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Abstract 

The design of 3D microwave devices can be improved by using computational 

optimization techniques combined with numerical simulations of the electromagnetic 

field. However, high accuracy field analysis is often computationally expensive and time 

consuming. One way to cut costs is to vary the accuracy level of the analysis at different 

stages of the optimization. This idea is based on the premise that the accuracy need not be 

constant throughout the optimization, and so the numerical analysis can be run more 

cheaply without compromising design quality. 

This thesis presents a software system that minimizes the return loss of 3D 

microwave devices over a frequency band efficiently through accuracy control. It 

combines a custom gradient-based optimizer with a ^-adaptive frequency-domain finite 

element solver. The solver computes the cost function and its gradient to a specified 

accuracy in a cost efficient manner. The /^-adaptive solver comprises of two original 

components: an a-posteriori error estimator to evaluate the error in the cost function 

gradient, and an error indicator to identify the high error regions in the mesh. The 

optimizer controls the accuracy of the cost function evaluation through a link with the 

solver, specifying the required relative error for the gradient at each optimization step. 

The combined adaption-optimization scheme was applied to 3D rectangular 

waveguide problems for validation: an E-plane miter bend, a U-bend, an impedance 

transformer and a compensated magic-T. For comparison, all the problems were also 

optimized using high-order finite elements at every step. Test results prove the 

computational efficiency of the new combined scheme at various stages of the 

optimization. In the early stages, when the element orders are low, the scheme is able to 

attain similar cost function reductions as the high-order analysis, with computational 

savings up to a factor of 25. Even in the late stages, when the accuracy is more stringent, 

the scheme manages a reduction in cumulative computation time of at least a factor of 4. 
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Abrege 

La conception de dispositif hyperfrequence 3D peut etre amelioree par l'utilisation de 

techniques d'optimisations algorithmiques jumelees a des simulations numeriques du champ 

electromagnetique. Cependant, la modelisation du champ electromagnetique a un niveau de 

precision eleve est tres couteuse en terme de nombres de calculs et de temps. Le cout peut 

etre reduit en variant le niveau de precision utilise a chaque etapes du cycle d'optimisation. 

Le concept est base sur l'idee que le niveau de precision peut etre varie pendant l'optimisation. 

Le resultat est que l'analyse numerique prendra moins de ressources en evitant une baisse de 

qualite. 

Cette these presente un systeme informatique qui minimise l'affaiblissement de 

reflexion de peripheriques micro-ondes 3D. L'efficacite du systeme est augmentee en 

controllant de facon dynamique la precision des calculs. Le systeme combine un optimiseur 

base sur les calculs de gradients avec un programme de calcul d'elements finis de domaine 

frequentiel />-adaptif. Le programme /^-adaptive evalu la fonction du cout et son gradient a 

une precision fixee par l'optimiseur, et il a deux componsantes. Le premier est un estimateur 

d'erreur a-posteriori qui evalu l'erreur du gradient de la fonction du cout. Le deuxieme est un 

indicateur qui identifit les zones d'erreurs importantes dans la maille. L'optimiseur controle 

la precision de 1'evaluation du fonction du cout grace a un lien avec le programme /^-adaptive 

ou l'erreur relative du gradient est specifiee a chaque etape de l'optimisation. 

La methode d'optimisation adaptive a ete utilisee pour valider plusieurs guides 

d'ondes rectangulaires 3D, done un «E-plane miter bend», un «U-bend», un transformateur 

d'impedance, et un te magique compense. La comparaison de tout les guides a ete accompli 

par la modelisation par elements finis de haute precision. L'efficacite de la methode est 

supportee par les resultats obtenus a chaque etape de l'optimisation. Pendant les premieres 

etapes, la precision des calculs est maintenue a un niveau plus bas. Les resultats sont 

comparables a celles obtenues par les analyses de haute precision, mais avec une diminution 

jusqu'a un facteur de 25 du cout des calculs informatiques. Meme vers la fin de 

l'optimisation, quand la precision est plus importante et done plus elevee, une reduction du 

cout des calculs par un facteur minimum de 4 est observee. 
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1. Introduction 

Due to the tremendous growth in computer technology over the past two decades, 

optimization techniques are now being used to find solutions to larger, more complex 

problems in varied fields like mathematics, applied sciences, engineering, economics, 

medicine, statistics, and so on [1]. In the field of high frequency electromagnetics (EM), 

this breakthrough in computing processing power has been of significant help in the 

accurate analysis and design of complex three-dimensional (3D) microwave devices, with 

designers relying more heavily on EM-based computer aided design (CAD) techniques 

than ever before. 

Design optimization and accurate analysis of 3D microwave passive devices are 

required to meet the increasing demands for higher quality microwave components for 

wireless and satellite based communications, as well as for radar applications. Passive 

microwave devices such as power dividers, resonators, filters, waveguide transformers, 

etc., are critical components for microwave systems that are used extensively in these 

fields. Due to high industrial demands, there is more emphasis on reducing design time 

and costs, while yielding optimized designs for these devices, and CAD techniques offer 

a cost-efficient way to accomplish this. Yet, despite the advances in computing power, 

the EM analysis of complicated 3D problems is still an extremely time consuming 

process. This requires designers to devise new computational techniques that produce 

reliable designs at reduced computational costs. 

A practical approach to efficient design is to generate an initial model using 

approximate, but fast, synthesis methods, and then as a second step, fine-tune this model 

using computational techniques to generate a design with improved performance. The 

initial design can be obtained using data from a design manual, or an approximate 

analytical formula, perhaps based on circuit theory [2], or by means of a knowledge-

based approach [3]. The fine-tuning process can then be conducted by identifying the 

critical design parameters of the device and varying them to satisfy the performance 

targets. Computational optimization techniques can be used to model the tuning process, 

with the user-targeted performance parameter designated as the cost function that can be 
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either minimized or maximized to satisfy the performance criteria. The type of 

optimization technique chosen will also have a significant impact on the overall cost 

efficiency of the fine-tuning process, as explained below. 

The two main types of optimization techniques are deterministic and stochastic. 

Of the two, stochastic methods are attractive due to their ability to find the global 

optimum in a given design space populated with numerous local optima. However, they 

are computationally expensive, as numerous cost function evaluations (CFE) are 

necessary to effectively narrow down the selection to a set of good optimum points, and 

eventually obtain the proper global optimum. Moreover, for the fine-tuning case where 

the objective is to merely seek one of the numerous local optima lying near to the current 

design point, the application of stochastic methods is excessive from a computational 

point of view. Hence, the deterministic approach using gradient based optimization 

techniques is more practical in this context. 

Gradient based direct optimizers make use of the sensitivities, or rates of change, 

of the cost function with respect to the design parameters. Such optimizers incorporate 

EM-solvers to compute the response values and their sensitivities for every optimization 

step. Extensive work in the past two decades has improved the efficiency of EM-solvers, 

and techniques based on the Finite Element Method (FEM), Integral Equation method, 

Finite Difference (FD) methods, Mode Matching methods and Method of Moments, as 

well as various hybrid techniques that combine these different individual methods, have 

been developed to handle complex 3D problems [4],[5]. Traditional EM-based 

optimization techniques use the finite difference approach to find the sensitivities, where 

the EM-solver is repeatedly invoked for perturbed values of the design variables. 

However, this is an inefficient approach, especially for problems with a large number of 

design parameters: at a given design point for a problem with n design parameters, n+l 

cost function evaluations are needed to obtain the design response and its sensitivities. 

The overall computational cost becomes prohibitive for complex 3D problems, where 

each CFE is itself expensive. 

As such, the computational costs involved in the analysis need to be cut by 

making the EM-simulator produce the cost function and its sensitivities cheaply. One 

efficient approach is to use the adjoint variable method (AVM) in conjunction with the 
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FE method, which has been previously applied to microwave field analysis [6]. This 

approach allows the calculation of the gradient value using only one extra simulation, 

regardless of the number of design parameters in the given problem [7], [8]. However, an 

alternate FE formulation presented in [9] takes this concept a step further by calculating 

the sensitivities at no extra cost beyond what is required for the regular solution, 

irrespective of the number of design parameters. The resulting computational savings for 

an iterative 3D analysis, such as the one used for the current optimization scheme, is 

substantial. 

Further cost reductions can be achieved by introducing a feedback loop from the 

optimizer to the EM-solver as a means of controlling the cost function accuracy. The 

underlying idea is that the accuracy requirements associated with the cost function and 

sensitivity calculations do not necessarily need to be constant throughout: the accuracy at 

the initial stages of the optimization need not be as stringent as that required towards the 

end, when the process gets closer to the optimum. Providing a link from the optimizer 

facilitates the transfer of this information to the EM-solver and enables it to conduct the 

solution process in a more computationally prudent manner. This idea was pursued in [10] 

for the FE analysis of 2D microwave problems. 

The accuracy link further ensures that the solution at each analysis step is 

numerically valid. If the EM-solver is unable to attain the accuracy level set for the given 

analysis point, it should communicate this to the optimizer, and the entire optimization-

EM analysis process must be terminated, as any improvement beyond this point are 

meaningless from a numerical perspective. Consequently, the integrity of the fine-tuned 

optimal design produced is assured by the system. This is in contrast to normal practice, 

where the optimization is seeking the best possible optimum without regard for the 

accuracy of the numerical solution. 

A schematic roughly illustrating the overall optimization scheme combining the 

optimizer module and the EM-solver module, as well as the role of the accuracy link in 

the process is given in Figure 1.1. 
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Initial design 

'Fine-tuned" 
design 

Combined Adaption-Optimization module 
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Solution validity 

Accuracy 
Link 

Accuracy level 

New design parameters 

Figure 1.1: Schematic of the optimization scheme with accuracy link 

For this work, the ^-adaptive FE technique is chosen as the EM-solver method 

used by the optimization process. FEM is a well-established and versatile technique for 

high frequency EM analysis, capable of conducting accurate and efficient full-wave 

analysis of arbitrary complex 3D structures, aided by a well refined mesh that models the 

given geometry. The /^-adaptive version of the FEM assigns the additional degrees of 

freedom by varying the element orders of the mesh. Accuracy control on the FE analysis 

through the link allows a more intelligent approach to the distribution of the additional 

degrees of freedom, thus improving the computational efficiency of the optimization 

process. An error analysis formulation for 3D problems within the ^-adaptive FE 

formulation is used in conjunction with the accuracy control scheme to attain this. The 

fact that the FEM formulation can provide the sensitivities at no extra cost, as mentioned 

previously, contributes to the efficiency as well. 

The objective of this research work is to implement an efficient optimization 

scheme combined with an EM-based solver using the ideas that are outlined in this 

chapter. The detailed description of the main components used in this scheme and how 

the different modules interact with each other to maintain that efficiency constitutes the 

remainder of the thesis. 
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Chapter 2 deals with the choice of optimization method used for the current 

analysis scheme. The advantages of using a gradient based system and how the gradient 

information can be used for computational cost reductions are illustrated in this chapter. 

Chapter 3 introduces the numerical analysis module using FE, as well as the 

theory to compute the cost function and its gradients cheaply over a frequency range of 

interest. These are then used in a gradient-based technique that incorporates the changes 

introduced in Chapter 2. 

Chapter 4 delves into the details of the ^-adaptive FE formulation used for 

computing the cost function and their gradients inexpensively. The development of the 

error analysis scheme and the hierarchal elements that are critical for an effective p-

adaptive method are outlined in this chapter. 

The accuracy controlled optimization scheme linking the FE analysis and the 

optimization technique is covered in Chapter 5. Here, the role of the accuracy link 

connecting the optimizer to the FE analysis module in enforcing computational efficiency 

of the analysis is described in detail. 





2. Optimization 

The purpose of optimization is to arrive at the best possible decision in any circumstance, 

with the ultimate goal of improving the targeted characteristics of a given problem. When 

included in the design process, the optimizer guides a search in solution space in its 

attempt to improve a given design, and possibly obtain more innovative configurations 

[11]. Optimization methods have long been used to aid the design of electromagnetic 

devices [12], with applications in the field of microwave circuits and antenna design [13], 

[14]. The importance of optimization techniques in EM-design has been recognized by 

the CAD industry, and has incorporated optimizers into commercial simulation software 

packages [15], [16]. 

In general, optimization techniques can be divided into two groups: stochastic and 

deterministic optimization. Evolution strategies (ES) [17], genetic algorithms (GA) [18], 

[19], simulated annealing (SA) [20], artificial neural networks (ANN) [21], particle 

swarm optimization (PSO) [22] and Taguchi's method [23] are some of the stochastic 

algorithms that have been developed over the years. A review of the application of 

stochastic methods in the optimization of electromagnetic problems is given in [24]. The 

advantage of these methods is their ability to find the global optimum in a given solution 

domain. In addition, they are mostly independent of the search domain, thus making them 

useful when dealing with new problems in which the nature of the solution space is 

relatively unknown, or ill-behaved. The downside is the high computational cost 

associated with multiple design points scattered throughout the solution domain during its 

search for the global optimum [3]. This makes these methods considerably expensive for 

iterative 3D EM analysis. 

Deterministic methods provide a more directed search by taking advantage of the 

local search space characteristics (like gradient information) in the vicinity of a design 

point in order to converge to a local optimum as quickly as possible. For most microwave 

design problems, a decent initial design is already available through fast synthesis 

methods, and bringing the solution to a nearby local optimum is often all that is required 

to produce a good design [25]. Furthermore, this "fine-tuning" can be accomplished at a 
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much lower cost than stochastic methods. Hence, deterministic methods are better suited 

for implementing a combined EM-analysis-optimization scheme for the cost-efficient 

design of microwave devices. 

The space within which the optimizer searches for an optimum is defined in terms 

of the set of design parameters that control the performance characteristics of the given 

problem. The design space is an TV-dimensional Cartesian space with each co-ordinate 

axis representing a design variable g, (z'=l, 2,...N), and any solution to the optimization 

problem is a design point in this TV-dimensional space. 

For the current research, the optimizer is used to find the minimum of the given 

cost function; hence any reference to a local optimum in design space in the following 

discussions actually implies a local minimum. 

2.1 Steepest Descent Method 

Gradient based methods belong to the class of deterministic optimization techniques that 

require not only the cost function value but also its derivative. The gradient represents the 

rate of change of the cost function with respect to a set of design parameters (e.g. 

geometric dimensions) that define the problem. Since the negative of the gradient vector 

gives the direction of steepest descent, setting the search direction equal to that value will 

give the path direction along which the cost function decreases the quickest at a given 

design point [1]. This is the underlying principle of the Steepest Descent method. 

Hence, given the cost function C and its gradient VC ', the search direction {p} is 

set as: 

{p}=-VC (2-1) 

where the gradient is comprised of values {dC/dg^ ,dC/dg2 ,...,3C/9gn}, and {g} is the 

design parameter vector. 

' The cost function gradient column vector {VC}will be denoted by VC throughout this thesis 
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2.2 Line Search 

Once the search direction is set, a local minimum of the cost function along it is 

determined by an iterative process, which yields a series of design points: 

{gik)}={gS,ar'Wk){p} (2-2) 

where {g®} is a column vector of design parameters at the kth step of the line search, 

{gStart} represents the initial design point that is used to calculate all subsequent design 

points on that line search, {p} is the column vector representing the line search direction, 

and v^ is the scalar that controls the step length along the line. 

Finding the step length v that will minimize the cost function value along 

direction {p} efficiently is of great importance. Several one-dimensional minimization 

methods have been developed to determine the step length for multi-variable 

optimization methods: elimination methods (Fibonacci and Golden section), which do not 

require gradient values, and interpolation methods (quadratic and cubic interpolation) that 

do use the gradient, are examples. For the current scenario, due to the availability of the 

gradient information, the more effective Davidon's cubic interpolation technique is 

implemented [26]. 

The aim of the one-dimensional minimization method is to find a non-negative 

value of v for which the function: 

C(v) = C({gStarl}+v{p}) (2.3) 

attains a local minimum, where C(v) is the original cost function expressed in terms of 

the step length parameter alone (hence the designation one-dimensional optimization). 

Davidon's cubic interpolation method makes use of the first derivative information of the 

cost function to find the directional derivatives along the fixed search direction, given by: 

G = VCT{p} (2.4) 
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The directional derivatives are used to determine the upper and lower limits of a search 

interval within which the local optimum exists. Once set, the non-linear cost function is 

approximated using a cubic polynomial with respect to the parameter v within this 

interval, whose solution is an approximation to the ideal value of v that minimizes the 

cost function locally. An iterative process in which the initial interval is reduced for every 

subsequent attempt at finding a better approximation to the optimum is carried out until 

the solution satisfies certain termination criteria. 

The implementation details of the cubic interpolation method are given below. 

2.2.1 Search interval bounds 

The objective is to establish the line search interval by finding two points along the 

search direction that satisfy the necessary conditions for a minimum value to lie in 

between. 

Given an initial point represented by the design parameter vector {g}, let vi be a 

given value of v that corresponds to the design point, with directional derivative value G\ 

< 0 and cost function value C\ making vi a lower bound for the search interval. 

