VHDL Implementation of a Modified Reed-Solomon Coding
Algorithm with Considerably Reduced Latency
for Short-Reach Optical Communications

Bo Zheng

Master of Electrical Engineering

Electrical and Computer Engineering

McGill University
Montreal,Quebec

2017-07

A thesis submitted to McGill University in partial fulfillment of requirements
of the degree of Master of Electrical Engineering

(©Bo Zheng, 2017

ACKNOWLEDGEMENTS

I would first like to thank Prof. Odile Liboiron-Ladouceur who has always
been incredibly kind, generous and helpful. She always cares my perspectives
like my friend and she always supports me like my family. It was the inspiration
she gave me that led me to the world of research. It was the tremendous
pleasure of working with her that made that decision the best one I have ever
made. I would also like to thank Prof. Warren Gross and Carlo Condo who
offered guidance and help in this research. Their comments and corrections are
significant to my thesis. My gratitude also goes to Rubana Priti, Yuli Xiong,
Bahaa Radi and all other colleagues in my group, not only for the knowledge
they shared with me but also for the kindness they treated me with. Last but
not least, I'm grateful to my parents and my girlfriend for their support and

love. I'm so lucky to have them in my life.

11

ABSTRACT

Error correction codes have been a necessary part of most optical com-
munication systems. In their implementations, latency is always one of the
top challenges, especially for short-reach optical communications. This con-
cern is not only because of the constant demand for faster Internet speed but
also because the exponential increase in Internet traffic is mainly driven by
emerging applications like streaming video, social networking, and cloud com-
puting, which is all data intensive and require high interaction between the
servers. Research teams have come up with some solutions to reduce latency,
but most of them considerably increase hardware costs and thus are limited.
Nevertheless, a novel class of generalized Reed-Solomon (RS) codes was in-
troduced with faster encoding and decoding algorithm. This low-latency RS
codes can run the entire encoding and most parts of the decoding algorithm
in parallel with only a slight increase in hardware costs. The speed-up effect
is superior and for codes over GF(2%), for example, the coefficient can be as
large as 15. In this thesis, the algorithm is explained in details with numerous
examples. A verification of the algorithm in MATLAB using high-level coding
technique is introduced, and a BER performance test is discussed. After that,
the topic moves forward to the focus of the thesis: its VHDL implementation.
Low-latency RS(255,225) encoders and decoders with different speed-up coef-
ficients are implemented and illustrated in the thesis. The latency results and
hardware costs are compared and discussed. Specifically, it is shown that for
decoders, a latency reduction from 540 to 70 clock cycles have been achieved

with a reasonable increase in hardware costs.

11

ABREGE

Les codes de correction d’erreurs ont toujours fait partis de la majorité
des systemes de communication optiques. Dans leur exécution, la latence a
toujours été I'un des plus grands probléemes, notamment pour les communi-
cations optiques de courte distance. Cette préoccupation n’est pas seulement
due a la hausse de la demande de I'Internet plus rapide, mais aussi par le fait
que la hausse exponentielle du trafic en ligne est causée par les applications
émergentes comme les vidéos en ligne, les médiaux sociaux et le informati-
que en nuage, c’est-a-dire l'information virtuelle, et ces derniers ont besoin
de beaucoup d’espace sur le web et demandent d’interagir souvent entre les
machines. Des équipes de recherche ont mis énormément d’effort et ont trouvé
des solutions, mais la plupart demandent d’augmenter les cotits des matériaux
et donc sont tres limités. Toutefois, une nouvelle classe de Reed-Solomon (RS)
de codes été introduit avec un algorithme capable de décrypter et d’encoder
plus efficacement. Ce code RS avec faible latence est capable d’exécuter un
encodage complet en plus de la plupart de 'algorithme du décodage en pa-
rallele avec seulement une petite hausse en cotits. L’augmentation de la vitesse
d’exécution est supérieure et le coefficient, par exemple, peut étre aussi large
que 15 pour les codes an haut de GF(28). Dans cette these, I'algorithme est
expliqué en détail avec plusieurs exemples. Une vérification de l'algorithme
sur MATLAB utilisant du codage de niveau avancé est introduite et un ex-
amen sur sa performance BER est discutée. Apres cela, le sujet avance sur
I’aspect important de la these: I'implémentation du VHDL. La latence faible
RS(255,225) d’encodage et de décodage avec des coefficients d’augmentation
de vitesse ont été implémentée et illustrée. Les résultats de la latence et les

couts de matériaux correspondent sont comparés et discutés. Spécifiquement,

v

il est démontré par les décodeurs qu’une réduction de la latence de 540 a 70

cycles a été atteinte avec une hausse acceptable des couts des matériaux.

CONTRIBUTION AND CONTENTS OF THE THESIS

The thesis is done solely by the author (Bo Zheng). It starts with a general
investigation of error correction codes and short-reach optical communication
in Chapter 1. Then latency challenges in this area, as well as solutions develo-
ped so far, are introduced. In Chapter 2, conventional RS codes are reviewed
along with Galois Fields (GF). Up to this point, readers should be fully pre-
pared to explore low-latency RS codes in Chapter 3. Besides the definition
and proof of low-latency RS codes, comprehensive instructions of encoding
and decoding algorithms are also provided with examples. Afterward, it is
time to discuss implementation. The information first focuses on algorithm
verification in MATLAB, and then the testing for BER performance within
communication system toolbox is presented. In Chapter 4, the VHDL imple-
mentation is presented with the code construction and result analysis. Finally,
the results are summarized, and a conclusion is given in Chapter 5 along with

future direction for the work.

vi

AWGN
BCH
BER
BM
DFT
ECC
EDFA
EMI
FEC
FPGA
FSM
FTTH
GF
GRS
IDFT
LFSR
LUT
MDS
PAM
RS
SNR
VHDL
WDM

ABBREVIATIONS

additive white Gaussian noise
Bose, Chaudhuri, and Hocquenghem
bit error rate

Berlekamp-Massey

discrete Fourier transform

error correction codes
erbium-doped fiber amplifier
electromagnetic interference
forward error correction

field programmable gate array
finite state machine

fiber to the home

Galois field

generalized Reed-Solomon
inverse discrete Fourier transform
linear feedback shift register
look-up table

maximum distance separable
pulse amplitude modulation
Reed-Solomon

signal-to-noise ratio

VHSIC hardware description language

wavelength division multiplexing

vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS
ABSTRACT o
ABREGE
CONTRIBUTION AND CONTENTS OF THE THESIS
ABBREVIATIONS o
LIST OF TABLES o .
LIST OF FIGURES
1 Introduction Lo

1.1 Error Correction Codes
1.2 Error Correction Code in Optical Communication
1.3 Short-Reach Optical Communication
1.4 Latency Challenges in Short-Reach Optical Communication

2 Conventional Reed-Solomon Codes

2.1 The Concept of Reed-Solomon Codes
2.2 Galois Fields
2.3 Narrow-Sense Reed-Solomon Codes
2.3.1 Encoding Algorithm
2.3.2 Decoding Algorithm

3 Low-Latency Reed-Solomon Codes

3.1 Concept and Proof
3.2 Algorithm Description
3.2.1 Encoding Algorithm
3.2.2 Decoding Algorithm
3.3 Algorithm Verification in MATLAB and BER Performance
3.3.1 Implementation of the Encoder in MATLAB
3.3.2 Implementation of the Decoder in MATLAB
3.3.3 BER Performance
3.4 Solutions to Arbitrary kandr
341 k#0modp,r=0modp

viii

i
iii
iv
vi

vil

pal

OU = DN

15
16
18

26

26
31
32
36
20
o1
95
62
65
65

342 r#0modp 66

4 VHDL Implementation of Low-Latency RS(255,225) 67
4.1 VHDL Implementation of Galois Field Arithmetics 67
4.1.1 VHDL Implementation of a Galois Field Adder . . . 67
4.1.2 VHDL Implementation of a Galois Field Multiplier . 68
4.1.3 VHDL Implementation of a Galois Field Inverter . . 73
4.2 Encoder Implementation 73
4.2.1 Implementations with Speed-Up Coefficient p=3 . 76

4.2.2 Implementations with Speed-Up Coefficients p = 5
andp=15.. 87
4.3 Synthesis and Simulations Results for the Encoder 88
4.4 Decoder Implementation 92
4.4.1 Implementation with Speed-Up Coefficient p=3. . . 92

4.4.2 Implementations with Speed-Up Coefficient p = 5
andp=15.. 116
4.5 Synthesis and Simulations Results for the Decoder 120
5t Conclusion 125
Appendix A L 128
Appendix Bo 131
Appendix C 0o 133
Appendix D 134
References 136

1X

LIST OF TABLES
Table page

2-1 Default primitive polynomial for different order m in MATLAB. 12

2-2 Three representations for the elements of GF(2') with the

primitive polynomial p(X) = X4+ X +1. 13
2-3 Three representations for the elements of GF(2%) with the

primitive polynomial p(X) = X3+ X +1. 15
2-4 Overall features of narrow-sense RS codes, based on [19].. . . . 16

3-1 Conversion between roots of C(15,9; , p) and elements of GF(24). 27

4-1 Addition with characteristic 2. 68
4-2 Part of the elements table of GF(2%) with the primitive polyno-

mial P(X) =X+ X+ X3+ X2+1. 72
4-3 Comparison of FPGA synthesis results for different encoders. . 89
4-4 Comparison of ASIC synthesis results for different encoders. . 91
4-5 Comparison FPGA synthesis results for different decoders. . . 121
4-6 Comparison of ASIC synthesis results for different decoders. . 123

LIST OF FIGURES

Figure page
1-1 A typical communication system. 2
1-2 History of ECC development, based on [5]. 3
2-1 Unsatisfied minimum distance for RS codes. 9
2-2 Division process for (7 +1)/(z3 +z+1). 11
2-3 Structure of a conventional RS encoding algorithm. 16
2-4 Structure of a conventional RS decoding algorithm. 18
3-1 Structure of low-latency RS encoding algorithm. 32
3-2 Structure of low-latency RS decoding algorithm. 37
3-3 MATLAB codes of DFT function. 51
3-4 MATLAB codes of IDFT function. 52
3-5 MATLAB codes of low-latency RS encoder: Part 1. 52
3-6 MATLAB codes of low-latency RS encoder: Part 2. 53
3-7 MATLAB codes of low-latency RS encoder: Part 3. 53
3-8 MATLAB codes of low-latency RS encoder: Part 4. 54
3-9 MATLAB codes of low-latency RS encoder: Part 5. 54
3-10 MATLAB codes of low-latency RS encoder: Part 6. 55

3—-11 Output of low-latency RS encoder in MATLAB with circum-
stances in Example 12. o000 55

3-12 MATLAB codes of syndrome calculation in low-latency RS
decoder. o7

3-13 MATLAB codes of key equation solver in low-latency RS decoder. 58
3-14 MATLAB codes of Chien search in low-latency RS decoder.. . 59
3-15 MATLAB codes of error evaluation in low-latency RS decoder. 60

x1

3-16 MATLAB codes of top file in low-latency RS decoder. 61

3-17 Output of low-latency RS decoder in MATLAB with circum-

stances in Example 17. 62
3-18 Structure of the communication test-bench in MATLAB. . . . 63
3-19 MATLAB codes of the BER performance test-bench. 64

3-20 Results from the communication test-bench for BER performance. 65

4-1 VHDL codes of an addition function over GF(2%). 68
4-2 TImplementation diagram of an adder over GF'(2%). 69
4-3 VHDL codes of a multiplication function over GF(2*). 71
4-4 VHDL codes of a multiplication function over GF(2%). 73
4-5 VHDL codes of a inversion function over GF(28): Part 1. . . . 74
4-6 VHDL codes of a inversion function over GF(2%): Part 2. . . . 75
4-7 Structure of a linear shift back register (LFSR). 76
4-8 Low-latency RS(255,225) encoder with speed-up coefficient

D=3, 7
4-9 Ports Declaration of RS encoder withp=3. 78
4-10 Signal declaration of RS encoder with p=3. 78
4-11 DFT and IDFT functions of RS encoder with p=3. 79
4-12 LFSR component instantiations of RS encoder with p=3. . . 80
4-13 Register update of RS encoder with p=3. 80
4-14 Finite state machine of RS encoder withp=3. 81
4-15 Counter behavior of RS encoder with p=3. 82
4-16 Preprocessing of RS encoder withp=3. 82
4-17 Port Declaration of LFSR component. 84
4-18 Signal Declaration of LFSR component. 84
4-19 Register update of LFSR component. 84
4-20 Counter behavior of LFSR component. 85
4-21 Combinational logic for control signals of LFSR component. . 85

pall

4-22 Combinational logic for parity-bits registers of LFSR component. 86
4-23 Combinational logic for the output data of LFSR component. . 86
4-24 Post-processing of low-latency RS(255,225) encoder with p = 3. 86

4-25 Functional simulation of low-latency RS(255,225) encoder with

D=3 89
4-26 Functional simulation of low-latency RS(255,225) encoder with

D=D. . e 90
4-27 Functional simulation of low-latency RS(255,225) encoder with

p=15. . 90
4-28 Structure of low-latency RS(255,225) decoder with p=3. .. 94
4-29 Port declaration of syndrome component. 95
4-30 Signal declaration of syndrome component. 96
4-31 Register update of syndrome component. 97
4-32 Finite State Machine of syndrome component. 98
4-33 Counter process of syndrome component. 99
4-34 Combinator logic of syndrome component. 100
4-35 Recursive Multiplication Block. 100
4-36 Port declaration of BM component. 101
4-37 Signal declaration of BM component. 101
4-38 Newly defined functions of BM component. 102
4-39 Register update of BM component. 103
4-40 Finite state machine of BM component. 104
4-41 Counter behavior of BM component. 105
4-42 Delta calculation of BM component. 106
4-43 Update of error-locator polynomial of BM component. 107
4-44 Update of error-evaluator polynomial of BM component. . . . 107
4-45 Update of other supporting signals of BM component. 108

4-46 Final output of BM component. 109

xiil

4-47 Port declaration of Chien search and correction component. . . 109
4-48 Signal declaration of Chien search and correction component. . 110
4-49 Evaluation block of the modified Chien search 111
4-50 Evaluation block of the odd terms of error-locator polynomial. 111
4-51 Evaluation block of the error-evaluator polynomial. 112
4-52 Register update of Chien search and correction component. . . 113
4-53 Finite state machine of Chien search and correction component. 114
4-54 Data recording of Chien search and correction component. . . 115
4-55 Counter behavior of Chien search and correction component. . 115
4-56 Coefficient extraction of Chien search and correction component. 115
4-57 Modified Chien search of Chien search and correction component.116
4-58 Polynomial evaluation of Chien search and correction component.117
4-59 Correction process of Chien search and correction component. 118

4-60 Final output process of Chien search and correction component. 118

4-61 Top file of low-latency RS(255,225) decoder with p=3. . . . 119
4-62 Functional simulation of low-latency RS(255,225) decoder with
D=3 121
4-63 Functional simulation of low-latency RS(255,225) decoder with
D=5 o 122
4-64 Functional simulation of low-latency RS(255,225) decoder with
D=5 122
5-1 Setupforp=>5 128
5-2 Defining functions forp=5 128
5-3 Component Instantiations forp=5 129
5-4 Preprocessforp=5 130
5-5 LFSR basic parameters forp=5 130
5-6 LFSR parity-bits register update forp=5 130
5-7 Output control for p =5 130

X1v

5-8 Set up of syndrome component for p=5
5-9 DFT function of syndrome component for p=5
5-10 Final output of syndrome component forp=5
5-11 Set up of Chien search and correction component for p =5 . .

5-12 IDF'T function of Chien search and correction component for
D=D e

5-13 Chien sum of syndrome component for p=5

5—14 Timing simulation of low-latency RS(255,225) encoder with
D=3 e

5-15 Timing simulation of low-latency RS(255,225) encoder with
D=0 .

5-16 Timing simulation of low-latency RS(255,225) encoder with
p=15 .

5-17 Timing simulation of low-latency RS(255,225) decoder with
D=3 e

5-18 Timing simulation of low-latency RS(255,225) decoder with
D=0

5-19 Timing simulation of low-latency RS(255,225) decoder with
p=15 .

XV

CHAPTER 1
Introduction

1.1 Error Correction Codes

Transmission channels in communication systems are not perfect. Even
for optical fibers which are well known for being one of the best transmission
media, dispersion, scattering, and other impairments can easily undermine the
transmitted data. This fact has led to the invention of error correction codes
(ECC) which add redundant data and map the message following a particular
way to a set of code-words. With ECC, the receiver can acquire the origi-
nal message to a certain degree of accuracy that is called correction-words by
decoding the received-words which refer to the received code-words with po-
tential transmission errors. Coding theory was first introduced in [1] in 1948 by
Claude Shannon where he specified the meaning of efficient and reliable infor-
mation. Two years later, Richard Hamming defined a constructive generating
method and the basic parameters of ECC [2]. Nowadays, ECC has become a
necessary component in most communication systems. As Figure 1-1 shows,
the data to transmit is sent from data source to source encoder where the data
are compressed, and redundant bits are removed. Then in channel encoder,
ECC is utilized by adding particular redundant bits to data. The modulator
converts the sequence of bits out from the channel encoder into symbols suit-
able for the channel transmission. Passing through the channel which is the
physical means of transmissions, the symbols received by the receiver can be
corrupted. The demodulator converts the transmitted symbols back to data
bits. Afterward, the channel decoder uses the redundancy bits added by the

channel encoder to correct transmission errors. The source decoder converts

- N
Channel Encoder
e w

Channel

h 4

: Channel Decoder
Data Sink [(Ermr Control Codes)]‘i Demodulator
' w

Figure 1-1: A typical communication system.

=3
A

the data back to uncompressed representations which are finally sent to the
sink.

The criterion for designing ECC includes: the probability of decoding
errors should be minimized; the transmission of information should be dense
and as fast as possible; the reproduced information at the channel decoder
output should be reliable; the implementation cost of the encoder and decoder
should be reasonable [3]. Structurally, there are two types of ECC: linear block
codes and convolutional codes. The main difference between the two categories
is that the first one uses only the symbols in the current set of message-words
to produce the code-words, while the second one needs to remember some
previous set of message-words [4]. Both of the famous Hamming and Reed-
Solomon (RS) codes are examples of linear block codes. For several decades,
research teams have developed efficient and reliable codes. Figure 1-2 gives
an idea about the history of ECC development.

1.2 Error Correction Code in Optical Communication

In [5], Masataka Nakazawa and his team made a very nice description of
the evolutionary history of ECC in optical communication. This paragraph is
a summary and comments based on that description. Forward error correction

(FEC) refers to the technique that uses ECC to estimate the original message.

Radio wave/ Wireless Gommunication Optical Communication

2010—— LDPC Codes
Block Turbo Codes

J LDPC Codes
2000 Concatenated Codes

Turbo Codes RS (255,239)

1990—— [Soft-Output Viterbi Algorithm]

e
Trellis Cod Commercial System
1o70

Ci tenated Codes
Viterbi Decoding oncatenate

LDPC Codes

1960—— RS Codes

Optical Fiber

E@I@

Convolutional Code Cyclic Codes
1950—— Hamming Codes
Shannon's theory
1940——

Figure 1-2: History of ECC development, based on [5].

As seen from Figure 1-2, FEC was initially ignored in optical fiber communica-
tion systems for a long time, because of its natural high data integrity leading
to considerably small bit error ratios (BER) compared to conventional radio
and satellite communications. One of the first published practical FEC ex-
periments in optical fiber communications was reported by Grover employing
shortened Hamming code (224, 216) in 1988 [6]. Then FEC started to appear
in repeaterless submarine cable systems in the early 1990s. After erbium-doped
fiber amplifiers (EDFA) had been applied in repeatered submarine systems, a
problem with fluctuations in the BER caused by polarization-dependent effects
showed up [7]. Nevertheless, RS codes mitigated the performance variation [8],
which led to using EEC to gain system margin. These codes are often cal-
led the first generation. When wavelength-division multiplexing (WDM) was
deployed widely, more powerful error correction codes are desired to satisfy
the increase in signal-to-noise ratio (SNR) requirement due to the multiple

numbers of multiplexed wavelength. One of the first proposal aiming to this

target was concatenated RS codes with iterative decoding. Ait Sab propo-
sed RS(255,239) + RS(255,223) with 22% redundancy and two iterations [9].
The codes developed in this stage are often called the second generation, and
they drastically increased the attainable transmission capacity. Due to the
continuous explosion of Internet traffic, the motivation was not only for larger
capacity but also to reduce the cost. Terabit systems need expensive optical
technologies such as ultra-wide band optical amplifiers, complex optical chan-
nel equalizers, and special grade premium fibers, while cheaper materials can
be used but imply more errors. Therefore, stronger error correction codes ba-
sed on soft-decision decoding are classified as the third generation. Also based
on RS codes, Andrej Puc developed the first demonstration for soft decision
in optical communications [10].
1.3 Short-Reach Optical Communication

For a very long time, optical links have been exploited only for long-haul
communications. Only sharing among a large number of users can make them
cost-effective [11]. Nevertheless, due to the decreasing hardware price and in-
creasing demand for Internet bandwidth, short-reach communication attracts
significant attentions now. Currently, fiber-to-the-home (FTTH) is already
commercially available in many cities with affordable price. It is believed
that fiber optics will eventually spread in any-size networks. Another focus
point of short-reach optical communications is high-speed optical intercon-
nects. Especially for data centers where thousands of servers interconnected
with high bandwidth packet switches, optical interconnects are the most pro-
mising solution to provide high throughput, low latency, and reduced energy
consumption [12]. Furthermore, the interconnects become a bottleneck for

performance, as the processing speed of chips is continuously increasing fast.

Using optics for board to board, chip to chip and even on-board interconnects
are being intensively studying.

Francisco Aznar and his team gave an excellent comparison between op-
tical and electrical communications in [11]. The rest of this paragraph is the
summary of their major findings. First, optical fibers do not suffer from elec-
tromagnetic interference (EMI) as electrical wires do. Optical carriers have no
charge whereas electrical ones with high-speed signal may act as a transmit-
ting antenna and radiate noise, possibly causing interference-related problems
with neighboring circuits. Second, electrical transmissions need Galvanic se-
paration that to solve ground loops because of variation of ground potential,
while optical transmissions have no such problems because they provide an
inherently isolated data path. Third, optical transmissions are safer than elec-
trical ones because no electrical current is conveyed. Fourth, an optical fiber
has much lighter weight than an electrical wire. Fifth, glass for optical fibers
is obtained from sand and thus is more environmental-friendly than electrical
wires which are made from copper and other metals.

1.4 Latency Challenges in Short-Reach Optical Communication

Latency is always one of the most important requirements for any commu-
nication systems. As mentioned above, besides the constant demand of higher
Internet speed, the latency of optical interconnects among boards, chips, and
servers are also urgent to decrease. The exponential increase of Internet traffic
is driven by emerging applications like streaming video, social networking and
cloud computing, which are all data-intensive and require high interaction be-
tween the servers [12]. Furthermore, latency reduction can indirectly decrease
the cost of optical communications. Larger error-correction capacity leads to

longer decoding time. With lower latency, larger error-correction capacity can

be accommodated in applications with a certain time constraint, which means
cheaper but lossier materials can be used in the system.

Research teams have put many efforts in latency reduction of ECC, es-
pecially for RS codes as it is one of the most widely used classes. Up to now,
several solutions have been proposed. One solution is to modify the formulas
to double or triple the number of inputs of some steps so that those steps
of decoding algorithm can run in parallel. However, the cost is to double or
triple the hardware used in those steps, which obviously makes this solution
very limited [13, 14]. Another solution is multi-ECC concatenation. Different
type of ECC are concatenated together to achiever better code gain and re-
latively lower overall latency [15, 16]. However, this category often involves
soft-decision decoding algorithms which are not generally suitable for short-
reach communications whose power budgets are usually smaller than the power
requirements of soft-decision algorithms.

There is one promising solution developed by Amin Shokrollahi in [17]. It
is essentially a novel class of generalized RS (GRS) codes, which is referred as
low-latency RS codes in this thesis. GRS codes were developed based on RS
codes several decades ago and are a generalized version of RS codes. Instead
of the set of consecutive roots in a conventional RS codes, Dr. Shokrollahi
defined this set of roots to be closed under multiplication with a p-th root of
unity over the same Galois field (GF). In this way, a conventional generator
polynomial can be split into p generator polynomials, and consequently the
encoder use them to generate a set of code-words consisting of p components.
All the components can be constructed and decoded at the same time with
little extra effort of component-wise Fourier transform. In other words, most
of the encoding and decoding procedures can run in p-parallel, where p refers

to the speed-up coefficient and can be even more than 10 for many scenarios.

However, the key equation solver and the error evaluation and correction pro-
cess are not discussed in [17]. In this thesis, we developed a p parallel error
evaluation and correction process to make output data-rate consistent with in-
put data-rate. Overall, there are three significant novel features of this design
compared with other solutions. First, due to the nature of this proposed de-
sign, the increased cost of hardware for this speed-up is low and thus the area
and power advantages are outstanding. Second, the speed-up coefficient, that
is the scalability, can be very large for this solution. Third, both latency and
throughput are considerably improved. The detailed instruction and VHDL

implementation of the algorithm constitute the focus of this thesis.

CHAPTER 2
Conventional Reed-Solomon Codes

2.1 The Concept of Reed-Solomon Codes

RS codes developed by Irving S. Reed and Gustave Solomon in 1960 [18]
is a special subclass of g-ary non-binary Bose, Chaudhuri, and Hocquenghem
(BCH) codes where ¢ refers to the number of elements in the Galois field (GF)
on which the codes are built. The details of Galois field are introduced in next
section. In other words, instead of using binary signals in BCH codes, RS
codes uses non-binary symbols as the unit of data. For example, for binary
BCH codes, the encoded data can be [1 0 1 0 1 0 0] but for RS codes, the
encoded data can be [3 57 2 4 5] (equivalent to [011 101 111 010 100 101]).
RS(n,k) means Reed-Solomon codes with the code-word length n and the
message-word length k. The message-words are the block of data to transmit,
and the code-words are the encoded messages transmitted through the channel.
Moreover, t = (n—k)/2 is the error-correction capability, that is the maximum
number of errors that can be corrected in a code-word with length n. This
equation is derived from the fact that the minimum distance for RS coding
theory is 2t +1 = n — k + 1. The minimum distance is the space between
two possible code-words. The reason for 2t 4+ 1 is from the BCH bound and
singleton bound [19]. The lower bound for the distance must be one unit larger
than 2¢. In an easier way to see this condition, imagine two points representing
two sets of code-words. For each point, draw a circle with the point as the
center and radius r = ¢. If the distance between the two points is 2¢, there will
be an intersection point between the two circles (Figure 2-1). Therefore, on

that point, one cannot decode it correctly. The upper bound is following the

' 2t |

Figure 2-1: Unsatisfied minimum distance for RS codes.

singleton bound that A,(n,d) < ¢"~**! where A, is the maximum number of
possible code-words in a g-ary block code of length n and minimum distance
d. Furthermore, the fact of satisfying the singleton bound qualifies RS codes
as Maximum Distance Separable (MDS) codes [19]. MDS codes are a class of

ECC which have the greatest error-correction capacity for given n and k.

Example 1. RS(7,3) handles message-word with length & = 3 (for
instance, msg = [6 4 2], that is actually [110 100 010]) and produces a
code-word with length n = 7 (for instance, ¢ =[6 4 25 7 1 2]). The error-
correction capability ¢ for RS(7,3) is 2 (= (7 — 3)/2), which means that
to successfully acquire the correct original message in the receiver, there
can be at most 2 symbols in the ¢ corrupted during the transmission in

a channel (for instance, r =[6 7257 0 2]).

J

For systematic RS codes which most modern RS codes are, the code-
words consist of the original message-words and the parity-check bits. In the
previous example, we can see the first three digits in ¢ =[6 4 2 57 1 2] are
the original message-words msg =[6 4 2] and the last four are the parity-bits.
The parity-bits are computed using arithmetics over a specific Galois field.
2.2 Galois Fields

Almost all the arithmetic process of RS codes is based on Galois field

(a.k.a. finite field). A Galois field GF'(q) is a field that contains a finite number

of elements on which the operations of multiplication, division, addition, and
subtraction follow certain rules and are closed in the set, that is, results of the
operations are still inside the set. The ¢ from the notation GF(q) represents
the number of elements in a specific Galois field and the ¢ must be equal to
a power of a prime number p [20]. If the exponential power is 1, that is, ¢
is equal to the prime number p, then GF(q) is called a prime Galois field
GF(p). On the other hand, if the exponential power is larger than 1, then the
corresponding GF'(q) is called extension Galois field GF(p™). Specific to our
context with digital communication applications, RS(n,k) uses an extension
Galois field GF(q) = GF(2™).

Specifically, GF(q) = GF(2™) = {0,1,a,a?,0?,--- ,al4 2}, where a is
called primitive element satisfying a® = (@~ = 1 and all elements in the
field must be distinct. The primitive element « should not be thought as a
real number. Instead, think of it as a mathematical symbol, and consistently
'Y = 1 does not mean ¢—1 = 0. The ¢ here can be any power of 2 (¢ = 2™).
The corresponding arithmetic operations are following the modulo-2 rule (note
that if p = 3 and thus ¢ = 3™, then module-3 rule would be followed). For
example, o + o + a? = o2, and o + a? = 0.

A polynomial over a prime Galois field GF(2) is a univariate polynomial
whose coefficients are from GF(2) = {0, 1} and the corresponding polynomial
arithmetic (addition, subtraction, multiplication, and division) is based on
modulo-2. A primitive polynomial of degree m over GF(2) is defined as an
irreducible polynomial p(X) of degree m if the smallest positive integer n, for
which the primitive polynomial p(X) divides X™ + 1, is n = 2m — 1 [20]. It
should be mentioned that the m here is not necessarily 1 because it is not
used to define GF'(2). Instead, this m is to later define the extension field of

GF(2), that is, GF'(2™).

10

1 0"+ 17+ 1% +1

Cax+1 | 1% +0%P+0" % +0*x* + 0" x> +0*x*+0*x ' +1

1% +0"x°+ 1+ 1% + 03 +0"%+0"x " +0

1%+ +0"3+0* %2 +0*"x ' +1

1%°+0"x* + 193 +1%2+0" % +0

x4+ 13+ 1752 +0"x +1

x40 +173+1"x"+0

1% +0"%%+17x " +1
195C+0" %% +1*x" +1

0

Figure 2-2: Division process for (z” + 1) /(23 + 2 + 1).

Example 2. For example, p(X) = X3 + X + 1 divides X7 + 1 (Figure

2-2) but does not divide X" + 1 for 1 <n < 7.

There are three ways to represent each extension field GF'(2™): 1) power
representation, 2) polynomial representation, and 3) m-tuple representation.
These three representations can be converted to each other based on the needs
of the circumstances. The three representations of an extension field GF(2™)
can be completely built on a given primitive polynomial p(x) over GF(2). It
should be noticed that an extension field GF'(2™) has different primitive poly-
nomials and with each specific primitive polynomial p(x), the representations
are different correspondingly. The default primitive polynomials for different

order m in MATLAB are shown in Table 2-1.

Example 3. For RS(15,11), the n = 15 and thus ¢ = n+ 1 = 16. The-
refore, we are using GF(16) = GF(2™) = GF(2*) for this RS code

and m = 4. For power representation, GF(2*) = {0,1(1 = o° =

11

2 3

15
«@)704704 , Qe

-, o'}, From Table 2-1 we can find the default primi-

tive polynomial in MATLAB for m = 4 is p(X) = X* + X + 1.

m | Default Primitive Polynomial in MATLAB
1 X+1

2 X2+ X +1

3 X3+ X +1

4 X+ X +1

5 X°+ X241

6 X0+ X+1

7 X"+ X341

8 X84+ X4+ X3+ X241
9 X+ X441

10 X104+ X3 +1

11 XMy X241

12 X2+ X0+ X4+ X +1
13 XP+ X+ X3+ X +1
14 XB 4+ X4+ X34+ X +1
15 XP4+X+1

16 X4 X124 X34+ X +1

Table 2-1: Default primitive polynomial for different order m in MATLAB.

Then, we can substitute the primitive element « into p(x) and get the
equation 0 = a* 4+ o + 1. This equation is used to find out the corresponding
polynomial representation in which we use polynomials of the maximum order
(m—1) = 3 to represent each element. For example, a* can be represented by
(a4 1) due to the equation 0 = a* + o + 1 (negative sign is equivalent to the

positive sign in modulo-2 arithmetic). And then o®

4

12

—a-at=a-(at+1)=

a? + o and so on so forth until the element a'* is calculated, as a4~! = 1 and
q—2=14.

The m-tuple representation (4-tuple representation in Example 3) is pro-
duced according to the polynomial representation. Each bit in the 4-tuple
representation represents each coefficient of each polynomial term. For in-
stance, 0111 represents the polynomial representation o + v + 1. All three
representations for the elements of GF(21) generated by the primitive poly-

nomial p(X) = X* + X + 1 are shown in Table 2-2.

Power Representation | Polynomial Representation | 4-Tuple Representation

0 0 0000(=0)
a’(=1) 1 0001(=1)
at a 0010(=2)
a? a? 0100(=4)
o? o? 1000(=8)
ot a+1 0011(=3)
o o +a 0110(=6)
al oa® +a? 1100(=12)
al A +a+1 1011(=11)
ad o +1 0101(=b)
o’ ad +a 1010(=10)
a'? o +a+1 0111(=7)
att o’ +a’+a 1110(=14)
al? A +at+ta+1l 1111(=15)
al? ad+a’+1 1101(=13)
att ad+1 1001(=9)

Table 2-2: Three representations for the elements of GF(2*) with the primitive

polynomial p(X) = X* + X + 1.

13

A polynomial over Galois field GF'(2™) is a univariate polynomial whose
coefficients are from GF(2™) and the corresponding polynomial arithmetic
(addition, subtraction, multiplication, and division) is based on modulo-2. In
Reed-Solomon codes, the message polynomials, generator polynomials, and
the code-word polynomials are all in this category. When a k-length message-
words are ready to transmit, it is translated into a message polynomial of
order (k—1) over a specific Galois field GF(2™). It should be noticed that the
message-word length is k, that is, there are k coefficients in this message poly-
nomial. A generator polynomial is a polynomial over Galois field to calculate
the parity-check bits mentioned in the last section. For each RS(nk) with a
specific value of (n— k), there is a particular generator polynomial of the order
(n — k) correspondingly. The code-word polynomial is the final result when

we encode a message, and the coefficients are the encoded data to transmit.

7 D

Example 4. For RS(7,3), we are using GF(8) = GF(2™) = GF(2%) =
{0,1(1 = a® = a"),a,a? a3, - ,ab}. If the message-word to transmit
is [5 6 4], that is, [101 110 100], then the message polynomial over
GF(2%) is msg(z) = a®X? + a*X + o? (see Table 2-3). Suppose that
after a certain encoding process the resultant code-word polynomial is
c(z) = a® X6 4+ a'X® + a?X? + a® X3 + X2 + aX + a?. Then the final
resultant code-word is [5 6 4 7 1 2 4], that is, [101 110 100 111 001 010

100]. The next section illustrates how all these polynomials are derived.

. J

The concepts of arithmetics over GF'(2™) are straightforward, while some
of them are hard to implement in hardware, which is discussed in Chapter 4.
Addition can be computed by simply using polynomial or m-tuple representa-
tions of elements. For example, for GF(2%),a® +a® = (a+ 1)+ (a* +a+1) =

[011]+[111] = o* = [100]. Subtraction is the same as addition due to modulo-2

14

Power Representation | Polynomial Representation | 3-Tuple Representation

0 0 000(=0

a’(=1) 1 001(=1

ol a 010(=2

o? o? 100(=4

ot o+« 110(=6

a’® a?4+a+1 111(=7

)

(=1)

(=2)

(=4)

a? a+1 011(=3)
(=6)

(=7)

(=5)

ab a?+1 101(=5

Table 2-3: Three representations for the elements of GF(2%) with the primitive
polynomial p(X) = X3 + X + 1.

