
VHDL Implementation of a Modified Reed-Solomon Coding
Algorithm with Considerably Reduced Latency

for Short-Reach Optical Communications

Bo Zheng

Master of Electrical Engineering

Electrical and Computer Engineering

McGill University

Montreal,Quebec

2017-07

A thesis submitted to McGill University in partial fulfillment of requirements
of the degree of Master of Electrical Engineering

c©Bo Zheng, 2017

ACKNOWLEDGEMENTS

I would first like to thank Prof. Odile Liboiron-Ladouceur who has always

been incredibly kind, generous and helpful. She always cares my perspectives

like my friend and she always supports me like my family. It was the inspiration

she gave me that led me to the world of research. It was the tremendous

pleasure of working with her that made that decision the best one I have ever

made. I would also like to thank Prof. Warren Gross and Carlo Condo who

offered guidance and help in this research. Their comments and corrections are

significant to my thesis. My gratitude also goes to Rubana Priti, Yuli Xiong,

Bahaa Radi and all other colleagues in my group, not only for the knowledge

they shared with me but also for the kindness they treated me with. Last but

not least, I’m grateful to my parents and my girlfriend for their support and

love. I’m so lucky to have them in my life.

ii

ABSTRACT

Error correction codes have been a necessary part of most optical com-

munication systems. In their implementations, latency is always one of the

top challenges, especially for short-reach optical communications. This con-

cern is not only because of the constant demand for faster Internet speed but

also because the exponential increase in Internet traffic is mainly driven by

emerging applications like streaming video, social networking, and cloud com-

puting, which is all data intensive and require high interaction between the

servers. Research teams have come up with some solutions to reduce latency,

but most of them considerably increase hardware costs and thus are limited.

Nevertheless, a novel class of generalized Reed-Solomon (RS) codes was in-

troduced with faster encoding and decoding algorithm. This low-latency RS

codes can run the entire encoding and most parts of the decoding algorithm

in parallel with only a slight increase in hardware costs. The speed-up effect

is superior and for codes over GF (28), for example, the coefficient can be as

large as 15. In this thesis, the algorithm is explained in details with numerous

examples. A verification of the algorithm in MATLAB using high-level coding

technique is introduced, and a BER performance test is discussed. After that,

the topic moves forward to the focus of the thesis: its VHDL implementation.

Low-latency RS(255, 225) encoders and decoders with different speed-up coef-

ficients are implemented and illustrated in the thesis. The latency results and

hardware costs are compared and discussed. Specifically, it is shown that for

decoders, a latency reduction from 540 to 70 clock cycles have been achieved

with a reasonable increase in hardware costs.

iii

ABRÉGÉ

Les codes de correction d’erreurs ont toujours fait partis de la majorité

des systèmes de communication optiques. Dans leur exécution, la latence a

toujours été l’un des plus grands problèmes, notamment pour les communi-

cations optiques de courte distance. Cette préoccupation n’est pas seulement

due à la hausse de la demande de l’Internet plus rapide, mais aussi par le fait

que la hausse exponentielle du trafic en ligne est causée par les applications

émergentes comme les vidéos en ligne, les médiaux sociaux et le informati-

que en nuage, c’est-à-dire l’information virtuelle, et ces derniers ont besoin

de beaucoup d’espace sur le web et demandent d’interagir souvent entre les

machines. Des équipes de recherche ont mis énormément d’effort et ont trouvé

des solutions, mais la plupart demandent d’augmenter les coûts des matériaux

et donc sont très limités. Toutefois, une nouvelle classe de Reed-Solomon (RS)

de codes été introduit avec un algorithme capable de décrypter et d’encoder

plus efficacement. Ce code RS avec faible latence est capable d’exécuter un

encodage complet en plus de la plupart de l’algorithme du décodage en pa-

rallèle avec seulement une petite hausse en coûts. L’augmentation de la vitesse

d’exécution est supérieure et le coefficient, par exemple, peut être aussi large

que 15 pour les codes an haut de GF (28). Dans cette thèse, l’algorithme est

expliqué en détail avec plusieurs exemples. Une vérification de l’algorithme

sur MATLAB utilisant du codage de niveau avancé est introduite et un ex-

amen sur sa performance BER est discutée. Après cela, le sujet avance sur

l’aspect important de la thèse: l’implémentation du VHDL. La latence faible

RS(255, 225) d’encodage et de décodage avec des coefficients d’augmentation

de vitesse ont été implémentée et illustrée. Les résultats de la latence et les

coûts de matériaux correspondent sont comparés et discutés. Spécifiquement,

iv

il est démontré par les décodeurs qu’une réduction de la latence de 540 à 70

cycles a été atteinte avec une hausse acceptable des couts des matériaux.

v

CONTRIBUTION AND CONTENTS OF THE THESIS

The thesis is done solely by the author (Bo Zheng). It starts with a general

investigation of error correction codes and short-reach optical communication

in Chapter 1. Then latency challenges in this area, as well as solutions develo-

ped so far, are introduced. In Chapter 2, conventional RS codes are reviewed

along with Galois Fields (GF). Up to this point, readers should be fully pre-

pared to explore low-latency RS codes in Chapter 3. Besides the definition

and proof of low-latency RS codes, comprehensive instructions of encoding

and decoding algorithms are also provided with examples. Afterward, it is

time to discuss implementation. The information first focuses on algorithm

verification in MATLAB, and then the testing for BER performance within

communication system toolbox is presented. In Chapter 4, the VHDL imple-

mentation is presented with the code construction and result analysis. Finally,

the results are summarized, and a conclusion is given in Chapter 5 along with

future direction for the work.

vi

ABBREVIATIONS

AWGN additive white Gaussian noise

BCH Bose, Chaudhuri, and Hocquenghem

BER bit error rate

BM Berlekamp-Massey

DFT discrete Fourier transform

ECC error correction codes

EDFA erbium-doped fiber amplifier

EMI electromagnetic interference

FEC forward error correction

FPGA field programmable gate array

FSM finite state machine

FTTH fiber to the home

GF Galois field

GRS generalized Reed-Solomon

IDFT inverse discrete Fourier transform

LFSR linear feedback shift register

LUT look-up table

MDS maximum distance separable

PAM pulse amplitude modulation

RS Reed-Solomon

SNR signal-to-noise ratio

VHDL VHSIC hardware description language

WDM wavelength division multiplexing

vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . ii

ABSTRACT . iii

ABRÉGÉ . iv

CONTRIBUTION AND CONTENTS OF THE THESIS vi

ABBREVIATIONS . vii

LIST OF TABLES . x

LIST OF FIGURES . xi

1 Introduction . 1

1.1 Error Correction Codes . 1
1.2 Error Correction Code in Optical Communication 2
1.3 Short-Reach Optical Communication 4
1.4 Latency Challenges in Short-Reach Optical Communication 5

2 Conventional Reed-Solomon Codes 8

2.1 The Concept of Reed-Solomon Codes 8
2.2 Galois Fields . 9
2.3 Narrow-Sense Reed-Solomon Codes 15

2.3.1 Encoding Algorithm 16
2.3.2 Decoding Algorithm 18

3 Low-Latency Reed-Solomon Codes 26

3.1 Concept and Proof . 26
3.2 Algorithm Description . 31

3.2.1 Encoding Algorithm 32
3.2.2 Decoding Algorithm 36

3.3 Algorithm Verification in MATLAB and BER Performance 50
3.3.1 Implementation of the Encoder in MATLAB 51
3.3.2 Implementation of the Decoder in MATLAB 55
3.3.3 BER Performance 62

3.4 Solutions to Arbitrary k and r 65
3.4.1 k �= 0 mod p, r = 0 mod p 65

viii

3.4.2 r �= 0 mod p . 66

4 VHDL Implementation of Low-Latency RS(255,225) 67

4.1 VHDL Implementation of Galois Field Arithmetics 67
4.1.1 VHDL Implementation of a Galois Field Adder . . . 67
4.1.2 VHDL Implementation of a Galois Field Multiplier . 68
4.1.3 VHDL Implementation of a Galois Field Inverter . . 73

4.2 Encoder Implementation 73
4.2.1 Implementations with Speed-Up Coefficient p = 3 . 76
4.2.2 Implementations with Speed-Up Coefficients p = 5

and p = 15 . 87
4.3 Synthesis and Simulations Results for the Encoder 88
4.4 Decoder Implementation 92

4.4.1 Implementation with Speed-Up Coefficient p=3 . . . 92
4.4.2 Implementations with Speed-Up Coefficient p = 5

and p = 15 . 116
4.5 Synthesis and Simulations Results for the Decoder 120

5 Conclusion . 125

Appendix A . 128

Appendix B . 131

Appendix C . 133

Appendix D . 134

References . 136

ix

LIST OF TABLES
Table page

2–1 Default primitive polynomial for different order m in MATLAB. 12

2–2 Three representations for the elements of GF (24) with the
primitive polynomial p(X) = X4 +X + 1. 13

2–3 Three representations for the elements of GF (23) with the
primitive polynomial p(X) = X3 +X + 1. 15

2–4 Overall features of narrow-sense RS codes, based on [19]. 16

3–1 Conversion between roots of C(15, 9;α, ρ) and elements of GF (24). 27

4–1 Addition with characteristic 2. 68

4–2 Part of the elements table of GF (28) with the primitive polyno-
mial P (X) = X8 +X4 +X3 +X2 + 1. 72

4–3 Comparison of FPGA synthesis results for different encoders. . 89

4–4 Comparison of ASIC synthesis results for different encoders. . 91

4–5 Comparison FPGA synthesis results for different decoders. . . 121

4–6 Comparison of ASIC synthesis results for different decoders. . 123

x

LIST OF FIGURES
Figure page

1–1 A typical communication system. 2

1–2 History of ECC development, based on [5]. 3

2–1 Unsatisfied minimum distance for RS codes. 9

2–2 Division process for (x7 + 1)/(x3 + x+ 1). 11

2–3 Structure of a conventional RS encoding algorithm. 16

2–4 Structure of a conventional RS decoding algorithm. 18

3–1 Structure of low-latency RS encoding algorithm. 32

3–2 Structure of low-latency RS decoding algorithm. 37

3–3 MATLAB codes of DFT function. 51

3–4 MATLAB codes of IDFT function. 52

3–5 MATLAB codes of low-latency RS encoder: Part 1. 52

3–6 MATLAB codes of low-latency RS encoder: Part 2. 53

3–7 MATLAB codes of low-latency RS encoder: Part 3. 53

3–8 MATLAB codes of low-latency RS encoder: Part 4. 54

3–9 MATLAB codes of low-latency RS encoder: Part 5. 54

3–10 MATLAB codes of low-latency RS encoder: Part 6. 55

3–11 Output of low-latency RS encoder in MATLAB with circum-
stances in Example 12. 55

3–12 MATLAB codes of syndrome calculation in low-latency RS
decoder. 57

3–13 MATLAB codes of key equation solver in low-latency RS decoder. 58

3–14 MATLAB codes of Chien search in low-latency RS decoder. . . 59

3–15 MATLAB codes of error evaluation in low-latency RS decoder. 60

xi

3–16 MATLAB codes of top file in low-latency RS decoder. 61

3–17 Output of low-latency RS decoder in MATLAB with circum-
stances in Example 17. 62

3–18 Structure of the communication test-bench in MATLAB. . . . 63

3–19 MATLAB codes of the BER performance test-bench. 64

3–20 Results from the communication test-bench for BER performance. 65

4–1 VHDL codes of an addition function over GF (28). 68

4–2 Implementation diagram of an adder over GF (28). 69

4–3 VHDL codes of a multiplication function over GF (24). 71

4–4 VHDL codes of a multiplication function over GF (28). 73

4–5 VHDL codes of a inversion function over GF (28): Part 1. . . . 74

4–6 VHDL codes of a inversion function over GF (28): Part 2. . . . 75

4–7 Structure of a linear shift back register (LFSR). 76

4–8 Low-latency RS(255, 225) encoder with speed-up coefficient
p = 3. 77

4–9 Ports Declaration of RS encoder with p = 3. 78

4–10 Signal declaration of RS encoder with p = 3. 78

4–11 DFT and IDFT functions of RS encoder with p = 3. 79

4–12 LFSR component instantiations of RS encoder with p = 3. . . 80

4–13 Register update of RS encoder with p = 3. 80

4–14 Finite state machine of RS encoder with p = 3. 81

4–15 Counter behavior of RS encoder with p = 3. 82

4–16 Preprocessing of RS encoder with p = 3. 82

4–17 Port Declaration of LFSR component. 84

4–18 Signal Declaration of LFSR component. 84

4–19 Register update of LFSR component. 84

4–20 Counter behavior of LFSR component. 85

4–21 Combinational logic for control signals of LFSR component. . 85

xii

4–22 Combinational logic for parity-bits registers of LFSR component. 86

4–23 Combinational logic for the output data of LFSR component. . 86

4–24 Post-processing of low-latency RS(255, 225) encoder with p = 3. 86

4–25 Functional simulation of low-latency RS(255, 225) encoder with
p = 3. 89

4–26 Functional simulation of low-latency RS(255, 225) encoder with
p = 5. 90

4–27 Functional simulation of low-latency RS(255, 225) encoder with
p = 15. 90

4–28 Structure of low-latency RS(255, 225) decoder with p = 3. . . 94

4–29 Port declaration of syndrome component. 95

4–30 Signal declaration of syndrome component. 96

4–31 Register update of syndrome component. 97

4–32 Finite State Machine of syndrome component. 98

4–33 Counter process of syndrome component. 99

4–34 Combinator logic of syndrome component. 100

4–35 Recursive Multiplication Block. 100

4–36 Port declaration of BM component. 101

4–37 Signal declaration of BM component. 101

4–38 Newly defined functions of BM component. 102

4–39 Register update of BM component. 103

4–40 Finite state machine of BM component. 104

4–41 Counter behavior of BM component. 105

4–42 Delta calculation of BM component. 106

4–43 Update of error-locator polynomial of BM component. 107

4–44 Update of error-evaluator polynomial of BM component. . . . 107

4–45 Update of other supporting signals of BM component. 108

4–46 Final output of BM component. 109

xiii

4–47 Port declaration of Chien search and correction component. . . 109

4–48 Signal declaration of Chien search and correction component. . 110

4–49 Evaluation block of the modified Chien search 111

4–50 Evaluation block of the odd terms of error-locator polynomial. 111

4–51 Evaluation block of the error-evaluator polynomial. 112

4–52 Register update of Chien search and correction component. . . 113

4–53 Finite state machine of Chien search and correction component. 114

4–54 Data recording of Chien search and correction component. . . 115

4–55 Counter behavior of Chien search and correction component. . 115

4–56 Coefficient extraction of Chien search and correction component. 115

4–57 Modified Chien search of Chien search and correction component.116

4–58 Polynomial evaluation of Chien search and correction component.117

4–59 Correction process of Chien search and correction component. 118

4–60 Final output process of Chien search and correction component. 118

4–61 Top file of low-latency RS(255, 225) decoder with p = 3. . . . 119

4–62 Functional simulation of low-latency RS(255, 225) decoder with
p = 3. 121

4–63 Functional simulation of low-latency RS(255, 225) decoder with
p = 5. 122

4–64 Functional simulation of low-latency RS(255, 225) decoder with
p = 15. 122

5–1 Set up for p = 5 . 128

5–2 Defining functions for p = 5 128

5–3 Component Instantiations for p = 5 129

5–4 Preprocess for p = 5 . 130

5–5 LFSR basic parameters for p = 5 130

5–6 LFSR parity-bits register update for p = 5 130

5–7 Output control for p = 5 . 130

xiv

5–8 Set up of syndrome component for p = 5 131

5–9 DFT function of syndrome component for p = 5 131

5–10 Final output of syndrome component for p = 5 131

5–11 Set up of Chien search and correction component for p = 5 . . 132

5–12 IDFT function of Chien search and correction component for
p = 5 . 132

5–13 Chien sum of syndrome component for p = 5 132

5–14 Timing simulation of low-latency RS(255, 225) encoder with
p = 3 . 133

5–15 Timing simulation of low-latency RS(255, 225) encoder with
p = 5 . 133

5–16 Timing simulation of low-latency RS(255, 225) encoder with
p = 15 . 133

5–17 Timing simulation of low-latency RS(255, 225) decoder with
p = 3 . 134

5–18 Timing simulation of low-latency RS(255, 225) decoder with
p = 5 . 134

5–19 Timing simulation of low-latency RS(255, 225) decoder with
p = 15 . 135

xv

CHAPTER 1
Introduction

1.1 Error Correction Codes

Transmission channels in communication systems are not perfect. Even

for optical fibers which are well known for being one of the best transmission

media, dispersion, scattering, and other impairments can easily undermine the

transmitted data. This fact has led to the invention of error correction codes

(ECC) which add redundant data and map the message following a particular

way to a set of code-words. With ECC, the receiver can acquire the origi-

nal message to a certain degree of accuracy that is called correction-words by

decoding the received-words which refer to the received code-words with po-

tential transmission errors. Coding theory was first introduced in [1] in 1948 by

Claude Shannon where he specified the meaning of efficient and reliable infor-

mation. Two years later, Richard Hamming defined a constructive generating

method and the basic parameters of ECC [2]. Nowadays, ECC has become a

necessary component in most communication systems. As Figure 1–1 shows,

the data to transmit is sent from data source to source encoder where the data

are compressed, and redundant bits are removed. Then in channel encoder,

ECC is utilized by adding particular redundant bits to data. The modulator

converts the sequence of bits out from the channel encoder into symbols suit-

able for the channel transmission. Passing through the channel which is the

physical means of transmissions, the symbols received by the receiver can be

corrupted. The demodulator converts the transmitted symbols back to data

bits. Afterward, the channel decoder uses the redundancy bits added by the

channel encoder to correct transmission errors. The source decoder converts

1

Figure 1–1: A typical communication system.

the data back to uncompressed representations which are finally sent to the

sink.

The criterion for designing ECC includes: the probability of decoding

errors should be minimized; the transmission of information should be dense

and as fast as possible; the reproduced information at the channel decoder

output should be reliable; the implementation cost of the encoder and decoder

should be reasonable [3]. Structurally, there are two types of ECC: linear block

codes and convolutional codes. The main difference between the two categories

is that the first one uses only the symbols in the current set of message-words

to produce the code-words, while the second one needs to remember some

previous set of message-words [4]. Both of the famous Hamming and Reed-

Solomon (RS) codes are examples of linear block codes. For several decades,

research teams have developed efficient and reliable codes. Figure 1–2 gives

an idea about the history of ECC development.

1.2 Error Correction Code in Optical Communication

In [5], Masataka Nakazawa and his team made a very nice description of

the evolutionary history of ECC in optical communication. This paragraph is

a summary and comments based on that description. Forward error correction

(FEC) refers to the technique that uses ECC to estimate the original message.

2

Figure 1–2: History of ECC development, based on [5].

As seen from Figure 1–2, FEC was initially ignored in optical fiber communica-

tion systems for a long time, because of its natural high data integrity leading

to considerably small bit error ratios (BER) compared to conventional radio

and satellite communications. One of the first published practical FEC ex-

periments in optical fiber communications was reported by Grover employing

shortened Hamming code (224, 216) in 1988 [6]. Then FEC started to appear

in repeaterless submarine cable systems in the early 1990s. After erbium-doped

fiber amplifiers (EDFA) had been applied in repeatered submarine systems, a

problem with fluctuations in the BER caused by polarization-dependent effects

showed up [7]. Nevertheless, RS codes mitigated the performance variation [8],

which led to using EEC to gain system margin. These codes are often cal-

led the first generation. When wavelength-division multiplexing (WDM) was

deployed widely, more powerful error correction codes are desired to satisfy

the increase in signal-to-noise ratio (SNR) requirement due to the multiple

numbers of multiplexed wavelength. One of the first proposal aiming to this

3

target was concatenated RS codes with iterative decoding. Ait Sab propo-

sed RS(255, 239)+RS(255, 223) with 22% redundancy and two iterations [9].

The codes developed in this stage are often called the second generation, and

they drastically increased the attainable transmission capacity. Due to the

continuous explosion of Internet traffic, the motivation was not only for larger

capacity but also to reduce the cost. Terabit systems need expensive optical

technologies such as ultra-wide band optical amplifiers, complex optical chan-

nel equalizers, and special grade premium fibers, while cheaper materials can

be used but imply more errors. Therefore, stronger error correction codes ba-

sed on soft-decision decoding are classified as the third generation. Also based

on RS codes, Andrej Puc developed the first demonstration for soft decision

in optical communications [10].

1.3 Short-Reach Optical Communication

For a very long time, optical links have been exploited only for long-haul

communications. Only sharing among a large number of users can make them

cost-effective [11]. Nevertheless, due to the decreasing hardware price and in-

creasing demand for Internet bandwidth, short-reach communication attracts

significant attentions now. Currently, fiber-to-the-home (FTTH) is already

commercially available in many cities with affordable price. It is believed

that fiber optics will eventually spread in any-size networks. Another focus

point of short-reach optical communications is high-speed optical intercon-

nects. Especially for data centers where thousands of servers interconnected

with high bandwidth packet switches, optical interconnects are the most pro-

mising solution to provide high throughput, low latency, and reduced energy

consumption [12]. Furthermore, the interconnects become a bottleneck for

performance, as the processing speed of chips is continuously increasing fast.

