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Abstract

To facilitate proper recognition of a human’s action from a video sequence, several key
features must first be determined. Initially, the person performing the action must be
isolated from the background scene. This information is then used to decipher pertinent
action attributes that may include the center of mass, contours, and regions of motion. It
is these characteristics that will become the feature elements in the recognition of a
person’s actions.

This thesis will investigate the various image processing tools available to obtain
the aforementioned action attributes. The applicability of filters, background removal
techniques, skin-tone matching, and contouring schemes will all be investigated. A
thorough comparison with both existing and novel approaches to action recognition is
then discussed. Overall, the temporal based algorithm is best suited for an action
recognition application as the spatially based approaches rely too heavily on a priori

knowledge of the background scene.



Sommaire

Afin de faciliter la reconnaissance des actions d'un &tre humain dans une séquence vidéo,
certains paramétres doivent €tre déterminés. Tout d'abord, l'étre humain doit étre isolé de
la scéne de fond. Cette information est par la suite utilisée pour discerner des
caractéristiques importantes relevant des actions de la personne. Ces caractéristiques
comprennent le centre de masse, les contours et les régions en mouvement.

La présente thése analysera les divers outils de traitement d'images permettant
l'obtention des caractéristiques mentionnées ci-haut. Ces outils comprennent des filtres,
des techniques d'isolement de scéne de fond, de corrélation de couleur de peau et de
détection de contour. Une comparaison détaillée des techniques classiques et plus
récentes de reconnaissance d'action sera également présentée. Enfin, un algorithme se
servant de données temporelles plutdt que spatiales est plus adapté a une application de
reconnaissance d'action. En effet, ce-dernier nécessite une connaissance trop détaillée de

la scéne de fond.



1.1  Intreduction

Although human gesture recognition has been studied for quite some time [Torige and
Kono, 1992; Imagawa et al., 1998], action recognition is an area of research still at its
infancy. The difference between these two terms can be best differentiated as follows: A
gesture is a stationary pose of a user that may be classified within a single image. For
example, pointing to an object requires only an outstretched arm along with a single
finger extended towards the object in question. An action, however, requires a series of
gestures or poses over time to properly identify what the user wishes to convey. This is
perhaps best exemplified by a conductor of a symphony orchestra, who communicates
effectively with the musicians through the use of pre-defined actions. Both the volume
and tempo are communicated through actions that must be inferred by a sequence of
images. A single image of the conductor at any one time would be insufficient to deduce
either of these variables.

Perhaps the simplest way of deciphering an action is to observe how a person
accomplishes such a task. For example, if one were to describe the action of waving
‘hello,” they would not begin by describing the angle of the knee. The logical approach
of describing this action may start with noting that the hand moves back and forth. This
shows not only that the need to identify the location of the user is noteworthy, but also
the relationship of the individual body parts. This encompasses two areas of computer
vision: tracking and object recognition. These are both widely studied and many

algorithms exist for such applications, however, few exist that specifically address the



field of action recognition. It is the goal of this thesis to review both existing and novel
approaches to computer vision to better formulate an image segmenting scheme suitable
for action recognition. We also wish to develop an algorithm that works not only in the
laboratory, but also in a real world environment. If action recognition is ever to evolve
into the mainstream, it must remain robust in any type of environment. The variables that
are most commonly encountered in these scenarios are noise, occlusion, light intensity
changes, and the overall unpredictability of the environment.

Noise in the computer vision domain is the introduction of erroneous pixel color
values to the original image. Pixels resulting from noise are often referred to as outliers
[Yang and Levine, 1992]. It may be a result of many different factors such as inherit
camera noise, image transmission [Liebe, 1993], or compression-decompression
techniques. Whatever the case, noise poses a significant challenge, as there is often no
specific way of distinguishing color values introduced by noise, from true pixels. Some
interesting techniques exist to reduce or eliminate outliers at the various stages of
processing an image and will be addressed in more detail in Chapter 2.

When developing a robust tracking algorithm, one must consider the problem of
occlusion. For instance, if a skin-based tracker is used to track a person’s face while
teaching a class, the algorithm must account for the scenario in which they turn their face
towards the board to write notes. Partial and total occlusion of an objéct is a common
occurrence in tracking scenarios. Solutions include movement bounding boxes, and
optical flow to predict where the tracked object may be headed [Piaggio et al, 1998].

