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ABSTRACT

Extreme-value theory is concerned with the tail behaviour of probability distributions.

In recent years, it has found many applications in areas as diverse as hydrology, actuarial

science, and finance, where complex phenomena must often be modelled from a small

number of observations.

Extreme-value theory can be used to assess the risk of rare events either through the

block maxima or peaks-over-threshold method. The choice of threshold is both influential

and delicate, as a balance between the bias and variance of the estimates is required. At

present, this threshold is often chosen arbitrarily, either graphically or by setting it as

some high quantile of the data.

Bayesian inference is an alternative to deal with this problem by treating the threshold

as a parameter in the model. In addition, a Bayesian approach allows for the incorporation

of internal and external observations in combination with expert opinion, thereby providing

a natural probabilistic framework to evaluate risk models.

This thesis presents a Bayesian inference framework for extremes. We focus on a

model proposed by Behrens et al. (2004), where an analysis of extremes is performed

using a mixture model that combines a parametric form for the centre and a Generalized

Pareto Distribution (GPD) for the tail of the distribution. Our approach accounts for all

the information available in making inference about the unknown parameters from both

distributions, the threshold included. A Bayesian analysis is then performed by using

expert opinions to determine the parameters for prior distributions; posterior inference is

carried out through Markov Chain Monte Carlo methods. We apply this methodology to

operational risk data to analyze its performance.

The contributions of this thesis can be outlined as follows:

� Bayesian models have been barely explored in operational risk analysis. In Chap-

ter 3, we show how these models can be adapted to operational risk analysis using

fraud data collected by different banks between 2007 and 2010. By combining prior
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information to the data, we can estimate the minimum capital requirement and risk

measures such as the Value-at-Risk (VaR) and the Expected Shortfall (ES) for each

bank.

� The use of expert opinion plays a fundamental role in operational risk modelling.

However, most of time this issue is not addressed properly. In Chapter 4, we consider

the context of the problem and show how to construct a prior distribution based on

measures that experts are familiar with, including VaR and ES. The purpose is to

facilitate prior elicitation and reproduce expert judgement faithfully.

� In Section 4.3, we describe techniques for the combination of expert opinions. While

this issue has been addressed in other fields, it is relatively recent in our context. We

examine how different expert opinions may influence the posterior distribution and

how to build a prior distribution in this case. Results are presented on simulated

and real data.

� In Chapter 5, we propose several new mixture models with Gamma and Generalized

Pareto elements. Our models improve upon previous work by Behrens et al. (2004)

since the loss distribution is either continuous at a fixed quantile or it has continuous

first derivative at the blend point. We also consider the cases when the scaling is

arbitrary and when the density is discontinuous.

� Finally, we introduce two nonparametric models. The first one is based on the

fact that the GPD model can be represented as a Gamma mixture of exponential

distributions, while the second uses a Dirichlet process prior on the parameters of

the GPD model.
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ABRÉGÉ

La théorie des valeurs extrêmes concerne l’étude du comportement caudal de lois de

probabilité. Ces dernières années, elle a trouvé de nombreuses applications dans des do-

maines aussi variés que l’hydrologie, l’actuariat et la finance, où l’on doit parfois modéliser

des phénomènes complexes à partir d’un petit nombre d’observations.

La théorie des valeurs extrêmes permet d’évaluer le risque d’événements rares par la

méthode des maxima bloc par bloc ou celle des excès au-delà d’un seuil. Le choix du seuil

est à la fois influent et délicat, vu la nécessité de trouver un équilibre entre le biais et la

précision des estimations. À l’heure actuelle, ce seuil est souvent choisi arbitrairement,

soit à partir d’un graphique ou d’un quantile élevé des données.

L’inférence bayésienne permet de contourner cette difficulté en traitant le seuil comme

un paramètre du modèle. L’approche bayésienne permet en outre d’incorporer des obser-

vations internes et externes en lien avec l’opinion d’experts, fournissant ainsi un cadre

probabiliste naturel pour l’évaluation des modèles de risque.

Cette thèse décrit un cadre d’inférence bayésien pour les extrêmes. Ce cadre est ins-

piré des travaux de Behrens et coll. (2004), dans lesquels l’étude des extrêmes est réalisée

au moyen d’un modèle de mélange alliant une forme paramétrique pour le cœur de la

distribution et une loi de Pareto généralisée (LPG) pour sa queue. L’approche proposée

exploite toute l’information disponible pour le choix des paramètres des deux lois, y com-

pris le seuil. Une analyse bayésienne tenant compte d’avis d’experts sur les paramètres

des lois a priori est ensuite effectuée ; l’inférence a posteriori s’appuie sur une châıne de

Markov Monte-Carlo. Nous appliquons cette approche à des données relatives aux risques

opérationnels afin d’analyser sa performance.

Les principales contributions de cette thèse sont les suivantes :

� On fait rarement appel aux modèles bayésiens pour l’analyse du risque opérationnel.

Au chapitre 3, nous montrons comment adapter ces modèles à l’analyse du risque

opérationnel au moyen de statistiques de fraudes recueillies par des banques entre
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2007 et 2010. L’intégration d’information a priori aux données nous permet d’estimer

le capital minimal requis pour chaque banque, ainsi que diverses mesures de risque

telles que la valeur-à-risque (VaR) et le déficit prévu (DP).

� Les avis d’experts jouent un rôle clef dans la modélisation du risque opérationnel.

Toutefois, cette question est souvent traitée de façon incorrecte. Au chapitre 4, nous

examinons le problème dans son contexte et montrons comment choisir une loi a

priori à partir de mesures que les experts connaissent bien, dont la VaR et le DP. Le

but est de faciliter le choix de la loi a priori et de mieux refléter l’avis des experts.

� À la section 4.3, nous décrivons diverses techniques de synthèse d’opinions d’experts.

Bien que ce problème ait déjà été abordé dans d’autres domaines, il est relativement

nouveau dans notre contexte. Nous montrons comment élaborer une loi a priori à

partir d’avis d’experts et mesurons leur influence sur la loi a posteriori. Des données

réelles et simulées sont utilisées aux fins d’illustration.

� Au chapitre 5, nous proposons plusieurs nouveaux modèles faisant intervenir des

mélanges de lois gamma et de Pareto généralisées. Ces modèles étendent les travaux

de Behrens et coll. (2004) dans la mesure où la loi des pertes peut être continue à un

quantile donné ou avoir une première dérivée continue au point de jonction. Nous

traitons aussi les cas où l’échelle est arbitraire et la densité est discontinue.

� Enfin, nous présentons deux modèles non paramétriques. Le premier s’appuie sur

le fait que le modèle LPG peut être représenté comme un mélange gamma de lois

exponentielles ; dans le second, l’information a priori sur les paramètres du modèle

LPG est représentée par un processus de Dirichlet.
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Chapter 1

Introduction

Since its emergence, the study of operational risk has presented many issues: the combi-

nation of data sources from internal and external data and expert opinion; the elicitation

of information; and since rare events occur infrequently, small data sets. Extreme Value

Theory has emerged as a natural tool for quantifying operational risk. However, its ap-

plication involves several challenges, mainly the characterization of tail behaviour and

the inclusion of expert knowledge. To overcome these limitations, attention has turned

recently to Bayesian methods which can handle all these problems in a single framework.

In this thesis, we propose a Bayesian approach that provides an appropriate framework

to address the threshold1 selection issue and allows for the inclusion of multiple expert

opinion and external data, while taking into account the theoretical foundations of Extreme

Value Theory.

The thesis is organized as follows. Chapter 2 reviews relevant background and concepts

concerning operational risk, Extreme Value Theory and Bayesian inference. This part of

the thesis has the intention to give the reader a basis for what will be discussed in later

chapters. We present some historical losses that motivated the study of operational risk

and gave rise to the Basel II and Basel III Accords in 2004 and 2010, respectively. We

1The threshold is loosely defined as the point above which losses are considered extremes and it is
chosen such that the population tail can be well approximated by an extreme value model.

1



Introduction 2

highlight the importance of these Accords, since they pave the way for the analysis of

operational risk in a formal fashion.

We then move on to a review of Extreme Value Theory. This section introduces the

foundations of Extreme Value Theory and its main results, such as the Fisher-Tippet-

Gnedenko and Pickands-Balkema-de Haan theorems. In the end, the theory and methods

presented in this section lead us to study the limitations of Extreme Value Theory, one

of the main concerns of this thesis. We focus our attention on the Peaks Over Threshold

(POT) method and the point processes approach. We find that these approaches suffer

from two intrinsic limitations: Subjectivity about the threshold choice, and not accounting

for threshold uncertainty in inference.

Once these problems are clearly stated, our attention turns to the range of tools avail-

able, in particular Bayesian inference. We present the Bayesian framework and the mod-

elling strategy behind it: Formulate our beliefs in terms of the so-called prior distribution,

observe the data and update our beliefs via Bayes’ rule, giving place to the so-called

posterior distribution. We then examine this framework in the context of extremes and

emphasize its advantages compared to maximum likelihood estimation methods. In addi-

tion, we introduce some ideas about the elicitation process that will be studied in detail

in Chapter 4.

In Chapter 3, we concentrate on the model introduced by Behrens et al. (2004). This

model is based on a mixture distribution, which combines a parametric form for the cen-

ter and a Generalized Pareto Distribution (GPD) for the tail, using all observations for

inference about the unknown parameters from both distributions, the threshold included.

Next, we provide various ways of choosing prior distributions for the different parame-

ters involved, while posterior inference is carried out through Markov Chain Monte Carlo

(MCMC) methods. In order to test the performance of this model, we apply this method-

ology to simulated data. To complete the analysis, we apply the proposed algorithm to

real data in Section 3.2, consisting of bank frauds from 2007 to 2010. We start by doing an
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exploratory analysis of the data to determine the presence of extremes, and then proceed

to perform the Bayesian analysis using an algorithm adapted to the context of operational

risk. Subsequently, we estimate the minimum capital requirement, the Value-at-Risk and

the Expected Shortfall, and present some interesting findings related to these risk mea-

sures. In the second part of our analysis, we consider grouped data. Banks are classified

according to their size and some other characteristics. The analysis is performed using a

Reversible Markov Chain Monte Carlo (RJMCMC) algorithm and a Bayesian approach

based on a mixture of Gamma distributions in which the mixing occurs over the shape

parameter.

The work described in Chapters 4 and 5 attempts to fill some of the gaps in inference

for extremes and to improve the Bayesian methodology presented previously. Chapter

4 is dedicated to prior analysis. We address the problem of prior sensitivity, prior elic-

itation and multiple expert opinion. In the first part, we study the difference of using

non-informative and informative priors for extreme data. After that, we introduce an in-

formative prior that captures expert opinion in an intuitive way, making use of quantities

that experts are familiar with, and that are realistic in the context of our problem. Lastly,

we explore multiple expert opinion and propose a methodology for combining multiple

opinions and for updating our beliefs when new information becomes available.

Finally, in Chapter 5, we introduce a new model that we call the Blended model. This

model is constructed using Gamma and Generalized Pareto elements and has the objective

of improving the discontinuity problem in the model of Behrens et al. (2004). We consider

different approaches according to the type of discontinuity, for instance the qth quantile or

the first derivative at the blend point. In order to complete the analysis, we also consider

nonparametric models and propose two different ways to construct them: (1) Represent

the GPD as a mixture of Exponential distributions and use a Dirichlet process mixture

formulation and (2) use a Dirichlet process prior on the parameters of the GPD model.

We conclude this thesis with a discussion of our results in Chapter 6 .



Chapter 2

Extreme Value Theory in operational

risk

2.1 Operational risk

2.1.1 Introduction to operational risk

During the 1980s, several catastrophic losses ocurred in financial institutions worldwide,

giving rise to a first international cooperation agreement known as Basel I Accord, issued

in 1988, that sets minimum capital requirements for banks to hedge their risk exposure,

particularly credit risk.

Faced with a changing environment, Basel I had limitations, so that in 2004 the Basel

Committee1 stated the New Capital Accord “Basel II”, which aims to strengthen the

soundness and stability of the international banking system, with more risk-sensitive cap-

ital requirements.

Basel II incorporates operational risk to the already considered credit and market risks,

highlighting the importance of allocating capital for operational losses. Table 2.1 shows

1The Basel Committee on Banking Supervision is a committee of banking supervisory authorities which
was established by the central bank Governors of the Group of Ten countries in 1975. Its recommendations
have become the standard and guidelines in banking supervision and regulation in the rest of the world.

4



2.1. Operational risk 5

Year Institution

Estimated
Losses

(Millions of
USD)

Event

1995 Barings Bank $1,300
In Singapore, a trader accumulated
not reported losses for two years.

1995 Dalwa Bank $1,100
For eleven years, a trader
accumulated not reported losses.

1996
Morgan
Grenfell

$640
For two years, a fund manager
invested in shares of a “junk
company”.

1997
Natwest

Bank
$145 Incorrect valuation of options.

2002 All First $691
For three years, losses in foreign
exchange trading were hidden.

2008
Société

Générale
$7,000

A broker hid losses from
unauthorized transactions in the
futures market.

Table 2.1: Historical operational risk losses in financial institutions worldwide

some recent losses that motivated the study of operational risk.

A new Accord was introduced in 2010 in response to the deficiencies in financial regu-

lation revealed by the late-2000s financial crisis. The Basel III Accord is supposed to

strengthen bank capital requirements by increasing bank liquidity and bank leverage.

However, the new Accord does not incorporate relevant changes regarding operational

risk. Hence, we will focus on the Basel II Accord.

2.1.2 Basel II and operational risk

The Basel II Capital Accord of 2004 2 defines operational risk as “the risk of loss resulting

from inadequate or failed internal processes, people and systems, or from external events”.

Risk events are classified into seven categories, namely:

� Internal fraud

2To record losses, institutions should: classify units and business lines, identify and classify the different
types of loss events, and keep a historical database containing records of losses and their cost.
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� External fraud

� Employment practices and workplace safety

� Clients, products, and business practice

� Damage to physical assets

� Business disruption and systems failures

� Execution, delivery and process management

The Basel II Accord also sets capital requirements to face operational losses and established

2007 as the year by which financial institutions should have implemented the calculation

of capital requirements for operational risk.

The Accord provides three methods for calculating capital requirements for operational

risk, which are presented in order of sophistication and risk sensitivity:

1. The Basic Indicator Approach. Capital is allocated using the gross income as a proxy

for an institution’s overall operational risk exposure, with each bank holding capital

for operational risk equal to the amount of a fixed percentage α (15%), multiplied

by its individual amount of positive gross income. Assume that in n out of the

last 3 years the gross income was positive. Relabeling these years as 1, ..., n, the

corresponding gross income is GI1, ..., GIn. The resulting capital charge KBIA under

the Basic Indicator approach is given as follows.

KBIA =

n∑
j=1

GIj × α

n
. (2.1)

This approach is simple and easy to implement, however, it does not consider specific

needs and characteristics of each bank.
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2. The Standardised Approach. Capital is determined based on predefined percentages

of the average gross income of the last three years for eight business lines 3. After

determining the capital required for each business line, the aggregate is the total

capital requirement. This approach differs from the Basic Indicator Approach in

that bank’s activities are divided into a number of standardised business units and

business lines.

3. Advanced Measurement Approach (AMA): The regulatory capital is determined us-

ing models developed by each institution. It considers two approaches: the internal

measurement and the loss distribution approach (LDA). Under the LDA, banks use

their internal data, estimate the frequency and severity distributions of operational

risk events and, based on these two distributions, compute the probability distribu-

tion function of the cumulative operational loss. The capital charge is usually based

on the Value-at-Risk measure (VaR), which is defined in the next section, Equation

(2.3).

2.1.2.1 Implementation

In 2010, the Financial Stability Institute (FSI) carried out a survey on Basel II implemen-

tation. The survey results indicate that 112 countries have implemented or are currently

planning to implement Basel II.

For operational risk the survey indicated that 80% of respondents that have adopted

the Accord expected to adopt the Basic Indicator Approach.

3Banks’ activities are divided into eight business lines by considering that gross income is a broad
indicator that serves as a proxy for the scale of business operations and thus the likely scale of operational
risk exposure within each of these business lines: corporate finance, trading & sales, retail banking,
commercial banking, payment & settlement, agency services, asset management, and retail brokerage.
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2.1.3 Loss Distribution Approach (LDA)

The Loss Distribution Approach (LDA) is a statistical approach which is very popular in

actuarial sciences for computing aggregate loss distributions. Under this approach, banks

adjust statistical distributions to loss data by modelling: i) the frequency of loss events

and ii) their severity, then combining them to obtain the distribution of total losses.

The loss distribution is modelled as follows:

Zt =
J∑
j=1

Z
(j)
t ; Z

(j)
t =

N
(j)
t∑
i=1

X
(j)
i (t) , (2.2)

where

� t = 1, 2, ... is discrete time in annual units.

� Z
(j)
t is the annual loss in risk cell j, modelled as an aggregate loss over one year,

with frequency N
(j)
t .

� N
(j)
t is a counting process and for each t, X

(j)
i (t) are positive random variables rep-

resenting severities, with i = 1, ..., N
(j)
t .

Under this model, the capital is defined as the Value-at-Risk at the 99.9% level quantile

of the distribution for the next year annual loss Zt+1

VaRq (Zt+1) = inf {z ∈ R : Pr (Zt+1 > z) ≤ 1− q} (2.3)

at level q = 0.999.

2.1.4 Operational risk data

In the General Standards for Advanced Measurement Approaches, the Basel II Accord

specifies that internal data, external data and expert opinion data should be considered

into the analysis. In addition, internal control indicators and factors affecting the busi-

nesses should be used.

Operational risk data should meet specific criteria:
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� Internal data. Internal measures must be based on a minimum five-year observation

period of internal loss data, or three years when the bank first moves to the AMA.

Loss data must capture all material activities and exposures from all appropriate

sub-systems and geographic locations and the collected information should include

the date of the risk event, any recoveries of gross loss amounts, as well as some

descriptive information about its causes.

� External data: Banks must use relevant external data (either public data and/or

pooled industry data), especially when the bank is exposed to infrequent, yet po-

tentially severe, losses. These data should include actual loss amounts, information

on the scale of business operations where the event occurred and information on the

causes and circumstances of the loss events. External data are difficult to use due

to different volumes and other factors.

� Expert opinion: A bank must use scenario analysis of expert opinion in conjunction

with external data to evaluate its exposure to high-severity events. These expert

assessments could be expressed as parameters of a statistical loss distribution.

2.1.5 Bank fraud

Any activity related to money entails the risk of fraud, however, in the financial sector,

particularly banking, the exposure is higher. “A fraud is an action to achieve a profit or

gain something illegally through deception or exploitation of a mistake made by others.

Deception occurs when an individual displays a series of machinations and artifices in

order to make one or more people have a false perception of reality to obtain goods or

property rights of others” 4.

In some countries, most of banking fraud losses correspond to credit and debit cards.

However, they also occur with other means of payment such as cheques and Internet

transfers.
4Source: Condusef http://www.condusef.gob.mx

http://www.condusef.gob.mx
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2.1.6 Challenges in operational risk

As it is said in McNeil (2005), “nobody doubts the importance of operational risk for the

financial and insurance sector, but much less agreement exists on how to measure this

risk”. Undoubtedly, the study of operational risk is accompanied by several disadvantages:

Possible inconsistencies in its definition, data gaps and limitations to allocate capital for it.

As a result, there have been several criticisms of Basel II on operational risk, which

shows differences with respect to market and credit risks: It is more linked to process rather

than product, and hence operational risk does not always arise through transactions; thus,

most of the time it is not reported in the income statement. Furthermore, operational

risk cannot always be reduced by diversification, or objectively assigned to a particular

business line, so it is assumed inevitably as part of the company’s business rather than

pursuit of profit.

Additionally, there are several criticisms of the methods of measurement, mainly the

questionable choice of the gross income as an indicator of risk exposure, since there may

be institutions with high income and low risk, and institutions with lower income but

high risk, however, the basic approach will require more capital to the first group. Some

additional criticisms are the linear relationship between the indicator and risk, together

with the coexistence of methodologies in which all parameters are predefined.

Because of these criticisms, in recent years the academic community has placed special

emphasis on advanced measurement methods, by considering the loss distribution approach

and providing a theoretical basis to implement more advanced methods.

It should be noticed that beyond the regulation for operational risk, the losses as-

sociated with such events may affect the results of the institutions and, therefore, their

capitalization levels, so that the measurement of this risk should not be ignored.
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2.2 Extreme Value Theory

Extreme Value Theory (EVT) is used to model and measure tail events that occur with

small probability. Its main utility is that it is a quantitative method that takes into account

the frequency and severity of losses.

Over the past two decades, EVT has had an important development and has been

recognized as an extremely useful statistical tool for modelling“rare events”. It has relevant

applications in insurance, finance, risk management and meteorology, among others.

2.2.1 Basic definitions and results

Most of the results presented in this section can be found in McNeil et al. (2005, Chapter

7); proofs are given in Embrechts et al. (1997, Chapter 3).

2.2.1.1 Generalized Extreme Value Distribution

Theorem 2.1. (Fisher-Tippett). Let Xn be a sequence of iid random variables and Mn =

max (X1, ..., Xn) be the maximum of the first n members of the sequence. If there exist

norming constants cn > 0, dn ∈ R and some nondegenerate cdf H such that

Mn − dn
cn

d⇒ H, (2.4)

then H belongs to the type of one of the following cdfs:

Type I (Gumbel):

Type II (Fréchet):

Type III (Weibull) :

H(x) = exp (−e−x) x ∈ R

H(x) =


0 x ≤ 0

exp (−x−α) x > 0

α > 0

H(x) =


exp (− (−x)α) x ≤ 0

1 x > 0

α > 0

(2.5)
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where d⇒ denotes convergence in distribution.

Definition 2.2. (maximum domain of attraction). If (2.4) holds for some nondegenerate

cdf H and sequences of constants cn and dn, then F is said to be in the maximum domain

of attraction of H, written F ∈ MDA(H).

The definition below provides a unified parameterization for the class of limit distribu-

tions: Gumbel, Fréchet and Weibull.

Definition 2.3. (the generalized extreme value (GEV) distribution). The distribution

function of the GEV distribution is given by

Hξ,µ,β (x) =


exp

[
−
(

1 + ξ x−µ
β

)− 1
ξ

]
, ξ 6= 0

exp
[
−exp

(
1− x−µ

β

)]
, ξ = 0

(2.6)

for 1 + ξ(x− µ)/σ > 0, where µ ∈ R is the location parameter, β > 0 the scale parameter

and ξ = 1/α ∈ R the shape parameter.

The parameter ξ in the above Definition defines the type of distribution: when ξ > 0

the distribution is a Fréchet distribution; when ξ = 0 it is a Gumbel distribution; when

ξ < 0 it is a Weibull distribution.

2.2.1.2 Threshold Exceedances

The Generalized Pareto Distribution (GPD) is used to model the tails of distributions

based on theoretical arguments. Usually, it is expressed through a distribution function

that depends on two parameters.

Definition 2.4. The cdf of the GPD is given by

Gξ,σ (x) =


1−

(
1 + ξ x

σ

)− 1
ξ , ξ 6= 0

1− exp
(
−x
σ

)
, ξ = 0

(2.7)
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for x ≥ 0 for ξ ≥ 0 and for 0 ≤ x ≤ −σ/ξ for ξ < 0. In (2.7), σ > 0 and ξ ∈ R are the

scale and shape parameters, respectively.

When ξ > 0, the Generalized Pareto distribution is a reparameterized version of the

ordinary Pareto distribution with parameter α = 1/ξ and κ = σ/ξ; if ξ < 0, we have a

Pareto type II distribution; if ξ = 0 we have the exponential distribution.

Definition 2.5. The right endpoint of a distribution is defined as

xF = sup {x ∈ R : F (x) < 1} .

Definition 2.6. (excess distribution over threshold u). Let X be a rv with cdf F . The

excess distribution over the threshold u is given by

Fu (x) = P (X − u ≤ x | X > u) =
F (x+ u)− F (u)

1− F (u)
, (2.8)

for 0 < x < xF − u, where xF ≤ ∞ is the right endpoint of F .

Definition 2.7. (mean excess function). The mean excess function of a random variable

X with finite mean is given by e (u) = E (X − u | X > u).

Theorem 2.8. (Pickands-Balkema-de Haan). Let F be a distribution function with end-

point xF . We can find a positive measurable function σ (u) such that:

lim
u→xF

sup
0≤x<xF−u

∣∣Fu(x)−Gξ,σ(u) (x)
∣∣ = 0 (2.9)

if and only if F ∈MDA (Hξ) , ξ ∈ R.

Hence, for high thresholds, the excess distribution function can be approximated by

Gξ,σ(u) (x) for some values of ξ and σ. Thus, we may try to fit the generalized Pareto

distribution to data which exceed high thresholds.
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2.2.2 The Peaks Over the Threshold and the Point Process

Approach

There are two inference methodologies related to Extreme Value Theory: Block Maxima

(BM) and Peaks Over the Threshold (POT). The first technique consists of first dividing

identically distributed observations into block of equal size and modelling the maxima of

each block. On the other hand, the POT method considers models for all observations

that exceed some high level. Both techniques are based on limit results: The Block

Maxima method uses the Fisher–Tippett Theorem 2.1, while the POT approach uses the

Pickands–Balkema–de Haan Theorem 2.8.

POT models are generally considered to be the most useful for practical applications,

due to their more efficient use of the data on extreme outcomes. Moreover, these models

provide insights into excess distributions over high thresholds, which are of particular

interest in operational risk. Hence, we will focus on the POT method throughout the

thesis.

For POT models, there are two types of analysis: Semiparametric models based on

the Hill estimator, and complete parametric models based on the Generalized Pareto

distribution (GPD). When used correctly, both methods are theoretically and empirically

justified. However, the approach based on the Hill estimator has limited applications since

the heavy-tailedness assumption is necessary, as its focus is on the case ξ> 0; while GPD-

based models are applicable to any type of distribution, heavy tailed or not, provided it

is in the MDA of Hξ.

Under this last approach, the exceedances, i.e. observations that are larger than a

threshold, are considered as a point process of exceedances, which converges weakly to

a Poisson point process that allows for inference on the intensity of occurrence of such

exceedances. On the other hand, the Generalized Pareto distribution provides a model for

the excesses over an appropriate threshold, i.e. the magnitudes of the differences of the

exceedances and the threshold.
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The POT method is described in McNeil et al.(2005) as follows: Given loss data

X1, ..., Xn from F , a random number Nu will exceed our threshold u; it will be conve-

nient to relabel these data X̃1, ..., X̃Nu . For each of these exceedances we calculate the

amount Yj = X̃j − u of the excess loss. We wish to estimate the parameters of a GPD

model by fitting this distribution to the Nu excess losses. According to Ribatet (2006),

there are currently seventeen estimators available to fit a Generalized Pareto distribution.

Among the most important are: the method of moments, maximum likelihood, proba-

bility weighted moments (biased and unbiased), median, Pickands, penalized maximum

likelihood and moment generating function estimators. The maximum likelihood method

is more commonly used and is easy to implement if the excess data can be assumed to be

realizations of independent rvs, since the joint density will then be a product of marginal

GPD densities.

Denoting gξ,σ the density of the GPD, the log-likelihood may be easily calculated to be

lnL (ξ, σ;Y1, ..., YNu) =

Nu∑
j=1

ln gξ,σ (Yj) = −Nulnσ −
(

1 +
1

ξ

) Nu∑
j=1

ln

(
1 + ξ

Yj
σ

)
, (2.10)

which must be maximized subject to the parameter constraints σ > 0 and 1 + ξYj/σ > 0

for all j. Solving the maximization problem yields a GPD model Gξ̂,σ̂ for the excess

distribution Fu. If ξ > −0.5, the maximum likelihood estimators of ξ and σ are regular

(Smith, 1985).

Next, note that F ∈ MDA (Hξ) if and only if there exist sequences of constants cn > 0,

dn ∈ R such that for all x ∈ R,

lim
n→∞

n · (1− F (cnx+ dn)) = lim
n→∞

n · F̄ (cnx+ dn) = −lnHξ (x) , (2.11)

where the limit is interpreted as ∞ if Hξ (x) = 0; see Embrechts et al. (1997, Proposition

3.3.2). Assuming that F ∈ MDA (Hξ) and setting un (x) = cnx+ dn we thus have

lim
n→∞

n · F̄ (un (x)) = λ (x) , (2.12)
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where λ (x) = −lnHξ (x). Defining the point process of exceedances as

Nn (A) =
n∑
i=1

I
(
I(Xi>un(x)) · (i/n) ∈ A

)
(2.13)

for any Borel set A ⊆ (0, 1], it can be shown (Embrechts et al.(1997), Theorem 5.3.2) that

if λ (x) ∈ (0,∞), Nn converges weakly to a homogeneous Poisson point process on (0, 1]

with intensity λ (x).

Now assume that X1, ..., Xn are iid observations from F ∈ MDA (Hξ) and that u is a

high threshold of the form u = cny + dn for some y ∈ R. We assume that the process of

exceedances above u is well approximated by a Poisson point process with intensity

λ = −lnHξ (y) = −lnHξ

(
y − dn
cn

)
. (2.14)

Since dn and cn are unknown, we can replace them by the location and scaling parameters

µ and β, respectively. This gives

λ = −lnHξ

(
u− µ
β

)
= −lnHξ,µ,β =

(
1 + ξ

u− µ
β

)−1/ξ−1

(2.15)

provided 1 + ξ(u− µ)/β > 0, and by λ = 0 otherwise.

To take the sizes of the exceedances into account, this model can be extended to a

(non-homogeneous) two-dimensional Poisson point process where the points (t, x) in the

two-dimensional space X = (0, 1]×(u,∞) are record times and magnitudes of exceedances.

For a set of the form A = (t1, t2)× (x,∞) ⊂ X , the intensity measure is

Λ (A) =

ˆ t2

t1

ˆ ∞
x

λ (y) dy dt = − (t2 − t1) lnHξ,µ,σ (x) . (2.16)

It follows from (2.16) that for any x ≥ u the implied one-dimensional process of ex-

ceedances of the level x is a homogeneous Poisson process with rate τ(x) := −lnHξ,µ,β(x).

Now consider the excess amounts over the threshold u. The tail of the excess distribution

function over the threshold u, denoted F̄u(x) before, can be calculated as the ratio of the

rates of exceeding the levels u+ x and u. We obtain

F̄u(x) =
τ (u+ x)

τ (u)
=

(
1 +

ξx

β + ξ (u− µ)

)−1/ξ

= Ḡξ,σ (x) (2.17)
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for a positive scaling parameter σ = β + ξ(u − µ). This is precisely the tail of the GPD

model for excesses over the threshold u used previously.

2.2.3 Threshold selection

Most of the methods involved in choosing the threshold, u, make use of the Pickands-

Balkema-de Haan Theorem 2.8. In general, we face two conflicting issues. If the threshold

is chosen too low it is possible to get biased estimates because the theorem does not apply.

On the other hand, if the threshold is set too high then only few data points will be

available and estimates will be prone to high standard errors. We therefore reduce bias by

lowering the number of observations in the tail and reduce variance by increasing it. This

is known as the bias-variance tradeoff.

The main objective is to choose a threshold so that enough events are selected to reduce

the variance, without inducing bias. The theory does not propose any objective method

for threshold determination; there are mainly graphical ad-hoc approaches. Some other

approaches include setting the threshold as some high percentile of the data; for instance,

DuMouchel (1983) suggests fitting a Generalized Pareto model to the data outside the

10th and 90th percentiles. Here, we concentrate on the most commonly used graphical

methods.

2.2.3.1 Threshold choice plot

Through this graph, we analyze the stability of the model estimation based on the fit of

different models, using thresholds in a given range.

Let X − u0 | X > u0 ∼ GPDξ0,σ0 . Let u1 be any other threshold such that u1 > u0.

The random variable X − u1 | X > u1 is also GPD with updated parameters σ1 =

σ0 + ξ0 (u1 − u0) and ξ1 = ξ0 (Lemma 7.22, McNeil et al. 2005). Setting

σ∗ = σ1 − ξ1u1, (2.18)
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Figure 2.1: Threshold choice plot with threshold around 0.98

σ∗ is independent of u1. Thus, the estimates σ∗ and ξ1 are constant for every u1 > u0 if

u0 is an appropriate threshold for the asymptotic approximation.

The threshold choice plot represents the points defined by:

{(u1, σ∗) : u1 ≤ xmax} and {(u1, ξ1) : u1 ≤ xmax} (2.19)

where xmax is the maximum of the observations. Thus, we select the threshold at the point

where estimates remain roughly constant.

Figure 2.1 shows an example of the threshold choice plot for simulated uniform data,

where a threshold around 0.98 is a reasonable choice.

