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Abstract

One of the most common ways to analyze a piece of tonal music is through Roman numeral

analysis. This requires the inspection of several attributes related to chords and keys. Chords

can be inspected in terms of their properties: root, quality, inversion, and function. Keys can

be inspected in terms of their temporal scope as modulations or tonicizations. Each of these

attributes (or tasks) of Roman numeral analysis can be modeled in isolation. However, re-

cent research has found that analyzing several tonal tasks simultaneously leads tomore robust

Music Information Retrieval models. This has motivated the research of multitask neural net-

works for Roman numeral analysis. In this dissertation, I extend this line of research by devel-

oping a new Roman numeral analysis machine learning model. The model is based on a new

convolutional recurrent neural network, which is trained with a large dataset of publicly avail-

able Roman numeral analysis annotations. The model is assisted by a new data-augmentation

technique and multitask learning layout to learn the relevant attributes of chords and keys.

Combining these ideas, the resulting model seems to achieve an improved performance over

rare chords compared to previous automatic Roman numeral analysis methods. Among other

applications, this model will facilitate advanced searching in music collections. For example,

searching by chord progressions or by modulation trajectories.
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Résumé

Pour analyser un morceau de musique tonale, on en étudie généralement l’harmonie. Cela

consiste en l’analyse de divers attributs liés aux accords et aux tonalités. Un accord est car-

actérisé par sa fondamentale, sa nature, son renversement et sa fonction. La tonalité est car-

actérisée par son étendue temporelle qui la définit comme une modulation ou une tonicisa-

tion. Chacun de ces attributs de l’harmonie peut être modélisé séparément. Cependant, des

recherches récentes montrent que l’analyse simultanée de plusieurs tâches tonales produit des

modèles d’extraction d’informations musicales plus robustes, ce qui incite à l’étude de réseaux

neuronaux multitâches pour l’analyse harmonique. Dans ce mémoire, j’approfondis cet axe

de recherche en développant un nouveau modèle d’apprentissage automatique pour l’analyse

harmonique. Le modèle est basé sur un nouveau réseau neuronal convolutif récurrent, en-

traîné sur un grand ensemble de données d’annotations d’analyse harmonique disponibles

publiquement. Le modèle est assisté par une nouvelle technique d’augmentation des don-

nées ainsi qu’une configuration d’apprentissage multitâches inédite pour l’apprentissage des

attributs pertinents des accords et des tonalités. En combinant ces idées, le modèle résultant

semble obtenir de meilleures performances sur la caractérisation des accords rares par rapport

aux méthodes précédentes d’analyse harmonique automatique. Entre autres applications, ce

modèle facilitera la recherche plus spécifique dans les corpus musicaux, par progressions har-

moniques ou par parcours tonal, par exemple.
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Chapter 1

Introduction

This dissertation dealswith themethods for automatically annotating amusical scorewithRo-

man Numeral Analysis (RNA) labels. Among other applications, this facilitates advanced

searching workflows inmusic collections. For example, searching by chord progressions or by

modulation trajectories.

In Section 1.1, I present my personal motivation to contribute to this problem. Section 1.2

introduces themain challenges of this problem, aswell as existing progress. Section 1.3 presents

the contributions of this dissertation. Finally, Section 1.4 presents the structure of the remain-

ing chapters.

1.1 Motivation for Roman Numeral Analysis

One of the most common ways to analyze a piece of tonal music is through RNA. This is a

notation that is compact enough to be annotated within a regular musical score, yet encodes

explanations to advanced musical concepts that would require muchmore words and effort to

describe otherwise. In order to illustrate this more visually, consider the musical example in

Figure 1.1. In this example, Chopin’s Prelude Op. 28 No. 20, two successions of chords can be

seen in measures 2 and 12 with their corresponding RNA annotations (below the staff) and

chord labels (above the staff). Although the note arrangement and chord labels of the first two

1



chords (AZ major and DZ major, highlighted in green in the figure) are identical, their RNA
labels are not. This is because inRNA, not only the chords are important, but also the context

of the musical key.

Figure 1.1: Musical analysis of two successions of chords within Chopin’s Op. 28 No. 20. The first
succession occurs in measure 2. The second one in measure 12. Both successions begin with the
same chords, however, their RNA labels are different.

In the first instance (i.e., m. 2), the chords can be analyzed in the context of the AZmajor
key. The first and second chord, AZmajor and DZmajor, are a tonic and subdominant chords,
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respectively. These are followed by the third chord, a dominant seventh chord (EZ7 dominant
seventh), and the fourth chord, a tonic triad again (AZ major). In the second succession of
chords (i.e., m. 12), these can be analyzed in the context of the cminor key, which is the main

key of the piece. Here, the first chord (AZmajor) is a submediant chord and the second chord
(DZmajor) is a flattened second degree, commonly known as aNeapolitan.1 The third chord
is a dominant seventh chord (G7 dominant seventh), and the last chord is the tonic of the piece,

C minor.

Thus, annotating a musical score with RNA requires the analysis of several attributes re-

lated to chords and keys. Regarding chords, it is important to analyze their root, quality, inver-

sion, and function. Regarding keys, it is suitable to analyze their temporal scope as modula-

tions or tonicizations. All of this information is accomodated in a compact text representation,

as shown in Figure 1.1. This compactness is maybe the reason why a number of musicians

have adopted the notation throughout the years. The Roman numeral notation can describe

complex—sometimes exotic, like the Neapolitan—chords, fluctuations of musical key, and

other tonal situations using a few symbols. This is alsomotivating from the computational per-

spective, as it is possible to encode and retrieve such tonal information from the annotations.

Clearly, if an RNA label is computed automatically, these tonal attributes become automat-

ically available too for musical applications. An important caveat, of course, is that because

each of these labels requires various layers of musical analysis, it is a challenging problem to

retrieve them automatically via a computational model.

1.2 Challenges

In this section, I describe the main challenges in automaticRNA research, the progress made,

remaining challenges, and the goals that I foresee for this problem in the future.

1. Although this chord is expressed here as ZII, it is more commonly represented asN in RNA.
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1.2.1 Main Challenges

Among the challenges that could comeupwhen tacklingAutomaticRomanNumeralAnal-

ysis (ARNA) as anMusic Information Retrieval (MIR) problem, I identify three that are

impactful in mostARNA approaches: (1) it is difficult to draw a clear line separating different

tonal problems (i.e., tonal problems like Automatic Chord Recognition (ACR) and key es-

timation often overlap), (2) there’s a scarcity of high-quality data, and (3) the annotations that

do exist are ambiguous and unregulated.

1.2.1.1 Tonal Tasks Overlap

Tonal music analysis is abstract and often not well defined, in terms of what constitutes one

task or the other.

The Boundary between Chords and Keys. In his work with keyscapes, Sapp (2011) pre-

sented examples of key analyseswith differentwindow lengths. In someof these analyses, with

sufficiently short windows, an overlap between key analysis and chord analysis occurred. For

example, a shortwindow captured a change in harmony instead of a change of key. In ourwork

designing a Local-Key Estimation (LKE) algorithm (Nápoles López, Arthur, and Fujinaga

2019), we found something similar with key-profiles and sequences of pitch classes analyzed

with a Hidden Markov Model (HMM). A key profile that heavily penalizes non-diatonic

degrees finds a “change of key” in Chopin’s Op.28No.20. The location of this presumed change

of key coincides with a Neapolitan chord, as shown in Figure 1.2. It is unclear whether this

type of chromatic chord could be considered a deviation of the musical key. Arguments can be

made for both positions on this topic. Thus, the line between key analysis and chord analysis

can be blurry.

Pitch Spelling. In their work on a pitch spelling algorithm, Teodoru and Raphael (2007)

described the dependency of “pitch spelling” task to LKE and ACR, noting that
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Figure 1.2: An excerpt from Chopin’s Op. 28 No. 20 (mm. 9–13). In this excerpt, measure 12
features a Neapolitan chord (the DZ triad on beat 2). On the bottom, a LKE algorithm shows a
“change of key” to f around the location of the Neapolitan. Figure taken from Nápoles López,
Arthur, and Fujinaga (2019).

[some tonal] situations require a deeper notion of the harmonic state than provided

by the local key, as in the German augmented sixth chord, which seems nearly im-

possible to spell correctly without recognizing it as such.

This poses the question of whether it is possible to design an algorithm to spell the pitches

in aMusical Instrument Digital Interface (MIDI) file, without also developing a key es-

timation and chord recognition algorithms. ARNA, naturally sitting at the intersection of

various tonal tasks, is constantly involved in similar “chicken and egg” problems. This may

be also one of the motivations forMultitask Learning (MTL) approaches, trying to leverage

the need to tackle several tonal problems at once.
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1.2.1.2 Ambiguous Annotations

In his dissertation, Ju (2021) describes ambiguity in music analysis and, particularly, chord

labels. Ju argues that one possible reason for the ambiguity in musical analysis is under-

specification. That is, the fact that based on the information provided, multiple answers can

respond the same question. A typical example in chord labels would be whether one analyst

considers a note as a chord tone, or a nonchord tone. Figure 1.3 shows an example of this

situation. A passing tone is an ornamental note that connects two notes that are an interval

of a third apart from each other. In the example, the ornamental note also happens to form

an Emin7 chord (vi65 of G major in Roman numeral notation) with the other notes. Thus, two

answers are arguably correct for this passage.

Figure 1.3: Example of ambiguity in chord analysis. Two analyses are offered. In [A], the second
beat is considered an Emin7 chord. In [B], the note in the second beat is considered a passing tone
(i.e., there is no chord in the second beat). Reasonable arguments can be made for either analysis.
Thus, both are correct.

1.2.1.3 Time-Consuming Annotations

Compared to other machine learning tasks, there is not as much high-quality data available

for training ARNA models. In order to illustrate some of the reasons why this is the case, I

contrast the process of annotating data for the well-knownModified National Institute of

Standards and Technology (MNIST) dataset (LeCun et al. 1989) against RNA.
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Figure 1.4: Handwritten digits to be annotated, as in theMNIST dataset.

Figure 1.5: Succession of chords to be annotated with Roman numerals, as in a RNAs dataset.

Figure 1.4 shows a grid of nine handwritten digits, which could be labeled to create training

examples for theMNIST dataset. Figure 1.5 shows a chord progressionwith nine chords. Each

of the chords can be labeled with a Roman numeral annotation to create training examples for

an RNA dataset. It can be noted that:

1. The handwritten digits can be labeled by awider range of annotators, whereas the chords

require an annotator with expertise on tonal harmony.

2. Even for an annotatorwith expertise on tonal harmony, the handwritten digits takemuch

less time to annotate than the chords.2

In conjunction, these problems, make high-quality RNA data expensive and scarce.

2. As an informal test, I timedmyself annotating the nine labels of each figure the first time I saw them. I spent,
roughly, 6 seconds annotating the handwritten digits and 75 seconds annotating the Roman numeral labels. That
is, annotating the chords was 12.5x more time consuming for me than annotating the handwritten digits.
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1.2.2 Progress

Recent years have seen significant progress and interest from theMIR community inARNA.

For example, whereas pioneering approacheswere spaced for decades (Winograd 1968;Maxwell

1984; Temperley 1997), the last year saw at least four new ARNA approaches (Chen and Su

2021; Micchi et al. 2021; McLeod and Rohrmeier 2021; Nápoles López, Gotham, and Fujinaga

2021). These approaches have introduced new ideas and methods to tackle ARNA.

1.2.2.1 Predict Tasks Simultaneously

For the first time in ARNA, Chen and Su (2018) approached the problem using deep neural

networks. An important finding in their experiments was that multitask learning3 provided

better resultswhen predictingRomannumeral labels. That is, the intrinsic tasks ofARNA, key

estimation and chord recognition, are bestmodeled together, sharing the same neural network

weights. This has shown others a new paradigm to approach this problem. Nevertheless, this

approach is continued to be challenged, for example, with modular approaches that separate

the tasks and tackle them in a dedicated way (McLeod and Rohrmeier 2021).

1.2.2.2 Provide Better Representations

After Chen and Su (2018), subsequent work byMicchi, Gotham, andGiraud (2020) considered

different input representations of the musical input delivered to theARNAmodel. What they

found is that providing information about the lowest sounding note and the pitch classes is

generally better than a full pianoroll input, and results in a smaller neural network too. Subse-

quent research (e.g., the one presented in this dissertation) confirms that this representation

results in more accurate predictions. The support for pitch-spelling representations has con-

tinued in McLeod and Rohrmeier (2021), and the work of this dissertation.

3. A good summary of multitask learning is presented by Ruder (2017).
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1.2.2.3 Applying Music-Theory Domain Knowledge

In their work, Micchi, Gotham, and Giraud (2020) also demonstrated how the use of music-

theory domain knowledge benefits the design of ARNA models. Particularly, two ideas in-

spired by music theory included the consideration of pitch spelling in the model4 and taking

modulations into account when transposing music for data augmentation.

1.2.3 Remaining Challenges

Although recent methods have achieved significant progress, some aspects of ARNA remain

elusive. For example, the segmentation of chords and the scarcity of data.

1.2.3.1 Segmentation

Predicting the location of chords (i.e., the harmonic rhythm) is a difficult problem. In their sub-

sequent work on ARNA, Chen and Su (2019, 2021) introduced the use of Transformer-based

networks (Vaswani et al. 2017) to improve the segmentation of the annotations. The segmen-

tation refers to the location where a Roman numeral label ends and the new one begins. This

has also become a priority in the work of Micchi et al. (2021) and remains a relevant chal-

lenge. This problem not only affects analytical models but generative ones too, requiring Wu

et al. (2021) to develop an independent model of harmonic rhythm for melody harmonization.

The work in this dissertation also considers ways to tackle this problem (see Section 5.4.9).

1.2.3.2 Data Scarcity

For the same reasons discussed in Section 1.2.1.3, the scarcity of high-quality data remains

an important challenge in ARNA. In this dissertation, a large RNA dataset has been aggre-

gated from publicly available annotations (see Section 4.2). Although this comprises an ex-

4. Taking pitch spelling into account means that two enharmonic pitch classes are different classes, such that
𝐶♯ ≠ 𝐷♭, when the convention in mostMIR research is that 𝐶♯ = 𝐷♭.
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tensive amount ofRNA annotations, it remains relatively small for the scope of deep learning

projects.

1.2.4 Short-Term Goal: Better Models

In the past few years, deep learningmodels5 have achieved significant improvements. This has

been possible because new, more powerful, deep learning techniques have been introduced.

Similarly, the libraries for prototyping experiments, such as Tensorflow (Abadi et al. 2016) or

Pytorch (Paszke et al. 2019), have become more powerful and easier to use. Thus, it is not sur-

prising to think that in the next years, the performance of ARNA models will only improve

from the models we have today. Although expensive, new datasets are created at an increas-

ing pace. The short-term goal around this problem is, necessarily, to increase the accuracy and

performance that these models achieve. Although the ambiguity of tonal problems and anno-

tations is an important issue (Ju 2021), I am convinced that more and better data combined

with larger deep learning models will lead to more accurate ARNA systems.

1.2.5 Long-Term Goal: Interpretability

Perhaps a more interesting question is, what do we do if the models become sufficiently ac-

curate? One important aspect that may be useful in music theory is that computers quickly

evaluate algorithms that would take a long time for a human being to internalize. A sim-

ple example would be voice-leading rules, which take many hours of practice for a human to

learn, but can be implemented and fine-tuned for a computer within hours. Figure 1.6 shows

an example of a rule-based voice-leading algorithm, which I implemented based on the rules

in Huron (2016, 10).6 The model arranges each chord based on the input RNA annotations

provided, respecting the encoded voice-leading rules while connecting each pair of chords.

5. “Deep learning” is an umbrella term referring to machine learning algorithms—mainly artificial neural
networks—that feature a large (i.e., deep) number of hidden layers. See Section 3.2 for a broader discussion of
this topic.
6. https://github.com/napulen/romanyh
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Figure 1.6: Output of a voice-leading algorithm. The input to the algorithm were RNA annota-
tions from a J. S. Bach chorale (BWV 347). Two versions of the algorithm are displayed, one that
implements the voice-leading rule “avoid augmented melodic intervals” literally (above), and a
revised version, which accomodates for augmented unisons (below).

One challenge in the development of this algorithmwas that some rules seemed to be detri-

mental to good voice leading when they were implemented textually. For example, the rule

about augmented intervals (Huron 2016, p. 12):

Rule 16. Augmented intervals rule: Avoid augmented melodic intervals.

Implementing this rule unchanged results in a model that avoids augmented unisons en-

tirely. This approach is detrimental in chord progressions where the bass ascends chromati-

cally, as shown in Figure 1.6. Interpreting the outputs of the algorithm was useful to become

aware of this exception, where the rule did not work properly. One could argue that computa-

tional models provide a rigorous empirical platform to “test” the robustness of a music theory,

a rigorous platform that is difficult to come by in traditional human pedagogy. Although the

internal “algorithm” in a deep learningmodel is not as easy to interpret as the one in this voice-

leading example, it is still possible to review the features learned by a deep learning model in

its internal representations. This process has been studied in computer vision, and it would

be worth to be studied in music models as these get increasingly accurate. Perhaps this goal,

11



interpretability, should be one that researchers working on computational models should take

into consideration in the long term.

1.3 Outline of Thesis Contributions

This section outlines the contributions of this thesis, such as the data-augmentation technique

developed, the workflow for aggregating the seven publicly available datasets, and the pro-

posed improvements in Convolutional Recurrent Neural Network (CRNN) architectures

for ARNA.

1.3.1 Additional Tonal Tasks

An important aspect ofRNA is that it may span an incredibly large vocabulary of chords, with

special symbols (e.g., N or Ger7) acting in special context, such as modulations and toniciza-

tions. Because of this, chords in RNA are difficult to understand. However, they implicitly

encode an extensive amount of information about the tonal context. An idea proposed in

this dissertation is to create different tonal classification problems from a single RNA label.

Although this has been done already, for example, in Chen and Su (2018), this dissertation

presents a different set of these classification problems to be included in the neural network

architecture. These are discussed in Section 5.4.

1.3.2 Artificial Training Examples

One way to overcome the scarcity of data is by synthesizing artificial training examples from

existing data. This technique is popular in computer vision, where labeled images are trans-

formed in various ways (e.g., rotation, mirroring, skewing, changing the brightness, etc.) I

propose a new strategy to generate new training examples from existing Roman numeral an-

notations.
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1.3.3 Data Hygiene

In recent years, machine learning researchers have become aware of the critical role that data

plays in any experiment. For example, making sure that the quality or “hygiene” of the data

employed in an experiment meets a certain quality. This effort frequently takes a considerable

amount of time in a machine learning project. The idea of improving the data workflows

has received the name ofMachine Learning Operations (MLOps). A description of some

MLOps principles is provided in Renggli et al. (2021).

There are at least four different digital standards of Roman numeral annotations. The

available data is encoded with these different formats. Thus, it is challenging to aggregate the

data into a unified training dataset, often leading to noisy and inaccurate training examples.

Throughout this dissertation, Imake an effort to describe how to operatewith the existing data.

For example, describing the process of detecting errors in the annotations in Section 4.1.2, pro-

cessing the outputs of different models in the evaluation (see Section 6.4.2), and, maybe more

importantly, releasing all the curated data used to train the model presented here (see Sec-

tion 7.3.3). This abstracts the data curation process for researchers interested in re-training

this or another model, or wanting to reproduce the results.

1.3.4 Generating Roman Numeral Labels from Predictions

In the work by Chen and Su (2018), Roman numeral labels were divided into a subset of classi-

fication tasks, from which the full Roman numeral label was predicted. However, the process

for turning theMTL predictions of the network into RNA labels was not described. This pro-

cess is far from trivial. In this dissertation, I propose two methods to process the predictions

of an ARNAmodel and turn them into RNA annotations in text form. One of the methods is

tailored for the specific CRNN described in this dissertation (see Section 5.5.1). Yet, another

method is more generic and can facilitate the process of retrieving RNA annotations from

other models of the literature (see Section 5.5.2).

13



1.3.5 Original Input Representation of Pitch Spelling

Extending over the work of Micchi, Gotham, and Giraud (2020), in this dissertation, I present

an alternative encoding method for pitch spelling. This method provides similar benefits than

the one in Micchi, Gotham, and Giraud (2020), but it requires less parameters in the neural

network architecture. Particularly, this new encoding method is used in the input representa-

tions of the network, described in Section 5.1.3.

1.3.6 Original Layout of Neural Network

Lastly, the CRNN layout presented in this dissertation is inspired by, but different, to existing

architectures. The characteristics of the network are described in Chapter 5.

1.4 Thesis Structure

This dissertation is organized in seven chapters and an appendix. Chapter 1 described themo-

tivations, challenges, and existing progress toward ARNA. Chapter 2 introduces RNA from

a musical perspective, its history and digitization. Chapter 3 introduces the relevant research

around music representation, deep learning, andMIR for tonal music analysis. Chapter 4 in-

troduces the publicly available datasets, the data aggregation process, and the data-augmentation

technique based on synthesis of training examples. Chapter 5 presents the design choices of the

CRNN presented in this dissertation, AugmentedNet: its input and output representations,

convolutional layers, recurrent layers,MTL configuration, and methods to generate RNA la-

bels from the predictions of the model. Chapter 6 presents the evaluation of the model. This

includes ablation studies over the design choices of the network, an exploration of the effects

of data augmentation, a full evaluation on the aggregated dataset and test sets of each individ-

ual dataset, and a comparison against four existing ARNA methods. Chapter 7 summarizes

the main findings and presents closing remarks on the current state of automatic tonal analy-

sis and future directions in the field. In addition to this, this chapter introduces the resources
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for reproducing, improving, and sharing the results of this research. Lastly, Appendix A is a

special annex chapter that introduces several formal methods for systematic Roman numeral

analysis, which are referenced throughout the remaining chapters.
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Chapter 2

Introduction to Roman Numeral

Analysis

Roman Numeral Analysis (RNA) is a common methodology in modern music theory text-

books dealing with tonal music. The name derives from the use of Roman numerals to denote

scale degrees, which, in turn, indicate diatonic chords in a certain musical key. The musical

key is usually prepended to the first Roman numeral of the piece, using a case-sensitive note

letter1 followed by a colon. When there are changes of key throughout the piece, these are

indicated in a similar way, with a new key letter followed by a colon, prepended to a Roman

numeral.

RNA is an alternative way to annotate chords than the, possibly more popular, chord la-

bel system. RNA facilitates the annotation of more information than chord labels. Namely,

changes of key and special chords. Perhaps for this reason, RNA is common among tonal

music theory textbooks,2 as it is helpful to break down musical pieces analytically. Figure 2.1

shows a fragment of music annotated with both Roman numeral and chord label annotations.

1. In the case-sensitive notation, upper-case numerals are used to indicate major keys, and lower-case numer-
als are used to indicate minor keys.
2. For examples, see the adoption of the notation discussed in Section 2.2.
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Figure 2.1: The first eight measures of Josephine Lang’s Op.8 No.1 “Schmetterling,” annotated
with RNA and chord labels underneath.

2.1 Roman Numeral Analysis and Chord Labels

Chord labels, such as the ones shown in the lower annotations of Figure 2.1, generally indi-

cate the root of a chord and its quality. Less frequently, they also indicate the bass (which is

included in Figure 2.1 for completeness). A Roman numeral label provides this information

as well, complemented with information about keys, inversions, and functional roles of the

chords. Because Roman numerals are always relative to a key, the key must be indicated at

all times to disambiguate the meaning of the Roman numeral. This is particularly helpful in
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Music Information Retrieval (MIR), where key-estimation and chord-recognition models

can be developed using the same Roman numeral annotations. Roman numerals indicate in-

versions for triads and seventh chords. These are often indicated with 6 and 6
4 in triads and

6
5,

4
3, and

2 in seventh chords. In the modern syntax, it is also customary to indicate applied

chords or secondary dominants. Once the concept of tonicization emerged,3 in the twentieth

century, this quickly became an important idea of tonal music, particularly relevant to an-

alyze the chromatic music of the 19th century. Roman numerals facilitate the indication of

tonicizations using a slash (“/”) symbol. For example, the annotation V6
5/V in measures 3 and

4 of Figure 2.1 indicates a dominant of the dominant (i.e., tonicization of the dominant key).

With these syntactic conventions, a musical analysis can be more informative, indicating the

analyst’s point of view of the musical key at a particular moment of the piece.4

The next section explores the historical evolution of the syntax, from the early precedents

in the late 18th century, to its modern notation.

2.2 A Brief History of Roman Numeral Analysis

Over the last 200 years, theRNA syntax has evolved in an unregulated way, withWestern mu-

sic theorists proposing newnotations, and adopting the ones of previous theorists at discretion.

Beyond the recent formalization efforts from researchers who have digitized RNA (Huron

1994; Nápoles López 2017; Neuwirth et al. 2018; Gotham, Tymoczko, and Cuthbert 2019;

Nápoles López and Fujinaga 2020a; Hentschel, Neuwirth, and Rohrmeier 2021; Hentschel

et al. 2022), there is no agreed “standard” way of writing Roman numerals. That is, the nota-

tion often varies with the analyst.5 One way to investigate the different notational conventions

in RNA could be to observe, chronologically, the practice of the notation over the years.

3. A tonicization is a brief deviation to a different key, usually with the intention of emphasizing a certain scale
degree or harmony. For a broader discussion on this topic in the context ofMIR, see Nápoles López et al. (2020).
4. See Section A.1 for a more formal take on the RNA syntax.
5. See Section 2.3 for a discussion of some aspects of the notation that often vary.
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In this section, I present a summary of theRNA notation across nearly 150 primary sources

between the late 18th and early 20th centuries. The primary sources were collected from three

keyword searches in theWorldCat6 library catalog: “harmony,” “harmonie,” and “harmonielehre.”

These keywords were used to search for books in the English, French, and German languages,

respectively. For books with multiple editions, the earliest available edition was reviewed.7

The full table of references is available on Table 2.1.

The objective of reviewing the primary sources was to observe the evolution of the RNA

syntax across harmony textbooks. For each book, I inspected the annotatedmusical examples,

occasionally observing annotations in the body of the textbook, such as the tables in Figure 2.2.

Although the survey was centered around Roman numeral annotations, because many of the

musical examples included figured bass annotations, the usage of figured bass notation was

also documented.

2.2.1 Early Precedents and theWeber Syntax

Before the development of the RNA syntax, Roman numerals were used to indicate scale-

degree relationships. For example, in two tables of Die Kunst des reinen Satzes in der Musik in

Kirnberger (1774). One of these tables is shown in Figure 2.2.

Later, Vogler introduced Roman numeral symbols underneath a staff, which also referred

to a scale degree (Vogler 1778, 1802). These are used a few times on both works. Figure 2.3

shows an example in Vogler (1778).

While it is difficult to credit someone with “inventing” RNA, the modern notation would

probably not exist without the precedent of Weber (1818). Weber extended the notation to in-

dicate not only scale degrees but their chord quality. A special notation separates diminished

triads (i.e., the seventh degree) from major and minor chords; whereas major and minor are

6. https://www.worldcat.org/
7. Physically available at the McGill Marvin Duchow Library, or digitally available in e-book form.
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Table 2.1: All primary sources reviewed in terms of their RNA syntax.

Kirnberger (1774) Vogler (1778) Vogler (1802)
Weber (1818) Logier (1827) Hamilton (1840)
Fétis (1844) Lobe (1850) Meister (1852)
Sechter (1853) C. C. Spencer (1854) Southard (1855)
Bazin (1857) Volckmar (1860) Richter (1860)
Reber (1862) Oettingen (1866) Ouseley (1868)
Tiersch (1868) Tiersch (1874) Tracy (1878)
Bussler (1878) Emery (1879) Kistler (1879)
Clarke (1880) Bowman (1881) Durand (1881)
Mangold (1883) Coon (1883) Riemann (1883)
Jadassohn (1883) Oakey (1884) Saint-Saëns (1885)
Riemann (1887) Broekhoven (1889) Prout (1889)
Shepard (1889) Jadassohn (1890) Riemann (1890)
Vivier (1890) Goetschius (1892) Goodrich (1893)
Buwa (1893) Norris (1894) Shepard (1896)
Chadwick (1897) Gladstone (1898) Clarke (1898)
Boise (1898) Werker (1898) Cutter (1899)
Bridge (1900) Halm (1900) Cutter (1902)
Riemann (1902) Shinn (1904) Foote and Spalding (1905)
Schenker (1906) Heacox (1907) Louis and Thuille (1907)
Capellen (1908) Loewengard (1908) Gladstone (1908)
Klauser (1909) Lavignac (1909) Vinée (1909)
York (1909) White (1911) Eyken (1911)
Gardner (1912) Mokrejs (1913) Kallenberg (1913)
Molitor (1913) Riemann (1913) Lenormand (1913)
Gilson (1914) S. R. Spencer (1915) Hull (1915)
Leavitt (1916) Orem (1916) Heacox (1917)
Fowles (1918) Robinson (1918) Anger and Clough-Leighter (1919)
Watt (1919) Foote (1919) Deveaux (1919)
Gilson (1919) Ham (1919) Macpherson (1920)
Kitson (1920) Buck (1920) Koch (1920)
Alchin (1921) Knorr (1921) Dubois (1921)
Schenker (1921) Klatte (1922) Schenker (1922)
Schoenberg (1922) Wedge (1924) Scholes (1924)
McConathy (1927) Hába (1927) Krehl (1928)
Koechlin (1928) Wedge (1930) Campbell-Watson (1930)
Morris (1931) Schenker (1935) Barnes (1937)
Jones (1939) Piston (1941) Hindemith (1943)
Bairstow (1945) Morris (1946) Murphy and Stringham (1951)
Jacobs (1958) Ottman (1961b) Ottman (1961a)
Tischler (1964) Goldman (1965) Mitchell (1965)
Siegmeister (1965) Abraham (1965) Ulehla (1966)
Schoenberg (1967) Schoenberg (1969) Scheidt (1975)
Mickelsen (1977) Dreyer (1977) Motte (1978)
Aldwell and Schachter (1978) Forte (1979) Lester (1982)
Tunley (1984) S. M. Kostka and Payne (1984) Toutant (1985)
Levy (1985) Carter (2002) Swain (2002)
Sarnecki (2010) Roig-Francoli (2011)

distinguished by the size of the Roman numeral.8 Weber introduced several other traits of

8. Nowadays, instead of Roman numerals of different sizes, it is more common to see upper- and lower-case
Roman numerals to indicate major and minor triads, respectively.
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Figure 2.2: Roman numerals in Kirnberger (1774, 15).

Figure 2.3: Roman numerals in Vogler (1778, Tab XXI).

Figure 2.4: Roman numerals in Weber (1818, 37). Keys are indicated with colons (e.g., mm. 1
and mm.5). Dominant seventh chords are indicated as V7. Smaller Roman numerals indicate
minor triads.
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modern RNA. For example, changes of key are indicated using a colon (“:”) symbol and anal-

yses with several rows of keys and Roman numeral indications appear inmodulating passages.

Finally, whereas Kirnberger and Vogler used Roman numerals sporadically, Weber used the

notation extensively in the Versuch einer geordneten Theorie der Tonsetzkunst (Weber 1818), as

shown in Figure 2.4. Weber indicated dominant seventh chords asV7, which is a notation that

is still in use today. Whereas others relied on figured bass to explain their examples, Weber

relied mostly on Roman numerals.

2.2.2 Adoption of theWeber Syntax

The notational system introduced inWeber (1818) was not immediately adopted by other the-

orists. One of the first adopters was Hamilton, a British music professor. In the syntax of

Hamilton (1840), all the scale degrees were indicated with a single Roman numeral style, re-

gardless of the chord quality of the triad. That is, although Weber’s notation was partially

adopted, this did not include the notation for major and minor chord qualities. Another dif-

ference is that, in Hamilton’s annotations, Roman numerals indicate melodic scale degrees,

instead of chord roots, as shown in Figure 2.5.

Another early adoption of the Roman numeral notation, arguably the first among the Ger-

man theorists, was inMeister (1852). Meister often accompanied the Romannumeral notation

with chord labels and figured bass indications, as shown in Figure 2.6.

In order, the subsequent authorswho adoptedRomannumerals seem to be Sechter, Richter,

Tiersch, and Tracy. Although Sechter (1853) was annotatedwithmainly chord labels, the third

part of the book (starting on page 98) introduces Roman numerals in the musical examples,

possibly to relate the scale degree of a chord root to different key contexts. An example is shown

in Figure 2.7. The Weber syntax for major and minor chord qualities appears to be adopted

in Richter (1860), where a single-quote symbol (’) was also introduced to indicate augmented

chords, shown in Figure 2.8. The use of Roman numerals is absent in the earlier treatise of

Tiersch (1868). However, in Tiersch (1874), most of the annotations provided in the musical
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Figure 2.5: Use of Roman numerals in Hamilton (1840, 44). The Roman numeral indicates the
scale degree of the bass, regardless of the chord root. In modern Roman numeral notation, these
annotations would be written as V6

5, V
4
3, V

2, V4
3, and V

7, respectively.

Figure 2.6: Use of Romannumerals inMeister (1852, 32). TheRomannumerals are accompanied
by chord label and figured bass indications.

examples were figured bass or Roman numeral annotations. Tracy (1878) included the no-

tation with some peculiarities, for example, using a seven (“7”) figure for all seventh chords

except dominant seventh chords, which were simply written as V.

More authors followed in adopting Roman numerals during the late 19th century and, by

the beginning of the 20th century, it was more common than not to observe RNA in emerging

harmony textbooks. One exception was among textbooks in French, where figured bass nota-
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Figure 2.7: Use of Roman numerals, underneath chord label annotations, in Sechter (1853, 103).

Figure 2.8: Adoption of the Weber syntax in Richter (1860, 34), featuring a notation for aug-
mented triads, III’, which appears for the first time among the sources surveyed.

tion seemedmore prominent. A textbook in French by Koechlin (1928) used Roman numerals

sporadically to indicate scale degrees of the bass note, as shown in Figure 2.9. This practice,

which was similar to the one in Hamilton (1840), was uncommon by the time of Koechlin

(1928), as most English or German books then used Roman numerals to refer to the scale de-

gree of the chord root, not the bass. This “archaic” RNA practice of Koechlin might suggest

the importance that figured bass notation had in the French language. In fact, some English

and German books referred to figured bass as the French system.9 Beyond being the preferred

system in French textbooks, figured bass also heavily influenced the evolution ofRNA in other

ways.

9. For example, Norris (1894).
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Figure 2.9: The scale-degrees of Koechlin (1928, 26), which refer to the bass note and not the root
of the chord.

2.2.3 Chord Inversions and Figured Bass

During the RNA examples of the 19th century that followed Weber (1818), it was common to

complement the notation with figured bass. The figured bass was often clearly separated from

the Roman numerals, for example, by annotating one below the staff and the other one above,

as seen in Figures 2.5, 2.6, or 2.11.

In Figure 2.10, however, a differing example in Bussler (1878) shows the Roman numerals

and figured bass annotations in the same analytical layer. One could argue that this syntax is

an early version of themodern chord inversion syntax, where inversions are denoted by Arabic

numerals next to the Roman numeral. In principle, those Arabic numerals represent intervals,

as in the figured bass notation. However, in RNA, it is common to see certain “stacks” of

Arabic numerals appearing often, such as 7, 65,
6
4,

4
3, or

2. Nowadays, these stacks are generally

understood as “chord inversions.”

The practice of using Arabic numerals in RNA was further developed in Emery (1879),

shown in Figure 2.11. In Emery’s example, it is clearer that the stacks of Arabic numerals in

theRNA layer have a special meaning, as figured bass annotations also appear above the staff.

These stacks of Arabic numerals are indicators of special chords, which will be discussed in

Section 2.2.4.

In addition to the special chords in Emery (1879), the so-called cadential six-four chord

could have also encouraged the numeric notation for chord inversions.
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Figure 2.10: A single layer of chord annotations underneath the bass staff in Bussler (1878, 63),
where Roman numerals and figured bass labels are intertwined.

Figure 2.11: Use of Roman numerals and figured bass in Emery (1879, 51). In the Roman nu-
meral layer, stacks of Arabic numerals indicate augmented sixth chords. Additionally, a nota-
tion forNeapolitan chords is introduced. See Section 2.2.4 for further discussion ofNeapolitan
and augmented sixth chords.

Shepard (1896) included figured bass annotations next to the Roman numeral to indicate

certain chord inversions, notably, the cadential six-four chord, as shown in Figure 2.12. This

notation was consistent even when there was no music notation involved. In such case, Shep-
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ard would write the Arabic numerals next to the Roman numeral in plain-text form, as shown

in Figure 2.13.

Figure 2.12: Numeric inversions in Shepard (1896, 184).

Figure 2.13: Numeric inversions in plain-text, without accompanying music notation (Shepard
1896, 117).

Chadwick (1897) followed a similar practice, also indicating the numeric inversions in ex-

amples without music notation, as shown in Figure 2.14. Chadwick (1897) also provided an

explanation of the numeric inversions, shown in Figure 2.15. This notation goes beyond triads,

including, for example V4
3, as shown in Figure 2.16.

Finally, amore compelling example of the role of cadential six-four chords in the notation

of chord inversions can be seen in Loewengard (1908), where the cadential six-fourfigure (I64)

has the numeric inversionnotation, but the ii6 chord in the same line does not (see Figure 2.17).

An alternative notation for chord inversions adopted by several theorists consists of the use

of letters. In Cutter (1902), both notations are explained:
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Figure 2.14: Chadwick (1897, 38) describing numeric inversions even in examples without music
notation in them.

Figure 2.15: Arabic-numeral inversions in Chadwick (1897, 12).

Figure 2.16: A dominant seventh chord in second inversion in Chadwick (1897, 28).

Figure 2.17: Missing first inversion of the ii6 chord (measure 6) in Loewengard (1908, 45).

The inversions of triads and of seventh chords, both principal and secondary, will be

indicated by the customary figurings: 6, 64,
6
5,

4
3,

4
2, attached to the respective Roman

numerals. Or, the letters a, b, c, d, meaning root-form, first, second, and third inver-
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sions, may be used with these same numerals. Thus: Ia, Ib, Ic, iio7a, iio7b, ii
o7
c , IV

+
a , iii

7
c ,

etc. The diminished seventh chord, in its various forms, will be marked: viio7o, viio65,

viio43, vii
o4
2 — or viioa7o, vii

o
b
7o, viioc 7o, vii

o
d
7o.

— Cutter (1902, 4)

The numeric inversion syntax was already used by previous theorists, however, the letters

𝑎, 𝑏, 𝑐, 𝑑 appear for the first time in Cutter (1902) among the books surveyed. Cutter also seems

to be the only author acknowledging the existence of both notations, possibly because his trea-

tise was on harmonic analysis, rather than a harmony textbook. Throughout the examples,

however, only the numeric inversions are used.

Figure 2.18: York (1909, 19), where the inversion by letter notation is preferred.

The notation for chord inversions based on letters is less common than the stacks of Arabic

numerals. One placewhere the letter notationwas preferredwas York (1909), where it appears

prominently. Figure 2.18 shows the introduction of the chord inversion notation used byYork.

2.2.4 Neapolitans, Augmented Sixths, and other Special Chords

The stacks of Arabic numerals in Emery’s example (Figure 2.11) describe augmented sixth

chords. This is possibly the first time that the RNA notation is extended to describe chords

that lie beyond the diatonic harmonies occurring in major and minor scales.10 Shepard (1896)

10. Annotating special chords, such as a Neapolitan or augmented sixth chords is probably one of the most
important characteristics of RNA to this day, as these chords are generally beyond the scope of traditional chord
labels. Presumably, this is because identifying these chords requires an understanding of the key, an aspect that
is generally neglected in traditional chord labels but intrinsically available in RNA.
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adopted a similar notation for augmented sixth chords, as shown in Figure 2.19. Eventually,

these chords would received their own symbols (It, Fr, and Ger) instead of Arabic numerals,

although that syntax would only be established in the 20th century. Figure 2.20 shows a more

modern example in Goldman (1965), which made use of the new symbols.

Figure 2.19: Augmented sixth chords in Shepard (1896, 137).

Emery also introduced a special symbol to annotateNeapolitan chords,N.6. Similarly to

Emery (1879), Chadwick annotated Neapolitan chords using a special figure, N. Chadwick

was explicit in displaying aNeapolitan as being in first inversion, which is its most common

arrangement. Thus, the syntax, shown in Figure 2.21, featured the inversion figure “6” next

to the letter “N”, in the form of N6. Heacox (1907), Alchin (1921), and other sources adopted

this syntax as well. Heacox (1907) notated different chord inversions of theNeapolitan using

the corresponding stacks of Arabic numerals.

Another Roman numeral symbol that received attention in the late 19th century was the

augmented triad. In the early syntax introduced in Weber (1818), there were no examples

of augmented triads. Thus, the notation did not include a symbol for them. Richter (1860)

was arguably the first source introducing the single-quote symbol to denote augmented triads

(see Figure 2.8). This notation was adopted by several others, including Jadassohn (1883),

Broekhoven (1889), Buwa (1893), and Shepard (1896). However, it is a fairly rare notation
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Figure 2.20: Augmented sixth chords in Goldman (1965, 86) with the symbols It. and Fr.
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Figure 2.21: Neapolitan in Chadwick (1897, 148).

nowadays. Much more common is the use of III+, with a plus (“+”) symbol in place of the

single quote. This notation, shown in Figure 2.22, was perhaps popularized after Riemann

(1890), as Riemann seems to be the first one introducing it. A few years later, Chadwick (1897)

adopted it (see Figure 2.23), and others followed.

Figure 2.22: Augmented triads in Riemann (1890, 64), indicated as III+.

Figure 2.23: The notation for augmented triads in Chadwick (1897, 53), which is similar to the
one in Riemann (1890).
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2.2.5 Applied Chords and Tonicization

An important component of the modern RNA syntax is the one used for tonicizations. Toni-

cizations are slight deviations of key, which usually return to the original key, without “invok-

ing” a modulation. Nowadays, tonicizations are generally written with a slash symbol, where

the numerator indicates the scale degree and the denominator indicates the tonicized key. A

common example isV/V or (dominant of the dominant). It is unclear where this notation orig-

inally emerged, however, a similar notation was introduced in Shepard (1889). Shepard’s no-

tation, which he calls “[A]ttendant chords,” is presented as “[A] of V” in the notation, shown

in Figure 2.24. This is analogous to the modern V/V. An advantage of the modern notation

is that other degrees other than V (in the numerator) can be annotated using the same syn-

tax.11 In the explanations of his modulation method, Shepard also introduces a modulation

“formula” that resembles the fraction-like notation we use today (see Figure 2.25).

Figure 2.24: Attendant chords in Shepard (1889, 5).

Halm can be considered another pioneer of the V/V notation. He used a similar notation

in Halm (1900), V–V, to refer to secondary dominant chords. However, the meaning of this

notation is not very concise. For instance, it is used earlier in Halm (1900, II) as I–V and I–IV

to denote chords that act as tonics in one key and as dominants in another. Yet, that notation

would lead to a mistaken interpretation in the case of V–V, which should perhaps be written

as ♯II–V using the same convention. Nevertheless, the notation is similar to the modern way

of thinking about applied chords. An example of Halm’sV–V notation is shown in Figure 2.26.

11. Piston (1941), in fact, used Shepard’s notation in this way, using a syntax of the form “V of V”.
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Figure 2.25: Modulation formula in Shepard (1889, 10).

Figure 2.26: Notation for secondary dominants in Halm (1900, III).

Schenker displayed several notational conventions inNeueMusikalischeTheorienundPhan-

tasien: Harmonielehre (Schenker 1906). Throughout this book, pivot chords that have multi-

plemeanings in different keys are usually expressed in Roman numerals. Schenker sometimes

uses the notation VI=IV, and other times VI/IV. In both notations, the meaning seems to be

“six becomes four.” One of his specific examples can be seen in Figure 2.27.

An interesting notation for secondary dominants appears in White (1911), where it seems

to be introduced particularly for diminished seventh chords. In this notation, secondary dom-

inants are presented within parentheses, indicating the key they tonicize. It is clear that these

changes of key have an effect within the scope of the parentheses, which typically affect a sin-
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Figure 2.27: Notation for applied chords in Schenker (1906, 190). Notice also what seems to be a
typographical error in the book, where the second “nach G-dur” wouldmakemore sense as “nach
D-dur”.

gle chord. This is consistent with a notation of tonicizations andmodulations, as seen in recent

works of computational music theory. An example of this notation is shown in Figure 2.28.

2.2.6 Summary of the Findings

In summary, the survey revealed the following findings:
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Figure 2.28: Notation for key fluctuations, in parentheses, appearing in White (1911, 110). The
keys within parentheses do not extend to any contiguous chords, affecting only the enclosed one.
In this excerpt, the letters a and b represent a first or second inversion, respectively. Furthermore,
some chords are indicated with two Roman numerals, these are interpretations in two different
keys simultaneously .

The Weber Syntax. The role of Weber (1818) in defining the basic characteristics of the

notation was crucial.

Adoption of the Syntax. After Weber (1818), the Roman numeral annotation syntax

slowly gained popularity among English and German theorists, achieving a more solid adop-

tion by the end of the 19th century.

FiguredBass andRomanNumeral Inversions. TheRoman numeral notationwas often

accompanied with figured bass. At first, Roman numerals did not indicate chord inversions.

Later, the practice of interconnecting figured bass andRomannumeral annotationsmight have

resulted in the notation used today to indicate chord inversions with Arabic numerals.
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Special Chords. Special symbols were introduced for certain chords. Notably,Neapolitan

chords received their own symbol (“N”). Sometimes “competing” syntaxes were used with the

same meaning. For example, some authors preferred a single quote (’) symbol to denote aug-

mented triads, whereas others used a plus sign (“+”).12 An example of each of these notations

is shown in Figures 2.8 and 2.22, respectively.

The Syntax for Tonicizations. The treatment of tonicizations was originally absent. Any

change of keywas notatedwith a colon preceded of a new reference key. Eventually, a fewways

of notating common tonicizations (e.g., dominant of the dominant) emerged. These evolved

into the slash syntax we use today, although it is unclear who should be credited for the slash

notation.

The Chord Vocabulary. Recently, the vocabulary of chords has been extended, new addi-

tions consider, for example, the common-tone diminished seventh, a chord that is oftenwritten

as CTo7. This also speaks of the continuing evolution of the syntax.

2.3 Standardization of Roman Numeral Annotations

Because the Roman numeral notation evolved in a rather unstructured way, there is no stan-

dard way of writing Roman numeral annotations. Some of the common variations include:

• Use of case-sensitive or case-insensitive numerals

• Different ways of denoting certain chords, notably, the so-called “cadential six-four”

chord13

• Different notations for other chords (e.g.,Neapolitan written as either ♭II6 orN6)

• Different ways of notating inversions (using the letters a–d or stacks of Arabic numerals)

12. Nowadays, the “plus” notation is more common.
13. Particularly, there is currently a heated debate about annotating these chords as I64 or V

6
4.
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Aclear separation of chord qualities (major andminor) using case-sensitive Romannumer-

als has been proposed since Weber (1818). However, some analysts have preferred to indicate

the scale degrees using an upper-case Roman numeral, regardless of the chord quality implied

by the chord. This is often fine for human analysts, as the reader of the analysis will usually

be able to complement the information. Computers will not be easily able to disambiguate

this notation, however. In digital annotations, having explicit information about the chord

quality is unequivocally better. Every digital representation considers Roman numerals to be

case-sensitive for that reason.