In the real world environment, light intensity can be expected to change

frequently and randomly. As a person being tracked during a sunny day moves into a



shaded area, features such as color, texture, and even shape appear to change
dramatically. Algorithms have been developed to deal with such situations through the
use of histogram equalization, as well as edge-detection in concert with a low-
thresholding scheme. This will be examined in further detail in Chapter 2.

Finally, the unpredictability of the real world gives rise to a substantial obstacle to
overcome in vision techniques. For example, if tracking by shape alone, background
objects may also resemble the contour of a person, thus forcing the algorithm to choose.
Worse still, trying to predict motion of a person is at best, a guess. Some methods have
been studied to better predict the motion of objects with the use of Markov models and
Kaiman filters, but as stated before, it is merely an estimation (Imagawa et al, 1998;
Vogler and Metaxas, 1999].

Developing an action recognition algorithm requires investigation of two major
fields of computer vision: tracking and object recognition. As these are vast fields of
research in themselves, we confine our study to algorithms that are well suited for action
recognition. Chapter 2 deals with possible pre-processing methods that are commonly
used to aid in both the reduction of noise and to expose relationships between pixels, such
as common regions or edges. Chapter 3 discusses segmentation algorithms that are based
on knowing what is not being tracked in order to deduce where the object in question
resides. This is commonly referred to as background removal. Chapter 4 investigates
color-based tracking methods to ascertain their robustness for skin tone tracking. Chapter
5 reviews contour techniques to isolate areas of interest and their relationship to one
another. Finally, Chapter 6 reviews the overall resuits to determine the best possible

combination of techniques towards a robust, action recognition algorithm.



CHAPTER 2
FILTERS AND KERNELS
2.1 Introduction to Filters
Several preprocessing steps are often included in computer vision algorithms to help
isolate and expose the appropriate data. [Yang and Levine, 1992; Arseneau, and
Cooperstock, 1999a] Perhaps the most common such step invoives the convolution of
the original image with a small mask, known as the kernel or filter. Mathematically
speaking, this process calculates the correlation between the image and the reversed
kernel. In a discrete domain such as image processing, convolution of the image, f(x)

with the kernel g(x) is calculated as follows:

h(x) = f(x) - g(x) = 2 f(u) g(x-) (1)

In essence, processing is performed on a pixel by pixel basis, extracting the local
characteristics of the pre-determined neighborhoods of each pixel. The most commonly
used filters are low-pass or smoothing filters, high-pass or sharpening filters, and median

filters. These will be described in the following sections.

2.2  Low-Pass Filter

This filter takes the local average of pixel values within a given neighborhood. In the
global scheme, this has the effect of reducing outliers due to noise by producing a
smudging effect. Although many outliers are eliminated, smoothing reduces the accuracy

of the edges in the image. A 3x3 kernel reveals the optimum tradeoff by reducing noise,



yet not smoothing the edges to such a degree where they become negligible. (See figure

2.1)

(d)

Figure 2.1, (a) grayscale image, (b) lowpass (average) 3x3,
(c) lowpass 7x7, (d) Gaussian filter

The general purpose of low-pass filtering is to reduce the occurrence of large pixel
variations within the image, hence reducing the gradient values throughout the scene. By
increasing the kernel’s size, the image becomes far more blurred. (Note figure 2.1c) It
should be also noted that new pixel color values are introduced into the image due to the

nature of this averaging scheme.



23  Median Filter

As the name implies, this particular filter determines the median pixel value within a
given pixel neighborhood. This tool is also used to reduce the effects of noise, however,
unlike the low-pass filter less gradient information is lost in the process (See Figure 2.2).
By using the median, as opposed to the mean, the pixel value is less susceptible to

spurious noise values that have occurred within the neighborhood.

Figure 2.2 - (a) original grayscale image, (b) median 3x3, (c) median 7x7

This procedure avoids the tradeoff of low-pass filters and provides the researcher with a
valuable tool to eliminate noise while maintaining edge information heipful in
determining the general outline of the user. Furthermore, if color matching is to be

performed, no new color values are introduced that were not present in the original

image.



24  High-Pass Filter

High-pass filtering of an image sharpens the gradient information within the scene.
Convolving with a kernel containing both positive and negative elements whose sum is
one, results in an edge-enhanced image (See figure 2.3). While high-pass filtering tends
to be pleasing to the eye, this process is also sensitive to noise, making it unsuitable as a

pre-processing step for action recognition.