2.2.3.2 Mean residual life plot

This plot is also called the mean excess plot and it is based on the theoretical mean of a

generalized Pareto distribution. If X is GPDξ,σ, then, provided ξ < 1,

E [X] =
σ

1− ξ
. (2.20)
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When ξ ≥ 1 the theoretical mean of X is infinite. Moreover, for any u > 0, the excess

distribution function of X is easily calculated to be

Fu (x) = Gξ,σ(u), σ (u) = σ + ξu. (2.21)

In particular, by equation (2.20), the mean excess function of X introduced in Definition

2.7 is then

e (u) =
σ (u)

1− ξ
=
σ + ξu

1− ξ
, (2.22)

provided ξ < 1, for 0 ≤ u < ∞ if 0 ≤ ξ < 1 and 0 ≤ u ≤ −σ/ξ if ξ < 0. It may

be observed that the mean excess function is thus linear in u, which is a characterizing

property of the GPD.

In practice, if X represents the excess over a threshold u0 and if a GPD approximation

above that threshold is good enough, the excess distribution over a higher threshold u > u0

is again GPD with the same parameter ξ and scale parameter σ+ ξ(u−u0) (Lemma 7.22,

McNeil et al. 2005). Therefore, by equation (2.20) we have:

e (u) =
σ + ξ (u− u0)

1− ξ
=

ξu

1− ξ
+
σ − ξu0

1− ξ
, (2.23)

where u0 ≤ u <∞ if 0 ≤ ξ < 1 and u0 ≤ u ≤ u0 − σ/ξ if ξ < 0.

The mean e(u) is thus linear in u and can easily be estimated using the empirical

sample mean. This fact is commonly used as a diagnostic for data admitting a GPD

model for the excess distribution.

Given a sample X1, ..., Xn, the estimator is given by

en (u) =

n∑
i=1

(Xi − u) I{Xi>u}

n∑
i=1

I{Xi>u}

, (2.24)

where I{·} is the indicator function and the sum in the denominator represents the number

of observations over the threshold u.

Thus, the mean residual life plot represents points defined by:

{(Xi,n, en (Xi,n)) : 2 ≤ i ≤ n} (2.25)
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Figure 2.2: Mean residual life plot with threshold around 2.5

where Xi,n denotes the i−th order statistic.

If the GPD model is appropriate for data exceeding a high threshold, (2.23) suggests

that the mean excess plot should become increasingly “linear” for higher values of u. In

general, a linear upward trend indicates a GPD model with positive shape parameter ξ;

a plot tending towards the horizontal indicates a GPD with approximately zero shape

parameter; a linear downward trend indicates a GPD with negative shape parameter.

An example of the mean excess plot for simulated standard normal data is displayed

in Figure 2.2. The threshold is selected to be around 2.5.

2.2.3.3 Dispersion index plot

Let X be a random variable with Poisson distribution with parameter λ. Then

P [X = k] =
e−λλk

k!
, k ∈ N (2.26)

and E [X] = Var [X]. If the number of events follows a Poisson distribution, the ratio of

the variance to the mean equals 1.
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Figure 2.3: Dispersion index plot with threshold around 5

Under suitable conditions (i.e. F ∈ MDA(H)) the exceedances over a threshold can

be approximated by a GPD. Moreover, EVT also shows that the occurrences of these

exceedances may be represented as a homogeneous Poisson point process. In particular,

if the Poisson point process approximation above a high threshold u is valid, the number

of exceedances above u in disjoint blocks of equal size constitutes an approximately i.i.d.

sample from the Poisson distribution. The so-called dispersion index DI, which is the ratio

of the sample variance to the sample mean, viz.

DI(u) =
s2

λ
(2.27)

should thus be close to 1. The dispersion index plot constitutes of points

{(Xi,n, DI (Xi,n)) : 2 ≤ i ≤ n} (2.28)

and we select a threshold at the point where the plot becomes close to 1. Figure 2.3 displays

the dispersion index plot for the data set ardieres included in the R POT package, where

a threshold around 5 seems to be reasonable.
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2.2.4 Measuring operational risk

The POT model can be used to quantify operational risk. We will assume that the chosen

threshold u satisfies a bias-variance tradeoff and that such u may be termed an unexpected

loss threshold. Following the procedure described by Medova et al. (2002), we have:

� The severity of the losses is modelled by the Generalized Pareto distribution. The

expectation of the excess loss distribution, i.e., the expected severity is a coherent5

risk measure given by:

E (X − u | X > u) =
σ + ξu

1− ξ
. (2.29)

� The number of exceedances Nu over the threshold u and the corresponding ex-

ceedance times follow a homogeneous Poisson point process with intensity given

by:

λ (u) :=

(
1 + ξ

u− µ
β

)− 1
ξ

. (2.30)

� The extra capital provision for operational risk over the unexpected loss threshold u

is estimated as the expectation of the excess loss distribution, scaled by the intensity

λ (u) of the Poisson process:

λ (u)E (X − u | X > u) = λ (u)
σ + ξu

1− ξ
, (2.31)

where u, σ, ξ and λ are the POT model parameters and time is measured in the same

units as the frequency of data collection (years, months, days, etc.).

� The total amount of capital provided against extreme operational risks for a time

period of length T will be calculated by:

uT + λ (u)T E (X − u | X > u) = uT + λ (u)T
σ + ξu

1− ξ
(2.32)

5A risk measure R (·) is coherent if it satisfies:

1. Monotonicity: If X ≤ Y ⇒ R (X) ≤ R (Y ).

2. Positive homogeneity: For all λ ≥ 0 R (λX) = λR (X).

3. Translation invariance: For all κ ∈ R, R (X + κ)=R (X) + κ.

4. Sub-additivity: R (X + Y ) ≤ R (X) +R (Y ).
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where uT may in the first instance be considered equal to u, under the assumption

of max-stability6.

Assuming that the excess distribution above u is GPD, we have that:

F̄ (x) = P (X > u)P (X > x | X > u)

= F̄ (u)P (X − u > x− u | X > u)

= F̄ (u) F̄u (x− u)

= F̄ (u)

(
1 + ξ

x− u
σ

)−1/ξ

. (2.33)

This formula may be inverted to obtain a high quantile of the underlying distribution,

which we interpret as a Value-at-Risk (VaR). For q ≥ F (u) we have that VaR at level q

is equal to

VaRq = u+
σ

ξ

((
1− q
F̄ (u)

)−ξ
− 1

)
. (2.34)

When VaR is exceeded, the actual loss can be much higher than VaR. To employ a

coherent risk measure, we consider the Expected Shortfall or conditional VaR (CVaR), i.e.

the expected loss once the VaR is exceeded. This measure is given by:

ESq = E (X | X > VaRq) =
1

1− q

ˆ 1

q

VaRx dx. (2.35)

Assuming the GPD approximation above u, the Expected Shortfall can be calculated using

(2.20) as

ESq = VaRq + E (X − VaRq | X > VaRq) =
VaRq

1− ξ
+
σ − ξu
1− ξ

. (2.36)

We can obtain estimates of both VaR and ES. Replacing F̄ (u) by its empirical estimate

Nu/n in (2.34), and replacing ξ and σ by their estimates, we get:

V̂aRq = u+
σ̂

ξ̂

((
n (1− q)
Nu

)−ξ̂
− 1

)
(2.37)

6Max-stability means that if X1, ..., Xd are iid copies of X,

max (X1, ..., Xd) d=
X − ad
bd
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and

ÊSq =
V̂aRq

1− ξ̂
+
σ̂ − ξ̂u
1− ξ̂

. (2.38)

2.2.5 Limitations of Extreme Value Theory

Extreme Value Theory (EVT) models are based upon an asymptotic approximation for

the tail distribution, which are very flexible in terms of the allowable tail shape behaviour.

The attraction of EVT based methods is that they can provide mathematically and statis-

tically justifiable parametric models for the tails of any distribution which can give reliable

extrapolations beyond the range of the observed data.

The Pickands-Balkema-de Haan theorem states that for sufficiently large values of the

threshold, under certain regularity conditions, the generalized Pareto distribution (GPD)

is the limit distribution of exceedances. However, one of the main issues in applying the

classical GPD approach is the threshold selection (i.e. at which level of extremity into the

tails of the data the GPD is a good model).

The threshold selection is a balance between reliability of the asymptotic approximation

versus the sample variance of estimators. The threshold must be sufficiently high to ensure

the threshold excesses are approximately GPD. However, the threshold cannot be too high

as this will reduce the sample size available for inference and thus increase variability of

the estimators.

As we saw in the previous sections, traditionally, data analysis with such models is

performed in two steps. In the first one, the threshold u, is chosen graphically by looking

at the mean excess plot (or some other graphical tools as described in Section 2.2.3) or

simply setting it at some high percentile of the data. Once a suitable value has been

determined, the threshold is then treated as a known fixed constant in later inference

and the remaining parameters are estimated. This approach suffers from concerns over

subjectivity about the threshold choice and not accounting for threshold uncertainty in
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inference. Moreover, only the observations above the threshold are used in the second

step.

Threshold selection is by no means an easy task, as observed by Davison and Smith

(1990) and Coles and Tawn (1994), among others. Choosing the threshold through a mean

excess plot or by choosing a certain percentile does not guarantee that an appropriate

selection was made in order to prevent model bias which is crucial for the use of the

asymptotic distribution as a model. Most of the literature has shown how threshold

selection influences parameter estimation (see Smith (1987) and Coles and Tawn (1996)).

Although some approaches have been developed to deal with these issues, the problem

remains.

Finally, for many applications, threshold selection may be critical for the extrapolated

tail behaviour, so the extra uncertainty associated with the threshold choice needs to be

accounted for. In this setting, Bayesian inference offers an alternative framework which

allows to overcome this uncertainty.

2.3 Bayesian inference in Extreme Value Theory

Bayesian inference is a powerful and increasingly popular statistical approach, which allows

one to deal with complex problems in a conceptually simple and unified way. In Bayesian

inference, parameters are random variables. Uncertainty or degree of belief with respect

to the parameters is quantified by probability distributions. The basic idea of Bayesian

inference is to set up a full probability model for both observed and unobserved quantities.

Inference is then based on the so-called posterior density, i.e. the conditional density of

the unobserved quantity conditional on the observed quantity. Additionally, it can be used

to incorporate expert opinions into data analysis and to combine different data sources.
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2.3.1 Bayesian framework

Bayesian techniques offer an alternative way to draw inferences from the likelihood func-

tion. As in the non-Bayesian setting, we assume data x = (x1, ..., xn) to be realizations of

a random variable whose density falls within a parametric family F = {f (x; θ) : θ ∈ Θ} (θ

is perhaps a collection of several parameters). However, parameters of a distribution are

now treated as random variables, more precisely we assume that Θ is distributed according

to the so-called prior density π (θ). The specification of this prior distribution enables us

to supplement the information provided by the data—which, in extreme value analysis, is

often very limited—with other sources of information.

Given Θ = θ we model our observed data x using the probability density function

f(x; θ). The likelihood function for θ is therefore L(θ | x) = f(x; θ).

We can combine both the prior and the likelihood using Bayes Theorem, which states

that

π (θ | x) =
π (θ)L(θ | x)

f (x)
, (2.39)

where

f (x) =


´

Θ
π (θ)L(θ | x)dθ if θ is continuous,∑

Θ

π (θ)L(θ | x) if θ is discrete.

(2.40)

Since f (x) is not a function of θ, calculations (numerical and algebraic) are usually

required only up to a proportionality constant. Therefore, we write Bayes theorem as

π (θ | x) ∝ π (θ)× L(θ | x), (2.41)

i.e.,

posterior ∝ prior× likelihood.

π (θ | x) is the posterior distribution of the parameter vector θ, θ ∈ Θ , i.e. the distribution

of θ after the inclusion of the data. This posterior distribution is often of great interest,

since the prior-posterior changes represent the changes in our beliefs after the data has
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been included in the analysis, hence the posterior density can be interpreted as our updated

knowledge about Θ after having observed x. Inference is typically based on reproducing all

or parts of the posterior density graphically (as graphs or contour plots). Another option

is to report e.g. posterior mean, mode, and quantiles.

However, many problems in Bayesian inference leave us with intractable distributions

that cannot be expressed in a closed form. The posterior or joint distribution that we are

interested in is often of high dimensionality, and in cases like mixture models can exhibit

an exponentially increasing number of modes. Therefore, we need a way of understanding

posterior densities which does not rely on being able to analytically integrate the kernel

of the posterior.

To solve this problem, numerous simulation-based methods have been developed and

implemented within the Bayesian paradigm, e.g. importance sampling (Ripley, 1987),

Markov Chains Monte Carlo (MCMC) algorithms (Casella and Robert, 1999) and particle

filtering (Doucet et al., 2001).

For this purpose, we will focus on Markov chain Monte Carlo (MCMC) methods,

which can be used to generate samples from the posterior distribution. A more detailed

explanation of MCMC methods is provided in Appendix A.

2.3.2 Basics of Bayesian inference for extremes

There are several reasons for preferring a Bayesian analysis of extremes over the more tra-

ditional likelihood approach. Since extreme data are (by their very nature) quite scarce,

the ability to incorporate other sources of information through a prior distribution has

obvious appeal. Bayes’ Theorem also leads to an inference that comprises a complete

distribution, meaning that the variance of the posterior distribution, for example, can be

used to summarize the precision of the inference, without having to rely upon asymp-

totic theory. Furthermore, the concept of the predictive distribution is implicit in the

Bayesian framework. This distribution describes how likely are different outcomes of a



2.3. Bayesian inference in Extreme Value Theory 28

future experiment. The predictive probability density function is given by

f (y | x) =

ˆ
Θ

f (y | θ) π (θ | x) dθ (2.42)

when θ is continuous, and analogously when θ is discrete.

From equation (2.42), we can see that the predictive distribution is formed by weighting

the possible values for θ in the future experiment f (y | θ) by how likely we believe they

are to occur after observing the data.

For example, a suitable model for threshold excess Y = X − u is Y ∼ GPD(σ, ξ). Es-

timation of θ = (σ, ξ) could be made on the basis of previous observations x = (x1, ..., xn).

Thus, in the Bayesian framework, we would have

P (Y ≤ y | x1, ..., xn) =

ˆ
Θ

P (Y ≤ y | θ) π (θ | x) dθ. (2.43)

Equation (2.43) gives the distribution of a future threshold excess, allowing for both

parameter uncertainty and randomness in future observations.

Solving

P (Y ≤ y | x1, ..., xn) = q (2.44)

for y therefore gives an estimate of the Value-at-Risk at level q ∈ (0, 1) that incorporates

uncertainty due to model estimation.

Although (2.42) may seem analytically intractable, it can be approximated if the pos-

terior distribution has been estimated using, for example, MCMC. After removal of the

“burn–in” period, the MCMC procedure gives a sample θ1, ..., θB that can be regarded as

realizations from the stationary distribution π (θ | x). Thus

P (Y ≤ y | x1, ..., xn) ≈ 1

B

B∑
i=1

P (Y ≤ y | θi) , (2.45)

which we can solve for y using a numerical solver.

Another reason lending appeal to Bayesian inference for extremes is that it is less

dependent on the regularity assumptions required by the theory of maximum likelihood.
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For example, when ξ < −0.5, maximum likelihood estimation breaks down (Smith, 1985).

In this case a Bayesian approach provides a feasible alternative.

2.3.3 Combining different data sources

As mentioned in Section 2.1.4, Basel II requires that operational risk models include the use

of several different sources of information: internal data, relevant external data, scenario

analysis and factors reflecting the business environment and internal control systems.

Additionally, it is widely recognized that estimation of operational risk distributions

cannot be done exclusively using historical data given the limited number of data available

and the difficulty of predicting future losses in a banking environment which is constantly

changing.

Thus, combining different sources of information is critical for estimation of operational

risk, especially for low-frequency/high-severity risks.

Shevchenko (2011) considers three ways that have been proposed to process different

data sources of information:

1. Ad-hoc procedures.

2. Bayesian methods.

3. General non-probabilistic methods.

We focus on the first two procedures only. General non-probabilistic methods are mainly

based on the Dempster-Shafer theory and probabilistic boxes. More on these subjects can

be found in Ferson et al. (2003).

2.3.3.1 Ad-hoc procedures

One suggested method for the ad-hoc combining is based on mixing of distributions, where

the loss distribution is expressed as:
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w1FSA (x) + w2Fint (x) + (1− w1 − w2)Fext (x) , (2.46)

where FSA (x), Fint (x) and Fext (x) are the distributions identified by scenario analysis,

internal data and external data, respectively, using expert specified weights w1 and w2.

After that, we can apply the minimum variance principle, where the combined esti-

mator is a linear combination of the individual estimators obtained from internal data,

external data and expert opinion separately, with the weights chosen to minimize the

variance of the combined estimator.

Consider two unbiased independent estimates θ̂1 and θ̂2 for a parameter θ, i.e. E
[
θ̂m

]
=

θ; Var
[
θ̂m

]
= σ2

m, m = 1, 2.

The combined unbiased estimator is:

θ̂tot = w1θ̂1 + w2θ̂2, w1 + w2 = 1 (2.47)

and

Var
(
θ̂tot

)
= w2

1σ
2
1 + (1− w1)2 σ2

2 (2.48)

Then choose weights to minimize Var
(
θ̂tot

)
, namely

ŵ1 =
σ2

2

σ2
1 + σ2

2

, ŵ2 =
σ2

1

σ2
1 + σ2

2

. (2.49)

This technique can be easily extended to combine three or more estimators.

θ̂tot = w1θ̂1 + · · ·+ wK θ̂K , w1 + · · ·+ wK = 1 (2.50)

and

wi =
1/σ2

i

K∑
k=1

(1/σ2
k)

. (2.51)

Heuristically, this can be applied to almost any quantity, including a distribution pa-

rameter or distribution characteristic such as mean, variance or quantile. The assumption

that the estimators are unbiased estimators for θ is probably reasonable when combining
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estimators from different experts (or from expert and internal data). However, it is cer-

tainly questionable if applied to combine estimators from the external and internal data

(Shevchenko, 2011).

2.3.3.2 Bayesian methods

Different methodologies have been proposed in the literature in order to combine differ-

ent sources of information. Here, we only show part of the methodology suggested by

Lambrigger et al. (2007). They consider the following assumptions:

� Loss frequency and severity are modelled by parametric distributions (e.g. Poisson

for the frequency or Pareto, lognormal, etc. for the severity). In any case, the

parameter vector θ has to be estimated.

� Before we have any internal data, only external data are available and the best pre-

diction for the parameter θ is given by the belief in the available external knowledge.

The parameter of interest is modelled by a prior distribution corresponding to a

random vector Θ.

� The true specific parameter θ0 is treated as a realization of a random vector Θ, where

Θ corresponds to the whole data (including external and internal data) and θ stands

for the unknown parameter of the specific entity being considered.

� As time passes, internal dataX = (X1, ..., XK)′ and expert opinions ∆ = (∆1, ...,∆M)

about θ become available.

� X and ∆ are assumed to be conditionally independent given Θ, with joint density

h (x, δ | θ) = h1 (x | θ)h2 (δ | θ) , (2.52)

where h1 and h2 are the conditional densities of X and ∆ given Θ.
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� Assuming that observations and expert opinions are conditionally independent and

identically distributed, given Θ = θ, we have that

h1 (x | θ) =
K∏
k=1

f1 (xk | θ) , (2.53)

h2 (δ | θ) =
M∏
m=1

f2 (δm | θ) , (2.54)

where f1 and f2 are the marginal densities of a single internal observation and a

single expert opinion, respectively.

Now, by considering the unconditional joint density of X and ∆, denoted by h (x, δ) and

using Bayes’ theorem,

h (x, δ | θ) π (θ) = π (θ | x, δ)h (x, δ) (2.55)

and hence the posterior density satisfies

π (θ | x, δ) ∝ π (θ)h (x, δ | θ) . (2.56)

The posterior density is then

π (θ | x, δ) ∝ π (θ)
K∏
k=1

f1 (xk | θ)
M∏
m=1

f2 (δm | θ) . (2.57)

2.3.4 Prior elicitation

Elicitation is another part of the process of statistical modelling. Garthwaite et al. (2004)

define elicitation as “the process of formulating a person’s knowledge and beliefs about one

or more uncertain quantities into a (joint) probability distribution for those quantities”. In

a Bayesian context, it arises most usually as a method for specifying the prior distribution

for one or more unknown parameters of a statistical model. However, there are some other

contexts in which elicitation is important.



2.3. Bayesian inference in Extreme Value Theory 33

2.3.4.1 The elicitation process

The elicitation of information is not an easy task, even if it only aims to extract the

expert’s beliefs about an event or particular hypothesis. Even when the expert is familiar

with probabilities and their meaning, it is not easy to assign a probability value to an

event accurately.

It is convenient to think of the elicitation process as a task that involves a facilitator

who assists the expert to formulate his knowledge in a probabilistic way. Sometimes, if

the expert is familiar with statistical concepts, then there may be no formal need for a

facilitator, although this is rare in practice.

To carry out this process, four stages have been identified:

1. Setup. It consists of selecting and training the expert(s), identifying what aspects

of the problem to elicit, etc.

2. Elicitation. It is the extraction of information from the expert and it is the core of

the process.

3. Fit. A probability distribution is fitted to the information obtained in the second

stage.

4. Evaluation. This stage involves assessing the adequacy of the elicitation, with the

option of returning to the second stage and eliciting more summaries from the ex-

pert(s).

Despite the difficulties to carry out the elicitation process, it is a valuable tool since

it facilitates decision-making and allows to make inference. Furthermore, it brings the

analysis closer to the application by demanding attention to what is being modelled, and

what is reasonable to believe about it. Similarly, it helps to summarize the posterior

distribution by meaningful quantities.
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To decide whether the process has been performed successfully, it is important to

distinguish between the quality of an expert’s knowledge and the accuracy with which this

knowledge has been translated into a probabilistic form.

A successful elicitation process faithfully represents the opinion of the person being

elicited, which does not necessarily mean that it is the correct view.

2.3.4.2 Elicitation and extreme events

It is reasonable to hope that experts should provide relevant prior information about

extremal behaviour, since they have specific knowledge of the characteristics of the data

under study.

Unfortunately, when we consider unlikely events, these are hard to evaluate. In this

case, expert opinion plays an important role due to the scarcity of data. It has been

observed that in general people are capable of estimating proportions, modes and medians

of samples. However, when dealing with highly skewed distributions several errors may

occur.

To avoid these problems, the questions should be formulated in an intuitive way. Stein-

hoff and Baule (2006) suggest the following questions:

1. Which events of severity between x and y do you remember?

2. How many of those events have happened in a year on average?

3. How many of those events happened in a good year (minimum) and in a bad year

(maximum)?

They also point out that these questions are quite easy if, on average, there is more than

one event a year. However, the crucial losses are usually the low-frequency, high-impact

events that occur very rarely. In such case, they suggest some changes to the questions as

follows:

2a. How many extreme events happened in the past 10 or xx years?
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3a. How many extreme events can happen in the chosen time range in worst- and

best-case scenarios?

To obtain more accurate results, the last two questions might be changed into:

� How many years will we have to wait, all things being equal, to observe an event of

severity x (or above)?

2.3.4.3 Distribution fitting

As we saw in the previous paragraphs, expressing prior beliefs directly in terms of the

distribution parameters is not a simple job. Depending on the questions we ask, expert

opinions on potential losses and corresponding probabilities are often expressed as:

� Opinion on the distribution parameter;

� Opinions on the number of losses with the amount to be within some ranges;

� Separate opinions on the frequency of the losses and quantiles of the severity;

� Opinion on how often the loss exceeding some level may occur.

Usually, if the expected values for the quantiles (or mean) and their uncertainties are

estimated by the expert then it is possible to fit the priors.

It is very unusual that experts express their beliefs in terms of the distribution param-

eters. Instead, they provide some quantities such as quantiles or other risk characteristics.

If we consider this situation, it might be better to assume some priors for these quantities

that will imply a prior for the parameters.

Let θ = (θ1, ..., θn) be the model parameters and di = gi (θ), i = 1, ..., n be risk

characteristics that can be elicited from experts, such as specific quantiles, expected values,

return level, etc. Assuming that experts specify the joint prior π (d1, ..., dn), we can obtain

the prior for θ1, ..., θn by using the transformation method as follows:
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π (θ) = π (g1 (θ) , ..., gn (θ))

∣∣∣∣∂ (g1 (θ) , ..., gn (θ))

∂ (θ1, ..., θn)

∣∣∣∣ , (2.58)

where the second factor on the right-hand side is the Jacobian determinant of the trans-

formation.

Since there is possible dependence between parameters, it is helpful to choose charac-

teristics such that independence can be assumed.

Coles and Tawn (1996) and Coles and Powell (1996) elicit prior information in terms

of extreme quantiles, arguing that this is a scale on which an expert is most likely to be

able to accurately quantify their prior beliefs about extremal behaviour.

If the prior for quantiles q1 < · · · < qn (for specific probability values p1 < · · · < pn) is

to be specified, in order to respect the ordering we can work instead with the differences

d1 = q1 − e1, d2 = q2 − q1, ..., dn = qn − qn−1,

where e1 is a physical lower end point for the process variable.

Under this setting it is reasonable to assume independence between these differences

and impose constraints di > 0, i = 2, ..., n.

If the experts assign marginal priors π (d1) , ..., π (dn) then the full joint prior is

π (d1, ..., dn) = π (d1)× · · · × π (dn) . (2.59)

Hence, the prior for θ1, ..., θn can be calculated using (2.58).

2.3.5 Advantages and challenges of Bayesian inference in EVT

Recently, Bayesian inference has been focused on the development of mixture type models,

which typically treat the threshold as a model parameter to be estimated, and so also

automatically accounts for the uncertainty associated with the threshold selection. For

example, Behrens et al. (2004) use a truncated Gamma distribution for observations below

the threshold and the GPD approach for observations exceeding the threshold. Tancredi et
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al. (2006) propose to model extreme and non-extreme data with a distribution composed

of a piecewise constant density from a low threshold up to an unknown end point and a

GPD with threshold for the remaining tail part.

In both examples, Bayesian inference is used for fitting the mixture model as it can take

advantage of any expert prior information, which can be important in tail estimation due to

the inherent sparsity of extremal data. There are distinct benefits and potential drawbacks

to the mixture modelling approach when compared to the classical fixed threshold method.

The principal advantages are that the threshold is estimated avoiding the often subjective

choice in the classical approach and the uncertainty associated with the estimation is

accounted for in inference, which is rather challenging for the fixed threshold method.

The automated threshold estimation is a major benefit when trying to automate fitting

the GPD to multiple datasets.

The principal drawbacks are the added complexity of estimating the additional param-

eters and the fit in the bulk of the distribution (or the alternate tail) may have an influence

on the tail fit. It is clear that different parameters values could give similar model fits.

However, in most of the cases, Bayesian inference provides reliable parameter estimates,

the threshold included. This will be studied more closely in the next chapters.

2.4 Conclusions of the Chapter

In this chapter we have studied the importance of measuring operational risk, as well

as the integrated risk framework established by Basel II, which defines the guidelines to

measure the capital adequacy of financial institutions. Furthermore, we have presented

the fundamentals of Extreme Value Theory through various definitions and theorems,

along with practical aspects for estimating and assessing statistical models for heavy-tailed

events.

One of the most important aspects that has been addressed in this chapter is the
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subjectivity in the threshold selection by using graphical methods. This is one of the most

controversial aspects of Extreme Value Theory and, possibly, its main weakness.

Moreover, we have shown how Bayesian inference is a powerful alternative to handle

the threshold issue and to include expert opinion, as stated in Basel II. Similarly, we have

introduced the concept of elicitation and showed how this process may be carried out,

playing a fundamental role in the estimation due to the scarcity of data.

All the material presented in this chapter will help us to understand the work presented

in subsequent chapters.



Chapter 3

A Bayesian model for operational

risk

The use of Bayesian methods in extreme value modelling has recently become more com-

mon. Several models have been proposed in the literature. For example, Pickands (1994)

discusses Bayesian estimation of extreme quantiles assuming independent non-informative

priors among parameters. Bermudez et al. (2001) propose a Bayesian predictive approach

for the choice of the threshold. Behrens et al. (2004) develop an extreme value mixture

model by combining a parametric bulk model below the threshold with a GPD above the

threshold. Several models have been derived from this last mixture model. For instance,

Mendes and Lopes (2004) and Zhao et al. (2009) propose a mixture with a normal distri-

bution for the bulk, with both tails represented by separate threshold models. Carreau and

Bengio (2009) propose a hybrid Pareto by splicing a normal distribution with a GPD and

setting continuity constraints on the density and on its first derivative at the threshold.

Cabras and Castellanos (2010) consider a semiparametric bulk model spliced with a GPD

upper tail. Do Nascimento et al. (2011) extended the model of Behrens et al. (2004) by

defining the bulk distribution as a weighted mixture of Gamma densities.

Due to its notable influence, for the purposes of this thesis, we focus our attention

39
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on the model developed by Behrens et al. (2004). We refer the reader to Scarrott and

MacDonald (2012) for a detailed review of Bayesian methods in extreme value modelling.

3.1 General model

The model proposed in this chapter is based on the work of Behrens et al. (2004), where

the uncertainty in the threshold selection is incorporated by choosing a prior, possibly flat,

for it to compose the model.

Consider X1, ..., Xn independent and identically distributed observations and u the

threshold. We assume that observations below the threshold come from a certain distri-

bution with parameters η, denoted by FH (· | η), while those above the threshold come

from a GPD, denoted by FG (x | u, σ, ξ). Therefore, the distribution function FB, of any

observation X, can be written as:

FB (x | η, u, σ, ξ) =


FH (x | η) , x < u,

FH (u | η) + [1− FH (u | η)]FG (x | u, σ, ξ) , x ≥ u.

(3.1)

The likelihood is:

L (θ;x) =
∏
A

fH (x | η)
∏
B

[1− FH (u | η)]

[
1

σ

(
1 +

ξ (xi − u)

σ

)− 1+ξ
ξ

+

]
(3.2)

for ξ 6= 0 and

∏
A

fH (x | η)
∏
B

[1− FH (u | η)]

[
1

σ
exp

{(
xi − u
σ

)}]
(3.3)

for ξ = 0, where θ = (η, u, σ, ξ), x = (x1, ..., xn), A = {i : xi < u} andB = {i : xi ≥ u}.

Figure 3.1 is a representation of this model. We can observe that the density has a

discontinuity at the threshold u. Depending on the parameters, the density jump can be

larger or smaller, and in each case the choice of which observations will be considered as

exceedances can be more obvious or less evident.
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Figure 3.1: Representation of the mixture model

3.1.1 Priors

Prior for parameters below the threshold

To model observations below the threshold through a parametric form, it is always better

to try to obtain a conjugate prior to simplify the problem analytically.

Given that operational losses are non-negative, a convenient choice is the Gamma distri-

bution. We have η = (α, β) and reparameterizing as µ = α/β, we can set α ∼ Gamma (a, b)

and µ ∼ Gamma (c, d) where a, b, c and d are known hyperparameters. Therefore the joint

prior of η = (α, β) is:

π (η) =
ba

Γ (a)
αa−1e−bα

dc

Γ (c)

(
α

β

)c−1

e
−dα/β

(
α

β2

)
. (3.4)

Prior for the threshold

To set up a prior distribution for the threshold, we can assume that u follows a truncated

normal distribution with parameters (µu, σu), truncated from below at e1 (the minimum

of the data). Setting µu at some high data percentile and σu large enough to represent a
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fairly non-informative prior, the density becomes, for u > e1,

π
(
u | µu, σ2

u, e1

)
=

1√
2πσ2

u

exp

{
−1

2

(
u− µu
σu

)2
}

Φ

[
−
(
e1 − µu
σu

)] . (3.5)

A continuous uniform prior is an alternative. A discrete distribution can also be as-

sumed. In this case, u could take any value between certain high data percentiles which

is convenient for applications as it facilitates posterior computation.

Prior for the GPD parameters

Coles and Tawn (1996) point out that increasing σ or ξ leads to a longer-tailed distribution,

so a priori negative dependence between these parameters is expected. To avoid the

assumption of independent priors on the GPD parameters, we use an elicitation method

as outlined in Section 2.3.4.3.

In their paper, Behrens et al. (2004) call q = u + σ
ξ

(
p−ξ − 1

)
the return level1 and

elicitation of the prior information is done in terms of (q1, q2, q3), in the case of location–

scale parameterization of the GPD, for specific values of p1 > p2 > p3. We consider

more appropriate to treat q as the Value-at-Risk, since it is derived in terms of the GPD

parameters. We should also notice that in this case p is a fixed value and the probability

of exceeding the threshold is not considered. We will return to this issue later in Chapter

4, when we discuss prior sensitivity. For now, our main concern is to provide some insight

into how the priors are chosen.

