National Lib
o Rt

Acquisitions and

Bibliolhégue nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch  des services bibliographiques

395 Wellinglon Street
Ottawa, Ontario
K1A ON4 K1A ON4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for  microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

Canada

395, rue Wellington
Ottawa {Onlario)

Your hle  Volre teldience

Oxw e Notie 1eldence

AVIS

La qualité de cette microforme
dépend grandement de [a qualité
de Ila thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

$’il manque des pages, veuillez
communiquer avec I'université
qui a conféré le grade.

La qualité d'impression de
certaines pages peut laisser a .
désirer, surtout si les pages
originales ont été
dactylographiées a l'aide d’un
ruban usé ou si l'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.



Optimization of Bézier outlines
and
automatic font generation

Sandro Nazzucato
School of Computer Science
McGill University, Montreal

August 1994

A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUD-
IES AND RESEARCH IN PARTIAL FULFILLMENT OF THE RE-
QUIREMENTS OF THE DEGREE OF MASTERS OF SCIENCE.

Copyright © Sandro Mazzucato 1994




I*I National Library Biblioth&que nationale
of Canada du Carada

Acquisitions and Direclion des acquisitions et
Bibliographic Services Branch  des services bibliographiques
385 Wellinglon Streat 395, rue Wellington

Otlawa, Ontario Qttawa (Ontario)

KiA ON4 K1A ON4

THE AUTHOR HAS GRANTED AN
IRREVOCABLE NON-EXCLUSIVE
LICENCE ALLOWING THE NATIONAL
LIBRARY OF CANADA TO
REPRODUCE, LOAN, DISTRIBUTE OR
SELL COPIES OF HIS/HER THESIS BY
ANY MEANS AND IN ANY FORM OR
FORMAT, MAKING THIS THESIS
AVAILABLE TO INTERESTED
PERSONS.

THE AUTHOR RETAINS OWNERSHIP
OF THE COPYRIGHT IN HIS/HER
THESIS. NEITHER THE THESIS NOR
SUBSTANTIAL EXTRACTS FROM IT
MAY BE PRINTED OR OTHERWISE
REPRODUCED WITHOUT HIS/HER
PERMISSION.

ISBN 0-612-05596-5

Canadi

Youw le  Volie rélgrence

Our be  Nolre réldrence

L'AUTEUR A ACCORDE UNE LICENCE
IRREVOCABLE ET NON EXCLUSIVE
PERMETTANT A LA BIBLIOTHEQUE
NATIONALE DU CANADA DE
REPRODUIRE, PRETER, DISTRIBUER
OU VENDRE DES COPIES DE SA
THESE DE QUELQUE MANIERE ET
SOUS QUELQUE FORME QUE CE SOIT
POUR METTRE DES EXEMPLAIRES DE
CETTE THESE A LA DISPOSITION DES
PERSONNE INTERESSEES.

L'AUTEUR CONSERVE LA PROPRIETE
DU DROIT D'AUTEUR QUI PROTEGE
SA THESE. NI LA THESE NI DES
EXTRAITS SUBSTANTIELS DE CELLE-
CI NE DOIVENT ETRE IMPRIMES QU
AUTREMENT REPRODUITS SANS SON
AUTORISATION.



Abstract i

Abstract

A new method for the approximation of bitmap outlines with Bézier curves is presented
in this thesis. This probabilistic approach accurately describes the contours with a small
number of C? continuous splines. The approximation is refined iteratively using a quality
function. The evaluation method is based upon the smoothness of the generated outline
and the precision at which it interpolates the original contour. Merge aoperations of adja-
cent Bézier splines and spline alterations using an adaptive random search technique are
employed for finding an optimal solution.

A program implementing the proposed algorithm was created and may be used to
automatically generate PostScript type 1 fonts, The algorithm has shown to be very stable
and to converge rapidly. Many new typefaces have been generated with the software and
are shown in this thesis.
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Résumé

Une nouvelle méthode d'approximation de contour de bitmnps par des courbes de Bézier
est présentée dans cette thise. Cette approchie probabilistique déerit avee precision les
contours en utilisant un petit nombre de courbes. Une continuité C? est puarantie. Une
procédure itérative améliore 'approximation en utilisant une fonction de la qualité. La
méthode d'évaluation est basée sur I'aspect lisse des contours générés et de 'exactitude
de V'interpolation du centour original. Les operations de fusion de courbes de Bézier ndja-
centes ainsi que les changements apportés aux courbes, en utilisant une technique adaptive
de recherche aléatoire, sont utilisés dans la quéte d'une optimum.

Un logiciel implantant 'algoritiume proposé a ¢té créé et peunt étre utilisé pour generer
automatiquement des polices dans le format type 1 de PostScript. L'algorithme a su
démontrer sa stabilité ainsi que sa grande rapidité de convergence. Plusicures faruilles
de polices ont été créé avee ce logiciel et elle sont présentées dans cetter thése.
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Introduction 1

1 Introduction

The art of writing is generally understood as the ability of selecting approprinte words
to clegantly express ideas and concepts, Several centuries ngo, cach letter of a word had
to be created individually, and the harmonization of adjacent characters in relation with
their visual effect was an artwork in itself.

Some of the letters still used in today's western alphabets are direct descendants of
those early designs. The evolution of letter shapes through time is a resuit of the changes
in the movement patterns, also know as ductus, and of the writing tool employed (Bigelow
and Day, 1983).

The creation of books was a very expensive and elaborate process as they were re-
produced by hand. Mass production was performed by having a book read aloud while a
group of scribes were writing the text. Books were not as omnipresent as today; only rich
people could afford owning such a piece of work.

In the early fourteen hundreds, a goldsmith from Mainz turned an important page
in typography. Johannes Gutenberg (1398-1468) invented movable types. His knowledge
about metal surely helped him in developing his idea of casting letter shapes into metal
pieces. These pieces could then be put together to form the words and be used to print the
text. Although hié invention allowed the production of books at a lower cost, Gutenberg
was certainly preoccupied by the results such an instrument should give. He designed
some 300 characters to achieve the same quality that was done manually at that time. His
mastetpiece was the production of a 42-line Bible in which great harmony between the
letters and the spatial constraints was present. Gutenberg's work offered a sound balance
between industrialization and artwork.

The advent of computer technology in today’s lives has modified the working habits of
the societies. Typography did not escape this new trend. New techniques may be offered
for the creation of typefaces. Following Rubinstein {1988}, we may define this new aren

accordingly:

Digital typography is the technology of using computers for the design, prepa-
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ration, and presentation of documents, in which the graphical elements are

organized, positioned, and themselves created under digital control.

As it followed an evolution based on the technological advances in output media, a wide
varicty of problems needed to be addressed. Rasterization of characters for low resolution
output devices is an example of such concerns.

Tools were developed for the creation of digital fonts. These tools were primarily
interactive programs that simulated the use of pen and paper designing techniques, (see
Adnms and André, 1989). In the creation of a typeface, a consistent design throughout all
the characters is fundamental.

An entirely mathematical approach was adopted by Donald Knuth in the develop-
ment of the METAFONT system (Knuth, 1986a). METAFONT is a computer language
that allows a designer to describe the important attributes of an entire font. It is mostly
suited for raster-based devices such as printers and computer displays. The only knowledge
METAFONT has about characters is the position of the characters in the character set.
The initial concept behind the METRFONT language was to describe a character with an
arbitrary path. The size and shape of the pen used cou'd then be modified at will to create
various styles of letters. As the path is defined by the user, METF!IFONT would then com-
pute the contour curves according to the pen used. Subsequently, METAFONT was im-
proved to permit the user to describe shapes with outlines as well, The METRFONT user
does not need t(; be concerned with all the mathematical and geometrical aspects of the
curves, Instead, the METRAFONT systam chooses under certain constraints the proper
curves to use. More exactly the algorithms used by METAFONT for curve drawing were
developed by John Hobby. The interpolating splines rely only on the requirement that
the resulting curves be aesthetically pleasing, (see Hobby, 1986). The desired curves are
obtained through curvature constraints.

The METAFONT system was used for the generation of the COMPUTER MODERN
font family by Donald Knuth. Other typefaces were created with METRAFONT , such as
PANDORA (Billawala 1989).
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The PostScript language is an interpreted programming language with powerful graphic
capabilities. It can represent arbitrary shapes. Painting operators are availuble, text may
be integrated with graphics and bitmaps can be manipulated by the language, which fol-
lows a postfix notation. More details about PostScript may be found in Adabe (1990a) wxl
MeGilton and Campione (1992). A PostScript program may be rendered by any PostSceript
interpreter driving an output device. There is no limit to the kind of output device that
may be used. The rasterization process is done by the interpreter taking into account the
type of output device used. This is a major difference with METAFONT where a bitmap
of a predetermined resolution specified by the user is created,

Since a PostScript program may create any shape and is rendered specifically for the
employed device, the PostScript language is quite suitable for creating typefaces. Scalable
fonts may be obtained in this manner, Chapter 7 will explore in more detail the generation
of fonts in PostScript. For now, a PostScript font may be created by writing a PostScript
program describing each character shape. This method of describing a character is more
efficient thau storing the entire character bitmap. Three font types arce available, A type
3 font is one for which the behavior is entirely controlled by the PostScript language
procedures defined in the font program. A type 1 font defines the character shapes by
using specially encoded procedures {Adobe, 1990b}. Both types are known to define base
fonts. The type 0, on the other hand, is a composite font grouped of base fonts. A type
3 font is simpler to create than a type 1 but cannot be stored in the printer’s memory.
Another advantage of type 1 fonts is the small amount of memory required for deseribing
a font.

Both METAFONT and PostSeript use cubic parametric curves {or Bézier curves) to
describe the outlines, METAFONT and PostScript have shown to be very versatile. They
may be used to complement each other as shown in Haralambous (1993), for the creation
of font families. Recent developments in digital typography may be found in Karow (1994a,

1994b).

A new standard in font description is available. Somehow similar to PostScript, TRUE-
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TvrE fouts technology is not as general since it only used for describing fonts. TRUETYPE,
developed initially by the Apple Computer corporation, is now also used in Microsoft’s
Windows system. Fonts developed carlier and reconstructed in the TRUETYPE format may
be found in Bigelow and Holmes {1991}, The description of curves is done via the use of
quadratic B-splines,

Gutenberg's invention set the base for typography. As he created uniform and re-
producible metal types, concerns of consistency and harmony in character shapes, spac-
ing and alignment became some of the guiding principles used in type design. Recently,
some attention has been brought to the creation of typefaces that do not entirely fol-
low established conventions, such as dynamic type or dynamic fonts. In dynamic fonts,
oune creates typefaces for which each instance of the font creates a new set of charac-
ter shapes. Knuth investigated this avenue with METAFONT and created the meta-font
pUNK (Knuth, 1988). This typeface is not entirely dynamic as METAFONT may be seen
ns a batch processing system. Other research has tried to mimic the behavior of bandwrit-
ing where two instances of a character are rarely identical, Some dynamic typefaces take
advantage of the system for which they were designed. Caching multiple unique instances
of a font and selecting the letters from them is a method for simulating dynamic type-
faces. This technique is shown in van Blokland (1991). Other techniques also presented in
van Blokland (1991), consist of taking advantage of the PostScript semi-random number
generator and modifying at print time the outlines of the characters. This method was
nlso investigated in André and Borghi (1989). Calligraphic dynamic typefaces have been
created by noting that the movement executed while writing follows a loop-like motion of
varying extend. The HELISCRIPT system, Doojies (1989), simulates this behavior by using
“- three-dimensional helical curves written on the smface of a circular cylinder.

The stated methods allow the generation of printed documents that have a more
natural or more human feel, Unfortunately they require some typographical—and in some
cases programming knowledge—to generate. In this thesis, we will explore a way of easily

creating a typeface that may then be used to give a more personalized look at a document.
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The resulting typeface will consist of the user's handwritten characters described in the
PostScript type 1 language. The generation of the typeface is entirely automatic—no hand
tuning is required.

The following chapters explain how such fonts are obtained. First, the mathematical
aspects of Bézier curves will be explored. The proposed algorithm for the creation of
character outlines will then be described. A font gencrator program implementing the
proposed algorithmn has been developed. Its functioaality will be described along with the
steps necessary in the creation of a typeface. Examples of handwritten typcfaceé as well
as the behavior of the alporithm under different constraints are looked at. Lastly, the

interactions between the new fonts and TEX are considered.
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2 Bézier Curves

The generation of scalable fonts in the PostScript type 1 format requires the use of Bézier
curves in order Lo describe the contours of a character, Bézier curves were invented inde-
pendently by P. de Casteljau around 1959 and by P. Bézier around 1962. In both cases the
development of such curves resulted from the need to solve some CAD problems; both were
working in French car companies, Citrden aud Renault respectively. Although de Castel-
jau developed these functions first, his work was only discovered in 1975 by W. Bthm,
{Farin, 1993), whereas Bézier's work was published soon after the creation of the UNISURF
systere (BShm, Farin and Kahmann, 1984). Nowadays, thesc functions are widely used in

CAD systems.

2.1 The de Casteljau algorithm

De Qasteljau defines Bézier curves algorithmically. It starts from a degree n and Bézier

points bg, bt ..., bn. A Bézier curve B consists of {b§(t);o <t £ 1}, where

r - _ !._1 r=1 T =1,.-.|ﬂ
i) = - 0u oo {{ 2o
and b(t) = b;.
The following figure shows the de Casteljau algorithm applied to a Bézier curve of

third degree with parameter value ¢ = 0.6.

Figure 1. The de Castelfau construction for a Bézier curve of degree three with t = 0.6.