Figure 2.3 — (a) Original image, (b) High-pass (3x3)

2.5 Dilation and Eresion
The next filtering technique to be discussed is normally used on binary images to vary the
thickness of edges. Dilation amounts to replacing a pixel value with the maximum value
among its neighbors. For color scenes, the resulting image becomes lighter in intensity
while edges become thicker. This technique is most often used to merge edge segments
in a binary image, as will be discussed further in Chapter 3.

Erosion is the same idea, but replaces the pixel value with the minimum value

among its neighbors. This darkens color images and thins edges in binary images. This



serves as an efficient noise filtering technique when combined with other steps, as

discussed in section 3.2.

2.6  Edge Detection

A common preprocessing tool applied to extract pertinent gradient information is known
as an edge detector. This filter transforms the scene into a grayscale or binary image
where the value of each pixel denotes the magnitude of the gradient. Also, the phase
image is sometimes used to denote the direction of the gradient as a function of pixel

intensity.

2.6.1 First Derivative Edge Detection

The most common form of an edge detecting filter is the first derivative of a pixel’s
neighborhood. Using a Sobel, Roberts, or Prewitt operator, the image is convolved with
a kernel that transforms the scene into its first derivative equivalent [Levine, 1985]. An

example using the Sobel operator is shown in figure 2.4.

®
Figure 2.4 — (a) Original image, (b) Sobel edge detection

10



The advantages of a first derivative approach are its low computational cost and
insensitivity to noise. Edges are preserved if the gradient value is above a pre-determined

threshold, while edges with a gradual slope are ignored.

2.6.2 Second Derivative Edge Detection

By examining the second derivative of an image, edges are now identified by observing
the zero crossings. The advantage of this method is that thinner edges are more likely to
be identified through the technique, as opposed to the first derivative case. The graphical

equivalent of this method can be seen in figure 2.5.

i /\

© Zero crossing

Figure 2.5 — Graphical equivalent of gray level gradients, (a) original,
(b) first derivative of (a), (c) second derivative of (a)

The disadvantages of this scheme are that it is computationally more expensive and
susceptible to noise within the scene. An interesting offshoot of this approach is known
as the Laplacian of Gaussian [Marr and Hildreth, 1980]. This implementation involves

convolving the scene with a Gaussian filter, followed by a Laplacian kernel. The

1t



stipulation for an acceptable edge is that the zero crossing in the second-order must also
have an equivalent first-order crossing above some pre-determined threshold. This
method is often referred to as the Mexican Hat Operator due to the resulting kernel’s

shape.

2.7  Conclusion

A closer look will reveal that only a few of the filters discussed prove useful as a
preprocessing step towards action recognition. The low-pass filter does not serve well as
a pre-processing step for action recognition due to its combined blurring effect, and
introduction of new color values into the image. The median filter however proves quite
effective for reducing noise while retaining edge information. High-pass filters do not
seem appropriate for this application due to their sensitivity to noise. Both dilation and
erosion prove quite useful for extracting more coherent edge information, however using
them as a pre-processing step to a color image yields little benefit. Finally, edge
detectors prove quite useful to determine the gradient that could be used for contour

extraction, which will be further discussed in Chapter 5.
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ha 3

Bac und Removal Sc d Noise Reduction Techniques

3.1 Background Removal Techniques

With a goal such as action recognition, it is vital to properly locate and identify specific
parts of the user’s body. This in itself is the most common chailenge in computer vision,
hence the plethora of literature devoted to the problem. One of the most widely used
methods to deal with this challenge is known as background removal [Wren et al., 1997,
Davis and Bobick; 1998 Arseneau and Cooperstock, 1999a]. In its simplest form as
chroma-keying, the ease of computation has increased its popularity in such realms as

special effects and television production, thus being a testimony to its efficacy.

3.1.1 Chroma-Keying

Background removal uses a priori knowledge of the background scene in an attempt to
isolate the person in the image. In its simplest form, the background is made of a solid
color or texture [Davis and Bobick, 1998]. The algorithm ignores all occurrences of a
particular color within the scene to properly isolate the user. This technique is known as
chroma-keying, or more commonly as blue-screening, as blue was the predominant color
of backgrounds used in the past. It is used most often to overlay weather maps into the
background for meteorologists, and proves quite effective. Having the distinct advantage
of being one of the least computationally expensive methods, it is still plagued with fatal
flaws. For instance, if the user is wearing a shirt that is similar in color to the pre-

determined background, that part of the body is ignored in the resulting difference image.