In Behrens et al. (2004), the prior for ξ and σ is computed by choosing two levels

q1 < q2 and setting d1 = q1 and d2 = q2 − q1 to be Gamma. Concretely, we have the

following Gamma distributions with known hyperparameters: d1 = q1 ∼ Gamma(a1, b1)

1The return level is the level that is expected to be exceeded, on average, once every 1/p years (called
the return period), where p is the probability of the extreme event occurring. It is obtained by computing
the inverse of the GEV, although in their paper Behrens et al. (2004) define the return level in terms of
the GPD parameters.
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and d2 = q2 − q1 ∼ Gamma(a2, b2). The hyper parameters a1, b1, a2 and b2 are typically

obtained from the experts’ information; this will be treated in detail in Chapter 4.

In order to derive the marginal prior distribution for σ and ξ, we have:

π (σ, ξ) ∝ π (d1) π (d2)

∣∣∣∣∂ (d1, d2)

∂ (σ, ξ)

∣∣∣∣ =

∣∣∣∣∂d1

dσ
× ∂d2

dξ

∣∣∣∣− ∣∣∣∣∂d1

dξ
× ∂d2

dσ

∣∣∣∣ . (3.6)

To find the Jacobian

∣∣∣∣∂ (d1, d2)

∂ (σ, ξ)

∣∣∣∣ :

∂d1

dσ
=

p−ξ1

ξ
− 1

ξ
, (3.7)

∂d2

dσ
=

p−ξ2

ξ
− p−ξ1

ξ
,

∂d1

dξ
= −σp

−ξ
1

ξ2
+
σp−ξ1 ln p1

ξ
+
σ

ξ2
,

∂d2

dξ
= −σp

−ξ
2

ξ2
+
σp−ξ2 ln p2

ξ
+
σp−ξ1

ξ2
− σp−ξ1 ln p1

ξ
.

Hence

∂d1

dσ
×∂d2

dξ
−∂d1

dξ
×∂d2

dσ
=
σ (p1p2)−ξ ln p2

ξ2
−σp

−ξ
2 ln p2

ξ2
+
σp−ξ1 ln p1

ξ2
−σ (p1p2)−ξ ln p1

ξ2
, (3.8)

and therefore

π (σ, ξ) ∝
[
u+ σ

ξ

(
p−ξ1 − 1

)]a1−1

exp
[
−b1

{
u+ σ

ξ

(
p−ξ1 − 1

)}]
×
[
u+ σ

ξ

(
p−ξ2 − p

−ξ
1

)]a2−1

exp
[
−b2

{
σ
ξ

(
p−ξ2 − p

−ξ
1

)}]
×
∣∣∣− σ

ξ2

[
(p1p2)−ξ (log p2 − log p1)− p−ξ2 log p2 + p−ξ1 log p1

]∣∣∣
. (3.9)

If we consider the case ξ = 0, it is possible to assign a positive probability to this

point and then the prior distribution would be a mixture between the prior distribution

corresponding to the case ξ = 0 and the prior distribution corresponding to the case ξ 6= 0.

In finance, there are some risk measures used in practice and it would be convenient

to specify priors in terms of these measures. This will be discussed in the next chapter.

3.1.2 Posterior inference

From the likelihood (3.2) and the prior distributions specified before, using the Bayes

theorem we can obtain the posterior distribution, which is given as follows (Section 3.4,
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Behrens et al. 2004):

log p(θ | x) = K +
n∑
i=1

I (xi < u) [αlogβ − logΓ (α) + (α− 1) logxi − βxi]
n∑
i=1

I (xi ≥ u) log

[
1−

ú

0

βα

Γ(α)
tα−1e−βtdt

]
−

n∑
i=1

I (xi ≥ u) logσ

−1+ξ
ξ

n∑
i=1

I (xi ≥ u) log
[
1 + ξ(xi−u)

σ

]
+(a− 1)logα− bα + (c− 1)log

(
α
β

)
=d
(
α
β

)
+ log

(
α
β2

)
+ 1

2σu
(uµu)

2 + (a1 − 1)log
[
u+ σ

ξ

(
p−ξ1 − 1

)]
−b1

σ
ξ

(
p−ξ1 − 1

)
+ (a2 − 1)logu+ σ

ξ

(
p−ξ2 − p

−ξ
1

)
− b2

σ
ξ

(
p−ξ2 − p

−ξ
1

)
+log

∣∣∣− σ
ξ2

[
(p1p2)−ξ (log p2 − log p1)− p−ξ2 log p2 + p−ξ1 log p1

]∣∣∣

.

(3.10)

In (3.10) K is the normalizing constant and θ = (η, u, σ, ξ). We only show the posterior

with the likelihood for the case ξ 6= 0 and with a normal prior for the threshold. However,

the case ξ = 0 can be considered in the model as well.

As expected, the posterior has no closed form and the implementation of Markov Chain

Monte Carlo methods is required. Computations will be done via the Metropolis–Hastings

steps within a blockwise algorithm. The algorithm is shown in Appendix A.

3.1.3 Performance in simulations

The algorithm was tested first with simulated data, generated for fixed values of α, β, u, σ

and ξ, based on different characteristics such as skewness, tail behaviour and number of

observations available for estimation of these parameters.

For each scenario we considered a sample size of n = 1000 and different combinations

of parameters, by varying the value of the shape parameter (ξ); data below the threshold

were simulated using a Gamma distribution.
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100,000 Iterations

Parameter Posterior

mean

Posterior

median

Posterior

std

Credible

interval

True

value

α 1.342 1.342 0.002 (1.268, 1.438) 1.350

β 0.292 0.290 0.003 (0.257, 0.330) 0.290

u 1.492 1.389 0.068 (1.211, 2.221) 1.400

σ 3.684 3.677 0.072 (3.170, 4.209) 3.500

ξ -0.080 -0.083 0.003 (-0.182, 0.035) -0.100

Table 3.1: Posterior MCMC estimates for n=1000 simulated data from a Gamma-GPD mixture,

with ξ = −0.1

We display here the results for the following combination of parameters.

p = 0.1,

α = 1.35, 0.5,

β = 0.29, 0.2,

σ = 3.5,

ξ = −0.1, 0.2.

The value of u is defined automatically by the sample size and the quantile p. We started

by drawing a number n of observations from a Gamma(α, β) and u was defined as the 1−p

quantile of this sample; n1 observations below this value were retained, and the sample

size was completed by drawing n2 = n− n1 observations from u+ GPDσ,ξ.

Results for ξ = −0.1 are shown in Table 3.1 and Figures 3.2 and 3.3. In all cases, the

estimates are very close to the true values and convergence seems to be achieved. We also

display the estimates for ξ = 0.2 in Table 3.2. Again, the estimates are close to the true

values.
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100,000 Iterations

Parameter Posterior

mean

Posterior

median

Posterior

std

Credible

interval

True

value

α 0.510 0.508 0.020 (0.493, 0.512) 0.5

β 0.203 0.202 0.014 (0.197, 0.212) 0.2

u 5.944 6.312 2.319 (5.998, 6.451) 6.0

σ 3.625 3.629 0.665 (3.484, 3.810) 3.5

ξ 0.187 0.178 0.121 (0.177, 0.191) 0.2

Table 3.2: Posterior MCMC estimates for n=1000 simulated data from a Gamma-GPD mixture,

with ξ = 0.2

Figure 3.2: Trace plots of the MCMC samples from the posterior density for n=1000 simulated

data from a Gamma-GPD mixture, with ξ = −0.1. 100,000 iterations after burn-in
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Figure 3.3: Histograms of the MCMC samples from the posterior density for n=1000 simulated

data from a Gamma-GPD mixture, with ξ = −0.1. 100,000 iterations after burn-in

3.2 An application to operational risk data

In this section, the objective is to make use of the Bayesian model presented in the previous

section to analyze operational risk data.

3.2.1 Data description

Unfortunately, in many countries the record of operational risk losses has not yet been

formalized. The number of institutions that report their operational losses and the avail-
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ability of information are still limited, so obtaining data to carry out this work was not

an easy task.

In an ideal scenario, we should have a database containing all risk events and their

corresponding Basel II categories. However, the available data are still insufficient and

most of them have been collected for a short period of time.

In spite of this fact, it was possible to collect fraud data, one of the most frequent

operational risk events that has been a constant concern in the financial sector. The

data consist of 626 observations for fraud losses in 41 banks in Mexico, recorded between

January 2007 and April 2010. These data were obtained during a summer internship at

the Bank of Mexico and were used for research purposes only. The names of the banks

were changed into capital letters to preserve their anonymity.

Due to the large differences in banks sizes and their respective losses, these were scaled

by the asset size of each bank at the time of the event considered and multiplied by one

million2.

3.2.2 Exploratory analysis

As a first approach, we determined the main descriptive statistics (Table 3.3). Similarly,

the behaviour of the data over time was observed by using graphical tools (Figure 3.4).

In all cases, one may identify the presence of possible extreme events. Also, we observe

a concave shape in the quantile-quantile plot when it is compared to the exponential

2To perform the scaling of data it is important to consider the work of Shih et al. (2000); they found
a relationship between the size of the institution and the magnitude of its losses. This paper highlights
some aspects:

� The size of an institution is related to the magnitude of its loss, but the relationship is not necessarily
linear.

� The size represents a very small proportion (about 5%) of the variability in the loss severity.

The scaling performed is a simple approach to the relationship between the size of the institution and the
magnitude of its losses, as this is a subject of study itself, due to the heterogeneity between the banks
considered. Particularly, for the fraud risk, the types of frauds and their effects may differ widely from
one institution to another.

The use of scaled data allowed that not only losses corresponding to large banks exceeded the threshold,
but also smaller banks were incorporated into the analysis.
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distribution, indicating heavy-tailedness. This fact is supported by the value of the kurtosis

and appearance of the histogram of losses.

Figure 3.4: Top left: Monthly fraud losses (scaled by the asset size) in 41 banks from 01/2007

to 04/2010. Top right: Histogram of scaled fraud losses from 01/2007 to 04/2010. Bottom:

Exponential Q-Q plot for n=626 scaled fraud losses. We can infer the heavy-tailedness of the

data in all cases.
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Number of observations: 626 Standard deviation: 110.793

Mean: 51.930 Median: 19.890

Minimum: 0.0002 Skewness: 6.604

Maximum: 1509.410 Kurtosis: 66.678

Percentile (q) Percentile value (Xq)

q = 0.25 X0.25 = 3.241

q = 0.50 X0.50 = 19.892

q = 0.75 X0.75 = 54.134

q = 1.00 X1.00 = 1509.416

Table 3.3: Descriptive statistics for n=626 fraud losses in 41 banks, recorded from 01/2007 to

04/2010

Runs

Parameter 10,000

Mean, Median, Std

25,000

Mean, Median, Std

100,000

Mean, Median, Std

α 0.553, 0.552, 0.029 0.553, 0.553, 0.029 0.552, 0.552, 0.029

β 0.014, 0.014, 0.001 0.014, 0.014, 0.001 0.014, 0.014,0.001

u 70.176, 72.980, 17.703 70.011, 72.980, 19.231 71.310, 72.980, 19.072

σ 93.033, 93.922, 19.847 93.392, 94.141, 20.673 94.173, 94.593,21.109

ξ 0.097, 0.092, 0.059 0.097, 0.091, 0.058 0.095, 0.089, 0.060

λ 38.147, 33.934, 13.255 38.411, 33.934, 13.538 37.752, 33.933, 13.523

Table 3.4: Posterior MCMC estimates for n=626 fraud losses in 41 banks, recorded from 01/2007

to 04/2010

3.2.3 Results

Two chains were run in R with 10,000, 25,000 and 100,000 iterations. The initial values

for the first chain were chosen by using classical estimators: α and β were set as the

maximum likelihood estimators, u = data 70th percentile, and σ and ξ the maximum

likelihood estimates (MLE’s). For the second chain, starting values were chosen far from

the maximum likelihood estimates used for the first chain. Run time varied from half an

hour to five hours in R.

The posterior mean, median and standard deviation of α, β, σ, u, ξ are shown in Table

3.4. We also estimate the rate of exceedances, i.e., the number of observations exceeding

the threshold u per year. This quantity is denoted by λ and it will not be used in further

analysis, although it is displayed in Table 3.4 as another model parameter.



3.2. An application to operational risk data 51

Figure 3.5: Mean excess plot (fraud data) Circled area represents the posterior range of u

Figure 3.5 shows the mean excess plot used in classical Extreme Value Theory for the

threshold selection. From the plot, one can see that the posterior range (circled area)

contains the value of u where the function becomes linear, about u ≈ 110.

In order to compare both chains, trace plots are displayed in Figure 3.6. Notice that

regardless of the starting values, the chains show convergence to the same value. A visual

examination of the ergodic mean behaviour seems to indicate that the chain actually

converges. Also, the histogram shows the distribution of the parameters for the first chain

(Figure 3.7).

Although the estimates seem to be stable, in order to study convergence in a more

formal way, we used the Gelman–Rubin statistic to compare the first and second chains

(Table 3.5 and Figure 3.8). Also, the effective sample size and the Heidelberg and Welch

diagnostics were used for the first chain (the one corresponding to the MLE’s as initial

values, Tables 3.6 and 3.7).
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Figure 3.6: Trace plots of the MCMC samples from the posterior density for n=626 fraud losses

in 41 banks, recorded from 01/2007 to 04/2010. Two chains for 100,000 iterations were run in

R: Gray colour is the first chain and black colour is the second chain

Parameter

Runs α β u σ ξ λ

10,000 1.000

(1.000)

1.010

(1.020)

1.070

(1.150)

1.050

(1.090)

1.050

(1.100)

1.140

(1.400)

25,000 1.000

(1.000)

1.000

(1.000)

1.000

(1.010)

1.000

(1.000)

1.000

(1.000)

1.000

(1.000)

100,000 1.000

(1.000)

1.000

(1.000)

1.000

(1.010)

1.000

(1.010)

1.000

(1.010)

1.000

(1.010)

Table 3.5: Gelman-Rubin statistic for the MCMC posterior estimates for n=626 fraud losses in

41 banks, recorded from 01/2007 to 04/2010. (Scale reduction factor and its 97.5% quantile)
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Figure 3.7: Histograms of the MCMC samples from the posterior density for n=626 fraud losses

in 41 banks, recorded from 01/2007 to 04/2010. 100,000 iterations

Parameter

Runs α β u σ ξ λ
10,000 639.790 573.720 122.370 128.560 158.040 82.210

25,000 1535.950 1417.400 309.280 327.280 342.040 232.110

100,000 5196.060 4262.690 1239.950 1409.310 1450.460 926.520

Table 3.6: Effective sample size for the MCMC posterior estimates for n=626 fraud losses in 41

banks, recorded from 01/2007 to 04/2010
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Figure 3.8: Gelman plots for the MCMC posterior estimates for n=626 fraud losses in 41 banks,

recorded from 01/2007 to 04/2010. 100,000 iterations

Results reported in Table 3.5 clearly indicate that the behaviour of both chains is

basically the same. The value of the Gelman–Rubin statistic is very close to 1 in all

cases, which occurs when the pooled within-chain variance dominates the between-chain

variance, meaning that at that point, all chains have escaped the influence of their starting

points and have traversed all of the target distribution.

The Heidelberg and Welch diagnostic, reported in Table 3.7, also indicates that the

first chain, which will be used in the analysis, achieves stationarity.

These results are essential to achieve an adequate estimation of the parameters.
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Result (p-value/ Halfwidth)

Runs Test Parameter

α β u σ ξ λ

10,000 Stat passed

(0.321)

passed

(0.151)

passed

(0.911 )

passed

(0.838)

passed

(0.883)

passed

(0.953)

Halfw passed

(0.002)

passed

(0.001)

passed

(2.687)

passed

(2.967)

passed

(0.008)

passed

(1.957)

25,000 Stat passed

(0.475)

passed

(0.611 )

passed

(0.383 )

passed

(0.276 )

passed

(0.225 )

passed

(0.217 )

Halfw passed

(1.320e-03)

passed

(7.590e-05 )

passed

(2.780)

passed

(3.220)

passed

(9.440e-03 )

passed

(2.130)

100,000 Stat passed

(0.852 )

passed

(0.939 )

passed

(0.884 )

passed

(0.854 )

passed

(0.897 )

passed

(0.859 )

Halfw passed

(8.200e-04 )

passed

(4.470e-05 )

passed

(1.240)

passed

(1.320)

passed

(3.680e-03 )

passed

(1.000)

Table 3.7: Heidelberg and Welch diagnostic for the MCMC posterior estimates for n=626 fraud

losses in 41 banks, recorded from 01/2007 to 04/2010

3.2.4 Operational risk measurement

Once the estimates are sufficiently accurate, we can compute the minimum capital require-

ment for different banks. The operational risk VaR and ES at levels 0.95, 0.99 and 0.999

can be computed as well from the MCMC samples, using formulas (2.37) and (2.38). Since

data were scaled, to determine the capital requirement for each bank, data were returned

to their original scale by multiplying them by the asset size and dividing by a million.

The values obtained with the different methods were compared to the current capital

requirement, which in most banks is calculated following the Basic Indicator Approach

(BIA). Tables 3.8–3.10 display the results for all banks.

Notice that, in general, the estimate of the minimum capital requirement obtained

from both the classical Peaks Over the Threshold and Bayesian inference is similar. How-

ever, in the Bayesian approach we have incorporated the threshold uncertainty and prior

information, leading to smaller estimates. Also notice that the capital requirement using

the BIA seems to overestimate (underestimate) the requirement. Figure 3.9 compares the

capital requirement using the BIA and the Bayesian estimate.



3.2. An application to operational risk data 56

Capital requirement Proportion of equity capital

Bank BIA POT Bayesian (runs) Equity BIA POT Bayesian(runs)

10000 25000 100000 capital 10000 25000 100000

A 107 169 154.44 154.46 154.72 2422.19 4.42% 6.98% 6.38% 6.38% 6.39%

B 112 67 60.91 60.92 61.02 2554.29 4.38% 2.62% 2.38% 2.38% 2.39%

C 2 3 2.69 2.69 2.69 412. 97 0.48% 0.73% 0.65% 0.65% 0.65%

D 5 7 6.19 6.19 6.20 420.63 1.19% 1.66% 1.47% 1.47% 1.47%

E 282 266 242.43 242.48 242.88 4520.69 6.24% 5.88% 5.36% 5.36% 5.37%

F 322 314 285.97 286.02 286.51 9388.67 3.43% 3.34% 3.05% 3.05% 3.05%

G 4805 4904 4471.30 4472.09 4479.60 153078.65 3.14% 3.20% 2.92% 2.92% 2.93%

H(*) 2 5 4.57 4.57 4.58 439.00 0.46% 1.14% 1.04% 1.04% 1.04%

I 6239 4470 4076.17 4076.90 4083.75 103496.22 6.03% 4.32% 3.94% 3.94% 3.95%

J 14 29 26.86 26.87 26.91 762.68 1.84% 3.80% 3.52% 3.52% 3.53%

K(*) 71 126 114.63 114.65 114.84 3497.53 2.03% 3.60% 3.28% 3.28% 3.28%

L(*) 1 3 2.77 2.77 2.78 690.29 0.14% 0.43% 0.40% 0.40% 0.40%

M 2272 2232 2035.11 2035.47 2038.89 40489.16 5.61% 5.51% 5.03% 5.03% 5.04%

N 147 157 143.22 143.25 143.49 2200.09 6.68% 7.14% 6.51% 6.51% 6.52%

O 36 71 65.02 65.03 65.14 1052.59 3.42% 6.75% 6.18% 6.18% 6.19%

P(*) 39 64 58.71 58.73 58.82 1523.23 2.56% 4.20% 3.85% 3.86% 3.86%

Q 53 39 35.84 35.84 35.90 4298.29 1.23% 0.91% 0.83% 0.83% 0.84%

R 9 28 25.82 25.82 25.86 689.20 1.31% 4.06% 3.75% 3.75% 3.75%

S(*) 22 52 47.75 47.76 47.84 1182.59 1.86% 4.40% 4.04% 4.04% 4.05%

T(*) 37 147 134.33 134.35 134.58 2101.42 1.76% 7.00% 6.39% 6.39% 6.40%

U 4 1 1.06 1.06 1.06 148.81 2.69% 0.67% 0.71% 0.71% 0.71%

V 38 43 39.00 39.00 39.07 1508.55 2.52% 2.85% 2.59% 2.59% 2.59%

W 2049 1644 1498.64 1498.91 1501.43 40099.08 5.11% 4.10% 3.74% 3.74% 3.74%

X 843 868 791.35 791.49 792.82 43254.84 1.95% 2.01% 1.83% 1.83% 1.83%

Y(*) 237 322 294.06 294.11 294.60 7371.61 3.22% 4.37% 3.99% 3.99% 4.00%

Z 175 300 273.30 273.35 273.81 3365.10 5.20% 8.92% 8.12% 8.12% 8.14%

AA 88 102 92.60 92.62 92.78 1993.36 4.41% 5.12% 4.65% 4.65% 4.65%

BB 196 256 233.37 233.41 233.80 4196.14 4.67% 6.10% 5.56% 5.56% 5.57%

CC(*) 111 130 118.62 118.64 118.84 4302.47 2.58% 3.02% 2.76% 2.76% 2.76%

DD 60 130 118.38 118.41 118.60 1058.72 5.67% 12.28% 11.18% 11.18% 11.20%

EE(*) 17 82 74.58 74.59 74.72 1680.43 1.01% 4.88% 4.44% 4.44% 4.45%

FF 27 59 53.99 54.00 54.09 1601.32 1.69% 3.68% 3.37% 3.37% 3.38%

GG(*) 8 15 13.58 13.58 13.60 513.85 1.56% 2.92% 2.64% 2.64% 2.65%

HH 3527 2496 2276.19 2276.59 2280.42 80529.98 4.38% 3.10% 2.83% 2.83% 2.83%

II 1086 678 618.04 618.15 619.19 25590.18 4.24% 2.65% 2.42% 2.42% 2.42%

JJ 23 44 39.93 39.94 40.01 798.56 2.88% 5.51% 5.00% 5.00% 5.01%

KK(*) 19 26 23.32 23.32 23.36 724.57 2.62% 3.59% 3.22% 3.22% 3.22%

LL(*) 1 8 7.16 7.17 7.18 385.56 0.26% 2.07% 1.86% 1.86% 1.86%

MM 43 53 48.27 48.28 48.36 925.07 4.65% 5.73% 5.22% 5.22% 5.23%

NN 7 7 6.65 6.65 6.67 495.64 1.41% 1.41% 1.34% 1.34% 1.34%

OO 2 7 6.69 6.69 6.70 992.76 0.20% 0.71% 0.67% 0.67% 0.67%

Table 3.8: Minimum capital requirement (Millions of pesos) for fraud losses in 41 banks
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VaR0.95 VaR0.99 VaR0.999

Bank POT Bayesian (Runs) POT Bayesian (Runs) POT Bayesian (Runs)

10000 25000 100000 10000 25000 100000 10000 25000 100000

A 8.26 8.25 8.26 8.28 18.55 15.78 15.79 15.82 46.13 28.69 28.67 28.68

B 3.26 3.25 3.26 3.27 7.32 6.22 6.23 6.24 18.19 11.32 11.31 11.31

C 0.14 0.14 0.14 0.14 0.32 0.27 0.27 0.28 0.80 0.50 0.50 0.50

D 0.33 0.33 0.33 0.33 0.74 0.63 0.63 0.63 1.85 1.15 1.15 1.15

E 12.97 12.95 12.96 13.00 29.13 24.77 24.78 24.83 72.41 45.04 45.01 45.03

F 15.30 15.28 15.29 15.33 34.36 29.22 29.24 29.29 85.42 53.13 53.09 53.12

G 239.28 238.87 239.12 239.69 537.16 456.86 457.11 458.03 1335.51 830.67 830.13 830.49

H(*) 0.24 0.24 0.24 0.25 0.55 0.47 0.47 0.47 1.37 0.85 0.85 0.85

I 218.13 217.76 217.99 218.51 489.70 416.49 416.72 417.55 1217.50 757.27 756.77 757.10

J 1.44 1.44 1.44 1.44 3.23 2.74 2.75 2.75 8.02 4.99 4.99 4.99

K(*) 6.13 6.12 6.13 6.14 13.77 11.71 11.72 11.74 34.24 21.30 21.28 21.29

L(*) 0.15 0.15 0.15 0.15 0.33 0.28 0.28 0.28 0.83 0.51 0.51 0.51

M 108.91 108.72 108.83 109.10 244.49 207.94 208.05 208.47 607.86 378.08 377.83 378.00

N 7.66 7.65 7.66 7.68 17.21 14.63 14.64 14.67 42.78 26.61 26.59 26.60

O 3.48 3.47 3.48 3.49 7.81 6.64 6.65 6.66 19.42 12.08 12.07 12.08

P(*) 3.14 3.14 3.14 3.15 7.05 6.00 6.00 6.01 17.54 10.91 10.90 10.91

Q 1.92 1.91 1.92 1.92 4.31 3.66 3.66 3.67 10.70 6.66 6.65 6.66

R 1.38 1.38 1.38 1.38 3.10 2.64 2.64 2.64 7.71 4.80 4.79 4.80

S(*) 2.56 2.55 2.55 2.56 5.74 4.88 4.88 4.89 14.26 8.87 8.87 8.87

T(*) 7.19 7.18 7.18 7.20 16.14 13.72 13.73 13.76 40.12 24.96 24.94 24.95

U 0.06 0.06 0.06 0.06 0.13 0.11 0.11 0.11 0.32 0.20 0.20 0.20

V 2.09 2.08 2.09 2.09 4.68 3.98 3.99 3.99 11.65 7.24 7.24 7.24

W 80.20 80.06 80.14 80.34 180.04 153.13 153.21 153.52 447.62 278.42 278.23 278.35

X 42.35 42.28 42.32 42.42 95.07 80.86 80.90 81.06 236.37 147.02 146.92 146.98

Y(*) 15.74 15.71 15.73 15.76 35.33 30.05 30.06 30.12 87.83 54.63 54.59 54.62

Z 14.63 14.60 14.62 14.65 32.83 27.93 27.94 28.00 81.63 50.77 50.74 50.76

AA 4.96 4.95 4.95 4.96 11.13 9.46 9.47 9.49 27.66 17.20 17.19 17.20

BB 12.49 12.47 12.48 12.51 28.04 23.84 23.86 23.91 69.70 43.36 43.33 43.35

CC(*) 6.35 6.34 6.34 6.36 14.25 12.12 12.13 12.15 35.43 22.04 22.02 22.03

DD 6.34 6.32 6.33 6.35 14.22 12.10 12.10 12.13 35.36 21.99 21.98 21.99

EE(*) 3.99 3.98 3.99 4.00 8.96 7.62 7.62 7.64 22.28 13.86 13.85 13.85

FF 2.89 2.88 2.89 2.89 6.49 5.52 5.52 5.53 16.13 10.03 10.02 10.03

GG(*) 0.73 0.73 0.73 0.73 1.63 1.39 1.39 1.39 4.05 2.52 2.52 2.52

HH 121.81 121.60 121.73 122.02 273.45 232.57 232.70 233.17 679.87 422.87 422.59 422.77

II 33.07 33.02 33.05 33.13 74.25 63.15 63.18 63.31 184.60 114.82 114.74 114.79

JJ 2.14 2.13 2.14 2.14 4.80 4.08 4.08 4.09 11.93 7.42 7.41 7.42

KK(*) 1.25 1.25 1.25 1.25 2.80 2.38 2.38 2.39 6.96 4.33 4.33 4.33

LL(*) 0.38 0.38 0.38 0.38 0.86 0.73 0.73 0.73 2.14 1.33 1.33 1.33

MM 2.58 2.58 2.58 2.59 5.80 4.93 4.93 4.94 14.42 8.97 8.96 8.97

NN 0.36 0.36 0.36 0.36 0.80 0.68 0.68 0.68 1.99 1.24 1.24 1.24

OO 0.36 0.36 0.36 0.36 0.80 0.68 0.68 0.68 2.00 1.24 1.24 1.24

Table 3.9: VaR at different levels (Millions of pesos) for fraud losses in 41 banks
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ES0.95 ES0.99 ES0.999

Bank POT Bayesian (Runs) POT Bayesian (Runs) POT Bayesian (Runs)

10000 25000 100000 10000 25000 100000 10000 25000 100000

A 11.60 12.16 12.16 12.18 21.89 19.69 19.69 19.73 49.46 32.60 32.58 32.59

B 4.57 4.79 4.80 4.81 8.63 7.76 7.77 7.78 19.51 12.86 12.85 12.85

C 0.20 0.21 0.21 0.21 0.38 0.34 0.34 0.34 0.86 0.57 0.57 0.57

D 0.46 0.49 0.49 0.49 0.88 0.79 0.79 0.79 1.98 1.31 1.31 1.31

E 18.21 19.08 19.10 19.13 34.36 30.9 30.92 30.97 77.65 51.17 51.14 51.16

F 21.48 22.51 22.53 22.56 40.53 36.45 36.47 36.53 91.59 60.36 60.33 60.35

G 335.82 351.95 352.20 352.77 633.71 569.94 570.19 571.11 1432.06 943.75 943.21 943.57

H(*) 0.34 0.36 0.36 0.36 0.65 0.58 0.58 0.58 1.46 0.97 0.96 0.96

I 306.15 320.85 321.07 321.60 577.71 519.57 519.80 520.64 1305.51 860.36 859.86 860.19

J 2.02 2.11 2.12 2.12 3.81 3.42 3.43 3.43 8.60 5.67 5.67 5.67

K(*) 8.61 9.02 9.03 9.04 16.25 14.61 14.62 14.64 36.71 24.19 24.18 24.19

L(*) 0.21 0.22 0.22 0.22 0.39 0.35 0.35 0.35 0.89 0.58 0.58 0.58

M 152.85 160.19 160.30 160.57 288.43 259.41 259.52 259.94 651.80 429.55 429.30 429.46

N 10.76 11.27 11.28 11.30 20.30 18.26 18.26 18.29 45.87 30.23 30.21 30.22

O 4.88 5.12 5.12 5.13 9.21 8.29 8.29 8.30 20.82 13.72 13.72 13.72

P(*) 4.41 4.62 4.62 4.63 8.32 7.48 7.49 7.50 18.81 12.39 12.39 12.39

Q 2.69 2.82 2.82 2.83 5.08 4.57 4.57 4.58 11.48 7.56 7.56 7.56

R 1.94 2.03 2.03 2.04 3.66 3.29 3.29 3.30 8.27 5.45 5.45 5.45

S(*) 3.59 3.76 3.76 3.77 6.77 6.09 6.09 6.10 15.29 10.08 10.07 10.08

T(*) 10.09 10.57 10.58 10.6 19.04 17.12 17.13 17.16 43.02 28.35 28.34 28.35

U 0.08 0.08 0.08 0.08 0.15 0.14 0.14 0.14 0.34 0.22 0.22 0.22

V 2.93 3.07 3.07 3.08 5.53 4.97 4.97 4.98 12.49 8.23 8.23 8.23

W 112.56 117.96 118.05 118.24 212.40 191.03 191.11 191.42 479.98 316.32 316.13 316.26

X 59.44 62.29 62.33 62.44 112.16 100.87 100.92 101.08 253.45 167.03 166.93 167.00

Y(*) 22.09 23.15 23.16 23.2 41.68 37.48 37.5 37.56 94.18 62.07 62.03 62.05

Z 20.53 21.51 21.53 21.56 38.73 34.84 34.85 34.91 87.53 57.69 57.65 57.67

AA 6.96 7.29 7.29 7.31 13.12 11.80 11.81 11.83 29.66 19.55 19.53 19.54

BB 17.53 18.37 18.38 18.41 33.08 29.75 29.76 29.81 74.74 49.26 49.23 49.25

CC(*) 8.91 9.34 9.34 9.36 16.81 15.12 15.13 15.15 37.99 25.04 25.02 25.03

DD 8.89 9.32 9.32 9.34 16.78 15.09 15.10 15.12 37.92 24.99 24.97 24.98

EE(*) 5.60 5.87 5.87 5.88 10.57 9.51 9.51 9.53 23.89 15.74 15.73 15.74

FF 4.06 4.25 4.25 4.26 7.65 6.88 6.89 6.90 17.29 11.40 11.39 11.39

GG(*) 1.02 1.07 1.07 1.07 1.92 1.73 1.73 1.73 4.35 2.87 2.86 2.86

HH 170.96 179.17 179.29 179.59 322.60 290.14 290.26 290.73 729.01 480.43 480.16 480.34

II 46.42 48.65 48.68 48.76 87.59 78.78 78.81 78.94 197.95 130.45 130.37 130.42

JJ 3.00 3.14 3.15 3.15 5.66 5.09 5.09 5.10 12.79 8.43 8.42 8.43

KK(*) 1.75 1.84 1.84 1.84 3.30 2.97 2.97 2.98 7.47 4.92 4.92 4.92

LL(*) 0.54 0.56 0.56 0.57 1.02 0.91 0.91 0.92 2.29 1.51 1.51 1.51

MM 3.63 3.80 3.80 3.81 6.84 6.15 6.16 6.17 15.46 10.19 10.18 10.19

NN 0.50 0.52 0.52 0.52 0.94 0.85 0.85 0.85 2.13 1.40 1.40 1.40

OO 0.50 0.53 0.53 0.53 0.95 0.85 0.85 0.85 2.14 1.41 1.41 1.41

Table 3.10: Expected Shortfall at different levels (Millions of pesos) for fraud losses in 41 banks
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Figure 3.9: Top: Bar plots of the Minimum capital requirement for fraud losses in each bank,

using the Basic Indicator Approach (Dark gray) and the Bayesian approach (Gray). Bottom:

Minimum capital requirement trend for fraud losses in each bank, using the Basic Indicator

Approach (Dark gray) and the Bayesian approach (Gray)
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Figure 3.10: Minimum capital requirement for fraud losses in each bank using the Basic Indicator

Approach vs. Bayesian approach

For the estimates of Value-at-Risk for operational risk, we obtained similar values with

both methods for VaR 95%. However, for VaR 99% and 99.9%, the POT method provides

much higher estimates.