Bézier Curves

-]

By inspecticn, one will notice that that the intermedinte points are all placed in the same

relative position, more precisely,

- gt
CRECTRRE

for all (i, j) with 0 < i, j,i4j < n. Since this construction works for a single value of ¢, the

computation of many such values for a 1igh degree curve may become quite inefficient.

2.2 - Bernstein polynomials

Bézier's work, although related to de Castcljau’s, takes a different approach. An explicit
analytic description of the curves was developed. A mathematical representation of a curve
facilitates the und<rstanding and the development of the underlying theory. A Bézier curve
B may be represented in parametric format by
n
B(t)=Y a:fi(t), 0<t<1,
=0

where a; € V and V is a vector space. The choice of the functions f; influences the behavior
of B. Hence in order to define the family of fi's one needs to pay attention to the properties
that B should have. Concerned with the ability to determine endpoints and derivatives
at endpoints, Bézier carefully picked his functions f;. Assume that the initial point of the
curve is ap and the tangent at that point is parallel to the vector e;. Similarly assume that
the last point must be 37  a; while the tangent at that point is parallel to the vector
an. In the case of surfaces, the tangent planes at the endpoints of the curves are also
important, extra restrictions were put at those points of interest. The osculating planes
at the first and last points of the curve must be parallel to the vectors ag, a1 and an—:1,an
respectively. The function B defines a curve according to a certain order. If the order needs
to be reversed, then the functions must be symmetric with respect to ¢ and 1 — ¢, Finally

the derivatives f‘j of order j for the functions f; must be such that

4 #0 3<j<sn, 1€i<j
fi(o){=0 3515“' 'I>J t
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aned
(1) #0 3<j<€n, n—-3j«<ign
: =0 3<j<n, ign—j ’

This ensures that the curve is tangent at its endpoints to the first and last non-zero vectors
aj.

The family of functions that satisfy all the above requirements has the form

(_t)i di"ld’n
MO =gy ar

with ¢, = (1 — )" — 1/t. These functions can be expressed in the form
n on .
0= 35 (0] ()
p=0 i=0
Although this family of functions gives exactly what was intended, a different notation
can be used to simplify the use of Bézier curves. The new notation adopts the endpoints

of the vectors instead of the vectors themselves. This is shown in the following figure,

-y b’

Figure 2. The correspondence belween the endpoint notation and the vector notation.

Hence b; = Z;-o a; fori=0,...,n and the Bézier curve can be written as

B(t) = Zbigf(tL

im0
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=

where the functions g; are derived trom the fi’s. After some algebraic manipulations, we

ai(t) = (’i’)t"u -1y,

Hence the Bézier curves are based on Bernstein polynomials. The relation between Bézier's

sec that

work and Bernstein polynomials was enty discovered in 1970 by R. Forrest (sce Bihm,
Farin and Kshmann, 1984). From here on, B*(t) will be used instead of gi(2) to denote
these polynomials.

Let us mention a few additional propertics of Bernstein polynomials, For a given degree
n, there are n + 1 Bernstein polynomials, namely Bg,...,B;,. This family of functions

satisfy the recursive relation

Bl(t)=(1-t)Br(t)+ tBP (t) fori = 0,...,n,

i-1
with
BJ(t) =1 and B}(t) =0 for j ¢ {0,...,n}.

In a similar fashion, the derivative of a Bernstein polynomial is
BF'(t) = n(BI5 () - B™'(t) for i€ {0,...,n}.

Furthermore, Bernstein polynomials define a partition of unity, as 2;-:0 Bt} = 1. Fi-

nally, Bl' > 0 on [0, 1). The following figure shows the quintic Bernstein polynomials,



Bézier Curves 10

L
L 1

Figure 3. Quintic Bernstein polynomials.

Let us consider P, the linear space of polynomials of degree < n. The dimension of
Py, is known to be n + 1. Since the n + 1 Bernstein polynomials are linearly independent,
they form a basis of P, (Hoffman and Kunze, 1971).

The way Bézier curves were defined makes the behavior of such curves predictable. The
curve B follows a path p from the point by to the point b,. By joining the endpoints of con-
secutive vectors b; and by4) with line segments, which consist of the sequence ai1,...,an,
we construct a polygon that is called the characteristic polygon. There is a close relation
between the Bézier curve and the characteristic polygon. For example, Bernstein's ap-
proximation theorem shows that given a continuous function f defined over the interval
[0,1) and a function Ba(z) = 3k, f(£)(F)2*(1- 2)"~* then the function B converges
uniformly on [0,1] to the function f as n—oo {Bartle and Sherbert, 1982). Hence a Bézier
curve approximates its characteristic polygon and offers the ability to the user to easily
construct the desired curve and to predict its behavior. As mentioned above the Bernstein
polynomials form a partition of unity, therefore B(t) is actually a weighted mean of the

vertices b; of the polygon. Hence the path that B(t) follows is only dependent on the
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vertices of the characteristic polygon. Moreover, the path B(t) must lie entirely inside the
convex hull of the characteristic polygon. This fact can be used to perform a preprocessing
stage when the intersection of two Bézier curves needs to be computed.

The fellowing figure represents a Bézier curve of degree 5.

Figure {. Quintic Bézier curve and its characteristic polygon.

2.3 Bézier derivatives

The derivative of a Bézier curve is

ib,ﬂ:"(t)

=0
n

= > bin(BEN) - BITH(Y) .

im0
ne=1

= ﬂz(bm - b)BPH ()

inQ

B'(t)

This shows that the derivative is also based on Bernstein polynomials but it is no
longer a Bézier curve. This formula gives rise to a more general one for computing high
order derivatives. Let us define the iterated forward difference aperator A" of a point b; as

ATbj = A" bj1— AT 'b;. Note that A" can be written as AT = 37 _o (FH{=1)"bi4.
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The r-th derivative of a Bézier curve of degree n can then be expressed as

d" N X o ry pmer
B = oy Z‘;A b BT ().
JH
The r-th derivative formula becomes very simple at ¢ = 0 and ¢ = 1, reducing to
nlf{n - r)!ATb and nif{n — #)!A"ba_r, respectively. This shows that the r-th deriva-

tive at the endpoints of a Bézier curve depends only up on the r 4+ 1 poiuts adjacent to

the endpoint.

2.4 Subdivision

Besides for the computation of a point, the de Casteljau algorithm can also be used to
subdivide a Bézier curve into two parts. Given a polygen bo,...,bn, the construction
evaluates in particular the points b3,b),...,65 and b3,607%,...,bh_;,b2 which describes
two new polygons, This subdivision process produces two Bézier curves By and B from
B. The relation between the curves corresponds to the evaluation point ¢. Hence ift =c €
[0,1] then Bg and B, correspond to the intervals [0, c] and [e, 1], respectively, of B (Farin,

1993; Su and Lin, 1989).

2.5 Third degree Bézier curves

The Bézier curves of third degree being used by the instruction curveto of the PostScript
language are described in this section. Given the current point (zo,ys), curveto takes
the three points (z1, 1), (2, y2), {T3,y3} as parameters. The curve B(t) = (x(t),y(t)) that

results from it can be written using the monomial basis as

x(t) = a:ta + b:tz + c:t + ZIp
wt) = at®+bhtP ottt
where
a: = z3—3(z2—31) -0 gy, = w—-3y—1n)-y
b: = 3(x2— 21 + z0) by = 3{y2—2m + o)
ez = 3(x1 - za) e = 3 -wo)
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Equivalently,

z(t)
y(t)

zat? + 3z2t*(1 — 1) + 3y 2(1 = ) + 2o(1 = )°
vat® + 3p2t* (1 = ) + 3 t(l = ) + ot — 1)* °

]

in the Bernstein polynomial format. The monomial form of a Bézier curve allows the
computations to be performed with Horner's method. A Bézier curve of the third degree

takes one of four possible shapes as shown below.

A

convex convexfconcave with one loop with a cosp

Figure 5. Third degree Bézier curves.

2.6 Bézier splines

A polynomial of degree n can have as many as n ~ 2 inflection points while a parametric
curve of the same degree can have as many as 2n—4. Small degree n limits the complexity of
-a curve, Higher degree curves increase the complexity. One way to overcome this deficiency
is to define piecewise curves by joining two curves of lesser degree. The junction peint of
the two segments is known as a knot or a breakpoint.

A spline S, composed of two adjacent Bézier curves Bp and B is created. Each curve
has its own local parameter t while S has a global parameter u, where u € R. The knot
sequence can be represented in terms of the parameter u, knot 1 having parameter value
;. The correspondence between ¢ and u depends on the actual length of each segment,
t = (u - u:)/ (i1 — u). We can think of Bp and B) as two independent curves each having
a local parameter ¢ ranging from 0 to 1 or we may regard it as two segments of a composite

curve with parameter u in the domain [uo,us). Aesthetically pleasing composite curves
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are obtained by introducing continuity restrictions and applying smoothness conditions to
S (Manning, 1974).

Let us assutne that By has Bézier points bo, ..., bn and B; as Bézier points byg,...,b2n.
If By and By were the result of a subdivision process then we know that b4 = ﬁ,-.-(t)
would hold for i = 0,...,n and ¢t = {uz — ug)/{u1 — uy). If we move the point bzn, the
curve changes shape but from the r-th derivative formula the derivatives up to order n—1
coincide with the original Bézier derivatives. Sinve we assumed that 5o and B; occurred
after a subdivision, these derivatives coincide at the junction point. The C™ condition
for Bézier curves can be stated as: two Bézier curves defined over the intervals [ug,uy)
and [u;,uz] by the polygons bo,...,bn and bn,..., bz respectively are said to be r times

continuously differentiable at ¥ = ) if and only if
bawi =bhog().  i=0,...,7

where ¢ = (u2 — 20)/(u1 — uo).
Usually, r € {1,2}. When r = 1, Ab, and Abn—) tust be in the ratio Ay /Ag, &; =
Ui41 — ui, in order to obtain C! continuity at u = u;. This condition can be derived from

the fact that the derivatives of By and B; must coincide at u = u;. Hence

1d
Ag dt

1d

Bo(t) = EEBI ().

-dius(u) =

Since
£Bo(l) = nAbp
48,(0) nlb, '

[

we got the above desired result,

‘When r = 2, the points bn—2,bn—1,bn, bn+1, Pnt2 influence the second derivative at the
junction point. If the curve S is C? then there must a point d of a polygon bn-2,d,bnta
that describes the same global quadratic polynomial as the 5 points, mentioned above, do.
Hence assuming that the curve is already C?, the following equations must be satisfied in

order for d to exist:

bn-1 = (1-t)ba—a+t1d
bas+1 = (1 —t1)d + tybny2 ’
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where t1 = Ao/(u2 = uo). The conditions for C* and C? curves are shown in the following

figure.

by 4

Figure 6. The different segment ratios for C' and C* Bézier curves.

2.7 Curvature

The curvature of a function describes how the function changes orientation with respect
to the distance traveled on that function. More specifically, it measures the rate of change
of the angle through which the tangent to the curve turns in moving along the curve. In
particular, for a line, the curvature is zero since the angle # is constant and for a circle
the curvature is constant and is inversely proportional to the radius of the circle. Hence if
the curvature at a point p of a curve C is x we can pass a circle of radius 1/x through p
(Swokowski, 1975).

In the case of parametric equations, the curvature can be calculated as
_|d8y_ |4
K= ds = Tdal®
dt
More precisely, for a curve (z(t),y(t)), the curvature is defined as

J#' " - 3=" )
[ ()2 + (v @y
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For a Bézicr curve B of third degree the curvature sg at a point ¢ can be calculated as

|6(azby — eybe)t® + 6(aybs — azby)t? + 6(aycz — azcy )t + 2(byc: — bacy)|
[(362t? + 2bet + c2)? + (3ayt2 + 25yt + c,)2] 3

xp{t) =

and the total curvature of the Bézier curve B is

1
./ Kp(t)dt.
4]
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3 From bitmap to outline font

In the development of a new typeface, typographers are concerned with legibility, uni-
formity among the characters and acsthetics. For handwritten charncters, however, the
major concern is with the accurate reproduction of the contours.

In order to achieve a satisfactory accuracy a methodology is praposed and developed
in this thesis. This section will explore & new method for nutomatically generating a
handwritten typeface.

Different input devices may be used to transform all the information hidden in a single
pen stroke into an appropriate computer format. Some have used o stylus with a digitiz-
ing tablet for seizing the characteristics of hand drawn images (Pudet, 1993). Handwriting
varies according to the instruments utilized. Comumon tools such as pen and paper nre most
convenient to use. As scanner technology is perfected and more aflordable, it s a viable
solution for collecting the relevant information and transforming it in the desired form.
Generally, the software driving a scanner will generate bitmap images. A multitude of
bitmap formats, such as TIFF, GIF, EPS, BDF and PPM, are available. Ouly the shape of
characters is pertinent to our problem. The different bitmap formats are, de facto, equiv-
alent. Many programs for converting from one format to another are also available—see,
e.g., PBMPLUS paﬁ@. Written by Jef Poskanzer, PBMPLUS is & comprehensive format
conversion and image manipulation package. We will describe in chapter 4, the entire pro-
cess required for generating a typeface. For now, assume that we are given a 2-dimensional
array of black/white pixels for a given character (see figure 7 below).

A new representation is required in order to generate a truly scalable font. Bézier
curves may be used to approximate the outlines of the original characters. As indicated
in Schneider (1990), many kinds of interpolating curves have been used in curve-fitting
problems. In general, multiple curves are necessary for approximating a desired shape.
They define an interpolating set. The number of such curves may vary between characters
of & same typeface and is not, a priori, known. Also, as the scanner resolution may be

selected by the user, the number of pixels describing a character is not fixed. The set of
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points necessary to determine the interpolating functions is also unknown,.