13



The consequence of this is an image with a disembodied head and legs. Another flaw
surfaces when changes in light intensity saturate the background to such a degree where it
no longer falls within the acceptable background color range. This results in large blobs

of false positives appearing in the difference image.

(a)

(d)

Figure 3.1 - Chroma-keying/Fixed Threshold - (a) original image against solid
background, (b) difference image for (a), pixels within color range removed to show user

(in white), (c) another scene with light intensity change, (d) difference image for (c)

To demonstrate this method, a solid white background was constructed to test the validity
of chroma-keying. (Figure 3.1) After setting the color and lighting intensity, the
technique was performed on an image, (figure 3.1a) revealing fantastic results outlining
the user in the center (figure 3.1b). However, when the lighting changes such that the

intensity becomes higher than the pre-determined threshold, many false positives are
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created. (See Figure 3.1d) Note also that parts of the user are labeled black indicating
background, however since the light reflects off of the face, the algorithm is fooled. One
might suggest an increase in the threshold to such a point that the noise is removed, but
this would remove correctly identified user pixels as well. In summary, this method is
the least computationally demanding, however, it is highly restricted in its application
domain requiring uniform lighting conditions, and restricting the color of the user’s

clothes.

3.1.2 Background Differencing

The next stage in the evolution of background removal, is to take a snapshot of the
background without the user in it to obtain the a priori knowledge of the scene. This
information, namely the pixel color values, is compared against the incoming video
sequence in order to remove the background. Known as background differencing, this
method is analogous to constructing a chroma-keying scheme on a pixel by pixel basis.
Without the restriction of having to create a mono-colored backdrop, background
differencing is becoming the basis of many researchers’ vision algorithms. [Huang et al.
1986, Kahn and Swain, 1995; Davis and Bobick, 1997] By performing the caiculation on
a pixel by pixel basis, the background has fewer constraints as to what it may include. If
Fyy is the pixel value at (x, y) in the original image, and B,y is the pixel value at (x, y) in
the background image, the binary, difference image D is constructed using equation 1,
where T is the threshold value.

D=4 0,if1 By - Fyyl<T (1)

1 otherwise
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If all objects in the background remain static, the resulting difference image reveals
promising results. However, note that little is mentioned about the threshold value T.
Unfortunately, there is no universal threshold as a value too low will include too many
false positives, or outliers, in the difference image. At the other extreme, if the value is
too high, many false negatives will result in parts of the user disappearing. One
restriction that applies to background differencing, but not to chroma-keying, given that
the background always remains uniformly colored, is that the camera must remain
stationary. Even the slightest movement would render the difference image useless as all
of the pixel values would be shifted, resulting in a false background. Thus, the pixel by
pixel calculation would result in a pixel falsely being identified as the user wherever a
high frequency edge occurs in the background scene. Also, background differencing is

still susceptible to lighting changes as a result of the fixed threshold for the entire image.

(a) (b)

Figure 3.2 - Background Differencing - (a) background image, (b) scene with user, (c)

difference image
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Figure 3.2 shows an example of background differencing with a multi-colored
background scene. Figure 3.2a shows the background image used, ie. excluding the
user, which is then subtracted from the incoming scene (figure 3.2b). If the difference
exceeds a constant threshold, a white pixel is drawn, otherwise, it is black, denoting what
is believed to be the background. The resulting difference image, (figure 3.2c), shows the
user clearly outlined, however the white square to the left is a result of the display
frequency of the monitor. A closer look reveals that the scan line is near the bottom of
the monitor’s screen in the background image, whereas it is near the top in the incoming
scene, resulting in falsely identified user pixels. Although it cannot be seen at this scale,
the difference image also results in a few stray pixels that were triggered as a result of the
lamp in the background. Both the scan line and the lamp vary the lighting intensity of the
background, hence producing additional candidate pixels or pixels denoting sufficient

change in the difference image.