4

Using optics for board to board, chip to chip and even on-board interconnects

are being intensively studying.

Francisco Aznar and his team gave an excellent comparison between op-

tical and electrical communications in [11]. The rest of this paragraph is the

summary of their major findings. First, optical fibers do not suffer from elec-

tromagnetic interference (EMI) as electrical wires do. Optical carriers have no

charge whereas electrical ones with high-speed signal may act as a transmit-

ting antenna and radiate noise, possibly causing interference-related problems

with neighboring circuits. Second, electrical transmissions need Galvanic se-

paration that to solve ground loops because of variation of ground potential,

while optical transmissions have no such problems because they provide an

inherently isolated data path. Third, optical transmissions are safer than elec-

trical ones because no electrical current is conveyed. Fourth, an optical fiber

has much lighter weight than an electrical wire. Fifth, glass for optical fibers

is obtained from sand and thus is more environmental-friendly than electrical

wires which are made from copper and other metals.

1.4 Latency Challenges in Short-Reach Optical Communication

Latency is always one of the most important requirements for any commu-

nication systems. As mentioned above, besides the constant demand of higher

Internet speed, the latency of optical interconnects among boards, chips, and

servers are also urgent to decrease. The exponential increase of Internet traffic

is driven by emerging applications like streaming video, social networking and

cloud computing, which are all data-intensive and require high interaction be-

tween the servers [12]. Furthermore, latency reduction can indirectly decrease

the cost of optical communications. Larger error-correction capacity leads to

longer decoding time. With lower latency, larger error-correction capacity can

5

be accommodated in applications with a certain time constraint, which means

cheaper but lossier materials can be used in the system.

Research teams have put many efforts in latency reduction of ECC, es-

pecially for RS codes as it is one of the most widely used classes. Up to now,

several solutions have been proposed. One solution is to modify the formulas

to double or triple the number of inputs of some steps so that those steps

of decoding algorithm can run in parallel. However, the cost is to double or

triple the hardware used in those steps, which obviously makes this solution

very limited [13, 14]. Another solution is multi-ECC concatenation. Different

type of ECC are concatenated together to achiever better code gain and re-

latively lower overall latency [15, 16]. However, this category often involves

soft-decision decoding algorithms which are not generally suitable for short-

reach communications whose power budgets are usually smaller than the power

requirements of soft-decision algorithms.

There is one promising solution developed by Amin Shokrollahi in [17]. It

is essentially a novel class of generalized RS (GRS) codes, which is referred as

low-latency RS codes in this thesis. GRS codes were developed based on RS

codes several decades ago and are a generalized version of RS codes. Instead

of the set of consecutive roots in a conventional RS codes, Dr. Shokrollahi

defined this set of roots to be closed under multiplication with a p-th root of

unity over the same Galois field (GF). In this way, a conventional generator

polynomial can be split into p generator polynomials, and consequently the

encoder use them to generate a set of code-words consisting of p components.

All the components can be constructed and decoded at the same time with

little extra effort of component-wise Fourier transform. In other words, most

of the encoding and decoding procedures can run in p-parallel, where p refers

to the speed-up coefficient and can be even more than 10 for many scenarios.

6

However, the key equation solver and the error evaluation and correction pro-

cess are not discussed in [17]. In this thesis, we developed a p parallel error

evaluation and correction process to make output data-rate consistent with in-

put data-rate. Overall, there are three significant novel features of this design

compared with other solutions. First, due to the nature of this proposed de-

sign, the increased cost of hardware for this speed-up is low and thus the area

and power advantages are outstanding. Second, the speed-up coefficient, that

is the scalability, can be very large for this solution. Third, both latency and

throughput are considerably improved. The detailed instruction and VHDL

implementation of the algorithm constitute the focus of this thesis.

7

CHAPTER 2
Conventional Reed-Solomon Codes

2.1 The Concept of Reed-Solomon Codes

RS codes developed by Irving S. Reed and Gustave Solomon in 1960 [18]

is a special subclass of q-ary non-binary Bose, Chaudhuri, and Hocquenghem

(BCH) codes where q refers to the number of elements in the Galois field (GF)

on which the codes are built. The details of Galois field are introduced in next

section. In other words, instead of using binary signals in BCH codes, RS

codes uses non-binary symbols as the unit of data. For example, for binary

BCH codes, the encoded data can be [1 0 1 0 1 0 0] but for RS codes, the

encoded data can be [3 5 7 2 4 5] (equivalent to [011 101 111 010 100 101]).

RS(n, k) means Reed-Solomon codes with the code-word length n and the

message-word length k. The message-words are the block of data to transmit,

and the code-words are the encoded messages transmitted through the channel.

Moreover, t = (n−k)/2 is the error-correction capability, that is the maximum

number of errors that can be corrected in a code-word with length n. This

equation is derived from the fact that the minimum distance for RS coding

theory is 2t + 1 = n − k + 1. The minimum distance is the space between

two possible code-words. The reason for 2t + 1 is from the BCH bound and

singleton bound [19]. The lower bound for the distance must be one unit larger

than 2t. In an easier way to see this condition, imagine two points representing

two sets of code-words. For each point, draw a circle with the point as the

center and radius r = t. If the distance between the two points is 2t, there will

be an intersection point between the two circles (Figure 2–1). Therefore, on

that point, one cannot decode it correctly. The upper bound is following the

8

Figure 2–1: Unsatisfied minimum distance for RS codes.

singleton bound that Aq(n, d) ≤ qn−d+1 where Aq is the maximum number of

possible code-words in a q-ary block code of length n and minimum distance

d. Furthermore, the fact of satisfying the singleton bound qualifies RS codes

as Maximum Distance Separable (MDS) codes [19]. MDS codes are a class of

ECC which have the greatest error-correction capacity for given n and k.

Example 1. RS(7, 3) handles message-word with length k = 3 (for

instance, msg = [6 4 2], that is actually [110 100 010]) and produces a

code-word with length n = 7 (for instance, c =[6 4 2 5 7 1 2]). The error-

correction capability t for RS(7, 3) is 2 (= (7− 3)/2), which means that

to successfully acquire the correct original message in the receiver, there

can be at most 2 symbols in the c corrupted during the transmission in

a channel (for instance, r =[6 7 2 5 7 0 2]).

For systematic RS codes which most modern RS codes are, the code-

words consist of the original message-words and the parity-check bits. In the

previous example, we can see the first three digits in c =[6 4 2 5 7 1 2] are

the original message-words msg =[6 4 2] and the last four are the parity-bits.

The parity-bits are computed using arithmetics over a specific Galois field.

2.2 Galois Fields

Almost all the arithmetic process of RS codes is based on Galois field

(a.k.a. finite field). A Galois field GF (q) is a field that contains a finite number

9

of elements on which the operations of multiplication, division, addition, and

subtraction follow certain rules and are closed in the set, that is, results of the

operations are still inside the set. The q from the notation GF (q) represents

the number of elements in a specific Galois field and the q must be equal to

a power of a prime number p [20]. If the exponential power is 1, that is, q

is equal to the prime number p, then GF (q) is called a prime Galois field

GF (p). On the other hand, if the exponential power is larger than 1, then the

corresponding GF (q) is called extension Galois field GF (pm). Specific to our

context with digital communication applications, RS(n,k) uses an extension

Galois field GF (q) = GF (2m).

Specifically, GF (q) = GF (2m) = {0, 1, α, α2, α3, · · · , α(q−2)}, where α is

called primitive element satisfying α0 = α(q−1) = 1 and all elements in the

field must be distinct. The primitive element α should not be thought as a

real number. Instead, think of it as a mathematical symbol, and consistently

α(q−1) = 1 does not mean q−1 = 0. The q here can be any power of 2 (q = 2m).

The corresponding arithmetic operations are following the modulo-2 rule (note

that if p = 3 and thus q = 3m, then module-3 rule would be followed). For

example, α2 + α2 + α2 = α2, and α2 + α2 = 0.

A polynomial over a prime Galois field GF (2) is a univariate polynomial

whose coefficients are from GF (2) = {0, 1} and the corresponding polynomial

arithmetic (addition, subtraction, multiplication, and division) is based on

modulo-2. A primitive polynomial of degree m over GF (2) is defined as an

irreducible polynomial p(X) of degree m if the smallest positive integer n, for

which the primitive polynomial p(X) divides Xn + 1, is n = 2m − 1 [20]. It

should be mentioned that the m here is not necessarily 1 because it is not

used to define GF (2). Instead, this m is to later define the extension field of

GF (2), that is, GF (2m).

10

Figure 2–2: Division process for (x7 + 1)/(x3 + x+ 1).

Example 2. For example, p(X) = X3 +X + 1 divides X7 + 1 (Figure

2–2) but does not divide Xn + 1 for 1 ≤ n < 7.

There are three ways to represent each extension field GF (2m): 1) power

representation, 2) polynomial representation, and 3) m-tuple representation.

These three representations can be converted to each other based on the needs

of the circumstances. The three representations of an extension field GF (2m)

can be completely built on a given primitive polynomial p(x) over GF (2). It

should be noticed that an extension field GF (2m) has different primitive poly-

nomials and with each specific primitive polynomial p(x), the representations

are different correspondingly. The default primitive polynomials for different

order m in MATLAB are shown in Table 2–1.

Example 3. For RS(15,11), the n = 15 and thus q = n+ 1 = 16. The-

refore, we are using GF (16) = GF (2m) = GF (24) for this RS code

and m = 4. For power representation, GF (24) = {0, 1(1 = α0 =

11

α15), α, α2, α3, · · · , α14}. From Table 2–1 we can find the default primi-

tive polynomial in MATLAB for m = 4 is p(X) = X4 +X + 1.

m Default Primitive Polynomial in MATLAB

1 X + 1

2 X2 +X + 1

3 X3 +X + 1

4 X4 +X + 1

5 X5 +X2 + 1

6 X6 +X + 1

7 X7 +X3 + 1

8 X8 +X4 +X3 +X2 + 1

9 X9 +X4 + 1

10 X10 +X3 + 1

11 X11 +X2 + 1

12 X12 +X6 +X4 +X + 1

13 X13 +X4 +X3 +X + 1

14 X13 +X4 +X3 +X + 1

15 X15 +X + 1

16 X16 +X12 +X3 +X + 1

Table 2–1: Default primitive polynomial for different order m in MATLAB.

Then, we can substitute the primitive element α into p(x) and get the

equation 0 = α4 + α + 1. This equation is used to find out the corresponding

polynomial representation in which we use polynomials of the maximum order

(m−1) = 3 to represent each element. For example, α4 can be represented by

(α+ 1) due to the equation 0 = α4 + α+ 1 (negative sign is equivalent to the

positive sign in modulo-2 arithmetic). And then α5 = α · α4 = α · (α + 1) =

12

α2 + α and so on so forth until the element α14 is calculated, as αq−1 = 1 and

q − 2 = 14.

The m-tuple representation (4-tuple representation in Example 3) is pro-

duced according to the polynomial representation. Each bit in the 4-tuple

representation represents each coefficient of each polynomial term. For in-

stance, 0111 represents the polynomial representation α2 + α + 1. All three

representations for the elements of GF (24) generated by the primitive poly-

nomial p(X) = X4 +X + 1 are shown in Table 2–2.

Power Representation Polynomial Representation 4-Tuple Representation

0 0 0000(=0)

α0(= 1) 1 0001(=1)

α1 α 0010(=2)

α2 α2 0100(=4)

α3 α3 1000(=8)

α4 α + 1 0011(=3)

α5 α2 + α 0110(=6)

α6 α3 + α2 1100(=12)

α7 α3 + α + 1 1011(=11)

α8 α2 + 1 0101(=5)

α9 α3 + α 1010(=10)

α10 α2 + α + 1 0111(=7)

α11 α3 + α2 + α 1110(=14)

α12 α3 + α2 + α + 1 1111(=15)

α13 α3 + α2 + 1 1101(=13)

α14 α3 + 1 1001(=9)

Table 2–2: Three representations for the elements of GF (24) with the primitive
polynomial p(X) = X4 +X + 1.

13

A polynomial over Galois field GF (2m) is a univariate polynomial whose

coefficients are from GF (2m) and the corresponding polynomial arithmetic

(addition, subtraction, multiplication, and division) is based on modulo-2. In

Reed-Solomon codes, the message polynomials, generator polynomials, and

the code-word polynomials are all in this category. When a k-length message-

words are ready to transmit, it is translated into a message polynomial of

order (k−1) over a specific Galois field GF (2m). It should be noticed that the

message-word length is k, that is, there are k coefficients in this message poly-

nomial. A generator polynomial is a polynomial over Galois field to calculate

the parity-check bits mentioned in the last section. For each RS(n,k) with a

specific value of (n−k), there is a particular generator polynomial of the order

(n − k) correspondingly. The code-word polynomial is the final result when

we encode a message, and the coefficients are the encoded data to transmit.

Example 4. For RS(7,3), we are using GF (8) = GF (2m) = GF (23) =

{0, 1(1 = α0 = α7), α, α2, α3, · · · , α6}. If the message-word to transmit

is [5 6 4], that is, [101 110 100], then the message polynomial over

GF (23) is msg(x) = α6X2 + α4X + α2 (see Table 2–3). Suppose that

after a certain encoding process the resultant code-word polynomial is

c(x) = α6X6 + α4X5 + α2X4 + α5X3 +X2 + αX + α2. Then the final

resultant code-word is [5 6 4 7 1 2 4], that is, [101 110 100 111 001 010

100]. The next section illustrates how all these polynomials are derived.

The concepts of arithmetics over GF (2m) are straightforward, while some

of them are hard to implement in hardware, which is discussed in Chapter 4.

Addition can be computed by simply using polynomial or m-tuple representa-

tions of elements. For example, for GF (23), α3+α5 = (α+1)+(α2+α+1) =

[011]+[111] = α2 = [100]. Subtraction is the same as addition due to modulo-2

14

Power Representation Polynomial Representation 3-Tuple Representation

0 0 000(=0)

α0(= 1) 1 001(=1)

α1 α 010(=2)

α2 α2 100(=4)

α3 α + 1 011(=3)

α4 α2 + α 110(=6)

α5 α2 + α + 1 111(=7)

α6 α2 + 1 101(=5)

Table 2–3: Three representations for the elements of GF (23) with the primitive
polynomial p(X) = X3 +X + 1.

rule. For example, α3−α5 = α3+α5 = α2. Inversion can be done using power

representation of elements based on the fact that α2m−1 = 1. For example, for

GF (23), α−4 = 1
α4 = α7

α4 = α3. Multiplication can be calculated easily by using

power representation of elements. First, add up the exponential powers and

then calculate the remainder with respect to (2m − 1), since α2m−1 = 1. For

example, for GF (23), α3 ·α5 = α(3+5) mod 7 = α. On the other hand, a division

is simply computed by multiplying the divisor’s inversion.

2.3 Narrow-Sense Reed-Solomon Codes

Compared to generalized RS codes, narrow-sense RS codes is a special

class which most modern RS applications, as well as books and software such

as MATLAB, are using. There are several differences between these two ca-

tegories. For example, in narrow sense RS codes, the length of code-words is

n = 2m − 1 with GF (2m). While in generalized RS codes, for GF (2m), the

length of code-words can be any values smaller than 2m. Since the topic of

this chapter is about the conventional RS coding algorithm, we here focus on

narrow-sense RS codes. Generalized RS will be introduced in Chapter 3.

15

Let α be a primitive element of GF (q) and let k be an integer with

0 ≤ k ≤ n = q − 1. Then c = [f(1), f(α), f(α2), · · · , f(αq−2)] is a narrow-

sense RS(n,k) code-word over GF (q), where f(x) is the message polynomial

of order (k− 1) [19]. The summary of overall features are listed in Table 2–4.

Block Length of the Code-Words n = q − 1

Number of Parity-Check Symbols in Code-word 2t = n− k

Error Correction Capability t = (n− k)/2

Dimension k = q − 1− 2t

Minimum distance dmin = 2t+ 1

Table 2–4: Overall features of narrow-sense RS codes, based on [19].

2.3.1 Encoding Algorithm

Despite the definition described above, one mostly encodes and decodes

data using a systematic algorithm. In this systematic algorithm, the message

words are explicitly shown in the code-words. The structure for the encoding

algorithm is shown in Figure 2–3. There are only two main steps. First, a

generator polynomial g(X) is calculated. Second, parity-bits are produced

using the generator polynomial and the input message polynomial.

Figure 2–3: Structure of a conventional RS encoding algorithm.

The generator polynomial g(X) of a t-error-correcting RS code is a po-

lynomial with order 2t = (n− k) over GF (q) and has α, α2, · · · , α2t as all its

roots. In other words, g(X) = 0 when X = α, α2, · · · , α2t. With gi ∈ GF (q)

16

for 0 ≤ i < 2t, g(X) = (X − α)(X − α2) · · · (X − α2t) = g0 + g1X + g2X
2 +

· · ·+ g2t−1X
2t−1 +X2t.

When we transmit a message, the message data are taken as coefficients

of the message polynomial over the same GF (q). With mi ∈ GF (q) for 0 ≤
i ≤ k − 1, that is m(X) = m0 + m1X + m2X

2 + · · · + mk−1X
k−1. Then

the parity-check bits are calculated by b(X) = (Xn−k · m(X)) mod g(X),

which is actually the remainder of the shifted message polynomial divided by

the generator polynomial. “mod” refers to the arithmetic function “modulo”,

which means to divide first and acquire the remainder. g(X) is a polynomial,

and (X(n−k)m(X)) is the shifted message polynomial by (n − k) bits. For

RS(7,3), for example, if m(X) = X2 + α3X + α2, and X(n−k) = X4, then the

shifted message polynomial isX6+α3X5+α2X4. In other words, for RS(7,3) if

the message were [1 3 4] (see Table 2–3), then the shifted message would be [1

3 4 0 0 0 0]. The way to do modulo between two polynomials is demonstrated

in Figure 2–2. The resulting coded polynomial is c(X) = Xkm(X) + b(X)

Example 5. This example is given in [21]. For narrow-sense RS codes

(7,3), n = 7; q = 7 + 1 = 8; k = 3; 2t = 7 − 3 = 4; t = (7 − 3)/2 = 2;

m = log28 = 3. Therefore, we are using GF (8) = GF (2m) = GF (23) =

{0, 1(1 = α0 = α7), α, α2, α3, · · · , α6}. Then, the generator polynomial

is calculated as g(X) = (X−α)(X−α2)(X−α3)(X−α4) = X4+α3X3+

X2 + αX + α3. Now assume the message is [1 3 4]. Then the message

polynomial is m(X) = X2 + α3X + α2. The parity-check polynomial is

calculated as b(X) = (X6 + α3X5 + α2X4) mod (X4 + α3X3 + X2 +

αX + α3) = α4X3 + α4X2 +X + α2.

Finally, the complete code-word polynomial therefore is c(X) =

Xkm(X) + b(X) = X4m(X) + b(X) = X6 + α3X5 + α2X4 + α4X3 +

17

α4X2 +X +α2. The code-words are [α0, α3, α2, α4, α4, α0, α2] and equi-

valently [1 3 4 6 6 1 4] (see Table 2–3).

2.3.2 Decoding Algorithm

The decoding process is divided into the five following standard steps

(Figure 2–4):

1. Calculate syndrome Si for i = 1, 2, 3, · · · , 2t.
2. Determine the error locator polynomial σ(x).

3. Find the error locations, that is, the roots of the error locator polynomial

(Chien search).

4. Compute the error magnitude.

5. Correct the errors.

Figure 2–4: Structure of a conventional RS decoding algorithm.

Step 1. Syndrome is a parameter set particularly for the decoding pro-

cess. Recall the encoding algorithm and the generated code-word has roots

α, α2, α3, · · · , α2t, while each syndrome can be calculated easily by substitu-

ting these roots into the received code-word r(x) : Si = r(αi) = r0 + r1α
i +

r2(α
i)2 + r3(α

i)3 + · · ·+ r(n−1)(α
i)(n−1) where i = 1, 2, · · · , 2t.

Let us define an error polynomial e(x) which refers to the error generated

in the transmission. Therefore, r(x) = c(x)+e(x), where c(x) is the code-word

18

polynomial that is the original code-word transmitted from the transmitter. As

c(x) has roots α, α2, α3, · · · , α2t such that c(αi) = 0 for αi = α, α2, α3, · · · , α2t,

then the syndrome can be defined as Si = r(αi) = c(αi) + e(αi) = e(αi).

Example 6. Assume we are working on a narrow-sense RS(7,3). Sup-

pose that the code-word polynomial transmitted was c(x) = x6 +

α3x5 + α5x4 + α3x3 + α6x2 + α5x1 + 1. The received polynomial

was r(x) = x6 + α3x5 + x4 + α3x3 + α2x2 + α5x1 + 1 and it con-

tains two errors. It should be noticed that ri refers to the coeffi-

cients associated in this polynomial r(x). In this particular example,

r0 = 1, r1 = α5, r2 = α2, r3 = α3, r4 = 1, r5 = α3, r6 = 1.