Finally, in Figure 3.9, we confirm that in some cases the current capital estimate is

much higher with respect to the Bayesian one. Figure 3.10 shows the current capital

estimate (Bayesian Indicator Approach) against the Bayesian estimate.

3.2.5 Grouped data

The forty-one banks considered were classifed into four groups according to their size and

origin: BAC, FIL, G-7 and MED. Different models were fitted to each group.

The first group includes those banks linked to department stores while the second one

corresponds to subsidiary banks. G-7 groups the seven largest banks and MED consists

of medium size banks.
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100,000 Runs

Parameter BAC

Mean, Median, Std

All

Mean, Median, Std

α 0.682, 0.678, 0.097 0.552, 0.552, 0.029

β 0.012, 0.011, 0.002 0.014, 0.014,0.001

u 178.683, 182.513, 32.320 71.31, 72.980, 19.072

σ 322.281, 307.589, 127.466 94.173, 94.593, 21.109

ξ -0.673, -0.645, 0.315 0.095, 0.089, 0.060

Table 3.11: Posterior MCMC estimates for BAC data (n=75)

If we observe the scaled losses in the different groups (Figure 3.11), we may notice

that there are much fewer threshold exceedances in the first two groups than in the last

two. Also, we should highlight the fact that we have only 75 observations for BAC and

50 for FIL, while the number of observations is larger for G-7 and MED (270 and 231,

respectively). This makes the distribution of BAC and FIL not really heavy-tailed when

all data are pooled.

We might expect that the fitted distributions differ from group to group, as it is

shown in Tables 3.11–3.14, where the shape parameter of BAC clearly indicates that

its distribution is not heavy-tailed as it is for the other groups. Figure 3.12 shows the

fitted densities using the estimated parameters of the Gamma and GPD. In the first two

cases, the use of the GPD does not appear appropriate, however for the last two groups

the estimated densities seem to fit the data well. Something similar happens when we

estimate the parameters using all data together, in this case the estimated density shows

a good fit with the data.

Among other things, one might think that a bad fit is due to the fact that ξ < 0

imposes an upper bound on the density. This does not seem to be appropriate for the

BAC data. For FIL data, the threshold seems a bit too low. Additionally, in both cases,

we have a small number of observations.
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Figure 3.11: Scaled losses for fraud data subgroups: BAC (75 observations), FIL (50 observa-

tions), G-7 (270 observations) and MED (231 observations). (Dashed gray line is the threshold

value)
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100,000 Runs

Parameter FIL

Mean, Median, Std

All

Mean, Median, Std

α 0.971, 0.956, 0.203 0.552, 0.552, 0.029

β 0.005, 0.005, 0.001 0.014, 0.014, 0.001

u 177.035, 176.351, 11.984 71.310, 72.980, 19.072

σ 56.023, 53.075, 19.651 94.173, 94.593, 21.109

ξ 0.147, 0.145, 0.065 0.095, 0.089, 0.060

Table 3.12: Posterior MCMC estimates for FIL data (n=50)

100,000 Runs

Parameter G7

Mean, Median, Std

All

Mean, Median, Std

α 0.839, 0.834, 0.080 0.552, 0.552, 0.029

β 0.019, 0.019, 0.003 0.014, 0.014,0.001

u 38.024, 34.264, 11.710 71.31, 72.980, 19.072

σ 34.918, 34.482, 4.679 94.173, 94.593, 21.109

ξ 0.180, 0.179, 0.049 0.095, 0.089, 0.060

Table 3.13: Posterior MCMC estimates for G7 data (n=270)

100,000 Runs

Parameter MED

Mean, Median, Std

All

Mean, Median, Std

α 0.864, 0.860, 0.111 0.552, 0.552, 0.029

β 0.149, 0.147, 0.036 0.014, 0.014, 0.001

u 6.930, 6.742, 2.502 71.310, 72.980, 19.072

σ 18.102, 16.024, 8.695 94.173, 94.593, 21.109

ξ 0.351, 0.354, 0.093 0.095, 0.089, 0.060

Table 3.14: Posterior MCMC estimates for MED data (n=231)
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Figure 3.12: Original data and fitted densities using the MCMC posterior estimates of the

Gamma and GPD parameters (dashed gray line is the threshold value)
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3.2.5.1 Introducing a Reversible Jump Markov Chain Monte Carlo

algorithm

Due to the poor fit of the GPD for BAC and FIL data, we consider two models :

1. A mixture of a Gamma distribution and the GPD (Original model, M).

2. A Gamma distribution (M ′).

To determine which of these models is more appropriate for the different data sets, we

introduce a reversible jump step. The algorithm to do so is as follows:

1. Update the parameters θ and θ′ conditional on the model M or M ′, respectively,

using the Metropolis–Hastings algorithm.

2. Update the model conditional on the current parameter values using the following

steps:

a) Propose to move from model M to M ′.

b) Accept this proposed move with probability A.

where:

M = Model 1,

M ′ = Model 2,

θ = {α, β, u, σ, ξ} ,

θ′ = {α′, β′} .

Auxiliary variables:

u = {u1, u2, u3} .
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A function such that:

α′ = α,

β′ = β,

u1 = u,

u2 = σ,

u3 = ξ.

This is the identity function and therefore |J | = 1.

In order to preserve the support of u, σ and ξ we can set:

ui ∼ TN (ai, bi, µi, σi) , i = 1, 2 and u3 ∼ N (0, σ3) ,

where TN denotes the truncated normal distribution with mean µi, standard deviation σi,

and lower and upper truncation points ai and bi, respectively.

The acceptance probability is

min {1, A}

with

A =
π (M ′, θ′ | x)P (M |M ′) p (u1, u2, u3)

π (M, θ | x)P (M ′ |M)
, (3.11)

where

� π denotes the posterior distribution over parameter and model space.

� P is the probability of proposing to move to model M given the current state of the

chain is M ′, and viceversa.

� p is a proposal distribution.

See section A.5 of the Appendix for more details about RJMCMC methods.
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For performing the RJ step:

α = α′,

β = β′,

u = u1,

σ = u2,

ξ = u3.

with acceptance probability:

min
{

1, A−1
}
.

3.2.5.2 Results

Results for 20,000 iterations are shown in Tables 3.15–3.18. Figure 3.13 shows the be-

haviour of the chain when introducing the reversible jump step. We may notice that in

most cases the chain explores Model 2 (M ′) and immediately goes to Model 1 (M) and

stays there, except for the FIL data.

For G7 and MED data we expect Model 1 to be more suitable than Model 2. For

FIL and BAC data, Model 2 would seem to be a more suitable choice. Nonetheless, for

BAC data, the algorithm indicates that Model 1 is more appropriate. That might be a

consequence of the chosen distribution for the auxiliary variables u1, u2 and u3.

20,000 Runs

Parameter BAC

Mean, Median, Std

α 0.582, 0.580, 0.057

β 0.009, 0.009, 8.364e-05

u 180.947, 182.513, 30.576

σ 309.573, 330.354, 79.067

ξ -0.651, -0.648, 0.218

Table 3.15: Posterior RJMCMC estimates for BAC data (n=75)
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Figure 3.13: Jumps between Models 1 and 2 for the different fraud data subgroups
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20,000 Runs

Parameter FIL

Mean, Median, Std

α 0.897, 0.880, 0.171

β 0.054, 0.054, 0.001

u 194.388, 196.087, 5.543

σ 58.737, 58.442, 1.806

ξ 0.167, 0.169, 0.197

Table 3.16: Posterior RJMCMC estimates for FIL data (n=50)

20,000 Runs

Parameter G7

Mean, Median, Std

α 0.856, 0.854, 0.071

β 0.019, 0.019, 0.002

u 54.914, 54.408, 8.646

σ 29.465, 29.478, 1.254

ξ 0.193, 0.198, 0.007

Table 3.17: Posterior RJMCMC estimates for G7 data (n=270)

20,000 Runs

Parameter MED

Mean, Median, Std

α 0.874, 0.890, 0.105

β 0.158, 0.146, 0.025

u 7.142, 6.946, 5.223

σ 21.997, 26.316, 8.555

ξ 0.360, 0.350, 0.099

Table 3.18: Posterior RJMCMC estimates for MED data (n=231)

Tables 3.19–3.22 display the estimates of VaR and ES at different levels, for each group,

before and after introducing the reversible jump (RJ) step. We can observe that the RJ

step introduces some variation in the estimates and leads to higher estimates of VaR at

different levels for all the groups, except for G7.
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Before RJMCMC After RJMCM

Bank VaR0.95 VaR0.99 VaR0.999 VaR0.95 VaR0.99 VaR0.999

E 16.97 33.44 40.42 17.35 34.95 42.34

J 1.88 3.71 4.48 1.92 3.87 4.69

U 0.07 0.15 0.18 0.08 0.15 0.19

V 2.73 5.38 6.50 2.79 5.62 6.81

OO 0.47 0.92 1.11 0.47 0.96 1.17

Table 3.19: VaR at different levels before and after RJMCMC-BAC data

Before RJMCMC After RJMCMC

Bank VaR0.95 VaR0.99 VaR0.999 VaR0.95 VaR0.99 VaR0.999

B 5.10 7.25 11.34 5.39 7.84 12.72

K(*) 9.61 13.65 21.34 10.15 14.75 23.93

L(*) 0.23 0.33 0.52 0.25 0.36 0.58

P(*) 4.92 6.99 10.93 5.20 7.55 12.26

S(*) 4.00 5.69 8.89 4.23 6.14 9.97

T(*) 11.26 15.99 25.01 11.89 17.28 28.04

Y(*) 24.64 35.01 54.75 26.03 37.83 61.39

CC(*) 9.94 14.12 22.09 10.50 15.26 24.76

JJ 3.35 4.75 7.44 3.54 5.14 8.34

KK(*) 1.95 2.78 4.34 2.06 3.00 4.87

LL(*) 0.60 0.85 1.33 0.63 0.92 1.50

NN 0.56 0.79 1.24 0.59 0.86 1.39

Table 3.20: VaR at different levels before and after RJMCMC-FIL data

Before RJMCMC After RJMCMC

Bank VaR0.95 VaR0.99 VaR0.999 VaR0.95 VaR0.99 VaR0.999

G 149.87 262.95 493.66 131.43 222.90 416.50

I 136.63 239.71 450.03 119.82 203.20 379.70

M 68.22 119.68 224.69 59.82 101.45 189.57

W 50.23 88.13 165.46 44.05 74.71 139.60

HH 76.30 133.86 251.31 66.91 113.47 212.03

X 26.53 46.54 87.37 23.26 39.45 73.71

II 20.72 36.35 68.24 18.17 30.81 57.57

Table 3.21: VaR at different levels before and after RJMCMC-G7 data
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Before RJMCMC After RJMCMC

Bank VaR0.95 VaR0.99 VaR0.999 VaR0.95 VaR0.99 VaR0.999

A 2.09 4.90 13.07 3.11 7.58 20.45

C 0.04 0.09 0.23 0.05 0.13 0.36

D 0.08 0.20 0.52 0.12 0.30 0.82

F 3.86 9.08 24.20 5.76 14.04 37.87

H(*) 0.06 0.15 0.39 0.09 0.22 0.61

N 1.94 4.55 12.12 2.89 7.03 18.97

O 0.88 2.06 5.50 1.31 3.19 8.61

Q 0.48 1.14 3.03 0.72 1.76 4.75

R 0.35 0.82 2.18 0.52 1.27 3.42

Z 3.69 8.68 23.13 5.51 13.42 36.19

AA 1.25 2.94 7.84 1.87 4.55 12.26

BB 3.15 7.41 19.75 4.70 11.46 30.90

DD 1.60 3.76 10.02 2.39 5.81 15.68

EE(*) 1.01 2.37 6.31 1.50 3.66 9.88

FF 0.73 1.71 4.57 1.09 2.65 7.15

GG(*) 0.18 0.43 1.15 0.27 0.67 1.80

MM 0.65 1.53 4.09 0.97 2.37 6.39

Table 3.22: VaR at different levels before and after RJMCMC-MED data

3.2.5.3 An alternative for FIL and BAC data

This section is based on the paper by Venturini et al. (2008), where a Bayesian approach

for the estimation of tail probabilities of heavy-tailed distributions is proposed, based on

a mixture of Gamma distributions in which the mixing occurs over the shape parameter.

The procedure is as follows.

Let Y be a positive random variable. The Gamma Shape Mixture (GSM) model is

defined as:

f (y | w1, ..., wJ , θ) =
J∑
j=1

wj fj (y | θ) , (3.12)

where fj (y | θ) = θj

Γ(j)
yj−1e−θy, is the density function of a Gamma(j, θ) random variable,

with parameters j > 0 (shape) and θ > 0 (scale). We assume that the number of com-

ponents J is known and fixed, whereas w = (w1, ..., wJ) is an unknown vector of mixture

weights. The GSM model has two useful properties:

1. 1/θ is a scale parameter for the whole model, since f (y | w1, ..., wJ , θ) = θ · f(θ ·
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y|w1, ..., wJ , 1).

2. Its moments are convex combinations of the moments of Gamma(j, θ) variables, so

that the mth moment is given by

E [Y m | w1, ..., wJ , θ] =
J∑
j=1

wjE
[
Y m
j | θ

]
=

J∑
j=1

wj

∏m
l=1 (j + l − 1)

θm
.

We assume that θ and w are independent a priori and we specify the following conjugate

prior distributions:

θ ∼ Gamma (α, β) ,

w = (w1, ..., wJ) ∼ DJ

(
1

J
, ...,

1

J

)
,

where DJ (a1, ..., aJ) denotes the Dirichlet distribution with parameters a1, ..., aJ > 0.

In practice, setting the prior hyperparameters equal to 1/J tends to produce posterior

distributions where only a small subset of the J mixture weights will have high prior

probability to be selected at each iteration of the MCMC.

Given a sample y = (y1, ..., yn) of i.i.d. observations from (3.12), the likelihood is

L (w, θ | y) =
n∏
i=1

J∑
j=1

wj fj (yi | θ) . (3.13)

This expression is however intractable because it includes Jn different terms.

Given y = (y1, ..., yn) from (3.12), we can associate to each yi an integer xi between 1

and J that identifies the component of the mixture generating observation yi . Thus, the

variable xi takes value j with prior probability wj, 1 ≤ j ≤ J . The vector x = (x1, ..., xn)

of component labels is the missing data part of the sample since it is not observed.

Suppose the missing data x1, ..., xn were available. Then the model could be written as

p (y1, ..., yn | x1, ..., xn, θ) =
θ
∑n
i=1 xi∏n

i=1 Γ (xi)

(
n∏
i=1

yxi−1
i

)
e−θ

∑n
i=1 yi . (3.14)

Thus, using (3.14) and the priors, the posterior distribution is

p (w1, ..., wJ , θ | y1, ..., yn, x1, ..., xn) ∝

 J∏
j=1

w
(1/J)+nj−1
j

 θα+
∑n
i=1 xie−(β+

∑n
i=1 yi)θ, (3.15)
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where nj =
∑n

i=1 I (xi = j) , j = 1, ..., J . The main consequence of this conditional de-

composition is that, for a given missing data vector (x1, ..., xn), the conjugacy is preserved

and, therefore, the simulation can be easily performed, conditional on the missing data

x1, ..., xn.

To compute the posterior distribution, after having integrated out θ, the full conditional

distribution of the mixture weights is given by

p (w1, ..., wJ | y1, ..., yn, x1, ..., xn) ∝
J∏
j=1

w
(1/J)+nj−1
j , (3.16)

that is, the Dirichlet distribution DJ

(
1
J

+ n1, ...,
1
J

+ nJ
)
.

The full conditional probability of the ith missing label is then given by

p
(
xi | y, x(−i), w

)
=

J∑
j=1

wj

yj−1
i

(
α +

∑
(−i) xr

)
j

Γ (j) (β +
∑n

r=1 yr)
j I (xi = j)

J∑
k=1

wk
yk−1
i

(
α +

∑
(−i) xr

)
k

Γ (k) (β +
∑n

r=1 yr)
k

, (3.17)

where x(−i) is the x = (x1, ..., xn) vector with the ith element deleted,
∑

(−i) xr denotes the

sum of all the component labels except for the ith one, and (n)k = n(n+ 1) · · · (n+ k− 1)

is the Pochhammer symbol. We assume that α is an integer, for computation speed, and

to avoid overflow errors. The integration of θ implies that the missing data are no longer

independent.

For a given value of J , a strategy for choosing α and β is as follows:

1. Compute θ̃ = J/max (y1, ..., yn) and check that 1/θ̃ ≤ min(y1, ..., yn); the idea is

that, on average, θ should take values that allow the set of Gamma distributions in

(3.12) to completely span the range of observed values (the last Gamma distribu-

tion should have a mean not smaller than the maximum observation and the first

Gamma distribution a mean not greater than the minimum observation). Hence θ̃

is a candidate for the prior mean α/β.
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2. Choose a value ω for the weight of the prior information. Values between 0.2 and

0.5 are usually reasonable choices. Set β to

ω ·
n∑
i=1

yi/1− ω. (3.18)

3. Set α to be the closest integer to the quantity θ̃ · β.

Regarding the choice of J, a small value of J can create a severe limitation to the model,

as the set of densities available in the class being mixed may not be sufficiently rich with

elements that have a large mean. On the other hand, too large a value does not cause

serious difficulties as the fit is often robust when there are several Gamma distributions in

the class that can serve as building blocks for a particular mixture component. However,

too large a J may cause numerical problems.

θ Mean, median
BAC 0.685, 0.642
FIL 0.462, 0.462

Table 3.23: Estimates of θ from the GSM procedure

RJMCMC GSM

Bank VaR0.95 VaR0.99 VaR0.999 VaR0.95 VaR0.99 VaR0.999

E 16.97 33.44 40.42 20.41 34.09 37.28

J 1.88 3.71 4.48 2.26 3.78 4.13

U 0.07 0.15 0.18 0.09 0.15 0.16

V 2.73 5.38 6.50 3.28 5.48 6.00

OO 0.47 0.92 1.11 0.56 0.94 1.03

Table 3.24: VaR at different levels using the RJMCMC and GSM procedure-BAC data

For the BAC and FIL data, the above model was fitted using a Gibbs sampler. J

was chosen by trial and error, the best value was about 380 and 700, respectively. This

value was used to compute θ̃, α and β, following the strategy above. Results are shown

in Table 3.23. VaR estimates at different levels for the RJ step and the GSM procedure

are displayed in tables 3.24–3.25, while fitted densities are shown in Figures 3.14 and 3.15.
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RJMCMC GSM

Bank VaR0.95 VaR0.99 VaR0.999 VaR0.95 VaR0.99 VaR0.999

B 5.10 7.25 11.34 9.73 17.73 21.05

K(*) 9.61 13.65 21.34 18.31 33.37 39.61

L(*) 0.23 0.33 0.52 0.44 0.81 0.96

P(*) 4.92 6.99 10.93 9.38 17.09 20.29

S(*) 4.00 5.69 8.89 7.63 13.90 16.50

T(*) 11.26 15.99 25.01 21.46 39.11 46.42

Y(*) 24.64 35.01 54.75 46.98 85.61 101.61

CC(*) 9.94 14.12 22.09 18.95 34.53 40.99

JJ 3.35 4.75 7.44 6.38 11.63 13.80

KK(*) 1.95 2.78 4.34 3.72 6.79 8.06

LL(*) 0.60 0.85 1.33 1.14 2.09 2.48

NN 0.56 0.79 1.24 1.06 1.94 2.30

Table 3.25: VaR at different levels using the RJMCMC and GSM procedure-FIL data

Figure 3.14: GSM for BAC data

The GSM procedure yields higher estimates of VaR for both groups and the density is well

approximated by the mixture. It appears that, in this case, the GSM model represents a

good alternative for fitting the data.
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Figure 3.15: GSM for FIL data

3.3 Conclusions of the Chapter

In this chapter we have introduced a mixture model developed by Behrens et al. (2004)

that has significantly influenced the development of new Bayesian models. This model

uses a Gamma distribution for observations below the threshold, and a GPD for those

above it. One of its main features is that the threshold is considered as another parameter

in the model.

By using real and simulated data, we have identified the potential of this model for the

estimation of operational risk measures, particularly the Value-at-Risk and the Expected

Shortfall. At the same time, we have confirmed the poor performance of the Basic Indicator

approach.

Furthermore, we have explored model selection using RJMCMC methods. As we have

seen, these methods allow us to select the most suitable model while performing parameter

estimation. It is worth pointing out that the selection of the “best” model does not mean

that it is generally the most appropriate to model our data. Thus, in some cases, other

alternatives should be considered, as it was the case for FIL and BAC data, where the

GSM model presented a better overall performance than previous models.
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This leads us to consider that Bayesian models can be used in many different ways in

the study of extremes, with the advantage of considering the uncertainty implicit in the

parameters and the prior information available.



Chapter 4

Prior elicitation and analysis

An important question that arises in our Bayesian analysis is: How sensitive are the

posterior results to variations in the prior?

The issue of prior selection is one of the most controversial aspects of Bayesian theory.

An interesting discussion about these issues can be found in Irony and Singpurwalla (1997).

It is well-known that the prior can have an impact on posterior results when obser-

vations are scarce, as it is the case for operational risk data. Different priors may lead

to different posterior estimates and hence it is essential to find an appropriate prior by

considering the context of the problem.

In the Bayesian analysis of extremes, authors such as Cabras et al. (2010) or Castel-

lanos and Cabras (2007) have used non-informative priors for the GPD parameters, specif-

ically the Jeffreys prior (see Appendix B), because of their simplicity. Jeffreys priors are

useful in situations in which we would like the observations to “speak for themselves”;

however, this assumption is not always realistic, especially when a considerable part of the

analysis is based on expert opinion.

In this chapter we consider two important risk measures which are based on the shape

and location parameters of the GPD: The Value-at-Risk (VaR) and the Expected Shortfall

(ES). Both measures were defined in Chapter 2. Recall that if the excess distribution of

78
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a loss variable X above a high threshold u is approximated by a GPD with parameters σ

and ξ, and if 1− q < P (X > u),

VaRq = u+
σ

ξ

((
1− q
F̄ (u)

)−ξ
− 1

)
, (4.1)

ESq =
VaRq

1− ξ
+
σ − ξu
1− ξ

. (4.2)

These measures are commonly used in finance and risk management. Therefore, experts

are familiar with them.

In Section 4.1, we study the prior and posterior distributions of these two risk measures

when using the Jeffreys prior. In Section 4.2, we study the prior elicitation from expert

opinion in terms of VaR.

4.1 The non-informative prior

In this section, we study the performance of the Jeffreys prior for the GPD parameters.

A complete derivation of this prior is provided in Appendix B and leads to

π (σ, ξ) ∝ σ−1 (1 + ξ)−1 (1 + 2ξ)−
1/2 , −0.5 < ξ, σ > 0. (4.3)

For ξ = 0, π (σ, ξ) corresponds to the Jeffreys’s prior for the scale parameter of the expo-

nential distribution.

Equation (4.3) implies that σ and ξ are a priori independent. Notice that only the

marginal prior for σ is improper.

We obtained samples from the prior distribution of VaR0.99 and ES0.99 by considering

different scenarios. In all cases we set a truncated normal for the threshold, using different

data sets for the lower bound e1 in (3.5): The fraud data described in Section 3.2.1, and

samples from Exponential(0.1), Log-normal(0,1) and Gamma(2,0.5) distributions. The

improper prior of σ was approximated by a Log-normal(0, 1.25). The prior for ξ was

derived from Equation (4.3) by introducing an appropriate normalizing constant.
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Figure 4.1: Prior distributions: σ ∼ LN(0, 1.25) ; u ∼ TN(min (fraud data)); ξ ∼ Jeffreys prior

To study the effect of these parameters on the prior distribution of VaR and ES, we

fixed one of them and kept the priors specified above unchanged for the rest.

We fixed values of 1, 10 and 100 for σ; quantiles 0.5, 0.7 and 0.9 for the threshold u;

and −0.3, 0.05 and 0.45 for ξ. Then, we combined all these scenarios and compared the

prior distributions obtained. Results for VaR0.99 and ES0.99 can be observed in Figure 4.1

and Figures D.1–D.12 shown in Appendix D.

From the graphs, one can note the same pattern in all data sets when we fix a specific

parameter. The choice of the prior for the scale σ and shape ξ parameters strongly

influences the distribution of VaR and ES.

The Jeffreys prior for ξ (Figure 4.1) yields values of ξ very close to −0.5 and most of

them are concentrated around this number, which is completely unrealistic in practice.

On the other hand, although the prior for σ is reasonable, we should notice that for the
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prior in equation (4.3), σ and ξ are independent. As it was pointed out in Section 3.1.1, a

priori negative dependence between these parameters is expected (Coles and Tawn, 1996).

This shows us that, at least in the context of extreme data, it is not appropriate to adopt

a non-informative prior.

In the next section, we propose a subjective prior, based on the VaR measure.

4.2 Elicitation

As it has been mentioned in the previous chapters, one of the requirements of the Ad-

vanced Measurement Approach (AMA) is the inclusion of expert opinion. Additionally, the

scarcity of data has prompted us to turn to experts through the elicitation of information,

which is not an easy task.

In this section, the objective is to facilitate prior elicitation and use a prior distribution

that reflects expert opinion faithfully, providing realistic values for the parameters involved.

For that purpose, we have chosen the Value-at-Risk. Based on the prior for σ and ξ

proposed in the previous chapter, we introduce the following prior.

Consider two high quantiles q1 < q2 (usually q1 = 0.99 and q2 = 0.999) and the

Value-at-Risk at those levels. Recall that if the GPD approximation is used above a high

threshold u and 1− q1 < P (X > u),

VaRq1 = u+
σ

ξ

(
k−ξ1 − 1

)
, VaRq2 = u+

σ

ξ

(
k−ξ2 − 1

)
, (4.4)

where ki = (1− qi) /P (X > u) , i = 1, 2.

Since we need to guarantee that u < VaRq1 < VaRq2 , we can follow a similar approach

to the one discussed in Section 3.1.1. More specifically, we work with the differences

d1 = (VaRq1 − u) =
σ

ξ

(
k−ξ1 − 1

)
, d2 = (VaRq2 − u)− (VaRq1 − u) =

σ

ξ

(
k−ξ2 − k

−ξ
1

)
and assume that π (di) ∼ Gamma (ai, bi) , i = 1, 2 and that d1 is independent of d2. In

comparison to the prior for ξ and σ from Section 3.1.1, this approach guarantees that
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Figure 4.2: Loss distribution used in the elicitation process

indeed VaRq1 > u. The derivation of π (σ, ξ) is analogous to the transformation method

from Section 3.1.1. We get:

π (σ, ξ) ∝
[
σ
ξ

(
k−ξ1 − 1

)]a1−1

exp
[
−b1

{
σ
ξ

(
k−ξ1 − 1

)}]
×
[
σ
ξ

(
k−ξ2 − k

−ξ
1

)]a2−1

exp
[
−b2

{
σ
ξ

(
k−ξ2 − k

−ξ
1

)}]
×
∣∣∣− σ

ξ2

[
(k1k2)−ξ (log k2 − log k1)− k−ξ2 log k2 + k−ξ1 log k1

]∣∣∣ .
(4.5)

The hyperparameters ai and bi are determined by measures of location and variability

in prior belief. Experts are asked for estimates of the median and 90% quantiles of each

of the di’s. Parameter estimates may be obtained by solving numerically for ai and bi.

We illustrate the elicitation process with a simple example. Suppose we have an expert

who can provide us with information about quantiles. We could start by showing him/her

the plot in Figure 4.2. This plot displays the loss distribution and three different points:

1. The point above which a loss is considered extreme (EL).

2. The VaR at level q1=0.99.

3. The VaR at level q2=0.999.
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Elicited Value ai bi
q0.5,1 = 10, q0.9,1 = 100 0.339 0.001
q0.5,2 = 5, q0.9,2 = 45 0.362 0.023

Table 4.1: Gamma parameters obtained from elicited quantiles (fictitious expert)

Next, we ask him/her to think of how different these quantities are from one another.

That is, how large are the intervals [EL,VaRq1 ] and [VaRq1 ,VaRq2 ].

Then, we ask him/her for the median and 90% quantiles of these differences. We

denote these values by: q0.5,1(median of the first difference), q0.5,2 (median of the second

difference), q0.9,1 (0.9 quantile of the first difference) and q0.9,2 (0.9 quantile of the second

difference). Once we know these quantiles, we can obtain the values of ai and bi by solving

the following equations:

Fx (q0.5,1, a1, b1) = 0.5 and Fx (q0.9,1, a1, b1) = 0.9, (4.6)

Fx (q0.5,2, a2, b2) = 0.5 and Fx (q0.9,2, a2, b2) = 0.9, (4.7)

where Fx is a Gamma(ai, bi). This can be solved numerically. For instance, we may use

the function get.gamma.par from the rriskDistributions R package. Table 4.1 shows

the results for some specific quantiles.

Now, keeping the priors previously proposed for the rest of the parameters, we can

derive the posterior distribution:

log p(θ | x) = K +
n∑
i=1

I (xi < u) [αlogβ − logΓ (α) + (α− 1) log xi − βxi]
n∑
i=1

I (xi ≥ u) log

[
1−

ú

0

βα

Γ(α)
tα−1e−βtdt

]
−

n∑
i=1

I (xi ≥ u) logσ

−1+ξ
ξ

n∑
i=1

I (xi ≥ u) log
[
1 + ξ(xi−u)

σ

]
+(a− 1)logα=bαa + (c− 1)log

(
α
β

)
− d

(
α
β

)
+ log

(
α
β2

)
+ 1

2σu
(uµu)

2 + (a1 − 1)log
[
σ
ξ

(
k−ξ1 − 1

)]
−b1

σ
ξ

(
k−ξ1 − 1

)
+ (a2 − 1)log σ

ξ

(
k−ξ2 − k

−ξ
1

)
− b2

σ
ξ

(
k−ξ2 − k

−ξ
1

)
+log

∣∣∣ σξ2

[
(k1k2)−ξ (log k2 − log k1)− k−ξ2 log k2 + p−ξ1 log k1

]∣∣∣ ,

(4.8)
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Hyperparameter a1 b1 a2 b2
Expert 1 0.1 0.005 0.9 0.0302

Table 4.2: Hyperparameters for a fictitious expert

10,000 runs
Parameter Mean Median Std

σ 66.494 65.533 15.056
ξ 0.074 0.048 0.077

VaR0.99 171.740 141.086 97.729
ES0.99 254.513 223.150 114.117

Table 4.3: Fraud data: Prior MCMC estimates, using the opinion of a fictitious expert and the

prior in Equation (4.5)

10,000 runs
Parameter Mean Median Std

α 0.559 0.558 0.031
β 0.015 0.014 0.002
u 49.404 43.777 21.685
σ 69.061 64.355 19.288
ξ 0.202 0.207 0.068

VaR0.99 363.684 360.392 34.825
ES0.99 532.386 527.596 54.286

Table 4.4: Posterior MCMC estimates, using the opinion of a fictitious expert for n=626 fraud

losses in 41 banks, recorded from 01/2007 to 04/2010

where α, β, a1, a2, b1 and b2 are hyperparameters from the Gamma distribution and K is

a normalizing constant.