A tonic triad in second inversion is a chord frequently used before a cadence. When it is

used in this context (preceding a V chord) it receives the name of cadential six-four.14 In

order to indicate this chord using Roman numerals, it is common to write it as I64, V
6
4, or Cad

6
4.

Out of these, the least ambiguous representation for a digital annotation is Cad64, as it dis-

ambiguates the chord as functioning in this specific way and not as a passing chord (e.g., a

second-inversion tonic or dominant triads could be passing chords, which are neither consid-

ered a cadential six-four). Figure 2.29 exemplifies the suggested use of I64,V
6
4, andCad

6
4 chords

in machine-readable annotations, with all ambiguity removed.

Figure 2.29: Instances of the V6
4, I

6
4, and Cad

6
4 chords, as suggested for digital representations.

Neapolitan chords are often considered a chromatic substitution of the subdominant chord.

The root of the chord is the flattened second degree of the relevant major/minor key. For ex-

14. There is more to say about the role of cadential six-four chords in harmonic analysis and voice leading,
which often puts them in themiddle of heatedmusic-theoretical debates. Two recent surveys on the topic include
Mirka (2015) and Ninov (2016).
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ample, the Neapolitan of Cmajor (and Cminor) is D♭. For this reason, it is either known

as ♭II or asN.

Inversions are generally notated using stacked Arabic numerals. The conventions for com-

mon triad and seventh chords are relatively standardized. These are indicated in Table A.4.

Table 2.2: Notations for chord inversions using Arabic numerals or letters. Figures between
square brackets are optional.

Chord type Arabic numeral notation Letter notation
Root position (triad) [a]
First inversion (triad) 6 b
Second inversion (triad) 64 c
Root position (seventh) 7 7[a]
First inversion (seventh) 65 7b
Second inversion (seventh) 43 7c
Third inversion (seventh) [4]2 7d

Inversions have also been indicated with letters. This notation is common since the 19th

century. It is also the notation of the first digital standard for RNA, **harm.

In the music theory classroom setting, the flexibility of the notation is perhaps a desirable

goal. Students may be encouraged to develop their own “style” of tonal analysis, incorporating

aspects of voice-leading, motivic, and key analysis, as they see fit. This is useful to extend the

intrinsic limitations of RNA to summarize tonal music.

Excessive flexibility may be an issue, however, in computational work. Idiosyncratic and

undocumented methods of analysis lead to incompatible annotations. It is unfeasible to as-

sume that a single person will be able to annotate a sufficiently large number of Roman nu-

meral analyses to be used for computationalmodels. Thus, the compatibility between different

annotations is a necessity, as well as the cooperation between expert analysts. This can only be

achieved by standardizing the RNA notation. Several notational systems have emerged over

the years to attempt to solve this problem.

In the rest of this section, I will review four efforts toward the standardization and digiti-

zation of RNA labels.
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2.3.1 Digital Representation of Roman Numerals

There are several methods to encode RNA annotations in a digital representation.

2.3.1.1 Humdrum(**harm)

The **harm syntax was proposed by Huron as part of the Humdrum(**kern) format (Huron

1994). This syntax includes a comprehensive notation for triads, seventh chords, special chords,

and descriptive (arbitrary) chords using Roman numeral notation. The notation is well docu-

mented, although several aspects of the notation are missing from the explanations.

The original **harm documentation is available online.15 The notation summarizes the

description of chords based on four attributes: (1) chord root, (2) chord type, (3) inversion,

and (4) chord alterations. Chord roots are indicated with Roman numerals. Chord types (or

qualities) are indicated with a case-sensitive notation of the Roman numeral plus the symbols

‘+’ and ‘o’ indicating augmented and diminished triads, respectively. All chord inversions are

indicated with the letters 𝑎, 𝑏, 𝑐, and 𝑑. These letters indicate root position, first inversion,

second inversion, and third inversion, respectively. The alterations, indicated with ‘-’ and ‘#’,

alter the pitch expressed by the Roman numeral scale degree. This is useful, for example, when

denoting a chord root that is non-diatonic to the current key.

2.3.1.2 RomanText

This notation was first proposed in Gotham, Tymoczko, and Cuthbert (2019). An utilitarian

aspect of this notation is that it is implemented as amodule inside the popularmusic21 Python

library (Cuthbert and Ariza 2010).16

RomanText is intended as a stand-alone format for RNA, meaning it does not require

the musical score. As part of the plain-text Roman numeral annotations, the location of the

annotations (measure and beat) is a compulsory attribute of the annotation.

15. https://www.humdrum.org/Humdrum/representations/harm.rep.html
16. https://web.mit.edu/music21/doc/moduleReference/moduleRoman.html
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Compared to the **harm notation, a clear advantage is that the software implementation

facilitates a vast number of operations with the Roman numeral annotations. For example:

• A RomanText annotation file can be realized into a score with block chords

• The Roman numeral annotations can be transformed into chord labels, pitch class sets,

or other representations relatively easily

• Easy access is provided to the secondary degrees, secondary keys, and other elements

implicitly encoded in the annotation

All the inversions inRomanText are encoded through numbers, whereas the **harm syn-

tax defines inversions by letter exactly to disambiguate these scenarios. Some disadvantages

of the numeric notation for inversions preferred in RomanText is that it does not allow an

intuitive way to encode inversions for extended 9th, 11th, and 13th chords.

2.3.1.3 The DCML Standard

This standard for harmonic annotations was developed at the Digital and Cognitive Musi-

cology Lab (DCML) at the École Polytechnique Fédérale de Lausanne.

This standard was first used in the annotation of the Annotated Beethoven Corpus

(ABC) dataset introduced by Neuwirth et al. (2018). Since then, it has been revised and doc-

umented in a dedicated repository17 and a reference manual.18 The introduction section of a

tutorial for this annotation standard summarizes the philosophy behind the standard:19

The goal of this tutorial is to provide a systematic and condensed way of conveying the

annotation philosophy and principles (aka “the guidelines”) behind the annotation

standard. What has been condensed are more than two years of discussions between

17. https://github.com/DCMLab/standards
18. https://dcmlab.github.io/standards/build/html/reference/reference.html
19. https://dcmlab.github.io/standards/build/html/tutorial/index.html
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the music theory experts involved in the standard’s creation and application, i.e. be-

tween annotators, reviewers, and users. Therefore, this tutorial is not about telling

anybody “how harmonic analysis really works” or “how everyone should be using

Roman numerals”. Instead, it introduces a set of guidelines for analysts who want to

use the DCML harmony annotation standard to encode a set of musical features in

a consistent and machine-readable manner so that others can re-use and rely on the

encoded information.

In addition to the repository, reference manual, and tutorial mentioned above, the com-

munity behind this standard has also made available documentation regarding version con-

trol practices,20 instructions for corpus creation (described by DCML as the corpus-creation

pipeline),21 and a page of questions and examples,22 among other resources.

From the perspective of documentation and standardization, this is perhaps the most thor-

oughly described standard forRNA in existence today. For example, it offers specific examples

to annotate voice-leading,23 which is often a problematic type of annotation in digital repre-

sentations. The revised version of the standard has been used in a subsequent iteration of the

ABC dataset (version 2) as well as the Mozart Piano Sonatas (MPS) dataset (Hentschel,

Neuwirth, and Rohrmeier 2021). Other collections exist in a private archive and are expected

to be publicly available one day.

2.3.1.4 Harmalysis

Harmalysis is an RNA grammar introduced in Nápoles López and Fujinaga (2020a).

The harmalysis grammar is based mainly on Huron’s **harm syntax (see Section 2.3.1.1).

The syntax is extended by borrowing elements from the RomanText format, such as Arabic

numeral inversions (see Section 2.3.1.2), music notation fonts for RNA,24 and conventions

20. https://dcmlab.github.io/standards/build/html/git/git.html
21. https://dcmlab.github.io/standards/build/html/pipeline/pipeline.html
22. https://dcmlab.github.io/standards/build/html/reference/examples.html
23. https://dcmlab.github.io/standards/build/html/tutorial/counterpoint.html?highlight=voice+leading
24. https://github.com/MarcSabatella/Campania
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observed in existing datasets of RNA. As a result, the harmalysis syntax is a superset of the

**harm syntax, which includes additional features and supports a wider range of customs of

harmonic analysis.

The main advantage of this syntax is that it is formally defined as a context-free grammar.

Thus, the exact mathematical validation of the syntax is available for review and discussion,

which might not be the case for representations defined by their textual explanations.
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Chapter 3

Background

In this chapter, I introduce the previous work on music technology, machine learning, and

Music Information Retrieval (MIR), that is relevant for Automatic Roman Numeral

Analysis (ARNA). Section 3.1 introduces the idea of music representation and symbolic mu-

sic formats, which are the input to an ARNA system. Section 3.2 briefly introduces the con-

cepts of supervised learning and common neural network architectures that are used in sym-

bolic music analysis problems. Section 3.3 introduces the existingMIR techniques forARNA

and related problems: key estimation, automatic chord recognition, and pitch spelling.

3.1 Music Representation

The musical information of interest requires a digital representation before anyMIR research

can be done. According toMüller (2015, 1), there are generally three types ofmusic representa-

tions: digital sheet music images, symbolic music representations, and audio representations.

Digital sheet music images consist of the digital version of printed musical scores. Im-

age representations are useful to distribute musical scores among musicians, or to print them

on paper. However, accessing the musical content of the scores (e.g., note names, durations,

key signatures, or time signatures) is quite a difficult task, which usually involves the devel-
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opment of complex Optical Music Recognition (OMR) systems (Calvo-Zaragoza, Hajič Jr.,

and Pacha 2020).

Symbolic music representations also often refer to digital representations of sheet music.

The main difference is that symbolic representations are encoded in machine-readable for-

mats, where the musical content is readily available for computational analysis. Examples of

such representations include **kern, Lilypond,MusicEncoding Initiative (MEI),Musical

Instrument Digital Interface (MIDI), andMusicXML.

Audio representations refer to digital representations of acoustic sound waves. These rep-

resentations are popular in digital media, because they more closely resemble the musical ex-

perience that most users want to consume. For example, as a musical performance streamed

using a music-streaming service. ManyMIR tasks operate on audio data because of the im-

portance of audio representations in the daily experience of music.

AnARNA algorithm is closely related to a few “satellite” tasks: Automatic ChordRecog-

nition (ACR), automatic key estimation, andMIDI pitch spelling. Over the years, there have

been numerous proposed chord and key estimation algorithms for symbolic and audio music

representations. These representations encode music in different ways (music notation and

acoustic signals, respectively) and do not contain the same information nor operate at the same

semantic level. Usually, an algorithm focuses in a single type of digital music representation

but algorithms that operate in both representations are possible.1

For the most part, ARNA models operate with symbolic music data. Thus, Section 3.1.1

presents the characteristics of some of the most common symbolic music formats.

3.1.1 Symbolic Music Formats

Müller (2015, 1) defines symbolic music representations as:

1. See, for example, our symbolic-and-audio key-estimation model in Nápoles López, Arthur, and Fujinaga
(2019).

45



[Symbolic representations] refer to any machine-readable data format that explicitly

represents musical entities. These musical entities may range from timed note events,

as is the case ofMIDI files, to graphical shapes with attached musical meaning, as is

the case of music engraving systems.

The musical entities often correspond to notes, rests, time signatures, beams, accidentals,

slurs, and other musical symbols. For the same reason that “musical symbols” can be as di-

verse as timed note events or graphical shapes with musical meaning, there is also a wide

range of symbolic music formats. Some formats focus more on the engraving aspect of music

(e.g., Lilypond orMEI), whereas others focus more on the performative aspect of music (e.g.,

MIDI).

Depending on theMIR problem of interest, some of these symbols might be more useful

than others. For example, mostMIR systems for chord and key recognition require pitches

and durations but not beams or slurs. Luckily, most symbolic music formats are able to en-

code the musical symbols that are useful inARNA systems.2 There are important differences,

nevertheless.

3.1.1.1 Humdrum(**kern)

Origin of **kern. TheHumdrum toolkit is a family of forty-two data representations,3 from

which the **kern representation for musical scores is the most widely used. The toolkit was

developed in the early 1990s and first thoroughly described by Huron (1994) in theHumdrum

Toolkit: Reference Manual. As it often happens, the same word (in this case, “Humdrum”),

can refer to multiple things:

• Humdrum is ameta-format or family of representations, which can encode diverse types

of data, such as musical scores (**kern), harmonic analysis annotations (**harm), or

lyrics (**text).

2. See the list of digital Roman Numeral Analysis (RNA) standards in Section 2.3.1.
3. The full list is available in: https://www.humdrum.org/rep/
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• Humdrum is the name of a collection of software tools, also known as the Humdrum

toolkit. These tools are originally scripts in the Perl language, which have now been ex-

tended with other tools written in the C/C++ language,Humdrum Extra4 andHumlib.5

• Humdrum is also used to refer to a file containing data encoded in a Humdrum repre-

sentation. For example, the Humdrum files in the KernScores library described by Sapp

(2005).

Applications of **kern. The **kern symbolic music representation is very compact, and

tailored toward music analysis. The content can be typed by a human encoder and analyzed

with the toolkit scripts. An extensive list of applications is presented by Sapp (2011).

Humdrum inRomanNumeral Analysis. Humdrum is an extremely relevant format for

RNA for two reasons:

1. It already provides support for RNA using the **harm syntax, which is also the first

digital representation for RNA annotations.

2. Historically, the first end-to-end system for ARNA (see Section 3.3.4) was developed

to operate with Humdrum(**kern) scores, generating automatic Humdrum(**harm)

annotations for them.

3.1.1.2 MEI

The MEI is described by Hankinson, Roland, and Fujinaga (2011, 293) as a “community-

driven effort to define guidelines for encodingmusical documents in amachine-readable struc-

ture.” As part of those guidelines, a family of music formats have been developed over the

years. In its flavor for common Western music notation, theMEI format describes musical

4. https://github.com/craigsapp/humextra
5. https://github.com/craigsapp/humlib
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content using an Extensible Markup Language (XML)-based syntax, which emphasizes

musical semantics.

Origin of MEI. TheMEI community (and format) was first presented by Roland (2002),

where it proposed to replicate the efforts of theTextEncoding Initiative (TEI) in themusical

domain. Starting in 2013, an annual conference6 organized by theMEI community has per-

petuated the involvement of different people in the development of new guidelines for music

encoding (Crawford and Lewis 2016).

Applications of MEI. The MEI format has gained popularity in digital collections and

libraries. Thanks to tools like Verovio, theMEImusic engraver by Pugin, Zitellini, and Roland

(2014), several music libraries have utilized theMEI format to encode their collections.

MEI in RomanNumeral Analysis. Although there is no specificRNA recommendation

for MEI files, the MEI standard supports a generic <harm>7 element, which can be used to

annotate Roman numeral annotations.

3.1.1.3 MIDI

OriginofMIDI. TheMIDI format is a specification to transmitmusical information among

hardware devices and software applications. It was originally presented as the Universal Syn-

thesizer Interface by Smith and Wood (1981). The specification was designed to interconnect

different synthesizers, facilitating compatibility among manufacturers and increasing sales.

By the end of 1982, several other manufacturers joined the initiative, and the specification was

renamed toMIDI (Moog 1986).

Applications ofMIDI. MIDI is an ubiquitous format for digital musical instruments. It is

mostly designed to capture a musical performance, for example, transmitting the pressed keys

6. https://music-encoding.org/conference/
7. https://music-encoding.org/guidelines/v4/elements/harm.html
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(and the velocity at which they were pressed) of a keyboard controller into a Digital Audio

Workstation (DAW).

Because it is designed for musical performance, it can be generated in real-time and trans-

mitted across hardware and software applications. For the same reason, it is also a very limited

format, generally unable to capture music notation information, such as ties, note durations,

pitch spelling, or phrasing. This limitation is usually important in automatic analysis models

that rely on more information than pitch class and octave.

MIDI in Roman Numeral Analysis. Compared to other formats, such as **kern,Mu-

sicXML, orMEI,MIDI is a relatively inconvenient format for any RNA workflow. For ex-

ample, as an input, it does not provide reliable pitch spelling information, which is crucial in

recent ARNAmodels.

3.1.1.4 MusicXML

Origin of MusicXML. MusicXML is an XML-based format for representing common

Western music notation, introduced by Good (2001). It is designed mostly as an exchange

format between music notation software. However, it is also useful for other applications,

such asmusic analysis and retrieval. Originally, theMusicXML standardwas heavily inspired

by the MuseData and Humdrum (see Section 3.1.1.1) representations, adapting them into an

XML context.

Applications of MusicXML. BecauseMusicXML is designed to represent music of the

seventeenth century onwards, it has gained popularity as the standard exchange format among

commercial applications, such as Dorico,8 Finale,9 MuseScore,10 Sibelius,11 and others.

8. https://www.steinberg.net/dorico/
9. https://www.finalemusic.com/
10. https://musescore.org/en
11. https://www.avid.com/sibelius
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MusicXML in Roman Numeral Analysis. As of version 4.0 of theMusicXML format,

there is a dedicated <numeral> element12 to encode RNA annotations.

3.2 Deep Neural Networks

In recent years, deep neural networks have become an ubiquitous technology to approach per-

ceptual problems. This has also been the case for music, wheremanymusic analysis problems

are tackled using neural networks nowadays.

This section discusses supervised learning, the methodology used throughout the experi-

ments in this dissertation, as well as convolutional, recurrent, and transformer network archi-

tectures, which are common in ARNAmodels.

3.2.1 Supervised Learning

Goodfellow, Bengio, and Courville (2016, 140) describe supervised learning algorithms as

algorithms that learn to associate some input with some output, given a training set

of examples of inputs x and outputs y.

Commonly, the outputs are provided by a human annotator (“supervisor”), which in the

case of RNA annotations, refers to the expert annotators providing the analyses.

3.2.2 Feed Forward Networks

An Artificial Neural Network (ANN) is a machine learning algorithm that models arbi-

trary functions by automatically learning weights (also known as parameters) connecting the

different nodes of the neural network. Generally, a nonlinear activation function is applied to

such weights, introducing a nonlinear behavior in the neural network that allows it to learn

functions of higher complexity, which a linear model could not possibly learn. The learning

12. https://www.w3.org/2021/06/musicxml40/musicxml-reference/elements/numeral/
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of the weights is not achieved by programming task-specific rules but instead, by identifying

simple characteristics of the training examples and extending them into more complex, more

abstract characteristics through the backpropagation algorithm. The process of decomposing

an example into a combination of simpler features is known as representation learning, and it

is one of the main ideas that differentiate an ANN from other classes of machine learning.

The study of ANNs started around the 1940s, and it has been known through different

names throughout the years (Goodfellow, Bengio, and Courville 2016). The beginnings of

ANNs can be traced back to the 1940s, when a bio-inspired neuron model was introduced

(McCulloch and Pitts 1943). This neuron allowed to model very simple functions by manually

setting the weights that connected the input into the neuron. This idea was later extended to

propose the Perceptron (Rosenblatt 1958) and Adaline (Widrow and Hoff 1960) models, which

were able to automatically learn the weights from the data. Although promising, thesemodels

lost popularity when it was demonstrated that they could not learn relatively simple functions,

like theXOR function (Minsky and Papert 1972). This wave of research (1940–1960) is often re-

ferred as the cyberneticswave of neural networks research (Goodfellow, Bengio, and Courville

2016).

Following the wave of cybernetics, another wave extended from 1980 to 1990, colloquially

known as connectionism. During the work of the “connectionists,” the research community

benefited from the development of the current form of the backpropagation algorithm (Rumel-

hart, Hinton, Williams, et al. 1988). The backpropagation algorithm became (and remains)

an elemental process in the training of neural networks, which allows to propagate the error

throughout the network by making use of the chain rule. Finding the derivatives of each pa-

rameter in the network, the values of such parameters can be updated in the “right direction”

(against the gradient) to decrease the error in the next batch of training examples. This facili-

tates the automatic training of large and complicated neural networks, with a variety of layers,

neurons, and nonlinear activation functions. Even though this and other improvements made

neural networks a promising area of research, they were still very difficult to train in practice
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(partly due to the difficulty of finding a good initialization of the weights) and were typically

outperformed by domain-knowledge techniques. This resulted inmany scientists losing inter-

est in the technology until the next wave of research.

Finally, a third wave of research started around 2006, when newmethods for training neu-

ral networks were introduced (Hinton, Osindero, and Teh 2006). These newmethods not only

facilitated the training of neural networks but the training of much larger neural networks.

The interest in such larger architectures extended, and in a historical evaluation of the Im-

ageNet dataset (Deng et al. 2009), in 2012, a neural network by Krizhevsky, Sutskever, and

Hinton (2012) outperformed the most sophisticated methods of computer vision. This had

a momentous impact in the way that neural networks were perceived by the research com-

munity, and motivated their application into different problems and fields of study. We know

this last wave of research as deep learning, and it is currently an active and growing wave of

research across many fields. Around this umbrella term of deep learning, many state-of-the-

art machine learning techniques have been developed and continue to be improved. Among

the landscape of existing technologies nowadays, Convolutional Neural Networks, Recurrent

Neural Networks, and Transformer networks have been applied to ARNA.

3.2.3 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) were introduced during the connectionist wave

of research on neural networks, in LeCun (1989) and LeCun et al. (1989). An important in-

novation of CNNs is the idea of shared parameters. In a traditional feedforward network, for

example, a Multilayer Perceptron (MLP), every neuron of the network is typically con-

nected to another neuron of the following layer using a unique parameter (i.e., a parameter

used exclusively for connecting these two neurons). This gives the network more expressive

power and the capability of modelling very complex functions. However, it also produces a

combinatorial explosion of parameters as the neural network grows in number of layers and

neurons. Training large networks with many unique parameters may be unfeasible (or even
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impossible) due to the limitations in memory and computing power of modern technology.

CNNs, by design, reuse parameters throughout the network. Thus, reducing the number of

parameters compared to a fully-connected, feedforward network.

Sharing parameters is not only important for reducing the training time of the network,

it is a bio-inspired design motivated by the mechanics of the visual system. It is customary,

for example, to refer to the collection of neurons that make use of the same parameter as the

receptive field of the parameter, a term taken from neurophysiology.

The shared parameters are modelled through a kernel vector. The kernel vector multiplies

the inputs of the neural network layer in a way that resembles the mathematical operation

of convolution, which motivated the use of the term Convolutional Neural Networks. After

training, it is assumed that each of those kernelswill learn a low-level, localized, feature, which

is going to be searched across the entire input vector of the network and propagated into deeper

(higher-level) kernels of the network.

Given the way that convolutional kernels work, CNNs have been a useful technique for

dealingwith fixed-length, grid-like structures (e.g., images), producing positive results inmany

tasks. For example, they were the technology behind every state-of-the-art ImageNet model

from 2012 to 2020 (Krizhevsky, Sutskever, and Hinton 2012), identifying over 1,000 classes of

objects in an image.

InMIR, CNNs have been used for genre recognition (Dieleman, Brakel, and Schrauwen

2011), chord recognition (Humphrey and Bello 2012), structural analysis (Ullrich, Schlüter,

and Grill 2014; Grill and Schlüter 2015), music tagging (Choi, Fazekas, and Sandler 2016),

instrument recognition (Lostanlen and Cella 2016), OMR (Calvo-Zaragoza, Valero-Mas, and

Pertusa 2017; Pacha and Calvo-Zaragoza 2018), beat tracking (Gkiokas and Katsouros 2017),

source separation (Miron, Janer, and Gómez 2017), syllable segmentation (Pons, Gong, and

Serra 2017), key detection (Korzeniowski andWidmer 2018), and tempo estimation (Schreiber

and Müller 2018, 2019).
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Throughout the years, researchers have proposed different modifications to CNNs, which

have improved the suitability of these models to certain problems and scenarios.

3.2.3.1 1D, 2D, and 3D Convolutions

Originally,CNNswere proposed to deal with images, which are encoded in a two-dimensional

grid of pixels. However, one-dimensional CNNs and three-dimensional architectures now

exist, which can be applied to, for example, timeseries (1D tensors) and video data (3D tensors),

respectively.

3.2.3.2 Residual Connections

As researchers scaled the depth of CNNmodels, they noticed that it was increasingly difficult

to train the largermodels effectively. One strategy that helped tomitigate this problemwas the

use of residual connections. A residual connection consists of a connection between a layer

of the network and a deeper one, “skipping” some layers in between (i.e., the two layers are

not contiguous). This pattern of connections has allowed researchers to design much deeper

networks more effectively, as the residual connections strengthen the signal of earlier repre-

sentations in deeper layers of the network. One of the most well-knownmodels of this kind is

perhaps the ResNet by He et al. (2016).

3.2.4 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a type of neural networks designed to deal with

sequential data. Unlike most other neural network architectures, RNNs do not assume that

inputs are independent from each other. Instead, they update their parameters considering not

only the current input to the network but also the previous inputs processed by the network.

Inputs are thus arranged as sequences of inputs.

RNNswere introduced after the backpropagation algorithm (Rumelhart, Hinton,Williams,

et al. 1988) was extended into the Backpropagation Through Time (BPTT) algorithm,
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around 1988 (Werbos 1988, 1990). Nevertheless, the difficulty of training such RNN architec-

tures made them unfeasible in practical applications before the invention of the Long Short-

Term Memory (LSTM) architecture (Hochreiter and Schmidhuber 1997). They were pop-

ularized during the deep learning wave of research and, since then, applied to many tasks in-

volving sequential data.

Throughout the years, different strategies have been proposed to design RNNs, for exam-

ple, connecting the output of one time step into the next time step (Jordan RNN), connecting

the hidden state of one time step to the next (Elman RNN), and training the network in both

directions (Schuster and Paliwal 1997). It is common to see several of these techniques com-

bined in a single architecture, for example, the Convolutional Bidirectional Long Short-

TermMemory (CBLSTM) by Vogl et al. (2017).

InMIR,RNNs and hybridConvolutional RecurrentNeuralNetworks (CRNNs) have

been applied in numerous tasks. For example, onset detection (Eyben et al. 2010), chord recog-

nition (Boulanger-Lewandowski, Bengio, and Vincent 2013; Sigtia, Benetos, and Dixon 2016;

Sears, Korzeniowski, and Widmer 2018), voice separation (P.-S. Huang et al. 2014), music

transcription (Sigtia et al. 2014), tempo estimation (Böck, Krebs, and Widmer 2015), beat and

downbeat tracking (Böck, Krebs, and Widmer 2016; Krebs et al. 2016), music generation (Liu

and Randall 2016; Liang et al. 2017; Lim, Rhyu, and Lee 2017), music transcription (Rigaud

and Radenen 2016; Sigtia, Benetos, and Dixon 2016; Southall, Stables, and Hockman 2016;

Vogl, Dorfer, and Knees 2016; Southall, Stables, and Hockman 2017; Vogl et al. 2017; Basaran,

Essid, and Peeters 2018), OMR (Calvo-Zaragoza, Vigliensoni, and Fujinaga 2017; Wel and

Ullrich 2017; Calvo-Zaragoza and Rizo 2018), sequence modelling (Ycart and Benetos 2017),

mood detection (Delbouys et al. 2018), and instrument recognition (Gururani, Summers, and

Lerch 2018).
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3.2.4.1 LSTM

The Long Short-Term Memory (LSTM) architecture was introduced by Hochreiter and

Schmidhuber (1997). Since its introduction, it has been increasingly used to approach multi-

ple problems. LSTM architectures extend the basic structure of RNNs and it is relatively safe

to assume that any problem that involves an RNN can substitute the RNN with an LSTM,

matching (or often improving) the results obtained by the RNN.

The main contribution of LSTMs is to provide a solution to vanishing gradients. Given

that vanishing gradients are associatedwith the loss of long-termdependencies, mitigating this

issue would enable, in theory, the capability of the network to learn long-term dependencies

between the inputs. In order to achieve these long-term dependencies, an LSTM substitutes

the regular RNN unit with a more complex one. This new, more complex unit, receives the

name of an LSTM unit.

The main difference between an RNN and LSTM units is that the LSTM adds a cell and

three gates: the “forget” gate, the “input” gate, and the “output” gate. In conjunction, the cell

and gates allow the network to control the flow of the information, selecting what information

should the network store and what information should it forget. The gates of the LSTM unit

act as “regulators” and each of them is responsible of a different part of the network. The

forget gate controls what information of previous time steps in the network should be kept

and what should be forgotten. The input gate regulates how much of the new inputs to the

network should enter the cell. The output gate controls how much of previous time steps in

the network should be used for computing the activation of the output of the network.

3.2.4.2 GRU

TheGatedRecurrentUnit (GRU) is amore recent recurrent architecture introduced by Cho

et al. (2014). It is simpler than the LSTM and, similarly, can generally be used as a substitute

of RNN or LSTM layers with similar (or better) results.
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Beside the LSTMs and GRUs, further improvements have also been proposed to RNNs.

For example, during the same year that the LSTM was proposed, another paper proposed a

bidirectional RNN that could be used in offline systems (as it requires knowledge of future

timesteps, it cannot be used in realtime applications). These advances have improved the ca-

pabilities of RNNs, as they are often not mutually exclusive and can be used in combination.

Therefore, it is common to see nowadays architectures that combine these approaches, for

example, Bidirectional Long Short-Term Memory (BLSTM) networks.13 These type of

models have been successful and provided state-of-the-art inmultiple tasks. Given thatRNNs

and more specifically LSTMs and GRUs are useful architectures for modelling sequence-to-

sequence processes, they can be useful forMIR applications.

3.2.5 Transformer Networks

The Transformer network is a sequential model introduced by Vaswani et al. (2017, 2). The

Transformer differs from other sequential architectures (e.g., RNN) because it “relies entirely

on an attention mechanism to draw global dependencies between input and output.” The at-

tention mechanism is a method designed to mitigate the limitations of previous sequence-to-

sequence models. In a sequence-to-sequence model, the performance degrades as the length

of the sequences increases, because the entire sequence is represented with a single vector in

the encoder. Using attention, information from all timesteps in the sequence is available to

the decoder. This allows the model to “attend” or give a higher weight to certain timesteps

of the sequence. Allowing the model to attend certain parts of the sequence has been an im-

portant advancement in recent deep learning models. The Transformer architecture became a

fundamental methodology in natural language processing after it reached state-of-the-art per-

formance in comparison to RNNs. Nowadays, this architecture has been widely adopted for

different problems, including RNA.14

13. This type of architecture has been applied to ARNA in the work by Chen and Su (2018).
14. See, for example, Chen and Su (2021).

57



3.3 Music Information Retrieval

This section presents a review ofMIR models for tonal music analysis. Section Section 3.3.1

focuses on key estimation, Section 3.3.2 on chord recognition, Section 3.3.3 on pitch spelling,

and Section 3.3.4 on ARNA.

3.3.1 Key Estimation

Identifying the musical key is a fundamental task in the analysis of tonal music. It is often a

preliminary or concurrent step to other common musicological tasks like harmonic analysis

and cadence detection. In particular, the knowledge of the musical key can help a music ana-

lyst to find boundaries in a musical piece, interpret the role of notes and chords, or suggest a

musical form to which the analyzed piece conforms. Due to its importance, key estimation is a

well-studied research topic inMIR, and multiple key-analysis algorithms have emerged dur-

ing the last decades. Broadly, there are two types of key-estimation algorithms: those that find

the main key of the piece (hereafter Global-Key Estimation (GKE) models) and those that

find the changes of key within the piece (hereafter Local-Key Estimation (LKE) models).

The global key is related with the key of the piece or work, for example, as written in the title

of the score. A local key is related to the music-theoretical concepts that explain changes of

keys, such asmodulations and tonicizations.15 One caveat is that the terms related to changes

of keys are often loosely defined, which complicates the precise definition of a local key. This

is further discussed in Section 3.3.1.2.

In this section, I describe the different GKE and LKEmodels that have been presented in

theMIR literature over the years.

15. And maybe others, such asmodal mixture, applied chords, and secondary dominants.
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3.3.1.1 Global-Key Estimation Models

Symbolic Inputs. The GKE algorithm by Longuet-Higgins (1971), arguably the first one

ever designed, computed the key of a piece through an elimination process. The notes of the

piece were read from left to right, one by one, discarding all the keys where the notes were

not contained as diatonic steps of the key, until a single key was remaining. This often lead

to no solutions, thus, the system contained several rules for deciding the key in difficult cases.

The algorithm successfully explained the keys in Bach’s Well-Tempered Clavier, however, it

was relatively easy to find adversarial examples where it did not work (Temperley and Marvin

2008).

Another algorithm, known as the Krumhansl-Schmuckler algorithm, was introduced in

Krumhansl (1990). Although introduced in 1990 as an automatic key finder, the main com-

ponents of the algorithm, the key profiles, were introduced in 1982 (Krumhansl and Kessler

1982). This algorithm and itsmethod based onkey profiles influencedmany other algorithms

in the symbolic and audio domains.16 It also motivated the research of new key profiles using

alternative methods to the probe-tone technique used by Krumhansl and Kessler. The key was

computed by correlating the pitch histogram of themusical score with the pitch-class distribu-

tion of thekey profile. During a series of experiments, Sapp (2011) found that whenmistaken,

this algorithm tends to predict the dominant instead of the tonic.

In 1996, a model for single-voiced pieces of music was proposed by Vos and Geenen (1996).

Similarly to the Longuet-Higgins (1971) model, it was tested in excerpts of theWell-Tempered

Clavier, particularly, the themes of the fugues. Although the model seemed to improve the

results of the Longuet-Higgins model, it did not become as influential as the Krumhansl-

Schmuckler in future research.

Responding to some concerns about the original Krumhansl-Schmuckler algorithm, Tem-

perley (1999) proposed two changes in a newGKE algorithm. The first modification consisted

in replacing the Pearson correlation function with a dot product. The secondmodification was

16. See Nápoles López, Arthur, and Fujinaga (2019) for a discussion of several key profilemethods.
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a change in the probability distributions of the original Krumhansl-Kessler key profiles. The

new distribution was fine-tuned by Temperley heuristically and through a trial-and-error pro-

cess. This algorithm provided better results than the original algorithm and it was further

extended into a probabilistic framework using Bayes’ rule in Temperley (2002).

Through the Spiral Array, Chew (2002) facilitated the modelling of tonality as a spatial

representation. In this representation, a sequence of notes could be localized in a point of the

tonal space, known as the Center of Effect, and related to a key through a nearest-neighbours

search. Although the geometric approach for localizing a point in space influenced further

research on key-finding algorithms, the model did not perform better than the approaches

based on distributions and key profiles.

Aarden (2003) proposed an alternative, data-driven, methodology for obtaining a distribu-

tion of scale degrees. This was used to generate a new set of key profiles that could substitute

the ones by Krumhansl and Kessler (1982) in a key-finding algorithm. For this purpose, 1,000

songs from the Essen FolksongCollection and 250music excerpts from theMuseData database

were used for comparing the approaches. The distribution of scale degrees outperformed the

key profiles from Krumhansl and Kessler (1982).

Similar efforts for scale-degree probability distributionswere proposed byRohrmeier (2007)

and Bellmann (2006). Rohrmeier’s model focused on the repertoire of Bach chorales, where a

model used a sliding window of 𝑛-grams to retrieve key profiles. This sliding-windowmethod

recognizedmodulations in fragments of music where neither the dominants nor leading tones

were involved. Bellman used the chord frequencies collected in the PhD dissertation by Budge

(1943) to create a new scale degree probability distribution. This probability distribution was

used to obtain the most likely key of a fragment of a score (typically, a measure long) by com-

puting the dot product between the notes found in the excerpt and the scale degree distribu-

tion. The results of this algorithm were also favourable, showing that chord frequencies can

be helpful in estimating the musical key.
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In order to explore the capabilities of different key profiles at different window lengths,

Sapp (2011) performed a series of experiments running every possible window in a piece with

different key profiles. The results of such computations were visualized and rendered into

what Sapp referred to as keyscapes (Sapp 2001). The algorithm used for computing the keys

was the original Krumhansl-Schmuckler correlation algorithm, alternating the different key

profiles. Additionally, Sapp introduced a new key profile named simple weights.

Albrecht and Shanahan (2013) introduced a new key-finding algorithm that improves the

accuracy for pieces in the minor mode. This algorithm utilizes Euclidean distance to measure

the similarity between the notes in the piece and a new key profile. The key profile was

obtained by analyzing the first and last measures of a training dataset, which consisted of 982

pieces of music from the Baroque to the Romantic period. The model outperformed every

other symbolic key-finding algorithm when used in this dataset.

In 2019, we introduced a new key-finding algorithm that works in the symbolic and audio

domains (Nápoles López, Arthur, and Fujinaga 2019). This algorithm was able to operate as

both a GKE and LKE model, and it is based on an Hidden Markov Model (HMM). The

algorithm provided state-of-the-art performance in the symbolic domain, however, it under-

performed for pieces in minor modes, unlike the Albrecht and Shanahan (2013) algorithm,

which performs well in the minor mode.

Audio Inputs. Arguably the first audioGKE algorithm was proposed by Leman (1992). It

consisted of two stages. In the first stage, the algorithm extracted the strength of each pitch-

class, including its harmonics, from the audio signal. In the second stage, the algorithm tried

to match the pitch-class information of the first stage with a set of templates, analogous to a

key profile, which were obtained through Self-Organizing Maps (SOM).

Izmirli and Bilgen (1994) proposed amodel that also consisted of two stages. The first stage

converted monophonic audio signals into a sequence of note intervals and their occurrence

times, similar to a piano-roll representation. The second stage used a series of finite state
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automatas to match patterns of scales. In total, they used three pattern-matching automatas:

major scale, natural minor scale, and harmonic minor scale.

Purwins, Blankertz, andObermayer (2000) proposed amodel thatwas based on the constant-

Q transform, extracting pitch-class distributions from the audio signal based on a few basic

music-theoretical assumptions (i.e., octave equivalence and the division of the octave in the

chromatic scale). Using these distributions, the system tracked the key over time by compar-

ing the distributions of the signals with the Krumhansl and Kessler (1982) key profiles. The

model was not quantitatively evaluated but an example of the keys tracked in Chopin’s Pre-

lude Op. 28 No. 20 was provided, showing similar key segmentations as the ones provided by

an expert annotator.

Gómez andHerrera (2004) proposed a comparison ofwhat theynamed “cognition-inspired”

models, against models derived from machine learning techniques. The cognition-inspired

model was a modification of the Krumhansl-Schmuckler algorithm that worked with Har-

monic Pitch Class Profile (HPCP) features as input, instead of note histograms. The ma-

chine learningmodels tested included binary trees, Bayesian estimation,ANNs, SupportVec-

torMachines (SVMs), boosting, and bagging. In an experiment with 661 audio files used for

training and 217 used for testing, the best machine learning model had a slightly better perfor-

mance than the cognitive-based model, however, the best overall performance resulted from

the combination of both models.

Burgoyne and Saul (2005) provided a model for harmonic analysis in the audio domain,

using a corpus of Mozart symphonies (15 movements) for training. The input for their model

was a chromagram vector (denoted as pitch-class profile by the authors). They used anHMM

to train Dirichlet distributions for major and minor keys on the chromagram vectors. Their

system attempted to find chords and keys simultaneously. Unfortunately, the model was eval-

uated on a single example, the secondmovement ofMozart’s KV550. Although it appears to do

well in this piece, the reported results neither provide much insight about the generalization

of the model nor its performance on different examples.
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Chai and Vercoe (2005) proposed an HMM to detect keys in audio files. Their approach

took as its input a chromagram vector of 24 bins, extracting the best match of a major-and-

relative-minor pair of keys (this could be thought as an algorithm that extracted the key sig-

nature). A second step used heuristics to determine the mode. In order to evaluate their al-

gorithm, they used 10 pieces of piano music from the Classical and Romantic period, which

were manually annotated by the authors.

Chuan andChew (2005b) proposed a real-time algorithmbased on the extraction of pitches

and pitch-strength through the Fast Fourier Transform (FFT). The GKEmodel was based

on the Center of Effect Generator algorithm by Chew (2002) and determined the key based

on the pitch-strength information. In their evaluation, the model achieved a recognition rate

of 96% within the first fifteen seconds of their test set, which consisted of 61 audio files with

different performances of 21Mozart Symphonies. Their system outperformed the Krumhansl-

Schmuckler algorithm (Krumhansl 1990) and themodified version by Temperley (1999) when

evaluated within the first seconds of the recordings. A further improvement was proposed

in Chuan and Chew (2005a), which incorporated fuzzy analysis to improve the pitch-class

distributions computed from the audio. This model was evaluated during the first Audio

Key-FindingMusic Information Retrieval Evaluation eXchange (MIREX) evaluation, in

2005. However, themodel was outperformed by other approaches submitted to that evaluation

campaign.17

Harte, Sandler, and Gasser (2006) proposed a newmodel that applied a similar principle to

the spatial representation of Chew (2000). It had a 6-dimensional interior space contained by

the surface of a hypertorus. The 6 dimensions of theirmodel correspond to 2-axes for localizing

a point in the circle of fifths, 2-axes for localizing a point in the circle of major thirds, and 2-

axes for localizing a point in the circle of minor thirds. Using this spatial representation, a

similar methodology to Chew’s Center of Effect (Chew 2002) was used for computing the key.

17. https://www.music-ir.org/mirex/wiki/2005:Audio_Key_Finding_Results
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The authors presented an evaluation of the model in the detection of chord changes within 16

songs of The Beatles.

Noland and Sandler (2006) proposed a model based on an HMM. The model comprised

24 hidden states, which represented each of the major and minor keys. As observations, the

HMM considered a chord transition (a pair of consecutive chords). The emission probabili-

ties of themodel were initialized by assuming a strong correlation between the key and the key

implied in a given chord transition. The transition probabilities of the model were obtained

using a table of correlations between the transposed Krumhansl and Kessler (1982) key pro-

files. The model was evaluated in a dataset of 110 songs of the Beatles, for which the chord

transitions were already annotated. The algorithm was able to predict the key of the songs in

91% of the cases. A further change on the observations of the HMM was necessary to work

directly on audio inputs.

Peeters (2006) proposed amodel that extracted information about the periodicity of pitches

from the audio signals, mapped that information into the chroma domain, and decided the

global key of the music piece from a succession of chroma-vectors over time. For the initial

analysis, Peeters proposed a Harmonic Peak Substraction algorithm, which reduced the in-

fluence of the higher harmonics of each pitch. The preprocessed signal was mapped to the

chroma domain and used as the observation for anHMMmodel that predicted the global key.

TheHMM classification consisted of oneHMM for each of the 24 possible keys, which were

trained using the Baum-Welch algorithm.18 Themodel was tested in 302 audio files containing

classical piano, chamber, and orchestral music, obtaining a 89.1% accuracy using theMIREX

weighted evaluation score, shown in Table 3.1.

Catteau, Martens, and Leman (2007) devised a model that simultaneously predicts chords

and keys in audio signals. Theirmodel is an extension of a previousmodel by Bello and Pickens

(2005), and it is based on music theory domain knowledge, requiring no training. The music

theory components of the model were inspired by Lerdahl’s Tonal Pitch Space (Lerdahl 2005).

18. See Rabiner (1989) for an introduction to the Baum-Welch algorithm in the context ofHMMs.
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Table 3.1: The weighted evaluation score for key predictions proposed byMIREX.

Key relationship(ground truth, predicted) Score
Same key 1
Dominant or SubDominant 0.5
Relative key 0.3
Parallel key 0.2
Other 0

They tested their model with synthesized audio, recorded audio, and presented their model

for evaluation in the Key and Chord detection tasks fromMIREX.

Lee and Slaney (2007) proposed a model for chord and key estimation from audio sources.

The model was trained by creating a separate HMM for each of the 24 keys. In order to ob-

tain the training data, they annotated severalMIDI files with harmonic analysis labels. These

harmonic analyses were computed automatically usingMelisma (Temperley 2004). The har-

monic analysis corpus was obtained from mididb.com, and consisted of 1046 MIDI files of

Rock music. The annotated files were synthesized with a sample-based synthesizer (Timid-

ity++,19 using the FluidR320 soundfont) and perfectly aligned to the annotations. Their chord

detection model was able to distinguish only major and minor triads.

Campbell (2010) proposed an algorithm based on four stages: frequency analysis, pitch-

class extraction, pitch-class aggregation, and key classification. A thorough experiment was

performedwith different solutions for each of the stages. The best performingmodel was eval-

uated in a dataset of classical music, another one of popular music, and an audio-synthesized

dataset ofMIDI files of classical music. The best performing model consisted of features ex-

tracted with the jAudio feature extractor (McEnnis et al. 2005) and aK-Nearest Neighbours

(KNN) classifier.

Mauch and Dixon (2010b) proposed a model that predicted chords, bass notes, metric po-

sition of the chords, and the musical key. Although it is claimed that the model detects the

key of the audio input, the model in fact computes the key signature, classifying a major key

19. http://timidity.sourceforge.net/
20. https://archive.org/details/fluidr3-gm-gs
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and its relative minor with the same class. Due to this restriction, the model was not explicitly

evaluated on musical key. Nevertheless, using the key classifications of the model as features,

it showed to improve the results of their main task, chord recognition.

Korzeniowski and Widmer (2018) proposed a key-finding model that generalized across

different genres of music. The model was based on a CNN that received a log-magnitude

log-frequency spectrogram as its input. Initially, during training, the model received the full

spectrogram, however, this computation turned out to be expensive. Thus, they proposed

showing the network only snippets (20 seconds) of the spectrogram. This improvement de-

creased the training time but assumed that any arbitrary 20-second audio fragment would dis-

play the global key, disallowing the model to operate with music files featuring modulations.

The model was trained on three datasets: the GiantStepsMusic Technology Group (MTG)

Key dataset by Faraldo et al. (2016), the McGill Billboard dataset by Burgoyne, Wild, and Fu-

jinaga (2011), and an internal dataset with classical music. The model was submitted to the

MIREX campaign of 2018 and it was successful at generalizing the key of different genres,

outperforming existing audio GKEmodels.

We proposed a key-finding model in 2019 (Nápoles López, Arthur, and Fujinaga 2019).

