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Abstract 

 

Proper Orthogonal Decomposition (POD) is a technique which has been used  

 

successfully to reduce the computation time in various fields of engineering. Here POD is  

 

applied to electromagnetic field computations, specifically to the simulation of  

 

electromagnetic diffusion by the time-domain finite element method. The standard  

 

method requires a large matrix equation to be solved at every time step. POD is applied  

 

to greatly reduce the size of the matrices. Both 1-D and 2-D test cases are considered.  

 

Applying POD reduces the matrix dimension for a 2-D problem from 2,535 to just 5,  

 

with negligible loss of accuracy.  
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Résumé 

 

La Décomposition Orthogonale Nécessaire (POD) est une technique qui a été utilisée  

 

avec succès pour réduire le temps de compte dans les champs différents d'ingénierie. Ici  

 

la POD est appliqué les comptes électromagnétiques de terrain, spécialement à la  

 

simulation de la diffusion électromagnétique par le domaine de temps la méthode  

 

d'élément finie. La norme la méthode exige à une grande équation matricielle d'être  

 

résolue au pas de chaque fois. La POD est appliquée beaucoup réduire la grandeur du  

 

matrices. De 1ème que 2ème cas tant d'essai sont considérés. L'application de la POD  

 

réduit la dimension matricielle pour un 2ème problème de 2,535 à juste 5, avec la perte  

 

négligeable d'exactitude. 
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1  Introduction 

 

Modern electrical engineering deals with various time consuming computer simulations. 

One particular field of such computations involves electromagnetic systems. The modern 

world depends on these to a great extent: radar systems, microwave ovens, mobile 

telephones, satellite communications, electrical motors, medical imaging systems and 

transformers, to name a few. Therefore, it is no surprise that the field of electromagnetic 

simulation continues to grow. 

 

Even with the advent of fast computers, numerical analysts try to use various 

 

mathematical tools to reduce computational costs (i.e. computation time). Proper 

 

Orthogonal Decomposition (POD) is one such mathematical tool. It was first introduced 

 

by Karl Pearson in 1901 [1]. Data analysis using the POD is conducted to extract „mode 

 

shapes‟ or „basis‟ functions, from experimental data of high-dimensional systems, for 

 

subsequent use in Galerkin projections that yield low dimensional dynamical models. 

 

In this way, we can greatly reduce computational cost. 

  

Nowadays, POD finds applications in many fields of engineering analysis: chemical 

engineering [2], fluid mechanics [3], image processing [4], aerospace engineering [5], 

MEMS [6], oceanography [7], structural dynamics [8], etc. However, it has not been used 

before in electromagnetics (EM).  

 

One important class of EM field problems is the diffusion of EM fields and currents in 

conductors. It arises, for instance, in the measurement of induction currents in the earth, 
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which can provide resistivity maps for geophysical prospecting [9] but the main class of 

applications is in electromechanical devices of various sorts: motors, actuators, etc. The 

concern of this thesis is in the solution of such problems by time-stepping methods.  

 

There are quite a few numerical methods that have been applied to EM field problems. 

The finite-difference time-domain (FDTD) method is a popular computational modeling 

technique. It solves the partial differential equations (PDEs) directly, without using 

variational principles or weighted residuals.  The fields are computed on a regular grid 

with a marching-on-in-time discretization of time. The term FDTD comes from the 

update equations where field values at the next time step are found from the field at that 

moment and the previous time step. Its great appeal is its simplicity and ease of coding. It 

also does not require any storage of large matrices and thus requires very low disk space. 

The primary drawback is inflexible meshing and uncertainty about the precise position of 

boundaries. For oblique boundaries, FDTD programs typically resort to the “staircase 

approximation”. The error due to the staircase approximation can be difficult to assess. 

Dispersive materials also need some effort to implement [10], [11], [12]. 

 

The boundary element method (BEM) is another numerical method for solving linear 

partial differential equations. It is also referred to as the method of moments (MoM). 

The BEM discretizes Maxwell‟s equations in integral form. The unknowns are sources  

 

such as currents or charges on material interfaces. This method is advantageous for  

 

problems involving open regions. It has been thought preferable to differential-equation  

 

formulations because a mesh is only needed for surfaces, not volumes. The key  
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advantage is a reduction of the number of variables, but the resulting matrices are usually  

 

dense and so it rarely saves time or memory [13]. 

 

 

The Finite Element Method (FEM) is a good choice for solving partial differential 

 

equations over complicated domains. The FEM can be derived in two different ways:  by  

 

variational principles, or by the method of  weighted residuals. The former involves a  

 

functional whose minimum is the solution of a PDE and associated boundary conditions.  