5

rule. For example, a® —a® = o® +a® = a?. Inversion can be done using power

2m—1

representation of elements based on the fact that « = 1. For example, for

GF(23),a = % = 3—2 = o®. Multiplication can be calculated easily by using
power representation of elements. First, add up the exponential powers and
then calculate the remainder with respect to (2™ — 1), since o®”~! = 1. For
example, for GF(2%),a’-a® = a3+%) med7 — o On the other hand, a division
is simply computed by multiplying the divisor’s inversion.
2.3 Narrow-Sense Reed-Solomon Codes

Compared to generalized RS codes, narrow-sense RS codes is a special
class which most modern RS applications, as well as books and software such
as MATLAB, are using. There are several differences between these two ca-
tegories. For example, in narrow sense RS codes, the length of code-words is
n = 2™ — 1 with GF(2™). While in generalized RS codes, for GF(2™), the
length of code-words can be any values smaller than 2™. Since the topic of

this chapter is about the conventional RS coding algorithm, we here focus on

narrow-sense RS codes. Generalized RS will be introduced in Chapter 3.

15

Let a be a primitive element of GF(g) and let k£ be an integer with
0<k<n=gqg—1 Then c=[f(1),f(a), f(a?), -, f(a?)] is a narrow-
sense RS(n,k) code-word over GF(q), where f(z) is the message polynomial

of order (k — 1) [19]. The summary of overall features are listed in Table 2—4.

Block Length of the Code-Words n=q-—1

Number of Parity-Check Symbols in Code-word 2t=n—k

Error Correction Capability t=(n—k)/2
Dimension k=qg—1-2t
Minimum distance Apmin = 2t + 1

Table 2-4: Overall features of narrow-sense RS codes, based on [19].

2.3.1 Encoding Algorithm

Despite the definition described above, one mostly encodes and decodes
data using a systematic algorithm. In this systematic algorithm, the message
words are explicitly shown in the code-words. The structure for the encoding
algorithm is shown in Figure 2-3. There are only two main steps. First, a
generator polynomial ¢(X) is calculated. Second, parity-bits are produced

using the generator polynomial and the input message polynomial.

Step 1
Generator Polynomials

Calculation

Message-Words Step 2 Code-Words
Parity-Bits

Calculation

Figure 2-3: Structure of a conventional RS encoding algorithm.

The generator polynomial g(X) of a t-error-correcting RS code is a po-
lynomial with order 2t = (n — k) over GF(q) and has o, a?, -+ , o* as all its

roots. In other words, g(X) = 0 when X = «,a?, -+, a*. With g; € GF(q)

16

for 0 <i<2t,g(X)=(X—a)(X —a?)- (X —a*)=go+ nX + gpX*+
oo gy X2 4 X2

When we transmit a message, the message data are taken as coefficients
of the message polynomial over the same GF(q). With m; € GF(q) for 0 <
i < k—1, that is m(X) = mg + m1 X + maX? + -+ + my_ X* 1. Then
the parity-check bits are calculated by b(X) = (X" * . m(X)) mod g(X),
which is actually the remainder of the shifted message polynomial divided by
the generator polynomial. “mod” refers to the arithmetic function “modulo”,
which means to divide first and acquire the remainder. g(X) is a polynomial,
and (X™Mm (X)) is the shifted message polynomial by (n — k) bits. For
RS(7,3), for example, if m(X) = X? + o*X + o2, and X" %) = X* then the
shifted message polynomial is X®+a3 X% +a?X?. In other words, for RS(7,3) if
the message were [1 3 4] (see Table 2-3), then the shifted message would be [1
34000 0]. The way to do modulo between two polynomials is demonstrated
in Figure 2-2. The resulting coded polynomial is ¢(X) = X*m(X) + b(X)

e D

Example 5. This example is given in [21]. For narrow-sense RS codes
(73),n="7,9q=T4+1=8k=3;2t=7T-3=4;t=(7—-3)/2 = 2;
m = logy8 = 3. Therefore, we are using GF(8) = GF(2™) = GF(2%) =
{0,1(1 = a® = a"),a,a?,a?,--- ;ab}. Then, the generator polynomial
is calculated as g(X) = (X —a)(X —a?)(X —a3)(X —a?) = X4 +a3 X3+
X? + aX + o®. Now assume the message is [1 3 4]. Then the message
polynomial is m(X) = X% + a3X + o?. The parity-check polynomial is
calculated as b(X) = (X° + a3X® 4+ a2X*) mod (X* + o3X3 4+ X? +
aX +a®) =atX3 +a'X? + X + ol

Finally, the complete code-word polynomial therefore is ¢(X) =

XEm(X) + b(X) = X*m(X) + b(X) = X6+ a3X5 4+ a2X* + o1X3 +

17

a*X? + X +a?. The code-words are [, a3, a?, o, a?, a®, o] and equi-

valently [1 346 6 1 4] (see Table 2-3).

2.3.2 Decoding Algorithm
The decoding process is divided into the five following standard steps

(Figure 2—4):

1. Calculate syndrome S; for i =1,2,3,--- ,2t.

2. Determine the error locator polynomial o(z).

3. Find the error locations, that is, the roots of the error locator polynomial

(Chien search).
4. Compute the error magnitude.

5. Correct the errors.

Step 3
Error Magnitude
Calculation

Step 4
Error Location @
Determination
(Chien Search)

Delay Block *

Corrected-Words

Step 2

Received-Words Step 1 Key Equation Solver
Syndrome (Error Locator Polynomial
Calculation and

Error Evaluator Polynomial)

Figure 2-4: Structure of a conventional RS decoding algorithm.

Step 1. Syndrome is a parameter set particularly for the decoding pro-
cess. Recall the encoding algorithm and the generated code-word has roots
a,a?,a3, -+ o, while each syndrome can be calculated easily by substitu-
ting these roots into the received code-word r(x) : S; = r(a’) = ro + ra’ +
ro(a®)? 4+ r3(a)® + -+ + 1y (@)Y where i = 1,2, , 2t.

Let us define an error polynomial e(z) which refers to the error generated

in the transmission. Therefore, r(x) = ¢(x)+e(x), where ¢(x) is the code-word

18

polynomial that is the original code-word transmitted from the transmitter. As

c(z) has roots o, a?, a3, - - -, a* such that c(a’) = 0 for o' = a,a?, a3, -+, a*,

then the syndrome can be defined as S; = r(a’) = c(a’) + e(a?) = e(a?).

Example 6. Assume we are working on a narrow-sense RS(7,3). Sup-
pose that the code-word polynomial transmitted was c(z) = 2% +
adx® + ofxt + adx® + ab2? + o®x! + 1. The received polynomial
was r(x) = 2% + a32® + 2t + P23 + %22 4+ oP2' + 1 and it con-
tains two errors. It should be noticed that r; refers to the coeffi-
cients associated in this polynomial r(z). In this particular example,
ro=1,r=a%rm=a0?r=0a3ry=1r5s=0a3rs=1.

Then there are 2t = 4 syndromes and the syndromes are calculated as
following:

Si=r(ar)=rs- (@) +rs- (&)’ +ry- () 4715 (@) +ro- (o) +
roat+rg=a%+a®-a®+at+ad - aP+a’-a2+at-al+1=0a
So=r(a?)=rs-(@®)°+r5-(a®)P +ry- (@D + 13- (a®)3 + 19 () +
ool +rg=0'2+a® a0+ +a’-af+a?-at+a’ P +1=1
Ss=r(@)=a®+a? - a®+a?+a® ’+a? -+’ - P+1=1

Si=r(@)=a+a® a®+al®+ad-a?+a?-a®+a’-at+1=0a’

Step 2. With 2t roots, we can get 2t syndromes and thus 2t error poly-
nomials. Therefore, by solving the 2¢ equation system, it is possible to find the
error polynomial and thus find the error location. However, it is not easy to
solve this system, and we need to construct an error-locator polynomial o(x)
via an algorithm referred as the Berlekamp-Massey (BM) algorithm [22].

o(x) = 0o+ o1 + 092 + 0323 + - - - + 0,2, where v < t is the number of
errors. It is constructed in a way that its roots are the reciprocals of o where

i suggests an error location. For example, a® means that one error exists in

19

the coefficient of 22 in the received polynomial. With this definition and based
on Newtons identity [23], it has been proved that the syndromes are related
with error locator polynomial o(x) in the way that S; = — Zgzl 0;S;—; where
i=v+1,v+2 -2t and v <t is the number of errors [21].

The above relationship can be implemented using a linear feedback shift
register (LFSR) with the syndromes as outputs. Starting with an LFSR that
produces S7, the LFSR is checked to see if it can also produce Sy. If it can,
then the LFSR is not changed. Otherwise, the LFSR is modified to produce
S, as well. Then the LFSR is examined to see if it can also produce S3. Again,
if it can, the LFSR remains unchanged. Otherwise, the LFSR is updated so
that it can also produce S3. The procedure is carried out for 2¢ times [21]. In
the end, the LFSR can produce all of the 2t syndrome components, and thus
we can acquire the error location polynomial o(z).

Concretely, the BM algorithm is defined as follows. B(z) is a supporting
polynomial to assist in the updating of the error locator polynomial o(zx).
Denote L as the length of the LFSR, which represents the number of errors
v, that is, the degree of o(x). The upper index i refers to the i-th iteration
and the lower index j represents j-th coefficient that is associated with 27 in

©)

polynomials. For example, aji means the j-th coefficient o; of o(x) updated

at the i-th iteration.
e Initialization:
cO(z)=1,BO(z) =1,L» =0, and i = 1

e Operation on the i-th iteration:

1. Compute the LFSR output: S; = — ZJL;;D UJ(-i_l)Si_j.
2. Calculate the discrepancy: A; = S; — S;.

1, if A;#0and 2L0°D < —1
3. Assign value to the variable § : § =

0, otherwise

20

4. Update:
o (z) 1 AR o=V (z)

B () AP (1-6)-a B (z)

LO =§.(i—LUV)) + (1 —-6§)LUY

5. If i = 2t, stop. Otherwise, i = ¢ + 1 and return to step 1.

Example 7. Continuing with Example 6, assume we are using narrow-
sense RS(7,3). Suppose that the code polynomial c(x) = 2% + o325 +
adzrt +adx? +ab2? + o’xl + 1 was transmitted. The received polynomial
r(x) = 25 + o325 + 2t + a32® + a?2% + o’z + 1 contains two errors.
Then there are 2t = 4 syndromes and the syndromes are calculated as
Si=a* 8 =1_58=185,=a’

Now lets use the BM algorithm to find the error location polynomial for
the received polynomial:

e Initialization:

c©@(2) =1,BO(z)=1,L® =0,and i = 1

o =1
S~1:0:>A1251—S~1:Oé4
2L =0=i—-1=d0=1
oW (x) 1 —at-x 1 1— otz
BW(z) a™t 0 1 a™t
LY = (- LO) =1
® =2

S(QIUgl)Sl:a:AQZSQ_52:@3

21

2L =2>i—-1=6=0

o (z) 1 —a®-x 1—a'x 1—a’x
B®(z) 0 x a—4 a i
L®? — M -1

e | =3

53:U§2)52:()13:>A3253—S~3:O£

2L =92>i-1=4§=1

o | —4

§4 = O'gg)S;; + O'é3)82 = Oé6 = A4 = S4 = 54 =«

2L =4>i-1=§=0

o@(z) 1 —a-x 1—adx —a 322 1 — ax — a’z?
B®W(z) 0 =z a—1—a’x a lr — a?z?
LW =18 -9
Therefore, the desired error locator polynomial is o(x) = o™ (z) =

1 — azx — ab22.

J

Step 3. With the error locator polynomial o(z), we need to find its
roots, whose reciprocals’ exponential orders are the error locations. In this
step, we must try all n elements [a', a?, -+, a"] of corresponding GF(2™) to

see which elements are the roots. If the errors happened on the parity-bits

22

of code-words are not concerned, then we only need to try first k elements
[al,a?, -+, a*]. Substitute each element and if o(a’) = 0 then o' is a desired
root and correspondingly (n —) is the error locations, that is, r,,_; that asso-
ciated with 2"~ ! in the received-word polynomial. This process is referred as

Chien search.

Example 8. Continuing with Example 7, the found error locator po-

lynomial is o(z) = o™ (z) = 1 — az — ab2? and it is using GF(2%).

3 2

Therefore, we substitute [a, a?, a3, -+, a’] ([a,a?,- -+ ,a”] if the errors
on parity-bits are not the concern) into o(z) one by one. In the end of

the evaluation process, it is found that

Therefore, a® and a° are the roots and their reciprocals, o* and o? (as
a” =1 in GF(2%)), are the desired error locations, which means that in
the received code-word r(z), the coefficients associated with z* and z?

are wrong due to the transmission.

Step 4. To evaluate the error magnitudes, Forneys algorithm is applied.
The derivation and proof are illustrated in [24] and in Chapter 7 of [20]. Here,
we focus on the implementation of this algorithm.

First, an error evaluator polynomial Q(z) is defined as Q(x) = (S(x)-o(x))
mod 2%, where S(z) is the syndrome polynomial and o (z) is the error location

2t»

polynomial. The purpose of “mod x**” is to eliminate all terms whose order

is no less than 2t.
Second, the error magnitude at each error location o' is calculated as

Q/((z)) ls—a—i, where o' (z) is the formal derivative of o(z). The

following: e; =

23

value of ¢ () can be calculated as following:

/ d d 2 3., v
. (;U) _ zzlgcx) — (oco+o1z+022 dJ;U;ax +--Fopx?) =0 —|—20’2$+30'3LU2 —|—4O’4I3 4t
vo,r@b

As o(x) is a polynomial over GF'(2™), it follows modulo-2 arithmetic and

thus:

0, ifiseven
’i'O'i =

o;, if 7 is odd
Therefore, o’(x) can be formed by taking coefficients of the odd power

terms of o(x) and assigning them to the next lower power terms. Specifically:

o'(z) = 0y + o320 + 052t + -+

Example 9. Lets continue with Example 8. By now, we have found out
the syndrome polynomial S(z) = a*+x+2?+a’z? and the error location

622, We also know the error locations

polynomial o(z) = 1 — ar — «
are ot and o? (which actually refers to the coefficients associated with
x' and 2? in the received-word polynomial). Then the error evaluator

polynomial is computed as following:

Q(z) = (S(x) - o(z)) mod x*
=(*+z+22+0°%) - (1 - az —a®2®) mod z*
=a'+a'y
And the derivative of error location polynomial is: ¢’ () = —a. Then

the error values are calculated as following:

_ Q($)| 7220444_05—4'@_2:_1:1

24

Q(x) ot =

o' (z) —«

€4 =

Therefore, the error polynomial is e(x)

ad + ot -

4
o 4 4

2% 4+ o*x*, which satisfies

c(x) = r(x) + e(z).

Step 5. After we find out the error polynomial e(z), we can just add
it to the received-word polynomial r(x) and then we can have the original

code-word polynomial ¢(z).

Example 10. Lets continue with Example 9. Since we have e(z)
22+ otzt and r(z) = 2% + o325 + 2 + 32® + a?2? + P2t 4 1, it is easy

to add them up and get the following result:

c(z) = e(z) + r(z) = 22 + o'z + 25 + o®2® + 2 + &P2® 4?2 + oPxt +
= 2%+ o®2® + 0®2! + 0323 + 2% + Pt + 1

5 3 A6 5

So the original code-words we got is [a?, a®, @, a3, a%, o, a?], that is, [1

3735 7 1]. By checking with the information provided in Example 6,

the result is correct.

25

CHAPTER 3
Low-Latency Reed-Solomon Codes

3.1 Concept and Proof

The content of this section is mainly based on [17] in which Dr. Shokrol-
lahi introduced a special class of generalized RS codes which allow for faster
encoding and decoding. The underlying idea is primarily a clever choice of
the root set of the codes so that this set is closed under multiplication with a
p-th root of unity over the base GF. The biggest advantage is that this class
of generalized RS codes can be constructed as p components with length n/p
in a similar manner of conventional RS codes so that the entire encoding pro-
cess and most parts of the decoding process can all run in parallel on these p
constituent codes. In other words, these processes can speed up by a factor of
almost p, with only a slight increase in hardware costs.

Before stating the newly proposed algorithm, the definition of GRS codes

should be examined first. For 1 < n <,

GRSk(e,v) = {(vof (), v1f (o), o1 f(an—1))|f € GFylx]<i}

where a is a set of distinct elements of GF(q), v is a set of nonzero elements
of GF(q). f € GF,lx]<x is an univariate polynomial over GF'(q) with degree
less than k. Just like narrow-sense RS codes, GRS codes are also MDS and
the minimum distance is (n — k + 1) as well [25].

Recall the definition of narrow-sense RS codes in Chapter 2. It is easy to
see that narrow-sense RS codes is a special class of GRS codes with n = ¢ —1,

a=a',andvy;=1for0<i<n-—1.

26

The definition of low-latency RS codes developed by Dr. Shokrollahi is
given as following:

C(n,k;a, p) is a code over GF(q) with block-length n = p - m, dimen-
sion k, and minimum distance (n — k + 1). Its codewords are of the form
(’Uof(@o)»vlf(al): T avnflf(anfl))ﬂ where [€ GFq[$]<k> O = P(i mod p)OéWPJa

a is the primitive element of GF(q), p is p-th root of unity of the same field,

_ 1
and v; = Mo (@)

Example 11. Assume that we are using GF(2%), and working on

RS(15,9; «, p) with p = 3. Then
pp:p3:a15:1:>p:a5

According to a; = pt ™4 P li/Pl e can get the relationship in Table
3-1. As we can see, although the selected roots are not consecutive,

the set essentially contains all the roots of a conventional narrow-sense

RS(15,9) codes and certainly it is closed under multiplication.

ap = pa® = a® | ag = p*a? = al?

a1 =pla® =a’ | ag = p%a® =’

as = pta® = al% | aip = plad = a8

az = plal = ol | gy = p?ad = al®

as = plat =ab | ap =plat = ot

as = p?at = o'l | ag3 = plat = of

ag = pPa? = a? | ayy = pat = ol

7

ar = pta? =«

Table 3-1: Conversion between roots of C(15,9; , p) and elements of GF(2%).

27

In order to utilize the parallel running property, the code-words need to be
capable to be partitioned into p parts. A set of (coefficients of) polynomial vec-
tors [Hy, Hy,- -+, H,—1] is defined, where H; € GF,[z]|<,, are univariate poly-
nomials over GF(q) of degree less than m, such that a set of Fourier transform
equations: for i =0,1,--- ,p—1, FT(H); = Z?;épi'jHj =0 mod g; are true.

g; is a set of generator polynomials and is defined as ¢g; = H?éf Sg;dkp(x — o).

Now the task is to prove that [Hy, Hy,- -, Hp—1] is a codeword set be-

longing to C(n,k;«,p). First, we define a root matrix of order (k — 1) as

Vi(ag, az, - -+ ,a" 1) and a diagonal matrix as v:
1 1 1
Qo an Op—1
n—1
Vk(@070527"' , X):
k=1 k-1 k—1
[0 M Q1 |
vp 0 0 - 0 0
0 v, 0 - 0 0
v = diag(vo, v1,-++ , V1) =
0 0 0 -+ v,o O
0O 0 0 -+ 0 v,
With simple calculation, we can get:
Vo U1 T Up—1
Voo v1p ottt Un—1Qp—1
n—1
G:Vk<060,042,“‘,05)',U:
k—1 k—1 k—1
Vo V10 o Up—10, g

28

It is obvious that the codewords (vof(ao),vof (o), -+, vn_1f(an_1)) of

C(n, k; «r, p) are the row-span of G. In other words, G is the generator matrix

of C(n, k;a, p).
On the other hand, as the generator polynomial set for [Hy, Hy, - -+ , H,1]
is defined as follows: for i = (0,1,---,p—1), ¢; = Hg;g%ﬁ;dkp(x —al), s0 a

set of root matrix is defined: for i = (0,1,--- ,p— 1), V; = V,(a, a'P, -+ |
P (=) where 7; is the number of integers between 0 and (n—k—1) which are

congruent to ¢ modulo p. As FT(H); = Z?;ép"jHj =0 mod g¢;, so FT(H); -

V; = SP20p" H; - V; = 0, which leads to ([Ho, H1, -, Hp—1] - P) = 0 and P is
a matrix defined as for ¢, j = (0,1,--+ ,p—1), P; = p"/V,. In other words, P
is the transpose of the parity-check matrix of codewords [Hy, Hy,- -+, H,—1].
When we substitute V; = V,,,(a?, a’*?,--- o7 =1) into P, with simple
calculations and permutations of columns, the matrix P has the form

Vn—k(L Q- 7am—1)T
ank(pa pa, - ’pam—l)T
P = Vn—k(ﬂ2,P2@,"' ,pQOszl)T

_Vn_k(ppfl’ppfla’ . ’ppflamfl)T

which is V,,_j(ap, a1, -+, a,—1)". Therefore it suggests that ([Ho, Hy, -+ , Hy—1]-

Vow(ag, a1, ;an1)T) = 0 and V,,_x(ag, aq, -+ , 1) is the parity-check
matrix of codewords [Ho, Hy, -+, Hp_1].
At this point, all we need to do is to prove V,_g(ap,aq, -+, q,_1) is

n—l) .

also the parity-check matrix of C'(n, k; «v, p), that is, (Vi(ag, g, -+, « v -

Vn—k(a07 Oy, ,Oén—1)T) =G- Vn—k(Oém Qy - ,Oén—l)T = 0.

29

- - - -4 T
Vo U1 e Up—1 1 1 e 1
Voo U1 o Up—1Qp—1 Qo ap T Qn—1

k—1 k—1 k—1 n—k—1 n—k—1 n—k—1

/ano 1)10./1 R Un_lan_l ao Oél ct e an_l
—k—1 —k—1

Vot Up R nYe + U0
n—k n—k
Vg + =+ + Up—1Q0p—1 s Vo + -+ Un—1Q0,_1
k—1 k—1 —2 -2
ano +”'+U7’L—1an—1 /ang +...+/Un_1a2_1

As we can see, if the above matrix is 0, then every entry needs to be 0, which
means vy + - + v, 10’ _; =0 for all i = 0,1,--- ,n — 2. This condition is

equivalent to proving the following:

Vo 1 1 ce 1 Vo
U1 Qo aq o Qg U1
Vn—l(a07a1a"' 7an—1) : - . =0
n—2 n—2 n—2
/Un_l ao Ofl A O[n_l Un_l
To prove this equality, the inverse of V,,(ag, a1, -+, a,,—1) needs to be re-

viewed first. Let’s define Ai(z) = v; [[,.;(z — a;). Recall that v; = m
in the definition of C'(n, k; a, p). Therefore, we have A\;(c;) =1 and A\;(a;) =0

for j # 4. Let \;; denote the coefficient of 27 of X\;(z), so that X\, ,,—1 = v;.

30

Then, the inverse of V,(ag, o, -+, 1) is

0,0 Xog o v Ao,n—2 Aon—1
AL0 Air o Aln—2 Aln—1
=)
)‘n—l,O)\n—l,l e)\n—l,n—Q)\n—l,n—l
_ T _ T
where I' = ()\O,nfly A1, " 7)‘n71,n71> = (vo,v1, -+ ,Un—1)" . Therefore,

(A|F) : Vn(Oéo,Oél, te ,Oén—1> =]n = Vn(QOa 105 P 7an—1) ’ <A|F)

Vn—l(aOa Qpy e)an—l)
~(L)+ (4Ir)
which suggests that
Vn71<a07 Qp, - 7057171) A= n—1
Vioi(ao, o0, yan_) - T= Vi (ag,an, - 1) - (Vo, 01, 01)" =0
Thus, it proves the following:
Vilag, ag, - ™) v Vig(ag, an, -+ 1) =0

Therefore, it is proved that P is also the transpose of the parity-check matrix
of C(n,k;a,p) and thus [Hy, Hy, -, Hy_1] is a codeword set belonging to
C(n, k; «r, p), which is a class of generalized RS codes.
3.2 Algorithm Description

This section is mainly based on [17]. For each step, theorems and concepts
are first introduced and then an example is given for better understanding.
The definitions of parameters and variables already given in the preceding
chapters may not be presented in this section again. It is highly recommended

to read at least Chapter 2 before moving to this chapter.

31

Recall in the definition of C(n, k; «, p), speed-up coefficient p is defined in
n = p - m, which implies that code-word length n is divisible by p. However,
no constraints are added to message-word length k£ and parity-bit length r. In
fact, the coding algorithm would be slightly different dependent on if £ and r
are divisible by p. For this section, assume that n, k, and r are all divisible
by p. Circumstances of arbitrary values of k and r will be introduced in the
next section. Specifically, we definen=p-m, k=p-t,r=(n—k)=p-1, o
is the primitive elements of GF'(q), p is p-th roots of unity, and thus p = o™,
and m =1+ (.
3.2.1 Encoding Algorithm

Design Structure. The overall structure for low-latency RS encoding
algorithm is shown in Figure 3—1. There are five steps. A block of message-
words is split into p components and then go through a discrete Fourier trans-
former (DFT). With p generator polynomials pre-calculated, p blocks of parity
bits are produced based on the output of the DFT block. Finally, the message-
words along with the parity-bits are grouped together following a particular
rule to output the final code-words. In the following paragraphs, each step is

explained in greater details.

Step 1

Generator Polynomial
Calculation

Step 4
Message-Words Step 2 — Step 3 Parity-Bits [Step 5 Code-Words
Message-Word Discrete Fourier | Calculation “ Output the
Splitter Transform (DFT)— (IDFT included) Code-Words
[Delay Block |
Delay Block

Figure 3-1: Structure of low-latency RS encoding algorithm.

Step 1. Produce the set of generator polynomials as follows: for i =

(0,1, p—1), g = SIS (5 o3

J=i mod p

32

Example 12. Assume we are using GF(21) = GF(16) (Table 2-2), and
working on RS(15,9;«,p) with p=3. Sor =n—k =15—9 =6 and

thus the generator polynomials are:

go = H?éggﬁmd sz —ad) = (z - a)(z -) =2® + oMz +a?

= [o™, 0’ = 1,9, 8]
g1 = H?é{ginod Jr—d)=(@z-a)Yz—-at)=2>+z+a°

=[a%a e’ = 1,1, 6]
g2 = Hgiggﬁmod s(—a) = (z - a®)(z —a®) =2 +alz +a

= [o', 0] = [1,2,11]

J

Step 2. Arrange the block of message-words M into a matrix and label
each row vector as M;, where 1 = 0,1,--- ,p — 1. The matrix is constructed

as following: for ¢ = 0

1)-p—i).

71;"' ,p—l,jZO,l,--- ,t—]-7 Mmatmx(za]>:M((j+

Example 13. Continuing with Example 12, assume the block of

message-words M is [11,3,2,5,6,4, 10,12, 8], which in power represen-

7 8

tation is equal to [a”, a?, al,a® a® a? a® ab a3], then the matrix is as

following:
9 4 8 My = [2,4,8] = [a},a?, a3
Myatriz = |3 6 12 and thus M, = [3’ 6, 12] = [0547 065, 066]

g e My = [11,5,10] = [a, a®, a”]

\

33

Step 3. Define the Fourier transform of M; as done with H; before.
Specifically, for i = 0,1,-++ ,p— 1, FT(M); = X2Z;p"I M.

Example 14. Continuing with Example 13, as p is 3-th (p = 3) root of

unity, so p = o and thus

FT(M)y = My+ My + M,

=o' +a'+a’,a® +a° +a®,a® + af + o]

FT(M); = My + pM, + p* M,

= [a' + pa* + p*a”, a® + pa® + p?a®, a® + pab + p?af)
— [, a7,]

FT(M)y = My + p* My + pM,
= [a! + p?a* 4+ pa”, a® + p*a® + pa®, a® + p*a’ 4 pa’]

— [042,043,044]

Step 4. We define the parity bits [ho, h1,- -+, k(1)) so that [z My +
ho, ' My + hy, -+ &' M1y + h1)) = [Ho, H1, -+ , Hip—1y] € Cn, k; a, p).

Let f; := 2'FT(M); mod g;, where i = 0,1,--- ,p — 1, and the purpose
of 2! is to shift FT(M); by [degrees. Recall that vectors essentially represent
polynomials and each vector element is the coefficient associated with each
order of . From left to right, the order is monotonically decreasing. This
step is actually the same process as conventional narrow-sense RS encoding
algorithms except that the message polynomial m(x) is replaced by FT'(M);.

Recall that [#' My + ho, 2 My + hy, -+ &' M1y + ho1)) = [Ho, Hi, -+ -
Hg-y)and FT(H); = Zp_épi'jHj =0 mod g;. Therefore, fori =0,1,--- , p—

J]=

34

1, f; = —XIZ =0 ,0” hj mod g;. With this expression, we can calculate h; from

fi using inverse Fourier transform. Concretely, for i = (0,1,--- ;p — 1), h; =

1(j= Op l]fj)

Example 15. Continuing with Example 14, so

fo =2 FT(M)y mod go = [0, a'®,a',0,0] mod [a°, o™, ®] = [a*,0]
fi:=2'FT(M); mod g; = [a5 a’,a®0,0] mod [a°,a’, a’] = [, o]
= 2'FT (M), mod gy = [a?,0®,a*,0,0] mod [a°,at,a”] = [a°, af]

Notice that the method of solving “mod” is shown in Figure 2-2.

ho = ~3 (5o f5) = ~(1/3)(fo + fu + fo)

=[a*+a® +a% 0+ a' +af
= [a'?, o'] = [15, 2]

—5(20 L) = (/o + P+ 1)

hi =
= [a4+a10-a13+a5-a0,0+&10‘0411+045'046]
= [070[1] = [072]
Lo o 2
h2:_§(2j:0p fi) =—1/3)(fo + pfi + p° f2)
=[a*+ 0’ - a®+0'%-a% 0+ 0’ " +a' af

= [a®,0] = [12,0]

Notice that —% = 1 in the context of a field of characteristic 2.

Step 5. Finally we put everything together to get the final code-words
Cc = [Ho, Hl, ce 7H(p—1)] = [%lMO + ho, l'lMl + hl, s ,Z'lM(p_l) + h(p—l)]- The
ordering follows a two-level rule.the first-level rule is that the highest order

has the smallest index. As the message-words M have higher order than all

35

h;, so M is in front of all h;. The same way is followed by elements inside each
group. The second-level rule is that among all h;, the ones with bigger ¢ have
smaller index. Specifically, for the speed-up coefficient p and | = (n — k)/p,

the code-words are

c=[M(0), M(1),---, M(k —=1),hp-1)(0), hp—2)(0), -, ho(0), hp-1) (1),

hp-2(1),- - ho(1), -+ by (I = 1), hpgy (I = 1), -+, ho(l — 1)]

Example 16. Continuing with Example 15, the message-words M =

[T, ot at a8 a® a2 a” ab a?], and the set of parity-bits are hy =

[@'? al], hy = [0,a'], hy = [a 0], then the final code-words c is

[a” ot ol a0’ a?, 0% ab o, a8 0,a'%0,a!,], that is, in 4-tuple re-

presentation [11,3,2,5,6,4,10,12,8,12,0, 15,0, 2, 2].

3.2.2 Decoding Algorithm

As Figure 3-2 shows, there are seven steps in the low-latency RS decoding
algorithm. Received-words are first partitioned into p components followed by
a process in discrete Fourier transformer (DFT). Then the syndromes are
computed and sent to the key equation solver. The key equation solver is
implemented by a conventional Berlekamp-Massey algorithm, which produces
an error-locator polynomial and an error-evaluator polynomial. With these
results, locations and error magnitudes are calculated in Step 5 and Step 6,
respectively. Finally, in Step 7 errors are eliminated, and the correction-words
are output. In the following paragraphs, each step is illustrated in greater
details.

Step 1. For ¢ = 0,1,---,p — 1, define L;(z) = ZET:_O;)T(MH)xj. This
step is to divide the block of received-words into p components, which is similar

to what we did in the encoding algorithm.

36

Step 6
Error Value
Calculation

Received-Words Step 1 —3 Step 2 3 Step 3 —3 Step 4
Received-Word n Discrete Fourier Syndrome “ Key Equation
Splitter Transform (DFT) Calculation Solver

Step 5
Error Location
Determination
IDFT Included)

—>< Switch

Delay Block

Corrected-Words

Figure 3-2: Structure of low-latency RS decoding algorithm.

Example 17. Continue with Example 16. The original code-words is

7 4 1 8 5 2 9 6 3 6 12 1 1
c=la"a a0 0’ a0, 0’ a0’ 0,007, 0, a0,]

that is, in 4-tuple representation
c=1[11,3,2,5,6,4,10,12,8,12,0,15,0, 2, 2]

Assume the received-word is
r=1[6,3,2,5,6,4,10,11,8,12,0, 15,6, 2, 2]

that is, in power representation

_ .5 4 1 8 5 2 9 7 3 6 12 5 1 1
r=la’, o a0’ o o’ ol o’ a0, o, o o

Comparing with the original code-words produced in the encoder, the
errors are at (0),7(7) and r(12), that is, in term of polynomial coeffi-

cients, 714,77 and 5. Then

L0($> = E?j:o)r(ii*j—i—O)xj =7To+r3x+ 7’6332 + T9x3 + 7”12374
== [r127 T9,76,73, TO]
= [}, a?,a?,a'? o] = [2,4,8,15, 2]

Ly(z) = E?j=0)r(3*j+1)xj = 71 4 74 + 1727 + r102° + r1gz’

37

= [7“13,7“10,7"7,7“4,?”1]

4

= [o* a’ a",0,a'] =[3,6,11,0,2]

L2 (:L') = E?jzo)r(g*ﬂg)xj =79+ I5X + 7"8.’13'2 + 7”11333 + 7“14.274

:[7'14’7’1177"877'577"2]

= [, a® a’,a% a°] = [6,5, 10,12, 6]

Step 2. In this step, apply Fourier transform on L; as the same way

before. Concretely, FT(L); = ¥ 0PI L.

Example 18. Continue with Example 17, then
Fo(z) = FT(L)o = S220p"7Lj = Lo+ Ly + Ly = [0'°, ', 0™, 0%, 0]

Fl(.'I?) = FT(L)I = E] Oplej = LO + ,0L1 + p2L2 = [a14, 047, 062, 0613, CYH]

Fy(z) = FT(L), = ¥ —50*9L; = Lo+ p*Ly + pLy = [0%, 03,08, a0, a]

Step 3. In this step, calculate the syndromes by substituting roots of
generator polynomials. Recall that for conventional RS codes, syndromes
are calculated by substituting the roots of generator polynomial g(x) into
the received-word polynomial r(z) because the parity-bits polynomial b(x) is
acquired by b(z) = msg(z)- 2" * mod g(x) where msg(z) is the message-word
polynomial and thus the code-word polynomial c(x) = (msg(x) - 2% + b(x))
has the same roots of g(z). This conclusion leads to the definition of syndromes
that is S; = r(a’) = c¢(a’) + e(a’) = e(a’) where e(z) is the error polynomial.
For low-latency RS codes, on the other hand, there are p generator polynomials

gi(z) each with =% roots. In Step 4 of Section 3.2.1, there are equations that

38

fi == 2'FT(M); mod g;, where F'T(M); is obtained by Fourier transform on
message-word polynomials M; and f; are sent to IDFT to generate parity
bits h;. Therefore, polynomials u;(x) = 2! FT(M);(x) + fi(x) have the same
roots of g;(x). In other words, to calculate the syndromes in low-latency RS
decoding algorithm, we should substitute the roots of g;(x) into polynomial
u;(z). To generate u;(x) we should acquire F'T'(M); and f; by applying Fourier
transform on both M; and h;. As the code-words ¢ generated from low-latency
RS encoding algorithm consists of M; and h;, therefore, we just need to simply
apply Fourier transform on the split received-words L; which was illustrated in
the last step, and then substitute the roots of g; to the corresponding output
from Fourier transform. Specifically, for : =0,1,--- ,n—k — 1, the syndromes

are defined as follows:

(

Fo(a®) ifi=0mod p

Fi(at) if i =1 mod p
S; —

F, 1(a") ifi=p—1modp
(

Example 19. Continuing with Example 18, we have n — k — 1 =15 —

9 — 1 = 5. The syndromes are

So = Fo(a()) _ 0410 . <a0)4 —i—Ole . (a0>3 —|—0414 . <a0)2 —1—044 . (040)1 +a5 _ a6
S = Fl(Oél) _ 0414 . (Oél)4+0z7 . <a1)3 +Oé2 . (041)2 +a13 . ((1/1)1 +a12 _ Oég
so=Fy(a®)=af- () + o (a?)P +a® () +a’ (&®) 4+ =a?