This model performed both GKE and LKE, and it was able to operate in the symbolic and

audio domains. Themodel was originally designed for symbolic inputs, however, it was able to

work in the audio domain by making use of the chroma features by Mauch and Dixon (2010a)

and turning them into discrete values using a threshold. The model was submitted to the

MIREX Audio Key Estimation in 2018 and 2019. In 2018, the model was submitted with a

single key profile, which provided the best generalization in our experiments. In 2019, the

model was improved by adding a meta-classifier which predicted the global key based on the

predictions of several key profile. The results of the 201821 and 201922 models are available

on theMIREX results website.
21. https://www.music-ir.org/mirex/wiki/2018:Audio_Key_Detection_Results
22. https://www.music-ir.org/mirex/wiki/2019:Audio_Key_Detection_Results
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After the pioneering models, many different alternatives have been proposed for finding

the musical key of symbolic and audio inputs. The models consider different methodologies,

initially inspired by music perception and cognition and slowly transitioning into data-driven

and machine learning approaches. As may be observed from the evaluation sections of the

literature, it is difficult to know which models are better than the rest, mostly due to little

agreement (except for theMIREX campaigns) in the methods used for comparing the capa-

bilities of one model or another, or in the use of a similar test dataset. Furthermore, some of

the models output different results, ranging from key signatures, local keys, global keys, and

chords, which further complicates the comparison of key-finding models. Nevertheless, as a

general trend, it can be seen that the research byKrumhansl andKessler (1982) that introduced

the key profiles, together with the use of chroma features, have been common approaches for

designing newer GKE models throughout the years. These techniques are also relevant for

LKEmodels, which are described next.

3.3.1.2 Local-Key Estimation

Changes of keymay belong to different categories. In music theory, terms likemodulation and

tonicization are helpful for interpreting the context of a change of key. InMIR, it is common

to describe algorithms that model changes of key as LKE algorithms. The local keys being the

predictions that thesemodels generate. A local key is related to the concepts ofmodulation and

tonicization. However, it is difficult to understand the distinction between these three terms.

In order to clarify this nomenclature, we investigated the relationship between the local

keys, modulations, and tonicizations of the samemusical fragment (Nápoles López et al. 2020).

From this work, I take the definitions of local keys, modulations, and tonicizations, which

might clarify what exactly an LKE algorithm predicts.

Local Keys. Are the predictions of the musical key provided by a LKE algorithm. These

predictions are given at a finer level of granularity than the entire piece (e.g., notes, onsets,
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fixed-duration timesteps, audio frames, etc.). In principle, no music-theoretical meaning is

inferred from them. They may coincide with modulations or tonicizations.

Modulation. Is the change from one key to another. We refer to the initial key as the

departure key, and the second key as the destination key.

Tonicization. Is a brief deviation to a different key, usually with the intention of empha-

sizing a certain scale degree or harmony. The tonicization often returns to the original key

briefly after the deviation.

3.3.1.3 Local-Key Estimation Models

Contrary to GKE approaches, LKEmodels have a relatively recent history.

Purwins, Blankertz, and Obermayer (2000) introduced a method for tracking changes of

key in audio signals using cq-profiles, which were calculated with the constant-Q filter bank.

Their goal was to track the tone center and its variation during the piece. Their dataset in-

cluded annotations for both modulations and tonicizations but considered that the ground

truth was the one indicated by the tonicizations.

Chew (2002) measured the distance from a sequence of pitches to a key using the Spiral

Array. The succession of keyswas thenmodeled as a sequence of boundaries dividing the score

in different key areas.

Chai and Vercoe (2005, 469) designed a model based on a Hidden Markov Model (HMM)

to detect changes of key. They described the term modulation as “the change of key at some

point”. Their model detected first the tonal center and then the mode of the key.

Catteau, Martens, and Leman (2007) introduced a model for scale and chord recognition,

assuming a correspondence between a major scale and a major key, and between a harmonic

minor scale and a minor key. Their model was based on the key profiles by Temperley (1999)

and Lerdahl’s Tonal Pitch Space (Lerdahl 2005).
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Izmirli (2007, 1) proposed a model to find local keys in audio signals. As a preprocessing

step, the model adapted the tuning of the signal before computing the spectral analysis and

the chroma features. In a later stage, non-negative matrix factorization was used to segment

contiguous chroma vectors, identifying potential local keys. The model identified segments

that were candidates for unique local keys in relation to the neighbouring key centers. The

model was evaluated in three datasets: 17 pop songs with at least one modulation, excerpts

from the beginning of 152 classical music pieces from the Naxos website, and the examples

from the S. M. Kostka and Payne (1984) harmony textbook. In the paper, the results for three

different evaluation methods were provided for each of the datasets. Izmirli also attempted to

disambiguate modulations and tonicizations in the following manner:

Secondary functions and tonicizations are heard as short deviations from the well-

grounded key in which they appear—although the boundary between modulation

and tonicization is not clear cut. A modulation unambiguously instigates a shift in

the key center.

This work is also, to the best of my knowledge, the first one where the term local key was

mentioned inMIR research.

Papadopoulos and Peeters (2009) adopted a similar approach to Izmirli (2007) for audio

LKE. Their model attempted to segment the score based on the points of modulation. They

introduced key dependencies on the harmonic and metrical structures of GKE methods, in

order to convert them into LKE ones. The method extended previous work (Papadopoulos

and Peeters 2008), adding a stage of local key estimation using anHMM. The observations of

themodelwere derived fromdifferentkeyprofiles: Krumhansl andKessler (1982), Temperley

(1999), and a flat diatonic key profile (a uniform distribution for diatonic pitch-classes and zero

elsewhere). The system was evaluated with five Mozart piano sonatas, where the local keys

and chords were manually annotated. The maximum accuracy achieved was 80.22%

Rocher et al. (2010) introduced a model that provided duples of (chord, key) for each au-

dio frame of an input excerpt. The model was based on a graph and the best-path estimation
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method. For evaluating key distances, they used the key profiles by Temperley (1999). The

authors alluded to the term modulation when discussing their key predictions.

Mearns, Benetos, and Dixon (2011) used an HMM to estimate modulations over audio

transcriptions of Bach chorales. The HMM was trained with chord progressions. The emis-

sion probability distributions were obtained from two tables with the probabilities of chords

existing in a given key. These tables were based on the work by Schoenberg and Krumhansl.

Tonicizations were not described in these charts, therefore, the authors did not deal with toni-

cizations.

Pauwels and Martens (2014) presented a probabilistic framework for the simultaneous es-

timation of chords and keys in audio. They mentioned the importance of “integrating prior

musical knowledge” into a LKEmodel, however, they did not allude to the terms modulation

and tonicization. The same year, Weiß and Habryka (2014) proposed an audio scale estimator.

They argued that this estimator could help to determine the local tonality based on Gárdonyi’s

scale analysis method. They did not use the term tonicization, however, they discussed “short-

time local modulations”, which resemble tonicizations.

Machine learning approaches, especially using neural networks, have recently gained pop-

ularity inMIR research, includingLKEmodels. Chen and Su (2018, 2019) andMicchi, Gotham,

and Giraud (2020) designed models that estimate local keys as part of their ARNA models.

Tonicization information was implied by the RNA annotations.

We introduced a GKE and LKE model using an HMM (Nápoles López, Arthur, and Fu-

jinaga 2019). The model was capable of working with symbolic and audio data. In that work,

we did not allude to the terms modulation or tonicization when describing the nature of local

keys, however, an experiment on Chopin’s Op. 28 No. 20 revealed that different key profiles

tended to be more or less sensitive to smaller fluctuations of key (e.g., tonicizations). This in-

spired future work on the relationship of local keys, modulations, and tonicizations (Nápoles

López et al. 2020).
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Oneof themost recentmodels for finding changes of key is the one byFeisthauer et al. (2020),

which was designed to detect modulations in Mozart piano sonatas. It used three proximity

measures established frompitch compatibility, tonality anchoring, and tonality proximity. The

model computed the cost of being in a key on a given beat, and estimated the succession of keys

using dynamic programming techniques.

3.3.2 Automatic Chord Recognition

ACR has been explored thoroughly in the field ofMIR. ACR systems usually predict the root

and quality of the chords throughout a piece of music via either an audio or a symbolic repre-

sentation. ACR is arguably one of themost widely explored topics inMIR. In this dissertation,

with an emphasis on RNA, theACRmethods that are directly related to RNAmodels are de-

scribed in Section 3.3.4. For a more historical overview of generalACRmodels, please refer to

the summaries presented by Pauwels et al. (2019) for audio and Ju (2021, 58–88) for symbolic.

3.3.3 Automatic Pitch Spelling

A pitch-spelling model is an algorithm that predicts the original spelling that a note had in

a musical score when only the pitch-class, octave, and duration of the note are provided as

inputs to the model.23

Compared to otherMIR tasks, there are fewer pitch-spelling algorithms available in the

literature. One caveat here is that, because pitch-spelling is an important feature for commer-

cial software dealing with the conversion ofMIDI files into music scores (e.g., music notation

editors), other algorithms may exist among commercial applications. However, I focus on dis-

cussing the published algorithms.

One argument for the relevance of pitch spelling inARNA is that recent models have ben-

efitted from spelling information (Micchi, Gotham, and Giraud 2020). This is feasible forMu-

23. Some researchers have also found helpful to know the voice (or stream, in psychoacoustics) to which the
note belongs (Teodoru and Raphael 2007). However, this information is unavailable in mostMIDI files available
online. Therefore, algorithms of this kind should preferrably not rely on voice information.
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sicXML and similar input representations, but not forMIDI inputs, which arguably account

for the vast majority of the existing digital symbolic music files today. Pitch spelling in parallel

(or as a preprocessing step) to ARNA will thus be a viable approach in future models. This

is also true for implementing ARNAmodels in the audio domain, which will likely deal with

chromagram representations (without spelling).

3.3.3.1 Pitch-Spelling Models

Longuet-Higgins (1976) presented what is probably the first pitch-spelling algorithm, which

was constrained tomonophonic melodies. Longuet-Higgins considered that any note could be

assigned a number, 𝑝, based on 3-variables that related the note with respect tomiddle C: the

distance in perfect fifths, the distance inmajor thirds, and the octave. Using thatmethodology,

Longuet-Higgins extended the notation to add a “sharpness” feature, 𝑞, which was defined

based on the distance in fifths and thirds tomiddle C, regardless of the octave. This “sharpness”

value, in conjunctionwith theMIDInote number, was used to indicate the spelling of the note.

After a gap of around 25 years, a series of new algorithms were developed by different

researchers independently, almost at the same time. Cambouropoulos (2003) presented an

approach that relied on intervals. The algorithm used a shifting overlapping window (sug-

gested to be of 9 to 12 pitches long). The window moved along the sequence of pitches, from

left to right, until the sequence concluded. For each window, the pitch-spelling process op-

timized two aspects: 1) that notes make the minimum use of accidentals (something that

Cambouropoulos referred to as notational parsimony), and 2) the avoidance of 8 classes of

augmented and diminished intervals (something that Cambouropoulos referred to as interval

optimization). The algorithm was evaluated on Mozart piano sonatas and Chopin Waltzes.

The Spiral Array introduced by Chew (2000) in her dissertation was used formultiple tasks

that involved tonal analysis. Namely, chord labeling, key-finding, and pitch-spelling. The Spi-

ral Array is a spatial representation of tonality that allows a sequence of pitches to be positioned

in a—theoretical—tonal space, which facilitates the computation of tonal features in different
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ways. Regarding pitch-spelling, three different algorithms were proposed by Chew and Chen

(2003) that were built on top of each other. In the paper, their evaluation of the algorithms was

restricted to a few movements of Beethoven’s piano sonatas.

Throughout the late 1990s and early 2000s, Temperley developed a series of algorithms for

modelling different aspects of musical structure (i.e., meter, phrasing, counterpoint, harmony,

key, and pitch-spelling). These models were implemented by Daniel Sleator inMelisma and

explained in detail in the book by Temperley (2004). Regarding pitch-spelling, the approach by

Temperley consists of a rule-based system based on his concepts of Tonal Pitch Class (TPC)

and the line of fifths (Temperley 2000). Additionally, the algorithm depended on themetrical

analysis provided byMelisma before extracting the spelling of the notes.

Meredith (2003) introduced an algorithm that received MIDI note numbers and onset

times as ordered pairs and determined the spelling of the notes through two stages. The first

stage consisted of a rule-based system with eight sequential rules. After this stage, a spelling

was already determined. The second stage corrected the outputs of the first stage, taking neigh-

bouring and passing notes into account, which could have been erroneously spelled in the first

stage. In a subsequent study, Meredith (2005) compared its pitch-spelling algorithm against

other pitch spelling algorithms, reporting that his algorithm was more consistent across com-

posers and styles.

Stoddard, Raphael, and Utgoff (2004) proposed a data-driven algorithm for pitch-spelling.

It required ground-truth spelling information in order to be trained. Additionally, the algo-

rithm ran on top of the probabilistic framework for harmonic analysis by Raphael and Stod-

dard (2003), conditioned by the accuracy of that harmonic analysis model. The algorithm

was evaluated over a total of 22,593 notes, scoring 96.87% accuracy. During their study, they

found that the detection and resolution of voice-leading considerations (i.e., the relationship

between a note and its immediate neighbours) was the most important feature to consider in

a pitch-spelling algorithm.
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Teodoru and Raphael (2007) tackled the problem by assuming that the spelling of a note

depended on voice-leading and local harmony. They observed principles for spelling notes in

music theory textbooks (Aldwell and Schachter 1978; Rimsky-Korsakov, Achron, andHopkins

2005) and built a probabilistic model that captured these principles throughMarkov chains. In

their evaluation, they showed that their model outperformed other models, including the one

by Meredith (2006). Nevertheless, an important limitation of their model was that it relied on

voice information being provided as part of the input, which is not the case formostMIDI data

available online and, therefore, limits the practical application of the algorithm. In their study,

they found that LKE is fundamental for pitch spelling. Additionally, they considered that the

relationship between local keys and spelling is bidirectional. That is, spelling can influence

the choice of key as much as the key can influence the choice of spelling.

3.3.4 Automatic Roman Numeral Analysis

RNA refers to the syntax used to annotate chords, which evolved from the sporadic use of

Roman numerals in the late eighteenth century to the complex analysis system used today

(see Chapter 2). In computational contexts, ARNA has been thought, starting with Temper-

ley (1997), as a “chord-finding plus key-finding” problem. In recent years, Chen and Su (2018)

subdivided the problem further into six sub-tasks: chord quality, chord root, local key, inver-

sion, primary degree, and secondary degree. As anMIR problem, ARNA can be expressed

as the task of correctly predicting enough features in order to reconstruct the correct Roman

numeral labels. This problem is challenging for various reasons (see Section 1.2). In the next

section, I present a survey of existing approaches to solve this problem.

3.3.4.1 Roman Numeral Analysis Models

Pioneering Works. The pioneering work in ARNA is the one by Winograd (1968). This

model was evaluated over music by Bach. It required a preliminary, hand-made, representa-

tion of the score as a sequence of four-part perfect chords. This representation was processed
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by a model implemented in the LISt Processor (LISP) programming language. The hand-

made representation required nonchords to be removed before processing the input with the

model, a crucial limitation, because this process was complex and could not be automated. In

addition to this limitation, Temperley (1997) provided insight about other limitations inWino-

grad’s model, for example, its incapacity to deal with arpeggios and contrapuntal textures.

After Winograd, an expert system model was introduced by Maxwell, first in his PhD dis-

sertation (Maxwell 1984), and subsequently in a book chapter (Maxwell 1992, 334–353). This

model is one of the best examples of rule-based systems for MIRs. The model consisted of

fifty five rules that reduced vertical sonorities into chord sequences, and decided the location

of changes of key. Initially, the rules of the system were short and concise:

Perfect and imperfect consonant intervals constitute a consonant interval. Every other

is a dissonant interval.

However, as new rules were introduced, they became increasinglymore complex and cryp-

tic:

If the goal chord falls on a strong beat and it is a major triad or major-minor seventh,

and the root movement from the pre-cadence is an ascending or descending perfect

fifth or major second or a descending minor second, and when the root motion is

a descending fifth, the pre-cadence is not a potential dominant, and when the root

motion is an ascending fifth the pre-cadence is triadic, then the pseudo-cadence is a

half cadence, and its strength increases by 10.

The system was also criticized by Temperley and others for its use of arbitrary or “hard-

coded” values to determine the strength of a cadence. An example shown in the last sentence

of the previous rule.

Regardless of the complex rules, Maxwell’s model provided convincing music-theoretical

outputs when analyzing three movements of the Bach Six French Suites: the sarabande from
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Suite No. 1, the minuet from Suite No. 2 and the gavotte from Suite No. 5. The pieces featured

distinct types of complexities: four-part harmony with several nonchord tones, 2-voice con-

trapuntual textures, and a varying contrapuntual texture, respectively. Unfortunately, because

these are only three musical examples by the same composer, it is unlikely that the system

would generalize to other compositions. Temperley (1997) listed the limitations of Winograd

and Maxwell’s approaches, summarizing them in the following:

• Sequences of notes that are not displayed simultaneously (vertically), as arpeggiations of

chords.

• Missing pitches in the spelling of a full chord that can be deduced from the context.

• Ornamental notes. Maxwell proposes specific rules to deal with these notes, but accord-

ing to Temperley, neither Maxwell’s or Winograd’s are good enough to correctly detect

ornamental notes.

The Melisma Music Analyzer. The first end-to-end ARNA system can be attributed to

the contributions of Temperley, Sleator, and Sapp. First, Temperley (1997) proposed an al-

gorithm to find harmonic roots, which was complemented with preference rules for meter

analysis (Temperley and Sleator 1999) and a key estimation model (Temperley 1999). The

collective algorithms were published by Temperley (2004) and implemented in collaboration

with Sleator as a suite of programs calledMelisma.24 The system operated with intermediate

representations for both inputs and outputs. Sapp filled in the remaining gap with additional

stages that allowedMelisma to digest **kern inputs and generate **harmRNA annotations,

aligning them with the original score. The full end-to-end workflow was facilitated by a pro-

gram called tsroot (Sapp 2009) and used to generate fully automatic RNA labels of the music

scores in the KernScores database (Sapp 2005).

After the first version ofMelisma, which is based on preference rules, Temperley favored

probabilistic models in subsequent work. Notably, Temperley (2009) proposed a Bayesian ap-

24. https://www.link.cs.cmu.edu/music-analysis/
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proach to simultaneously model harmonic analysis, meter induction, and melodic seggrega-

tion. This motivated theMelismaMusic Analyzer (version 2),25 however, this program was not

extended to provide RNA annotations.

Probabilistic andGrammar-BasedModels. Notable subsequent studies include anHMM-

based approach for functional harmony in Raphael and Stoddard (2004), a method based on

dynamic programming in Illescas, Rizo, andQuereda (2007), an application ofpcsets to search

for chord “syntacticality” in Rohrmeier and Cross (2008), grammar-based approaches in Ma-

galhães and Haas (2011), Quick (2016), Harasim, Rohrmeier, and O’Donnell (2018), and Ha-

rasim, O’Donnell, and Rohrmeier (2019), and a generative syntax to parse chord progressions

featuring modulations in Rohrmeier (2011).

Deep LearningModels. More recently, deep neural networks have become the preferred

tool for approaching this problem. Chen and Su (2018) were the first to introduceMultitask

Learning (MTL) (Ruder 2017) to the problem as a suitable way for the neural network to

share representations between related tonal tasks. Chen and Su’s model consists of a bidi-

rectional LSTM (Hochreiter and Schmidhuber 1997) followed by task-specific dense layers,

which implement theMTL aspect. In this work, the authors also introduced the Beethoven

Piano Sonatas (BPS) dataset for evaluating such models. The MTL layout outperformed

single-task configurations and it has continued to prove the best-performing approach in sub-

sequent deep learning studies. In subsequentwork, the same authors have adoptedTransformer-

based networks to deal with functional harmony and ACR (Chen and Su 2019, 2021). The

work with these networks has explored the capability of the attention mechanisms to improve

the performance of ACR, paying special consideration to chord segmentation and its evalua-

tion.

Micchi, Gotham, and Giraud (2020) proposed aDenseNet-like (G. Huang et al. 2017)CNN,

followed by a recurrent component. The recurrent component consists of a bidirectionalGRU

25. http://davidtemperley.com/melisma-v2/
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(Cho et al. 2014) connected to task-specific dense layers, similar to those of Chen and Su (2018).

In their experiments, the DenseNet-like convolutions outperformed dilated convolutions and

a GRU by itself (i.e., with pooling instead of the convolutional blocks). Micchi et al. also

demonstrated the positive effect of using pitch spelling in the inputs and outputs. This pro-

vided at least two advantages: a more informative output (e.g., not only the correct key, but

the correct spelling between two enharmonic keys), and an increased (theoretical) number

of transpositions available for data augmentation. In Micchi et al. (2021), the same architec-

ture was extended to include a Neural Autoregressive Density Estimator (NADE) layer,

which models a dependency between theMTL layers, improving the overall performance of

the network.

McLeod and Rohrmeier (2021) proposed a new network architecture for RNA. In their

work, they depart from the multitask learning approach used by previous researchers, sub-

stituting it with a modular workflow where the different tonal attributes are computed in se-

quential stages of the model.

Around the same time that Micchi et al. (2021) and McLeod and Rohrmeier (2021) have

proposed their models, we have also introduced an earlier version of the neural network pre-

sented in this dissertation (Nápoles López, Gotham, and Fujinaga 2021).

The method in this dissertation follows the line of research based onMTL. This method-

ology is described below.

3.3.4.2 Multitask Learning Approaches

Chen and Su (2018) proposed decomposing anRNA label into a set of multitask classification

problems. Furthermore, these classification problems are solved concurrently using aMTL

configuration. In the initial work by Chen and Su (2018), the MTL configuration is based

on the following tonal features: local key, primary degree, secondary degree, inversion, and

chord quality. This approach has been adopted in other research (Chen and Su 2019; Micchi,

Gotham, and Giraud 2020; Micchi et al. 2021).
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Local Key. The local key describes the reference key used to disambiguate the Roman nu-

meral scale degrees. It is arguably one of themost important features because if it ismislabeled,

then all RNA labels will be mislabeled.

In the initial multitask learning model by Chen and Su (2018), this task had 24 output

classes. Each of the classes represented the pitch class of the tonic, which were encoded twice

to account for major mode keys and minor mode keys.

In a subsequent model by Micchi, Gotham, and Giraud (2020), the number of classes was

extended to 30, as the spelling of the tonic pitch was taken into account (i.e., 𝐶♯ ≠ 𝐷♭major).

Primary Degree. The primary degree of the chord represents the “numerator” part of

a Roman numeral. For example, in the annotation V7∕v, the primary degree is V7. In the

multitask learning model by Chen and Su (2018), this task had 21 classes.

Secondary Degree. The secondary degree represents the “denominator” part of a Roman

numeral label. For example, in the annotation V7∕v, the secondary degree is V. In the multi-

task learning model by Chen and Su (2018), this task had 21 classes. Secondary degrees only

appear in the context of a tonicization. Thus, the majority of the RNA annotations will have

an empty secondary degree, and a special class to denote this empty secondary degree needs to

be included. The scarcity of secondary degrees also results in a highly imbalanced distribution

of examples, which is problematic for training.

Inversion. The inversion of the chord indicates the note acting as the bass of the chord. In

the RNA system, the arrangement of the notes above the bass is irrelevant for the annotation.

For example, the first two chord realizations shown in Figure 3.1 have an equivalent Roman

numeral label, despite the different arrangement of the upper voices. However, modifying

the bass modifies the inversion, regardless of the arrangement of the upper voices remaining

unchanged.

79



Figure 3.1: Example of chord inversions in theRNA syntax. The inversion changes when the bass
changes, regardless of the arrangement of the upper voices.

The inversion task generally requires 4 output classes: root position (no inversion), 1st

inversion, 2nd inversion, and 3rd inversion (only for seventh chords).

Quality. The chord quality task depends greatly on the chord vocabulary. The vocabulary

introduced in Chen and Su (2018) considered 10 classes. The one by Micchi, Gotham, and

Giraud (2020) considered the same number of classes. This classification also suffers from

a large class imbalance, because the vast majority of chords found in tonal music are major

triads.26

Root. The chord root task, as the name implies, predicts the pitch of the chord’s root. In

the multiclass classification problem introduced by Chen and Su (2018), there are 12 possible

chord roots (i.e., as many as pitch classes). In the work byMicchi, Gotham, and Giraud (2020),

this was extended to 35 classes (see Section 5.1.3.1), as spelling was taken into account. The

system was trained to predict any root within two flats and two sharps.

26. See, for example, the distributions of chords in Figure 4.15 or Table 6.13.
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Chapter 4

Data Acquisition and Preparation

This chapter introduces the datasets used for this research, as well as the the data curation and

data-augmentation workflows used to process the data. Section 4.1 describes the general pre-

processing applied to all the datasets utilized, before aggregating them. Section 4.2 introduces

the publicly available datasets that were aggregated. Section 4.3 summarizes the size and Ro-

man Numeral Analysis (RNA) distribution of the aggregated dataset. Section 4.4 describes

the process to partition the dataset into training, validation, and test splits. Section 4.5 intro-

duces the flavors of data augmentation performed to the original data, notably a new method

based on synthesizing musical scores from the RNA annotations.

4.1 General Preparation of the Data

TheAutomatic RomanNumeral Analysis (ARNA) system developed for this dissertation,

AugmentedNet, was trained and evaluated with publicly available digital RNA annotations.

ARNA datasets often differ in their size, format, andmusical genre. One of the main char-

acteristics that distinguishes them from, for example, chord labeling datasets, is that RNA

annotations require a clear indication of the key (see Section 3.3.1). Thus, knowing the key is

a necessity for any dataset to be considered anRNA dataset. Preferrably, a full Roman numeral

annotation in string form, such as the ones described in the digital standards (see Section 3.1.1)
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is provided as well. However, this is not always the case, or the RNA strings in one digital

standard may be incompatible with the ones of another digital standard. For this reason, the

approach taken in this dissertation is to standardize all the annotations based on two pieces of

information: the key provided, and the pcset representation of the chord annotation. This is

achieved through the methodss described in Appendix A.

4.1.1 Standardizing the Annotations

In order to facilitate the aggregation of all datasets,RomanTextwas chosen as the “container”

digital format for all RNA annotations. However, the underlying vocabulary of Roman nu-

merals is the one described in Section A.2,𝒩, which consists of 31 classes of Roman numeral

numerators. This helps to perform the supervised learning workflow in a more controlled

manner during training and evaluation.

RegardingRomanText, there are a fewmotivations for choosing it as the container format

for all annotation files:

1. It is a stand-alone format, which does not require access to the musical score; this is

useful for datasets where the scores were not provided, in which case the annotations

can be aligned with a third-party score.

2. An existing effort has already been done in theWhen inRome (WiR) dataset (Gotham,

Tymoczko, and Cuthbert 2019; Gotham and Jonas 2022) to convert other datasets into

RomanText. Thus, taking advantage of that effort is desirable.

3. The RomanText has been closely integrated to the music21 Python library (Cuthbert

andAriza 2010), which is one of themost advanced software tools for processingmusical

scores, and facilitates the integration of annotations withMusicXML files, which is the

symbolic music format of most digital music scores.

Beyond the conversion to RomanText, one of the challenges of aggregating the different

datasets is that errors are introduced at different stages of the process. Some of the problems
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observed were that: 1) the annotations and scores were misaligned, 2) several chords were

mislabeled (due to errors in the conversion or errors in the annotations themselves), and 3)

the inversions of the chords were incorrectly annotated.

4.1.2 Detecting Errors in the Annotations

The process of inspecting each dataset to ensure that they can be aggregated is very time con-

suming, and generally requires an extensive correction of errors. Performing this work man-

ually is unrealistic, as each of these datasets involves, presumably, hundreds of hours of work

by experts in tonal harmony, which can doubtly be reviewed by a single person.

In order to lessen this effort, I developed a semi-automaticworkflow to identify potential is-

sues with the quality of an annotation file in a dataset. This semi-automatic workflow is based

on detecting three common error patterns. These patterns are based on common corrections

that I needed to perform in the datasets that I initially aggregated manually.

4.1.2.1 Common Error Patterns

Alignment between Scores and Annotations. When the annotations and scores are

not perfectly aligned, this results in a very negative effect, where a model learns the wrong

chord associations for a musical context. I found this one of the most pressing problems to be

addressed when aggregating the available datasets. However, it is also very difficult to detect.

An initial approach is to verify that the duration and numbering of a measure matches

between the annotation and score files. If a measure number changes inconsistently between

the two, this might indicate a misalignment.

Pitch Correspondence between Chord Annotations and Scores. Although the pres-

ence of nonchord tones and absence of chord tones can make it difficult to automatically

detect whether a chord has been mislabeled, there is usually some shared pitch content be-

tween the annotation and the score.
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Whenever the correspondence of the pitch content and the chord annotation is unusually

low, this might be an indication that the chord has been mislabeled. Designing a routine to

compare this pitch correspondence helps detecting such instances (e.g., a C chord has been

mislabeled as a C\ chord, which is unambiguosly incorrect). The most common version of
this problem is an annotator indicating the wrong key at some point of the RNA annotations,

and what follows is that all subsequent chords are relative to the wrong key. This results in an

unusually low pitch correspodence between the annotations and the score.

Correspondence between Lowest-Sounding Note and Bass of the Chord. One of

the most common errors done by harmonic analysis annotators (even if they are experts) is

to mislabel the inversion of the chord. This happens likely because the annotators pay less

attention to this property of the chord than, for example, the root. In certain genres, such

as chorales or string quartets, a higher voice may cross the bass momentarily, confusing the

annotator into thinking that the lowest sounding note of the chord is in the bass voice, when

it is in fact not the case.

These inconsistencies can be verified in a similar way to the pitch correspondence. An

unusually lowmatch between the annotated bass and the lowest note in the scoremay indicate

that the annotator mislabeled the inversion of the chord. Nonetheless, looking for this pattern

will often result in flagging pedal tones as mislabeled inversions, which is not the case.

Software implementations for detecting the three types of errors discussed can be found in

the accompanying source code of the dissertation (see Section 7.3).

4.1.3 Summary of the Preparation

In summary, each of the publicly available datasets was standardized to a reduced vocabu-

lary of Roman numerals. This reduced vocabulary was encoded into a RomanText container

format, that was independent of the score. In order to spot errors and misalignments, three

common error patterns were searched across the pairs ofRomanText andMusicXML scores.
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The files with the highest number of anomalies were reviewed and corrected. This process

was repeated a few times until a satisfactory level of quality was achieved. The next section

describes each of the publicly available datasets that were aggregated in this way.

4.2 Publicly Available Datasets

There are currently, to the best ofmy knowledge, eightRNA datasets: AnnotatedBeethoven

Corpus (ABC), Beethoven Piano Sonatas (BPS), Haydn “Sun” String Quartets, Op. 20

(HaydnSun),HooktheoryLeadSheetDataset (HLSD),KeyModulations andToniciza-

tions (KMT),Mozart Piano Sonatas (MPS), Theme and Variation Encodings with Ro-

manNumerals (TAVERN), andWiR. All butHLSD focusing on music from the common-

practice period and annotated by expert human annotators.1

In this section, I describe the datasets focusing on music from the common-practice pe-

riod, as these can be aggregated into a unified dataset to train a machine learning model.

4.2.1 Annotated Beethoven Corpus (ABC)

TheABC dataset was introduced by Neuwirth et al. (2018). It is a dataset consisting of Roman

numeral annotations for all string quartets by Beethoven, except for Op. 133 (“Große Fuge”),

where the authors claim that contrapuntal principles prevail over harmony. The corpus of

scores was annotated by two of the co-authors (Neuwirth and Moss), each one annotating

half of the dataset and cross-reviewing the other annotator’s work. Both annotators have a

background in Musicology and are experts in tonal harmony.

The dataset comprises sixteen string quartets. These account for 70 music files (i.e., string

quartet movements), 15,806 measures, 240,462 notes, and 27,962 chord labels, according to

the statistical summary presented by the authors.

1. HLSD is a crowdsourced dataset.
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4.2.1.1 Format of ABC

All of the annotations in the ABC dataset are encoded in the Digital and Cognitive Musi-

cology Lab (DCML) standard for RNA (see Section 2.3.1.3).

OriginalAnnotations (Version 1). In the originally published version of the dataset, each

annotation consists of nine parts, which are parsed using regular expressions: 1) key, 2) pedal

note, 3) Roman numeral (numerator), 4) chord quality, 5) numeric inversion, 6) chord alter-

ations (e.g., added notes), 7) Roman numeral (denominator), 8) pedal ending, and 9) phrase

ending.2

Revised Annotations (Version 2). A revision of the DCML standard notation (see Sec-

tion 2.3.1.3) lead to a new version of this dataset in 2021.3 The new version of the dataset, in

addition to the new harmonic analysis standard, introduces corrections in the annotations and

additional files.

4.2.1.2 Summary of the ABC Dataset

According to the count performed in this dissertation, the ABC dataset has a total duration

in quarter notes of 48,034, across 15,746 measures. After preprocessing and preparation, the

ABC dataset contributed 29,427 RNA chord annotations, which have an average harmonic

rhythm of 1.63 Quarter notes ( ˇ “s) notes.
The distribution of the RNA annotations and their inversions are shown in Figure 4.1.

As expected, all of the Cad64 annotations correspond to a “second inversion” position. While

not all of the datasets provide this type of annotation (cadential six-four chords) this dataset

provides nearly 110 examples of them. The ABC dataset is also one of the few datasets (the

others being TAVERN andWiR) that provide examples of III+7 chords, which is one of the

least common types of Roman numeral numerators in the vocabulary.

2. https://github.com/DCMLab/ABC
3. https://github.com/DCMLab/ABC/tree/v2
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Figure 4.1: All the RNA labels taken from the ABC dataset. Each bar indicates the counts of the
Roman numeral class in different inversions.

Figure 4.2: All the keys spanned by the RNA annotations of the ABC dataset. For each key, the
counts indicate which ones correspond to modulations (local key regions) and tonicizations .

Figure 4.2 shows the distribution of the keys in the ABC dataset. The dataset spans a total

of 36 keys out of the 38 in the vocabulary 𝒦 (see Section A.4), making it one of the datasets

with more representation of the keys in the vocabulary. It is only outnumbered by the KMT

andWiR, which span 37 keys each. Most of the keys in ABC lie within the center of the line

of fifths (i.e., few accidentals), as expected. However, there is an unusually large occurrence

of the D\ key. After closer inspection, it seems that this resulted from a mislabeled (long)
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modulation in Op. 131 No. 7 (around measure 119). Thus, the high count of D\ is unjustified
and an example of the second error pattern discussed in Section 4.1.2.1. Errors like this one are

occassional in all of the datasets. The search for the common error paterns helps to identify

them, but it remains to be one of most time-consuming issues to address in the development

of an ARNA system. The visualization of the data, as demonstrated by this example, is also

helpful to find and correct annotation issues.

4.2.2 Beethoven Piano Sonatas (BPS)

The BPS dataset was introduced by Chen and Su (2018). It consists of annotations for all the

first movements of piano sonatas by Beethoven. The annotations were provided by an expert

musicologist, according to the authors. The process for encoding the annotations was divided

in four steps: 1) identify the local key, 2) decide the segmentation of the chords (i.e., where one

chord ends and the next one begins), 3) labeling the chord, taking into account the absence of

chord tones and/or presence of nonchord tones, and 4) specifying the chord inversion. Out

of these steps, the authors mention that step 3 was particularly complicated, because of the

factors that need to be taken into account.

The BPS dataset contains 32 files (i.e., piano sonata movements), 86,950 notes, 7,394 Ro-

man numeral labels, and 531 key modulations.

4.2.2.1 Format of BPS

The annotations of the BPS dataset are provided in a tabular Comma-Separated Values

(CSV) file format. These CSV files contain an offset, in Sixteenth notes ( ˇ “) s) notes from
the beginning of the score, of the location of each chord. The annotations are accompanied by

anotherCSV file containing theMusical InstrumentDigital Interface (MIDI) notes of the

score (in a similar format for the offsets), but not a full symbolic score (e.g., inMusicXML for-

mat). Thus, for this research, it was necessary to find an external collection of musical scores

inMusicXML format to accompany the annotations of this dataset.
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4.2.2.2 Acquiring Matching Symbolic Scores

Two sets of symbolic music encodings were considered as a match for the BPS annotations,

one encoded by the user ClassicMan in the MuseScore community website4 and another one

encoded by Sapp in the **kern format.5

Two encodings of the same score can often feature discrepancies when encoded by differ-

ent persons, in different formats, or converted from one format to another (Nápoles López,

Vigliensoni, and Fujinaga 2018, 2019). I found that to be the case between these two sets of

scores when they were compared with each other.6

In the end, the set by ClassicManwas preferred because the file format did not require any

conversion, and the measure information was more consistent with the annotation files.

4.2.2.3 Summary of the BPS Dataset

According to the count performed in this dissertation, the BPS dataset has a total duration in

quarter notes of 23,540, across 7,080 measures. After preprocessing and preparation, the BPS

dataset contributed 10,584RNA chord annotations, which have an average harmonic rhythm

of 2.22 quarter notes ( ˇ “).
The distribution of theRNA annotations and their inversions are shown in Figure 4.3. The

BPS dataset is one of the two datasets (the other one being HaydnSun) that do not provide

examples of Cad64 chords. It is unlikely that this means there is no presence of them, but

instead that they have been annotated as either I64 or V
6
4. This is one of the reasons why the

Cad64 symbol is useful, because then these chords can be disambiguated.

Figure 4.4 shows the distribution of the keys in theBPS dataset. The dataset spans a total of

34 keys out of the 38 in the vocabulary𝒦 (see Section A.4). The distribution of keys is slightly

skewed towards the “flatter” side of the line of fifths, up to the last key in the vocabulary, B[.
The occurrence of the flatter keys is mostly in the form of tonicizations.

4. https://musescore.com/user/19710/sets/54311
5. https://github.com/craigsapp/beethoven-piano-sonatas
6. https://napulen.github.io/beethoven_piano_sonatas_comparison/
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Figure 4.3: All the RNA labels taken from the BPS dataset. Each bar indicates the counts of the
Roman numeral class in different inversions.

Figure 4.4: All the keys spanned by the RNA annotations of the BPS dataset. For each key, the
counts indicate which ones correspond to modulations (local key regions) and tonicizations .

4.2.3 Haydn ‘‘Sun” String Quartets (HaydnSun)

TheHaydnSun dataset was introduced byNápoles López (2017). It consists of annotations for

every movement in the string quartets Op. 20 by Haydn (commonly known as the “Sun” quar-

tets). The annotations are written on top of the symbolic music scores provided at the Kern-

Scores library (Sapp 2005). The dataset was annotated by Caro Repetto and Nápoles López for
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the first movements of each quartet (6 files), and by Nápoles López for all remaining move-

ments (18 files). The dataset consists of 24 files, 2,921 measures of music, and 5,357 Roman

numeral labels.

4.2.3.1 Format of HaydnSun

The annotations of theHaydnSundataset are provided in the **harm syntax (see Section 2.3.1.1).

This is the same digital format used by the TAVERN dataset and the first end-to-end ARNA

system. In addition to the annotations, a “description” field was included in these files, which

provides descriptions for difficult/ambiguous annotations.

4.2.3.2 Summary of the HaydnSun Dataset

According to the count performed in this dissertation, the HaydnSun dataset has a total du-

ration in quarter notes of 9,095, across 2,921 measures. After preprocessing and preparation,

theHaydnSun dataset contributed 5,357RNA chord annotations, which have an average har-

monic rhythm of 1.7 quarter notes ( ˇ “).
The distribution of the RNA annotations and their inversions are shown in Figure 4.5.

Something surprising among the RNA distribution of this dataset is that all of the It and

Ger7 annotations have been encoded as in “root position,” which is unusual for these types

of chords. It is more likely that this indicates a mistranslation of the annotations for this par-

ticular dataset. Due to the cascading effects that a re-translation of the dataset could have in

other areas of this dissertation (e.g., experimental evaluation), a possible re-translation of the

dataset is left for future work. As long as the annotations are correctly labeling It or Ger7

chords, they will remain useful for classifying the appropriate pcset and key contexts, despite

the inversions being incorrect. Notice also the lack of Cad64 chords in this dataset. This is due

to the lack of aCad64 symbol in the **harm syntax used to encode the dataset. TheCad64 chords

were instead encoded as I64. They are thus undistiguishable from noncadential I64 chords (see

Section 2.3 for further discussion).
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Figure 4.5: All theRNA labels taken from theHaydnSun dataset. Each bar indicates the counts
of the Roman numeral class in different inversions.

Figure 4.6: All the keys spanned by theRNA annotations of theHaydnSun dataset. For each key,
the counts indicate which ones correspond to modulations (local key regions) and tonicizations .

Figure 4.6 shows the distribution of the keys in theHaydnSun dataset. The dataset spans

a total of 31 keys out of the 38 in the vocabulary𝒦 (see Section A.4). The occurrence of keys

around the center of the line of fifths is higher, as expected. The keys on the extremes occur

mostly in the context of tonicizations and for one or two chord annotations, which is consistent

with a brief tonicization throughout a piece of music.
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4.2.4 Key Modulations and Tonicizations (KMT)

The KMT dataset was introduced in Nápoles López et al. (2020). All the labels in the dataset

were obtained from themodulation excerpts of fivemusic theory textbooks: Aldwell, Schachter,

and Cadwallader (2019), S. Kostka and Payne (2008), Reger (1904), Rimski-Korsakov (1886),

and Tchaikovsky (1872).

The dataset contains, in total, 201 excerpts of music with annotated modulations and toni-

cizations. The annotations are encoded in the form of RNA annotations of all the chords in

the dataset.

When the theorists of the original sources provided RNA annotations, those were pre-

served in the digital transcriptions. Otherwise, Nápoles López and Feisthauer provided them.

All the annotations related to modulations were taken exclusively from the textbooks. Toni-

cizations rely on the RNA annotations of the chords and these were not always provided in

the textbooks, therefore, they were often supplied. For some onsets, multiple key annotations

were provided by the theorists. For these excerpts, the authors of the dataset encoded the keys

in chronological order.

4.2.4.1 Format of KMT

The music notation of each file was encoded in theKMT symbolic music representation. The

RNA annotations were digitally encoded as an additional Humdrum spine in the harmalysis

format (see Section 2.3.1.4).

4.2.4.2 Summary of the KMT Dataset

According to the count performed in this dissertation, the KMT dataset has a total duration

in quarter notes of 2,107, across 548measures. After preprocessing and preparation, theKMT

dataset contributed 1,415 RNA chord annotations, which have an average harmonic rhythm

of 1.49 quarter notes ( ˇ “).
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The distribution of the RNA annotations and their inversions are shown in Figure 4.7.

This dataset has the smallestRNA vocabulary among all datasets considered. The majority of

the annotations being I, i, V, and V7 chords. However, there are nearly 50 examples of Cad64

annotations and an unusually large number, nearly 70, of Neapolitan chords, N. Due to the

nature of this dataset, which consists of examples of modulations in music theory textbooks, it

is possible that the focus of the examples has been onmodulations across different keys, rather

than exotic chord progressions. The distribution of keys discussed below supports this idea.

Figure 4.7: All theRNA labels taken from theKMT dataset. Each bar indicates the counts of the
Roman numeral class in different inversions.

Figure 4.8 shows the distribution of the keys in the KMT dataset. The dataset spans a to-

tal of 37 keys out of the 38 in the vocabulary, missing only the occurrence of the key of B[.
Among all datasets, this is perhaps the most interesting in terms of the key distribution. It was

discussed above that the vocabulary of Roman numerals in this dataset was visibly smaller

than all other datasets. The opposite happens with the distribution of keys, especially when

considering the presence of a key in the context of a modulation. This dataset is more uniform

and the use of the vocabulary more extensive. This is probably because the dataset is a com-

pilation of textbook examples of modulations. Particularly, one of the sources of this dataset,

Reger (1904), contains an extensive set of modulations in different, sometimes unusual, keys.

This is reflected in the key vocabulary observed here.
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Figure 4.8: All the keys spanned by the RNA annotations of the KMT dataset. For each key, the
counts indicate which ones correspond to modulations (local key regions) and tonicizations .

4.2.5 Mozart Piano Sonatas (MPS)

TheMPS dataset was introduced by Hentschel, Neuwirth, and Rohrmeier (2021). The dataset

consists of musical scores inMusicXML format, as well as annotations of the harmony and

cadence information. The format of the annotations is similar to the one in the revised (i.e.,

version 2) ABC dataset.

MPS Preprocessing. The scores were preprocessed before aggregated to the dataset.

The first step was to detect collisions in the position of two annotations. Collisions happen

because the “Chord” objects in MuseScore do not encode a position when they are exported to

MusicXML. The location of the annotations is inferred from the surrounding note. However,

in instances where an annotation is added to a longer note (e.g., half way of a whole note), the

position is impossible to retrieve from theMusicXML file. One way to solve this problem is

to create an additional part in MuseScore with a sufficient note/rest onsets to accomodate the

annotation’s location. I processed all the scores that required thismodification (all but 8 scores

in the dataset). This process removed the majority of the collisions, however, a few of them
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persisted. Additional collisions happen when a measure is divided by a repetition bar (e.g., in

anacrusic music). In these instances, the offset of the annotation resets for the portion of the

measure beyond the repetition bar and it collides with the annotations before the repetition

bar. These second round of collisions were removed by removing repetition bars, effectively

avoiding to reset the offset of the annotations within a single measure.

4.2.5.1 Summary of the MPS Dataset

According to the count performed in this dissertation, theMPS dataset has a total duration in

quarter notes of 22,305, across 7,465 measures. After preprocessing and preparation, theMPS

dataset contributed 15,865RNA chord annotations, which have an average harmonic rhythm

of 1.41 quarter notes ( ˇ “).
The distribution of the RNA annotations and their inversions are shown in Figure 4.9.

In this dataset, all occurrences of N chords are in first inversion, which is not the case for

any other dataset. Although this is also the most common occurrence of Neapolitan chords,

so it is consistent with the musical practice of the period. The MPS dataset is also one of

two datasets lacking any examples of III+ chords (the other one being KMT). Unlike KMT,

however, MPS does present examples of V+ chords. This is an interesting case, because a

III+ chord is an enharmonic of a V+ chord in the same key, as both are made of the same

pcset but with different note spellings. For this reason, when designing the vocabulary, I

decided to make III+ an exclusive chord of the minor mode, and V+ an exclusive chord of the

major mode, so both labels can coexist.7 What this indicates here, is that all occurrences of

augmented triads found inMPS occur in a major-key context, which results in onlyV+ labels.

Perhaps this suggests that Mozart only used augmented triads in major keys, although that

musicological claim would require further inspection beyond the scope of this dissertation.

Figure 4.10 shows the distribution of the keys in the MPS dataset. The dataset spans a

total of 26 keys out of the 38 in the vocabulary, making it the dataset with the smallest key

7. See Section A.2 for further discussion on III+ and V+ chords.
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Figure 4.9: All the RNA labels taken from theMPS dataset. Each bar indicates the counts of the
Roman numeral class in different inversions.