The interpolation of paints by curves has been the subject of some extensive research.
Not only restricted to the realm of typography, curve-fitting problems were investigated
before the advent of computer graphics. For example, in the early eighteen hundreds, ship
designers were concerned with the manual generation of smooth curves that go through a
set of points. The creation of characters for a new typeface is a similar type of problem.

Some criteria that measure the accuracy of the interpolation must be established. For
example, such criteria might take into consideration the difference between the original
and generated character, As fonts represented in the PostScript type 1 format may be
stored in the printer’s memoery, it is also preferable to minimize the size of the typeface's
description. The process of scanning the handwritten characters may induce imperfections
that must be removed. Within the aforementioned restrictions, we may wish to obtain
a font that minimizes the number of curve segments in a character’s description and
the discrepancy between the generated and original characters, while at the same time
preserving smooth pleasing outlines. Some of these criteria may conflict with each other.
For example, a small number of curve segments can induce large differences between the
source and target characters. These constraints form the basis of a quality function ® that
may be used to evaluate the interpolation. The optimal interpolation occurs when & is
minimum. The choice of ¥ is entirely subjective and reflects the font designer's taste as
well as the user's demands.

The design of a new typeface is based around a group of specific criteria set by the
typographer. Hence one may view a typographer's typeface as a weighted optimum, each
different typeface having its own weight. For handwriting, the precise weight is not known

a priori. Minimizing & may be achieved iteratively. Roughly, we have:
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for each character do
extract contours
create initial splines
perform the following n times
modify part of a spline
compute the quality function ¢
if medification iz acceptable
then
accept modification
else
reject modification

We will deal with each aspect of this algorithm scparately.

3.1 Contour extraction

As a symbol is represented by a bitmap, many black pixels are required to form the
character. Some pixels are “interior” and others constitute the “contour” of the characters.
Since the objective is to use curves for expressing the character outlines, the contour pixels
are more important and need to be differentiated from the others.

Extraction of contour pixels or points may be achieved in different ways. Some algo-
rithms are estabﬁ;shed according to the type of bitmap. For grey-level images, Avrahami
and Pratt (1991) developed a contour extraction algorithm. This algorithin was modified
and used in Itoh and Ohno (1993). A different contour-tracing algorithm derived from al-
gorithms designed to verify connectedness of components {Minsky and P.apert, 1969) has
been employed by Gonczarowski's algorithm (Gonczarowski, 1991). Algorithms perform-
ing contour extraction are comumonly used in the area of pattern analysis and recognition.
A simple algorithm, that works for all bitmap images, known as Moore's tracing algorithm,
can be found in the literature (Paviidis, 1982).

A contour pixel can be defined as baving at least one white pixel as a neighbor in a 4-
connected representation. Neighbors are sometimes referred to by their relative position,

north, east, south, west or simply N, E, S, W. A pixel can be part of more than
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one contour. More than one contour may be present in a character. The following figure

illustrates the contour pixels of a mock Landwritten character.
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Figure 7. Contour pizels of a charecter.

The following simple algorithm finds the contour pixels in an m x n bitmap in time &(mn).

/* Proceed horizontally */
fori= 1 to m do
for-j = 1 to n do
if pixel (i,j) is black and
(pizel (i,j — 1) is white or pixel (i,j+ 1) is white)
then
pixel (i,j) is a contour pixel

/* Proceed vertically »/
for j = 1 to n do
for t = 1 to m do
if pixel (i,j) is black and
(pixel {i—1,7) is white or pixel (i+1,7) is white)
then
pixel (i,j) is a contour pixzel

The above algorithm finds all the contour pixels, in matrix format. It is sometimes

more convenient to have a representation in which contour pixels are linked together in
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a chain or chains. In general, the pixels of a contour form a closed path. For the more
degenerate cases, such as contour sections having width 1, the pixels can be considered
twice in arder to form the closed path. The lincarization of a contour relies on the relations
between neighboring contour pixels. Each contour pixe! has at least one white pixel as a
neighbor. Two neighboring contour pixels share at most two common white pixels as a
neighbor in a 8-connected representation. These two facts are sufficient for defining a sct
of white pixels bordering the path of contour pixels. Each white pixel of the set is the
neighbor of at least one contour pixel of the considered contour. The set of white pixels
defines also a path which is composed of only 4-connected pixels, as shown by a partial
set in part (a) of the following figure.

The use of contour pixels in conjunction with the path of white pixels mentioned above
allows the construction of an algorithm that builds the desired ordering. Some earlier
contour-following algorithms (Duda and Hart, 1973), do not create the correct ordering
for some 8-connected images. The result of such algorithms is shown in part {b) of the

following figure, while part (c) shows the correct chain.
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Figure 8. Ordering of contour points.

The algorithm for linearization is given below
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find a contour pixel p
let wy be a white pixel that is a 4-comnected neighbor of p
let Flag = TRUE
while Flag == TRUE do
let Flag = FALSE
vhile all 8-connected contour pixel neighbors n of p
are not yet tested and Flag == FALSE do
vhile all 4-connacted white pixels neighbor w, of n
are not yet tested and Flag == FALSE do
if there is a 4-connected path of white pixels not yet
visited from w, to wp
then
mark path wp to wy as visited
let the pixel n be the current pixel p
let the white pixel wp be the current pixel wm,
let Flag = TRUE

The above linearization algorithm traces a single outline and is linear in terms of the
number of pixels in the contour. To guarantee that all outlines are found, the visited pixels
are marked and the search for another outline can be started by considering unvisited
pixels, The search may simply be done by scanning the bitmap in an up-down, left-right
fashion. The algorithm for the linearization of all contours of a bitmap is thus linear with
respect to the number of pixels in the bitmap, and resembles in some respect depth-first

search (Cormen, Leiserson and Rivest, 1990).

3.2 Interpolation

Once the contour pixels are determined, a set of interpolating curves is defined. We first
review the relevant literature. As knots define the endpoints of curves, dynamic program-
ming methods may be used to find a good knot partitioning as in Plass and Stone (1983).
A modified version of it, presented in Schneider (1990), consists of replacing the heuristic
by a subdivision process that breaks the curve where the maximal error occurs. Other ap-

proaches perform first corner detection to define an initial set of knots. Corner detection
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consists of interpreting the bitmap to find locations where the contour changes direction
abruptly. Between two consecutive corners, a certain number of knots may be defined.
An iterative approach, used in Gonczarowski (1991), consists of finding the longest curve
from a given point such that it approximates the desired section of the bitmap with a
user-specified threshold. As mentioned in Itoh and Ohno (1993), the precise detection of
contour points is a ve;-y hard problem. The algorithm of Itoh and Ohno uses the estimated
corner points for defining segments. Approximate curves fur a given segment are found by
a reparameterization process from a starting interpolating curve. The reparnmeterizations
occur until a satisfactory interpolation is found,

The approximation of pixels contours by curves is sometimes referred as auto-tracing.
Some commercial packages perform such an operation. Some of the better known soft-
ware products are Adobe Illustrator, Fontographer and a freely available package called
fontutils that may be found on some UNIX systems.

The method used in this algorithm is quite different from the ones menticned above.
The pixels composing a contour may be grouped to define a sequence of sections. These
sections will be used in the construction of the approximating Bézier curves. The sections
are derived from the approximation of the contour with lines. Each section corresponds
to a line defined by the centers of two contour pixels as endpoints. Morcover, the section
divides the black pixels from the white pixels of the bitmap, and is thus an approximation

with zero error. The way the line segments are determined relies on a simple fact about

pixels.

Pixel coverage property: A pixel is said to be black if at least half of it is
covered. Moreover if a line goes through the middle point of a pixel, the pixel

is divided into two parts of same area.

The METAFONT system uses this property during the curve rasterization process, (see
Knuth, 1986a). With this particularity, a line can be drawn on a portion of the contour
without altering the color of the pixels. Section 1, starting at point d; (which is the center of

a black pixel), can be delimited by a point di4; creating the longest line segment d; — di4y
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of such kind, That is, adding one more pixel would result in an imperfect approximation.

Henee once all the sections are determined, the lines define a perfect representation of the

characters in terms of the pixel colors.

Figure 9, Section pariitions of an outline portion,

The smallest possible section is delimited by two adjacent pixels. The construction of
section i is done iteratively from this base case. At each step of the the process a longer
line is tested until no line satisfying the restrictions can be found. We will see that only
one such line need to be verified and the incremental test can be done in O(1) worst-case
time, Hence the overall time is bounded by the number of contour pixels.

The simple case with two adjacent pixels is shown in part a of the figure 10.

e——d

~pViw

(a) (b}

Figure 10. Initial steps of the sectioning algorithm.
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Two vectors vin, v, are formed from the point i, one with the adjncent black pixel
ny and the other with the white pixel un bordeting ny. Assuming that there exists o
longer line, the new line segment must be from d; to n2 where n3 is the neighbor of n,.
Furthermore the line segment di-di41 must be between vy, and vy, otherwise the line
would inadequately separate the border of white and black pixels found so far between

pixels d; and n,. With a valid line, the vectors can be recalculated as follows:

Uzp = TnN2-Ppi
) wa—pi iF o X (w2 — po)ll = [I(w2 — g} X v1wl|
2w .
Vi otherwise.

The result of o vector recalculation example is shown in part (b) of figure 10. The angle
between the two vectors gets smaller as the process continues. The algorithm stops when

no longer line can be found. Here is the algorithm.

/* Datine a section from point d; */
let n be the next neighbor of d; in the linear representation
let w be a white pixel adjacent to d; and n
let & be the relative direction of w from n (N,E,S,W)
computa v, and v
lat flag = TRUE
vhile ( flag == TRUE ) do
let v be the next contour pixel of n
in the linear representation
if |lun x (& — di)l] == [[{v — di) X vw| then
compute v, and vy
let n = v
alse flag = false
let the endpoint diy; be pixel n.

‘The above sectioning algorithm is linear in terms of the number of contour pixels.

8.3 (? spline construction

The contimiity conditions enumerated in section 2.6 allow us to determine if a sequence of

Bézier splines is C? continuous or not. Béhm presented an algorithm that produces such
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splines (Béhm, 1977).

Before looking at Bohm's construction, we introduce some notation. Let the spline §
have knots at u = u; for t = 0,...,m with respect to the global parameter u € R. Let
the Bézier points of a spline be written in the form baiy; where j = 0,1,2 and 1 is the
Bézicr section number., Hence the four Bézier points of the i-th Bézier curve are given by
bie, bais1, Daiez and baipa. Giver a set of points d; for i = 0,...,m, Béhm's algorithm
determines the location of the Bézier points such that the C? constraints are satisficd. The
resulting spline does not necessarily go through the points d;. These points are used for
the construction of the spline. Initially, the algorithin divides the line segments joined by
di and di4 for i =0,...,m— 1, The segments arc divided by the Bézier points by;41 and
U3i+2 to create three parts that are in the ratio A; : Aiyr ¢ Aigg, where A; = ui — uim).
Once this step is performed, all the inner Bézier points are placed. The endpoints need a
bit of care. The point by; is placed such that the line bsi-1, baiy is divided in the ratio
A; : Ay, This last step corresponds to the conditions enumerated previously for having
a C! continuity at the knots. The first step ensures C? continuity.

If the points d; describe an open polygon, that is do # dm, the notation needs to be
modified in order for the algorithim to work at the endpoints. The points will be relabeled
as d-y,...,dn, where n = m — 1. And the endpoint conditions become by = d—1, by = dp,
bi(n-1) = dn and by(n-2)-2 = dn-1. Note that the resulting curve starts and ends at a
point dy, as shown in figure 11, Alternatively, if the described polygon is closed, dp = dpy,,
the operations simply need to be performed in modulo m. In this case the curve doesn't
necessarily pass through the point dp. By changing a point d;, the resulting curve gets
altered. Moreover, the modifications on the curve are lucal. The sections i and i — 1 get
modified and so does the associated Bézier curves of the sections i — 2, i~ 1, i and £+ 1,

The Bézier spline can be entirely described in terms of the d;’s and A,’s. The points d;
correspond to the section endpoints defined in the previous section. Examples of sequences

open-ended and closed polygons are shown below,



From bitmap to outline font

2
-1

Figure 11. Béhm’s C? construction algorithm. The b;'s are represented by white circles.

A parameterization can be adopted for the spline by selecting the values of the u;'s.
If us = ¢ for all ¢, then A; = 1, and this parameterization is said to be uniform or
equidistant {Farin, 1993). The above figure 11 uses such a parameterization, A different
type of parameterization takes into account the distance between the data points. This

parameterization is called chord length and can be expressed as

Ai _ _las(ull
Aipr  JAS(ui)|l

where [|AS(u;)|| represent the distance between the points corresponding to the paramoter
values ui-y and u;. The chord-length parameterization is used in Schneider (1990), Itoh
and Ohno (1993) and Plass and Stone (1983).

The uniform parameterization is used in the proposed algorithm as well as for the
figures 12 and 13. This simpie construction creates a Bézier spline whose shape resembles
that of the polygon formed by the d;'s. In some cases, the distance between the polygon
and the Bézier spline can be excessive as shown in figure 12a. A possible solution con-
sists of duplicating some of the points d;, creating some sections of zero length, We may
replace the sequence {d;} by a sequence in which one or more of the d;'s are repeated.
For example fgures 12b and 12c show the Bézier splines for do,do,d1,d1,dz2,dz,... and

do,do,do,d1,dy,dt, ... respectively. While the splines approach the initial polygon, we may
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no longer have C? continuity.

(a) (b ©

Figure 12. C* construction with multiplicities of 1,2 and 3 respectively.