3.1.3 Background Primal Sketch

In an attempt to overcome the limitations of the previously discussed algorithms, the
background primal sketch was introduced [Yang and Levine, 1992]. The background
primal sketch, By, is constructed by taking the median value of each pixel over a

sequence of N background images F'yy, Fyy, ... F'yy, without the user:

B,y =median {F',,, Fy, ... F'y) )
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The median value rather than the mean is used as it is more robust to spurious outliers
{Rousseeuw and Leroy 1987]. For instance, if the sampled pixel values for given point
over a sequence of five images was {80, 82, 83, 85, 130}, one would likely infer that 130
is an outlier and thus the median, (83), would be a far better estimate than the mean, (92).

Robustness is normally referred to as the property of insensitivity to stray data
points. To measure robustness, the term breakdown was introduced as, “...an estimator
of the smallest fraction of the data that has to be replaced to carry the estimator over all
bounds” [Hampel et al. 1986]. The breakdown point of the mean of n samples is l/n.
Thus the replacement of only one sample by an outlier can greatly affect the mean.
However, the median has a breakdown point of 50%, in other words, at least haif of the
samples must be replaced by outliers before serious corruption resuits.

Yang and Levine decided to incorporate outliers into the calculation as they are
not always due to noise, but may result from a legitimate scene change. The practice of
leaving the outliers in the calculation is categorized as an accommodation-based method
[Yang and Levine 1992]. An example of this would be the least-median-square
approach. It is also common to attempt to identify which of the points in the data set are
outliers, eliminate them, and continue using a less robust technique, such as the least-
mean-square. For the most part, it is preferable to use an accommodation-based approach
as points that are far from the mean may be correct and should exude influence, be it less
than those near the mean, on the final resuits. Other methods attempt to lessen the effects
of outliers by imposing a weighting scheme to the data such that all points nearer the

mean will have a greater influence [Hampel et al. 1986].
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The second step of the background primal sketch is to account for minute changes
in the camera position. This is accomplished with a slight modification to the method
used for chroma-keying by comparing the pixel valve in the incoming image not only to
its positional equivalent in the background scene, but also to those pixels in the 2n-

neighborhood of the background pixel, as indicated in the following equation:

Dyy =4 0 if| Bj— Fyxy | < T, for any (i,j) 3)
I otherwise

Note that F,y is now compared to By where i € {i-n,..., i,..., i+n} and j € {j-n,... j, ...,
Jj+n} as opposed to equation 1. This implies that each pixel of the incoming frame is
compared against a neighborhood of (2n x 2n). If any of the differences are less than a
pre-determined threshold, then the pixel is not a candidate pixel of the person in the
scene. As the value of n increases, the camera may shift its view by larger angles.
However, fewer pixels will be identified as candidates in this case. The first condition of

equation 3 excludes any pixels with at least one difference value less than the threshold.
The third step is thresholding to account for areas in the background that may be
more susceptible to lighting changes, such as windows or computer monitors [Yang and
Levine, 1992]. Again, this is accomplished on a pixel by pixel basis. Gathering the set
of pixel values over N images, a sorting is performed using a method similar to a bucket-
sort technique. Next, these values are grouped into smaller sequences of length N/2. The

sequence with the smallest span, or the difference between the maximum and minimum
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value within the sequence, is then chosen as the threshold range for that particular pixel
location.

The result of these steps is a background removal method that is far more robust
than background differencing, as the dynamic threshold deals with areas in the scene that
may be more susceptible to lighting changes.

For example, in the difference image of figure 3.3, the candidate pixels resulting
from the video monitor are now eliminated as compared to figure 3.2c, due to the
dynamic thresholding technique. Although there are still outliers, the improvement over

a simpie background difference method is dramatic.

© @

Figure 3.3 - Background Primal Sketch Method — (a) Background primal sketch, (b)
scene with user, (c) threshold image where intensity denotes threshold value at that

pixel location, (d) difference image



3.2 Ghosting

One of the constraints for simple background removal techniques is that background
objects must remain stationary, otherwise a ghosting effect will ensue (See figure 3.4).
This limitation discourages the use of this method as an action recognition tool since fully
static backgrounds are relatively uncommon in the real world. However, in the case that
the background scene is stationary, this method proves very accurate. This observation

motivates a slight variation of technique.