Figure 4.10: All the keys spanned by the RNA annotations of theMPS dataset. For each key, the
counts indicate which ones correspond to modulations (local key regions) and tonicizations .

vocabulary, among the datasets presented here. As expected, most of the keys found in this

dataset lie within the center of the line of fifths. The most extreme keys in the dataset are dZ
and F\, both in the context of tonicizations.
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4.2.6 Theme and Variation Encodings with Roman Numerals (TAV-

ERN)

The TAVERN dataset was introduced by Devaney et al. (2015). This dataset consists of RNA

annotations for sets of piano theme and variations by Beethoven and Mozart. The dataset

contains a total of 27 sets of theme and variations, 10 by Mozart and 17 by Beethoven. Unlike

most datasets of this kind, the TAVERN dataset provides two sets of annotations for each

piece. Three experts annotated a set of 18 theme and variations each. Presumably, a set of 9

pieces annotated by annotators 1 and 2, a set of 9 pieces by annotators 2 and 3, and a set of

9 pieces by annotators 1 and 3. The full distribution of the pieces among annotators is not

provided, but the dataset provides both sets of annotations per piece, as well as an integrated

analysis resulting from combining both annotations (and resolving any differences between

annotators). All three annotators were PhD-level music theorists.

The dataset was divided in phrases rather than pieces. Thus, each file in the dataset corre-

sponds to a phrase. The dataset consists of a total of 1,060 phrases.

4.2.6.1 Format of TAVERN

The annotations are provided in the **harm format, which accompanies the **kern encodings

of the musical scores. In addition to the Roman numeral labels, the annotators also included

theTonic, Subdominant, andDominant (TSD) function of each chord in a separate column

of the Humdrum files.8

4.2.6.2 Summary of the TAVERN Dataset

According to the count performed in this dissertation, the TAVERN dataset has a total dura-

tion in quarter notes of 40,899, across 15,534 measures. After preprocessing and preparation,

8. Referred to as spines in the Humdrum format.

98



the TAVERN dataset contributed 24,544RNA chord annotations, which have an average har-

monic rhythm of 1.67 quarter notes ( ˇ “).
The distribution of the RNA annotations and their inversions are shown in Figure 4.11.

The TAVERN dataset is one of the few datasets (the others beingABC andWiR) that provide

examples of III+7 chords, which are the least common type of chord in the vocabulary.

Figure 4.11: All the RNA labels taken from the TAVERN dataset. Each bar indicates the counts
of the Roman numeral class in different inversions.

Figure 4.12: All the keys spanned by theRNA annotations of theTAVERN dataset. For each key,
the counts indicate which ones correspond to modulations (local key regions) and tonicizations .
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Figure 4.12 shows the distribution of the keys in the TAVERN dataset. The dataset spans

a total of 27 keys out of the 38 in the vocabulary 𝒦 (see Section A.4). AfterMPS, it has the

second-smallest key vocabulary among the datasets presented here. The vocabulary is also

slightly skewed towards the “flatter” side of the line of fifths. The “sharpest” key that appears

in a modulation is f\ (3 sharps), whereas the flattest key is CZ (7 flats).

4.2.7 When in Rome (WiR)

The WiR dataset is a growing repository of RNA annotations9 introduced by Gotham, Ty-

moczko, and Cuthbert (2019) and Gotham and Jonas (2022). This dataset consists of original

annotation work as well as conversions of existing datasets. The purpose of the conversions is

to present external digital formats in the RomanText format.

4.2.7.1 Format of WiR

All annotations in the repository are provided in the RomanText format. In cases where the

annotations were converted from an external format (e.g.,DCML’s standard), the conversions

are generally reviewed/corrected according to the conventions of the RomanText format.

4.2.7.2 Converted Corpora

The datasets that have been converted in theWiR dataset include, chronologically,ABC,TAV-

ERN, and HaydnSun. The ABC was converted and manually corrected by Gotham, which

was presented in the firstmention ofWiR (Gotham, Tymoczko, andCuthbert 2019). Similarly,

TAVERN was converted by Gotham and appended to the repository. HaydnSun was con-

verted by Nápoles López, with the purpose of increasing the reach of the annotations among

the users of the RomanText format.
9. https://github.com/MarkGotham/When-in-Rome
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4.2.7.3 Original Corpora

There is a set of analyzed corpora that is exclusive of the WiR dataset. The analyzed cor-

pora were annotated by an extensive group of annotators and compiled into RomanText in

Gotham, Tymoczko, and Cuthbert (2019).

OpenScore Lieder. A collection of annotated 19th-century French and German songs

from the OpenScore corpus in Gotham and Jonas (2022).

Well-TemperedClavier. Thepreludes of thefirst book fromBach’s [The]Well-Tempered

Clavier (WTC).

Bach Chorales. A set of 20 annotated Bach chorales.

Monteverdi Madrigals. The set of Monteverdi madrigals in Books 3 to 5 (48 pieces).

4.2.7.4 Summary of theWiR Dataset

According to the count performed in this dissertation, theWiR dataset has a total duration in

quarter notes of 29,951, across 9,099 measures. After preprocessing and preparation, theWiR

dataset contributed 17,734RNA chord annotations, which have an average harmonic rhythm

of 1.69 quarter notes ( ˇ “).
The distribution of the RNA annotations and their inversions are shown in Figure 4.13.

This dataset is one of the two datasets (the other one being ABC) that provides at least one

example of every Roman numeral class in the vocabulary. In addition to that, theWiR dataset

is the only dataset that provides examples in third inversion of every seventh chord in the

vocabulary, and the only dataset providing examples of any inversions at all in a III+7 chord.

Figure 4.14 shows the distribution of the keys in the WiR dataset. The dataset spans a

total of 37 keys out of the 38 in the vocabulary 𝒦 (see Section A.4). This is as many keys as

KMT andmore than any other dataset. The occurrence of keys around the center of the line of
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Figure 4.13: All theRNA labels taken from theWiR dataset. Each bar indicates the counts of the
Roman numeral class in different inversions.

Figure 4.14: All the keys spanned by the RNA annotations of theWiR dataset. For each key, the
counts indicate which ones correspond to modulations (local key regions) and tonicizations.

fifths is higher and it slowly smooths toward the extremes. The only key of the vocabulary that

is missing from this dataset is b\. The distribution of modulations appears to be less uniform
than inKMT. It is possible that this is because the examples ofWiR are realmusical examples,

instead of textbook examples of modulations.
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4.3 The Aggregated Dataset

The “aggregated” dataset is the resulting collection of datapoints after applying the general

preparation to each of the publicly available datasets described above. When these datasets

are aggregated, the resulting dataset has a total duration in quarter notes of 175,930, across

58,393 measures. In terms of annotations, the aggregated dataset has 104,926 RNA chord

annotations, which have an average harmonic rhythm of 1.68 quarter notes ( ˇ “).
The distribution of the RNA annotations and their inversions are shown in Figure 4.15.

Figure 4.15: All the RNA labels in the aggregated dataset. Each bar indicates the counts of the
Roman numeral class in different inversions.

Figure 4.16 shows the distribution of the keys in the aggregated dataset.

After the data aggregation process, the next step is to split the data into training, validation,

and test sets that can be used to run supervised learning experiments.

4.4 Generating Training, Validation, and Test Splits

In supervised learning machine learning methods, it is customary to evaluate the generaliza-

tion of a model on an unseen portion of data. This is necessary as models tend to overfit on

the data they are trained with.
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Figure 4.16: All the keys spanned in the aggregated dataset. For each key, the counts indicate
which ones correspond to modulations (local key regions) and tonicizations.

Furthermore, there are several ways to designate that portion of unseen data. In this re-

search, I opted for training, validation, and test sets. The training set is the data used for train-

ing the model. The validation set is to verify the generalization of the model while tuning

hyper-parameters, designing the neural network architecture, or making other decisions af-

fecting the model. The test set is an unseen portion of data that remains unused throughout

the entire process of designing model, and it is used once (and only once) to evaluate the gen-

eralization of the final model.

In some datasets, such as BPS, these splits were already provided by other researchers. In

those instances, the splits were respected for direct comparison with their models. When not

specified, the splits were generated randomly, providing around 70% of the data for training,

15% for validation, and 15% for testing.

Once all datasets have been aggregated, standardized, and split into three sets, the dataset

is ready for training the model and running the experiments.

The last step, described in Section 4.5, is to perform data augmentation on the training set.
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4.5 Data Augmentation

The annotations in the aggregated dataset account for nearly 105,000 chords. However, the

chord classes are imbalanced and theremay not be examples of a chord class across all the keys

in the vocabulary. One way to compensate for this is by transposing the training examples to

different keys, which is a popular data-augmentation method in ARNA, Automatic Chord

Recognition (ACR), and Global-Key Estimation (GKE) research. This method is applied

to the aggregated dataset to increase the number of examples and balance the distribution of

chords across all keys.

In addition to transposition, an additional method for data augmentation is proposed,

which consists of generating artificial examples from the chord annotations presented in the

dataset. This method is inspired by pedagogical exercises often found in harmony textbooks.

4.5.1 Synthesis of Artificial Training Examples

In tonal music theory textbooks, exercises like the one shown in Figure 4.17 are common.

Notice that the exercise indicates the key, time signature, duration of the chords (i.e., har-

monic rhythm), and Roman numeral labels. Moreover, no indication of the arrangement of

the chords is given, which is left to the student to decide.

Figure 4.17: Harmony exercise in Hindemith (1943, 7), where a student realizes the chords in-
dicated by the Roman numerals and note durations.

105



The information provided in the exercise is similar to the one contained in a digitizedRNA

file in the RomanText (or similar) format. Thus, an “exercise” can be synthesized from the

annotations and aggregated to the dataset as a new training example for the same set of RNA

annotations. This approach was implemented as a data-augmentation workflow to increase

the number of examples in the training set.

4.5.1.1 Block Chord Sequences

In harmony exercises like the one shown in Figure 4.17, the goal is often to realize the chords

in a four-part harmonization that respects the voice-leading rules explained in the textbook,

as shown in Figure 4.18.

Figure 4.18: A possible solution to the first harmony exercise proposed Figure 4.17.

Although it is possible to algorithmically generate such harmonizations with awareness of

voice-leading rules, this is computationally expensive using a rule-based voice-leading algo-

rithm.10 Moreover, in the neural network architecture of this dissertation, AugmentedNet

(see Chapter 5), the voice-leading information is not taken into account, because the octave of

the notes is not encoded. For that reason, an alternative approach is to synthesize training ex-

amples as simple block chords, such as the ones shown in Figure 4.19. These block chords are

useful because they indicate the notes of the chord and which of those notes is at the bottom

(i.e., the lowest-sounding one).

We introduced a data-augmentation approach of this kind in Nápoles López and Fujinaga

(2020b), where it showed an improved accuracy when predicting the chords in a dataset of

10. https://github.com/napulen/romanyh
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Bach chorales when compared to using only the “real” training set. Nevertheless, in prelimi-

nary experiments with the datasets presented in Section 4.2, this approach was not sufficient

to work with the more complicated textures found, for example, in piano sonatas and string

quartets.

Figure 4.19: Another version of Figure 4.18 with block chords, without any consideration for
voice-leading rules.

A solution to this problem, originally proposed by co-author Gotham in Nápoles López,

Gotham, and Fujinaga (2021) was to texturize the block chords to approximate the textures

found in more complicated music. I approached this solution by implementing texturization

patterns on top of the block chords.

4.5.1.2 Texturization Patterns

The block chords have all a homorhythmic texture. Thus, they lack the textural complexity of

polyphonic or homophonic pieces of music, which are often found in the aggregated dataset.

For this reason, an automatic texturization approach is proposed to process block-chord

annotations, turning them into more realistic data-augmentation examples.

I explored three texturization patterns, which were designed to deal with specific problems

found in the real examples: labeling arpeggios and chords implied in a melodic line, labeling

chords where the bass is played in isolation from the upper notes of the chord, and labeling

chords where the bass is temporally displaced from the location of the chord. The patterns

designed to deal with these problems, respectively, are called the Alberti bass pattern, the bass

split pattern, and the syncopation pattern.

Alberti Bass. This pattern consists of a 4-note melodic pattern with a pitch contour of low-

high-middle-high. It is used to turn block chords into melodic lines. The goal is to occasionally
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play chords using a monophonic texture. Figure 4.20 shows an example of this texturization

pattern.

Figure 4.20: A random texturization of some of the block chords in Figure 4.19 with an Alberti
bass pattern.

Bass Split. This is a pattern where the original chord duration is divided by half, playing

the bass in the first half, and the remaining notes in the second. The goal is to occasionally

separate the bass from all other notes. Figure 4.21 shows an example of this texturization

pattern.

Figure 4.21: A random texturization of some of the block chords in Figure 4.19 with a Bass split
pattern.

Syncopation. This is a pattern where the highest note is played first, followed by the rest

of the notes, played in syncopation. The goal is to occasionally shift the onset of the bass from

the onset of the chord. It is intended to provide the trainable system with examples where

the location of the bass is different from the location of the chord onset. Figure 4.22 shows an

example of this texturization pattern.

Figure 4.22: Arandom texturization of someof the block chords inFigure 4.19with aSyncopation
pattern.
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In the experiments performed in this dissertation, these patterns were applied randomly

and recursively to the annotations. A hypothetical training example synthesized from theHin-

demith annotations is shown in Figure 4.23. This example combines the three patterns.11

Figure 4.23: A synthesized training example from the annotations in the first exercise of Fig-
ure 4.17. The example has been texturized with the three texturization patterns applied randomly.

The results of this data-augmentation technique, applied with and without the use of key

transpositions is discussed in Section 6.2.

As a final note on the data augmentation technique, notice the lack of anynonchord tones

in the synthesis. This was a chosen limitation to keep the complexity of the texturization al-

gorithm low.

11. One of the possibilities is also to leave the block chord unmodified, as depicted in measures 3 and 4 of
Figure 4.23.
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Chapter 5

Model Design

This chapter introduces the design and implementation of the end-to-end system for Auto-

matic Roman Numeral Analysis (ARNA) proposed in this dissertation. The main compo-

nent of this system is a Convolutional Recurrent Neural Network (CRNN) dubbed Aug-

mentedNet, which is designed to provide predictions of different tonal attributes. These pre-

dictions are used to produce the finalARNA annotations. Section 5.1 describes the input of the

system. Section 5.2 describes the convolutional layers of the neural networkmodel. Section 5.3

describes the dense and recurrent layers of the neural network model. Section 5.4 describes

the multitask learning configurations in the output layer of the neural network model. Sec-

tion 5.5 describes the methods to generate the Roman numeral labels from the predictions of

the network.

5.1 Input

The goal of this system is to process any symbolic music files provided as input, annotating

them with Roman numeral labels. In practice, there are a few limitations and constrains re-

garding the input files, which are described in Section 5.1.1. After a score has been imported

into the system, it is divided in sequences of a fixed number of timesteps, with each of those

timesteps sampled at fixed-duration note events. This step is described in Section 5.1.2. The
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sampled scores of fixed number of timesteps are encoded into a set of vector representations,

described in Section 5.1.3. These vector-form representations become the input to the neural

network model.

5.1.1 Importing a Digital Music Score

As mentioned in Section 3.1.1, there are several symbolic music formats, which prioritize dif-

ferent aspects of the musical representation (e.g., engraving, performance, or pitch informa-

tion). When anARNA system is designed, some considerations about symbolicmusic files are

important, such as the support for a given format and/or the quality of conversions. Addition-

ally, some formats (e.g.,Musical Instrument Digital Interface (MIDI)) lack theminimum

information required to encode the representations needed by the neural network.

5.1.1.1 Supported Formats

Unfortunately, aggregating datasets of various symbolic music formats (and annotated by dif-

ferent people) often leads to discrepancies and misrepresentation in digital systems (Nápoles

López, Vigliensoni, and Fujinaga 2018, 2019). In theARNAmodel proposed here, themusic21

Python library (Cuthbert and Ariza 2010) was used to process incoming symbolic music files.

The support for some formats (e.g.,Music Encoding Initiative (MEI)) is currently inade-

quate for guaranteeing that the score representation will be properly imported. Furthermore,

Micchi, Gotham, and Giraud (2020) found that the spelling of the notes was meaningful in

their proposed ARNA machine learning model. We followed a similar approach in Nápoles

López, Gotham, and Fujinaga (2021). Thus, in the proposed system here, pitch spelling is

also an expected property of the inputs. For that reason,MIDI files are not acceptable inputs.

Thus, the allowed inputs are restricted toMusicXML and **kern symbolic music formats.

111



5.1.2 Sampling of the Score

Neural network models often work with a lossy representation of the original input. For ex-

ample, by lowering the original resolution of an image or the sampling rate of an audio file.

This is also the case in symbolic music scores. A symbolic music file often includes char-

acteristics of the music notation, such as articulations, dynamics, tempo, beaming, and stem

directions. However, this information is frequently removed from the encoded representation

sent to a neural network model.1 In the proposed system, the encoding of the score is limited

to fragments of music of fixed length and sampled at regularly-spaced note durations.

5.1.2.1 Note Duration of each Timestep

Following the practice of Micchi, Gotham, and Giraud (2020), the Thirty-second notes ( ˇ “* s)
note was taken as the reference value used to sample the input score. One drawback of this

sampling method and reference value is that most tuplets and notes shorter than a ˇ “* s cannot
be appropriately encoded. These note durations are thus approximated. However, looking at a

distribution of note durations across the dataset, tuplets and duration values shorter than a ˇ “* s
note are rare. The majority of the note durations being Sixteenth notes ( ˇ “) s) notes, as shown
in Figure 5.1.

5.1.2.2 Number of Timesteps

Neural network models, particularlyRecurrent Neural Networks (RNNs) or Transformer-

basedmodels are often used to process sequential information (e.g., timeseries). Symbolicmu-

sic files are naturally sequential data. Although it is possible to deal with sequences of arbitrary

length, it is common to set a fixed number of timesteps in a given sequence. In the architecture

proposed, this is the case, where the fixed length input is set to 640 ˇ “* s note timesteps. That is,
the longest musical encoding that the system can process is 80 ˇ “s notes long (equivalent of 20
1. Notice that this does not necessarily mean that such information is detrimental to the model. Most likely,

the omission of the information is related to lowering the number of trainable parameters in the network, as well
as decreasing the data-curation effort.
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Figure 5.1: Distribution of duration values across the training portion of the aggregated dataset.
The durations are indicated in multiples of aQuarter notes ( ˇ “s) note. Thus, the sampling refer-
ence ˇ “* s note is indicated as a duration of 0.125 ˇ “s notes.

measures in a Common times (Ss) time signature). For scores that are longer, the input is
divided in nonoverlapping sequences of 640 timesteps. For scores that are shorter, the input is

padded with a special symbol after the entire musical content is encoded, in order to meet the

exact length of 640 timesteps.

5.1.3 Encoding the Score

The steps in the previous sections describe the methods to reduce a symbolic music file into a

fixed-length sequence of pitch values. Asmentioned in Section 5.1.2, the score in the symbolic

music file is stripped from some of its original information when it is encoded for the neural

networkmodel. Furthermore, the score is sampled at regular note intervals of ˇ “* s notes, encod-
ing the musical information at each of those timesteps. The encoding dispatched to the neural

network takes the form of three input representations, which are described in Section 5.1.4.

However, these representations require a method to encode pitch spellings and onsets as nu-

merical vectors. Thus, the methods to encode pitch spellings and onsets are introduced here.
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5.1.3.1 Encoding Notes with Spelling

Most tonal music analysis neural network models collapse all enharmonic spellings of the

same note, as shown in Equation 5.1.

F\ = GZ enharmonic equivalence (5.1)

F\ ≠ GZ enharmonic nonequivalence (5.2)

InAugmentedNet, however, the spelling of a pitch is encoded and taken into account, as

shown in Equation 5.2. Two methods are described to encode pitch spellings in this way.

35 One-Hot Encoding. Perhaps the easiest method to encode a pitch spelling is to as-

sume that only a number of accidentals are allowed next to a generic note letter. The use of A

“sharp” accidental (\) and A “flat” accidentals (Zs) accidentals is very common. The use
of A “double-sharp” accidentals (]s) and A “double-flat” accidentals ([s) accidentals is
less common. Any accidental sharper than ]s or flatter than [s is rare. Thus, a reasonable
vocabulary for spelled pitch classes2 is one with 35 classes, from C[ to B], as shown in Equa-
tion 5.3. A “one-hot” encoding of this form means that, at each timestep, only one of the 35

possible classes of pitch spelling will be set as active (i.e., “hot”).

𝒮35 = {C[,D[,E[,F[,G[,A[,B[,
CZ,DZ,EZ,FZ,GZ,AZ,BZ,
C,D,E,F,G,A,B,

C\,D\,E\,F\,G\,A\,B\,
C],D],E],F],G],A],B]}

(5.3)

2. Note that the octave is ignored.
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This method was used in Micchi, Gotham, and Giraud (2020) and Micchi et al. (2021) to

encode the inputs of twoARNAmodels. Using this approach, a 35-dimensional pitch-spelling

vector is encoded every timestep, indicating the active pitch (or pitches, if several) among the

35 available classes. One of the limitations of this method is that it cannot encode any notes

sharper than a ]s or flatter than a [s. Additionally, the resulting vector is almost three times
larger than an encoding based on pitch classes, which only requires 12 classes,3 as shown in

Equation 5.4.

𝒞 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} (5.4)

19Two-HotEncoding. Another encodingmethod, first proposed inNápoles López, Gotham,

and Fujinaga (2021), provides an alternative way to encode pitch spellings. Instead of encod-

ing \ and Zs notes explicitly, it extends the pitch class vector representation, by concurrently
encoding a generic note letter class, as shown in Equation 5.5.

ℒ = {C,D,E,F,G,A,B}

𝒮19 = 𝒞 × ℒ
(5.5)

This encoding method results in duples of the form (𝑐, 𝑙), where 𝑐 ∈ 𝒞 and 𝑙 ∈ ℒ. For

example, C\ is represented by the duple (1,C), whereas DZ is represented by the same pitch
class but a different generic note letter, (1,D). D^has the same generic note letter but a different
pitch class, (2,D), and so on. Using this representation, a spelled note, beyond two flats and

two sharps can be encoded with a 19-feature vector. Notice, however, that this vector is a two-

hot encoding representation. Thismeans that at any given timestep, each pitch spelling will be

encoded as two active classes: one for the pitch class and one for the generic note letter. The

output representations in the Multitask Learning (MTL) configuration (see Section 5.4)

3. When enharmonic equivalence is assumed in a Twelve-Tone Equal Temperament (12-TET) system, a
set of 12 pitch classes spans all the note classes of the Western chromatic scale.
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use the first encoding method. The input representations described in Section 5.1.4 employ

the second encoding method.

5.1.3.2 Encoding Measure, Note, and Chord Onsets

Away to encode onsets is often needed in inputs and outputs of anARNAmodel. For example,

to indicatewhere ameasure, note, or chord begins. In order to encode this kind of information,

the following representation is proposed, with 7 features.

𝒪 = {✓, ˇ “* , ˇ “) , ˇ “( , ˇ “, ˘ “, ¯ } (5.6)

|𝒪| = 7 (5.7)

In this encoding method, ✓ describes an onset, and each of the subsequent classes repre-

sents the time elapsed since the onset, measured in note durations. In the input representation

Onsets14, it is used to encodemeasure and note onsets (see Section 5.1.4.3). In the output rep-

resentationHarmonicRhythm7, it is used to predict the onset ofRomanNumeralAnalysis

(RNA) labels (see Section 5.4.9).

The two methods discussed for encoding pitch spellings and onsets, based on the vocab-

ularies 𝒮19 and 𝒪, respectively, are used in the three input representations dispatched to the

neural network.

5.1.4 Input Representations

Using the fixed-length sequences and the vocabularies of pitch spelling (see Section 5.1.3.1)

and onsets (see Section 5.1.3.2), the score can be encoded into a set of three input representa-

tions, which are dispatched to the trainable layers of the neural network. These input represen-

tations are the lowest-sounding pitch of a timestep (LowestNote19), all-sounding pitches of
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each timestep (Notes19), and the measure-and-note onsets (Onsets14). Each representation

is described below.

5.1.4.1 Lowest Sounding Note

Thefirst input representation,LowestNote19, encodes the lowest-soundingnote at each timestep.

The encoding of pitch spelling is done using the method based on duples of pitch class and

generic note letters, introduced in Section 5.1.3.1. When this encoding strategy is applied, it

results in a two-hot encoded vector like the one shown in Figure 5.2.

Figure 5.2: An encoding of the LowestNote19 representation in Clara Schumann’s Op. 13 No.
2, mm. 1–4.
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5.1.4.2 All Sounding Notes

The second input representation, Notes19, encodes all the sounding notes at each timestep.

In Nápoles López, Gotham, and Fujinaga (2021), we colloquially referred to this represen-

tation as the “spelled chroma” input representation. This is due to its similarity with the

commonly used “chromagram” representation in the audio domain. The main difference be-

ing, beyond operating in the symbolic domain, that chromagram features often ignore note

spellings, whereas here they are taken into account. The encoding of Notes19 is also done

using the pitch-spelling duples discussed in Section 5.1.3.1. However, in this case, the repre-

sentation results in a “multi” two-hot encoding, as each note will result in a two-hot encoding,

but several spelled notes may be encoded per timestep. An example of this encoding is shown

in Figure 5.3.

Figure 5.3: An encoding of the Notes19 representation in Clara Schumann’s Op. 13 No. 2, mm.
1–4.
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5.1.4.3 Measure and Note Onsets

The encoding of pitch information in the LowestNote19 and Notes19 input representations

does not take into account any information about note onsets, measures, or metrical structure.

In order to compensate for that, a third input representation, Onsets14, is introduced to pro-

cess measure and note onsets. The process for encoding the onsets utilizes two 7-dimensional

vectors, one for the onset of measures, and one for the onset of notes (see Section 5.1.3.2).

Figure 5.4 shows an example of the representation.

Figure 5.4: An encoding of theOnsets14 representation in Clara Schumann’s Op. 13 No. 2, mm.
1–4.

After the three input representations are encoded for all the 640 timesteps, the resulting

encoded sequences are dispatched to the trainable layers of the neural network.
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5.2 The Convolutional Blocks

The first trainable layers of the CRNN are the convolutional ones. The network begins by

processing each input representation in its own convolutional block and concatenating the re-

sulting outputs, as shown in Figure 5.5. Each of the convolutional blocks comprises a sequence

of 1D convolutional layers.

Figure 5.5: The “convolutional” part of the network, consisting of three convolutional blocks that
process each of the input representations independently. The outputs of the blocks are later con-
catenated.

5.2.1 1D Convolutional Layers Inside a Block

Each of the previous input representations, LowestNote19,Notes19, and Onsets14 are pro-

cessed by a block of convolutional layers. These convolutional blocks have a similar configu-

ration, as shown in Figure 5.6.

All the layers in the convolutional block are 1D convolutional layers. In this configuration

of the layers, the size of the kernel grows with each layer, whereas the number of filters is

reduced.

5.2.1.1 Kernel Size

In a 1D convolutional layer, the kernel size, 𝑘, generally represents the number of timesteps

in the signal that each filter will multiply at a time. That is, a kernel 𝑘 = 3 will multiply the

signal at the timesteps 𝑡, 𝑡 + 1, and 𝑡 + 2.
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Figure 5.6: The architecture of each convolutional block. The blocks of the LowestNote19 and
Notes19, because they share the same dimensionality, have identical convolutional blocks. The
size of the block for the Onsets14 representation is different, and indicated on the bottom of the
figure.

In the proposed architecture, 𝑘 is doubled for each 1D convolutional layer, as shown in

Equation 5.8:

𝑘𝑛 = 2𝑛 (5.8)

where 𝑛 is the nth 1D convolutional layer. The resulting filters of each layer are concate-

natedwith the ones from the previous layer. Thus, themusical context of the signal is gradually

increased.

5.2.1.2 Number of Filters

In aConvolutional Neural Network (CNN) layer, the number of filters represents the num-

ber of “patterns” that the network will learn from the input. In the visual domain, these pat-
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terns could result in, for example, edge-detection filters. In the musical domain, the possible

patterns are relatedwith combinations of pitch classes, pitch names, and note/measure onsets.

In this architecture, the number of filters is halved for each consecutive 1D convolutional

layer, as shown in Equation 5.9:

𝑓𝑛 = 2𝑁−𝑛 (5.9)

where 𝑁 is the number of 1D convolutional layers and 𝑛 is the nth layer. The network is

allowed to storemore filters (higher𝑓) for short-termpatterns (lower 𝑘) and fewer filters (lower

𝑓) for long-term patterns (higher 𝑘). Preliminary experiments showed that prioritizing short-

term patterns in the CNN layers facilitated the network to learn certain features, such as the

ones related with chord segmentation. Moreover, longer-term patterns benefitted key-finding

tasks, but these are mostly delegated to the RNN layers of the network.

5.2.1.3 Number of Convolutional Layers

TheCNN blocks of the neural network are implementedwith a configurable number of layers,

𝑁, which is provided as a hyperparameter. Initially, this number is set to 𝑁 = 6. With that

configuration, each CNN block is able to process inputs with a context of [𝑡, 𝑡 + 32] for each

timestep 𝑡. That is, at each ˇ “* s note timestep, theCNNwill capture information up to aWhole

notes ( ¯ s) note in the future, prioritzing the patterns learned at the level of the individual ˇ “* s
note timestep.

5.2.2 Merging the Blocks

The size of each convolutional block depends on the number of features of each input ten-

sor. The resulting convolutional block of the LowestNote19 andNotes19 inputs contains 82

features per timestep each, whereas the one in the Onsets14 input contains 77 features per

timestep. Before proceeding to the next layers of the neural network, the tensors of all these
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convolutional blocks are concatenated, resulting in a tensor of 640 timesteps with 241 (i.e.,

82 + 82 + 77) features each, as shown in Figure 5.5.

5.3 Dense and Recurrent Layers

After the convolutional blocks are concatenated, the resulting tensor is processed by a set of

dense layers, and eventually the recurrent layers. Figure 5.7 shows the complete neural net-

work architecture.

Figure 5.7: End-to-End neural network architecture.

5.3.1 Dense Layers

After merging the convolutional blocks, the representation has as many features per timestep

as the sum of number of features of each convolutional block.

Two dense layers are introduced to reduce the dimensionality of each timestep before the

Gated Recurrent Unit (GRU) layers.

The first dense layer has 64 neurons. The second dense layer has 32 neurons.

5.3.2 Recurrent Layers

Following the two dense layers, the representation of the music has a shape of 640x32. That

is, 640 ˇ “* s note timesteps, and 32 features in each timestep. This is the input shape leading to
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the first of two GRU layers. Both GRU layers are bidirectional, introducing 30 features from

beginning to end of the sequence and 30 features from the end-to-begining of the sequence.

5.4 Multitask Learning Outputs

After the recurrent layers, the last component of theCRNN is a set of nine classification tasks,

which are arranged in aMTL configuration. TheMTL configuration is perhaps one of the

main contributions of this dissertation, as it defines the tonal attributes of chords and keys

thatwill be predicted by the network. In previouswork (Nápoles López, Gotham, andFujinaga

2021), we showed that having additional tasks is sometimes beneficial to the performance of

the network, especially in combination with the synthesized training examples described in

Section 4.5.1.

The proposedMTL configuration consists of ninemulticlass classification problems: Bass35,

Tenor35, Alto35, Soprano35, PitchClassSet121, Numerator31, LocalKey38, Toniciza-

tion38, and HarmonicRhythm7. The tasks are codenamed with their number of output

classes appended.4 Each of the output tasks is also tightly coupled with the musical vocab-

ularies and encoding methods introduced throughout the dissertation. More specifically, the

following vocabularies and encoding methods:

𝒮35 The encodingmethod for spelled pitcheswith 35 classes, described in Section 5.1.3.1.

𝒪 The encoding method for onsets with 7 classes, described in Section 5.1.3.2.

𝒫 The vocabulary of 121 pcsets, described in Section A.6.

𝒩 The vocabulary of 31 Roman numeral numerators, described in Section A.2.

𝒦 The vocabulary of 38 keys, described in Section A.4

4. I opted for this naming convention to more easily track the evolution of the multiclass classification prob-
lems. Some of them, such as the PitchClassSet121 or Numerator31 went through various revisions, as the
vocabularies were adjusted during data exploration and experiments. The names, definitions, and number of
classes presented in this dissertation represent the latest definition of these problems.
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Each of these tasks is subsequently used to generate the final RNA annotations in string

form, such as viio7/ii. The process to generate the RNA annotations from the predictions of

the classification tasks will be introduced in Section 5.5.

The first four output representations, Bass35, Tenor35, Alto35, and Soprano35, are all

related to the realization of the annotated chord in a closed-position form. Collectively, I re-

fer to these four classifiers as the SATB35 tasks. Note that these four tasks encode as the target

class a spelled note. However, unlike the LowestNote19 andNotes19 input representations,

the spelled notes in the SATB35 classifiers have been encoded using the 𝒮35 vocabulary, instead

of 𝒮19. This was done in order to use the same loss function (sparse categorical cross entropy)

across all theMTL tasks, which would not be possible for the two-hot encoding required in

𝒮19. Figure 5.8 shows the chord realization of the RNA annotations in the ground truth. The

resulting chords define the target class of each of the four SATB35 classifiers.

Figure 5.8: Example of the SATB35 classifiers, where each classifier learns to predict one of the
four notes in the closed-position form realization of the chord.

5.4.1 Bass35

TheBass35 class represents the chord tone acting as the bass. In the chord realizations shown

in Figure 5.8, it encodes the pitch spelling of the lowest note of each chord. When the CRNN
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is processing new music inputs, the Bass35 classifier will try to predict the lowest note of that

chord realization. The goal is that all of the four SATB35 classifiers predict their corresponding

note correctly. An additional role of the Bass35 classifier is that it determines the inversion

predicted by the ARNA model. If the Bass35 prediction is incorrect, then the inversion will

necessarily be incorrect. Figure 5.9 shows the encoding of the bass according to the realization

shown in Figure 5.8.

Notice also that the bass does not necessarily correspond with the LowestNote19 repre-

sentation encoded in the input. Figure 5.2 is a good example of a situation where they do not

coincide. In the original score, the two-voice pattern of the bass in measures 1 and 2 could

easily persuade the listener to think (or hear) the lower G note as the bass throughout mea-

sure 3, however, it is only the lowest-sounding note during the first eighth note. Thus, it can

simultaneously be the bass of the chord throughout measure 3, but not the lowest-sounding

note.

Figure 5.9: Example of the Bass35 encoding for the chords in Figure 5.8.
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5.4.2 Tenor35

The Tenor35 task is similar to the Bass35 task, except that the target label at a given timestep

is the “tenor” note of the closed-position form chord realization. That is, the second note

from bottom to top. Figure 5.10 shows the encoding of the tenor according to the realization

shown in Figure 5.8.

Figure 5.10: Example of the Tenor35 encoding for the chords in Figure 5.8.

5.4.3 Alto35

The Alto35 task is similar to the Bass35 task, except that the target label at a given timestep

is the “alto” note of the closed-position form chord realization. That is, the third note from

bottom to top. Figure 5.11 shows the encoding of the alto according to the realization shown

in Figure 5.8.
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Figure 5.11: Example of the Alto35 encoding for the chords in Figure 5.8.

5.4.4 Soprano35

TheSoprano35 task is similar to theBass35 task, except that the target label at a given timestep

is the “soprano” note of the closed-position form chord realization. That is, the highest note

of each of the closed-position form chords. Figure 5.12 shows the encoding of the soprano

according to the realization shown in Figure 5.8.

5.4.5 LocalKey38

The LocalKey38 is a classification task that predicts the 𝜅 component of anRNA annotation.

It uses the 𝒦 vocabulary to encode one of the 38 key classes available. In the RNA annota-

tions of the ground truth, a key 𝜅 must be indicated at least once in the piece (generally, at

the beginning of the piece). If there are no modulations, this will be the key throughout for

all timesteps. The LocalKey38 tends to remain unchanged for longer periods of time than

the Tonicization38 task. However, this depends on the specific dataset and the musical con-

128



Figure 5.12: Example of the Soprano35 encoding for the chords in Figure 5.8.

ventions of the annotator. For example, some annotators prefer to annotate long sequences of

tonicizations. The prediction of the LocalKey38 task can be used directly as the 𝜅 component

of theRNA annotation generated by theARNAmodel. This will be discussed in Section 5.5.1.

5.4.6 TonicizationKey38

The Tonicization38 is a classification task that predicts the 𝜏 component of an RNA anno-

tation. In other approaches (Chen and Su 2021; Micchi et al. 2021), this is addressed as a

“secondary degree” task. Nonetheless, here the tonicization is modeled as a key, instead of a

relative scale degree. Using the notation of the Appendix A, what the Tonicization38 task

predicts is the key implied by the tonicization, 𝜏𝜅. The motivation for this departure is the

high class imbalance that exists in predicting secondary degrees. Tonicizations are scarce,

thus, most of the times there will be no tonicization in a given timestep, which tends to be

detrimental for the performance of the model, because the model may learn to predict that

tonicizations never happen. By predicting 𝜏𝜅 instead, the Tonicization38 learns key fluctua-
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tions that are generally shorter than the ones in LocalKey38 task. When generating theRNA

label from the model predictions, 𝜏𝜅 can be easily converted to 𝜏 by encoding the key 𝜏𝜅 as a

scale degree that is relative to 𝜅. Finally, because Tonicization38 is a classification task for

keys, it uses the𝒦 vocabulary, with 38 classes available for the tonicized keys.

5.4.7 PitchClassSet121

The PitchClassSet121 is a classification task that predicts the pcset 𝜌 of anRNA annotation.

Thepcset can also be derived from the SATB35 tasks. However, this approachmay lead to a set

of predictions that do not form a valid pcset 𝜌 ∈ 𝒫. The advantage of the PitchClassSet121

is that it is always bounded to a valid set of pcsets, which is useful as a “fallback” method to

generate a chord annotation that does not rely on other tasks.

5.4.8 Numerator31

TheNumerator31 is a classification task that predicts the numerator 𝜂 of anRNA annotation.

In a similar way than the LocalKey38, theNumerator31 can be used directly to generate the

𝜂 component of anRNA annotation from the predictions of theCRNN. This will be discussed

further in Section 5.5.1.

5.4.9 HarmonicRhythm7

The last classification task is theHarmonicRhythm7. One of themain problems of theMTL

configuration, especially with the larger number of tasks proposed here, is that it is difficult to

infer the segmentation of the chord labels, because the different classifiers may segment the

score differently (e.g., if the PitchClassSet121 predicts a change of chord in timestep 𝑡, but

theNumerator31 does not).

There have beenmultiple solutions proposed to dealwith this problem. Chen and Su (2021)

explored a different neural network architecture and metrics to improve the segmentation.

130



Micchi et al. (2021) proposed a Neural Autoregressive Density Estimator (NADE) layer

to model the interdependency of the different classification tasks. McLeod and Rohrmeier

(2021) andWu et al. (2021) tackled the problem of chord segmentation (or, harmonic rhythm)

by implementing dedicated models.

Here, another multiclass classifcation problem within the MTL layout is proposed in-

stead. This results in an easier implementation, compared to developing a dedicated harmonic

rhythmmodel, and the training can be done jointly with the other tasks in an end-to-end fash-

ion.

The encoding of theHarmonicRhythm7 is based on the method for encoding onsets de-

scribed in Section 5.1.3.2, with a vocabulary of 7 classes. Theway that chord onsets are encoded

is by assigning one of those classes as a chord onset and all others as the “time elapsed since

the last chord”, in a similar way to how it is done in the Onsets14 input representation (see

Section 5.1.4.3). When the HarmonicRhythm7 predicts a chord change at timestep 𝑡, the

predictions of all other classifiers at timestep 𝑡 are used to generate the RNA output label.

5.5 From Output Predictions to Roman Numeral Labels

Although the predictions provided by the CRNN are crucial to determine the RNA labels

generated by the ARNA model, there is another important step left, which is to turn those

predictions into RNA labels.

As mentioned in Section A.1, a Roman numeral label 𝛾 ∈ ℛ could be defined as a string

with four components: a key 𝜅 ∈ 𝒦, a numerator 𝜂 ∈ 𝒩, a tonicization (denominator) 𝜏 ∈ 𝒯,

and an inversion 𝜄 ∈ ℐ, as shown in Equation 5.10. Thus, if those four pieces of information

are known, an RNA label that conforms to this structure can be generated.

𝛾 = 𝜅 ∶ 𝜂𝜄 ∕ 𝜏 (5.10)
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Twomethods are proposed to retrieve these four pieces of information from the predictions

of a machine learning model. The first one, the directmethod, is tightly coupled with the con-

figuration of the CRNN proposed here. Particularly, it benefits from theMTL configuration

and the chosen output tasks. The second method is more generic, as it only requires a pcset

𝜌 and key 𝜅. In the second method, the numerator 𝜂 and tonicization 𝜏 are estimated from 𝜌

and 𝜅. Thus, I refer to the second method as the indirect method.

5.5.1 Direct Method

The direct method consists of using the multiclass classification tasks of the AugmentedNet

to generate the RNA label. The first step is to use the predictions of theHarmonicRhythm7

task to decide the location of the chord onsets. Once the location of timesteps that represent

RNA annotations are known, the next step is to use the predictions of the relevant multitask

classifiers.

The prediction of the LocalKey38 task becomes the key 𝜅.

The prediction of theNumerator31 task becomes the Roman numeral numerator 𝜂.

The prediction of the Tonicization38 becomes the key implied by the tonicization 𝜏𝜅; if

𝜏𝜅 ≠ 𝜅, then it needs to be converted into a scale degree 𝜏 that is relative to key 𝜅.

The inversion 𝜄 requires a slightly more involved process. First, using the other compo-

nents of the RNA annotation, the chord implied by the numerator 𝜂 needs to be converted

into a sequence of notes, arranged in order from the root upwards. Then, retrieving the pre-

diction 𝛽 ∈ 𝒮35 of the Bass35 classifier, the location of 𝛽 is searched within the sequence of

notes of the chord. If the note is found, then the index of the bass 𝛽 in the sequence of notes

is the inversion 𝜄. With these features, an RNA label can be generated, as shown in Equa-

tion 5.11, where 𝛾̂ indicates that the generated RNA label is an automatic prediction from the

ARNA model. This process is repeated for each of the chord onsets predicted by the Har-

monicRhythm7 classifier.
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𝛾̂ = 𝜅 ∶ 𝜂𝜄 ∕ 𝜏 (5.11)

5.5.2 Indirect Method

In the indirect method, instead of retrieving predictions for 𝜂 and 𝜏 directly, these are esti-

mated from a pcset 𝜌 ∈ 𝒫 and key 𝜅 ∈ 𝒦. The estimation is done using a new algorithm

called Numerator and Tonicization Estimation Method (NaTEM). This algorithm provides a

Roman numeral numerator given the pcset and key. In instances where no Roman numeral

numerator is suitable for the pcset and key provided, the algorithm searches for an appropri-

ate tonicization that fits the given tonal context. For example, given the pcset 𝜌 = {2, 6, 9} and

key 𝜅 = C, the algorithm would return a “dominant of the dominant” annotation of the form

V/V. The technical details of theNaTEM algorithm are described in Section A.7. The indirect

method, which is facilitated by theNaTEM algorithm, is useful in several situations:

1. When running an evaluation with severalARNAmodels that have a distinct set of clas-

sification tasks, as in Section 6.4.

2. When several classification tasks need to be combined to retrieve the chord (e.g., the 𝜌

implied by combining the SATB35 classifiers).

3. When there is no information available other than a chord label and a key, which occurs

in some methods.

In this case, theNaTEM algorithm is used to retrieve the numerator 𝜂 and tonicization 𝜏.

The generation of the RNA label is done as shown in Equation 5.12.

𝜂∕𝜏̂ = NaTEM(𝜌, 𝜅)

𝛾̂ = 𝜅 ∶ 𝜂∕𝜏
(5.12)
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Note that the indirect method does not retrieve the inversion 𝜄. If the inversion of the chord

is of interest, there needs to be a classifier for it. The NaTEM algorithm can only be used to

obtain the Roman numeral numerator and tonicization.
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Chapter 6

Experimental Evaluation

This chapter introduces the experiments that evaluate the end-to-end Automatic Roman

Numeral Analysis (ARNA) system proposed here. Section 6.1 introduces a series of abla-

tion studies to assess the contributions of the different components of the neural network.

Section 6.2 describes the effects of the data-augmentation techniques. Section 6.4 describes

the experimental set up to compare the resulting model against previous approaches. Sec-

tion 6.5 presents the results of the evaluation. Section 6.6 discusses the overall observations of

the experiments.

6.1 Ablation Studies

It is difficult to understand what kind of representations a deep learning model learns during

training. Ablation studies are an useful way to inspect the contribution of its different com-

ponents. Ablation studies refer to a concept from neuroscience related to the removal of com-

ponents of an organism (Meyes et al. 2019). When applied to deep learning models, ablation

studies refer to experiments where components of the model are removed or modified. The

purpose of the modifications is to observe the effects in the performance of the model, as well

as to understand the contributions of the different parts of the model. This section introduces

a series of experiments to evaluate the performance of the model after modifying or removing
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some of the components of the neural network. The experiments are divided by sections of the

Convolutional Recurrent Neural Network (CRNN): input representations, convolutional

layers, dense layers, and recurrent layers.

The ablation studies were run over the full aggregated dataset (see Section 4.3) using 5-fold

cross-validation. There was no use of data augmentation, neither in the form of transposition

nor synthetic files, whose effects is evaluated separately in Section 6.2.

6.1.1 Baseline Model

All the ablation studies are compared against a baseline model. The baseline model consists

of the CRNN described in Chapter 5, which comprises three input representations (Lowest-

Note19,Notes19, andOnsets14) described in Section 5.1.3, a block of𝑛 = 6 convolutional lay-

ers described in Section 5.2, two dense layers, and two Recurrent Neural Network (RNN)

layers with Gated Recurrent Unit (GRU) units (see Section 5.3). The baseline model has

9 classification outputs in the Multitask Learning (MTL) layout described in Section 5.4,

however, these remain constant in the ablation studies. The baseline model is shown in Fig-

ure 6.1.

Figure 6.1: The model that is considered the baseline during the ablation studies.
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6.1.2 Changing the Input Representations

The input information provided to the neural network is arguably one of the most important

decisions that needs to be made. In the proposed system, the input consists of three represen-

tations: LowestNote19, Notes19, and Onsets14. Furthermore, the pitch information con-

siders the spelling of the notes, but discards the octave,1 and it is divided in two parts: the bot-

tom note of the timestep (LowestNote19) and the remaining notes of the timestep (Notes19).

The experiment in Section 6.1.2.1 considers the effects of modifying the pitch spelling encod-

ing method. The subsequent experiments consider the effects of removing pitch and onset

information entirely.