To study the performance of the prior, we obtained samples of VaR0.99 and ES0.99

from the prior and the corresponding posterior. Again, we used the real data described

in Section 3.2.1. This time the main purpose is to study the behaviour of the posterior

when the prior is elicited from an expert. For simplicity, we pooled all the data together

rather than look at each bank separately, as in Chapter 3. It is important to mention that

since real experts were not available, we chose the hyperparameters so that the MCMC

algorithm was reasonably efficient. Table 4.2 shows the hyperparameters of a fictitious

expert while Tables 4.3 and 4.4 and Figures 4.3–4.7 display the results of this exercise.
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Figure 4.3: Trace plots and histograms of prior samples, using the opinion of a fictitious expert

and the prior in Equation (4.5)

Figure 4.4: Prior samples (left) and contour plot (right) of the joint distribution of σ and ξ

(truncated at 0), using the opinion of a fictitious expert and the prior in Equation 4.5
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Figure 4.5: Posterior samples (left) and contour plots (right) of the joint posterior distribution

of σ and ξ, using the opinion of a fictitious expert for n=626 fraud losses in 41 banks, recorded

from 01/2007 to 04/2010

Parameter Effective Sample Size
σ 9357.655
ξ 9735.053

VaR0.99 8878.431
ES0.99 9122.453

Table 4.5: Effective Sample Size of prior samples, using the opinion of a fictitious expert and

the prior in Equation (4.5)

From the figures, the contour plot of the prior is similar to that of a non-informative

prior; however, when look at the posterior, we can observe how the prior influences the

result. We can notice that there has been a slight reduction in uncertainty from prior

to posterior. The location of the density has also changed and the posterior distribution

captures the negative correlation between parameters σ and ξ.

Some convergence diagnostics are also shown in Tables 4.5–4.8. In all cases convergence

seems to be achieved and the effective sample size is large enough.
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Figure 4.6: Histograms of posterior samples, using the opinion of a fictitious expert for n=626

fraud losses in 41 banks, recorded from 01/2007 to 04/2010

Stationarity Halfwidth Mean

Parameter Result p-value Result Halfwidth

u passed 0.889 passed 1.029
σ passed 0.916 passed 0.280
ξ passed 0.240 passed 0.001

VaR0.99 passed 0.909 passed 2.103
ES0.99 passed 0.913 passed 2.348

Table 4.6: Heidelberg and Welch diagnostics for prior samples, using the opinion of a fictitious

expert and the prior in Equation 4.5
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Figure 4.7: VaR0.99 and ES0.99 prior (left) and posterior (right) distribution, using the opinion

of a fictitious expert for n=626 fraud losses in 41 banks, recorded from 01/2007 to 04/2010

Parameter Effective Sample Size
α 4636.1564
β 3881.205
u 949.799
σ 874.672
ξ 1188.032

VaR0.99 1941.437
ES0.99 6504.822

Table 4.7: Effective Sample Size of posterior samples, using the opinion of a fictitious expert for

n=626 fraud losses in 41 banks, recorded from 01/2007 to 04/2010

Stationarity Halfwidth Mean

Parameter Result p-value Result Halfwidth

α passed 0.788 passed 8.240e-04

β passed 0.844 passed 5.110e-05

u passed 0.427 passed 1.410

σ passed 0.319 passed 1.290

ξ passed 0.393 passed 4.060e-03

VaR0.99 passed 0.206 passed 1.550

ES0.99 passed 0.255 passed 1.320

Table 4.8: Heidelberg and Welch diagnostics for posterior samples, using the opinion of a ficti-

tious expert for n=626 fraud losses in 41 banks, recorded from 01/2007 to 04/2010
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4.3 Elicitation from multiple experts

As pointed out in the paper by Jenkinson (2005), whilst understanding the opinions of one

expert is useful, there is an underlying statistical principle that the more information we

have got, the better the results will be. Hence, it can be preferable to elicit the opinions

of several experts.

According to Genest (1984b), Genest and Zidek (1986) and McConway (1981), among

others, there are two possible ways of combining multiple opinions: Elicit the distributions

from each expert and combine them mathematically (mathematical approach), or elicit a

consensus distribution (behavioural approach).

Mathematical methods are divided into two types: axiomatic approaches and Bayesian

approaches. The two main axiomatic approaches are:

1. The linear opinion pool.

2. The logarithmic opinion pool.

The linear opinion pool. Let πj (θ) , j = 1, 2, ..., k be the j-th expert’s probability

density function and wj be the weight attached to the j-th expert’s opinion, with wj > 0

and
k∑
j=1

wj = 1. The linear opinion pool is the weighted arithmetic mean of the densities

π (θ) =
k∑
j=1

wjπj (θ) . (4.9)

This method satisfies the marginalization property (Genest, 1984b and McConway,

1981), which states that for a multivariate θ, the marginal probability from the combined

density for any of the components is the same as what would be achieved if the elicited

marginal distributions for that component were combined.
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The logarithmic opinion pool. This method consist of the weighted geometric mean

of the densities:

π (θ) = n (w)
k∏
j=1

πj (θ)wj , (4.10)

where n (w) is a normalizing constant, i.e.:

n−1 (w) =

ˆ
Θ

k∏
j=1

πj (θ)wj dθ

and the weigthts wj are nonnegative and sum up to one.

This approach satisfies the external Bayesian (EB) principle (Genest, 1984a), which

refers to how a decision maker updates the combined distribution when new information

becomes available.

For simplicity, in this work we will focus on the linear opinion pool approach.

4.3.1 Prior on σ and ξ for multiple experts

We had previously defined the prior distribution for the GPD parameters (σ and ξ) in

terms of the Value-at-Risk (Equation 4.5).

We can now use the two axiomatic approaches to obtain a prior for multiple experts.

Under this assumption, we can elicit the VaR and work with the differences as follows:

d1j =
(
VaRq1j − u

)
, d2j =

(
VaRq2j − u

)
−
(
VaRq1j − u

)
for each expert j.

We can keep the assumption π (dij) ∼ Gamma (aij, bij) , i = 1, 2; j = 1, ..., k.

Let πj (σ, ξ) be the prior for expert j as defined in Equation (4.5). Then, under the

linear opinion pool, the prior for k experts can be written as:

π (σ, ξ) =
k∑
j=1

wjπj (σ, ξ) , (4.11)

where wj is the weight assigned to expert j. Under the logarithmic pool approach, the

density is given by:

π (σ, ξ) = n
k∏
j=1

πj (σ, ξ)wj . (4.12)
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Opinion Similar Different Very different

Hyp. Expert 1 Expert 2 Expert 1 Expert 2 Expert 1 Expert 2

a1i 0.1 0.15 0.1 5 0.1 10.5

b1i 0.005 0.007 0.005 0.252 0.005 0.53

a2i 0.9 1 0.9 9 0.9 20

b2i 0.03 0.033 0.03 0.302 0.03 0.671

Table 4.9: Sets of hyperparameters for two fictitious experts with similar, different and very

different opinions

4.3.2 Multiple experts and real data

In order to compare the behaviour of the posterior density of VaR0.99 and ES0.99 under

the linear opinion pool, we analyze the real data from Section 3.2.1 for different scenarios.

Recall that, for simplicity, we pooled all the data together and not looking at each bank

separately. We assume that we have two experts and three different cases:

1. Two experts with similar opinions and weights w1 = w2 = 0.5

2. Two experts with different opinions and weights w1 = w2 = 0.5

3. Two experts with very different opinions and weights w1 = w2 = 0.5

Similarities and differences in opinions are expressed through the hyperparameters. Table

4.9 shows three different sets of hyperparameters, according to the case considered.

Tables 4.10–4.15 and Figures 4.8–4.10 show the results for different scenarios. When

both experts have similar opinions, prior and posterior parameter estimates do not show

great variation with respect to the original estimates (using only one expert opinion); if

experts have different opinions, the estimates vary slightly; however, when experts have

very different opinion, the estimates vary considerably. In this last case, one may notice

that the combined posterior resembles closely one of the prior densities (Figure 4.10).
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10,000 runs
Parameter Mean Median Std

σ 66.409 65.399 14.824
ξ 0.073 0.049 0.075

VaR0.99 173.455 144.803 95.923
ES0.99 255.781 227.924 110.288

Table 4.10: Fraud data: Prior MCMC estimates for the linear opinion pool for two fictitious

experts with similar opinions and weights w1 = w2 = 0.5 (10,000 runs-1,000 after thinning)

Figure 4.8: Fraud data: VaR0.99 and ES0.99 prior (left) and posterior (right) distribution for the

linear opinion pool for two fictitious experts with similar opinions and weights w1 = w2 = 0.5

(10,000 runs-1,000 after thinning)

10,000 runs
Parameter Mean Median Std

α 0.559 0.558 0.031
β 0.015 0.014 0.002
u 50.147 43.777 20.217
σ 69.477 65.102 17.740
ξ 0.201 0.208 0.0643

VaR0.99 364.224 361.466 33.656
ES0.99 532.409 525.920 53.799

Table 4.11: Fraud data: Posterior MCMC estimates for the linear opinion pool for two fictitious

experts with similar opinions and weights w1 = w2 = 0.5 (10,000 runs-1,000 after thinning)
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10,000 runs
Parameter Mean Median Std

σ 27.805 26.499 3.328
ξ 0.004e-01 9.3e-07 0.009

VaR0.99 107.827 87.858 63.369
ES0.99 135.712 114.484 63.778

Table 4.12: Fraud data: Prior MCMC estimates for the linear opinion pool for two fictitious

experts with different opinions and weights w1 = w2 = 0.5 (10,000 runs-1,000 after thinning)

Figure 4.9: Fraud data: VaR0.99 and ES0.99 prior (left) and posterior (right) distribution for the

linear opinion pool for two fictitious experts with different opinions and weights w1 = w2 = 0.5

(10,000 runs-1,000 after thinning)

10,000 runs
Parameter Mean Median Std

α 0.561 0.561 0.033
β 0.015 0.015 0.002
u 38.081 36.228 16.606
σ 59.627 57.432 12.075
ξ 0.185 0.187 0.048

VaR0.99 327.787 325.256 25.771
ES0.99 467.983 465.486 40.546

Table 4.13: Fraud data: Posterior MCMC estimates for the linear opinion pool for two fictitious

experts with different opinions and weights w1 = w2 = 0.5 (10,000 runs-1,000 after thinning))
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10,000 runs
Parameter Mean Median Std

σ 65.747 64.972 15.602
ξ 0.072 0.047 0.075

VaR0.99 170.194 140.679 95.520
ES0.99 251.542 223.487 111.087

Table 4.14: Fraud data: Prior MCMC estimates for the linear opinion pool for two fictitious

experts with very different opinions and weights w1 = w2 = 0.5 (10,000 runs-1,000 after thinning)

10,000 runs
Parameter Expert 1 Expert 2 Both experts

α 0.567 0.561 0.555
β 0.0152 0.015 0.014
u 25.012 39.786 45.399
σ 49.898 56.734 62.127
ξ 0.152 0.387 0.369

VaR0.99 279.074 445.949 448.077
ES0.99 384.766 795.887 773.989

Table 4.15: Fraud data: Posterior MCMC estimates for the linear opinion pool for two fictitious

experts with very different opinions and weights w1 = w2 = 0.5 (10,000 runs-1,000 after thinning)

Figure 4.10: Fraud data: Posterior distribution of VaR0.99 and ES0.99 for the linear opinion

pool for two fictitious experts with very different opinions and weights w1 = w2 = 0.5 (10,000

runs-1,000 after thinning)



4.3. Elicitation from multiple experts 95

Opinion Very different

Hyperparameters Expert 1 Expert 2

a1i 24 0.005
b1i 1.21 2e-04
a2i 26 0.008
b2i 0.87 3e-04

Table 4.16: Set of hyperparameters for two experts with very different opinions for n=1000

simulated data from a Gamma(100,0.09)

To determine if this problem is related to the data set, we simulated 1000 observations

from a Gamma(100,0.09). Again, the differences in opinions are expressed through the

hyperparameters. Table 4.16 shows the hyperparameters used in this analysis for fictitious

experts.

Figure 4.11: VaR0.99 and ES0.99 posterior distribution (linear opinion pool for two fictitious

experts with very different opinions) for n=1000 simulated data from a Gamma(100,0.09)

In this case the posterior does not exhibit the same behaviour; however, it is still close

to one of the prior densities. (Figure 4.11 and Table 4.17).
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Gamma(100,0.09)-10,000 runs
VaR0.99 Mean Median Std

Posterior Expert 1 1381.758 1381.749 6.891
Posterior Expert 2 1392.442 1392.782 6.820

Posterior w1 = 0.5, w2 = 0.5 1390.320 1390.025 7.468
True value 1385.806

Table 4.17: VaR0.99 estimates and true value (linear opinion pool for two fictitious experts with

very different opinions) for n=1000 simulated data from a Gamma(100,0.09)

4.3.3 A new prior for multiple experts

In order to improve the prior proposed in Section 4.2, we consider a different prior, based

on the same elicited quantities. Consider the ratio

r1 =
(VaRq1 − u)

(VaRq2 − u)
=

σ

ξ

(
k−ξ1 − 1

)
σ

ξ

(
k−ξ2 − 1

) =
k−ξ1 − 1

k−ξ2 − 1
.

Then

dr1

dξ
=
−
(
k−ξ1 ln k1

)(
k−ξ2 − 1

)
+
(
k−ξ1 − 1

)(
k−ξ2 ln k2

)
(
k−ξ2 − 1

)2

=
− (k1k2)−ξ ln k1 + k−ξ1 ln k1 + (k1k2)−ξ ln k2 − k−ξ2 ln k2(

k−ξ2 − 1
)2

=
− (k1k2)−ξ (ln k1 − ln k2) + k−ξ1 ln k1 − k−ξ2 ln k2(

k−ξ2 − 1
)2 .

If we choose a Beta distribution for the ratio r1, we have:

π (ξ | u, σ) = π (r1)

∣∣∣∣∂r1

∂ξ

∣∣∣∣ ∝ ra1−1
1

(
1− rb1−1

1

) ∣∣∣∣∂r1

∂ξ

∣∣∣∣ . (4.13)

We also choose an Inverse Gaussian for σ and a truncated normal for u.

For the simulated data (Gamma(100,0.09)), using the prior specified above and the

hyperparameters for fictitious experts in Table 4.16, we obtain the densities shown in

Figures 4.12 and 4.13.
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Figure 4.12: Prior (left) and posterior (right) distribution of VaR0.99, using the prior from

Equation (4.13) and the linear opinion pool for two fictitious experts with very different opinions.

Expert 1 (black), expert 2 (red) and combined distribution (blue)

Figure 4.13: Prior (left) and posterior (right) distribution of ES0.99, using the prior from Equa-

tion (4.13) and the linear opinion pool for two fictitious experts with very different opinions.

Expert 1 (black), expert 2 (red) and combined distribution (blue)
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4.3.4 Posterior analysis for more than two experts

So far, we have considered only the case when the prior is based on two experts’ opinion.

We have observed how the differences between these opinions may influence the prior and

posterior behaviour. To conclude this chapter, we study the posterior behaviour when

several experts express their opinions. We consider five experts with different opinions.

Again, we resort to the Gamma simulated data, using three sets of hyperparameters (Table

4.18). The results obtained are shown in Figure 4.14.

As can be seen from the figures, even when the posteriors for each expert are different,

all lead to similar posterior distributions.

Table 4.19 shows the estimates of the Value-at-Risk at 99.5% level. It can be seen from

this table that experts whose opinion is far from the true value influence the combined

posterior in all cases. However, the combined estimate is still acceptable.

To complete this study, we perform the analysis in two different subsets of the

Gamma(100, 0.09) data, using the same hyperparameters. Results are shown in Tables

4.20 and 4.21. This time, the results depend on the subset we are working with; however,

we see again how experts whose opinion is far from the true value influence the combined

posterior.

The results of this analysis indicate that when dealing with several opinions, one should

pay special attention to prior specification.

Set 1 Set 2 Set 3

Hyp. E1 E2 E3 E4 E5 E1 E2 E3 E4 E5 E1 E2 E3 E4 E5

a1i 0.001 25 12 8 1 3 28 13 11 3 0.001 0.28 0.15 0.11 0.3

b1i 0.3 13 14 7 2 3.3 16 17 10 4 0.3 0.16 0.17 0.1 0.4

a2i 10 6 8 8 0.9 12 9 10 11 2.9 0.12 0.9 0.1 0.11 0.29

b2i 0.3 1 2 5 0.7 2.3 4 4 8 2.7 0.23 0.4 0.4 0.8 0.27

Table 4.18: Sets of hyperparameters for five different experts (E1,E2,E3,E4,E5)
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Figure 4.14: Posterior distribution of VaR0.995 and ES0.995 for the first set (top), second

set (middle) and third set (bottom) of hyperparameters for n=1000 simulated data from a

Gamma(100,0.09), using the opinion of five experts (E1,E2,E3,E4,E5) with equal weights
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Set 1 Set 2 Set 3

Expert Mean, Median, Std Mean, Median, Std Mean, Median, Std

E1 1411.990, 1411.600, 13.680 1412.450, 1412.050, 12.230 1416.880, 1413.290, 15.860

E2 1427.560, 1427.710, 9.410 1424.060, 1422.710, 9.190 1425.120, 1424.370, 11.850

E3 1416.900, 1415.200, 11.370 1415.940, 1415.400, 11.210 1418.020, 1417.360, 12.680

E4 1421.230, 1421.320, 12.290 1422.240, 1423.200, 9.010 1421.380, 1420.520, 9.840

E5 1427.770, 1427.410, 10.610 1426.070, 1426.540, 10.710 1423.240, 1422.370, 12.390

Combined 1423.330, 1421.310, 11.030 1422.690, 1421.970, 11.740 1422.930, 1422.540, 10.080

True value 1418.134

Table 4.19: Parameter estimates of VaR0.995 for n=1000 simulated data from a

Gamma(100,0.09), using the opinion of five experts (E1,E2,E3,E4,E5) with equal weights (10,000

runs)

Set 1 Set 2 Set 3

Expert Mean, Median, Std Mean, Median, Std Mean, Median, Std

E1 1371.820, 1370.186, 6.989 1443.776, 1441.065, 55.335 1405.031, 1397.473, 31.126

E2 1391.487, 1389.019, 11.620 1395.270, 1393.940, 10.823 1399.606, 1396.492, 17.876

E3 1386.927, 1383.362, 8.986 1388.259, 1385.408, 16.212 1400.394, 1397.394, 24.305

E4 1385.866, 1385.433, 6.877 1392.034, 1389.880, 13.309 1396.940, 1394.319, 17.206

E5 1396.547, 1397.347, 13.535 1395.127, 1393.501, 11.729 1399.752, 1397.355, 17.270

Combined 1389.755, 1387.520, 7.271 1398.320, 1393.878, 16.025 1400.570, 1393.845, 18.116

Table 4.20: Parameter estimates of VaR0.995 for the first subset of n=1000 simulated data from a

Gamma(100,0.09), using the opinion of five experts (E1,E2,E3,E4,E5) with equal weights (10,000

runs)

Set 1 Set 2 Set 3

Expert Mean, Median, Std Mean, Median, Std Mean, Median, Std

E1 1431.522, 1423.112, 48.875 1452.904, 1445.230, 46.153 1463.631, 1457.973, 52.967

E2 1429.530, 1427.390, 19.159 1432.792, 1431.263, 21.051 1439.916, 1434.600, 30.502

E3 1414.734, 1413.327, 19.829 1413.011, 1410.485, 17.976 1426.850, 1420.401, 27.519

E4 1430.454, 1429.945, 25.231 1424.375, 1425.571, 19.345 1431.188, 1427.123, 24.997

E5 1439.861, 1438.333, 21.899 1434.694, 1435.101, 19.474 1442.770, 1441.365x, 23.989

Combined 1438.283, 1433.558, 23.646 1432.958, 1427.611, 23.489 1436.812, 1434.325, 27.353

Table 4.21: Parameter estimates of VaR0.995 for the second subset of n=1000 simulated data

from a Gamma(100,0.09), using the opinion of five experts (E1,E2,E3,E4,E5) with equal weights

(10,000 runs)
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4.3.5 Updating the weighting of the experts’ opinions

The Bayesian model we introduced before allows the incorporation of expert opinion into

the analysis (via the prior distributions) for model parameters. These parameters can be

updated as new data become available. Experts may reassess their opinion to incorporate

new information (for example, new policies or controls) and this can be done as follows.

Using equation (2.39), let πj (θ) be the prior density for θ and L (θ | x) be the likelihood.

Then, the posterior density is:

pj (θ | x) =
πj (θ)L (θ | x)

Kj

, (4.14)

where Kj =
´ ∞
−∞

πj (θ)L (θ | x) dθ.

Now, let π (θ) =
J∑
j=1

wjπj (θ) be a mixture prior given. Hence, the posterior density is

p (θ | x) =

J∑
j=1

wjπj (θ)L (θ | x)

K
=

J∑
j=1

wjKjπj (θ)L (θ | x)

Kj

K
=

J∑
j=1

wjKjpj (θ | x)

K
. (4.15)

From (4.15), we require
J∑
j=1

wjKj/K=1, which implies K =
J∑
j=1

wjKj. Therefore, the

posterior distribution is given by

p (θ | x) =
J∑
j=1

w
′

jpj (θ | x) , (4.16)

where w
′
j = {wjKj}/

∑J
h=1whKh.

4.3.6 Prior weights updating

Once we have performed the analysis and observed the results, we might want to evaluate

how accurate experts are in their prediction, and adjust the weight assigned to each expert

in future exercises, based on their past performance. To do so, one can use a measure of

divergence, such as the Kullback-Leibler divergence1.
1Let g (x) and h (x) be two probability density functions defined over the same support S. The

Kullback and Leibler divergence between the two distributions is defined as:

D (g q h) =

ˆ

S

g (x) ln
g (x)

h (x)
dx
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Suppose that, for each risk assessment, we base our prior information on the opinion

of n experts. In each exercise we might do the following:

� Follow the opinion of the majority of experts.

� After a pre-determined number of assessments, see which of the experts get it right

most of the time and then follow their advice.

Although these strategies work well in some cases, the first one fails when only a few experts

make good predictions. The second one fails when there is an expert that performs well

for the first evaluations but is wrong after that.

In this section, we will consider the Multiplicative Weights approach (Arora et al.,

2012), which allows us to consider the opinion of all experts, but weighting each expert’s

opinion according to his/her past performance.

Multiplicative update algorithms were proposed in game theory in the early fifties. One

of the first ideas was that at each step each player observes actions taken by his/her op-

ponent in previous stages, updates his beliefs about his opponents’ strategies, and chooses

myopic pure best responses against these beliefs. However, the multiplicative update rule

was rediscovered in Computational Geometry in the late 1980s, while the weighted ma-

jority algorithm has been independently discovered in operations research and statistical

decision making.

Initially, the algorithm assigns equal weights to all experts. As time goes on, some

experts are seen as making better predictions than others, and the algorithm increases

their weight proportionally. The algorithm is as follows.

Weighted majority algorithm. At every step t, we have a weight wti assigned to expert

i. Initially equal weights for all i. At step t + 1, for each i such that expert i was found

to have predicted the quantity of interest incorrectly, we set

wt+1
i = (1− ε)wti (update rule)
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Our prediction for step t+ 1 is the opinion of a weighted majority of the experts.

The following result (Theorem 1.1, Arora et al. 2012) shows that the number of

mistakes the algorithm makes is bounded above.

Theorem 4.1. After t steps, let mt
i be the number of mistakes of expert i and mt be the

number of mistakes our algorithm has made. Then we have the following bound for every i:

mt ≤ 2 lnn

ε
+ 2 (1 + ε)mt

i.

We have adapted this algorithm to our problem by considering the KL divergence. We

propose the following procedure to perform the updating:

1. Set w0
j = 1/n for i = 1, ..., n.

2. After assessment t, update the weights as wti =
(1−εi)wt−1

i∑
j(1−εj)w

t−1
j

. Here, εj = KL/10N ,

where KL corresponds to the Kullback-Leibler divergence between the posterior

distribution of VaR of expert j and the combined posterior distribution (including

the opinion of all experts), and N is the number of digits left of the decimal point

of maxj(KLj).

This procedure assigns more weight to experts whose opinion is closer to the mixture

of opinions and penalizes those who are far from the majority, based on the the KL

divergence.

We can apply this algorithm to the simulated data Gamma(100,0.09), and to the the

posterior distribution of VaR0.99 for different sets of hyperparameters (Table 4.18). In this

case, n = 5 and w0
j = 1/5 = 0.2 for j = 1, ..., 5.

Table 4.22 summarizes the results for the different sets of hyperparameters. From it, we

can notice that as KL increases, w1
j decreases. That is, those experts whose KL divergence

is large are penalized in the next risk assessment by assigning them smaller weights. On

the other hand, experts with smaller KL divergence gain more credibility and get larger

weights in the new assessment.
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Set 1 Set 2 Set 3

Expert w0
j KLj εj w1

j KLj εj w1
j KLj εj w1

j

E1 0.2 0.418 0.042 0.205 0.176 0.176 0.220 0.450 0.450 0.159

E2 0.2 1.638 0.164 0.179 0.155 0.155 0.225 0.330 0.330 0.194

E3 0.2 0.663 0.066 0.199 0.355 0.355 0.172 0.147 0.147 0.246

E4 0.2 0.293 0.029 0.208 0.335 0.335 0.177 0.029 0.029 0.281

E5 0.2 0.237 0.024 0.209 0.227 0.227 0.206 0.584 0.584 0.120

Table 4.22: Prior weights updating for different sets of hyperparameters for n=1000 simulated

data from a Gamma(100,0.09), using the opinion of five experts (E1,E2,E3,E4,E5) with equal

weights

Set 1 Set 2 Set 3

Expert w0
j KLj εj w1

j KLj εj w1
j KLj εj w1

j

E1 0.2 0.178 0.178 0.235 0.062 0.062 0.205 0.061 0.061 0.204

E2 0.2 0.357 0.357 0.183 0.041 0.041 0.208 0.054 0.054 0.205

E3 0.2 0.199 0.199 0.227 0.093 0.093 0.197 0.030 0.030 0.211

E4 0.2 0.609 0.609 0.111 0.106 0.106 0.194 0.202 0.202 0.173

E5 0.2 0.139 0.139 0.244 0.097 0.097 0.196 0.044 0.044 0.207

Table 4.23: Prior weights updating for different sets of hyperparameters for the first sub-

set of n=1000 simulated data from a Gamma(100,0.09), using the opinion of five experts

(E1,E2,E3,E4,E5) with equal weights

In order to study the variation of the weights for different data, we obtain new weights

for the two subsets of the Gamma(100,0.09) that were used in Section 4.3.4. Tables 4.23

and 4.24 display the results. Once again, one may notice that w1
j is inversely proportional

to KL, and therefore experts whose KL divergence is large get smaller weights, while those

with small KL divergence are assigned larger weights.

According to Basel II, operational risk has to be measured on a yearly basis. The

method presented in this section allows us not only to update prior information as new

information becomes available, but also the weights assigned to experts are based on the

accuracy of their past opinions.
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Set 1 Set 2 Set 3

Expert w0
j KLj εj w1

j KLj εj w1
j KLj εj w1

j

E1 0.2 0.330 0.330 0.167 0.182 0.182 0.214 0.109 0.109 0.218

E2 0.2 0.022 0.022 0.243 0.144 0.144 0.224 0.401 0.401 0.146

E3 0.2 0.039 0.039 0.239 0.319 0.319 0.178 0.292 0.292 0.174

E4 0.2 0.190 0.190 0.202 0.190 0.190 0.213 0.065 0.065 0.228

E5 0.2 0.401 0.401 0.149 0.348 0.348 0.171 0.042 0.042 0.234

Table 4.24: Prior weights updating for different sets of hyperparameters for the second sub-

set of n=1000 simulated data from a Gamma(100,0.09), using the opinion of five experts

(E1,E2,E3,E4,E5) with equal weights

Prior distribution
Expert Year 0 Year 1 Year 2 ... Year n

E1 π1 (θ) p1 (θ | x1) p1 (θ | x1, x2) ... p1 (θ | x1, x2, ..., xn)
E2 π2 (θ) p2 (θ | x1) p2 (θ | x1, x2) ... p2 (θ | x1, x2, ..., xn)
E3 π3 (θ) p3 (θ | x1) p3 (θ | x1, x2) ... p3 (θ | x1, x2, ..., xn)
E4 π4 (θ) p1 (θ | x1) p4 (θ | x1, x2) ... p4 (θ | x1, x2, ..., xn)
E5 π5 (θ) p1 (θ | x1) p5 (θ | x1, x2) ... p5 (θ | x1, x2, ..., xn)

Table 4.25: Prior distributions for different years

4.3.7 Posterior distribution updating

We will assume now that the risk assessment is performed every year and, as time passes,

more data become available. This affects the resulting posterior distribution and some

adjustments have to be made. The more information we have, the better we are able to

predict.

Under this situation, the prior distribution of each expert for the next year should

be based on their posterior distribution from the previous year. That is, we start with

opinions expressed in terms of the prior distribution πi (θ) for year 0. For the next year, the

prior of expert i is replaced by pi (θ | x1), which is the posterior distribution after including

the data collected during the first year. We can continue this procedure for the upcoming

years, as it is ilustrated in Table 4.25. We expect that after many years, as the number of

observations increases, all of the experts will have similar posterior distributions.

To explore this, we use the simulated data Gamma(100,0.09) and the real data de-

scribed in Section 3.2.1. For the simulated data, we assume that new information becomes
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Year 0 Year 1 Year 2 Year 3
Expert w0

j KLj εj w1
j KLj εj w2

j KLj εj w3
j

E1 0.2 0.418 0.042 0.205 0.319 0.319 0.169 0.067 0.007 0.206
E2 0.2 1.638 0.164 0.179 0.043 0.043 0.237 1.201 0.120 0.182
E3 0.2 0.663 0.066 0.199 0.314 0.314 0.170 0.111 0.011 0.205
E4 0.2 0.293 0.029 0.208 0.228 0.228 0.191 0.278 0.028 0.201
E5 0.2 0.237 0.024 0.209 0.056 0.056 0.233 0.077 0.008 0.206

Table 4.26: Prior weights for different experts in a 3-year period. n=1000 simulated data from

a Gamma(100,0.09), using the opinion of five experts (E1,E2,E3,E4,E5) with equal weights

available every year during 3 years. We start with 1,000 observations for year 0. For

the next year, we add 400 observations to the data set. In the second year, we also add

400 observations. Finally, in the third year, 500 observations are added to the data set.

Following the notation in Table 4.25, we have:

� x1: Observations for year 0 (1000);

� x2: Observations for year 1 (400);

� x3: Observations for year 2 (400);

� x4: Observations for year 3 (500).

Tables 4.26 and 4.27 show the results for the period considered, while Figure 4.15 displays

the posterior distributions. We can observe that every year, the estimated VaR is closer

to the true value. Additionally, the posterior distributions present less variability and look

more similar to each other.

The same procedure is applied to the real data set from Section 3.2.1 to analyze the

posterior behaviour when new data are added. We have 626 observations available from

year 2007 to 2010. We divide our data into four different data sets:

� x1: Observations for 2007 (154);

� x2: Observations for 2008 (193);

� x3: Observations for 2009 (212);
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Figure 4.15: Posterior distribution of VaR0.995 and ES0.995 for different experts in the first

year (top), second year (middle) and third year (bottom). n=1000 simulated data from a

Gamma(100,0.09), using the opinion of five experts (E1,E2,E3,E4,E5) with equal weights
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Year 0 Year 1 Year 2 Year 3

Expert Mean, Median, Std Mean, Median, Std Mean, Median, Std Mean, Median, Std

E1 1411.990, 1411.600, 13.680 1410.843, 1409.158, 11.276 1407.612, 1406.914, 8.211 1419.249, 1419.307, 9.353

E2 1427.560, 1427.710, 9.410 1420.800, 1420.384, 9.77 1420.044, 1419.911, 7.914 1417.47, 1417.476, 6.057

E3 1416.900, 1415.200, 11.370 1429.660, 1426.730, 22.121 1408.145, 1406.73, 14.041 1414.015, 1411.566, 11.477

E4 1421.230, 1421.320, 12.290 1418.614, 1419.563, 9.414 1414.167, 1413.947, 6.911 1417.266, 1416.81, 7.299

E5 1427.770, 1427.410, 10.610 1421.409, 1421.879, 8.259 1416.877, 1416.652, 7.586 1422.44, 1420.701, 7.881

Comb. 1423.330, 1421.310, 11.030 1416.476, 1416.917, 9.658 1418.539, 1417.987, 7.229 1418.561, 1418.467, 8.679

True

value

1418.134

Table 4.27: Posterior distribution for different experts in a 3- year period. n=1000 simulated

data from a Gamma(100,0.09), using the opinion of five experts (E1,E2,E3,E4,E5) with equal

weights

2007 2007-2008 2007-2009 2007-2010

Expert w0
j KLj εj w1

j KLj εj w2
j KLj εj w3

j

E1 0.2 2.141 0.214 0.167 0.029 0.029 0.201 0.031 0.031 0.214
E2 0.2 0.037 0.004 0.211 0.030 0.030 0.200 0.117 0.117 0.195
E3 0.2 0.493 0.049 0.202 0.009 0.009 0.205 0.117 0.117 0.195
E4 0.2 0.052 0.005 0.211 0.078 0.078 0.190 0.182 0.182 0.180
E5 0.2 0.127 0-013 0.209 0.0135 0.0135 0.204 0.023 0.023 0.216

Table 4.28: Prior weights for different experts in a 3-year period. n=626 fraud losses in 41

banks, recorded from 01/2007 to 04/2010

� x4: Observations for 2010 (67).