Then there are 2t = 4 syndromes and the syndromes are calculated as

following:

S1 = r(α1) = r6 · (α1)6 + r5 · (α1)5 + r4 · (α1)4 + r3 · (α1)3 + r2 · (α1)2 +

r1 · α1 + r0 = α6 + α3 · α5 + α4 + α3 · α3 + α2 · α2 + α5 · α1 + 1 = α4

S2 = r(α2) = r6 · (α2)6 + r5 · (α2)5 + r4 · (α2)4 + r3 · (α2)3 + r2 · (α2)2 +

r1 · α1 + r0 = α12 + α3 · α10 + α8 + α3 · α6 + α2 · α4 + α5 · α2 + 1 = 1

S3 = r(α3) = α18 + α3 · α15 + α12 + α3 · α9 + α2 · α6 + α5 · α3 + 1 = 1

S4 = r(α4) = α24 + α3 · α20 + α16 + α3 · α12 + α2 · α8 + α5 · α4 + 1 = α5

Step 2. With 2t roots, we can get 2t syndromes and thus 2t error poly-

nomials. Therefore, by solving the 2t equation system, it is possible to find the

error polynomial and thus find the error location. However, it is not easy to

solve this system, and we need to construct an error-locator polynomial σ(x)

via an algorithm referred as the Berlekamp-Massey (BM) algorithm [22].

σ(x) = σ0 + σ1x+ σ2x
2 + σ3x

3 + · · ·+ σvx
v, where v ≤ t is the number of

errors. It is constructed in a way that its roots are the reciprocals of αi where

i suggests an error location. For example, α3 means that one error exists in

19

the coefficient of x3 in the received polynomial. With this definition and based

on Newtons identity [23], it has been proved that the syndromes are related

with error locator polynomial σ(x) in the way that Si = −∑v
j=1 σjSi−j where

i = v + 1, v + 2, · · · , 2t and v ≤ t is the number of errors [21].

The above relationship can be implemented using a linear feedback shift

register (LFSR) with the syndromes as outputs. Starting with an LFSR that

produces S1, the LFSR is checked to see if it can also produce S2. If it can,

then the LFSR is not changed. Otherwise, the LFSR is modified to produce

S2 as well. Then the LFSR is examined to see if it can also produce S3. Again,

if it can, the LFSR remains unchanged. Otherwise, the LFSR is updated so

that it can also produce S3. The procedure is carried out for 2t times [21]. In

the end, the LFSR can produce all of the 2t syndrome components, and thus

we can acquire the error location polynomial σ(x).

Concretely, the BM algorithm is defined as follows. B(x) is a supporting

polynomial to assist in the updating of the error locator polynomial σ(x).

Denote L as the length of the LFSR, which represents the number of errors

v, that is, the degree of σ(x). The upper index i refers to the i-th iteration

and the lower index j represents j-th coefficient that is associated with xj in

polynomials. For example, σ
(i)
j means the j-th coefficient σj of σ(x) updated

at the i-th iteration.

• Initialization:

σ(0)(x) = 1, B(0)(x) = 1, L(0) = 0, and i = 1

• Operation on the i-th iteration:

1. Compute the LFSR output: S̃i = −∑L(i−1)

j=1 σ
(i−1)
j Si−j.

2. Calculate the discrepancy: Δi = Si − S̃i.

3. Assign value to the variable δ : δ =

⎧⎪⎪⎨
⎪⎪⎩
1, if Δi �= 0 and 2L(i−1) ≤ i− 1

0, otherwise

20

4. Update:⎡
⎢⎣
σ(i)(x)

B(i)(x)

⎤
⎥⎦ =

⎡
⎢⎣

1 −Δi · x
Δ−1

i · δ (1− δ) · x

⎤
⎥⎦ ·

⎡
⎢⎣
σ(i−1)(x)

B(i−1)(x)

⎤
⎥⎦

L(i) = δ · (i− L(i−1))) + (1− δ)L(j−1)

5. If i = 2t, stop. Otherwise, i = i+ 1 and return to step 1.

Example 7. Continuing with Example 6, assume we are using narrow-

sense RS(7,3). Suppose that the code polynomial c(x) = x6 + α3x5 +

α5x4+α3x3+α6x2+α5x1+1 was transmitted. The received polynomial

r(x) = x6 + α3x5 + x4 + α3x3 + α2x2 + α5x1 + 1 contains two errors.

Then there are 2t = 4 syndromes and the syndromes are calculated as

S1 = α4, S2 = 1, S3 = 1, S4 = α5.

Now lets use the BM algorithm to find the error location polynomial for

the received polynomial:

• Initialization:

σ(0)(x) = 1, B(0)(x) = 1, L(0) = 0, and i = 1

• i = 1

S̃1 = 0 ⇒ Δ1 = S1 − S̃1 = α4

2L(0) = 0 = i− 1 ⇒ δ = 1
⎡
⎢⎣
σ(1)(x)

B(1)(x)

⎤
⎥⎦ =

⎡
⎢⎣

1 −α4 · x
α−4 0

⎤
⎥⎦ ·

⎡
⎢⎣
1

1

⎤
⎥⎦ =

⎡
⎢⎣
1− α4x

α−4

⎤
⎥⎦

L(1) = (i− L(0)) = 1

• i = 2

S̃2 = σ
(1)
1 S1 = α ⇒ Δ2 = S2 − S̃2 = α3

21

2L(1) = 2 > i− 1 ⇒ δ = 0
⎡
⎢⎣
σ(2)(x)

B(2)(x)

⎤
⎥⎦ =

⎡
⎢⎣
1 −α3 · x
0 x

⎤
⎥⎦ ·

⎡
⎢⎣
1− α4x

α−4

⎤
⎥⎦ =

⎡
⎢⎣
1− α3x

α−4x

⎤
⎥⎦

L(2) = L(1) = 1

• i = 3

S̃3 = σ
(2)
1 S2 = α3 ⇒ Δ3 = S3 − S̃3 = α

2L(2) = 2 > i− 1 ⇒ δ = 1
⎡
⎢⎣
σ(3)(x)

B(3)(x)

⎤
⎥⎦ =

⎡
⎢⎣

1 −α · x
α−1 0

⎤
⎥⎦ ·

⎡
⎢⎣
1− α3x

α−4x

⎤
⎥⎦ =

⎡
⎢⎣
1− α3x− α−3x2

α−1 − α2x

⎤
⎥⎦

L(3) = i− L(2) = 2

• i = 4

S̃4 = σ
(3)
1 S3 + σ

(3)
2 S2 = α6 ⇒ Δ4 = S4 − S̃4 = α

2L(3) = 4 > i− 1 ⇒ δ = 0
⎡
⎢⎣
σ(4)(x)

B(4)(x)

⎤
⎥⎦ =

⎡
⎢⎣
1 −α · x
0 x

⎤
⎥⎦ ·

⎡
⎢⎣
1− α3x− α−3x2

α−1− α2x

⎤
⎥⎦ =

⎡
⎢⎣
1− αx− α6x2

α−1x− α2x2

⎤
⎥⎦

L(4) = L(3) = 2

Therefore, the desired error locator polynomial is σ(x) = σ(4)(x) =

1− αx− α6x2.

Step 3. With the error locator polynomial σ(x), we need to find its

roots, whose reciprocals’ exponential orders are the error locations. In this

step, we must try all n elements [α1, α2, · · · , αn] of corresponding GF (2m) to

see which elements are the roots. If the errors happened on the parity-bits

22

of code-words are not concerned, then we only need to try first k elements

[α1, α2, · · · , αk]. Substitute each element and if σ(αi) = 0 then αi is a desired

root and correspondingly (n− i) is the error locations, that is, rn−i that asso-

ciated with xn−1 in the received-word polynomial. This process is referred as

Chien search.

Example 8. Continuing with Example 7, the found error locator po-

lynomial is σ(x) = σ(4)(x) = 1 − αx − α6x2 and it is using GF (23).

Therefore, we substitute [α, α2, α3, · · · , α7] ([α, α2, · · · , α5] if the errors

on parity-bits are not the concern) into σ(x) one by one. In the end of

the evaluation process, it is found that

σ(α3) = 1− α · α3 − α6 · (α3)2 = 0

σ(α5) = 1− α · α5 − α6 · (α5)2 = 0

Therefore, α3 and α5 are the roots and their reciprocals, α4 and α2 (as

α7 = 1 in GF (23)), are the desired error locations, which means that in

the received code-word r(x), the coefficients associated with x4 and x2

are wrong due to the transmission.

Step 4. To evaluate the error magnitudes, Forneys algorithm is applied.

The derivation and proof are illustrated in [24] and in Chapter 7 of [20]. Here,

we focus on the implementation of this algorithm.

First, an error evaluator polynomial Ω(x) is defined as Ω(x) = (S(x)·σ(x))
mod x2t, where S(x) is the syndrome polynomial and σ(x) is the error location

polynomial. The purpose of “mod x2t” is to eliminate all terms whose order

is no less than 2t.

Second, the error magnitude at each error location αi is calculated as

following: ei =
Ω(x)

σ
′
(x)

|x=α−i , where σ
′
(x) is the formal derivative of σ(x). The

23

value of σ
′
(x) can be calculated as following:

σ
′
(x) = dσ(x)

dx
= d(σ0+σ1x+σ2x2+σ3x3+···+σvxv)

dx
= σ1+2σ2x+3σ3x

2+4σ4x
3+ · · ·+

vσvx
(v−1)

As σ(x) is a polynomial over GF (2m), it follows modulo-2 arithmetic and

thus:

i · σi =

⎧⎪⎪⎨
⎪⎪⎩
0, if i is even

σi, if i is odd

Therefore, σ′(x) can be formed by taking coefficients of the odd power

terms of σ(x) and assigning them to the next lower power terms. Specifically:

σ′(x) = σ1 + σ3x
2 + σ5x

4 + · · ·

Example 9. Lets continue with Example 8. By now, we have found out

the syndrome polynomial S(x) = α4+x+x2+α5x3 and the error location

polynomial σ(x) = 1 − αx − α6x2. We also know the error locations

are α4 and α2 (which actually refers to the coefficients associated with

x4 and x2 in the received-word polynomial). Then the error evaluator

polynomial is computed as following:

Ω(x) = (S(x) · σ(x)) mod x2t

= (α4 + x+ x2 + α5x3) · (1− αx− α6x2) mod x4

= α4 + α4x

And the derivative of error location polynomial is: σ
′
(x) = −α. Then

the error values are calculated as following:

e2 =
Ω(x)

σ′(x)
|x=α−2 =

α4 + α4 · α−2

−α
= −1 = 1

24

e4 =
Ω(x)

σ′(x)
|x=α−4 =

α4 + α4 · α−4

−α
= −α4 = α4

Therefore, the error polynomial is e(x) = x2 + α4x4, which satisfies

c(x) = r(x) + e(x).

Step 5. After we find out the error polynomial e(x), we can just add

it to the received-word polynomial r(x) and then we can have the original

code-word polynomial c(x).

Example 10. Lets continue with Example 9. Since we have e(x) =

x2+α4x4 and r(x) = x6+α3x5+x4+α3x3+α2x2+α5x1+1, it is easy

to add them up and get the following result:

c(x) = e(x) + r(x) = x2 + α4x4 + x6 + α3x5 + x4 + α3x3 + α2x2 + α5x1 + 1

= x6 + α3x5 + α5x4 + α3x3 + α6x2 + α5x1 + 1

So the original code-words we got is [α0, α3, α5, α3, α6, α5, α0], that is, [1

3 7 3 5 7 1]. By checking with the information provided in Example 6,

the result is correct.

25

CHAPTER 3
Low-Latency Reed-Solomon Codes

3.1 Concept and Proof

The content of this section is mainly based on [17] in which Dr. Shokrol-

lahi introduced a special class of generalized RS codes which allow for faster

encoding and decoding. The underlying idea is primarily a clever choice of

the root set of the codes so that this set is closed under multiplication with a

p-th root of unity over the base GF. The biggest advantage is that this class

of generalized RS codes can be constructed as p components with length n/p

in a similar manner of conventional RS codes so that the entire encoding pro-

cess and most parts of the decoding process can all run in parallel on these p

constituent codes. In other words, these processes can speed up by a factor of

almost p, with only a slight increase in hardware costs.

Before stating the newly proposed algorithm, the definition of GRS codes

should be examined first. For 1 ≤ n ≤ q,

GRSk(α,v) = {(v0f(α0), v1f(α1), · · · , vn−1f(αn−1))|f ∈ GFq[x]<k}

where α is a set of distinct elements of GF (q), v is a set of nonzero elements

of GF (q). f ∈ GFq[x]<k is an univariate polynomial over GF (q) with degree

less than k. Just like narrow-sense RS codes, GRS codes are also MDS and

the minimum distance is (n− k + 1) as well [25].

Recall the definition of narrow-sense RS codes in Chapter 2. It is easy to

see that narrow-sense RS codes is a special class of GRS codes with n = q−1,

αi = αi, and vi = 1 for 0 ≤ i ≤ n− 1.

26

The definition of low-latency RS codes developed by Dr. Shokrollahi is

given as following:

C(n, k;α, ρ) is a code over GF (q) with block-length n = p · m, dimen-

sion k, and minimum distance (n − k + 1). Its codewords are of the form

(v0f(α0), v1f(α1), · · · , vn−1f(αn−1)), where f ∈ GFq[x]<k, αi = ρ(i mod p)α�i/p�,

α is the primitive element of GF (q), ρ is p-th root of unity of the same field,

and vi =
1∏

j �=i (αi−αj)
.

Example 11. Assume that we are using GF (24), and working on

RS(15, 9;α, ρ) with p = 3. Then

ρp = ρ3 = α15 = 1 ⇒ ρ = α5

According to αi = ρ(i mod p)α�i/p� , we can get the relationship in Table

3–1. As we can see, although the selected roots are not consecutive,

the set essentially contains all the roots of a conventional narrow-sense

RS(15, 9) codes and certainly it is closed under multiplication.

α0 = ρ0α0 = α0 α8 = ρ2α2 = α12

α1 = ρ1α0 = α5 α9 = ρ0α3 = α3

α2 = ρ2α0 = α10 α10 = ρ1α3 = α8

α3 = ρ0α1 = α1 α11 = ρ2α3 = α13

α4 = ρ1α1 = α6 α12 = ρ0α4 = α4

α5 = ρ2α1 = α11 α13 = ρ1α4 = α9

α6 = ρ0α2 = α2 α14 = ρ2α4 = α14

α7 = ρ1α2 = α7

Table 3–1: Conversion between roots of C(15, 9;α, ρ) and elements of GF (24).

27

In order to utilize the parallel running property, the code-words need to be

capable to be partitioned into p parts. A set of (coefficients of) polynomial vec-

tors [H0, H1, · · · , Hp−1] is defined, where Hj ∈ GFq[x]<m are univariate poly-

nomials over GF (q) of degree less than m, such that a set of Fourier transform

equations: for i = 0, 1, · · · , p− 1, FT (H)i ≡ Σp−1
j=0ρ

i·jHj = 0 mod gi are true.

gi is a set of generator polynomials and is defined as gi ≡ Π0≤j≤n−k
j≡i mod p(x− αj).

Now the task is to prove that [H0, H1, · · · , Hp−1] is a codeword set be-

longing to C(n, k;α, ρ). First, we define a root matrix of order (k − 1) as

Vk(α0, α2, · · · , αn−1) and a diagonal matrix as v:

Vk(α0, α2, · · · , αn−1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 · · · 1

α0 α1 · · · αn−1

...
...

. . .
...

αk−1
0 αk−1

1 · · · αk−1
n−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

v = diag(v0, v1, · · · , vn−1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v0 0 0 · · · 0 0

0 v1 0 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · vn−2 0

0 0 0 · · · 0 vn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

With simple calculation, we can get:

G = Vk(α0, α2, · · · , αn−1) · v =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

v0 v1 · · · vn−1

v0α0 v1α1 · · · vn−1αn−1

...
...

. . .
...

v0α
k−1
0 v1α

k−1
1 · · · vn−1α

k−1
n−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

28

It is obvious that the codewords (v0f(α0), v0f(α0), · · · , vn−1f(αn−1)) of

C(n, k;α, ρ) are the row-span of G. In other words, G is the generator matrix

of C(n, k;α, ρ).

On the other hand, as the generator polynomial set for [H0, H1, · · · , Hp−1]

is defined as follows: for i = (0, 1, · · · , p − 1), gi ≡ Π0≤j≤n−k
j≡i mod p(x − αj), so a

set of root matrix is defined: for i = (0, 1, · · · , p − 1), Vi ≡ Vm(α
i, αi+p, · · · ,

αi+p·(ri−1)) where ri is the number of integers between 0 and (n−k−1) which are

congruent to i modulo p. As FT (H)i ≡ Σp−1
j=0ρ

i·jHj = 0 mod gi, so FT (H)i ·
Vi = Σp−1

j=0ρ
i·jHj · Vi = 0, which leads to ([H0, H1, · · · , Hp−1] · P) = 0 and P is

a matrix defined as for i, j = (0, 1, · · · , p− 1), Pi,j = ρi·jVj. In other words, P

is the transpose of the parity-check matrix of codewords [H0, H1, · · · , Hp−1].

When we substitute Vi ≡ Vm(α
i, αi+p, · · · , αi+p·(ri−1)) into P , with simple

calculations and permutations of columns, the matrix P has the form

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Vn−k(1, α, · · · , αm−1)T

Vn−k(ρ, ρα, · · · , ραm−1)T

Vn−k(ρ
2, ρ2α, · · · , ρ2αm−1)T

...

Vn−k(ρ
p−1, ρp−1α, · · · , ρp−1αm−1)T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

which is Vn−k(α0, α1, · · · , αn−1)
T . Therefore it suggests that ([H0, H1, · · · , Hp−1]·

Vn−k(α0, α1, · · · , αn−1)
T) = 0 and Vn−k(α0, α1, · · · , αn−1) is the parity-check

matrix of codewords [H0, H1, · · · , Hp−1].

At this point, all we need to do is to prove Vn−k(α0, α1, · · · , αn−1) is

also the parity-check matrix of C(n, k;α, ρ), that is, (Vk(α0, α2, · · · , αn−1) · v ·
Vn−k(α0, α1, · · · , αn−1)

T) = G · Vn−k(α0, α1, · · · , αn−1)
T = 0.

29

G · Vn−k(α0, α1, · · · , αn−1)
T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

v0 v1 · · · vn−1

v0α0 v1α1 · · · vn−1αn−1

...
...

. . .
...

v0α
k−1
0 v1α

k−1
1 · · · vn−1α

k−1
n−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
·

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 · · · 1

α0 α1 · · · αn−1

...
...

. . .
...

αn−k−1
0 αn−k−1

1 · · · αn−k−1
n−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

T

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

v0 + · · ·+ vn−1 · · · v0α
n−k−1
0 + · · ·+ vn−1α

n−k−1
n−1

v0α0 + · · ·+ vn−1αn−1 · · · v0α
n−k
0 + · · ·+ vn−1α

n−k
n−1

...
. . .

...

v0α
k−1
0 + · · ·+ vn−1α

k−1
n−1 · · · v0α

n−2
0 + · · ·+ vn−1α

n−2
n−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

As we can see, if the above matrix is 0, then every entry needs to be 0, which

means v0α
i
0 + · · · + vn−1α

i
n−1 = 0 for all i = 0, 1, · · · , n− 2. This condition is

equivalent to proving the following:

Vn−1(α0, α1, · · · , αn−1) ·

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

v0

v1
...

vn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 · · · 1

α0 α1 · · · αn−1

...
...

. . .
...

αn−2
0 αn−2

1 · · · αn−2
n−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
·

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

v0

v1
...

vn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
= 0

To prove this equality, the inverse of Vn(α0, α1, · · · , αn−1) needs to be re-

viewed first. Let’s define λi(x) = vi
∏

j �=i(x−αj). Recall that vi =
1∏

j �=i (αi−αj)

in the definition of C(n, k;α, ρ). Therefore, we have λi(αi) = 1 and λi(αj) = 0

for j �= i. Let λi,j denote the coefficient of xj of λi(x), so that λi,n−1 = vi.

30

Then, the inverse of Vn(α0, α1, · · · , αn−1) is

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

λ0,0 λ0,1 · · · λ0,n−2 λ0,n−1

λ1,0 λ1,1 · · · λ1,n−2 λ1,n−1

...
...

. . .
...

...

λn−1,0 λn−1,1 · · · λn−1,n−2 λn−1,n−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
= (A|Γ)

where Γ = (λ0,n−1, λ1,n−1, · · · , λn−1,n−1)
T = (v0, v1, · · · , vn−1)

T . Therefore,

(A|Γ) · Vn(α0, α1, · · · , αn−1) = In = Vn(α0, α1, · · · , αn−1) · (A|Γ)

= (
Vn−1(α0, α1, · · · , αn−1)

B
) · (A|Γ)

which suggests that

Vn−1(α0, α1, · · · , αn−1) · A = In−1

Vn−1(α0, α1, · · · , αn−1) · Γ = Vn−1(α0, α1, · · · , αn−1) · (v0, v1, · · · , vn−1)
T = 0

Thus, it proves the following:

Vk(α0, α2, · · · , αn−1) · v · Vn−k(α0, α1, · · · , αn−1)
T = 0

Therefore, it is proved that P is also the transpose of the parity-check matrix

of C(n, k;α, ρ) and thus [H0, H1, · · · , Hp−1] is a codeword set belonging to

C(n, k;α, ρ), which is a class of generalized RS codes.