By cutting a Bézier section into two parts, we may obtain new interesting splines. In
figurc 13b, cach section of a Bézier spline was divided into three parts, in the proportions
0.3, 0.4 and 0.3. For figure 13c, the ratios are 0.1, 0.8, 0.1. Although this operation increases
the number of Bézier sections we will see later that this operation is worthwhile,

As mentioned above, some algorithms perform corner detection. Our method over-
comes the necessity of interpreting pixel configurations for finding the corners. Also, the
apline obtained by section splitting may be a better interpolant. Also, more freedom is

available in the iﬁterpolation process.

(0) ) (c)

Figure 18. C* construction with section splitting.
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3.4 The merge and move operations

A merge operation consists of replacing two adjacent Bézier curve segments by a single
one. Since the C* spline constraint is always present, the merge is exceuted by replacing
two adjacent sections s; and s;41 with one, namely s, simply by defining the new section
with the endpoints of the polysegment s;-5;4+1. The total number of sections in the contour
is thus decreased by ene. The sequence f scctions, $p,. ., $5-2, 5j=118j, 8j41, 8542, -+, 8n
for a given contour becomes after the merge so,...,8j-2,9j=1,9,8j42,...,8n. This new
sequence of sections may be used to recompute the corresponding Bézier curves. Figure 14
shows different section configurations and how the Bézier spline changes shape as the
merge operation is completed, the dotted curves representing the achieved result. The

white section knot represents the junction point of sections s; and s;4..
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Figure 14. The modifications resulting from a merge operation on two different section
polygons. The black dots represent the section knots. The while section knot corresponds
to the junction point of the two section that will be merged.

A move operation moves a section endpoint a certain distance away from its current
location, causing two sections to be modified. Figure 15 shows how a move can affect the

Bézier spline. The new and old curves are represented in the same manner.
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Figure 15. The modifications resulting from a move operation on two different seclion
polygons. The black dots represent the section knots. The white dot corresponds to the
point considered for the move operation.

‘The modification that results from the merge and move operations is nccording to
Bthm’s construction. Let us consider the Bézier curve segments Bo, Bi, Bz, By, By of a
spline & and see how they change with each operation. If B; and Bs are merged into B,
then only the curves associated to By, By and B need to be recomputed. Similarly if a move
is performed on the junction point of sections Bz and By, the affected curve segments are
B1, Ba, Ba, and B;. These operations ensure the lacality of the modifications on a spline
S.

A merge operation can perturbate the curve significantly (see figure 14}. As it lowers
the number of sections in a character, the sections become longer. It allows the removal

of small imperfections introduced during the input process. The merge is most efficient



From bitmap to outline font 32

on consecutive sections that do have more or less the same orientation. It will force long
segments of consecutive pixels to be approximating by very few curves whercas pixels

describing a curve will be approximated with more Bézier curves.

3.5 Optimization of the outline

After having scanned and linearized the bitmap, we have for cach character a description
of the character in the form of line segments. An example of such a description is shown

in the following figure on the mock handwritten character from section 3.
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Figure 16. The character A approzimated by line segments. The black dots corresponding
to the section knots.

The number of line segments necessary for interpolating a character is dependent on
the size of the bitmap. For the generated typefaces that are shown in chapter 5, this
description often consists of 800 to 3000 linear segments.

‘We may also take the vertices in the polygon as points d; of a Béhm Bézier spline (as

described in the previous section).
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Figure 17. The character A approzimated by Dézier splines. The splincs are constructed
by Béhm's algorithm using the sections defined by the linearization process.

This introduces some error with respect to the bitmap. Also, the number of sections is
exorbitant. We then apply an optimization algorithm that minimizes our quality function
& {see section 3.6 ). As & is possibly multimodal and is defined on a variable nunber of
parameters, it seems best to use a random search method for this purpose (sec Térn and
Zilinskas (1989), Zhigljavsky (1991), Minner and Schwefel (1991) or Rinnooy Kan and
Timmer (1987a, 1987b} for surveys).

Random searéh has the advantage that it converges in all circumstances to a global
optimum, and that it finds acceptable solutions relatively quickly. The basic outline is as

follows:
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{start}
(P is a quality function described later)

(S is a Bihm-type Bézier spline, initially given to us
vhere [Ig is the curvature xg of B

for all Bdhm-type Bézier spline B of S)

Create a heap M with all sections B of S,

where the key is IIg

(the smalleat iy is at the top of the heap).

{search}
§) — initial step (initial step size for random search)

{6y is integer)
m 0 (Initial penalty value)

for n = 1 to N do (N is the number of iterations)
with probability p, do: (p, may be varying or constant)
B+~ top(H)
B' ~ shortest section neighboring B on &
S’ — 8 with B and B’ mexrged
(and adjacent sections modified)

otherwise do:
select d uniformly and at random from
the junction peints of &
set d —d-+6,U, where U is uniformly distributed
_on the unit c¢ircle (so ||d d[[ = 8n)
S’ — S with d replaced by d
(and adjacent sections modified)

it (S') < 3(S),

then {a success}:
Sng1 —8n+ v (v€ {1,2,3} is a user parameter)
S5
update H by removing obsclete sections
and/or altering the key value of update sections
(Note: maximally 4 sections are involved,
for each one do IIp « xg)

else {a failure}:
Sn41 — maz{l,6, — 7}
N «— 1.1 max{Ily} for all
neighboring spline sections as explained :l.n section 3.4
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As seen in the above algorithm, the location of the new point in o move operation
is determined randomly by restricting the distance d by which the point can move. The
distance may be fixed to a given value throughout the optimization process. This is ktown
as a fixed step size optimization. Although the probability of improvement while using
a small step size is high, the improvement is small, as noted in Schumer and Steiglitz
{1968). On the other hand, if the step size is big, the probability of improvement becomes
quite small as the the modification will overshoot the minimum. The optimum step size
is between those two extremes. Since the optimum step size is unknown, adaptive step
size random search algorithms were created, The distance d varies according to the past
experience. The basic principle behind these adaptive algorithms is to try bigger steps
as an improvement occurs and to reduce the step on unsuccessful trials (Matyas, 1965).
Each algorithm uses a different variant. For example, the algorithm Adaptive Step Size
Random Search (ASSRS) found in Schumer and Steiglitz (1968} tries two step sizes, d and
d(1 - a) where 0 < a < 1, and waits a certain number of consecutive unsuccessful trials
before reducing the step size d. If on the other hand the attempt succeeds, the value, d or
d{1 + o), that creates the best improvement is taken as the next value for d.

A more general adaptive procedure presented in Devroye {1972), tries to combine a
random search with a non-random direct search. The compound random search algorithm
{cRsA) basically inspects a deterministic modification to the approximation as well as a
controlled random variation. The interesting factor, here, is the control of the step size. If

d; represents the distance used at iteration j then

dies = dj(1+a) if the trial is successful
T = 1d;(1-8) otherwise,

where with & > 0, 0 < 8 < 1 and do arbitrary, we have

Plucceu ~ % < 0.5

Hence if we choose Payccers = 0.2 then we must have or = 43, The values for o and 3 have

an indirect influence on the performance of this algorithm. It is recommended though that
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Pouceess be kept between 0.15 and 0.35.
Unfortunately, this method cannot be employed naively. The PostScript type 1 format
requires that the different instruction parameters be integer values (see Adobe, 1990b).

A reasonsble scheme to overcome the deficiency is simply given by

d; — if the trial is not successful and d; =y 2 1
d; otherwise,

d; ++ if the trial is successful
djy1 = {
where v € {1,2,3}. The values for « are derived from the following Bernstein polynomials
property. The maximum of a Bernstein polynomial B' is attained at t = i/n making the
change reasonably predictable. As a rule of thumb, the maximum variation of each B} is

roughly £. Thus a change of a control point by three units changes the curve by one unit

{Farin, 1993).

3.6 Quality function

The most wsed quality function & is based upon the least-squares criterion (Plass and
Stone, 1983) (Itoh and Ohno, 1993) (Gonczarowski, 1991) {Schneider, 1990). It evaluates
the distance between the contour pixels and their corresponding locations on the interpo-
lating curve. It requires the computation of & mapping between the pixels and the local
parameter t. Different methods are used to perform the approximation mapping.

The presented method here does not require any such mapping. As the curvature of
the interpolating curves is used, a different quality function results. The error in pixels

and the curvature make up the components of the quality $(S) of a spline S:
®(S) = e error(S) + B curvature(S).

Here the weights o and § satisfy a+8 =1, a 2 0, 8 > 0. The curvature may be evaluated
by Simpson's rule {(Davis and Rabinowitz, 1984). The pixel error error(S) is explained in

the next section,
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3.7 Pixel error evaluation

The quality of a C? Bézier spline can be evaluated by the precision at which it approxi-
mates a certain portion of the bitmap. The number of pixels crroucously colored mensures
the quality of the approximation. A pixe! of the generated image is said to be in error if
its color does not coincide with its color in the original bitinap. This appronch counsiders
the area in error instead of distances.

Pixel color determination can be done in many ways using filling algorithins, A simple
method known as the flood-fill algorithm consists of filling recursively n bounded nrea
with a given color. This would require that the Bézier spline be rendered in order for the
bordering pixels to be determined. Instead & scan-line algorithun based upon the even-odd
rule (Foley et al, 1992), will be used. It colors a pixel by drawing an imaginary line, usunlly
vertical or horizontal, between a pixel and some other distant point for which the color
is known. If the number of times the line intersects the polylines or curves is odd then
the pixel lies inside and can be colored black. Otherwise it is white. The following figure

shows the horizontal line determining the number of crossing with a spline,
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Figure 18. The even-odd algorithm.
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The convex hull property of Bézier curves cnsures the locality of the modifications.
If » modification £ is applicd to a Bézicr curve B, to produce another Bézier curve By,
the region of the bitmap for which pixels might change color is delimited by the convex
huatls of By and Bz. Note that the two cannot be disjoint since By must be attached to the
portion of the spline that B; was connected to initislly. For simplicity, a bounding box
BBy can be used to enclose the two convex hulls. With a spline that gets modified at each
step of the generation process, the computations ave kept to a minimum by the locality
property of Bézier curves.

The even-odd rule dictates that the intersections between the curves and the pixel rows
and columns be found prior to its use. Hence for a Bézier curve B, with control points
b by, ba,ba and a bounding box BB the intersections of B with the rows and columns of
BB need to be computed. An intersection for B is calculated by solving the cubic roots

of one of the two polynomials of the Bézier monomial form

art® + bet® + ezt + 20
apt® + byt + eyt + yo

&t
'

w

depending if o vertical line at * = z; or a horizontal line at y = y; is considered. Note
that 2y and y are contained in the bounding box BB,

Without loss of generality, let us consider the case of a vertical line at x = z1. We
eall a root 2o, ¢, ¢z valid, if it is real and falls in the range [0, 1], Let ¢; be such a valid
root. Then the curve intersects the line at point (zi, B(t;)). Let yp = | B(t;)]. If the total
number of curves passing between the points (zy,ys) and {x:+ 1, ys) is odd then the color
of the two points (21, ye) and (z: + 1,1») is different.

If the considered bitmap is of size m X n, then knowing the color of pixel (z,y),
0<z<md <y < n, as well as the number of times the line (z,y) (z + 1,y) gets
intersected by curves is sufficient to determine the color of the pixel (z + 1,y). The only
information that must be kept for a pixel (x,y) is thus the number of intersections between
{z,y) and (z+1,y). The information that must be retained is the set of intersection points

with the horizontal and vertical lines.
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3.8 Bushfire algorithm

If we define the error to be the number of incorrectly colored pixels, then ench pixel has the
same weight in the criterion. Experiments show that it is preferable to give more weight
to pixels that are far away from the contour, This, in effect, creates better-fitting splines,

The distance from the outline is the length of the shortest adjacent-pixel-path (in
which only north, south, cast, west moves are allowed) starting at the pixel to reach
a pixc! of the appropriate color. As this is a shurtest path problem, ordinary brendth-
first-scarch may be performed to find all distances in time proportional to the number of
pixels (Cormen, Leiserson and Rivest, 1990). By annlogy with a bush fire, we coiu this the
bushfire algorithm—the name was taken from G.T. Toussnaint's Computational Geomotry
course at McGill University. More details may be found on page 254 of Preparatn nnd

Shamos (1985). The algorithm is given below.

S +— set of contour pixels

Q+—0 (Q is a queue)

Vs € & do: mark s as visited
set value(s) —0
angquena (s, Q)

while not empty(Q) do:
s — dequeue(Q)
for all 4-connected neighbors e of s deo
if ¢ has not been visited then
mark e visited
set value(e) — value(s) -1
enqueue (e, Q)
return the array "value", which contains the distances
to the contour pizels

The pixel error may now be defined by

Z W(value(p)} + Z W{value(p)) ,

white pixels p black pixels p
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where W is an incrensing penalty function such as

U (lincar penalty)
U (quadratic penalty)
L (cubic penalty)

HU) =
W) Ulyca +oolysa  (linear penalty, oo beyond o)

Ulyca + o0lusa  (quadratic penalty, oo beyond o)
Utlycn + 00lusa  (cubic penalty, 0o beyond a)

As mentioned above, many existing algorithins use the lenst-squares method. Roughly
spenking, these correspond to picking W{U) = {/ as the sum of penalties 1,2, 3,..., k for

o pixel at distance k is k(k + 1)/2.



Generating process 41

4 Generating process

The different steps necessary for the creation of a handwritten typefnce, nsing the de-
veloped software, will be explored in this chapter. The process consists of four distinet
stages. Initially the desired character sct is written on paper and read by a scanner. Once
2 bitmap is obtained from the scanncr's software, it is converted to the desired format.
The next step creates a bitmap font in the PostScript type 3 format. Finally, this new
font will be used as input for the creation of the handwritten typeface. The result is a file
in the PostScript type 1 format. This process is depicted in figure 19, Each stage of the

process is explained in more details in the following scctions.