4

53:Fg(a3):alo-(a3)4+oz10~(a3)3+a14-(a3)2+a4~(a3)1+a5:a

Sy :Fl(Oé4) :a14-(a4)4+a7~ (a4)3+a2. (a4)2+a13.(a4)1+a12 :Ozll

\. J

39

s5 = Fy(a®)=a- (®)*+a?- (0®)P +a®- (0®)2 +a’- (&®) +a” =

Step 4. With the syndromes computed, we can move forward to the
key equation solver, which uses BM algorithm in the same way as we did for
conventional narrow-sense RS codes. Nevertheless, in this part, there is one
difference that the error-locator polynomial and the error-evaluator polynomial
are generated together at the same time, utilizing the relationship that v(z) =
(S(x) - o(x)) mod x* which is discussed in Chapter 2.

The modified BM algorithm is explained below based on [26]. o(z) is
the error-locator polynomial; B(x) is the error-locator support polynomial;
~(x) is the error-evaluator polynomial; A(x) is the error-evaluator support
polynomial; L is a integer variable that indicates the degree of o(x); k is a
integer variable; A is the discrepancy. The upper index ¢ refers to the i-th
iteration and the lower index j represents j-th coefficient that is associated

with 27 in polynomials. For example, 0"

; means the j-th coefficient o; of o(x)

that is updated at the i-th iteration.
e Initialization:
cO(z) =1,BO(2) =1,79(z) =0,A0(z) =27, L =0 and k = 0
e The algorithm iterates for r = n — k steps. At the (k+1)-th iteration,

follow the procedures below:

(k)

1. Calculate the discrepancy: A+ = > im0 aj(k)Sk_j.

2. Update the values of o(x) and v(x). Specifically,
oD (z) = oW (z) — A®D . BR () . ¢

AED (1) = 4B () — AFFD L AR () g

40

3. Update the values of B(z), A(z) and L. This step is not necessary

for the last iteration. Specifically,

(

z - B®(z) if AE+H) 2£ 0 and 20K <k
B(k+1)($) _

o) (z)/AF+H) otherwise

(

z- AW (7) if A+ 2£0 and 20K <k
A(k+1)(x) _

AF) () JA*FD otherwise

\

(

L®) if AT £ 0 and 20%) < k

L(kJrl) _
kE+1— L% otherwise

\

4. If k = 2t — 1, then stop. Otherwise, k = k 4+ 1 and return to

Procedure 1.

Example 20. Continue with Example 14. The syndromes are sy =
ab,51 =a sy =a? s3 =0 sy =all, s5 = o, then
e [nitialization:
cO(z) = 1,BO9(z) = 1,79(z) = 0,A%(z) = 271, LO = 0 and
k=0
o [teration k+1=1

(0
AWM = ZU](-O)SO_j = 0(()0) sg=1-a®=0af
§=0

cW(z)=cO(z) =AY .BO@E).2=1-0af.1.2=1-0az

7(1)(33) — 7(0)(33) —_AD. A(O)(x) x=0—af -z t.z=af
As AW = b £ 0 and 2LO = 0, thus

BY(z) = ¢O(z)/AY = o5

41

A(l)(:p) — 7(0)@)/&1) =0

LY =k+1-LO=04+1-0=1

o [teration £k +1=2

L
A(Q) = ZO’él)Sl—j = U(()l) - S1 + 0{1) +Sp = 1- 049 +a6 : Oé6 = Oés
7=0

c@(z) = oW(z) — A®.BY(z) .

6 8 6

rT—o° o =

=1—-a r=1—-o'x

7(2)@) - 7(1)(90) ~A®@ . A(l)(x) r=ab—a® 0.-z2=0af
As A® = #£0and 2LM = 2 > 1 =k, thus

B3(z) =z - BY(z) = a %
A(2)<I‘> =7- A(l)@;) =0

L® — 1M —1

e [teration k+1=3

L(2)

A®) = ZO'](-2)82_J' = 082) -89 + af) s1=1-a*+a®-a®=af
=0

o®(z) =@ (z) — A® . B () . ¢

3 6

=1-a*z—ab - a"

z-r=1-—ar —2°

YO (@)= 7P () —A® . AP () .z =a®—0af-0-2=0ab
As A®) = b £ 0 and 2L® = 2 = k, thus

BO(z) =P (2)/A® =(1—0aPz) - af=a®—a 3

A(3)($) — '7(2)(x)/A(3) —ab . af=1

42

S — el =B =g =1 =2

e [teration k+1=4

L®3)
AY = ZU§3)83_]‘ = 063) - 83 = 0%3) - S92+ Ués) - 51
7=0

=1l-a*4+a® a*+a’ - a’ =at

o@(z) =0®(z) — AW . BO(z) . ¢

3 —6 3

—a3z)-z=1—-0a"z—0af

=1-a’z—2°-o' - (a z’

YD (z) =4V (2) =AW . AO(z) . z=a’ -t - 1-z2=0a® - o'z

As A® =q! #£0 and 2L®) =4 > 3 =k, thus

e [teration k+1=25

L(4)
A®) = ZU](-4)S4_J' = 064) -S4 + 0%4) - S3 + 0&4) - S9
=0

:1-a11+a12-a4+a6-a4:a7

o®(z) =W (z) — A®) . BW(z) .z

=1—-azr—0a%®—ao" (o %2 —0a32%) -z

=1-—a'2z — a'2? + ota?

YO (z) = yW(2) = A® . AD(z) .z =a® -0tz —a -z -2

= Oé6 — Oéliv — (17152

43

As A®) =7 £ 0 and 2L™W = 4 = k, thus

BO(z) = oW(z)/A®) = (1 — o2z — ab2?) - a7
=o' —ad°z—a'2?

A®(z) = /B (2)/AB) = (af —alz) o T=al—a bz

L®=f4+1-LW=44+1-2=3

o [teration k+1=206

LG®)
A® — Z O'](-S)S5—j = 085) - 85 + af’) -S4+ créB) - 83 + a§5))
=0
=1-a*+a?- o+t a4+t ot
fr— al

o (z) = o®(z) — A® . BO(z) . ¢

=1-oz—a''s’+a* 2 —a' (" -’z —a'2?) -z
=1-ad®z — o'z® — a's?

YO (2) = vO(2) — A© . 4B (z) . ¢
=af—alz—ad"2* o' (o' —a) 2

= o® + o’z + of2?
In conclusion, the error-locator polynomial is o(z) = ¢ (z) = 1 —az—

a'z? — o'2®, and the error-evaluator polynomial is v(z) = v (z) =

o + otz + ob22.

ward to finding out the error locations.

Step 5. With the error-locator polynomial computed, we can move for-

conventional Chien search algorithm except that to check if r,_; is an error

location, the root to substitute is «; instead of o where i = 0,1,--- ., n — 1.

44

This step can be done using the

The change is because «; is used as roots in the definition of C'(n, k; , p). Ne-
vertheless, based on the parallel feature of proposed low-latency RS codes, Dr.
Shokrollahi developed a modified Chien Search which can run in parallel as
well. The novel idea is to split the error-locator polynomial into p components
and substitute roots to all of them. The computed results from all the com-
ponents are then sent to IDFT. If there is any 0 among the p values generated
from IDFT, then the same number of error positions could be located. The
most significant advantage of this method is that we only need to substitute
m = n/p roots instead of n roots.

Specifically, assume there are v (v < ”T”“) errors in the received word
and the error-locator polynomial is found that o(z) = o¢ + o2 + - - - + o,2".
Fori=1[0,1,--- . m—1] i = [l,{+1,--- ,m — 1], where | = (n — k)/p, if
errors on parity-bits are not the concern) and k£ = (0,1,--- ,p — 1), define
ap = E?Eiéﬁod paja*"'j , and then apply inverse Fourier transform on a; to
obtain wy = IDFT(a)y = E?;ép_j"“aj. If for some k, the value wj, is zero,
then the index of one error location is y = (p - i + k). Repeat the procedures
for all value of 2. The proof of this method is illustrated below.

First, we note that o(a~"p’) = 0 if and only if (p -4 + j) is an error
location, because d is an error position only when o(a;') = 0, and recall that

(d mod p)

aq is defined as ag = p ald/Pl Therefore, d must be equal to (p-i+j).

Define a polynomial b(z) = o(z) mod (z? — a™P?). Then

bla™'p™) =a(a™"p™?) mod (a™"'pP7 —a”P)
=o(a'p?)mod (a1 —a P
=o(a”"p™?) mod 0

i

=o(a”p)

45

Besides,

b(x) = o(x) mod (2¥ — a™P7)

0<j<w —ij 0<j<w i(j—1) .
=0 mod p?J +x(2] 1 mod p JOé)+ o
p—1/v0<<v —i(j—p+1)

+x (2 =p—1 mod p o)

et _ . e i pfl
ap + ap Oz_i + + (Ipfl(oé_)

Therefore, b(a™"z) = ag + a1z + -+ - + a,_12P~ 1. Define a(z) = b(a~'z) and
thus w; = a(p™7) and it is equal to 0 if and only if b(a~"p™7) = o(a~'p7) = 0,

that is, (p- i+ j) is an error location.

Example 21. Continuing with Example 20, the error-locator polyno-

8 | 1,..3

mial is 0(z) = 0®(z) = 1 — Bz — o'2? — o12® = 09 + 012 + 092? + 0328

and v = 3. Then
e Fori =0

0<5<3
E] =0 mod 3)

o =0p-a’+03-a’=1+a' =«

0<;<3 P
=7 == oja % =0y -’ =a®

(j=1 mod 3)

0<;j<3 y
= 5 oja % =090’ =o'

(j=2 mod 3)

2 50 4 8 1 2
wo=Y;_op Naj=aptata=a"+a"+a =a

2 —jl 2 4 10, 8 5
wlzzjzopjaj:aoqual—i—pag:a t+oa o t+a =«

2 —j2 2 4 5 8 10 1
wzzzjzopjaj:ao—l-pal-l-pag:a +a’-a"+a -a =0

Therefore, r3.;ip = r3.042 = 79 = r(12) is an error location.

46

e Fori=1

_ 0553 el .0 -3 -2 _ 6
aO—Z(jZO mod 3)75¢ =0g-a toz-a=14+a "=«

_ y0<y<3 e O -1 8 -1 _ 7
a; = E(].zl mod 3)75% =01 =a o =«

_ y0<y<3 P O -2 1 -2 -1 _ 14
a2 = U250 mea3)0iQ T =0 a i =o ot =a =«

—5:0

2 6 7 14 11
wozEjzop aj=ay+ta+a=a +a' +ta =«

2 —j1 2 6 10 7 5 1
wlejZOpJaj:ao+pa1+pa2:a +a-a' +a’ -«

—j-2

2 2 6 5 7 10
we =3 _op 7 a; =yt part+paa=a’+a’a ta

e Fori =2
_ y0<y<3 P .0 =6 _ -5 __ 5
aO—E(jZO mod 3) 75 =0pg-a to3-a =14+a "=«
_ y0<y<3 P -2 _ 8 -2 __ 6
a1 = N2 med 3)0iQ T =01 a T =00 ot =«
_ y0<y<3 P o4 1 -4 =3 _ 12
a2 = X250 mea3)0iQ =020 = -a =a =«

—3-0 8

2 5 6 12
wozEjZOp a;=0p+a+a=a’+a’+a’=a«a

2 —j-1 2 5 10 6 5 12
wy =Y op 7aj =gt partpaa=a’+a -’ +a’a
12

2 —7-2 2 5 5 6 10
wy =X5_op Ta; =g+ pay +plaa=a’ +a’ o’ ta -«

Therefore, r3.;ix = r3or1 = r7 = r(7) is an error location.

e Fori=3

0<5<3 —3.9 _ _
ap = X,0= oja ¥ =0y-ad’+o3-a?=1+a ¥ =a

(j=0 mod 3)
_ y0<y<3 P -3 _ 8 _-3_ 5
a; = 2(_7:1 mod 3030 T =01 =ab-aTt =«
_ y0<y<3 P -6 _ 1 _—6_ _—5_ 10
Ay = E(j:2 mod 3) 75 =0y "=a o = =«

14

47

2 —j0 9 5 10 7
wQ:EjZOpjaj:ozwl—al—l—ag:a +a’+a =«
2 —j1 2 9 10 5 510 9
wy =X_op gy =t partprr=a’ta @’ +a’a =a
2 —j2 2 9 5 5 1010 7
wy =X5_op 7Ta;=apt+part+paz=a’ +a’-@’+aa =«
e Fori =4
_ y0<y<3 P .0 12 -1 _ 1
aO—E(jZO mod 3) 75 =0y +o3-a “=1l+a =«
_ y0<y<3 Pt -4 8 —4 4
a1 = N2 mea 3)0iQ T =010 a T =0 a =«
_ y0<y<3 P -8 _ 1. -8 _ -7 _ 8
a2 = X250 mea3)0i =020 = -a =o' =«

_ 2 _ 1 4 8 _ 2
wO—EjZOp a;=0p+a+a=a +a +a =«

_ V2 —7-1 _ 2 _ 1 10 4 5 8 _ 5
wy =Y;_op e =aptpatpry=a +ta-a+a’ o’ =a

—j-2

wy = ¥2_p7%a; = ag+ pay + pPag =a' +a® ot +a' =0

J

Therefore, r3.; x = r34r2 = r14 = r(0) is an error location.

In conclusion, the three errors are at ro, 77,714, that is, 7(12), 7(7), r(0).

Step 6. After acquiring the error locations, we can find out the particu-
lar error value on each location using Forney’s algorithm [24]. The formula is
shown below. However, comparing with conventional narrow-sense RS codes,
there are two differences here. First, the roots to substitute into the formula
is (a;)7Y instead of (o)=Y, because o; is used as roots in the definition of
C(n, k;a, p). Second, there is an extra x multiplied with the denominator of

the formula due to the nature of generalized RS codes [27].

48

Concretely, let the error-locator polynomial be o(z) = og+0o124- - -+ 0,2
and the error-evaluator polynomial be v(z) = v + mz + -+ + fy(v_l)x(”_l).

Thus
)
(%) l=(ay)-1

Recall Section 2.3.2 that o'(x)

()
x-o'(z)

€; =
w=(a;) !

Where o'(z) is the derivative of o(x).

EOSiSv

_ 0o
(i=1 mod 2)7¢T =X

(=, Thus o,(z) =z - o'(z) (i=1 mod 2)0'i:Ei.

Example 22. Continuing with Example 21, the three error locations

are found as 7y, 77,714, the error-locator polynomial is o(z) = o® (z)

8 15722

r— o —Oél

1 -« 23, and the error-evaluator polynomial is v(x)

7O (z) = a® + o'z + af2?. From Table 3-1, we can find that as

a'% a7 = a’,ayy = ', Then,
O'o<$) = o 0/(1’) — E?ﬁff’n()d Q)O-’L'xi _ 0'1.1'1 + 0'3.%'3 — oy n alsd
ey = (@) — a’+at-a4af (a19)? _ a_z B U
O’o(ﬂf) o= (az)~1 a8 a0 4 ol . (a*10)3 al2
er = ”}/(33) = a6 + O_/4 i 01_7 + a6) (a_7)2 — a_g = a—5 — a10
s~ EaT Tl @ TP o
v(x) af +at-a g of - (a14)? 12 , .
€14 = — _ P S

Step 7. Finally, we can obtain the correction-words by adding the error
value to the received value at the error locations. 7"; =r;+e; where? € E and

E denotes the set of v error positions.

Example 23. Continue with Example 22. The received-words are

5 1

4
y A,

r .8 5 2 9

_ 5) 7 3 .6 12
[T147T137"' ,7“2,7’1,7“0] — [Oé o, o, o, o, o, a0, e, (& ,0,0é , X

49

al]. There are three error locations 7y, 77 and 714. The three error

values are e; = o®, e; = o!? and ey = a3,

Then the three corrected values are

rh=a’+a”=0
r’7:a7+a10:a6
/ 5 13 7
ry=o ta” =«

and the corrected code-word is thus

7 8 5

;o 4 1 2 9 6 .3 6 12 1 1
r'=la" o a0t a0t a0’ a0 0,007, 0,00, o

which is consistence with the original code-word ¢ generated from Ex-

ample 16.

3.3 Algorithm Verification in MATLAB and BER Performance

In this section, implementations of the low-latency RS codes in MATLAB
using high-level programming techniques are illustrated. Before we start to
discuss the codes and results, there are two things to be clarified. First, both
of the encoder and decoder example given in this section can handle almost
any arbitrary code-word length n, message-word length k and parity-bit length
r = n — k. The only constraint is that they all need to be divisible by the
speed-up coefficient p. Solutions to arbitrary k and r are discussed in the next
section. Second, we set n = ¢ — 1 in this implementation to make it easier to
understand, but it does not always have to be the case, and it would not affect
the algorithm as long as 1 < n < ¢ due to the nature of GRS. The functionality
of this newly proposed algorithm was verified, and BER performance was

measured using Communication System Toolbox in MATLAB.

50

First of all, two MATLAB function files defining DFT and IDFT should
be introduced, as they are essential functions used both in low-latency RS
encoders and decoders. They are simple to realize in MATLAB with high-
level coding technique. Figure 3-3 shows the DF'T function and follows the
same formula given in previous sections. The output generated is a matrix and
each row represents a F'T'(X); wherei =0,1,--- ,p—1. The only inconsistent
between the codes and formula given before is that the index of a matrix in
MATLAB must start with (1, 1) instead of (0,0). Therefore, we have to change
i, 7 in the equation to (i — 1), (j — 1), respectively. Figure 3—4 shows the IDFT
function and it is same as DFT function except that a minus sign is added to

the exponential order of ((i —1)- (5 —1)).

[oFtm =] + |
1 function F=DFT(InputPoly, p, a. q)
2 %InputPoly refers to the input polynomial
3 %p refers to the speed-up coefficient
4 %a refers to the primitive element of GF (2 GFPower)
5 %g refers to the p—th root of unity
6 — [".m]l=size(InputPoly) ; %to find out the length of input polynomial
T|= F=a. *zeros(p, m) ;
8 — for i=l:p
9 - for j=l:p
10 — F{i,:)=Fii, :)+q ({i-1)*(j-1))*InputPoly(j, :):
11 — end
12— endl
13 — end

Figure 3-3: MATLAB codes of DFT function.

3.3.1 Implementation of the Encoder in MATLAB
The encoder structure follows the one shown in Figure 3-1. Similar to the
steps defined in Section 3.2.1, the MATLAB codes of this encoder are divided
into six parts. In the following paragraphs, each part is explained in details,
and more comments can be found in the screenshots of their MATLAB codes.
The first part is to initialize parameters (Figure 3-5). The function name

is LowLatRSenc which stands for “Low-Latency Reed-Solomon Encoder”.

o1

LT T B R

e e =
[T I S

[DFtm | + |

function F=IDFT (InputPolvy, p, a. q)
%InputPoly refers to the input polynomial
%p refers to the speed—up coefficient
%a refers to the primitive element of GF (2 GFPower)
%q refers to the p—th root of unity
[".ml=size (InputPoly) ;%to find out the length of input polynomial
F=a. ¥zeros(p, m) ;
for i=1:p
for j=1:p
Fii,:)=F (1, :)+q" (=(i-1)*(3-1)) *InputPoly (i, :)
end
end

end

Figure 3-4: MATLAB codes of IDFT function.

There are three inputs in which “msg” refers to user-defined message-words

in the form of an integer vector, “n” represents user-defined code-word length

and “p” is the user-defined speed-up coefficient. As we can see from Figure

3-5, all needed parameters can be calculated from the three inputs. Due to

internal setting of MATLAB, it cannot interpret integers as elements of Galois

field. Therefore, input message-words needs to be converted from integer type

to Galois field type using command “msgGF=gf(msg,GFPower)”, while they

still have the same numerical values after conversion. “GFPower” means the

Galois field used is GF (26 Power),

| LowLatRSenc.m | + |

- Ul s LR

o

9
10
11

function c=LowLatRSenc(msg, n,p)

[T kl=size(msg) ;

r=(nk):

GFPower=log2(n+l) ; % the degres of Galois field (GF 2'm)
n=n/p:

t=k/p:

L=r/p;

a=gf (2, GFPower) ;% to produce the primitive element of GF (2 GFPower)
g=a'm;%to produce the p—th root of unity.
msgGF=gf (msg, GFPower) ; %to convert msg—words from integer type to GF type

Figure 3-5: MATLAB codes of low-latency RS encoder: Part 1.

The second part is to produce the set of generator polynomials (Figure

(AP

3-6). The result acquired in this step is a matrix “g”, and each row represents

52

a generator polynomial. Its first row refers to the generator polynomial gg; its

second row refers to ¢g; and so on and so forth. Each row is initialized as 1

at first, and then a loop makes each row multiply with (z — o), where o' are

the roots of each generator polynomial. Based on the method stated in Step 1

of Section 3.2.1, 7 is set dependent on the loop counter, row number, and the

speed-up coefficient p.

| LowlLatRSencm i | |

13
14
15
16
17
18
18
20
21
22
23
24
25
26

%to produce p generator polynomials]
%in this case, the sizes of all p polynomials are L+1
g=a*zeros(p,L+1) ;

g(:,end)=1; %initialize each row to 1, so it can work with muliplication lopp

for i=1:p
for j=1:L
intl=convig (i, :), [1 a" (p*{j-1)+{i-1))1);
% convix,¥) refers to the muliplication of 2 polynomials.

g (i, :)=intl(end-L: end) ;
% to eliminate unwanted "0” terms due to muliplication of 2 polynomials
end
end

Figure 3-6: MATLAB codes of low-latency RS encoder: Part 2.

Part 3 shown in Figure 3-7 is to split message-words to p components

following the way stated in Step 2 of Section 3.2.1. The only inconsistence is

that the index of a matrix in MATLAB starts with (1, 1) instead of (0,0).

_\. LowLatRSencm | + |

25
26
27
28
29
30
31
32
3
34
3B

nsgPoly=a 0*zeros(p, t); %so that the type of this default vector is GF not double

%to split the message-word in teo 3 parts

%e.g. the message [d_k-1 d_k-2 d_k-3 d_k-4 d_ k-5 ... d_k-9] is divided into three row
%as follows:msgl=[d k-3 d k-6 d_k-9]; msg2=[d k-2 d k-5 d_k-8]; msg3=[d k-1 d k-4 d k-T7]
for i=1:p

for j=1:t

msgPoly (i, j)=msgGF (j*p—(i-1)):
end

end

Figure 3-7: MATLAB codes of low-latency RS encoder: Part 3.

Part 4 shown in Figure 3-8 is to generate the Fourier transform of message-

words using the DF'T function stated at the beginning of Section 3.3.

Part 5 shown in Figure 3-9 is to generate the set of parity bits following

the method stated in Step 4 of Section 3.2.1. Specifically, 2! is first produces

53

| LowlatRSencm | + |

39 %Fourier transform of message polymomials
40 — FT_msg=DFT (msgPoly, p, a. q) ;
41

Figure 3-8: MATLAB codes of low-latency RS encoder: Part 4.

by a multiplication loop. Then with command “conv”, each of p components
resulted from DFT is shifted by «!. Afterward, f; are calculated from modulo
arithmetic and finally, the parity bits are computed by IDFT function stated

at the beginning of Section 3.3.

| LowlLatRSencm ‘|T|

42 — x=gf ([1 0],GFPower); %to produce x

43 - xl=a"0; %to set default xl=1

44 — for i=1:L %to generate x L

45 — xl=convixl,x); % conv(x,y) refers to the muliplication of 2 polynomialsl
46 — end

47 — FT_xl=a*zerosip, t+L);

48 — for i=1:p %to shift each of p message polynomials by 'L

49 — FT_xl(1,:)=convizl,FT_msg(i,:));

50 — end

51

52 %to generate the remainder f0,f1,f2

53 — f=atzerosip, t+L) ;

54 — for i=1:p

55 — [T f(i,:)]=deconv(FT_x1(i,:), gli, });

56 % deconv(x,¥) refers to the division of 2 polynomials and f(i,:) here
57 % represents the remainder of this division.

Fi|= end

59

&0 %use Inverse Fourier Transform to generate p paritiy—bit components,
61 — h=IDFT(f.p.a.q):

62

Figure 3-9: MATLAB codes of low-latency RS encoder: Part 5.

Part 6 shown in Figure 3-10 is to generate the final code-words by putting
message-words and parity bits together following the way stated in Step 5 of
Section 3.2.1.

The functionality of this encoder has been tested, and it worked properly.
Figure 3-11 shows the code-words generated by this encoder in MATLAB
with the initial conditions stated in Example 12. As we can see, the result is

consistent with Example 16.

o4

69 — c=a*zeros(1l.n):

0 - for i=1:p

1 - for j=1:t

T = clitp*(j-1))=msgPoly(end-{i-1), j);

13— end

T4 - end

75 %we cannot simply use c(l:k)=msg becuase type of msg is integer while ¢ is over GF.

78

17 — for i=1:p

78 — for j=1:L

79 - ¢ (k+i+p* (j-1))=h(end- (i-1), end-L+j) ;

a0 %the size of h is [p.size of f row vector] due to "deconv” function. However, there are
81 %many zeros ahead in each row vector of h. only the last L elements of each row are the
82 %meaningful elements.

B3 — end

84 — end;

85 — c_double=double(c.x) : %convert the code-words from type gf to type double

86 — end

87

Figure 3-10: MATLAB codes of low-latency RS encoder: Part 6.

Workspace Command Window

»>>» msg=[11 3 2 5 6 4 10 12 8];

»»> n=15b;

> p=3;

»» code_words=LowLatRSenc (msg. n, p)

code_words = GF(2°4) array. Primitive polynomial = D 4+D+1 (19 decimal)

Array elements =

Columns 1 through 8

i1 3 2 5 6 4 10 12 8
Columns 10 through 15
12 0 15 0 2 2

Sz > |

Figure 3—11: Output of low-latency RS encoder in MATLAB with circumstan-
ces in Example 12.

3.3.2 Implementation of the Decoder in MATLAB

The implementation of a decoder is much more complicated than that of
a encoder. The decoder structure follows the one shown in Figure 3-2. The
low-latency decoder consists five component MATLAB function files: 1) Lo-
wLatRSsyn for syndrome calculation, 2) LowLatRSbm for key equation
solver using Berlekamp-Massey algorithm, 3) LowLatRSchien for error lo-

cation computation by modified Chien search, 4) LowLatRSerrValue for

95

error value calculation and finally, 5) LowLatRSdec as the top file for put-
ting components together and producing correction-words. In the following
paragraphs, each file is explained in details, and more comments can be found
in the screenshots of their MATLAB codes.

LowLatRSsyn. Figure 3-12 shows the MATLAB codes for syndrome
calculation, which essentially combines Step 1, 2 and 3 of Section 3.2.2. The
input is the received-words denoted as y, the message-word length denoted
as k, and the speed-up coefficient p. The output is a vector that contains
all computed syndromes (sg, 51, ,sm — k —1)). The whole process starts
with calculating all needed parameters based on the three inputs. Then, the
received-words are divided into p components followed by a discrete Fourier
transform that produces a matrix F. Each row of F' refers to a polynomial F;
wherei =0,1,--- ,p—1. Afterward, we set up the roots which are then substi-

" is a function

tuted into F; to calculate syndromes. Command “polyval(x,y)’
to evaluate polynomials x by substituting y. Recall that the exponential order
of roots decides in which polynomial the particular root is substituted. Speci-
fically, o' is substituted into Fj yoq , where i = 0,1,--- ,p — 1. However, since
the index of a vector in MATLAB must start with 1, we have to change ¢ to
(1 — 1) in the codes and then plus 1 after modulo function “mod”.
LowLatRSbm. LowLatRSbm is designed as a component to com-
pute error-locator polynomial and error-evaluator polynomial by utilizing the
BM algorithm. The MATLAB codes are shown in Figure 3-13. This process
exactly follows Step 4 in Section 3.2.2. For this function, there are two in-
puts: syndrome vector denoted as “syndrome” which includes all syndromes
(505 S1, 7+ » S(n—k—1)) and “GFPower” which defines Galois field GF (267 Fower),

There are two outputs: an error-locator polynomial denoted as “errorLoc” and

an error-evaluator polynomial denoted as “errorkEva”. As Figure 7?7 shows, the

o6

| LowLatRSsyn.m | + |

1 [Flfunction syndrome=LowLatRSsyn (v, p, CorrectCapbility)

2 - [".nl=size(y); %to get the code-word length n

3 - GFPower=log2(n+l): % GF (2 GFPower)

4 — m=n/p: %to get the length of each of p components of received-words

5 — a=gf (2, GFPower) ; %to get the primitive element of GF (2 GFPower)

6 — g=a'm; %to get the p—th root of unity.

8 — L=a. *¥zeros(p, m)

9 %to seperate the received-words into p components and each row iz one componet
i0 = [Zfor 1=1:p

11 — E for j=l:m

12 — L(i, j)=yip*j-i+1) ;

13 %Watch out the index here. ¥{1) is v_(n-1) which is the coefficient of x (n-1),
14 %that 1=, the highest order coefficient in the received-words polynomial.

15— - end

16— - end

17

18 — F=DFT(L.p.a.q): %Fourier transform of the received-words

19

20 — root_exp=zeros(l, 2#CorrectCapbility) ;

21 — [for i=1: (2#CorrectCapbility)

22 — root_exp(i)=i-1:

23 Y%root_exp is the exponential order of the root, from 0 to (2*CorrectCapbility—1)
24 — - end

25 — root=a. "Ioo‘t_exp;

26 %root is the actual root to produce the syndromes, from a0 to a (2*CorrectCapbility—1)
27

28 — syndrome=a*zeros (1, 2#CorrectCapbility) ;

28 — [for i=1: (2#CorrectCapbility)

30 — syndrome (1)=polyval (F{(rem({i-1),p)+1), :), root (1)) ;

31 Y%syndrome is a row vector containing all 2t syndromes(s_0,s_1,...,s(2*CorrectCapbility-1))
32— —end|

33 — - end

Figure 3-12: MATLAB codes of syndrome calculation in low-latency RS de-
coder.

process starts with calculating all important parameters based on the two in-
puts and initializing all matrices and vectors just following the BM algorithm,
illustrated previously. Afterwards, a loop (Figure 3-13) runs (n — k) itera-
tions, which is to calculate discrepancy “delta” and update the error-locator
polynomial “sigma”, the error-evaluator polynomial “errEva” and all other
supporting variables and polynomials.

LowLatRSchien. Figure 3-14 shows the MATLAB codes for the mo-
dified Chien search function. Its purpose is to find out the number of errors

denoted as “errNum” and their locations denoted as “errLocation”. It should

o7

| LowLatRSbm.m w| + |
_L. [l function [el"rorLoc, errorEval=LowLatRSbm (syndrome, GFFower)
2 - a=gf (2, GFPower) ;%defins the primitive element of the gzf.
3 - x=gf ([1 0],GFPower) ;%define "x", which is frequently used in the expressions later.
4 - [".r]=size (syndrome) ;%the length of syndrome vector "r"=(mk)=2% error-correction capability
5 %=sigma iz the set of error locator polynomial at different iterations
6 — sigma=a*zeros(r+l, (r/2+1)); %each row refers to sigma at a specific iteration
7 - signa(l, end)=a"0; %with the first row refer the sigma at initialzation
8 - B=a*zeros (r+1, (r/2+1)) ;%B is the set of supporting polynomial for error locater
HES E(l.endi=a’0;
10 %errEva is the set of error evalustor polynomial at different iterations
11 - errBva=a*zeros (r+l1, (r/2))
12 — A=a*zeros(r+l, (¥r/2)); %4 is the set of supporting polynomial for error evaluator
13 %note that the lengths of errEva and A polynomial are both one term less than sigma and B
14 - L=zeros(1,r+1):
15 — delta=a*zeros (1, r+1)
16 %initialize the parameters L and delta. note that delta(l) is actually not
17 %used. Defining delta in this way is to make the later computations simpler.
13
19 — [Jfor i=2:r+1 %starting from 2 not 1 because 1 is actual iteration 0 (initialization) in the original algorithm.
20 — k=i-1; %I still make k 1 less than i for the index consistance so that| the codes
21 %can be confined to the original algorithm in the paper as much as possible.
22 - [for j=0:Lik)
23 - deltaii)=delta(i)+sigma(k, end-j) *syndrome (k-3) ;
24 - o end
25 — intl=conv({delta(i)*B{k, :)),x);
26 — sigmali,:)=sigma(k, :)+intl{end- (r/2+1)+1: end) ;
27 % Compared with B, the size of "intl” is increased, due to the nature of "conv” function,
28 %but addition needs two wectors with same length. so I define and manipulate this intermedia
29 — if i==2
30 — errBvali, end)=delta(i);
31 %because in the original algorithm, the initial walue of A{x) is x (-1).It's impossible to represent with GF polynomial
T (= else
33 - int2=conv (deltali)*4(k, :), x);
34 - errEva(i. :)=errBva(k, :)+int2 (end-r/2+1: end) :
35— end
36 - if delta(i)==0 || 2*L(k)>(k-1)
37 %Recall that we started iteration at i=2, but at each iteration still k=i-1, we use (k-1) instead of k because
38 %the "k” here represents a value not index.that's why we need to keep it as| same as stated in the original method.
39 - int3=conv(x, Bk, :));
40 — B(i,:)=int3(end-(x/2+1)+1:end) ;
41 - if 1==2
42 — A(i, end)=a"0;
43 — else
44 — intd=conv(x, Alk, 1)) :
45 - A(i, :)=intd (end-1/2+1: end) ;
46 — end
47 - Lii)=L{k):
43 - else
49 — B(i.)=conv(deltaii) {-1),signa(k.:));
50 — A(i,)=conv(delta(i) " (-1}, errBvalk, :));
51 - Lii)=i-1-L(k);
52 %Recall that we started iteration at i=2 we use (i-1) instead i because here 1 represents a value
53 %not index.that’s why we need to keep it as same as stated in the original method.
54 — end
Hhi -end
56 — errorLoc=sigmalend, :)
& — errorEva=errEvalend, :) ;
58 — “end

Figure 3-13: MATLAB codes of key equation solver in low-latency RS decoder.

be clarified that the computed locations are the index of error terms in the

received-words. For instance, “errLocation”= [2,7] means 7y and 77 in the

58

received-words r are the terms with error.

This function requires four in-

puts: the error-locator polynomial denoted as “sigma”, “GFPower” which

defines Galois field GF (265 Fower) the speed-up coefficient denoted as p and

the code-word length denoted as n. This process follows Step 5 in Section

3.2.2. It starts with calculating all needed parameters based on the four in-

puts. Then there is a loop runs for m = n/p iterations as we need to check

m roots. In each iteration, p values are generated because the error-locator

polynomial is split into p components and a root is substituted into all the

components at each iteration.

| LowLatRSchienm 2| 4 |

S m O e W M e

[“lfunction [errLocation, errNum]=LowLatRSchien(sigma, GFPower, p.n)

[*,vl=size(sigma) ;% is the degree of error locator polynomial.

m=n/p: %m is the length of each code—word component.

a=gf (2, GFPower) ; %define the primitive element of the GF (2 GFPower).

g=a2"m:%define the p-th root of umity.

b=akzeros(m, p);

% m iterations => m rows, error—locator polynomial is divided into p components, so at each iteration p wvalues generated.

w=a*zeros(m, p):

“Ifor i=0: (m-1) % m iterations
for 3=0: (p-1)
% p polynomial-evaluation walues generated at each iteration because error-location polynomial is diwvided into p components.
- for k=0:fix ((v-1)/p)%this loop is include all terms of each component when do the evaluation.
%fix((v1)/p) is to get the integer part of the division.
%which 1z to find the minimum number of terms a compoent could receive from error-locator polynomial
if (k*p+j)<=(v-1) % to ensure the index not over limit
b(i+l, j+1)=b(i+1, j+1)+sigmalend- (k*p+j)) *a" (-i* (k*p+i)):
%b (i+1, j+1) refers to the evaluation result of (j+1) component at (i+l)-th iteration.
%sigma(end-k*p+j) refers to the coefficient associated with x (k#p+j)
end
o end
o end
% for each iteration, we have to finish polynomial evaluation for all p| components before we calculate w, which is a IDFI.
wlitl, -)=(IDFT(h(i+l,:) ", p.a, q))
% the first " " is because the inputs to the IDFT should be the p values in a column vector. The second ™ " is because the
%outputs from IDFT should be stored in w as a row vector, as each row refers to a set of results at one iteration.