 

The latter uses integrals of the weighted error (residual) over the problem domain. Both  

 

usually end up with identical equations. The field is discretized using meshes of simple  

 

geometric shapes (e.g., triangles, tetrahedra) called “elements”. The FEM can handle both  

 

eigenanalysis (source free) and deterministic (driven) problems [14]. 

 

 

A drawback of time-domain FEM (TD-FEM) is that it is implicit, i.e., a system of 

equations needs to be solved at each time step. The systems can be written as a matrix 

equation in which the matrix is sparse, but typically very large. 

The key attraction of time stepping schemes is their simplicity. The simplest is the Euler  

scheme. In this method, the approximation of an equation of this form 

                                              
( )

( )
t

F t
t





 

                           

                             is:      
( ) ( )

( )
t t t

F t
t

  



 

 

Here, you can predict the next   value based only on the current fields (where   

represents the field) [14].  
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However, time stepping can be costly, especially when we have to simulate a rapidly  

 

changing field for a long time, as can be the case when moving through an initial  

 

transient to reach a steady state. The computational cost is directly related to the size of  

 

the time step. The smaller the time step the longer it takes for the simulation to get  

 

through the transient, but larger time steps lead to lower accuracy.  

 

 

Some other methods are used as alternatives to time stepping, but they have limitations.  

 

Phasor analysis can be used [15], but it is good for linear problems only. Also, phasor  

 

analysis only finds the steady state response. For problems where the transient behaviour  

 

is of interest, it is not a valid option. 

 

 

Multi-harmonic method is another option [16], but it is expensive. The number of  

 

unknowns increases with the number of harmonics and this leads to high computational  

 

costs.  

 

 

The FEM leads to sparse matrices that are solved most efficiently using iterative  

 

techniques. However, when the problems are large and where the matrices have a  

 

dimension of 10
6
  or more, it is naturally imperative that we search for a method that can  

 

reduce the computations involved even further. The objective of this thesis is to solve an  

 

EM diffusion problem using TD-FEM accelerated by POD. POD has been used to speed  

 

up TD-FEM calculations before (for instance, for problems of thermal analysis [17]), but  

 

in EM it is new. There are other methods which are also being used for solving the  

 

problem of concern in this thesis. For instance, the singularity decomposition (SDT)- 

 

explicit error correction method (EEC) [18]. In this method one constructs a linear system  
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of auxiliary equations by applying the SDT-based EEC (SD-EEC) method to TP (Time  

 

Periodic)-FEM. The correction of the error components obtained by solving the linear  

 

system of auxiliary equations efficiently accelerates the convergence of transient  

 

calculation. 

 

Here is a brief outline for the thesis. Chapter 2 describes the diffusion problems to be 

solved and their FEM formulation. Chapter 3 discusses POD and how it works, i.e., the 

underlying mathematics behind POD and how it can be used for TD-FEM. Chapter 4 

presents results for test cases solved with the new method. Chapter 5 draws conclusions 

and looks at future possibilities for the application of POD in computational EM.  
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2  FEM Formulations for Magnetic Diffusion 

 

2.1 Problem using 1-D Finite Elements 

 

 

In this section, the problem of diffusion into a slab of copper is considered. The metal is  

 

assumed to have conductivity  and permeability . For simplicity, the slab is assumed  

 

to be very broad and long compared to its thickness, so that the field variations need only  

 

be considered in the direction across the slab, which is taken to be the x-direction. Co- 

 

ordinate axes are chosen so that the magnetic field in the metal points in the y-direction  

 

(Fig. 1). Therefore, the problem is one of solving the 1-D diffusion equation subject to  

 

boundary conditions.  

 

 

The y-component of magnetic field in the slab of copper is governed by this equation  

 

[19], [20]: 

 

 

                                                            
2

2

y yd H dH

dx dt
                                                    (2-1) 

 

 

which is known as the diffusion equation because of its similarity to the equation arising  

 

in heat diffusion problems. The problem being considered is similar to a heat diffusion  

 

problem, only it is magnetic field that is diffusing rather than temperature. 

 

 

We assume there is a net sinusoidal current 02 sin( )I t flowing through the conductor in  

 

the z-direction and that the full slab thickness is 2L.  We can model one half of the slab  

 

(from x=0 to x=L) by applying a symmetry condition of 
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0yH                   at x=0     

 

 

At the other end x=L (Fig. 1) the boundary condition for yH is found using Ampere‟s  

 

Law: 

 

 Hy.dl=I 

 

Applying this to the rectangular perimeter in Fig. 1 gives 

 

0sin( )yH I t   A/m     

 

x

y

x=0 x=L

1 2   3   N

Hy=0 Hy=I(t)

 
 

 

Fig. 1 
 

One half of the copper slab of thickness 2L for 1-D finite element analysis.   
 