Figure3. 4 - (a) edge-detected background, (b) outlier with user,
(c) outlier with user and ghosting due to chair

One novel approach to reduce the effects of ghosting is to update the background primal
sketch periodically. For instance, suppose there was a closed door in the background
scene when the sketch was constructed. If the door is opened, the resulting difference

image will then contain both a moving user and the region denoting changes in the door
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position. By updating background images in the manner of a shift register, the
reconstructed primal sketch will eliminate the ghosting due to the door. Once there are n
images of (2n-1) in the register with the new door position, the median property will
ensure that the new background primal sketch is updated properly to account for the new
door position.

Another method to reduce ghosting considers only those pixels within a smaller,
cropped region around the user known as the region of interest (ROI), while all of the
pixels outside of this region denote background. This has the advantage of both reducing
the complexity of the calculation, as well as inherently reducing the effects of ghosting.
If the user can be identified throughout a range of images, the location information can be
used to create, for example, a rectangular ROI about the user. Again, as in the shift
register method, the pixels that lie outside the ROI can be updated to reflect the most
current state of the background. Any scene changes that occur outside the ROI will not
lead to ghosting, provided the sketch is updated sufficiently often so that the user’s
movement does not cross into a background area that has changed since the last update.

Although these techniques significantly reduce the effects of ghosting, they
cannot eliminate it entirely. For instance, if the light intensity changes dramatically,
candidate pixels will resuit from both the light source and the user. Thus, it may be
helpful to employ a variety of methods in concert to deduce the specific action being
performed.

One such approach, illustrated in figure 3.5, preprocesses the images using an
edge-detector (see Section 2.6) such that only the outlines of objects in the scene are

subtracted [Yang and Levine 1992].



()

Figure 3.5 — (a) Background (edge-detected), (b) original image (edge-detected), (c)
difference image

This added step greatly reduces the candidate pixels due to ghosting while retaining
pertinent edge information. In the example of figure 3.5, only the pixels along the aura of
the light source would contribute towards ghosting, therefore eliminating many of the
false positives. One potential drawback of edge-detected images however, is that they
provide less information about the center of mass of the person, which is sometimes
useful for simple tracking algorithms [Arseneau and Cooperstock 1999b]. However, in
the action recognition realm, the contour of the user often proves quite important. For
instance, to recognize a pointing gesture, the outline of the arm and its location with
respect to the rest of the body is of greatest importance, while the center of mass is of

little interest.



In general, gradient information with contour methods proves useful in action
recognition. Further discussion of outlining or contouring techniques is discussed in
Chapter S.

Another approach to person tracking could use histogram differencing. With the
challenge of varying light intensities, it is conceivable to compare a normalized
histogram of the background against a normalized incoming scene. Whereas the primal
sketch technique attempts to account for areas in the background scene that may be more
susceptible to varying light intensities by taking the median over a sequence of images, it
relies on the assumption that any relevant variations will occur during that specific span
of time. Taking advantage of the fact that the shape of the histogram remains fairly
constant as the global light intensity varies in RGB space, preprocessing the image
through normalization helps eliminate false positives in the difference image. For
instance, if a background primal sketch were created in a dimly lit room, the introduction
of a bright, global light source would drastically increase the number of false positives in
the difference image. However, noting that objects retain their respective values in HSV
space, varying mainly in saturation due to changes in lighting intensities, a more robust
estimation can be made as to whether a pixel value belongs to the user or background.
While this technique has not yet been tested it provides a unique perspective to the
relationship between color values over a range of light intensities, as will be discussed

further in the following chapter.
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33 Motion Information

A newer train of thought that seems to be catching on in the action recognition
community is that of motion detection. The goal is to locate the change in the scene from
image ¢ to image ¢+I. Closely related to background removal, it is a kin to continuously
updating the background scene with the present image once the difference image has
been obtained. Davis and Bobick have implemented this technique using temporal
templates to identify actions of a user, with a high degree of success. [Davis and Bobick,
1997] This approach has many advantages over background removal techniques. Firstly,
there is no dependence on a priori knowledge of the background scene prior to function
properly. Also, if there is a sufficiently high frame rate, the light intensity changes over
time will not adversely affect the outcome due to its temporal characteristics. This
technique has been used to successfully track people in a classroom environment by
noting the shape of the resulting motion, [Arseneau and Cooperstock, 1999b], as well as
directing an avatar while interacting with performers on stage [Pinhanez and Bobick,

1998].