—PIRCC o Sennner _TLFF_ﬂ:_’ Bitmap Conversion —I

L XBMfile ol o oiops | ESTyped » Font Genertor |—o0¥Pe L,
Bitmap Font file Font file

Figure 19. The typeface generation process.

4.1 Scanning

Although flexibility is one of our goals, we introduce some restrictions on how the char-
acters must be presented. .

Two types of characters may be considered. One is the set of characters that are
composed of two horizontal parts such as the dieresis ("), blank space dividing the different
pieces. The other group is composed of all the horizontally unbroken pieced characters,
like “a”,“b" and “c", Note that characters such as “i" may be part of the first group if they
are written in an extreme slanted manner. In order to distinguish characters of the first

type from adjacent characters of the second type, some noticeable space should separate
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distinct letters.

The height characteristics of letters may be described by four lines, the baseline, the
descender line and the lower cnse and upper case lines. They guarantee some consistency
among the characters of a typeface. The following figure shows the mentioned lines for

letters of the Times-Roman typeface.

upper casc line

—AbcdEfghigk— ="

descender line

Figure 20. Ezample of the guidelines for characters in the Times-Roman font.

These lines may be used as guidelines when writing the letters. As the four lines must
not appear in the bitmap, blue ink may be used to draw them. The position of the baseline
is fundamental to ensure that all the letters of a typeface be correctly aligned when printed.
Two black line segments are required on the left and right sides of a string of characters to
indicate the baseline. A set of characters with the baseline indicators constitute an input
strip. A character set may require multiple bitmaps to be entirely represented. The input
strips are scanned individunlly. By partitioning a page in multiple sections, the amount
of memory required is lowered. Scanning an entire page at high resolution may require

several megabytes of storage. An example of a input strip is shown below.

adboedel g hi_

Figure 21. Example of an input strip. The two black Ime segment at the extremes
indicate the location of the baseline.

4.2 Bitmap conversion

Depending on the scanner software, the bitmap may be saved in different formats. In our

case, the generated bitmap is in the TIFF format designed by the Aldus Corporation. It
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is an independent and extensible description format.

The next stage of the process expects as input a file in the Xanm formnl. The term
xBM stands X bitmap of the X-Windows system. The format is such that the bitmap
may be incorporated in any C language program. The following corresponds to the mock

handwritten letter A of figure 7 in the XM format.

#define B.width 25

#define B.height 25

static char Bbits[] = {
0x00, 0x06, 0x00, Cx00, 0x00, Ox3f, 0x00, Ox00,
0x80, Ox3f, 0x00, Ox00, Ox8t), O0x7f, 0x00, Ox00,
Oxc0, Oxf1, 0x00, 0x00, OxcOD. Oxei, Ox00, 0x0O,
0xc0, Oxcl, Ox01, 0x00, OxeO, Oxcl, 0x01, Ox00,
0xe0, Oxecl, Ox03, O0x0C, Oxel, OxcO, 0x03, 0x00,
0xf0, Oxel, Ox03, O0x00, Oxf8, Oxff, Ox0f, Ox00,
0x£8, Oxff, Oxi1f, 0x00, Oxf0, Oxff, Ox0f, Ox00,
0x£0, Ox81, 0x03, 0x00, OxfC, OxB1, O0x03, Ox00,
0x£0, Ox81, 0x07, Ox00, Oxf0, Ox81, O0x07, 0x00,
Oxf8, 0x00, OxQf, 0x00, 0x78, 0x00, Oxle, 0xQ0,
Ox?c, 0x00, O0x7c¢, 0x00, Ox3c, 0x00, Oxf8, Ox00,
0x3e, 0x00, Oxf0, O0x01, Ox0c, O0x00, 0x80, 0x00,
0x00, 0x00, 0x00, 0x00};

Note that if the width of the bitmap is not a multiple of 8 then the bitmap is artificially
padded with zeros. The conversion from TIFF to XBM can be achieved by using the pPoMPLUS
package. The conversion of a file bitmap. tiff into bitmap.xbm may be achieved with the

command line:
tifftopnm bitmap.tiff | pbmtoxbm > bitmap.xbm
Both programs, tifftopomand pbmtoxbm are part of PBMPLUS,

4.3 Scrpt2ps

The program scrpt2ps, developed by Luc hlikiszko at MeGill University during the sum-

mer of 1993, creates a PostScript type 3 bitmep font from a series of bitmap strips.
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Modifications were made for increased flexibility.

This picce of software requires some hints on the supplied characters as it is does not
automatically perform pattern recognition. As the name of each character of a bitmap strip
is unknown to the program, the names need to be provided. For a better understanding of
the restrictions imposed on the lnyout of the characters, let us take a closer look at how
scrpt2ps works,

For each bitmap strip, the following operations are done. The baseline position is
determined from the marks on the extremities of the bitmap, As the thickness of the
marks may vary, the center of mass of cach one of tlem is taken into consideration to
construct the baseline. As the line of characters may not have been exactly horizontal
during the scan, this fictive line, traversing the bitmap, helps recalibrate the position of
the baseline for each character.

The character locations need to be determined. Sections of consecutive columns having
some black pixcls are first delimited. Each section may correspond to a possible valid
character. Noise may be present in the bitmap and must be removed. As noise is simply a
group of black pixels that does not represent a character, the number of pixels composing
an entity in the bitmap may be used to differentiate noise from valid character pieces.
Below a certain threshold, a set of connected black pixels is considered as noise and is
removed. Note that a set of white pixels may create an undesirable hole in a region of
black pixels in which case they constitute noise also. The same concept may be used to
remove noise generated by the white pixels,

The bounding box for each character is then computed and the corresponding bitmap
is then used to generate the font. Some characteristics like the size and baseline position
are also generated.

The command line for using scrpt2ps is of the form:
scrpt2ps [options] [input.files)

It may read input files from the standard input haunel as well as from specified filenames,

The output is sent to the standard cutput channel. The different options that may be used
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with serpt2ps are explained below.

-h:

it

displays a brief description of the program options.

specifies the scanner resolution. For example, -r 600 indientes that the bitmap
was scanned at 600 dpi. The resclution option is used for converting distanees
in terms of number of pixels. It is also used to determine the threshold in noise
detection. The default resolution is 300 dpi.

specifies the space between adjacent characters. The parameter value represents
the minimal space that must be present between two characters to consider them
individually. The value is expressed in imches. The default value is half an inch
{0.5).

specifies the filename containing the list of natnes present in the supplied bitmap.
The filename containing the list of names must also be specified on the command
line. The format for the list file is very simple, one namne per line. Hence the file

for the bitmap band shown in figure 21 would be

/a
/b
fc
/d
e
/£
/g
/h
/i

The reserved name /undefined may be used to indicate that o churacter should
be skipped.

specifies the filename containing the font encoding, Once all the bitmap strips are
processed by scrpt2ps, the font can be generated. The desired encoding must be
specified. A brief example of the Computer Modern Roman encoding shows the

required format for the dictionary file.
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0 /Gamma

1 /Delta
2 /Theta

3 /Lambda
4 /Xi

5 /Pi

6 /Sigma
7 /Upsilon

The following simple shell script shows how scrpt2ps may be used on six input strips.
The characters were scan at a resolution of 600 dpi and the minimal distance separating
adjncent characters was a quarter of an inch. Initially each input strip, in TIFF format, is
converted to X8M and processed by scrpt2ps. When all six temporary PostScript files are

created, they are united into the file bitfont.ps.

#1/bin/csh
foreach £ (123456
tifftopom bit$f.tiff | pbmtoxbm >! bit.xbm
scrpt2ps -r 600 -8 0.25 -1 list3f < bit.xbm > bit$f.ps
end
scrpt2ps -r 600 -d dictfile bit#.ps > bitfont.ps

An example of what the resulting PostScript file looks like is shown in Appendix A.

4.4 Font generator

- Once the bitmap font is created, the typeface generator program FONT may be used to
generate the typeface in the type 1 PostScript format.

The command line for FONT is
font [options] fontfile

The different options that may be used are explained below. The options are grouped

according to their relation. The options that start with a lower case letter may be used to
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alter the approximation process.

-h:

-as

~i:

=-T:

-va:

-w:

-BF:

displays a description of the program options.

governs the probability of a merge to be performed. The default value is 0.5.
specifies the number of optimization iterations to perform on each character, the
default value being 1000.

may be used to specify the resolution of the written characters. By selecting
this option the scaling between scanned pixels and the character space may be
computed. If the aption -r with parameters 150 and 500 is used, tien the program
knows that a character occupying 150 pixels in height in the original bitmep
should occupy has a height of 500 in the character space, a metric box of 1000
x 1000. This option averides the options -L and -LS. May be used to devcloped
and entire font family and keeping consistency among the members.

indicates that a variable merge probability be used.

specifies the value of # in the quality function ®, a being 1 — A. The default
value of 8 is 0.5, § weighs tlhe curvature component in ¢ and o the pixel error
component. In many cases, values iike 8 = 0.9, 0.99, 0.999 or even 0.9999 may be
used to obtain increasingly smooth (but less realistic) outlines.

specifies the initial step size to use in & move operation. The default step size is
one pixel,

stands for global step. As by default, each Bézier section has its own step size
that varies as move operations are performed on the section. A global step size
may be used by this switch.

indicates which bushfire “value” function W{lU/) to use, see section 3.8. Six func-
tions are available, and can be selected with parameter values between 0 and
5. The parameters values 0, 1, 2 are for linear, quadratic and cubic functions
respectively. The paraxﬁeter values 3, 4, 5 are identical except that past a certain
distance, the penalty becomes infinity. |

specifies the distance at which the bushfire algorithm decides to set the pixel
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=5P:

-SB:

~LS:

=-NP:

~8L:

weight as co. Note that this parameter may only be used when the option -BF is
used with parameter values 3, 4 or 5. The default maximum distance is 3.
specifies the number of layers of pixels to be added to the characters to make
them bold. The bushfire algorithm is used here also to determine the pixels that
are at a distance less than the value supplied from a contour.

specifies the width of the space character. The value should be between 0 and
1000. This is only necessary when defining a typeface that explicitly describes
the space character, The default width is 500.

may be used to override the default side bearings width. The default is 60 repre-
sented in the character space of 0 to 1040,

specifies the name of a character for which as reference height may be used. The
default character is the letter *x".

specifies the height of the reference character. The height must be given in terms
of the 1000 by 1000 metric box. The default value is 430 representing the letter
“x" of the Computer Modern Roman font.

specifies that the generated font should be monospaced. The widest character
determines the width of all the characters.

specifies the single character on which the font generation should be performed.
The name of the single character is written out in text form just as in the encoding

vector. The name of the character "4” is thus “four”.

The different fields that are required in a type 1 font dictionary may be supplied by

the user. The options pertaining to font specifications all start with the letter F. Once a

PostSeript type 1 font is generated, the font file may be edited to change the values passed

by these options.

~FN:

specifies the name of the font. By default the name is Mine. It is also used to
specify the name of the output file in which the font will be created. Hence if -FN
MyFont, the created font will be stored in MyFont.ps

specifies the font family name. The default name being Mine.
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-FFN:

-FI:

-FID:

specifies the font full name, here again the default name is Mine.

indicates the version number of the generated font. The value 0.0 being the default
version number.

specifies the angle to use for italic letters. Normal letters being generated by
default, the default is 0.

specifies the UniquelD value to use for the gencrated font. The default 1D is
4000000,

indicates the weight of the font. The defnult value is medium.

may be used to specify if stroked or filled characters are desired. A value of 0
indicates filled and 2 stroked characters. By default, the generated font characters

are filled.

Some of the options that are available to the user were introduced to gather information on

the interpolation process. Statistics on the success of the operations as well as the average

error and curvature during the interpolation of the entire typeface can be accumulated,

-8:

=-0F:

-0I:

indicates that a stats file named stats be created. The information recorded to
the average state of the optimization at each iteration of the process. As the
information is stored in binary, to save space, the program stats may be used
to create an ASCH file that can be used by gnuplot for plotting the behavior of
each recorded attribute,

allows a more complete description to be recorded in a history file. The file keeps
the information for each iteration and character. The resulting file may become
quite large. The created file is named history. Once again to save space, the
information is storea in binary format. The program history moy be used to
generate input for the gnuplot progrum. |

allows the creation of a visual history, A PostSeript file is created and is named
out.ps.

may be used to specify the name of the visual history file.

indicates the number of iterations between two successive records of the current
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character in the output file.

-0P: indicates the percentage of the box specified by the -0S option to use. The default
value is 0.80, so the 1000 x 1000 metric box will be scaled so that it occupies a
square box of 160 points if the option -05 200 is used.

-0S: indicates the maximum size a character may occupy on the output page. The

default values defines a square box of 100 points.

Here are some examples of how the font program may be used.

The command

font -i 1000 -a 0.9 -w 0.99 -gs -FN Flamingo -FFN Flaminge -Fv 2.0 -FF

Flamingo Flamingo-Bitmap.ps

creates the version 2.0 of the typeface *Flamingo”. The number of iterations used for the
generation is 1000 and ninety percent of the time a merge is performed. The cuorvature
is 99 times more important than the error in pixels when the quality function € is used.
Also a global step size is used and the input file is Flamingo-Bitmap.ps. The output file
will be Flamingo.ps

The command
font ~i 1000 -UL two -0 -0I 50 -0S5 200 ~0P 1.0 Bitmap.ps

creates a font named “Mine” including only one character, namely the letter “2". The
number of iterations applied to the character is once more 1000 and at every 50 iterations
the state of the character is output in the PostScript file out .ps. The 1000 x 1000 metric
box of “2" will occupy a square box of 200 points. The input file is Bitmap.ps.