 

 

Equation (2-1), together with these boundary conditions, can then be solved using  

 

Galerkin‟s method or the Ritz variational method [14]. 

 

 

Applying Galerkin‟s method, the residual for a given approximate solution yH  is  

 

                                                    
2

2

y yd H dH
r

dx dt
                                                        (2-2) 



  

8 

 

 

Discretizing the problem region into N finite elements (Fig. 1), the weighted residual  

 

integral for the e-th element can be written as 

 

                                                     
2

1

e

e

e e

i i

x

x

R N r dx      i=1, 2.                                             (2-3) 

 

Here the weight function is e

iN and is the first order interpolation function given by 

 

2
1

e
e

e

x x
N

l


     and    1

2

e
e

e

x x
N

l


  

 

 

where el is the size of a single 1-D finite element.  

 

 

Substituting (2-2) into (2-3) and integrating by parts for the first term on the right hand  

 

side yields  

 

                                               
2

1

[ ]
e

e

y ye i
i i

x

x

dN dH dH
R N dx

dx dx dt
                                    (2-4) 

 

Now, we use this interpolation for yH in element e:  

 

                                                        
2

1

( )
jj

e e e

y j yH N x H


                                                    (2-5) 

 

Substitution of (2-5) in (2-4) for yH  leads to the elemental residuals 

 

 

                                         
2

2

1

1

[ ]
j

e

j
e

j je e i
i y i

x

x

dN dNdN
R H N dx

dx dx dt




                                (2-6) 

  

or in matrix form  

 

 

                                                            e e e

y y

d
R S H T H

dt
                                     (2-7) 
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where   

 

                                                        
2

1

( )
e

e

ee
je i

ij

x

x

dNdN
S dx

dx dx
                     i=1, 2                 (2-8) 

 

& 

 

                                                          
2

1

( )
e

e

e e e

ij i j

x

x

T N N dx                     i=1, 2                (2-9) 

 

 

 
e

S and  
e

T for a single element can be evaluated explicitly: 

 

                                         

1 1

1 1

e l l
S

l l






 
 
 
  

      and       
3 6

6 3

e

l l

T
l l



 
 
 
  

                       (2-10) 

 

 

 

The overall residual is obtained from the elemental residuals, after going through the FE  

 

standard assembly process: 

 

                                                             0y y

d
S H T H

dt
                                       (2-11) 

 

Now, since there are N elements, we will have (N+1) nodes and therefore the matrices in  

 

(2-11) have dimension (N+1). The (N+1)-st node and the 1st node are nodes with a  

 

prescribed value but the rest of the nodes are free.  

 

 

 

Rewriting the system of equations for  S and  T in terms of the free and the prescribed  

 

nodes, one can rewrite  S as 

 



  

10 

ff fp

pf pp

S S

S S

 
 
 

 

 

and  T  as  

 

ff fp

pf pp

T T

T T

 
 
 

 

 

The subscript p corresponds to nodes that are prescribed, and which should therefore  

 

not have had any weight functions associated with them in (2-3). Therefore, they must  

 

be dropped at this point. In addition, node 1 is prescribed to the value 0. Then (2-11)  

 

becomes 

 

 

                            1 1 0N Nff y fp y ff y fp y
d d

S H S H T H T H
dt dt

                 (2-12) 

 

 

The value for 1NyH   is already known as 0sin( )I t and it is incorporated in a forcing  

 

function f  to give 

 

                                                  y y

d
S H T H f

dt
                                               (2-13) 

 

where                           0 0sin( ) sin( )fp fp
d

f S I t T I t
dt

                                   (2-14) 

 

and    ffS S  and    ffT T  are (N-1)x(N-1) matrices. 

 

 

 

Thus, the formulation for the 1-D FEM problem is complete. 
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2.2 Problem using 2-D Finite Elements 

 

Next, we consider a 2-D case (Fig. 2). The same mathematical approach applied to the  

 

2-D problem yields a similar equation [13], [14].  

 

 

For this problem, we consider a copper slab next to a pair of round conducting wires  

 

which are carrying current perpendicular to the page (i.e., in the z-direction). The slab has  

 

length 10 cm but the problem is symmetrical so we only analyze the right hand half of the  

 

problem region. We assume that the geometry shown in Fig. 2 is infinite in the z- 

 

direction and that the fields do not vary in this direction. It is then possible to show that  

 

the magnetic vector potential A has only one component Az, also known as the flux  

 

function. This will simply be referred to as A in the following. 
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x

A=0A=0

A=0

A=0

2

5

1

1

I(t)

Cu

P2

P1

A=0
 

 

Fig. 2 
 

A copper slab for 2-D finite element analysis with appropriate boundary conditions. The circular shape on 

the right represents a wire carrying current in the +z direction. The corresponding shape on the left is a wire 

carrying the same current in the –z direction. Dimensions are in cm. I(t)= 0 sin( )I t . 

