in which we abstracted the common function-
alities. The “functional” separation between the various components is in sote cases
“mental” as different functionalitics may be implemented by the same class,

Early in the project, we focused on the development of a technology-independent,
representation of software components that can handle both structired method ab-
stractions, and object-oriented abstractions, at any level of development. In Soft-
Class, the term “software comnponent” 1efers to incarnations of software products at
different stages of development, including requirements, analysis, and design. Soft-
ware products consist of cither procedures or data, and the model does not distimguish
between the two. Work on reuse technigues focussed on: 1) 1epackagimg existing
(structured) software to fit the chosen model, and 2) computer support for design
with reusable components. The sources considered for existing software consisted of
traditional software documentation (e.g. requiremnents documents); as well as outputs

of CASE tools. With software documentation, repackaging relies on: 1) a tool called
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SoftTezt that uses a theoretical model of technical writing to extract a skeleton soft-

ware architecture, and 2) a simple automatic indexer- called SoftInder- that matches
parts of the document to speaific vocabularies to support later retrieval. SoftText
complements the extracted information with CASE tools export files, when such files
are available. Figure 5.1 shows an overview of the SoftClass tool set.

Support for design with reusable components is embodied in a CASE tool, also
called SoftClass. In addition to issues of component classification and retrieval, we

attempted to address the following problems:

1. Given that no component was found that closely matches the requirements,
which combination of components (and in what combination) might satisfly

them, il any?

2. Given the (partial) description of a desired software component (presented as
a query 1o the software components library) and the closely matching descrip-
tion of a retrieved component, which transformations should be applied to