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Abstract

RNA is a macromolecule, found in all living beings, composed of repeating

building blocks called nucleotides. It folds onto itself into complex structures, and can be

studied at different levels of organization: sequence, secondary structure, and 3D

structure. The 3D structure of RNA molecules is what defines their biological function,

and hence obtaining it is important for studying them.

Many computational methods were developed to predict the 3D structure of RNA

starting from secondary structure or sequence alone. One prediction paradigm is to

decompose the secondary structure into components and assemble the molecule out of

3D fragments, extracted from known structures, that most closely match those

components.

In this thesis, we developed a program, called rna_builder, that builds RNA

molecules by assembling together fragments given to it. We then developed a pipeline

for 3D structure prediction that assembles together helices and whole loop fragments

chosen based on sequence similarity. Finally, we developed a similar pipeline but that

selects loop fragments using motif predictions from BayesPairing2. We called the set of

utilities we developed rna_bits.

We tested our methods by systematically predicting the 3D structures of RNA

molecules from the Protein Data Bank and validating against their known structures.
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Abrégé

L'ARN est une macromolécule présente dans tous les êtres vivants, composée

de blocs répétitifs appelés nucléotides. Il se replie sur lui-même pour former des

structures complexes et peut être étudié à différents niveaux d'organisation: séquence,

structure secondaire et structure 3D. La structure 3D des molécules d'ARN est ce qui

définit leur fonction biologique, et il est donc important de l'obtenir pour les étudier.

De nombreuses méthodes informatiques ont été conçues pour prédire la

structure 3D de l'ARN à partir de structures secondaires ou de séquences uniquement.

Un paradigme de prédiction consiste à décomposer la structure secondaire en

composants et à assembler la molécule à partir de fragments 3D, extraits de structures

connues, qui correspondent le mieux à ces composants.

Dans cette thèse, nous avons développé un programme, appelé rna_builder, qui

construit des molécules d'ARN en assemblant des fragments fournis. Nous avons

ensuite développé un pipeline de prédiction 3D qui assemble des hélices et des boucles

entières choisis sur la base de la similarité des séquences. Enfin, nous avons

développé un pipeline similaire mais qui sélectionne les fragments de boucle en utilisant

les prédictions de motifs de BayesPairing2. Nous avons appelé l'ensemble des

programmes que nous avons conçus rna_bits.

Nous avons testé nos méthodes en prédisant systématiquement les structures

3D de molécules d'ARN à partir de la Protein Data Bank et en les validant par rapport à

leurs structures connues.
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1. Introduction

RNA (ribonucleic acid) is an important class of macromolecules found in all living

organisms. RNA molecules have many functions, including coding proteins, translating

proteins, gene expression and regulation, and catalytic activity, which they do alone or

by interacting with other RNAs and proteins. The function of RNA molecules depends

on their 3D structure, and hence understanding that structure is essential to studying

their biological function, which in turn is important for downstream uses such as

understanding diseases and developing therapeutics.

Techniques for experimentally obtaining 3D structures, such as X-ray

crystallography and NMR spectroscopy, are time-consuming, and especially challenging

for RNA since it is a flexible molecule that can adopt a wide range of conformations.

This makes computational methods for predicting RNA 3D structure that more

important. Multitude of computational methods have been developed based on a variety

of principles, including simulations of quantum mechanics, molecular dynamics,

Monte-Carlo simulations, assembly of fragments extracted from known structures,

comparative modeling, or interactive manipulation.

In this work, we propose a set of tools and a pipeline for predicting RNA 3D

structure from its secondary structure by assembling RNA motif fragments. We

specifically focus on simplicity, modularity, and integration with other tools. We test our

pipeline by systematically reconstructing a wide range of molecules and comparing

them to their known crystal structure.
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2. Background

2.1 RNA Structure

RNA is a linear polymer composed of nucleotides. Each nucleotide consists of a

nitrogenous base (also known as nucleobase, or simply base), a sugar (normally ribose

in the case of RNA), and a phosphate group, connected covalently. The sugar of one

nucleotide is connected to the phosphate group of the next with a covalent bond called

the phosphodiester bond. The sugars and phosphate groups are said to form the

backbone of the RNA.

There are 4 main bases that occur in RNA: adenine (A), cytosine (C), guanine

(G), and uracil (U). Sometimes however they are chemically modified and become

different. Each atom in the nucleotides has a standardized name.

RNA is usually single-stranded, meaning it does not come with long

complementary strands like in the case of DNA. It does however fold onto itself or other

RNA molecules in intricate ways, forming short double helical segments that define its

structure. The structure of RNA is held together by stacking interaction between the

aromatic rings of the bases, and by hydrogen bonds between the bases and between

bases and the backbone.

Coplanar bases forming stable interactions consisting of hydrogen bonds are

said to be paired or to form base-pairs. There is a whole nomenclature for the existing

types of base-pairs, described by (N. B. Leontis & Westhof, 2001), determined by the

12



edge that interacts (Watson-Crick, Sugar, or Hoogstein) of each base, and the relative

orientation (cis or trans) of the bases in the interaction.

The most common base-pair, and the one that forms the double helices, is the

Watson-Crick base pair, which occurs between Watson-Crick edges with a cis

orientation. When the nucleotides it pairs are A and U or G and C it’s called a canonical

base pair, which is the most common and stable base-pair. When it pairs G and U it is

called a wobble base pair.

The GC, CG, AU, and UA canonical base-pairs are all isosteric, meaning they

have the same “3D shape” and can substitute for each other without impacting the 3D

structure (which is what allows the construction of regular helical structures). The GU

wobble pair isn’t exactly isosteric to them (and isn’t self-isosteric either, meaning GU

and UG are slightly different), so it slightly deforms and destabilizes the double helix .

Organization Levels

The Watson-Crick base-pairs and the helices that they form by stacking upon

each other are the most stable parts of RNA and tend to form first (Brion & Westhof,

1997; Tinoco & Bustamante, 1999). Based on this insight, it is useful to think of RNA as

organized into the following hierarchical levels:

● Sequence, also called primary structure, is the string of nucleotides in the

order it was transcribed, and can be simply written as a string of letters,

like “CCACACCGUUCUAGGUGCUGG”. Note that RNA is directional; if you

reverse the sequence it will no longer be the same molecule. The
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beginning of the molecule is said to be the 5’ end and the end of the

molecule the 3’ end (this refers to the C5’ and C3’ atoms of the nucleotide,

which are just the names given to two of the carbon atoms in the

structure.) Sometimes we consider RNA “molecules” that consist of

multiple disconnected chains, in which case we indicate the separation in

the displayed sequence by a character like “+” or “&”.

● Secondary structure, sometimes called 2D structure, is the set of

Watson-Crick base pairs. This level allows us to see how the molecule

folds and organizes into helices. Secondary structure can be given as a

list of nucleotide positions, represented as a graph drawn in 2D, or given

in dot-bracket notation (defined below), like “(((((((......)))).)))”.

Sometimes some additional base-pairs are considered to be part of the

secondary structure.

● 3D structure, also called tertiary structure, is the actual structure of the

molecule as it appears in 3D space, including 3D coordinates for all the

atoms. Coordinates of hydrogen atoms can be computed from the rest, so

they are often not included. Heavy atoms refer to atoms that aren’t

hydrogen.
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Figure 2.1: RNA structure organization levels.

Figure from (Q. Zhao et al., 2020), used under CC BY-NC-SA 4.0

Secondary Structure

The secondary structure of an RNA molecule can be conceptualized as a graph

where the nodes are nucleotides and the edges are backbone connections and

Watson-Crick base-pairs.

We might assume that a single nucleotide cannot be Watson-Crick paired to

multiple nucleotides. (There are some rare cases where it happens, however in those

cases the bases are no longer very coplanar, so it’s questionable whether to consider

them truly base-paired.) We also might exclude lonely base-pairs from the secondary

structure, which are Watson-Crick base pairs whose nucleotides aren’t directly followed

by any other paired nucleotides.
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Secondary Structure Components

It is useful to define the various components of RNA secondary structure.

Figure 2.2: Secondary structure components.

Figure from (Mamuye et al., 2016), used under CC BY 3.0 with some labels modified and

added.
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Stacks are consecutive base-pairs connected on both sides by the backbone. A

stack can be formally defined as nucleotides a,b,c,d such that

● b directly follows a in the sequence

● d directly follows c in the sequence

● a is base-paired with d

● b is base-paired with c

In 3D, stacked base-pairs form quite a stable structure. Unless otherwise specified, we

usually talk about stacks composed of Watson-Crick base-pairs, but it is sometimes

useful to consider stacks composed of other types of base-pairs.

Helices, also called stems, are regions composed of one or more consecutive

stacks. Alternatively they can be seen as two complementary RNA strands paired

together. In 3D, helices form the very characteristic and stable double helix structure.