 

 

 

A mesh of triangular finite elements for this geometry was created using commercial  

 

software [21]. The mesh is shown in Fig. 3. Application of Galerkin‟s method leads to an  

 

equation similar to (2-13) except that now   0 0* sin( )f f I t , where 0f is time- 

 

independent. The  S ,  T and 0f matrices were created for this geometry using the  

 

same commerical software [21]. 
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Fig. 3 
 

The FE mesh for the problem shown in Fig. 2 [21]. 
 

 

 

 

 

2.3 Time-Domain FEM and Time Stepping Schemes 

 

 

As we see, when TD-FEM is used to solve magnetic diffusion problems, we arrive at a  
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matrix equation of this form: 

                                 

                                                   ( ) ( ) ( ) +  = S u t T u t f t
d

dt
                             (2-15) 

 

 

which is an equation where  S and  T  are square matrices and  ( )u t is the vector of  

 

unknowns.  ( )f t  is the right-hand side vector which contains the forcing function. In  

 

general, the matrix  S depends on  ( )u t because of the non-linear properties of the  

 

magnetic materials, but in this work we assume that the materials are linear, so the  

 

system (2-15) is linear in {u(t)}. 

 

 

Here,  ( )u t  is an m-vector which stores the time-varying field or potential. For this 

thesis, the entries of  ( )u t  are the values of the magnetic field (1-D case) or magnetic 

vector potential (2-D case) at nodes of the finite elements. 

 

There are various time-stepping schemes that can approximately solve equation (2-15).  

These essentially employ a finite difference scheme to discretize in the time domain. For 

this, we first divide the time axis uniformly into a number of time intervals. Each interval 

is referred to as a time step. In this thesis, backward Euler time-stepping scheme is used, 

but we briefly review a number of methods. 

 

A function of ( )u t t  can be expanded to a Taylor series about t as 

2
2 3

2

1( ) ( ) ( ) [( ) ]
2!

du d uu t t u t t t O t
dt dt

         
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where the last term represents the sum of the remaining terms. Truncating this series we 

obtain approximately  

                                                     
1{ } { }

{ ( )}
k k

k

d u u
u t

dt t

 



                                          (2-16) 

 

where k refers to the fact that it is evaluated at the end of time step k and t  is the  

 

duration of the time step. If (2-16) is substituted in (2-15), we can evaluate ( )u t at a time  

 

instant (k+1) if we know ( )u t at time instant k. This is also referred to as the forward  

 

Euler or the forward difference method [14]. 

 

 

 

Similar to the forward difference method is the backward difference method. For a given  

 

function ( )u t t , the Taylor series expansion is  

 

2
2 3

2

1( ) ( ) ( ) [( ) ]
2!

du d uu t t u t t t O t
dt dt

         

 

 

which again can be approximated as  

 

 

1{ } { }
{ ( )}

k k

k

d u u
u t

dt t





 

 

 

and then (2-15) can be solved similarly [14]. 

 

 

Now, if we subtract ( )u t t from ( )u t t we get 

  

 

( ) ( )
{ ( )}

2

d u t t u t t
u t

dt t

  



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which is the central difference approximation. For discretized time this leads to 

 

 

1 1
{ ( )}

2

k k

k

d u u
u t

dt t

 



 

 

 

Again, if we have the value for 1ku  we can obtain the value of 1ku  using (2-15) [14]. 

 

 

Another useful method is the Newmark-Beta method. In this method we write ( )u t t   

 

as 

 

22
2 2

2 2

1 ( )
( ) ( ) ( ) ( ) ( )

2

d u t tdu d uu t t u t t t t
dt dt dt

 


          

 

 

where   is a parameter that can be chosen to control the accuracy of the time marching  

 

process [14].  

 

 

Now, applying the backward Euler scheme and using equation (2-16), we can write  

 

equation (2-15): 

 

      
1{ } { }

+   =  ( )k k
k k

u u
S u T f

t




 

 
 

This can be rearranged to give us a matrix problem for{ }u at time k in terms of an  

 

earlier{ }u at time (k-1) as 

 

 

                                               1
1 1

 + =  +    ( ) k k kS T u f T u
t t



 
                         (2-17) 

 

 

Thus, we have an equation for discrete time samples which needs to be solved iteratively. 
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3  POD Formulation 

 

3.1 Brief history and outline of POD  

 

 

 

The problem of finding the closest fitting lines or planes to a set of points in space was  

 

investigated by Pearson [1] using the earliest formulation of POD. Independently, almost  

 

three decades later, a similar treatment appeared by Hotelling [22] where the term  

 

"method of principal components" was coined.  POD seems to have been re-invented  

 

quite a few times by different people over the last century. Among them are Karhunen  

 

[23] and Loeve [24]. According to its field of application, POD has also been dubbed the  

 

Karhunen-Loeve Transform (KLT), the Hotelling Transform, Principal Component  

 

Analysis (PCA) and Singular Value Decomposition (SVD). 