3.4 Noise Reduction Techniques

Once a reasonable difference image is constructed, there is still the challenge of reducing
candidate pixels due to noise, while retaining as many of the correctly identified pixels as
possible. Outliers resulting from noise often appear as isolated pixels in the difference
image. As this is the prime reason for errors in the final result, a few techniques for

removing outliers are evaluated.



3.4.1 8-Connected Isolated Pixels

Isolated in this context refers to a labeled candidate pixel whose 8-connected
neighborhood consists entirely of non-candidate pixels. A common technique of
removing these pixels is to erode the image, as discussed in Chapter 2, such that the
image contains fewer stray pixels (See figure 3.6¢c). Unfortunately, while many of the
outliers due to noise are removed, this technique also eliminates many of the candidate
pixels denoting the user. A better alternative eliminates candidate pixels that have only
non-candidate pixels in their four or eight-connected neighborhood. Adding this
constraint removes isolated candidates while ignoring others that are part of a larger

connected region, most likely denoting the user (See figure 3.6d).

©
Figure 3.6 — Color differencing - (a) Original image, (b) difference image,

(c) eroded difference image, (d) difference image with isolated pixels removed
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Figure 3.7 — Edge differencing - (a) Original image, (b) difference image,

(c) eroded difference image, (d) difference image with isolated pixels removed

The summation of the 2n neighborhood is calculated to determine if a pixel is isolated, as

shown in equation 4.

If Dy, =1, (denoting a candidate pixel)

x+n  y+n

Fy=90if X XDy=1 )

=0 j=y-n
1 otherwise
This assures that given a neighborhood of 2n x 2n, outliers that are connected to a larger
region are not eroded, while at the same time, isolated pixels in the difference image D
are removed.
It is worth noting that erosion and isolated pixel removal have very different

results on images that were derived from gradient methods, as opposed to color
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differencing. Since the color-based difference image results in a dense blob-like scene,
eroding successfully removes many of the outliers, while preserving most of the shape of
the region.

The isolated pixels technique is less successful at eliminating outliers but
preserves both the size and shape of the user. When these same two techniques are
performed on a difference image derived from an edge-detected scheme, the results are
quite different. Eroding the image now removes far too many candidate pixels as the
gradient image consists primarily of thin lines denoting edges. The eroding scheme risks
eliminating these edges due to the neighborhood style calculation. (For details, see
Chapter 2). In this case, the isolated pixel removal proves the better of the two schemes
as it successfully removes many of the outliers, while ignoring chains of pixels, normally
denoting edges in the scene. It is evident that for maximum effectiveness, the choice of

noise removal technique should depend on the various methods used prior to this step.

3.4.2 Otsu Thresholding Method

Another noise reduction technique employed eliminates the outliers that form as a result
of low-gradient edge values. This assures that only candidate pixels denoting sharp edges
are kept, however, choosing a threshold is a challenge in itself. There exist many
different methods of histogram manipulation in order to choose a reasonable threshold
such that the true valley is found, as opposed to a local minima. Otsu’s method [Otsu
1979], a non-parametric, unsupervised approach, based on the characteristics of the gray
level histogram proved ideal. This approach is far more robust when the resulting peaks

are of different magnitudes. As can be seen in figure 3.8, the histogram has a distinct
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valley between two peaks, however the heights of these peaks as well as the distribution

can vary widely from image to image.

Wi e B0 0
Figure 3.8 - Histogram of difference image, Otsu’s threshold at gray level 33

Some researchers have tried to manipulate the histogram such that only pixel values also
exhibiting high gradient values are used [Weszka 1974]. This type of approach uses
neighboring pixels to ascertain a reasonable threshold, while other approaches deal
specifically with the shape of the histogram itself. Through the use of parametric
techniques, the histogram is fitted to a Gaussian type distribution. The mean and
variance are then used to choose a threshold [Fukunage 1972]. The problem with this
technique, like so many others based on a Gaussian distribution, is that data does not
necessarily fit such a distribution.