Loops are cyclical regions in the secondary structure graph delimited by

base-pairs.1 Formally, a loop is a cycle in the secondary structure graph such that:

● No two nucleotides that aren’t consecutive in the cycle form a base-pair in

the secondary structure2

● It is not a stack

2 They may however form base-pairs not considered in the secondary structure, such as
non-canonical base-pairs and lonely base-pairs. In fact, such non-canonical base-pairs are what make
loops interesting.

1 Note that this definition is different from the one typically used in proteins, where loops refer to
unstructured regions that aren’t necessarily cyclical.
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Loops are a generalization of multiple different structures, depending on how many

base-pairs delimit them. Hairpin loops or simply hairpins are delimited by one base-pair.

Internal loops are delimited by two base-pairs (bulges are a special case of internal

loops where there’s only two nucleotides on one of the sides). Loops delimited by more

base-pairs are called junction loops or simply junctions or multi-branched loops or

multi-way loops, or n-way loops where n refers to the number of delimiting base pairs.

We say that a structure has a pseudoknot if there’s one or more base-pairs that

“cross” each other. Formally, if we have nucleotide numbers a,b,c,d such that a<b<c<d

and a is paired with c and b is paired with d, we call that a pseudoknot.3

Note that loops are well-defined even for structures that have pseudoknots (see

Figure 2.3). In such cases, certain nucleotides will be shared by multiple loops, and

certain nucleotides of a loop will form base-pairs with nucleotides outside the loop. We

call those nucleotides a pseudoknotted region.

If there’s an unstructured region on either side of an RNA chain, we call those

regions the 5’ and 3’ dangling ends, depending on what side it occurs on.

We call the collection of non-cyclical unstructured regions that might occur at the

end of stems the external loop or open loop. It is not technically a loop according to our

definition. The logic for that name is that it would become a loop if we were to connect

the 3’ and 5’ ends, and that it might contain interesting structure in the form of

non-canonical interactions.

3 Some works make a distinction between pseudoknots and other structures such as kissing
hairpins; we do not make such distinctions and will call all cases where base-pairs “cross” each other
pseudoknots.
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Figure 2.3: Example of loops within a secondary structure with pseudoknots.

The red ellipses represent all the distinct loops.

3D Motifs

The 3D structure is stabilized by interactions such as non-canonical base-pairs

and base-stacking, as well as interactions with ions and hydrogen-bonds involving the

backbone (Batey et al., 1999). Certain patterns consisting of multiple interactions recur

across many structures (N. B. Leontis et al., 2006), and we call those patterns recurrent

motifs or simply motifs. Motifs tend to be evolutionarily conserved, and conserve their

non-canonical base-pairing interaction networks and 3D shape even as some

nucleotides get changed or added or deleted (Lescoute et al., 2005).
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Lemieux and Major decomposed RNA secondary structures with non-canonical

base-pairs into recurrent cyclic motifs (Lemieux & Major, 2006). Other databases

compile motifs for loops as found within canonical secondary structures, such as

Rna3DMotif (Djelloul & Denise, 2008), and the RNA 3D Atlas (Petrov et al., 2013).

CaRNAval (Reinharz et al., 2018) compiles general motifs within interaction graphs, and

Vernal (Oliver et al., 2022) additionally allows to mine motifs within interaction graphs

allowing for some fuzziness.

2.2 Representation

Dot-Bracket Notation

A concise way to represent secondary structure is dot-bracket notation. In

dot-bracket notation, each character represents a nucleotide, and corresponding pairs

of parentheses represent base pairs. For example, in “((....))”, the first nucleotide is

paired with the last one and the second is paired with the second-to-last. In cases

where there’s pseudoknots, some base-pairs will “cross-over” other, and we will have to

use multiple different kinds of brackets for dot-bracket notation, for example:

“((((...[[[...))))....]]]”.

3D Molecule Representation

Different RNA 3D modeling methods use different representations for the 3D

structure. Some methods, called all-atom (AA), or atomistic, or full-atom, represent all

the atom coordinates (usually excluding hydrogen) within a molecule. Typical examples

20



are standard molecular dynamics software like AMBER (Case et al., 2005; Cornell et

al., 1995) and CHARMM (Brooks et al., 1983). Other methods, called coarse-grain

(CG), simplify the representation. Some replace each nucleotide by a smaller number of

“pseudo-atoms'' or “beads'', ranging from 1 (e.g. NAST (Jonikas et al., 2009)) to 6 or 7

(HiRE-RNA (Pasquali & Derreumaux, 2010)). Others simplify even further by

representing the helices by edges of a graph in 3D, such as RNAJAG (Laing et al.,

2013) and ERNWIN (Kerpedjiev et al., 2015).

Coordinate system

The natural representation of an RNA 3D structure is by the cartesian

coordinates of its atoms. However, since the lengths of covalent bonds and the angles

between them stay relatively fixed, some methods fix them and only vary the dihedrals,

also known as torsion angles, of the covalent bonds. This allows representing a

nucleotide using only 6 angles for the backbone and one for the base, greatly reducing

the degrees of freedom (see Figure 2.4). Some coarse-grain models also use dihedral

angles. Vfold (Cao & Chen, 2011) simplifies the search space even further by restricting

pseudo-atom positions to a lattice in 3D, by allowing only a restricted set of dihedral

angle values.
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Figure 2.4: Dihedral angles of a nucleotide.

Figure from (Frellsen et al., 2009), used under CC BY 4.0

2.3 Prediction

The goal of 3D structure prediction is to take the sequence and secondary

structure of an RNA molecule (or sometimes just the sequence), and obtain a 3D model

of how that molecule would look once folded in nature. Lots of different methods were

created for this task. According to (Dawson & Bujnicki, 2016), methods can be

conceptualized as existing on a continuum between “Greek science”, where modeling

happens from first principles of physics, and “Babylonian science”, where modeling is

based on the knowledge of existing structures, as displayed in Figure 2.5.

22
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Figure 2.5: Overview of 3D prediction methods as described in (Dawson & Bujnicki, 2016).

Used under CC BY 4.0

Assessment

In order to measure the performance of prediction methods, we want to measure

how similar predicted structures are to their corresponding native structures (the

experimentally obtained structure as found in the Protein Data Bank). Multiple different

similarity measures are used to compare the 3D structure of macromolecules (Kufareva

& Abagyan, 2012). The measures we used were:

● Root Mean Square Deviation (RMSD), which is a measure of global similarity

that measures how close corresponding atoms are when two structures are

23
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optimally aligned. More precisely, the RMSD is the minimum or the following

expression minimized over all possible 3D alignments of the two structures,

where N is the number of atoms in the structure, and pa and pa’ are the positions

of atom a in the two structures.

● Interaction Network Fidelity (INF) (Parisien et al., 2009), which measures how

similar the set of base stacking and base-pairing interactions is between the two

structures. More precisely, it is defined as the Matthews correlation coefficient of

the two sets:

● Distortion Index (DI) (Parisien et al., 2009), is a combination of RMSD with INF:
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Scoring Function

A scoring function (also known as potential or energy) is a function used to guide

the prediction process or to select the best models among multiple predicted

candidates. A good scoring function is one that correlates with the quality of the

prediction. (This can be assessed by looking at graphs that plot the scores of candidate

solutions versus their RMSD compared to the native structure.)

Scoring functions can be created from an understanding of the underlying

physics, from the statistical knowledge extracted from known 3D structures, or both.

Secondary structure information might be used in the scoring function to enforce that

certain nucleotides form base-pairs. Sometimes, additional data, such as data from

structural probing experiments such as SHAPE, will be included to guide the 3D

structure prediction.

One approach to creating energy function is by modeling the atoms or

pseudo-atoms as beads interacting through springs and forces of attraction and

repulsion. Sometimes explicit forces are added in between the atoms that we want to be

close to each other, called distance restraints. The parameters of these forces can be

obtained by studying the underlying quantum mechanics, or by attempting to fit

parameters to experimental data.
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A typical form of such an energy function is as follows, as taken from (Dawson et

al., 2016):

Figure 2.6: Typical physics-inspired energy function.

Figure from (Dawson et al., 2016), used under CC BY 4.0

The first three terms represent the energy contribution of the covalent bonds, the

next represents the energy contribution of the forces between atoms and the last

represents the energy contribution of hydrogen-bonds. This kind of potential function is

used in all-atom molecular mechanics simulation and in some coarse-grain models.

Another approach, known as statistical potentials, is to get scoring function terms

by estimating the probability of certain features based on their occurrence in known 3D

structures. For example, SimRNA (Boniecki et al., 2016) models the probability

distribution of neighboring nucleobase configurations using a 3D grid around each base,

which was obtained by compiling occurrences from known 3D structures.

26
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Figure 2.7: A cross-section of a 3D grid statistical potential used by SimRNA.

In orange is represented the volume of the atoms of the base, used to calculate repulsion. In

blue are the densities where nearby nucleobases would appear in known 3D structures. Note

that this statistical potential takes into account both canonical and non canonical base pairings.

Image from (Boniecki et al., 2016) used under CC BY 4.0.