 

 

In the following, the main ideas of POD are discussed. 

 

 

Let us assume that one measurement of some system is represented by a column vector of  

 

m real numbers. If we have n such measurements, the whole set of measurements can be  

 

represented by an mxn matrix U . Suppose the measurements are quite similar, in which  

 

case the columns of  U are almost linearly dependent. It is often of interest to  

 

approximate the n vectors in U by a smaller number l, of orthogonal vectors that can  

 

represent all the mesaurements in U reasonably accurately. Let this smaller set be the  

 

columns of the mxl matrix V . POD provides us with a way of calculating a V that is  
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guaranteed to be the "best" approximation of  U that can be achieved using only l  

 

vectors, in the sense that the distance between  V  and  U is minimized. 

 

 

If  n<<m, the most efficient procedure is to solve this nxn symmetric eigenproblem for  

 

the l largest eigenvalues: 

 

                                                               
T

U U x x                                                (3-1) 

 

Suppose the eigenvalues are 1 2 3 .......... 0l        . 

 

 

The columns of  V are then given by  

 

                                                      
1

{ } [ ]{ }i i

i

v U x


                i=1, 2, 3……..l            (3-2) 

 

This theory is applied in the next section to the TD-FEM problem. 
 

 

 

 

3.2 Applying the snapshot method to obtain a new basis 

 

The problem we have to solve in TD-FEM is given by (2-18), repeated here for  

 

convenience: 

 

                                                    1
1 1

 + =  +    ( ) k k kS T u f T u
t t



 
                      (3-3) 

 

 

 

This equation is used to obtain u  at instant k from u  at instant (k-1), and in this way  

 

we march forward in time. When we have marched forward by (n-1) steps (n<<m), we  
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will have n „snapshots‟ [25] of { }u at times t , 2 t , 3 t …  1n t  .  

  

 

Now, if n is a large enough number, we might think of these first n solutions as a new  

 

basis for u . We can write 

 

 

                                                              ( ) = ( )u t U c t                                                  (3-4) 

 

 

where U is an mxn matrix whose columns are the n snapshots and  ( )c t  is now a  

 

much shorter vector of coefficients.  U is a fixed matrix that does not vary in time.  

 

Applying (3-4) at a time instant k we get 

 

 

     =k ku U c  

 

 
If we substitute this into (3-3), we get 

 

 

1
1 1

[ ] [ ] [ ]{ } { } [ ][ ]{ }( ) k k kS T U c f T U c
t t

  
 

 

 

 

Now we make these matrices smaller by pre-multiplying by[ ]TU  

 

 

 

1
1 1

[ ] [ ] [ ] [ ]{ } [ ] { } [ ] [ ][ ]{ }( )T T T
k k kU S T U c U f U T U c

t t
  

 
 

 

 

 

                               or,    1
1 1

[ '] [ '] { } { ' } [ ']{ }( ) k k kS T c f T c
t t

  
 

                             (3-5) 
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where                                                    '
T

S U S U  

      '
T

T U T U  

     
T

k kf U f   

 

 

Now the matrices  'S and  'T  are nxn instead of mxm. We have reduced the size of  

 

the matrices and can continue to step forward in time much more efficiently. 

 

 

There is a problem in this process. In general, there is near linear dependence amongst  

 

the n snapshots and so, the new matrices tend to be very ill-conditioned. 

 

 

 

 

3.3 Applying POD to the TD-FEM Problem 

 

POD gives us a way of finding a smaller set of l fully independent (in fact, mutually  

 

orthogonal) vectors{ }iv , which is the best approximation to our n snapshots.  

 

 

To do this, as described in section 3.1, we find the l largest eigenvalues and  

 

corresponding eigenvectors of the equation 

 

 

                                                            [ ] [ ]{ } { }TU U x x                                               (3-6) 

 

 

where{ }x is the eigenvector and  is the eigenvalue. Here, the eigenvectors will be of  

 

length n because [ ] [ ]TU U  is of size nxn .  These eigenvalues and eigenvectors are  

 

calculated using Matlab‟s built-in function „eig‟ [26], which computes all the eigenvalues  

 

of a square symmetric matrix by first reducing the matrix to tri-diagonal form, then  
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applying the QR algorithm [27]. 