The command
font =i 100 -H Bitmap.ps

creates also a font named Mine but this time all the characters included in the input file
Bitmap.ps are processed. A history file is also created. By using 100 as the number of

iterations to be perforimed for each character, the size of the history file is controlled.
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5 Handwritten fonts

In this section, we will itlustrate some of the fonts that were generated by the mentioned
algorithm. They are briefly shown in figures 23, 24 and 25 using a formnt similar to Wallis
(1990).

An example of a the letter “W” from the Isabelln2 is shown in the next figure. The
black dots represent the Bézier curve endpoints. The bounding box and the 1000 x 1000
metric box are also shown. One will notice how the Bézier curves are distributed along

the contours, More curves are used in sections with high curvature.

WA\

Ny i

Figure 22, Isabella2's letter W created with the parameters -i 4000 -a 0.90 -w 0.99 -gs.
The bounding box and the metric space are shown. The two black dots define the width of
the character. The Bézier spline endpoints are shoun as white dots.

Handwritten fonts may be used for a myriad of applications. To attract customers in
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Bazooka
abcde‘f‘ahldmmnopc{r51'uvwxyz.

ABCDEFGHITKLMNOPGRSTUVWYXYZ
0123456 183-8l@# $%»()-"+=4,1-"[]

Cacographlc-Roman
abcdefghi jhimnopgrsiuvwryz

ABCDEF GHLIKLMNOPQRSTUVWXY 2
0123456789-&|9# 52+()-*+=33,,7-"[ ]

Flamingo

abedef ghiitimnoyarstuvvayz
AD(DHEH dK[ﬂNYO%KﬂU\‘W\U

QIO B1-&lothorh(}-4=5 2o{]

Flamingo-Bold

abedel ghijklmaopqrstuvvayz
AB( DHZH iKlﬂﬂmomUJW\U
O\INN0T81-8let s #x{)-t=x (]

Flamingo-Black

abedef ghifklmaopqrstovunyz
M(DH’JH ﬂlﬂHmQDTUJVMZ
0107 81-& oS xR()-4=:5 7--(]

Figure 23. Newly created handuritten typefaces. Birgit Devroye created the Bazooka
typeface. The Cacographic-Roman typeface is uritten by Luc Devroye, and the Flarvingo
typeface is from Natasha Devroye's hand.
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Isabellal

abcdef hLJHmnqur\sfuvwxyz

ABCDEFGHIUKLMNOPQRS TUVWXY Z
0123456789 8@ §%+()—+=; P[]

Isabella2

,a..ﬂw.c.cﬂ.e..bﬂ?it?ﬁﬂq:z&,a.g.)o,A.tu:v'wz.c/;/},
aﬁCﬁEFG%Q}%L‘DﬂZ@’P@RSfuvwzy@z
O123'1*56789-8!@#$%‘0-'+=:;,.?-"[J

Isabella3

.a.l‘-.o.d.z.{,.9..&%*levz.&vq,ﬂ,xb.bdbmu-x.z/u}a
ASCHEFGHIPRANYS PRAST UV Y TYA
0123456789-8l@#$%+()-rs=; 7-"[]

Isabellad

abc.dethijklmnopqrstuvwxyz

ABCDEF GHIJKLMNOPORSTUVWXY Z
0123456'789.-8l@# $%*(=s=;, 7-"]

Isabellab

.a..ﬂv.o.d.e..#,.q:ﬂ-i.-j.:i,qu-q.o‘?x.g.m_b.b.u..nv.mzy.uy
APCOEF GHILHLMYOPERST UV WL Y
0123456789-21@#$%s()-+=,7-"(]

Figure 24, Newly created handuriiten typefaces. The Isabella series was produced by

Isabelle Massarelli.
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Isabellat

abcde‘thiJklmno qrstuvwryz

ABCDEFGHIJKLNNOPQRSTUVWXYZ
0123456189 -&l@#3%*()-+=:,.7-"L]

Isabella6-ltalic

abcde 7":9}1 { jk/mnopqrsfa vwXyZ
ABCDEFGHIJELINNOPQRSTIVIWAYZ
0123456 789-&l@#3%*()- +=y, 7 T

Pach
abedefghi jklmnopqrstuvwx yz
ABCPEFGHITKLMNOPQRSTUVWXYZ
0L23456789-&i@# $%m()--+=:;,.2-"[ ]
TropDePolls

abcdefghijrRtmnopgrsiuvwxyz
ABCDEFGHITIKLMNOPQRSTUVWXYZ
0123456789 4@ +#8%%()-_+=23,.24IL]

TropDePolls-Mono

obcdefghijhtmnopgrstuvuxyz
ABCDEFGHITKLMNOPQRSTUVWAYZ
0123456789 &1OH#RE*(d-_+=23, . 2{IL]

Figure £5. Newly created handwritten typefaces. Janos Pach wrote the Pach typeface and
the TropDePoils typeface is due to Lue Devroye,
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a warm ambiance, restaurant menus are often written by hand or with a typeface that
resembles someone's handwriting. Blurbs in coinmercials or comic strips require simulated
handwriting as well. And of course, there are the personalized letters and the okd-style

handwritten mathematics lecture notes.

Crostini di lepre &49%
Frittata 4i bianchi 4,494
Torta di pomodore 549
Pane Toscano 099

Pane atla Garfosnanc con olive 15
Pane Lucchese 0.9
Grissint ol ramerine 0,99
Covoccine 5,39

Schiaceiata col Stecioll 7,94
Focaccia del cavatore 7,99
Focatcia ot basitico 7,49

Garmugic  3.4%

Minestra di farro 349

Acguacotto Maremmana 4,39
Zuppa alt’Aretina 4,33

Zuppo di fogioll di Montaleing 399
Penne ollo Toscana 649
Grandinina o orzo coi pisellti 7.9
Pasta alle olive 7,44

Pezze detla nonne 7,99

Pello al matione 14,54

Gallo alta salvia ed oglio  Iv4%
Pollc disossato ai corciofl 16,49
Polle aMle metogrant 16,49
Fagior . alta creta 12,29
Coniglio od insalata 16,4
Fricossea olfa ehiantigiana 15,
Asparasi in salsa verde 1049%
Fasiolint att’erbo cipolling 10,99
Parute ai carclofi 10,99

Torta di erbi 1049

Butceltato df Lucca 6,4Y

Torta cofitischeri 6,99

Citiege al vino rosso 7.9

Crema zabaione al vinsanto 11,494
Maringato [lorenking B899

Crostata 45 wa 749

Brurtl ma buoni 2,%Y

Necel 3,99

Torta 47 mareonn al cloccolato 8,499

Pappardetle of pepperoni 199
Maccheront stirate alta Lucchese 8,49
Pasta col pesto povero 8,49

Gnocehi verd] det Casenting B4

Pinct di Montepulciane 899

Risotto al basitico 10,44

Bombotont tivornest 7,49
Zuceokto alt’Alhermes 11,499

F.igure 26. An Italian menu in the TropDePoils typeface.

Different sizes of the Isabellad typeface are shown below:

To each fontsize a different purpose.

To each fontsize a different purpose.

To each fontsize a different purpose.

To each fontsize a different purpose.

To each fontsize a different purpose.

New typefaces for use with TEX may also be obtained. To illustrate this, the Caco-

graphic family bas been created. Since TEX fonts need to be handled difierently than
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PostSeript fonts, only the Cacographic-Roman is shown here and the remainder of the
fumily is presented in chapter 8 along with the necessary modifications that are needed

for the font to be correctly used by TEX .

These dines are writren with Yhe Cacographic-Roman Fype-
face. The word Cacographic comes from Yhe Greek word for
®bad handwriring”,

One of the particularities of TEX is the way forcign letters are handled. Accented
letters, like ¢,&,8, are generated by composition of two characters. The newly created

typeface has no problems conforming to it as shown in the following examples.

Bazooka:

La pemture est un poésie gu’on vort au e de Peatendre,

|G poés'e uné PE.'n'I'Ur‘E.'. ciu’on E.n'l'E.ncI av |reu C|E. volr,
Léonard De Viner
Flamingo:

Cest dams les malhmu[iiurs i etside Ie rrimifr veaiment crealevr, b v cerlain sess, doac, "l
liens rour vial 1ur lo rcnm rurc ol (omrflrnir rour (Omrrrndrt le reel, ainsi foe les Anciens

avaicnl rove.

Aber] Linslein
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Isabellal:

Jécris parce que J'OL I'meresslon ou le sentiment que le
monde est inachevé, comme st Diew, qui o ¢réé le monde en
six jours et qui sest reposé le septigme, n'avait pas eu le
temps de tout faire. Je trouve le monde trop petit, la vie
trop courte, le bonheur pas assez bonheur. \fécris pour
achever le monde, pour o jouter & la création le huitieme

Jour*.
Antonine Mot"ef

No attempt was made here to properly kern the letters—all the inter-character spacings
are those obtained by the new usage of TEX's TFM files, without kerning information. The
nature and the purpose of the TFM files will be examined in section 8.

As the approximation evolves through time, the characters converge towards an op-
tima! representation. The following figure shows the visual history of the approximaution
of the letter “y" in the Flamingo typeface. To appreciate the evolution of the character,
the stroked letter is shown instead of the filled one. The Bézier curve endpoints arc also

shown. We clearly see the the number of Bézier curve segments rapidly decreases,

R =]
S i d

5”

0) (800) (1600) (2400} (3200) (4000)

g:m 242

Figure 27. The evolution of Flamingo’s y during the generation of the typeface. The
numbers represent the iteration number and the black dots are the Bézier curve endpoints.
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Following is the visual history of the dollar sign of the typeface Bazooka.

(2500 {3000) . (500} (4000}

Figure 28. The evolution of Bazooka’s § during the generation of the typeface. The
numbers represent the iteration number,

Monospaced fonts may be used to display algorithms or lists. The following exam-
ple gives the binary search algorithm using the monospaced version of the Cacographic-

TypewriterType typelace.

BSEARCHIplr key?
ip p¥r == NIL or pir->vgl == key
refurn t?r

P hey < r->val
then return BSEARCH(pYr->teldt key)
else refurn BSEARCHIpYr->right key)

The following comparative example demonstrates the creation of a bold typeface. The
Flamingo typeface is used as the base font, and the bushfire algorithm is applied to increase
the thickness of each character. It is performed by adding extra layers of black pixels.



Handwritten fonts 50

Vords vritlen wilh o bold Toal are more noliceabie 1o The ege.

Vords vrillea vilk a bolé {oat ere more sohiceabic fo lhe .

Bold fonts may also be achieved with a wider nib. Here is an example of the Pach

typeface.

A calligrapher uses a wide nib with grace and ffu.idit_y

to create elegant 4lyphs.

Italic characters may be produced by slightly changing some parameters in the PostSeript.
font file as explained in section 7. The following shows the typeface Isabellad with the de-

rived italic version.

talic words ottract also the attention of the eye

withoyt dis’curbing the r-eaclr'.ng flow.
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6 Algorithm evaluation

This section will take a look at the behavior of the algorithm under the various parameters
for the generated typefaces shown in the previous section.

As mentioned above, one may view a typographer’s work as a reference of optimality.
One may evaluate an algorithm by considering how well it works with an existing typeface.
The following figure shows the approximated letter “A” of the Optima typeface, The gray

arca represents the scaled bitmap of the original character. The Bézier curve endpoints

are shown.

Figure 29. The letter “A” of Optime using the optimizing algorithm. The parameters
used are; -i 2000 -a 0.90 -w 0.99 -gs.

6.1 Curvature versus time

Through the approximation process, the curvature varies according to its associated weight
in the quality function ®. The following figure shows how the curvature changes for the
typeface Isabella5. Two curves are depicting the behavior. One has a curvature weight of

0.99 while the other has a weight of 0.4. In other words the curvature is considered to be



Algorithm evaluation 61

99 times more important than the pixel error for the first case, Inversely, the pixel error

is only 1.5 times more important than the curvnture in the sccond case.

A —
WY maae

Figure 80. Curvature versus iteration number for the typeface Isgbeliad. The curvature
weights are 0.99 and 0.4,

By using a high curvature weight, the average curvature of the typeface drops rapidly

in the first 1000 iterations.

6.2 Pixel error versus time

The second component of the quality function ¢ measures of the accuracy of the approx-
imation, and depends upon the used bushfire function (sec section 3.8). As mentioned in
section 3, the curvature and pixel error are two conflicting criteria. This is shown in the
next figure. By using a high curvature weight, hence a low pixel error weight, the algorithm
favors the introduction of pixel errors in the first few iterations of the character gencra-
tion. Figure 31 shows the average error for the typeface Cacographic-MathExtension at
each iteration of the generation. With an error weight of 0.01 we see that the curvature is
initially favored and the pixel error is subsequently minimized. A totally different behavior

is seen when the pixel error weight carries more weight.
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T T T T T
“erroe weipn 0017 —
TafTor weighl Q87 5ann

1%0 000 50 Moo 100 00

Figure 31. Pizel ervor for the typeface Cacngraphic-MathEziension versus iteration

number, with two different weights.

6.3 Number of sections versus time

The number of sections depends upon the number of successful merges. The curvature

weight impacts heavily on the final number of Bézier sections. This effect is shown in

figure 32, The curvature weight thus has a direct infiuence on the size of the generated

typeface,
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“curame meigv 1" s
“Cv Ut WM AT naan

a I I X i i i i

L] 00 oo 10 2000 ph ] Mg i L]

Figure 82. The average number of Bézier sections for two different curvature weights as a
function of the number of ilerations for the typeface Isabellad and two different weights.