We can observe the results for different years in Tables 4.28–4.29. Posterior distributions

are shown in Figures 4.16–4.19. From the plots one may notice that, at the beginning,

expert 4 is far from the rest. However, as more data become available during the next

years, his distribution gradually resembles the combined distribution. Something similar

happens to the other expert distributions. As expected, in the analysis corresponding to

the year 2010, we can observe how the distribution of VaR and ES for all of the experts

are more uniform than in previous years.
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Figure 4.16: Fraud data: Posterior distribution of VaR0.99 and ES0.99 for different experts in

2007

Figure 4.17: Fraud data: Posterior distribution of VaR0.99 and ES0.99 for different experts in

2008
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Figure 4.18: Fraud data: Posterior distribution of VaR0.99 and ES0.99 for different experts in

2009

Figure 4.19: Fraud data: Posterior distribution of VaR0.99 and ES0.99 for different experts in

2010
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2007 2007-2008 2007-2009 2007-2010

Expert Mean, Median, Std Mean, Median, Std Mean, Median, Std Mean, Median, Std

E1 428.748, 364.665, 214.425 480.516, 462.743, 114.047 590.205, 567.618, 116.473 587.406, 569.175, 122.972

E2 355.307, 336.308, 81.129 464.560, 447.699, 95.808 570.429, 559.874, 104.638 564.206, 549.007, 104.701

E3 422.933, 395.480, 140.720 482.356, 469.746, 109.211 589.436, 537.179, 144.232 570.985, 541.690, 121.582

E4 318.049, 306.768, 46.8490 409.576, 396.502, 63.460 507.235, 496.151, 82.829 513.787, 497.401, 98.330

E5 356.672, 334.556, 84.574 459.366, 439.861, 96.358 562.389, 550.084, 94.883 548.625, 527.648, 104.754

Combined 371.900, 336.464, 89.656 471.559, 455.680, 98.280 562.042, 542.345, 114.736 547.475, 535.806, 78.192

Table 4.29: Posterior distribution for different experts in a 3- year period. n=626 fraud losses

in 41 banks, recorded from 01/2007 to 04/2010

4.4 Conclusions of the Chapter

The conclusions drawn by the discussion of this chapter reveal the importance of consider-

ing expert opinion in the analysis of extremes. The first important finding in this chapter

was that non-informative priors are not appropriate for modelling extreme data when few

observations are available. To handle this issue, we have proposed two different ways of

constructing a subjective prior, based on risk measures that experts are familiar with.

In all cases considered, we could observe how expert opinion influences the posterior

behaviour and how the differences in these opinions may lead to different conclusions.

Hence, the relevance of an appropriate elicitation process.

Additionally, in Section 4.3.4, we have provided the tools for prior analysis when opin-

ions from multiple experts are available, particularly some methods to combine different

distributions and assign weights to experts according to their past performance. This be-

comes particularly important in situations where data sets are limited, as it is typically

the case of operational risk data. However, as we saw in the previous analysis, as more

data become available, we have less uncertainty about the unknown parameters and our

estimates seem to be more accurate. Moreover, the analysis is carried out using all the

information available, either expert opinion or collected data.



Chapter 5

Extending the GPD mixture model

In Chapter 3 we presented a Bayesian model that takes into account observations above

and below the threshold u. However, in that model the density has a discontinuity at the

threshold. The jump can be larger or smaller depending on the parameters.

In this chapter, we introduce a new model that allows to handle the discontinuity issue

in different ways. We consider different approaches according to the sort of discontinuity

we are dealing with. We start by introducing a model where the threshold u plays the role

of the qth quantile and that has a continuous density at that point. We also consider a

second model where the threshold plays the role of the quantile of the overall distribution

at which the Gamma tail is replaced by the GPD tail, not a fixed quantile for a pre-

specified q. This time we require the derivative of the density to be continuous at the

blend point. Next, we present a model with arbitrary scaling for the GPD density and,

again, we require this model to have continuous derivative at the blend point. Lastly, we

introduce a more general model where the scaling is arbitrary but that can be implemented

even if the density and its derivative are discontinuous.

Finally, we explore a Bayesian nonparametric framework. We start by considering a

model where the GPD is represented as a mixture of Exponentials and use a Dirichlet

process mixture formulation that allows for a flexible density specification. We provide

112
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the details for simulation from the DPM model using the Pólya urn scheme and MCMC

sampling. After that, we introduce a second Bayesian nonparametric model that uses a

Dirichlet process prior on the parameters of the GPD model. We also provide the sampling

scheme and a possible extension of this model. We finally introduce a nonparametric

version of the model with arbitrary scaling that can be implemented even if the density

and its first derivative are discontinuous. As for the other models, we provide the details

of its implementation.

It is worth pointing out that we have implemented most of these models for different

data sets; however, in order to be brief, we only present the most interesting findings.

Nonetheless, we provide the details of all the models as extra information. Another ex-

tension for mixture models is provided in the next chapter.

5.1 Blended Gamma-GPD model

Recall the blended model with Gamma and Generalized Pareto elements blended to be

continuous at an upper quantile, q (where q = 0.9, 0.99 say), which is a special case

of the general model introduced in Section 3.1. Suppose that u is defined such that

FH(u;α, β) = q, with FH(x;α, β) denoting the Gamma cdf, where for x >0,

FH(x;α, β) =

ˆ x

0

fH(t;α, β)dt, (5.1)

with

fH(x;α, β) =
βα

Γ (α)
xα−1e−βx, x > 0.

The blended cdf, FB(x;u, σ, ξ), takes the form

FB(x;u, σ, ξ) =


FH(x;α, β), x ≤ u,

FH(u;α, β) + (1− FH(u;α, β))FG (x;u, σ, ξ) , x > u,

(5.2)

where FG(x;u, σ, ξ) is the shifted generalized Pareto cdf viz.

FG (x;u, σ, ξ) = 1−
(

1 + ξ
(x− u)

σ

)−1/ξ

, x > u
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with density

fG (x;u, σ, ξ) =
1

σ

(
1 +

ξ (x− u)

σ

)− 1
ξ
−1

,

where the support is 
x > u if ξ ≥ 0,

u ≤ x ≤ u− σ/ξ if ξ < 0,

with parameters u, σ > 0, and ξ. We may assume that ξ ≥ 0 if we require the support of

the blended distribution to be unbounded from above.

5.1.1 A model with continuous density at the qth quantile

Observe that the blended model satisfies

FH(u;α, β) = q. (5.3)

In this model, we require the density to be continuous at x = u. The density is

fB(x;u, σ, ξ) =


fH(x;α, β), x ≤ u,

(1− q) fG (x;u, σ, ξ) , x > u.

(5.4)

and therefore we require

fH(u;α, β) = (1− q) fG (u;u, σ, ξ) =
1− q
σ

. (5.5)

This defines a second equality constraint to reduce the number of free parameters. We

regard the GPD parameters (u, σ, ξ) as the working parameters, and thus solve equations

(5.3) and (5.5) simultaneously for (α, β). This must be done numerically, and leaves (α, β)

determined by q, u and σ.

5.1.2 A model with continuous first derivative at the blend

point

In this version of the model, u plays the role of the quantile of the overall distribution

at which the Gamma tail is replaced by the GPD tail; it is not a fixed qth quantile for a
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pre-specified q. Again, we require the blended model to have continuous density at x = u.

Up to proportionality, the density is

fB(x;u, σ, ξ) ∝


fH(x;α, β), x ≤ u,

(1− FH(u;α, β)) fG (x;u, σ, ξ) , x > u.

(5.6)

where α and β are such that

fH(u;α, β) = (1− FH(u;α, β)) fG (u;u, σ, ξ) =
1− FH(u;α, β)

σ
. (5.7)

This defines one equality constraint to reduce the number of free parameters. For a further

constraint, we also require the derivative of the density to be continuous at x = u. Up to

proportionality, the derivative is

ḟB(x;u, σ, ξ) ∝


ḟH(x;α, β), x ≤ u,

(1− FH(u;α, β)) ḟG (x;u, σ, ξ) , x > u.

(5.8)

Hence we require

ḟH(u;α, β) = (1− FH(u;α, β)) ḟG (u;u, σ, ξ) = −(1− FH(u;α, β)) (1 + ξ)

σ2
. (5.9)

Note that

ḟH(x;α, β) =
βα

Γ (α)

[
(α− 1)xα−2e−βx − βxα−1e−βx

]
=

[
α− 1

x
− β

]
fH(x;α, β). (5.10)

Because of (5.7), (5.9) thus reduces to[
α− 1

u
− β

]
= −(1 + ξ)

σ
,

yielding that

β =
α− 1

u
+

1 + ξ

σ
= β (α, u, σ, ξ) ,

say. Equation (5.7) then becomes

fH (u;α, β (α, u, σ, ξ)) =
1− FH (u;α, β (α, u, σ, ξ))

σ
, (5.11)
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which defines the second equality constraint. We regard the parameters (u, σ, ξ) as the

working parameters, and thus solve equation (5.11) for α. The proportionality constant is

defined by requiring fB(x), defined by (5.6), to integrate to 1. This gives the normalizing

constant

1

FH (u) + (1− FH(u))
= 1

so that

fB(x;u, σ, ξ) =


fH(x;α, β), x ≤ u,

(1− FH(u;α, β)) fG (x;u, σ, ξ) , x > u.

(5.12)

We note the necessary constraint σ > u(1 + ξ) which guarantees that β(α, u, σ, ξ) > 0 for

any value of α > 0.

5.1.3 A model with continuous first derivative with arbitrary

scaling

In this version of the model, the density is

fB(x;u, σ, ξ) ∝


fH(x;α, β), x ≤ u,

ω (1− FH(u;α, β)) fG (x;u, σ, ξ) , x > u,

(5.13)

for some ω > 0 which is a further parameter of the model. To assure the continuity of fB,

fH(u;α, β) = ω (1− FH(u;α, β)) fG (u;u, σ, ξ) =
ω (1− FH(u;α, β))

σ
. (5.14)

This defines one equality constraint to reduce the number of free parameters. For a further

constraint, we also require the derivative of the density to be continuous at x = u. Up to

proportionality, the derivative is

ḟB(x;u, σ, ξ) ∝


ḟH(x;α, β), x ≤ u,

ω (1− FH(u;α, β)) ḟG (x;u, σ, ξ) , x > u.

(5.15)
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As before, we have that

β =
α− 1

u
+

1 + ξ

σ
= β (α, u, σ, ξ) ,

say. Equation (5.14) then becomes

fH (u;α, β (α, u, ξ, σ)) =
ω (1− FH(u;α, β (α, u, σ, ξ)))

σ
, (5.16)

which defines the second equality constraint. We regard the GPD parameters (u, σ, ξ) as

the working parameters, and thus solve equation (5.16) for α. The proportionality constant

is defined by requiring fB(x) to integrate to 1: with the density defined by (5.13), we have

that the normalizing constant is

1

FH (u;α, β) + ω (1− FH(u;α, β))

so that

fB(x;u, σ, ξ) ∝


fH(x;α, β)

FH (u) + ω (1− FH(u;α, β))
, x ≤ u,

ω (1− FH(u;α, β)) fG (x;u, σ, ξ)

FH (u) + ω (1− FH(u;α, β))
, x > u,

(5.17)

again with the constraint σ > u(1 + ξ) which guarantees that β(α, u, σ, ξ) > 0 for any

α > 0. At x = u, we have that

FB (u;u, σ, ξ) =
FH (u)

FH (u) + ω (1− FH(u;α, β))
.

5.1.4 A model with discontinuous density with arbitrary

scaling

The scaling from the model from Section 5.1.3 can be implemented even if the density and

its derivative are discontinuous, as in the original version of the model. Suppose that fB

takes the form

fB(x;u, σ, ξ) ∝


fH(x; θ), x ≤ u,

ω (1− FH(u; θ)) fG (x;u, σ, ξ) , x > u,

(5.18)



5.1. Blended Gamma-GPD model 118

where fH is the density for the left-hand component (not necessarily Gamma), active when

x < u, and for some ω > 0. The proportionality constant is defined by requiring fB(x)

defined in (5.18) to integrate to 1. The normalizing constant can be computed to be

1

FH (u; θ) + ω (1− FH(u; θ))

so that

fB(x;u, θ, σ, ξ) ∝


fH(x; θ)

FH (u; θ) + ω (1− FH(u; θ))
, x ≤ u,

ω (1− FH(u; θ)) fG (x;u, σ, ξ)

FH (u; θ) + ω (1− FH(u; θ))
, x > u.

(5.19)

At x = u, we have that

FB (u;u, θ, σ, ξ) =
FH (u; θ)

FH (u; θ) + ω (1− FH(u; θ))
.

From (5.19), it is apparent that this model can be thought of as resulting from a

mixture representation

fB (x) = πf̃H (x) + (1− π) fG (x) ,

where fH has support (0, u) and fG has support (u,∞) with

f̃H (x) =
fH(x; θ)

FH(u; θ)
x ≤ u

and

π =
FH (u; θ)

FH (u; θ) + ω (1− FH (u; θ))
.

In the conventional version of this model, we fix ω =1.

5.1.5 Real data example

The four models proposed above were tested on different data sets. In this section, we

illustrate the results for the fraud data described in Section 3.2.1 (Figure 5.1). We con-

centrate our attention on the model with continuous first derivative at the blend point

(Section 5.1.2) and the model with discontinuous density with arbitrary scaling (Section

5.1.4), due to their performance. MCMC was used to sample the parameters from these
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Figure 5.1: Fraud data: Histograms of data with cut-offs at 500 (left) and 50 (right)

models. Using uniform priors on all parameters, 2000 samples from the posterior for the

parameters were obtained.

Figure 5.2 displays the fitted densities for the model from Section 5.1.2, while Figure

5.3 shows the corresponding posterior distributions. As we can see from the figures, the

model has a good performance overall.

Now, for the model from Section 5.1.4, we can assume a Gamma model for fH , and

that

(a) ω is fixed to be 1. This is the usual model.

(b) ω is allowed to vary as a free parameter.

For model (a), with ω = 1 , and model (b), where ω is allowed to vary, we obtain the

posteriors shown in Figures 5.4–5.6.
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Figure 5.2: Fraud data: Fitted densities for the model with continuous first derivative at the

blend point

For these parameters, the results are broadly similar; the most different are the poste-

rior for β in the Gamma model, and the posterior for u. In model (b), the posterior for ω

is as follows: It is clear from Figure 5.6 that ω > 1 is heavily supported in the analysis.

Figure 5.7 uses an estimated distribution function formed from the Bayesian analysis to

carry out a goodness of fit assessment using a P-P plot; it seems that the model where ω

varies is preferred.
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Figure 5.3: Fraud data: Posterior histograms for the model with continuous first derivative at

the blend point. Top: α and β. Middle: u and σ Bottom: ξ
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Figure 5.4: Fraud data: Posterior histograms for ω = 1

Figure 5.5: Fraud data: Posterior histograms for ω varying
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Figure 5.6: Fraud data: Posterior histogram for ω in model (b) based on fB

Figure 5.7: P-P plots for data using Bayesian estimates from fitted models. Left panel is model

(a) (ω = 1), right panel is model (b) (ω varying)
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5.2 A Bayesian nonparametric model

It is well-known that the GPD model can be represented as a Gamma mixture of Expo-

nential distributions. Recall that if

fX|θ (x | θ) ≡ Exponential (θ) x > 0

fθ (θ | γ, β) ≡ Gamma (γ, β)

then for x > 0

fX(x|γ, β) =

ˆ ∞
0

θe−θx
βγ

Γ(γ)
θγ−1e−βθ dθ

=
βγ

Γ(γ)

ˆ ∞
0

θ(γ+1)−1e−(β+x)θ dθ

=
βγ

Γ(γ)

Γ(γ + 1)

(β + x)γ+1

=
γ

β

1

(1 + x/β)γ+1

so setting γ = 1/ξ and β = σ/ξ yields the GPD(σ, ξ). Adding the fixed location shift

parameter u is straightforward, this will be discussed later.

This suggests a natural Bayesian nonparametric model based on a Dirichlet process

mixture formulation. Consider a random sample X1, ..., Xn where Xi ∼ Exponential(θi),

i = 1, ..., n and

θ1, ..., θn
i.i.d∼ Fθ,

where Fθ is constructed as follows. Let DP(ν,G0) be a Dirichlet process with parameter ν

and base distribution G0, taken to be the Gamma distribution with parameters(1/ξ, σ/ξ).

The parameter ν is a precision hyperparameter. The CDF Fθ is then a random (almost

surely discrete) CDF with prior specifying that for any set B,

E [Fθ (B)] = G0 (B) , V [Fθ (B)] =
G0 (B) (1−G0 (B))

ν + 1
.

As ν →∞, the unconditional distribution of X becomes the GPD(σ, ξ) distribution. For

finite ν however, the Bayesian nonparametric specification imparts additional flexibility.
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This model is termed a Dirichlet process mixture (DPM) model; it allows for a flexible

density specification.

The parameter ν determines the degree of “clustering” in the Dirichlet Process model,

that is, the number of distinct values in the collection θ1, ..., θn. If K is the (random)

number of distinct values, recalling the result of Antoniak (1974), we have that

p (K | n, ν) =
Sn,Kn!νKΓ (ν)

Γ (ν + n)
, K = 1, ..., n

where Sn,k denotes the Stirling number of the first kind. It holds that (Teh, 2010)

E [K | n, ν] = ν (ψ (ν + n)− ψ (ν)) ,

V [K | n, ν] = ν (ψ (ν + n)− ψ (ν)) + ν2 (ψ′ (ν + n)− ψ′ (ν)) ,

where ψ (·) and ψ′ (·) are the digamma and trigamma functions, respectively.

5.2.1 Simulation from the DPM model

To simulate from the DPM model (Mahmoud, 2008), we first must specify how to simulate

the sample θ1, ..., θn; this is achieved via the Pólya urn scheme operating on the implicit

clusters that form part of the Dirichlet process specification. The algorithm proceeds as

follows:

Step 1. Set i = 1; set c1 = 1 as the first cluster label.

Step 2. For i = 2, 3, ..., n: let Ki−1 denote the number of distinct values in c1, ..., ci−1,

and let n1(i−1), ..., nKi−1
(i−1) denote the counts of each of the distinct cluster

labels. Then generate

ci | c1, ..., ci−1 ∼
ν

ν + i− 1
δKi−1+1 +

1

ν + i− 1

Ki−1∑
k=1

nk (i− 1) δk,

that is, with probability ν/ (ν + i− 1) generate a new cluster label Ki−1 + 1,

but with probability

nk (i− 1)

ν + i− 1
,
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set ci = k. When i = n, the values c1, ..., cn form Kn clusters of labels

1, 2, ..., Kn, with n1(n), ..., nKn(n) in each cluster respectively.

Step 3. Let K ≡ Kn denote the number of distinct values in c1, ..., cn. For k = 1, ..., K,

generate ϑk ∼ G0 independently, and for i = 1, ..., n set

θi =
K∑
k=1

ϑk1k (ci) .

The ϑ1, ..., ϑK values represent the cluster “locations” for the K clusters to

which the n data belong. The final step involves generating Xi | θi.

Step 4. Simulate Xi | θi ∼ Exponential(θi).

5.2.2 Posterior inference under the DPM model

Given data x1, . . . , xn that are assumed to arise from a data generating process to be

modelled using a DPM, we seek a MCMC sampling scheme to perform posterior inference.

This can be achieved using a standard strategy that samples in turn

(i) the parameters θ1, . . . , θn;

(ii) the GPD parameters σ, ξ;

(iii) the Dirichlet process precision parameter ν;

from their full conditional distributions.

5.2.2.1 Sampling the θ parameters

In this step, we define the sampling weights as follows.

fX (x | σ, ξ) =

ˆ ∞
0

fX|θ (x | θ) fθ (θ | σ, ξ) dθ (5.20)

is the marginal density for X after integrating out over the mixing distribution, and

pi (θ | xi, σ, ξ) is the posterior density derived from datum xi, formed as

pi (θ | xi, σ, ξ) ∝ fX|θ (xi | θ) πθ (θ | σ, ξ) . (5.21)



5.2. A Bayesian nonparametric model 127

In the conjugate formulation we have utilized, both equations (5.20) and (5.21) can be

computed analytically: we have that

fX (x | σ, ξ) ≡ GPD (x | σ, ξ) , (5.22)

as in the initial calculation, and

pi(θ|xi, ξ, σ) ∝ θe−θxiθ1/ξ−1e−σθ/ξ = θ1/ξ+1−1e−(σ/ξ+xi)θ, (5.23)

so that

pi(θ|xi, ξ, σ) ≡ Gamma(1/ξ + 1, σ/ξ + xi). (5.24)

Next, using a Pólya urn scheme that samples the parameter for datum i from its full

conditional posterior distribution we have that

θi | xi, θ(−i), σ, ξ, ν ∼ w0pi (θ | xi, σ, ξ) +
∑
j 6=i

wjδθj , (5.25)

where

w0 =
νfX (xi | σ, ξ)

νfX (xi | σ, ξ) +
∑
j 6=i

fX|θ (xi | θj)
, wj =

fX|θ (xi | σ, ξ)
νfX (xi | σ, ξ) +

∑
j 6=i

fX|θ (xi | θj)
, j 6= i.

In summary, for θi, we first sample from the set {0, 1, 2, ..., i− 1, i+ 1, ..., n} with

probabilities {w0, w1, w2, . . . , wi−1, wi+1, . . . , wn}; if the value 0 is obtained, we sample

from θi from (5.24), whereas if index j is sampled, we set θi equal to θj.

In this scheme, the clustering of the θ values is not utilized in the sampling, although

it is of course present; obtaining index 0 and sampling from (5.24) generates a completely

new θ and a new cluster, but otherwise an existing value of θ is used. As before, we let

K denote the number of distinct values of θ, ϑ1, ..., ϑK denote these distinct values, and

c1, ..., cn denote the cluster labels denoting which datum belongs to which cluster.

5.2.2.2 Sampling the GPD parameters

The full conditional for (σ, ξ) given all other parameters is proportional to{
K∏
k=1

fθ (ϑk | σ, ξ)

}
π (σ, ξ) . (5.26)
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where fθ (· | σ, ξ) ≡ Gamma (1/ξ, σ/ξ), that is, proportional to the likelihood of the dis-

tinct θ values multiplied by the prior π (σ, ξ). The distribution cannot be sampled directly,

so Metropolis-Hastings updates must be used.

5.2.2.3 Sampling the DP precision parameter

The full conditional for ν given ϑ1, ..., ϑK can be updated using an auxiliary variable

method designed by Escobar and West (1995). Suppose that the prior distribution for ν

is Gamma(a, b). To update ν, we introduce η with conditional distribution

η | ν ∼ Beta (ν + 1, n) , (5.27)

and then update ν as

ν | η,K ∼


Gamma (a+K, b− log (η)) with prob.

a+K − 1

a+K − 1 + n (b− log (η))
,

Gamma (a+K − 1, b− log (η)) with prob.
n (b− log (η))

a+K − 1 + n (b− log (η))
.

(5.28)

5.2.3 Introducing the offset u

If the GPD model pertains beyond a threshold u, then the model can be readily extended

for the right tail model. We have X1, ..., Xn independent where for Xi > u we have

Xi | u, θi ∼ Shifted exponential (θi, u)

with density θie
−θi(x−u), x > u. As before, we assume a Gamma (1/ξ, σ/ξ) model for θ.

For Xi ≤ u, we might assume that Xi ∼ Gamma(α, β), independent of θi. That is, we are

appealing to the continuous mixture representation

fX (x | u) =

ˆ ∞
0

fX|θ (x | u, θ) π (θ) dθ ≡


Gamma (α, β) , x ≤ u,

GPD (u, σ, ξ) , x > u.

(5.29)
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For a Bayesian nonparametric specification, we again assume

θ1, ..., θn
i.i.d.∼ Fθ, Fθ ∼ DP (ν,G0 (σ, ξ)) . (5.30)

where G0 (σ, ξ) is a GPD base distribution. The generative model is therefore represented

by the following simulation scheme:

1. Simulate θ1, ..., θn from the DP model using the Pólya urn scheme.

2. For i = 1, ..., n, generate zi ∼ Uniform(0, 1).

a) If zi ≤ FG(u;α, β), then simulate Xi from the Gamma(α, β) distribution trun-

cated at u; this may be done by cdf inversion or by rejection sampling.

b) If zi > FG(u;α, β), then simulate Vi ∼ Exponential(θi), and set Xi = Vi + u.

For inference, the previous algorithm can be implemented with amendments. The most

notable changes occur in the sampling of the θis from θi | xi, θ(−i) in the Pólya urn scheme.

The two cases need separate consideration:

� xi ≤ u: we have that the sampling weights are defined as proportional to

νfG (xi | α, β, u)

for w0, where fG(· | α, β, u) is the Gamma(α, β) density truncated at u, and wj is

proportional to fG(xi | α, β, u) for each j 6= i. Therefore the sum of the sampling

weights is (ν + n− 1) fG(xi | α, β, u). The posterior measure pi (θ | xi, u, σ, ξ) is

given by

pi (θ | xi) ∝ fX (xi | u) πθ (θ | σ, ξ) ∝ πθ (θ | σ, ξ) . (5.31)

That is, we may sample θi in this case using a prior Pólya urn scheme

– with probability ν/ (ν + n− 1) , sample θi ∼ Gamma (1/ξ, σ/ξ);

– with probability wj = 1/ (ν + n− 1) , j ∈ {1, 2, ..., i− 1, i+ 1, ..., n} set θi = θj;
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� xi > u: in this case, the scheme reverts to the one from Section 5.2.2.1.

Conditional on θ1, ..., θn, the sampling of the Generalized Pareto parameters (σ, ξ) and

precision parameter ν proceeds as before. To sample the Gamma parameters (α, β) from

their full conditional distribution given the data and u, the likelihood{ ∏
i : xi ≤ u

fG(xi;α, β)

}
{1− FG(u;α, β)}n−n1 (5.32)

is used, in conjunction with a suitable prior. Finally, to sample the parameter u from its

full conditional density given the other parameters, we utilize the likelihood{ ∏
i : xi ≤ u

fG(xi;α, β)

}{ ∏
i : xi > u

θi exp{−θi(xi − u)}

}
. (5.33)

5.3 A second Bayesian nonparametric model

A second Bayesian nonparametric approach uses a Dirichlet process prior on the parame-

ters of the GPD model. We assume that for a fixed threshold u,

fX(x|ϕ, u) =

¨

Ω

fX (x | u, σ, ξ)F (dξ, dσ), (5.34)

where Ω = (−1/2,∞)× R+, and

F ∼ DP (ν,G0 (ϕ))

and G0 (ϕ) is some base measure with hyperparameters ϕ and ν is the precision parameter.

For example, we might choose that G0 is a product of two Gamma distributions with

parameters (αξ, βξ) and (ασ, βσ) respectively, with the prior for ξ relocated to (−1/2,∞).

The parametric analysis is recovered when ν → ∞. An equivalent analysis is recovered

when the scale mixture of Exponentials is used, that is,

fX(x|ϕ, u) =

¨

Ω

{ˆ ∞
0

fX|θ(x|θ, u)π(θ|σ, ξ)dθ
}
F (dξ, dσ), (5.35)

where fX|θ (x | θ, u) is Exponential (θ) shifted by u, and π (θ | σ, ξ) is Gamma (1/ξ, σ/ξ).

In the initial formulation, we consider the case u = 0.
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5.3.1 Priors

Reasonable choices for the hyperparameters seem to be

(αξ, βξ) = (6, 5) , (ασ, βσ) = (3, 0.1) .

Note that the Jeffreys’ prior for ξ (see Section 4.1), given by

1

π

1

(1 + ξ)
√

1 + 2ξ
, −1

2
< ξ <∞ (5.36)

is reasonably well approximated by Gamma(1/4, 1/4) relocated to the range (−1/2,∞).

5.3.2 Inference

Given data x1, ..., xn assumed to arise from a data generating process to be modelled using

a DPM, we seek a MCMC sampling scheme to perform posterior inference. This can be

achieved using the strategy from Section 5.2.2. We sample

(i) the parameters (σ1, ξ1) , ..., (σn, ξn),

(ii) the hyperparameters (ασ, βσ) and (αξ, βξ),

(iii) the Dirichlet process precision parameter ν,

from their full conditional distributions. We use the notation ζi = (ξi, σi).

5.3.2.1 Sampling the ζ parameters

This step is achieved using a Pólya urn scheme that samples the pair of parameters for

datum i from its full conditional posterior distribution

ζi | xi, ζ(−i) ∼ w0pi (ζ | xi) +
∑
j 6=i

wjδζj , (5.37)

suppressing the dependence on the hyperparameters, where

w0 =
νfX (xi)

νfX (xi) +
∑
j 6=i

fX|ζ (xi | ζj)
and wj =

fX|ζ (xi | ζj)
νfX (xi) +

∑
j 6=i

fX|ζ (xi | ζj)
, j 6= i (5.38)
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define the sampling weights, where

fX (x) =

ˆ ∞
−1/2

ˆ ∞
0

fX|ζ (x | ζ) πζ (ζ) dζ (5.39)

is the marginal density for X after integrating out over the mixing distribution, and

pii (ζ | xi) is the posterior density derived from datum xi, formed as

pi (ζ | xi) ∝ fX|ζ (xi | ζ) πζ (ζ) . (5.40)

Here, equations (5.39) and (5.40) cannot be computed analytically. For (5.39) we can

use numerical integration effectively, as this is merely a bivariate integral. This can be

achieved using quadrature, or using Monte Carlo, using the following ‘Rao-Blackwellized’

estimation strategy:

� Sample ζl = (σl, ξl), l = 1, . . . , L independently from πζ(·).

� Compute the density estimate

f̂X(x) =
1

L

L∑
l=1

fX|ζ(x|ζl)

on a fixed, fine grid of x values, to form a look-up table.

� For any desired xi, use interpolation from the look-up table.

For (5.40), we must use MCMC sampling.

As before, for ζi, we first sample from the set {0, 1, 2, ..., i− 1, i+ 1, ..., n} with prob-

abilities given by w0, w1, w2, ..., wi−1, wi+1, ..., wn; if the value 0 is obtained, we sample ζi

from (5.40) using MCMC, whereas if index j > 0 is sampled, we set ζi, equal to ζj .

As before, the clustering of the ζ values is not utilized in the sampling, although it is

of course present; obtaining index 0 and sampling from (5.40) generates a completely new

ζ and a new cluster, but otherwise an existing value of ζ is used. As before, we let K

denote the number of distinct values of ζ. Denote these distinct values by ϑ1, ..., ϑK , and

denote the cluster labels by c1, ..., cn, indicating which datum belongs to each cluster. Let

ϑk ⊂ (σ∗k, ξ
∗
k).
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5.3.2.2 Sampling the hyperparameters

If these parameters are to be updated (which is not really necessary or advisable) we have

from our formulation that (ασ, βσ) and (αξ, βξ) are conditionally independent given all

other parameters. The full conditional for (αξ, βξ) is proportional to{
K∏
k=1

fξ(ξ
∗
k|αξ, βξ)

}
π(αξ, βξ), (5.41)

where fξ(·|αξ, βξ) is Gamma(αξ, βξ) that is, proportional to the likelihood of the distinct

values ξ∗ multiplied by the prior for these parameters, π(αξ, βξ). The distribution cannot

be sampled directly, so Metropolis-Hastings updates must be used.