Finally, ARES (Townshend et al., 2021) is a scoring function that uses an

equivariant convolutional neural network. It was trained to predict the RMSD of

candidates generated by FARFAR2 for 18 small known RNA molecules, and

generalizes as a scoring function for larger molecules generated by FARFAR2.

Note that scoring functions can appear at various levels and different scoring

functions might be used for different steps of a method. For example, a different scoring

function could be used for predicting the 2D structure if applicable, for scoring 3D Monte
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Carlo steps, for doing an energy minimization on the final structures, and for scoring

structure candidates to pick the best.

Sampling Procedures

Sampling and Optimization Algorithms

To explore the search space and find the best structures according to a scoring

function, prediction software use various algorithms. Among those algorithms, there are

some recurring techniques.

Monte Carlo is a general term used to refer to randomized algorithms that run for

a fixed amount of time. In the world of RNA 3D structure prediction, it usually means

applying small “moves” to a system in order to bring it closer to a desired state.

Hill climbing is a basic optimization algorithm that attempts small modifications

and keeps those that improve the scoring. Simulated annealing is like hill climbing but

sometimes stochastically allows modifications that worsen the score. As time goes on,

the “temperature” is decreased, decreasing the odds of selecting modifications that

significantly worsen the score. Markov Chain Monte Carlo is a sampling technique and

is similar to simulated annealing in that small modifications are applied to a solution, but

the aim isn’t to necessarily find an optimum but instead to get a sample from an

underlying distribution. Replica exchange means that an algorithm simulates multiple

copies of a system at different temperatures and occasionally exchanges them in order

to break out of local optima.
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Molecular mechanics is the modeling of molecules using classical mechanics,

where atoms have masses and velocities and electrical charges, and interact with each

other through springs and forces. Molecular dynamics is the use of molecular

mechanics to simulate the movement of molecules. It usually implies that the energy

function is differentiable, since force is the derivative of the energy potential with respect

to coordinates. However, discrete molecular dynamics (Dokholyan et al., 1998) is an

approach which uses a stepwise approximation of potential functions, and instead of

continuous force being applied, the jumps in the potential are treated as “collisions” that

change the bead velocities. Energy minimization is an application of molecular

mechanics that follows the gradient of the potential function to find stable

conformations, but unlike molecular mechanics doesn’t take velocity into account, and is

not intended to model the movement of molecules.

Sampling Units

To better understand certain prediction methods, we also need to understand

what are the smallest units that are being sampled, or equivalently, what are the moves

applied to the molecule in Monte Carlo simulations.

Sampling units can be discrete or continuous. Discrete sampling units are usually

“fragments” that have been extracted from experimentally known structures. These

fragments can be small, ranging from conformation of single nucleotides, to

conformations of small chains or stacks or nucleotides (for example chains of 3

nucleotides for FARFAR2 (Watkins et al., 2020)), to whole secondary structure
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components such as loops and helices, to whole molecules in the case of comparative

modeling such as ModeRNA (Rother et al., 2011).

Continuous sampling can be obtained for example by modeling the joint

distribution of torsion angle, like in Barnacle (Frellsen et al., 2009). Inspired by robotics,

KGSrna (Fonseca et al., 2016) uses null space perturbations to randomly deform RNA

molecules while preserving hydrogen bonds.

Some methods start with a full representation, containing all nucleotides, and

then apply modifications to bring it closer to the desired conformation, such as

FARFAR2 (Watkins et al., 2020). Other methods build the representation step by step,

potentially back-tracking, such as MC-Sym (Parisien & Major, 2008). Rosetta Stepwise

Monte Carlo (Watkins et al., 2018) does something in between, keeping an incomplete

representation of a molecule, and stochastically adding or removing nucleotides while

being guided by Rosetta’s energy function.

Secondary Structure Prediction

There’s a multitude of methods that predict (sometimes referred to as fold) the

secondary structure of RNA.

One common approach is free energy minimization. The classic model is to

assign a free energy to each stack and loop, and try to minimize their sum. The free

energies for stacks and some other structures have been determined experimentally

(Mathews et al., 1999; Mathews & Turner, 2002a; Turner et al., 1988) . Multiple

approaches use this principle together with dynamic programming to find the lowest free
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energy structure or to sample multiple structures. These include Mfold (Zuker, 2003;

Zuker & Stiegler, 1981), RNAfold (Hofacker, 2004), and RNAstructure (Reuter &

Mathews, 2010). MC-Fold (Parisien & Major, 2008) expands the model by allowing

stacks of base-pairs. The secondary structure prediction done by Vfold (Cao & Chen,

2011) estimates certain energy terms by enumerating loop conformations in 3D. Some

methods simulate folding dynamics together with free energy minimization, such as

Kinwalker (Geis et al., 2008) and Kinefold (Xayaphoummine et al., 2003).

Another approach to predict RNA secondary structure is comparative sequence

analysis. It is based on the idea that secondary structure is more evolutionarily

conserved than exact sequences. This approach compares and aligns multiple

homologous sequences, and uses information on which nucleotides seem to vary

together as hints that they are likely to be paired. The structure of tRNA was solved

manually in this manner (Levitt, 1969; Madison et al., 1966). Some methods first align

sequences and then fold them, such as RNAalifold (Bernhart et al., 2008). Others

simultaneously align and fold, such as Dynalign (Mathews & Turner, 2002b), which also

includes free energy information. The third paradigm is to fold first, then align, such as

with RNAforester (Höchsmann et al., 2004).

Allowing pseudoknots complicates the problem. Prediction of general

pseudoknots using energy minimization models is NP-complete (Lyngsø & Pedersen,

2000). However, multiple approaches solve the problem in multiple ways. PKnots (Rivas

& Eddy, 1999) predicts a restricted class of pseudoknots using dynamic programming
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and some approximated thermodynamic parameters. Kinefold allows the prediction of

pseudoknots by stochastically simulating the opening and closing of helices.

3D Motif Prediction

A prediction problem somewhere between secondary structure prediction and full

3D structure prediction is the prediction of 3D motifs within a sequence or secondary

structure. Presumably, accurately predicting 3D motifs would help to construct the full

3D structure.

RNA-MoIP (Reinharz et al., 2012) is a program that uses integer programming to

select the best secondary structure for the insertion of motifs within its loops. It can

remove some base-pairs in order to accommodate more motifs. The original version

only inserted motifs with exact sequence matches.

BayesPairing2 (Sarrazin-Gendron et al., 2019) is a program that detects putative

locations for loop motifs based on RNA sequence. It samples multiple secondary

structures and uses Bayesian networks to model the covariation of nucleotides within

motifs, hence predicting the likelihood of motifs occurring even when the sequence does

not match exactly.

3D Structure Prediction

Here’s the descriptions of a few 3D structure prediction software:

FARFAR2 (Watkins et al., 2020) (successor of FARNA (Das & Baker, 2007) and

FARFAR (Cheng et al., 2015)) is a Monte Carlo simulation in torsion angles starting with
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a fully extended chain. It stochastically selects 3-nucleotide segments and replaces their

torsion angles by torsion angles from randomly selected fragments. Note that this

changes the global configuration of the chain. This process is guided by a mix of

physical and statistical potentials. It is then followed by a full-atom refinement step.

SimRNA (Boniecki et al., 2016) is a Monte Carlo simulation of a 5-bead coarse

grain model with multiple different types of Monte Carlo moves that modify local

nucleotide configurations, guided by physical and statistical potentials. Since the moves

make modifications that are only local, this method can also be used to simulate the

folding process.

iFoldRNA (Ding et al., 2008; Krokhotin et al., 2015) is a discrete molecular

dynamics simulation of a 3-bead coarse-grain representation. NAST (Jonikas et al.,

2009) is a molecular dynamics method based on an extremely coarse grain

representation of a single bead per nucleotide.

Comparative modeling, such as ModeRNA (Rother et al., 2011), takes as input a

whole 3D structure of a template RNA molecule and a sequence alignment, and threads

the target sequence onto the template structure. Some programs like Assemble

(Jossinet et al., 2010) and RNA2D3D (Martinez et al., 2008) allow users to interactively

build models.

MC-Sym (Parisien & Major, 2008) is a structure prediction tool based on the

assembly of nucleotide cyclic motifs (NCMs), which include stacks and small internal

loops and hairpins. MC-Sym is intended to work together with MC-Fold, which is a

secondary structure prediction program that includes some non-canonical base-pairs in
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its prediction, and hence NCMs can have delimiting base-pairs that are non-canonical.

To generate areas not fully covered by NCMs, such as large loops, MC-Sym

stochastically assembles together chains of 2 to 4 nucleotides.

MC-Sym was also used together (Waldispühl & Reinharz, 2015) with RNA-MoIP

(Reinharz et al., 2012) to detect and include larger loop motifs into the assembly

process.

RNAComposer (Biesiada et al., 2016; Popenda et al., 2012) takes as input a

secondary structure and decomposes it into helices, loops, loose ends, and strands. It

then queries the closest matching structures in the RNA FRABASE database (Popenda

et al., 2010). Unknown structures are generated using CYANA (Güntert et al., 1997).