6.4 Adaptive operation selection

The adaptive random search technique CRSA (Devroye, 1972) may be used in the opti-
mization process. It is triggered by the option ~va, and requires parameters a and 8 {sec
section 3.5). For & Puuccans 0f 0.2, we have that @ = 43. We sec in the next graph that
the variations stabilize around 0.70—probabilistically speaking, 70 percent of the time a

merge operation will be performed.
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T
“lvatetist™ —

o6 . 1 1 i N " 1
0 a0y 1000 1500 0% 00 oz sty 4000

Figure 33. The frequency of the merge operation for the typeface Isabellad versus the
number of iterations. The parameters are -i 4000 -a 0.90 -w 0.99 -va -gs,

Lower curvature weight or a lower initial merge operation weight do not seem to
change the final result. This behavior is shown in the next figure. The rate of convergence

is affected, however.
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“latrliod” —
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o | 1% 10 2000 1w o 3507 4000

Figure S4. The frequency of the merge vperation for the typeface Isabellaf versus the
number of iterations. The parameters are -i 4000 -a 0.5 -w 0.5 -va -gs.

6.5 Step size versus time

The average step size use through a generation process is shown in the following graph.
We see that initially the step size increases and then slowly diminishes. As the number
of performed iterations increases, the optimization process reaches a point where the rate
of successful operations drops. Once this point is reached, the average step size starts

decreasing.
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Figure 85. The average step size during the creation of the typeface Flamingo. The
paremeters are -i 4000 -a 0.90 -w 0.995 -gs.

6.6 Pixel errors

In this section, we show two figures for the raw pixel error (number of incorrectly colored
pixels} versus the iteration number. In each case, the Bazooka typeface was constructed
with two different bushfire parameters, namely -BF0 and -BF 6. We notice that if the
curvature weight is high, the more restrictive penalty controls the maximum number of

pixels colored incorrectly.
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Figure $6. The variation of the number of pizels wrongly colored versus the iteration
number for the typeface Bazooka with two bushfire parameters. The parameters are -i
4000 -a 0.1 -w 0.1 -gs.
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Figure 37. The variation of the number of pizels wrongly colored versus the iteration
number for the typeface Bazooka with two bushfire parameters. The parameters are -§
4000 -a 0.9 -w 0.99 -gs.
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7 PaostScript

As seen in chapter 1, multiple PostScript formats may be used to define a typeface. We
will describe in this chapter the PostScript type 1 format and how a typeface may be
created.

The type 1 format was designed for storage efficiency as well as accuracy. Two kinds
of file may be defined, an Ascil and a binary version. The convention used in naming the
font file for each kind is as follows: the file extension .pfa is used for the Ascl version,
while .pfhb is used for the binary one. We will consider .pfa files.

In Appendix B, an example of a type 1 font is shown for the typeface TropDePoils. A
type 1 font file moy be divided into three parts. The header describes global characteristics
about the font while the body contains the character descriptions. Although the next few
sections will examine the different parts of the font, a more elaborate description of the

format may be found in Adobe (1980b).

7.1 'The header

Following the declarative prologue of the font file is some glabal font information stored
in dictionaries. The dictionary FontInfo holds mainly the full name of the font and its
fomily name as well as the version number. The font's name is designated by the keyword
FontName. The entry FontType is always 1. The FontMatrix corresponds to the transfor-
mation matrix that is applied to every character before it is generated. In general this

entry is used to indicate how the scaling should be done and often looks like:
/FontMatrix [0.001 0 ¢ 0,001 0 O ] readonly def

This transforms the character space into the user space before the appropriate scaling is
applied. If we follow B6hm's construction, the Bézier control points may not be always
integer values. For efficiency and accuracy the parameters used by type 1 instructions
must be integer values. The size of the character space is thus modified in our work to be

6000 x 6000. Therefore the FontMatrix entry for our generated typefaces is as follows

/FontMatrix [1 6000 div 0 O 1 6000 div O 0 ] readonly def
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The FontMatrix may be modified for creating italics.

/FontMatrix [ 1 6000 div 0 1 6000 div & sin # cos div mul 1 6000 div O 0]

readonly def

The above /FontMatrix performs a shear transformation of & degrees. The /UniquelID
entry is used to reference a font via a number. This identification munber should be

unique. The last important entry in the header is the encoding vector.

7.2 The body

The body of the font starts with the instruction currentfile eexec. The remainder of
the body consists of an encrypted string describing the character shapes, The encryption
algorithm is also described in Adobe {(1990b).

When a typeface is generated, no encrypted section is produced. Instead the chiaracter
descriptions are produced using the standard type 1 instructions. Appendix C shows an
example of the typeface TropDePoils with the type 1 instructions, From the generated
TropDePoils.ps file, the file TropDePoils.pfa may be created with the program tlasm,
This program is part of a freely available package for manipulating type 1 fonts and was
created by Lee Hetherington.

Some other declarations may be seen in the unencrypted version of the font. The font
bounding box is defined by the entry FontBBex. An array of subroutines is defined and
named Subys, The four subroutines are required to be present in the font, as shown in Ap-
pendix C. Subroutines may be used to execute common instructions for certain characters.
This construct is useful when a typeface is manually designed with precise characteris-
tics shared among the characters. The dictionary CharStrings contain the description for

every character of the font.

7.3 The trailer

‘The trailer of a type 1 font file simply consists of multiple zeros used for padding, and of

the instruction cleartomark.
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7.4 Type 1 insiructions

One of the difficulties in writing a type 1 font is that a new set of specific instructions
must be learned. We will look at the ones that are used in the generated typefaces.
Similar to the instructions curveto and reurvato, Bézier curves may be created with
the instruction rrcurveto. The difference between all three instructions is how the pa-
rametars are interpreted. For curveto, the six parameters correspond to the last three
points of a Bézier curve. In rcurveto the parameters are relative to the current point
while in the instruction rreurveto the parameters are relative to the last indicated point.
the following gives an example of how each instruction may be used to describe the same

curve with starting point (100,100).

150 150 200 150 250 100 curveto
6O BO 100 50 150 0 recurvaeto

b0 B0 50 O 50 -50 rrcurvato

Displacements are achieved by the instruction rmoveto that acts identically to the
native PostSeript instruction. Similarly, the instruction closepath acts as its PostScript
homeologue. The end of a character deseription is indicated by the instruction endchar,

In order to define the size of a character as well as the sidebearings, the instruction

hsbw may be used. Using
sbx wx hsbw

sets the width vector to (wx,0) and the sidebearing point at (sbzx,0). Note that the point
{abx,0) becomes the current point without defining a point on the path. The instruction

rmoveto must be used to define the initial point of the character.
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8 TgX and mathematical writing

The creation of a typeface that mmay be subsequently used by TEX requires some attention.
First of all the character ordering (or encoding vector) employed by TEX is different from
the one that PostScript normally uses. No explicit “space” character is defined in TEX.
The accented characters are created by glyph composition while in PostScript the letters
need to be explicitly defined. Since TEX is a typesetting system, it is not surprising that it
does not work internally with characters but with a different representation. Rectangular
bores of diverse sizes are used in which characters live. In fact, TEX only juggles with
empty boxes and does not worry about the actual characters that will lnter be put in
those boxes.

When typesetting a document, TEX decides how o sequence of words will be broken into
individual lines. The horizontal position of each character is decided via some appearance
criteria.'In the case of accented letters, the accent’s box is positioned directly on top of
the letter's box. The accent bnx is centered with respect to the width of the letter’s box.
The following questions arise. How does TEX know about the sizes of the boxes and how

does one inform TEX about them? The answer is through font metric files.

8.1 Font metrics

A font metric file contains information regarding the entire font and about individual
characters. The actual characters are not stored in a metric file. The Adobe corporation
developed a portable font metric format known as the Adobe Font Metric forinat (afm).
More on the actual format may be found in Adobe (1950c). The information is stored in
Asc11 making this format machine independent and extensible.

TEX uses a similar information file. The TEX Font Metric, referred to by (t£m), may
be obtained from the font afm file. A computer program afm2tfm available with the TEX

package may be used for this purpose. For example,
afm2tfm foo

creates the t#m file for the font named foo. Unlike the afm for&tfxt, the tim file i in binary
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format. The commands
afm2tfm foo -v foo

and
vptovi foo.vpl foo.vim foo.tim

sequentially create a virtual property list and a virtual font file along with the TEX font
metric file. The virtual property list file is a complete description of the font metrics in
Asclt format. Excerpts from TEX's crri10 font is shown in Appendix D. The vpl and tfm
files are equivalent in all respects.

The font global information is listed at the beginning of the file. Most important is
the font dimension section, denoted by the keyword FONTDIMEN, The XHEIGHT element
indicates the height of the letter “x", also known as the font x-height. The dimensions are
expressed on the [0,1] interval.

Information for each character is also indicated. The width and height of characters are
specified as well as the depth. The keywords are CHARWD, CHARHT and CHARDP respectively.
The height of a character is not the height of the bounding box but the distance between

the highest pixel and the baseline.

8.2 TgX font families

The Computer Modern family was developed specifically for TgX by Knuth (1986¢). Each
typeface of the family serves a different purpose. The most common of these is the Com-
puter Modern Roman font, also known as cmr. The following table shows the entire char-

acter set of cmr10, The octal values indicate the character codes.
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The basic fonts of TEXmay be divided into two categories. The first one is for text and
also include the typefaces cmbx, cmsl and emti. The abbreviations stand for Computer
Modern Bold Extended, Computer Modern Slanted and Computer Modern Text Italic.
The second group of typefaces in the family is mainly used for mathematical writing,
These include cmtt, emmi, cmay and cmex—Computer Modern Typewriter Type, Com-
puter Madern Math Italic, Computer Modern Math Symbols and Computer Modern Math
Extension. The typeface catt is a monospaced font.

The Computer Modern family may be extended with other fonts. For example, the
cmesc font corresponding to a font with small capitals letters is often used in TEX. An

example of the Cacographic-SmallCaps font and the cmcacio font follows.

THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG,

THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG.

8.3 Special characters

Earlier, we mentioned that TEX uses boxes to decide the location of each character. The
tfm file does not contain any bounding box information. For a character such as “d", the

dimensions of the letter, including the side bearings, may be computed from the width,
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the height and the depth parameters. In the case of accents, the dimensions of the letter
cannot be calculated so easily. TEX uses the x-height of the font as a reference point.
It assumes that an accent can be placed over the letter x without any translation of the
accent character. Hence to compose an accented letter with a base character that is smaller
than the x-height, TEX would need to raise the box of the acute character by an amount
of (CHARHT of base character - XHEIGHT) units

In the case of the cedilla, the character has no height. Hence TgX uses the difference
between the baseline and the depth of a character to figure out by how much the cedilla
needs to be moved.

With theses requirements in mind, a newly generated font may need to be slightly
adjusted. A program, named fixtexfont, was devcloped to make the appropriate modi-
fications to a TEX font. For modifying a font file font.ps, it is invoked by the command

line
fixtexfont [-s distance] font.ps

The optional parameter -8 allows the user to specify extra space between the accents and
the letters. The distance supplied to the -8 parameter corresponds to the distance in the
1000 x 1000 character space. The following examples show. the typeface Isabellal and the

typeface Isabella2 with extra space added between the letters and the accents.
868 B Ll
8.4 Mathematics

TEX is primarily geared to scientific writing. It is important to understand how TEX
works with mathematical formulas in order to generate typefaces for the simulation of
bandwritten mathematics.

As mentioned eatlier, special typefaces are used for mathematics. TEX math mode uses
by default the cmmi typeface. The following table shows the character set of the comi10

font.
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00x
01x
02x
03x
04x
05x
06x
07x
10x
11x
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14x
15x
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The typefaces cami, cmsy and cmtt are not conceptually any different from ¢mr. On
the other hand, the cmex typeface which consists of math extended characters is quite

different. The following table shows the entire set.
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We notice that some characters seem to be incomplete. With those character sections,
TEX may build characters of arbitrary height without altering their visual aesthetics. The
parentheses in the following example are actually composed of three parts, mainly the top,
cxtension and bottom parts. The extension section may be repeated as often as needed to

reach the desired character height. The sections for the left parenthesis are the characters
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060, 102 and 10Q in the octal representation.

r—-A 1 0
A=( 0 T—A 1 )
0 0 r—A

These characters are more complicated to handle as the different sections need to
coincide perfectly in the character space metric. Moreover extra paramecters in the vpl file
need to be defined in order for TEX to typeset the formulas correctly. More information

on these purameters can be found in Appendix G of the TEXbook (Knuth, 1986bh).

8.5 Simple mathematics

1f we restrict ourselves to simple formulas, the generated Cacographic family may be used
wi;.hout too many modifications. TEX has two mathematical modes, text and display.
Hence certain characters such as the summation sign () and the integral ([) nced
to be created in two distinct sizes. The special token NEXTLARGER in the vpl file—sce
Appendix D—indicates the character that has the next bigger size.

Here again a small program was wt iten. The command line
fixvpl font.vpl

fixes the vpl. file font.vpl. It adds the appropriate tokens to the characters of a Math
Extension typcface. The vpl file may then be used to create the correct tfn file.

Some examples of simple mathematics are shown below.
Bernou)i’s inequality may be expressed ass if 2 > —1, Yhen

{{+2) 21+azforallmel,
The na¥ural Yogarithmic funcrion is

i
logz = S: }-c't, 23 0,

J2U3yViz=8a038 #7¢
Blx) = Sj Ty
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eodl(0) « 4im*10) = 1

ple) = &+ 92+ 1

1
Nim — =0
fi==f3

The following tables show the generated mathematical typefaces.