-end

%calculate w for all iterations first, then find out if there is any 0

[row, coll=find (w==0) ;

%compute the error locations with row number and column number of each 0 term
errLocation= (p* (row-1)+(col-1))" ;

%computed errLocation is the index of term with error, eg. errorlocation(i)=7 means v_7 is
%an error location and ¥ 7 is the coefficient associated with =" 7.

%" " here is to convert a column vector into a row vector to simplify the rest processes of decoder.

(7, errlunl=size (errLocation) :

%errfum is the number of errors found

“end

Figure 3-14: MATLAB codes of Chien search in low-latency RS decoder.

59

LowLatRSerrValue. Figure 3—15 shows the MATLAB codes for error
evaluation function. The outputs of this function are error values on the cor-
responding error locations that computed in the modified Chien search. There
are seven inputs required: the error-locator polynomial denoted as “sigma”,
the error-evaluator polynomial denoted as “errEva”, the error locations deno-
ted as “errorlocation”, the number of errors denoted as “errNum”, “GFPower”
that defines GF(26FFower) the speeding-up coefficient denoted as “p”, and the
component length of code-words denoted as “m”. The process follows Step 6 in
Section 3.2.2. As usual, it starts with computing all the necessary parameters.
Then it defines the o, polynomial which is equal to (z-o’(x)) by just assigning
the odd-degree terms of o to o,. Afterwards, we need to find the values of
Qerrortocation OVer “GF(26FPower)” hased on the formula a; = plt med P)gli/pl,
Finally, we substitute these values and use command “polyval” to evaluate

the polynomials and obtain the error values.

| LowLatRServaluerm = | + |

1 function errVal=LowLatRSerrValue(sigma, errEva, errorlocation. errNum, GFPower, p, m)

2 — a=gf (2, GFPower) ; %find the primitive element of the gf.

3 - g=a'm: %to get the p-th root of unity.

4 — oddNumn=fix ((exrrNum+1)/2) ; %to find how many odd-degree terms there are in sigma(x).
£

6 — sigma_o=a*zeros(l, (errNumtl)); %sigma_o= = * sigma (x)

T - for i=0: (oddNum—1)

8 — signa_o(end-2*i-1)=sigma(end-2#i-1) ;

] %assign the odd-degree term wvalue of u to sigma_o. remain other terms of sigma o to 0.
10 — end

11

12 — errLoc=a*zeros (1, errium) ;

13 — for i=1: (errNum)

14 - errLoc(i)=q (rem(errorlocationii),p))#a’ (fix (errorlocation(i)/p));

15 %find out the corresponding elements of GF respective to

16 %a_errorlocation based on the formula a_i=q (i mod p)*a (fix(i/p))

17 — end

18

19 — errVal=a*zeros (1, errlium) ;

20 — for j=1: (errNum)

21 - errVal (j)=polyval (errEva, (errLoc(j) " (-1)))/polyval (sigma_o, (errloc (i) (-1))):
22 %this is to implement the expression e=v{{a_errorlocation) (-1)}}/ul{{a_errorlocation) (-1}},
23 — end

24

BT |= end

Figure 3-15: MATLAB codes of error evaluation in low-latency RS decoder.

60

LowLatRSdec. Figure 3-16 shows the MATLAB codes for the top file
which connects all functions together and generates the final correction-words.
The low-latency decoder requires three inputs: the received-words denoted as
“r” the message-word length denoted as “k” and the speed-up coefficient de-
noted as “p”. First, the syndrome calculation function processes the received-
words to generate (n — k) syndromes. Then the BM algorithm function pro-
duces an error-locator polynomial and an error-evaluator polynomial based on
the syndromes. With this information, the modified Chien search function
finds out the error positions and the number of errors and passes them to the
error evaluation function, in which error values at corresponding locations are
computed. In the end, correction-words are output with all errors corrected.

More details and explanation are shown in the figures.

| LowlLatRSdec.m ‘ + |

1 funection [correction_word_double, errlum]=LowlLatRSdec (r.k,p)

2 - [T.nl=sizeir):

3 % t is the error correction capability

4 — GFPower=log2 (n+l) ;

5 — n=n/p;

[

7 - syndrome=LowLatRSsyn (r.k,p) ;: %to calculate syndromes. output a vector [s_0,s_1,...s_in—k-1)]

B — [errorLoc, errorEval=LowLatRSbm (syndrome, GFPower) :%to generate error—-locator polynomial and error—evaluator polynomial
9 - [errLocation, exrHum]=LowLatRSchien (errorLoc, GFPower, p,n) ;%to compute error locations and the number of errors.

10 — errValue=LowLatRSerrValue (errorLoc, exrrorEva, errLocation, exrNum, GFPower, p. m) ;

11 %to compute the error walues on corresponding error positions

12

13 — corrected=gf (r, 3FPower) ; %first copy the received-words,but have to convert them to GF elements for later correction.
14 - for i=1:errNum

15 %correct the terms with error in received-words by adding (=minusing in GF (2 GFPower)) the error values

16 — correctediend-errLocation(i))=corrected(end-errLocation(i))+errValue (i) ;

17 %errLocation is the index.

18 %e.g. errorlocation(i)=7 means r_7 which associates with x 7 iz a term with error.

19 %while for vectors in MATLAB the highest-order coefficient has the lowest index. e.g 2x 3+9x 2+10 => [2 9 0 10]
20 %S0 I used “end-errLocation(i}” here.

21 — end

22 — correction_word_double=double (corrected.x); %convert the correction—words from type gf to type double

23 - end

24

Figure 3-16: MATLAB codes of top file in low-latency RS decoder.

The functionality of this decoder has been tested and approved. Figure
3-17 shows the generated correction-words under the circumstance stated in

Example 17. Compared with Example 22, the results are consistent.

61

Workspace Command Window

»>»r=[6325641011 8120156 2 2];

»» k=9,

»» p=3;

»» correction_words=LowLatRSdec(r,k, p)

correction words = GF(2°4) array. Primitive polymomial = D 4+D+1 (19 decimal)

Array elements =

Columns 1 through 7

11 3 2 a3 4 4 10
Columnz 8 through 14
12 8 12 0 15 0 2
Column 15
2
Jxor |

Figure 3—17: Output of low-latency RS decoder in MATLAB with circumstan-
ces in Example 17.

3.3.3 BER Performance

BER is one of the most significant criteria to measure the performance
of ECC. With millions of applications, RS codes have proved its ability in
BER improvement. As BER performance depends on many conditions such
as the normalized signal-to-noise ratio Ej/N,, channel characteristics, modu-
lation type and so on, it is difficult to make an absolute comparison. Mo-
reover, running BER test-bench in MATLAB is very time consuming due to
the requirement of a substantial number of transmissions and only extremely
stable testing environment could succeed. Therefore, the purpose of this test
is to roughly verify the BER performance and functionality of low-latency RS
codes. This test is conducted with Communication System Toolbox in MAT-
LAB, which considerably simplified MATLAB coding. We can simply insert
any functions and communication components by writing one or two lines of

commands.

62

Figure 3-18 shows the structure of testbench and Figure 3-19 shows the
MATLAB codes. There are two parts: configuration and the testbench. The
process starts with generating random message-words with length k& = 225,
then the low latency RS encoder encodes the message-words and passes the
code-words with length N = 255 to the modulator for PAM-4 modulation. The
data are then transmitted through an additive-white-Gaussian-noise (AWGN)
channel. At the receiver end, the data are first demodulated and then pas-
sed the received-words to low latency RS decoder where the correction-words
are produced. Then an analyzer makes a comparison between the original
message-words and the message part of the correction-words from the decoder.
Figure 3-20 shows the results generated from this testbench, and it suggests
that the channel BER is 5.3877 - 1074, the coded BER is 0, the number of
RS decoding error is 0 and the total number of bit transmission is 500000400.
Channel BER is referred as the bit error rate due to channel transmissions.
Coded BER is referred as the bit error rate after the low-latency RS decoding
process. Decoding errors are referred as the data errors still existed after deco-
ding process. It should be clarified that the coded BER being 0 only suggests
there is no RS decoding error, during this particular number of transmissions.
When the transmission number becomes large enough, then there would be er-
rors after decoding, and the coded BER would not be 0. Therefore, we cannot
assert that BER for low latency RS codes is 0. Instead, we can safely say that

BER for low latency RS codes is smaller than 10™® under this circumstance.

Low-Latency Low-Latency
‘ RS Encoder H fnf)%ﬁ;g"r HAWGN Charme}—>{ Di?ﬂ%ﬁ;‘fm]—» RS Decoder
(255, 225 p=3) (255, 225,p=3)
> Chanel BER
Message-Words Analvzer —> Coded BER
Generation Y — RSEmor#
—> Bit Transaction #

Figure 3-18: Structure of the communication test-bench in MATLAB.

63

LowlatRS_BERtestm 2 | + |

1 L beginning of configuratiom |

2 %=zet a single uncoded Eb/No walue, and set the simulation stop criteria.

3 - if “exist(*initFlagRSDemo’, “var’) || initFlagRSDemo

4 - EbNollncoded = 10; % dE

5 % Set the simulation stop criteria

6 — targetBrrors = 500;

= maxNumTransmissions = 5ed;

8 — end

9 %% Rectangular 4-PAN NModulation

10 % Create a rectangular 4-PAM modulator System object. Set the SymbolMapping to 'Gray for Gray

11 % coding and set the BitInput property to true to specify that the modulator’s input is binary bits.
12 - M=4 % Modulation order

13 — hMod = comm. PAMModulator (M, ° SymbolMapping . “Gray

14 'BitInput’, true);

15 % Create a rectangular 64-QAM demodulator System object with same settings

16 — hDemod = comm. PAMDemodulator (M, *SymbolMapping’, “Gray ,...

17 "BitOutput’, true):

18 %% AWGN Channel

19 % Create an additive white Gaussian noise (4WGN) charmel System object. Set the NoiseMethod property
20 %to ' Signal to noise ratio (Eb/No)’ to specify the noise level using the energy per bit to noise power
21 %spectral density ratio (Eb/No) in dB.

22 — hChan = comm. AWGNChannel (" HoiseMethod', *Signal to noise ratio (Eb/No)’):

23 % We assume no upsampling so the number of samples per symbol is 1. The signal power for 4-PAM is 4
24 % Watts., so we set the SignalPower property of the channel to this walue.

25 — hChan. SamplesPerSymbol = 1;

26 — hChan. SignalPower = 4:

27 % The number of bits per symbol is equal to log2(M). We need to set the BitsPerSymbol property of the AWGN
28 % channel System object so that it knows how to distribute noize evenly acrpss the symbol samples.
29 — hChan. BitsPerSymbol = log2 (M) :

30 %% Error rate measurement

31 % Create two error rate measurement System objects, one to measure the channel bit error rate (BER), and
32 % the other to measure the coded BER. Since the inputs and outputs of the modulator and demodulator are integer
33 % symbols, and we want to measure bit error rates, we also need to create integer to bit converters.
34— hChanBERCalc = comm. ErrorRate; % Error rate measursment System object for channel BER

35 — hCodedBERCalc = comm. ErrorRate;% Error rate measurement System object for coded BER

3/ — hIntToBitl = comm. IntegerToBit ("EBitsPerInteger’, 8):%integer——>bit converter

37 — hIntToBit2 = comm. IntegerToBit("BitsPerInteger’, 8):

38 — hBitToInt = comm.BitToInteger (' BitsPerInteger’, 8):%bit——>integer converter

39 B% end of configuratiom

40 L beginning of test-bench

41 — N=255; %=zet code—word length

42 — E=225; %set message—word length

43 — p=3; %h=et the speed-up coefficient

14 — EbNoCoded=EbNolUncoded+10#1ogl10(K/N) . %compute coded E_b/N_o (SNR per bit)
45 — hChan. EbNo=EbNoCoded;%set channel E_b/N_o to the coded E_b/N_o

46

- chanErrorStats=zeros(3, 1) ; %initialize a vector for holding channel error analvzer results

47 — codedErrorStats=zeros(3,1) ;%initialize a vector for holding coding error analyzer results

43 — [Iwhile (codedErrorStatsi2)<targetErrors)&&(codedErrorStats(3)<maxNumTransmissions)

49 %=zet up a loop that breaks only when the number of error exceeds 500 or

a0 %the number of bit transcations of message—word exceed 5%10°8.

51 — data=randi ([0 N1,E.1): % randonly generate a column vector as message—words

52 — encData_int=LowLatRSenc(data’.N.p):

53 %convert the column vector to a row vector and encode the message-words. Note that it's a row wvector.
54 — encData= (encData_int)" :%convert the row vector into column wvector

55 — encDataBit=step (hIntToBitl, encData) ;%convert encData from integer to bit

56 — modData=step (hMod, encDataBit) ;% conduct a 4-PAN modulation to the code-words.

57 — chanQutput=step (hChan, modData) ;%minic that the data pass through a channel

58 — demodDataBit=step(hDemod, chanQutput) ;%demodulate the data, generate a column wvector

59 — demodData=step(hBitToInt, demodDataBit) ;%convert the demodulated data from bits to integer

60 — [estData_int, exrs]=LowLatRSdec (demodData’ , K, p) ;%convert the demodulated data into row wvector and decode the data
61 — estData_intZ=estData_int (1K) ;%we only want the message-word part for later comparison. Recall k=225
62 — estData=(estData_int2)’ ;%convert the data from row wector to a column vector.

63 %analyze the results

64 — chanErrorStats(:, 1)=step (hChanBERCalc, encDataBit, demodDataBit) ;

65 — codedErrorStats(:, 1)=step(hCodedBERCalc, step(hIntToBit2, data), step (hIntToBit2, estDatal) :

66 — ~end

67 — chanelBitErrorRate=chanErrorStats (1)

63 — codedBitErrorRate=codedErrorStats (1)

69 — RS_Errors=codedBrrorStats(2)

70 - totalNumberofBitTransactions=codedErrorStats (3)

Figure 3-19: MATLAB codes of the BER performance test-bench.
64

Workspace Command Window

»» LowLatRS_BERtest
chanelBitErrorRate =

0. 3877e-04

codedBitErrorRate =

]

R5_Errors =

]

totallumberofBitTransactions =

200000400

fx > |

Figure 3-20: Results from the communication test-bench for BER perfor-
mance.

3.4 Solutions to Arbitrary k£ and r

The low-latency RS coding algorithm needs to be modified when at least
one of k and r is not divisible by p. In [17], Dr. Shokrollahi has provided the
related information. This section sums up the solutions for different cases.
3.41 k#0mod p, =0 mod p

In this case, conceptual zeros can be added to the message-words to en-
force k divisible by p. Specifically, let & = ¢ mod p, and the message-words
are [dy_1,dg_o,- -+ ,dp]. Then (p— ¢) conceptual zeros are added to the end of
message-words to generate [0p_._1,- -, 01,00, dg—1,dg—2, -, do]. With this ad-
justed message-words, we can simply encode them as before. Certainly, the
conceptual zeros added are not transmitted after encoding process. As for
decoding, conceptual zeros are added to the end of received-words again and

followed with old decoding process illustrated in Section 3.2.2.

65

342 r#0modp

When r # 0 mod p, the situation becomes more complicated. Let k =
cmod p and r = d mod p. First fix k£ by adding conceptual zeros if k #
0 mod p. Then produce the generator polynomial g; = H?éf Slgrg ;d(x—aj). Af-
terwards, calculate (r+p—d) parity bits in the same way as before and drop the
lowest coefficients of the resulting polynomials hg, hy, -+, hp_q—1, that is, the
last (p—d) terms of the code-words. Specifically, n = k+r+2p—c—d and the ge-
nerated code-words are [0g, 01, -+, 0p—c—1, Crnmpc—1, Cn—p—c—2s " * s Cp—d—15 Cp—d—25

-, o). While only [¢p—p—c—1,Cpnop—c—2,- " ,Cp—q) are transmitted.

As for the receiver side, denote the received-words as [Yn—p—c—1; Yn—p—c—2;
<+ Yp—a|. Define z = [z,21, 2,92, , 2] and set z; = (H?;g_l(ai —) -
y;)) for i = (p—d,p—d+1,---,n—p+c—1) and z = 0 for others.
Then take z as the “received-words” and follow the old decoding algorithm
as before until reaching the error evaluation part. Recall the key equation
y(x) = o(x) - s(x) mod 2" * discussed in Chapter 2, where v(z) is the error-
evaluator polynomial, o(x) is the error-locator polynomial and s(z) is the
syndrome polynomial. Since the syndromes are aquired from z instead of

y. Then the error evaluation formula should be modified correspondingly as

e; = (I35 (o — 1) - 2105

oo(x)

. Certainly, we will ignore any errors with
r=(a;) "1

locations j = (0,1,--- ,p—d—1)and j=(n—p—c,--- ,n—1).

66

CHAPTER 4
VHDL Implementation of Low-Latency RS(255,225)

4.1 VHDL Implementation of Galois Field Arithmetics

Galois field arithmetics are the basis for RS coding algorithms. As har-
dware has no awareness of any field elements, their arithmetics have to be
defined with binary bits. Specific to RS(255,225), GF(28) is assumed to be
used. As it is a field of characteristic 2, subtraction is exactly equivalent to
addition. Moreover, since division can always be taken as multiplication by
a reciprocal, therefore only addition, multiplication and inversion needs to be
implemented.
4.1.1 VHDL Implementation of a Galois Field Adder

Addition is the simplest arithmetic over Galois field to implement. Recall
the polynomial representations of Galois field elements introduced in Chapter
2. Let a,b,c be three elements of GF(2%) and there is a relationship that

c = a+ b. Assume their polynomial representations are

a=a-a +ag-ab+as-a®+ag-at+az-adtays-a’+ar-at +ag-al

b:b7'0é7+b6'066+b5'Oé5+b4'064+b3'043+b2'0é2+b1'Oél+b0'(10
where all coefficients a;, b; are binary. Therefore,

c=a+b

:(a7—|—b7)-047—1—(@6—}—66)-a6+---—|—(a1—|—b1)-al—i—(ao—i—bo)-ao

:c7-0z7+06-a6+---+01-a1+co-a0

67

As GF(2%) is a field of characteristic 2, so the coefficients ¢; = a; + b; are also
binary and a truth table is obtained as Table 4-1. Obviously, this truth table
can be implemented by the logic gate “XOR”. Consequently, ¢; = a; XOR b;
for i = (0,1,---,7) and ¢ = a XOR b. Figure 4-1 shows VHDL codes for an

addition function over GF(2%) and Figure 4-2 shows the corresponding circuit

diagram.
a; bl C; = a; + bz
010 0
011 1
110 1
111 0
Table 4-1: Addition with characteristic 2.
constant GFPower: integer:=3; --Galois Field power. is GF(2"8) here.
subtype Galois_Field element is std logic vector((GFPower-1) downto 0);

——addition function for GF(2"8)
function add (b, c: in Galois Field element) return Galois Field element is
variable d: Galois Field slement;

begin

d{0) :=(b(0) =oxr c(0)):
d(l):=(kb(l) =or c(l)):
d(Z):=(k(Z) =oxr c(2)):
d(2):=(k(3) =xoxr c(2)):
d{4):=(b(2) xoxr c(4)):
d(s):=(b(5) xox c(5));
d{g):=(b(€) xoxr c(E)):
d(7):=ik(7) =oxr c(7}}:

recturn d;
end function add:

Figure 4-1: VHDL codes of an addition function over GF'(28).

4.1.2 VHDL Implementation of a Galois Field Multiplier
Hardware implementation of multiplication over a Galois field is relatively
complicated. It starts with conventional multiplication between their polyno-

mial representations and then the product polynomial is modulo the primitive

68

a by CE by

3eD 10X
a1eb 1ox
aeb 10x

c s vy

Figure 4-2: Implementation diagram of an adder over GF(2%).

irreducible polynomial. Mathematically, w(a) = u(«a) - v(a) mod P(«) where

u(a), v(a) € GF(2™) are the two operands, w(«) is the product, and P(«)

is the primitive polynomial on which GF(2™) is built (details about primitive

polynomials are stated in Chapter 2).

7

Example 24. It is easy to calculate o®-a® =a® =a"-at =1-a! = a!
over GF(2%) using the high-level method stated in Chapter 2. Now the
task is to calculate the same equation using the method of hardware
implementation. Look up into Table 2-3 and find that the polynomial
representations for o and o’ are o® = (1 +) and o® = (1 + a + a?),
respectively. The corresponding primitive polynomial is P(a) = (1 +

a + a?). Then the multiplication should be performed as following:

@ a’®=(1+a) (1+a+a®) mod (1+a+a?)
=l+a+a’*+a+a®+a’mod (1+a+a?)
=1+0a’mod (1+a+a?)

=

Therefore, the results are consistent.

J

As there is no existing function for polynomial multiplication and modulo

in hardware implementation, it is necessary to solve the equation to a general

form with only arithmetics between binary coefficients of operands’ polynomial

69

representations. To better explain the solving method, GF(2*) is taken as
an example. Let a, b be two elements of GF(2'). Table 2-1 shows the
corresponding primitive polynomial is P(a) = a* +a+ 1. As any terms of the
product of a-b with order less than 4 will be unchanged when modulo P(«),

then

w =a-b mod P(«a)
= (aza® 4+ - - + apa®) - (bga® + - - + bpa®) mod (a* + a + 1)
= (wga® + wsa® + wya?) mod (ot + o + 1) + wsa® + wya® + wiat + woa®

where w; = E?fi’i?ajbk. The multiplication between the coefficients a;, by is

implemented by a “AND” gate just like the conventional binary multiplication.

Recall that any element of a Galois field GF'(2™) has a polynomial presen-
tation with order smaller than that of its corresponding primitive polynomial
P(a). Therefore, if the [a, a3 -+ a®] in (wa +wiza®® + - - - +wga®) are
converted to their polynomial representations with order smaller than that of
P(a), then the modulo arithmetic part in the above equation will be gone.
Up to that point, the only task left is to combine like terms. Concretely, by

checking Table 2-2; we can find that:

o :a1+a0
2
o =a +«

a® =a® +a?

The above polynomials are substituted into the equation of w. After com-

bining like terms and replacing w; with expressions of a; and b;, the result

is
w = (wga® + w5’ + wya?) mod (a* + a4 1) + wsa® + wea? + wiat + wea

70

= we(a® +) + ws(a® + a) + wy(at +) + wza® + wea® + wiat + wa®
= (we + w3)a® + (wg + ws + wy)a? + (ws + wy 4+ wy)t + (wy + wp)

= (asbs + asbo + asby + arbs + aghs)a®

+ (asbs + azby + asbs + agby + a1y + aghy)a’

+ (asby + asbs + asby + asby + aybs + arby + aghy ot

+ (&3b1 + a2b2 + a1b3 + aobg)ao

As mentioned before, the addition between binary coefficients a;,b; is
implemented by a “XOR” gate and the multiplication is implemented by an
“AND” gate. Therefore, the corresponding VHDL codes for multiplication

over GF(2%) can be programmed as Figure 4-3.

constant GFPower: integer:=4;
subtype Galois Field element is =td logic vector ((GFPower-1) downto 0);

function mul (b, c: in Galois Field element) return Galois Field element is variable w: Galois Field element;

begin
w(l):=(b(0) and c(0)) =or (b(l) and c(3)) xor(b(2Z)and c(2)) =or (b(3)and c(l))}:
w(l):=(b(0) and c(l)) =or (b(l)and c(0)) =or (b(l)and c(3)) =or (b(IZ)and c(l)) xor
(b(3)and c(l)) =or (b(2) and c(3)) =or (b(3) and c(2)):
w(Z):=(b(0)and c(2Z)) xor (b(l)and c(l)) xor (b(Z)and c(0)) xor (b(Z) and c(3)) =or
(b(3) and c(2)) xor (b(3) and c(3)):
w(3):=(b(0)and c(3)) xor (b(l)and c(Z))xor (b(Z) and c(l))=xor(b(3)and c(0))xor(b(3)and c(3)):

return w;

end function mul;

Figure 4-3: VHDL codes of a multiplication function over GF(2%).

Specific to GF(2%) for RS(255,225), let a, b be two elements. Table 2-1
shows that for m = 8 the primitive polynomial P(a) = o® + a* + a® + a® + 1.
Then

w =a-b mod P(«)
= (a7a" + -+ apa®) - (bra” + - - + bya’) mod P(a)
= (wiga + wiza’® + -+ wa®) mod P(a) +w'a7 +wa® + -+ w'a®

— y0<Gk<T
where w; = X577 a;by.

71

As same as the last example, by checking Table 4-2, [a!* a!3,--- o8] of

(wiga + wizat® + - - + wga®) can be converted into their polynomial repre-

sentations with order smaller than that of P(«), then the modulo arithmetic

part in the above equation will be gone. Notice that the full element table for

GF(2%) is not given in this thesis due to its considerably long length. However,

it can be accessed easily from the Internet and many books on ECC such as

[20]. After conversion, the only task left is to combine like terms. Following

the same multiplication process over GF(2%), the VHDL implementation of

the multiplication over GF'(2%) is constructed as shown in Figure 4-4.

Power Representation | Polynomial Representation | 4-Tuple Representation
0 0 00000000(=0)
a(=1) 1 00000001(=1)
ol o 00000010(=2)
a? a? 00000100(=4)
o’ o’ 00001000(=8)
ot ot 00010000(=16)
a® a® 00100000(=32)
ab ab 01000000(=64)
a’ al 10000000(=128)
ab at+ad+a?+1 00011101(=29)
a? a®+at+ad+a 00111010(=58)
alf b+’ + ot + a? 01110100(=116)
all a’+ab+a®+a? 11101000(=232)
alt? "+ al+at+a?+1 11001101(=205)
ol a’+at+a+1 10000111(=135)
att ot +a+1 00010011(=19)

Table 4-2: Part of the elements table of GF(2%) with the primitive polynomial
PX)=X8+ X1+ X3+ X2+ 1.

72

function mul (b, c: in Galois_Field element) return Galois Field element is variable w: Galois_Field element;
——multiplication function for GF(2"4)
begin
w(0):=(b(0) and c(0)) =xor (b(l) and c(7)) xor (b(I) and c(€)) xor (b(3) and c(5)) xor (b(4) and c(4)) =or
(b(5) and c(3)) =or (b(5) and c(7)) =or (b(g) and c(IZ)) =or (b(e) and c(g)) xor (b(e) and c(7)) xor
(B(7) and c(l)) =oxr (b(7) and c(5)) zor (b(7) and c(€)) xor (b(7) and c(7)):

wil):=(b(0) and c(l)) =xor (b(l) and c(0)) xor (b(2) and c(7)) =xor (b(3) and c(€)) =zor (b(2) and c(5)) =or
(b(5) and c(2)) =or (b(6) and c(3)) xor (b(€) and c(7)) =or (b(7) and c(2)) xor (b(7) and c(&)) =or
(B(7) and c(7)}:

w(Z):=(b(0) and c(2}) xoxr (b(l) and c(l))} xor (b(l) and c(7)) =or (b(2) and c(0)) xor (b(I) and c(§)) =or
(b(3) and c(5)) =or (b(3) and c(7)) =zor (b(4) and c(2)) =xor (b(2) and c(€)) =or (b(5) and c(3)) =or
(b(5) and c(5)}) =or (b(5) and (7)) xor (b(€) and c(2)) xor (b(E) and c(4)) xor (b(&) and c(€)) =ror
(bi(€) and c(7)) =or (b(7) and c(l)) =zor (b(7) and c(3)) =or (b(7) and c(5)) xor (b(7) and c(&)):

w(3):=(b(0) and c(3)) =xor (b(l) and c(2)) xor (b(l) and c(7)) =xor (b(Z) and c(l)) xor (b(Z) and c(6)) =or
(b(Z) and c(7)) =or (b(3) and c(0)) xor (b(3) and c(3)) =or (b(3) and c(€)) xor (b(4) and c(4)) =xor
(b(2) and c(5)) =or (b(4) and c(7)) xor (b(5) and c(3)) =or (b(5) and c(4)) xor (b(5) and c(&)) xor
{(b(5) and c (7)) =or (b(e) and c(2)) =or (b(g) and c(3)) =or (b(e) and c(5)) xor (b(&) and c(&)) xHor
(b(7) and c(l)) =oxr (b(7) and c(2)) zor (b(7) and c(4)) xoxr (b(7) and c(5)):

wi(2):=(b(0) and c(4)) =xor (b(l) and c(3)) xor (b(l) and c(7)) =xor (b(2Z) and c(2)) =xzor (b(Z) and c(6)) =or
(b(2Z) and c(7)) =or (b(3) and c(l)) xor (b(3) and c(3)) =xor (b(3) and c(€)) xor (b(3) and c(7)) =xor
(b(2) and c(0)) =or (b(¢) and c(4)) xor (b(4) and c(3)) =or (b(4) and c(€)) xor (b(5) and c(3)) =xor
(b(5) and c(2)) =or (b(5) and c(5)) xor (b(€) and c(Z)) =or (b(€) and c(3)) xor (b(&) and c(4)) x0:1
(B(7) and c(l)) =oxr (b(7) and c(2)}) xoxr (b(7) and c(3)) =xor (b(7) and c(7)):

wW(5):=(b(0) and c(5)) =xor (b(l) and c(4)) xor (b(2) and c(3)) xor (b(2Z) and c(7)) xor (b(3) and c(2)) =or
(b(3) and c(6)) =or (b(3) and c(7)) xor (b(4) and c(l)) =or (b(2) and c(5)) xor (b(4) and c(&)) =xor
(b(2) and c(7)) =or (b(5) and c(0)) xor (b(3) and c(4)) =or (b(5) and c(5)) xor (b(5) and c(&)) =xor
(b(6) and c(3)) =or (b(6) and c(4)) xor (b(é) and c(3)) =or (b(7) and c(2)) xor (b(7) and c(3)) =xor
(B(7) and c(2)):

w(e):=(k(0) and c(g)) =or (b(l)
(bi(2) and c(2)) =or (bi(4)
(Bi(5) and c(6)) =or (b(5)
(bi(€6) and c(6)) =oxr (b(7)

d c(5)) x=or (B(2)
d c(8)) xor (b(4)
nd (7)) x=or (b(&)
d c(3)) xor (B(T)

d c(4)) rmor (b(3) and c(3)) xor (b(3) and c(7)) =or
d c(7)) ror (b(5) and c(l)) xor (b(5) and c(5)) =or
nd c(0)) xor (b(E) and c(4)) xzor (b(€) and c(5)) =or
d c(4)) =moxr (b(7) and c(5)):

wW(7):=(b(0) and c (7)) =or (b(l)
(b(2) and c(7)) =or (b(5)
(b(g) and c(5)) =or (b(e)
(B(7) and c(5)) =ox (b(7)
return w;
end function mul;

d c(8)) xor (b(2Z) and c(5)) xor (b(3) and c(4)) xor (b(4) and c(3)) =or
d c(2)) xor (b(5) and c(€)) xor (b(5) and c(7)) xor (b(6) and c(l)) =or
nd c(&)) =or (b(g) and c(7)) =ror (b(7) and c(0)) zor (b(7) and c(4)) =or
d ()

Figure 4-4: VHDL codes of a multiplication function over GF(2°).

4.1.3 VHDL Implementation of a Galois Field Inverter

Inversion over a Galois field is significantly difficult to implement on har-
dware. For fields with small to medium size, it is much simpler and faster to
use a look-up table (LUT). Figure 4-5 and 4-6 show the inversion function for
GF(2%).
4.2 Encoder Implementation

Prior to the discussion of the novel low-latency RS encoder, implementa-
tion of a conventional RS encoder should be roughly introduced. Recall the
algorithm stated in Chapter 2. To a specific encoder, the generator polynomial
can be pre-calculated and the only step to implement is b(X) = (X" *.m(X))
mod ¢g(X). This equation can be solved by a linear feedback shift register

(LFSR) which is shown in Figure 4-7. The rectangular box b; represents the

73

=}

L I B B R B B . T I O O T L L B O P O I T B e v e T e B = i e i e
[T T TS S R - I T B 8 i T O T T vt o A N 1 SO A e = i - A R S 7 e - e . T S O i P P A P S U S SV S e [T T R

@
-

L I e T O O 0 O O 0 I O L I O O O 0 O O O I 0 e O B I B S e B S R R I R R SR O

@

(¥}

[Hbegin

elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif

ninfninimininininininininininininininnininininninininfninfininininimnyninininfninininimninfninfninininimninfnfnninininininininfninfnininfnimn iy ninfninininininin in iy ni ke

d:="00000000";
if (b="00000001") then d:="00000001";

(L="00000010™)
(b="00000100™)
(b="00001000™)
(b="00010000")
(b="00100000™)
(b="01000000™)
(b="10000000™)
(b="00011101")
(b="00111010")
(b="01110100")
(b="11101000™)
(b="11001101")
(b="10000111")
(b="00010011")
(b="00100110"™)
(b="01001100™)
(b="10011000™)
(b="00101101")
(b="01011010")
(b="10110100™)
(b="01110101")
(b="11101010")
(b="11001001")
(b="10001111")
(b="00000011™)
(b="00000110")
(b="00001100")
(b="00011000™)
(b="00110000™)
(b="01100000™)
(b="11000000™)
(b="10011101")
(b="00100111")
(b="01001110")
(b="10011100™)
(b="00100101")
(b="01001010")
(b="10010100™)
(b="00110101"™)
(b="01101010")
(b="11010100")
(b="10110101")
(b="01110111")
(b="11101110")
(b="11000001")
(b="10011111")
(b="00100011"™)
(b="01000110")
(b="10001100™)
(b="00000101")
(b="00001010™)
(b="00010100™)
(b="00101000™)
(b="01010000™)
(b="10100000™)
(b="01011101")
(b="10111010")
(b="01101001"™)
(b="11010010")
(b="10111001")
(b="01101111")
(b="11011110")
(b="10100001")
(b="01011111")
(b="10111110")
(b="01100001"™)
(b="11000010")
(b="10011001™)
(b="00101111")
(b="01011110")
(b="10111100")
(b="01100101")
(b="11001010")
(b="10001001™)
(b="00001111")
(b="00011110")
(b="00111100"™)
(b="01111000™)
(b="11110000™)
(b="11111101")
(b="11100111")
(b="11010011")
(b="10111011")
(b="01101011")
(b="11010110")
(b="10110001"™)
(b="01111111")
(b="11111110")

then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then

d 10001110";
01000111";
10101101";
11011000";
01101100";
00110110";
00011011";
10000011,
11001111";
="11101001";
111110107;
="01111101";
10110000,
="01011000";
00101100";
="00010110";
00001011";
"10001011";
11001011";
"11101011"7;
11111011";
"11110011";
11110111";
"11110101"7;
111101007;
"01111010";
oo111101";
10010000";
01001000";
00100100";
0001g0010";
Qooo1001";
100010107;
01000101";
10101100";
0l010110";
0o101011";
10011011";
11000011";
11101111";
11111001";
11110010";
01111001";
10110010";
0l011001";
10100010";
01010001";
10100110";
01010011";
10100111";
="11011101";
111000007;
="01110000";
00111000";
="00011100";
00001110";
="00000111";
10001101";
"11001000";
01100100";
"00110010"™;
QQoligol";
"10000010"™;
01000001";
"10101110";
01010111";
"10100101";
110111007;
"01101110";
00110111";
10010101";
11000100";
01100010";
00110001";
loolo110";
01001011";
10101011";
11011011";
11100011";
11111111";
11110001";
111101107;
01111011";
10110011";
11010111";
11100101";
11111100";
="01111110";

aAfAQpAAdAQAfNAQAARARAALAAQRQAARANARAARNANARQAARLNARAALARARAARLARAAARQAARANARQAARANARAALANARAARLARAAARAAARANAQRAARANAQROADROADRNA

elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif

(b="00010111")
(b="00101110")
(b="01011100")
(b="10111000")
(b="01101101")
(b="11011010"™)
(b="10101001"™)
(b="01001111")
(b="10011110")
(b="00100001™)
(b="01000010™)
(b="10000100"™)
(b="00010101")
(b="00101010")
(b="01010100")
(b="10101000™)
(b="01001101")
(b="10011010")
(b="00101001")
(b="01010010™)
(b="10100100"™)
(b="01010101")
(b="10101010")
(b="01001001"™)
(b="10010010™)
(b="00111001")
(b="01110010")
(b="11100100")
(b="11010101")
(b="10110111")
(b="01110011")
(b="11100110")
(b="11010001™)
(b="10111111")
(b="01100011"™)
(b="11000110")
(b="10010001")
(b="00111111")
(b="01111110")
(b="11111100")
(b="11100101")
(b="11010111")
(b="10110011"™)
(b="01111011")
(b="11110110")
(b="11110001")
(b="11111111")
(b="11100011")
(b="11011011")
(b="10101011")
(b="01001011")
(b="10010110")
(b="00110001™)
(b="01100010"™)
(b="11000100")
(b="10010101")
(b="00110111")
(b="01101110")
(b="11011100")
(b="10100101")
(b="01010111")
(b="10101110")
(b="01000001")
(b="10000010™)
(b="00011001"™)
(b="00110010"™)
(b="01100100")
(b="11001000™)
(b="10001101")
(b="00000111")
(b="00001110")
(b="00011100")
(b="00111000™)
(b="01110000™)
(b="11100000")
(b="11011101")
(b="10100111")
(b="01010011"™)
(b="10100110")
(b="01010001")
(b="10100010™)
(b="01011001")
(b="10110010"™)
(b="01111001")
(b="11110010")
(b="11111001")
(b="11101111")
(b="11000011")

inversion function over GF(2°8) |
EHfunction inv(k: in Galois_Field element) return Galois_Field element is variable d: Galois_Field element;

then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then

elsif (b="10000101") then d:="11001100";

d Ql100110";

00110011";

="01111100";
0ol11110";
="00011111";
10000001";
="11001110";
01100111";
"10111101";
11010000";
"01101000";
g0110100";
"00011010";
0o001101"™;
"10001000";
010001007;
"00100010";
00010001";
10000110";
Ql1000011";

="01100101";
101111007;
="0lol1110";
00101111";
"10011001";
110000107 ;
"01100001";
l01l1i11i1a";
"01011111";
10100001";
"11011110";
01101111";
"10111001";
11010010";
"01101001";
10111g10";
01011101";
10100000";
Q1010000";

AofdppopAApALAQAAAARAAQAAARARAAAARAAAARAAARLAARARAAALAAARAAQAAAAARAAARAAARAARAAARAAARAAARLAAARAAALAAARAAARAAAARAAARAAAARAAARAAARAAALAAARAAALAQAQRAAQHRA

="00110101";

Figure 4-5: VHDL codes of a inversion function over GF'(2%): Part 1.