6.1.2.1 Encoding Pitch Spelling with an Alternative Method

In Section 5.1.3.1, a newmethod to encode pitch spellingwas proposed using a 19-dimensional

vector. This method was used in the baseline model of the ablation studies to encode the pitch

spelling of the LowestNote19 andNotes19 input representations. The pitch-spelling method

is a replacement of a 35-dimensional vector encoding used by a previous model (Micchi et

al. 2021). The new encoding method, among other things, reduces the number of trainable

parameters. The current ablation study proposes to use the 35-dimensional representation in

Micchi et al. (2021) instead of the method chosen for the baseline. The hypothesis of the ex-

periment is that there will be no noticeable gains in performance by using the 35-dimensional

representation, and that the 19-dimensional one is an adequate replacement. The modifica-

tions proposed are shown in Figure 6.2.

1. This particular aspect, ignoring the octave of a pitch, was not assessed in the ablation studies below. How-
ever, relevant experiments were presented by Micchi, Gotham, and Giraud (2020). In preliminary experiments,
the results obtained for the proposed model were consistent with the previous study. That is, a representation
without pitch height leads to a higher accuracy than a representation with pitch height.
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Figure 6.2: Modification proposed in the first ablation study, where the method in Micchi,
Gotham, andGiraud (2020) is used for encoding pitch spellings, instead of the one in the baseline.
See Section 5.1.3.1 for further details on the difference between the two methods.

6.1.2.2 No Lowest-Sounding Note Information

Intuitively, there is a clear correlation between the lowest sounding note in the musical staff

and the “bass” note of the chord. If a human analyst was required to indicate the inversion of a

chord knowingwhich notes are sounding in the staff, but not knowingwhich of them is sound-

ing the lowest, it would make the task very difficult, if not impossible. The lowest-sounding

note is provided to the network in the LowestNote19 input representation. This ablation

study proposes removing that representation, which should be detrimental to theBass35 clas-

sification task (i.e., predicting the bass of the chord). The Bass35 is the task used to retrieve

the inversion of the chord. The modifications proposed are shown in Figure 6.3.

Figure 6.3: Modification proposed in the second ablation study, where the LowestNote19 input
representation is removed. This is expected to affect the prediction of the inversion.

6.1.2.3 No Upper Notes Information

An analog of the previous experiment would be to guess the chord knowing only the lowest-

sounding note at a given time, but none of the other notes in the staff. The Notes19 input
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representation provides all the note information at a given time, without it, only the lowest-

sounding one is known (which is provided by theLowestNote19 representation). An ablation

study is also proposed to demonstrate the effects of removing the Notes19 input representa-

tion. The hypothesis is that it should be detrimental to tasks related to chords: PitchClass-

Set121, Numerator31, as well as the three upper SATB35 tasks: Soprano35, Alto35, and

Tenor35. Figure 6.4 summarizes the changes to the input representation.

Figure 6.4: Modification proposed in the third ablation study, where theNotes19 representation
is removed. This is expected to affect most tasks in theMTL configuration.

6.1.2.4 No Onset Information

Chords often occur at the beginning of measures. The Onsets14 input representation pro-

vides the networkwith this kind of structural information. Namely, the timesteps where a new

measure starts, and the timesteps where a new note onset starts. This complements the pitch-

related information provided by the other inputs, LowestNote19 and Notes19. An ablation

study is proposed here, where the Onsets14 input representation is removed. The hypoth-

esis is that this will be detrimental to the performance of the CRNN, particularly, the chord

segmentation. The position of the chords is determined from the predictions of theHarmoni-

cRhythm7 task. Thus, losing performance in this task results in worse chord segmentation,

and it is hypothesized that the Onsets14 input is correlated with the performance of Har-

monicRhythm7. The modifications proposed in the ablation study are shown in Figure 6.5.
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Figure 6.5: Modifications proposed in the fourth ablation study, where the Onsets14 input rep-
resentation is removed. This is expected to affect the chord segmentation.

6.1.3 Changing the Convolutional Layers

In the baselinemodel, the convolutional blocks process the three inputs independently, which

are later concatenated. The convolutional blocks for all three inputs are similar: they have the

same number of layers (𝑛 = 6, see Section 5.2.1.3) and use the same strategy to adjust the

kernel size (see Section 5.2.1.1) and number of filters (see Section 5.2.1.2) of each layer. The

structure of these blocks are shown in Figure 6.6.

The experiments in this section explore modifications to the convolutional blocks or the

convolutional layers within. Section 6.1.3.1 explores the performance of the neural network

with a single convolutional block, stacking the three inputs into a single vector before dispatch-

ing them to the convolutional block. Section 6.1.3.2 explores the performance of the neural

network with a constant number of filters in each convolutional layer, testing the hypothesis

that capturing short-term patterns is preferred. The last experiment in Section 6.1.3.3 explores

the effects of removing all convolutional layers (and blocks) entirely.

6.1.3.1 Single Convolutional Block

The number of convolutional blocks is defined by the number of input representations sent

to the neural network. In the baseline model, there are three convolutional blocks, one for

each of the LowestNote19, Notes19, and Onsets14 input representations. An experiment

is proposed to explore the effects of using a unique convolutional block. That is, learning

convolutional filters from all the inputs at once, instead of independently. This is achieved by
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Figure 6.6: The configuration of the convolutional blocks in the baseline CRNN used for the
ablation studies. Note that the blocks processing LowestNote19 and Notes19 are identical in
structure. Thus, two blocks are shown.

concatenating (i.e., stacking) all the inputs into a single vector per timestep, and processing

the resulting sequence with one convolutional block, as shown in Figure 6.7.

Figure 6.7: Modification proposed in the ablation study, where all the input representations are
concatenated and processed by a single convolutional block.

6.1.3.2 Constant Number of Filters

In the baseline model, the number of filters decreases in each layer, while the kernel size in-

creases, as shown in Figure 6.8. An ablation experiment is proposed here, where the number
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of filters across all convolutional layers remains constant, keeping the number of trainable pa-

rameters as close as possible to the baseline. A constant of 𝑓 = 5 was chosen for the number

of filters in the ablation experiment, as this results in a similar number of trainable parameters

as in the variable 𝑓 approach of the baseline.

Using this configuration, the network will learn the same number of patterns at the level

of Thirty-second notes ( ˇ “* s) notes as it does for Whole notes ( ¯ s) notes. In the baseline
configuration, I hypothesize that more patterns in the short-term kernel sizes (e.g., ˇ “* s notes)
are beneficial to the performance of the model. The modifications proposed are shown in

Figure 6.8.

Figure 6.8: Experiment with a constant number of filters in each convolutional layer. The top fig-
ure is from the baselinemodel, with a variable number of filters. The bottom figure is themodified
version. The affected sizes are shown in bold typeface.

142



6.1.3.3 No Convolutional Layers

The number of layers in each convolutional block determine howmuch context is provided to

the Convolutional Neural Network (CNN). It also affects the number of trainable parame-

ters on theCNN part of the network. This experiment explores removing all the convolutional

layers. The modifications proposed are shown in Figure 6.9.

Figure 6.9: Modifications proposed in the seventh ablation study, where all the convolutional
layers have been removed. This is expected to affect the chord segmentation and other “short-
term” musical tasks.

6.1.4 Single Dense Linear Layer

In the baseline model, two dense layers are positioned between the convolutional and recur-

rent layers to reduce the dimensionality of the representation after the convolutional layers.

The two dense layers have a Rectified Linear Unit (ReLU) nonlinear activation function.
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An experiment is proposed to explore the effects of reducing the dimensionality without the

addition of nonlinearities. This is achieved by replacing the two ReLU-activated dense layers

with a single dense linear layer without activation function. The latter exclusively projects the

output of the convolutional layers into a low-dimensionality representation before the recur-

rent layers. Figure 6.10 shows the changes proposed in the experiment.

Figure 6.10: An experiment replacing two nonlinear dense layers with a single linear dense layer.

6.1.5 Changing the Recurrent Layers

The recurrent layers of the network are arguably the most important trainable component of

the CRNN proposed in this dissertation. In the baseline model, two bidirectional recurrent

layers (GRUs) are used. Section 6.1.5.1 explores the removal of both recurrent layers and Sec-

tion 6.1.5.2 explores the effects of using a unidirectional configuration instead of bidirectional.
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6.1.5.1 Removing the Recurrent Layers

The recurrent layers in the baseline model process the full sequence of timesteps (i.e., 640

ˇ “* s notes). Except for the convolutional layers 2–6 (shown in Figure 6.6), all other layers in the
network learn parameters at the level of an individual timestep. Furthermore, the convolu-

tional layer with the longest time window (i.e., kernel size) learns patterns across 32 timesteps

(i.e., a ¯ s note). Any musical patterns that occur beyond a ¯ s note benefit from the recurrent

layers. An ablation experiment is proposed where the two recurrent layers in the baseline

model are removed. This should confirm the effects of losing longer-term dependencies in the

network. For example, affecting the key estimation tasks: LocalKey38 and Tonicization38.

The modifications proposed are shown in Figure 6.11.

Figure 6.11: An ablation experiment where the recurrent layers have been removed entirely, com-
pared to Figure 6.1.

6.1.5.2 Unidirectional Recurrent Layers

In the baselinemodel, a bidirectional recurrent layer is used. Using this configuration doubles

the number of parameters that each recurrent layer needs to learn. An experiment is proposed

to verify the effects of processing the musical only from beginning to end, and not from end to

beginning. The modifications proposed are shown in Figure 6.12.
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Figure 6.12: An experiment replacing the bidirectional recurrent layers with a unidirectional
(left-to-right) configuration.

6.1.6 Summary of the Ablation Studies

Table 6.1: Performance obtained in the ablation studies, compared to the baseline configuration
of the network. The “Baseline” row shows the average accuracy obtained in each task across the
5-fold cross validation. Each row of the ablation studies shows the difference in accuracy between
the value obtained in the experiment and the baseline. The biggest drop in performance for each
task column is highlighted in bold font.

Model A35 B35 HR7 K38 PCS121 N31 S35 T35 KT38
Baseline (𝜇𝜎) 68.12.2 74.52.2 78.90.9 78.83.4 73.51.9 61.32.8 72.31.7 71.32.5 801.8
Pitch spelling 0.0 -0.2 +0.2 -0.1 +0.1 +0.1 +0.1 -0.1 +0.1
No LowestNote19 -13.1 -16.5 0.0 +0.3 +0.3 +0.4 -5.0 -15.4 +0.3
NoNotes19 -11.1 -1.7 -4.7 -6.4 -22.2 -18.2 -16.7 -10.3 -10.0
No Onsets14 -1.4 -2.0 -21.2 +0.6 -1.1 -0.1 -0.8 -1.7 +0.7
Single block -0.3 -0.4 +0.1 -0.4 +0.1 -0.2 0.0 -0.2 0.0
Constant filters -0.3 -0.2 0.0 -0.5 -0.4 -1.0 -0.6 -0.2 -0.3
No convolutional -0.4 -0.3 -0.3 +0.1 0.0 -0.4 -0.1 -0.1 +0.8
Linear dense +0.2 +0.5 +0.4 -0.5 +0.8 +0.3 +0.7 +0.3 +0.1
No recurrent -5.5 -5.0 -7.0 -18.5 -6.0 -10.9 -5.0 -6.2 -12.4
Unidirectional -1.9 -1.1 -0.6 -6.7 -2.7 -5.2 -2.4 -2.0 -5.2

Table 6.1 shows a summary of the performance of the different configurations in the ab-

lation experiments. Some of these results confirm the expected results. For example, remov-

ing the Onsets14 input representation affects theHarmonicRhythm7more than any other

change in the model configuration. This might indicate that measure onsets are important

for a better chord segmentation. Removing the Notes19 input representation has noticeable

effects on the prediction of chords (e.g., PitchClassSet121, Numerator31). Unexpectedly, it

also affects the Soprano35 task more than any other SATB35 task. On the contrary, removing

the LowestNote19 input representation affects the performance of the Tenor35 and Alto35

tasks, in addition to the Bass35, which was the expected outcome.
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Overall, as predicted, the biggest drop in performance happens when the recurrent layers

of the network are removed. The recurrent layers have a notable effect on the “key” tasks:

LocalKey38 and Tonicization38. This supports the hypothesis that a longer musical context

is needed to estimate musical keys, in comparison to estimating chords. It is interesting that

among the chord tasks, however, Numerator31 is the one affected the most by the removal

of the recurrent layers. This might be because Roman numeral numerators are relative to the

key, and thus sensitive to the key context.

In the row of the baseline model, the standard deviation (𝜎) across the 5-fold cross valida-

tion is provided for reference. All the differences in performance highlighted in Table 6.1 are

at least 2 standard deviations below the performance of the baseline. Furthermore, most mod-

ifications in the ablation studies have a negative effect compared to the baseline model, which

is consistent with the observations during preliminary experiments designing the network.

One exception is the use of a linear dense layer, which appears to be slightly above the base-

line in most tasks. In order to explore this further, a subsequent experiment was performed

between the baseline and linear dense variations, adding data augmentation. In that experi-

ment, the advantage of the linear dense variation faded away, with an average drop of −2.7%

across all tasks compared to the baseline. This brings an important point about the ablation

studies presented here, which is that they do not provide information about how the modi-

fications scale with more (or less) data. Thus, they provide hints about the contributions of

the different components of the network using a fixed amount of data. The design of a neural

network architecture is importantly an empirical process, which requires continuous experi-

mentation in different scenarios. For this reason, the baseline model presented in this section

was used in subsequent experiments, as it is the version of the network thatwent throughmore

experiments and datasets of different sizes. Nevertheless, I still consider the ablation studies

interesting, as they permit to confront musical intuitions with the components of the neural

network.

147



6.2 Effects of Data Augmentation

The effects of two data-augmentation techniques were explored: transposition and synthe-

sis. Transposition refers to the transposition of training examples to a different key. Synthe-

sis refers to a new data-augmentation technique where artificial training examples are gen-

erated from the Roman Numeral Analysis (RNA) annotations. Both data-augmentation

techniques are described in Section 4.5. These techniques were applied on the same baseline

model described in the ablation studies (see Section 6.1.1). In the four experiments conducted,

each of the seven individual datasets (see Section 4.2) was used to train the baseline model, as

shown in Table 6.2. The first time, with the original training data. The second time, with the

original training data augmented by transposition. The third time, with the original training

data augmented by synthesis. The fourth time, with the original training data augmented by

both transposition and synthesis. As these two methods are not mutually exclusive, the last

experiment verifies whether they benefit from each other.

Table 6.2: Experiments performed on the baseline regarding data augmentation.

Experiment Data Augmentation Strategy
1 No data augmentation (baseline)
2 Synthesis
3 Transposition
4 Transposition and Synthesis

6.2.1 No Data Augmentation (Baseline)

In the first experiment, the baseline model (see Section 6.1.1) was trained with the origi-

nal training data of each publicly available dataset: Annotated Beethoven Corpus (ABC),

Beethoven Piano Sonatas (BPS), Haydn “Sun” String Quartets, Op. 20 (HaydnSun),

KeyModulations andTonicizations (KMT),Mozart Piano Sonatas (MPS),Theme and

Variation Encodings with Roman Numerals (TAVERN), and When in Rome (WiR).

The full training set of each dataset was used in the experiment, with the reserved test portion
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used to run the evaluation. Table 6.3 shows the number of training examples, test examples,

and the training time of the experiment.

Table 6.3: Parameters of the baseline experiment with no data augmentation.

Dataset Training set Test set Training time
ABC 60 files 10 files 18 min
BPS 25 files 7 files 8.9 min
HaydnSun 20 files 4 files 5.6 min
KMT 159 files 30 files 6.8 min
MPS 46 files 8 files 9.4 min
TAVERN 46 files 8 files 15.7 min
WiR 146 files 27 files 12.8 min

6.2.2 Synthesis

In the second experiment, the data-augmentation technique proposed inNápoles López, Gotham,

and Fujinaga (2021) was applied to the seven training sets. When the synthesis was used in

an experiment, it was used to double the size of the training set: one real example, and one

synthesized from its RNA annotations. Thus, the augmented training set was twice the size

of the original one in the previous experiment. Table 6.4 shows the parameters and training

time of the experiment.

Table 6.4: Parameters of the experiment with data-augmentation by synthesis.

Dataset Augmented training set Test examples Training time
ABC 120 files 10 files 31.9 min
BPS 50 files 7 files 15.9 min
HaydnSun 40 files 4 files 9.0 min
KMT 318 files 30 files 11.3 min
MPS 92 files 8 files 17.9 min
TAVERN 92 files 8 files 29.3 min
WiR 292 files 27 files 26.1 min
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6.2.3 Transposition

In a large number of Music Information Retrieval (MIR) works, transposition has been

used as a data augmentation technique to overcome the scarcity of data. When pitch spelling

is taken into account, it requires the additional consideration that transpositions into two en-

harmonic keys are distinct from each other. This was first investigated in Micchi, Gotham,

and Giraud (2020), where the transposition takes into account the spelling of the notes and

the vocabulary of the key modulations within the piece. The approach here is to make sure

that all transpositions done over a piece result in key modulations and tonicizations that fit

within the vocabulary of keys𝒦 (see Section A.4). Table 6.5 shows the parameters and train-

ing time of this experiment. Note that in two datasets with the same number of files,TAVERN

andMPS, the augmentation resulted in a different number of transpositions. This is related

to the possible number of transpositions where the modulations lie within the vocabulary𝒦.

Table 6.5: Parameters of the experiment with data-augmentation by transposition.

Dataset Augmented training set Test examples Training time
ABC 625 files 10 files 132.0 min
BPS 276 files 7 files 55.4 min
HaydnSun 255 files 4 files 33.3 min
KMT 2134 files 30 files 54.3 min
MPS 612 files 8 files 72.0 min
TAVERN 581 files 8 files 144.0 min
WiR 2035 files 27 files 132.0 min

6.2.4 Synthesis and Transposition

In the fourth experiment, both techniques of synthesis and transposition were applied to the

original training data. This is because the techniques are not mutually exclusive, and they

might achieve a better performance in combination.
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Table 6.6: Parameters of the experiment with data-augmentation by synthesis and transposition.

Dataset Augmented training set Test examples Training time
ABC 1250 files 10 files 294.0 min
BPS 552 files 7 files 126.0 min
HaydnSun 510 files 4 files 72.0 min
KMT 4268 files 30 files 114.0 min
MPS 1224 files 8 files 180.0 min
TAVERN 1162 files 8 files 312.0 min
WiR 4070 files 27 files 294.0 min

6.2.5 Summary of the Effects of Data Augmentation

The results in Figures 6.13 and 6.14 show the summary of the four experiments described

above. All the experiments were run for a fixed number of 200 epochs. The lines shown

correspond to the average validation loss (Figure 6.13) and validation accuracy (Figure 6.14)

achieved at epoch 𝑛 over all seven datasets. The validation accuracy is slightly better in the

experiment where both data-augmentation techniques were included. Table 6.7 supports this

reading of the accuracy plot by showing average accuracy achieved in each dataset by the end

of the experiment.

Figure 6.13: Average validation loss achieved in the four experiments with data augmentation.
The average accuracy value is across the seven datasets at the given epoch.
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Figure 6.14: Average validation accuracy achieved in the four experiments with data augmenta-
tion. The average accuracy value is across the seven datasets at the given epoch.

Table 6.7: Average performance and standard deviation of the four experiments with data aug-
mentation over the seven publicly available datasets.

No augmentation Synthesis Transposition Synthesis and Transposition
ABC 65.27.04 67.27.00 70.76.09 72.25.71
BPS 62.59.25 64.66.62 74.75.89 75.75.70
HaydnSun 54.411.76 59.49.64 68.28.61 68.76.87
KMT 78.86.02 81.66.65 85.35.84 88.73.60
MPS 73.27.52 75.26.86 81.85.90 81.55.89
TAVERN 69.17.55 71.37.66 76.86.07 77.06.44
WiR 69.98.79 71.77.88 78.15.40 78.64.74

Both data augmentation techniques have a positive effect in the performance of the model

compared to only using the original data. Transposition continues to be the most effective

data-augmentation technique on its own, however, the experiments showed that both tech-

niques do not interfere with each other. In fact, the most effective technique was to use both,

transposition and synthetic examples, although the improvement was not extensive and the

training time increased. However, considering the difficulty of obtaining expert-curated data

for ARNA, using both techniques seems to provide a consistent improvement at the expense

of more computation. Thus, in future experiments, the proposed model is trained with both

data augmentation techniques simultaneously.
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6.3 Training on the Aggregated Dataset

Section 6.1 introduced a baseline CRNNmodel and a series of experiments to explore its un-

derlying components. This baselinemodel was subsequently used in Section 6.2 to explore the

effects of data-augmentation techniques when training the model on seven publicly available

datasets. In the experiments of Section 6.2, themodel was trained on each dataset individually.

However, the best performance of a deep learning model is often achieved when more data is

used to train it.

This section reports the results of training theAugmentedNetmodel with the aggregated

dataset, consisting of all the training data across the seven publicly available datasets. Further-

more, the model was evaluated on the test portion of each individual dataset. The results are

reported in Table 6.8. In this experiment, both data-augmentation techniques, transposition

and synthesis, were used in combination.

Table 6.8: Validation accuracy of the model trained with the aggregated dataset. The validation
accuracy is reported in the test set of each dataset and for each of the 9 classification tasks of the
model.

ABC BPS HaydnSun KMT MPS TAVERN WiR
Alto35 68.8 71.7 73.3 91.5 74.7 72.9 77.2
Bass35 74.4 74.5 80.6 91.8 81.8 77.2 82.3
HarmonicRhythm7 80.4 84.5 84.3 92.9 84.4 79.6 83.8
LocalKey38 81.8 81.2 73.6 59.8 90.9 87.5 72.9
PitchClassSet121 75.5 81.8 77.5 94.1 83.9 78.7 80.6
Numerator31 66.8 70.3 63.2 77.0 73.0 70.2 64.6
Soprano35 73.1 77.6 75.4 95.2 80.1 76.8 78.8
Tenor35 71.0 73.9 77.2 92.2 80.8 73.9 78.9
Tonicization38 80.7 85.7 78.8 78.0 90.9 86.2 78.2

6.4 Evaluation against Previous Models

SeveralARNAmodels have been proposed in the past. This section introduces the experimen-

tal set up to compare the proposed model against four previous ones: Melisma, Chen and Su

(2021), Micchi et al. (2021), andMcLeod and Rohrmeier (2021). Whenever a pretrainedmodel
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(or program) was provided, it has been used in the experiments. If no pretrained model was

available, one was trained from scratch using the dataset and hyperparameters of the original

publication. Each of the models required a unique workflow in order to be integrated into the

common evaluation. These methods are described below.

6.4.1 Baseline Models

The first model, Melisma, is a rule-based system that does not require training. The three

remaining models are recent deep learning approaches (Chen and Su 2021; Micchi et al. 2021;

McLeod and Rohrmeier 2021). The models often differ in their input and output representa-

tions. For example, the symbolic music formats they accept as inputs, and the format of their

RNA annotations.

6.4.1.1 Melisma (2003)

A comparison against theMelismamodel is presented for historical reference. Melismawas

arguably the first end-to-end ARNA system that could annotate any arbitrary musical score.

After the development of the tsroot program (Sapp 2009), theMelisma system was capable of

processing music scores in the **kern representation. For example, it was used to annotate

scores in the KernScores library (Sapp 2005). This model, to the best of my knowledge, has

never been evaluated against other methods. Thus, an evaluation is presented here. Because

theMelismamodel only supports **kern inputs, all of theMusicXML examples in the test

set of this evaluation were converted to **kern.

During the first attempt tomake such conversion,manymistranslationswere found among

the files of the test set, which lead to Melisma being unable to process them. In order to

mitigate this problem, theMusicXML files were preprocessed. The preprocessing consisted

of removing all the voice information of the score, by collapsing all the staves and voices in

the score into a single staff with chord blocks and tied notes. This process seemed useful for

all other models as well, thus, the preprocessing step of theMusicXML files was applied to
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the entire test set in all experiments. The preprocessing was facilitated by the chordify()

function of themusic21 Python library (Cuthbert and Ariza 2010).

6.4.1.2 Chen and Su (2021)

Over the years, Chen and Su have proposed three ARNA models (Chen and Su 2018, 2019,

2021). Each of these models improving over the previous one. Thus, the latest model (Chen

and Su 2021) was chosen for comparison. The original publication does not provide a pre-

trained model for this neural network. Thus, one was trained from scratch. The data and

hyperparameters used for training the model was the same as in the original publication. This

model also lacked a code implementation for running it in inference mode (i.e., to predict un-

seen examples). I provided an implementation, which is made publicly available, together

with the resulting pretrained model.2

6.4.1.3 Micchi et al. (2021)

The model introduced in Micchi et al. (2021) is an extension of a previous model, Micchi,

Gotham, and Giraud (2020). The more recent model, with Neural Autoregressive Density

Estimator (NADE) layers was chosen for comparison.

The published model was trained on several of the collections3 introduced in Chapter 4.

A pretrained model was unfortunately not provided by the authors due to copyright reasons.

However, the source code and dataset necessary to train and run the model was provided.

Thus, it was easy to train one from scratch. The outputs of the model were written in the

RomanText format, so no translation was necessary.

In the original publication (Micchi et al. 2021), thismodelwas trained by randomly splitting

the dataset between training and validation portions. In the comparison done here, the model

was trained from scratchwith nearly all of of their dataset used for training, except for 49 pieces

that overlapped with the test set used for this evaluation.

2. https://github.com/napulen/ChenSu21
3. All of them exceptKMT andMPS.
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6.4.1.4 McLeod and Rohrmeier (2021)

McLeod and Rohrmeier (2021) proposed an ARNA model that differs in methodology to the

ones presented in Chen and Su (2021), Micchi et al. (2021), and the approach presented here.

For example, it substituted theMTL configuration with a modular approach based on dedi-

cated models per task. The published model was trained twice with different datasets: a pub-

lic dataset similar to the one in Micchi et al. (2021), and a larger private dataset of their own.

The authors provided source code and pretrained models for both versions of the model. The

output annotations of the model were provided in a tabular Tab-Separated Values (TSV)

format, which comprises chord labels and key annotations. Another output format based on

the Digital and Cognitive Musicology Lab (DCML) standard for RNA annotations (see

Section 2.3.1.3) was made available by the authors, but the tabular TSV format was used in

these experiments. The pretrained model used in this comparison was the one with the best

results according to the publication, using the private dataset.

6.4.2 Experimental Set up

The test set used for the comparison was the same one used in the experiment of Section 6.3.

A total of 94 files were used for testing, which were sampled from the seven publicly available

datasets (see Section 4.2). All of the input files in the test set were provided in theMusicXML

format, and their ground-truth annotations in RomanText. The Melisma model does not

supportMusicXML inputs, in this case, all theMusicXML files were translated into **kern.

Similarly, three models, Melisma, Chen and Su (2021) and McLeod and Rohrmeier (2021),

provided their output annotations in other formats. For these models, the original outputs

were translated into RomanText. All the comparisons were performed between the ground-

truth RomanText in the test set, and each of the RomanText files generated by the models

(either directly or through a translation). All the models were evaluated with the same RNA

vocabulary, which required standardization.
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6.4.2.1 Standardizing the Chord Vocabulary

The vocabulary of each model is different, as shown in Table 6.9. In addition to the differ-

ent qualities of chords supported by each model, the RNA syntax is also often distinct (see

Section 2.3).

Table 6.9: The chord vocabularies of the compared models. C&S21 refers to Chen and Su (2021),
Mi21 to Micchi et al. (2021), and M&R21 to McLeod and Rohrmeier (2021).

Chord Quality Melisma C&S21 Mi21 M&R21 AugmentedNet
Major triad ✓ ✓ ✓ ✓ ✓
Minor triad ✓ ✓ ✓ ✓ ✓
Augmented triad ✓ ✓ ✓ ✓
Diminished triad ✓ ✓ ✓ ✓ ✓
Dominant seventh ✓ ✓ ✓ ✓ ✓
Minor seventh ✓ ✓ ✓ ✓ ✓
Minor major seventh ✓
Major seventh ✓ ✓ ✓ ✓
Augmented major seventh ✓ ✓
Augmented minor seventh ✓
Fully diminished seventh ✓ ✓ ✓ ✓ ✓
Half diminished seventh ✓ ✓ ✓ ✓ ✓
Augmented sixth ✓ ✓ ✓
Augmented sixth (German) ✓
Augmented sixth (French) ✓
Augmented sixth (Italian) ✓

Some of themodels provide two layers of key analysis (AugmentedNet, Micchi et al. 2021;

Chen and Su 2021), whereas others provide only one key prediction (Melisma, McLeod and

Rohrmeier 2021). This difficults a fair comparison between the models. Furthermore, the

models might be in fact able to recognize chords that are not explicitly considered in their

vocabulary. For example, neither theMelisma nor theMcLeod and Rohrmeier (2021) models

explicitly recognize augmented sixth chords. However, a label ofV7may be interpreted as an

augmented sixth chord in a certain key context, even if the predictions of the model do not

indicate it as such.4 This is true for other types of chords too, such asNeapolitan chords. All of

these issues combined were a motivation to propose theNaTEM algorithm (see Section A.7),

4. See the examples in Section A.7 where aV7 chord in one key is the same pcset as aGer7 chord in a different
key.
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which makes it possible to use a common representation for all the annotations of the five

models, regardless of their original syntax. The inputs to the NaTEM algorithm are a pcset

𝜌 ∈ 𝒫 (see Section A.6) and a key 𝜅 ∈ 𝒦 (see Section A.4). Given those inputs, the algorithm

provides one of the 31 numerators 𝜂 ∈ 𝒩 (see Section A.2), and a tonicization 𝜏 ∈ 𝒯, if

necessary. This standardization is also applied to the ground truth annotations, providing the

same RNA vocabulary for all models and ground truth for direct comparison. This process

of running the annotations and the ground truth through theNaTEM algorithm is explained

below.

6.4.2.2 Evaluation Procedure

In order to perform the evaluation, all the annotations in the RomanText files, including the

ground truth, were decomposed into their pcset 𝜌, key 𝜅, and inversion 𝜄 components. The

components 𝜌 and 𝜅 were processed byNaTEM to retrieve a numerator 𝜂 and tonicization 𝜏.

This process is illustrated for a ground-truth example of the test set in Table 6.10. The process

performed on the predictions of each model was identical, using their RomanText files.

Table 6.10: Translation process of the ground-truth annotations in one of the test files of theKMT
dataset. The original annotations (leftmost column) are parsed from a RomanText file, and de-
composed into apcset𝜌, key 𝜅, and inversion 𝜄 components (middle columns). Then, a numerator
𝜂 and tonicization 𝜏 were retrieved fromNaTEM (rightmost columns).

Original annotation pcset (𝜌) Key (𝜅) Inversion (𝜄) NaTEM (𝜂) NaTEM (𝜏)
C:I {0, 4, 7} C 0 I I
V2 {2, 5, 7, 11} C 3 V7 I
I6 {0, 4, 7} C 1 I I
viio6 {2, 5, 11} C 1 viio I
I {0, 4, 7} C 0 I I
Cad64 {0, 4, 7} C 2 I I
V {2, 7, 11} C 0 V I
I {0, 4, 7} C 0 I I
G:viio6 {0, 6, 9} G 1 viio I
viio6/ii {2, 8, 11} G 1 viio ii
ii6 {0, 4, 9} G 1 ii I
V7 {0, 2, 6, 9} G 0 V7 I
I {2, 7, 11} G 0 I I
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Three evaluation experiments were performed. The first one, measuring the time it took

for themodels to generate their chord predictions. Two subsequent experiments evaluated the

performance of the models on their RNA predictions:

1. The models were evaluated in the accuracy of their 𝜌, 𝜅 and 𝜄 components, compared to

the 𝜌, 𝜅 and 𝜄 of the ground-truth.

2. The models were also evaluated using the 𝜂 retrieved from NaTEM, which was com-

pared against the 𝜂 obtained for the ground-truth.

6.5 Results

This section introduces the results of comparing the five ARNA models. Three evaluations

were performed. The first evaluation compared the inference time of the models in the test

set. That is, the time it took for the models to output their predictions. The second evaluation

experiment measured the average accuracy obtained for the “individual tasks” of pcset 𝜌, key

𝜅, and inversion 𝜄, compared to the same labels in the ground-truth. The third evaluation

experiment measured the accuracy of the numerators 𝜂 obtained by the models against the

ground-truth. These numerators refer to the ones retrieved by theNaTEM algorithm.

6.5.1 Time Performance on Inference

The time that each model took to compute its predictions on the test set of 94 MusicXML

files was measured.5 In order to run the measurement, each of the files was processed as an

independent process in the operating system, running the model with the input and output

arguments for the file in turn. For themodels based on deep learning approaches, noGraphics

Processing Unit (GPU) was used to compute the predictions, nor they were processed in

batch. Table 6.11 shows the performance of the models.

5. In the case ofMelisma the time it took to compute its predictions over the set of 94 **kern files.
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Table 6.11: Time elapsed for each model to provide the output predictions on the 94 files of the
test set.

Model Total time Mean SD
Melisma 2.7 min 1.7s 0.8s
Micchi et al. (2021) 18.6 min 11.9s 6.0s
AugmentedNet 22.6 min 14.4s 12.5s
Chen and Su (2021) 26.2 min 16.8s 9.0s
McLeod and Rohrmeier (2021) 183.0 min 116.8s 154.6s

By far, the fastest model isMelisma. This model is a compiled program written in the C

programming language. Thus, as a compiled program, it is intrinsically faster than all other

approaches, which are based on the Python programming language. Out of the deep learning

models, the one in Micchi et al. (2021) seems to be the fastest, followed by AugmentedNet

and Chen and Su (2021). Themodel inMcLeod and Rohrmeier (2021) is the slowest one to run

on rawMusicXML inputs, averaging nearly 2 minutes to annotate each file. It is possible that

one of the drawbacks of the modular approach is that the computations are not run in an end-

to-end fashion as in MTL approaches. However, considering the time it takes for a human

annotator to annotate a long musical score (e.g., piano sonata), any of the models would be

faster than a human annotator.

6.5.2 Accuracy on Individual Tasks

Table 6.12: Comparison of the accuracy achieved by the five models on the individual tasks 𝜌, 𝜅,
and 𝜄.

model pcset (𝜌) Key (𝜅) Inversion (𝜄)
Melisma 54.6 58.2 70.3
McLeod and Rohrmeier (2021) 57.7 51.5 69.3
Chen and Su (2021) 59.8 52.6 70.8
Micchi et al. (2021) 74.7 72.9 82.0
AugmentedNet 79.4 79.4 81.9

The accuracy of the models on the individual tasks of pcset 𝜌, key 𝜅, and inversion 𝜄 is

shown in Table 6.12. In this evaluation,Melisma model seemed to be the worst-performing

model. Surprisingly, the performance of twodeep learning approaches,McLeod andRohrmeier
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(2021) and Chen and Su (2021), was not too far ahead ofMelisma. Given the nature of Ro-

manText files, which have discrete chord annotations located at measure and beat positions,

it is possible that the lower performance shown in thesemodels is heavily penalizing the chord

segmentation of themodels. If the predictions are correct but misaligned with the annotations

of the ground-truth, it is possible that the performance of the models appears to be worse than

it would be perceived in a different evaluation workflow. The Micchi et al. (2021) and Aug-

mentedNet models had a similar performance, with AugmentedNet slightly ahead on the

𝜌 and 𝜅 tasks.

6.5.3 Roman Numeral Accuracy

In the third experiement, the accuracy of the models on the numerator 𝜂 was evaluated. One

of the purposes of theNaTEM algorithmwas to standardize the conditions that lead to a toni-

cization. As long as the key context and pcset are the same between the ground-truth and the

prediction, the Roman numeral numerator 𝜂 and tonicization 𝜏 will be the same. This might

also be useful to help the models recognize chords that do not exist in the vocabulary of their

annotations, such asNeapolitan and augmented sixth chords. For eachmodel, a confusion

matrix is shown with the target chord classes in each row, and the predicted chord classes in

each column.

6.5.3.1 Confusion Matrix for Melisma (2003)

Figure 6.15 shows the confusion matrix for the numerators (𝜂) obtained by the predictions of

theMelismamodel, compared against the ones obtained for the ground-truth. Compared to

other models, Melisma has a very limited chord vocabulary. The model does not explicitly

indicate what is the theoretical vocabulary it supports, however, an inspection of the predic-

tions it generated revealed that it does not support asmany chords as the recentmodels do (see

Table 6.9). This is confirmed in the confusion matrix with the thick vertical lines across the I,

V, and V7 columns, indicating that the model mostly predicts tonic and dominant harmonies
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in most instances. This is often misleading when seen from the point of view of accuracy on

chord recognition, as chords are heavily skewed towards tonic and dominant harmonies. A

model that mostly predicts tonic chords may receive a good global accuracy score, whereas the

confusion matrix is better at demonstrating the real limitations of the model. Nevertheless,

the model seemed to provide some of the difficult annotations correct, such as the iv7.

Figure 6.15: Confusion matrix of the Roman numeral numerators (𝜂) for theMelisma model.
Rows represent the target class and columns the predicted class. Values reported in percentage,
rounded to the closest integer. The color intensity is mapped to the percentage value.
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6.5.3.2 Confusion Matrix for Chen and Su (2021)

Figure 6.16 shows the confusionmatrix for the Chen and Su (2021) model. The model seemed

to have a noticeably larger vocabulary thanMelisma. Although the model did not explicitly

recognize Neapolitan chords, the confusion matrix showed that 43% of the time it was able

to provide the correct tonal context to decode a triad acting as a Neapolitan. This confirms

the utility of the standardization provided by NaTEM. The Chen and Su (2021) model also

seemed to have the highest recognition of some chords, for example, iv7, where the accuracy

is higher than in any other model. Nevertheless, the model seemed to have a strong tendency

to mislabel many chords with V7.

6.5.3.3 Confusion Matrix for Micchi et al. (2021)

Figure 6.17 shows the confusion matrix for the Micchi et al. (2021) model. Among all the

models, the Micchi et al. (2021) had the best recognition of Neapolitan chords, predicting

64.4% of them correctly. The vertical lines on the V and V7 are less prominent than in the

Chen and Su (2021) andMcLeod and Rohrmeier (2021) models, indicating perhaps that when

the model mislabels a chord, it tends to be a distinct chord, rather than the often overused V7

chords, which most models emphasize in their predictions.

6.5.3.4 Confusion Matrix for McLeod and Rohrmeier (2021)

Figure 6.18 shows the confusion matrix for the McLeod and Rohrmeier (2021) model. Below

AugmentedNet, the McLeod and Rohrmeier (2021) seemed to have the best performance

in this evaluation among all other models. Although the performance looks better than the

previous models, it seems that the model did not benefit too much from the standardization

provided byNaTEM. For example, it appears to havemissed all the augmented sixth chords,

except for 1% of the instances where it seemed to recognize a Ger7. Nevertheless, the perfor-

mance on Neapolitan chords was good. This model and Melisma seemed to be the only
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Figure 6.16: Confusion matrix of the Roman numeral numerators (𝜂) for the model in Chen and
Su (2021). Rows represent the target class and columns the predicted class. Values reported in
percentage, rounded to the closest integer. The color intensity is mapped to the percentage value.

ones recognizing i7 chords, a strange situation considering that other forms of minor seventh

chords were recognized by the other models.
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Figure 6.17: Confusion matrix of the Roman numeral numerators (𝜂) for model in Micchi et
al. (2021). Rows represent the target class and columns the predicted class. Values reported in
percentage, rounded to the closest integer. The color intensity is mapped to the percentage value.

6.5.3.5 Confusion Matrix for AugmentedNet

Figure 6.19 shows the confusionmatrix for theAugmentedNetmodel. In this evaluation, the

performance of AugmentedNet seemed to be above all other models. This is an interesting

finding, because the results on the individual tasks shown in Table 6.12 seemed to present
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Figure 6.18: Confusion matrix of the Roman numeral numerators (𝜂) for model in McLeod and
Rohrmeier (2021). Rows represent the target class and columns the predicted class. Values re-
ported in percentage, rounded to the closest integer. The color intensity is mapped to the percent-
age value.

a very similar performance between AugmentedNet and Micchi et al. (2021). However, in

the confusion matrix of numerator predictions, it seems that McLeod and Rohrmeier (2021)

provided a better performance, in general, than Micchi et al. (2021), and also that the gap

betweenAugmentedNet and the othermodels seems larger. This may be an indication of the
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misleading nature of chords. Being heavily skewed towards certain “common” classes (e.g., I,

V, V7) in the musical practice, often the task of evaluating global accuracy does not show the

full picture of which chords are overused by a model.

Figure 6.19: Confusionmatrix of the Roman numeral numerators (𝜂) forAugmentedNet. Rows
represent the target class and columns the predicted class. Values reported in percentage, rounded
to the closest integer. The color intensity is mapped to the percentage value.
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6.5.3.6 Summary of Performance on Difficult Chords

Perhaps, one of the most important aspects ofRNA is that it provides an analytical framework

for special chords, which are usually not considered in chord labels. For example,Neapolitan

or augmented sixth chords.

These chords are extremely difficult to recognize because, in some instances, they occur in

less than 1% of the annotations. Table 6.13 complements the results of the confusion matrices

by comparing the accuracy of each model on each chord class, when the chord classes are

sorted by least occurrence in the test set.

The results of this table are interesting, because it seems that different models succeed and

fail in different sets of chords. For example, one of the most limited models, Melisma, was

nevertheless capable of recognizing 19% of the i7 chords, whereas all the deep learningmodels

except for McLeod and Rohrmeier (2021) struggled to recognize such chords. Out of all the

models, AugmentedNet was the only one able to recognize Fr7 chords, which occur in only

0.03% of the annotations of the test set. Perhaps the reasonwhy themodel was fairly successful

in this chord class is because Fr7 chords have a very specific intervallic structure. They are

not enharmonics to any other chord class, except for another Fr7 chord in a different key.

Thus, the PitchClassSet121 classification task in AugmentedNet was particularly helpful

in recognizing the unique pcset configuration of these chords.

6.6 Discussion

An ARNAmodel is more than a neural network architecture. It should be seen as an end-to-

end model that consists both of machine learning components and musical decisions. When

I started this project, I assumed that the goal was to create a “machine learning model” that

would solve the problem. However, from the beginning, parsing different datasets in different

annotation formats soon made me realize that domain knowledge was necessary to clean the

datasets, standardize their musical assumptions, define the chord vocabulary, and guide the
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Table 6.13: Accuracy performance of the models in all 31 numerator classes, sorted by least oc-
currence in the test set.

Numerator Occurrence (%) Melisma C&S21 Mi21 M&R21 AugmentedNet
III+7 0.02 0 0 0 0 0
Fr7 0.03 0 0 0 0 57.9
III+ 0.04 0 0 4.1 8.3 41.7
i7 0.06 19.0 0 0 23.2 0
I7 0.07 0 0 0 0 0
V+ 0.09 0 12.8 10.6 23.4 40.4
IV7 0.09 0 0 0 0 0
iii7 0.10 5.4 22.2 0 0 3.7
iv7 0.16 33.3 7 20.0 22.2 37.8
vi7 0.19 3.2 29.3 1.0 0 15.6
VI7 0.19 0 0 0 7.7 15.3
It 0.22 0 24.3 0 0 32.4
viiø7 0.25 0 7.3 0 1.5 14.3
Ger7 0.43 0 0 25.7 0.9 44.6
iio 0.47 0.6 14.6 26.0 13.5 35.0
N 0.51 0 43.4 64.2 35.0 32.0
iiø7 0.69 19.1 14.4 6.6 34.2 41.5
iii 0.78 18.7 2.0 27.0 27.8 23.2
ii7 0.91 27.8 37.0 19.1 17.0 41.0
Cad64 1.13 0 0 0 0 6.9
VI 1.40 5.5 1.6 25.0 36.0 47.4
vi 1.82 21.6 28.5 31.2 28.2 35.2
iv 1.88 28.1 29 56.6 37.2 51.4
viio 2.37 5.3 21.9 11.4 25.2 43.8
ii 3.70 27.4 45.5 54.9 33.0 60.3
IV 3.78 28.0 50.5 58.9 26.7 57.0
viio7 5.46 0 50.7 56.8 47.0 71.0
i 10.93 49.4 71.6 78.8 56.0 82.3
V 13.89 37.6 44.9 51.9 56.3 60.9
V7 23.17 43.1 57.9 68.0 55.9 68.6
I 25.18 60.5 75.7 83.1 59.5 84.3

design of the network. This is true for the output of the model as well. For example, determin-

ing the number of classification outputs and how these are defined, the number of key layers

in the musical analysis, or the spelling of certain Roman numerals (e.g., that infamous I64 vs

V6
4). All of these aspects shape the design of an ARNAmodel.
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Out of the ideas explored in the comparison process, theNaTEM algorithm seems partic-

ularly promising to me in future experiments. The design of tonal music analysis models is

open to the interpretation of the researchers implementing them. This makes it very difficult

to compare them. Perhaps the distribution of Table 6.13 summarizes my current thoughts on

the design of theARNAmodels. Even if a model is not competitive in most metrics, it may be

useful in certain situations, or adopt certain design patterns that result beneficial for certain

types of music or certain types of chords. Thus, it is worth the effort to search for tools that

allow these models to “communicate” with each other, and obtain feedback on the things they

do well and do poorly. Taking the performance on the Fr7 as an example, noticing the peculiar

intervallic configuration of the chord and designing a representation that exploits it might be

the difference between recognizing all Fr7 or none.

In order to complement the quantitative results presented in this section, Figure 6.20 shows

a musical excerpt analyzed by the various ARNA systems. For reference, the example also

shows the human annotations (“ground truth”) in the dataset. The key of the excerpt is g,

which all of the models exceptMelisma predict correctly. A brief discussion of the results by

each model is presented below.

Analysis of the Melisma model. In general, theMelisma model seems to present more

flaws than all other ARNA models. The most important one perhaps being mislabelling the

key. After that, it misses the initial annotation of the tonic triad (m.1, beat 1). The model also

has a tendency to provide long streams of chord annotations (e.g., m. 3), which greatly differs

from the harmonic rhythm suggested by the human annotator or the other ARNAmodels.

Analysis of the Chen and Su model. After inspecting the annotations of Melisma, the

Chen and Su (2021) model seems to provide better predictions. Importantly, all but one of

the annotations (the It6 chord on m. 8, beat 2) in Chen and Su (2021) are either a tonic or

dominant chord. This speaks about the bias that exists for the Roman numeral classes that

appear more often in the dataset, as shown in Table 6.13.
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Figure 6.20: Comparison of the annotations provided by a human analyst and various ARNA
models. The musical excerpt is from Haydn’s Op. 20 No. 3 - IV, a piece in theHaydnSun test set.
The annotations from theARNAmodels that differ from the human analyst’s are marked in red.
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Analysis of theMicchi et al. model. TheMicchi et al. (2021) model is less biased towards

tonic and dominant chords. For instance, it recognizes instances of diminished chords (e.g.,

m. 2, beat 3). The model seems to struggle with the chord segmentation, as chords are often in

odd locations. For example, the precipitatedNeapolitan (m. 9, beat 3), or the two tonic triads

in the previousmeasure (m. 8, beat 1). This is perhaps because themusical excerpt features an

anacrusis, whichmakes itmore complicated for themodel to predict the appropriate harmonic

rhythm.