To find the upper limit v2 (> vi), the following equation is used: 

v 2 = v , + 2 ( C e ~ C | ) (2.5) 
G, 

where Ce is a preliminary estimate of the cost function's minimum value. In order to set 

the design point {g} as the lower bound, the value of vi=0 is used. Once v2 is obtained, 

the corresponding values of C2 and G2 are calculated. Two possible scenarios that allow 

for a minimum to lie between vi and v2 are shown in Figure 2.1. 

In the first scenario, the directional derivative G2 will have the opposite sign of G\ 

(i.e., G2 > 0), while the cost function values satisfy either condition: C2 > C\ or C2 < C\. 

The second scenario arises when C2 > C\, and with G\ and G2 having the same sign, vi 

and v2 can still form the interval bounds within which a minimum can exist. If neither of 

these conditions is satisfied, the upper bound search will continue, with the current value 

v2 doubled to obtain the next bound. 
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Figure 2.1 Line search interval bounds 

2.2.2 Approximating the local minimum 

Once the interval bounds are set, the cost function is approximated inside the interval 

using a cubic polynomial, whose solution provides an approximation to the local 

minimum. 

Provided that the cost function values and the directional derivative values are 

known at both upper (V2, C2, G2) and lower (vi, C\, G\) bounding points, the following 

equation provides the minimum of the cubic polynomial fitting these values: 

v* = vl+(y2-vl)h-
G2 + w — z 

7 , - G 2 + 2 w (2.6) 

where 

w • 4Z' ~GlG2 
(2.7) 

and 

z = 
( v 2 - v , ) 

( C , - C 2 ) + G 1 + G 2 (2.8) 

Equations (2.6)-(2.8) are used iteratively for finding a better approximation v* for the 

minimum. If the current value of v* is not a good enough approximation, the line search 
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will continue with the value of v* set as either the upper (V2) or lower (vi) bound of the 

new search interval. This assignment is based on selecting the interval within which the 

minimum could exist, as illustrated by two simple cases in Figure 2.2. 

- V i 

c, 

c* 

i 

X 

i 

a 

/ ! 

/ * 
/ i 

i 

• — 9 * 
Vj V * i # -

Figure 2.2 Possibilities for setting the new line search interval bounds 

In the first case, with v*< v2, C* < C2, and with G\ (< 0) and G*(> 0) having opposite 

signs, (v*, C*, G*) can be set as the new upper bound, replacing (V2, C2, Gj). For the 

second case, with v*> v\, C* < C\ and G*{< 0) and G2 (> 0), the points (v*, C*, G*) and 

(V2, C2, Gi) will bound an interval with a minimum located within. This sequence is 

continued until the proper line search termination criteria are satisfied. 

2.3 Line search termination 

A variety of criteria can be utilized to terminate the line search process, once the 

approximation to the optimum is deemed accurate enough. Possibilities include: 

(a) A design-parameter value based termination criterion, where the line search is 

terminated if the difference between successive design parameter values is 

below a certain threshold 

(b) A cost-function value based criterion, where the line search is terminated if the 

difference between consecutive values of the cost function is below a certain 

threshold 

A different approach is used in the present work, which takes advantage of the 

availability of the cost function gradient value for every analysis point. 
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The directional derivative, given in (2.4), indicates that at a local minimum along 

the current search direction, the vector quantities VC and {p} become orthogonal to 

each other. The angle 6 between them can be obtained by re-arranging the definition of 

the dot product: 

||VC||-|U| 
C„S. = L 1 M . (2.9) 

where |VC| , \p\ are the magnitudes of the vector quantities. Since the gradient is 

available at every analysis step, the angle can be found easily to determine its deviation 

from the current search direction. If it deviates by a significant amount, this indicates the 

possibility of another, better, minimum point lying in a different direction (indicated by 

the new gradient) than the current one. By judiciously selecting a threshold value for the 

angle 6 in (2.9), the optimizer can terminate the current line search without having to wait 

to reach the local minimum, and launch a new one using the gradient as the search 

direction as soon as the threshold value is exceeded, thus avoiding the extra cost function 

evaluations (CFEs). 

2.4 Implementation of the steepest-descent algorithm with cubic line search 

A rough outline of the modified steepest-descent algorithm with the threshold angle 

termination criteria can be given as follows: 

0. Set threshold angle 9^; and initial point in design space 

1. Compute C, VC for the design configuration. 

2. If the current point is the initial one from Step 0, set the line search direction 

to—VC; go to 5. 

3. If the angle between the new -VC (obtained from the FE analysis) and the 

current line search direction exceeds #th, go to 4; else go to 5. 

4. Start a new line search with search direction set to - VC . 

5. Find the new design point along the current line; go to 1. 
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A numerical analysis module approximates the C,VC values corresponding to each 

design point {g} specified by the optimizer at various stages of the line search algorithm. 

The module discretizes the given geometry and numerically approximates the cost 

function and its gradient. Upon receiving these values, the optimizer then uses them for 

further processing depending on the line search stage (e.g., bounding point conditions, or 

the angle criteria for line search termination) to take necessary action for advancing the 

optimization analysis. Figure 2.3 gives a more detailed illustration of the line search 

algorithm, with the various stages connected to the numerical analysis module. 

The initial geometry used for the pre-optimization analysis yields VC , which is 

designated as the initial search direction {p}. The design parameter vector {g tart), from 

which subsequent design parameter values for the given line search are calculated, is set 

using this initial value. Once the search direction and the lower bound are set, the next 

step is to determine an upper bound for the search interval, as explained in Section 2.2.1. 

The value for {g6o""d} to determine this is calculated using (2.5) and then (2.2), and the 

corresponding C,VC values that satisfy the upper bound conditions (as explained in 

Section 2.2.1) are sought. Section 2.2.2 explained how the line search step v* is found for 

the cubic point analysis once the interval is set. The vector {g} for the new design point 

lying in the direction {p} is obtained using (2.2), and the corresponding values for C, VC 

are calculated. The line search termination condition based on the angle criterion is 

evaluated using (2.9). If the angle criterion is satisfied, the line search is broken, and the 

VC value becomes the search direction for the new line search. The vector {g tart} is 

updated using the last valid design point from the previous line search, which will also 

act as the lower bound (start point) of the new line search. For the scenario where the 

angle criterion is not satisfied, v* is set as one of the bounds of the new reduced line 

search interval, and the process to find a better approximation to the minimum continues. 
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Figure 2.3 Implementation of the line search algorithm combined with the CFE module 
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2.5 Role of the optimizer in maintaining computational efficiency and reliability 

In light of the increasing complexity of the problems dealt with by present-day designers, 

maintaining computational efficiency is a major concern, despite the considerable 

advances in computing power. One way of doing this is for the optimizer to take an 

active role in implementing checks and controls that help regulate efficiency, while 

maintaining reliability. This is in contrast to the usual passive role the optimizer plays in 

the traditional design process. 

One attempt at reducing overall computational cost stems from the idea that the 

accuracy requirement for the solution in the initial stages of the optimization need not be 

as stringent as that required when close to the minimum. The cost function gradient value 

decreases from the first optimization step onwards, and the optimizer can set the accuracy 

requirement for a given line search using this as a benchmark, forcing the accuracy to 

increase as the optimization converges to the minimum. This results in significant 

computational savings for the optimization process, especially in the initial stages. 

Once the accuracy requirements for a given line search point is set by the 

optimizer, the EM-analysis module must produce results that satisfy them. If unable to do 

so, the optimization process becomes invalid, as the numerical approximation to the cost 

function is no longer close enough to the true solution. Any improvement beyond this 

point is meaningless, and the optimizer should terminate the entire process. The last 

obtained valid solution becomes the best approximation to the local optimum that the 

optimizer can produce. This way, the optimizer is able to guarantee the validity of the 

solution, and consequently, the designer can have confidence in the integrity of the 

optimal design produced by the system. 

Further computational cost savings for the optimization process can be obtained 

by calculating the cost function and its gradient for cheap at every analysis step along the 

way. How this is accomplished using the Finite Element method, as well as how the 

optimizer-controlled accuracy requirements are enforced on the FE analysis process, 

forms the basis of the remainder of this thesis. 
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3. Calculating the cost function and its gradient 

To improve the device performance through optimization, the cost function must be 

formulated in terms of quantities that characterize the device. A common design goal for 

a microwave designer is to minimize the wave reflection at a port of a given device to 

attain maximum power transfer over the desired operating band. For this thesis, the cost 

function is formulated in terms of the return loss and minimized. In order to approximate 

the electromagnetic fields that are required to compute the cost function, an accurate 

field-based analysis tool capable of handling arbitrarily-shaped devices is necessary. 

The Finite Element (FE) method is one of the most versatile and powerful 

analysis techniques used in computational electromagnetics due to its ability to handle 

problems with complex geometries. It is applied to a wide range of problems such as 

static, quasi-static, wave and transient systems, and problems with different material 

properties (non-linear, inhomogeneous and anisotropic) [27]-[33], [39]. Not only can the 

method approximate the field and compute the cost function, it can also be used to find 

the cost function sensitivities (gradients) with respect to the design parameters, needed 

for the gradient-based optimization. Calculating accurate design sensitivities 

inexpensively is essential for the efficiency of the gradient-based optimizer. The 

traditional finite difference approach is computationally expensive, especially for 

problems that have more than one design parameter. This chapter explains how to obtain 

the sensitivities over a range of frequencies at a low computational cost, regardless of the 

number of design parameters. The significance of automatic mesh generation and 

geometrical parameterization of complex structures in the optimization process are also 

highlighted. The cost function and sensitivities thus found are used in the optimization of 

3D microwave devices with the line search technique outlined in Chapter 2. Results 

obtained for the test cases are presented in this chapter. 

17 



3.1 Parameterization and mesh generation 

Design parameterization refers to the process of defining geometrical parameters for a 

given device that are varied during the optimization. This process is usually left to the 

designer so that the parameters that have substantial influence on the overall performance 

of the device can be identified and incorporated into the optimization analysis. The cost 

function gradient, used by the optimizer to converge to the local minimum, is the rate of 

change of the cost function with respect to these varying design parameters. The 

dimension-driven optimization process generates new device geometries at each 

optimization step in its attempt to improve the targeted device characteristic [11], [34]. 

In the FE method, the given structure is broken up into numerous non-overlapping 

elements which constitute the mesh. The degrees of freedom associated with each 

element (through the nodes, edges and faces, for 3D vector finite elements) determine the 

FE approximation of the unknown field throughout the structure. During the optimization 

process, the FE mesh needs to adjust to the varying geometry of the problem, so that the 

solver can calculate the new field approximation accurately. In order to create the new 

mesh independently at each optimization step, an automatic mesh generator is required. 

However, the FE solver deals with the model in terms of absolute Cartesian co

ordinates of the vertices of the elements, which are rarely useful as geometric parameters. 

Therefore a 'mapping' between the design parameters of the geometric model and the 

co-ordinates of the vertices used by the FE solver is necessary to identify the vertices that 

are directly associated with the design variables. This 'mapping' is critical when 

calculating the cost function sensitivities with respect to the design variables. At each 

optimization step, the latest values of the design parameters are incorporated into the 

geometric model generation process. The model faces are assigned unique labels, so that 

they can be identified with the associated design parameters. Using the mesh created for 

the current geometry, the FE solver computes the cost function and its gradients. 

Computing the cost function gradient requires the sensitivity of every vertex co-ordinate 

to each design parameter (the vertex sensitivity). Each vertex is identified with the 

labeled face on which it lies, and consequently, with the design parameter(s) associated 

2 The term 'mapping' is used here to simply denote the correspondence between a design parameter and the 
mesh vertices 
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with that face. Once the vertex has been identified, the vertex sensitivity information is 

computed through a formulation that incorporates the co-ordinate information of the 

vertex, the dimensional data for the face, as well as the direction and magnitude of the 

change in the design parameter. This process is repeated for every vertex k along co

ordinate / (x, y, z for the Cartesian system) with respect to the associated design 

dr' / parameter g, yielding the vertex sensitivity *A . It is done once at the beginning of each 

optimization step, thus providing the vertex sensitivity information with respect to the 

latest design parameters. These sensitivity values are also used in the mesh perturbation 

process, as explained next. 

The cost function is a continuous function of the design parameter vector {g}. For 

small changes in {g}, the cost function will remain smooth as long as the mesh topology 

(the node interconnections of the tetrahedral elements) remains the same, even though the 

geometry (i.e., the node co-ordinates) changes. However, when the changes in the 

parameters are significant enough, the automatic mesh generator will generate a new 

topology to better approximate the geometry. This sudden change in the cost function 

will cause an abrupt jump in the cost function (due to discretization error), making it 

discontinuous. In 3D problems such changes are frequent, resulting in numerous 

instances throughout the analysis where the cost function is discontinuous, which will 

adversely affect the line search efficiency. 

To avoid such situations, the optimizer should use the same mesh topology for as 

long as possible, with only the nodes moved (perturbed) to reflect the changes in the 

geometry. For example, if the new {g} is close enough to the design parameter vector 

that was used to construct the mesh topology (denoted by {gBuM}), the generator can use 

the old mesh topology generated for {g "' }, but with the nodes slightly perturbed to a 

value equal to the difference between the two. The vertex sensitivity values are used in 

determining the exact amount by which each node should be moved to approximate the 

new geometry. On the other hand, if {g} is too different from {gBuild}, perturbation could 

result in elements that are distorted, which in turn could cause the FE analysis to fail, or 

produce bad solutions. Such situations warrant the generation of a mesh with a new 

topology using {g} to approximate the new geometry properly. 
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Defining a threshold value for maximum change allowed in {g} helps the 

automatic mesh generator determine the proper course of action. For example, setting a 

threshold value of y% would mean that a new mesh needs to be generated if the largest 

difference between {g} and {gBml } is greater than y% , i.e., if 

max« 
g\ 

Build 
•g\ 

„ Build „ 
gl -82 gn 

Build 
gn 

8l 
Build Build 

gl 
Build 

gn 

^xl00>y% (3-1) 

where n is the total number of design parameters. The threshold value can be set based on 

the extent of the change that is deemed tolerable by the designer, taking into account the 

geometrical properties of the given problem, before generating a new mesh. 

For this thesis, the commercial software package ElecNet is used for modeling the 

problem, as well as for mesh generation [35]. (ElecNet is a 3D finite element system for 

simulation of electro-quasistatic fields, but just the pre-processing stages are used here.) 

The optimizer is written in Visual Basic script, and is run within Microsoft Excel [36]. 

The VB script calls ElecNet to generate the geometrical model, then assign the proper 

labels to the geometry faces as specified by the designer, and generate the corresponding 

FE mesh. The mesh data and the geometry-face labeling information are transferred over 

to the FE solver as data files for further processing and sensitivity calculations. 

3.2 Calculating scattering parameters using the FE method 

Generally, a microwave component can be viewed as an electrical network with N ports 

(an JV-port device), whose performance is characterized by network parameters (e.g., 

impedance, admittance or scattering). This representation of the microwave network 

lends itself to the development of equivalent circuits of arbitrary networks, and is quite 

useful in the design and analysis of passive components [37]. 

The scattering parameters provide a representation for a given microwave 

network that is related to the incident, reflected and transmitted waves. They provide a 

complete description of the network as seen at its ports, by relating the normalized 
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voltages of waves incident on the ports to the voltages of waves leaving from the ports. 

The matrix [5] of scattering parameters is defined by the following relation [37]: 

M=[#1 (3-2) 

where Y'i *s m e column vector representing the waves leaving from all ports and (F+} 

represents the column vector for the incident waves at the ports. 

Device performance characteristics such as return loss and insertion loss, which 

indicate the efficiency of the microwave network, are defined in terms of the scattering 

parameters. In turn, the scattering parameters can be determined from the field within the 

device approximated using a numerical analysis technique, for example, the FE method. 

3.2.1 S-Parameter calculation from the field 

When an Alport microwave device is excited by its dominant mode at port q, with all 

other ports perfectly matched, the resulting electric field solution in the device can be 

denoted by E0
? . The S-parameters are calculated using this field value, by applying mode 

orthogonality [38], and using the relation [9]: 

S„=VJ»(E™)-S„ (3-3) 

where 6pq is the Kroenecker delta, &x\&Vk
p is an operator that extracts the voltage in 

mode k at port/? by projecting against the modal magnetic field h :̂ 

Vk
ip\E) = - JExhM.*mdS (3.4) 

Port p 

Mode k=0 in (3.4) is the dominant mode, andan is the unit normal vector pointing 

outward from the port. 

Given an accurate field solution forE^', the scattering parameter matrix for the 

given microwave device can be calculated. 
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3.2.2 Finite Element analysis for the Held 

The field E^ for an iV-port device can be obtained by solving the Helmholtz (curl-curl) 

equation for the device while satisfying a set of boundary conditions that define the 

physical characteristics of the problem. The Helmholtz equation can be derived from 

Maxwell's equations, and is given by [39]: 

1 
V x — VxE-£ 0

2 £ r E = 0 (3_5) 
Mr 

where k0 = cUyJe^ is the free-space wavenumber, e0, Mo are the permittivity and 

permeability, respectively, of free-space, and sr, fxr are the relative permittivity and 

permeability, respectively, of the medium. 

3.2.2.1 Boundary conditions 

Three types of boundary conditions are normally applied in the analysis of microwave 

devices: Dirichlet, Neumann and Port boundary conditions. 