After assembly, it does two refinement steps, one in torsion angle space, and one in full

atom coordinate space. It includes some pseudoknot information when querying 3D

structures.

Vfold3D (Cao & Chen, 2011) decomposes the secondary structure into helices

and loops and finds the loops in a database based on sequence similarity. In order to

increase the number of candidate models, it tries unzipping the delimiting base-pairs of

the loops.

VfoldLA (Xu & Chen, 2018) decomposes the secondary structure into helices and

strands. A 3-way junction, for example, would be decomposed into its 3 constituent

strands. This has the advantage that the decomposition works even on pseudoknotted

structures. It then finds 3D structures for these strands from a database, based on

sequence similarity and the ability for the loops to close.
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Vfold3D and VfoldLA were combined (Xu & Chen, 2021), to select whole loops

when possible, and otherwise use strands.

3dRNA (Wang et al., 2019; Y. Zhao et al., 2012) decomposes secondary

structure into helices, loops, and some pseudoknots. One peculiarity of their way of

decomposing structures is that their components overlap each other not at one, but at

two base pairs. For components that aren’t found in their database, conformations are

generated either using a simulated annealing simulation based on bi-residue fragments,

or using the distance geometry EMBED algorithm (Havel, 2002). The generated

molecules are then optimized using a simulated annealing algorithm, possibly with

distance restraints.

Multiple methods can be combined to get the best aspect of each, for example

combining ModeRNA and SimRNA (Piatkowski et al., 2016) to use comparative

modeling to predict the structure of a conserved molecule core, together with physics to

predict the folding of the rest.

2.4 Rationale and Contribution

The original rationale was inspired by the method that combined RNA-MoIP with

MC-Sym (Waldispühl & Reinharz, 2015). We wanted a tool that could replace MC-Sym

in the pipeline for constructing the final structure from the motif predictions of RNA-MoIP

and that would be easier to use and made in-house and be open-source.

Once I had a program that would assemble molecules from stacks and loop

motifs, in order to have a vast selection of loop motifs, including junctions, to test with,
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and to make the program comparable to RNAComposer, Vfold3D and 3DRNA, I

generated a custom library of loops and a program to insert those loops into a

secondary structure.

Finally, to add novelty to the method, and to connect with BayesPairing2, I

created a script that would bridge between BayesPairing2 and the RNA assembling

tool.

The main contribution of my work is that my method is conceptually simple,

modular and easy to use. It is also a lightweight implementation compatible with the

tools of the lab and that will permit us to create more use cases in the future.
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3. Methods

rna_bits is a python library and a set of command line utilities that work together

to generate RNA 3D structures using fragment assembly. The included command line

utilities are:

● rna_builder: a tool for constructing 3D structures

● rna_insert_loops: a tool for selecting loop fragments from a custom

database

● bp2_bridge: a tool for integrating BayePairing2 with rna_builder

3.1 Builder

The rna_builder utility builds a 3D model of an RNA molecule from the

specification of its sequence, secondary structure, and motifs to be inserted.

Input and Output

Input

The input for the rna_builder is a “.rass” file (short for “Rna ASSembly”). It is a

normal text file whose first two lines are respectively the sequence and secondary

structure of the molecule we want to build (the target molecule), and the rest represent

possible instructions.

Comments are represented by starting a line with “#”. Blank lines after the first

two lines are ignored. Currently the only instruction supported by the builder is the motif
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insertion instruction, which starts by “motif:”, and instructions that aren’t understood are

ignored.

The first line represents the sequence of the target molecule, and should be a

string composed of the letters “A”, “U”, “C”, “G”, with “&”, “+”, or “ “ to indicate chain

separation. No distinction is currently made between uppercase and lowercase letters.

The second line represents the secondary structure in dot-bracket notation.

Multiple types of brackets can be used, as well as letters (where the uppercase letter

represents the opening “bracket” and the lowercase the “closing” bracket). For example,

“((([[[...)))]]]” and “(((AAA…)))aaa” represent the same secondary structure. The base

pairs that are represented by matching brackets are intended to be strictly canonical or

wobble pairs. (Other types of base pairs will need to be represented as motifs.) Chain

separation is indicated using “&”, “+”, or “ “ and should be indicated in both the

sequence and secondary structure.

Example:

CAGAGUGUAGCUUAACACAAAGCACCCAACUUACACUUAGGAGAUUUCAACUUAACUUGACCGCUCUGA
(((((((..(((........))).((.((.......)).)).....((((......)))).))))))).
# this is a comment
motif:./my_junction.pdb: 7-10, 23-25, 41-47, 60-62

motif:out/loops/loop_models/NR_4.0_94750.1.pdb/206.pdb: 12-21
motif:/home/paul/NR_4.0_24610.2/20.pdb: 26-28,38,39,40
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Motif Insertion

Motif insertions follow the format:

motif:[motif_filename]: [target_positions]

For example:

motif:./my_motifs/asdf.pdb: 5-8, 2, 3,10, 11-13

This indicates that the nucleotides corresponding to the target positions in the

output molecule will be taken from the provided file. The motif file should be a PDB

(“.pdb”) or an PDBx/mmCIF (“.cif”) file or a gzip-compressed version of them (“.pdb.gz”

or “.cif.gz”).

Nucleotide positions in the output molecule start with 1. When inserting motifs in

a multi-chain molecule, the positions should match the positions in the input sequence

string. For example, if the sequence we want to build is “AAG&CUU” and we want to

insert a motif that spans the G and C, the positions of the motif will be “3,5”.

File paths prefixed with a “./” will be interpreted relatively to the path of the input

file. File paths with no prefix will be interpreted relatively to the rna_bits internal data

directory. File paths prefixed with “/” represent absolute paths in the user’s file system.

Input and Output Files

Multiple specification files can be provided to rna_builder, in which case it will

build them all. To build all the .rass files in a directory of a Unix environment, we can

simply execute `rna_builder *.rass`. The output of rna_builder will be one PDB file for
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each input file, and the output file names will be the same as the input file names with

“.pdb” appended (ending up with a “.rass.pdb” file extension).

Assembly Principle

rna_builder is based on the principle of fragment assembly. For us the fragments

are the motifs provided to rna_builder, as well as built-in stacks of canonical and wobble

base pairs that are used to generate helices for which no motifs were given.

Specifically, rna_builder figures out the relative orientation between fragments it

needs to assemble by 3D aligning the nucleotides they have in common. As such, it

works best for assembling fragments that have overlaps with a relatively stable

structure, such as base pairs. We used Biopython’s Superimposer module to align the

fragments.

For the overlapping nucleotides between 2 fragments, it will have to choose

which to place into the final structure, and it will do so by prioritizing the nucleotides of

the fragment that was defined higher-up in the input file, and prioritizing motifs over

built-in stacks.

For almost all the use cases we worked with, the provided motifs were loops that

included their delimiting base pairs, meaning that the overlapping regions were always

canonical (or wobble) base pairs.

To make sure that fragments can be properly aligned, rna_builder will rename the

atoms in the fragments to follow a single convention (see “Normalization” under section

3.2: Loop Library)
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Figure 3.1: Secondary structure decomposition and fragment assembly.

Base Substitution

Motif detection programs such as BayesPairing2 are based on the idea that the

3D structure of motifs is more evolutionarily stable than their exact nucleotide sequence,

and that different instances of the same motif can have very different sequences. As

such, it’s likely that we want to insert a certain motif, but not have a known instance that

corresponds to the exact target sequence we want to build. For cases like these, we

want to substitute (also known as mutate) the nucleotides of the motif to match the

target. By default, rna_builder will do this automatically if it detects that the motif and

target sequences do not match.

In theory, the structure of the backbone is conserved between instances of a

motif, and we only need to change the bases. Base substitution is done by

41



superimposing (i.e. aligning in 3D) an exemplar base to the base in the motif (using

Biopython’s Superimposer), deleting the old base, and using the transformation matrix

to insert a different base with the right translation and rotation.

Handling of Uncovered Nucleotides and Pseudoknots

If not all nucleotides are covered by fragments, rna_builder will nevertheless

build a structure and use various strategies to orient fragments and place nucleotides.

In such cases, it is understood that the output molecule is not realistic and is meant to

be a starting point for further steps such as molecular dynamics or Monte Carlo.

In all cases, rna_builder will proceed by first assembling the fragments that can

be assembled together into connected components, which it then treats as rigid. It then

uses various procedures to orient and merge those components, continuing merging

until the whole molecule constitutes a single rigid component. Throughout this process,

the molecule can be conceptualized as a graph of rigid components, where nodes are

the nucleotides and components that have been merged together yet, and where edges

are backbone connections linking those components.

Cycles

A cycle in the graph of components may occur in various situations, notably

when a loop is not covered by a motif, when a motif has some nucleotides missing that

need to be filled in, and when there is a pseudoknot in the structure.

In all cases when there is a cycle, rna_builder will place the rigid connected

components and nucleotides of that cycle in a circle in 3D, making the distance between
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the C3’ atoms 5.78 Å (which is the distance used by NAST (Jonikas et al., 2009)). It will

orient the rigid components such that their centroid points away from the center of the

circle to attempt to reduce clashes.