5.3.3 Extending the second Bayesian nonparametric model

For a fixed u > 0 the formulation proceeds as before. We have

fX(x|ϕ, u) =

¨

Ω

fX(x|ξ, σ, u)F (dξ, dσ),

where Ω = (−1/2,∞)×R+, and F ∼ DP(α,G0(ϕ)) and G0(ϕ) is some base measure with

hyperparameters ϕ. The support of this density is clearly (u,∞).

Most of the details go through as before for implementing the DP components, but we

additionally condition on u. To sample the ζs, we again consider a Pólya urn scheme that

samples the pair of parameters for datum i from its full conditional posterior distribution

ζi|xi, ζ(−i), u ∼ w0pi(ζ|xi, u) +
∑
j 6=i

wjδζj ,

suppressing the dependence on the hyperparameters, where

w0 =
νfX(xi|u)

νfX(xi|u) +
∑
l 6=i
fX|ζ(xi|ζl, u)

and wj =
fX|ζ(xi|ζj, u)

νfX(xi|u) +
∑
l 6=i
fX|ζ(xi|ζl, u)

, j 6= i

define the sampling weights, where

fX(x|u) =

ˆ ∞
−1/2

ˆ ∞
0

fX|ζ(x|ζ, u)πζ(ζ) dζ (5.42)
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is the marginal density for X after integrating out over the mixing distribution, and pi(ζ|xi)

is the posterior density derived from datum xi, formed as

pi(ζ|xi, u) ∝ fX|ζ(xi|ζ, u)πζ(ζ). (5.43)

For (5.42) we can again use numerical integration effectively, as this is merely a bivariate

integral; to compute for each u, note that

fX(x|u) = fX(x− u),

where the right hand side is the density computed for u = 0 from (5.39). For (5.43),

we again use MCMC sampling. Sampling the hyperparameters and the DP precision

parameter proceed as before.

5.4 A nonparametric version of the model from

Section 5.1.4

Suppose again, as in Section 5.1.4, that the data density fB takes the form

fB(x;u, φ, ξ, σ) =


fH(x;φ)

FH(u;φ) + ω(1− FH(u;φ))
, x ≤ u,

ω(1− FH(u;φ))fG(x;u, ξ, σ)

FH(u;φ) + ω(1− FH(u;φ))
, x > u.

A nonparametric specification for the component fG of this model can be considered,

specifically the DPM from Section 5.3.3.

5.4.1 Implementing the DPM in the model from Section 5.1.4

The only complicated step involves sampling the ζ = (σ, ξ) from their full conditional

density as indicated by Equations (5.37) and (5.38). Recall that we need to sample ζi

from its full conditional density

ζi|xi, ζ(−i), u ∼ w0pi(ζ|xi, u) +
∑
j 6=i

wjδζj
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for each i = 1, . . . , n, where

w0 =
νfX(xi|u)

νfX(xi|u) +
∑
l 6=i
fX|ζ(xi|ζl, u)

and wj =
fX|ζ(xi|ζj, u)

νfX(xi|u) +
∑
l 6=i
fX|ζ(xi|ζl, u)

, j 6= i

with

fX(x|u) =

ˆ ∞
−1/2

ˆ ∞
0

fX|ζ(x|ζ, u)πζ(ζ) dζ

and

pi(ζ|xi, u) ∝ fX|ζ(xi|ζ, u)πζ(ζ),

the full conditional posterior for ζ given xi.

The two cases xi ≤ u and xi > u need separate consideration:

� xi ≤ u: in this case, the density for x does not depend on ζ, so using the same logic

as in Section 5.2.3, we have that the sampling weights are proportional to

νfH(xi|φ, u)

for w0, where fH(.|φ, u) is the density fH truncated to (0, u), and wj is fH(xi|φ, u)

for each j 6= i. Therefore the sum of the sampling weights is (ν + n− 1)fH(xi|φ, u).

The posterior measure pi(ζ|xi, u, ) is given by

pi(ζ|xi, u) ∝ fH(xi|φ, u)πζ(ζ) ∝ πζ(ζ).

That is, we may sample ζi in this case using a prior Pólya urn scheme

– with probability ν/(ν + n− 1), sample ζi ∼ πζ(·)

– with probability wj = 1/(ν + n− 1), j ∈ {1, ..., i− 1, i+ 1, ..., n}, set ζi = ζj.

� xi > u: in this case, the standard scheme applies. We have by assumption that the

data density is

ω(1− FH(u;φ))fG(x;u, ζ)

FH(u;φ) + ω(1− FH(u;φ))
= MfG(x; ζ, u)
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say, so therefore

w0 ∝ νMfG(xi|u) = νM

ˆ ∞
−1/2

ˆ ∞
0

fX|ζ(xi|ζ, u)πζ(ζ) dζ

and

wj ∝MfG(xi|ζj, u), j 6= i.

That is, the constant M cancels, and we may sample ζi as follows. Let

Si =
∑
j 6=i

fX|ζ(xi|ζj, u)

then

– with probability νfG(xi|u)/(νfG(xi|u)+Si), sample ζi ∼ pi(ζ|xi, u) using Metropolis-

Hastings;

– with probability wj = 1/(νfG(xi|u) + Si), j ∈ {1, 2, ..., i− 1, i+ 1, ..., n} set

ζi = ζj.

5.4.2 Updating the remaining parameters

5.4.2.1 Parameters of the density fH

The parameters φ of the component fH can be updated in the usual way for a paramet-

ric analysis. Conditional on the parameters ζ1, . . . , ζn, ω and u, we have that the full

conditional likelihood takes the form{ ∏
i : xi≤u

fH(xi;φ)

FH(u;φ) + ω(1− FH(u;φ))

}{ ∏
i : xi>u

ω(1− FH(u;φ))fG(xi; ζi, u)

FH(u;φ) + ω(1− FH(u;φ))

}
(5.44)

which, if nG denotes the number of xi > u, is proportional to{ ∏
i : xi≤u

fH(xi;φ)

}
(1− FH(u;φ))nG

[FH(u;φ) + ω(1− FH(u;φ))]n

A prior on φ completes the specification.
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5.4.2.2 Threshold parameter u and scaling parameter ω

The parameter u is updated using the conditional likelihood in equation (5.44), in con-

junction with a suitable prior. The same is true for scaling parameter ω. Both updates

are achieved using Metropolis-Hastings.

5.4.2.3 Dirichlet process parameters

The hyperparameters of the Dirichlet process base measure, and the Dirichlet process

precision parameter, are updated as in previous sections.

5.4.3 Real data example

As before, we tested the Bayesian nonparametric models on different data sets. We only

show the results for the fraud data from Section 3.2.1. This time we focus on the first

Bayesian nonparametric model and on the nonparametric version of the model from Section

5.1.4.

Following the procedure from Sections 5.2.1 and 5.4.1, we obtained 2000 samples from

the posterior distributions using MCMC. Again, we assume a Gamma model for fH .

Results for the first Bayesian nonparametric model are shown in Figures 5.8–5.10, while

Figures 5.11–5.13 display the results for the nonparametric version of the model from

Section 5.1.4. In Figure 5.12, we can observe samples of u, ω and fH model parameters.

We can also assess the model performance using the P-P plots. From the figures one may

notice that the model fit is good in general, although it can be improved by introducing

the ω parameter.
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Figure 5.8: Fraud data: Posterior samples of the precision parameter for the first Bayesian

nonparametric model. The blue line is a Gamma prior for ν in terms of frequencies
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Figure 5.9: Fraud data: Histograms of the posterior MCMC estimates for the first Bayesian

nonparametric model
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Figure 5.10: Fraud data: P-P plot using the posterior MCMC estimates from the first Bayesian

nonparametric model
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Figure 5.11: Fraud data: Posterior samples of the precision parameter for the nonparametric

version of the model with discontinuous density with arbitrary scaling. The blue line is a Gamma

prior for ν in terms of frequencies
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Figure 5.12: Fraud data: Posterior parameter samples from the nonparametric version of the

model with discontinuous density with arbitrary scaling
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Figure 5.13: Fraud data: P-P plot using the posterior MCMC estimates from the nonparametric

version of the model with discontinuous density with arbitrary scaling
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5.5 Conclusions of the Chapter

In this chapter, we have proposed several new models. The first model has a density

continuous at the qth quantile, fixing the discontinuity issue in the model by Behrens et

al. (2004) in a simple way. Nonetheless, q is a fixed quantity. Thus, in the second model

we require the first derivative to be continuous at the blend point, so that q is not fixed

anymore. The third model has a continuous first derivative, but this time the scaling is

arbitrary, i.e., the density is scaled by some ω > 0, which gives greater flexibility. The

last Bayesian model is based on a discontinuous density with arbitrary scaling. One of

the main features of this model is that it can be implemented even if the density and its

derivative are discontinuous.

As for the Bayesian nonparametric models, we have recalled some properties of the

GPD, in particular that it can be represented as a Gamma mixture of Exponentials,

suggesting a model based on a Dirichlet Process Mixture representation. We have also

introduced a second Bayesian nonparametric model that differs from the previous one in

that it uses a Dirichlet process prior on the parameters of the GPD. Similarly, we have

applied this last model to the case when the density is discontinuous and the scaling is

arbitrary.

As we have seen in our analysis, all these models can be easily implemented using

MCMC methods. For the fraud data, we have observed that the proposed models have a

good overall performance, providing a powerful alternative to deal with the discontinuity

issue in the model introduced by Behrens et al. (2004).



Chapter 6

Conclusions and future research

6.1 Contributions of the thesis

Extreme Value Theory based models have been widely used in many fields as they supply

a statistically justifiable and flexible method for extrapolating tail distributions. In the

context of operational risk, EVT offers an interesting view on the quantitative measure-

ment of risk. As Embrechts (2002) pointed out: “The main virtue of EVT is that it gives

the user a critical view on and a methodological toolkit for issues like skewness, fat tails,

rare events, stress scenarios,...”; however, as we have discussed through this thesis, there

are still serious limitations that have to be overcome to make it viable; for instance, this

methodology requires a good choice of a threshold to have a good performance, which most

of the times is problematic. Furthermore, the Basel II requirements for implementing the

Advanced Measurement Approach are not completely met.

This dissertation has investigated how a Bayesian analysis of extremes offers and al-

ternative to the standard classical one, in the sense that it is able to account for the

uncertainty associated with the threshold choice by considering it as another parameter of

the model to be estimated. It also offers the ability to supplement information provided by

the data with other sources of information, through the prior distribution. In addition, the

142
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output of a Bayesian analysis provides posterior information which can also be exploited

for extrapolation, via the posterior predictive distribution.

The first contribution of this work was presented in Chapter 3, where both the model

proposed and its application to operational risk data showed how Bayesian inference allows

for parameter estimation to determine the loss distribution, by using all data and prior

information through a Bayesian model. Our study has shown the importance of considering

the threshold uncertainty in the estimation, as the GPD parameters are very sensitive with

respect to this value. We also observed how the inclusion of expert opinion is an important

input, particularly when we have small data sets, as shown in Chapter 3.

Another interesting discovery was that the Basic Indicator Approach –the most com-

monly used method for estimating the minimum capital requirement–, although is a good

start, rarely provides a good estimate, since it does not take into account either the data

or expert opinion.

One of the most significant findings to emerge from this study was that expert opinion

represents a valuable but underestimated source of information. In many cases, to simplify

the problem, it is assumed that the information experts can provide is not significant and

statisticians tend to use non-informative priors instead of priors based on expert judgment.

Nevertheless, as shown in Chapter 4, many of the non-informative prior distributions

are unrealistic. It was further noted that expert opinion can dramatically influence the

estimates in the context of extreme events and hence, one should pay special attention to

the elicitation process.

Furthermore, we addressed a common problem in practice: the combination of mul-

tiple expert opinions. Although this topic has been widely studied, little research has

focused on operational risk. Our work thus makes a noteworthy contribution in the sense

that it provides the tools for combining and updating multiple opinions on extreme data.

Moreover, we could notice how the inclusion of different opinions may influence the results

and only after some years, when more data become available, the influence of experts is
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limited.

The last contribution of this thesis was the introduction of several new models that

allow to deal with the discontinuity problem observed in previous models. Our models

are a modification on a previously introduced model (Behrens et al., 2004). In this last

Chapter, we provided the theory and the sampling scheme for all the different versions of

our model. This can be used in order to improve the performance of Bayesian models and

parameter estimates, providing a more realistic approach to the loss distribution. We also

explored Bayesian nonparametric models, giving more flexibility to the analysis of extreme

events and laying the foundation for future work in such models.

6.2 Future research

The findings of this study have a number of important implications for future practice,

and we strongly advocate that Bayesian approaches to operational risk modelling should

be considered as a serious alternative for practitioners in banks and financial institutions.

It is worth pointing out that these models may be improved and extended in a number

of directions. Currently, the use of Bayesian models in extremes is an active research

area. For instance, some authors have extended these models to include covariates in a

GPD model formulation (Cabras et al., 2011) while others are treating this problem in a

nonparametric setting (Wang et al., 2011).

As part of our future research, we have considered the problem of dealing with losses

caused by different effects. In the next section we develop some ideas and present some of

our findings for the study of mixture distributions in EVT.

6.2.1 Finite mixture distributions and EVT

Extreme value theory is usually applied to single loss distributions; however, there is the

case where losses are caused by two or more independent effects, each happening with a
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certain probability. In this situation, we should consider mixture models, i.e. distributions

of the form F (x) =
∑
i∈I

wiFi (x) for x ∈ R, where wi ≥ 0, i ∈ I and
∑

i∈I wi = 1; the index

set I is assumed to be finite or countable and {Fi : i ∈ I} is a family of univariate

distribution functions. But this leads to a different problem. Recently, some authors have

investigated the performance of the POT method under these circumstances. For instance,

Nešlehová et al. (2006) point out the potential shortcomings of the classical POT model

in the presence of “data contamination”, that is, observations within the sample, which

do not follow the same distribution as the rest of the data. They provide some examples

based on mixtures of Pareto distributions, showing that very high losses are driven for one

of the mixture components, which leads to incorrect estimates of high quantiles.

In this section we explore whether extreme value theory can be applied to mixture

distributions. We start by reviewing some results from the literature, particularlly a theo-

rem in the paper by Kang and Serfozo (1999), which shows that for mixture distributions,

the limiting distribution is determined by one or more distributions among the mixtures

whose tails dominate the other tails. They also derive bounds and rates of convergence.

Definition 6.1. Suppose F is a mixture of the form

F (x) =
∑
i∈I

wiFi (x) , x ∈ R, (6.1)

where {Fi : i ∈ I} is a finite or countable collection of distributions and the wi are non-

negative constants such that
∑

i∈I wi = 1.

We say that the tail of the distribution F ∗ with right endpoint x∗ dominates those of

{Fi : i ∈ I} if, for each i ∈ I, the right endpoint of Fi is x∗ and

lim
x→x∗

F̄i (x)

F̄ ∗ (x)
= ri,

for some finite ri ≥ 0, and this limit is uniform in i in case I is an infinite set. The

coefficients ri are called the tail ratios. F ∗ and Fi are called tail equivalent if ri > 0, and

the tail of F ∗ strictly dominates that of Fi when ri = 0.
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Theorem 6.2. Suppose F is a mixture of the form (6.1) and there is a distribution

F ∗ ∈ {Fi : i ∈ I} whose tail dominates those of {Fi : i ∈ I} with tail ratios such that

γ ≡
∑

iwiri is positive. Then the following statements are equivalent.

(i) F ∈ MDA(H) with normalizing constants cn, dn.

(ii) F ∗ ∈ MDA(H) with normalizing constants c∗n, d∗n.

When these statements hold, the normalizing constants are related as follows.

cn = c∗n, dn = d∗n + c∗nlog γ if H is Gumbel

cn = γ1/αc∗n, dn = d∗n = 0 if H is Fréchet

cn = γ−1/αc∗n, dn = d∗n if H is Weibull

 (6.2)

Proof of Theorem 6.2. For simplicity, let xn = cnx+ dn. We first show that statement

(ii) is equivalent to

nF̄ ∗ (xn)→ −γ−1 logH (x) , x ∈ R, (6.3)

where cn, dn are given by (6.2). Suppose that (ii) holds and note that it is equivalent to

nF̄ ∗ (c∗nx+ d∗n)→ −logH (x) . (6.4)

by (2.11). If H is Gumbel, i.e. H (x) = e−e
−x

, then xn = c∗n (x+ log γ) + d∗n and so by

(6.4),

nF̄ ∗ (xn)→ −logH (x+ log γ) = −γ−1logH (x) .

If H is Fréchet or Weibull, it follows by a similar argument that

xn =


c∗n
(
xγ1/α

)
+ d∗n ifH is Fréchet,

c∗n
(
xγ−1/α

)
+ d∗n ifH is Weibull,

respectively, and hence

nF̄ ∗ (xn)→

 −logH
(
xγ1/α

)
−logH

(
xγ−1/α

)
 = −γ−1logH (x) .

The last equality is due to the two forms of H. This proves that (ii) implies (6.3). Con-

versely, suppose that (6.3) holds and define c∗n, d
∗
n by (6.2). Then arguing as above, it

follows that, for the three forms of H,
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nF̄ ∗ (c∗nx+ d∗n)→


−γ−1logH (x− log γ)

−γ−1logH
(
xγ−1/α

)
−γ−1logH

(
xγ1/α

)
 = −logH (x) .

Thus F ∗ ∈ MDA (H) , which proves that (ii) is equivalent to (6.3).

We now consider the equivalence of (i) and (ii). Because of (2.11), this is equivalent

to showing that (6.3) is equivalent to which is equivalent to

nF̄ (xn)→ −logH (x) . (6.5)

By the definition of F ,

nF̄ (xn) = nF̄ ∗(xn)
∑
i∈I

wi
F̄i(xn)

F̄ ∗(xn)
. (6.6)

Since the tail of F ∗ dominates those of the Fi, we have that F̄i(xn)/F̄ ∗(xn)→ ri as n→∞

for i ∈ I. Furthermore, this convergence is uniform in i when I is an infinite set. Thus,

by the dominated convergence theorem, we have∑
i

wi
F̄i(xn)

F̄ ∗(xn)
→
∑
i

wiri = γ. (6.7)

This implies that (6.3) is equivalent to (6.5) by (6.6).

6.2.1.1 Simulation study

In the previous section we studied the theoretical foundations of extreme value theory for

mixture distributions. In order to compare the differences between theory and practice, we

carry out a simulation study. We divide our study in two parts: 1. Behaviour of the GPD

scale and shape parameters when dealing with mixture distributions and 2. Estimation of

high quantiles for a particular mixture distribution.

6.2.1.2 GPD scale and shape parameters for mixture distributions

In this part of our study, we simulate data from three different (two-component) mixtures

with I = {1, 2}:
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1. F1 is N(100, 202) and F2 is N(150, 252).

2. F1 is N(700, 502) and F2 is Gamma(100, 0.1).

3. F1 is t(2,10) and F2 is t(5,15).

We start by exploring the tail dominance of these distributions. For a mixture of Gaussians

we have:

lim
x→∞

F̄i (x)

F̄j (x)
= lim

x→∞

fi (x)

fj (x)
= lim

x→∞

1

σi
√

2π
exp

[
− (x−µi)2

2σ2
i

]
1

σj
√

2π
exp

[
− (x−µj)2

2σ2
j

]
=

σj
σi

exp

[
− µ2

i

2σ2
i

+
µ2
j

2σ2
j

]
lim
x→∞

exp

[(
1

σ2
j

− 1

σ2
i

)
x2

2
+

(
µi
σ2
i

− µj
σ2
j

)
x

]
.

Thus F̄i (x) /F̄j (x) converges to 0 as x→∞ if(
1

σ2
j

− 1

σ2
i

)
< 0 or µi < µj for σi = σj.

Therefore, the tail of Fj strictly dominates that of Fi when σi < σj or µi < µj for σi = σj.

Hence, for the mixture N(100, 202) -N(150, 252), the tail is dominated by N(150, 252).

Similar results can be derived for the other mixtures.

In order to observe the behaviour of these distributions in practice, we simulate 1,000

observations from each mixture and assign equal weights wi = 0.5 i = 1, 2 to each com-

ponent. The corresponding densities are shown in Figure 6.1.

We approximate the tail of each mixture using the POT method and maximum like-

lihood for the estimation of the scale (σ) and shape (ξ) parameters. The threshold is set

as the 0.7, 0.8 and 0.9 empirical quantile. Results are displayed in Tables 6.1-6.6.

From Table 6.1, we can observe that, under the classic GPD estimation, the estimate

of the ξ parameter—denoted by ξ̂—is always larger for the mixture than for the single

normals. The Bayesian estimates present a similar behaviour and, again, the ξ̂ parameter

is larger for the mixture (Table 6.2). In most cases, ξ̂ is far from the theoretical value of

0, since the normal distribution belongs to the Gumbel domain of attraction.
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Figure 6.1: Simulated mixture densities

For the Normal-Gamma mixture we can see in Table 6.3 that the shape parameter of

the mixture is larger in almost all cases under the classical GPD estimation, except for

u = 0.7 quantile. However, for the Bayesian estimates, the ξ̂ parameter of the mixture is

smaller compared to the shape parameter of the single distributions.

On the other hand, for the mixture of noncentral-t distributions, from Tables 6.5 and

6.6 we can see that ξ̂ behaves as previously, being larger for the mixture in all cases,

except for u = 0.9 quantile. The theoretical values of ξ = 0.5, 0.2, respectively, are better

approximated under the Bayesian approach.

Now, in order to observe the effect of increasing the sample size, we simulate 2,000

observations from the previous noncentral t-distributions (Figure 6.2). Results for the



6.2. Future research 150

Distribution u = q0.7 σ ξ u = q0.8 σ ξ u = q0.9 σ ξ

Mixture 146.685 24.522 -0.226 157.513 19.737 -0.179 172.163 13.005 -0.043

N(100, 202) 109.585 15.897 -0.307 115.648 14.258 -0.318 124.307 11.859 -0.336

N(150, 252) 164.468 18.652 -0.260 172.338 15.619 -0.226 181.785 14.622 -0.276

Table 6.1: Classic GPD estimation for the mixture of normals.

Mixture N(100, 202) N(150, 252)
Parameter Mean, median, std Mean, median, std Mean, median, std

u 152.839, 152.777, 1.042 100.610, 100.444, 1.498 170.189, 172.163, 4.969
σ 12.242, 11.541, 2.615 18.330, 18.461, 1.507 22.127, 22.127, 1.789
ξ 0.0168, 0.012, 0.109 -0.286, -0.291, 0.051 -0.259, -0.264, 0.056

Table 6.2: Bayesian parameter estimates for the mixture of normals.

Distribution u = q0.7 σ ξ u = q0.8 σ ξ u = q0.9 σ ξ

Mixture 974.868 130.720 -0.365 1030.631 98.825 -0.299 1092.69 79.450 -0.293

N(700,
√

50) 806.842 94.180 -0.385 841.525 82.837 -0.402 889.185 74.334 -0.519

Gamma(100,0.1) 806.842 86.709 -0.260 1083.393 84.352 -0.307 1131.591 80.534 -0.402

Table 6.3: Classic GPD estimation for the Normal-Gamma mixture.

Mixture N(700,50) Gamma(100,0.1)
Parameter Mean, median, std Mean, median, std Mean, median, std

u 910.686, 910.141, 3.024 779.329, 778.683, 2.625 1008.302, 1008.372, 0.638
σ 119.698, 118.807, 6.255 60.753, 60.330, 6.067 64.387, 64.130, 4.883
ξ -0.212, -0.209, 0.040 -0.007, -0.011, 0.091 0.012, 0.008, 0.070

Table 6.4: Bayesian parameter estimates for the Normal-Gamma mixture.

classic GPD estimation are displayed in Table 6.7. This time we can notice that the shape

parameter value of the mixture is between the other two parameters’ values.

Bayesian estimates are presented in Table 6.8. Again, the shape parameter value of

the mixture is between the other two parameters’ values. Hence, one may infer that

increasing the sample size decreases the effect of the dominant tail and leads to better

approximations. Nonetheless, in practice, we usually have a small number of observations.
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Distribution u = q0.7 σ ξ u = q0.8 σ ξ u = q0.9 σ ξ

Mixture 18.149 6.728 0.511 21.099 8.203 0.524 27.940 14.188 0.372
t(2,10) 17.131 8.664 0.414 20.169 12.919 0.266 30.490 11.656 0.460
t(5,15) 19.273 5.658 0.223 21.790 5.879 0.254 26.042 7.460 0.220

Table 6.5: Classic GPD estimation for the mixture of Student-t distributions (1,000 observa-

tions).

Mixture t(2,10) t(5,15)

Parameter Mean, median, std Mean, median, std Mean, median, std
u 17.571, 17.270, 1.520 17.63, 17.471, 1.430 19.084, 17.751, 0.632
σ 6.278, 6.183, 0.713 6.378, 6.319, 0.716 5.645, 5.568, 0.910
ξ 0.521, 0.518, 0.079 0.519, 0.528, 0.094 0.232, 0.221, 0.116

Table 6.6: Bayesian parameter estimates for the mixture of Student-t distributions (1,000 ob-

servations).
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Figure 6.2: Mixture of Student-t distributions (2,000 observations).

6.2.1.3 High quantiles estimation

In this section we explore the behaviour of high quantiles when taking into account the

mixture of components instead of a single distribution. To do so, we consider a mixture

of Generalized Pareto distributions:

w1GPD (σ1, ξ1) + w2GPD (σ2, ξ2) , w2 = 1− w1.

Our aim is to estimate the scale and location parameters and the corresponding weights.

By doing so, we will be able to compute the Value-at-Risk for different parameter sets and
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Distribution u = q0.7 σ ξ u = q0.8 σ ξ u = q0.9 σ ξ

Mixture 18.611 7.276 0.384 22.213 7.187 0.484 27.979 9.792 0.512
t(2,10) 16.504 9.913 0.589 21.117 11.803 0.636 30.910 16.495 0.742
t(5,15) 18.943 6.393 0.108 21.659 6.502 0.124 26.465 7.411 0.082

Table 6.7: Classic GPD estimation for the mixture of Student-t distributions (2,000 observa-

tions).

Mixture t(2,10) t(5,15)

Parameter Mean, median, std Mean, median, std Mean, median, std
u 20.821, 20.801, 2.498 11.893, 11.722, 0.245 17.312, 17.270, 1.064
σ 7.342, 7.254, 0.624 7.912, 7.855, 0.633 6.002, 5.976, 0.509
ξ 0.431, 0.423, 0.082 0.555, 0.552, 0.072 0.130, 0.121, 0.060

Table 6.8: Bayesian parameter estimates for the mixture of Student-t distributions (2,000 ob-

servations).

sample sizes.

Before doing the estimation, note that inference for mixtures of the classical Pareto

distributions is difficult because the EM algorithm cannot be applied; see Bee et al. (2013).

These authors point out the theoretical and computational difficulties in carrying out the

estimation using MLE. They show that when we have different shapes and scales, the

likelihood is non-regular and the EM algorithm breaks down. That is, the estimator of the

scale parameter is not asymptotically efficient since the distributions of σ̂1 and σ̂2 do not

have common support, violating one of the regularity conditions for asymptotic efficiency

of MLEs.

Whether similar results apply also to mixtures of the Generalized Pareto distribution

remains to be investigated. Keeping this fact in mind, we decided to perform a simple

MLE estimation using the function optim in R. The estimation was carried out for different

data sets, keeping σ1, σ2, ξ1 and ξ2 fixed, and varying the weights wi and sample size

n = 150, 500 and 1000. The data used in this study come from the following distributions:

1. 0.2 GPD(1,0.5)+0.8 GPD(3,0.2)

2. 0.5 GPD(1,0.5)+0.5 GPD(3,0.2)
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3. 0.7 GPD(1,0.5)+0.3 GPD(3,0.2)

Table 6.9 shows the parameter estimates. From the table, we can see that most of the time,

values are not estimated correctly. Notwithstanding, the essential purpose of this work

is to compare the performance of the classical POT method with respect to the mixture

of GPDs. To do so, we compute the Value-at-Risk using both methods. In general, the

Value-at-Risk of mixture distributions is no longer given by a simple formula and has to

be calculated numerically.

Tables 6.10–6.18 display the estimates of the Value-at-Risk at different levels. We can

see that in general, the mixture produces good estimates of VaR0.9, VaR0.95 and VaR0.99,

as the mean square error (MSE) is small; although, for higher quantiles (0.999 and 0.9999)

neither the mixture nor the classical POT method give accurate estimates and the MSE

increases considerably. However, the mixture estimates are slightly closer to the true

values than the classical POT estimates in almost all cases. It is worth to mention that

the estimates are very sensitive to the sample size and we have to be very careful with our

conclusions.

This analysis does not pretend to be exhaustive, but may be considered as a tentative,

to be extended to more general situations, in the aim to improve the application of extreme

value theory methods to mixture distributions, as more sophisticated methods become

available to estimate the parameters of the mixture of GPDs.

0.2 GPD(1,0.5)+0.8 GPD(3,0.2) 0.5 GPD(1,0.5)+0.5 GPD(3,0.2) 0.7 GPD(1,0.5)+0.3 GPD(3,0.2)

Par. True

value

Estimate True

value

Estimate True

value

Estimate

n = 150 n = 500 n = 1000 n = 150 n = 500 n = 1000 n = 150 n = 500 n = 1000

w1 0.2 0.047 0.658 0.733 0.5 0.547 0.056 0.729 0.7 0.100 0.999 0.799

σ1 1 0.088 2.492 2.073 1 1.173 0.207 1.057 1 0.103 1.167 1.105

ξ1 0.5 -0.002 0.287 0.327 0.5 0.443 0.559 0.487 0.5 0.815 0.478 0.329

σ2 3 2.542 3.545 5.931 3 3.852 1.964 4.036 3 1.744 2.348 5.211

ξ2 0.2 0.269 -0.077 -0.092 0.2 -0.108 0.347 -0.047 0.2 0.422 0.348 0.172

Table 6.9: Parameter estimates for a mixture of GPDs
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0.2 GPD(1,0.5)+0.8 GPD(3,0.2)
Mixture of GPD’s Classical POT

γ True value V aRγ MSE V aRγ MSE
0.9 8.109 7.877 0.053 7.756 0.125
0.95 11.594 11.430 0.027 11.594 6.671e-07
0.99 22.116 22.746 0.397 25.043 8.569
0.999 46.945 50.376 11.774 63.575 276.563
0.9999 102.650 101.721 0.862 149.458 2191.039

Table 6.10: VaR for a mixture of GPDs, n = 150

0.2 GPD(1,0.5)+0.8 GPD(3,0.2)
Mixture of GPD’s Classical POT

γ True value V aRγ MSE V aRγ MSE
0.9 8.109 7.847 0.068 8.124 2.091e-04
0.95 11.594 10.798 0.632 11.356 0.056
0.99 22.116 20.328 3.197 20.738 1.898
0.999 46.945 47.188 0.059 40.325 43.826
0.9999 102.650 99.468 10.123 70.738 1018.368

Table 6.11: VaR for a mixture of GPDs, n = 500

0.2 GPD(1,0.5)+0.8 GPD(3,0.2)
Mixture of GPD’s Classical POT

γ True value V aRγ MSE V aRγ MSE
0.9 8.109 9.068 0.919 8.697 0.345
0.95 11.594 12.706 1.236 12.571 0.955
0.99 22.116 22.272 0.024 24.950 8.030
0.999 46.945 48.608 2.765 55.325 70.223
0.9999 102.650 110.469 61.137 112.092 89.142

Table 6.12: VaR for a mixture of GPDs, n = 1000

0.5 GPD(1,0.5)+0.5 GPD(3,0.2)
Mixture of GPD’s Classical POT

γ True value V aRγ MSE V aRγ MSE
0.9 6.927 6.621 0.093 6.872 0.003
0.95 10.284 8.998 1.651 9.830 0.205
0.99 21.050 15.207 34.135 19.006 4.176
0.999 51.308 40.610 114.440 40.431 118.298
0.9999 142.295 117.351 622.179 78.261 4100

Table 6.13: VaR for a mixture of GPDs, n = 150
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0.5 GPD(1,0.5)+0.5 GPD(3,0.2)
Mixture of GPD’s Classical POT

γ True value V aRγ MSE V aRγ MSE
0.9 6.927 6.689 0.0563 6.610 0.100
0.95 10.284 10.049 0.055 10.111 0.029
0.99 21.050 21.815 0.585 23.146 4.392
0.999 51.308 55.527 17.799 64.510 174.303
0.9999 142.295 130.846 131.071 167.985 659.994

Table 6.14: VaR for a mixture of GPDs, n = 500

0.5 GPD(1,0.5)+0.5 GPD(3,0.2)
Mixture of GPD’s Classical POT

γ True value V aRγ MSE V aRγ MSE
0.9 6.927 6.226 0.492 5.917 1.019
0.95 10.284 9.0813 1.446 9.176 1.228
0.99 21.050 17.514 12.506 21.751 0.491
0.999 51.308 51.604 0.087 64.117 164.084
0.9999 142.295 162.827 421.575 177.479 1237.956

Table 6.15: VaR for a mixture of GPDs, n = 1000

0.7 GPD(1,0.5)+0.3 GPD(3,0.2)
Mixture of GPD’s Classical POT

γ True value V aRγ MSE V aRγ MSE
0.9 5.981 6.344 0.132 6.249 0.072
0.95 9.176 9.910 0.539 10.294 1.250
0.99 20.108 23.639 12.471 28.481 70.116
0.999 54.934 70.086 229.608 107.564 2769.970
0.9999 166.313 198.979 1067.089 388.878 4.953e+04

Table 6.16: VaR for a mixture of GPDs, n = 150

0.7 GPD(1,0.5)+0.3 GPD(3,0.2)
Mixture of GPD’s Classical POT

γ True value V aRγ MSE V aRγ MSE
0.9 5.981 4.901 1.165 5.488 0.243
0.95 9.176 7.785 1.93 8.762 0.171
0.99 20.108 19.628 0.230 22.380 5.164
0.999 54.934 63.873 79.914 74.375 377.947
0.9999 166.313 196.823 930.841 234.413 4637.639

Table 6.17: VaR for a mixture of GPDs, n = 500
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0.7 GPD(1,0.5)+0.3 GPD(3,0.2)
Mixture of GPD’s Classical POT

γ True value V aRγ MSE V aRγ MSE
0.9 5.981 6.253 0.074 5.921 0.003
0.95 9.176 10.022 0.715 9.562 0.148
0.99 20.108 22.089 3.927 25.145 25.372
0.999 54.934 48.067 47.143 87.557 1064.293
0.9999 166.313 89.764 5859.797 290.186 1.534e+04

Table 6.18: VaR for a mixture of GPDs, n = 1000

6.2.1.4 Mixtures of distributions with disjoint supports.

To complete this study, we consider the case of mixtures of distributions with disjoint

supports. Castellacci (2012) provides some formulas for calculating high quantiles for this

type of mixtures:

Theorem 6.3. Consider a proper (wi > 0 for all i) mixture distribution F of the form

(6.1) with I = {1, . . . , n} and let Ai = supp(fi) be the support of fi, where fi denotes the

PDF of Fi. Assume supAi ≤ inf Ai+1 for i = 1, ..., n. Then the quantile Q(p) of F at

level p equals

Q (p) = F−1 (p) = F−1
1

(
p

w1

)
1B1 (p) + · · ·+ F−1

n

(
p−

∑n−1
i=1 wi

wn

)
1Bn (p)

for any p ∈ [0, 1] , where

Bi :=

 i−1∑
j=0

wj,

i∑
j=0

wj

 and Bn :=

n−1∑
j=0

wj, 1


and we have defined w0 = 0.