(a) Dirichlet boundary condition: The tangential component of the field over the 

surface is constrained as: 

a n x E = E 0 (3.6) 

where an is the unit vector normal to the surface. If Eo is zero, the surface is a 

homogeneous Dirichlet boundary condition, which is equivalent to a perfect 

electric conductor, PEC (short circuit). 

(b) Neumann boundary condition: This condition constrains the tangential component 

of the curl of the field. The homogenous type is most common: 

a n x V x E = 0 (3.7) 

which corresponds to a perfectly magnetic conductor, or PMC. 
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(c) Port boundary condition: This condition was formulated to model the propagating 

and evanescent modes present at the ports. Though the main interest is in the 

dominant propagating mode, the non-propagating modes need to be modeled 

properly to reduce the error in the computed scattering parameters. 

Assuming dominant mode excitation at port q with unit voltage, the 

boundary condition at port p can be written in terms of the tangential magnetic 

field as [40]: 

H , = 2 ^ > - £ ^ > ( E ^ ( 3 . 8 ) 

/=o 

where F, (Ej, ) is the voltage extracting operator from (3.4), and Spq is the 

Kroenecker delta. The summation for / (0->oo) indicates the infinite number of 

modes (including the evanescent ones). In practice, however, the summation will 

only include the propagating mode and the first few evanescent modes. This 

boundary condition acts essentially as an absorbing condition, with the 

propagating and non-propagating modes 'absorbed' at the port boundary. It is 

enforced by implementing the port element that was described in [40]. 

Figure 3.1 illustrates the problem domain Q and the boundary conditions applied to a 

microwave device. The homogeneous condition for (3.6) (i.e., PEC) is considered, and 

denoted with Qe, and the PMC is denoted by Qm. An arbitrary port q, to which the Port 

boundary condition (3.8) is applied, is also shown. 

The wave equation given by (3.5) combined with the boundary conditions 

describe the field distribution in free space for a given microwave device. 
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Figure 3.1 Boundary conditions for a microwave device 

3.2.2.2 Weak formulation of the problem 

To calculate the field distribution by the FE method, the wave equation (3.5) subject to 

the boundary conditions (3.6)-(3.8) is first replaced by the following equivalent weak 

formulation: 

a ( E ^ , w ) = i (w) (3.9) 

for all weight functions w satisfying the homogenous version of (3.6), where a is the 

bilinear form given by: 

fl(E<*\w) = ( I — V x E ^ - V x w - A ^ E ^ - w 
j2k0Tj0 J{Mr 

and b is the linear function given by: 

(3.10) 

p=\ 1=0 

- T/t-lh &(w) = r0
w(w) (3.11) 

where CI is the volume of the device and rjo is the intrinsic impedance of free space [40]. 
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Given the definition of the linear functional of (3.11), the S-parameter definition given by 

(3.3) can be re-written as: 

S„=bfcM)-S„ (3.12) 

This definition will become useful when deriving the expressions for the error indicator 

in Chapter 4. 

3.2.2.3 Domain discretization for FE analysis 

In order to solve the formulation given by (3.8), the problem domain is divided into non-

overlapping sub-domains that constitute the FE mesh. For a typical 3D FE analysis, the 

mesh could be comprised of tetrahedral, hexahedral or triangular prism elements [39]; in 

this thesis, tetrahedral elements are used. Within each element, the unknown field is 

approximated using basis functions, so that the entire domain is represented with a finite 

number of degrees of freedom. The unknown electric field E0
9 can be represented in the 

discrete form as: 

E ^ = { N } r { ^ } (3.13) 

where {N(x,^,z)| represents the vector basis functions, and po J denotes the 

corresponding unknown coefficient vector [51]. 

Substituting (3.13) into (3.9) gives: 

a({N} rfe' )}w)=fc(w) (3.14) 

Due to symmetry of the bilinear form, (3.14) can be re-arranged as: 

fl(w>{N}rfe')5=fc(w) (3.15) 

25 



Taking the basis function JN(x,y,z)}as the weighting functions, (3.15) is transformed to: 

«({N}.{N} rM=*({N>) (3-16) 

This system of equations can be written more compactly as: 

[K]{E^} = {b} (3.17) 

where [K] is a square, symmetric, and sparse global matrix, {b} is a known column 

vector, and {E(
0
q } is the global vector of unknowns. The matrices are given as: 

*„= f l (N„N y ) 

bt = b(Nt) (3-18) 

This system of equations can be solved for the unknown vectors \EQ J using a direct or 

an iterative matrix solver to obtain an approximation to the unknown electric field for the 

given problem domain. For this thesis, the symmetric SOR pre-conditioned conjugate-

gradient matrix solver is used [41]. 

Using (3.13), the scattering parameter expression in (3.12) can be rewritten as 

follows: 

={b}TM-*„ (3-19) 

Substituting the expression for {b} in (3.17) into (3.19) gives: 

This is the discrete form for (3.12), and is used to compute the actual scattering parameter 

values from the electric field solution. 
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3.2.3 Computing scattering parameter sensitivities 

Calculating the scattering parameters sensitivities with respect to the design parameters 

cheaply is critical for the efficiency of the gradient-based optimizer. The traditional 

method of using numerical differentiation, where the sensitivities are calculated by 

perturbing one design parameter at a time, requires the FE solver to be invoked 

repeatedly for each perturbed design parameter, resulting in significant computational 

costs. For an iterative process like the optimization of a 3D problem defined with several 

design parameters, the cumulative cost becomes prohibitive. 

The Adjoint Variable method is an alternate way to obtain the sensitivities 

cheaply, requiring only one extra solution (in addition to the solution required to compute 

the unknown field values) to obtain the sensitivities, regardless of the number of design 

parameters. The extra solution is used to compute the adjoint field, from which the 

derivative values are calculated. The details of the method can be found in [7]. Specific 

applications of the adjoint variable method to full-wave electromagnetic analysis of high-

frequency structures using FEM are presented in [6], [42]-[43], and the references therein. 

Certain modifications to the Adjoint method, specifically when calculating the 

sensitivities for scattering parameters, were presented in [9]. When the design parameters 

are internal and do not affect the location and shape of any port of the device, the design 

sensitivities calculations can be simplified using the following relation: 

^ = -fe'>F *!{#«>} (3.21) 
dg dg 

where [K] is the stiffness matrix given by (3.16) and (3.17), and {E0
q } is the electric 

field when port q is excited, which is already available from the field calculations using 

FE. 

The derivative of the stiffness matrix [K] with respect to the Cartesian co

ordinates of the vertices of the FE mesh can be obtained as [9]: 

d[K] =^y"iysd[K] drl (3 22) 

dg j~t t£ drl dS 
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where nNodes is the number of vertices in the given mesh, and *A is the vertex 

sensitivity value that was explained in Section 3.1. Further details for calculating the 

sensitivity of the stiffness matrix [K\ are given in [43]. 

With this formulation, the design sensitivities can be calculated directly from the 

field solutions already needed to compute the full scattering matrix, and no additional 

system of equations needs solving. 

3.3 Gradient based optimization combined with FE 

Once the scattering parameters and their sensitivities are calculated using the FE method, 

they can be used to compute the cost function and its gradient for the optimization 

analysis. Most designers are interested in the performance of the device over a range of 

frequencies, rather than at a single frequency point. For the optimization analysis, this 

requires the cost function and its derivatives be defined over a frequency range. Early 

attempts to obtain the frequency response over a range involved repeated single 

frequency analyses at multiple discrete points over the range of interest [44], [45]. 

However, methods such as Complex Frequency Hopping (CFH) [46], Asymptotic 

Waveform Evaluation (AWE) [47], and Adaptive Lanzcos-Pade Sweep (ALPS) [48] 

have proven to be effective in obtaining the response by using moment values of the 

quantity of interest (e.g. Spq) at a single frequency in a high order expansion over the 

range. This approach can be used to find the design sensitivities of the frequency 

response as well, as demonstrated in [49]. This research uses the AWE approach to obtain 

the frequency response of the scattering parameters and their sensitivities. 

3.3.1 Frequency response of S-Parameters 

To obtain the frequency response, Spq and its first M moments are calculated at a single 

frequency point so, which can then be used in, for example, a truncated Taylor series 

approximation about the central frequency so, as follows: 

M 

m=0 
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where am are the moments ofSpq, given by: 

a„, =• 
1 d"'S 

PQ 

m\ ds" 
(3.24) 

s=s0 

(3.24) can be evaluated using (3.20) for the mth derivative of {E^q)} at SQ, giving the 

following relation: 

m m-n 

(3.25) 
n=0 1=0 

where {£<?'w)}is the mth derivative of {&q)} with respect to sats0; [l6v)] is the vth 

derivative of [K] with respect to s at So; and 

1 
' mnl (m — n — l)\n\l\ (3.26) 

The derivatives {Erq,m'} can be found during the standard frequency analysis for the S-

parameters by solving repeatedly a matrix system |X]{x}={6}, with a different {b} each 

time [46]. 

For the frequency response sensitivities, the following relation can be obtained 

from (3.23) and (3.24): 

dSBAs) M 
PI da 

dg -I^<'-">' =o d8 m=0 

and 

dam 1 dm dS PI 

dg m\ dsm dg 
s=s0 

The coefficients in (3.27) can be computed using (3.21), and expressed as: 

(3.27) 

(3.28) 

da 
u& „=o /=0 dg (3.29) 
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3.3.2 Pade approximation for the frequency response values and sensitivities 

A better method to obtain the frequency response values than the Taylor series 

formulation in (3.23) is the Pade approximation, where the response and the sensitivities 

are approximated using the function: 

r 

2jbi(s~so) (3.30) 
1=0 

r 

i=\ 

A detailed procedure to compute the coefficients for the Pade approximation function 

given by (3.30) from am or dajdg is given in [50], and is used to obtain the frequency 

response for this research. 

3.3.3 Computing the cost function and its gradient 

The cost function, expressed as a function of the design parameters, should fully 

characterize the device. For this research, the cost function is defined in terms of the 

return loss for the given passive microwave device. The optimizer tries to improve device 

performance by finding the design configuration that will reduce the return loss the most. 

Define the following function in terms of the frequency,/: 

c(f)=\su(/i (3-31) 

for some frequency range/i <f<fi. The cost function sensitivity with respect to a design 

parameter g is then given by: 

dc(f) d ! o ,2 
— in dg dg 

11 J 11 J dg dg 

_ e dSn* , 
ii J dg 

o dSU 
11 A 

\ dg 
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= 2Re (3.32) 

The FE analysis gives the complex values S\\ and dSu/dg at the central analysis 

frequency/o- Using the Pade approximation technique, the values for S\\ and dSn/dg are 

calculated at each of Nf sample frequency points across the desired range/i <f<fi. The 

number of sample points, Nf, is specified by the designer to approximate frequency 

response at a given design point. Following this, the cost function and gradient value at 

each frequency point are obtained using (3.31) and (3.32). A cost function and gradient 

definition, C,VC, characterizing the behavior of the device over the entire frequency 

range, can be formulated based on these values, and used for the optimization analysis 

outlined in Chapter 2. 

3.3.4 Optimization and FE mesh generation 

The outline of the modified steepest descent algorithm was explained in Chapter 2, and is 

repeated here, with the FE method used for the numerical analysis module in Step 1: 

0. Set threshold angle 6^; and initial point in design space 

1. Generate the mesh for the design configuration, and solve the problem using FE. 

2. If the current point is the initial one from Step 0, set the line search direction 

to-VC; go to 5. 

3. If the angle between the new -VC and the current line search direction exceeds 

8th, go to 4; else go to 5. 

4. Start a new line search with search direction set to - VC. 

5. Find the new design point along the current line; go to 1. 

The FE method is part of the CFE module of the line search algorithm. It simply 

produces the values of C, VC using uniform order elements and the mesh discretization 

corresponding to the latest design at any stage of the line search. The mesh generation 

block is introduced as part of the CFE module, taking the latest design parameter values 

31 



from the optimizer and generating the approximate mesh needed for the FE analysis. The 

mesh generation is a slightly complex process due to issues that were outlined in Section 

3.1, with implications on the efficiency of the optimization. 

The modified version of the flow diagram in Figure 2.3 is shown in Figure 3.2. It 

illustrates the combined FE analysis-optimization scheme, with emphasis on the FE mesh 

generation process. The design parameter vector {g} corresponding to the initial 

geometry of the pre-optimization analysis is set as the reference value {g "' }, which in 

turn, is used to evaluate mesh perturbation conditions (Equation (3.1)) for future design 

points. Section 2.4 explained how the cubic line search is implemented with step length v, 

and design parameter vectors {g}, {gStart} and {gBound}_ if the latest design point {g} 

satisfies the condition in (3.1), a new mesh topology is required to better approximate the 

new geometry. The optimizer terminates the current line search, and a new one is 

initiated using the latest design vector {g} as the starting point (i.e., the lower bound). 

This ensures that the same mesh topology is maintained to approximate the geometry 

during the course of a given line search, maintaining a smooth cost function. In the 

absence of a re-mesh scenario, the angle criterion is evaluated to determine whether or 

not to terminate the line search, as explained in Section 2.3. 

The mesh generation block is positioned between the optimizer and the FE 

analysis module (shown as part of the CFE module in Figure 3.2), details of which are 

shown in Figure 3.3. Note that mesh perturbation is not necessary for the pre-

optimization step, as it is the initial point of the analysis, and the design parameter vector 

is set as the initial reference vector {gBm }. For the new design point {g}, if the change in 

the design parameters (as per (3.1)) is insignificant, the old mesh based on {gBmld} is used 

for the geometry and perturbation is applied with the help of the vertex sensitivity values 

computed for the latest design parameter values. The {gBm } values remain unchanged, 

as it still provides a valid mesh topology to discretize the geometry. On the other hand, a 

considerable change in the design parameter values will lead to an update of {gBm } . The 

mesh generation block will alert the optimizer of the re-mesh scenario through a flag, 

prompting it to terminate the line search after calculating the latest C, VC. 
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Figure 3.2 Flow diagram for the combined optimiztion-FE analysis 
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Figure 3.3 Mesh generation block for cubic point analysis 

The vertex sensitivities are calculated for every step of the analysis, in order to 

update the values with respect to the latest geometry, and consequently compute the cost 

function gradient values accurately. They are also used in the mesh generation process, 

specifically for mesh perturbation, where they are used to adjust the old topology to the 

latest changes in the design parameters. 
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3.4 Test Cases and Results 

The combined optimization-FE analysis scheme illustrated by Figure 3.2 was tested on 

three two-port waveguide components. Each problem was excited by the dominant TEio 

mode, and the operating frequency range was selected so that only the dominant mode is 

allowed to propagate. The Dirichlet boundary condition given by (3.6) was applied to all 

the waveguide walls, while the Port boundary condition of (3.8) was applied to the ports. 

Uniform high order elements based on the hierarchal basis functions described in [51] 

were used for the FE analysis to obtain the field solutions. Using the Pade approximation, 

the values of c given by (3.31), were obtained at each of JV/=1024 points across the range 

fi< f< f2, from which C and VC were obtained. For the test cases presented here, the 

following cost function and gradient definition was used: 

The value off where the cost function C is defined (i.e., the maximum value of c in the 

entire range) is denoted aŝ /Jnax- The corresponding gradients are calculated as: 

d£=MLJ (3.34) 
dg dg 

These values are then used by the cubic line search analysis to update the value of {g}. 

The re-mesh condition of (3.1) was implemented using y = 10%. The results were 

reported in [52]. 

3.4.1 E-Plane Miter bend 

A mitered, right-angled E-plane bend shown in Figure 3.4 is the first test case for the 

combined optimization scheme. The single design parameter g controls the mitering of 

the bend, and is allowed to vary from gib =0 to glb=\ (no mitering) to find the value of g 

that will give the optimal device performance. The guide cross-section is a x b, with a=2b, 

6=10mm. The operating frequency range was selected as 8.25 GHz < / < 13.5 GHz. 
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Figure 3.4 The E-plane miter bend with a single design parameter. Starting value for g=\ mm; 

Central analysis frequency= 10.875 GHz; No. of tetrahedra = 264; |9] 

The optimization result is shown graphically in Figure 3.5. The analysis is able to achieve 

an improvement of approximately 15 dB over six line search steps. Since the problem has 

only one design parameter, all of the steps for the optimization are the result of the cubic 

line search along a single line, with each cubic point representing a new geometry in 

design space with the updated value of {g}. 

3 4 5 
Number of cost function evaluations 

Figure 3.5 Cost function value vs. number of cost function evaluations for the E-Plane bend 
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The optimizer manages to reduce the cost function value considerably within the first 

three steps, after which the value appears to have more or less settled down. Table 3.1 

shows the variation in C for each new design point at various stages of the optimization. 

Whereas the worst value in the frequency band for the initial design point is -14.3 dB, the 

final design point gives a worst value of -31.5 dB. The value for g also appears to have 

converged to a value close to 2.1mm by the end of the sixth optimization step. Figure 3.6 

shows the changes in the frequency response at different points during the course of the 

optimization. The significant change in the response curves from the initial step to the 

third step shows the quick improvement attained by the optimization process. 