3.2 Algorithm Description

This section is mainly based on [17]. For each step, theorems and concepts

are first introduced and then an example is given for better understanding.

The definitions of parameters and variables already given in the preceding

chapters may not be presented in this section again. It is highly recommended

to read at least Chapter 2 before moving to this chapter.

31

Recall in the definition of C(n, k;α, ρ), speed-up coefficient p is defined in

n = p ·m, which implies that code-word length n is divisible by p. However,

no constraints are added to message-word length k and parity-bit length r. In

fact, the coding algorithm would be slightly different dependent on if k and r

are divisible by p. For this section, assume that n, k, and r are all divisible

by p. Circumstances of arbitrary values of k and r will be introduced in the

next section. Specifically, we define n = p ·m, k = p · t, r = (n− k) = p · l, α
is the primitive elements of GF (q), ρ is p-th roots of unity, and thus ρ = αm,

and m = t+ l.

3.2.1 Encoding Algorithm

Design Structure. The overall structure for low-latency RS encoding

algorithm is shown in Figure 3–1. There are five steps. A block of message-

words is split into p components and then go through a discrete Fourier trans-

former (DFT). With p generator polynomials pre-calculated, p blocks of parity

bits are produced based on the output of the DFT block. Finally, the message-

words along with the parity-bits are grouped together following a particular

rule to output the final code-words. In the following paragraphs, each step is

explained in greater details.

Figure 3–1: Structure of low-latency RS encoding algorithm.

Step 1. Produce the set of generator polynomials as follows: for i =

(0, 1, · · · , p− 1), gi ≡ Π0≤j≤n−k
j≡i mod p(x− αj).

32

Example 12. Assume we are using GF (24) = GF (16) (Table 2–2), and

working on RS(15, 9;α, ρ) with p = 3. So r = n − k = 15 − 9 = 6 and

thus the generator polynomials are:

g0 ≡ Π0≤j≤6
j≡0 mod 3(x− αj) = (x− α0)(x− α3) = x2 + α14x+ α3

= [α0, α14, α3] = [1, 9, 8]

g1 ≡ Π0≤j≤6
j≡1 mod 3(x− αj) = (x− α1)(x− α4) = x2 + x+ α5

= [α0, α0, α5] = [1, 1, 6]

g2 ≡ Π0≤j≤6
j≡2 mod 3(x− αj) = (x− α2)(x− α5) = x2 + α1x+ α7

= [α0, α1, α7] = [1, 2, 11]

Step 2. Arrange the block of message-words M into a matrix and label

each row vector as Mi, where i = 0, 1, · · · , p − 1. The matrix is constructed

as following: for i = 0, 1, · · · , p− 1, j = 0, 1, · · · , t− 1, Mmatrix(i, j) = M((j+

1) · p− i).

Example 13. Continuing with Example 12, assume the block of

message-words M is [11, 3, 2, 5, 6, 4, 10, 12, 8], which in power represen-

tation is equal to [α7, α4, α1, α8, α5, α2, α9, α6, α3], then the matrix is as

following:

Mmatrix =

⎡
⎢⎢⎢⎢⎣

2 4 8

3 6 12

11 5 10

⎤
⎥⎥⎥⎥⎦

and thus

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

M0 = [2, 4, 8] = [α1, α2, α3]

M1 = [3, 6, 12] = [α4, α5, α6]

M2 = [11, 5, 10] = [α7, α8, α9]

33

Step 3. Define the Fourier transform of Mi as done with Hi before.

Specifically, for i = 0, 1, · · · , p− 1, FT (M)i = Σp−1
j=0ρ

i·jMj.

Example 14. Continuing with Example 13, as ρ is 3-th (p = 3) root of

unity, so ρ = α5 and thus

FT (M)0 = M0 +M1 +M2

= [α1 + α4 + α7, α2 + α5 + α8, α3 + α6 + α9]

= [α9, α10, α11]

FT (M)1 = M0 + ρM1 + ρ2M2

= [α1 + ρα4 + ρ2α7, α2 + ρα5 + ρ2α8, α3 + ρα6 + ρ2α9]

= [α6, α7, α8]

FT (M)2 = M0 + ρ2M1 + ρM2

= [α1 + ρ2α4 + ρα7, α2 + ρ2α5 + ρα8, α3 + ρ2α6 + ρα9]

= [α2, α3, α4]

Step 4. We define the parity bits [h0, h1, · · · , h(p−1)] so that [xlM0 +

h0, x
lM1 + h1, · · · , xlM(p−1) + h(p−1)] = [H0, H1, · · · , H(p−1)] ∈ C(n, k;α, ρ).

Let fi := xlFT (M)i mod gi, where i = 0, 1, · · · , p − 1, and the purpose

of xl is to shift FT (M)i by l degrees. Recall that vectors essentially represent

polynomials and each vector element is the coefficient associated with each

order of x. From left to right, the order is monotonically decreasing. This

step is actually the same process as conventional narrow-sense RS encoding

algorithms except that the message polynomial m(x) is replaced by FT (M)i.

Recall that [xlM0 + h0, x
lM1 + h1, · · · , xlM(p−1) + h(p−1)] = [H0, H1, · · · ,

H(p−1)] and FT (H)i ≡ Σp−1
j=0ρ

i·jHj = 0 mod gi. Therefore, for i = 0, 1, · · · , p−

34

1, fi = −Σp−1
j=0ρ

i·jhj mod gi. With this expression, we can calculate hj from

fi using inverse Fourier transform. Concretely, for i = (0, 1, · · · , p − 1), hi =

−1
p
(Σp−1

j=0ρ
−i·jfj).

Example 15. Continuing with Example 14, so

f0 := xlFT (M)0 mod g0 = [α9, α10, α11, 0, 0] mod [α0, α14, α3] = [α4, 0]

f1 := xlFT (M)1 mod g1 = [α6, α7, α8, 0, 0] mod [α0, α0, α5] = [α13, α11]

f2 := xlFT (M)2 mod g2 = [α2, α3, α4, 0, 0] mod [α0, α1, α7] = [α0, α6]

Notice that the method of solving “mod” is shown in Figure 2–2.

h0 = −1

3
(Σ2

j=0ρ
−0·jfj) = −(1/3)(f0 + f1 + f2)

= [α4 + α13 + α0, 0 + α11 + α6]

= [α12, α1] = [15, 2]

h1 = −1

3
(Σ2

j=0ρ
−1·jfj) = −(1/3)(f0 + ρ2f1 + ρf2)

= [α4 + α10 · α13 + α5 · α0, 0 + α10 · α11 + α5 · α6]

= [0, α1] = [0, 2]

h2 = −1

3
(Σ2

j=0ρ
−2·jfj) = −(1/3)(f0 + ρf1 + ρ2f2)

= [α4 + α5 · α13 + α10 · α0, 0 + α5 · α11 + α10 · α6]

= [α6, 0] = [12, 0]

Notice that −1
3
= 1 in the context of a field of characteristic 2.

Step 5. Finally we put everything together to get the final code-words

c = [H0, H1, · · · , H(p−1)] = [xlM0 + h0, x
lM1 + h1, · · · , xlM(p−1) + h(p−1)]. The

ordering follows a two-level rule.the first-level rule is that the highest order

has the smallest index. As the message-words M have higher order than all

35

hi, so M is in front of all hi. The same way is followed by elements inside each

group. The second-level rule is that among all hi, the ones with bigger i have

smaller index. Specifically, for the speed-up coefficient p and l = (n − k)/p,

the code-words are

c =[M(0),M(1), · · · ,M(k − 1), h(p−1)(0), h(p−2)(0), · · · , h0(0), h(p−1)(1),

h(p−2)(1), · · · , h0(1), · · · , h(p−1)(l − 1), h(p−2)(l − 1), · · · , h0(l − 1)]

Example 16. Continuing with Example 15, the message-words M =

[α7, α4, α1, α8, α5, α2, α9, α6, α3], and the set of parity-bits are h0 =

[α12, α1], h1 = [0, α1], h2 = [α6, 0], then the final code-words c is

[α7, α4, α1, α8, α5, α2, α9, α6, α3, α6, 0, α12, 0, α1, α1], that is, in 4-tuple re-

presentation [11, 3, 2, 5, 6, 4, 10, 12, 8, 12, 0, 15, 0, 2, 2].

3.2.2 Decoding Algorithm

As Figure 3–2 shows, there are seven steps in the low-latency RS decoding

algorithm. Received-words are first partitioned into p components followed by

a process in discrete Fourier transformer (DFT). Then the syndromes are

computed and sent to the key equation solver. The key equation solver is

implemented by a conventional Berlekamp-Massey algorithm, which produces

an error-locator polynomial and an error-evaluator polynomial. With these

results, locations and error magnitudes are calculated in Step 5 and Step 6,

respectively. Finally, in Step 7 errors are eliminated, and the correction-words

are output. In the following paragraphs, each step is illustrated in greater

details.

Step 1. For i = 0, 1, · · · , p − 1, define Li(x) = Σ
(m−1)
(j=0) r(p·j+i)x

j. This

step is to divide the block of received-words into p components, which is similar

to what we did in the encoding algorithm.

36

Figure 3–2: Structure of low-latency RS decoding algorithm.

Example 17. Continue with Example 16. The original code-words is

c = [α7, α4, α1, α8, α5, α2, α9, α6, α3, α6, 0, α12, 0, α1, α1]

that is, in 4-tuple representation

c = [11, 3, 2, 5, 6, 4, 10, 12, 8, 12, 0, 15, 0, 2, 2]

Assume the received-word is

r = [6, 3, 2, 5, 6, 4, 10, 11, 8, 12, 0, 15, 6, 2, 2]

that is, in power representation

r = [α5, α4, α1, α8, α5, α2, α9, α7, α3, α6, 0, α12, α5, α1, α1]

Comparing with the original code-words produced in the encoder, the

errors are at r(0), r(7) and r(12), that is, in term of polynomial coeffi-

cients, r14, r7 and r2. Then

L0(x) = Σ4
(j=0)r(3∗j+0)x

j = r0 + r3x+ r6x
2 + r9x

3 + r12x
4

= [r12, r9, r6, r3, r0]

= [α1, α2, α3, α12, α1] = [2, 4, 8, 15, 2]

L1(x) = Σ4
(j=0)r(3∗j+1)x

j = r1 + r4x+ r7x
2 + r10x

3 + r13x
4

37

= [r13, r10, r7, r4, r1]

= [α4, α5, α7, 0, α1] = [3, 6, 11, 0, 2]

L2(x) = Σ4
(j=0)r(3∗j+2)x

j = r2 + r5x+ r8x
2 + r11x

3 + r14x
4

= [r14, r11, r8, r5, r2]

= [α5, α8, α9, α6, α5] = [6, 5, 10, 12, 6]

Step 2. In this step, apply Fourier transform on Lj as the same way

before. Concretely, FT (L)i = Σp−1
j=0ρ

i·jLj.

Example 18. Continue with Example 17, then

F0(x) = FT (L)0 = Σp−1
j=0ρ

0·jLj = L0 + L1 + L2 = [α10, α10, α14, α4, α5]

F1(x) = FT (L)1 = Σp−1
j=0ρ

1·jLj = L0 + ρL1 + ρ2L2 = [α14, α7, α2, α13, α12]

F2(x) = FT (L)2 = Σp−1
j=0ρ

2·jLj = L0 + ρ2L1 + ρL2 = [α6, α3, α8, α0, α7]

Step 3. In this step, calculate the syndromes by substituting roots of

generator polynomials. Recall that for conventional RS codes, syndromes

are calculated by substituting the roots of generator polynomial g(x) into

the received-word polynomial r(x) because the parity-bits polynomial b(x) is

acquired by b(x) = msg(x) ·xn−k mod g(x) where msg(x) is the message-word

polynomial and thus the code-word polynomial c(x) = (msg(x) · xn−k + b(x))

has the same roots of g(x). This conclusion leads to the definition of syndromes

that is Si = r(αi) = c(αi) + e(αi) = e(αi) where e(x) is the error polynomial.

For low-latency RS codes, on the other hand, there are p generator polynomials

gi(x) each with n−k
p

roots. In Step 4 of Section 3.2.1, there are equations that

38

fi := xlFT (M)i mod gi, where FT (M)i is obtained by Fourier transform on

message-word polynomials Mi and fi are sent to IDFT to generate parity

bits hi. Therefore, polynomials ui(x) = xlFT (M)i(x) + fi(x) have the same

roots of gi(x). In other words, to calculate the syndromes in low-latency RS

decoding algorithm, we should substitute the roots of gi(x) into polynomial

ui(x). To generate ui(x) we should acquire FT (M)i and fi by applying Fourier

transform on both Mi and hi. As the code-words c generated from low-latency

RS encoding algorithm consists of Mi and hi, therefore, we just need to simply

apply Fourier transform on the split received-words Li which was illustrated in

the last step, and then substitute the roots of gi to the corresponding output

from Fourier transform. Specifically, for i = 0, 1, · · · , n−k−1, the syndromes

are defined as follows:

si =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F0(α
i) if i = 0 mod p

F1(α
i) if i = 1 mod p

...
...

Fp−1(α
i) if i = p− 1 mod p

Example 19. Continuing with Example 18, we have n− k − 1 = 15−
9− 1 = 5. The syndromes are

s0 = F0(α
0) = α10 · (α0)4 + α10 · (α0)3 + α14 · (α0)2 + α4 · (α0)1 + α5 = α6

s1 = F1(α
1) = α14 · (α1)4 + α7 · (α1)3 + α2 · (α1)2 + α13 · (α1)1 + α12 = α9

s2 = F2(α
2) = α6 · (α2)4 + α3 · (α2)3 + α8 · (α2)2 + α0 · (α2)1 + α7 = α4

s3 = F0(α
3) = α10 · (α3)4 + α10 · (α3)3 + α14 · (α3)2 + α4 · (α3)1 + α5 = α4

s4 = F1(α
4) = α14 · (α4)4 + α7 · (α4)3 + α2 · (α4)2 + α13 · (α4)1 + α12 = α11

39

s5 = F2(α
5) = α6 · (α5)4 + α3 · (α5)3 + α8 · (α5)2 + α0 · (α5)1 + α7 = α4

Step 4. With the syndromes computed, we can move forward to the

key equation solver, which uses BM algorithm in the same way as we did for

conventional narrow-sense RS codes. Nevertheless, in this part, there is one

difference that the error-locator polynomial and the error-evaluator polynomial

are generated together at the same time, utilizing the relationship that γ(x) =

(S(x) · σ(x)) mod x2t, which is discussed in Chapter 2.

The modified BM algorithm is explained below based on [26]. σ(x) is

the error-locator polynomial; B(x) is the error-locator support polynomial;

γ(x) is the error-evaluator polynomial; A(x) is the error-evaluator support

polynomial; L is a integer variable that indicates the degree of σ(x); k is a

integer variable; Δ is the discrepancy. The upper index i refers to the i-th

iteration and the lower index j represents j-th coefficient that is associated

with xj in polynomials. For example, σ
(i)
j means the j-th coefficient σj of σ(x)

that is updated at the i-th iteration.

• Initialization:

σ(0)(x) = 1, B(0)(x) = 1, γ(0)(x) = 0, A(0)(x) = x−1, L(0) = 0 and k = 0

• The algorithm iterates for r = n − k steps. At the (k+1)-th iteration,

follow the procedures below:

1. Calculate the discrepancy: Δ(k+1) =
∑L(k)

j=0 σ
(k)
j Sk−j.

2. Update the values of σ(x) and γ(x). Specifically,

σ(k+1)(x) = σ(k)(x)−Δ(k+1) · B(k)(x) · x

γ(k+1)(x) = γ(k)(x)−Δ(k+1) · A(k)(x) · x

40

3. Update the values of B(x), A(x) and L. This step is not necessary

for the last iteration. Specifically,

B(k+1)(x) =

⎧⎪⎪⎨
⎪⎪⎩
x · B(k)(x) if Δ(k+1) �= 0 and 2L(k) ≤ k

σ(k)(x)/Δ(k+1) otherwise

A(k+1)(x) =

⎧⎪⎪⎨
⎪⎪⎩
x · A(k)(x) if Δ(k+1) �= 0 and 2L(k) ≤ k

γ(k)(x)/Δ(k+1) otherwise

L(k+1) =

⎧⎪⎪⎨
⎪⎪⎩
L(k) if Δ(k+1) �= 0 and 2L(k) ≤ k

k + 1− L(k) otherwise

4. If k = 2t − 1, then stop. Otherwise, k = k + 1 and return to

Procedure 1.

Example 20. Continue with Example 14. The syndromes are s0 =

α6, s1 = α9, s2 = α4, s3 = α4, s4 = α11, s5 = α4, then

• Initialization:

σ(0)(x) = 1, B(0)(x) = 1, γ(0)(x) = 0, A(0)(x) = x−1, L(0) = 0 and

k = 0

• Iteration k + 1 = 1

Δ(1) =
L(0)∑
j=0

σ
(0)
j s0−j = σ

(0)
0 · s0 = 1 · α6 = α6

σ(1)(x) = σ(0)(x)−Δ(1) · B(0)(x) · x = 1− α6 · 1 · x = 1− α6x

γ(1)(x) = γ(0)(x)−Δ(1) · A(0)(x) · x = 0− α6 · x−1 · x = α6

As Δ(1) = α6 �= 0 and 2L(0) = 0, thus

B(1)(x) = σ(0)(x)/Δ(1) = α−6

41

A(1)(x) = γ(0)(x)/Δ(1) = 0

L(1) = k + 1− L(0) = 0 + 1− 0 = 1

• Iteration k + 1 = 2

Δ(2) =
L(1)∑
j=0

σ
(1)
j s1−j = σ

(1)
0 · s1 + σ

(1)
1 · s0 = 1 · α9 + α6 · α6 = α8

σ(2)(x) = σ(1)(x)−Δ(2) · B(1)(x) · x

= 1− α6x− α8 · α−6 · x = 1− α3x

γ(2)(x) = γ(1)(x)−Δ(2) · A(1)(x) · x = α6 − α8 · 0 · x = α6

As Δ(2) = α8 �= 0 and 2L(1) = 2 > 1 = k, thus

B(2)(x) = x · B(1)(x) = α−6x

A(2)(x) = x · A(1)(x) = 0

L(2) = L(1) = 1

• Iteration k + 1 = 3

Δ(3) =
L(2)∑
j=0

σ
(2)
j s2−j = σ

(2)
0 · s2 + σ

(2)
1 · s1 = 1 · α4 + α3 · α9 = α6

σ(3)(x) = σ(2)(x)−Δ(3) · B(2)(x) · x

= 1− α3x− α6 · α−6x · x = 1− α3x− x2

γ(3)(x) = γ(2)(x)−Δ(3) · A(2)(x) · x = α6 − α6 · 0 · x = α6

As Δ(3) = α6 �= 0 and 2L(2) = 2 = k, thus

B(3)(x) = σ(2)(x)/Δ(3) = (1− α3x) · α−6 = α−6 − α−3x

A(3)(x) = γ(2)(x)/Δ(3) = α6 · α−6 = 1

42

L(3) = k + 1− L(2) = 2 + 1− 1 = 2

• Iteration k + 1 = 4

Δ(4) =
L(3)∑
j=0

σ
(3)
j s3−j = σ

(3)
0 · s3 + σ

(3)
1 · s2 + σ

(3)
2 · s1

= 1 · α4 + α3 · α4 + α0 · α9 = α1

σ(4)(x) = σ(3)(x)−Δ(4) · B(3)(x) · x

= 1− α3x− x2 − α1 · (α−6 − α−3x) · x = 1− α12x− α6x2

γ(4)(x) = γ(3)(x)−Δ(4) · A(3)(x) · x = α6 − α1 · 1 · x = α6 − α1x

As Δ(4) = α1 �= 0 and 2L(3) = 4 > 3 = k, thus

B(4)(x) = x · B(3)(x) = α−6x− α−3x2

A(4)(x) = x · A(3)(x) = x

L(4) = L(3) = 2

• Iteration k + 1 = 5

Δ(5) =
L(4)∑
j=0

σ
(4)
j s4−j = σ

(4)
0 · s4 + σ

(4)
1 · s3 + σ

(4)
2 · s2

= 1 · α11 + α12 · α4 + α6 · α4 = α7

σ(5)(x) = σ(4)(x)−Δ(5) · B(4)(x) · x

= 1− α12x− α6x2 − α7 · (α−6x− α−3x2) · x

= 1− α12x− α11x2 + α4x3

γ(5)(x) = γ(4)(x)−Δ(5) · A(4)(x) · x = α6 − α1x− α7 · x · x

= α6 − α1x− α7x2

43

As Δ(5) = α7 �= 0 and 2L(4) = 4 = k, thus

B(5)(x) = σ(4)(x)/Δ(5) = (1− α12x− α6x2) · α−7

= α−7 − α5x− α−1x2

A(5)(x) = γ(4)(x)/Δ(5) = (α6 − α1x) · α−7 = α−1 − α−6x

L(5) = k + 1− L(4) = 4 + 1− 2 = 3

• Iteration k + 1 = 6

Δ(6) =
L(5)∑
j=0

σ
(5)
j s5−j = σ

(5)
0 · s5 + σ

(5)
1 · s4 + σ

(5)
2 · s3 + σ

(5)
3 · s2

= 1 · α4 + α12 · α11 + α11 · α4 + α4 · α4

= α1

σ(6)(x) = σ(5)(x)−Δ(6) · B(5)(x) · x

= 1− α12x− α11x2 + α4x3 − α1 · (α−7 − α5x− α−1x2) · x

= 1− α8x− α1x2 − α1x3

γ(6)(x) = γ(5)(x)−Δ(6) · A(5)(x) · x

= α6 − α1x− α7x2 − α1 · (α−1 − α−6x) · x

= α6 + α4x+ α6x2

In conclusion, the error-locator polynomial is σ(x) = σ(6)(x) = 1−α8x−
α1x2 − α1x3, and the error-evaluator polynomial is γ(x) = γ(6)(x) =

α6 + α4x+ α6x2.