 

[ ] [ ]TU U is a dense matrix, but finding the eigenvalues and corresponding eigenvectors is  

 

computationally inexpensive because n is a relatively small number. As will be shown in  

 

the coming chapter, we can get satisfactory results using an n in the range 10 to 20.  

 

 

Once we have these values, we can calculate 

 

                                              
1

{ } [ ]{ }i i

i

v U x


             i=1, 2, 3…l                              (3-7) 

 

 

Knowing these l vectors, we can replace (3-4) by 

 
 

                                                  ( ) ( )u t V c t                                                              (3-4') 

 

 

where  V  is an mxl matrix whose columns are the vectors { }iv . Following the same  

 

path as described before, we will end up with (3-3) again, but this time we will have  

 

matrices which are lxl in size and are well-conditioned. The problem of ill-conditioned  

 

matrices is solved because the vectors{ }iv are mutually orthogonal.  

 

 

Thus POD helps us get computational results much more quickly and efficiently. 
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 4   Results from simulations using Standard Time Stepping 

 

 

 

The main focus of this thesis work is to solve problems of EM diffusion using both  

 

standard time stepping and POD and then to compare the results, with a special interest  

 

in the transient phase of the diffusion. The simulations were carried out using MATLAB  

 

version R2009b running on a DELL Inspiron 1545 with an Intel Pentium Core 2 Duo  

 

processor 2.10 GHz, RAM of 4.00 GB and Windows Vista operating system (64 bit). 

 

 

4.1 Results for 1-D Problem with Simplified Boundary Conditions 

 

For the 1-D problem (2.2), at first a simplified boundary condition is considered.  

 

 

Referring to Fig. 1, at x=L a boundary condition of 1yH  is applied while at x=0 the  

 

boundary condition remains as shown. Therefore, the problem became similar to the  

 

thermal problem of raising one end of a bar initially at 00C to 10C and holding it at that  

 

temperature. One can expect the temperature to decay exponentially along the bar and we  

 

have to move through a transient to reach a steady state. The same can be expected for  

 

the magnetic field intensity in the material. 

 

 

From equation (2-14) the forcing function f now becomes 

 

                                                                 fpf S                                                        (4-3) 
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We take L=1 m and first look at only 10 elements each with a size of 0.1 m. The matrices  

 

are of size 9x9. The simulation is run with a time step of 0.1 s and for 2 iterations.  

 

 L2 has a unit of seconds and represents the time constant of the system. Therefore, for  

 

a  of 10 s/m
2
, a time step of 0.1 s is sufficient to model the diffusion process  

 

accurately in time. 

 

 

The purpose of such a small number of iterations is to see the transient in its early stages 

 

(Fig. 4). In the next simulation we go to 100 iterations (i.e. 10 s) and the resulting curve  

 

as expected becomes a straight line (Fig. 5), which is the steady state. 

 

 

 
 

Fig. 4 
Simulation involving 10 elements and a boundary condition of Hy=1. Field versus distance after 2 iterations 

(0.2 s). 
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Fig. 5 
Simulation involving 10 elements and a boundary condition of Hy=1. Field versus distance after 100 

iterations (10 s). 
 

 

 

 

 

4.2 Results for 1-D Problem with Sinusoidal Boundary Condition 

 

Assuming 1oI  , from (2-14) we get: 

 

     sin( ) cos( )fp fpf S t T t              (4-4) 

 

L and  are the same as before. The frequency is 1 Hz and time step is .01 s, i.e., one  

 

hundred time steps per period. The skin depth at this frequency is 2



 =0.178 m.  

 

Now we reduce the size of the elements to 0.01 m, i.e. about 18 elements per skin depth.  

 

This gives us matrices with a dimension of 99x99 which will give us better accuracy for  

 

the calculation of the field on the entire domain. We run simulations for various times  

 

(Fig. 6a-Fig. 6e).  
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Fig. 6a 
Simulations involving 100 elements and a sinusoidal boundary condition 

at x=L after 0.25 s. Field versus distance. 

 

 

 

 

 

 
  

Fig. 6b 
Simulations involving 100 elements and a sinusoidal boundary condition 

at x=L after 0.5 s. Field versus distance. 
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Fig. 6c 
Simulations involving 100 elements and a sinusoidal boundary condition 

at x=L after 0.75 s. Field versus distance. 

 

 

 
 

 

Fig. 6d 
Simulations involving 100 elements and a sinusoidal boundary condition 

at x=L after 1 s. Field versus distance. 
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Fig. 6e 
Simulations involving 100 elements and a sinusoidal boundary condition 

at x=L after 1.25 s. Field versus distance. 