74

307
308
308
310
311
31z
313
314
315
316
317
318
318
3z0
321
322
323
324

nfnnininininininininininininininininininfnfnininininfnfnfininininfnfnfnfninin}

elsif
elsif
elsif

(b="11100001")
(b="11011111")
(b="10100011")
(b="01011011")
(b="10110110")
(b="01110001")
(b="11100010")
(b="11011001")
(b="10101111")
(b="01000011")
(b="10000110™)
(b="00010001™)
(b="00100010™)
(b="01000100")
(b="10001000")
(b="00001101")
(b="00011010")
(b="00110100™)
{(b="01101000™)
(b="11010000™)
(b="10111101")
(b="01100111")
(b="11001110")
(b="10000001")
(b="00011111")
(b="00111110")
(b="01111100")
(b="11111000")
(b="11101101")
(b="11000111")
(b="10010011")
(b="00111011")
(b="01110110")
(b="11101100")
(b="11000101")
(b="10010111")
(b="00110011")
(b="01100110")
(b="11001100")
end if;
return d;
end inv;

elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif

then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then

s="00111111";
=="10010001";
:="11000110";
:="01100011";
:="10111111";
:="11010001";
:="11100110";
=="01110011";
=="10110111";
:="11010101";
:="11100100";
:="01110010";
:="00111001";
:="10010010";
s="01001001";
:="10101010";
:="01010101";
:="10100100";
:="01010010";
:="00101001";
s="10011010";
s="01001101";
s="10101000";
s="01010100";
=="00101010";
:="00010101";
:="10000100™;
:="01000010";
=="00100001";
s="10011110";
s="01001111";
:="10101001";
:="11011010";
:="01101101";
:="10111000™;
s="01011100";
s="00101110";
=="00010111";
=="10000101";

elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif
elsif

(b="10011011")
(b="00101011")
(b="01010110")
(b="10101100")
(b="01000101")
(b="10001010™)
(b="00001001"™)
(b="00010010"™)
(b="00100100"™)
(b="01001000™)
(b="10010000")
(b="00111101")
(b="01111010")
(b="11110100")
(b="11110101")
(b="11110111")
(b="11110011")
(b="11111011")
(b="11101011")
(b="11001011")
(b="10001011")
(b="00001011")
(b="00010110")
(b="00101100")
(b="01011000™)
(b="10110000")
(b="01111101")
(b="11111010")
(b="11101001")
(b="11001111")
(b="10000011"™)
(b="00011011")
(b="00110110")
(b="01101100")
(b="11011000")
(b="10101101")
(b="01000111")
(b="10001110")

then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then
then

d

2802000000000 00000008 000000800000000820080

:="10010100";
:="01001010";
="00100101";
="10011100";
"01l001110™;
"00100111";
="10011101";
="11000000";
"01100000™;
="00110000™;
="00011000™;
"00001100™;
"00000110™;
="00000011";
="10001111";
"11001001"™;
="11101010";
="01110101";
"10110100™;
"01011010™;
="00101101";
="10011000";
"01001100"™;
="00100110";
="00010011";
"10000111";
"11001101";
="11101000";
="01110100";
"00111010";
="00011101";
="10000000™;
"01000000™;
"00100000™;
="00010000";
="00001000"™;
"000o0100™;
"000o00Lo™;

Figure 4-6: VHDL codes

parity-bits register. The encoding progress starts with the Switch 1 connected
to the adder and Switch 2 connected to the LFESR input. In the first k clock
cycles, the coefficients of m(x) enter the circuit one coefficient per clock cycle
and the highest-order coefficient m*~! enters first. During these clock cycles,
the parity-bits are being calculated, and the output of LE'SR is the same as the
input. After the calculation finished at the k-th clock cycle, the coefficients of
b(x) of the previous formula are stored in each shift register b;. At this point,
Switch 1 turns to “0” input and Switch 2 turns to the register b, _j_1 so that
the LF'SR shifts the coefficients of b(z) out one coefficient per clock cycle. As

there are n — k registers, this procedure goes on for n — k clocks, and it leads

of a inversion function over GF(2%): Part 2.

to the end of the encoding process.

75

Switch 1

& e - - L] & N(ﬁ 0
9o 91 gz %gmm
bD rcD > b1 - '_)b{n-k-2) ’QU‘; b(n-k—ﬂ; >
Switch 2
>0
LFSRin >0 LFSRout

Figure 4-7: Structure of a linear shift back register (LFSR).

In this research, three low-latency RS(255,225) encoders with different
speed-up coefficients p have been implemented in VHDL and tested. The
implementation logic follows the structure shown in Figure 3-1. Compared
to a conventional RS encoder, a low-latency RS encoder uses multiple shorter
LFSRs which can run in parallel in its Step 4. However, there is a cost which
is message-words have to be pre-processed before entering the LFSRs and the
outputs from LFSRs have to be post-processed to generate the real parity bits.
4.2.1 Implementations with Speed-Up Coefficient p = 3

Figure 4-8 shows a low-latency RS(255,225) encoder with speed-up coeffi-
cient p = 3. Each message-word is an 8-bit vector, and there are 1800(= 8-225)
bits in total in a set of message-words. At each clock cycle, three message-
words enter the circuit and are split as three inputs of the DF'T. The DFT
then generates three outputs and send them into three LE'SRs. Notice that
each LFSR has a distinct generator polynomial. The outputs from LFSRs are
applied with an inverse Fourier transform in the IDFT to produce the real
parity-bits. With access to all computed parity bits and the delayed message-
word input, the output controller gives the final code-words by three words at

each clock. In the following paragraphs, each part of the implementation is

76

discussed in details, and more comments are shown in the screenshots of their

VHDL codes.

Yy

.
mg,..., M m m Co, ..., C253, Cas54
Oaeeey 12235 111224 of gpiper DFT LFSR 1 IDFT Output i 3
Controller
g Y

» Delay Block

Figure 4-8: Low-latency RS(255,225) encoder with speed-up coefficient p = 3.

Set-Up. As shown in Figure 4-9, there are four input ports of the
encoder: a global reset denoted as ‘“reset_ n”, a clock signal denoted as
“clk”, a port for input data denoted as “data_in” and a signal denoted
as “input_strobe” which is to activate the encoding process. Notice that
the length of “data_in” is 24 bits because three message-words enter the
circuit at each clock cycle. There are three outputs: a signal denoted as
“output_strobe” that suggests if the first three code-words are ready, a sig-
nal denoted as “enc_done_p” that indicates if the last three code-words have
been sent out and the code-word output also of 24-bit length denoted as
“data_out_p”. Figure 4-10 shows the declaration of the LFSR component

4

and other signals. The signals with suffix “_p” are all register signals and

4

their counterparts which are without the suffix “_p” are combinational logic
signals used for register update.

Defining Functions. The adder and multiplier over GF(2®) have been
discussed in Section 4.1 and the corresponding VHDL codes are shown in
Figure 4-1 and 4-4, respectively. Figure 4-11 shows the definition of DFT
and IDFT functions. It follows the formula DFT(M); = Z§_1pi'ij and

IDFT(f); = E?;(l)p_j'ifj. Notice that “q” refers to p-th root of unity and

43

q2” refers to ¢.

77

1 library ieee;
2 use ieee.std logic_llé
B use ieese.std logic H
4
E Hentity LowLatRSenc n255k225 p3 is
6
7 Hport (reset_n: in std logic; --global reset input
8 data_in: in std_logic_vector (23 downto 0); --3
k] = ——the input is a set of bits in seguence.
10 —-MSEB (the highest-order coefficients of data polynomial) enters first.
11 clk: in std logic: ——clock signal
1z input_strobe: in std logic; --a signal which activates encoding procedure.
13 output_strobe: out std logic; --a signal that suggests the output is ready to be sent out
14 enc _done p: out std logic;--a signal which indicates the encoding process has been dnne.l
ILE data_out_p:out std logic vector (23 downto 0});
16 end;
Figure 4-9: Ports Declaration of RS encoder with p = 3.
17 Harchitecture RTL of LowLatR5enc_nIS5SkIZ5_p3 is
18 |
15 [FJCOMPONENT LowLatRSenc LFSR_n85k75
20 [El--is a linear feedback shift register which is actually the same as conventional narrow-sense RS encoder.
21 I-——we need 3 LFSR in this low-latency algorithm because p=3.
2z [port (reset_n: in std logic;
23 data_in: in std logic_vector (7 downto 0);
24 clk: in std logic;
25 input_strobe: in std_logic;
26 g0: in std gic_vector (7 downto 0);
27 gl: in std logic_vector (7 downto 0);
28 g2: in std gic_vector (7 downto 0);
29 g3: in std logic vector (7 downto 0);
30 g4: in std logic vector (7 downto 0);
31 g5: in std logic vector (7 downto 0);
3z g6: in std logic vector (7 downto 0);
33 g7: in std logic vector downto 0);
34 g8: in std logic wector (7 downto 0);
35 g9: in std logic vector (7 downto 0);
36 ——the highest-order coefficient of generator polynomial is ommited because it's always 1.
a7 r data out p: out std logic wvector (7 downto 0)):
38 rEND COMPONENT
SE. | ———————— basic parameter
40 constant H 55; ——code-word length
41 constant 25; —-message-word length
4z constant ——parity-bits length =255
43 constant ——m=N/p=255/3=85
44 constant 5/3=T5
45 constant ——L=R/p=30/3=10
46 constant ——speed-up coefficient
47 constant teg = ——Galois Field power to define GF(Z
48 | —————— pre—define useful type
49 subtype Galois_Field element is std_logic vector ((GFPower-1) downto 0): --type for elements in GF (2
50 type state_type iz (Idle,Calculation,XferParicy,WraplUp):--(Finite stace machine)
51 type FIout_type iz array (0 to (p-1)) of Galois_Field element;
52 type LFSRout_type is array (0 to (p-1)) of Galoils_Field element;
53 OnSTant.
54 constant zero: Galois Field element :="00000000";
55 constant one: Galois Field element :="00000001";
56 constant g: Galois_Field element:="11010110"; --set the 3rd root of unity
57 constant g2: Galois Field element:="11010111"; --square of the 3rd root of unity
58 | ---—————— data vector
iz signal DFTout: FIout_type; -—output of the DFT, that is, input of each LFSR
&0 signal IDFTout: FTout_type; ——output of the IDFT, that is, parity-bits hi,hl, hZ
61 signal LFSRout: LFSRout_type; —-output of the LFSR
62 signal data_inbuf,data_inbuf p:std logic_vector ((p*GFPower-1) downto 0); --delayed data_in
&3 signal data_out:std_logic vector (p*GFPower-1 downto 0);--combinational logic signal used to update data_out_p
&4 | ————————— control signal }
&5 signal state,state_p:state_type for Finite state machine
&6 signal counter,counter_p:integer H
&7 signal countEn,countEn p:std logic; --enable counting. counter only count when countEn='l"'
&8 signal countRst,countRst_p:std_logic;--reset counting. counter=0 whenever countRS5t='l'
(3] signal XferEn,XferEn p:std logic;-—enable transferring parity bits out
T0 signal enc done:std logic;--combinational logic signal used to update enc done p
7

Figure 4-10: Signal declaration of RS encoder with p = 3.

Component Instantiations. As Figure 4-12 shows, with p = 3, three
LFSRs are used. They all share a same global clock and reset. The “input_strobe”

signal activate all the three at the same time. The data input of each LFSR

78

135 | DFT function (Fourier Transform)
136 Hfunction DFT (&, b, c: in Galois Field element) return FTout type is variable DFTout: FTout type;
137 H begin

138 DETout (0) :=add ((add (a,b}) ,c); —— =ath+c

e DFTout (1) :=add (add {(a,mul (b,q)) ,mul (c,g2)) —— =a+g*b+g”I*c

140 DFTout (2) :=add (add (a,mal (b, g2)) ,mul (c,q)) — —atg I kigic where g is the p-th root of unity
141 return DFTout;

142 rend function DFT;

a3

144

145 IDFT function (Inverse Fourier Transform)

146 Hfunction IDFT (2, b, c: in Galois Field element) return FTout type is wvariable IDFTout: FTout_type;
147 ©H begin

148 IDFTout (0) :=add((add{a,b)),c): —-- =at+b+c

148 IDFTout (1) :=add (add (a,mul (b,g2)) ,ml (c,q)) :—— =a+g™Z*big¥c where g is the p-th root of unity
150 IDFTout (2) :=add(add(a,mul (b, qg)), ml{c,g2)) ;—— =a+g*b+g™Il*c

151 return IDFTout:

152 rend function IDFT:

153

1ca L

Figure 4-11: DFT and IDFT functions of RS encoder with p = 3.

is one of the three output from the DFT. Each output from them is a vector
denoted as “LFSRout”. Notice that the generator polynomial coefficients
(90,91, G2, -+, go| are different for each LFSR, because in the algorithm, there
is p distinct generator polynomials. With the formula given in Chapter 3, each
generator polynomial is pre-calculated. The features and inside structure of
LFSR component are explained with details later.

Register Update. Figure 4-13 shows the VHDL codes for register up-
date. At each rising edge of the clock, the register signals are updated to their
combinational logic counterparts. When the global reset is active at a clock’s
rising edge, all register signals go to zero.

Finite State Machine. A finite state machine (FSM) is utilized to
control the overall process (Figure 4-14). There are four state: “Idle”,
“Calculation”, “XferParity” and “WrapUp”. In state “Idle”, all the con-
trol signals are set to zero except “countRst” which resets the counter when
active. When “input_strobe” becomes to 1, it means the encoding process
is activated. Then “countEn” turns to 1 which allows the counter to do
increment and the state goes to “Calculation”, which means LFSRs start
their computing process. When “counter_p” reaches t where ¢t = k/p is the

component length of message-words, “xferEn” becomes 1 and the state enters

79

154 Hbegin

155 | LF5R0O: LowLatRSenc LFSE n85k75

156 Hport map (reset_n=>reset_n,

157 data_in=>DFTout (0),

158 clk=>clk,

155 input_ strobe=>input_strobe,

160 ——all generator coefficients are pre-calculated by MATLAB
161 g0=>"10101001", gl=>"01010011", gZ=>"11100010™,
162 g3=>"01010001", g4=>"11001010", g5=>"01110100™,
163 g&=>"10011111", g7=>"00111001", g8&=>"000100QL11",
164 g9=>"01000011",

165 data_out_p=>LFSRout (0)):

166 r

167 LF5R1: LowLatRSenc LFSE n85k75

168 Hpozt map (reset_n=>reset_n,

169 data_in=>DFTout (1),

170 clk=>clk,

171 input_strobe=>input_strobe,

172 g0=>"01001101", gl=>"11101111", g2=>"10001000",
173 g3=>"11101111", g4=>"11110000", g5=>"00100110™,
174 g&=>"00000101", g7=>"11010101", g8=>"01001100™,
175 g9=>"10000110"™,

176 data_out_p=>LFSRout (1));

177 B

178 LF5RZ: LowLatRSenc LFSE n85k75

175 Hport map (reset_n=>reset_n,

180 data_in=>DFTout (I},

181 clk=>clk,

182 input_strobe=>input_strobe,

183 g0=>"01110010", gl=>"00010010", gZ=>"11001110",
154 g3=>"10001010", g4=>"11010110", g5=>"10110100™,
185 g&=>"01010000", g7=>"11100110", g8=>"001011l01"™,
186 g9=>"00010001",

187 data_out_p=>LFSRout (2)):

188

1on I

Figure 4-12: LFSR component instantiations of RS encoder with p = 3.

211 Eprocess:clk} —--register update

212 | begin

213 = if(clk'event and clk='l'"') then --only update at the rising edge of clock
214 = if (reset_: '} then —-reset function
215 data_inbuf p<=(others=>'0");
216 data_out_p<=(others=>'0");
217 counter_p<=0;

218 state_p<=Idle:

219 countRst_p<=

220 countEn_p<

221 xferEn_p<=

222 r enc_done_p<= H

223 = else

224 data_inbuf p<=data_inbuf;
225 data_out_p<=data_out;

226 counter_ p<=counter;

227 state_p<=state;

228 countRst_p<=countRst:

229 countEn_p<=countEn;

230 xferEn p<=zferEn;

231 enc_done_p<=enc_done;

232 i end if;

233 B end if;

234 end process;

Figure 4-13: Register update of RS encoder with p = 3.

80

“XferParity”, which means the intermediate parity bits calculated by LFSRs

are ready to shift out. When “counter_p” reaches m where m = n/p is the

component length of code-words, “countRst” goes to 1 and “enc_done” is
activated to suggest that the encoding progress has been done.

Z15 Finite state machir

216 EktIDCESS (state_p, input_strobe, counter_p)

217 | begin

218 [H case state p is

219 | when Idle =>

220 = then —-input_strobe initialates encoding process

221

R

223 xferEn<= H

224 enc_done<= ;

225 r state<=Calculation;

zzé H else

227 countRst<="1";

228

229

230 enc_done<=

231 state<=Idle;

232 end if;

233 r

234 when Calculation => —-calculating parity bits.

235 [H if (counter p=t) then

236 countRst< H

237 countEn<=

Z38

239 X :

240 - state<=XferParity;

241 [H else

242 countRst<= H

243

244

245 X

246 state<=Calculation;

247 end if:

248 r

249 when XferParity => —--transfer parity bits out of LFSR

250 [H if (counter p=m) then

251 —-when counter=m, &all parity bits are transferred out. and encoding is finished

252 countRst<="'1";

253 countEn;

254 XferEn<="0";

5] enc_done<='1l";

256 F state<=WrapUp;

257 [H else

258 countRst<=

Z59 countEn

Z60 xferEn<

261 enc_done<= H

262 state<=XferParity;

263 end if:

261 r

265 when WrapUp =>

266 ——this state is to de-active enc_done signal. so that enc done is only high for one single clock

Z&7T :

268

269

z70 X

Z71 state<=Idle;

272

273 when others =>

274 countRst<

275 countEn<=

276 xferEn<=

277 enc_done<= H

278 state<=Idle;

279 r end case;

280 end process;

om1 &

Figure 4-14: Finite state machine of RS encoder with p = 3.

81

Whe

Counter Implementation. Figure 4-15 shows the counter behavior.

n “input_strobe” or “countRst_p” is activated, the counter is compel-

led to be 0. The counter only counts when “countEn_p” is 1.

283
284
285
286
287
288
289
290
291
292
283

[]process(input_strobe,countRst_p,countEn_p,counter_p]
|begin
= if (input_strobe='l' or countRst p='l"'} then

——reset the counter both at the beginning and the end of encoding process
= counter<=0;
= elsif (countEn p='l') then
} counter<=counter p+l;
= else
counter<=0;
- end if;

end process;

Figure 4-15: Counter behavior of RS encoder with p = 3.

Preprocessing before LFSR. Figure 4-16 show the preprocessing be-

fore the LFSR. Besides creating a copy of delayed inputs, the other task is to

apply Fourier transform on three components of the input message-words. The

outputs from the DFT are sent to three LFSRs. “p*GFPower” refers to the

total

number of bits in “data_in”. Specific to this encoder with p = 3, every

input at each clock cycle has three message-words and thus has 24 bits binary

data. To split the input into p = 3 components, just set the corresponding

index correctly.

azT
285
256
287
288
289
300

| data_inbuf<=data_in; --copy of data in when new encoding process is activated.

EIDFTout<=DFT (data_in((p*GFPower-17)downto (p*GFPower-24)),data in((p*GFPower-%)downto (p*GFPower-16))
,data_in((p*GFPower-1)downto (p*GFPower-2)));
El--p*GFpower=3*8=24. so t,'nel three components are data in(7 downto 0), data in(l5 downto &), and

L——cle.t,é._in (23 downto 16)

Figure 4-16: Preprocessing of RS encoder with p = 3.

LFSR Implementation. The three LFSRs used in this encoder follow

the same structure shown in Figure 4-7. As the working principle has been

introduced at the beginning of Section 4.2, let us directly look into its VHDL

implementation.

82

As message-words are split into p = 3 components, each LFSR is desig-
ned to totally take in ¢ = k/p = 225/3 = 75 message-words and generate
l=r/p=(n—k)/p= (255 —225)/3 = 10 parity-bit symbols. Figure 4-17
shows the port declaration of LFSR component. Two things should be noticed.
First, both of “data_in” and “data_out_p” are a vector with 8 bits and the
generator polynomial coefficients are inputs to be filled when instantiating the
component. Figure 4-18 shows the signal declaration. The signals with suffix
“_p” are all register signals. The VHDL codes for register update are shown
in Figure 4-19. A counter is defined and its behavior is shown in Figure 4-20.
Control signals are defined in Figure 4-21. “DoCalc_p” enables parity bits
calculation. “xferPB_p” enables computed parity bits to be shifted out. The
registers accommodating parity bits are denoted as “parity_reg p”’. Each
register update follows exactly as the circuit in Figure 4-7 and the correspon-
ding VHDL codes are shown in Figure 4-22. The output data of an LFSR
is the same as the input data for the first 75 clock cycles and then becomes
the value stored in the last parity bits register (Figure 4-23). Specific to low
latency RS(255,225) with p = 3, the outputs of LFSRs for the first 75 clock
cycles are not concerned. Also, it should be emphasized that the parity-bits
computed by LFSRs are essentially intermediate parity bits, which need to be
post-processed to produce the real parity-bits for the final code-words.

Output controller. Inverse Fourier transform needs to be applied on
the intermediate parity bits in order to generate the real parity bits. Recall
that code-words consist of message-words and parity bits. During the first 75
cycles, the output data are simply the delayed input message-words. When
“xferEn_p” is activated, the output data are the results generated from IDF'T.

The VHDL codes for the post-processing is shown in Figure 4-24.

33

1 library ieee;
2 use ieee.std logic
3 use i EE.SECii'_DEj_D
. —
5 Hentity LowLatRSenc LFSR n85k75 is
[——this file is t,hEiv:ldlicude for linear feedback shift register (LFSR) used in low latency RS (15,9%,p=3) encoder
7 [Hport (reset_n: in std_logic;
3 data in: in vector (7 downto O); —-the input is one word (8 bits) at a time.
9 clk: in std_l -
10 input_strob: »
11 g0: in std logic wvect
1z gl: in at,di'_ugicivect,uz (7 downto
13 g2: in ﬁt.d:;nr;;c:'-ie:t.nr (7 downto
14 g3: in std logic vector (7 downto
15 g4: in at:ii'_ugicivectuz (7 downto
16 g5: in ﬁt.d:;nr;;c:'-ie:t.nr (7 downto
17 g6: in std logic vector (7 downto
18 g7: in at:ii'_ugicivectuz (7 downto
19 g8: in ﬁt.d:;nr;;c:'-ie:t. (7 downto
20 g9%: in std logic wvect (7 downto
21 r data out p? out ;t:i logic vector (7 downto 0)); —-the output is one word (8 bits) at a time
22 end;: B B
23 =
Figure 4-17: Port Declaration of LFSR component.
=23 Harchitecture RTL of LowLatRSenc_LFSR_n85k75 is
26 basic parameter
27 constant data size:Galois Field element:="01001011"; --data size=t=k/p
Z8 constant coded size:Galois_Field element:="01010101";--coded size=m=n/p
29 constant errCap: i —-—error correction capacity
30 constant GFPower: —-—Galois Field power to define GF(Z
31 pre—defined useful type
32 subtype Galois Field element is std logic wvector((GFPower-1) downto 0);
33 type parity_reg_type is array (0 to (Z*errCap-1)) of Galois_Field element; --10 parity-bits registers
34 onstant
35 constant zero: Galois_Field element :="00000000";
36 constant one: Galois_Field element :="00000001";
B [——————————————— data vector
38 signal sum: Galols_Field element; --the sum of last register + input data
35 signal parity reg,parity reg p:!: parity_reg type; --parity-bits registers
40 signal data out:std logic vector (7 downto 0); -—combinational logic signal for data out p
41 signal counter,counter p: std logic vector ((GFPower-1) downto 0); —- define a counter
42 | e control signal
43 signal counterEn,counterEn p: std_logic; --counter only counts when counterEn is activated
44 signal DoCalc,DoCalc_p: std logicy --when DoCalc is high, LFSR is calculating parity bits
45 signal xferPB,xferPB p: std logic; —-when all parity bits calculation finished,
46 |——xfErP3 is high and parity bits are shifted out
47

Figure 4-18: Signal Declaration of LFSR component.

110 [Hkegin

111 | —————————— register wpdate———————————————————————
112 [Hprocess (clk)

113 | begin

114 = if (clk'event and clk='"l') then

115 [H if(reset_n='l') then

116 DoCalc p<="0"';

117 xferPB pa='0";

118 counterEn p<='0";

119 counter p<=(others=>'0");

120 = for i in 0 to (Z*errCap-1l) loop
121 parity_reg p(i)<=(others=>'0");
122 - end loop:

123 - data_out_ p<=(others=>'0'};

124 [H else

125 DoCalc p<=DoCalc;

126 xferPB p<=xferFB;

127 counterEn p<=counterEn;

128 Counter_ p<=counter;

129 parity reg p<=parity reg;

130 data out p<=data_ out;

131 - end if;

132 B end if;

133 Fend process;

Figure 4-19: Register update of LFSR component.

84

134 | —————————————— counLer—————————————————————
135 Hprocess (input strobe,counterEn p,counter p)
136 | begin
137 = if (input_strobe="'l') then
138 |- counter<= one;
139 = elsif (counterEn p="'1'} then
140 |— counter<=counter_p+l;
141 [H elae
142 counter<=(others=>'0");
143 end if;
144 end process;
145
Figure 4-20: Counter behavior of LFSR component.
146 | —————————— combinational logic for comntrel signals——————————————
147 Hprocess (input_strobe,counter_p,DoCalc_p)
148 begin
149 DoCalc<=DoCalc_p;
150 = if (input_ strobe='l'} then
G DoCalce="1";
152 =] elsif (counter p=data_ size) then
L= DoCalc<="0";
154 - end if;
155 end process;
156 =
157 BHlprocess (input_strobe, counter p,counterEn p)
158 begin
159 counterEn<=counterEn p;
160 = if (input_strobe='l'} then
161 |— counterEn<="'1";
162 = elsif (counter p=coded_size) then
163 counterEn<="0";
164 - end if;
165 end process;
166 -
167 Eprocess(count.er_p,.xfEIPEi_pj
168 begin
1659 xferPB<=xferPFB p:
170 =] if (counter_p=data size) then
TN xferPBe="1";
172 = elsif (counter p=coded_ size) then
173 xferPB<="'0";
174 F end 1f;
175 end process;
176

Figure 4-21: Combinational logic for control signals of LEFSR component.

85

Figure 4-22:

Figure 4-23: Combinational logic for the output data of LFSR component.

179

180 Hrprocess (reset_n,input_strobke,DoCalc p,parity reg_p, sum,go,
151 r gl,g2,93,94,95,96,97,98,g5%,xferFB p)

182 begin

183 parity reg<sparity reg p;

184 = if (input_strobe='l") then

185 = for 1 in 0 to (Z*errCap-1l) loop

186 parity reg(i)<=(others=>'0");

187 = end loop:

188 =] elsif (DoCalc_p='l") then

189 parity reg(%)<=add(parity reg p(Z),mal (sum,g?%));
150 parity reg(f)<=add(parity reg p(7),mul (sum,g8));
181 parity reg(7)<=add(parity reg p(6),mal (sum,g7)):
192 parity reg(€)<=add(parity reg _p(5) ,mul (sum, ge)):
183 parity reg(3)<=add(parity reg p(4),mul (sum,g5)):
194 parity reg(4)<=add(parity reg p(3),mal (sum,g4));
185 parity reg(3)<=add(parity reg p(Il),mul (sum,g3));
156 parity reg(l)<=add(parity reg p(l),mul (sum,gZ)):
197 parity reg(l)<=add(parity reg p(0),mul (sum,gl)):
158 = parity reg(0)<=mml (sum, g0d);

158 = elsif (rferPB_p='l") then

200 = for 1 in (Z*errCap-1) downto 1 loop

201 parity regli)<=parity_reg p(i-1):

202 = end loop:

203 parity reg(0l)<=(others=>"0"');

204 b end if:

205 end process;

206 =

207 | ——————————————— output of LFSR——-———-—————————————
208 Hprocess (DoCalc p,data_in,parity reg p)

209 | begin

210 = if (DoCalc p='l') then

211 k data out<=data_in;

z12 [H glse

213 data_out<=parity reg p((Z*errCap-1)):
214 end if;

215 end process;

216

217 sum<=add (parity reg pl(*errCap-1),data_in);
218 end architecture;

301
302
303
304
305
306
307
308
309
310

Eprocess (counter_p)

(=]
(=]

|begin
if (counter_p=1l)then
output_strobe<="l'; --a signal that suggests the first output is ready to be sent out
else
output_strobe<="0"';
end if;

end process;

[]process(counter_p,xferEn_p,LFSRDut,data_inbuf_p]

|begin

(counter p>0 and counter_ p<t+l) then
data_out<=data_inbuf p:

Combinational logic for parity-bits registers of LEFSR component.

data_out | (p*GFPower-
data_out | (p*GFPower-

elsif (xferEn p='l") then --we only want the last ten output from LFSR
17) downto (p*GFPower-24)) <=IDFT (LFSRout (0) , LFSRout (1) , LESRout (2}) (0) ;
9)downto (p*GFPower-16)) <=IDFT (LFSRout (0) ,LFSRout (1) ,LESRout (2)) (1)
l)downto (p*GFPower—-2)) «<=IDFT (LFSRout (0) ,LFSRout (1) , LFSRout (2}) (2):

data_out | (p*GFPower-
else
data_out<=(others=>"'
end if;
end process;
end architecture;

0

Figure 4-24: Post-processing of low-latency RS(255,225) encoder with p = 3.

86

4.2.2 Implementations with Speed-Up Coefficients p =5 and p = 15

Both of low-latency RS(255,225) encoders with p = 5 and p = 15 follow
the same implementation logic and style. In this subsection, only the difference
on implementation are listed and discussed. VHDL codes of the different parts
are shown in Appendix A.

Set-Up. The sizes of “data_in” and “data_out_p” are different for
each p value because p value decides how many message-words are transmit-
ted at each clock cycle and correspondingly, the number of bits is equal to
(p - GF Power), that is, 40 bits for p = 5 and 120 bits for p = 15. The LFSR
component declaration is certainly changed because for different p there are
different LFSR length and thus, the number of generator polynomial coeffi-
cients is different. As for the signal declaration, as long as basic parameters are
changed, all other modification will happen automatically such as pre-defined
types, data signals, because they are defined by the basic parameters. One
more modification is to add more constants for the higher order of ¢ because
DFT and IDFT functions for bigger p are defined based on them.

Defining Function. For different p values, DFT and IDFT functi-
ons need to be modified based on the formula DFT(M); = Z?;épi’ij and
IDFT(f), = S-p ;.

Component Instantiations. There are always p LFSRs instantiated.
Also in each instantiation, modification should be made based on the compo-
nent declaration which has been discussed above.

Preprocessing before LESR. The only thing that needs to be revised
is the expression for “DFTout”, based on the change in the DFT function
and the size of “data_in”. Recall that the DFT function always has p inputs,

and each input is in the type of “Galois_Field element”.

87

LFSR Implementation. There are three parts to modify for a dis-
tinct p value. First, the number of polynomial generator coefficients are chan-
ged due to the length change of LEFSR. Second, “data_size”, “coded_size”
and “errCap”of basic parameters need to change based on the equations
t = k/p, m = n/p and | = r/p, respectively. Third, the combinational lo-
gic of “parity_reg” is changed by deleting the expressions of its last-part
components, as the LFSR becomes shorter for larger a p value.

Output Controller. The only place to modify is the expressions of
“data_out”, due to its size change and the change in the number of IDFT
function inputs and outputs.

4.3 Synthesis and Simulations Results for the Encoder

This section include both FPGA synthesis results and ASIC synthesis
results. For better explanation, the conventional RS encoder can be thought as
a low-latency RS encoder with p = 1 which has no DFT and IDFT components.

The FPGA used is Altera DE2-115 board, specifically Cyclone IV E with
device number “EP4CE115F23C8L”. The software used for synthesis and si-
mulations is Quartus II 15.0. The synthesis results are shown in Table 4-3.
The functional simulation results for encoders with each p value are shown Fi-
gure 4-25, 4-26 and 4-27. The timing simulation results are shown in Appen-
dix C. The results have been verified by the encoder implemented in MATLAB.
For better presentation, all data signals are represented in hexadecimal form,
and the 225 input message-words are all set to 3, that is “03” in hexadecimal.
As three message-words are input at each clock for p = 3, so “data_in” is
“030303” for all input clocks. Similarly, “data_in” is “0303030303” for p =5
and ”030303030303030303030303030303” for p = 15.