Table 3.1 Design parameter (in mm) and cost function value (in dB) at each optimzation step for the 
E-Plane over a frequency band and uniform high order elements 

Step g(mm) C(dB) 
1 1 -14.30 

2 2.449 -24.85 

3 2.237 -28.64 

4 2.149 -30.60 

5 2.094 -30.43 

6 2.121 -31.54 

3.4.2 U-bend 

The second test case was the symmetric E-plane U-bend, described in detail in [53]. Four 

geometric parameters were selected as design parameters, as shown in Figure 3.7. Three 

of the geometric parameters control the mitering, while the fourth (g4) controls the 

distance between the arms of the bend. The operating frequency was selected to be 10-15 

GHz, within which the optimizer tried to reduce the reflection at either port, using the 

cost function and gradient definitions given by (3.33)-(3.34). 
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Figure 3.6 The function c for the E-plane miter bend for six successive optimization steps 

2g3 

Figure 3.7 An E-plane U-bend with four design parameters. a=5 mm, 6=19.05mm, /=10mm; {g} 

{11.0,15.0,3.7,3.0}mm; Central analysis frequency=12.5 GHz; No. of tetrahedra = 600; [53] 
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The optimization is now in 4-dimensional space, and multiple line searches were required 

to reach the local optimum. The cost function reduction over the various line search 

stages is shown in Figure 3.8. It can be seen that the cost function value gets reduced by 

approximately 8dB in the first line search with eight CFEs, after which it reduces by 

about 4dB over 14 CFEs. The optimizer does not seem to be able to obtain any more 

improvements beyond this point. The spikes in the cost function value at the beginning of 

each line search in Figure 3.8 represent the line search bounding points. 
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Figure 3.8 Reduction in cost function value for the U-bend problem over 5 cubic line search 
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Table 3.2 gives a comparison of the initial design parameter values with those obtained at 

the end of line search step #1 and the final (line search #5) values. 
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Table 3.2 Design parameter values (in mm) at various steps of the optimization analysis for U-bend 

Initial Line Search 1 Final 

gl 

gl 

g) 

g4 

10.83 

15.09 

3.75 

3.16 

10.96 

15.03 

3.66 

3.08 

11.01 

15.05 

3.67 

3.04 

The change in the design parameter values is minimal, yet significant enough to attain a 

cost function reduction of close to 12 dB. It can be assumed that the return loss 

characteristic of the design is highly sensitive to the changes in all the design parameters. 

The plot in Figure 3.9 shows frequency response of the device over the various 

optimization steps. For clarity, only the initial curve, the curve at the end of the first line 

search and the curve from the final line search is shown. 

10 11 12 13 
Frequency (GHz) 

14 15 

Figure 3.9 Frequency response curves of the E-plane U-bend for the initial line search, and at the end 
of line searches #1 and #5 (final) 
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From this plot, the most dramatic change in the frequency response occurs after the first 

line search, where the optimizer has brought down the worst cost function value point in 

the band considerably. The final curve shows that the optimizer has achieved a balance 

between the two end points of the frequency range, from where presumably the cost 

function values (i.e., the worst points in the band as per the definition in (3.33)) were 

obtained. The optimizer may have 'tuned' the design parameters to position the 

resonance dip so as to balance the two end points. 

3.4.3 Waveguide impedance transformer 

The final test case problem is a waveguide transformer that connects a large cross-section 

rectangular waveguide to a smaller one, as shown in Figure 3.10. Ideally, there should be 

no reflections at either port. The performance of the device is governed by the geometry 

of the middle section, defined by three design parameters {a,b,l}. The objective is to 

minimize the reflection at port 1 (larger port: a\xb\), operating over the range 9.75GHz to 

10.25 GHz. The initial length of the middle section was selected to be a quarter 

wavelength at the center frequency (/o=10GHz), while the other two parameters were 

chosen to be the average of the corresponding end section values {{a\, b\) and {ai, b^)). 

Figure 3.10 Waveguide transformer. «I=24mm, 6i=8mm, a2=20min, 62=4mm, /i=10mm, /2=10mm, a = 

21.70 mm, b = 5.68 mm, / = 10.30 mm. Design parameter vector {g} = {a, b, 1}T; Analysis 

frequency=10GHz; No. of tetrahedral elements = 1286; [9] 
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The initial design configuration provides a decent performance with a return loss of -

25dB. However, the optimizer is able to fine tune the design and obtain a further 

reduction of 7dB. This fine tuning process over six cubic line search steps is given in 

Figure 3.11, where the cost function is shown to reduce at a steady pace. Just as was the 

case for the U-Bend problem, the sudden increase in the cost function values at the 

beginning of each line search is due to the line search interval bounding point analysis. 

5 7 9 
Number of cost function evaluations 

11 13 

Figure 3.11 Reduction in the cost function for the transformer example 

Table 3.3 shows the initial and final values of the design parameters for the transformer. 

The final values do not show much change from the initial ones, and yet fine-tuning by 

the optimizer manages to improve the device performance by 7dB over 6 line searches. 

Table 3.3 Initial and final design parameter values (in mm) for the waveguide transformer 

Initial Final 

8\ 
g2 

gl 

22.0 

6.0 

10.44 

21.66 

5.71 

10.3 
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Figure 3.12 Frequency response curves for the waveguide transformer at the end of the initial and 
final line searches, as well as line search #1. 

Figure 3.12 shows the frequency response curves of the transformer for the initial and 

final steps of the optimization analysis. The optimizer tries to fine-tune the device 

performance by positioning the resonance frequency point within the range to attain a 

balance between the end points of the range, where, based on the plots, the worst cost 

function values occur. By doing so, the optimizer also manages to improve the return-loss 

performance of the device throughout the operating frequency range, as the final design 

curve (in contrast to the initial curve) shows. 

3.5 Discussion 

Results in this chapter validate the use of a cost function and gradient defined over a 

frequency range in the optimization of 3D microwave problems. The Pade technique has 

been shown to be effective in obtaining the cost function and gradient values at any 

sample point in the desired band. Computing the sensitivities using the FE method 

inexpensively at the central frequency point is an added attraction when applying the 
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method to realistic 3D microwave problems. Special attention is also given to the mesh 

generation process, where modifications helped in maintaining cost function continuity 

along a line search. A special line search termination criterion based on the smoothness 

of the mesh generated is also used for the same purpose. 

The results are, however, based on the FE analysis using uniform high order 

tetrahedral elements. Although the results obtained are highly accurate, the computational 

costs are significant, and may not be desirable from a 3D design perspective, as the 

designer is always looking for ways to cut cost. Using an adaptive FE analysis scheme 

might result in relatively accurate results, but at much less computational cost. How this 

can be achieved using adaptive FE is demonstrated in the next chapter. 
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4. /^-Adaptive FE analysis using hierarchal elements 

Conducting 3D FE analysis using uniformly high-order elements produces results that are 

highly accurate, but computationally expensive, and usually unnecessary in the early 

stages of the optimization. Devising an FE scheme capable of assigning the degrees of 

freedom based on the error requirements at each optimization step and attaining the 

desired solution accuracy with the least number of degrees of freedom possible is clearly 

desirable. 

The accuracy of an FE solution is directly dependent on the number of free 

parameters used to represent the unknown field, and how effectively these parameters are 

distributed over the problem space. Adaptive FE analysis is a practical way of achieving 

this cost-efficient distribution, whereby an iterative process assigns the required number 

of DOFs throughout the mesh so as to obtain solutions with the desired accuracy. 

A critical part of the adaptive process is identifying the high error areas (due to 

inadequate discretization) within the finite element mesh, so that DOFs can be assigned 

to reduce the error in those regions and improve overall solution accuracy. There are a 

variety of error indication methods in the literature which are used in conjunction with 

adaptive schemes [54] -[57]. Adaptive techniques also require accurate error estimates of 

the global quantity in order to determine whether or not the iterative process has attained 

the desired solution accuracy [58]. The error indicator and the estimator work in tandem 

to help the adaptive analysis produce accurate field approximations in a computationally 

efficient manner. 

This chapter presents a new error indicator and a new error estimator for the p-

adaptive FE analysis of scattering parameters for 3D microwave devices, which, in turn, 

forms the engine that drives the combined optimization-FE analysis scheme. The 

hierarchal elements developed by Webb [51] that are used for the /^-adaptive analysis in 

this research are also presented, briefly, in this chapter. 
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4.1 FE adaptive schemes 

The use of adaptive techniques is widespread in FE when trying to obtain cost efficient 

field approximations [59]. There are four basic adaptive schemes: 

(a) /z-type adaption: In this model the refinement of the FE discretization involves 

increasing the number of elements in the mesh [60]. This method is particularly 

useful when dealing with mathematical singularities due to sharp material edges 

and corners, where a larger number of smaller elements are required close to the 

singularities, but fewer, larger elements will suffice further away [61]. 

(b) p-type adaption: The /^-adaptive model updates the discretization by increasing 

the polynomial order of the basis functions while holding the element sizes 

constant. This avoids the cost of re-meshing associated with the ^-adaption model, 

resulting in computational cost savings, especially for 3D problems [62], [63]. 

The p-type scheme is also known to have specific advantages when applied to 

high frequency problems, where it is able to capture the considerable wave-like 

variations of fields in homogeneous regions away from singularities in microwave 

and optical devices effectively, without the help of a highly refined mesh [54], 

[64]. 

(c) hp-type adaption: The combined h- and p-type adaption method tries to exploit 

the advantages of both models, reducing the element size in certain regions, while 

increasing the order of the elements in other parts of the mesh [65]. However, the 

implementation and control of a hybrid hp-type scheme is complex due to the 

subtleties related to the coupling of the h- and/7-type adaptive methods. There has 

been extensive research in finding systematic ways for properly implementing this 

powerful hybrid technique [66], [67]. 

(d) r-type adaption: The mesh refinement for this method is accomplished without 

adding any new DOFs to the FE mesh. The element vertices are repositioned in 

order to improve the accuracy of the computed solution [68]. This scheme is 

particularly useful for time-dependent problems. 
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For all adaptive techniques, the underlying procedure is the same, although different 

techniques are used for the mesh refinement stage of the adaptive loop. A rough outline 

for any adaptive analysis can be given as: 

1. Generate initial mesh. 

2. Solve the problem using the FE method. 

3. Check for solution accuracy; if adequate, stop adaption. 

Otherwise 

4. Identify regions of high solution error. 

5. Refine discretization by distributing additional degrees of freedom where 

necessary. 

6. Go to 2. 

Two important components for this scheme are error indication and error 

estimation. A clear distinction on the role of the indicator and the estimator in adaptive 

FE analysis was made in [69], where the indicator was defined as providing an 

assessment, or ranking, of the error in a given element relative to other elements in the 

mesh (step 4), while the estimator provides an accurate estimate of the error in a quantity 

of interest for the overall mesh (step 3). 

For this thesis, the /^-adaptive method is used for the FE analysis. The hierarchal 

elements developed in [51] for 3D microwave problems were utilized for the 

implementation of the adaptive method. After a brief description of the hierarchal 

elements, the rest of the chapter deals with the theory and implementation details of the 

novel error indicator and error estimator schemes formulated specifically for the p-

adaptive analysis of the scattering parameters from 3D microwave problems. 

4.2 Hierarchal tetrahedral elements 

High order polynomial basis functions for general electromagnetics are well established 

for 3D FE analysis [39]. Standard Lagrangian elements require that same-order basis 

functions be used over the entire mesh to ensure continuity of the FE solution [70]. This 

requires turning up the order of all the elements in the mesh simultaneously for the p-
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adaptive scheme. However, this can be computationally expensive, as a uniform element 

order increase introduces a very large number of DOFs, especially for 3D problems. A 

more efficient way would be to increase the order of the elements selectively in areas 

with higher solution error, resulting in a mixed order mesh. Hierarchal elements can 

accommodate this, while maintaining the continuity of the computed solution. 

Hierarchal elements have been used extensively in FE since they were first 

proposed by Zienkiewiscz et al. [71], and have found wide application in both low 

frequency and high frequency electromagnetics [54], [72]. In hierarchal elements, the 

basis functions of an element are a subset of the basis functions of any element of higher 

order, so that elements that share a common edge or face end up having a common set of 

basis functions on that edge or face. The field solution continuity is ensured by locally 

matching the coefficients of the basis functions at edges and faces of neighboring 

elements [73]. 

For 3D electromagnetic wave problems, tetrahedral tangential vector finite 

elements (also known as edge elements) impose continuity of the tangential component 

of the field between adjacent elements, while leaving the normal component 

unconstrained. This relaxation of the normal component continuity has a number of 

advantages: it plays an important part of addressing the problem of spurious solutions 

(numerical solutions that are an approximation of a non-physical solution) in FE analysis, 

it helps in enforcing the correct boundary and interface conditions, and it improves the 

field modeling around singularities [74], [75]. 

In order to be able to apply /^-adaptive FE analysis, edge elements of several 

orders are needed. The work in [51] provides general expressions from which any order 

of element can be obtained in a systematic way. The basis functions that define the 

elements are partially orthogonalized to increase their degree of linear independence and 

to improve the conditioning of the system matrix which, in turn, helps improve the 

efficiency of the matrix solver. The elements have two polynomial orders, one for the 

gradient subspace, Gm (comprised of curl-free functions), and one for the rotational 

subspace, Rn. Each element has basis functions that span a space Gm+Rn, where m is the 

order for the gradient subspace and n is the order for the rotational subspace. Following 

this notation, the element order can be denoted as (m,n). Basis functions for element 
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orders (0,1), (1,2) and (2,3) have been generated, with order (0,1) being the Whitney edge 

element with one degree of freedom per edge [51]. For brevity, the (0,1), (1,2) and (2,3) 

orders will be denoted as Orders 1,2 and 3, respectively, from this point onwards in this 

thesis. 

4.3 Error indication 

The objective of any FE adaptive scheme is to obtain a solution of desired accuracy with 

the least computational cost. Error indicators assist the adaptive method in the selective 

refinement of the FE mesh by targeting the high error areas to improve the accuracy of 

the solution in a more computationally efficient manner. Several error indicators have 

been presented for the FE analysis of electromagnetic problems in the literature [76]-[81]. 

Although the indicators described in these papers were proven to be effective in guiding 

the adaptive analysis, they were designed to improve the accuracy of the electric fields or 

magnetic fields as quickly as possible. From a design perspective, the quantities of 

interest do not necessarily have to be the fields themselves, but rather quantities that 

better characterize the behavior of the microwave component, for example, scattering 

parameters. In addition, since a cost function defined in terms of the scattering 

parameters of a microwave device is better suited for design optimization purposes (as 

was done in Chapter 3), an indicator that targets these parameters would be conducive to 

the overall efficiency of the optimization. 

Targeted, or goal-oriented error indicators, where the elements are chosen for 

refinement based on their contribution to a specified global quantity, have been shown to 

be more effective than general, field-based error indicators in many cases. The targeted 

error indictors are sensitive to the desired global quantity, and focus on areas in the FE 

mesh that will improve the accuracy of that quantity. In [82], a general framework for 

targeted error indicators was outlined, and was applied to two-dimensional (2D) low 

frequency electromagnetic problems, where it was shown to be more effective than the 

general indicators. More recently, work done by Sun et al [83] saw the application of a 

goal-oriented error indicator targeting the scattering parameters in a 3D A-adaptive 

analysis scheme. The approach taken was to first obtain an estimate of the field error in 

the element, and then use it to estimate the element's contribution to the error in S\\. 
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Using the hierarchal elements and /^-adaption, a more direct approach to error 

indication for scattering parameters can be pursued. An error indicator technique outlined 

in [84], denoted as Scheme 1, involves setting the coefficients of the highest order basis 

functions to zero at a given adaptive step, and then re-calculating the contribution of the 

element to Su, with the indicator being the resulting change in S\\. However, an 

improved scheme, denoted as Scheme 2, where the indicator added basis functions of the 

next highest order (instead of subtracting) to find the element's contribution to the error 

in Su, was also outlined and shown to be more effective than Scheme 1 [82]. This thesis 

uses the idea from Scheme 2 to formulate a 'forward-looking' error indicator that targets 

the scattering parameters of 3D microwave problems. 

For the finite element problem built using the hierarchal elements from [51], two 

error indicators become necessary: one representing the gradient part of the field (sgrad), 

and the other for the rotational component (srod- Thus, for each element at each adaptive 

step the Scheme 2 error indicator is applied twice, with the total error indicator for that 

element represented by the sum of the two parts: 

£ = £ +£ (4.1) 

Using the indicator values, all the tetrahedral elements in the mesh are ranked, with the 

high error elements being at the top of the list. The top a% of the elements are then 

chosen for refinement [83], where a is a pre-determined value. 

4.3.1 A targeted error indicator for scattering parameters 

The electric field, E (? ) , that results when a wave is incident at port q when all other ports 

are matched, can be computed by solving the following discrete problem: 

a(E (9 ) ,w) = 6(</)(w) (4.2) 

for all the weight functions w on the same finite element mesh, and where a and b are the 

bilinear and linear forms, respectively, explained in Section 3.2.2.2. The scattering 

parameters, which are a function of the field, can be expressed as (similar to (3.12)): 
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Sw =*<»(£<«)-*„ (4-3) 

An error indicator ASpq for an element can be found by taking the difference: 

ASpq=\b{p)(E^)-bip)(E('1))\ (4.4) 

where E^ is the new electric field obtained by increasing the element order and re

solving it, which also happens to be a linear combination of the basis functions. Since the 

elements are hierarchal, it can be split into two parts: one part comprised of the original 

basis functions, and the other due to the newly added ones, and can be represented as 

follows: 

E<?) = E ( , ) + A E ( , ) <4-5) 

where E is the electric field due to the original basis functions, and AE(9) is the part 

arising from the additional DOFs. 