 

 

Now, if we look at the magnetic field at a single node (at x=0.9 m), we see how the field  

 

is evolving with time (Fig. 7). 

 

 
 

Fig. 7 

Magnetic field at x=0.9 m as a function of time 
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Here we can see that initially the field goes through a slight transient before reaching a  

 

steady state.  

 

 

 

4.3 Results for 2-D Problem  

 

 

Standard time-stepping is used to solve the 2-D problem described in section 2.2. The  

 

results are compared to those obtained by commercial software [21] using the same mesh  

 

(Fig. 3). Figs. 8 and 9 shows the plots obtained when the elements are order 1 (m=183)  

 

while Figs. 10 & 11 shows the plots obtained when the elements are order 4 (m=2535).  

 

The values of frequency, time step and  were 500 Hz, 0.001 s and 72 s/m
2 respectively. 
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Fig. 8 

The flux function, A, at (x,y)=(1.875e-02, 0) m (i.e. P1 in Fig. 2) as a function of time 

 

 

 

 
Fig. 9 

The flux function, A, at (x,y)= (1.875e-02, 0) m as a function of time, generated by commercial software  
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Fig. 10 

The flux function, A, at (x,y)=(2.5e-02, -1e-02) m. (P2 in Fig 2) as a function of time 

  

 

 

Fig 11 

The flux function, A, at (x,y)=(2.5e-02, -1e-02) m, as a function of time, generated by commercial software 
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4.4 Results using POD: 1D Problem with Sinusoidal Boundary Condition  

 

POD is applied to the 1D problem, with parameters which are the same as in section 4.2.  

 

Snapshots are accumulated for the first 0.1 s, i.e., n=10. All 10 corresponding eigenvalues  

 

are used (i.e., l=10). The result after 5 s, which is 5 cycles, is shown in Fig. 12. 
 

 

 

 

 
 

Fig. 12 

The magnetic field after 5 s. The curve in red is obtained by POD using n=10, l=10. 

 

 

Using these parameters the simulation is run to see the time varying fields for the node at  

 

x=0.9 m (Fig. 13).  
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Fig. 13 
 

Magnetic field of the node at x=0.9 versus time. The curve in red is obtained by POD using n=10, l=10. 

 

 

As we can see the result using POD is extremely accurate (the error is less than 1.2% of  

 

the peak value in Hy). Now when we use a smaller basis for instance n=l=5 we get the  

 

results in Fig. 14. 

 

 
 

Fig. 14 
 

Magnetic field of the node at x=0.9 m versus time. The curve in red is obtained by POD using n=l=5. 
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As expected, the smaller basis is giving us a less accurate curve (the error is less than  

 

11% of the peak value in Hy). 

 

 

Another interesting test is to use a lower number of eigenvalues. Putting n=10 but using  

 

only the 3 largest eigenvalues (i.e. l=3) we can get a curve which has a shape fairly close  

 

to the one using  l=10 (the error is less than 14% of the peak value in Hy). This is 

 

beneficial because now the matrices in question will only have a dimension of 3 (Fig. 15).  

 

 

 
 

Fig. 15 
 

Magnetic field of the node at x=0.9 m versus time. The curve in red is obtained by POD using n=10, l=3. 

 

 

 

When we use higher number of eigenvalues, for example the 5 largest eigenvalues (i.e.  

 

l=5), we get a better curve (Fig. 16). Here, the error is less than 5% of the peak value in  

 

Hy. 
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Fig. 16 
 

Magnetic field of the node at x=0.9 m versus time. The curve in red is obtained by POD using n=10, l=5. 

 

 

 

 

4.5 Results using POD: 2D Problem 

 

We use fourth order elements (matrix dimension m=2535) to test POD rather than first  

 

order, because we have already seen satisfactory results for smaller matrices from the 1-D  

 

test. Here the flux function at P2 (Fig. 2) as a function of time is plotted in Fig. 17.  

 

 

The parameters are the same as in 4.3. Now n=20 (because it covers one full cycle) and  

 

l=4 for the POD curve. A smaller number of eigenvalues are used because the result from  

 

the 1-D problem already showed very accurate results when we used all relevant  

 

eigenvalues.  
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Fig. 17 
 

The flux function at (x, y) = (2.5e-02, -1e-02) for the 2-D structure. The curve in red is obtained by POD 

using n=20, l=4. 

 

 

 

The POD curve (in red) is very accurate (the error is less than 2.7% of the peak value in  

 

the flux function). This means a very low computational cost because now the matrices  

 

are only of size 4x4.  