This procedure might happen multiple times, until there are no more cycles in the

graph. In some cases, the order in which the cycles are built will affect the final model. If

there’s more than one cycle, rna_builder will build the smallest cycle first.

Dangling Ends

For dangling 3’ or 5’ ends, rna_builder will curl them into a helix, as if they were

part of an A-form double helix for which one of the strands was deleted.

Exterior Loops

Once there are no more cycles in the graph of rigid connected components, there

might still be non-closed paths remaining in the graph, usually corresponding to external

loops. rna_builder will do a similar procedure as for the cycles, but placing the

components of the paths onto arcs instead of circles.
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Figure 3.2: Example of a circular structure constructed for a loop with no inserted motif.

Figure 3.3: Example of an external loop placed on an arc and a dangling end curled into a helix.
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Figure 3.4: Example of nucleotide placements for a pseudoknotted structure, with cycle

construction order indicated.
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3.2 Loop Library

To build a full 3D structure using rna_builder, we need to provide it with 3D

models of the loop motifs to insert. For this purpose, we created a library of 3D loop

models extracted from known RNA structures in the Protein Data Bank.

We used BGSU’s Nonreduntant Datasets (N. Leontis & Zirbel, 2012) to select the

structures from which to extract loops, and MC-Annotate (Gendron et al., 2001) to

annotate their base-pairing interactions.

Pipeline

Download the representative structures from the Non-Redundant List

This requires downloading the correct PDB codes and extracting the indicated

chains. We used the Nonredundant Dataset 4.0A list, version 3.267.

Normalize them and save them in PDB file format

Normalizing means doing the following things:

● Renaming atoms to follow a single convention, for example converting “O5*” to

“O5’”.

● Removing nucleotide modification by deleting the atoms that aren’t part of the

unmodified nucleotide and renaming the residue to the unmodified name.

● Turning nucleotides represented by hetero residues into homo residues.
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We do atom renaming and removal of nucleotide modification by using rename lists

based on the ones from https://github.com/RNA-Puzzles/RNA_assessment, that can be

found in the “data” directory

Additionally, in order to use MC-Annotate, we need to save our structures in PDB

format, and in order to fit into the constraints of the format we renamed the chains to

single characters and reduced the amount of atoms by deleting waters and some hetero

residues.

Run MC-Annotate on the PDB files

We simply run MC-Annotate on each PDB file and save the output.

Extract a secondary structure from the output of MC-Annotate.

Process the output of the above step to create a secondary structure. We

annotate a pairing as part of the secondary structure if:

- it is between the right nucleotide types (A-U, G-C, G-U),

- it is annotated by MC-Annotate as “Ww/Ww”, “Ws/Ww” or “Ww/Ws”

- it is annotated as “cis”

- and, if it is not annotated as “adjacent_5p”.

Since PDB chains don’t necessarily correspond to actual chains in the 3D

structure, and since MC-Annotate does not annotate backbone connectivity, we

annotate backbone connectivity ourselves by iterating through the nucleotides in each
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PDB chain and checking whether the distance between the O3’ and P atoms of

consecutive nucleotides is <= 2.0Å.

We output the secondary structure as a list of chains and a list of nucleotide

pairs. This way we avoid encoding the structure in dot-bracket notation and having to

decide which pairs correspond to the “main” secondary structure and which are

pseudoknots (which is a research question in itself).

Annotate loops with the secondary structure

First, if a nucleotide has more than one canonical pairing in the secondary

structure, we only keep one of them, arbitrarily. Then, we remove lonely base-pairs.

In order to efficiently annotate the loops, we turn the resulting secondary

structure graph into a directed graph composed of helices and strands, where the

direction is 5’ -> 3’. Then, to find loops, we start at each helix and find all the ways to

traverse the directed graph and return to that helix, while passing any other helix at

most once. In the resulting loop, each helix will either become a delimiting base-pair, or

a pseudo-knotted region. Note that loops other than hairpin loops will be counted more

than once (for example, a 3-way junction will be counted 3 times with different

“rotations”, depending on the helix from which we started traversing). We chose to keep

it that way, and it made the rest of our pipeline simpler, since we did not have to write

code to rotate the loops.
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Save the loops as PDB files and save metadata in a format amenable for querying

We extract the annotated loops and save them as PDBs. We also generate a set

of metadata files which allow us to rapidly find all the loops of a given 2D shape. For

example, information on all 3-way junctions composed of: a strand of 8 nucleotides,

followed by a strand of 4 nucleotides, followed by a strand of 5 nucleotides, will be

found in 8_4_5.json. Areas in the loops that form helices with nucleotides outside the

loop, which we call pseudo-knotted areas, are annotated in the secondary structure

using non-round brackets, for example “(....]]()..()...)”. The type of brackets used for the

pseudo-knotted areas do not matter, however different characters are used to represent

different pseudo-knotted areas.

Statistics of the Number of Loops

Number of models Number of models
counting rotations a single
time

Hairpin loops 6109 6109

Internal loops and bulges 15394 7697

3-way junctions 4443 1481

4-way junctions 3368 842

5-way junctions 1250 250

6-way junctions 534 89

7-way junctions 658 94
Table 3.1: Number of loop models of each type within our library.
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Because some RNA molecules, like ribosomes, are huge and have lots of

interactions, we end up finding some crazy “loops” such as 13-way junctions with 17

pseudo-knotted regions, that nevertheless satisfy our definition of loops.

3.3 Loop Insertion

rna_insert_loops is a utility for selecting loops from the library described in the

previous section based on a given sequence and secondary structure, and outputting

.rass files that can then be passed to rna_builder.

Input and Output

To select loops, rna_insert_loops needs the sequence and secondary structure of

the target RNA molecule, provided either via a .rass file, or through command line

parameters.

The output will be a sampling of rass files with different motifs inserted. By

default, for each loop, it will sample among the top 10 motifs closest to the target, based

on secondary structure and sequence similarity. By default it will generate 10 output

files. Both of these numbers can be changed via command line arguments “--top” and

“--num_outputs” respectively. In particular, if you want to only generate the top structure

according to its scoring, you can run it with “--top 1 --num_outputs 1”

Example inputs:

rna_insert_loops input.rass
rna_insert_loops --seq “CCACACCGUUCUAGGUGCUGG” --ss “(((((((......)))).)))”

50



Example output file “il_out/1.rass”:

CCACACCGUUCUAGGUGCUGG
(((((((......)))).)))

# Excluding None

# top 5, selected uniformly at random from the top 10 matches
# wanted: ACGCU (().) selected: ACGCU (().) score: 0.0
motif:/home/paul/Masters/RNA/data/out/loops/loop_models/NR_4.0_58991.1.pdb/1.pdb: 3,4,17,18,19

# top 1, selected uniformly at random from the top 10 matches
# wanted: CGUUCUAG (......) selected: CGUUCUAG (......) score: 0.0
motif:/home/paul/Masters/RNA/data/out/loops/loop_models/NR_4.0_58991.1.pdb/2.pdb:
7,8,9,10,11,12,13,14

In order to facilitate evaluating the construction of a structure without using any

fragments that originally came from that structure, rna_insert_loops has an

“--exclude_native” command line flag that, combined with a “native:” command given in

the .rass file, allows to exclude all fragments that come from that structure. For

example, “input.rass” could look like:

CCACACCGUUCUAGGUGCUGG
(((((((......)))).)))
native: NR_4.0_89230.1

Principle

rna_insert_loops finds all the loops in the main secondary structure (the one

indicated by round brackets), and then samples loop models for each one.

(Alternatively, instead of focusing on the round brackets, we could have detected loops

using the same segmentation tool we used for generating the loop library, which might

give better support for pseudoknots. This would be an improvement for future work.)

For each loop, it looks up all models of that shape (for example, all 8_4_5 loops)

and for each one calculates a score based on sequence match, purine/pyrimidine
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match, and pseudo-knotted area match. Models will then be sampled from the top

models according to that score.

Example output of running rna_insert_loops on a structure with a pseudoknot

GGCGCAGUGGGCUAGCGCCACUCAAAAGGCCCAU
(((((..[[[[[[.)))))........]]]]]].

# Excluding None

# top 7, selected uniformly at random from the top 10 matches
# wanted: CAGUGGGCUAG (..[[[[[[.) selected: CGACCGUCUGG (..]]]]]..) score: -6.25
motif:/home/paul/Masters/RNA/data/out/loops/loop_models/NR_4.0_72776.1.pdb/4.pdb: 5,6,7,8,9,10,11,12,13,14,15
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Figure 3.4: Full 3D structure prediction pipeline based on rna_insert_loops.
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3.4 BayesPairing2-based Pipeline

BayesPairing2 is a program for finding putative motif insertion sites in an RNA

sequence. In order to build a structure containing the motifs proposed by

BayesPairing2, we provide the bp2_bridge utility, that takes the output of

BayesPairing2, downloads and saves the indicated motifs as PDB files, and generates

.rass files to be used as input by rna_builder.

bp2_bridge Input and Output

In order to run bp2_bridge, it needs the output.json file generated by

BayesPairing2 and the path to the motifs dataset that BayesPairing2 used (make sure

that it matches the dataset BayesPairing2 was called with!). bp2_bridge also needs the

secondary structure(s) for which to generate the 3D models, provided via the

--secondary_structures command line parameter (unless the --chefs_choice flag is used

to generate the “chef’s choice” secondary structure as provided by BayesPairing2.)