As the results shown, the low-latency RS encoders can speed up the enco-

ding algorithm by a factor almost equal to p, which proves the major feature

38

RS(255,225) Encoders with Error-Correction Capacity 15
Altera DE2-115 FPGA

Encoder Total Max Hardware Costs

Name Clock | Frequenc | Registers | Combinational
Cycles | (MHz) Logic

Conventional RS 256 249.53 323 179

Encoder

Low-Latency RS 87 204.21 362 210

Encoder (p = 3)

Low-Latency RS 53 236.46 410 1031

Encoder (p = 5)

Low-Latency RS 19 206.78 650 1914

Encoder (p = 15)

Table 4-3: Comparison of FPGA synthesis results for different encoders.

.l/ 87 clock cycles ﬁ
. | Lups Eﬂ‘!] ns Jm‘lﬂns Z“ﬂ.lﬂ ns EZEI.‘EI ns Am}.luns WD?DM Sﬁﬂ.‘ﬂrﬂ GW‘IDI‘\S TZD.‘DFE Em..ﬂﬂi Eﬂ]‘lﬂ ne
ok
i reset_n B _|
. put_strabe B J
iy data_in H 030303
24 5 ldataoutp H [000000 X 030303
2% encdoep B
5 output_strobe /

¥

¥ amaaas W epepep f s0s050) 191918 % FFA7 Y EAEAEA X Seses6 W 050505 X B3B3 N eEeEeE N

Figure 4-25: Functional simulation of low-latency RS(255,225) encoder with
p=3.

claimed in [17]. The maximum clock frequency decreases with p increasing
because larger p causes more complicated DFT and IDFT components, which
leads to longer critical path and thus smaller maximum clock frequency. Ho-
wever, one thing should be noticed that for p = 5, the encoder’s maximum
clock frequency is surprised high. While this abnormal fact did not show up in
ASIC synthesis results. The possible reason can be the routing rules of FPGA

responding better to shorter LFSRs, and when p = 5 this benefit surpasses

39

l§ 53 clock cycle ﬂ

0ps 40.0ns 80.0ns 120.0ns 160.0ns 200.0ns 240.0ns 280.0ns 320.0ns 380.0ns 400.0ns 440.0ns 480.0ns 520.0ns 560.0ns
0 0 i i v i i i i i i ' ' '
ps

Name

(LU= 3 B
n_ reset_n Bl

]
input_strobe B

b

Y data_in H 0303030303

“4 5 dataoutp H f000ODODOOD 0303030303
@ encdonep B M
LS output_strobe B ﬂ /

¥
(cacacacaca X FPFFFFFFF ODODODODOD X FAFAFAFAFA X FIFIFIFIFL X 383838338

Figure 4-26: Functional simulation of low-latency RS(255,225) encoder with
p=5.

le 19 clock cycle: N|
Name 4 0ps 30.? ns 601‘3 ns 90.9 ns 120}0 ns 150}0 ns 160.‘0 ns 210}0 ns 240}0 ns 270.‘0 ns 300.‘0 ns 330}0 ns
o|oes
o dk B
n reset_n B —|
" inputstrobe B 1
e data_in H 030303030303030303030303030303
24 5 dataoutp H|f_00000D00000000D000000000000000 030303030303030303030303030303 I hooc
9 output_strobe B ’_\
a4 enc_donep B l/ ’_l_
l(808080808080308080808080808080 X 838383838383838383838383838383)

Figure 4-27: Functional simulation of low-latency RS(255,225) encoder with
p = 15.

the drawback from DFT and IDFT components. As for the hardware cost,
the resource used by the low-latency RS decoder with p = 15 is about five
times of that used by a conventional RS encoder. The reason can be explained
in term of the structures. A low-latency RS encoder or decoder is essenti-
ally made by breaking a conventional RS encoder or decoder into p parts and
connecting them to DFTs and IDFTs. As the hardware cost of the conven-
tional RS encoder is very small, the hardware costs of the DFT and IDFT
components that are proportional to p, have a significant impact on the total
hardware costs. Nevertheless, this situation does not exist for low-latency de-
coder implementation because the conventional RS decoders are much more

complicated. Moreover, the hardware costs of a low-latency RS encoder are

90

still small. For the encoder with p = 15, the resource usage is less than 2% of

FPGA according to the synthesis report from Quartus II.

RS(255,225) Encoders with Error-Correction Capacity 15
65nm TSMC

Encoder Area Power Max Data

Name (um?) | Comsumption | Frequency | Rate
(mW) GHz Gbps

Conventional RS || 0.798 - 10* 5.601 2.77 22.16

Encoder

Low-Latency RS | 0.629 - 10* 3.97 2.71 65.04

Encoder (p = 3)

Low-Latency RS || 1.36 - 10* 13.34 2.68 107.2

Encoder (p = 5)

Low-Latency RS || 4.79 - 10% 23.18 2.08 249.6

Encoder (p = 15)

Table 4-4: Comparison of ASIC synthesis results for different encoders.

The technology used for ASIC synthesis is 65 nm TSMC and the results
are shown in Table 4—4. The data rate increases about linearly with p, which
is expected as it is one of the major features of the proposed RS algorithm.
Another expectation got verified is that max clock frequency decreases also
about linearly with p, which is explained in last paragraph. As for areas,
the results have consistent trend to the hardware costs from FPGA synthesis.
Specifically, the encoder with larger p costs more hardware and area. However,
one exception is that the area for conventional RS encoder slightly larger than
the low-latency one with p = 3. There are two possible reasons responsible
for this inconsistence. First, some arithmetic logical elements are omitted
when the one long LFSR of the conventional RS encoder is split into three

shorter LFSRs of the low-latency one with p = 3. Second, the rules of ASIC

91

routing may result in a larger area for the longer sequential structure, which
is a subject to confirm in the future work. The power consumption results of
the encoders are expected and can be explained by dynamic power formula of
CMOS transistors, as it occupies about 80%-90% of total power. The formula
is P = CV2F A where C is the capacitance, V is the supply voltage, F is the
clock frequency, and A is the activity factor modeling the average switching
activity. Correspondingly, the power consumption results are mainly following
the trend of area as the change in hardware costs is large, whereas the clock
frequency difference is relatively small.

In conclusion, although low-latency with small p value can indeed improve
the conventional design, large p value also raises the hardware cost and po-
wer consumption significantly because the simplicity of the encoder structure
makes the added DFT and IDFT components affect considerably.

4.4 Decoder Implementation

In this research, three low-latency RS(255,225) decoders with different
speed-up coefficient p have been implemented in VHDL and tested. The im-
plementation logic follows the structure shown in Figure 3-2. The entire im-
plementation consists of four VHDL files. One is the top file, and the others
are components. All the details are discussed in the rest of the section.

4.4.1 Implementation with Speed-Up Coefficient p=3

Figure 4-28 is a block diagram for low-latency RS(255,225) decoder with
p = 3. At each clock, three received-words enter a splitter and are split into
three single received-word. Then they enter into three syndrome calculators.
This process repeats for n/p = 85 clock cycles and each syndrome calculator
finally generates r/p = 10 syndromes. The 30 syndromes are organized as a
single vector and enter Berlekamp-Massey algorithm in which a vector con-

taining the error-locator polynomial coefficients and another vector containing

92

the error-evaluator polynomial coefficients are computed after » = 30 clock cy-
cles. Afterward, the modified Chien search and correction process is activated.
The error-locator polynomial is split into three parts, and each one becomes
an error-location searcher. At each clock cycle, the results generated from er-
ror location searchers are then applied with inverse Fourier transform to see if
any error locations are found. At the same time, error evaluation is also run-
ning based on error-evaluator polynomial and error-locator polynomial. To be
consistent with the number of error locations that are checked at each clock
cycle, three same error-evaluation processors are used. At each clock cycle, the
output controller sent out a vector containing three correction-words. When
any error location is found, the corresponding error value is added to the
received-word at that location, and the sum is sent out as a correction-word.
Otherwise, the correction-words are just as same as the received-words. After
another n/p = 85 clock cycles, all the correction-words are sent out. In the
following paragraphs, VHDL codes for each file are discussed with details.
LowLatRSdec n255k225 p3_syn.vhd. Figure 4-29 shows the port
declaration. There are four inputs. Besides “reset” and clock signal “clk”,
another input “data_in” is a vector with 24 bits because three 8-bit received-
words are received at each clock cycle. “input_strobe” is also an input signal
to activate the decoding process. The three outputs are “syndrome_out”
which is a vector with 240 bits (30 8-bit syndromes), “error_present_out”
which suggests if there is any error in the received-words, and “synd_calc_done”
which suggests the end of the syndrome calculations and activates the Berlekamp-

Massey algorithm.

13

Figure 4-30 shows the signal declaration. The signals with suffix “_p”
are all register signals and their counterparts are the combinational logic sig-

nals for register update. A constant vector “alpha” is created to include

93

» Delay Block

LowLatRSdec_n255k225_p3.vhd | LowLatRSdec_n255k225_p3 "
: i _chienNcorrect.vhd ' :
: 1 :
. L ®
H " Error Location] H
' Search 0 '
: R e e I ' :
: \ LowLatRSdec_n255k225_p3_syn.vhd " LowLatRSdec; | Eoroe Location | , :
: . mor Location :
: ' 11 _n255k225 1 v ¥ Spiitter ﬁ *| Search 1) . :
: . " "p3 bmvhd | ' :
.] v _Po_bmuv B] :
. i Syndrome [-] :
: [Calculation 0 ' Ermor Location] :
: ! [Search 2 ' .
: YYYy :
: ' " \ C0,---y C253, C254 :
: ro,..., 253, 254 " > spitter - r_ Syndrome _ > Syndrome mm_”__w_wwau. H Output § U05eeey ' :
: e Rl W "l calculation 1 5| Combiner .p_uo:Sw_..: M Error Controller| :
H i > . i H
' " " Evaluation .
: ! Syndrome (N I .
: ! Calculation 2 v Error ' :
: ' i Evaluation ' :
: ! " [' :
: ! " (] —— i :
: S [R B 4| Emor ! :
: ' " Ewvaluation ' :
. i \) [l :
H [i :
. 1] :
H]] :
H [l] :
H i] :
H 0 i :

Figure 4-28: Structure of low-latency RS(255,225) decoder with p = 3.
94

1 library ieee;

2 use ieece.std logic lle4.all;

3 use ieee.std logic unsigned.all;

4

S Benticy LowLatRSdec n255k225 p3 syn is |

[Hport (xeset: in std logics

7 data_in: in std_logic_wector (23 downto 0});:

8 clk: in std logic:

g input_strobe: in =std logics

10 synd calc done: out std logic;

11 Error present out:out std logicy

12 syndrome out: out std logic wector (IZ3% downto O)
13 - }r— 30 syndromes and sach syndrome has § bkbits=>total 240 bits
14 end;

Figure 4-29: Port declaration of syndrome component.

all elements in GF(2%). In data signals part, “intS_p” refers to the inter-
mediate syndromes and it is a two-dimensional vector where each row refers
to all the ten syndromes calculated from a particular syndrome calculator.
“intEP_p” refers to intermediate error-present signal whose size is consistent
with “intS_p”. As for control signals, “xferSyn_p” is a signal to activate
output process of the final syndrome vector.

The declaration of addition, multiplication and DFT functions are the
same as those of the encoder which has been already described in the last
section.

Figure 4-31 shows the process for register update. All register signals are
updated to their combinational logic counterparts at each clock’s rising edge
except when “reset” is 1, in which case all register signals become zero.

Figure 4-32 shows a finite state machine. There are four state: “Idle”,
“Initialization”, “Calculation” and “OutputReady”. When “input_stro
be” is high, the state transfers from “Idle” to “Initialization” in which the
counter is enabled and all signals are set up. This state is only up for one
clock cycle and followed by “Calculation” state in which the control signal

“DoCalc” is activated and intermediate syndrome calculation starts. After

95

O €0 C0C0 0 0 C0C0 D =)] =] =] =] =] =]] ~J=Jh O 3 v v’ o 0nnononononononon s b b b b B B e e B W W W W W W W W Wl B B L
LT T T Y S T = LV T = "R B PO Y Sy ¥ oy Oy e T T O I 0 Y o B B = I < B = B s O Y-y 'y O T s T ' S - B I 0 Y O B = ¥ < B B I O T Yy B B e e Y B . L2 B o ¥V I O I Sy

Harchitecture RTL of LowLatRSdec_nIS5SkZZ5 _p3_syn is
————————— basic parameter

constant GFPower: teger:=3;

constant 255; —-codeword length

constant ——message word length
constant ——parity bits length =255-225

constant
constant
constant

--m=N/p=255/3=8

--L=R/p=30/3=10
constant 3;-—-speed-up coefficient

constant nteger:=p*GFpower; --number of bits in data_in
————————————— predefined useful type
subtype Galois_Field element is std logic_vector ((GFPower-1) downto 0);
type alpha_type is array (0 to 254) of Galois_Field element;

type intS subtype is array (0 to (L-1)) of Galois_Field element:;

type int5_type is array (0 to p-l) of int5_subtype;
type IntEP_subtype is array(0 to (L-1)) of std logi
type IntEP_type is array(C to p-l) of intEP_subtype;

type FT_type is array (0 to (p-1)) of Galois_Field element;

type state_type is (Idle, Initialization, Calculation, CutputReady):;

10;

———————— constant
constant zero: Galois_Field element :="00000000";
constant alpha:alpha type:= --all the elements of GF(2"8), starts with alpha(0)=a™0.

=l (roooooool™, 00000010, "00000100", "O00001000™, "00010000™, 00100000, 01000000, "10000000™
,"00011101","00111010","01110100", 11101000 ,™11001101", 10000111, "00010011",
"Q0100110"™,™01001100","10011000","00101101"™, 01011010, 10110100, "01110101™,™11101010",
"lipoliogliw,"10001111", 00000011, "O0O000110", "00001100™, "00011000"™, "00110000™,
"Q1100000",™11000000", 10011101, "00100111", "01001110™, 10011100, 00100101, "01001010",
®10010100",™00110101","01101010"™,™11010100"™, 10110101, ™01110111"™,™11101110",
®11000Q001",™10011111","00100011","01000110"™,"10001100™, "00000101"™, "0000L010™, "00010100",
"Q0101000™,™01010000™,"10100000™,"01011101"™, 10111010, "01101001™,"11010010",
TigliiioQivw,"o01101111","11011110", 10100001, "01011111",™10111110"™,"01100001"™,™11000010",
®1oQ0l1iool™,™00101111","01011110", 10111100, "01100101™,"11001010™, "10001001",
TQogol111iv,"00011110","00111100", 01111000, 11110000, 11111101 ™, ™11100111", 11010011,
®ipliipgii-,™o0l101011","11010110", 10110001, 01111111, ™11111110™,™11100001",
®11011iii-,™10100011","01011011", 10110110, 01110001, 11100010, "11011001"™,"10101111",
"Q0l000011","10000110","00Q010001"™, "00100010","01000100™, "10001000"™, "00001101",
"Q0011010"™,™00110100","01101000™, 11010000, 10111101, "01100111"™,"11001110"™,™10000001",
TQoQol1iii-,™oo111110","01111100","11111000™, 11101101, 11000111, "10010011",
"Qol11o011",™01110110","11101100", 11000101, 10010111, 00110011, "01100110™,™11001100",
®10Q0o0Q101","00010111","00101110", 01011100, "10111000™, 01101101, "11011010"™, 10101001,
TQ1001111",™10011110","00100001", "01000010"™, "10000100™, "00010101™, "00101010",
"Q1010100",™10101000","01001101", 10011010, "00101001™,"01010010™,"10100100™, 01010101,
"10101010","01001001™,"10010010"™,™00111001","01110010™,™11100100"™,"11010101",
®1p11i0Q11i-,™01110011","11100110","11010001"™, 10111111, "01100011"™,"11000110"™, 10010001,
"gp111111™,™01111110",711111100","11100101","11010111","10110011","01111011",
®11110110",™11110001","11111111","111000121","11011011"™,"10101011"™,"01001011"™,™10010110",
"Qo110001","01100010","11000100", 10010101, "00110111"™, 01101110, ™11011100",
Ti010010Q1","01010111","10101110", 01000001, 10000010, 00011001, "00110010™, ™01100100",
®11001o0Qo"™,™10001101","00000111", "00001110"™, "00011100"™, ™00111000™, "01110000™,
®11100Q000",™11011101","10100111","01010011", 10100110, "01010001™,"10100010"™, 01011001,
®10110010"™,™01111001","11110010","11111001"™, 11101111, "11000011"™,"10011011",
"Qololo011",™01010110","10101100™, "01000101"™, "10001010™, "00001001™, "00010010™, "00100100",
"Q1001000™,™10010000","00111101","01111010"™, 11110100, ™11110101™,™11110111",
®1111¢oQli1v,™11111011","11101011","11001011", 10001011, "00001011"™, "00010110™, "00101100",
"Q0l0l1100Q0"™,"10110000™,"01111101"™,™11111010","11101001",™11001111"™,"10000011",
"Qoo1l1o011",™00110110","01101100", 11011000, 10101101, "01000111"™,"10001110"™)

constant g: Galois_Field element:="11010110"; --set the 3rd root of unity

constant gZ: Galois_Field element:="11010111"; --sgquare of the 3rd root of unity
——————————————— data signal
signal syndrome, syndrome | td logic_vector (232 downto 0);

signal counter, COUnter_p: 1teEger 0;

signal int5,intS5S p: int5_type; —-intermediate syndromes. two-dimensional wvector

signal intEP: intEP_type; —-intermediate error present, the size is consistent to int3 and intsS p
signal DFTout: FT_type;

- control signal
signal state,state_p: State_type;

signal error present,error present p:std logic:
signal initialize,initialize p:std logicy
signal countEn,countEn p:std logicy

signal countRst,countRst_p:std logicy

signal xferSyn,xferSyn p: std
signal DoCalc,DoCalc_p: std logic;

Figure 4-30: Signal declaration of syndrome component.

96

162 [Hbegin

163 | ———————————————— register updat

164 [Hprocess(clk)

165 | begin

166 [£ if (clk'event and clk='1l') then
167 =] if({reset="1") then

168 xferSyn p<='0"';

leg initialize p<='0"';

170 DoCalc p<='0"';

171 countRst_p<='1";

172 countEn p<="'0';

193 state_p<= Idle ;

174 counter_p<=0;

175 = for i in 0 to p-1 loop
176 =] for j in 0 to (L-1) loop
177 ints _p(i) (j)<=zexro;
178 - end loop:

179 = end loop;

180 syndrome p<=(others=>'0"'});
181 F error_present_p<='0"';

182 [H else

183 xferSyn_p<=xferSyn;

184 initialize p<=initialize;
185 DoCalc p<=DoCalc;

186 countRst p<=countRst;

187 countEn p<=countEn:

188 state_p<= state ;

189 COunter p<=counter;

180 int5_p<=int5;

151 syndrome_p<=syndrome;

152 Srror_ present p<serror_present;
193 = end if;

154 b end if;

185 Frend process;

Figure 4-31: Register update of syndrome component.

n/p = 85 clock cycles, the calculation process is finished, the control signal
“xferSyn” is up and the state turns to “OutputReady” where all interme-
diate syndromes are ready to be organized into a single syndrome vector. One
clock cycle later, the state goes to “Idle” automatically.

Figure 4-33 shows the counter behavior. Asusual, the counter only counts
when “countEn_p” is high.

Figure 4-34 shows all other combinational logic processes for data sig-
nals. “DFTout” is acquired by applying Fourier transform on the input
received-words. Each intermediate syndrome is calculated using a conven-
tional recursive multiplication shown in Figure 4-35 and it follows the formula
given in Step 3 of Section 3.2.2. Fach “intEP” suggests if the intermediate
syndrome at the same index is a zero. For the final output, “syndrome”

2

and “error-present” are both generated by connecting all the corresponding

intermediate data signals and one clock cycle later, these values are passed

97

1%6
187
198
15849
Z00
201
0z
203
204
205
z0e
o7
208
208
210
211
212
213
Zl4
215
Zle
217
218
zZls
220
221
222
223
224
225
el
227
228
229
230
231
232
I33
234
235
236
237
238
238
240
241
242
243
244
Z45
246
247
248
249
250
251
252
253
254
255
256
I57
258

[jpracess(state_p,input_strobe]
|begin
= case state p is
| when Idle =>
= if (input strobe='1")
xferSyn<="'0";
initialize<="'1l";
DoCalc<='0";
countRst<
countEn<="'1";
r state<=Initialization:
= else
xferSyn<='0";
initialize<='0";
DoCalc<='0";
countRst<="'1";
countEn<='0";
state<=Idle;
end 1f;

then

when Initialization =>
xferSyn<="'0";
initialize<='0";
DoCalc<="1";
countRst<="'0";
countEn<='1";
state<=Calculation;

when Calculation=>

= if (counter p=m-1)
initialize<='0";
xferSyn<="'1";
DoCalc<="0";
countRst<="1";
countEn<="
- state<=CutputReady;
= else

xferSyn<="0";
initialize<='0";

then

L
e

DoCalc<="1";

countRst<="0";

countEn«<="1";

state<=Calculation;
end if;

when CutputReady =>
xferSyn<="0";
initialize<='0";
DoCalc<='0";
countRst<="1";
countEn<="'0";
state<=Idle;

when others=>
xferSyn<="'0";
initialize<='0"';
DoCalc<="0";
countRsc«<=
countEn<="'0";
state<=Idle;

r end case;

rend process;

Figure 4-32: Finite State Machine of syndrome component.

98

260 Elproc:ess (countRst_p,countEn_p, counter_p)

261 | begin

262 =] if (countRst_p="l')then --reset when resset="1l' (not "0'!!}).
263 |- counter<=0;

264 = elsif (countEn p='1l'} then

265 |— counter<=counter p+l;

Zee [H else

267 counter<=0;

268 end if;

269 end process;

Figure 4-33: Counter process of syndrome component.

to “syndrome_out” and “error_present_out”. Besides, “synd_calc_done”
which indicates the end of syndrome calculations and activates the Berlekamp-

Massey algorithm, is a copy of “xferSyn_p” and only up for one clock as well.

LowLatRSdec_n255k225 p3_bm.vhd. Figure 4-36 shows the port
declaration. “synd_calc_done” is the input control signal indicating that the
syndrome calculations have been done. When it is equal to 1, Berlekamp-

2

Massey algorithm is activated. “error_present” is an input signal generated
from last component and indicating if there is any error in the received-words.
“syndrome” is a 240-bit input vector containing all syndromes calculated
from last component. There are three outputs: an error-locator polyno-
mial denoted as “lambda_poly”, an error-evaluator polynomial denote as
“omega_poly” and a control signal “startChien_p” which indicates the end
of Berlekamp-Massey algorithm and activates the next decoding process: mo-
dified Chien search.

Figure 4-37 shows the signal declaration. “keepOIldL” is a control signal
standing for the condition A®*+Y =£ 0 and 2L™ < k. The number of elements
insides “Omega_p” and “Ax_p” are all 16 instead of 15 because the zero-

index element is taken as the coefficient associated with 27!, “SReg_p” is

a set of register storing syndrome values. Its size is 1.5 times of the number

99

321
3z2
323
324
3z2s
326
327
328
329
330

s -
[]DFTouc<=DFT(data_in([bicNumf_TldDwnta(bitNumf:%J),data_in[[bicNumfaldDwnta(bitNumf;GJJ,
data_in(({bitNum-1)downto (bitNum-2)));

Bprocess (initialize_p,DoCalc_p,DFTout,ints_p)

begin
int5<=int5_p;
= if (initialize p='l') then
= for i in O to p-1 loop
= for j inm 0 to (L-1) loop
ints5(1i) (j)<=DFTout (i);
r end loop:
r end loop;
= elsif (DoCalc p="l') then
= for i in 0 to p-1 loop
= for j in 0 to L-1 loop
int5 (1) (J)<=add (mul (alpha (i+3*p),intS_p(i) (1)) ,DFTout(i));
r end loop:
r end loop;
r end if;
end process;

Elprocess (intS_p)

|begin

= for i in 0 to p-1 loop

= for j in O to (L-1) loop

| intEP (1) (3)<="'1

= if (intS_pi(i) (3) ro) then
AintEP (i) (§)<="0";

r end if;

r end loop;

r end loop;

end process;
Elprocess (initialize_p,xferSyn p,intS_p, syndrome_p,error_present_p, intEP)
begin
syndrome<=syndrome p;
Error_present<=error_present_p;
=] if (initialize p="1') then
syndrome<=(others=>"0"')
&rror_present< :

= elsif (xferSyn p= } then
syndrome<=int5_p(2) (2)& inct5_p(l) (2} & int3_p(0) (%) & inc5_p(l) ()& int5_p(l) () & int3_p(0) (3)
& intS p(2) (7)& intS p(1) (7) & intS p(0) (7) & intS p(2) (6)& intS p(l) (6) & intS p(0) (&)
3)& int3_p(l) (5) & int5_p (¢ 5) & 1 (4)& int3_p(l) (4) & 1
(3)& int5_p(l) (3) & inmt5_p(0) (3) & 1] & int3_p(l)(2) & 1
& intS p(2) (1)& intS p(l) (1) & intS p(0) (1) & intS p(2) (D) & intS p(l) (0) & intS p(0) (0);
-- =(s_(n-k-1),...,s82,s1,s0)
error_present<=intEF (0 c intEP(0) (Z) oxr intEP(0) (3) or intEP(0) (4) or intEP(0) (5)
or intEP 7 or intEP(C) (8) or intEP(0) (9) or intEP(1) (0) (1)
or intEP(1) or AintEP(1) (3) or intEP{1)(4) or intEP(1) (3) or intEP(1) (&) (7)
or intEP(l) or intEP (1) (8) or incEP(2) (0) or intEP(Z) (1) or intEP(Z) (2) or intEP(2) (3
or intEP(2) (4) or intEP(Z) (5) or intEP(2) (6) or intEP(2) (7) or intEP(2) (8} or intEP(2) (9):

—— to check if there is any error appeared in the received code-word
- end if;

end process;

syndrome_out<=syndrome p;

eIYor_present_out<=error_present_p;

synd calc done<=xferSyn_p:

—end architecture;

Figure 4-34: Combinator logic of syndrome component.

o

FT out; (x) 5|

Figure 4-35: Recursive Multiplication Block.

of syndromes, because 15 extra slots need to be left in advance for back-

shift of syndrome values according to the formula A%*+Y) = ZLW a](-k)Sk_j.

j=0

“Convolution_Term”, “Convolution_term_multiplier and “post_convol

100

LTI R B T L A O

10

likbrary iecse;
use ieee.std logic 1164.all;

use ieee.std logic

nsigned.all;

Hentity LowLatRSdec:nZSSkZZS_p3_bm is
Hport (reset: in std logics

clk: in std_logic:

synd_calc done: in std logic;

error_pregent:in =std logic:

syndrome: in std logic_wector (239 downto 0);--30%8=240

lambda poly:out std logic wvector (127 downto 0);--error locator polynomial 1e%8=1Z
omega_poly: out std logic vector (119 downto 0); —-error evaluator polynomial 15
startChien p: out std_logic):

end;

Figure 4-36: Port declaration of BM component.

ution_term” are three supporting vectors for computing “Delta”. More de-

tails are introduced in later paragraphs.

17

o
13 b G o

w

W b b b b b b b B b B W W W W W W W W WoWw k) L by b L
MWL O W0 -] m s WO WM] e WO W0] d N

[Flarchitecture RTL of LowLatRSdec n2ZS55kZZ5 p3 bm is
——————————— basic parameter
constant GFPower:
constant N: integ
constant errCap:
constant R: intege

——error-correction

=30;:

type
type
type
type
type

subtype Galois Field element is std logic vector ((GFPower-1) downto O

pre—defined useful type

SRegType is array (0 to (3*errCap-1)) of Galois Field element;
PolylType is array(0 to errCap) of Galois Field element;
Poly2Type is array(0 to Z¥*errCap) of Galois Field element;
Poly3Type is array(l to errCap) of Galois Field element;
state_type is tIdle,Initialization,bpdate}:

constant zero: Galois_Field element
constant one: Galois Field element :="00000001";
——————————————— cnntrgl sig;al
signal startChien: std logic;
signal state,state_p: state_type:

signal initialize,initialize p: std logic;

signal storeNewPolys, storeNewPolys p: =std logic;

signal countEn,countEn p:std logic:

signal KeepOldL:std logic:;-- = if $\Delta™{ (k+1)} ‘neg 0 \text{ and } 2L*{(k)}\leg k% is true
777777777777777 data signal
signal counter,counter p:std logic_wvector (7 downto 0);

signal SReg,SReg p: SRegType; —-syndrome register

signal Delta:Galois Field element;

signal Convolution Term: PolylType:

signal Convolution term multiplier: std logic vector (errCap downto 0);
signal post_convolution term: polylType:

signal L,L p:std logic vector (7 downto 0); ——-maximum L=15

signal TwnE:std_?mg;c -
signal Bx,Bx p: PolylType;--coefficient set of error-locater supporting polynomial
signal lambda,lambda p: PolylType; --—coefficient set of error-locater polynomial

onstant

=="00000000";

vector (7 downto 0); —-maximum 2ZL=30

signal xDeltaBx: Poly3Type; -— = x*Delta*B(x)

signal Omega,Omega p: PolylType:-—coefficient set of error-evaluator polynomial
signal Ax,Ax p: PolylType; --coefficient set of error-evaluator supporting polynomial
signal xDeltalAx: Poly3Type; -—- = x*Delta*h(x)

Figure 4-37: Signal declaration of BM component.

For function definitions, as addition, multiplication and inversion have

been given in the previous section, the VHDL codes are not shown here again.

There are two new functions shown in Figure 4-38. “is_not_0" is a function to

check if a 8-bit vector is zero. “convolution_term_mul” is a multiplication

function between a 8-bit vector and another single bit.

101

253 Ef'.:mc:t,ion is mot_0 (a: in Galois_Field element) return std logic is variable d: std logicy
254 [Hbegin

255 d:=a(0) or a(l) or a(2Z) or a(3) or a(4) or a(S) or a(€) or a(7):

256 return d;

257 end is_not_ 0;

258

259 Hfunction convolution term mul (a: in Galois_Field element; c:in std_logic)
Ze0 |— return Galois Field element is variable d: Galois Field element;
26l [Hbegin

262 d{l):=a(0) and c

263 d(l):=a(l) and c

264 diZ):=a(l) and c

265 di2):=a(3) and c

266 di4):=a(4) and c

267 di5):=a(5) and c

268 d(€):=a(€) and c

269 d(7):=a(7) and c

270 return d;

271 end convolution term mul;

Figure 4-38: Newly defined functions of BM component.

Figure 4-39 shows the register update. At each clock’s rising edge, all
register signals go to zero, when “reset” is high. Otherwise, the register
signals are updated to their combinational logic counter parts.

Figure 4-40 shows the finite state machine. When all syndromes are calcu-
lated from the last component, “synd_calc_done” turns up. Then “initialize”
goes to 1 and the state transfers from “Idle” to “Initialization”. If “error_p
resent” is 0, which means there are no error in the received-words, then
“startChien” turns to 1 and the state goes back to “Idle”. Otherwise,
“storeNewPolys” and “countEn” become 1 and the state goes to “Update”.
During this state, calculation iterations are under progress and the coun-
ter keeps counting. When “counter_p” reaches r = 30, “startChien” is
up which indicates the calculation process is finished and the states goes to
“Idle”.

Figure 4-41 shows the counter behavior. As usual, the counter counts
only when “countEn_p” is 1.

Figure 4-42 shows the calculation process of “Delta”. In initialization
state, 30 syndromes are assigned to the last 30 elements of “SReg”. While the

2

first 15 elements are assigned to zero. When “storeNowPolys p” is equal

to 1, at every clock cycle, the elements of “SReg” shift back by one position.

102

273 begin |

274 register updat
275 [Hprocess(clk)

276 | begin

277 = if (clk'event and clk='l"') then
278 H if(reset='1") then

275 initialize p<='0";

280 storeNewPolys_p<='0";

281 startChien p<='0";

282 countEn_p<='0";

283 state_p<= Idle ;

284 = for i in O to (3*errCap-l) loop
285 SReg_pli)<=zero;

286 o end loop:

287 L p<=(others=>'0");

288 counter_p<=(others=>'0");

288 = for i in O to errxCap loop
240 Bx_p(i)<=(others=>'0");
281 o end loop:

282 = for i in O to errCap loop
243 lambda p(i)<=(others=>'0");
254 i end loop:

295 = for i in O to errCap loop
296 Ex p(i)<=(others=>'0");
287 B end loop:

298 = for i in O to errCap loop
Sl omega_p(i)<=(others=>'0");
300 r end loop:

301 H else

302 initialize p<=initialize;

303 storeNewPolys_p<=storeNewPolys:;
304 startChien p<=startChien;

305 countEn_p<=countEn;

3086 state_p<=state;

307 SReg_p<=SReg;

308 L p<=L;

309 counter p<=counter;

310 Bx_p<=Bx;

311 lambda_p<=lambda;

312 Bx p<=Rx;

313 omega_p<=omega;

314 r end if;

315 - end if;

316 rend process;

Figure 4-39: Register update of BM component.

The elements are multiplied with the error-locator polynomial following the
formula O'](-k) - Sk—;. Then the case statement based “L_p” and the calculation
process of “post_convolution_term” determine every term of the formula
Z]L:g a}k)Sk_j. Finally, “Delta” is obtained by adding these terms together.
Figure 4-43 shows the update of error-locator polynomial. A*+1. B*)(z).
x is first calculated as “xDeltaBx”. Then the new error-locator polynomial
is computed following the formula o**V(z) = o™ (z) — AK+D . BR) (7). 2,
Figure 4-44 shows the update of error-evaluator polynomial. The process

follows the same style as an error-locator polynomial.

103

317 | —————————————— finite state machine-----------—-—-—"—-"-—--—-"-"—--"—"—"—"—"———————————
318 Eprocess(stat.e_p,sy‘nd_calc_done,error_present,cnunter_pj
319 | begin

3zo H case state_p is

321 | when Idle =>

322 = if (synd_calc _done='l"} then
323 initialize<="1";

324 storelewPolys<="'0"';

S startChien<="0";

326 countEn<="0";

327 - state«<= Initializatiom;
328 R else

329 initialize<="'0";

330 storelNewPolys<="'0";

331 startChien<="'0";

33z countEn<="0";

333 state<=Idle;

334 end if;

335 -

336 when Initialization =>

337 = if (error present="0"'} then
338 initialize<="'0";

339 storeNewPolys<='0";

340 startChien<="1";

341 countEn<="0";

342 = state<= Idle;

343 H else

344 initialize<="0";

345 storeNewPolys<='1";

346 startChien<="0";

347 countEn<="1"';

348 state<= Update;

T end if;

350 -

351 when Update=>

352 = if (counter_ p="011101"} then --30-1=25=011101
353 initialize<="0";

354 storelewPolys<="'0";

355 startChien<="1";

356 countEn<="0";

EEEIT) b state<= Idle;

358 [else

2EE initialize<="'0";

360 storeNewPolys<="'1";

361 startChien<="'0";

362 countEn<="1";

363 state<= Update:

364 = end if:

3¢ | 4 —
366 when others=>

367 initialize«<="0";

368 storeNewPolys<="'0";

369 startChien<="0";

370 countEn<="0

371 state<= Idle;

372 r end case;

373 Fend process:

Figure 4-40: Finite state machine of BM component.

Figure 4-45 shows the update of the order of error-locator polynomial
“L”, the error-locator supporting polynomial “Bx”, and the error-evaluator

supporting polynomial “Ax”.

104

ars | ——————————————counter behavior -
375 Hprocess (initialize p,countEn p,counter_p)
376 | begin

377 =] if (initialize_p='l') then

378 |— counter<=(others=>"'0");

are = elsif (countEn p='1') then

380 |— counter<=counter_p+l;

381 [H elae

382 counter<= (others=>'0");

383 end if;

384 end process;

Figure 4-41: Counter behavior of BM component.