Step 5. With the error-locator polynomial computed, we can move for-

ward to finding out the error locations. This step can be done using the

conventional Chien search algorithm except that to check if rn−i is an error

location, the root to substitute is αi instead of αi where i = 0, 1, · · · , n − 1.

44

The change is because αi is used as roots in the definition of C(n, k;α, ρ). Ne-

vertheless, based on the parallel feature of proposed low-latency RS codes, Dr.

Shokrollahi developed a modified Chien Search which can run in parallel as

well. The novel idea is to split the error-locator polynomial into p components

and substitute roots to all of them. The computed results from all the com-

ponents are then sent to IDFT. If there is any 0 among the p values generated

from IDFT, then the same number of error positions could be located. The

most significant advantage of this method is that we only need to substitute

m = n/p roots instead of n roots.

Specifically, assume there are v (v ≤ n−k
2
) errors in the received word

and the error-locator polynomial is found that σ(x) = σ0 + σ1x + · · · + σvx
v.

For i = [0, 1, · · · ,m − 1] (i = [l, l + 1, · · · ,m − 1], where l = (n − k)/p, if

errors on parity-bits are not the concern) and k = (0, 1, · · · , p − 1), define

ak = Σ0≤j≤v
j=k mod pσjα

−i·j, and then apply inverse Fourier transform on ak to

obtain wk = IDFT (a)k = Σp−1
j=0ρ

−j·kaj. If for some k, the value wk is zero,

then the index of one error location is y = (p · i + k). Repeat the procedures

for all value of i. The proof of this method is illustrated below.

First, we note that σ(α−iρj) = 0 if and only if (p · i + j) is an error

location, because d is an error position only when σ(α−1
d) = 0, and recall that

ad is defined as αd = ρ(d mod p)α�d/p�. Therefore, d must be equal to (p · i+ j).

Define a polynomial b(x) = σ(x) mod (xp − α−p·i). Then

b(α−iρ−j) = σ(α−iρ−j) mod (α−p·iρ−p·j − α−p·i)

= σ(α−iρ−j) mod (α−p·i · 1− α−p·i)

= σ(α−iρ−j) mod 0

= σ(α−iρ−j)

45

Besides,

b(x) = σ(x) mod (xp − α−p·i)

= Σ0≤j≤v
j≡0 mod pσjα

−ij + x(Σ0≤j≤v
j≡1 mod pσjα

−i(j−1)) + · · ·

+ xp−1(Σ0≤j≤v
j≡p−1 mod pσjα

−i(j−p+1))

= a0 + a1
x

α−i
+ · · ·+ ap−1(

x

α−i
)p−1

Therefore, b(α−ix) = a0 + a1x + · · · + ap−1x
p−1. Define a(x) = b(α−ix) and

thus wj = a(ρ−j) and it is equal to 0 if and only if b(α−iρ−j) = σ(α−iρ−j) = 0,

that is, (p · i+ j) is an error location.

Example 21. Continuing with Example 20, the error-locator polyno-

mial is σ(x) = σ(6)(x) = 1−α8x−α1x2−α1x3 = σ0+σ1x+σ2x
2+σ3x

3

and v = 3. Then

• For i = 0

a0 = Σ0≤j≤3
(j=0 mod 3)σjα

−0·j = σ0 · α0 + σ3 · α0 = 1 + α1 = α4

a1 = Σ0≤j≤3
(j=1 mod 3)σjα

−0·j = σ1 · α0 = α8

a2 = Σ0≤j≤3
(j=2 mod 3)σjα

−0·j = σ2 · α0 = α1

w0 = Σ2
j=0ρ

−j·0aj = α0 + a1 + a2 = α4 + α8 + α1 = α2

w1 = Σ2
j=0ρ

−j·1aj = α0 + ρ2a1 + ρa2 = α4 + α10 · α8 + α5 · α1 = α10

w2 = Σ2
j=0ρ

−j·2aj = α0 + ρa1 + ρ2a2 = α4 + α5 · α8 + α10 · α1 = 0

Therefore, r3·i+k = r3·0+2 = r2 = r(12) is an error location.

46

• For i = 1

a0 = Σ0≤j≤3
(j=0 mod 3)σjα

−1·j = σ0 · α0 + σ3 · α−3 = 1 + α−2 = α6

a1 = Σ0≤j≤3
(j=1 mod 3)σjα

−1·j = σ1 · α−1 = α8 · α−1 = α7

a2 = Σ0≤j≤3
(j=2 mod 3)σjα

−1·j = σ2 · α−2 = α1 · α−2 = α−1 = α14

w0 = Σ2
j=0ρ

−j·0aj = α0 + a1 + a2 = α6 + α7 + α14 = α11

w1 = Σ2
j=0ρ

−j·1aj = α0 + ρ2a1 + ρa2 = α6 + α10 · α7 + α5 · α14 = α7

w2 = Σ2
j=0ρ

−j·2aj = α0 + ρa1 + ρ2a2 = α6 + α5 · α7 + α10 · α14 = α14

• For i = 2

a0 = Σ0≤j≤3
(j=0 mod 3)σjα

−2·j = σ0 · α0 + σ3 · α−6 = 1 + α−5 = α5

a1 = Σ0≤j≤3
(j=1 mod 3)σjα

−2·j = σ1 · α−2 = α8 · α−2 = α6

a2 = Σ0≤j≤3
(j=2 mod 3)σjα

−2·j = σ2 · α−4 = α1 · α−4 = α−3 = α12

w0 = Σ2
j=0ρ

−j·0aj = α0 + a1 + a2 = α5 + α6 + α12 = α8

w1 = Σ2
j=0ρ

−j·1aj = α0 + ρ2a1 + ρa2 = α5 + α10 · α6 + α5 · α12 = 0

w2 = Σ2
j=0ρ

−j·2aj = α0 + ρa1 + ρ2a2 = α5 + α5 · α6 + α10 · α12 = α4

Therefore, r3·i+k = r3·2+1 = r7 = r(7) is an error location.

• For i = 3

a0 = Σ0≤j≤3
(j=0 mod 3)σjα

−3·j = σ0 · α0 + σ3 · α−9 = 1 + α−8 = α9

a1 = Σ0≤j≤3
(j=1 mod 3)σjα

−3·j = σ1 · α−3 = α8 · α−3 = α5

a2 = Σ0≤j≤3
(j=2 mod 3)σjα

−3·j = σ2 · α−6 = α1 · α−6 = α−5 = α10

47

w0 = Σ2
j=0ρ

−j·0aj = α0 + a1 + a2 = α9 + α5 + α10 = α7

w1 = Σ2
j=0ρ

−j·1aj = α0 + ρ2a1 + ρa2 = α9 + α10 · α5 + α5 · α10 = α9

w2 = Σ2
j=0ρ

−j·2aj = α0 + ρa1 + ρ2a2 = α9 + α5 · α5 + α10 · α10 = α7

• For i = 4

a0 = Σ0≤j≤3
(j=0 mod 3)σjα

−4·j = σ0 · α0 + σ3 · α−12 = 1 + α−11 = α1

a1 = Σ0≤j≤3
(j=1 mod 3)σjα

−4·j = σ1 · α−4 = α8 · α−4 = α4

a2 = Σ0≤j≤3
(j=2 mod 3)σjα

−4·j = σ2 · α−8 = α1 · α−8 = α−7 = α8

w0 = Σ2
j=0ρ

−j·0aj = α0 + a1 + a2 = α1 + α4 + α8 = α2

w1 = Σ2
j=0ρ

−j·1aj = α0 + ρ2a1 + ρa2 = α1 + α10 · α4 + α5 · α8 = α5

w2 = Σ2
j=0ρ

−j·2aj = α0 + ρa1 + ρ2a2 = α1 + α5 · α4 + α10 · α8 = 0

Therefore, r3·i+k = r3·4+2 = r14 = r(0) is an error location.

In conclusion, the three errors are at r2, r7, r14, that is, r(12), r(7), r(0).

Step 6. After acquiring the error locations, we can find out the particu-

lar error value on each location using Forney’s algorithm [24]. The formula is

shown below. However, comparing with conventional narrow-sense RS codes,

there are two differences here. First, the roots to substitute into the formula

is (αi)
(−1) instead of (αi)(−1), because αi is used as roots in the definition of

C(n, k;α, ρ). Second, there is an extra x multiplied with the denominator of

the formula due to the nature of generalized RS codes [27].

48

Concretely, let the error-locator polynomial be σ(x) = σ0+σ1x+· · ·+σvx
v

and the error-evaluator polynomial be γ(x) = γ0 + γ1x + · · · + γ(v−1)x
(v−1).

Thus

ej =
γ(x)

x · σ′(x) x=(αj)−1

=
γ(x)

σo(x) x=(αj)−1

Where σ′(x) is the derivative of σ(x). Recall Section 2.3.2 that σ′(x) =

Σ0≤i≤v
(i=1 mod 2)σix

(i−1). Thus σo(x) = x · σ′(x) = Σ0≤i≤v
(i=1 mod 2)σix

i.

Example 22. Continuing with Example 21, the three error locations

are found as r2, r7, r14, the error-locator polynomial is σ(x) = σ(6)(x) =

1 − α8x − α1x2 − α1x3, and the error-evaluator polynomial is γ(x) =

γ(6)(x) = α6 + α4x + α6x2. From Table 3–1, we can find that α2 =

α10, α7 = α7, α14 = α14. Then,

σo(x) = x · σ′(x) = Σ0≤i≤3
(i=1 mod 2)σix

i = σ1x
1 + σ3x

3 = α8x+ α1x3

e2 =
γ(x)

σo(x) x=(α2)−1

=
α6 + α4 · α−10 + α6 · (α−10)2

α8 · α−10 + α1 · (α−10)3
=

α2

α12
= α−10 = α5

e7 =
γ(x)

σo(x) x=(α7)−1

=
α6 + α4 · α−7 + α6 · (α−7)2

α8 · α−7 + α1 · (α−7)3
=

α3

α8
= α−5 = α10

e14 =
γ(x)

σo(x) x=(α14)−1

=
α6 + α4 · α−14 + α6 · (α−14)2

α8 · α−14 + α1 · (α−14)3
=

α12

α14
= α−2 = α13

Step 7. Finally, we can obtain the correction-words by adding the error

value to the received value at the error locations. r
′
i = ri+ ei where i ∈ E and

E denotes the set of v error positions.

Example 23. Continue with Example 22. The received-words are

[r14, r13, · · · , r2, r1, r0] = [α5, α4, α1, α8, α5, α2, α9, α7, α3, α6, 0, α12, α5, α1,

49

α1]. There are three error locations r2, r7 and r14. The three error

values are e2 = α5, e7 = α10 and e14 = α13.

Then the three corrected values are

r′2 = α5 + α5 = 0

r′7 = α7 + α10 = α6

r′14 = α5 + α13 = α7

and the corrected code-word is thus

r′ = [α7, α4, α1, α8, α5, α2, α9, α6, α3, α6, 0, α12, 0, α1, α1]

which is consistence with the original code-word c generated from Ex-

ample 16.

3.3 Algorithm Verification in MATLAB and BER Performance

In this section, implementations of the low-latency RS codes in MATLAB

using high-level programming techniques are illustrated. Before we start to

discuss the codes and results, there are two things to be clarified. First, both

of the encoder and decoder example given in this section can handle almost

any arbitrary code-word length n, message-word length k and parity-bit length

r = n − k. The only constraint is that they all need to be divisible by the

speed-up coefficient p. Solutions to arbitrary k and r are discussed in the next

section. Second, we set n = q − 1 in this implementation to make it easier to

understand, but it does not always have to be the case, and it would not affect

the algorithm as long as 1 ≤ n ≤ q due to the nature of GRS. The functionality

of this newly proposed algorithm was verified, and BER performance was

measured using Communication System Toolbox in MATLAB.

50

First of all, two MATLAB function files defining DFT and IDFT should

be introduced, as they are essential functions used both in low-latency RS

encoders and decoders. They are simple to realize in MATLAB with high-

level coding technique. Figure 3–3 shows the DFT function and follows the

same formula given in previous sections. The output generated is a matrix and

each row represents a FT (X)i where i = 0, 1, · · · , p−1. The only inconsistent

between the codes and formula given before is that the index of a matrix in

MATLAB must start with (1, 1) instead of (0, 0). Therefore, we have to change

i, j in the equation to (i−1), (j−1), respectively. Figure 3–4 shows the IDFT

function and it is same as DFT function except that a minus sign is added to

the exponential order of ((i− 1) · (j − 1)).

Figure 3–3: MATLAB codes of DFT function.

3.3.1 Implementation of the Encoder in MATLAB

The encoder structure follows the one shown in Figure 3–1. Similar to the

steps defined in Section 3.2.1, the MATLAB codes of this encoder are divided

into six parts. In the following paragraphs, each part is explained in details,

and more comments can be found in the screenshots of their MATLAB codes.

The first part is to initialize parameters (Figure 3–5). The function name

is LowLatRSenc which stands for “Low-Latency Reed-Solomon Encoder”.

51

Figure 3–4: MATLAB codes of IDFT function.

There are three inputs in which “msg” refers to user-defined message-words

in the form of an integer vector, “n” represents user-defined code-word length

and “p” is the user-defined speed-up coefficient. As we can see from Figure

3–5, all needed parameters can be calculated from the three inputs. Due to

internal setting of MATLAB, it cannot interpret integers as elements of Galois

field. Therefore, input message-words needs to be converted from integer type

to Galois field type using command “msgGF=gf(msg,GFPower)”, while they

still have the same numerical values after conversion. “GFPower” means the

Galois field used is GF (2GFPower).

Figure 3–5: MATLAB codes of low-latency RS encoder: Part 1.

The second part is to produce the set of generator polynomials (Figure

3–6). The result acquired in this step is a matrix “g”, and each row represents

52

a generator polynomial. Its first row refers to the generator polynomial g0; its

second row refers to g1 and so on and so forth. Each row is initialized as 1

at first, and then a loop makes each row multiply with (x− αi), where αi are

the roots of each generator polynomial. Based on the method stated in Step 1

of Section 3.2.1, i is set dependent on the loop counter, row number, and the

speed-up coefficient p.

Figure 3–6: MATLAB codes of low-latency RS encoder: Part 2.

Part 3 shown in Figure 3–7 is to split message-words to p components

following the way stated in Step 2 of Section 3.2.1. The only inconsistence is

that the index of a matrix in MATLAB starts with (1, 1) instead of (0, 0).

Figure 3–7: MATLAB codes of low-latency RS encoder: Part 3.

Part 4 shown in Figure 3–8 is to generate the Fourier transform of message-

words using the DFT function stated at the beginning of Section 3.3.

Part 5 shown in Figure 3–9 is to generate the set of parity bits following

the method stated in Step 4 of Section 3.2.1. Specifically, xl is first produces

53

Figure 3–8: MATLAB codes of low-latency RS encoder: Part 4.

by a multiplication loop. Then with command “conv”, each of p components

resulted from DFT is shifted by xl. Afterward, fi are calculated from modulo

arithmetic and finally, the parity bits are computed by IDFT function stated

at the beginning of Section 3.3.

Figure 3–9: MATLAB codes of low-latency RS encoder: Part 5.

Part 6 shown in Figure 3–10 is to generate the final code-words by putting

message-words and parity bits together following the way stated in Step 5 of

Section 3.2.1.

The functionality of this encoder has been tested, and it worked properly.

Figure 3–11 shows the code-words generated by this encoder in MATLAB

with the initial conditions stated in Example 12. As we can see, the result is

consistent with Example 16.

54

Figure 3–10: MATLAB codes of low-latency RS encoder: Part 6.

Figure 3–11: Output of low-latency RS encoder in MATLAB with circumstan-
ces in Example 12.

3.3.2 Implementation of the Decoder in MATLAB

The implementation of a decoder is much more complicated than that of

a encoder. The decoder structure follows the one shown in Figure 3–2. The

low-latency decoder consists five component MATLAB function files: 1) Lo-

wLatRSsyn for syndrome calculation, 2) LowLatRSbm for key equation

solver using Berlekamp-Massey algorithm, 3) LowLatRSchien for error lo-

cation computation by modified Chien search, 4) LowLatRSerrValue for

55

error value calculation and finally, 5) LowLatRSdec as the top file for put-

ting components together and producing correction-words. In the following

paragraphs, each file is explained in details, and more comments can be found

in the screenshots of their MATLAB codes.

LowLatRSsyn . Figure 3–12 shows the MATLAB codes for syndrome

calculation, which essentially combines Step 1, 2 and 3 of Section 3.2.2. The

input is the received-words denoted as y, the message-word length denoted

as k, and the speed-up coefficient p. The output is a vector that contains

all computed syndromes (s0, s1, · · · , s(n − k − 1)). The whole process starts

with calculating all needed parameters based on the three inputs. Then, the

received-words are divided into p components followed by a discrete Fourier

transform that produces a matrix F . Each row of F refers to a polynomial Fi

where i = 0, 1, · · · , p−1. Afterward, we set up the roots which are then substi-

tuted into Fi to calculate syndromes. Command “polyval(x,y)” is a function

to evaluate polynomials x by substituting y. Recall that the exponential order

of roots decides in which polynomial the particular root is substituted. Speci-

fically, αi is substituted into Fi mod p where i = 0, 1, · · · , p− 1. However, since

the index of a vector in MATLAB must start with 1, we have to change i to

(i− 1) in the codes and then plus 1 after modulo function “mod”.

LowLatRSbm . LowLatRSbm is designed as a component to com-

pute error-locator polynomial and error-evaluator polynomial by utilizing the

BM algorithm. The MATLAB codes are shown in Figure 3–13. This process

exactly follows Step 4 in Section 3.2.2. For this function, there are two in-

puts: syndrome vector denoted as “syndrome” which includes all syndromes

(s0, s1, · · · , s(n−k−1)) and “GFPower” which defines Galois field GF (2GFPower).

There are two outputs: an error-locator polynomial denoted as “errorLoc” and

an error-evaluator polynomial denoted as “errorEva”. As Figure ?? shows, the

56

Figure 3–12: MATLAB codes of syndrome calculation in low-latency RS de-
coder.

process starts with calculating all important parameters based on the two in-

puts and initializing all matrices and vectors just following the BM algorithm,

illustrated previously. Afterwards, a loop (Figure 3–13) runs (n − k) itera-

tions, which is to calculate discrepancy “delta” and update the error-locator

polynomial “sigma”, the error-evaluator polynomial “errEva” and all other

supporting variables and polynomials.

LowLatRSchien . Figure 3–14 shows the MATLAB codes for the mo-

dified Chien search function. Its purpose is to find out the number of errors

denoted as “errNum” and their locations denoted as “errLocation”. It should

57

Figure 3–13: MATLAB codes of key equation solver in low-latency RS decoder.

be clarified that the computed locations are the index of error terms in the

received-words. For instance, “errLocation”= [2, 7] means r2 and r7 in the

58

received-words r are the terms with error. This function requires four in-

puts: the error-locator polynomial denoted as “sigma”, “GFPower” which

defines Galois field GF (2GFPower), the speed-up coefficient denoted as p and

the code-word length denoted as n. This process follows Step 5 in Section

3.2.2. It starts with calculating all needed parameters based on the four in-

puts. Then there is a loop runs for m = n/p iterations as we need to check

m roots. In each iteration, p values are generated because the error-locator

polynomial is split into p components and a root is substituted into all the

components at each iteration.

Figure 3–14: MATLAB codes of Chien search in low-latency RS decoder.

59

LowLatRSerrValue. Figure 3–15 shows the MATLAB codes for error

evaluation function. The outputs of this function are error values on the cor-

responding error locations that computed in the modified Chien search. There

are seven inputs required: the error-locator polynomial denoted as “sigma”,

the error-evaluator polynomial denoted as “errEva”, the error locations deno-

ted as “errorlocation”, the number of errors denoted as “errNum”, “GFPower”

that defines GF (2GFPower), the speeding-up coefficient denoted as “p”, and the

component length of code-words denoted as “m”. The process follows Step 6 in

Section 3.2.2. As usual, it starts with computing all the necessary parameters.

Then it defines the σo polynomial which is equal to (x ·σ′(x)) by just assigning

the odd-degree terms of σ to σo. Afterwards, we need to find the values of

αerrorlocation over “GF (2GFPower)” based on the formula αi = ρ(i mod p)α�i/p�.