Cacographic-Roman:
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Cacographic-MathItalic:

Cacographic-Symbol:
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B0

Cacographic-SimallCaps:

00x

0fx

09z

B L RS

03x

04x

05x

06x

47z

10x.

alwlo |~

e

fx

T

12x

13x

CElN Logs ]

[ 14x

- 1 -l

L3

15x

1éx

17x

‘o
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TEX and mathematical writing

Cacographic-MathExtension:
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Cacopgraphic-TypewriterType:

n

00x,

=

=

Oix

A —

1t~ M| o

02x

=l e el K]

| e=f1e3| -

<

o] pal 3|~

03x

~| &=

O4x

ol|la

A

05x

06x

Lo=1 »

wl bk g

07x

10x

e

12x

=[O] e ~]~

13z

||l x|e|ol=|~|t |

=N =1V o]

14x

15x

=

f6x

UN=<|3 |*=

t|lc|jOo s |1

x

< lo |- | <O —l>|w] ]|~~~ |<€|=]| =

N3 o | ta]| | gl O] e

el e Bl Kal Laml] B7ad - Kl R

| =] ]| ]| ]| A ]

wle]a|melulc]zim i |w] rfar]




Conclusion K

9 Conclusion

In this thesis we have presented a new method for approximating outlines with Bézier
curves. The generated outlines are guaranteed to be C? cantinuous. The method employs
different optimization techniques to achieve the desired result. The derived algorithm mny
be employed for the generation of typefaces. It has been shown to be very flexible and to
converge rapidly.

Many issues still remain open. The weights used in the quality function & depend
upon the resolution employed and on the size of the drawn chiaracters. The derivation of a
resolution-independent method as wel! as an adaptive approach for evaluating the weight
values is the biggest issue to solve.

Dynamic fonts derived from handwritten characters pose a serious challenge. Also, TEX
font families require more attention for mathematical writing, Methods for automatically

handling glyphs of the extended character set need to be derived.
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APPENDIX A PostScript bitmap font

Example of a PostScript font file created by the program scerpt2ps. The header and one
character of the Bazookn font as well as the trailer part of the file are shown. The encoding

is also not entirely shown.

bA
%Creator: Scrpt2ps

9 dict dup begin
/FontType 3 def
/FontMatyix [1 0 0 1 0 0] def
/Encoding 266 array def
0 1 255 {Encoding exch /.notdef put} for
Encoding
dup 0 /Gamma put
dup 1 /Delta put

dup 126 /tilde put
dup 127 /dieresis put
256 /.notdef put
/BuildChax
{ 0 begin
/char exch def
/fontdict exch def
/charname fontdict /Encoding get char get daf

/charinfo fontdict /CharData get charname get def
/vx charinfo 0 get def

/charbbox charinfo 1 4 getinterval def

wx 0 charbbox aload pop setcachedevice

charinfo 6 get charinfo 6 get true

fontdict /imagemaskmatrix get
dup 4 charinfo 7 get put
dup & charinfo 8 get put
charinfo 9 1 getinterval cvx
imagemask
and
} def
/BuildChar load 0 6 dict put



PostScript bitmap font

7]

o

/imagemaskmatrix [406 0 0 -406 0 0 ] def
/CharData 256 dict def
CharData begin

/dieresis [ 0.20 0.00 0.37 0.20 0.45 82 33 -1.5 182.5
<000000000000001£c00000
000000000000007££00000
0000C000000001£££c0000
00000000000007£ ££20000
007£000000000£££££0000
07££800000001£££££8000
1£££<00000001£££££8000
3f££e00000001L££££c000
T£££000000003£££££000
7£££e00000003£££££0000
£££££00000003££££££000
£££££00000003££££££800
1££££00000003££e3££c00
£££££80000003£fe3££c00
LEL££80000007£fa7£a000
1££1££c0000003££0f££000
£££££c0000001£££L£££000
T££££e0000001££££££800
TL££££20000000££££££200
7£L££a00000007££££7 00
T£L££c00000003£££££000
TIL££c00000001££E££e00
T££££c00000000£ £E£ 80
3££££c00000C00f£££L££CO
3££££c00000000L ££££5cO
3fL££c000000007££££000
1££££c00C00C00TELE£000
1££££c000000001££££aQ0}
1££££c00000000007££c00
0££££800000C00003£a000
0££££000000000001£0000
03££c00000000000000000
007e000000000000000000
>] def
/space [0.24 00001300 <> ] detf
/.notdef [.24 00001 0 0 <>] def
and
/FontBBox [ 0,91 0.64 0.00 ~0.30 ] def
/UniquelD 2 def
end
/Bitfont exch definefont pop
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APPENDIX B Type l format

Here is an example of a type 1 PostScript font. The vector encoding is not entirely shown.

A small portion of the encoded body is also shown.

L!FontTypel-1.0: TropDePoils 1.0
%%CreationDate: Mon Aug 15 09:12:23 1994
%X Parameter Used: -i 4000 -a 0.50 -v 0.99 -5 -gs -FN TropDePoils
% -FF TropDePoila -FFN TropDePoils -SP 500 -FV 1.0 all.ps
11 dict begin
/FontInfo 8 dict dup begin
/version (1.0) readonly def
/FullName (TropDePoils) readonly def
/FamilyName (TropDePoils) readonly def
/¥aight (medium) readonly def
/ItalicAngle 0 def
/isFixedPitch false def
/UnderlinePoaition -98 def
fUnderlineThickness 54 def
aend readonly def
/FontNama /TropDePoils def
/PaintType 0 def
/FontTypa 1 def
/FontMatrix [1 6000 div 0 O 1 6000 div 0 0 ] def
/Encoding 256 array
0 t 255 { 1 index exch /.notdef put } for
dup 32 /apaca put
dup 33 /exclam put

dup 251 /germandbls put

readonly def

/FontBBox{ 6 6 5994 5994} def

/UniquelD 4829400 def

currentdict end

currentfile eexaec
DIDE6F633BB46A985B9974B0179FC6CCA458CTCBA959A39A32E9DCETFAEFLITEE
3BECOF50CF7269C04E6A6345949211B2F19CE3685116D00C0080DEDB6FESSFED
7261DA657C3DITCABE203F5D8401 14FCDF36CC39021D69046B9667441E78D684
TBT9AFD6950C60389CT05C3F0325B605745CFCIIESEESCSEB4DBD13BE4BE149E
400AC7D22119FASEDDCACDBE6ETS93259B48RD11C7SF33BFBSCBB2EEBTFFS34C
9807ECOFAIDDCI63278FA1A136C4C48CCECSBFC1E247DBTF40262F 1201BFAOSF
B1EZ9FDG65573ABT733C4326085BERFT1D421AAEDSBDBAEBA3IOEA39CIF59180058



Type 1 format

a0

943E4A90DS95DB851A07REEES3B2CACT328982DF620429308D57253B9E456985

O5FCE9CS6436216C3A3ESABBOBD13D0C4A493E1AAA3BBAB36C1317CDT71092A3CF
477C4971E3F4ABDA2ERF 2FOFF521D0BD9 46E16759DEEAEES2B1BEF0228AEGCO9
C133623F2366AFCFABBOD1SC446ASF73188B9CCT26FEARTFBIF24723905EFTAI
AEOFAS893E19596872D4AF4ACDE882D5432CD035TF46746F02FCETFFARBETBAEFB
332A8788063DCAE2ZABC4FCDFBACT A1AAL12BDB42C0884128587FAECDOG60C46EC
0CA8850C400EEAG59CECOTED
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000G00
0000000000000700000000000000000000000000000000000C00000000000000
000000000000000000000000000000000000000000G000000000000000000000
000000000000000000000Q000000000000000000000000000000000000000000
cleartomark
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APPENDIX C Non-encrypted type 1 format

An example of a generated type 1 font file before the encryption.

%!FontTypol-1.0: TropDePoils 1.0
Y%CreationDate: Mon Lug 1S 09:12:23 1994
% Parameter Used: -i 4000 -a 0.90 -v 0.99 =S -ga -FN TropDePoils
% -FF TropDePoils -FFN TropDePoils -SP 500 -FV 1.0 all.ps
11 dict bsgin
/FontInfo 8 dict dup begia
/Version (1.0) readonly def
/Fulllane {TropDeFPoils) readonly def
/FamilyName (TropDePoils) readenly def
JUeight (medium) readonly def
JItalicAngle O def
/ieFixedPitch false def
/UnderlinePosition -98 def
/UnderlineThickness 54 def
end readonly def
/Font¥ame /TropDePoils def
/PaintType 0 def
/FontType 1 def
/FontMatrix [1 6000 div 0 0 1 6000 div 0 0 ] def
/Encoding 256 array
0 1 255 { 1 index exch /.notdaf put } for
dup 32 /space pr«

dup 250 /oe put

dup 251 /germandbls put

readonly daf

/FontBBox{ 6 6 5994 5994} def
/UniquelD 4825400 def

currentdict end

currentfile eaxec

dup /Private 10 dict dup begin

/1={readonly def} def

/passvord 5839 def

/{readonly put} def

/UniquelD 4829400 daf

/-1{string currentfile exch readhexatring pop} daf
/BlueValues[) def

/=1{string currentfile exch roadstring pop} det
/MinFeature{16 16} def
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dup 0 {
return

i

dup 1 {
return

b

dup 2 {
return

}

dup 3 {
return

L

readonly def
2 index /CharStrings 256 dict dup begin

/hyphen {

127 1907 hsbw

1074 2621 rmoveto
156 0 177 -7 95 -4 rrcurveto
95 -4 14 0 14 -32 rrcurveto
14 -32 14 -64 -4 -32 rrcurveto
-4 =32 ~21 0 -120 -4 rrcurvate
~120 -4 =219 -7 =264 =11 rrcurveto
-254 -11 -290 -14 -155 O rrcurvetoe
-159 0 -28 14 -11 32 rxcurveto
~11 32 7 49 14 28 rrcurveto
14 28 21 7 42 7 rrcurveto
42 7 64 7 95 7 rrcurveto
95 7 127 7 131 7 rrcurveto
131 7 134 7 155 0 rrcurveto
endchar

-

/ .notdef {

0 3000 hsbw
endchar
}I-
/space { .
0 3000 hsbw
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andchar

} i

eud

end

readonly put

readonly put

dup /FontName get exch definefont pop
mark currentfile closefile
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APPENDIX D Virtual property list

Example of the virtual property list for the ¢MR10 font.

(FAMILY CMR)
(FACE D 352)
(CODINGSCHEME TEX TEXT)
(DESIGNSIZE R 10.0)
(COMMENT DESIGNSIZE IS IN POINTS)
(COMMENT OTHER SIZES ARE MULTIPLES OF DESIGNSIZE)
(CHECKSUM 0 11374260171)
(FONTDIMEN

(SLANT R 0.0)

(SPACE R 0.333334)

(STRETCH R 0.166667)

(SHRINK R 0.111112)

(XHEIGHT R 0.430555)

{QUAD R 1.000003)

(EXTRASPACE R 0.111112)

)‘

(CHARACTER 0 22 (comment grave)
(CHARWD R 0.500002)
{CHARHT R 0.R34445)
)

(CHARACTER 0 23 {comment acutel
{CHARWD R 0.500002)
{CHARHT R 0.694445)
)

(CHARACTER 0 30 (comment cedilla)
(CHARWD R 0.444446)
(CHARDP R 0.170138)
}

(CHARACTER C ¢
(CHARWD R 0.444446}
(CHARHT R 0.430555)
(COMMENT
(KRN ¢ h R =-0.027779)
(KRN C k R =-N.027779)
)
)
(CHARACTER C d
(CHARWD R O.B55EET)
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(CHARHT R 0.694445)
)

(CHARACTER C o
(CHARWD R 0.444446)
(CHARHT R 0.430555)
)

The following is an excerpt of the CMEX10 vpl file. We notice that extra parameters

in the FONTDIMEN ficld arc present.

{FAMILY CMEX)
(FACE 0 352)
(CODINGSCHEME TEX MATH EXTENSION)
(DESIGNSI2E R 10.0)
{COMMENT DESIGNSIZE IS IN POINTS)
(COMMENT OTHER SIZES ARE MULTIPLES OF DESIGNSIZE)
(CHECKSUM 0 37254272422)
(FONTDIKEN
(SLANT R 0.0)
(SPACE R 0.0)
(STRETCH R 0.0)
{SHRINK R 0.0)
(XHEIGHT R 0.430555)
{QUAD R 1.000003)
(EXTRASPACE R 0.0)
(DEFAULTRULETHICKNESS R 0.039999)
(BIGOPSPACINGL R 0.111112)
(BIGOPSPACING2 R 0.166667)
(BIGDPSPACING3 R 0.2)
(BIGOPSPACING4 R 0.6)
(BIGOPSPACINGE R 0.1)
)
{CHARACTER 0 O
(CHARWD R 0.458336)
(CHARHT R 0.039999)
(CHARDP R 1.160013)
(NEXTLARGER 0 20)
)
(CHARACTER D 1
(CHARWD R 0.458336)
(CHARHT R 0.039999)
{CHARDF R 1.160013)
(NEXTLARGER 0 21)
)
(CHARACTER 0 2
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(CHARWD R 0.416669)
(CHARHT R 0.039959)
(CHARDP R 1.160013)
(NEXTLARGER O 150)
3

(CHARACTER 0 60
(CHARWD R 0.875003)
(CHARHT R 0.0395999)
{CHARDP R 1.760019)
{VARCHAR

(TOP D 60)
(BOT 0 100)
(REP 0 102)
)