Details of the proof can be found in Castellacci (2012).

If X ∼ F represents portfolio losses over a prescribed time horizon, and F is a mixture

as in Theorem 6.3, the Value-at-Risk at level c is

VaRc (X) =
n∑
i=1

VaRci (Xi) 1Ci (c) ,
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where Xi is a loss random variable with distribution Fi corresponding to the ith component

of the mixture, i ∈ {1, . . . , n} and

ci =
c−1+

∑i
j=1 wj

wi
,

Ci =
(

1−
∑i

j=1 wj, 1−
∑i−1

j=1wj

]
.

This reformulation of VaR implies that the higher the confidence level, the smaller the

ci of the component whose VaR is selected for the computation. The following example is

provided. If c ∈ C1 = (1− w1, 1],

VaRc (X) = VaRc1 (X1) = −F−1
1

(
1− c
w1

)
.

Conversely, given a confidence level c one can pick a weight w1 such that 1 − c < w1. In

this case, only the leftmost risk contributes to the VaR of the mixture.

6.3 Concluding remarks

To conclude, we suggest some other directions for future work:

� Inclusion of covariates in the analysis. Extremes are non-stationary in general and

they vary with respect to covariates. Several authors have shown the importance

of including covariates in the analysis. For example, Davison and Smith (1990)

characterize extreme value model parameters in terms of one or more covariates.

Chavez-Demoulin and Davison (2005) and Coles (2001) describe a non-homogeneous

Poisson model in which ocurrence rates and extremal properties are modelled as

functions of covariates. Moreover, as we saw in Chapter 2, threshold selection is

an important issue to handle, and it is even more difficult when covariate effects

are present, since the threshold may itself be a function of covariates. Thus, it is

essential to accommodate covariate effects in the model.

� Extension to the multivariate case. Modelling of multivariate extremes is increas-

ingly important in different fields. Contrary to what happens in the univariate case,
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the whole family of MEVD cannot be described parametrically. Due to their flexibil-

ity, nonparametric estimation has been proposed in the literature (see Beirlant et al.,

2004), however, these models are difficult to implement due to the increasing num-

ber of parameters needed to characterize the joint dependence structure accurately.

Hence, this is still an active area of research that requires new approaches.

� The use of more sophisticated methods to combine expert opinion. In Chapter 4

we have used basic methodologies for aggregating expert opinion. Nonetheless, ag-

gregation methods range from the simple to the complex. Some authors favor the

theoretical elegance of the more sophisticated approaches, while others advocate for

the simple methodologies, on the basis of the greater probability of obtaining mean-

ingful results (Jenkinson, 2005). Therefore, we leave open the possibility of using

more sophisticated elicitation methods in the analysis of extremes.

� The elicitation of information in the new model framework. Models introduced in

Chapter 5 provide different alternatives to handle the discontinuity problem in the

model of Behrens et al. (2004); however, we have not supplied information from

experts. Thus, it would be interesting to assess the effect of incorporating expert

opinion into the analysis.



Appendix A

Markov Chain Monte Carlo methods

The recent explosion in Markov chain Monte Carlo (MCMC) techniques owes largely to

their application in Bayesian inference. In MCMC simulation, one constructs a Markov

chain long enough for the distribution of the elements to stabilize to a stationary distri-

bution, which is the distribution of interest. By repeatedly simulating steps of the chain,

the method simulates draws from the distribution of interest.

MCMC has been widely applied for exploring posterior distributions. That is, through

MCMC, one can simulate the entire joint posterior distribution of the unknown quantities

and obtain simulation-based estimates that can be used directly for parameter inference

and prediction.

There are many ways of constructing the appropriate Markov chain, but all of them,

including the Gibbs sampler are special cases of the general framework of Metropolis et

al. (1953) and Hastings (1970), or the Metropolis-Hastings algorithm.

A detailed introduction to the Metropolis-Hastings and the Gibbs sampler algorithms

can be found in Robert and Casella (1999) and Brooks et al. (2011), among others. In

Sections A.1–A.3, we summarize the algorithms presented in those books.
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A.1 Metropolis–Hastings sampling

Suppose we wish to draw θ = (θ1, ..., θd)
′ from a density π (θ) (usually the posterior

density). Further, suppose that we have some arbitrary transition kernel p (θi+1, θi) (which

is easy to simulate from) for iterative simulation of successive values. Then consider the

following algorithm:

1. Initialize the iteration counter to k = 1, and initialize the chain to θ(0) at some value;

2. Generate a proposed value θ′ using the kernel p
(
θ(k−1), θ′

)
;

3. Evaluate the acceptance probability A
(
θ(k), θ′

)
of the proposed move, where

A
(
θ(k), θ′

)
= min

{
1,
π (θ′)L (θ′ | x) p (θ′, θ)

π (θ)L (θ | x) p (θ, θ′)

}
; (A.1)

4. Put θ(k) = θ′ with probability A
(
θ(k−1), θ′

)
, and put θ(k) = θ(k−1) otherwise;

5. Change the counter from k to k + 1 and return to step 2.

So at each stage, a new value is generated from the proposal distribution. This is either

accepted, in which case the chain moves, or rejected, in which case the chain stays where it

is. Whether or not the move is accepted or rejected depends on the acceptance probability

which itself depends on the relationship between the density of interest and the proposal

distribution.

A.2 The Gibbs sampler

Suppose again that π (θ) is the density of interest. If we can draw from various conditional

distributions of π (θ), then we can construct a Markov chain that eventually converges to

the joint distribution. This is, suppose that

π (θi | θ1, ..., θi−1, θi+1, ..., θd) = π (θi | θ−i) = πi (θi) , i = 1, ..., d (A.2)
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are available for simulating from (θ−i denotes the parameter vector excluding θi). The

Gibbs sampler uses the following algorithm:

1. Initialize the iteration counter to k = 1. Initialize the state of the chain to θ(0) =(
θ

(0)
1 , ..., θ

(0)
d

)′
at some arbitrary values;

2. Obtain a new value θ(k) from θ(k−1) by successive generation of values

θ
(k)
1 ∼ π

(
θ1 | θ(k−1)

2 , ..., θ
(k−1)
d

)
,

θ
(k)
2 ∼ π

(
θ2 | θ(k)

1 , θ
(k−1)
3 , ..., θ

(k−1)
d

)
,

. .

. .

. .

θ
(k)
d ∼ π

(
θd | θ(k)

1 , ..., θ
(k)
d−1

)
.

3. Change counter k to k + 1, and return to step 2.

Each simulated value depends only on the previous simulated value, and not on any other

previous values or the iteration counter k. The Gibbs sampler can be used in isolation if we

can readily simulate from the full conditional distributions; however, this is not always the

case. Fortunately, the Gibbs sampler can be combined with Metropolis-Hastings schemes

when the full conditionals are difficult to simulate from.

A.3 Metropolis-within-Gibbs

The Metropolis-within-Gibbs idea retains the idea of sequential sampling, but uses a

Metropolis step on some or all variables rather than attempting to sample from the exact

conditional distribution.

That is, we propose a move of the parameter in question from its current position

to a new position in the state space (keeping all the other variables fixed); calculate the

acceptance probability using the conditional distribution of that variable; decide whether
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to accept or reject, and then move onto the next variable. We can mix “pure” Gibbs

steps where we sample from the desired conditional distribution of some variables, with

Metropolis steps on other variables.

A.4 Convergence diagnostics

Convergence refers to the idea that eventually the simulated Markov chain reaches the

stationary distribution. Although, it is never possible to say with certainty that a finite

sample from an MCMC algorithm is representative of an underlying stationary distribu-

tion, convergence diagnostics offer a worthwhile check on the algorithm’s progress. In this

section we present some general methods for monitoring convergence. We refer the reader

to Brooks and Gelman (1997), Cowles and Carlin (1996), Gelman and Rubin (1992) and

Heidelberger and Welch (1983) for a detailed explanation of these methods.

A.4.1 Gelman and Rubin diagnostic

This statistic is based on the idea that after simulating multiple sequences for over-

dispersed starting points, the behaviour of all of the chains should be basically the same

(Gelman and Rubin, 1992). That is, the variance within the chains should be the same as

the variance across the chains.

The procedure to calculate the Gelman-Rubin statistic is as follows:

1. Estimate the model with a variety of different initial values and iterate for an n-

iteration burn-in and an n-iteration monitored period.

2. Take the n-monitored draws of m parameters and calculate the statistic
√
R =√

V̂ (θ)
W

, where

� W = 1
m(n−1)

m∑
j=1

n∑
i=1

(
θ

(i)
j − θj

)2

is the within-chain variance.



A.4. Convergence diagnostics 163

� B = n
m−1

m∑
j=1

(
θj − θ

)2
is the between-chain variance.

� V̂ (θ) =
(
1− 1

n

)
W + 1

n
B is the estimated variance.

If convergence has been achieved, W and V̂ (θ) should be almost equivalent, so R should

approximately equal to 1.

A.4.2 Heidelberg and Welch diagnostic

The Heidelberg and Welch statistic (Heidelberger and Welch, 1983) is based on the Cramér-

von Mises statistic and is used to test the hypothesis that the Markov chain is from a

stationary distribution. The diagnostic consists of two parts.

� Part I

1. Generate a chain of N iterations and define an α ∈ (0, 1) level.

2. Calculate the test statistic on the whole chain to accept or reject the null hypothesis

of stationarity.

3. If the null hypothesis is rejected, discard the first 10% of the chain and calculate the

test statistic to accept or reject the null.

4. If the null hypothesis is rejected, discard the next 10% and calculate the test statistic.

5. Repeat until the null hypothesis is accepted or 50% of the chain is discarded. If the

test still rejects the null hypothesis, then the chain fails the test and needs to be run

longer.

� Part II

1. If the chain passes the first part of the diagnostic, then it takes the part of the chain

not discarded from the first part to test the second part.
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2. The halfwidth test calculates half the width of the (1−α)% credible interval around

the mean.

3. If the ratio of the halfwidth and the mean is lower than some ε, then the chain passes

the test. Otherwise, the chain must be run out longer.

A.4.3 Effective Sample Size

For a series of N observations from a dependent stochastic process, the effective sample

size is given by (Chapter 1, Brooks et al. 2011)

Neff =
N

1 + 2
∞∑
k=1

ρ (k)
, (A.3)

where ρ (k) is the true lag-k autocorrelation for the Markov chain.

This quantity gives an estimate of the equivalent number of independent iterations

that the chain represents.

A.5 Reversible jump MCMC

The reversible jump MCMC (RJMCMC) algorithm was introduced by Green in 1995 (see

Green (1995) and Damien et al. (2013, Chapter 7)), and enables us to get a handle on both

model selection and parameter estimation in one single algorithm. This is, we are able to

traverse the posterior model space, in terms of the models and corresponding parameters,

in a single Markov chain.

This algorithm can be seen as an extension of the MH algorithm, with an additional

step which moves between the different models.

A.5.1 Model formulation

The model and notation presented in this section are based on Damien et al. (2013,

Chapter 7).
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Denote the generic Markov transition kernel Q
(
θ, dθ

′)
= P

(
θ ∈ dθ′ | x, θ

)
and the

modified transition kernel P
(
θ, dθ

′ | x
)

which has π∗ as its unique stationary distribution.

Let π and q denote the densities of π∗ and Q with respect to Lebesgue measure.

Consider a countable collection of Bayesian models, {Mk, k = 1, 2, ...} , where model

Mk is parameterized by θk with parameter space Θk ⊂ Rdk . For data x the full posterior

can be written as

π (Mk, θk | x) =
f (x | θk,Mk) p (θk, |Mk) p (Mk)∑

j

{´
f (x | θj,Mj) p (θj, |Mj) dθj

}
p (Mj)

. (A.4)

The objective is to construct an aperiodic and irreducible Markov chain on the union

parameter space Θ =
⋃
k Θk.

We assume that at a specific iteration the chain is in model M with a d-dimensional

parameter value θ, and the proposal is to move to model M
′

with a d′-dimensional pa-

rameter value θ
′
. Suppose that, when in model M , the move between the two models is

selected with probability r
(
M,M

′)
and consider the introduction of collections of latent

variables u and v of dimension du and dv, respectively, so that d + du = d
′

+ dv. The

proposal density q is then considered for the extended parameter vectors (θ, u) and (θ
′
, v)

such that q
(
(θ, u) , (θ

′
, v) | x

)
is reversible. This can be seen as a bijective differentiable

mapping

(θ
′
, v) = g (θ, u)⇐⇒ (θ, u) = h(θ

′
, v). (A.5)

Let ψ and ψ
′

be the latent-augmented parameter vectors and denote the augmented pos-

terior density by

π̃m (ψ | x) = π̃m (M, θ, u | x) = π (M, θ | x) pu (u) . (A.6)

Let αm
(
ψ, ψ

′ | x
)

denote the acceptance probability for move type m, so that for arbitrary

sets A and B,

ˆ
A

π̃∗m (dψ | x)

ˆ
B

αm

(
ψ,ψ

′
| x
)
Qm

(
ψ, dψ

′
| x
)

=

ˆ
B

π̃∗m (dψ′ | x)

ˆ
A

αm

(
ψ,ψ

′
| x
)
Qm

(
ψ, dψ

′
| x
)

(A.7)
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which implies that

αm

(
ψ, ψ

′ | x
)
fm

(
ψ, ψ

′ | x
)

= αm

(
ψ
′
, ψ | x

)
fm

(
ψ
′
, ψ | x

)
, (A.8)

where fm is defined with respect to a common, symmetric measure on the product space.

For the forward move, we have

fm

(
ψ, ψ

′ | x
)

= π̃m (ψ | x) qm

(
ψ, ψ

′ | x
)

= π (M, θ | x) pu (u)~rm, (A.9)

where ~rm represents the probability of choosing to make a move m from M to M
′
.

For the reverse move, we must set

fm

(
ψ
′
, ψ | x

)
= π̃m

(
ψ
′ | x

)
qm

(
ψ
′
, ψ | x

)
= π

(
M
′
, θ
′ | x

)
pv (v)

∣∣∣∣∣∂
(
θ
′
, v
)

∂ (θ, u)

∣∣∣∣∣←−rm, (A.10)

where ∣∣∣∣∣∂
(
θ
′
, v
)

∂ (θ, u)

∣∣∣∣∣ =

∣∣∣∣∂g (t1, t2)

∂g (θ, u)

∣∣∣∣
t1=θ,t2=u

(A.11)

is the Jacobian associated with the bijection g : (θ, u) 7→
(
θ
′
, v
)

and ←−rm represents the

probability of choosing to make a move m from M
′

to M . So the augmented posterior

becomes

π̃
(
M
′
, θ
′
, v | x

)
= π̃

(
M,h

(
θ
′
, v
)
| x
) ∣∣∣J (θ′ , v)∣∣∣ = π̃ (M, θ, u | x) |J (θ, u)|−1 . (A.12)

The acceptance probability for move type m is

αm

(
(M, θ) ,

(
M
′
, θ
′
)
| x
)

= min

{
1,
π
(
M
′
, θ
′ | x

)
pv (v)←−r m

π (M, θ | x) pu (u)~rm

}∣∣∣∣∣∂
(
θ
′
, v
)

∂ (θ, u)

∣∣∣∣∣ . (A.13)

This probability can be simplified depending on whether dim (θ) > dim (θ′) or dim (θ) <

dim (θ′).

In general, within each iteration of the Markov chain, the algorithm involves two steps:

1. Update the parameters, conditional on the model using the MH algorithm and

2. Update the model, conditional on the current parameter values by proposing to move

to a different model with some given parameter values and accepting this proposed

move with the probability above.

Further details on this algorithm can be found in Green (1995) and Tierney (1998).
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Jeffreys prior for the GPD

Let Y ∼ GPD (σ, ξ). The Jeffreys prior for a GPD with parameter θ = (σ, ξ) is given by

J (θ) ∝
√
|I (θ)|, (B.1)

where I (θ) = −E [∂2ln f (y | θ) /∂2θ].

The density of the GPD(σ, ξ) is

f (y | θ) =
1

σ

(
1 + y

ξ

σ

)− 1
ξ
−1

,

where the support is 
y > 0 if ξ ≥ 0,

0 ≤ y ≤ −σ/ξ if ξ < 0.

The log of f (y | θ) is thus given by

L (y | θ) = ln f (y | θ) = −lnσ −
(

1

ξ
+ 1

)
ln

(
1 +

ξ

σ
y

)
. (B.2)

The first derivative with respect to ξ is

∂L (y | θ)
∂ξ

=

(
1

ξ2

)
ln

(
1 +

ξ

σ
y

)
+

(
−1

ξ
− 1

)(y
σ

)(
1 +

ξ

σ
y

)−1

. (B.3)

We can write

y = −σ
ξ

[
1−

(
1 +

ξ

σ
y

)]
. (B.4)
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Substituting (B.4) in (B.3) we get:

∂L (y | θ)
∂ξ

=

(
1

ξ2

)
ln

(
1 +

ξ

σ
y

)
+

(
−1

ξ
− 1

)(
− 1

σ

)(
σ

ξ

)[
1−

(
1 +

ξ

σ
y

)](
1 +

ξ

σ
y

)−1

=

(
1

ξ2

)
ln

(
1 +

ξ

σ
y

)
+

(
−1

ξ
− 1

)[
−1

ξ
+

1

ξ

(
1 +

ξ

σ
y

)](
1 +

ξ

σ
y

)−1

=

(
1

ξ2

)
ln

(
1 +

ξ

σ
y

)
+

(
−1

ξ
− 1

)(
1

ξ

)[
1−

(
1 +

ξ

σ
y

)−1
]
. (B.5)

Now the first derivative with respect to σ is, using (B.4),

∂L (y | θ)
∂σ

= − 1

σ
+

(
−1

ξ
− 1

)(
−ξy
σ2

)(
1 +

ξ

σ
y

)−1

= − 1

σ
+

(
−1

ξ
− 1

)(
ξ

σ2

)(
σ

ξ

)[
1−

(
1 +

ξ

σ
y

)](
1 +

ξ

σ
y

)−1

= − 1

σ
+

(
1

σ

)(
−1

ξ
− 1

)[
1−

(
1 +

ξ

σ
y

)](
1 +

ξ

σ
y

)−1

= − 1

σ
+

(
− 1

σξ
− 1

σ

)[(
1 +

ξ

σ
y

)−1

− 1

]
= − 1

σ
− 1

σξ

(
1 +

ξ

σ
y

)−1

− 1

σ

(
1 +

ξ

σ
y

)−1

+
1

σ
+

1

σξ

=
1

σξ
+

1

σ

(
−1

ξ
− 1

)(
1 +

ξ

σ
y

)−1

.

(B.6)

Setting k = 1 +
ξ

σ
y, the second derivative with respect to ξ is as follows

∂2L (y | θ)
∂ξ2

=
∂

∂ξ

1

ξ2
ln k − 1

ξ2
− 1

ξ
+

1

ξ2
k−1 +

1

ξ
k−1. (B.7)

The derivative of k with respect to ξ is, using (B.4),

dk

dξ
=
y

σ
=

1

σ

[
−σ
ξ

(1− k)

]
= −1

ξ
(1− k) . (B.8)



Jeffreys prior for the GPD 169

Using B.8,

∂2L (y | θ)
∂ξ2

= − 2

ξ3
ln k +

1

ξ2

[
−1

ξ
(1− k)

]
k

+
2

ξ3
+

1

ξ2
− 2

ξ3
k−1 − 1

ξ2
k−2

(
−1

ξ
(1− k)

)
− 1

ξ2
k−1 − 1

ξ
k−2

(
−1

ξ
(1− k)

)
= − 2

ξ3
ln k − 1

ξ3
k−1 +

1

ξ3
+

2

ξ3
+

1

ξ2
− 2

ξ3
k−1 +

1

ξ3
k−2 − 1

ξ3
k−1 − 1

ξ2
k−1

+
1

ξ2
k−2 − 1

ξ2
k−1

= − 2

ξ3
ln k +

1

ξ2
+

3

ξ3
− 4

ξ3
k−1 − 2

ξ2
k−1 +

1

ξ2
k−2 +

1

ξ3
k−2

= − 2

ξ3
ln k +

3 + ξ

ξ3
− 2 (2 + ξ)

ξ3
k−1 +

(1 + ξ)

ξ3
k−2

= − 2

ξ3
ln

(
1 +

ξ

σ
y

)
+

3 + ξ

ξ3
− 2 (2 + ξ)

ξ3

(
1 +

ξ

σ
y

)−1

+
(1 + ξ)

ξ3

(
1 +

ξ

σ
y

)−2

. (B.9)

The second derivative with respect to σ is

∂2L (y | θ)
∂σ

=
∂

∂σ

1

σξ
+

(
−1

ξ
− 1

)
1

σ
k−1. (B.10)

The derivative of k with respect to σ is, using (B.4),

dk

dσ
= −ξy

σ2
= − ξ

σ2

[
−σ
ξ

(1− k)

]
=

1

σ
(1− k) . (B.11)

Using (B.11)

∂2L (y | θ)
∂σ

= − 1

σ2ξ
+

(
−1

ξ
− 1

)[
− 1

σ2
k−1 − 1

σ
k−2

(
1

σ
(1− k)

)]
= − 1

σ2ξ
+

(
−1

ξ
− 1

)(
− 1

σ2
k−2

)
= − 1

σ2ξ
− 1

σ2

(
−1

ξ
− 1

)(
1 +

ξ

σ
y

)−2

.

(B.12)
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Furthermore,

∂2L (y | θ)
∂σ∂ξ

=
∂

∂ξ

(
1

σξ
− 1

σξ
k−1 − 1

σ
k−1

)
=

1

σ

(
− 1

ξ2

)
+

1

σ

1

ξ2
k−1 − 1

σξ

[
−k−2

(
−1

ξ
(1− k)
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[
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(
−1
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1
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σξ2
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1
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1
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1
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1
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(
1 +

ξ

σ
y

)−1

− 1

σξ2
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(
1 +

ξ

σ
y

)−2

. (B.13)

Next, we calculate

I (θ) = −E
[
∂2ln f (y | θ)

∂2θ

]
.

For ξ < 0.5, we have the following results (Davison and Smith,1990)

E

[(
1 +

ξ

σ
Y

)r]
=

1

1− rξ
(B.14)

and

E

[
ln

(
1 +

ξ

σ
Y

)]
= ξ. (B.15)
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Then

E

(
∂2L (Y | θ)

∂2ξ

)
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ξ3
E
[

ln
(
1 + ξ

σ
Y
)]
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1 +

ξ

σ
Y
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(1 + ξ)

ξ3
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1 +

ξ

σ
Y
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= − 2
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3 + ξ
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− 2 (2 + ξ)

ξ3

1

1 + ξ
+

(1 + ξ)

ξ3

1

1 + 2ξ

= −2ξ

ξ3
+

1

ξ3
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(3 + ξ) (1 + ξ) (1 + 2ξ)− 2 (2 + ξ) (1 + 2ξ) + (1 + ξ)2

(1 + ξ) (1 + 2ξ)

]
= −2ξ

ξ3
+

1
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]
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ξ3
+

1

ξ3

[
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1
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(B.16)

and
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E
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From these equations,

I (θ) = I (σ, ξ) =


2

(1 + ξ) (1 + 2ξ)

1

σ (1 + 2ξ) (1 + ξ)
1

σ (1 + 2ξ) (1 + ξ)

1

σ2 (1 + 2ξ)

 (B.19)

and

|I (σ, ξ)| =
2

(1 + ξ) (1 + 2ξ)

1

σ2 (1 + 2ξ)
−
[

1

σ (1 + 2ξ) (1 + ξ)

]2

=
2

σ2 (1 + ξ) (1 + 2ξ)2 −
1

σ2 (1 + ξ)2 (1 + 2ξ)2

=
1

σ2 (1 + ξ)2 (1 + 2ξ)2 [2 (1 + ξ)− 1]
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1
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(B.20)

Hence, the Jeffreys prior is

J (θ) ∝
√
|I (θ)| =

√
1

σ2 (1 + ξ)2 (1 + 2ξ)
=

1

σ (1 + ξ)
√

1 + 2ξ

= σ−1 (1 + ξ)−1 (1 + 2ξ)−
1/2 . (B.21)
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Algorithm for the Bayesian model1

Simulations are done via Metropolis-Hastings steps within blockwise MCMC. Suppose that

at iteration j − 1, the chain is positioned at θ(j−1) = (α(j−1), β(j−1), u(j−1), σ(j−1), ξ(j−1)).

Then, at iteration j, the algorithm cycles through the following steps:

� ξ(j)

ξ∗ is sampled from the following candidate distribution

ξ(j) ∼ N
(
ξ(j−1), Vξ(j−1)

)
I (Ξ) ,

where Vξ(j−1) is an approximation based on the curvature at the conditional posterior mode

and Ξ =
[
−σ(j−1)/

(
M − u(j−1)

)
,∞
]

is given by the support of the GPD function, and

M = max(x1, ..., xn), the maximum value of the data.

� σ(j)

The candidate distribution of σ depends on the current value of ξ. If ξ is positive, no

restrictions are imposed on σ. Otherwise, σ must be drawn in an appropriate region given

by the support of the GPD. That is,

If ξ(j) ≥ 0 : σ(j) ∼ Ga (aσ, bσ), where aσ/bσ = σ(j−1) and aσ/b
2
σ = Vσ(j−1) . So, σ(j) is

centered around σ(j−1) with some variance Vσ(j−1) ;

1This algorithm has been taken from Behrens et al. (2004).
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If ξ(j) < 0 : σ(j) ∼ N
(
σ(j−1), Vσ(j−1)

)
I (Σ), a truncated normal distribution, where Σ

is given by the support of the GPD with lower bound at Σ =
[
−ξ(j−1)

(
M − u(j−1),∞

)]
,

Vσ(j−1) is an approximation for the concavity in the conditional posterior mode.

� u(j)

As for σ, the candidate distribution used for u depends on the current value of ξ as well

as on σ. When we consider a continuous prior, the candidate distributions are

If ξ(j) ≥ 0 : u(j) ∼ N
(
u(j−1), Vu(j−1)

)
I (A), a normal distribution truncated on A =

(m,M), with M being the largest, as before, and m the smallest observations, respectively.

If ξ(j) < 0 : u(j) ∼ N
(
u(j−1), Vu(j−1)

)
I (A), a normal distribution truncated on A =

(au,M), with au = M + σ(j−1)/ξ(j−1). Again, Vu(j−1) is a value for the variance which is

tuned to allow appropriate chain movements.

If u has a discrete prior, we have to follow the same model restrictions as before.

Therefore, the candidate distribution is:

If ξ(j) ≥ 0 : u(j) ∼ Ud (q1, q2), a discrete uniform distribution on data quantiles from q1

to q2, where q2 can be any high quantile, like the largest observation M , and q1 can be any

quantile below q2. It is important to keep in mind that q1 must be reasonable to prevent

the model bias and to respect the asymptotic properties of the model.

If ξ(j) < 0 : u(j) ∼ Ud (q1, q2), a discrete uniform distribution with q2 as before, but q1

have to respect the model restrictions as shown above: q1 ≥M + σ(j−1)/ξ(j−1)

� α(j), β(j)

α(j) ∼ log N
(
α(j−1), Vα(j−1)

)
, with Vα(j−1) given by an approximation for the curvature

at the conditional posterior mode and β(j) ∼ GI (aβ, bβ), an inverse Gamma distribution

centered at β(j−1) and with variance Vβ(j−1) given by the approximation for the curvature

at the conditional posterior mode.
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Non-informative prior plots

Figure D.1: Fraud data: σ = 1, 10, 100, respectively; u ∼ TN(min (data)); ξ ∼ Jeffreys prior

Figure D.2: Fraud data: σ ∼ LN(0, 1.25); u = Q0.5 (19.89) , Q0.7 (43.77) , Q0.9 (124) , respec-

tively; ξ ∼ Jeffreys prior
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Figure D.3: Fraud data: σ ∼ LN(0, 1.25) ; u ∼ TN(min (data)); ξ = −0.3, 0.05, 0.45, respec-

tively

Figure D.4: Exponential(0.1): σ = 1, 10, 100, respectively; u ∼ TN(min (data)),ξ ∼
Jeffreys prior

Figure D.5: Exponential(0.1): σ ∼ LN(0, 1.25); u = Q0.5 (6.89) , Q0.7 (11.35) , Q0.9 (23.03) ,

respectively; ξ ∼ Jeffreys prior
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Figure D.6: Exponential(0.1): σ ∼ LN(0, 1.25) ; u ∼ TN(min (data)); ξ = −0.3, 0.05, 0.45, re-

spectively

Figure D.7: Log-Normal(0,1): σ = 1, 10, 100, respectively; u ∼ TN(min (data)), ξ ∼
Jeffreys prior

Figure D.8: Log-Normal(0,1): σ ∼ LN(0, 1.25); u = Q0.5 (1.009) , Q0.7 (1.69) , Q0.9 (3.49) , re-

spectively; ξ ∼ Jeffreys prior
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Figure D.9: Log-Normal(0,1): σ ∼ LN(0, 1.25) ; u ∼ TN(min (data)); ξ = −0.3, 0.05, 0.45, re-

spectively

Figure D.10: Gamma(2,0.5): σ = 1, 10, 100, respectively; u ∼ TN(min (data)), ξ ∼
Jeffreys prior

Figure D.11: Gamma(2,0.5): σ ∼ LN(0, 1.25); u = Q0.5 (3.4) , Q0.7 (4.85) , Q0.9 (7.91) , respec-

tively; ξ ∼ Jeffreys prior
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Figure D.12: Gamma(2,0.5): σ ∼ LN(0, 1.25) ; u ∼ TN(min (data)); ξ = −0.3, 0.05, 0.45, re-

spectively
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