Finally, we substitute these values and use command “polyval” to evaluate

the polynomials and obtain the error values.

Figure 3–15: MATLAB codes of error evaluation in low-latency RS decoder.

60

LowLatRSdec. Figure 3–16 shows the MATLAB codes for the top file

which connects all functions together and generates the final correction-words.

The low-latency decoder requires three inputs: the received-words denoted as

“r”, the message-word length denoted as “k” and the speed-up coefficient de-

noted as “p”. First, the syndrome calculation function processes the received-

words to generate (n − k) syndromes. Then the BM algorithm function pro-

duces an error-locator polynomial and an error-evaluator polynomial based on

the syndromes. With this information, the modified Chien search function

finds out the error positions and the number of errors and passes them to the

error evaluation function, in which error values at corresponding locations are

computed. In the end, correction-words are output with all errors corrected.

More details and explanation are shown in the figures.

Figure 3–16: MATLAB codes of top file in low-latency RS decoder.

The functionality of this decoder has been tested and approved. Figure

3–17 shows the generated correction-words under the circumstance stated in

Example 17. Compared with Example 22, the results are consistent.

61

Figure 3–17: Output of low-latency RS decoder in MATLAB with circumstan-
ces in Example 17.

3.3.3 BER Performance

BER is one of the most significant criteria to measure the performance

of ECC. With millions of applications, RS codes have proved its ability in

BER improvement. As BER performance depends on many conditions such

as the normalized signal-to-noise ratio Eb/No, channel characteristics, modu-

lation type and so on, it is difficult to make an absolute comparison. Mo-

reover, running BER test-bench in MATLAB is very time consuming due to

the requirement of a substantial number of transmissions and only extremely

stable testing environment could succeed. Therefore, the purpose of this test

is to roughly verify the BER performance and functionality of low-latency RS

codes. This test is conducted with Communication System Toolbox in MAT-

LAB, which considerably simplified MATLAB coding. We can simply insert

any functions and communication components by writing one or two lines of

commands.

62

Figure 3–18 shows the structure of testbench and Figure 3–19 shows the

MATLAB codes. There are two parts: configuration and the testbench. The

process starts with generating random message-words with length k = 225,

then the low latency RS encoder encodes the message-words and passes the

code-words with lengthN = 255 to the modulator for PAM-4 modulation. The

data are then transmitted through an additive-white-Gaussian-noise (AWGN)

channel. At the receiver end, the data are first demodulated and then pas-

sed the received-words to low latency RS decoder where the correction-words

are produced. Then an analyzer makes a comparison between the original

message-words and the message part of the correction-words from the decoder.

Figure 3–20 shows the results generated from this testbench, and it suggests

that the channel BER is 5.3877 · 10−4, the coded BER is 0, the number of

RS decoding error is 0 and the total number of bit transmission is 500000400.

Channel BER is referred as the bit error rate due to channel transmissions.

Coded BER is referred as the bit error rate after the low-latency RS decoding

process. Decoding errors are referred as the data errors still existed after deco-

ding process. It should be clarified that the coded BER being 0 only suggests

there is no RS decoding error, during this particular number of transmissions.

When the transmission number becomes large enough, then there would be er-

rors after decoding, and the coded BER would not be 0. Therefore, we cannot

assert that BER for low latency RS codes is 0. Instead, we can safely say that

BER for low latency RS codes is smaller than 10−8 under this circumstance.

Figure 3–18: Structure of the communication test-bench in MATLAB.

63

Figure 3–19: MATLAB codes of the BER performance test-bench.

64

Figure 3–20: Results from the communication test-bench for BER perfor-
mance.

3.4 Solutions to Arbitrary k and r

The low-latency RS coding algorithm needs to be modified when at least

one of k and r is not divisible by p. In [17], Dr. Shokrollahi has provided the

related information. This section sums up the solutions for different cases.

3.4.1 k �= 0 mod p, r = 0 mod p

In this case, conceptual zeros can be added to the message-words to en-

force k divisible by p. Specifically, let k = c mod p, and the message-words

are [dk−1, dk−2, · · · , d0]. Then (p− c) conceptual zeros are added to the end of

message-words to generate [0p−c−1, · · · , 01, 00, dk−1, dk−2, ·, d0]. With this ad-

justed message-words, we can simply encode them as before. Certainly, the

conceptual zeros added are not transmitted after encoding process. As for

decoding, conceptual zeros are added to the end of received-words again and

followed with old decoding process illustrated in Section 3.2.2.

65

3.4.2 r �= 0 mod p

When r �= 0 mod p, the situation becomes more complicated. Let k =

c mod p and r = d mod p. First fix k by adding conceptual zeros if k �=
0 mod p. Then produce the generator polynomial gi ≡ Π0≤j≤r+p−d

j≡i mod p (x−αj). Af-

terwards, calculate (r+p−d) parity bits in the same way as before and drop the

lowest coefficients of the resulting polynomials h0, h1, · · · , hp−d−1, that is, the

last (p−d) terms of the code-words. Specifically, n = k+r+2p−c−d and the ge-

nerated code-words are [00, 01, · · · , 0p−c−1, cn−p−c−1, cn−p−c−2, · · · , cp−d−1, cp−d−2,

· · · , c0]. While only [cn−p−c−1, cn−p−c−2, · · · , cp−d] are transmitted.

As for the receiver side, denote the received-words as [yn−p−c−1, yn−p−c−2,

· · · , yp−d]. Define z = [zn−1, zn−2, · · · , z0] and set zi = (Πp−d−1
j=0 (αi − ρj) ·

yi) for i = (p − d, p − d + 1, · · · , n − p + c − 1) and zi = 0 for others.

Then take z as the “received-words” and follow the old decoding algorithm

as before until reaching the error evaluation part. Recall the key equation

γ(x) = σ(x) · s(x) mod xn−k discussed in Chapter 2, where γ(x) is the error-

evaluator polynomial, σ(x) is the error-locator polynomial and s(x) is the

syndrome polynomial. Since the syndromes are aquired from z instead of

y. Then the error evaluation formula should be modified correspondingly as

ej = (Πp−d−1
i=0 (αj − ρi)) · γ(x)

σo(x) x=(αj)−1
. Certainly, we will ignore any errors with

locations j = (0, 1, · · · , p− d− 1) and j = (n− p− c, · · · , n− 1).

66

CHAPTER 4
VHDL Implementation of Low-Latency RS(255,225)

4.1 VHDL Implementation of Galois Field Arithmetics

Galois field arithmetics are the basis for RS coding algorithms. As har-

dware has no awareness of any field elements, their arithmetics have to be

defined with binary bits. Specific to RS(255, 225), GF (28) is assumed to be

used. As it is a field of characteristic 2, subtraction is exactly equivalent to

addition. Moreover, since division can always be taken as multiplication by

a reciprocal, therefore only addition, multiplication and inversion needs to be

implemented.

4.1.1 VHDL Implementation of a Galois Field Adder

Addition is the simplest arithmetic over Galois field to implement. Recall

the polynomial representations of Galois field elements introduced in Chapter

2. Let a,b, c be three elements of GF (28) and there is a relationship that

c = a+ b. Assume their polynomial representations are

a = a7 · α7 + a6 · α6 + a5 · α5 + a4 · α4 + a3 · α3 + a2 · α2 + a1 · α1 + a0 · α0

b = b7 · α7 + b6 · α6 + b5 · α5 + b4 · α4 + b3 · α3 + b2 · α2 + b1 · α1 + b0 · α0

where all coefficients ai, bi are binary. Therefore,

c = a+ b

= (a7 + b7) · α7 + (a6 + b6) · α6 + · · ·+ (a1 + b1) · α1 + (a0 + b0) · α0

= c7 · α7 + c6 · α6 + · · ·+ c1 · α1 + c0 · α0

67

As GF (28) is a field of characteristic 2, so the coefficients ci = ai + bi are also

binary and a truth table is obtained as Table 4–1. Obviously, this truth table

can be implemented by the logic gate “XOR”. Consequently, ci = ai XOR bi

for i = (0, 1, · · · , 7) and c = a XOR b. Figure 4–1 shows VHDL codes for an

addition function over GF (28) and Figure 4–2 shows the corresponding circuit

diagram.

ai bi ci = ai + bi

0 0 0

0 1 1

1 0 1

1 1 0

Table 4–1: Addition with characteristic 2.

Figure 4–1: VHDL codes of an addition function over GF (28).

4.1.2 VHDL Implementation of a Galois Field Multiplier

Hardware implementation of multiplication over a Galois field is relatively

complicated. It starts with conventional multiplication between their polyno-

mial representations and then the product polynomial is modulo the primitive

68

Figure 4–2: Implementation diagram of an adder over GF (28).

irreducible polynomial. Mathematically, w(α) = u(α) · v(α) mod P (α) where

u(α), v(α) ∈ GF (2m) are the two operands, w(α) is the product, and P (α)

is the primitive polynomial on which GF (2m) is built (details about primitive

polynomials are stated in Chapter 2).

Example 24. It is easy to calculate α3 ·α5 = α8 = α7 ·α1 = 1 ·α1 = α1

over GF (23) using the high-level method stated in Chapter 2. Now the

task is to calculate the same equation using the method of hardware

implementation. Look up into Table 2–3 and find that the polynomial

representations for α3 and α5 are α3 = (1 + α) and α5 = (1 + α + α2),

respectively. The corresponding primitive polynomial is P (α) = (1 +

α + α3). Then the multiplication should be performed as following:

α3 · α5 = (1 + α) · (1 + α + α2) mod (1 + α + α3)

= 1 + α + α2 + α + α2 + α3 mod (1 + α + α3)

= 1 + α3 mod (1 + α + α3)

= α

Therefore, the results are consistent.

As there is no existing function for polynomial multiplication and modulo

in hardware implementation, it is necessary to solve the equation to a general

form with only arithmetics between binary coefficients of operands’ polynomial

69

representations. To better explain the solving method, GF (24) is taken as

an example. Let a, b be two elements of GF (24). Table 2–1 shows the

corresponding primitive polynomial is P (α) = α4+α+1. As any terms of the

product of a · b with order less than 4 will be unchanged when modulo P (α),

then

w = a · b mod P (α)

= (a3α
3 + · · ·+ a0α

0) · (b3α3 + · · ·+ b0α
0) mod (α4 + α + 1)

= (w6α
6 + w5α

5 + w4α
4) mod (α4 + α + 1) + w3α

3 + w2α
2 + w1α

1 + w0α
0

where wi = Σ0≤j,k≤3
j+k=i ajbk. The multiplication between the coefficients aj, bk is

implemented by a “AND” gate just like the conventional binary multiplication.

Recall that any element of a Galois field GF (2m) has a polynomial presen-

tation with order smaller than that of its corresponding primitive polynomial

P (α). Therefore, if the [α14, α13, · · · , α8] in (w14α
14+w13α

13+ · · ·+w8α
8) are

converted to their polynomial representations with order smaller than that of

P (α), then the modulo arithmetic part in the above equation will be gone.

Up to that point, the only task left is to combine like terms. Concretely, by

checking Table 2–2, we can find that:

α4 = α1 + α0

α5 = α2 + α

α6 = α3 + α2

The above polynomials are substituted into the equation of w. After com-

bining like terms and replacing wi with expressions of ai and bi, the result

is

w = (w6α
6 + w5α

5 + w4α
4) mod (α4 + α + 1) + w3α

3 + w2α
2 + w1α

1 + w0α
0

70

= w6(α
3 + α2) + w5(α

2 + α) + w4(α
1 + α0) + w3α

3 + w2α
2 + w1α

1 + w0α
0

= (w6 + w3)α
3 + (w6 + w5 + w2)α

2 + (w5 + w4 + w1)α
1 + (w4 + w0)

= (a3b3 + a3b0 + a2b1 + a1b2 + a0b3)α
3

+ (a3b3 + a3b2 + a2b3 + a2b0 + a1b1 + a0b2)α
2

+ (a3b2 + a2b3 + a3b1 + a2b2 + a1b3 + a1b0 + a0b1)α
1

+ (a3b1 + a2b2 + a1b3 + a0b0)α
0

As mentioned before, the addition between binary coefficients ai, bi is

implemented by a “XOR” gate and the multiplication is implemented by an

“AND” gate. Therefore, the corresponding VHDL codes for multiplication

over GF (24) can be programmed as Figure 4–3.

Figure 4–3: VHDL codes of a multiplication function over GF (24).

Specific to GF (28) for RS(255, 225), let a,b be two elements. Table 2–1

shows that for m = 8 the primitive polynomial P (α) = α8 +α4 +α3 +α2 +1.

Then

w = a · b mod P (α)

= (a7α
7 + · · ·+ a0α

0) · (b7α7 + · · ·+ b0α
0) mod P (α)

= (w14α
14 + w13α

13 + · · ·+ w8α8) mod P (α) + w7α7 + w6α6 + · · ·+ w0α0

where wi = Σ0≤j,k≤7
j+k=i ajbk.

71

As same as the last example, by checking Table 4–2, [α14, α13, · · · , α8] of

(w14α
14 + w13α

13 + · · ·+ w8α
8) can be converted into their polynomial repre-

sentations with order smaller than that of P (α), then the modulo arithmetic

part in the above equation will be gone. Notice that the full element table for

GF (28) is not given in this thesis due to its considerably long length. However,

it can be accessed easily from the Internet and many books on ECC such as

[20]. After conversion, the only task left is to combine like terms. Following

the same multiplication process over GF (24), the VHDL implementation of

the multiplication over GF (28) is constructed as shown in Figure 4–4.

Power Representation Polynomial Representation 4-Tuple Representation

0 0 00000000(=0)

α0(= 1) 1 00000001(=1)

α1 α 00000010(=2)

α2 α2 00000100(=4)

α3 α3 00001000(=8)

α4 α4 00010000(=16)

α5 α5 00100000(=32)

α6 α6 01000000(=64)

α7 α7 10000000(=128)

α8 α4 + α3 + α2 + 1 00011101(=29)

α9 α5 + α4 + α3 + α 00111010(=58)

α10 α6 + α5 + α4 + α2 01110100(=116)

α11 α7 + α6 + α5 + α3 11101000(=232)

α12 α7 + α6 + α3 + α2 + 1 11001101(=205)

α13 α7 + α2 + α + 1 10000111(=135)

α14 α4 + α + 1 00010011(=19)

Table 4–2: Part of the elements table of GF (28) with the primitive polynomial
P (X) = X8 +X4 +X3 +X2 + 1.

72

Figure 4–4: VHDL codes of a multiplication function over GF (28).

4.1.3 VHDL Implementation of a Galois Field Inverter

Inversion over a Galois field is significantly difficult to implement on har-

dware. For fields with small to medium size, it is much simpler and faster to

use a look-up table (LUT). Figure 4–5 and 4–6 show the inversion function for

GF (28).

4.2 Encoder Implementation

Prior to the discussion of the novel low-latency RS encoder, implementa-

tion of a conventional RS encoder should be roughly introduced. Recall the

algorithm stated in Chapter 2. To a specific encoder, the generator polynomial

can be pre-calculated and the only step to implement is b(X) = (Xn−k ·m(X))

mod g(X). This equation can be solved by a linear feedback shift register

(LFSR) which is shown in Figure 4–7. The rectangular box bi represents the

73

Figure 4–5: VHDL codes of a inversion function over GF (28): Part 1.

74

Figure 4–6: VHDL codes of a inversion function over GF (28): Part 2.

parity-bits register. The encoding progress starts with the Switch 1 connected

to the adder and Switch 2 connected to the LFSR input. In the first k clock

cycles, the coefficients of m(x) enter the circuit one coefficient per clock cycle

and the highest-order coefficient mk−1 enters first. During these clock cycles,

the parity-bits are being calculated, and the output of LFSR is the same as the

input. After the calculation finished at the k-th clock cycle, the coefficients of

b(x) of the previous formula are stored in each shift register bi. At this point,

Switch 1 turns to “0” input and Switch 2 turns to the register bn−k−1 so that

the LFSR shifts the coefficients of b(x) out one coefficient per clock cycle. As

there are n− k registers, this procedure goes on for n− k clocks, and it leads

to the end of the encoding process.

75

Figure 4–7: Structure of a linear shift back register (LFSR).

In this research, three low-latency RS(255, 225) encoders with different

speed-up coefficients p have been implemented in VHDL and tested. The

implementation logic follows the structure shown in Figure 3–1. Compared

to a conventional RS encoder, a low-latency RS encoder uses multiple shorter

LFSRs which can run in parallel in its Step 4. However, there is a cost which

is message-words have to be pre-processed before entering the LFSRs and the

outputs from LFSRs have to be post-processed to generate the real parity bits.

4.2.1 Implementations with Speed-Up Coefficient p = 3

Figure 4–8 shows a low-latency RS(255, 225) encoder with speed-up coeffi-

cient p = 3. Each message-word is an 8-bit vector, and there are 1800(= 8·225)
bits in total in a set of message-words. At each clock cycle, three message-

words enter the circuit and are split as three inputs of the DFT. The DFT

then generates three outputs and send them into three LFSRs. Notice that

each LFSR has a distinct generator polynomial. The outputs from LFSRs are

applied with an inverse Fourier transform in the IDFT to produce the real

parity-bits. With access to all computed parity bits and the delayed message-

word input, the output controller gives the final code-words by three words at

each clock. In the following paragraphs, each part of the implementation is

76

discussed in details, and more comments are shown in the screenshots of their

VHDL codes.

Figure 4–8: Low-latency RS(255, 225) encoder with speed-up coefficient p = 3.

Set-Up. As shown in Figure 4–9, there are four input ports of the

encoder: a global reset denoted as “reset n”, a clock signal denoted as

“clk”, a port for input data denoted as “data in” and a signal denoted

as “input strobe” which is to activate the encoding process. Notice that

the length of “data in” is 24 bits because three message-words enter the

circuit at each clock cycle. There are three outputs: a signal denoted as

“output strobe” that suggests if the first three code-words are ready, a sig-

nal denoted as “enc done p” that indicates if the last three code-words have

been sent out and the code-word output also of 24-bit length denoted as

“data out p”. Figure 4–10 shows the declaration of the LFSR component

and other signals. The signals with suffix “ p” are all register signals and

their counterparts which are without the suffix “ p” are combinational logic

signals used for register update.

Defining Functions. The adder and multiplier over GF (28) have been

discussed in Section 4.1 and the corresponding VHDL codes are shown in

Figure 4–1 and 4–4, respectively. Figure 4–11 shows the definition of DFT

and IDFT functions. It follows the formula DFT (M)i ≡ Σp−1
j=0ρ

i·jMj and

IDFT (f)i = Σp−1
j=0ρ

−j·ifj. Notice that “q” refers to p-th root of unity and

“q2” refers to q2.

77

Figure 4–9: Ports Declaration of RS encoder with p = 3.

Figure 4–10: Signal declaration of RS encoder with p = 3.

Component Instantiations. As Figure 4–12 shows, with p = 3, three

LFSRs are used. They all share a same global clock and reset. The “input strobe”

signal activate all the three at the same time. The data input of each LFSR

78

Figure 4–11: DFT and IDFT functions of RS encoder with p = 3.

is one of the three output from the DFT. Each output from them is a vector

denoted as “LFSRout”. Notice that the generator polynomial coefficients

[g0, g1, g2, · · · , g9] are different for each LFSR, because in the algorithm, there

is p distinct generator polynomials. With the formula given in Chapter 3, each

generator polynomial is pre-calculated. The features and inside structure of

LFSR component are explained with details later.

Register Update. Figure 4–13 shows the VHDL codes for register up-

date. At each rising edge of the clock, the register signals are updated to their

combinational logic counterparts. When the global reset is active at a clock’s

rising edge, all register signals go to zero.

Finite State Machine. A finite state machine (FSM) is utilized to

control the overall process (Figure 4–14). There are four state: “Idle”,

“Calculation”, “XferParity” and “WrapUp”. In state “Idle”, all the con-

trol signals are set to zero except “countRst” which resets the counter when

active. When “input strobe” becomes to 1, it means the encoding process

is activated. Then “countEn” turns to 1 which allows the counter to do

increment and the state goes to “Calculation”, which means LFSRs start

their computing process. When “counter p” reaches t where t = k/p is the

component length of message-words, “xferEn” becomes 1 and the state enters

79

Figure 4–12: LFSR component instantiations of RS encoder with p = 3.

Figure 4–13: Register update of RS encoder with p = 3.

80

“XferParity”, which means the intermediate parity bits calculated by LFSRs

are ready to shift out. When “counter p” reaches m where m = n/p is the

component length of code-words, “countRst” goes to 1 and “enc done” is

activated to suggest that the encoding progress has been done.

Figure 4–14: Finite state machine of RS encoder with p = 3.

81

Counter Implementation. Figure 4–15 shows the counter behavior.

When “input strobe” or “countRst p” is activated, the counter is compel-

led to be 0. The counter only counts when “countEn p” is 1.

Figure 4–15: Counter behavior of RS encoder with p = 3.

Preprocessing before LFSR. Figure 4–16 show the preprocessing be-

fore the LFSR. Besides creating a copy of delayed inputs, the other task is to

apply Fourier transform on three components of the input message-words. The

outputs from the DFT are sent to three LFSRs. “p*GFPower” refers to the

total number of bits in “data in”. Specific to this encoder with p = 3, every

input at each clock cycle has three message-words and thus has 24 bits binary

data. To split the input into p = 3 components, just set the corresponding

index correctly.