By default, bp2_output will save the generated .rass files in a “bp2b_out” folder

and will place the saves motifs in “bp2b_out/motifs/”

Example calls:

bp2_bridge --dataset ~/rnabayespairing2/bayespairing/models/ALL.json --bp2_result
output.json --chefs_choice

bp2_bridge --dataset ~/rnabayespairing2/bayespairing/models/ALL.json --bp2_result
output.json --ss "..(((((((...))))))).((((...((((((....))))))...))))..."
"..(((((((...)))))))..(((...((((((....))))))...)))...."

54



Example output: bp2b_out/out_0_0.rass :

ACGGUGUAUAUCGUGCGCUUUGAUGUAGCGGUAGUGAUGCUGUGUGAUCGUGA
..(((((((...))))))).((((...((((((....))))))...))))...
motif:./motifs/with_gap_contents/43/HL_4W90_003.pdb: 33,34,35,36,37,38
motif:./motifs/with_gap_contents/285/HL_3SN2_001.pdb: 9,10,11,12,13
motif:./motifs/with_gap_contents/539/IL_3K0J_003.pdb: 24,25,26,27,28,43,44,45,46,47

Principle

For each secondary structure, bp2_bridge considers all the loops, and for each

loop considers all the motifs that BayesPairing2 inserted at that location, and samples

from them. Note that a motif might have multiple instances, and in such cases

bp2_bridge will sample among all the valid instances of all the motifs for that location.

Not all instances will necessarily be valid because some might not have a number of

nucleotides that matches the structure we are trying to generate.

Selecting Motifs of the Right 2D Shape

The BayesPairing2 datasets that we worked with are based on the RNA 3D Motif

Atlas (Petrov et al., 2013). A single RNA 3D Motif Atlas motif family might have motif

instances with different numbers of nucleotides in each strand. However, for the sake of

generating 3D structures, we want to select motif instances that have a number of

nucleotides exactly matching the structure we are trying to generate. The Atlas indicates

the “core” nucleotides of the motif, and additional nucleotides might be found in between

them. For each motif instance, bp2_bridge downloads the PDB structures from which it

came to see where there’s nucleotides in between to decide if that instance is valid.
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When outputting PDB files of the motifs, bp2_bridge will output all the nucleotides, not

just the core ones.
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Figure 3.5: Full 3D structure prediction pipeline based on BayesPairing2.
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4. Results

4.1 Generating Data for Experiment

In order to evaluate our tools, we automatically generated some datasets based

on known 3D structures for the purpose of trying to reconstruct them.

Molecule Selection

We took the molecules from BGSU’s Nonreduntant Dataset (N. Leontis & Zirbel,

2012) and filtered them to only keep those that:

● Have a single chain.

● Have some base-pairs.

● Have a single stem at the base of the molecule. In other words, the

“external loop” of the molecule is attached to a single stem.

● Do not have both a 5’ and a 3’ dangling end.

● Do not have pseudoknots

● Do not have insertion codes (This is because the tool we used to evaluate

our molecules did not understand insertion codes. Alternatively, we could

have kept those molecules and renumbered their residues.)

Since the datasets BayesPairing2 uses only contain hairpin loops and internal loops (no

junctions) we also generated a dataset with the additional constraint of no junctions.
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Additionally, we removed NR_4.0_83043.1 and NR_4.0_80025.2 because the

base-pairs in both were not well formed and MC-Annotate did not detect most of them,

giving us a secondary structure with very few base-pairs and what appears to be a giant

hairpin loop, even though the 3D model itself has a lot of visible structure and helices.

Analysis of Dataset

Out of the molecules we selected, 125 have no junctions, 122 have a single

junction, one structure has 2 junctions and one has 3. The latter two are

NR_4.0_47162.1 (3PDR|1|X) and NR_4.0_33922.2 (4R4V|1|A) respectively. Among the

single-junction molecules, 51 have a 3-way junction, 67 have a 4-way junction, and 4

have a 5-way junction. Both multi-junction molecules only use 3-way junctions.

Calculating the number of junctions was done after removing lonely base pairs.

Although the nonredundant dataset does not contain exact duplicates, it does

contain a lot of homologous structures, as can be seen by the clusters in Figure 4.1. For

example, the large cluster of molecules with a 4-way junction are all tRNA (Figure 4.2),

and the cluster of molecules with 3-way junctions are all instances of the same

preserved structure in the ribosome (Figure 4.3). All the molecules with 5-way junctions

are also variants of tRNA (Figure 4.4).
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Figure 4.1: Strip plot showing the distribution of molecule sizes in the test dataset by type of

junction.

The y-axis categorizes each molecule based on the type of multi-way junction(s) it contains.

“No” means it has no multi-way junctions. “3”, “4”, “5” mean the molecule has a single 3-, 4-, or

5-way junction. “3+3” and “3+3+3” mean that they have two and three 3-way junctions

respectively.

The y-axis jitter within each category is random to make it easier for the eye to notice clusters.
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Figure 4.2: Cluster of tRNA within the test dataset.

Figure 4.3: Cluster of molecules within the test dataset with a 3-way junction.

One instance is NR_4.0_07539.1 (8EUG|1|9)

Figure 4.4: The four molecules within the test dataset with a 5 way junction.

They are similar to standard tRNA but have an extra fifth helix.
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Figure 4.5: Distribution of molecule sizes and number of pairings within the test dataset.

The colors indicate what category each molecule is in based on the multi-way junctions it

contains.
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4.2 Experiment Description

Methods Tested

We tested different methods for inserting motifs into the selected molecules

based on their native sequences and secondary structures. For each molecule we had

the following methods:

● from_native: To evaluate the performance of rna_builder alone, and to

have a baseline for the other methods, we inserted motifs that were native

to that molecule.

● loops_sample: We used rna_insert_loops to sample 50 motif

combinations

● loops_top: We used rna_insert_loops to generate a single top motif

combination according to its scoring function

● bp2_all and bp2_reliable: We ran BayesPairing2 with secondary

structure as input with the ALL and RELIABLE datasets and then used

bp2_bridge to sample 50 motif combinations for each. We only applied

these methods to molecules with no junctions.

We then used rna_builder to create 3D structures based on all these methods.

Note that rna_insert_loops did not insert fragments that are native to the structure being

generated.
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4.3 Results

Loop Insertion Success

The first thing we evaluate is whether the methods successfully found models for

all loops within each input molecule. Since BayesPairing2 does not have a dataset that

contains junctions, we only tested BayesPairing2 on molecules with no junctions.

Junction profile: No 3 4 5 3+3 3+3+3

rna_insert_loops 124/125 43/51 57/67 4/4 1/1 1/1

BayesParing2 RELIABLE 47/125 - - - - -

BayesPairing2 ALL 99/125 - - - - -
Table 4.1: Number of molecules that had all loops inserted for each method.

rna_insert_loops inserts more loops than BayesPairin2 for a few reasons:

● BayesPairing2 only uses loops that have been deemed motifs by the RNA Motif

Atlas and for which, on top of that, there were enough known homologous

sequences to train the bayesian networks. rna_insert_loops, on the other hand,

uses all the loops that were found in the nonredundant dataset.

● BayesPairing2 only inserts motifs that exceed a certain score threshold, in order

to be precise. On the other hand, rna_insert_loops simply chooses the best loops

among what it has.

The one loop where rna_insert_loops failed to find a non-native motif for the

no-junction dataset was a “(.........().)” loop in NR_4.0_26576.1 (4LCK|1|F) at positions

37-47,69-71. This was the only occurrence of a loop with that secondary structure in the
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whole nonredundant dataset. When observing the native structure (Figure 4.6), we can

see that that loop interacts with another hairpin loop and maybe for that reason it would

not typically appear by itself. BayesPairing2 with the ALL dataset found that motif, but

the only instance of the motif group is from 4LCK, the native occurrence.

Figure 4.6: The loop at position 37-47,69-71 of 4LCK|1|F (NR_4.0_26576.1), in red.

This was the only instance of a (.........().) loop in the whole nonredundant dataset.
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Figure 4.7: Visualization on a strip plot of molecules with missing loops from rna_insert_loops,

by size and junction type.

Figure 4.8: Visualization of molecules with missing loops from rna_insert_loops, by size and

number of pairings
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Figure 4.9: Visualization of molecules with missing loops from BayesPairing RELIABLE, by size
and number of pairings

Figure 4.10: Visualization of molecules with missing loops from BayesPairing ALL, by size and
number of pairings
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3D Structural Similarity

In order to assess the performance of the rna_builder as well as rna_builder

together with the rest of the pipeline, we calculated the RMSD, INF and DI of the

constructed 3D structures compared to the native ones. We used the RNA_assessment

package (Hajdin et al., 2010) provided by RNA-Puzzles toolkit to do those calculations.