Figure 4-46 shows the final output process. The error-locator polyno-
mial “lambda_poly” is acquired by connecting every element of the signal
“lambda_p”. The error-evaluator polynomial “omega_poly” is obtained by
connecting every element except the first one of the signal “omega_p”, be-
cause the element with zero index is taken as the coefficient associated with
21, which is mentioned in signal declaration.

LowLatRSdec_n255k225_p3_chienNcorrect.vhd. Figure 4-47 shows
the port declaration. Besides the error-locator polynomial “lambda_poly”
and the error-evaluator polynomial “omega_poly”, “startChien” is another
input to activate the processes of this component. Notice that this compo-
nent records the received-words when they enter the decoder and the pur-
pose is to reuse them for error correction and output generation. There are
three outputs: “dec_done_p” which indicates the end of decoding algorithm,
“output_strobe” which indicates the first correction-word output is ready,
and “data_out_p” which is the correction-word output. With p = 3, three
correction-words are generated at one clock.

Figure 4-48 shows the signal declaration. The figure does not include the
constants: “zero”, “one” and “alpha”, because they are also defined in the
syndrome component. For the basic parameters, “lamLength”, “derLemLength”
and “omeLength” are the number of coefficients in the error-locator poly-

nomial, the derivative of error-locator polynomial, and the error-evaluator

105

385
386
387
388
389
350
3ol
392
353
et
385
396
S5
3598
3499
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
48
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466

alculation of Delta

épzucess (initialize_p, SReg_p, storeNewPolys_p, syndrome)
begin
SReg<=3Reg_p:
= if (inicialize_p='l") then
=] for i in 0 to (erxCap-l) loop
SReqg (i) <=zero;
end loop;
= for i in 0 to (Z*errCap-1l) loop
SReg(iterrCap)<=syndrome ((((i+l)*GFPower)-1) downto (i*GFPower)):
end loop:
= elsif (storeNewFolys p='l') then
= for i in 0 to (3%*errCap-2) loop
SReg (i) <=5SReg_p(i+l); --shift back
B end loop:
SReg(3*errCap-1l)<=zero;
= end if;

end process;

Hprocess (SReg_p,lambda_p)
‘ begin
= for i in 0 to errCap loop

convolution Term(i)<=mul (SReg p(errCap-i),lambda p(i)):
= end loop;
end process;
Blprocess (L_p)
‘ begin
=] case L _p is
when "00000000™ => --maximum L=15
Convolution term multiplier<="0000000000000001";
when "00000001" =>
Convolution_term multiplier<="0000000000000011";
when "00000010" =>
Convolution term multiplier<="0000000000000111";
when "00000011"™ =>
Convolution_term multiplier<="0000000000001111";
when "00000100" =>
Convolution_ term multiplier<="0000000000011111";
when "00000101"™ =>
Convolution_term multiplier<="0000000000111111";
when "00000110" =>
Convolution_ term multiplier<="0000000001111111";
when "00000111"™ =>
Convolution_term multiplier<="0000000011111111";
when "00001000" =>
Convolution_ term multiplier<="0000000111111111";
when "00001001™ =>
Convolution_term multiplier<="0000001111111111";
when "00001010" =>
Convolution_term multiplier<="0000011111111111";
when "00001011"™ =>
Convolution_term multiplier<="00001111131111111";
when "00001100" =>
Convolution_term multiplier<="0001111111111111";
when "00001101"™ =>
Convolution term multiplier<="0011111111111111";
when "00001110" =>
Convolution_term multiplier<="0111111111111111";
when "00001111" =>
Convolution term multiplier<="1111111111111111";
when others =>
Convolution_term multiplier<="1111111111111111";
£ end case;
end process;
Hprocess (Convolution term multiplier,convolution Term)
‘ begin
= for i in 0 to errCap loop

= end loop;
end process;

Hprocess (post convolution term)

——there are 16 iterms in Bx

post convolution term(i)<=convolution term mul (convolution Term(i),Convolution term mualtiplier(i)):

begin
IL_| Delta<=add (post_convolution term(0),add(post_convolution _term(l),add(post_convolution term(l),
=] add (post_convolution_term(2),add(post_convolution term(<),add(post_convolution_term(s),
= add (post_convolution_term(€),add(post_convolution term(7),add(post_convolution_term(3),
= add (post_convolution term(9),add(post_convolution term(l0),add(post_convolucion term(ll),
= ‘add (post_convolution term(l2),add(post_convolution term(13),add(post_convolution term(l4),
post_convolution term(lS)))))1i)))d)idds
end process;

Figure 4-42: Delta calculation of BM component.

106

467 | ——————————————— deltaB (x)x

468

469 [Hprocess (Delta, Bx p)

470 | begin

471 H for i in 1 to errCap loop

472 xDeltaBx (i) <=mul (Delta, Bx _p(i-1)):

4TI - end loop;

474 rend process;

4o update of error-locater polynomial
476 Elprocess (initialize p,error_present,storeNewPolys p,xDeltaBx, lambda_p)
=470 begin

478 lambda<=lambda_p;

479 = if (initialize p='l' or error_present='0"'} then
480 [H for i in 1 to errCap loop

481 lambda (i) <= (others=>'0");

482 - end loop;

483 - lambda (0) <=one;

484 = elsif (storeNewPolys p='l') then

485 [H for i in 1 to errCap loop

486 lambda (1) <=add (lambda_p(i) ,xDeltaBx (i)}
487 - end loop;

488 - end if;

489 end process;

aqan e

Figure 4-43: Update of error-locator polynomial of BM component.

491 | ——————————————————— delta * BA(X) * H-———————— e
492 [Hprocess (Delta, Ax p)

493 | begin

454 H for i in 1 to errCap loop

495 xDeltalx (i) <=mul (Delta, &Ax p(i-1)):

496 - end loop:

487 end process;

498 -

HEna. update of error-evaluwator polynomial—-———————H—H—-———H———-—---e——ee——
500 Eﬂprocess(initialize_p,storeNewPolys_p,omega_p,Delta,nx_p]
501 begin

502 omega<=omega p;

303 = if (initialize p='l')then

L04 = for i in 0 to errCap loop

505 omega (i) <=(others=>"0");

506 - end loop;

507 = elsif (storeNewPolys p='l') then

508 B for i in 1 to errCap loop

508 omega (1) <=add (omega_p (i) ,xDeltadx(i));

510 - end loop:;

511 - end if;

512 end process;

81X -

Figure 4-44: Update of error-evaluator polynomial of BM component.

polynomial, respectively. “chienLength” refers to the number of coefficients
used in the Chien search. It should be equal to “lamLength”, but in or-
der to simplify the codes, it is forced to be divisible by p = 3 by adding
zero coefficients. Therefore, the “chienLength” is 18 instead of 16 in this
case. For the data-signal part, the signals with suffix “_product” refer to
the single-term multiplication in the process of polynomial evaluations. The

4

signals with suffix “_sum” refer to the final results of corresponding polyno-

mial evaluations. The specific structures are shown in Figure 4-49, 4-50 and

107

n
=
tn

o
H
o
Q
il
w
w
m

iglize p,storeNewPolys_p,counter_p, keepOldL,L_p)

516 begin

517 L<=L p;

518 = if (initislize p } then

s1s | L<=(others=>'0"');

520 = elsif (storeNewPolys_p='l")then
521 [if (keepOldL='0'} then

522 L<=counter_p+l-L_p;

523 end if:

524 end if:

525 end process;

526 |

527 twol<=L_p (& downto 0)}&'0';

528

529 Elprocess (twol, counter_p,Delta)

530 | begin

231 = if ((twol>counter p) or (is_not_0(Delta)='0')) then
53z | keepOldL<="1";

533 = else

534 keepQldL<="0";

535 end if:

536 end process;

ST

538 | - update of B(x)

539 Hpzrocess (initialize p,storelewPolys p, keep0ldL, lambda p,Delta,Bx p)
540 begin

541 Bx<=Bx_p;

542 = if (initialize p='l') then

543 | Bx (0) <=one;

544 [0 for i in 1 to errCap loop

545 Bx (i) <==zerxo;

Sdg end loop;

547 = elsif (storeNewPolys_p='l') then
548 [if (keepOldL='l')} then

5483 [0 for i in 1 to errCap loop
550 Bx(i)<=Bx p(i-1):

551 r end loop:

552 r Bx (D) <=zero:

553 = else

554 H for i in 0 to errCap loop
23S Bx(1i)<=mul (lambda_p(i),inv(Delta));
556 b end loop;

557 B end if;

558 B end if:

559 end process;

560 r

561 | ——————————— —update of A(x)

562 HProcess (Ax p,initialize p,storelewPolys p,omega p,Delta, kespOldL)
563 begin

564 Ax<=RAx p;

565 = if (initialize p='l') then

See [0 for i in 1 to errCap loop

567 Ax (i) <=zexo;

568 r end loop;

1] - Ax (0) <=one;

570 = elsif (storeNewPolys_p='l') then
571 H if (keepOldL='1')} then

572 =l for i in 1 to errCap loop
573 Ax (i) <=Bx_p(i-1):

574 B end loop:

aTa r Ax (D) <=zero:

576 = else

577 H for i in 0 to errCap loop
578 Ax (i) <=mul (omega_p (i), inv(Delta));
579 = end loop;

580 B end if:

581 B end if:

582 end process;

Figure 4-45: Update of other supporting signals of BM component.

4-51. “DR_counter” is an inner counter for data recording process. While
“counter” is the formal counter for the subject component. For the control-

signal part, when “xferdata” is 1, the decoder output a vector containing

108

5849 | final output

585 omega_poly<=omega_p(l5) & omega p(l4) & omega_p(l3) & omega_p(ll) & omega_p(ll) & omega_p(l0) & omega_p(9)
586 & omega_p(Z) & omega_p(7) & omega_p(f) & omega_p(S) & omega_p(¢) & omega_p(3) & omega_p(l) & omega_p(l);
587

588 lambda poly<=lambda p(l5) & lambda p(l4) & lambda p(l3) & lambda p(l1Z) & lambda p(ll) & lambda p(l0} &

589 lambda_p (%) & lambda_p(3) & lambda_p(7) & lambda p(€) & lambda p(3) & lambda p(4) &

590 lambda_p(3) & lambda p(2) & lambda_p(l) & lambda p(0);

591

592 end architecture;

543

Figure 4-46: Final output of BM component.

1 library isees;

) use ieee.std logic 1164.all;

3 uge ieee.std logic unsigned.all;

4

& Hentity LowLatRSdec n255kZZ5_p3_chienNcorrect is
& [Hport (reset: in =std logic:

T clk: in std_logic;

8 data_input_strobe:in std logic:

9 startChien: in std logic;

10 omega_poly: in std_logic_vector (119 downto 0);
11 lambda poly: in std logic wector (127 downto 0);
12 data_in:in std logic_wvector (23 downto 0);

13 dec_done prout std logics

14 output_strobe:out std logic;

15 = data_out_p:out std_logic_vector (23 downto 0});
16 end;

1 L

Figure 4-47: Port declaration of Chien search and correction component.

three correction-words at each clock. More details and explanation can be
found in the figures.

For functions declaration, as addition, multiplication, inversion, and IDFT
have been covered already in the previous section, they are not shown here
again.

Figure 4-52 shows the register update. Same as before, at each clock’s
rising edge, all register signals go to zero, when “reset” is high. Otherwise,
the register signals are updated to their combinational logic counterparts.

Figure 4-53 shows the finite state machine. There are five states. When
“data_input_strobe” is up, “recorddata” becomes 1 which enables copying
the input received-words, and the state goes from “Idle” to “DataRecording”.
The data recording process finishes when the inner counter “DR_counter”
reach m — 1 = 84, because all received-words enters in 85 clock cycles. Then
the state is back to “Idle”. When “startChien” turns to 1, “initialize”

is up to set up all signals and the state goes to “Initialization”. The

109

n

L
=

L I R R]
[=JRT-C R . AT RV U

31

constant
constant
constant
constant
COnStant
constant
constant
constant
constant p: in
constant lamLength:
constant derLamLength:
constant omeLength:
constant chienLength: in T
[El--the real walue for chienlength is 1lg,

——but force it to be divisible by p=3 for simplify VHDL codes

[Elarchitecture RTL of LowLatRSdec nZ55k225_p3_ chienNcorrect is

—-—--basic parameter

H s——to define GF(2
—-—codeword length
—--message word length

—--parity bits length =255-225

f2; --error-correction capacity

)

ntege

777777777 pre-defined useful type

subtype Galois_Field element is std logic_wvector ((GFPower-1) downto O):

type alpha type is array (0 to 25¢) of Galois Field element;

type state type is (Idle, DataRecording, Initialization, Calculation, WrapUp):

type FTout_type is array (0 to (p-1)) of Galois_Field element;

type data delay type is array (m-1 downto 0) of std logic_wvector (p*GFPower—1 downto
type chienProd type is array (0 to ChienLength-1) of Galois Field element:;

type dLambProd subtype is array (0 to derlamLength-1) of Galois Field slement;

type omegProd subtype is array (0 to omelength-1) of Galois Field element;

type dLambProd type is array (0 to p-1) of dLambProd subtvpe:

type omegProd type is array (0 to p-l) of omegProd subtype;

type ChienSum type is array (0 to p-1) of Galois_Field element;

type dLambSum type is array |
type omegSum type is array (0 to p-1) of Galois_Field element;
type correction type is array (0 to p-1) of Galois Field element;
type u_type is array (0 to LamLength-1} of Galois_Field element;
type v_type is array (0 to omelength-1) of Galois_Field element:

to p-1) of Galois Field element;

signal

signal
signal
signal
signal
signal
signal
signal
signal
——each
signal
signal

signal
—— sum
signal
signal

signal

signal
signal
signal
signal
signal
signal
signal
signal

data signal
data_delay,data_delay p: data delay type:

——-record the received words for later chien search and correction process.

data_out_int,data_out_int p:data delay type;

dec_done: std_logicy

data_out: std_logic_vector (GFPower*p-1 downto O);

DR_counter,DR_counter] teger range O —--counter for recording the received words
counter, counter p:integer range O to mi=0;--counter for chien search and correction process
FTout: FTout type; --fourier transform results using in chien search

uiu _type; --a vector containing all coefficient of error-locator polynomial

v:iv_type; ——a vector containing all coefficient of error-evaluator polynomial

product represents a term evaluation in corresponding polynomial eguation

chien product,chien product_p: ChienProd type; —--for chien search

dLamd product,dlamb product_p: dLambProd type;

——for odd terms of error locator polynomial evaluation

omeg_product, omeg_product_p: omegProd type;

is the polynomial evaluation result

Chien sum:ChienSum type; ——sum of chienProds. Basically, it's evaluation of the polynomial
dLamd sum:dLambSum type;

1 0of dLamb products => evaluation of the odd terms of error-locater polynomial

omeg_sum:omegSum_type;
of omeg products » evaluation of the error-evaluator polynomial
correction:correction type;

egquals to error value + received-word

—control signal
state,sState_p: state_type;--used in Finite State Machine

initialize,initialize p:std logic; --to set up signals

DoCalc,DoCalc_p:std logic; —-enable error-location and error-value calculation

dec _almost_done,dec almost done p:std logici--one clock sarly than the end of decoding process
DetectorlEn, Detector0En p:std logic; —-enable zero detection on FTout
recorddata,recorddata p:std logic; --record recelved-words

countEn, countEn p:std logic; --enable signal for counter

xferdata,xferdata p:std logic;--sStart output transfer

Figure 4-48: Signal declaration of Chien search and correction component.

“Initialization” state lasts only for one clock cycle and turns on “countEn”

which enables counter’s increment, “DoCalc” which enables calculation, and

“DeterorOEn” which enables zero detection for the output of IDFT. Meanw-

hile, the state goes to “Calculation”. When “counter_p” reaches m—2 = 83,

110

-+ Chien_sum(0)

&

‘F
chien_product(4)

() o

‘F
chien_product(1)

—
chien_product(16)

Chien_sum(1)

”‘F”‘F

Chien_sum(2)

Figure 4-49: Evaluation block of the modified Chien search

o o
E:{ dLamd_product(0)(0) | E:{ dLamd_product(0)(1)
‘ ‘ -+ dLamd_sum(0)
o o
E:{ dLamd_product(1)(0) | E:{ dLamd_product(1)(1)
| | o[t |
o o of?

&)

‘F
dLamd_product(2)(0) | dLamd_product(2)(1) | mmenE dLamb_product(2)(7)
‘ w1 dLamd_sum(2)

Figure 4-50: Evaluation block of the odd terms of error-locator polynomial.

“DoCalc” turns off and the state enters “WrapUp” in which all state control
signals goes off except “dec_almost_done”. After one clock cycle, the state
goes back to “Idle”.

Figure 4-54 shows the data-recording process. While the inner counter
“DR_counter” counts from 0 to 84, the input received-words are copied by

“data_delay”.

111

1

{P a ’x‘
omeg_product(0)(0) | omeg_product(0)(1) R 'I omeg_product(0)(14)

"‘F

omeg_product(0)(0) | omeg_product(0)(1) omeg_product(0)(14)

- dLamd_sum(0)

i

» dLamd_sum(0)

yjg—
omeg_product(0)(0) | omeg_product(0)(1) | memne omeg_product(0)(14)
w1 dLamd_sum(0)

Figure 4-51: Evaluation block of the error-evaluator polynomial.

Figure 4-55 shows the behavior of formal counter for Chien search and
correction process. The counter is reset to zero when the process starts and
ends.

Figure 4-56 shows the coefficient extraction of the error-locator polyno-
mial and the error-evaluator polynomial.

Figure 4-57 shows the computation of modified Chien search. The poly-
nomial evaluation is implemented just like the way shown in Figure 4-49 and
then it is followed by an inverse Fourier transform.

Figure 4-58 shows the evaluation of the odd terms of the error-locator
polynomial following the way in Figure 4-50 and an evaluation of the error-
evaluator polynomial follows the way shown in Figure 4-51. Both of these
evaluations are used for error-value calculation. Recall Step 6 in Section 3.2.2,
the odd terms of the error-locator polynomial is equal to the derivative of
error-locator polynomial multiplied by .

Figure 4-59 shows the correction process. For every three error location

checked in one clock, three corresponding correction values are calculated, but

112

336 | register updat

337 [Hprocess|(clk)

338 | begin

335 =] if (clk'event and clk='1l'} then

340 [H if (reset="1l') then

341 recorddata p<="0';

342 initialize p<

343 countEn_p<="0";

344 DoCalc _p<='0";

345 DetectorlEn p<='0";

346 dec_almost done p<='0";

347 state p<=Idle:

348 DR_counter_p<=0;

348 g for i in 0 to (m-1) loop

350 data_delay p(i)<=(others=>'0");
351 - end loop;

352 counter p<=0;

353 = for i in 0 to chienlLength-1 loop
354 Chien product_p(i)<=(others=:>'0");
355 o end loop;

356 =] for 1 in O to p-1 loop

357 = for j in 0 to derLamLength-1 loop
358 dlamk product_p (i) (j)<=(others=>'0");
335 r end loop;

360 - end loop;

361 [for i in 0 to p-1 loop

362 [for j in 0 to omelLength-1 loop
363 omeg_product_p (i) (j)<=(others=>"'0");
364 r end loop:

365 end loop;|

366 [for i in 0 to (m-1) loop

367 data_out_int_p(i)<=(others=>'0"');
368 - end loop;

369 xferdata_p<="0';

370 data_out_p<=(others=>'0"'});

371 r dec_done_p<='0";

372 H else

373 recorddata p<=recorddata;

374 initialize p<=initialize;

375 countEn p<=countEn:

376 DoCalc p<=DoCalc:

377 Detector0En p<=Detector0En;

378 dec_almost done p<=dec_almost_done;
375 state p<=state;

380 DR _counter p<=DR counter;

381 data delay p<=data_delay;

382 counter p<=counter;

383 Chien product p<=Chien product;

384 dLamb_product p<=dLamd product;

385 omeg_product p<=omeg_ product;

386 data out_int p<=data_out_int;

387 xferdata p<=xferdata;

388 data_out_p<=data out;

389 dec_done_p<=dec_done;

390 = end if:

391 = end if;

HIE rend process;

Figure 4-52: Register update of Chien search and correction component.

they are used as intermediate outputs only when the corresponding locations
are determined by zero detection for IDFT outputs.

Figure 4-60 shows the final output process of decoder. “xferdata p” is
just one-clock delayed “DetectorOEn_p” and when it is 1, “data_out”, the
combinational logic counter part of final output, is assigned three correction-

words at each clock. “output_strobe” is a output signal to indicate the start

113

354

485

[]process(stace_p,startchien,data_inpuc_strobe,DR_:ountEI_p,counter_p]
begin

=
|

S|

case state_p is
when Idle =>
if (startChien=
recorddata<=
initialize<
countEn<
DoCalc<
DetectorlEn<=
dec_almost_done<=
state<=Initialization;
elsif (data_ input_strobe='l') then
recorddata<=
initialize<

then

DoCalc<= B
DetectorlEn<=

dec_almost_done<= ;
state<=DataRecording;

else
recorddata<="'
initialize<=
countEn<
DoCalc<= H
Detector0En<= :
dec_almost done<='0';
state<=Idle;

end if;

when DataRecording

if (DR _counter p=(m-1}) then
recorddata<=
initialize<=

Detector0En<='0"';
dec_almost_done<='0";
state<=Idle;
else
recorddata<=
initialize<='0";
countEn< ;
DoCalcs= ;
DetectorlEn<=
dec_almost_done<=
state<=DataRecording;
end if;
when Initialization
recorddata<=
initialize<='
countEn<="1"';
DoCalcs= ;
Detector0En<="1";
dec_almost_done<='
state<=Calculation;
when Calculation =>
if (counter_p=(m
recorddata<='0";
initialize<=
countEn:
DoCalc<="0";
Detector(En<="1"';
dec_almost_done<=
state<=WrapUp:
else
recorddata<=
initialize<=
countEn<="'1";
DoCalce="1"':
Detector0En<="1"';
dec_almost_done<=
state<=Calculation;
end if;
when WrapUp =>
recorddata
initialize
countEn<
DoCalc<='0";
DetectorlEn<='0
dec_almost_done
state<=ILdle;
when others =>
recorddata<=
initialize
countEn<
DoCalc<='0";
DetectorlEn<="'
dec_almost_dons<=
state<=ILdle;
end case;
end process;

Figure 4-53: Finite state machine of Chien search and correction

114

component.

4836 | ——————— jata recording pProceSS————————— e ——————————————
487 Hprocess (data_input_strobe,recorddata p,DR_counter p)
488 | begin

439 = if (data_input strobe='l") then

450 |— DR_counter<=0;

491 = elsif (recorddata_p='l') then

492 |— DE_counter<=DR_counter_p+l;

493 [H else

454 DE_counter<=0;

4585 = end if;

496 end process;

497 i

498 Blprocess (data_delay_p,data_in,recorddata_p, DR_counter_p)
499 begin

500 data delay<=data_delay p;

501 = if (recorddata_p='l') then

S02 data delay(m-1-DE_counter_p)<=data_ in;

503 - end if;

504 end process;

5En& -

Figure 4-54: Data recording of Chien search and correction component.

508 | ——————— counter behavior-—--———-——-———————————————
507 Hprocess (counter p,initialize p,dec_almost_done p,countEn p)
508 | begin

508 = if (initialize p='l") then

510 |— countexr<=0;

511 = elsif (dec almost_done _p="l"') then

512 |— counter<=0;

513 = elsif (countEn p='l') then

514 |— counter<=counter_ p+l;

515 = else

516 counter<=0;

517 end if;

518 end process;

515

Figure 4-55: Counter behavior of Chien search and correction component.

520 g---—-———---———=— polynomial-coefficient extractior
521 |———é.551g:1 error-locator polynomial coefficients to u
522 [Hprocess (lambda_poly)

523 | begin

524 = for i in 0 to lamlength-1 loop

525 u(i}<=lambda poly((i+l)*GFFower—1 downto i*GFFPower);
526 r end loop;

527 end process;

528 r

528 ——assign error-evaluator polynomial coefficients to v
530 Hprocess (omega poly)

531 | begin

532 = for i in 0 to omelength-1 loop

533 v(i)<=omega poly((i+l)*GFPower-1 downto i*GFPower):
534 F end loop:

535 end process;

coe L

Figure 4-56: Coefficient extraction of Chien search and correction component.

of the final correction-words output, whereas “dec_done” is a output signal
indicating the end.

LowLatRSdec n255k225 p3.vhd. Figure 4-61 shows the entire co-
des for the top file. There are four inputs: the global reset denoted as

“reset_n”, the clock signal denoted as “clk”, the received-words denoted as

115

S, ——————————————————— modified Chine searct
538 Eprocess (initialize p,DoCalc_p,Chien product_p,u)

S35 begin

540 Chien_product<=Chien product_p;

541

542 = if (ipitialize p='l') then

543 B for i in 0 to 15 loop

544 Chien product (i)<=mul (u(i),alpha((N-m+1)*i rem N)):
545 end loop;

546 r

547 -] elsif (DoCalc_p='l'} then

548 [H for j in 0 to 15 loop

549 Chien product (j)<=mul (Chien product p(j),alpha(j));
550 r end loop;

B E end if;

552 end prncess:l

SEE r
554 [Hprocess (Chien_product_p)

555 | begin

558 [H for i in 0 to (p-1) loop

557 =] Chien sum(i)<=add (add(Chien product p(i),Chien product p(i+p)),add(add(Chien product_ p(i+I*p),
558 r Chien product_p(i+3*p)),add(Chien product_p(i+4*p),Chien product p(i+3*p))));
559 r end loop;

560 end process;

561 r

562 FTout<= IDFT (Chien sum(0),Chien sum(l),Chien sum(Z));

Figure 4-57: Modified Chien search of Chien search and correction component.

“data_in” and the decoding activation signal denoted as “input_strobe”.
There are five outputs: a signal “output_strobe” that suggests the output is
ready, the correction-words “data_out” and three component-process-ending
indicators: “synd_calc_done_out”, “startChien_out” and “dec_done”.

The signal and component declaration are both presented. The whole
architecture only includes the assignment of three process-ending indicator
signals and the three component instantiations connected with each other
following the structure shown in Figure 4-28.
4.4.2 Implementations with Speed-Up Coefficient p =5 and p = 15

Both of low-latency RS(255,225) decoders with p =5 and p = 15 follows
the same implementation logic and style. In this subsection, only the difference
on implementation is listed and discussed. VHDL codes of the different parts
are shown in Appendix B.

Syndrome Component. First, as p changes, the size of “data_in” is
different, and it is always equal to (p-GF Power). Second, the basic parameters
have to be revised based on p. This change actually adjusts most of the parts

in this component, correspondingly. Third, DFT function has to be changed

116

564

621
622

623

| Evaluation of the odd terms of Error Locator polynomial ——————————————————
Hprocess (initialize p,DoCalc p,dLlamb product p,u)

begin
dLamd product<=dLamb_product_p;
= if (initialize p="1"') then
= for i in 0 to p—-1 loop
=] for j in 0 to DerLamLength-1 loop
dLamd product (i) (j}<=mul (u(Z*j+1),alpha((((N-m+l)-i*m)* (Z2*j+1)) zem N));
= end loop:
- end loop:
= elsif (DoCalc p='l'} then
= for i in 0 to p—1 loop
= for j in 0 to DerlLamLength-1 loop
dlamd product (i) (j)<=mul(dLamb_product_p(i) (j),alpha(Z*j+l)):
r end loop;
B end loop;
r end if:

end process;

Hprocess |(dLamb product p)

| begin
= for i in 0 to p-1 loop
= dLamd sum(i)<=add(add(add(dLamb product p(i) (J),dLamb product p(i) (1)),
=] add (dLamb product p(i) (2),dlamb product p(i) (3))),add(add (dLamb product p(i) (4),
dLemb product_p (i) (5)),add(dlamk product_p(i) (€),dLamb_product_p (i) (T))));
end loop:
end process;
———————— Evaluation of Error Evaluator Polynomial
Hprocess (initialize_p,DoCalc p, omeg product_p, V)
begin
omeg_product<=omeg_product_p;
= if (initialize p='l'} then
= for i in 0 to p-1 loop
= for j in 0 to omeLength-1 loop
omeg_product (1) (j)<=mul (v(j),alpha((((H-m+l)-i*m)*j) re=m N));
r end loop;
r end loop;
= elsif (DoCalc p='l') then
= for 1 in 0 to p-1 loop
=] for j in 0 to omelLength-1 loop
omeg_product (1) (j)<=mul (omeg_product_p (i) (j),alpha(j)):
= end loop:
- end loop:
= end if;

end process;

Hprocess (omeg product_p)

| begin
= for i in 0 to p-1 loop
= omeg_sum (i) <=add (add (add(add (omeg_product_p (i) (0) ,omeg_product_p (i) (1)),
|— add (omeg_product_p (i) (2),omeg product_p (i) (2))),
= add (add (omeg_product_p (i) (4),omeg product_p(i) (5)),
|— add (omeg_product p(i) (§),omeg product p(i) (T)))),
= add (add (add (omeg_product_p (i) (), omeg_product_p (i) (%)),
|— add (omeg_product_p (i) (10),omeg _product_p (i) (11))),
= add (add (omeg_product_p (i) (12),omeg product_p(i) (13)),
omeg product p(i) (14)))):
end loop;

end process:

Figure 4-58: Polynomial evaluation of Chien search and correction component.

following the formula DFTout(i) = E’?_épi'j L;. Forth, the expressions for

J]=

final outputs “syndrome” and “error_present” have to be changed due to

the size change of “intS_p” and “intEP”.

Berlekamp-Massey Algorithm Component. As this component is

independent on p, nothing needs to be changed.

Chien Search and Correction Component. First, as p changes,

the sizes of “data_in” and “data_out_p” need to be revised. Both of them

117

647

[]pIDcEss(dLamd_sum,Dmeg_sum,data_uut_int_p,counter_p]

|begin
=] for i in 0 to p-1 loop
= correction(i)<=add(mul (inv(dLamd sum(i)),omeg sum(i)),
data_out_int p(m-l-counter_p) ((i+1) *GFPower-1 downto i*GFPower));
end loop:

end process;

lefine intermediate output
Eprocess(data_delay_p,data_out_int_p,initialize_p,DetectorOEn_p,ETout,carrection,countez_p]

begin
data_out_int<=data_out_int_p;
=] if (initialize p='l') then
L data_out_int<=data_delav p;
= elsif (Detector0En p="1"' and (FTout (0)=zero or FTout(l)=zero or FIout (I)=zero))then
=] for i in 0 to p-1 loop
= if (FTout(i)=zero) then
data_out_int (m-l-counter p} ((i+l) *GFPower-1 downto (1*GFPower))<=correction(i);
end if;
end loop;
end if;

end process;

atart ¥Ferina Aara ant

Figure 4-59: Correction process of Chien search and correction component.

645

674

start Xfering data out
xferdata<=Detector0En p; --so xferdata p is one clock delayed DetectorEn p

final data_out
Eﬂpzacess(xfardata_p,data_aut_int_p,cDunteI_p]

|hegin
= if (xferdata p='l') then
f data_out<=data_out_int_p(m-counter_p):
= else
data_out<=(others=>"'0");
r end if;

end process;

ucput_strok
Eﬂpzacess(caunter_pj

|hegin

= if (counter_p=1) then
output_strobe<="1";

= else
output_strobe<='0";

r end if;

end process;

lec dor

dec_done<=dec almost_done_p:;
—end architecture;

Figure 4-60: Final output process of Chien search and correction component.

are equal to (p - GF Power). Second, the basic parameters have to be revi-

sed based on p. Notice that, “chienLength” is always forced to be larger

than “lamLength” (= 16) and divisible by p. Therefore, “chienLength” is

equal to 20 for p = 5 and “chienLength” is equal to 30 for p = 15. The

118

e
(B = R R T S

21

L

[R R R RS
(SISO

library ieee;
use ieee.std 1 - 1le4.all;
use ieee.std lo - 1 ed.all;
Hentity LowLatRSdec _nI5SkIZ5 is
Elport (reset_n: in std logicy
clk: in std logic;
data_in: in std logic_vector (23 downto 0); —-three 8-bit received-words
input_strobe: in std logicy —-the signal which activates decoding process.
output_strobe:out std_lo ; ——the signal which indicates outputs are ready to be sent out
data out: out std logic vector (I3 downto 0); --thres &-bit correction-words
synd_calc_done_out: out scd 1o
startChien out: out std_logic;
r dec done:out std logic);

—end;
Harchitecture RTL of LowLatRSdec _nI55k225 is
signal synd calc done:!std logic; --indicates syndrome computing has been done

signal error_present:std_lo ; ——indicate if there is any error in received-words
signal syndrome: std logic vector (239 downto 0); —-(s_r&s r-1&s r-2&...&3 las 0)
signal sctartChien:std 1 ——activate Chien Search
signal lambda_poly:std 1l 0); ——error locator polynomial. MSB is on the Left
signal omega poly:std 1 - 119 downto 0); —--error evaluator polynomial. MSB is on the Left
signal dec done_int:std logic: --intermediate signal for dec done
Hecomponent LowLatRS5dec nZS55kZZ5_p3_syn
Elport (reset: in std logicy
data_in: in std logic_vector (23 downto 0);
clk: in std logic;
input_strobe: in std logicy
synd_calc_done: out std_logic;
error present out:out std logicy
syndrome_out: out std_lo _vector (23% downto
- };—— 30 syndromes and sach syndrome has & bits
rend component;
Elcomponent LowLatR5dec n2S5SkZZ5_p3_bm --key equation solver (berlekamp-Massey Rlgorithm)
Hport (reset: in std logic:
clk: in std logic;
synd_calc_don
startChien p: out std lo
error_present:in scd i
syndrome: in std_lo
lambda poly:out std -
omega_poly: out std logic_wvector|(
r Vi
rend component;
Elcomponent LowLatR5dec n2S5SkZZ5_p3_chienNcorrect --chien search, error evaluation and correction
Hport (reset: in std logic:
clk: in std logic;
data_input_strobe:in std_logic;
startChien: in =td logic;
omega_poly: in std logic_vecto
lambda_poly: in std logic_vector (127 downto
data in:in std logic vector (23 downto 0);
dec_done_p:out std_logic;
output_strobke:out std logicy
r data out_p:out std logic_vector (23 downto 0));
rend component:
begin
syndrome_cal: LowLatRSdec_n2S55kIZ5 p3_syn
= pOrt map(reset=rreset_n,
data in=>data in,
clk=>clk,
input_strobe=>input_strobe,
synd calc_done=>synd calc_done,
€IIOI_presSent_out=>eIror_present,
r syndrome out=>syndrome) ;
BMSolver: LowLatRSdec nZSSk225_p3 bm
= POIt map(reset=>reset_n,
clk=>clk,
synd_calc_done=>synd_calc_done,
startChien p=>startChien,
€Iror_present=>eIror_pressnt,
syndrome=>syndrome,
lambda_poly=>-lambda_poly,
r omega_poly=>omega poly);
ChienNCorrect: LowLatRSdec n2S55kIZZ5 p3_chienNcorrect
= pOrt map(reset=rreset_n,
clk=>clk,
data_input_strobe=>input_strobe,
startChien=>startChien,
omega_poly=>omega poly,
lambda_poly=>-lambda_poly,
data_ in=>data in,
dec_done_p=>dec_done_int,
output_stroke=>output_strcke,
data out_p=>data_out);

=>total 240 bits

i ;——-30*%8=240
0) s——error locator polynomial 16*8

0) ——error evaluator polynomial 15

synd calc done ocut<=synd calc done;
startChien out<=startChien;
dec_done<=dec_done_int;

—end architecture;

Figure 4-61: Top file of low-latency RS(255,225) decoder with p = 3.
119

change of the basic parameters actually adjusts most of parts in this compo-
nent correspondingly. Third, IDFT function has to change following the for-
mula I DFTout(i) = E?;ép*j'ifj. Forth, the expression of “Chien_sum(i)”
needs to be revised due to the size change in “chienLength”.

Top File. The only thing to revise is the sizes of input received-words
and output correction words included in a port declaration and component
instantiations.