Figure 4–16: Preprocessing of RS encoder with p = 3.

LFSR Implementation. The three LFSRs used in this encoder follow

the same structure shown in Figure 4–7. As the working principle has been

introduced at the beginning of Section 4.2, let us directly look into its VHDL

implementation.

82

As message-words are split into p = 3 components, each LFSR is desig-

ned to totally take in t = k/p = 225/3 = 75 message-words and generate

l = r/p = (n − k)/p = (255 − 225)/3 = 10 parity-bit symbols. Figure 4–17

shows the port declaration of LFSR component. Two things should be noticed.

First, both of “data in” and “data out p” are a vector with 8 bits and the

generator polynomial coefficients are inputs to be filled when instantiating the

component. Figure 4–18 shows the signal declaration. The signals with suffix

“ p” are all register signals. The VHDL codes for register update are shown

in Figure 4–19. A counter is defined and its behavior is shown in Figure 4–20.

Control signals are defined in Figure 4–21. “DoCalc p” enables parity bits

calculation. “xferPB p” enables computed parity bits to be shifted out. The

registers accommodating parity bits are denoted as “parity reg p”. Each

register update follows exactly as the circuit in Figure 4–7 and the correspon-

ding VHDL codes are shown in Figure 4–22. The output data of an LFSR

is the same as the input data for the first 75 clock cycles and then becomes

the value stored in the last parity bits register (Figure 4–23). Specific to low

latency RS(255, 225) with p = 3, the outputs of LFSRs for the first 75 clock

cycles are not concerned. Also, it should be emphasized that the parity-bits

computed by LFSRs are essentially intermediate parity bits, which need to be

post-processed to produce the real parity-bits for the final code-words.

Output controller. Inverse Fourier transform needs to be applied on

the intermediate parity bits in order to generate the real parity bits. Recall

that code-words consist of message-words and parity bits. During the first 75

cycles, the output data are simply the delayed input message-words. When

“xferEn p” is activated, the output data are the results generated from IDFT.

The VHDL codes for the post-processing is shown in Figure 4–24.

83

Figure 4–17: Port Declaration of LFSR component.

Figure 4–18: Signal Declaration of LFSR component.

Figure 4–19: Register update of LFSR component.

84

Figure 4–20: Counter behavior of LFSR component.

Figure 4–21: Combinational logic for control signals of LFSR component.

85

Figure 4–22: Combinational logic for parity-bits registers of LFSR component.

Figure 4–23: Combinational logic for the output data of LFSR component.

Figure 4–24: Post-processing of low-latency RS(255, 225) encoder with p = 3.

86

4.2.2 Implementations with Speed-Up Coefficients p = 5 and p = 15

Both of low-latency RS(255, 225) encoders with p = 5 and p = 15 follow

the same implementation logic and style. In this subsection, only the difference

on implementation are listed and discussed. VHDL codes of the different parts

are shown in Appendix A.

Set-Up. The sizes of “data in” and “data out p” are different for

each p value because p value decides how many message-words are transmit-

ted at each clock cycle and correspondingly, the number of bits is equal to

(p ·GFPower), that is, 40 bits for p = 5 and 120 bits for p = 15. The LFSR

component declaration is certainly changed because for different p there are

different LFSR length and thus, the number of generator polynomial coeffi-

cients is different. As for the signal declaration, as long as basic parameters are

changed, all other modification will happen automatically such as pre-defined

types, data signals, because they are defined by the basic parameters. One

more modification is to add more constants for the higher order of q because

DFT and IDFT functions for bigger p are defined based on them.

Defining Function. For different p values, DFT and IDFT functi-

ons need to be modified based on the formula DFT (M)i ≡ Σp−1
j=0ρ

i·jMj and

IDFT (f)i = Σp−1
j=0ρ

−j·ifj.

Component Instantiations. There are always p LFSRs instantiated.

Also in each instantiation, modification should be made based on the compo-

nent declaration which has been discussed above.

Preprocessing before LFSR. The only thing that needs to be revised

is the expression for “DFTout”, based on the change in the DFT function

and the size of “data in”. Recall that the DFT function always has p inputs,

and each input is in the type of “Galois Field element”.

87

LFSR Implementation. There are three parts to modify for a dis-

tinct p value. First, the number of polynomial generator coefficients are chan-

ged due to the length change of LFSR. Second, “data size”, “coded size”

and “errCap”of basic parameters need to change based on the equations

t = k/p, m = n/p and l = r/p, respectively. Third, the combinational lo-

gic of “parity reg” is changed by deleting the expressions of its last-part

components, as the LFSR becomes shorter for larger a p value.

Output Controller. The only place to modify is the expressions of

“data out”, due to its size change and the change in the number of IDFT

function inputs and outputs.

4.3 Synthesis and Simulations Results for the Encoder

This section include both FPGA synthesis results and ASIC synthesis

results. For better explanation, the conventional RS encoder can be thought as

a low-latency RS encoder with p = 1 which has no DFT and IDFT components.

The FPGA used is Altera DE2-115 board, specifically Cyclone IV E with

device number “EP4CE115F23C8L”. The software used for synthesis and si-

mulations is Quartus II 15.0. The synthesis results are shown in Table 4–3.

The functional simulation results for encoders with each p value are shown Fi-

gure 4–25, 4–26 and 4–27. The timing simulation results are shown in Appen-

dix C. The results have been verified by the encoder implemented in MATLAB.

For better presentation, all data signals are represented in hexadecimal form,

and the 225 input message-words are all set to 3, that is “03” in hexadecimal.

As three message-words are input at each clock for p = 3, so “data in” is

“030303” for all input clocks. Similarly, “data in” is “0303030303” for p = 5

and ”030303030303030303030303030303” for p = 15.

As the results shown, the low-latency RS encoders can speed up the enco-

ding algorithm by a factor almost equal to p, which proves the major feature

88

RS(255, 225) Encoders with Error-Correction Capacity 15

Altera DE2-115 FPGA

Encoder Total Max Hardware Costs

Name Clock Frequenc Registers Combinational

Cycles (MHz) Logic

Conventional RS
Encoder

256 249.53 323 179

Low-Latency RS
Encoder (p = 3)

87 204.21 362 210

Low-Latency RS
Encoder (p = 5)

53 236.46 410 1031

Low-Latency RS
Encoder (p = 15)

19 206.78 650 1914

Table 4–3: Comparison of FPGA synthesis results for different encoders.

Figure 4–25: Functional simulation of low-latency RS(255, 225) encoder with
p = 3.

claimed in [17]. The maximum clock frequency decreases with p increasing

because larger p causes more complicated DFT and IDFT components, which

leads to longer critical path and thus smaller maximum clock frequency. Ho-

wever, one thing should be noticed that for p = 5, the encoder’s maximum

clock frequency is surprised high. While this abnormal fact did not show up in

ASIC synthesis results. The possible reason can be the routing rules of FPGA

responding better to shorter LFSRs, and when p = 5 this benefit surpasses

89

Figure 4–26: Functional simulation of low-latency RS(255, 225) encoder with
p = 5.

Figure 4–27: Functional simulation of low-latency RS(255, 225) encoder with
p = 15.

the drawback from DFT and IDFT components. As for the hardware cost,

the resource used by the low-latency RS decoder with p = 15 is about five

times of that used by a conventional RS encoder. The reason can be explained

in term of the structures. A low-latency RS encoder or decoder is essenti-

ally made by breaking a conventional RS encoder or decoder into p parts and

connecting them to DFTs and IDFTs. As the hardware cost of the conven-

tional RS encoder is very small, the hardware costs of the DFT and IDFT

components that are proportional to p, have a significant impact on the total

hardware costs. Nevertheless, this situation does not exist for low-latency de-

coder implementation because the conventional RS decoders are much more

complicated. Moreover, the hardware costs of a low-latency RS encoder are

90

still small. For the encoder with p = 15, the resource usage is less than 2% of

FPGA according to the synthesis report from Quartus II.

RS(255, 225) Encoders with Error-Correction Capacity 15

65nm TSMC

Encoder Area Power Max Data

Name (μm2) Comsumption Frequency Rate

(mW) GHz Gbps

Conventional RS
Encoder

0.798 · 104 5.601 2.77 22.16

Low-Latency RS
Encoder (p = 3)

0.629 · 104 3.97 2.71 65.04

Low-Latency RS
Encoder (p = 5)

1.36 · 104 13.34 2.68 107.2

Low-Latency RS
Encoder (p = 15)

4.79 · 104 23.18 2.08 249.6

Table 4–4: Comparison of ASIC synthesis results for different encoders.

The technology used for ASIC synthesis is 65 nm TSMC and the results

are shown in Table 4–4. The data rate increases about linearly with p, which

is expected as it is one of the major features of the proposed RS algorithm.

Another expectation got verified is that max clock frequency decreases also

about linearly with p, which is explained in last paragraph. As for areas,

the results have consistent trend to the hardware costs from FPGA synthesis.

Specifically, the encoder with larger p costs more hardware and area. However,

one exception is that the area for conventional RS encoder slightly larger than

the low-latency one with p = 3. There are two possible reasons responsible

for this inconsistence. First, some arithmetic logical elements are omitted

when the one long LFSR of the conventional RS encoder is split into three

shorter LFSRs of the low-latency one with p = 3. Second, the rules of ASIC

91

routing may result in a larger area for the longer sequential structure, which

is a subject to confirm in the future work. The power consumption results of

the encoders are expected and can be explained by dynamic power formula of

CMOS transistors, as it occupies about 80%-90% of total power. The formula

is P = CV 2FA where C is the capacitance, V is the supply voltage, F is the

clock frequency, and A is the activity factor modeling the average switching

activity. Correspondingly, the power consumption results are mainly following

the trend of area as the change in hardware costs is large, whereas the clock

frequency difference is relatively small.

In conclusion, although low-latency with small p value can indeed improve

the conventional design, large p value also raises the hardware cost and po-

wer consumption significantly because the simplicity of the encoder structure

makes the added DFT and IDFT components affect considerably.

4.4 Decoder Implementation

In this research, three low-latency RS(255, 225) decoders with different

speed-up coefficient p have been implemented in VHDL and tested. The im-

plementation logic follows the structure shown in Figure 3–2. The entire im-

plementation consists of four VHDL files. One is the top file, and the others

are components. All the details are discussed in the rest of the section.

4.4.1 Implementation with Speed-Up Coefficient p=3

Figure 4–28 is a block diagram for low-latency RS(255, 225) decoder with

p = 3. At each clock, three received-words enter a splitter and are split into

three single received-word. Then they enter into three syndrome calculators.

This process repeats for n/p = 85 clock cycles and each syndrome calculator

finally generates r/p = 10 syndromes. The 30 syndromes are organized as a

single vector and enter Berlekamp-Massey algorithm in which a vector con-

taining the error-locator polynomial coefficients and another vector containing

92

the error-evaluator polynomial coefficients are computed after r = 30 clock cy-

cles. Afterward, the modified Chien search and correction process is activated.

The error-locator polynomial is split into three parts, and each one becomes

an error-location searcher. At each clock cycle, the results generated from er-

ror location searchers are then applied with inverse Fourier transform to see if

any error locations are found. At the same time, error evaluation is also run-

ning based on error-evaluator polynomial and error-locator polynomial. To be

consistent with the number of error locations that are checked at each clock

cycle, three same error-evaluation processors are used. At each clock cycle, the

output controller sent out a vector containing three correction-words. When

any error location is found, the corresponding error value is added to the

received-word at that location, and the sum is sent out as a correction-word.

Otherwise, the correction-words are just as same as the received-words. After

another n/p = 85 clock cycles, all the correction-words are sent out. In the

following paragraphs, VHDL codes for each file are discussed with details.

LowLatRSdec n255k225 p3 syn.vhd. Figure 4–29 shows the port

declaration. There are four inputs. Besides “reset” and clock signal “clk”,

another input “data in” is a vector with 24 bits because three 8-bit received-

words are received at each clock cycle. “input strobe” is also an input signal

to activate the decoding process. The three outputs are “syndrome out”

which is a vector with 240 bits (30 8-bit syndromes), “error present out”

which suggests if there is any error in the received-words, and “synd calc done”

which suggests the end of the syndrome calculations and activates the Berlekamp-

Massey algorithm.

Figure 4–30 shows the signal declaration. The signals with suffix “ p”

are all register signals and their counterparts are the combinational logic sig-

nals for register update. A constant vector “alpha” is created to include

93

Figure 4–28: Structure of low-latency RS(255, 225) decoder with p = 3.

94

Figure 4–29: Port declaration of syndrome component.

all elements in GF (28). In data signals part, “intS p” refers to the inter-

mediate syndromes and it is a two-dimensional vector where each row refers

to all the ten syndromes calculated from a particular syndrome calculator.

“intEP p” refers to intermediate error-present signal whose size is consistent

with “intS p”. As for control signals, “xferSyn p” is a signal to activate

output process of the final syndrome vector.

The declaration of addition, multiplication and DFT functions are the

same as those of the encoder which has been already described in the last

section.

Figure 4–31 shows the process for register update. All register signals are

updated to their combinational logic counterparts at each clock’s rising edge

except when “reset” is 1, in which case all register signals become zero.

Figure 4–32 shows a finite state machine. There are four state: “Idle”,

“Initialization”, “Calculation” and “OutputReady”. When “input stro

be” is high, the state transfers from “Idle” to “Initialization” in which the

counter is enabled and all signals are set up. This state is only up for one

clock cycle and followed by “Calculation” state in which the control signal

“DoCalc” is activated and intermediate syndrome calculation starts. After

95

Figure 4–30: Signal declaration of syndrome component.

96

Figure 4–31: Register update of syndrome component.

n/p = 85 clock cycles, the calculation process is finished, the control signal

“xferSyn” is up and the state turns to “OutputReady” where all interme-

diate syndromes are ready to be organized into a single syndrome vector. One

clock cycle later, the state goes to “Idle” automatically.

Figure 4–33 shows the counter behavior. As usual, the counter only counts

when “countEn p” is high.

Figure 4–34 shows all other combinational logic processes for data sig-

nals. “DFTout” is acquired by applying Fourier transform on the input

received-words. Each intermediate syndrome is calculated using a conven-

tional recursive multiplication shown in Figure 4–35 and it follows the formula

given in Step 3 of Section 3.2.2. Each “intEP” suggests if the intermediate

syndrome at the same index is a zero. For the final output, “syndrome”

and “error-present” are both generated by connecting all the corresponding

intermediate data signals and one clock cycle later, these values are passed

97

Figure 4–32: Finite State Machine of syndrome component.

98

Figure 4–33: Counter process of syndrome component.

to “syndrome out” and “error present out”. Besides, “synd calc done”

which indicates the end of syndrome calculations and activates the Berlekamp-

Massey algorithm, is a copy of “xferSyn p” and only up for one clock as well.

LowLatRSdec n255k225 p3 bm.vhd. Figure 4–36 shows the port

declaration. “synd calc done” is the input control signal indicating that the

syndrome calculations have been done. When it is equal to 1, Berlekamp-

Massey algorithm is activated. “error present” is an input signal generated

from last component and indicating if there is any error in the received-words.

“syndrome” is a 240-bit input vector containing all syndromes calculated

from last component. There are three outputs: an error-locator polyno-

mial denoted as “lambda poly”, an error-evaluator polynomial denote as

“omega poly” and a control signal “startChien p” which indicates the end

of Berlekamp-Massey algorithm and activates the next decoding process: mo-

dified Chien search.

Figure 4–37 shows the signal declaration. “keepOldL” is a control signal

standing for the condition Δ(k+1) �= 0 and 2L(k) ≤ k. The number of elements

insides “Omega p” and “Ax p” are all 16 instead of 15 because the zero-

index element is taken as the coefficient associated with x−1. “SReg p” is

a set of register storing syndrome values. Its size is 1.5 times of the number

99

Figure 4–34: Combinator logic of syndrome component.

Figure 4–35: Recursive Multiplication Block.

of syndromes, because 15 extra slots need to be left in advance for back-

shift of syndrome values according to the formula Δ(k+1) =
∑L(k)

j=0 σ
(k)
j Sk−j.

“Convolution Term”, “Convolution term multiplier and “post convol

100

Figure 4–36: Port declaration of BM component.

ution term” are three supporting vectors for computing “Delta”. More de-

tails are introduced in later paragraphs.

Figure 4–37: Signal declaration of BM component.

For function definitions, as addition, multiplication and inversion have

been given in the previous section, the VHDL codes are not shown here again.

There are two new functions shown in Figure 4–38. “is not 0” is a function to

check if a 8-bit vector is zero. “convolution term mul” is a multiplication

function between a 8-bit vector and another single bit.

101

Figure 4–38: Newly defined functions of BM component.

Figure 4–39 shows the register update. At each clock’s rising edge, all

register signals go to zero, when “reset” is high. Otherwise, the register

signals are updated to their combinational logic counter parts.

Figure 4–40 shows the finite state machine. When all syndromes are calcu-

lated from the last component, “synd calc done” turns up. Then “initialize”

goes to 1 and the state transfers from “Idle” to “Initialization”. If “error p

resent” is 0, which means there are no error in the received-words, then

“startChien” turns to 1 and the state goes back to “Idle”. Otherwise,

“storeNewPolys” and “countEn” become 1 and the state goes to “Update”.

During this state, calculation iterations are under progress and the coun-

ter keeps counting. When “counter p” reaches r = 30, “startChien” is

up which indicates the calculation process is finished and the states goes to

“Idle”.

Figure 4–41 shows the counter behavior. As usual, the counter counts

only when “countEn p” is 1.

Figure 4–42 shows the calculation process of “Delta”. In initialization

state, 30 syndromes are assigned to the last 30 elements of “SReg”. While the

first 15 elements are assigned to zero. When “storeNowPolys p” is equal

to 1, at every clock cycle, the elements of “SReg” shift back by one position.

102

Figure 4–39: Register update of BM component.

The elements are multiplied with the error-locator polynomial following the

formula σ
(k)
j · Sk−j. Then the case statement based “L p” and the calculation

process of “post convolution term” determine every term of the formula
∑L(k)

j=0 σ
(k)
j Sk−j. Finally, “Delta” is obtained by adding these terms together.

Figure 4–43 shows the update of error-locator polynomial. Δ(k+1)·B(k)(x)·
x is first calculated as “xDeltaBx”. Then the new error-locator polynomial

is computed following the formula σ(k+1)(x) = σ(k)(x)−Δ(k+1) · B(k)(x) · x.
Figure 4–44 shows the update of error-evaluator polynomial. The process

follows the same style as an error-locator polynomial.

103

Figure 4–40: Finite state machine of BM component.

Figure 4–45 shows the update of the order of error-locator polynomial

“L”, the error-locator supporting polynomial “Bx”, and the error-evaluator

supporting polynomial “Ax”.

104

Figure 4–41: Counter behavior of BM component.

Figure 4–46 shows the final output process. The error-locator polyno-

mial “lambda poly” is acquired by connecting every element of the signal

“lambda p”. The error-evaluator polynomial “omega poly” is obtained by

connecting every element except the first one of the signal “omega p”, be-

cause the element with zero index is taken as the coefficient associated with

x−1, which is mentioned in signal declaration.

LowLatRSdec n255k225 p3 chienNcorrect.vhd. Figure 4–47 shows

the port declaration. Besides the error-locator polynomial “lambda poly”

and the error-evaluator polynomial “omega poly”, “startChien” is another

input to activate the processes of this component. Notice that this compo-

nent records the received-words when they enter the decoder and the pur-

pose is to reuse them for error correction and output generation. There are

three outputs: “dec done p” which indicates the end of decoding algorithm,

“output strobe” which indicates the first correction-word output is ready,

and “data out p” which is the correction-word output. With p = 3, three

correction-words are generated at one clock.

Figure 4–48 shows the signal declaration. The figure does not include the

constants: “zero”, “one” and “alpha”, because they are also defined in the

syndrome component. For the basic parameters, “lamLength”, “derLemLength”

and “omeLength” are the number of coefficients in the error-locator poly-

nomial, the derivative of error-locator polynomial, and the error-evaluator

105

Figure 4–42: Delta calculation of BM component.

106

Figure 4–43: Update of error-locator polynomial of BM component.

Figure 4–44: Update of error-evaluator polynomial of BM component.

polynomial, respectively. “chienLength” refers to the number of coefficients

used in the Chien search. It should be equal to “lamLength”, but in or-

der to simplify the codes, it is forced to be divisible by p = 3 by adding

zero coefficients. Therefore, the “chienLength” is 18 instead of 16 in this

case. For the data-signal part, the signals with suffix “ product” refer to

the single-term multiplication in the process of polynomial evaluations. The

signals with suffix “ sum” refer to the final results of corresponding polyno-

mial evaluations. The specific structures are shown in Figure 4–49, 4–50 and

107

Figure 4–45: Update of other supporting signals of BM component.

4–51. “DR counter” is an inner counter for data recording process. While

“counter” is the formal counter for the subject component. For the control-

signal part, when “xferdata” is 1, the decoder output a vector containing

108

Figure 4–46: Final output of BM component.