 

 

If we use only the 3 largest eigenvalues we get much more error (Fig. 18). Here, the error  

 

is less than 20% of the peak value in the flux function. 
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Fig. 18 
 

The flux function at (x, y) = (2.5e-02, -1e-02) for the 2-D structure. The curve in red is obtained by POD 

using n=20, l=3. 

 

 

 

 

 

Fig. 19 shows the results when the 5 largest eigenvalues are used. The error is less than 

 

2.4% of the peak value in the flux function.  
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Fig 19 
 

The flux function at (x, y) = (2.5e-02, -1e-02) for the 2-D structure. The curve in red is obtained by POD 

using n=20, l=5. 

 

 

 

If we use even more eigenvalues, we get curves which are indistinguishable from the  

 

original. However using all 20 eigenvalues (or a number close to it) creates matrices  

 

which are close to singular, but the results remain extremely accurate (Fig. 20). The  

 

reason is that when we use a larger number of eigenvalues, some of the basis vectors  

 

corresponding to the smaller eigenvalues are nearly linearly dependent on the others. 

 

The error is less than 0.004% of the peak value in the flux function.  
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Fig 20 
 

The flux function at (x, y) = (2.5e-02, -1e-02) for the 2-D structure. The curve in red is obtained by POD 

using n=20, l=20. But the POD curve is not visible because it is overlapping with the original one. 

 

 

 

As we are getting accurate results for POD compared to the original time stepping 

 

scheme, we can conclude that the code written is working properly. Furthermore, it has  

 

been shown that POD is an efficient tool to solve the equations because it uses much  

 

smaller matrices. Thus the objective of the thesis is fulfilled.  
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5  Conclusions 

 

 

In this thesis, POD has been proposed as a tool for reducing the computational cost of FE  

 

analysis of EM diffusion. It has been shown that POD is able to reduce the size of the  

 

matrices greatly and still maintain high accuracy. This is particularly important for large,  

 

3-D computer simulations which can take days to finish. In FEM, the spatial domain is  

 

discretized into a high number of elements and consequently the fields are represented by  

 

a large number of basis functions. In the POD model, the spatial distributions are 

 

described by the first few and most relevant POD basis functions.  

 

 

The matrices in the original FEM models are sparse, but the dimensions are high. The  

 

solutions must be found through lengthy iterative procedures. Although the matrices of  

 

the reduced models are dense, the dimensions are much lower. Overall, a desirable  

 

reduction of computational time is achieved elegantly.  

 

 

The tests in this thesis were in 1-D and 2-D. The application to 3-D follows along exactly  

 

the same lines, but clearly there is a need to test POD TD-FEM on some large, realistic,  

 

3-D problems to establish the accuracy and efficiency of the method in those cases. 

 

 

TD-FEM is a powerful and versatile tool for analysis of a wide variety of other  

 

electromagnetic devices, including those where wave propagation rather than diffusion is  

 

the important process, e.g., antennas and microwave circuits [28]. It would be interesting  

 

to implement POD to reduce the matrices involved in those applications.  
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Therefore, much like the field of TD-FEM itself, the usage and future implications of  

 

POD remains very open. The balance between performance and cost in commercial  

 

design is increasingly important. So, possibilities abound for reduction methods such as  

 

POD. 

 

 

In this thesis, the conventional POD was applied. A lot of work is going on in improving  

 

it. There are improved versions of POD such as Missing Point Estimation POD (MPE- 

 

POD) which has been proven to be much more efficient than conventional POD [29]. It is  

 

based upon the gappy POD method developed by Everson and Sirovich [30]. Some other  

 

developments of POD include the Group POD [31]. Some of these new variants might be  

 

effective when applied to TD-FEM. In another work [32], conventional POD and the  

 

combination with MPE were applied to a nonlinear heat conduction model. The reduced  

 

order model by POD-MPE was found to be 150 times faster than conventional time  

 

stepping, while the classic POD model was only about 10 times faster than the original  

 

one. 

 

 

However, there are some limitations worth noting. POD might not be very useful when  

 

we want to simulate a short transient. Applying POD to situations like that would  

 

make it more complex for no purpose.  

 

 

Different number of snapshots and eigenvectors produce different results. Fewer  

 

snapshots can help reduce computational cost (as it has been shown in this thesis) but  

 

also lead to lower accuracy. Use of a smaller set of eigenvectors can help reduce  

 

computations even further, but a too small a set will lead to high inaccuracy. Therefore,  

 

the question is to find the optimal number of snapshots and eigenvectors. For  
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successful commercial software, this decision has to be automated. If the user had to  

 

choose every time, it would make the whole process cumbersome. That is also an area for  

 

future research. 

 

 

In this thesis work, POD has provided very satisfactory results. One can certainly  

 

assume that we will see successful implementations of POD in other areas of  

 

computational EM. 
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