Analysis of theMcLeodandRohrmeiermodel. TheMcLeod andRohrmeier (2021)model

does not seem to suffer from segmentation problems. In general, it also seems fairly similar

to the human annotator. Two drawbacks of this model is that it often predicts the wrong in-

version (e.g., m. 1, beat 3; m. 5, beat 3; and m. 6, beat 3). In addition to this, it is unable to

recognize the Ger7 chord in the musical excerpt (m. 8, beat 2), proposing an annotation of

VI6 instead. The VI6 annotation is a reasonable one when ignoring the C\ in the first violin.
However, this intervallic relationship between EZ4 and C\5 is precisely what characterizes the
augmented sixth chord here. This is perhaps a more subtle criticism, considering that Ger7

chords occur in less than 1% of the annotations, however, one could argue that it is in these

subtleties that an ARNAmodel could appear to be better than others, in the eyes of a human

analyst.

Analysis of the AugmentedNet. The proposed model in this dissertation, Augmented-

Net, provides annotations that are generally similar to the human analysis. Among the points

of discrepancy, the model predicts a diminished triad of a tonicized minor dominant (m. 2,

beat 4.5), which coincides with the chord and inversion appearing in the music score, but that

was not annotated by the human analyst. Another discrepancy is a second instance of the

V7 chord in measure 4, which is considered by the analyst (and the McLeod and Rohrmeier

(2021) model) as a continuation of the chord in measure 3. Lastly, the model (as well as all
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other models) does not predict the VI chord instance expressed by the annotator before the

Neapolitan (m.9, beat 2.5). Yet, most other annotations coincide with the human analysis.

Notice also two errors in the human analysis. The first one, in the i6 label (m. 2, beat

1), where the analyst indicated a first inversion. Nonetheless, because the viola crosses the

violoncello at that point, the chord is in fact in root position. AllARNAmodels unequivocally

get this annotation correct. The second error in the human analysis lies in the inversion of the

Ger7 chord, indicated by the annotator as in “root position.” TheAugmentedNetmodel gets

the annotation in the proper inversion, according to the conventions used in the RomanText

format. This particular set of chords, augmented sixth, are often a source of disagreement

regarding the definition of “root position.” In the RomanText format, used to compare these

annotations, the root of a Ger7 chord is located an augmented fourth above the tonic (i.e.,

C\, in this case). The Micchi et al. (2021) correctly predicts the Ger7 chord, but the inversion
suggests EZ as the bass, which is not the case.

The discussion above regarding the Ger7 chord highlights another issue. Because digital

RNA standards often differ in their digitization approach for certain chords, it is still chal-

lenging to distinguish a model’s misperformance from a mistranslation of the data. In this

dissertation, a meticulous effort was put in the quantitative evaluation and comparison of the

models. However, more involvement from the community is needed here, in the translation

between digital RNA standards. This would result not only in better ARNAmodels, but also

in better evaluations for these models.
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Chapter 7

Conclusions

This chapter presents the closing thoughts of this dissertation. Section 7.1 summarizes the

main points made throughtout the dissertation. Section 7.2 discusses the main contributions.

Section 7.3 describes the code repository accompanying this work aswell as the location of pre-

trained models, data, and experiments to reproduce or extend this work. Section 7.4 discusses

future work.

7.1 Summary of the Dissertation

This dissertation presented an end-to-end system forAutomatic RomanNumeral Analysis

(ARNA). Chapter 1 introduced the problem and the motivation to solve it. RomanNumeral

Analysis (RNA) is a popular analytical system for Western tonal music, which allows ana-

lysts to explain complicated concepts (e.g., chromatic changes of harmony) using a relatively

compact syntax. From an Music Information Retrieval (MIR) perspective, it is also an

interesting problem because it encapsulates the tasks of recognizing chords and keys simulta-

neously. Thus, it provides a framework to design more complex tonal music analysis models

and unified datasets to train and evaluate such models.

Chapter 2 discussed the RNA notation from the music theory perspective. In particular, a

timeline of the evolution of the syntaxwas presented. This timeline scrutinized the use of sym-
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bols and notations over historical textbooks, and how that probably led to the notation used

today. This study linked tightly into the topic of digitization of RNA annotations, where the

conventions and specificities of the notation are crucial to formalize what each of the symbols

means. Several digital formats and their conventions were discussed at the end of this chapter.

Chapter 3 introduced a literature review on various relevant technical topics, such asmusic

representation, deep neural networks, music information retrieval, and computational music

theory. The end of chapter introduced the relevant literature on ARNA and most recent ap-

proaches tackling the problem.

Chapter 4 discussed the datasets used for training and testing the proposed system. The

datasets were provided by different researchers and came in various formats. Thus, this chap-

ter also discussed the challenges in aggregating the datasets, and the process of preparing the

data. Near the end of the chapter, a new data augmentation technique was presented, which

consisted of the synthesis of new training examples.

Chapter 5 discussed the components of the ARNA model. For example, it described the

inputs and outputs, convolutional layers, and recurrent layers of the neural network. Addi-

tionally, this chapter also introduced themethods to turn the predictions of the neural network

into RNA annotations.

Chapter 6 introduced the experiments to evaluate the proposed system. First, a number of

ablation studies were proposed to demonstrate the role of different components of the neural

network in the tasks of theMultitask Learning (MTL) layout. The model was later com-

pared and evaluated against existing approaches forARNA. The comparison considered com-

mon representations of the predicted features across algorithms, as well as the performance

on difficult chords of the RNA vocabulary. Based on those experiments, I concluded that the

proposed model generally provides a better performance than previous approaches on rare

chords of the vocabulary, which makes it more useful for real applications. The last section of

this chapter discussed a real musical example annotated by existing ARNA systems, and the

implications of those analyses.
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7.2 Summary of the Contributions

Throughout the dissertation, various contributions towards ARNA have been made in differ-

ent dimensions of the problem. Chapter 2 presented a historical analysis of the RNA syntax.

Although several accounts of the history of harmony exist,1 most of these do not focus on the

syntax of RNA annotations. The review presented in this dissertation focused solely in the

use of symbols, conventions, and specificities of the RNA notation that were relevant for its

digitization and standardization.

Chapter 4 documented the aggregation process of the, to the best of my knowledge, largest

publicly available dataset ofARNA labels. The process to overcome the alignment between an-

notations and scores was discussed through the use of quantitive metrics and other resources

that facilitate the aggregation of the data. Furthermore, in the upcoming Section 7.3.3 of this

chapter, the preprocessed data is made publicly available for other researchers whomay be in-

terested in using it. The distributed dataset includes the explicit training, validation, and test

splits used for the experiments conducted in this dissertation. Lastly, in the context of data

augmentation, a new technique2 based on the synthesis of training examples was presented in

Section 4.5.1. Although less impactful than themore commonly used transposition, it presents

the advantage that both can be used in combination, increasing the performance obtained by

the network on the same dataset with both techniques in combination.

Chapter 5 described a novel neural network architecture for ARNA. The architecture is

based on a previous version presented in Nápoles López, Gotham, and Fujinaga (2021), how-

ever, the structure of theMTL configuration presented here shows several improvements. Un-

like other models, a set of tasks that has a more balanced distribution of target classes was pro-

posed for different components. For example, rather than predicting chord qualities, which

were heavily skewed towards major and dominant seventh examples in the dataset, chords are

1. See, for example, Wason (1985), Grave and Grave (1988), Hyer (2002), Laitz and Barlette (2010), or Sansa
Llovich (2013).
2. First introduced in Nápoles López, Gotham, and Fujinaga (2021).
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modeled by predicting four note classification tasks.3 Each of these tasks represent a note in

a closed-position form representation of the annotated chord. This is an equivalent task to

predicting the notes that conform the chord, instead of the chord itself, which leads to a more

balanced distribution of the target classes in a supervised learning scenario. Other contribu-

tions of the model include the use of a PitchClassSet121 task, which summarizes the chord

vocabulary of the system, aHarmonicRhythm7 task based on 7 classes of outputs, and a vo-

cabulary of 31 Roman numeral numerators,Numerator31. The input representations sent to

the neural network also present contributions. For example, the Onsets14 encoding of note

andmeasure onsets improved the segmentation of the chords in the ablation studies shown in

Section 6.1.6. The alternative representation of pitch spelling described in Section 5.1.3.1 was

also shown to be an adequate subtitute for the more common representation 𝒮35, reducing the

number of training parameters in theConvolutional RecurrentNeuralNetwork (CRNN).

Chapter 6 introduced contributions regarding the evaluation of an ARNA system. For

example, the performance on rare chords was discussed among recent approaches in Sec-

tion 6.5.3. This form of evaluation revealed that some of the chords have a tiny representation

in the dataset, however, represent the chords and tonal situations that most often benefit from

theRNA notation. In this respect, one of the contributions is to propose a system that can im-

prove on such difficult cases, and to indicate to other researchers that methods for evaluating

these rare occurrences of chords are needed in the future.

Lastly, the source code of the model, experiment logs, and general documentation of the

software is offered as a contribution to future researchers in the field. These contributions are

discussed in the next sections of this chapter.

3. Referred throughout the dissertation as the SATB35 tasks.
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7.3 Source Code and Reproducibility

The end-to-end system presented in this dissertation has been implemented as a software

project in the Python programming language (Rossum et al. 2007). The code is publicly avail-

able on GitHub and it has been thoroughly version controlled and tested. The project’s repos-

itory informally started in November 2020 and went through continuous revisions until the

version presented in this dissertation.

Section 7.3.1 documents the releases of the project since 2020. These changes are often re-

lated to bug fixes, unit tests, and general software implementation. However, they also refer to

the implementation of intellectual contributions highlighted in this dissertation. For example,

v1.6.0 introduced the Onsets14 representation discussed in Section 5.1.4.3.

7.3.1 Releases

A comprehensive list of the releases of the system proposed in this dissertation is presented

below. The tagged releases are ordered chronologically, with a brief description of the changes

they introduce. Some of the tagged releases were left out for brevity.

First Commit - February 12, 2021 This is the date of the initial commit of the project, with

the commit identifier f721860.

v0.0.1 - April 12, 2021 Initial tagged version of the software. Unstable. Closed source. In-

troduced the basic workflow for pairing annotation and scores into a tabular format.

v0.1.0 - May 14, 2021 This is the commit version accompanying the paper submission to the

International Society for Music Information Retrieval (ISMIR) 2021 Conference. The

code is not considered to be in a state of “production,” but it produces the final results in the

submitted paper. The code continues to be closed source for double-blind review purposes.
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v1.0.0 - August 5, 2021 The published version of the AugmentedNet network in Nápoles

López, Gotham, and Fujinaga (2021). This is the version of the code used for all the revised

experiments in the camera-ready paper. Accompanying this release are the experiment logs,

preprocessed data, and data splits of the paper. One (and maybe the only) substantial differ-

ence between the architecture submitted in the initial ISMIR submission and v1.0.0, is the

use of rmsprop as the optimizer, instead of Adam (Kingma and Ba 2014).

v1.1.0 - February 3, 2022 This version introduced the HarmonicRhythm7 output task as

a substitute of a previous binary classifier, which was similar to the one used in Chen and Su

(2021). This addresses the class imbalance in the previous version of the task, which leads

into a better chord segmentation. The four SATB35 tasks were also added to the architecture

in this version.

v1.2.0 - February 5, 2022 Turned the SATB35 tasks into the default ones computed by the

network. These tasks are also used to compute the chords in the final RNA outputs of the

model.

v1.2.2 - February 5, 2022 The output RNA annotations produced by the system are recon-

structed from the SATB35 tasks by default. The README file was updated with instructions for

inference and training. A Jupyter notebook (Kluyver et al. 2016) to run an inference demo was

included. Lastly, an updated version of the dataset with the new output representations was

distributed.

v1.2.3 - February 14, 2022 Introduced the “key distance” algorithm (see Section A.7.2). This

algorithm is used to find the closest key to a given key, which is useful to force tonicizations

when a chord does not exist in the vocabulary.

v1.2.4 - February 14, 2022 Extended the vocabulary of PitchClassSets to 121 classes. The

resulting taskPitchClassSet121has amore robust vocabulary than the previous version based
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on 94 classes. This means that v1.2.4 is backwards-incompatible with models trained on

previous versions.

v1.3.0 - February 14, 2022 Replacing the use of the romanNumeralFromChord() function of

the music21 (Cuthbert and Ariza 2010) library with Roman numerals from the custom chord

vocabulary. Using the chord vocabulary facilitates the standardization of the chord names.

The vocabulary is implemented to standardize both the training annotations that enter the

system, and the output annotations generated in inference mode.

v1.3.1 - February 14, 2022 Fixing unit tests to work with the pretrained model of v1.3.0.

Fine-tuning the chord vocabulary and improving the implementation of the algorithm to force

tonicizations (see Section A.7.2).

v1.3.3 - February 14, 2022 The transposition algorithm for data augmentation is now based

on tonicizations rather thanmodulations. Forcing all iio7 annotations to be interpreted as iiø7.

Collapsing other annotations, such as i54 into the closest chord in the vocabulary using cosine

similarity.

v1.4.4 - February 21, 2022 Extending the vocabulary of keys from 35 to 38 clases. The new

vocabulary spans the keys [B[/,D\]∪ [gZ, b\]. Additionally, the translation of Romannumeral
labels before training was improved.

v1.5.0 - March 13, 2022 Padding the fixed-length inputs with a special token rather than a

value of zero. This makes it possible to distinguish between “rest” and “padding.” Added an

additional option for texturizing the synthetic examples at each transposition (as opposed to

one texturization per training file).
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v1.5.1 -March 26, 2022 This version removed the dropout layers (Dahl, Sainath, andHinton

2013) that were originally part of the architecture. It was discovered that these layers were

detrimental for theHarmonicRhythm7 task.

v1.6.0 - June 13, 2022 This version introduced the new input representationOnsets14. This

input representation encodes the measure-and note-onset information. That is, it indicates

when a new measure begins and the duration elapsed since the last measure. Additionally, it

indicates when a new onset begins, and the duration elapsed since the last note onset. It dra-

matically improves the performance of theHarmonicRhythm7 task (around 30% of accuracy

improvement).

v1.7.0 - June 17, 2022 Themain contribution of this version is that it introduces theMozart

Piano Sonatas (MPS) dataset into the aggregated dataset. The code that organizes all the

individual datasets was restructured as well.

v1.7.1 - June 20, 2022 Patching an issue where percussion tracks would introduce nonsensi-

cal pitch information. Patching the RomanText output files, which were sometimes invalid.

The README is pointed to the latest preprocessed dataset automatically. Removing drum parts

from music21.stream.Stream objects before processing aMusicXMLfile. Improve the qual-

ity of the RomanText outputs generated by the system.

v1.8.0 - June 25, 2022 Texturization patterns can handle durations of Dotted half notes

( ˘ “‰ s) andDotted quarter notes ( ˇ “‰ s) notes. Renaming theOnsets14 task in the code. TheOn-
sets14was also divided into MeasureOnset7 and NoteOnset7, for easier experimentationwith

note onsets and measure onsets. The Haydn “Sun” String Quartets, Op. 20 (HaydnSun)

dataset was renamed internally, and so were the Tonicization38 and LocalKey38 tasks to

correspond with the new vocabulary of 38 keys. Improving the evaluation of the model by

removing any padding from the input test sequences, which were considered before.
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v1.9.0 - August 4, 2022 This version introduced theKeyModulations and Tonicizations

(KMT) dataset into the aggregated dataset. This is the last dataset to be integrated into the set

of seven publicly available datasets described in Chapter 4.

v1.9.1 - August 7, 2022 This is a minor release. It fixed a bug where the annotations would

not generate properly on MusicXML files with multiple voices. It also fixed another issue

whereCad64 chordswouldnot be labeled properly although the predictionswere correct. Lastly,

it removed the caching ofMusicXML files from themusic21 Python library, as this lead to un-

predictable behaviour during the final evaluation of the model.

7.3.2 Pretrained Model

A pretrained model of the AugmentedNet is distributed to the public. This model is the one

trained for the experiment on the aggregated dataset, discussed in Section 6.3. More specif-

ically, the baseline model described in Section 6.1.1, trained with the aggregated dataset dis-

cussed in Section 4.3, and applying the transposition and synthesis data-augmentation tech-

niques as discussed in Section 6.2.4. The model can be used to annotate unseenMusicXML

scores, or to compare the predictions of a newer model againstAugmentedNet. The training

session lasted for 16 hours, and it consisted of 200 epochs, where the metric of average valida-

tion accuracy across the 9multitask classification tasks was used to choose the best checkpoint

out of the 200 epochs of training. The model was trained on August 1, 2022 in the cluster allo-

cations of the Digital Research Alliance of Canada (formerly known as Compute Canada).

The pretrainedmodelwaswrittenusing theTensorflow andKeras libraries (Abadi et al. 2016;

Chollet 2021). It is distributed in the Hierarchical Data Format (v5) (HDF5) format with

the rest of the source code.4

4. https://github.com/napulen/AugmentedNet
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7.3.3 Preprocessed Data

The aggregated datasetwas processed in two sequential steps: a “human-friendly”Tab-Separated

Values (TSV) file and a “machine-friendly” tensor of sequences. The TSV file was generated

by processingMusicXML andRomanText source files with themusic21 (Cuthbert andAriza

2010) and pandas (McKinney et al. 2011) packages into a “tabular” representation. During this

process, the common error patterns were searched and measured in the TSV file, which made

it easier to spot files that were misaligned or presented bad quality annotations. The tensor

of sequences, written as a binary numpy (Oliphant 2006) multidimensional array was gener-

ated by encoding each TSV file into a numeric representation. The encoding of these tensors

was based on the definition of the input (LowestNote19, Notes19, and Onsets14) and out-

put (Alto35, Bass35,HarmonicRhythm7, LocalKey38, PitchClassSet121,Numerator31,

Soprano35, Tenor35, and Tonicization38) representations.

The generation of the initial TSV file was generally slower5 and did not change often. The

generation of the tensor sequences was generally faster6 and changed frequently for experi-

mentation. Thus, a preprocessed collection of TSV files was distributed with each of the re-

leases of the model. This can be used to reproduce the results of the experiments presented

here or to facilitate the exploration of new tonal tasks or input/output representations.

7.3.4 Experiment Logs

Throughout the development ofAugmentedNet, the experiments were documentedwith the

MLflow Python library, introduced by Zaharia et al. (2018). Among other things, the software

facilitates the recording of git7 commits (i.e., version of the source code), name identifiers, and

results achieved during an experiment. The logs for each of the experiments reported in the

dissertation are shared in their originalMLflow format (i.e., as an mlruns folder). One draw-

5. Nearly 50 minutes to compute on an Intel i7 10750 processor.
6. Nearly 3 minutes to compute on an Intel i7 10750 processor, considering the aggregated dataset (see Sec-

tion 4.3) without data augmentation.
7. https://git-scm.com/
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back is that the software requires some experience setting up a local development environment

to visualize the results. Thus, as an additional convenience, the logs per training epoch of each

experiment have also been uploaded to the Tensorboard.dev platform,8 which is freely avail-

able. All the resources can be found in the source code repository of the model.

7.3.5 API Documentation

An Application Programming Interface (API) documentation of the system is provided.9

Each of the Python modules of the system is documented with docstrings.10 Although the

documentation does not explain in great detail the implementation of the system, it provides

useful hints about the structure of the code and the purpose of each Python module.

7.4 Future Work

There are several avenues where this work can be explored further. For example, researching

better texturization techniques, improving the chord vocabulary, standardizing the RNA no-

tation, supporting audio representations, and developing applications with the existing tech-

nology. Some thoughts on each of these topics are shared below.

7.4.1 Texturization

The synthesis technique explored for data augmentation relied on artificial texturization of

the chords. The proposed method made use of three simple texturization patterns, described

in Section 4.5.1.2. However, there might be better ways to perform this texturization, such

as data-driven texturizaton patterns or introducing texturizations with synthetic nonchord

tones.
8. https://tensorboard.dev/
9. https://napulen.github.io/AugmentedNet
10. https://peps.python.org/pep-0257/
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7.4.1.1 Data-Driven Texturization

Recentwork on generative deep learningmodels has shown latent representations that capture

texture, such as the one byWang et al. (2020). It would be interesting to apply these models to

the texturization strategies used forRNAmodels. Another optionwould be to obtain common

texturization patterns from existing music, rather than designing them with heuristics, as it

was done here.

7.4.1.2 Synthesizing Nonchord Tones

An approach that was not explored in the texturization techniques proposed here was the use

of nonchord tones. In all the texturization examples, the notes were exclusively chord tones.

This is not, however, the case for most music of the common-practice period, because it of-

ten introduces passing notes, neighbouring notes, and other forms of nonchord tones. The

use of syntheticnonchord tones was avoided because it naturally introduces additional prob-

lems, but these could be overcome and result beneficial to the quality of the data-augmentation

examples.

7.4.2 Extending the Chord Vocabulary

The chord vocabulary proposed in this dissertation consists of 121 pcsets (see Section A.6) and

31 classes of Roman numeral “numerators” (see SectionA.2). This vocabulary is extensive, but

still neglects several chords that are used in practice. For example, it did not consider common-

tone diminished seventh chords (CTo7), minor-major seventh chords, nor suspended chords of

any kind. Figure 7.1 shows an example of such chords, which are left for future work.

7.4.3 Standardization

Annotating musical scores with RNA annotations continues to be, fortunately and unfortu-

nately, an idiosyncratic process. The digitization standards presented in Section 2.3.1 will con-
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Figure 7.1: Three types of chords that could extend the existing vocabulary: common-tone dimin-
ished seventh chords, major-minor seventh chords, and suspended chords, respectively.

tinue to exist and update. New standards are expected to be introduced, and researchers will

continue to prioritize different goals in their analytical work. For this reason, I consider that

standardization will continue to be a challenge in this research. Nevertheless, as the tools ma-

ture, hopefully the compatibility and portability of different points of view will require less

manual work. Some of the existing points of friction that I consider deserve more attention

are the distinction between modulations and tonicizations, and the consistency in chord an-

notations (e.g., the conventions for inversions in certain chords).

7.4.3.1 Consistency in Modulations and Tonicizations

In Nápoles López et al. (2020), we discussed the problem of a lack of definition of modulations

and tonicizations, which has implications forMIR research. In that work, different harmony

textbooks featured different degrees of consistency in the use ofmodulations and tonicizations.

Considering that these represented easy “textbook” examples of modulations, it is only logical

to expect a greater inconsistency in more complicated corpora, such as the dataset used in this

dissertation. This is a difficult problem, but at the same time, a fascinating phenomenon of

tonal music, the fluctuation of musical keys, how they are perceived by the human ear, and

the way they are annotated in an analytical framework like RNA. This line of research proba-

bly requires more involvement of theMusic Perception and Cognition (MPC) and music

theory communities. I am less hopeful that the MIR community will, on its own, propose

general solutions to formalize key changes.
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7.4.3.2 Consistency in Chords and Inversions

The problem of having consistent labels of chords and inversions is less intellectually profound

than tackling modulations and tonicizations. Some researchers have different conventions

for the definitions of chords that result in incompatibilities when aggregating datasets. For

example, the “root” of a French augmented sixth, or the label for a so-called cadential six-

four. Perhaps a conversation among analysts and dataset curators could fix these problems

one day. They certainly take time away while performing ARNA research.

7.4.4 Audio Support

The proposed system and others such as the one by Micchi et al. (2021) and McLeod and

Rohrmeier (2021) operate exclusively in the symbolic domain. One of the advantages of the

representation proposed here for pitch information is that it is composed of the combination

of pitch classes and generic note letters:

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} × {𝐶, 𝐷, 𝐸, 𝐹, 𝐺,𝐴, 𝐵} (7.1)

The pitch-class part of this representation can be substituted by a chromagram vector in

the audio domain, enabling different sorts of experiments. For example, training the network

with only pitch classes in the audio, symbolic, or both domains. In the past, we have been

successful implementing a hybrid model for symbolic and audio representations in Nápoles

López, Vigliensoni, and Fujinaga (2019). A few preliminary experiments indicate that this

would be possible in RNA as well, but more formal experiments are needed.

7.4.5 Applications

Althoughmuch research work is still necessary aroundARNA, the existing technology might

benefit from a concurrent development of applications. Some examples of possible applica-

tions are presented here.
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7.4.5.1 Batch Corpus Analysis

The pretrained end-to-end model described in Section 7.3.2 could be used to annotate batches

of scores automatically for different purposes. For example, annotating all of theBachChorales11

can be done in approximately 6 minutes using AugmentedNet. In the past, human-in-the-

loop methods like the one by Ju et al. (2019) have been proposed, where an expert annotator

corrects a set of auto-generated annotations to reduce the time required to annotate a dataset.

Using an existing model to batch annotate scores could be a way of producing more training

data for future models.

7.4.5.2 Harmonic Reduction

The annotations generated by existing ARNA models are not generally sonified. However,

this can be solved in various ways. One such way is to create a voice-leading algorithm that

receives RNA inputs and generates a four-part harmonization of the annotations. This could

help to, for example, produce the automatic harmonic reduction of a musical score analyzed

by an ARNAmodel.

7.4.5.3 Melody Harmonization

During the last year of my doctoral program, I participated in a research internship as part

of the Mitacs organization.12 In this project, I developed a generative algorithm to propose

harmonizations to a given melody. Although the algorithm developed was of a generative

nature, the core technology behind it was the proposed model in this dissertation. Figure 7.2

shows an example of this application. Other research directions at the intersection of analysis

and generation could be explored.

11. https://github.com/craigsapp/bach-370-chorales
12. https://www.mitacs.ca/en/projects/deep-learning-automatic-melody-harmonization
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Figure 7.2: A generative system that suggests chord accompaniments for a given melody. The
input prompt to the system is the melody in the upper staff, which is harmonized with the labels
in the lower staff. The notes in the lower staff are automatically realized from the labels.

7.5 Closing Remarks

In conclusion, this dissertation described a two-year research effort onARNA, with the aid of

a many-year effort to understand music theory, music encoding, and computer science prin-

ciples. The main contribution of the dissertation is the documented account of experimental

results, machine learning andmusical decisions, and software development considerations. If

this dissertation was written six months from now, the ARNAmodel would look different to

the one presented here. That is, there is much to do, many experiments to try, and many ideas

worth implementing. Hopefully, the work presented here will be of help to future researchers

tackling this and similar problems by illustrating some of the findings and lessons learned. In a

not-too-long future, I foresee these systems being used by end-user musicians and students. In

general, I think of ARNA systems as a type of “music theory” calculators. I do not think they

are to replace the role of thorough—human—musical analysis, but they will automate some

analytical tasks, like labelling clear unambiguous chords in clear unambiguous tonal contexts.

It is common to see statisticians relying on tools that compute averages, standard deviations,

and graphs automatically for them. I think it will be common too to see musicians using tools

that predict chord labels, changes of key, and RNA labels for them.
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Appendix A

AMethod for Systematic Roman

Numeral Analysis

This annex chapter presents a few technical ideas about Roman Numeral Analysis (RNA)

that are relevant in various parts of the dissertation (e.g., Chapters 5 and 6). Thus, it is pre-

sented as a self-contained chapter referenced throughout other chapters.

Section A.1 describes the basic structure of an RNA label and its underlying components.

The subsequent sections describe the vocabularies of Roman numeral numerators, denomina-

tors, keys, inversions, and other musical symbols that are relevant for systematic RNA.

A.1 The Structure of a Roman Numeral Analysis Label

If we consider anRNA label to be a “fraction-like” expression, such as the one shown in Equa-

tion A.1, then the symbol 𝜅 preceding the colon represents a key, the numerator 𝜂 represents

a chord, the inversion 𝜄 indicates the bass of the chord, and the denominator 𝜏 represents a

tonicized scale degree.

𝜅 ∶ 𝜂𝜄 ∕ 𝜏 (A.1)
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Thus, in the annotation shown in Equation A.2, the preceding symbol 𝜅 = C indicates

the key of C; the denominator 𝜏 = V indicates a tonicization of 𝜅’s dominant, G; and 𝜂 =

viiø7 indicates a chord relative to the tonicized scale degree 𝜏, an F\ half-diminished seventh
chord. The inversion is generally a stack of Arabic numerals, which in this case is absent (see

Section A.5 for further discussion on inversions).

C:viiø7/V (A.2)

The mode (major or minor) implied by the keys 𝜅 and 𝜏 is indicated with a case-sensitive

notation. For example, in the annotation shown in Equation A.3, the denominator 𝜏 = ii

indicates a key of d. In this case, the numerator 𝜂 = viio7 indicates a chord that is relative to

the key of the denominator 𝜏, namely, a C\ diminished seventh chord.

C:viio7/ii (A.3)

Tonicizations are optional and do not occur often. If there is no symbol 𝜏 found in the

annotation, it can be assumed that 𝜏 = I in major keys and 𝜏 = i in minor keys. For example,

in the annotation shown in Equation A.4, 𝜏 = I ⇐⇒ G.

G:V7 (A.4)

The “modulation” key1 𝜅 is mandatory for the tonicization 𝜏 and numerator 𝜂 to have any

meaning, but it can be omitted in subsequent annotations if it remains unchanged. For exam-

ple, in the subsequent RNA annotations shown in Equation A.5, which are read from left to

right, the symbols can be interpreted as in Table A.1.

a:iv V7/V V (A.5)

1. I like to refer to key 𝜅 as the “modulation” key. However, it is also common to refer to it as the “local key”
in theMusic Information Retrieval (MIR) literature (Nápoles López et al. 2020).
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Table A.1: Interpretation of the RNA annotations in Equation A.5.

Annotation 𝜅 (implied) 𝜏 (implied) 𝜂

a:iv a (i ⇐⇒ a) iv ⇐⇒ Dminor
V7/V (a) V ⇐⇒ E V7 ⇐⇒ B dominant seventh
V (a) (i ⇐⇒ a) V ⇐⇒ E major

Inmost instances, anRNA label will bemade of only a numerator 𝜂, with keys 𝜅 appearing

either at the beginning of the piece or whenmodulations occur, and denominators 𝜏 appearing

when there is a tonicized key, such that 𝜏 ≠ I and 𝜏 ≠ i.

These general rules allow the interpretation of virtually any RNA label. However, one of

the confusing aspects of the notation is perhaps the vocabulary of 𝜂, 𝜅, and 𝜏 symbols that one

can encounter in the notation, and the meaning of those when interpreted as chords.

The next sections describe the vocabularies of musical symbols𝒩,𝒦, and 𝒯, among oth-

ers, that satisfy ∀ 𝜂 ∈ 𝒩, ∀ 𝜅 ∈ 𝒦, and ∀ 𝜏 ∈ 𝒯 for all the annotations presented throughout

the chapters. This complementary information facilitates the interpretation of RNA labels in

the context of this dissertation.

A.2 The Vocabulary of Roman Numeral Numerators

After a key 𝜅 has been established in at least one annotation, a Roman numeral numerator 𝜂

is the only compulsory symbol in any subsequent RNA label. The other—optional—symbols

being a new key 𝜅, a tonicization 𝜏, and an inversion 𝜄.

A Roman numeral numerator always indicates a chord relative to a key. When a tonicized

key 𝜏 is provided, the numerator 𝜂 is relative to this key. However, when 𝜏 is omitted, the

numerator 𝜂 is relative to the key 𝜅, which should have been indicated in at least the first

RNA label of a piece. One additional simplification is to assume that if a tonicization 𝜏 is

not indicated for a particular RNA label, then 𝜏 = I or 𝜏 = i, depending on the mode of 𝜅.

Following this assumption, then the chord indicated by 𝜂 is always relative to the key implied

192



by 𝜏. The vocabulary of chords allowed for 𝜂 depends on the mode of the key implied by 𝜏. For

brevity, I will refer to the key implied by 𝜏 as 𝜏𝜅.

Some of the numerators are common to both major and minor modes. These are shown in

Equation A.6.

𝒩𝑀∕𝑚 = {Cad64, V, vii
o,V7,N, It, Fr7, Ger7 }

|𝒩𝑀∕𝑚| = 8
(A.6)

The set of numerators for major and minor keys consist of the union between the numer-

ators that are common to both modes𝒩𝑀∕𝑚 and the numerators that are exclusive of a given

mode. The set of numerators for major keys, 𝒩𝑀, is shown in Equation A.7, and the set for

minor keys,𝒩𝑚 is shown in Equation A.8. If 𝜏𝜅 is a major key, there are 20 possible values for

𝜂; if 𝜏𝜅 is a minor key, there are 19 possible values for 𝜂.

𝒩𝑀 = 𝒩𝐶 ∪ { I, ii, iii, IV, vi, I7, ii7, iii7, IV7, vi7, viiø7,V+}

|𝒩𝑀| = 20
(A.7)

𝒩𝑚 = 𝒩𝐶 ∪ {i, iio, III+, iv, VI, i7, iiø7, III+7, iv7, VI7, viio7}

|𝒩𝑚| = 19
(A.8)

The complete vocabulary of Roman numeral numerators𝒩, shown in Equation A.9, com-

prises all numerators for major and minor modes, including the set of numerators shared by

both modes. Thus,𝒩 indicates the set of Roman numeral numerators where ∀ 𝜂 ∈ 𝒩. No-

tice that the cardinality of the vocabulary is of 31 Roman numeral numerators, because the

duplicate numerators (𝒩𝑀∕𝑚) are only counted once.
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𝒩 = 𝒩𝑀 ∪𝒩𝑚

|𝒩| = 31
(A.9)

Regarding the meaning of the 31 numerators in the vocabulary, these correspond mainly

to diatonic harmonies that can be constructed from a major or harmonic minor scale. A few

chords are exceptions to this rule, which are indicated as “special chords.” Table A.2 summa-

rizes the 31 numerators and their chord context. An explanation of all the chords is provided

below.

Table A.2: Vocabulary𝒩 of valid Roman numeral numerators.

Diatonic triads Diatonic seventh chords Special chords
Major mode I, ii, iii, IV, vi I7, ii7, iii7, IV7, vi7, viiø7 V+

Minor mode i, iio, III+, iv, VI i7, iiø7, III+7, iv7, VI7, viio7
Both modes Cad64, V, vii

o V7 N, It, Fr7, Ger7

A.2.1 Chords of the Major Mode

Except for V, viio, and a few other chords, the RNA numerators constructed from the major

mode are exclusive of a major key. That is, they do not exist in a minor key. Those chords are

explained in this section.

A.2.1.1 Major-Mode Triads

There are 5 Roman numerals generated from the diatonic triads of the major mode: I, ii, iii,

IV, and vi.

A.2.1.2 Major-Mode Seventh Chords

There are 6 Roman numerals generated from the diatonic seventh chords of the major mode:

I7, ii7, iii7, IV7, vi7, and viiø7.
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A.2.1.3 Major-Mode Augmented Dominant

A chord occasionally found in the dataset is an augmented dominant chord. This chord is also

common in the minor mode, however, it is an enharmonic of the III+ triad of that mode. In

order for the algorithm described in Section A.7 to work, it is required that a given pcset 𝜌 has

only one Roman numeral numerator 𝜂 association in a given key, a condition that would not

be met for III+ and V+ coexisting in a minor key. One way to address this is to consider V+ a

chord exclusive of the major mode and III+ a chord exclusive of the minor mode. When the

method proposed in Section A.7 is trying to resolve a pcset 𝜌 that conforms to an augmented

triad, it will be resolved as either III+ or V+ depending on the mode of the key.

A.2.2 Chords of the Minor Mode

In a similar way to the diatonic chords of the major mode, the ones for the minor mode are

described below.

A.2.2.1 Minor-Mode Triads

There are 5 Roman numerals generated from the diatonic triads of theminormode: i, iio, III+,

iv, and VI.

A.2.2.2 Minor-Mode Seventh Chords

There are 6 Roman numerals generated from the diatonic seventh chords of the minor mode:

i7, iiø7, III+7, iv7, vi7, and viio7.

A.2.3 Chords Shared in both Modes

Most of the chords in either mode are exclusive of that mode. That is, the same scale degree

in the opposite mode has a different chord quality. Three diatonic chords are shared between

both modes, however: V, V7, and viio.
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The Cad64 is a special case among the diatonic triads. Unlike all other Roman numerals,

which have one and only one associated chord quality, a Cad64 may be a major or minor triad,

depending on the key’s mode. In addition to the Cad64 chord, there are other special chords

shared between the two modes.

A.2.3.1 Special Chords

One of the main uses of the RNA notation is to indicate chords that occur in special tonal

contexts. The chords considered here are examples of those special contexts.

Neapolitan Chord. A Neapolitan triad is the major triad that forms from the “flatted”

second degree in either mode, ZII. It is often used to substitute a “predominant” chord, for
example, the IV of a major key. It is also common to find it in first inversion, with the third as

the bass.

Augmented Sixth Chords. There are at least three kinds of augmented sixth chords: It,

Fr7, and Ger7. These chords share commonalities. For example, they all feature an interval

of an augmented sixth between the sixth degree (lowered sixth degree, if in major mode) and

the raised fourth degree. The main difference between the three types of chords lies in the

additional pitches that complete their configurations. An It chord is a triad, adding the root

of the key as part of the chord. For example, in the key of 𝐶, the It chord is made of the notes

{𝐹\, 𝐴Z, 𝐶}. Using the same key as an example, the Fr7 chord includes the second degree, {𝐹\,
𝐴Z, 𝐶, 𝐷}. The Ger7 chord, instead of the second degree, includes the third degree (lowered
third degree, if in major mode). Thus, {𝐹\, 𝐴Z, 𝐶, 𝐸Z}.

The pcset configuration of It chords is unique. That is, there is no other Roman numeral

numerator 𝜂with the samepcset 𝜌 of an It chord, except for the same It in an enharmonic key.

This is not true for Fr7 and Ger7. A Fr7 chord has the same pcset configuration as another

Fr7 in a different (non-enharmonic) key. A Ger7 chord has the same pcset configuration as a

V7 chord in a different key. These properties need to be considered when designing the chord
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vocabulary, as the subtle distinction of one chord (pcset) in different keys, results in a very

distinct RNA label.

A.3 The Vocabulary of Roman Numeral Denominators

Adenominator 𝜏 in anRNA label indicates a tonicized scale degree. The tonicized scale degree

is always relative to the current key 𝜅, which should be known at any given moment of the

piece.

The tonicization 𝜏 is indicated with case-sensitive Roman numerals, where the Roman

numeral indicates the scale degree, and the case of the Roman numeral indicates the mode.

When the scale degree is not a diatonic scale degree of the key 𝜅, an accidental can be used to

alter it accordingly. Thus, the vocabulary 𝒯 that satisfies ∀ 𝜏 ∈ 𝒯 comprises all case-sensitive

scale degrees relative to key 𝜅. This vocabulary is shown in Equation A.10.

𝒯 = {… , [, Z, ^, \, ], … } × {i, I, ii, II, iii, III, iv, IV, v,V, vi,VI, vii,VII} (A.10)

In the design of theAugmentedNetmodel proposed in this dissertation, this vocabulary is

never used, because it results inconvenient for multiclass classification. Instead, tonicizations

are encoded as keys 𝜏𝜅, which can always be reversed to their scale degree representationwhen

writing the output RNA labels. See Section 5.4.6 for further details on the implementation of

tonicizations.

A.4 The Vocabulary of Musical Keys

If all enharmonic major-and-minor keys were collapsed into the same key class, then there

would be a set of 24 keys. However, if two enharmonic keys are considered different keys,

then the set of keys becomes an infinite set. In the first case, the keys can be arranged in a

circular structure, such as the circle of fifths, because eventually the classes will repeat. In the
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second case, the keys can be arranged in a line of fifths (Temperley 2000), such as the one

shown in Table A.3.

Table A.3: A line of fifths for major (top) and minor (bottom) keys.

… -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 …
… B[ FZ CZ GZ DZ AZ EZ BZ F C G D A E B F\ C\ G\ D\ …

… -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 …
… gZ dZ aZ eZ bZ f c g d a e b f\ c\ g\ d\ a\ e\ b\ …

Designing a computational system that distinguishes between enharmonic keys is easier if

the vocabulary of keys is bounded. Furthermore, many of the keys in the line of fifths exist

in theory, but would rarely (or never) occur in practice. For example, the key of 𝐶]major.
In this dissertation, I bounded the vocabulary of major-and-minor keys to be finite. The set

of available keys was determined in a data-driven way. By inspecting the examples provided

in the aggregated dataset of RNA annotations (see Section 4.3), it was determined that most

annotations lie within the range of keys between [B[, D\] for the major keys, and [gZ, b\] for
the minor keys. Thus, the vocabulary of keys considered in this dissertation spans all the keys

in that range, as shown in Equation A.11. This results in 38 keys.

𝒦𝑀 = {𝐵[, 𝐹Z, 𝐶Z, 𝐺Z, 𝐷Z, 𝐴Z, 𝐸Z, 𝐵Z, 𝐹, 𝐶, 𝐺, 𝐷,𝐴, 𝐸, 𝐵, 𝐹\, 𝐶\, 𝐺\, 𝐷\}
𝒦𝑚 = {𝑔Z, 𝑑Z, 𝑎Z, 𝑒Z, 𝑏Z, 𝑓, 𝑐, 𝑔, 𝑑, 𝑎, 𝑒, 𝑏, 𝑓\, 𝑐\, 𝑔\, 𝑑\, 𝑎\, 𝑒\, 𝑏\}
𝒦 = 𝒦𝑀 ∪𝒦𝑚

|𝒦| = 38

(A.11)

A.5 The Vocabulary of Arabic Numeral Inversions

A Roman numeral numerator 𝜂 ∈ 𝒩 is said to be in “root position” if the root of its chord

is also acting as the bass. If one of the other chord tones is taking the role of the bass, the
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Roman numeral numerator is said to be in either a first, second, or third inversion.2 Thus, the

vocabulary of inversions ℐ for a numerator 𝜂 comprises the root position and three possible

inversions, as shown in Equation A.12.

ℐ = {0, 1, 2, 3} (A.12)

However, the annotation of the inversion in anRNA label is not written with the inversion

number, but with a stack of Arabic numerals.3 The precise notation depends on whether the

numerator 𝜂 is a triad or a seventh chord, and it is summarized in Table A.4.

Table A.4: Notation for the vocabulary ℐ of inversions depending on the characteristics of 𝜂.

Inversion 0 1 2 3

When 𝜂 is a triad 𝜂 𝜂6 𝜂64 (absent in triads)

When 𝜂 is a seventh chord 𝜂7 𝜂65 𝜂43 𝜂2

A.6 The Vocabulary of Pitch-Class Sets

Given the set𝒞 of pitch classes in theWestern chromatic scale𝒞 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11},

a pitch class set (pcset) is, in the context of this dissertation, a subset 𝜌 ⊂ 𝒞 comprising the

pitch classes of a given triad or seventh chord. Several RNA annotations may share the same

pcset, as shown in Equation A.13.

pcset(C:viiø7) = {2, 5, 9, 11}

pcset(a:iiø7) = {2, 5, 9, 11}
(A.13)

2. Third inversions only occur if 𝜂 indicates a seventh chord, as a third inversion requires a chord with at least
four notes.
3. See Section 2.2.3 for further discussion on why this is the case.
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One of the advantages of formulating a vocabulary of chords𝒫 based on pcsets,4 instead of

a vocabulary of chordsℛ based onRNA labels is that, because of the collisions of many chords

in terms of their pcset, |𝒫| ≪ |ℛ|. The main disadvantage of this is that, because several

RNA labels will result in the same pcset, it is difficult to retrieve the original RNA back from

the pcset. Nevertheless, using the musical key and the algorithm described in Section A.7,

it is possible to retrieve the original numerator of the RNA annotation. Thus, I assume that

a smaller vocabulary of chords 𝒫, which is based on pcsets, will be useful to generate RNA

labels if the pcset 𝜌 and key 𝜅 can be predicted by a machine learning model.

The vocabulary of pcsets is constructed by combining all keys 𝜅 ∈ 𝒦 with the Roman nu-

meral numerators 𝜂 ∈ 𝒩, and extracting the pcset of the resulting chord. However, because

there are Roman numeral numerators that are exclusive of the major or minor mode, the ap-

proach shown in Equation A.14 is preferred, where this process is divided among major and

minor keys. The union of both sets for major and minor keys results in a set of 121 pcsets.

𝒫𝑀 = {𝜌 ∣ 𝜌 is the pcset of 𝜅:𝜂, and 𝜅 ∈ 𝒦𝑀 and 𝜂 ∈ 𝒩𝑀}

𝒫𝑚 = {𝜌 ∣ 𝜌 is the pcset of 𝜅:𝜂, and 𝜅 ∈ 𝒦𝑚 and 𝜂 ∈ 𝒩𝑚}

𝒫 = 𝒫𝑀 ∪ 𝒫𝑚

|𝒫| = 121

(A.14)

A.7 TheNumerator and Tonicization EstimationMethod

This section describes the NaTEM algorithm, which is useful to retrieve a Roman numeral

numerator 𝜂 and tonicization 𝜏 from a pcset 𝜌 and key 𝜅, as shown in Equation A.15. This is

useful when a machine learning system only generates chord labels and keys, which is often

the case.
4. See Rohrmeier and Cross (2008) for another example of pcsets applied to a vocabulary of chords.
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NaTEM(𝜌, 𝜅) = 𝜂/𝜏 (A.15)

The retrieval process can be summarized in two steps. Thefirst step is to acquire, if possible,

the numerator 𝜂 from the given 𝜌 and 𝜅, assuming a tonicization 𝜏 = I or 𝜏 = i (depending on

𝜅’s mode). If this is not possible, the second, optional step, is to force a tonicization to retrieve

a tonicization 𝜏 such that 𝜏𝜅 ∈ 𝒦𝜌. Both steps are described in more detail below.

A.7.1 Retrieving the Numerator

A pcset 𝜌 has an interpretation as one of the Roman numeral numerators 𝜂 ∈ 𝒩 in a subset

of keys𝒦𝜌 ⊂ 𝒦 that is described in Equation A.16.

𝒦𝜌 = {𝜅 ∣ 𝜅 ∈ 𝒦, and 𝜌 has an interpretation in key 𝜅} (A.16)

For example, given the pcset 𝜌 = {0, 4, 7, 9}, there is an interpretation for that pcset in

several keys 𝜅 ∈ 𝒦, as shown in Equation A.17. This set of keys represents the subset𝒦𝜌 for

this 𝜌, as shown in Equation A.18.