Since our methods aren’t meant to predict the behavior of dangling ends, we did not

include them in the calculations.

Performance of Reconstructing From Native

To assess the performance of rna_builder by itself, we reconstructed the

structures from their native motif fragments.

RMSD scales linearly with the number of nucleotides, as expected. The outlier at

the top is NR_4.0_37229.2 (1MFQ|1|A). It has 3 long helices connected to its central

junction and a misalignment of fragments placed one of the helices at a wrong angle,

and since it is long, the angle made it deviate a lot from the native structure (Figure

4.11).
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Figure 4.11: 3D structure of NR_4.0_37229.2 (1MFQ|1|A), native and reconstructed from native

fragments
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Figure 4.12: RMSD of reconstructing molecules from native fragments, by size and junction

type.

Figure 4.13: INF of reconstructing molecules from native fragments, by size and junction type.
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Performance of Full Pipeline

The biggest issue when constructing a molecule is if it does not have a motif

provided for one of its loops, and in that case the RMSD will be high. BayesPairing2 is

more restricted in its motif selection than rna_insert_loops and BayesPairing2’s

RELIABLE dataset has fewer motifs than ALL. With this in mind, the relative distribution

of the RMSD for the different methods as shown in Figures 4.14 and 4.15 makes sense.

Figure 4.14: Strip plot of distribution of RMSD of different methods evaluated on all molecules.

from_native assembles molecules from their native fragments. loops_top uses a single

combination of fragments predicted by rna_insert_loops. loops_sample uses 50 combinations

of fragments sampled by rna_insert_loops for each molecule, and we report the mean and

minimum RMSD of the structures built from them.
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Figure 4.15: Strip plot of distribution of RMSD of different methods evaluated on molecules with

no junctions.
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Figure 4.16: RMSD of molecules predicted by loops_top, by size and completeness of loop
prediction

Figure 4.17: RMSD of molecules predicted by loops_top, by size and junction type
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RMSD
mean

RMSD
var

INF
mean

INF var DI mean DI var

size method

<20 bp2_all 4.087165 3.654663 0.757032 0.012050 5.760914 11.09619

bp2_reliable 4.040271 3.076777 0.783993 0.008637 5.386865 7.738186

from_native 0.901799 0.098478 0.937412 0.001738 0.971263 0.129796

loops_sample 3.728319 4.853984 0.789616 0.012160 5.155899 14.30526

loops_top 2.640916 3.194002 0.828372 0.012219 3.546629 9.297225

≥20 bp2_all 8.358215 38.05370 0.756310 0.014413 12.57053 138.2587

bp2_reliable 11.33803 56.26082 0.724101 0.015665 17.62036 200.3582

from_native 1.576228 0.696043 0.947279 0.000726 1.673877 0.818522

loops_sample 6.189393 18.47378 0.780234 0.013553 8.778932 52.80642

loops_top 4.533936 13.44045 0.748364 0.148314 5.666179 38.99729

Table 4.2: Mean and variance for RMSD, INF, and DI over molecules with no junctions, split by

size in nucleotides

RMSD
mean

RMSD
var

INF
mean

INF var DI mean DI var

size method

<20 from_native 0.901799 0.098478 0.937412 0.001738 0.971263 0.129796

loops_sample 3.728319 4.853984 0.789616 0.012160 5.155899 14.30526

loops_top 2.640916 3.194002 0.828372 0.012219 3.546629 9.297225

≥20 from_native 2.234849 1.514805 0.931138 0.001139 2.405420 1.710767

loops_sample 8.291640 51.18314 0.781163 0.009311 11.41093 119.5261

loops_top 7.032602 50.29862 0.743305 0.124629 8.996629 120.2419

Table 4.3: Mean and variance for RMSD, INF, and DI over all molecules, split by size in

nucleotides
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Figure 4.18: RMSD of the different methods on the molecules with no junctions, by size and

completeness of loop prediction
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Analysis of a few molecules

Lots of junctions: the Varkud satellite ribozyme, NR_4.0_33922.2 (4R4V|1|A)

We look at the results of predicting the structure of the Varkud satellite (VS)

ribozyme (NR_4.0_33922.2 (4R4V|1|A)). The structure contains three 3-way junctions

and is the biggest molecule that we predicted, with 185 nucleotides.

GCGCUGUGUCGCAAUCUGCGAAGGGCGUCGUCGGCCCAAGCGGUAGUAAGCAGGGAACU
CACCUCCAAUGAAACACAUUGUCGUAGCAGUUGACUACUGUUAUGUGAUUGGUAGAGGCUAAGU
GACGGUAUUGGCGUAAGCCAAUACCGCAGCACAGCACAAGCCCGCUUGCGAGAUUACAGCGC

((((((((((.....((((...((((.......))))..))))..((((((.(((..((
((((..(((((.....)))))..(((((((.......)))))))......))).)))(((..((
(.((((((((((....))))))))))...)))))).....)))))))))..))).)))))))

Figure 4.19: Secondary structure of NR_4.0_33922.2 (4R4V|1|A)
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Native Native and from_native superimposed

Native and loops_top superimposed Native and loops_sample with the lowest
RMSD superimposed

Figure 4.20: Native and predicted 3D structures of NR_4.0_33922.2 (4R4V|1|A)
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Figure 4.21: Native and loops_sample predicted 3D structure with the lowest RMSD for

NR_4.0_33922.2 (4R4V|1|A), side by side.

Figure 4.22: Variety of 3D structures sampled by loops_sample for NR_4.0_33922.2 (4R4V|1|A)
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Figure 4.23: Distribution of NR_4.0_33922.2 (4R4V|1|A) prediction RMSD given by different

methods

It’s interesting that there is enough variety of 3-way junctions in our library that

we generated molecules with very different global conformations, as seen in Figure

4.22. The 3-way junctions are:

● “CGCAAUCGUAGCGAG (.....()..()..)” which had 5 matches of that

shape after excluding the native instance

● “GAACGGCACAAGC (..()().....)” which had 2 matches of that shape

after excluding the native instance
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● “CUCCGUCGUGUGAUUG (..()..()......)” which had 2 matches of

that shape after excluding the native instance

Molecule With G-Quadruplex: NR_4.0_02963.1 (5DEA|1|C)

This is a relatively simple molecule if not for the G-quadruplex, that appears

simply as a large hairpin loop on the canonical secondary structure:

GCUGCGGUGUGGAAGGAGUGGCUGGGUUGCGCAGC

(((((.((....................)))))))

For this molecule, the RMSD really depended on whether the method found a

G-quadruplex. loops_top and bp2_all found it, bp2_reliable did not find any motif for the

hairpin, and loops_sample sampled all sorts of different motifs including the

G-quadruplex. However, looking closer, the motifs that were found were extracted from

a practically identical molecule, 5DE8, or from a symmetric chain of 5DEA, or it is a bit

cheating. It’s clear that BayesPairing2 is more sensitive than rna_insert_loops since it

did not include any motifs that did not exactly match the sequence.
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Figure 4.24: Distribution of NR_4.0_02963.1 (5DEA|1|C) prediction RMSD given by different

methods

Figure 4.25: Native structure of NR_4.0_02963.1 (5DEA|1|C) and examples of outputs from the

loops_sample method
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Theophylline Aptamer: NR_4.0_56838.1 (8D29|1|F)

We looked at the prediction results for NR_4.0_56838.1 (8D29|1|F), the

theophylline aptamer, as it was one of the molecules for which bp2_reliable found all

loops. It has one hairpin loop, one internal loop, and one bulge:

GGCGAUACCAGCGAAACACGCCCUUGGCAGCGUC

((((...((((((.....)))...)))...))))

There was more variety in bp2_all than there was in loops_sample (Figure 4.26).

This is because the loops_sample took only the 10 top loop models for each loop

according to its scoring function, whereas bp2_all took all the motifs that passed the

threshold for BayesPairing2’s scoring function, resulting in 38 motif instance from 12

different motif groups for the hairpin loop, 36 instances from 11 groups for the inner

loop, and 4 instances out of 3 groups for the bulge. The numbers of motif instances

found by bp2_reliable were respectively: 22 from 3 groups, 59 from 4 groups, and 1

from 1 group.
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Figure 4.26: Distribution of NR_4.0_56838.1 (8D29|1|F) prediction RMSD given by different

methods

To see the effect of the number of selected models on variety, we run

rna_insert_loops with different amounts of structures to sample from for each loop: 10

(as in the original loops_sample dataset), 20, 38, and 50; these methods will be called

ls_10, ls_20, ls_38, and ls_50 respectively. We note that the RMSD distribution starts to

resemble the distribution produced by bp2_all, with a lower minimum RMSD, and more

variance (Figure 4.27).
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Figure 4.27: Distribution of NR_4.0_56838.1 (8D29|1|F) prediction RMSD given by

BayesPairing2 ALL and by rna_insert_loop with different numbers of structure to sample per

loop.