Substituting this back into (4.4), the following expression for the error indicator is 

obtained: 

A ^ = £
(P)(AE (? )) + 6 ( P )(E ( ? )-E ( , ? ))i (4.6) 

Although an approximate expression for the error indicator in terms of AE(?) can be 

obtained by discarding the second term in (4.6), it is possible to come up with a form for 

the second term that will be exact in terms of AE , by introducing the original field E ^ 

as follows: 

b(P)(go?) _E<«>) = a(E
(p),E(<?) -E ( 9 ) ) 

= a(E(p) ,E^} -E(<?) - AE(</)) 

=-a(E{p), AE(<?))+a(0f, Eip)) -a(E(?), E{p)) 

= -a(Eip), AE(9))+biq) (E(p) )-b(q) (Eip)) 

= -a(E(p),AE(*)) (4.7) 
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The expression for (4.6) subsequently becomes: 

AS = 
PI 

Z/p)(AEw)-a(E(rt,AE(?))| (4.8) 

A new linear form that characterizes this change in the field can be defined as: 

c{p) (AE(<?)) = b(p) (AE(?)) - a(Eip), AE(?)) (4.9) 

Then, the error indicator expression becomes: 

AS 
PI 

c ^ A E ^ ) ! (4.10) 

The advantage of the expression in (4.8) is that it is still exact, and yet depends only on 

the degrees of freedom added when the element order is increased, not onE(<?). 

4.3.1.1 Approximating the error indicator 

The field E^' satisfies the equation: 

a ( E ^ , w J = 6 (? )(wJ C4-11) 

for all weight functions we on the mesh that has the order of element e increased. If the 

expression in (4.8) is used as the error indicator, it becomes necessary to find Eg?)to 

obtain AE<?), and solving (4.11) to obtain the exact field is much too expensive. Hence, 

an approximation toE^} is used, and is given as: 

E(?) S £ ( < ? ) + A E (?) (4.12) 

where E is exactly the field obtained before the order was increased, and AE<<?> is a 

linear combination of the new basis functions added, i.e., an approximation to AE(?) 
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from (4.8). To findAE(9), (4.12) is substituted into (4.11), and required to hold for all 

weight functions Aw that are linear combinations of the new basis functions. This results 

in the expression: 

a(AE(<?),Aw) = c(9)(Aw) (4-13) 

which is essentially (4.11) with the old degrees of freedom frozen (i.e., unchanged). 

Equation (4.13) is a small problem involving only element e and its neighbors, and is 

very cheap to solve. 

This leads to an expression for the Scheme 2 error indicator as follows: 

AS 
PI 

:{p)(AEiq))\ (4.14) 

The expression in (4.14) provides a close approximation to the exact error indicator given 

by (4.8). The advantage of this formulation is that it is independent of changes in the 

original degrees of freedom; any inaccuracy in the approximation is dependent only on 

the inaccuracy in the highest order coefficients of the element. This results in a relatively 

accurate yet inexpensive method to calculate AE{q) , considering just one element at a 

time and solving a local problem. 

4.3.1.2 Implementation 

The implementation of the error indicator given by (4.14) is fairly simple. Once the 

global matrix [A] and right hand side vector {b} is built with elements one order higher, 

they are partitioned in to parts that are related to the original basis function and the parts 

related to the new basis functions as follows: 

U] = 
A, 

A 
A, 

; M-\b?\ 
(4.15) 

From this and the solution vectors {£^?)}, the column vector {c(
2
p) {associated with the 

linear form c w in (4.9) can be constructed as follows: 
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{c^}={b^}-UAE"}} (4.16) 

To obtain the approximation to the error indicator as given by (4.14) for each element e, 

the following procedure is used: a submatrix [̂ 22e] and subvectors {c^j are found, 

corresponding to the new basis functions for just this element. To find the field due to the 

new basis functions, AE(<?), the following expression is evaluated: 

This expression is essentially (4.13) written in matrix form. Once AE(?) is obtained, the 

approximation to the error indicator given by (4.14) can be found as follows: 

AS
P« fcrrM (4.18) 

where the superscript T denotes the transpose. 

4.3.2 Error indicator results 

The new Scheme 2 error indicator was tested on a number of 3D microwave problems, 

and compared to the Scheme 1 indicator mentioned previously. For the adaptive FE 

analysis, the hierarchal, vector tetrahedral elements outlined in Section 4.2 were utilized. 

The return loss (201ogio|5,n|) was targeted for all the test cases. At each adaptive step, the 

error indicator was used to determine the error level in each element with respect to the 

targeted parameter, and the top 25% of the elements were chosen for refinement. The 

difference between the resulting return loss value (the 'adaptive result') and the return 

loss value obtained with all elements set to Order 3 (the 'reference result') was 

designated as the overall return loss error for each scheme, and plotted against the 

cumulative computational cost. The return loss value obtained with uniform Order 3 
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elements was presumed to be the most accurate for the given mesh, and hence used as the 

reference. 

The cumulative cost was obtained by adding the costs of the current and all 

preceding adaptive steps, with the cost per step being the number of floating point 

operations (FLOPs) needed to solve the global matrix using a pre-conditioned conjugate 

gradient solver. The cost at each step is computed using the number of non-zero elements 

in the sparse global matrix, and the number of steps the pre-conditioned solver takes to 

solve the matrix system. Although this does not account for the total computational effort 

required at each analysis point, it provides a good representation of the total cost. 

A U-bend rectangular waveguide, a waveguide transformer and a two-cavity iris 

filter were selected as test cases for the Scheme 2 error indicator. The change in the 

return loss error values were tracked for both Scheme 1 and Scheme 2 indicators over 

several adaptive steps, and plotted. The results were reported in [85]. 

4.3.2.1 U-bend 

The first device is an E-plane U-bend shown in Figure 3.7. The design parameter values 

are given by {g}T = {10.659,14.826,3.961,3.048}mm, and the number of tetrahedral 

elements in the mesh is 1471. The separation between the arms (controlled by g^) and the 

miter bend angle (controlled by gj, g2 and gj) influence the performance of the device. 

The operating frequency range is 10-15 GHz. The same mesh was used for both Scheme 

1 and Scheme 2 analysis. 

The frequency response of the device using the three uniform element orders 

(Orders 1, 2 and 3) are given in Figure 4.1. Although the adaptive analysis is done only at 

a single frequency point, the response curves illustrate the changes in the overall 

frequency range performance of the device as the mesh becomes more refined. From the 

figure it is obvious that for Order 1 the device is under-discretized, while Order 2 and 3 

provide more accurate responses, with Order 3 presumed to be the most accurate. 

The adaptive frequency is selected at 12.5 GHz, and the results of the adaption 

using both error indicator schemes are shown in Figure 4.2. Although neither one gives a 

monotonic decrease in the error, Scheme 2 manages to give significantly lower error than 
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Scheme 1 for the same computational cost. The under-discretization due to low order 

elements seems to affect the performance of the Scheme 1 indicator, with the error values 

rising considerably in the early stages before being reduced to 0, even though both 

Scheme 1 and 2 start off with similar error values. 

- 1 0 T 1 

10 11 12 13 14 15 

Frequency (GHz) 

Figure 4.1 Return loss at either port of the U-bend for three uniform orders, as a function of 
frequency 

4.3.2.2 Waveguide impedance transformer 

The second example is the waveguide impedance transformer shown in Figure 3.10, with 

an operating frequency range of 9.75 GHz-10.25 GHz. The performance of the device is 

controlled by the dimensions of the middle section (a, b, I). The return loss at the larger 

port (Port 1: a\xb\) is targeted for the analysis. A fairly refined mesh with 1274 

tetrahedral elements is used for the analysis. Figure 4.3 shows the frequency response 

obtained for the given design configuration using the three uniform orders. 
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Figure 4.2 Return loss error at either port of the U-bend, for two adaptive schemes. Adaptive 
frequency=12.5 GHz, No. of tetrahedra=1471 
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Figure 4.3 Return loss at the larger port {at x bx) of the waveguide transformer 
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Although the plots for Orders 2 and 3 are similar, the Order 1 curve shows 

significant error. The adaptive frequency is selected as 10GHz, and the error reduction by 

the adaptive analysis is shown in Figure 4.4. The considerable error in the FE solution 

due to the under-refinement by using uniform Order 1 elements is evident in Figure 4.4 as 

well, where the initial error for both schemes starts from a fairly high value of 

approximately 16 dB, but is quickly reduced in subsequent adaptive steps. The analysis 

using Scheme 2 is able to bring the error values down close to zero within four-five 

adaptive steps: approximately half of what Scheme 1 required. 

18 

-e—Schemel 

-•— Scheme2 
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Cumulative Cost (millions of flops) 

300 

Figure 4.4 Return Loss Error for the larger port («j x b\) of a waveguide transformer for two 
adaptive schemes. Adaptive frequency=10 GHz; No. of tetrahedra = 1274. 

4.3.2.3 Two-cavity iris filter 

The final test case for the error indicator is the two-cavity iris filter shown in Figure 4.5. 

The performance of the device is controlled by the cavity lengths between irises as well 

as the iris window dimensions and positioning. The dimensional details are given in [86]. 

A well-refined mesh of 3767 tetrahedral elements is used for the analysis in order to 

properly model this complex device. The computed frequency response of the device for 
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g6 

Figure 4.5 Two-cavity iris filter in rectangular waveguide. All metal surfaces are approximated with 
a PEC boundary condition; {g}T = {3.0, 5.0, 2.47, 0.5, 2.133, 2.45, 12.155} mm; Adaptive analysis 
frequency = 14.6 GHz; No. of tetrahedra = 3767. [86] 
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Figure 4.6 Return loss for the two-cavity iris filter at either port 
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the given design configuration using the three uniform orders is shown in Figure 4.6. 

Although the Order 1 curve is slightly removed from the other two response curves, the 

frequency shift between the Order 2 and 3 responses is less than 0.1 GHz, which is 

indicative of high degree of convergence. 

Figure 4.7 shows the return loss error reduction by the adaptive analysis for both 

error indicators. Both methods manage to reduce the error considerably, although Scheme 

2 does so much more quickly: the error value is reduced to 1 dB by Scheme 2 at 

approximately half the cost required by Scheme 1, which is also evident from the plot. 
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Figure 4.7 Return Loss error for the filter, for two adaptive schemes. Adaptive frequency=14.6 GHz, 
No. of tetrahedra=3767 

• 

Based on the three test cases used here to illustrate the new targeted error indicator, it is 

clear that Scheme 2 is able to outperform the Scheme 1 approach on a consistent basis. 

For all three test cases, of varying complexity, from the simple U-bend to the complicated 

two-cavity filter, the Scheme 2 adaptive analysis is able to reduce the error levels in the 

return loss significantly at low computational costs. This establishes the effectiveness of 

the new forward-looking error indicator for the changing scattering parameter values. 
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4.4 Error Estimation 

An accurate error estimate for the quantity of interest is critical in determining the 

appropriate termination point of the adaptive process. While the error indicator discussed 

in the previous section evaluates the error on a relative basis, the error estimator gives an 

assessment of the overall accuracy of the solution obtained from the refined mesh, 

determining whether the required accuracy has been attained or not [58]. The estimator 

needs to compute an error that is not too different from the actual error in order to prevent 

the adaptive process from terminating prematurely (which would give inaccurate 

solutions), or allowing it to go further than required (resulting in higher computational 

costs). A brief survey of a-posteriori error estimators used in the finite element analysis 

has been provided in [87], [88]. 

For gradient based optimization techniques, the availability of accurate sensitivity 

values is critical to the optimization. These sensitivity values, which are computed from 

the field solution of the FE analysis, are subject to discretization error. Hence a method to 

compute accurate a-posteriori error estimates targeting design sensitivities is crucial for 

the design optimization method outlined in this thesis. 

There has been relatively little published on error estimation for global quantities 

extracted from FE solutions, and almost nothing on sensitivity errors. Previous work in 

this area have produced estimation schemes that provide a relative measure of the error 

for each finite element, similar to the error indicators defined in this thesis, for example 

[80], [89],[90]. However they all fail to give an absolute measure of the error in the 

quantity of interest. An alternative is to use dual or complementary analyses, where the 

error is the difference between two solutions of the same global quantity obtained from 

problems of roughly the same size [91], [92]. 

In [93], a more targeted formulation for estimating errors in quantities of interest 

using measures other than the energy norm was proposed. Another such approach for 

estimating scattering parameter sensitivity errors for microwave devices was formulated 

in [94]. However, this approach lacked a strong theoretical foundation, and it was 

dependent on the number and placement of internal nodes in the FE mesh. 
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In more recent work, a general approach to calculating error estimates for 

functionals of the field using adjoint solutions, known as the Dual Weighted Residual 

(DWR) method, was proposed [95]. The same work also provided a survey of error 

estimators for specific quantities of interest using the duality principle. The DWR method 

was applied to estimate errors in scattering parameters in [96], and to some non-linear 

electrostatic quantities (force, capacitance) in [97]. For this thesis, the theory was 

extended to calculate the error estimates of the scattering parameter sensitivities. 

4.4.2 Error Estimator theory 

The general theory for estimating the error in the design sensitivities is presented first, 

followed by the modifications made for calculating the error in scattering parameter 

sensitivities. 

Suppose that an unknown field E can be found using the FE analysis with the 

following equation: 

«(E,w) = £(w) V w e i / (4.19) 

where a is the bilinear form, b is a linear functional and H is the space spanned by the FE 

basis functions. Suppose G(E) is a quantity of interest, a functional of the field, e.g. a 

scattering parameter. The sensitivity of G can be obtained inexpensively, once the adjoint 

solution Ea is found by solving: 

a(Ea,w) = SG(E;w) VweH (4.20) 

where SG(E;w)is the first variation of G. Using the adjoint solution Efl, and the FE 

solution E, the expression for the sensitivity of G with respect to any design parameter g 

is given as: 

dG 

dg 
FE 

£ ( K , E . ) = f £ ( E ) + £ ( E . ) - f i < E . E . ) ( 4 . 2 1 ) 

dg dg dg dg v ' 

62 



^fe The first step to obtain an error estimate is to see how much E would change when the 

^ ^ polynomial order of all hierarchal FEs are increased by one. Part of the change, AE, is 

due to the new basis functions added and can be obtained approximately by solving the 

following linear equation: 

a(AE,Aw) = Z>(Aw)-a(E,Aw) (4-22) 

for all Aw that are linear combinations of the new basis functions added. The underlying 

concept here is similar to what was presented in the error indicator section, with (4.22) 

being similar to (4.13), where the formulation targeted the change in the field for a single 

element. The linear system in (4.22) can be solved inexpensively by ignoring off-

diagonal entries in the matrix corresponding to the left hand side. The estimate AE can 

be further improved by adding to it a field e in H, found by solving: 

a(e,w) = -a(AE,w) Vwe H (4.23) 

Adding the field e removes any component from AE that lies in the space H that is 

spanned by the original basis functions, thus improving the accuracy of the estimate. This 

calculation needs to be done only once, as was shown in [97], regardless of the number of 

design parameters. 

A similar approach is used to find the corresponding quantities AEa and ea for the 

adjoint solution, resulting in expressions similar to (4.22) and (4.23). The expression for 

the approximate change in the adjoint solution can be written as: 

a(AEa, Aw) = SG(E + e + AE; Aw) -a(Ea, Aw) (4.24) 

and the field ea in H is obtained as the solution to: 

a(e ,w) = dV(E + e + AE;w)-SG(E;w)-a(AE0,w) (4-25) 

t 
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An improved value of the design sensitivity value can be obtained as: 

dG 

dg 
improved *-* 

(E + e + A E , E a + e a + A E a ) (4.26) 

The error estimate for the design sensitivity value is then the difference between the 

improved value and the original sensitivity value: 

AG = dG 

dg 
improved 

dG 

dg 
(4.27) 

The computational effort required to find the error estimate values is associated with 

computing the field values e and ea, and is about the same as that required to find the 

sensitivity itself using the adjoint. However, the advantage is that these steps are 

independent of the number of geometric parameters. A direct application of the DWR 

method outlined in [95] would have required the computation of a different adjoint 

solution for each design parameter. The alternative scheme presented in [97] avoids the 

use of the adjoint solution, and is used here to calculate the values for e and ea. 