The pcset 𝜌 = {0, 4, 7, 9} in key 𝜅 =

⎧
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎩

C is the pcset(𝜅:𝜂) if 𝜂 = vi7

e is the pcset(𝜅:𝜂) if 𝜂 = iv7

F is the pcset(𝜅:𝜂) if 𝜂 = iii7

G is the pcset(𝜅:𝜂) if 𝜂 = ii7

a is the pcset(𝜅:𝜂) if 𝜂 = i7

(A.17)

if 𝜌 = {0, 4, 7, 9} , then 𝒦𝜌 = {C, e,F,G, a} (A.18)
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Given a pcset 𝜌 ∈ 𝒫 and a key 𝜅 ∈ 𝒦𝜌, the function Γ(𝜌, 𝜅) = 𝜂 returns the corresponding

numerator 𝜂 such that pcset(𝜅:𝜂) = 𝜌, as shown in Equation A.19. This is the simple case of

theNaTEM algorithm, as shown in Equation A.20.

𝜌 = {0, 4, 7, 9}, 𝜅 = C Γ(𝜌, 𝜅) = vi7

𝜌 = {0, 4, 7, 9}, 𝜅 = e Γ(𝜌, 𝜅) = iv7
(A.19)

NaTEM(𝜌, 𝜅) = Γ(𝜌, 𝜅) (A.20)

A limitation of the function Γ is that ∀ 𝜅 ∉ 𝒦𝜌 Γ(𝜌, 𝜅) = ∅. This is a plausible problem

when this method is used to retrieve a numerator 𝜂 from a predicted pair of 𝜌 and 𝜅, generated

by a machine learning system. The reason is that a machine learning system could predict a 𝜅̂

such that 𝜅̂ ∉ 𝒦𝜌.5 In that case, the Roman numeral numerator cannot be retrieved directly.

However, it can be retrieved if a tonicized scale degree 𝜏 is imposed into the annotation (i.e.,

the key changes for that particular chord), such that 𝜏𝜅 ∈ 𝒦𝜌.

In the more complicated case for a given 𝜌 and 𝜅, where 𝜅 ∉ 𝒦𝜌, the numerator 𝜂 will be

retrieved with an estimated 𝜏, such that 𝜏𝜅 ∈ 𝒦𝜌. Thus, 𝜂 = Γ(𝜌, 𝜏𝜅) will lead to a 𝜂 ∈ 𝒩 and

𝜂 ≠ ∅. This will return an RNA label of the form shown in Equation A.21.

NaTEM(𝜌, 𝜅) = Γ(𝜌, 𝜏𝜅) / 𝜏 (A.21)

In theRNA of EquationA.21, the key 𝜅 and 𝜌 are given inputs, the tonicization 𝜏 is a forced

tonicization computed by this method, and the numerator 𝜂 is a chord relative to the tonicized

key 𝜏𝜅. The next section describes the process of obtaining 𝜏.

5. It is customary inmachine learning literature to use the “hat” symbol to refer to the predictions of amachine
learning system.
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A.7.2 Forcing a Tonicization

Consider the case of Γ(𝜌, 𝜅) when 𝜌 = {0, 2, 6, 9} and 𝜅 = C. In that case, 𝜌 has an associated

numerator 𝜂 ∈ 𝒩 with the subset of keys shown in Equation A.22. Thus, that subset of keys

is𝒦𝜌, as shown in Equation A.23.

𝜌 = {0, 2, 6, 9} in key 𝜅 =

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

f\ is pcset(𝜅:𝜂) if 𝜂 = Ger7

F\ is pcset(𝜅:𝜂) if 𝜂 = Ger7

gZ is pcset(𝜅:𝜂) if 𝜂 = Ger7

g is pcset(𝜅:𝜂) if 𝜂 = V7

GZ is pcset(𝜅:𝜂) if 𝜂 = Ger7

G is pcset(𝜅:𝜂) if 𝜂 = V7

(A.22)

𝒦𝜌 = {f\,F\, gZ, g,GZ,G} (A.23)

However, we can see that for the given key 𝜅 = C, 𝜅 ∉ 𝒦𝜌. In this case, a tonicization 𝜏will

be computed, such that 𝜏𝜅 ∈ 𝒦𝜌. The computed tonicization 𝜏 must imply a “closely related”

key to 𝜅, in order for the tonicization to be easily interpretable in an RNA label.

One way to compute a “closely related” key is to use ametric of key distance between 𝜅 and

all scale degrees 𝜏 that satisfy 𝜏𝜅 ∈ 𝒦𝜌. The tonicization 𝜏min with the minimal distance to 𝜅 is

a good candidate for a tonicization.

The key distance metric used is the Euclidean distance 𝑑 between 𝜅 and all 𝜏𝜅 ∈ 𝒦𝜌 in the

Weber tonal chart of keys (Weber 1818). The chart is arranged in the layout shown in TableA.5.

Thus, the estimation of tonicization 𝜏min is shown in EquationA.24. For the example above

with 𝜅 = C, this results in the key-distance estimations shown in Table A.6.

𝜏min = argmin∀𝜏𝜅∈𝒦𝜌
𝑑(𝜅, 𝜏𝜅) (A.24)
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TableA.5: Weber’s tonal chart of neighbouring keys. Column-wise, the keys followa line offifths.
Row-wise, each key is surrounded by its relative and parallel major (or minor) keys.

EZ c C a A f\ F\ d\ D\ b\ B\ gx Gx
AZ f F d D b B g\ G\ e\ E\ cx Cx
DZ bZ BZ g G e E c\ C\ a\ A\ fx Fx
GZ eZ EZ c C a A f\ F\ d\ D\ b\ B\
CZ aZ AZ f F d D b B g\ G\ e\ E\
FZ dZ DZ bZ BZ g G e E c\ C\ a\ A\
B[ gZ GZ eZ EZ c C a A f\ F\ d\ D\
E[ cZ CZ aZ AZ f F d D b B g\ G\
A[ fZ FZ dZ DZ bZ BZ g G e E c\ C\
D[ b[ B[ gZ GZ eZ EZ c C a A f\ F\
G[ e[ E[ cZ CZ aZ AZ f F d D b B
C[ a[ A[ fZ FZ dZ DZ bZ BZ g G e E
F[ d[ D[ b[ B[ gZ GZ eZ EZ c C a A

Table A.6: Distance between the given key 𝜅 and tonicizations 𝜏𝜅 ∈ 𝒦𝜌. The 𝜏min tonicization
with the smallest distance, 𝑑(𝜅, 𝜏) = 1.0, is highlighted.

𝜏𝜅 𝑑(𝜅, 𝜏𝜅)
f\ 3.0
F\ 3.6
gZ 4.2
g 1.4
GZ 3.6
G 1.0

In the example provided, the tonicization 𝜏min chosen would correspond to 𝜏 = V and

𝜏𝜅 = G. When this tonicization is notated in relation to the given key 𝜅, the resulting RNA

label becomesC:V7/V. An experienced analyst that observes the givenpcset𝜌 = {0, 4, 7, 9} and

key 𝜅 = Cwould perhaps provide the same answer in a short time. However, the relationships

between chords and keys are not always trivial, and this method provides a programmatic way

to obtain such RNA annotations. The quality of the RNA labels provided by this method is

also heavily affected by the quality of the 𝜌 and 𝜅 predictions provided, which is the duty of

the machine learning model.

204



Bibliography

Aarden, Bret J. 2003. “Dynamic Melodic Expectancy.” PhD diss., The Ohio State University.

Abadi,Martín, Paul Barham, JianminChen, ZhifengChen,AndyDavis, JeffreyDean,Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. 2016. “Tensorflow: A Sys-
tem for Large-Scale Machine Learning.” In 12th USENIX Symposium on Operating Sys-
tems Design and Implementation, 265–283.

Abraham, Lars Ulrich. 1965. Harmonielehre. 1st ed.

Albrecht, Joshua, and Daniel Shanahan. 2013. “The Use of Large Corpora to Train a New Type
ofKey-FindingAlgorithm:An ImprovedTreatment of theMinorMode.”Music Perception:
An Interdisciplinary Journal 31 (1): 59–67.

Alchin, Carolyn A. 1921. Applied Harmony. 1st ed.

Aldwell, Edward, and Carl Schachter. 1978. Harmony and Voice Leading. 1st ed.

Aldwell, Edward, Carl Schachter, and Allen Cadwallader. 2019. Harmony and Voice Leading.
Cengage Learning. isbn: 978-1-337-56057-3. https://books.google.fr/books?id=T69EDw
AAQBAJ.

Anger, Joseph Humfrey, and Henry Clough-Leighter. 1919. A Treatise on Harmony. 1st ed.

Bairstow, Edward Cuthbert. 1945. Counterpoint and Harmony. 1st ed.

Barnes, Archie Fairbairn. 1937. Practice in Modern Harmony. 1st ed.

Basaran,Dogac, SlimEssid, andGeoffroyPeeters. 2018. “MainMelodyEstimationwith Source-
Filter NMF and CRNN.” In Proceedings of the 19th International Society for Music Infor-
mation Retrieval Conference, 82–89. Paris, France: ISMIR, September. https://doi.org/10.
5281/zenodo.1492349. https://doi.org/10.5281/zenodo.1492349.

Bazin, François. 1857. Cours d’harmonie théorique et pratique. 1st ed.

205

https://books.google.fr/books?id=T69EDwAAQBAJ
https://books.google.fr/books?id=T69EDwAAQBAJ
https://doi.org/10.5281/zenodo.1492349
https://doi.org/10.5281/zenodo.1492349
https://doi.org/10.5281/zenodo.1492349


Bellmann, Héctor. 2006. “About the Determination of Key of a Musical Excerpt.” In Computer
MusicModeling and Retrieval, edited by Richard Kronland-Martinet, Thierry Voinier, and
Sølvi Ystad, 76–91. Lecture Notes in Computer Science. Springer Berlin Heidelberg. isbn:
978-3-540-34028-7.

Bello, Juan Pablo, and Jeremy Pickens. 2005. “A Robust Mid-Level Representation for Har-
monic Content in Music Signals.” In Proceedings of the 6th International Conference on
Music Information Retrieval, 304–311. London, United Kingdom: ISMIR, September. http
s://doi.org/10.5281/zenodo.1417431. https://doi.org/10.5281/zenodo.1417431.

Bengio, Y., P. Simard, andP. Frasconi. 1994. “LearningLong-TermDependencieswithGradient
Descent Is Difficult.” IEEE Transactions on Neural Networks 5, no. 2 (March): 157–166.
issn: 1045-9227, 1941-0093. https://doi.org/10.1109/72.279181.

Böck, Sebastian, FlorianKrebs, andGerhardWidmer. 2015. “Accurate TempoEstimationBased
on Recurrent Neural Networks and Resonating Comb Filters.” In Proceedings of the 16th
International Society for Music Information Retrieval Conference, 625–631. Málaga, Spain:
ISMIR, October. https://doi .org/10.5281/zenodo.1416026. https://doi .org/10.5281/
zenodo.1416026.

. 2016. “Joint Beat and Downbeat Tracking with Recurrent Neural Networks.” In Pro-
ceedings of the 17th International Society for Music Information Retrieval Conference, 255–
261. New York, NY: ISMIR, August. https ://doi .org/10.5281/zenodo.1415836. https :
//doi.org/10.5281/zenodo.1415836.

Boise, Otis Bardwell. 1898. Harmony Made Practical. 1st ed.

Boulanger-Lewandowski, Nicolas, Yoshua Bengio, and Pascal Vincent. 2013. “Audio Chord
RecognitionwithRecurrentNeuralNetworks.” InProceedings of the 14th International So-
ciety forMusic InformationRetrieval Conference, 335–340. Curitiba, Brazil: ISMIR,Novem-
ber. https://doi.org/10.5281/zenodo.1418319. https://doi.org/10.5281/zenodo.1418319.

Bowman, Edward Morris. 1881. Harmony: Historic Points and Modern Methods of Instruction.
1st ed.

Bridge, Frederick. 1900. A Course of Harmony. 1st ed.

Broekhoven, John Andrew. 1889. A System of Harmony for Teacher and Pupil. 1st ed.

Buck, Percy Carter. 1920. Unfigured Harmony. 2nd ed.

Budge, Helen. 1943. “A Study of Chord Frequencies Based on the Music of Representative
Composers of the Eighteenth and Nineteenth Centuries,” OCLC: 3300662. PhD diss.,
Teachers College, Columbia University.

206

https://doi.org/10.5281/zenodo.1417431
https://doi.org/10.5281/zenodo.1417431
https://doi.org/10.5281/zenodo.1417431
https://doi.org/10.1109/72.279181
https://doi.org/10.5281/zenodo.1416026
https://doi.org/10.5281/zenodo.1416026
https://doi.org/10.5281/zenodo.1416026
https://doi.org/10.5281/zenodo.1415836
https://doi.org/10.5281/zenodo.1415836
https://doi.org/10.5281/zenodo.1415836
https://doi.org/10.5281/zenodo.1418319
https://doi.org/10.5281/zenodo.1418319


Burgoyne, John Ashley, and Lawrence K. Saul. 2005. “Learning Harmonic Relationships in
Digital Audio with Dirichlet-Based Hidden Markov Models.” In Proceedings of the 6th In-
ternational Conference on Music Information Retrieval, 438–443. London, United King-
dom: ISMIR, September. https://doi.org/10.5281/zenodo.1414870. https://doi.org/10.
5281/zenodo.1414870.

Burgoyne, John Ashley, Jonathan Wild, and Ichiro Fujinaga. 2011. “An Expert Ground Truth
Set for Audio Chord Recognition and Music Analysis.” In Proceedings of the 12th Interna-
tional Society for Music Information Retrieval Conference, 11:633–638. Miami, FL.

Bussler, Ludwig. 1878. Praktische Musikalische Compositionslehre in Aufgaben. 1st ed.

Buwa, Johann. 1893. Schule Der Accord-Verbindungen: Eine Harmonielehre Fur Schulen Und
Zum Selbstunterrichts. 2nd ed.

Calvo-Zaragoza, Jorge, Jan Hajič Jr., and Alexander Pacha. 2020. “Understanding Optical Mu-
sic Recognition.” ACMComput. Surv. 53, no. 4 (July). issn: 0360-0300. https://doi.org/10.
1145/3397499. https://doi-org.proxy3.library.mcgill.ca/10.1145/3397499.

Calvo-Zaragoza, Jorge, and David Rizo. 2018. “Camera-Primus: Neural End-to-End Optical
Music Recognition on Realistic Monophonic Scores.” In Proceedings of the 19th Interna-
tional Society for Music Information Retrieval Conference, 248–255. Paris, France: ISMIR,
September. https://doi.org/10.5281/zenodo.1492395. https://doi.org/10.5281/zenodo.
1492395.

Calvo-Zaragoza, Jorge, Jose J. Valero-Mas, and Antonio Pertusa. 2017. “End-to-End Optical
Music Recognition Using Neural Networks.” In Proceedings of the 18th International So-
ciety forMusic InformationRetrieval Conference, 472–477. Suzhou, China: ISMIR,October.
https://doi.org/10.5281/zenodo.1418333. https://doi.org/10.5281/zenodo.1418333.

Calvo-Zaragoza, Jorge, Gabriel Vigliensoni, and Ichiro Fujinaga. 2017. “One-Step Detection of
Background, StaffLines, and Symbols inMedievalMusicManuscriptswithConvolutional
Neural Networks.” In Proceedings of the 18th International Society for Music Information
Retrieval Conference, 724–730. Suzhou, China: ISMIR, October. https://doi.org/10.5281/
zenodo.1417493. https://doi.org/10.5281/zenodo.1417493.

Cambouropoulos, Emilios. 2003. “Pitch Spelling: A Computational Model.”Music Perception:
An Interdisciplinary Journal 20 (4): 411–429.

Campbell, Spencer. 2010. “Automatic KeyDetection ofMusical Excerpts fromAudio.”Masters
Thesis, McGill University.

Campbell-Watson, Frank. 1930.Modern Elementary Harmony. 1st ed.

Capellen, Georg. 1908. Fortschrittliche Harmonie-und Melodielehre. 1st ed.

Carter, Elliott. 2002. Harmony Book. 1st ed.

207

https://doi.org/10.5281/zenodo.1414870
https://doi.org/10.5281/zenodo.1414870
https://doi.org/10.5281/zenodo.1414870
https://doi.org/10.1145/3397499
https://doi.org/10.1145/3397499
https://doi-org.proxy3.library.mcgill.ca/10.1145/3397499
https://doi.org/10.5281/zenodo.1492395
https://doi.org/10.5281/zenodo.1492395
https://doi.org/10.5281/zenodo.1492395
https://doi.org/10.5281/zenodo.1418333
https://doi.org/10.5281/zenodo.1418333
https://doi.org/10.5281/zenodo.1417493
https://doi.org/10.5281/zenodo.1417493
https://doi.org/10.5281/zenodo.1417493


Catteau, Benoit, Jean-Pierre Martens, and Marc Leman. 2007. “A Probabilistic Framework for
Audio-Based Tonal Key and Chord Recognition.” In Advances in Data Analysis, edited by
ReinholdDecker andHans -J. Lenz, 637–644. Studies in Classification, Data Analysis, and
Knowledge Organization. Springer Berlin Heidelberg. isbn: 978-3-540-70981-7.

Chadwick, George Whitefield. 1897. Harmony: A Course of Study. 1st ed.

Chai, Wei, and Barry Vercoe. 2005. “Detection of Key Change in Classical Piano Music.” In
Proceedings of the 6th International Conference on Music Information Retrieval, 468–473.
London, United Kingdom: ISMIR, September. https://doi.org/10.5281/zenodo.1415538.
https://doi.org/10.5281/zenodo.1415538.

Chen, Tsung-Ping, and Li Su. 2021. “Attend to Chords: Improving Harmonic Analysis of Sym-
bolic Music Using Transformer-Based Models.” Transactions of the International Society
for Music Information Retrieval 4 (1).

. 2018. “Functional Harmony Recognition of Symbolic Music Data withMulti-Task Re-
current Neural Networks.” In Proceedings of the 19th International Society for Music Infor-
mation Retrieval Conference, 90–97. Paris, France: ISMIR, September. https://doi.org/10.
5281/zenodo.1492351. https://doi.org/10.5281/zenodo.1492351.

. 2019. “HarmonyTransformer: IncorporatingChord Segmentation intoHarmonyRecog-
nition.” In Proceedings of the 20th International Society for Music Information Retrieval
Conference, 259–267. Delft, The Netherlands: ISMIR, November. https://doi.org/10.5281/
zenodo.3527794. https://doi.org/10.5281/zenodo.3527794.

Chew, Elaine. 2002. “The Spiral Array: An Algorithm for Determining Key Boundaries.” In
International Conference on Music and Artificial Intelligence, 18–31. Springer.

. 2000. “Towards aMathematicalModel of Tonality.” PhD diss., Massachusetts Institute
of Technology. Accessed August 5, 2019. https://dspace.mit.edu/handle/1721.1/9139.

Chew, Elaine, and Yun-Ching Chen. 2003. “Determining Context-Defining Windows: Pitch
Spelling Using the Spiral Array.” In Proceedings of the 4th International Conference on
Music Information Retrieval. Baltimore, MD: ISMIR, October. https://doi.org/10.5281/
zenodo.1418037. https://doi.org/10.5281/zenodo.1418037.

Cho,Kyunghyun, Bart VanMerriënboer, CaglarGulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, andYoshuaBengio. 2014. “LearningPhraseRepresentationsUsingRNN
Encoder-Decoder for Statistical Machine Translation.” arXiv preprint arXiv:1406.1078.

Choi, Keunwoo, György Fazekas, andMark B. Sandler. 2016. “Automatic Tagging Using Deep
ConvolutionalNeuralNetworks.” InProceedings of the 17th International Society forMusic
Information Retrieval Conference, 805–811. New York, NY: ISMIR, August. https://doi.
org/10.5281/zenodo.1416254. https://doi.org/10.5281/zenodo.1416254.

208

https://doi.org/10.5281/zenodo.1415538
https://doi.org/10.5281/zenodo.1415538
https://doi.org/10.5281/zenodo.1492351
https://doi.org/10.5281/zenodo.1492351
https://doi.org/10.5281/zenodo.1492351
https://doi.org/10.5281/zenodo.3527794
https://doi.org/10.5281/zenodo.3527794
https://doi.org/10.5281/zenodo.3527794
https://dspace.mit.edu/handle/1721.1/9139
https://doi.org/10.5281/zenodo.1418037
https://doi.org/10.5281/zenodo.1418037
https://doi.org/10.5281/zenodo.1418037
https://doi.org/10.5281/zenodo.1416254
https://doi.org/10.5281/zenodo.1416254
https://doi.org/10.5281/zenodo.1416254


Chollet, François. 2021. Deep Learning with Python. 2nd ed. OCLC: 1289290141. isbn: 978-1-
61729-686-4.

Chuan, Ching-Hua, and Elaine Chew. 2005a. “Fuzzy Analysis in Pitch-Class Determination
for Polyphonic Audio Key Finding.” In Proceedings of the 6th International Conference
on Music Information Retrieval, 296–303. London, United Kingdom: ISMIR, September.
https://doi.org/10.5281/zenodo.1417297. https://doi.org/10.5281/zenodo.1417297.

. 2005b. “Polyphonic Audio Key Finding Using the Spiral Array CEG Algorithm.” In
2005 IEEE International Conference on Multimedia and Expo, 21–24. 2005 IEEE Interna-
tional Conference on Multimedia and Expo. Amsterdam, The Netherlands, July. https:
//doi.org/10.1109/ICME.2005.1521350.

Clarke, Hugh Archibald. 1898. A System of Harmony. 1st ed.

. 1880. Harmony on the Inductive Method. 1st ed.

Coon, Oscar. 1883. Harmony and Instrumentation. 1st ed.

Crawford, Tim, and Richard Lewis. 2016. “Review: Music Encoding Initiative.” Journal of the
AmericanMusicological Society 69 (1): 273–285. issn: 0003-0139. https://doi.org/10.1525/
jams.2016.69.1.273.

Cuthbert, Michael Scott, and Christopher Ariza. 2010. “music21: A Toolkit for Computer-
AidedMusicology and SymbolicMusic Data.” Proceedings of the 11th International Society
for Music Information Retrieval Conference.

Cutter, Benjamin. 1899. Exercises in Harmony. 1st ed.

. 1902.HarmonicAnalysis: ACourse in theAnalysis of theChords andof theNon-Harmonic
Tones to Be Found in Music, Classic and Modern. 1st ed.

Dahl, George E., Tara N. Sainath, and Geoffrey E. Hinton. 2013. “Improving Deep Neural Net-
works for LVCSR Using Rectified Linear Units and Dropout.” In 2013 IEEE International
Conference on Acoustics, Speech and Signal Processing, 8609–8613. IEEE.

Delbouys, Rémi, Romain Hennequin, Francesco Piccoli, Jimena Royo-Letelier, and Manuel
Moussallam. 2018. “Music Mood Detection Based on Audio and Lyrics with Deep Neu-
ral Net.” In Proceedings of the 19th International Society for Music Information Retrieval
Conference, 370–375. Paris, France: ISMIR, September. https://doi.org/10.5281/zenodo.
1492427. https://doi.org/10.5281/zenodo.1492427.

Deng, Jia, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. “ImageNet: A
Large-Scale Hierarchical Image Database.” In IEEE Conference on Computer Vision and
Pattern Recognition, 248–255. IEEE.

209

https://doi.org/10.5281/zenodo.1417297
https://doi.org/10.5281/zenodo.1417297
https://doi.org/10.1109/ICME.2005.1521350
https://doi.org/10.1109/ICME.2005.1521350
https://doi.org/10.1525/jams.2016.69.1.273
https://doi.org/10.1525/jams.2016.69.1.273
https://doi.org/10.5281/zenodo.1492427
https://doi.org/10.5281/zenodo.1492427
https://doi.org/10.5281/zenodo.1492427


Devaney, Johanna,ClaireArthur,Nathaniel Condit-Schultz, andKirstenNisula. 2015. “Theme
and Variation Encodings with RomanNumerals (TAVERN): ANewData Set for Symbolic
Music Analysis.” In Proceedings of the 16th International Society for Music Information
Retrieval Conference, 728–734. Málaga, Spain: ISMIR, October. https://doi.org/10.5281/
zenodo.1417497. https://doi.org/10.5281/zenodo.1417497.

Deveaux, Orpha-F. 1919. Les principes de l’harmonie. 1st ed.

Dieleman, Sander, Philemon Brakel, and Benjamin Schrauwen. 2011. “Audio-Based Music
Classification with a Pretrained Convolutional Network.” In Proceedings of the 12th In-
ternational Society for Music Information Retrieval Conference, 669–674. Miami, FL, USA:
ISMIR, October. https://doi .org/10.5281/zenodo.1415188. https://doi .org/10.5281/
zenodo.1415188.

Dreyer, Ernst-Jürgen. 1977. Entwurf einer zusammenhängenden Harmonielehre. 1st ed.

Dubois, Théodore. 1921. Traité d’harmonie théorique et pratique. 1st ed.

Durand, Emile. 1881. Traité complet d’harmonie théorique et pratique. 1st ed.

Emery, Stephen. 1879. Elements of Harmony. 1st ed.

Eyben, Florian, Sebastian Böck, Björn W. Schuller, and Alex Graves. 2010. “Universal Onset
Detection with Bidirectional Long Short-Term Memory Neural Networks.” In Proceed-
ings of the 11th International Society for Music Information Retrieval Conference, 589–594.
Utrecht, The Netherlands: ISMIR, August. https : //doi .org/10 .5281/zenodo.1417131.
https://doi.org/10.5281/zenodo.1417131.

Eyken, Heinrich van. 1911. Harmonielehre. 1st ed.

Faraldo, Ángel, Emilia Gómez, Sergi Jordà, and Perfecto Herrera. 2016. “Key Estimation in
Electronic Dance Music.” In Proceedings of the 38th European Conference on Information
Retrieval, 335–347. Padua, Italy: Springer.

Feisthauer, Laurent, Louis Bigo, Mathieu Giraud, and Florence Levé. 2020. “Estimating Keys
and Modulations in Musical Pieces.” In Sound and Music Computing Conference (SMC
2020). Torino, Italy: Simone Spagnol / Andrea Valle, June. https://hal.archives-ouvertes.
fr/hal-02886399.

Fétis, François-Joseph. 1844. Traité complet de la théorie et de la pratique de l’harmonie. 2nd ed.

Foote, Arthur. 1919.Modulation and Related Harmonic Questions. 1st ed.

Foote,Arthur, andWalterR. Spalding. 1905.ModernHarmony in Its Theory andPractice. 1st ed.

Forte, Allen. 1979. Tonal Harmony in Concept and Practice. 3rd ed.

210

https://doi.org/10.5281/zenodo.1417497
https://doi.org/10.5281/zenodo.1417497
https://doi.org/10.5281/zenodo.1417497
https://doi.org/10.5281/zenodo.1415188
https://doi.org/10.5281/zenodo.1415188
https://doi.org/10.5281/zenodo.1415188
https://doi.org/10.5281/zenodo.1417131
https://doi.org/10.5281/zenodo.1417131
https://hal.archives-ouvertes.fr/hal-02886399
https://hal.archives-ouvertes.fr/hal-02886399


Fowles, Ernest. 1918. Harmony in Pianoforte-Study. 1st ed.

Gardner, Carl E. 1912. Essentials of Music Theory Elementary. 1st ed.

Gilson, Paul. 1914. Etude sur les intervalles diatoniques et chromatiques. 1st ed.

. 1919. Traité d’harmonie. 1st ed.

Gkiokas, Aggelos, and Vassilios Katsouros. 2017. “Convolutional Neural Networks for Real-
Time Beat Tracking: A Dancing Robot Application.” In Proceedings of the 18th Interna-
tional Society forMusic Information Retrieval Conference, 286–293. Suzhou, China: ISMIR,
October. https://doi.org/10.5281/zenodo.1417737. https://doi.org/10.5281/zenodo.
1417737.

Gladstone, Francis Edward. 1908. AManual of Harmony for Schools. 1st ed.

. 1898. Five-Part Harmony. 1st ed.

Goetschius, Percy. 1892. The Theory and Practice of Tone-Relations. 1st ed.

Goldman, Richard Franko. 1965. Harmony in Western Music. 1st ed.

Gómez, Emilia, and Perfecto Herrera. 2004. “Estimating the Tonality of Polyphonic Audio
Files: Cognitive Versus Machine LearningModelling Strategies.” In Proceedings of the 5th
International Conference on Music Information Retrieval. Barcelona, Spain: ISMIR, Octo-
ber. https://doi.org/10.5281/zenodo.1418007. https://doi.org/10.5281/zenodo.1418007.

Good,Michael. 2001. “MusicXML forNotation andAnalysis.”The virtual score: Representation,
retrieval, restoration 12 (113): 160.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. Adaptive compu-
tation and machine learning. Cambridge, MA: The MIT Press. isbn: 978-0-262-03561-3.

Goodrich, Alfred John. 1893. Goodrich’s Analytical Harmony. 1st ed.

Gotham, Mark, Dmitri Tymoczko, and Michael Cuthbert. 2019. “The RomanText Format: A
Flexible and Standard Method for Representing Roman Numerial Analyses.” In Proceed-
ings of the 20th International Society for Music Information Retrieval Conference, 123–129.
Delft, The Netherlands: ISMIR, November. https ://doi .org/10.5281/zenodo.3527756.
https://doi.org/10.5281/zenodo.3527756.

Gotham, Mark Robert Haigh, and Peter Jonas. 2022. “The Openscore Lieder Corpus.” In Pro-
ceedings of the Music Encoding Conference.

Grave, Floyd, and Margaret Grave. 1988. In Praise of Harmony: The Teachings of Abbé Georg
Joseph Vogler. Lincoln, NE: University of Nebraska Press. isbn: 0-8032-2128-2 978-0-8032-
2128-4.

211

https://doi.org/10.5281/zenodo.1417737
https://doi.org/10.5281/zenodo.1417737
https://doi.org/10.5281/zenodo.1417737
https://doi.org/10.5281/zenodo.1418007
https://doi.org/10.5281/zenodo.1418007
https://doi.org/10.5281/zenodo.3527756
https://doi.org/10.5281/zenodo.3527756


Grill, Thomas, and Jan Schlüter. 2015. “Music Boundary Detection Using Neural Networks on
Combined Features and Two-Level Annotations.” In Proceedings of the 16th International
Society for Music Information Retrieval Conference, 531–537. Málaga, Spain: ISMIR, Octo-
ber. https://doi.org/10.5281/zenodo.1417461. https://doi.org/10.5281/zenodo.1417461.

Gururani, Siddharth, Cameron Summers, and Alexander Lerch. 2018. “Instrument Activity
Detection in Polyphonic Music Using Deep Neural Networks.” In Proceedings of the 19th
International Society for Music Information Retrieval Conference, 569–576. Paris, France:
ISMIR, September. https://doi.org/10.5281/zenodo.1492479. https://doi.org/10.5281/
zenodo.1492479.

Hába, Alois. 1927. Neue Harmonielehre. 1st ed.

Halm, August. 1900. Harmonielehre. 1st ed.

Ham, Albert. 1919. The Rudiments of Music and Elementary Harmony. 1st ed.

Hamilton, James Alexander. 1840. A Catechism of the Rudiments of Harmony and Thorough
Bass. 12th ed.

Hankinson, Andrew, Perry Roland, and Ichiro Fujinaga. 2011. “TheMusic Encoding Initiative
as a Document- Encoding Framework.” In Proceedings of the 12th International Society
for Music Information Retrieval Conference, 293–298. Miami, FL: ISMIR, October. https:
//doi.org/10.5281/zenodo.1417609. https://doi.org/10.5281/zenodo.1417609.

Harasim,Daniel, TimothyO’Donnell, andMartinRohrmeier. 2019. “Harmonic Syntax inTime:
Rhythm Improves Grammatical Models of Harmony.” In Proceedings of the 20th Interna-
tional Society forMusic InformationRetrieval Conference, 335–342.Delft, TheNetherlands,
November.

Harasim, Daniel, Martin Rohrmeier, and Timothy J. O’Donnell. 2018. “A Generalized Pars-
ing Framework for Generative Models of Harmonic Syntax.” In Proceedings of the 19th
International Society for Music Information Retrieval Conference, 152–159. Paris, France,
September.

Harte, Christopher, Mark Sandler, and Martin Gasser. 2006. “Detecting Harmonic Change in
Musical Audio.” In Proceedings of the 1st ACMWorkshop on Audio and Music Computing
Multimedia, 21–26. AMCMM ’06.NewYork,NY:ACM. isbn: 978-1-59593-501-4, accessed
August 6, 2019. https://doi.org/10.1145/1178723.1178727. http://doi.acm.org/10.1145/
1178723.1178727.

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. “Deep Residual Learning
for Image Recognition.” In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 770–778.

Heacox, Arthur E. 1917. Keyboard Training in Harmony. 1st ed.

212

https://doi.org/10.5281/zenodo.1417461
https://doi.org/10.5281/zenodo.1417461
https://doi.org/10.5281/zenodo.1492479
https://doi.org/10.5281/zenodo.1492479
https://doi.org/10.5281/zenodo.1492479
https://doi.org/10.5281/zenodo.1417609
https://doi.org/10.5281/zenodo.1417609
https://doi.org/10.5281/zenodo.1417609
https://doi.org/10.1145/1178723.1178727
http://doi.acm.org/10.1145/1178723.1178727
http://doi.acm.org/10.1145/1178723.1178727


Heacox, Arthur E. 1907. Lessons of Harmony: Complete. Parts I and Ii. 1st ed.

Hentschel, Johannes,AndrewMcLeod, FabianMoss,MarkusNeuwirth, andMartinRohrmeier.
2022. “Towards a UnifiedModel of Chords inWesternHarmony.” InMusic Encoding Con-
ference.

Hentschel, Johannes,MarkusNeuwirth, andMartinRohrmeier. 2021. “TheAnnotatedMozart
Sonatas: Score, Harmony, and Cadence.” Transactions of the International Society for Mu-
sic Information Retrieval 4 (1): 67–80. issn: 2514-3298. https://doi.org/10.5334/tismir.63.
http://transactions.ismir.net/articles/10.5334/tismir.63/.

Hindemith, Paul. 1943. A Concentrated Course in Traditional Harmony. 2nd ed.

Hinton, Geoffrey E., Simon Osindero, and Yee-Whye Teh. 2006. “A Fast Learning Algorithm
for Deep Belief Nets.”Neural Comput. 18 (7): 1527–1554. issn: 0899-7667. https://doi.org/
10.1162/neco.2006.18.7.1527. http://dx.doi.org/10.1162/neco.2006.18.7.1527.

Hochreiter, Sepp, and Jürgen Schmidhuber. 1997. “Long Short-Term Memory.” Neural Com-
putation 9, no. 8 (November 1, 1997): 1735–1780. issn: 0899-7667, accessed September 23,
2019. https://doi.org/10.1162/neco.1997.9.8.1735. https://doi.org/10.1162/neco.1997.9.8.
1735.

Huang, Gao, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. 2017. “Densely
Connected Convolutional Networks.” In Proceedings of the 2017 IEEEConference on Com-
puter Vision and Pattern Recognition (CVPR), 2261–2269. https://doi.org/10.1109/CVPR.
2017.243.

Huang, Po-Sen, Minje Kim, Mark Hasegawa-Johnson, and Paris Smaragdis. 2014. “Singing-
Voice Separation fromMonaural Recordings Using Deep Recurrent Neural Networks.” In
Proceedings of the 15th International Society for Music Information Retrieval Conference,
477–482. Taipei, Taiwan: ISMIR, October. https : / /doi . org /10 . 5281/zenodo .1415678.
https://doi.org/10.5281/zenodo.1415678.

Hull, Arthur Eaglefield. 1915.Modern Harmony: Its Explanation and Application. 1st ed.

Humphrey, E. J., and J. P. Bello. 2012. “Rethinking Automatic Chord Recognition with Convo-
lutional Neural Networks,” 2:357–362. Proceedings of the 2012 11th International Confer-
ence on Machine Learning and Applications. https://doi.org/10.1109/ICMLA.2012.220.

Huron, David. 1994. The Humdrum Toolkit: Reference Manual. Center for Computer Assisted
Research in the Humanities.

. 2016. Voice Leading: The Science Behind the Musical Art. Cambridge, MA: MIT Press.
isbn: 978-0-262-03485-2.

213

https://doi.org/10.5334/tismir.63
http://transactions.ismir.net/articles/10.5334/tismir.63/
https://doi.org/10.1162/neco.2006.18.7.1527
https://doi.org/10.1162/neco.2006.18.7.1527
http://dx.doi.org/10.1162/neco.2006.18.7.1527
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.5281/zenodo.1415678
https://doi.org/10.5281/zenodo.1415678
https://doi.org/10.1109/ICMLA.2012.220


Hyer, Brian. 2002. “Tonality.” In The Cambridge History of Western Music Theory, edited by
Thomas Christensen, 726–752. The Cambridge History of Music. Cambridge, UK: Cam-
bridge University Press. isbn: 978-0-521-68698-3, accessed August 20, 2021. https://doi.
org / 10 . 1017 /CHOL9780521623711 . 025. https : / /www . cambridge . org / core / books /
cambridge-history-of -western-music-theory/tonality/8CA2CCF5615C16D2DA7E24C5
DC1259CB.

Illescas, Plácido R, David Rizo, and José Manuel Inesta Quereda. 2007. “Harmonic, Melodic,
and Functional Automatic Analysis.” In International Computer Music Conference.

Izmirli, Özgür. 2007. “Localized Key Finding from Audio Using Nonnegative Matrix Factor-
ization for Segmentation.” In Proceedings of the 8th International Conference on Music
Information Retrieval, 195–200. Vienna, Austria: ISMIR, September. https://doi.org/10.
5281/zenodo.1417197. https://doi.org/10.5281/zenodo.1417197.

Izmirli, Özgür, and Semih Bilgen. 1994. “Recognition of Musical Tonality from Sound Input.”
InProceedings ofMELECON ’94.MediterraneanElectrotechnicalConference, 269–271. Pro-
ceedings of MELECON ’94. Mediterranean Electrotechnical Conference. https://doi.org/
10.1109/MELCON.1994.381110.

Jacobs, Robert Louis. 1958. Harmony for the Listener. 1st ed.

Jadassohn, Salomon. 1890. Die Kunst zu Modulieren und zu Präludieren. 1st ed.

. 1883. Lehrbuch der Harmonie. 1st ed.

Jones, Robert Gomer. 1939. Harmony and Its Contrapuntal Treatment. 1st ed.

Ju, Yaolong. 2021. “Addressing Ambiguity in Supervised Machine Learning: A Case Study on
Automatic Chord Labelling.” PhD diss., McGill University.

Ju, Yaolong, Samuel Howes, Cory McKay, Nathaniel Condit-Schultz, Jorge Calvo-Zaragoza,
and Ichiro Fujinaga. 2019. “An Interactive Workflow for Generating Chord Labels for
Homorhythmic Music in Symbolic Formats.” In Proceedings of the 20th International So-
ciety for Music Information Retrieval Conference, 862–869. Delft, The Netherlands: ISMIR,
November. https://doi.org/10.5281/zenodo.3527950. https://doi.org/10.5281/zenodo.
3527950.

Kallenberg, Siegfried Garibaldi. 1913.Musikalische Kompositionsformen. 1st ed.

Kingma, Diederik P, and Jimmy Ba. 2014. “Adam: A Method for Stochastic Optimization.”
arXiv preprint arXiv:1412.6980.

Kirnberger, Johann Philipp. 1774. Die Kunst des Reinen Satzes in der Musik. 1st ed.

Kistler, Cyrill. 1879. Harmonielehre für Lehrer und Lernende. 1st ed.

214

https://doi.org/10.1017/CHOL9780521623711.025
https://doi.org/10.1017/CHOL9780521623711.025
https://www.cambridge.org/core/books/cambridge-history-of-western-music-theory/tonality/8CA2CCF5615C16D2DA7E24C5DC1259CB
https://www.cambridge.org/core/books/cambridge-history-of-western-music-theory/tonality/8CA2CCF5615C16D2DA7E24C5DC1259CB
https://www.cambridge.org/core/books/cambridge-history-of-western-music-theory/tonality/8CA2CCF5615C16D2DA7E24C5DC1259CB
https://doi.org/10.5281/zenodo.1417197
https://doi.org/10.5281/zenodo.1417197
https://doi.org/10.5281/zenodo.1417197
https://doi.org/10.1109/MELCON.1994.381110
https://doi.org/10.1109/MELCON.1994.381110
https://doi.org/10.5281/zenodo.3527950
https://doi.org/10.5281/zenodo.3527950
https://doi.org/10.5281/zenodo.3527950


Kitson, Charles Hebert. 1920. Elementary Harmony. 1st ed.

Klatte, Wilhelm. 1922. Grundlagen des Mehrstimmigen Satzes (harmonielehre). 1st ed.

Klauser, Julius. 1909. The Nature of Music; Original Harmony in One Voice by Julius Klauser.
1st ed.

Kluyver, Thomas, Benjamin Ragan-Kelley, Fernando Pérez, Brian E. Granger, Matthias Bus-
sonnier, Jonathan Frederic, Kyle Kelley, Jessica B. Hamrick, Jason Grout, Sylvain Corlay,
et al. 2016. Jupyter Notebooks-a Publishing Format for Reproducible Computational Work-
flows. Vol. 2016.

Knorr, Iwan. 1921. Aufgaben für den Unterricht in der Harmonielehre. 4th ed.

Koch, Friedrich E. 1920. Der Aufbau der Kadenz und Anderes. 1st ed.

Koechlin, Charles. 1928. Traité de l’harmonie. 1st ed.

Korzeniowski, Filip, andGerhardWidmer. 2018. “Genre-AgnosticKeyClassificationwithCon-
volutional Neural Networks.” In Proceedings of the 19th International Society for Music In-
formation Retrieval Conference, 264–270. Paris, France: ISMIR, September. https://doi .
org/10.5281/zenodo.1492399. https://doi.org/10.5281/zenodo.1492399.

Kostka, Stefan, and Dorothy Payne. 2008. Tonal Harmony. Boston, MA: McGraw-Hill Educa-
tion. isbn: 978-0-07-340135-5.

Kostka, StefanM., andDorothyPayne. 1984.TonalHarmony:With an Introduction toTwentieth-
Century Music. 1st ed.

Krebs, Florian, SebastianBöck,MatthiasDorfer, andGerhardWidmer. 2016. “Downbeat Track-
ing Using Beat Synchronous Features with Recurrent Neural Networks.” In Proceedings
of the 17th International Society for Music Information Retrieval Conference, 129–135. New
York, NY: ISMIR, August. https://doi.org/10.5281/zenodo.1417819. https://doi.org/10.
5281/zenodo.1417819.

Krehl, Stephan. 1928. Theorie der Tonkunst und Kompositionlehre. 4th ed.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey Everest Hinton. 2012. “Imagenet Classification
withDeepConvolutionalNeuralNetworks.” InAdvances inNeural InformationProcessing
Systems 25, edited by F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, 1097–
1105. Curran Associates, Inc. http://papers.nips.cc/paper/4824-imagenet-classification-
with-deep-convolutional-neural-networks.pdf.

Krumhansl, Carol L. 1990. Cognitive Foundations of Musical Pitch. Cognitive Foundations of
Musical Pitch. NewYork, NY: Oxford University Press. isbn: 978-0-19-505475-0 978-0-19-
514836-7.

215

https://doi.org/10.5281/zenodo.1492399
https://doi.org/10.5281/zenodo.1492399
https://doi.org/10.5281/zenodo.1492399
https://doi.org/10.5281/zenodo.1417819
https://doi.org/10.5281/zenodo.1417819
https://doi.org/10.5281/zenodo.1417819
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf


Krumhansl, Carol L., and Edward J. Kessler. 1982. “Tracing theDynamic Changes in Perceived
Tonal Organization in a Spatial Representation of Musical Keys.” Psychological Review 89
(4): 334–368. issn: 1939-1471(Electronic),0033-295X(Print). https : / /doi . org /10 . 1037/
0033-295X.89.4.334.

Krumhansl, Carol L., and Roger N. Shepard. 1979. “Quantification of the Hierarchy of Tonal
Functions Within a Diatonic Context.” Journal of Experimental Psychology: Human Per-
ception and Performance 5 (4): 579–594. issn: 1939-1277(Electronic),0096-1523(Print). ht
tps://doi.org/10.1037/0096-1523.5.4.579.

Laitz, Steven Geoffrey, and Christopher A. Barlette. 2010. Graduate Review of Tonal Theory.
1st ed.

Lavignac, Albert. 1909. Cours d’harmonie, théorique et pratique. 1st ed.

Leavitt, Helen Sewall. 1916. Practical Lesson Plans in Harmony. 1st ed.

LeCun, Yann. 1989. “Generalization and Network Design Strategies.” InConnectionism in Per-
spective, edited by R. Pfeifer, Z. Schreter, F. Fogelman, and L. Steels. Elsevier.

LeCun, Yann, Larry Jackel, Bernard Boser, JohnDenker, HansGraf, Isabelle Guyon, DonHen-
derson, Richard Howard, and Wayne Hubbard. 1989. “Handwritten Digit Recognition:
Applications of Neural Network Chips and Automatic Learning.” IEEE Communications
Magazine 27, no. 11 (November): 41–46. issn: 0163-6804, 1558-1896. https://doi.org/10.
1109/35.41400.

Lee, Kyogu, and Malcolm Slaney. 2007. “A Unified System for Chord Transcription and Key
Extraction Using HiddenMarkov Models.” In Proceedings of the 8th International Confer-
ence on Music Information Retrieval, 245–250. Vienna, Austria: ISMIR, September. https:
//doi.org/10.5281/zenodo.1415208. https://doi.org/10.5281/zenodo.1415208.

Leman, Marc. 1992. “Een model van toonsemantiek: naar een theorie en discipline van de
muzikale verbeelding.” PhD diss., Ghent University.

Lenormand, René. 1913. Étude sur l’harmonie moderne. 1st ed.

Lerdahl, Fred. 2005. Tonal Pitch Space. Oxford University Press. isbn: 978-0-19-987037-0, ac-
cessed October 8, 2019. http : / /www .oxfordscholarship . com/view /10 . 1093 / acprof :
oso/9780195178296.001.0001/acprof-9780195178296.

Lester, Joel. 1982. Harmony in Tonal Music. 1st ed.

Levy, Ernst. 1985. A Theory of Harmony. 1st ed.

216

https://doi.org/10.1037/0033-295X.89.4.334
https://doi.org/10.1037/0033-295X.89.4.334
https://doi.org/10.1037/0096-1523.5.4.579
https://doi.org/10.1037/0096-1523.5.4.579
https://doi.org/10.1109/35.41400
https://doi.org/10.1109/35.41400
https://doi.org/10.5281/zenodo.1415208
https://doi.org/10.5281/zenodo.1415208
https://doi.org/10.5281/zenodo.1415208
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780195178296.001.0001/acprof-9780195178296
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780195178296.001.0001/acprof-9780195178296


Liang, Feynman T., Mark Gotham, Matthew Johnson, and Jamie Shotton. 2017. “Automatic
Stylistic Composition of Bach Chorales with Deep LSTM.” In Proceedings of the 18th In-
ternational Society for Music Information Retrieval Conference, 449–456. Suzhou, China:
ISMIR, October. https://doi .org/10.5281/zenodo.1416208. https://doi .org/10.5281/
zenodo.1416208.