84



Figure 4.28: 3D structure predictions for NR_4.0_56838.1 (8D29|1|F)

Native loops_top compared to native, RMSD=4.87

loops_sample compared to native,
RMSD=4.46

loops_sample variety
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bp2_reliable best compared to native,
RMSD=4.66

bp2_reliable variety

bp2_all best compared to native,
RMSD=3.60

bp2_all variety
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ls_20 best compared to native, RMSD=2.77 ls_20 variety

ls_50 best compared to native, RMSD=3.26 ls_50 variety

87



5. Discussion

5.1 Main Contributions and Strengths

We created rna_builder, a tool for building RNA 3D structures by assembling 3D

models of motifs and stacks. This program works as a standalone command line utility

and builds molecules from specification of their sequence and secondary structure, and

motif PDB files with insertion positions.

We then recreated a pipeline for 3D structure prediction based on that tool

following the paradigm of assembling structures from helices and known loop 3D

models. For that we compiled a library of loops and created a tool to insert them into a

secondary structure and prepare the input for rna_builder.

We then created a pipeline for 3D structure prediction centered around

BayesPairing2. Its novelty lies in the use of the advanced 3D motif prediction algorithm

for selecting which loop fragments to use for construction. It is different and potentially

better than previous similar 3D prediction methods, because it does not just score loop

fragments based on sequence similarity, but takes into account the covariation of the

non-canonical base-pairs within loops.

One general strength of our method is its modularity and the simplicity of the

format used for communication between the different utilities. It is simple to manually

prepare inputs or to write programs that interact with the tools of our method. This may
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allow other use cases and methods, perhaps based on completely different principles,

to easily integrate with our tools.

5.2 Limitations and Possible Improvements

In general, prediction methods based on the assembly of large components are

limited by the fragments they have access to, and our method isn’t different, and are

best at predicting structures for which there are known homologues. If there isn’t a loop

motif in our database that is similar to the one contained in the native structure, it is

impossible for our method to predict an accurate structure. This is especially a problem

for junction loops, for which there is relatively little data, and whose shape will impact

the global shape of the molecule.

It is hence important to find ways to increase the amount of candidates for loop

insertion. One approach would be opening and closing the base-pairs around loops.

Another would be to discover ways to allow deletion and insertions of nucleotides from

known motifs, or the merging of multiple motifs into one.

Another limitation is the treatment of situations when nucleotides aren't fully

covered by fragments. Our current strategy of placing components on a circle in 3D is

very unrealistic and ends up automatically giving a bad RMSD.

Even when all nucleotides were covered by fragments, some model’s RMSD was

up to 30Å away from the native. Some, but not all, had strong steric clashes, and we

could detect that and filter them out. More generally, we could score the models using
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an existing RNA scoring function, such as one available in the Rosetta suite (Watkins et

al., 2020).

The BayesPairing2 centered pipeline is currently limited to structures that only

contain hairpins and inner loops. This could be improved by combining the two pipelines

and having rna_insert_loops pick up for regions where BayesPairing2 did not find a

motif.

The quality of the 3D assembly can probably be improved, to bring the total

RMSD of the from_native dataset closer to zero, and to reduce the amount of

chainbreaks as seen in the Pymol visualizations. We could focus on assuring the quality

of the helix fragments we use. We also have an hypothesis that changes in

sugar-puckering at the loop edges cause changes in nucleotide conformation, causing

bad alignments.

Finally, we have only tested our methods on structures with a very restricted

secondary structure, and hence a lot of RNA molecules found in the wild were not

included.

To summarize the rules of thumb: for this pipeline to work best, the molecule

should be single-chained, with no pseudoknots, with limited dangling ends, and it should

either have no multi-way junctions, or it should be homologous to a molecule whose

structure is known.
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5.3 Applications and Future Directions

Our pipeline can be made more complete and closer to other prediction methods

by adding a minimization or Monte-Carlo simulation step at the end and a scoring

function to rank the created molecules. A further extension of our method could involve

secondary structure prediction within the pipeline, and having the feedback from the

motif insertion and 3D construction help select the best secondary structure. Another

addition to the pipeline could be an interactive interface that allows users to select which

motifs they wish to insert.

More work should be done to ensure our method works with structures with less

constraints on their secondary structures, such as structures with external loops

(possibly by including external loops in the loop insertion step), multiple chains, or

pseudoknots.

A further direction to explore would be to use the final global scores to learn

which fragments seem to contribute most to construct the best molecules, and then

repeat the building step focusing on those fragments, and continue doing so in an

iterative cycle.

Another direction would be to integrate our tools with more methods. For

example, in the same way we have a script that bridges between BayesPairing2 and

rna_builder, we can create a script that bridges between RNA-MoIP and rna_builder, so

its predictions could be automatically assembled and evaluated in 3D. Note that since

our method integrates with BayesPairing2, it allows us to benefit from future
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improvements to the program, such as additions of datasets including junctions, or the

integration of RNA-MoIP directly into its “chef’s choice” feature.

Another thing we could evaluate is using rna_builder for use cases other than the

prediction of 3D structure from sequence, such as assembling 3D models of modular

synthetic RNA such as aptazymes.

Finally, we wish to test this pipeline or a future iteration of it on a blind 3D

structure prediction evaluation such as RNA-Puzzles (Cruz et al., 2012) in order to

evaluate its true performance.
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Supplementary material

Protein Data Bank File Format

We worked with two file formats to represent the 3D structure of RNA: the original

Protein Data Bank (PDB) file format, and the newer PDBx/mmCIF file format. We used

Biopython to process both formats and, for our use cases, the two formats are

semantically equivalent, with the distinction that PDB is older and has restrictions on the

size of molecules it can represent, but is supported by more tools.

The organization of the format follows a hierarchical structure of: structure,

model, chain, residue, atom.

A single file corresponds to a single structure. A structure contains a list of

models. The indexing of the list might start either at 0 or at 1 depending on the

implementation of the tool used to read the file. For example, Biopython has models

starting at 0, whereas the indexing in BGSU unit identifiers starts at 1.

Each model will contain one or more chains, each having a name. In the original

PDB format, the chain names are restricted to one character. Chains conceptually refer

to chains of macromolecules such as proteins and RNA, although they also contain

molecules that aren’t technically part of the chains, such as waters and metal ions. Note

however, as shown in the next section, that the correspondence between PDB chains

and “real” chains isn’t always perfect.
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Each chain is composed of residues. A residue is a general term for the

repeating building blocks that form macromolecules, like amino acids or nucleotides.

Other molecules such as ions, water, and small organic molecules, are indicated by

special residues within the PDB file format called hetero residues. Residues within a

chain are indexed by a sequence number and sometimes a 1-character insertion code.

Residues will have a residue name, which will be A, U, G, or C in the case of

nucleotides.

Each residue is composed of atoms. Each atom will have a unique and

standardized name (like C3’, C4’, P, etc.. in the case of nucleotides). Atoms that are part

of hetero residues will be marked using the HETATM command in PDB files (instead of

ATOM command).

Special Considerations When Processing PDB Files:

Here’s a list of considerations to pay attention to when processing PDB files:

Sequence numbers can be negative.

Insertion codes. Other than sequence numbers, some residues have insertion

codes in the form of letters. For example, a chain might have residues 20, 20A, 20B, 21.

It’s possible that a chain contains a proper residue and a hetero residue with

exactly the same sequence number and insertion code.

Some residues have “point-mutations”, meaning that there are two instances of a

residue with the exact same number and insertion code, and the only thing that
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separates them is a different residue name. (I haven’t ever noticed this in RNAs

however.) This is probably why the BGSU unit ids include the residue name as part of

the identifier even though the sequence number and insertion codes are usually enough

to identify a residue.

Alternate locations for atoms. Sometimes an atom will have a few different

“alternate locations''. These will be indexed by a one-character alternate location

indicator.

Disrupted chains. A chain might have jumps in the residue sequence numbers.

Moreover, even when two residues have consecutive sequence numbers, they might

not actually be connected in 3D. A chain in the PDB file isn’t necessarily continuous in

3D space.

And the converse: a gap in the sequence numbers does not necessarily indicate

a gap in the 3D chain. For example, residues 22 and 24 might actually be connected by

a backbone.

There are at least two different standards for naming atoms. For example, the

same atom within a nucleotide is called C5* in one standard and C5’ in the other. This

may cause problems when trying to align structures. The best thing would be to

normalize the atom names before processing, and this can be done using a residue and

atom rename list as done in https://github.com/RNA-Puzzles/RNA_assessment

It’s possible that modified residues that are connected to the main chain

nevertheless appear as hetero residues (made up from HETATM atoms).
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It’s possible that residues from different chains appear “interleaved”. Biopython’s

PDB package does not properly support that, and you might see warnings about it. It

will end up just putting the residues in the correct chain, but without taking into account

the order of residues within the file.
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