4.5 Synthesis and Simulations Results for the Decoder

This section includes both FPGA synthesis results and ASIC synthesis
results. For better explanation, the conventional RS decoder can be thought as
a low-latency RS decoder with p = 1 which has no DFT and IDFT components.

The FPGA used for synthesis is an Altera DE2-115 board, specifically Cy-
clone IV E with device number “EP4CE115F23C8L”. The software used for
synthesis and simulations is Quartus II 15.0. The comparison of synthesis and
performance results among the conventional decoder and low-latency decoders
with different p is shown in Table 4-5. The functional simulation results for
decoders with each p value are shown Figure 4-62, 4-63 and 4-64. The timing
simulation results are shown in Appendix D. The results have been verified
with the low-latency decoder implemented in MATLAB. For better presenta-
tion, all data signals are represented in hexadecimal form. The received-words
are produced by adding random errors to the code-words generated in Figure
4-25, 4-26 and 4-27. These errors mimic the data corruption happened in
transmissions due to the noise effect in the channel.

It is easy to see that the simulation results generated by low-latency
decoders (Figure 4-62, 4-63 and 4-64) are consistent with Figure 4-25, 4-
26 and 4-27. Moving on to Table 4-5, the clock cycles used by the low-latency

decoders are dramatically decreased compared to the conventional one. It is

120

RS(255,225) Decoders with Error-Correction Capacity 15

Implemented using Altera DE2-115 FPGA

Decoder Clock Max Hardware Costs

Name Cycles | Frequency | Registers | Combinational
(MHz) Logic

Conventional RS 546 78.60 5791 7102

Decoder

Low-Latency RS 206 78.77 5981 8667

Decoder (p = 3)

Low-Latency RS 138 72.94 6363 10954

Decoder (p = 5)

Low-Latency RS 71 69.74 7418 17639

Decoder (p = 15)

Table 4-5: Comparison FPGA synthesis results for different decoders.

Received-words (corrupted code-words)
208 clock cycle N|

o5 240.0ms 480,05 0O 960,01 12 144s 165us 192w 216us 24us 264 288w 312

R o

H
B

T
1

W
i
i

030303 000000

L in EEERR)
5 > dataout H 000000 | I | W
L syndcok_done_out B Il _~

% sachenoe 8 /

o

//
Vg f
030303 /

{ aaaa4 ¥ opaDSD X 505050 X 191919 X FFFF7 X EAEAEA X 565656 X 050505) B3IB3B3 X GEGEEE X

Figure 4-62: Functional simulation of low-latency RS(255,225) decoder with
p=3.

expected that the clock number change is not simply proportional to p as the
low-latency encoders do, because the same BM algorithm is used in all low-
latency and conventional decoders and does not speed up. It should be noticed
that all the tests in this section correct the errors on parity bits, too. As we
discussed in Step 5 (the modified Chien search) in Section 3.2.2, if we only

correct transmission errors on message part of the code-words, which is also a

121

Received-words (corrupted code-words)
KoL 138 clock cycle: sl

‘Dus 12000 2900rs ®00ns 00ns S00rs 7NOns B00ns 9500 L08us 12 L3us 14us LSus 168us 18w LS 204us

5 & L]

L restn 8 [1

L input_strobe B ﬂ \

B > laatam “u 0303030303 e 0302030303 RO | 6000000000

25 5 dataout H 0000000000 [003030305 | foecoil
9 gec_done 8 yd yAN
. output_strobe B ﬂ / /

3 startchien_out] M / /

3% synd_cak_dore_out 8 N 4 / /

>
0303030303 /

{ €2c2c2C2C2) FFFFFFFFFE X 0DODODODOD) FAFAFAFAFA X FIFIFIFIF1) 3833383838

Figure 4-63: Functional simulation of low-latency RS(255,225) decoder with
p=5.

Received-words (corrupted code-words)

\ le 71 clock cycle |
e \ Ops G0.0ns 100ns 1800ne 2000 00N K00TE 4000 00NS SVNNE 6000NS 00N FAL0NS 00N BO0NE SO00NS SO0M LOZuS LOBus
\"
" e B
5 re=tn a1 H
T rout_stobe 8 J\
B > datain H W}ummm;ﬂmm}ummmmmwwl-{ 000 0 I 1
W darmont ; [T 000 Y EXEEET e | %
2% dec_done 5 Iﬁ_l
2% output strobe] 1 / !
94 startChien_out B M / ,
2 synd_calc_donc out B 1 —— |
030303030303030303030303030303
: 808080808080808080808080808080 X 8383838383838383838383838383383 X:

Figure 4-64: Functional simulation of low-latency RS(255,225) decoder with
p = 15.

common case in real life, the number of roots used to find error locations would
be further reduced by (n—k)/p. Equivalently, the clock cycles would be further
reduced by (n — k)/p. As for hardware cost, the results are reasonal as well.
On one hand, the increase in hardware cost was relatively small for p raising,
which proved one of the major features that asserted in [17]. On the other
hand, the hardware cost of the low-latency decoder with p = 15 still reaches
a significant level. These results can be interpreted with two facts. First, as
the conventional RS decoders have a very complicated structure already, the
added DFT and IDFT components did not affect the hardware cost as much

as those in the encoders did. Second, as the conventional error-evaluation

122

RS(255,225) Decoders with Error-Correction Capacity 15
65 nm TSMC

Encoder Area Power Max Data
Name (um?) | Comsumption | Frequency | Rate

(mW) GHz Gbps
Conventional RS || 1.60 - 10° 77.60 0.895 7.16
Decoder
Low-Latency RS | 1.03-10° 32.91 0.886 21.3
Decoder (p = 3)
Low-Latency RS || 1.08 - 10° 43.41 0.880 35.2
Decoder (p = 5)
Low-Latency RS || 2.52 - 10° 145.22 0.877 105.24
Decoder (p = 15)

Table 4-6: Comparison of ASIC synthesis results for different decoders.

circuit is simply replicated by p times to generate p error-values at each clock,
these extra replicated circuits cost more hardware with larger p. The results of
maximum clock frequency also satisfy the expectation. As p raises, the DFT
and IDFT become more complicated and thus the critical path get increased,
which leads to smaller maximum clock frequency.

The technology used for ASIC synthesis is 65 nm TSMC and the results
are shown in Table 4-6. Compared to the FPGA synthesis, the maximum
clock frequency have a very similar trend. The results for data rate are also
expected and they are directly proportional to p due to p-parallel input circuits.
Specifically, it can reach more than 100 Gbps for p = 15. The area results for
low-latency RS decoders are consistent with their hardware costs from FPGA
synthesis. However, one exception of this consistence is that conventional RS
decoder has a very large area in ASIC synthesis, whereas in FPGA synthesis

it costs almost the same amount of hardware as low-latency RS decoder with

123

p = 3. It should be noted that this same scenario also happens in the encoder
part (Section 4.3). Similarly, there are two possible reasons. First, a number of
logic elements are omitted when the long sequential circuits such as the Chien
search, are split into p shorter ones. Second, the rules of ASIC routing may
result in a larger area for the longer sequential structure, which is a subject
to confirm in the future work. The power consumption results are reasonable.
Just like the explanation based on the formula P = C'V2F A that is stated in
the encoder section (Section 4.3), the results are mainly following the trend
of area as the change in hardware cost is large, whereas the clock frequency
difference is relatively small. One thing should be noted is that, the power
consumption for p = 15 reaches more than 145 mw, which may not fit in some
applications of short-reach optical communication.

In conclusion, low-latency RS decoders can efficiently speed up the de-
coding process without heavily increasing the hardware cost. However, the
power consumption can possibly be a concern to some specific applications if

the p is very large.

124

CHAPTER 5
Conclusion

In this thesis, ECC in short-reach optical communication is introduced,
which leads to a discussion of latency challenge. After briefly looking into
current solutions, a novel class of GRS codes developed by Amin Shokrollahi
in [17], that is, low-latency RS codes are studied in detail. Both the conven-
tional and newly proposed low-latency RS coding algorithms are illustrated
with details and examples. An implementation of low-latency encoders and
decoders using the high-level coding technique in MATLAB are provided and
analyzed. The best part of this MATLAB implementation is that it was desig-
ned for almost any arbitrary parameters of low-latency RS codes. The BER
performance was also verified for low-latency RS(255,225) codes using MAT-
LAB Communication System Toolbox. However, due to the limit of testing
conditions, we can only prove that its BER is lower than 1078, After MAT-
LAB implementation, low-latency RS(255,225) encoders and decoders with
p = (3,5,15) were built in VHDL. All the details of VHDL implementation
are examined in Chapter 4 along with the synthesis and performance results.
The results suggest that low-latency RS encoder can reduce the latency by a
factor of almost p, compared to conventional RS encoders. However, although
the hardware cost of a low-latency RS encoder is still relatively small, its in-
creasing ratio is large. The reason can be explained in term of the structures.
A low-latency RS encoder or decoder is essentially made by breaking a conven-
tional RS encoder or decoder into p parts and connecting them to DFTs and
IDFTs. As the hardware cost of the conventional RS encoder is very small,

the hardware costs of the DFT and IDFT components which are proportional

125

to p, dominate the total hardware cost. The situation in low-latency decoder
implementation is very different because the conventional RS decoder is much
more complicated. The results show that clock cycles have been largely re-
duced with only a relatively small increase in hardware cost. Specific to the
comparison between the conventional RS decoder and low-latency RS decoder
with p = 15, the clock cycles is reduced by a factor 769% and its hardware cost
is only increased by 57.5%. Power performance is also studied through ASIC
synthesis. Although low-latency RS encoders consume much more energy com-
pared to the conventional RS encoder, the increase in power consumption of
low-latency RS decoders is very small with respect to p growth.

The future work of this research focuses on two aspects. One aspect is
to improve the key equation solver in the decoding process. Currently, all
encoding and decoding processes except the key equation solver can run in
p parallel. This bottleneck is much desired to be solved. Marc Fossorier has
developed a new algorithm in [28] recently. The original BM algorithm is modi-
fied based on Gaussian elimination so that two discrepancies can be computed
in parallel at each step. It is very promising to integrate this algorithm into
low-latency RS decoders. The other aspect is to build a generator which can
automatically construct low-latency RS encoders and decoders with arbitrary
parameters. Usability is also a significant factor for a type of ECC to be wide-
spread. So far, even with the existing VHDL codes of low-latency RS(255, 225)
encoders and decoders, it is still inconvenient to construct low-latency codes
with different parameters, especially when &k and r are not divisible by p (de-
tails in Section 3.4). Therefore, work should be done to standardize all the
procedures so that low latency RS encoders and decoders can be generated

with only user-defined parameter inputs.

126

Appendix A

Due to the space limit, the following is only the parts of the novel low-
latency RS encoder with p = 5 that are different from the implementation for

p = 3. The explanation are given in Section 4.2.2.

5 Hentity LowLatRSenc n255k225 p5 is

& [Fport (reset_n: in std logics

7 —--global reset input which can reset every signal.
8 data_in: in std logic_vector (39 downto 0); --3%8
9 clk: in std logic:

10 input_strobe: in std logic;

11 output_strobe: out std logic;

12 enc_done p: out =std logic;

13 r data_out p:out std logic vector (3% downto O)); --3
14 -end;

15 Harchitecture RTL of LowLatRSenc_niZ55kIZ5 p5s is

16

17 [EHCCMPCNENT LowLatRSenc LFSR nS51k45

13 =] port (reset _n: in std loglc;

139 data_in: in std logic_wector (7 downto 0);

20 clk: in std_logic:

21 input_strobe: in std logic;

constant
constant
35 constant
36 constant
37 constant

22 g0: in std logic vector (7 downto H

23 gl: in scd _vector (7 downto 0);

o4 g2: in scd_ _vector (7 downto 0):

25 g3: in std logic vector (7 downto 0);

26 gd: in std lo _vector (7 downto 0});

27 g5: in std logic wvector (7 downto H

28 r data_out_p: out std logic vector (7 downto 0)):
29 FEND COMPONWENT ;

30

21 constant N: nteg —-codeword length

32 constant —-message word length
33

34

——parity bits length
255/5=51

——speedup coefficient

38 constant —--Galois Field power. is GF(2"4) here.

39 onstant

40 constant zero: Galois Field element :="00000000";

41 constant one: Galois_Field element :="00000001";

4z constant q: Galois_ Field element:="00001010"; --set the 5-th root of unity

23 constant g2: Galois_Field elemen "01000100"; --sguare of the 5-th root of unity
44 constant g3: Galois_Field elemen "10010010";

S constant g4: Galois Field elemen 11011101";

Figure 5-1: Set up for p =5

128 \ DFT function (Fourier Transform)

1z9 Efunction DFT (a,b,c,d,e: in Galois_Field element) return FIout type is wariable DFTout: FIout type!
130 [begin

131 DFTout (0) :=add (add (add (a,b} ,add(d, &)}, c);

132 DFTout (1) :=add (add (add (a, mul (q, b)) ,add (mul {d,g3) ,mul (e, q4))) ,mal (c,q2)) ;

133 DFTout (2 dd(add(add(a,mul (g2,b)) ,add (mal (d, g) ,mul(e,g3))), mal(c,qd4));

134 DFTout (3} :=add (add (add (&, mul (g3,b)) ,add (mul (d, q4) ,mul (e, q2))} ,mul(c,q)) ;

135 DFETout (4) :=add (add (add (a, mul (g4,b)), add (mul (d, g2) ,mzl (e, q)})) ,mal {c,q3)) ;

136 return DFTout;

137 rend function DFT:

138 IDFT function (Inverse Fourier Transform)

13% [Hfunction IDFT (a,b,c,d,e: in Galois Field element) return FTout_type is variable IDFTout: FTout_type:
140 =] begin

141 IDFTout (0 dd (add (add (a,b) ,add (d,&)) ,c) ;

142 IDFTout (1 dd (add (add (a, mul (g4,b)) ,add (mul (d, g2) ,mul (e,q))) ,mul(c,g3));

143 IDFTout (2} :=add (add (add (a,mul (g3,b)) ,add (mul (d, g4) ,mul (e, q2) }), mul(c,q)) :

144 IDFTout (3 dd (add (add (a,mul (q2,b) } ,add (mul {d, g) ,mul (e, q3))) ,mul {c,qd)) :

145 IDFTout (4 dd (add (add (a, mul (q,b) } , add (mul (d, g3) ,mul (e, q4))), mul(c, g2}) :

146 return IDFTout;

147 rend function IDFT:

Figure 5-2: Defining functions for p =5

127

151 |LFSRD: LowLatR5enc LFSR n51k45
152 Elport map (reset n=>reset n,

153 data in=>DFTout (0},

154 clk=>clk,

155 input strobe=>input strobe,
156 g0=>"00001111",

157 gl=>"11110011",

158 gZ2=>"00011001",

159 g3=>"11011100",

160 g4=>"11111100",

16l g5=>"11000100"™,

le2 - data out_ p=>LFSRout (U)}:
163 LFSEl: LowLatRSenc LFSE m51k45
le4d BHport map (reset _n=>reset_n,

165 data in=>DFTout(l},

le6 clk=>clk,

1le7 input strobe=:input stroke,
168 g0=>"11100111",

169 gl=>"00001011"™,

170 gZ=>"10001101",

171 g3=>"10101110",

172 g4=>"11010111",

173 g5=>"10010101",

174 - data out p=>LFSRout(l});
175 LFSREZ: LowLatRSenc LFSE m51k45
176 Hport map (reset n=>resst_n,

177 data in=>DFTout (I},

178 clk=>clk,

179 input strobe=>input strobe,
180 g0=>"01111111",

181 gl=>"01111101",

182 gZ=>"00111000",

183 g3=>"00011001"™,

184 g4=>"01111011",

185 g5=>"00110111",

186 - data out p=>LFSRout (I})
187 LF5R3: LowLatRSenc LFSR m51k45
188 Hport map(reset n=rreset n,

1859 data in=>DFTout (3},

1590 clk=>clk,

1891 input strobe=>input strobe,
192 g0=>"10110110",

153 gl=>"00011011",

1594 gZ2=»>"10100111",

185 g3=>"11001000",

196 g4=>"11110001",

197 g5=>"01101110"™,

lag - data out_ p=>LFSRout (3)):
199 LFSE4: LowLatRSenc LFSE m51k45
200 BHport map (reset _n=>reset_n,

201 data in=>DFTout (4},

202 clk=>clk,

203 input strobe=:input stroke,
Z04 g0=>"10000110",|

205 gl=>"01000111",

206 gZ=>"10100010",

207 g3=>"00001110"™,

208 g4=>"11100011",

209 g5=>"11011100",

210 - data out p=>LFSRout (2});

Figure 5-3: Component Instantiations for p =5
128

31z [EIDFTout<=DFT (data_in((p*GFPower-33)downto (p*GFPower—40)),data_in((p*GFPower-I15)downto (p*GFPower-32)),
314 data_in{(p*GFPower—17)downto (p*GFPower-24}),data_in((p*GFPower-%)downto (p*GFFower-16)),
315 data in|((p*GFPower-1)downto(p*GFPower-2)));
316
Figure 5-4: Preprocess for p =5
21 | e basig pargmeters ——
22 constant errCap: integer:=3; —--error correction capacity
23 constant data_size:std logic vector (7 downto O):="00101101":
24 constant coded size:std logic wvector (7 downto 0):="00110011";
25 constant GFPower: integer
Figure 5-5: LFSR basic parameters for p = 5
173 Heprocess (reset_n,input_ strobe,DoCalc p,parity reg p, sum,gl,gl,g92,93,94,95,xferPE p)
174 begin
175 parity reg<=parity reg pJ
176 = if (input_strobe="l') then
177 = for i in 0 to (Z*errCap-1) loop
178 parity reg(i)<=(others=>"'0"');
175 - end loop:
180 = elsif (DoCalc p='l'} then
181 parity reg(s)<=add (parity_reg p(4),mul (sum,g5));
182 parity_reg(4)<=add(parity_reg_p|(3),mul (sum,gd));
183 parity reg(3)<=add(parity reg p(Z),mul (sum,g3)):
184 parity reg(l)<=add(parity_reg p(l),mul (sum,gZ});
185 parity_reg(l)<=add(parity_reg_p(0),mul (sum,gl}};
186 = parity reg(0)<=mul (sum,g0)
187 = elsif (=xferPE p="l') then
188 = for i in (2*%*errCap-1l)} downto 1 loop
189 parity reg(i)<=parity reg p(i-1):
150 - end loop:
191 parity_reg(0)<=(others=>'0"};
192 b end if;
153 rend process;
Figure 5-6: LFSR parity-bits register update for p =5
3z6 Eprocess (counter_p,xferEn_p, LFSRout,data_inbuf_p)
327 | begin
3zs = if (counter_p>0 and counter_p<t+l) then
329 ’- data_out<=data_inbuf p;
330 =) elsif (xferEn p='1"') chen‘
331 data_out ((p*GFPower-33) downto (p*GFPower-40)) <=IDFT (LFSRout (0) , LFSRout (1) , LFSRout (2) , LFSRout (3) ,LFSRout (£)) (0)
332 data_out ((p*GFPower-25) downto (p*GFPower—22)) <=IDFT (LF5Rout (0) ,LESRout (1) ,LFSRout (2) , LESRout (2) ,LFSRout (4}) (1) ;
333 data_out ((p*GFPower-17) downto (p*GFPower-24)) <=IDFT (LFSRout (0) , LFSRout (1) , LFSRout (2) , LFSRout (3) ,LFSRout (2)) (2) ;
334 data_out ((p*GFPower-2) downto (p*GFPower—-16)) <=IDFT (LFSRout (0} ,LFSRout (1) ,LF5Rout (2} ,LFSRout (2) , LFSRout (4} } (3} ;
335 data_out ((p*GFPower-1)downto (p*GFPower-:2)) <=IDFT (LFSRout (0} , LFSRout (1) , LFSRout (2) , LFSRout (3) , LFSRout (2)) (4) 7
336 [H else
337 data_out<=(others=>'0");
338 end if;
339 end process;

Figure 5-7: Output control for p =5

129

Appendix B

Due to the space limit, the following is only the parts of the novel low-

latency RS decoder with p = 5 that are different from the implementation for

p = 3. The explanation are given in Section 4.4.2.

5 Hentity LowLatRSdec ni55kIZ5 p5 syn is
[Hportc (reset_n: in std logic;
7 data in:!: in std logic wector (3% downto O); --5 * 8=40
8 clk: in std logic;
] input_strobe: in std logic:
10 synd calc done: out std logicy
11 error present_out:out std logicy
2 - syndrome out: out std logic vector (2359 downto 0) |):
13 —end;
14 Harchitecture RTL of LowLatRSdec n2Z55kIZ5_pS5 syn is
SE. ————————— basic parameters--—-—-—-—-——--————— -
16 constant GFPower: integer:=83;
17 constant N: integer:= ——codeword length
18 constant K: ——message word length
19 constant R: ——parity bits length =255-2Z25
20 constant m: ——m=M,/p=255/5=51
2 constant t: ——t=K/,/p=225/5=45
2z constant L: ; —--L=R/p=30/5=6
2= constant pi =5;-—-speed-up coefficient
24 constant bitNum: integer:=p*GFpower;
Figure 5-8: Set up of syndrome component for p =5
162 DFT function (Fourier Transform)
163 Efunction DFT (a,b,c,d,e: in Galois Field element) return FTout_type is variable DFTout: FTout_type;
164 [H begin
165 DFTout (0) :=add (add (add (a,b) ,add(d,e)),c);
le6 DFTout (1) :=add (add (add (a,mal (g, b)) ,add (mal (d, g3) ,mul (e, g4))) ,,mal(c,g2));
167 DFTout (2) :=add (add (add (a, mal (g2,b)), add (mual (d,q) ,mul (e, g3})), mal (c,qd))
168 DFTout (3) :=add (add (add (a, mal (g3,b)), add (mal (d, g4) ,mal (e, g2))} ,mulic,q)):
169 DFTout (4) :=add (add (add (a, mal (g4,b)), add (mal (d,g2) ,mal (e, q))), mal{c,qg3)):
170 return DFTout:;
171 end function DFT:
Figure 5-9: DFT function of syndrome component for p = 5
39z Hprocess (inicialize_p,xfer3vn p,intsS_p, syndrome_p, error_present_p, intEF)
393 begin
394 syndrome<=syndrome_p;
HiE EITOI_pIESENt<=eITror_present p;
386 = if (initialize p='l') then
397 syndrome<=(others=>"'0");
398 SrIroOr_pressntds H
399 = elsif (xferSyn p='l'} then
400 syndrome<=int5S p(4) (5)& intS p(3) (5) & int5 p(2) (5) & intS p(l) (5)& intS p(0) (5) & intS p(2) (4) &
401 intS p(3) (4)& intS_p(2) (4) & intS p(l) (4) & intS_p(0) (4) & intS p(4) (3)& intS_p(3) (3) &
402 intS p(2) (3) & intS_p(l) (3)& intS p(0) (3) & intS_p(4) (2) & intS p(3) (2)& intS _p(2) (2) &
403 ints p(l) (2) & intS_p(0) (2)& intS p(4) (1) & intS_p(3) (1) & intS p(2) (1)& ints_p(l) (1) &
204 intS p(0) (1) & intS_p(4) (0)& intS p(2) (0) & intS5_p(2) (0) & intS p(1) (0) & intS_p(0) (0):
405 error_ present<=intEFP(0) (0) or intEP(0) (1} or intEP(0) (2} or intEP(0) (3} or intEF(0) (4) or intEP(0) (5} or
406 intEP(1) (0) or intEP{1) (1) or intEP(1) (2) or intEP(1) (3) or intEP(1) (4) or intEP(1) (5} or
407 intEP(2) (0) or intEP(2) (1) or intEP(2) (2) or intEP(2)(3) or intEP(2) (4) or intEP(2) (5) o=
408 intEP(3) (0) or intEP(3) (1) or intEP(3) (2) or intEP(3) (3) or intEP(3) (4) or intEP(3) (5) o
409 intEP(4) (0) or intEP(4) (1) or intEP(4) (2) or intEP(4) (3) or intEP(4) (4) or intEP(4) (5):
410 r end if;
411 end process;

Figure 5-10: Final output of syndrome component for p = 5

130

5 Henticy LowLatRS5dec nZ55kZ2Z5 p5 chienNcorrect is

& [Hport (reset: in std logic:

7 clk: in std logic;

8 data_input_strobe:in std_logicy

9 startChien: in std logic?

10 omega_poly: in std loglc_vector (119 downto

11 lambda poly: in std logic vector (127 downto 0);

12 data in:in std logic vector (39 downto 0);

13 dec done p:out std logic:

14 output_strobe:out std logic:

15 - data out p:out std logic vector (39 downto 0)):

16 end;

17 o

18 Harchitecture RTL of LowLatR5dec n255kZZ5_p5_chienNcorrect is
pRE basic parameters-—-—--------————————————————— -

(=}

constant GFPower: integer:=3;
—-—codeword length

[

constant N:

L

—--message word length

J; —-parity bits length =255-2Z5
integer:=R/Z2;

—-m=N/p=255/5=51

constant K:

a

constant R:
constant errCap:

tn

constant m:

[T T B B E ba ba b b

5 constant t: —--t=K/p=225/5=45

7 constant L: --L=R/p=30/6=5

8 constant p: integer ——speed-up coefficient
bl constant lamLength: integer:=1§

30 constant derLamlength: integer: H

31 constant omelength: teger:

32 constant chienlength: integer:

Figure 5-11: Set up of Chien search and correction component for p =5

318 | IDET
320 Hfunction IDFT (a,b,c,d,e: in Galois_Field element) return FTout_type is variable IDFTout: FTout_type;
321 = begin

32z IDFTout (0) :=add(add(add(a,b),add(d,e}),c):

323 IDFTout [1) :=add (add (add (a,mul (g4,b)), add (mul (d, g2} ,mul (e, q))) ,mal {c,q3)) ;
324 IDFTout [2) :=add (add (add (a,mul (g3,b)), add (mul (d, q4) ,mul (=, q2))}, mul (c,q)) :
325 IDFTout [3) :=add (add (add (a,mul (g2,b)), add (mul (d, q) ,mul (e, q3))) ,mul {c,q4)) ;
326 IDFTout (4) :=add (add (add (a,mul (g, b)) ,add (mul {d, g3) ,mul (e, q4)))} ,mul {c,g2)) ;
327 return IDFTout;

328 end function IDFT;

Figure 5-12: IDFT function of Chien search and correction component for
p=>5

St Hprocess (Chien product_p)

550 | begin

551 H for i in 0 to (p-1) loop

Sk =] Chien sum(i)<=add(add (Chien product p(i),Chien product p(i+p)),

553 add (Chien product p(i+Z*p),Chien product p(i+3*p))):

SiEkt end loop:

SiEkE) end process:

556

557 FTout<= IDFT (Chien sum(0),Chien sum(l),Chien sum(2},Chien sum(3),Chien sum(<));

Figure 5-13: Chien sum of syndrome component for p =5

131

Appendix C

The following figures show the timing simulation results corresponding to

the low-latency RS encoders described in Section 4.3.

le 87 clock cycles N
I 0ps 80.0ns 180.0ns 240.0ns 320.0ns 400.0 ns 480.0 ns 560.0ns 640.0 ns 720.0ns 800.0 ns 880.0ns
Name sy : i i i v i i i i i i
ps
B dk B
. resetn gl[]
n input_strobe B

.
% > datmoutn H| ko000 030303 EEEEEREEREE:

enc_done p B

a4 output_strabe B /

W 2222 B sosoe0 WK 05050 MM so1s1e Wi Fr KB aena K sssess MM ososos I s K eeeese M

Figure 5-14: Timing simulation of low-latency RS(255,225) encoder with
p=3

le 53 clock cycle: 5|

0 ps 40.0ns 80.0ns 120.0ns 160.0ns 200.0ns 240.0ns 280.0ns 320.0ns 380.0ns 400.0ns 440.0ns 480.0ns 520.0ns 580.0ns

Name s

5 dk B
o, reset_n B
input_strobe B

=
3 data_in H 0303030303
% data_out_p

¥ oooooooo00_f 0303030303 i R ke
enc_done_p B

;“S output_strobe B /
—
C2c2c2C2C2 W FFFFFFFFFF m(0DODODODOD m FAFAFAFAFA FIFIFIFIF1 m 3838383838 w

ES

Figure 5-15: Timing simulation of low-latency RS(255,225) encoder with
p=5

0ps 40.0ns 80.0ns 120.0ns 160.0ns 200.0ns 240.0ns
MName Value at] I] T 1
0ps ps

I dk 81
5 resetn Bl
I inputstr.. BO
i§ data_in H030303030... 030303030303030303030303030303
?% data_out... HXXKXXKXXX... @IJDDDDDDDDDDDUDDDDDDDDDDDDDDD‘K 030303030303030303030303030303 | @ '@| 0000
S output_s.. BX /

re

il ¥e383838383) 836333338363333383638383838383

Y enc_don.. BX

o2y B0805080B0E0E0B080E0808005080

Figure 5-16: Timing simulation of low-latency RS(255,225) encoder with
p=15

132

Appendix D

The following figures show the timing simulation results corresponding to

the low-latency RS decoders described in Section 4.5.

le 206 clock cycl 3l

— . E 200ms #00rs 98 0.0m e LM Le3s L5z 2150 24us 264w 28808 3121
L o LA T AT
L eeein s|[1
o ot strobe sl
B 0 e | fGatki 030003 i EEE b 000000)
B dats put 0 503000 X oD
o dec o B N
o s n pd /

5 snd_ckc_done_sut B N / /

=
030303 /

]-14‘14-1—1‘m‘!ﬂsﬂmml?lBB“F?F?Fi'wm)'*SSSSSE‘ 050505 ‘(BIEJ*EE&E&E“

Figure 5-17: Timing simulation of low-latency RS(255,225) decoder with
p=3

le 138 clock cycle: s|
4 Joes 240.0 s 430.0ms 720.0ms 360.0 s 12us 144us 168us 1.82us

Name " o
n_ g B
i resstn 8/ []
' input_strobe B ﬂ
I 5 ldatain H| fioas; 0303030303 | %,)()W,)%(

T 1

2% 5 data_out H K 0000000000 * | | |
Ut dec_done B ;
o utput strabe 8 N / /
out startChien_out g il / /
% synd_calc_done_out B i / /

-
0303030303 /

" cacocacac Y rrrerrrrrr K opooooooon JKFaFararara il FiririFir1 K ss3s3s3838

Figure 5-18: Timing simulation of low-latency RS(255,225) decoder with
p=>5

133

le 71 clock cycle s|

. allores 120.0ns 240,0ns 360.0ns 480,05 500,05 720.0ns 840.0ns 960.0ns L03us
ame N

ek]

i resetn s{[]

I input_strobe 8| [

B > datain H | fo0ti03(2(303030303030 30303030, XK 50000000000C

S data_out H K 0000000 00 0303030303030303C i

ot dec_done B

o4 output_strobe B M / /

4% startChien_out] D/ /

% | synd_cakc_done_out B M / /

F g
030303030303030303030303030303 /

508080808080808080808080808080 B zszs) 8333833383838 3838 3838363838383 R

Figure 5-19: Timing simulation of low-latency RS(255,225) decoder with
p=15

134

1]

2]

[10]

[11]

[12]

References

C. E. Shannon, “A mathematical theory of communication,” The Bell
System Technical Journal, vol. XXVII, no. 3, pp. 379-423, 1948.

R. W. Hamming, “Error detecting and error correcting codes,” The Bell
System Technical Journal, vol. XXIX, no. 2, pp. 147-160, 1950.

B. Sklar, Digital Communications: Fundamentals and Applications.
Prentice-Hall, Upper Saddle River, 1988.

J. A. Alzubi, O. A. Alzubi, and T. M. Chen, Forward Error Correction
Based on Algebraic-Geometric Theory. Springer, 2014.

M. Nakazawa, K. Kikuchi, and T. Miyazaki, High Spectral Density Optical
Communication Technologies. Springer, 2010.

W. D. Grover, “Forward error correction in dispersionlimited lightwave
systems,” IEEE Journal of Lightwave Technology, vol. 6, no. 5, pp. 643—
645, 1988.

S. Yamamoto, H. Taga, N. Edagawa, and H. Wakabayashi, “Observa-
tion of BER degradation due to fading in long distance optical amplifier
system,” IEEE Electronics Letters, vol. 29, no. 2, pp. 209-210, 1993.

S. Yamamoto, H. Takahira, and M. Tanaka, “5 Gbit/s optical transmis-
sion terminal equipment using forward error correcting code and optical
amplifier,” IEFE FElectronics Letters, vol. 30, no. 3, pp. 254-255, 1994.

O. A. Sab and J. Fang, “Concatenated forward error correction schemes
for long-haul DWDM optical transmission systems,” in 25th Furopean
Conference on Optical Communication (ECOC), 1999.

A. Puc, F. Kerfoot, A. Simons, and D. L. Wilson, “Concatenated FEC ex-
periment over 5000 km long straight line WDM test bed,” in The Optical
Networking and Communication Conference and Exhibition, 1999.

F. Aznar, S. Celma, and B. Calvo, CMOS Receiver Front-ends for Gigabit
Short-Range Optical Communications. Springer, 2013.

C. Kachris and I. Tomkos, “A survey on optical interconnects for data
centers,” IEEE Communications Surveys and Tutorials, vol. 14, no. 4,
2012.

135

[13]

[14]

[15]

[16]

[17]

[18]

[20]

[21]
[22]

136

S. Lee, C. Choi, and H. Lee, “T'wo-parallel Reed-Solomon based FEC ar-
chitecture for optical communications,” IEICE FElectronics Express, vol. 5,
no. 10, pp. 374-380, 2008.

J. D. Lee and M. H. Sunwoo, “Three-parallel Reed-Solomon Decoder
using S-DCME for high-speed communications,” Journal of Signal Pro-
cessing Systems, vol. 66, pp. 15-24, 2012.

R. Zhou, R. L. Bidan, R. Pyndiah, and A. Goalic, “Low-complexity high-
rate Reed-Solomon block turbo codes,” IEEE Transactions on commumni-
cations, vol. 55, no. 9, pp. 1656-1660, 2007.

P. P. Ankolekar, R. Isaac, and J. W. Bredow, “Multibit error-correction
methods for latency-constrained flash memory systems,” IEEE Transacti-
ons on Device and Materials Reliability, vol. 10, no. 1, pp. 33-39, 2010.

A. Shokrollahi, “A class of generalized RS-codes with faster encoding
and decoding algorithms,” in 2013 Information Theory and Applications
Workshop (ITA), 2013.

I. S. Reed and G. Solomon, “Polynomial codes over certain fields,” Journal
of the Society for Industrial and Applied Mathematics, vol. 8, pp. 300-304,
1960.

W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes.
Cambridge University Press, 2003.

S. Lin and D. J. Costello, Error Control Coding: Fundamentals and Ap-
plications. Pearson-Prentice Hall, 2004.

Y. Jiang, A Practical Guide to Error-Control Coding. Artech House, 2010.

J. Massey, “Shift-register synthesis and bch decoding,” IEEE Communi-
cations Surveys and Tutorials, vol. 15, pp. 122-127, 1969.

T. K. Moon, Error Control Coding: Mathematical Methods and Algo-
rithms. John Wiley and Sons, 2005.

G. D. Forney, “On decoding BCH codes,” IEEE Transaction on Informa-
tion Theory, vol. I'T-11, pp. 549-557, 1965.

G. L. Guardia, “Asymmetric quantum Reed-Solomon and generalized
Reed-Solomon codes,” Quantum Information Processing, vol. 11, no. 2,
pp. 591-604, 2012.

V. Glavac, “A VHDL code generator for Reed-Solomon encoders and
decoders,” Master’s thesis, Concordia University, Montreal, Quebec, Ca-
nada, April 2003.

137

[27] S. B. Wicker, Error Control Systems for Digital Communication and
Storage. Englewood Cliffs, Prentice Hall, 1995.

[28] M. Fossorier, “Gaussian elimination decoding of t-error correcting Reed-
Solomon codes in t steps and o(t?) complexity,” IEEE Communications
Letters, vol. 19, no. 7, 2015.