The general theory presented above can now be applied to the specific case of the 

scattering parameters Spq of an TV-port microwave device obtained from E(<?), the electric 

field when port q is excited with all the other ports matched and given by (4.3). The 

quantity of interest for the error estimation formulation used here becomes: 

G:=Spg=b^(E^)-Spq <4-28) 

Let the field components AEand e coming from E(?) be denoted AE and e(q\ 

respectively. Then using (4.28), it can be shown that the corresponding quantities for the 

adjoint solution are just those that come from E^ , i.e., 

E a = E w ; AE a =AE ( P ) ; efl =e ( p ) (4.29) 

This results in a situation where once the values of E, AEand the correction value e are 

computed, the calculations for the corresponding adjoint components can be avoided, 

resulting in further computational savings. 
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4.4.3 Error estimation results 

The effectiveness of the new error estimation theory was tested on three 3D microwave 

devices. The new estimator was combined with the Scheme 2 error indicator, outlined 

earlier in this chapter, to form a true /^-adaptive scheme. The analysis was run for 10 

adaptive steps for each of the examples. At each adaptive step, 25% of the elements with 

the highest error (as per the Scheme 2 indicator) were refined. The resulting mesh was 

used to find the scattering parameter values and their sensitivities, as well as the error 

estimates. These estimates were compared to the 'true error' values, which were obtained 

by taking the difference between the FE analysis results for a given adaptive step, and a 

converged, reference value. The reference value was the sensitivity value obtained by 

using the highest element order possible of the hierarchal basis functions (Order 3 for the 

current case) and a very fine mesh. 

A two-cavity band-pass filter, a waveguide transformer and a magic-T were used 

to test the new error estimation formulation. The results were reported in [98]. 

4.4.3.1 Two-cavity iris filter 

The first test case is the two-cavity filter shown in Figure 4.5, with all the design 

parameters indicated in the figure. The reflection coefficient S\\, measured at either port 

(due to symmetry) was targeted. The performance is governed by the seven geometric 

parameters that control the length of the two cavities, as well as the length and width of 

the iris windows. The iris thickness is fixed, as well as the waveguide width and height. 

The error estimates for the sensitivities of G=Si \ were found with respect to all the design 

parameters and compared to the true value. The estimated error and the true error are 

given by: 

IAGI 
Estimated = -.—! ! — r x 100% (4.29) 

\(dG/dg)ref\ 

T m eJ(^) f £-(^g), | 
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Here (dG/dg)ref is the reference value, (dG/dg)FE is the value obtained at a given 

adaptive step, and AG is the error estimate given by (4.27). A fairly refined mesh with 

3821 tetrahedral elements was used for the adaptive analysis. The converged values for 

the reference were obtained using a mesh with approximately 16,000 uniform Order 3 

elements. 

The graphs of the estimated error plotted against the true error for the sensitivity 

with respect to design parameter g5 is shown in Figure 4.8. Each square marker 

corresponds to one adaptive solution in the FE analysis. The square at the top right 

represents the solution obtained with all the elements set to Order 1, and as the adaption 

progresses, some elements are increased in order, which results in a decrease in the error. 

True Error (% ) 

Figure 4.8 Error in the sensitivity of S u with respect to paramete r^ shown in Figure 4.5. Adaptive 
frequency = 15GHz; No. of tetrahedra=3821 

• 
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t The above plot shows that the estimator is able to give good estimates of the errors over a 

wide range spanning several adaptive steps, and within a 2-to-l ratio factor (represented 

by the dashed diagonal lines) with respect to the true error. In the late stages of the 

analysis, the estimator tends to over-estimate the error values, with ratio values greater 

than one. From an adaptive analysis perspective, slight over-estimation of the error value 

might be preferred, as under-estimating the error could result in the analysis being 

terminated prematurely, and consequently, less accurate solutions. 

The next plot in Figure 4.9 shows the error estimate for the sensitivity values with 

respect to the critical design parameter gi. This parameter controls the cavity length of 

both cavities of the filter, and to which the device performance is highly sensitive. The 

length of both cavities is controlled by the same design parameter, thus maintaining the 

overall symmetry of the device. 

10000 

• 

0.1 10 100 
True Error (%) 

1000 10000 

• 

Figure 4.9 Error in sensitivity with respect to g1 shown in Figure 4.5. Adaptive frequency=15GHz, No. 
of tetrahedra=3821 
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The plot demonstrates the error estimator's ability to produce sensitivity error estimates 

reasonably close to the true error at various stages of the adaptive analysis: most values 

are more or less within the 2-to-l ratio band shown in the figure, with the exception of 

the value at the 5th adaptive step. As the adaption progresses beyond this point, the 

estimated-to-true error value ratios converge to between 1-10%, which is acceptable. The 

point that corresponds to the 5th adaptive step that shows drastic over-estimation could be 

a spurious point during the analysis. Beyond this point, the analysis is able to bring the 

error ratios close to the band, with over-estimation by a factor of approximately two. 

At a given adaptive step, the analysis provides the error estimates for all 7 

sensitivities, and Figure 4.10 shows the estimate values compared with the true error 

values. Each diamond-shaped marker represents the estimate-to-true value ratio for each 

geometric parameter obtained from one analysis point (the fifth adaptive step). The plot 

demonstrates the wide range of errors: while most of the sensitivity errors are less than 

10%, there are two sensitivities with substantial error. This illustrates the critical role of 

the error estimator in identifying the sensitivities which have yet to attain acceptable 

accuracy levels, and hence unsuited to be passed on to the optimizer. 

Another convenient way of interpreting the estimator results for each adaptive 

step is to look at the sensitivity vector {s}, defined by: 

{s}:={dG/dgl,dG/dg2,...dG/dgn}
T (4.31) 

where n is the total number of design parameters. 

The corresponding vector for the estimated errors is given as: 

{A~s}:={AGi,AG2,...AGn}T (4.32) 

At each adaptive step, the estimated and true errors can then be defined using the infinity 

norms of the vectors as follows: 

Estimated 
{As}| 

•xl00% (4.33) 
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Figure 4.10 Error in the sensitivity of Sn to each of the 7 geometric parameters shown in Figure 4.5. 
Each point corresponds to one parameter, and all points are for one analysis, at 15 GHz. No. of 
tetrahedra=3821 

True = J!—^ ^ ^ x 100% 
N*IL (4.34) 

Thus for each step, this error estimator formulation tries to characterize the sensitivity 

error using the worst value for a given error vector, and the adaptive scheme tries to 

attain the desired solution accuracy by reducing these values. 

The results obtained from the adaptive scheme applied to the next two examples 

use (4.33) and (4.34) as the estimated and true error values. 
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4.4.3.2 Waveguide transformer 

The next test case is the waveguide transformer shown in Figure 3.10. The return loss at 

the larger port was targeted, and the 25% adaptive scheme was used for mesh refinement. 

A relatively coarse mesh with 229 elements was used for the adaptive analysis, while the 

reference values were obtained using a mesh with approximately 7000 tetrahedra and 

uniform Order 3 elements. The resulting plot is shown in Figure 4.11. 

100 -r 7 -* 

0.1 1 10 100 
True Error (% ) 

Figure 4.11 Error in the sensitivity vector for the waveguide transformer during adaptive analysis. 
Adaptive frequency=10GHz, No. of tetrahedra=229 

Each marker indicates the ratio values between the estimated and true error values 

obtained using the formulation given by (4.33)-(4.34) at each adaptive step. The adaptive 

scheme is able to bring down the true error from around 100% to as low as approximately 

1%. The estimator is able to produce error estimates acceptably close to the true error 

values, with all the points falling within the 2-to-l ratio band. Although the results show 

under-estimation towards the end, these happen for estimated error values less than 5%. 
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4.4.3.3 Magic-T 

The final example is a compensated magic-T shown in Figure 4.12; dimensional details 

are given in [4]. A function G which measures how well the device is matched at two 

ports was used for the sensitivity error calculations. The function is: 

G-\S l2 + l<? I2 (4-35) 
1 7 - Pll| +P44| V ' 

To find the sensitivities, (4.35) was directly differentiated with respect to the design 

parameters, and then the regular FE and improved values for Su, dSn/dg , S44 and 

dS4Jdg were used to compute the error estimate given by (4.26). 

Figure 4.12 Compensated Magic-T. AH four waveguide ports are 25.4x12.7mm. {g}T ={9.8125, 12.7, 
1.5875, 3.556, 8.382, 0.7939} mm; [4]. 

The performance of the device is dependent on the positioning and dimensions of the post 

and the iris, which in turn, are controlled by the 7 geometric parameters indicated in the 

figure. The sensitivity values with respect to all the design parameters and their error 

estimates were calculated for the adaptive analysis. The reference value for the true error 

calculation was obtained by using a very fine mesh with approximately 20,000 
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tetrahedral elements, while the regular FE adaptive analysis was done with a mesh of 

9250 elements. The resulting plot over eight adaptive steps is given in Figure 4.13. 

1 10 100 1000 
True Error (%) 

Figure 4.13 Error in the sensitivity vector for the magic-T obtained using adaptive analysis. Analysis 
frequency=9 GHz. No. of tetrahedra=9249 

The graph again demonstrates the estimator's ability to produce error estimates close 

enough to the true value throughout the analysis, with all the values lying within the 2-to-

1 ratio band. The estimator is able to produce accurate estimates even in the early stages 

of the analysis where low order elements are used. As the analysis progresses, the 

estimator is able to produce more accurate estimates (compared to the true error values), 

coming closer to the unity-ratio line. The final stages also show the analysis over

estimating the error values. As was explained for the filter example, this is preferred in 

order to ensure the accuracy of the final gradient values that will be used by the optimizer. 
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4.5 Discussion 

The results shown in this chapter prove the effectiveness of the new error indicator and 

estimator schemes devised for the /(-adaptive analysis of 3D microwave problems. The 

targeted, forward-looking indicator scheme is able to reduce the scattering parameter 

errors cheaply, while the new estimator is able to produce error estimates for the 

gradients within acceptable levels consistently, at different stages of the /^-adaptive 

analysis that uses the Scheme 2 indicator to guide the refinement. 

The combination of the error indicator with the estimator forms the /^-adaptive 

analysis that is used for the cost function evaluation module in the optimization process. 

The efficiency of the overall optimization process is very much dependent on the 

efficiency with which the CFE module produces results that satisfy the accuracy 

requirements set by the optimizer. The next chapter investigates how the /(-adaptive 

method formulated in this chapter performs when linked with the optimizer in 

maintaining the efficiency of the optimization analysis. 
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5. Accuracy controlled optimization of 3D microwave devices 

Optimization problems that are solved analytically deal with cost functions that are 

"infinitely" accurate, and the accuracy of the cost function evaluation process is a non-

issue. On the other hand, for practical design optimization problems, the analysis usually 

needs to rely on numerical approximation techniques. For such cases the accuracy, as 

well as the computational cost to attain the desired accuracy, is a concern. 

Chapter 3 showed how direct optimization techniques can improve microwave 

device performance by using a cost function and its gradients based on scattering 

parameters computed using FE. The advantage of direct optimization methods in the 

context of this research is the relatively small number of analysis steps required to reach a 

local minimum. The FE analysis is able to produce the gradients in a computationally 

efficient manner at each optimization step as well. Combining the two features, the 

optimization scheme can produce significantly improved designs, provided a reasonable 

initial design configuration is available. 

Several researchers have combined numerical techniques (such as FEM, MoM, 

FDTD etc.) with gradient-based optimization schemes to improve microwave device 

performance [99]-[102], [42], [103]-[106]. The gradients in these cases were obtained 

relatively cheaply by avoiding extra solutions using adjoint techniques, thus making the 

optimization process cost efficient. Despite these gains, solution accuracy and the 

computational effort involved in the solution process itself at each analysis point warrants 

special attention for efficiency purposes, especially for 3D microwave problems. From a 

design optimization perspective, attaching a certain measure of confidence to the 

accuracy and numerical validity of the solution, while reducing the cost to find it, is 

clearly desirable. 

Conducting the numerical approximation at each optimization step using uniform 

high order finite elements (as was done in Chapter 3) is computationally expensive, due 

to the large number of degrees of freedom applied at each CFE. Even though the results 

obtained are very accurate, the high computational cost at each analysis step leads to 

cumulative costs that are prohibitive. However, the solution accuracy at various stages of 
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the optimization need not be fixed throughout: the accuracy required at the start of the 

optimization need not be as stringent as that when closer to the minimum [10]. If the 

optimizer can relay information regarding the required accuracy level to the FE analysis 

module for every analysis step, the computation can be performed to varying accuracy 

levels as the optimization progresses. This can result in considerable computational 

savings. 

Adaptive techniques help achieve these cost savings: the new error indicator and 

error estimator schemes outlined in Chapter 4 allow for the /^-adaptive FE analysis to 

compute the cost function and its gradients to a specified accuracy level for each analysis 

step. How this required accuracy level is set by the optimizer with the help of an 

'accuracy link' to control the computational costs of the FE analysis is the central idea of 

this thesis, and is further explored in this chapter. 

5.1 The accuracy link between the optimizer and the adaptive FE analysis 

The error estimator that is part of the /^-adaptive FE analysis module is the key 

component for the accuracy control mechanism: when the estimated error for the cost 

function gradient is below a certain level, the adaption (and consequently, the FE analysis) 

is terminated. The level is set by requiring the relative error in VC to be roughly constant 

throughout the optimization, satisfying the condition: 

errVC(k) „<? vcw 

where /? is a pre-specified scalar value that determines the accuracy level, and k 

represents the latest point in design space. Since the cost function gradient tends to zero 

at the local minimum, this expression will automatically increase the accuracy 

requirement for the FE analysis as the optimization progresses. 

The FE analysis module tries to achieve the condition in (5.1) through/^-adaption. 

The increasing accuracy demands at each consecutive analysis step are met with an 

increase in the number of DOFs to approximate the solution. The error indicator 

identifies the high error regions in the mesh for the efficient distribution of the additional 
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DOFs, and the error estimator gauges the accuracy of the resulting FE approximation to 

see if the required level was achieved. 

The P parameter in (5.1) represents the desired relative error level for the cost 

function gradient. Setting /? too small forces the adaption to use high element orders from 

the early stages of the analysis, which result in high computational costs. A large value of 

/? will result in low accuracy VC values, which will adversely affect the convergence of 

the optimization. Some experimentation showed that values in the range 0.1< /? <0.3 are 

satisfactory, and a value of /?=0.2 (which represents a relative error in VCwof 20%) was 

chosen as a good compromise. 

In order to optimize the performance of a given microwave device over a 

frequency range using the combined adaption-optimization scheme, certain modifications 

to (5.1) are necessary, as explained in the next section. 

5.1.1 Accuracy link formulation for a frequency range 

More often, the microwave designer is interested in the device performance over a 

frequency range rather than for a single frequency. In this case a cost function definition 

based on the scattering parameter behavior over the range is assumed. Chapter 3 showed 

how the response of a device at sample points over the frequency range can be obtained 

using the Pade approximation technique, by calculating the moments of the scattering 

parameter values and their sensitivities. How the general accuracy link can be modified 

for a frequency range scenario is demonstrated next. 

The cost function values and their gradients at each sample point are computed 

from the Pade approximation of the scattering parameter value at that point, as explained 

in Chapter 3. For example, c, = |5n|,- will be the cost function at the sample point /, 

obtained using the Pade approximation for Su at that point. Similarly, the cost function 

gradient vector with respect to the design parameters at the point is calculated 

asVCi=V\Su\r 

77 



Consequently, a typical definition for the cost function that represents the device 

performance over the range can be given as: 

C = £ C , (5-2) 
7 

and the cost function gradients as: 

i 

Based on the definitions of (5.2)-(5.3), the accuracy condition given by (5.1) needs to be 

adjusted for the frequency range scenario. Following (5.3), the error in the gradient can 

be given as: 

errVC = err-S Vc, 

= 2>rV C / (5-4) 
i 

The gradient error denoted on the right-hand side of (5.4) for a specific / is defined as 

follows: 

errVct =Vc,.| , - V c , L (5-5) 
' ' I ref ' IFE 

This exact error definition is applied to all the sampling points in the frequency band to 

evaluate (5.4). 

Applying the norms, the left-hand side of (5.4) can be bound using the triangle 

inequality [107] as follows: 

|errVC|L<X||errVc,.|L (5.6) 
i 

Direct use of (5.6) as a way of estimating the error would require the application of the 

Pade technique at each adaptive step of the FE analysis. This results in extra solutions to 

compute the high order moment values of the cost function and its gradients at each step, 

which is obviously computationally inefficient. It is preferable to conduct the adaptive 

analysis at one frequency and conduct the frequency sweep only once, after adaption has 

finished. 
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The following assumption regarding the error at each sample point is made: 

errVc,-

= z (5.7) 

where X is a constant value, holding for all / across the range at a given adaptive step. 

Introducing (5.7) into the expression in (5.6), the cost function gradient error 

value becomes: 

i 

= yY||Vc,|l 
i 

\errVc 

Vc 
—YIIVc 

(5.8) 

where Vca,errVca are the cost function gradient and the error in the gradient, 

respectively, computed at the adaption frequency. The error is approximated by the 

estimate given by (4.27). 

From (5.8), it follows that (5.1) will hold provided that: 

errVcik)\ 

Vc (*) 
-£Vc,w</?|VCw 

(5.9) 

The variable & represents the current design point of the optimization. Equation (5.9) can 

now be re-arranged to define the accuracy condition for the cost function gradient to be 

satisfied at each analysis point at the adaptive frequency: 

\\errVcik) I 

Vc w\ 
</3 

|vc(i)| 

(5.10) 
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A new term can be introduced to represent the ratio on the right-hand side: 

Ivcw 
r(k) __n 

ZK' 
(5.11) 

where 0 < Y() <1, due to the triangle inequality. 