Figure 4–47: Port declaration of Chien search and correction component.

three correction-words at each clock. More details and explanation can be

found in the figures.

For functions declaration, as addition, multiplication, inversion, and IDFT

have been covered already in the previous section, they are not shown here

again.

Figure 4–52 shows the register update. Same as before, at each clock’s

rising edge, all register signals go to zero, when “reset” is high. Otherwise,

the register signals are updated to their combinational logic counterparts.

Figure 4–53 shows the finite state machine. There are five states. When

“data input strobe” is up, “recorddata” becomes 1 which enables copying

the input received-words, and the state goes from “Idle” to “DataRecording”.

The data recording process finishes when the inner counter “DR counter”

reach m − 1 = 84, because all received-words enters in 85 clock cycles. Then

the state is back to “Idle”. When “startChien” turns to 1, “initialize”

is up to set up all signals and the state goes to “Initialization”. The

109

Figure 4–48: Signal declaration of Chien search and correction component.

“Initialization” state lasts only for one clock cycle and turns on “countEn”

which enables counter’s increment, “DoCalc” which enables calculation, and

“Deteror0En” which enables zero detection for the output of IDFT. Meanw-

hile, the state goes to “Calculation”. When “counter p” reachesm−2 = 83,

110

Figure 4–49: Evaluation block of the modified Chien search

Figure 4–50: Evaluation block of the odd terms of error-locator polynomial.

“DoCalc” turns off and the state enters “WrapUp” in which all state control

signals goes off except “dec almost done”. After one clock cycle, the state

goes back to “Idle”.

Figure 4–54 shows the data-recording process. While the inner counter

“DR counter” counts from 0 to 84, the input received-words are copied by

“data delay”.

111

Figure 4–51: Evaluation block of the error-evaluator polynomial.

Figure 4–55 shows the behavior of formal counter for Chien search and

correction process. The counter is reset to zero when the process starts and

ends.

Figure 4–56 shows the coefficient extraction of the error-locator polyno-

mial and the error-evaluator polynomial.

Figure 4–57 shows the computation of modified Chien search. The poly-

nomial evaluation is implemented just like the way shown in Figure 4–49 and

then it is followed by an inverse Fourier transform.

Figure 4–58 shows the evaluation of the odd terms of the error-locator

polynomial following the way in Figure 4–50 and an evaluation of the error-

evaluator polynomial follows the way shown in Figure 4–51. Both of these

evaluations are used for error-value calculation. Recall Step 6 in Section 3.2.2,

the odd terms of the error-locator polynomial is equal to the derivative of

error-locator polynomial multiplied by x.

Figure 4–59 shows the correction process. For every three error location

checked in one clock, three corresponding correction values are calculated, but

112

Figure 4–52: Register update of Chien search and correction component.

they are used as intermediate outputs only when the corresponding locations

are determined by zero detection for IDFT outputs.

Figure 4–60 shows the final output process of decoder. “xferdata p” is

just one-clock delayed “Detector0En p” and when it is 1, “data out”, the

combinational logic counter part of final output, is assigned three correction-

words at each clock. “output strobe” is a output signal to indicate the start

113

Figure 4–53: Finite state machine of Chien search and correction component.

114

Figure 4–54: Data recording of Chien search and correction component.

Figure 4–55: Counter behavior of Chien search and correction component.

Figure 4–56: Coefficient extraction of Chien search and correction component.

of the final correction-words output, whereas “dec done” is a output signal

indicating the end.

LowLatRSdec n255k225 p3.vhd. Figure 4–61 shows the entire co-

des for the top file. There are four inputs: the global reset denoted as

“reset n”, the clock signal denoted as “clk”, the received-words denoted as

115

Figure 4–57: Modified Chien search of Chien search and correction component.

“data in” and the decoding activation signal denoted as “input strobe”.

There are five outputs: a signal “output strobe” that suggests the output is

ready, the correction-words “data out” and three component-process-ending

indicators: “synd calc done out”, “startChien out” and “dec done”.

The signal and component declaration are both presented. The whole

architecture only includes the assignment of three process-ending indicator

signals and the three component instantiations connected with each other

following the structure shown in Figure 4–28.

4.4.2 Implementations with Speed-Up Coefficient p = 5 and p = 15

Both of low-latency RS(255, 225) decoders with p = 5 and p = 15 follows

the same implementation logic and style. In this subsection, only the difference

on implementation is listed and discussed. VHDL codes of the different parts

are shown in Appendix B.

Syndrome Component. First, as p changes, the size of “data in” is

different, and it is always equal to (p·GFPower). Second, the basic parameters

have to be revised based on p. This change actually adjusts most of the parts

in this component, correspondingly. Third, DFT function has to be changed

116

Figure 4–58: Polynomial evaluation of Chien search and correction component.

following the formula DFTout(i) ≡ Σp−1
j=0ρ

i·jLj. Forth, the expressions for

final outputs “syndrome” and “error present” have to be changed due to

the size change of “intS p” and “intEP”.

Berlekamp-Massey Algorithm Component. As this component is

independent on p, nothing needs to be changed.

Chien Search and Correction Component. First, as p changes,

the sizes of “data in” and “data out p” need to be revised. Both of them

117

Figure 4–59: Correction process of Chien search and correction component.

Figure 4–60: Final output process of Chien search and correction component.

are equal to (p · GFPower). Second, the basic parameters have to be revi-

sed based on p. Notice that, “chienLength” is always forced to be larger

than “lamLength”(= 16) and divisible by p. Therefore, “chienLength” is

equal to 20 for p = 5 and “chienLength” is equal to 30 for p = 15. The

118

Figure 4–61: Top file of low-latency RS(255, 225) decoder with p = 3.

119

change of the basic parameters actually adjusts most of parts in this compo-

nent correspondingly. Third, IDFT function has to change following the for-

mula IDFTout(i) = Σp−1
j=0ρ

−j·ifj. Forth, the expression of “Chien sum(i)”

needs to be revised due to the size change in “chienLength”.

Top File. The only thing to revise is the sizes of input received-words

and output correction words included in a port declaration and component

instantiations.

4.5 Synthesis and Simulations Results for the Decoder

This section includes both FPGA synthesis results and ASIC synthesis

results. For better explanation, the conventional RS decoder can be thought as

a low-latency RS decoder with p = 1 which has no DFT and IDFT components.

The FPGA used for synthesis is an Altera DE2-115 board, specifically Cy-

clone IV E with device number “EP4CE115F23C8L”. The software used for

synthesis and simulations is Quartus II 15.0. The comparison of synthesis and

performance results among the conventional decoder and low-latency decoders

with different p is shown in Table 4–5. The functional simulation results for

decoders with each p value are shown Figure 4–62, 4–63 and 4–64. The timing

simulation results are shown in Appendix D. The results have been verified

with the low-latency decoder implemented in MATLAB. For better presenta-

tion, all data signals are represented in hexadecimal form. The received-words

are produced by adding random errors to the code-words generated in Figure

4–25, 4–26 and 4–27. These errors mimic the data corruption happened in

transmissions due to the noise effect in the channel.

It is easy to see that the simulation results generated by low-latency

decoders (Figure 4–62, 4–63 and 4–64) are consistent with Figure 4–25, 4–

26 and 4–27. Moving on to Table 4–5, the clock cycles used by the low-latency

decoders are dramatically decreased compared to the conventional one. It is

120

RS(255, 225) Decoders with Error-Correction Capacity 15

Implemented using Altera DE2-115 FPGA

Decoder Clock Max Hardware Costs

Name Cycles Frequency Registers Combinational

(MHz) Logic

Conventional RS
Decoder

546 78.60 5791 7102

Low-Latency RS
Decoder (p = 3)

206 78.77 5981 8667

Low-Latency RS
Decoder (p = 5)

138 72.94 6363 10954

Low-Latency RS
Decoder (p = 15)

71 69.74 7418 17639

Table 4–5: Comparison FPGA synthesis results for different decoders.

Figure 4–62: Functional simulation of low-latency RS(255, 225) decoder with
p = 3.

expected that the clock number change is not simply proportional to p as the

low-latency encoders do, because the same BM algorithm is used in all low-

latency and conventional decoders and does not speed up. It should be noticed

that all the tests in this section correct the errors on parity bits, too. As we

discussed in Step 5 (the modified Chien search) in Section 3.2.2, if we only

correct transmission errors on message part of the code-words, which is also a

121

Figure 4–63: Functional simulation of low-latency RS(255, 225) decoder with
p = 5.

Figure 4–64: Functional simulation of low-latency RS(255, 225) decoder with
p = 15.

common case in real life, the number of roots used to find error locations would

be further reduced by (n−k)/p. Equivalently, the clock cycles would be further

reduced by (n − k)/p. As for hardware cost, the results are reasonal as well.

On one hand, the increase in hardware cost was relatively small for p raising,

which proved one of the major features that asserted in [17]. On the other

hand, the hardware cost of the low-latency decoder with p = 15 still reaches

a significant level. These results can be interpreted with two facts. First, as

the conventional RS decoders have a very complicated structure already, the

added DFT and IDFT components did not affect the hardware cost as much

as those in the encoders did. Second, as the conventional error-evaluation

122

RS(255, 225) Decoders with Error-Correction Capacity 15

65 nm TSMC

Encoder Area Power Max Data

Name (μm2) Comsumption Frequency Rate

(mW) GHz Gbps

Conventional RS
Decoder

1.60 · 105 77.60 0.895 7.16

Low-Latency RS
Decoder (p = 3)

1.03 · 105 32.91 0.886 21.3

Low-Latency RS
Decoder (p = 5)

1.08 · 105 43.41 0.880 35.2

Low-Latency RS
Decoder (p = 15)

2.52 · 105 145.22 0.877 105.24

Table 4–6: Comparison of ASIC synthesis results for different decoders.

circuit is simply replicated by p times to generate p error-values at each clock,

these extra replicated circuits cost more hardware with larger p. The results of

maximum clock frequency also satisfy the expectation. As p raises, the DFT

and IDFT become more complicated and thus the critical path get increased,

which leads to smaller maximum clock frequency.

The technology used for ASIC synthesis is 65 nm TSMC and the results

are shown in Table 4–6. Compared to the FPGA synthesis, the maximum

clock frequency have a very similar trend. The results for data rate are also

expected and they are directly proportional to p due to p-parallel input circuits.

Specifically, it can reach more than 100 Gbps for p = 15. The area results for

low-latency RS decoders are consistent with their hardware costs from FPGA

synthesis. However, one exception of this consistence is that conventional RS

decoder has a very large area in ASIC synthesis, whereas in FPGA synthesis

it costs almost the same amount of hardware as low-latency RS decoder with

123

p = 3. It should be noted that this same scenario also happens in the encoder

part (Section 4.3). Similarly, there are two possible reasons. First, a number of

logic elements are omitted when the long sequential circuits such as the Chien

search, are split into p shorter ones. Second, the rules of ASIC routing may

result in a larger area for the longer sequential structure, which is a subject

to confirm in the future work. The power consumption results are reasonable.

Just like the explanation based on the formula P = CV 2FA that is stated in

the encoder section (Section 4.3), the results are mainly following the trend

of area as the change in hardware cost is large, whereas the clock frequency

difference is relatively small. One thing should be noted is that, the power

consumption for p = 15 reaches more than 145 mw, which may not fit in some

applications of short-reach optical communication.

In conclusion, low-latency RS decoders can efficiently speed up the de-

coding process without heavily increasing the hardware cost. However, the

power consumption can possibly be a concern to some specific applications if

the p is very large.

124

CHAPTER 5
Conclusion

In this thesis, ECC in short-reach optical communication is introduced,

which leads to a discussion of latency challenge. After briefly looking into

current solutions, a novel class of GRS codes developed by Amin Shokrollahi

in [17], that is, low-latency RS codes are studied in detail. Both the conven-

tional and newly proposed low-latency RS coding algorithms are illustrated

with details and examples. An implementation of low-latency encoders and

decoders using the high-level coding technique in MATLAB are provided and

analyzed. The best part of this MATLAB implementation is that it was desig-

ned for almost any arbitrary parameters of low-latency RS codes. The BER

performance was also verified for low-latency RS(255, 225) codes using MAT-

LAB Communication System Toolbox. However, due to the limit of testing

conditions, we can only prove that its BER is lower than 10−8. After MAT-

LAB implementation, low-latency RS(255, 225) encoders and decoders with

p = (3, 5, 15) were built in VHDL. All the details of VHDL implementation

are examined in Chapter 4 along with the synthesis and performance results.

The results suggest that low-latency RS encoder can reduce the latency by a

factor of almost p, compared to conventional RS encoders. However, although

the hardware cost of a low-latency RS encoder is still relatively small, its in-

creasing ratio is large. The reason can be explained in term of the structures.

A low-latency RS encoder or decoder is essentially made by breaking a conven-

tional RS encoder or decoder into p parts and connecting them to DFTs and

IDFTs. As the hardware cost of the conventional RS encoder is very small,

the hardware costs of the DFT and IDFT components which are proportional

125

to p, dominate the total hardware cost. The situation in low-latency decoder

implementation is very different because the conventional RS decoder is much

more complicated. The results show that clock cycles have been largely re-

duced with only a relatively small increase in hardware cost. Specific to the

comparison between the conventional RS decoder and low-latency RS decoder

with p = 15, the clock cycles is reduced by a factor 769% and its hardware cost

is only increased by 57.5%. Power performance is also studied through ASIC

synthesis. Although low-latency RS encoders consume much more energy com-

pared to the conventional RS encoder, the increase in power consumption of

low-latency RS decoders is very small with respect to p growth.

The future work of this research focuses on two aspects. One aspect is

to improve the key equation solver in the decoding process. Currently, all

encoding and decoding processes except the key equation solver can run in

p parallel. This bottleneck is much desired to be solved. Marc Fossorier has

developed a new algorithm in [28] recently. The original BM algorithm is modi-

fied based on Gaussian elimination so that two discrepancies can be computed

in parallel at each step. It is very promising to integrate this algorithm into

low-latency RS decoders. The other aspect is to build a generator which can

automatically construct low-latency RS encoders and decoders with arbitrary

parameters. Usability is also a significant factor for a type of ECC to be wide-

spread. So far, even with the existing VHDL codes of low-latency RS(255, 225)

encoders and decoders, it is still inconvenient to construct low-latency codes

with different parameters, especially when k and r are not divisible by p (de-

tails in Section 3.4). Therefore, work should be done to standardize all the

procedures so that low latency RS encoders and decoders can be generated

with only user-defined parameter inputs.

126

Appendix A

Due to the space limit, the following is only the parts of the novel low-

latency RS encoder with p = 5 that are different from the implementation for

p = 3. The explanation are given in Section 4.2.2.

Figure 5–1: Set up for p = 5

Figure 5–2: Defining functions for p = 5

127

Figure 5–3: Component Instantiations for p = 5

128

Figure 5–4: Preprocess for p = 5

Figure 5–5: LFSR basic parameters for p = 5

Figure 5–6: LFSR parity-bits register update for p = 5

Figure 5–7: Output control for p = 5

129

Appendix B

Due to the space limit, the following is only the parts of the novel low-

latency RS decoder with p = 5 that are different from the implementation for

p = 3. The explanation are given in Section 4.4.2.

Figure 5–8: Set up of syndrome component for p = 5

Figure 5–9: DFT function of syndrome component for p = 5

Figure 5–10: Final output of syndrome component for p = 5

130

Figure 5–11: Set up of Chien search and correction component for p = 5

Figure 5–12: IDFT function of Chien search and correction component for
p = 5

Figure 5–13: Chien sum of syndrome component for p = 5

131

Appendix C

The following figures show the timing simulation results corresponding to

the low-latency RS encoders described in Section 4.3.

Figure 5–14: Timing simulation of low-latency RS(255, 225) encoder with
p = 3

Figure 5–15: Timing simulation of low-latency RS(255, 225) encoder with
p = 5

Figure 5–16: Timing simulation of low-latency RS(255, 225) encoder with
p = 15

132

Appendix D

The following figures show the timing simulation results corresponding to

the low-latency RS decoders described in Section 4.5.

Figure 5–17: Timing simulation of low-latency RS(255, 225) decoder with
p = 3

Figure 5–18: Timing simulation of low-latency RS(255, 225) decoder with
p = 5

133

Figure 5–19: Timing simulation of low-latency RS(255, 225) decoder with
p = 15

134

References

[1] C. E. Shannon, “A mathematical theory of communication,” The Bell
System Technical Journal, vol. XXVII, no. 3, pp. 379–423, 1948.

[2] R. W. Hamming, “Error detecting and error correcting codes,” The Bell
System Technical Journal, vol. XXIX, no. 2, pp. 147–160, 1950.

[3] B. Sklar, Digital Communications: Fundamentals and Applications.
Prentice-Hall, Upper Saddle River, 1988.

[4] J. A. Alzubi, O. A. Alzubi, and T. M. Chen, Forward Error Correction
Based on Algebraic-Geometric Theory. Springer, 2014.

[5] M. Nakazawa, K. Kikuchi, and T. Miyazaki, High Spectral Density Optical
Communication Technologies. Springer, 2010.

[6] W. D. Grover, “Forward error correction in dispersionlimited lightwave
systems,” IEEE Journal of Lightwave Technology, vol. 6, no. 5, pp. 643–
645, 1988.

[7] S. Yamamoto, H. Taga, N. Edagawa, and H. Wakabayashi, “Observa-
tion of BER degradation due to fading in long distance optical amplifier
system,” IEEE Electronics Letters, vol. 29, no. 2, pp. 209–210, 1993.

[8] S. Yamamoto, H. Takahira, and M. Tanaka, “5 Gbit/s optical transmis-
sion terminal equipment using forward error correcting code and optical
amplifier,” IEEE Electronics Letters, vol. 30, no. 3, pp. 254–255, 1994.

[9] O. A. Sab and J. Fang, “Concatenated forward error correction schemes
for long-haul DWDM optical transmission systems,” in 25th European
Conference on Optical Communication (ECOC), 1999.

[10] A. Puc, F. Kerfoot, A. Simons, and D. L. Wilson, “Concatenated FEC ex-
periment over 5000 km long straight line WDM test bed,” in The Optical
Networking and Communication Conference and Exhibition, 1999.

[11] F. Aznar, S. Celma, and B. Calvo, CMOS Receiver Front-ends for Gigabit
Short-Range Optical Communications. Springer, 2013.

[12] C. Kachris and I. Tomkos, “A survey on optical interconnects for data
centers,” IEEE Communications Surveys and Tutorials, vol. 14, no. 4,
2012.

135

136

[13] S. Lee, C. Choi, and H. Lee, “Two-parallel Reed-Solomon based FEC ar-
chitecture for optical communications,” IEICE Electronics Express, vol. 5,
no. 10, pp. 374–380, 2008.

[14] J. D. Lee and M. H. Sunwoo, “Three-parallel Reed-Solomon Decoder
using S-DCME for high-speed communications,” Journal of Signal Pro-
cessing Systems, vol. 66, pp. 15–24, 2012.

[15] R. Zhou, R. L. Bidan, R. Pyndiah, and A. Goalic, “Low-complexity high-
rate Reed-Solomon block turbo codes,” IEEE Transactions on communi-
cations, vol. 55, no. 9, pp. 1656–1660, 2007.

[16] P. P. Ankolekar, R. Isaac, and J. W. Bredow, “Multibit error-correction
methods for latency-constrained flash memory systems,” IEEE Transacti-
ons on Device and Materials Reliability, vol. 10, no. 1, pp. 33–39, 2010.

[17] A. Shokrollahi, “A class of generalized RS-codes with faster encoding
and decoding algorithms,” in 2013 Information Theory and Applications
Workshop (ITA), 2013.

[18] I. S. Reed and G. Solomon, “Polynomial codes over certain fields,” Journal
of the Society for Industrial and Applied Mathematics, vol. 8, pp. 300–304,
1960.

[19] W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes.
Cambridge University Press, 2003.

[20] S. Lin and D. J. Costello, Error Control Coding: Fundamentals and Ap-
plications. Pearson-Prentice Hall, 2004.

[21] Y. Jiang, A Practical Guide to Error-Control Coding. Artech House, 2010.

[22] J. Massey, “Shift-register synthesis and bch decoding,” IEEE Communi-
cations Surveys and Tutorials, vol. 15, pp. 122–127, 1969.

[23] T. K. Moon, Error Control Coding: Mathematical Methods and Algo-
rithms. John Wiley and Sons, 2005.

[24] G. D. Forney, “On decoding BCH codes,” IEEE Transaction on Informa-
tion Theory, vol. IT-11, pp. 549–557, 1965.

[25] G. L. Guardia, “Asymmetric quantum Reed-Solomon and generalized
Reed-Solomon codes,” Quantum Information Processing, vol. 11, no. 2,
pp. 591–604, 2012.

[26] V. Glavac, “A VHDL code generator for Reed-Solomon encoders and
decoders,” Master’s thesis, Concordia University, Montreal, Quebec, Ca-
nada, April 2003.

137

[27] S. B. Wicker, Error Control Systems for Digital Communication and
Storage. Englewood Cliffs, Prentice Hall, 1995.

[28] M. Fossorier, “Gaussian elimination decoding of t-error correcting Reed-
Solomon codes in t steps and o(t2) complexity,” IEEE Communications
Letters, vol. 19, no. 7, 2015.