Lim, Hyungui, Seungyeon Rhyu, and Kyogu Lee. 2017. “Chord Generation from Symbolic
Melody Using BLSTMNetworks.” In Proceedings of the 18th International Society for Mu-
sic Information Retrieval Conference, 621–627. Suzhou, China: ISMIR, October. https://
doi.org/10.5281/zenodo.1417327. https://doi.org/10.5281/zenodo.1417327.

Liu, I.-Ting, and Richard Randall. 2016. “Predicting Missing Music Components with Bidirec-
tional Long Short-Term Memory Neural Networks.” In Proceedings of the 17th Interna-
tional Society for Music Information Retrieval Conference, 225–231. New York, NY: ISMIR,
August. https://doi .org/10.5281/zenodo.1417239. https://doi .org/10.5281/zenodo.
1417239.

Lobe, Johann Christian. 1850. Lehrbuch der Musikalischen Komposition. 1st ed.

Loewengard, Max Julius. 1908. Lehrbuch der Harmonie. 4th ed.

Logier, Johann Bernhard. 1827. System der Musik-Wissenschaft und der Praktischen Composi-
tion. 1st ed.

Longuet-Higgins, Hugh Christopher. 1971. “On Interpreting Bach.”Machine intelligence 6.

. 1976. “Perception of Melodies.” Nature 263, no. 5579 (October): 646–653. issn: 1476-
4687, accessed November 14, 2019. https://doi .org/10.1038/263646a0. https://www.
nature.com/articles/263646a0.

Lostanlen, Vincent, and Carmine-Emanuele Cella. 2016. “Deep Convolutional Networks on
the Pitch Spiral for Music Instrument Recognition.” In Proceedings of the 17th Interna-
tional Society for Music Information Retrieval Conference, 612–618. New York, NY: ISMIR,
August. https://doi .org/10.5281/zenodo.1416928. https://doi .org/10.5281/zenodo.
1416928.

Louis, Rudolf, and Ludwig Thuille. 1907. Harmonielehre. 7th ed.

Macpherson, Charles Stewart. 1920. Melody and Harmony: A Treatise for the Teacher and the
Student. 1st ed.

Magalhães, José Pedro, andW. Bas de Haas. 2011. “Functional Modelling ofMusical Harmony
an Experience Report.” 156, ACM SIGPLAN Notices 46 (9): 156–162. issn: 0362-1340. htt
ps://doi.org/10.1145/2034574.2034797.

Mangold, Carl. 1883. Harmony. 1st ed.

217

https://doi.org/10.5281/zenodo.1416208
https://doi.org/10.5281/zenodo.1416208
https://doi.org/10.5281/zenodo.1416208
https://doi.org/10.5281/zenodo.1417327
https://doi.org/10.5281/zenodo.1417327
https://doi.org/10.5281/zenodo.1417327
https://doi.org/10.5281/zenodo.1417239
https://doi.org/10.5281/zenodo.1417239
https://doi.org/10.5281/zenodo.1417239
https://doi.org/10.1038/263646a0
https://www.nature.com/articles/263646a0
https://www.nature.com/articles/263646a0
https://doi.org/10.5281/zenodo.1416928
https://doi.org/10.5281/zenodo.1416928
https://doi.org/10.5281/zenodo.1416928
https://doi.org/10.1145/2034574.2034797
https://doi.org/10.1145/2034574.2034797


Mauch,Matthias, and SimonDixon. 2010a. “ApproximateNoteTranscription for the Improved
Identification of Difficult Chords.” In Proceedings of the 11th International Society for Mu-
sic Information Retrieval Conference. Utrecht, The Netherlands.

. 2010b. “Simultaneous Estimation of Chords and Musical Context from Audio.” IEEE
Transactions on Audio, Speech, and Language Processing 18 (6): 1280–1289. issn: 1558-
7916. https://doi.org/10.1109/TASL.2009.2032947.

Maxwell,H. John. 1984. “AnArtificial IntelligenceApproach toComputer-ImplementedAnal-
ysis of Harmony in Tonal Music.” PhD diss., Indiana University. https://books.google.ca/
books?id=mTtrHwAACAAJ.

. 1992. “AnExpert System forHarmonizingAnalysis of TonalMusic.” InUnderstanding
MusicwithAI: Perspectives onMusicCognition, 334–353. Cambridge,MA:MITPress. isbn:
0-262-52170-9.

McConathy, Osbourne. 1927. An Approach to Harmony. 1st ed.

McCulloch, Warren S., and Walter Pitts. 1943. “A Logical Calculus of the Ideas Immanent
in Nervous Activity.” The Bulletin of Mathematical Biophysics 5 (4): 115–133. issn: 1522-
9602, accessed November 6, 2019. https://doi.org/10.1007/BF02478259. https://doi.org/
10.1007/BF02478259.

McEnnis, Daniel, Cory McKay, Ichiro Fujinaga, and Philippe Depalle. 2005. “JAudio: An Fea-
ture Extraction Library.” In Proceedings of the 6th International Conference on Music In-
formation Retrieval, 600–603. London, United Kingdom: ISMIR, September. https://doi.
org/10.5281/zenodo.1416648. https://doi.org/10.5281/zenodo.1416648.

McKinney, Wes, et al. 2011. “pandas: A Foundational Python Library for Data Analysis and
Statistics.” Publisher: Seattle, Python for High Performance and Scientific Computing 14
(9): 1–9.

McLeod, Andrew, andMartinA. Rohrmeier. 2021. “AModular System for theHarmonic Anal-
ysis of Musical Scores Using a Large Vocabulary.” In Proceedings of the 22nd International
Society for Music Information Retrieval Conference, 435–442. Online: ISMIR, November.
https://doi.org/10.5281/zenodo.5655391. https://doi.org/10.5281/zenodo.5655391.

Mearns, Lesley, Emmanouil Benetos, and Simon Dixon. 2011. “Automatically Detecting Key
Modulations in J. S. Bach Chorale Recordings.” In Proceedings of the 8th Sound andMusic
Computing Conference, 25–32.

Meister, JohannGeorg. 1852.VollständigeHarmonie-UndGeneralbasslehreUndEinleitungZur
Composition. 1st ed.

218

https://doi.org/10.1109/TASL.2009.2032947
https://books.google.ca/books?id=mTtrHwAACAAJ
https://books.google.ca/books?id=mTtrHwAACAAJ
https://doi.org/10.1007/BF02478259
https://doi.org/10.1007/BF02478259
https://doi.org/10.1007/BF02478259
https://doi.org/10.5281/zenodo.1416648
https://doi.org/10.5281/zenodo.1416648
https://doi.org/10.5281/zenodo.1416648
https://doi.org/10.5281/zenodo.5655391
https://doi.org/10.5281/zenodo.5655391


Meredith, David. 2005. “Comparing Pitch Spelling Algorithms on a Large Corpus of Tonal
Music.” In Computer Music Modeling and Retrieval, edited by Uffe Kock Wiil, 173–192.
Lecture Notes in Computer Science. Springer Berlin Heidelberg. isbn: 978-3-540-31807-
1.

. 2003. “Pitch Spelling Algorithms.” In Proceedings of the Fifth Triennial ESCOM Con-
ference, 204–207. Hannover, Germany.

. 2006. “The PS13 Pitch Spelling Algorithm.” Journal of NewMusic Research 35 (2): 121–
159.

Meyes, Richard, Melanie Lu, Constantin Waubert de Puiseau, and Tobias Meisen. 2019. “Ab-
lation Studies to Uncover Structure of Learned Representations in Artificial Neural Net-
works.” In Proceedings on the International Conference on Artificial Intelligence (ICAI),
185–191. The Steering Committee of The World Congress in Computer Science, Com-
puter . . .

Micchi, Gianluca, Mark Gotham, and Mathieu Giraud. 2020. “Not All Roads Lead to Rome:
Pitch Representation and Model Architecture for Automatic Harmonic Analysis.” Trans-
actions of the International Society for Music Information Retrieval 3:42–54. https://doi.
org/10.5334/tismir.45.

Micchi, Gianluca, Katerina Kosta, Gabriele Medeot, and Pierre Chanquion. 2021. “A Deep
LearningMethod for Enforcing Coherence in Automatic Chord Recognition.” In Proceed-
ings of the 22nd International Society for Music Information Retrieval Conference, 443–451.
Online: ISMIR, November. https://doi.org/10.5281/zenodo.5624539. https://doi.org/10.
5281/zenodo.5624539.

Mickelsen, William. 1977. Hugo Riemann’s Theory of Harmony. 1st ed.

Minsky, Marvin, and Seymour A. Papert. 1972. Perceptrons: An Introduction to Computational
Geometry. 2nd ed. Cambridge, MA: The MIT Press. isbn: 978-0-262-63022-1 978-0-262-
13043-1.

Mirka, Danuta. 2015. “The Mystery of the Cadential Six-Four.” InWhat is a Cadence? Theoret-
ical and Analytical Perspectives on Cadences in the Classical Repertoire, edited by Markus
Neuwirth and Pieter Bergé, 157–184. LeuvenUniversity Press, May. https://eprints.soton.
ac.uk/377412/.

Miron, Marius, Jordi Janer, and Emilia Gómez. 2017. “Monaural Score-Informed Source Sep-
aration for Classical Music Using Convolutional Neural Networks.” In Proceedings of the
18th International Society forMusic InformationRetrievalConference, 55–62. Suzhou,China:
ISMIR, October. https://doi .org/10.5281/zenodo.1416498. https://doi .org/10.5281/
zenodo.1416498.

Mitchell, William John. 1965. Elementary Harmony. 3rd ed.

219

https://doi.org/10.5334/tismir.45
https://doi.org/10.5334/tismir.45
https://doi.org/10.5281/zenodo.5624539
https://doi.org/10.5281/zenodo.5624539
https://doi.org/10.5281/zenodo.5624539
https://eprints.soton.ac.uk/377412/
https://eprints.soton.ac.uk/377412/
https://doi.org/10.5281/zenodo.1416498
https://doi.org/10.5281/zenodo.1416498
https://doi.org/10.5281/zenodo.1416498


Mokrejs, John. 1913. Lessons in Harmony. 1st ed.

Molitor,Gregor. 1913.DieDiatonisch-RhythmischeHarmonisationderGregorianischenChoralmelo-
dien. 1st ed.

Moog, Robert Arthur. 1986. “MIDI:Musical InstrumentDigital Interface.” Journal of theAudio
Engineering Society 34 (5): 394–404.

Morris, Reginald Owen. 1931. Foundations of Practical Harmony & Counterpoint. 2nd ed.

. 1946. The Oxford Harmony, Vol. 1. 1st ed.

Moss, Fabian C., Markus Neuwirth, and Martin Rohrmeier. 2022. “The Line of Fifths and the
Co-Evolution of Tonal Pitch-Classes.” Publisher: Taylor&Francis _eprint: https://doi.org/10.1080/17459737.2022.2044927,
Journal of Mathematics and Music 0 (0): 1–25. https://doi.org/10.1080/17459737.2022.
2044927. https://doi.org/10.1080/17459737.2022.2044927.

Motte, Diether de la. 1978. Harmonielehre. 1st ed.

Müller, Meinard. 2015. “Music Representations.” In Fundamentals of Music Processing: Audio,
Analysis, Algorithms, Applications, 1–37. Cham: Springer International Publishing. isbn:
978-3-319-21945-5. https://doi.org/10.1007/978-3-319-21945-5_1. https://doi.org/10.
1007/978-3-319-21945-5_1.

Murphy, Howard Ansley, and Edwin John Stringham. 1951. Creative Harmony and Musician-
ship. 1st ed.

Nápoles López, Néstor. 2017. “Automatic Harmonic Analysis of Classical String Quartets from
Symbolic Score.” Masters Thesis, Universitat Pompeu Fabra, December. https://doi.org/
10.5281/zenodo.1095617. https://doi.org/10.5281/zenodo.1095617.

Nápoles López, Néstor, ClaireArthur, and Ichiro Fujinaga. 2019. “Key-Finding Based on aHid-
den Markov Model and Key Profiles.” In Proceedings of the 6th International Conference
on Digital Libraries for Musicology. New York, NY: ACM.

Nápoles López, Néstor, Laurent Feisthauer, Florence Levé, and Ichiro Fujinaga. 2020. “On
Local Keys, Modulations, and Tonicizations: A Dataset and Methodology for Evaluating
Changes of Key.” In Proceedings of the 7th International Conference on Digital Libraries
for Musicology, 18–26. New York, NY: Association for Computing Machinery. isbn: 978-
1-4503-8760-6. https://doi.org/10.1145/3424911.3425515.

Nápoles López, Néstor, and Ichiro Fujinaga. 2020a. “Harmalysis: A Language for the Annota-
tion of Roman Numerals in Symbolic Music Representations.” In Proceedings of theMusic
Encoding Conference. Boston, MA: MEC.

220

https://doi.org/10.1080/17459737.2022.2044927
https://doi.org/10.1080/17459737.2022.2044927
https://doi.org/10.1080/17459737.2022.2044927
https://doi.org/10.1007/978-3-319-21945-5_1
https://doi.org/10.1007/978-3-319-21945-5_1
https://doi.org/10.1007/978-3-319-21945-5_1
https://doi.org/10.5281/zenodo.1095617
https://doi.org/10.5281/zenodo.1095617
https://doi.org/10.5281/zenodo.1095617
https://doi.org/10.1145/3424911.3425515


Nápoles López, Néstor, and Ichiro Fujinaga. 2020b. “Harmonic Reductions as a Strategy for
Creative Data Augmentation.” In Late-BreakingDemo at 21st International Society forMu-
sic Information Retrieval Conference.Montreal, Canada, October.

Nápoles López, Néstor, Mark Gotham, and Ichiro Fujinaga. 2021. “AugmentedNet: A Roman
NumeralAnalysisNetworkwith Synthetic TrainingExamples andAdditional Tonal Tasks.”
InProceedings of the 22nd International Society forMusic InformationRetrieval Conference,
404–411. November.

Nápoles López, Néstor, Gabriel Vigliensoni, and Ichiro Fujinaga. 2018. “Encoding Matters.”
In Proceedings of the 5th International Conference on Digital Libraries for Musicology, 69–
73. New York, NY: ACM. isbn: 978-1-4503-6522-2, accessed September 26, 2019. https:
//doi.org/10.1145/3273024.3273027.

. 2019. “The Effects of Translation Between Symbolic Music Formats: A Case-Study
with Humdrum, Lilypond, MEI, andMusicXML.” In Poster at theMusic Encoding Confer-
ence. Event-. Vienna, Austria.

Neuwirth,Markus, DanielHarasim, FabianC.Moss, andMartinRohrmeier. 2018. “TheAnno-
tated Beethoven Corpus (ABC): A Dataset of Harmonic Analyses of All Beethoven String
Quartets.” Frontiers in Digital Humanities 5. issn: 2297-2668, accessed August 5, 2019.
https://doi.org/10.3389/fdigh.2018.00016. https://www.frontiersin.org/articles/10.3389/
fdigh.2018.00016/full.

Ninov, Dimitar. 2016. “Functional Nature of the Cadential Six-Four.” Publisher: University of
Ljubljana, Faculty of Arts,Muzikoloski zbornik 52 (1): 73.

Noland, Katy C., andMark B. Sandler. 2006. “Key Estimation Using a HiddenMarkovModel.”
In Proceedings of the 7th International Society for Music Information Retrieval Conference,
121–126. Victoria, Canada.

Norris, Homer Albert. 1894. Practical Harmony: A Comprehensive System ofMusical Theory on
a French Basis. 1st ed.

Oakey, George. 1884. Text Book of Harmony. 7th ed.

Oettingen, Arthur von. 1866. Harmoniesystem in Dualer Entwicklung. 1st ed.

Oliphant, Travis E. 2006. A Guide to Numpy. Vol. 1. Trelgol Publishing USA.

Orem, Preston Ware. 1916. Harmony Book for Beginners. 1st ed.

Ottman, Robert W. 1961a. Advanced Harmony: Theory and Practice. 1st ed.

. 1961b. Elementary Harmony: Theory and Practice. 1st ed.

Ouseley, Frederick Arthur Gore. 1868. A Treatise on Harmony. 1st ed.

221

https://doi.org/10.1145/3273024.3273027
https://doi.org/10.1145/3273024.3273027
https://doi.org/10.3389/fdigh.2018.00016
https://www.frontiersin.org/articles/10.3389/fdigh.2018.00016/full
https://www.frontiersin.org/articles/10.3389/fdigh.2018.00016/full


Pacha, Alexander, and Jorge Calvo-Zaragoza. 2018. “Optical Music Recognition in Mensural
Notation with Region-Based Convolutional Neural Networks.” In Proceedings of the 19th
International Society for Music Information Retrieval Conference, 240–247. Paris, France:
ISMIR, September. https://doi.org/10.5281/zenodo.1492393. https://doi.org/10.5281/
zenodo.1492393.

Papadopoulos, Hélène, andGeoffroy Peeters. 2009. “Local Key Estimation Based onHarmonic
and Metric Structures.” In Proceedings of the 12th Int. Conference on Digital Audio Effects
(DAFx-09), 408–415. Como, Italy, September. Accessed August 5, 2019. https://hal.archi
ves-ouvertes.fr/hal-00511452.

. 2008. “Simultaneous Estimation of Chord Progression and Downbeats from an Audio
File,” 121–124. ISSN: 1520-6149, 2379-190X, Proceedings of the 2008 IEEE International
Conference on Acoustics, Speech and Signal Processing. March. https://doi.org/10.1109/
ICASSP.2008.4517561.

Paszke, Adam, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, et al. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. https://doi.org/10.48550/ARXIV.1912.01703. https://arxiv.org/abs/1912.01703.

Pauwels, Johan, and Jean-Pierre Martens. 2014. “CombiningMusicological Knowledge About
Chords and Keys in a Simultaneous Chord and Local Key Estimation System.” Journal of
NewMusic Research 43, no. 3 (July 3, 2014): 318–330. issn: 0929-8215, accessed August 4,
2019. https://doi.org/10.1080/09298215.2014.917684. https://doi.org/10.1080/09298215.
2014.917684.

Pauwels, Johan, Ken O’Hanlon, Emilia Gómez, and Mark Brian Sandler. 2019. “20 Years of
Automatic ChordRecognition fromAudio.” In International Society forMusic Information
Retrieval (ISMIR). Delft, The Netherlands, April 11, 2019. http://hdl.handle.net/10230/
42773.

Peeters, Geoffroy. 2006. “Chroma-Based Estimation of Musical Key from Audio- Signal Anal-
ysis.” In Proceedings of the 7th International Conference on Music Information Retrieval,
115–120. Victoria, Canada: ISMIR, October. https://doi.org/10.5281/zenodo.1416420.
https://doi.org/10.5281/zenodo.1416420.

Piston, Walter. 1941. Harmony. 1st ed.

Pons, Jordi, Rong Gong, and Xavier Serra. 2017. “Score-Informed Syllable Segmentation for a
Cappella Singing Voice with Convolutional Neural Networks.” In Proceedings of the 18th
International Society forMusic Information Retrieval Conference, 383–389. Suzhou, China:
ISMIR, October. https://doi .org/10.5281/zenodo.1415632. https://doi.org/10.5281/
zenodo.1415632.

Prout, Ebenezer. 1889. Harmony Its Theory and Practice. 5th ed.

222

https://doi.org/10.5281/zenodo.1492393
https://doi.org/10.5281/zenodo.1492393
https://doi.org/10.5281/zenodo.1492393
https://hal.archives-ouvertes.fr/hal-00511452
https://hal.archives-ouvertes.fr/hal-00511452
https://doi.org/10.1109/ICASSP.2008.4517561
https://doi.org/10.1109/ICASSP.2008.4517561
https://doi.org/10.48550/ARXIV.1912.01703
https://arxiv.org/abs/1912.01703
https://doi.org/10.1080/09298215.2014.917684
https://doi.org/10.1080/09298215.2014.917684
https://doi.org/10.1080/09298215.2014.917684
http://hdl.handle.net/10230/42773
http://hdl.handle.net/10230/42773
https://doi.org/10.5281/zenodo.1416420
https://doi.org/10.5281/zenodo.1416420
https://doi.org/10.5281/zenodo.1415632
https://doi.org/10.5281/zenodo.1415632
https://doi.org/10.5281/zenodo.1415632


Pugin, Laurent, Rodolfo Zitellini, and Perry Roland. 2014. “Verovio: A Library for Engraving
Mei Music Notation into Svg.” In Proceedings of the 15th International Society for Music
Information Retrieval Conference, 107–112. Taipei, Taiwan: ISMIR, October. https://doi.
org/10.5281/zenodo.1417589. https://doi.org/10.5281/zenodo.1417589.

Purwins,Hendrik, BenjaminBlankertz, andKlausObermayer. 2000. “ANewMethod for Track-
ingModulations in TonalMusic in Audio Data Format,” 6:270–275. ISSN: 1098-7576, Pro-
ceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks.
https://doi.org/10.1109/IJCNN.2000.859408.

Quick, Donya. 2016. “Learning Production Probabilities for Musical Grammars.” Journal of
New Music Research 45 (4): 295–313.

Rabiner, Lawrence R. 1989. “A Tutorial on Hidden Markov Models and Selected Applications
in Speech Recognition.” Proceedings of the IEEE 77 (2): 257–286. https://doi.org/10.1109/
5.18626.

Raphael, Christopher, and Joshua Stoddard. 2004. “FunctionalHarmonicAnalysisUsingProb-
abilistic Models.” Computer Music Journal 28 (3): 45–52. issn: 0148-9267, accessed Au-
gust 7, 2019. https : / /doi .org/10 .1162/0148926041790676. https : / /doi .org/10 .1162/
0148926041790676.

. 2003. “Harmonic Analysis with Probabilistic Graphical Models.” In ISMIR.

Reber, Henri. 1862. Traité d’harmonie. 1st ed.

Reger, Max. 1904. Supplement to the Theory of Modulation. Leipzig: C. F. Kahnt Nachfolger.

Renggli, Cédric, LukaRimanic, NeziheMerveGürel, BojanKarlas,WentaoWu, andCe Zhang.
2021. “A Data Quality-Driven View of MLops.” CoRR abs/2102.07750. arXiv: 2102.07750.
https://arxiv.org/abs/2102.07750.

Richter, Ernst Friedrich. 1860. Lehrbuch der Harmonie. 3rd ed.

Riemann, Hugo. 1902. Grosse Kompositionslehre. 1st ed.

. 1913. Handbuch der Harmonie-und Modulationslehre. 8th ed.

. 1890. Katechismus der Harmonielehre (Theoretisch und Praktisch). 1st ed.

. 1883. Neue Schule der Melodik. 1st ed.

. 1887. Systematische Modulationslehre. 1st ed.

223

https://doi.org/10.5281/zenodo.1417589
https://doi.org/10.5281/zenodo.1417589
https://doi.org/10.5281/zenodo.1417589
https://doi.org/10.1109/IJCNN.2000.859408
https://doi.org/10.1109/5.18626
https://doi.org/10.1109/5.18626
https://doi.org/10.1162/0148926041790676
https://doi.org/10.1162/0148926041790676
https://doi.org/10.1162/0148926041790676
https://arxiv.org/abs/2102.07750
https://arxiv.org/abs/2102.07750


Rigaud, François, and Mathieu Radenen. 2016. “Singing Voice Melody Transcription Using
Deep Neural Networks.” In Proceedings of the 17th International Society for Music Infor-
mation Retrieval Conference, 737–743. New York, NY: ISMIR, August. https://doi.org/10.
5281/zenodo.1418051. https://doi.org/10.5281/zenodo.1418051.

Rimski-Korsakov, Nikolay. 1886. Practical Manual of Harmony. A. Büttner, St. Petersburg.

Rimsky-Korsakov, Nikolay, Joseph Achron, and Nicholas Hopkins. 2005. Practical Manual of
Harmony. OCLC: 60523181. New York, NY: C. Fischer. isbn: 978-0-8258-5699-0.

Robinson, Franklin. 1918. Aural Harmony. 1st ed.

Rocher, Thomas, Matthias Robine, Pierre Hanna, and Laurent Oudre. 2010. “Concurrent Es-
timation of Chords and Keys from Audio.” In Proceedings of the 11th International Society
for Music Information Retrieval Conference, 141–146. Utrecht, The Netherlands: ISMIR,
August. https://doi .org/10.5281/zenodo.1417485. https://doi .org/10.5281/zenodo.
1417485.

Rohrmeier, Martin. 2007. “Modelling Dynamics of Key Induction in Harmony Progressions.”
In Proceedings of the 4th Sound and Music Computing Conference, 8.

. 2011. “Towards a Generative Syntax of Tonal Harmony.” Publisher: Taylor & Francis
_eprint: https://doi.org/10.1080/17459737.2011.573676, Journal of Mathematics and Mu-
sic 5 (1): 35–53. https://doi.org/10.1080/17459737.2011.573676. https://doi.org/10.1080/
17459737.2011.573676.

Rohrmeier, Martin, and Ian Cross. 2008. “Statistical Properties of Tonal Harmony in Bach’s
Chorales.” In Proceedings of the 10th International Conference on Music Perception and
Cognition, 6:123–1319. Hokkaido University Sapporo, Japan.

Roig-Francoli, Miguel A. 2011. Harmony in Context. 1st ed.

Roland, Perry. 2002. “The Music Encoding Initiative (MEI).” In Proceedings of the First Inter-
national Conference on Musical Applications Using XML, 55–59.

Rosenblatt, F. 1958. “The Perceptron: A Probabilistic Model for Information Storage and Orga-
nization in theBrain.”Psychological Review 65 (6): 386–408. issn: 1939-1471(Electronic),0033-
295X(Print). https://doi.org/10.1037/h0042519.

Rossum, Guido van, et al. 2007. “Python Programming Language.” In USENIX annual techni-
cal conference, 41:1–36. Issue: 1. Santa Clara, CA.

Ruder, Sebastian. 2017. “An Overview of Multi-Task Learning in Deep Neural Networks.”
arXiv preprint arXiv:1706.05098.

Rumelhart, David E., Geoffrey E. Hinton, Ronald J. Williams, et al. 1988. “Learning Represen-
tations by Back-Propagating Errors.” Cognitive modeling 5 (3): 1.

224

https://doi.org/10.5281/zenodo.1418051
https://doi.org/10.5281/zenodo.1418051
https://doi.org/10.5281/zenodo.1418051
https://doi.org/10.5281/zenodo.1417485
https://doi.org/10.5281/zenodo.1417485
https://doi.org/10.5281/zenodo.1417485
https://doi.org/10.1080/17459737.2011.573676
https://doi.org/10.1080/17459737.2011.573676
https://doi.org/10.1080/17459737.2011.573676
https://doi.org/10.1037/h0042519


Saint-Saëns, Camille. 1885. Harmonie et Mélodie. 1st ed.

Sansa Llovich, Jordi. 2013. “Quintas Y Octavas Prohibidas En El Periodo Modal-Tonal.” PhD
diss., Universitat Autònoma de Barcelona. https://ddd.uab.cat/record/113130.

Sapp, Craig Stuart. 2011. “ComputationalMethods for the Analysis ofMusical Structure.” PhD
diss., Stanford University.

. 2001. “Harmonic Visualizations of Tonal Music.” In Proceedings of the International
Computer Music Conference, 1:419–422. Havana, Cuba.

. 2005. “Online Database of Scores in the Humdrum File Format.” In Proceedings of
the 6th International Conference onMusic Information Retrieval, 664–665. London, United
Kingdom: ISMIR, September. https://doi.org/10.5281/zenodo.1417281. https://doi.org/
10.5281/zenodo.1417281.

. 2009. “tsroot.” Manual page. http://extras.humdrum.org/man/tsroot/.

Sarnecki, Mark. 2010. Harmony. 2nd ed.

Scheidt, Walter. 1975. Naturkundliche Harmonielehre. 1st ed.

Schenker, Heinrich. 1935. Der Freie Satz. 1st ed.

. 1921. Der Tonwille.

. 1906. Neue Musikalische Theorien und Phantasien: Harmonielehre. 1st ed.

. 1922. Neue Musikalische Theorien und Phantasien: Kontrapunkt, Zweiter Teil. 1st ed.

Schoenberg, Arnold. 1967. Fundamentals of Music Composition. 1st ed.

. 1922. Harmonielehre. 3rd ed.

. 1969. Structural Functions of Harmony. 1st ed.

Scholes, Percy Alfred. 1924. The Beginner’s Guide to Harmony. 2nd ed.

Schreiber, Hendrik, andMeinardMüller. 2018. “A Single-StepApproach toMusical TempoEs-
timation Using a Convolutional Neural Network.” In Proceedings of the 19th International
Society for Music Information Retrieval Conference, 98–105. Paris, France: ISMIR, Septem-
ber. https://doi.org/10.5281/zenodo.1492353. https://doi.org/10.5281/zenodo.1492353.

. 2019. “Musical Tempo and Key Estimation Using Convolutional Neural Networks
with Directional Filters.” In Proceedings of the 16th Sound and Music Computing Con-
ference.Málaga, Spain.

225

https://ddd.uab.cat/record/113130
https://doi.org/10.5281/zenodo.1417281
https://doi.org/10.5281/zenodo.1417281
https://doi.org/10.5281/zenodo.1417281
http://extras.humdrum.org/man/tsroot/
https://doi.org/10.5281/zenodo.1492353
https://doi.org/10.5281/zenodo.1492353


Schuster, Mike, and Kuldip Paliwal. 1997. “Bidirectional Recurrent Neural Networks.” IEEE
Transactions on Signal Processing 45 (11): 2673–2681. https://doi.org/10.1109/78.650093.

Sears, David, Filip Korzeniowski, and Gerhard Widmer. 2018. “Evaluating Language Models
of Tonal Harmony.” In Proceedings of the 19th International Society for Music Information
Retrieval Conference, 211–217. Paris, France: ISMIR, September. https://doi.org/10.5281/
zenodo.1492385. https://doi.org/10.5281/zenodo.1492385.

Sechter, Simon. 1853. Die Grundsätze der Musikalischen Komposition. 1st ed.

Shepard, Frank Hartson. 1896. Harmony Simplified. 5th ed.

. 1889. How to Modulate. 2nd ed.

Shinn, Frederick. 1904. AMethod of Teaching Harmony. 1st ed.

Siegmeister, Elie. 1965. Harmony and Melody. 1st ed.

Sigtia, Siddharth, Emmanouil Benetos, SrikanthCherla, TillmanWeyde,Artur S. d’AvilaGarcez,
and Simon Dixon. 2014. “An RNN-Based Music Language Model for Improving Auto-
matic Music Transcription.” In Proceedings of the 15th International Society for Music In-
formation Retrieval Conference, 53–58. Taipei, Taiwan: ISMIR, October. https://doi.org/
10.5281/zenodo.1416792. https://doi.org/10.5281/zenodo.1416792.

Sigtia, Siddharth, Emmanouil Benetos, and Simon Dixon. 2016. “An End-to-End Neural Net-
work for Polyphonic PianoMusic Transcription.” IEEE/ACMTransactions onAudio, Speech
and Language Processing 24 (5): 927–939.

Smith, Dave, and Chet Wood. 1981. “The Universal Synthesizer Interface.” In Audio Engineer-
ing Society Convention 70. Audio Engineering Society.

Southall, Carl, Ryan Stables, and Jason Hockman. 2017. “Automatic Drum Transcription for
Polyphonic Recordings Using Soft AttentionMechanisms and Convolutional Neural Net-
works.” In Proceedings of the 18th International Society for Music Information Retrieval
Conference, 606–612. Suzhou, China.

. 2016. “Automatic Drum Transcription Using Bi-Directional Recurrent Neural Net-
works.” In Proceedings of the 17th International Society for Music Information Retrieval
Conference, 591–597. New York City, NY.

Southard, Lucien H. 1855. Course of Harmony: Being a Manual of Instruction in the Principles
of Thorough-Bass and Harmony. 1st ed.

Spencer, Charles Child. 1854. A Rudimentary and Practical Treatise on Music. 4th ed.

Spencer, Stanhope Reid. 1915. Harmony. 1st ed.

226

https://doi.org/10.1109/78.650093
https://doi.org/10.5281/zenodo.1492385
https://doi.org/10.5281/zenodo.1492385
https://doi.org/10.5281/zenodo.1492385
https://doi.org/10.5281/zenodo.1416792
https://doi.org/10.5281/zenodo.1416792
https://doi.org/10.5281/zenodo.1416792


Stoddard, Joshua, Christopher Raphael, and Paul E Utgoff. 2004. “Well-Tempered Spelling: A
Key-Invariant Pitch Spelling Algorithm.” In Proceedings of the 5th International Society for
Music Information Retrieval Conference, 6. Barcelona, Spain.

Swain, Joseph Peter. 2002. Harmonic Rhythm. 1st ed.

Tchaikovsky, Pyotr Ilyich. 1872. Guide to the Practical Study of Harmony.Moscow: P. Jurgen-
son.

Temperley, David. 2002. “A BayesianApproach to Key-Finding.” InMusic andArtificial Intelli-
gence, edited by Christina Anagnostopoulou, Miguel Ferrand, and Alan Smaill, 195–206.
Lecture Notes in Computer Science. Edinburgh, Scotland: Springer Berlin Heidelberg.
isbn: 978-3-540-45722-0.

. 2009. “A Unified Probabilistic Model for Polyphonic Music Analysis.” Publisher: Tay-
lor & Francis, Journal of New Music Research 38 (1): 3–18.

. 1997. “An Algorithm for Harmonic Analysis.”Music Perception 15 (1): 31–68.

. 2004. The Cognition of Basic Musical Structures. 1st ed. Cambridge, MA: MIT Press.
isbn: 978-0-262-70105-1 978-0-262-20134-6.

. 2000. “The Line of Fifths.”Music Analysis 19 (3): 289–319.

. 1999. “What’s Key for Key? The Krumhansl-Schmuckler Key-Finding Algorithm Re-
considered.”Music Perception: An Interdisciplinary Journal 17 (1): 65–100.

Temperley, David, and Elizabeth West Marvin. 2008. “Pitch-Class Distribution and the Iden-
tification of Key.”Music Perception: An Interdisciplinary Journal 25 (3): 193–212.

Temperley, David, and Daniel Sleator. 1999. “Modeling Meter and Harmony: A Preference-
Rule Approach.” Computer Music Journal 23 (1): 10–27.

Teodoru, Gabi, and Christopher Raphael. 2007. “Pitch Spelling with Conditionally Indepen-
dent Voices.” In Proceedings of the 8th International Conference on Music Information Re-
trieval, 201–206. Vienna, Austria.

Tiersch, Otto. 1874. Elementarbuch derMusikalischenHarmonie-undModulationslehre. 1st ed.

. 1868. System und Methode der Harmonielehre. 1st ed.

Tischler, Hans. 1964. Practical Harmony. 1st ed.

Toutant, William. 1985. Functional Harmony. 1st ed.

Tracy, James. 1878. Theory and Rudimental Harmony. 1st ed.

227



Tunley, David. 1984. Harmony in Action. 1st ed.

Ulehla, Ludmila. 1966. Contemporary Harmony. 1st ed.

Ullrich, Karen, Jan Schlüter, and Thomas Grill. 2014. “Boundary Detection inMusic Structure
Analysis Using Convolutional Neural Networks.” In Proceedings of the 15th International
Society for Music Information Retrieval Conference, 417–422. Taipei, Taiwan.

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. 2017. “Attention Is All You Need.” In Advances in
Neural Information Processing Systems 30. Long Beach, CA.

Vinée, Anselme. 1909. Principes du système musical et de l’harmonie théorique et appliquée.
1st ed.

Vivier, Albert-Joseph. 1890.Traité complet d’harmonie, théorique, pratique, vocale& instrumen-
tale. 5th ed.

Vogl, Richard, Matthias Dorfer, and Peter Knees. 2016. “Recurrent Neural Networks for Drum
Transcription.” In Proceedings of the 17th International Society for Music Information Re-
trieval Conference, 730–736. New York, NY.

Vogl, Richard,MatthiasDorfer, GerhardWidmer, and Peter Knees. 2017. “DrumTranscription
Via Joint Beat and DrumModeling Using Convolutional Recurrent Neural Networks.” In
Proceedings of the 18th International Society for Music Information Retrieval Conference,
150–157. Suzhou, China.

Vogler, Georg Joseph. 1778. Gründe der Kuhrpfälzischen Tonschule. 1st ed.

. 1802. Handbuch zur Harmonielehre und für den Generalbaß. 1st ed.

Volckmar, Wilhelm Valentin. 1860. Harmonielehre: Zunächst zum Gebrauch für Schullehrer-
Seminarien. 1st ed.

Vos, Piet G., and ErwinW. van Geenen. 1996. “A Parallel-Processing Key-FindingModel.”Mu-
sic Perception: An Interdisciplinary Journal 14 (2): 185–223.

Wang, Ziyu, Dingsu Wang, Yixiao Zhang, and Gus Xia. 2020. “Learning Interpretable Repre-
sentation for Controllable Polyphonic Music Generation.” In Proceedings of the 21st Inter-
national Society for Music Information Retrieval Conference, 662–669. Montreal, Canada.

Wason, Robert Wesley. 1985. Viennese Harmonic Theory from Albrechtsberger to Schenker and
Schoenberg. UMI Research Press.

Watt, Henry J. 1919. The Foundations of Music. 1st ed.

Weber, Gottfried. 1818. Versuch einer geordneten Theorie der Tonsetzkunst. 1st ed. Vol. 2.

228



Wedge, George Anson. 1930. Applied Harmony, a Text-Book. 1st ed.

. 1924. Keyboard Harmony: A Practical Application of Music Theory, Including the Study
of Melody Harmonization, Broken Chords and Arpeggios, Modulation and Improvisation.
G. Schirmer, Incorporated.

Weiß, Christof, and Julian Habryka. 2014. “Chroma-Based Scale Matching for Audio Tonality
Analysis.” In Proceedings of the 9th Conference on Interdisciplinary Musicology, 168–173.

Wel, Eelco van der, and Karen Ullrich. 2017. “Optical Music Recognition with Convolutional
Sequence-to-Sequence Models.” In Proceedings of the 18th International Society for Music
Information Retrieval Conference, 731–737. Suzhou, China, October.

Werbos, Paul John. 1990. “Backpropagation Through Time: What It Does and How to Do It.”
Proceedings of the IEEE 78 (10): 1550–1560. https://doi.org/10.1109/5.58337.

. 1988. “Generalization of BackpropagationwithApplication to a Recurrent GasMarket
Model.” Neural Networks 1 (4): 339–356. issn: 0893-6080.

Werker, Wilhelm. 1898. Die Theorie der Tonalität. 1st ed.

White, William Alfred. 1911. Harmonic Part-Writing. 1st ed.

Widrow, Bernard, andMarcian E. Hoff. 1960.Adaptive Switching Circuits. StanfordUniversity.

Winograd, Terry. 1968. “Linguistics and the Computer Analysis of Tonal Harmony.” Journal
of Music Theory 12 (1): 2–49.

Wu, Shangda, Yue Yang, ZhaowenWang, Xiaobing Li, and Maosong Sun. 2021. “Melody Har-
monizationwithControllableHarmonicRhythm.”ComputingResearchRepository abs/2112.11122.
https://arxiv.org/abs/2112.11122.

Ycart, Adrien, and Emmanouil Benetos. 2017. “A Study on LSTM Networks for Polyphonic
Music Sequence Modelling.” In Proceedings of the 18th International Society for Music In-
formation Retrieval Conference, 421–427. Suzhou, China, October.

York, Francis Lodowick. 1909. A Practical Introduction to Composition: Harmony Simplified.
4th ed.

Zaharia, Matei, Andrew Chen, Aaron Davidson, Ali Ghodsi, Sue Ann Hong, Andy Konwin-
ski, Siddharth Murching, et al. 2018. “Accelerating the Machine Learning Lifecycle with
MLflow.” IEEE Data Engineering Bulletin 41 (4): 39–45.

229

https://doi.org/10.1109/5.58337
https://arxiv.org/abs/2112.11122

	Abstract
	Résumé
	Acknowledgements
	Contributions to Original Knowledge
	Contributions of Authors
	List of Figures
	List of Tables
	Glossary
	Abbreviations
	 introduction 
	 motivation for roman numeral analysis 
	 challenges 
	 main challenges 
	 tonal tasks overlap 
	 ambiguous annotations 
	 time-consuming annotations 

	 progress 
	 predict tasks simultaneously 
	 provide better representations 
	 applying music-theory domain knowledge 

	 remaining challenges 
	 segmentation 
	 data scarcity 

	 short-term goal: better models 
	 long-term goal: interpretability 

	 outline of thesis contributions 
	 additional tonal tasks 
	 artificial training examples 
	 data hygiene 
	 generating roman numeral labels from predictions 
	 original input representation of pitch spelling 
	 original layout of neural network 

	 thesis structure 

	 introduction to roman numeral analysis 
	 roman numeral analysis and chord labels 
	 a brief history of roman numeral analysis 
	 early precedents and the weber syntax 
	 adoption of the weber syntax 
	 chord inversions and figured bass 
	 neapolitans, augmented sixths, and other special chords 
	 applied chords and tonicization 
	 summary of the findings 

	 standardization of roman numeral annotations 
	 digital representation of roman numerals 
	 humdrum(**harm) 
	 RomanText 
	 the DCML standard 
	 harmalysis 



	 background 
	 music representation 
	 symbolic music formats 
	 humdrum(**kern) 
	 MEI 
	 MIDI 
	 MusicXML 


	 deep neural networks 
	 supervised learning 
	 feed forward networks 
	 convolutional neural networks 
	 1D, 2D, and 3D convolutions 
	 residual connections 

	 recurrent neural networks 
	 LSTM 
	 GRU 

	 transformer networks 

	 music information retrieval 
	 key estimation 
	 global-key estimation models 
	 local-key estimation 
	 local-key estimation models 

	 automatic chord recognition 
	 automatic pitch spelling 
	 pitch-spelling models 

	 automatic roman numeral analysis 
	 roman numeral analysis models 
	 multitask learning approaches 



	 data acquisition and preparation 
	 general preparation of the data 
	 standardizing the annotations 
	 detecting errors in the annotations 
	 common error patterns 

	 summary of the preparation 

	 publicly available datasets 
	 annotated beethoven corpus (ABC) 
	 format of ABC 
	 summary of the ABC dataset 

	 beethoven piano sonatas (BPS) 
	 format of BPS 
	 acquiring matching symbolic scores 
	 summary of the BPS dataset 

	 haydn ``sun'' string quartets (HaydnSun) 
	 format of HaydnSun 
	 summary of the HaydnSun dataset 

	 key modulations and tonicizations (KMT) 
	 format of KMT 
	 summary of the KMT dataset 

	 mozart piano sonatas (MPS) 
	 summary of the MPS dataset 

	 theme and variation encodings with roman numerals (TAVERN) 
	 format of TAVERN 
	 summary of the TAVERN dataset 

	 when in rome (WiR) 
	 format of WiR 
	 converted corpora 
	 original corpora 
	 summary of the WiR dataset 


	 the aggregated dataset 
	 generating training, validation, and test splits 
	 data augmentation 
	 synthesis of artificial training examples 
	 block chord sequences 
	 texturization patterns 



	 model design 
	 input 
	 importing a digital music score 
	 supported formats 

	 sampling of the score 
	 note duration of each timestep 
	 number of timesteps 

	 encoding the score 
	 encoding notes with spelling 
	 encoding measure, note, and chord onsets 

	 input representations 
	 lowest sounding note 
	 all sounding notes 
	 measure and note onsets 


	 the convolutional blocks 
	 1D convolutional layers inside a block 
	 kernel size 
	 number of filters 
	 number of convolutional layers 

	 merging the blocks 

	 dense and recurrent layers 
	 dense layers 
	 recurrent layers 

	 multitask learning outputs 
	 Bass35 
	 Tenor35 
	 Alto35 
	 Soprano35 
	 LocalKey38 
	 TonicizationKey38 
	 PitchClassSet121 
	 Numerator31 
	 HarmonicRhythm7 

	 from output predictions to roman numeral labels 
	 direct method 
	 indirect method 


	 experimental evaluation 
	 ablation studies 
	 baseline model 
	 changing the input representations 
	 encoding pitch spelling with an alternative method 
	 no lowest-sounding note information 
	 no upper notes information 
	 no onset information 

	 changing the convolutional layers 
	 single convolutional block 
	 constant number of filters 
	 no convolutional layers 

	 single dense linear layer 
	 changing the recurrent layers 
	 removing the recurrent layers 
	 unidirectional recurrent layers 

	 summary of the ablation studies 

	 effects of data augmentation 
	 no data augmentation (baseline) 
	 synthesis 
	 transposition 
	 synthesis and transposition 
	 summary of the effects of data augmentation 

	 training on the aggregated dataset 
	 evaluation against previous models 
	 baseline models 
	 melisma (2003) 
	 chen and su (2021) 
	 micchi et al. (2021) 
	 McLeod and rohrmeier (2021) 

	 experimental set up 
	 standardizing the chord vocabulary 
	 evaluation procedure 


	 results 
	 time performance on inference 
	 accuracy on individual tasks 
	 roman numeral accuracy 
	 confusion matrix for melisma (2003) 
	 confusion matrix for chen and su (2021) 
	 confusion matrix for micchi et al. (2021) 
	 confusion matrix for McLeod and rohrmeier (2021) 
	 confusion matrix for AugmentedNet 
	 summary of performance on difficult chords 


	 discussion 

	 conclusions 
	 summary of the dissertation 
	 summary of the contributions 
	 source code and reproducibility 
	 releases 
	 pretrained model 
	 preprocessed data 
	 experiment logs 
	 API documentation 

	 future work 
	 texturization 
	 data-driven texturization 
	 synthesizing nonchord tones 

	 extending the chord vocabulary 
	 standardization 
	 consistency in modulations and tonicizations 
	 consistency in chords and inversions 

	 audio support 
	 applications 
	 batch corpus analysis 
	 harmonic reduction 
	 melody harmonization 


	 closing remarks 

	 a method for systematic roman numeral analysis 
	 the structure of a roman numeral analysis label 
	 the vocabulary of roman numeral numerators 
	 chords of the major mode 
	 major-mode triads 
	 major-mode seventh chords 
	 major-mode augmented dominant 

	 chords of the minor mode 
	 minor-mode triads 
	 minor-mode seventh chords 

	 chords shared in both modes 
	 special chords 


	 the vocabulary of roman numeral denominators 
	 the vocabulary of musical keys 
	 the vocabulary of arabic numeral inversions 
	 the vocabulary of pitch-class sets 
	 the numerator and tonicization estimation method 
	 retrieving the numerator 
	 forcing a tonicization 


	Bibliography