The accuracy condition in (5.10) then becomes: 

errVc (k) 

Vcik) •<pr « (5.12) 

The strict evaluation of (5.12) would still require the application of Pade approximation 

at every adaptive step to calculate Tw . To avoid the extra cost, the ratio term T w is 

approximated by Tref. For example, Tref might simply be r(A>1) which is available from the 

previous CFE. That is, 

r = 
1 ref 

vc (*-l) 

YIN*-0 (5.13) 

This approximation holds the right-hand side of the accuracy condition in (5.12) constant 

throughout the adaptive analysis at a given design point. 

5.1.2 Implementation of the accuracy link 

Figure 3.2 illustrated how the steepest-descent method was implemented using the cubic 

line search algorithm for the optimization process. As shown, the three main stages of the 

optimizer use the FE analysis module to calculate the cost function and the gradients. The 

results in Chapter 3 were obtained non-adaptively using uniform Order 3 elements. 

Figure 5.1 shows the detailed illustration of the new optimization analysis technique with 

the new adaptive FE analysis module, whose accuracy requirements are controlled by the 

optimizer through the accuracy link. 
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From Figure 5.1, the initial design configuration is used for the pre-optimization 

analysis to obtain initial values of C and VC . The CFE for this step is conducted 

adaptively to satisfy the condition in (5.12), with Tref= 1. This value for Yref is used due 

to the lack of any previous cost function gradient information to properly evaluate (5.13). 

Although this represents the most 'relaxed' accuracy level required of the adaptive 

analysis, i.e. the accuracy requirement is not as stringent as for a value Yref < 1 (which 

will be the case for the subsequent analysis steps), it is still within acceptable levels. 

Not only does the gradient value from the pre-optimization analysis become the 

initial search direction vector for the line search algorithm, but it is also used for 

computing the initial value of Yref. Using the pre-optimization point as a lower point for 

the line search interval, the optimizer finds the upper bound point Cibm"d) , VC"*"""" 

adaptively, satisfying (5.12). The details of the line search interval bounding analysis 

were given in Chapter 2. It must be noted that Yref is not updated using the 

values C(bmmd), VC(to""rf) at any time during the line search algorithm. 

For a given design point k in the line search interval, the adaptive analysis 

computes C w and VCW with the same accuracy requirements set by the right-hand side 

of (5.12) as for the bounding point. In fact, the value of the Yref parameter is set constant 

for the entire line search. To strictly adhere to the condition set by (5.13) entails updating 

the Yref parameter for every analysis point on a given line search. This results in a 

situation where the cubic minimization subroutine will have to deal with design points of 

varying accuracy on the same line, which may adversely affect the effectiveness of the 

line search. Hence, Yrej is updated only at the beginning of a line search using the cost 

function gradient values from the last valid design point of the preceding line search, as 

shown in Figure 5.1. This approximation does not reduce the effectiveness of the error 

calculation, as the changes in the frequency response from one line search to the next are 

generally not drastic, especially close to the local minimum point. 

The resulting CFE produces the cost function and gradient values, which are then 

checked for the line search termination criteria, either due to geometry re-mesh, or the 

angle criterion violation by the newVC( t ), which were explained in Chapters 3 and 2, 

respectively. If either condition is satisfied, the current line search is terminated, and the 

latest VC value becomes the search direction for the newly launched line search. The Yref 
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parameter is updated by the optimizer. For the scenario where neither line search 

termination condition is satisfied, the optimizer finds the new design point {gw} on the 

same line and the CFE is done for the same accuracy as the previous design point. 

With this implementation, the optimizer exercises control over the solution 

accuracy through the relative error of the cost function gradient at the adaption frequency, 

updating Tref regularly throughout the optimization. The optimizer also ensures line 

search efficiency by setting consistent accuracy levels for a given line search, and 

maintaining cost function continuity by launching new line searches whenever necessary. 

The CFE module, on the other hand, simply produces the cost function and gradient 

values to the specifications set by the optimizer, and updates the optimizer on the status 

of the CFE analysis (pertaining to /(-saturation and geometry re-mesh). In the end, the 

optimizer determines the necessary action for the overall process based on the 

information sent by the CFE module. 

Figure 5.2 shows the steps involved in the CFE analysis associated with each 

design point set by the optimizer. The steps are similar for all three phases of the line 

search algorithm, with the exception of the re-mesh scenario, which only occurs for the 

cubic analysis point. Recall the mesh generation box illustration in Figure 3.3 for details 

of the re-mesh condition. The FE module is essentially a 'black-box' where it takes the 

input data provided by the optimizer and produces the cost function and gradient value 

information with the required accuracy. The CFE module conveys the validity of the 

adaptive solution to the optimizer through the ̂ -saturation flag: if the adaptive analysis is 

unable to satisfy the accuracy conditions even with the highest element orders, the 

solution is rendered invalid, and a flag is set to denote this. The optimizer, in turn, 

terminates the entire process, as any further improvements to the design are impossible 

without valid FE solutions. On the other hand, for a good solution, the cost function and 

gradient values as well as the frequency sweep data are used to compute T and handed 

over to the optimizer. It must be noted the saturation condition is applicable to all three 

phases of the line search algorithm (as shown in Figure 5.1), which will consequently 

result in the optimizer terminating the analysis at any stage of the optimization. 
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5.2 Test cases and numerical results 

The adaption-optimization scheme using the accuracy link was tested on a number of 3D 

microwave problems. The scheme was tested for a single frequency analysis case as well 

as for frequency-range problems. The device excitation in all cases was the dominant 

TEio mode for a rectangular waveguide, and the frequency range was selected so that 

only the dominant mode was allowed to propagate. The cost functions were defined in 

terms of the scattering parameters in order to minimize the return loss at the ports of the 

given microwave device. For the single frequency case, the cost function was defined as 

the square of the magnitude of Si 1 at the adaptive analysis frequency, while for the 

frequency-range problem it was taken as the average value of the square of the 

magnitudes of the scattering parameters over 1024 sample points. The optimization was 

allowed to continue until the adaptive analysis hit /^-saturation, i.e., until all elements 

were at Order 3. To demonstrate the effectiveness of the new scheme, the same design 

problem was optimized non-adaptively using uniform Order 3 elements throughout, and 

the computational costs were compared. It must be noted that for the adaptive analysis, 

the cost function was re-computed using Order 3 elements at each design point, so that 

the quality of the design could be fairly assessed when comparing to the quality of the 

design points obtained with the uniform Order 3 optimization. 

The figure used to measure the computational cost of an adaptive FE analysis was 

defined in Section 4.3.2. For the frequency range problems, the cost of the Pade 

technique must be accounted for as well. The main cost for the Pade frequency sweep is 

associated with computing the moments of the scattering parameter Spq and the 

sensitivities dSpq jdg at the adaptive frequency. How these moments are obtained from the 

derivatives of the field {EM} is explained in Section 3.3.1, and the references mentioned 

therein. Calculating the derivatives involves the solution of a matrix system of similar 

size as the last adaptive step for the given design point. This solution is repeated M times, 

where M is the number of moments. Hence, the total cost for one design point will be the 

sum of a) the cost of the adaptive FE analysis, and b) M x the cost of solving the last 

adaptive step. Here, a value of M=10 was used. The cumulative cost of the overall 
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analysis would then be the sum of the costs for all design points (pre-optimization, 

bounding and cubic points) during the analysis. 

As mentioned before, a value of /?=0.2 (which represents a relative error in 

VC(*' of 20% in (5.1)) was used for all the examples. As with the test cases in Chapter 3, 

the threshold angle was set to ^=45°, which was deemed a significant enough deviation 

between VCW and the search direction {p^} to terminate the current line search and 

initiate a new one. 

5.2.1 Single frequency analysis of a waveguide impedance transformer 

The return loss of the waveguide impedance transformer (shown in Figure 3.10) is to be 

minimized. The design variables of interest and their initial values are indicated in the 

figure. The algorithm was applied to a single frequency problem, which for this case 

happens to be the adaptive analysis frequency. For this scenario, the cost function and 

gradient can be defined as follows: 

C = ca 

VC = Vca (5.14) 

where the subscript a indicates the adaptive analysis frequency point fa. Since the analysis 

is at a single frequency point, (5.13) is evaluated using the value at a single point, which 

translates into T = 1 in (5.11), with both the numerator and denominator being equal to 

each other. Thus, the accuracy requirement, (5.12), is set by the parameter /? alone. 

The cost function reduction for the transformer is plotted in Figure 5.3 as a 

function of the cumulative cost. The result shows a significant decrease in the cost 

function value in the early stages of the optimization (the first four or five steps), even 

though the element orders used in the adaptive analysis are low. Yet it manages to 

outperform the Order 3 results in terms of computational costs to attain similar 

improvements in the design performance. Beyond this point, the adaptive analysis takes 

more steps than the fixed order method to reduce the cost function. 
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Figure 5.3 Cost function reduction for the transformer in Fig. 3.10 using both the Order 3 
optimization and the adaptive method for the single frequency analysis. Initial {g}T— {22, 6, 10.44} 
mm. Analysis frequency = 10GHz. Initial number of tetrahedra=1700. 

Table 5.1 gives the final design parameters produced by both optimization schemes, as 

well as the cumulative cost for each method. The similarity in both sets of design 

parameter values indicates the optimization was successful in guiding the design to a 

local optimum. 

Table 5.1 Final design parameter values (in mm), cost function values (in dB) and cumulative cost (in 
millions of FLOPs) for Order 3 and adaption-optimization schemes applied on the waveguide 
transformer (single frequency) 

Final 
Order 3 

C 
Cumulative cost 

{21.81,5.72,10.10}7 

-48.0 
763 

Adaptive 
{21.78,5.72,10.19}' 

-50.4 
401 
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The final cost function value for the adaptive scheme is also similar to that of the Order 3 

analysis, with a computational cost that is almost half of that for the high order analysis, 

thus validating the idea that the accuracy link leads to computational cost savings. 

The single frequency results were reported in [108]. 

5.2.2 E-plane bend analysis at two frequency points 

The next example is a 2D optimization problem using the E-plane bend shown in Figure 

3.4. The analysis of this device was conducted at two frequency points, selected at the 

two ends of the operating frequency range. The cost function is defined as a combination 

of the Si i values at the two ends of a given frequency range. Defining the cost function in 

such a manner allows the optimizer to adjust the frequency response by balancing the end 

point values while trying to minimize them. 

The Pade method is applied to approximate the frequency response using 1024 

sample points (/ = 0 -> 1023) spread evenly across the range, and the two end points are 

selected to define the cost function and the gradient: 

C — cx+c2 

(5.15) 

VC = Vcx+Vc2 

where/i = 8.25 GHz and fi =13.5 GHz correspond to the frequency values at the two end 

points, i' = 0 and / = 1023, respectively, of the Pade approximation of the range. The 

adaptive frequency is selected at the center point of the range atfa = 10.875 GHz, and the 

analysis is required to satisfy the accuracy condition of (5.12). Evaluating (5.13) now 

involves the values of the cost function gradient at/j andfz. The reduction in the cost 

function is shown in Figure 5.4. 

From the graph, it can be seen that although the initial point for both curves from 

the pre-optimization step has the same return loss, the Order 3 analysis is costlier than the 

adaptive one. The adaptive analysis is able to achieve significant cost function reductions 

with the next two points, each representing a line search. The last three analysis points of 

the curve belong to the final line search, where the analysis appears to be slowing down. 
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The final design point for both methods attain return loss values around -31.5 dB, with 

the Order 3 analysis requiring three times the computational cost of the adaptive analysis. 

•D 

100 1000 
Cumulative cost (millions ofFLOPs) 

10000 

Figure 5.4 Cost function reduction for the E-plane bend for both adaptive and uniform Order 3 
analysis. Initial {g}T= {1,1} mm. Adaptive frequencies:/a=l0.875 GHz. Initial no. of tetrahedra=1400 

The cost function gradient values achieve a reduction of two orders of magnitude during 

the optimization analysis, with initial values {0.1292, 0.1289}, and final values {0.0037, 

0.0040}. This reduction in the gradient values is reflected in the higher accuracy demands 

imposed on the analysis as the optimization progresses. 

Figure 5.5 shows the frequency response of the device over several optimization 

steps. Curve 1 represents the frequency response obtained for the initial design point; 

curve 2 an intermediate point during the optimization (at the end of the second line 

search), and curve 3 the final optimized design configuration. The optimizer seems to 

have adjusted the design so that the resonance dip in the frequency response has been 

positioned to reduce the overall cost function value. However, the final curve appears 

unbalanced at the end points, contrary to what was expected from the optimization. The 
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reason could be that the analysis hit saturation (thus, termination of the optimization) 

before achieving this balance. 

m 
• a 

8.25 9.25 10.25 11.25 

Frequency (GHz) 
12.25 13.25 

Figure 5.5 Frequency response of the E-plane bend at various design points during the combined 
adaption-optimization analysis; the cost function value at each sample point, Ci=|Sn| 

Table 5.2 gives the final design parameter and cost function values for both the adaption-

optimization and uniform Order 3 optimization, along with their respective cumulative 

computational costs. Once again, the cost savings achieved with the adaptive analysis 

while obtaining similar final design points validates the use of the accuracy link. 

Table 5.2 Final design parameters (in mm), cost function values (in dB) and cumulative cost (in 
millions of FLOPs) from Order 3 and adaption-optimization analysis of the E-Plane bend problem 

Final 

teP 
C 

Cumulative cost 

Order 3 Adaptive 
T {2.1829, 2.1826}J 

-31.41 
7,421 

{2.1946,2.1891} 
-31.51 
1,356 
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5.2.3 Waveguide transformer problem over a frequency range 

The combined adaption-optimization analysis is applied to the waveguide transformer 

from Section 5.2.1 to improve the device performance over a frequency range. 

Preliminary results were reported in [109]. 

For this example, the expression in (5.12) was used for accuracy control, and the 

r-parameter was approximated using (5.13). For the pre-optimization point, r= l , as 

shown in Figure 5.1. The initial design parameter values and the adaptive frequency were 

the same as those presented in Section 5.2.1. The cost function and gradient definitions 

are given by (5.2) and (5.3). Figure 5.6 shows the cost function reduction over the course 

of the optimization analysis. 

100 1,000 10,000 

Cumulative cost (millions of FLOPs) 

100,000 

Figure 5.6 Cost function reduction for the waveguide transformer using both the adaptive and 
uniform Order 3 analysis. Initial {g}T= {22, 5.94, 7.83} mm. Adaptive analysis frequency=10.25 GHz. 
Initial number of tetrahedral=2200 

The adaptive scheme required 16 line searches before being terminated due to saturation. 

Both methods attain a 20 dB reduction in the cost function values, but with the Order 3 
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analysis being significantly (approximately 17 times) more expensive. From Figure 5.6, 

the Order 3 curve shows a smooth reduction over the analysis steps, while the adaptive 

results are more uneven. This may be attributed to the cost function gradient values 

calculated at low accuracies in the early stages of the optimization using lower order 

elements, and hence less accurate than the Order 3 analysis values. However, they do 

satisfy the accuracy levels set by the optimizer at that stage, and help direct the line 

search in the proper direction in design space. Even more, these early adaptive stages 

achieve the significant reduction in the cost function for a much lower cost. The link 

assures an increase in the solution accuracy in the late stages of the optimization with a 

decreasing gradient: the gradient vector is reduced by two orders of magnitude, from an 

initial value {5.817, 9.865, 6.949} to the final value of {0.0340, 0.0201, 0.0258}. 

Figure 5.7 illustrates the changes in the frequency response of the device 

throughout the adaption-optimization. For clarity, only a few response curves are shown. 

Curve 1 represents the response of the initial design, obtained with the pre-optimization 

analysis, and curve 4 is the response of the final design. Curve 2 and 3 represent the 

design points obtained at the end of line searches 7 and 9, respectively. The optimizer has 

once again adjusted the final design so that the resonance dip is positioned in the middle 

of the frequency range, and the two end points balanced. 

Table 5.3 shows the final values for the design parameter values and the cost 

function values after both the adaptive and uniform order optimization. The significant 

computational savings and the close correspondence between the design point values 

validate the effectiveness of the optimization scheme incorporating the accuracy link. 

Table 5.3 Final design parameter values (in mm), cost function values (in dB) and cumulative 
computational cost (in millions of FLOPs) from Order 3 and adaption-optimization analysis of the 
waveguide transformer (frequency range) 

Final 
Order 3 Adaptive 

{g}7 {23.06,5.95,9.3} {23.08,5.95,9.32} 
C -39.84 -39.91 

Cumulative cost 81,260 7,233 
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Figure 5.7 Frequency response curves of the waveguide transformer during the adaption-
optimization analysis; the curves are identified with their line search number 

5.2.4 Magic-T optimization over a frequency range 

The final test case for the new adaption-optimization scheme is the magic-T problem 

shown in Figure 4.13. The cost function definition is based on the return loss at two ports: 

ports 1 and 4. Due to the symmetries of the magic-T, a reduction in the return loss at port 

1 and port 4 combined will result in a reduction in the return loss at all the ports of the 

device [38], [110]. Hence a cost function definition that is a combination of both 

parameters will properly characterize the given device, and minimizing it will improve 

the overall performance. The design parameters used for the optimization are the same as 

was defined for the problem in Chapter 4. An operating frequency range of 7 GHz to 11 

GHz was used, and the adaptive analysis frequency selected as 9 GHz. Equations (5.12) 

and (5.13) were used for accuracy control. Results for this problem were also presented in 

[109]. Figure 5.8 shows the reduction in the cost function during the optimization. 
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The adaption-optimization scheme ran for only four line search steps before the 

high accuracy requirements led to ^-saturation. The increasing accuracy demands are 

reflected in the increase in the cumulative cost over the course of the analysis run: by the 

time the analysis reaches the final adaptive point, the cumulative cost comes closer to 

matching the Order 3 analysis cost. Even so, the adaptive method reduces the cost 

function at almost half the cost of the Order 3 analysis. The cost function could be 

reduced further with the help of a much finer discretization. The presence of numerous 

re-entrant corners throughout the structure, and the difficulty in trying to approximate a 

circular post with a relatively coarse mesh may have contributed to high discretization 

errors preventing the successful analysis of the problem. 

-4 

-10 

-12 

-14 

100 1000 10000 
Cumulative cost (millions of FLOPs) 

100000 

Figure 5.8 Cost function reduction for the magic-T shown in Figure 4.13 using both the adaptive 
analysis and the uniform Order 3 elements. Initial {g}T = {8.225, 12.7, 3.0, 3.556, 8.382, 1.60} mm. 
Adaptive frequency = 9GHz, Initial number of tetrahedra=6173 

The plot in Figure 5.9 shows the change in the frequency response of the magic-T after 

the optimization analysis. Although the reduction is not as significant as in previous 

examples, the changes are based on design parameter values after only four steps. 
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Figure 5.9 Frequency response for magic-T 

Table 5.4 gives the final values of the cost function as well as the design parameters after 

optimization using the adaptive technique and the Order 3 analysis. 

Table 5.4 Final design parameter values (in mm), cost function values (in dB) and cumulative 
computational cost (in millions of FLOPs) from Order 3 and adaption-optimization analysis of the 
magic-T over a frequency range. 

Final 
Order 3 Adaptive 

{g}T {6.96,12.48,1.35,3-86,6.37,0.53} {7.46,12.58,1.50,3.45,7.06,0.89} 

C -17.14 -16.85 

Cumulative cost 23,037 6,154 

5.3 Discussion 

The results in this chapter demonstrate a combined adaption-optimization scheme with an 

accuracy link that exerts control over the solution process. All examples were able to 

attain significant cost function reductions over a small number of steps. In most cases, the 
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cost gradients were reduced considerably, up to two orders of magnitude from the initial 

set. This resulted in higher accuracy demands in the late stages, and eventually p-

saturation. The E-plane problem in Section 5.2.2 is an example of the gradient being 

reduced rather quickly leading to early termination. The issue of high discretization error 

in complex 3D structures may also play a role in the early termination of the CFE, e.g., 

the magic-T problem. However, it is this apparent 'drawback' that is one of the benefits 

of the accuracy link formulation: preventing numerically invalid solutions from 

contaminating the design optimization process. As soon as the CFE solutions are 

corrupted with 'numerical noise' when trying to meet exorbitant accuracy demands, or by 

discretization error due to severe under-refinement, the optimizer terminates the analysis. 

One weakness of the link is its inability to deal with the minimax type of 

optimization problems. The examples in Chapter 3 are of this type, however without the 

accuracy link. Trying to optimize this type of cost function with the accuracy link can 

lead to the breakdown of the scheme, due to the absence of any reduction in the cost 

function gradient. An example is shown in Figure 5.10, where the cost function is 

essentially v-shaped, with the local minimum falling at the intersection point. 

F(x)i 

X 

Figure 5.10 An example of a minimax type of optimization problem 

Although the steepest-descent optimizer will converge to the local minimum (as was 

demonstrated with the results in Chapter 3), the accuracy link will fail since the gradient 

value may not have been reduced significantly, if at all, and this will not have any impact 

on the accuracy requirements of the analysis. 

96 



6. Conclusions 

This thesis is an attempt to formulate a computational scheme for the design optimization 

of 3D microwave problems. This work illustrates the computational efficiency with 

which the performance characteristics of a given 3D device can be improved provided 

certain control is exercised over the accuracy requirement at each analysis step. The 

underlying idea is that the required accuracy levels for the numerical solution need not be 

constant throughout the entire process, but rather, should be determined by the 

requirements of the optimization at every stage, which translates into computational 

savings. The two main components that form the accuracy-controlled optimization 

system in this research are: a steepest-descent method using a cubic minimization line 

search technique, and a /^-adaptive FE analysis method to compute the cost function and 

its gradient. The accuracy control for the numerical analysis is achieved by linking the FE 

module back to the optimizer. 

The optimizer is custom-made, with special provisions made for enhancing the 

efficiency of the overall analysis. One such provision is allowing the line search to 

terminate provided certain conditions are met, rather than performing an exact line search, 

as explained in Chapter 2. This avoids extra line search steps, especially in the early 

stages, resulting in cumulative cost savings. Another modification is related to 

maintaining the cost function continuity during the analysis: when the mesh topology 

changes from one optimization step to the next, the optimizer terminates the current line 

search and initiates a new one. This resulted in the mesh topology being fixed during a 

given line search in order to keep the cost function as smooth as possible. Cost function 

discontinuities can undermine the line search algorithm and even cause it to fail. The 

relatively small changes in the geometry were dealt without altering the topology through 

a mesh perturbation process, as explained in Chapter 3. 

Calculating the cost function gradients requires the sensitivity information of the 

mesh vertices that are associated with each design parameter. A custom implementation 

using VBScript, the ElecNet mesh generator and C++ code was used for this purpose. 

The vertex sensitivity values also play an important role in the mesh perturbation process 
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to help determine the amount by which the nodes should be moved to reflect the changes 

in the geometry, as explained in Chapter 3. 

The FE analysis module is called by the optimizer at various stages to compute 

the cost function and its gradients. A modified version of the Adjoint Variable Method 

using FE is used to calculate the gradients with no additional solutions, regardless of the 

number of design parameters. The Pade approximation technique is used to obtain the 

frequency response of the device at a design point, from which the cost function and the 

gradients are computed. An optimization implementation employing these gradients 

proved to be quite effective in finding a local minimum, as shown in Chapter 3. 

An error indicator and an error estimator are key components for the /(-adaptive 

FE analysis. An indicator which makes use of the properties of hierarchal elements to 

target the error in the scattering parameters in each element was developed. The 

indicator identifies those elements with high error at each adaptive step in order to further 

refine them and increase solution accuracy. An accurate error estimator gauges the 

accuracy of the overall solution and helps to determine the proper termination point for 

the adaptive analysis. Since the accuracy of the gradient is important for the efficiency of 

the optimization, an error estimator is developed to assess the quality of the gradient 

values computed by the FE solver. The results in Chapter 4 demonstrate how effective 

the new indicator scheme is in reducing the error in the scattering parameters, and how 

the new a-posteriori estimator is able to produce accurate error estimates for the gradient. 

The accuracy link is described and demonstrated in Chapter 5. The formulation 

allowed for cost functions based on a frequency sweep, but is general enough to be 

applied to single frequency problems as well. The implementation involved assembling 

the components developed in Chapters 3 and 4 to form the combined adaption-

optimization system. Essentially, the link allows the optimizer to keep a tight check on 

the computational effort by dictating the accuracy levels for the adaptive FE solution at 

each optimization step so as to maintain the efficiency of the overall analysis. The link 

also allows the optimizer to terminate a line search, or even the entire optimization 

analysis, based on the status of the FE solver and mesh. The benefit of this is that the 

optimizer can prevent solutions from being corrupted by numerical noise, as explained in 

Chapter 5. 

98 



A number of test cases using 3D microwave devices are used to gauge the 

efficiency of the new link formulation. The results obtained with the combined adaption-

optimization scheme are compared to results obtained with the optimization analysis 

using uniform high order, non-adaptive FE solutions. The return loss is used to define the 

cost function for all the problems. In all cases the new combined scheme is able to 

achieve significant computational cost savings compared to the non-adaptive high order 

scheme. An interesting observation for all test cases is that the optimizer is able to attain 

the same level of cost function reduction as the uniform high-order analysis, even in the 

early stages of the optimization when the accuracy requirements for the FE solution are 

low, but at a much smaller cumulative cost. As a best-case example, for the impedance 

transformer example in Chapter 5, by the midway point of the analysis, both schemes 

reduce the cost function by approximately 14 dB from the initial point, but with the 

adaptive scheme achieving it at a much lower cost, with computational savings of a factor 

of 25. Although the other examples do not show similar cost savings, they are still 

significant enough to validate the efficiency of the adaptive scheme. 

6.1 Original contributions 

The following are the original contributions of this thesis: 

1. The development of a direct optimization scheme for cost functions depending on 

device performance over a frequency range [52]. The scheme makes use of 

gradients efficiently calculated over a frequency range using FE analysis and Pade 

approximation techniques. 

2. An error indicator that uses the properties of hierarchal elements to target the S-

parameter error in every element of the FE mesh for the/^-adaptive analysis [85]. 

3. An error estimator that accurately approximates the error in the design 

sensitivities that are computed by the /^-adaptive FE analysis [98]. 

4. The implementation of a new accuracy link between an optimizer and the p-

adaptive FE analysis module [108], [109] for the cost efficient design 

optimization of 3D microwave problems, incorporating points 1-3. 
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6.2 Future work 

Various improvements can be made to the accuracy link implementation done for this 

thesis that might be of interest for future research. 

Application of the accuracy link to problems that involve A-adaptive techniques is 

an interesting avenue of research to pursue. For this thesis, the /(-adaptive technique is 

used due to the availability of hierarchal elements, and the error indicator and estimator 

formulations took advantage of the properties of these elements. But the theory is easily 

applicable to /?-adaptive problems, with an indicator and estimator tailored to suit h-

adaption. A combination of the h- and />-type adaptive schemes linked with the optimizer 

will make an even more powerful optimization scheme. An interesting question here is 

how to split the task of meeting accuracy demands at each step between the two adaptive 

schemes; for example, finding the best mesh refinement strategy to meet the accuracy 

requirements in the early stages as opposed to the late stages of the optimization. 

The ability to handle minimax type of optimization problems, which has 

considerable applications in many practical situations, is also desirable. The major issue 

with this class of problems is the discontinuous cost functions and the inability of first 

order methods to deal with them. Although several methods have been proposed to tackle 

this issue and converge to a local solution (see [111], [112], and the references within), 

from an accuracy link perspective, the issue is that the gradient, in general, does not equal 

to zero at the local minimum, thus undermining the idea behind the accuracy link 

proposed for this thesis. Thus finding a link formulation to overcome this short-coming 

will be a possible research topic of considerable interest. 

Combining the accuracy link with stochastic optimization schemes could improve 

the computational efficiency of the process of finding a global minimum. Using a 

combination of gradient based techniques and stochastic methods could lead to an 

optimization scheme that is far less expensive than the stochastic algorithms while being 

able to find the global minimum, a property that is lacking in gradient-based methods. 

For maximum efficiency, how the analysis can be split between the two techniques at 

various stages of the optimization is a research topic on its own. Formulating a "hybrid" 

link that uses information from both the deterministic and stochastic optimizers to set the 

accuracy for the numerical analysis will also become necessary. 
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Modifying the scheme to include open structure problems, such as scattering 

problems and antenna radiation problems is yet another possibility for further research. 

Using a Perfectly Matched Layer (PML) [113] or Absorbing Boundary Conditions (ABC) 

[114] to truncate the computational domain, then applying the combined adaption-

optimization scheme will lead to interesting results. Recent work in [115] demonstrated 

an FE-based approach for the optimization of planar microwave circuits using first-order 

ABCs to truncate the problem domain. However for such problems, the cost functions are 

better defined in terms of the radar cross section, and as such, would require new error 

estimators and indicators to implement the link. This is an issue that is relevant when 

applying the adaption-optimization link to problems in any other area of engineering. 
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Appendix A 

The code implementation of the combined adaption-optimization software system was 

done using Visual C++ 6.0 [116] and the Visual Basic [36] scripting language, run within 

Microsoft Excel [36]. All codes were implemented on a Windows XP [117] platform 

installed on a machine with an AMD Athalon 1.67 GHz processor, with 1 GB of RAM 

and 40 GB hard disk space. 

The combined adaption-optimization scheme has two main components: the 

steepest descent algorithm that uses the cubic line search interpolation technique, and the 

/^-adaptive FE solver for computing the cost function and gradient. 

The optimization algorithm is implemented in the Visual Basic scripting language. 

All stages of the line search algorithm, such as, the pre-optimization analysis step, the 

bounding analysis and cubic analysis step are all implemented within the script. The VB 

script runs the entire optimization, calling on the FE solver executable program only for 

the cost function evaluation process. The FE solver is implemented in Visual C++. The 

two components that comprise the /^-adaptive FE solver, the error indicator and the error 

estimator, have both been implemented using Visual C++. Data files are exchanged 

between the two blocks in order to transfer relevant information pertaining to the analysis. 

The files are in the ASCII format that can be read by both the VB script (the optimizer) as 

well as C++ executables (the FE solver). A quick look at the main data files that are used 

for information exchange between the two blocks essential for the running of the 

combined scheme given by Figure 5.2 is the focus of this Appendix. 

It must be noted that the relative accuracy term /? from (5.1) is hard-coded into the 

solver, while the value of T, which is dependent on the frequency sweep values at each 

cubic point are updated on a regular basis throughout the analysis. Recall that the 

accuracy link formulation is dependent on the values /? and I\ 
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A.l Data files output from the optimizer (input to the FE solver) 

Information regarding the geometry generated from the latest design parameter vector 

needs to be passed on the FE solver for further processing, and eventually, to compute the 

cost function and the gradient. 

A.1.1 bcs.dat 

The boundary conditions (assigning PEC, PMC to the geometry) and port co-ordinate 

information (designating the excitation port, port orientation in the Cartesian co-ordinate 

system) required by the FE solver is generated based on information input by the user 

into an Excel worksheet. Each side of the geometry is identified and the proper boundary 

condition is assigned. The VB script generates the data file bcs.dat with this information 

which is passed on the FE solver. 

A.l.2 tets.dat 

Within the VB script, the user-specified design parameters for the given problem are used 

to create the desired geometry using the software package ElecNet. Once the model is 

created, ElecNet generates the appropriate mesh to approximate the geometry. The mesh 

data, which contains all the necessary mesh node information (such as the vertex co

ordinate information and model face-label information, explained in Section 3.1) are 

output to the file tets.dat. The information in this file is vital for the solver to assemble 

the universal matrix need for the FE solution. The information in this file is also crucial 

in identifying the nodes with their corresponding surfaces on the model when calculating 

the vertex sensitivities. 

A.1.3 parameters.dat 

This file passes on the information regarding the user-specified design parameters {g} of 

the given problem. The information includes the number of design parameter values, as 

well as their values. Also included in this file are the values of the reference parameter 
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vector {gStart}, as explained in Section 3.1. The mesh generation block of Figure 3.3 

uses this data to determine the status of the perturbation process by evaluating the 

condition given by (3.1). The difference between {g} and {gStart} is used in conjunction 

with the vertex sensitivity values to determine the amount by which each node should be 

moved for mesh perturbation. 

A. 1.4 input.dat 

This file contains the geometrical information needed for the vertex sensitivity 

calculations. The vertex sensitivity code is problem specific, whereby the main 

geometrical data of the problem (such as model dimensions, design parameter values) 

need to be input manually, rather than having the code automatically derive the values 

from the model. This information is needed when trying to match each mesh vertex with 

its corresponding surface, and then to calculate the sensitivities. 

A.2 Data files output from the FE solver (input to the optimizer) 

Information passed on to the optimizer from the FE solver includes the cost function and 

its gradient, as well as the status of the solution process itself, such as saturation 

conditions. 

A.2.1 CdCdgVals.dat 

This is the file in which the solver stores the cost function and gradient values. The 

values are output for calls to the FE solver from all stages of the optimization. The 

optimizer processes these values based on the stage that it currently is in, and takes the 

necessary action to advance the line search, as explained in Chapter 2. 

A.2.2 Frequency.dat 

The scattering parameter values calculated over the frequency range using the Pade 

approximation technique are output to this file. These values are mainly used for 

demonstrating the frequency response obtained for the latest design configuration. 

117 



A.2.3 log.dat 

This file contains information regarding the solution process, such as the number of steps 

taken by the conjugate gradient solver to solve the global matrix and the number of non

zero elements in the system matrix. These values are used to estimate the computational 

cost involved in the solution process for a particular design point. 

A.2.4 TolUpdateFlag.dat 

The status of the FE solver is let known to the optimizer through a flag set by the solver 

after the analysis in this file. If the solver has hit saturation, the flag is set so that the 

optimizer is forced to terminate the entire optimization process. 

A.2.5 gradCInfNorm.dat 

The cost function gradient value from the frequency sweep required to calculate the 

accuracy term T is stored in this file. The optimizer reads in the value of T w for every 

cubic step analysis , but does not use it to update the accuracy link conditions (through 

Tref) unless at the beginning of a line search. This was explained in detail in Chapter 5. 
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