Otsu’s approach employs the zeroth and first-order cumulative moments of the
grayscale histogram. He noted that many images with a single object and background
could be categorized by finding the valley in the histogram and using this value as the
threshold. The pixel values denoting the foreground were most likely on one side of the

threshold with the background on the other.
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The first step of Otsu’s method is to construct the gray level histogram consisting
of L levels. The number of occurrences of gray level n is denoted as n;, and the total
number of pixels S is equivalent to the sum of { ny, ny, ... , n.}. The histogram is then

normalized and treated as a probability distribution function:

L
pi=ni/S, where Zp;:l (5)
=1

The problem now is to identify the class of pixels Co as those with a value less than or
equal to the threshold k, and those above k as C,. The probabilities of each class
occurring, Wy and Wy, as well as the class means, up and u,, are then calculated as

follows:

k

Wo = Pr (Co) =§Pi (6)

L
Wi=Pr(C)=2p Q)

i=k+1
k k
Wo=2 iPr(iiCo) =2 ipi/ Wo=ukyWo (8)
t=1 =1

L L
w=X iPr(ilC)=2ip/W 9)
=k+1 i=k+1

The zeroth-order (equations 6 and 7), and the first-order u(k) (See equation 8) cumulative
moment are used to calculate a measure of class separability. Discriminant analysis is

then used to find the optimum threshold [Fukunage 19721:
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o8’ = WoWi(u; —up)? (10)

The problem then simplifies to finding the optimum threshold k* that maximizes Op.
This technique was performed on the histogram in figure 3.8 and successfully chose a
threshold of 33, which falls within the valley region, thus logically separating the
histogram in two.

All pixels that fell below this threshold were discarded, resulting in an image in
which all of the candidate pixels denoted high gradient values in the original scene (See

Figure 3.9).

Figure3. 9 — (a) Original image, (b) difference image before Otsu, (c) after Otsu

As an experiment, Otsu’s thresholding method was tested with color values instead of

gradient values. In RGB space, eliminating all pixel vaiues below a threshold translates
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to eliminating dark colors. With a difference image constructed from color rather than
edge-detected scenes, a person’s shadow often resides in the lower region of the resulting
histogram. Otsu’s method eliminated most of the undesirable shadows, but had the
unfortunate side-effect of also removing parts of the people if they were wearing dark

colors.

3.5 Conclusions

Background removal techniques are able to produce valuable information about a user in
the scene. Examples include the center of mass, contour, and location of body parts.
This information can then be used to ascertain many different variables to facilitate an
action recognition feature vector, as will be discussed in Chapter 5. The resulting
difference image, however, is highly dependent on the environmental variables at play
during the image sequence. For instance, the camera must remain stationary throughout
the sequence to produce a satisfactory image and the background should remain static in
order to avoid ghosting effects. Since computer vision algorithms must be robust in all
types of scenarios to succeed outside of the laboratory environment, background removal
is perhaps too overly restrictive. Under proper conditions, this technique proves to be a
useful tool for action recognition, but due to its inherit restrictions it is best used in

conjunction with other techniques to identify candidate pixels properly.
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Chapter 4

Color Detection
4.1 Color Models

The study of colors has been a realm of great debate for hundreds of years. In scientific
terms, different colors arise as a result of the spectral content of radiant energy that
emanates from a given object. Sir Issac Newton performed the first recorded study of
colors in 1704 with his prism experiment [Levine, 1985]. Newton successfully proved
that light is formed from different, monochromatic (single-wavelength) colors. This
became the foundation upon which trichromatic theories are based today. It is interesting
to note that Newton actually chose red, yellow, and blue to represent the three chromatic
portions upon which any other color made be made, however, the more popular red,
green and blue combination emerged as a result of its similarity to characteristics of the
human eyes’. [Levine, 1985] The cones on the inner wall of our eyes react specifically to
stimulus of wavelengths denoting red, green and blue, hence our natural tendency
towards this combination of colors.

Many computer vision applications such as face recognition and person tracking
can be simplified due to the common characteristic of skin tone. Since this type of
application relies upon human characteristics, one can attempt to discern the color
information from a scene to simplify calculations. This approach is one of the most
popular for identifying human characteristics due to its simple compare and contrast
evaluation. The alternative classification of contours and shapes is discussed in detail in
Chapter 5. A typical color matching scheme that produces a color-identified result S,

often takes the form of equation 1.
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Syy =40 fIC-Fgyl<T (1)
1 otherwise

where each pixel location (X, y) in frame F is compared against a pre-determined color C
as to whether or not it exceeds some heuristic threshold 7.

Many researchers have made the color matching scheme the basis of their
algorithms [Yang and Waibel, 1995; Bregler, 1997; Ayers and Shah, 1998], as the range
of possible skin tones is limited. However, color alone is insufficient. Some researchers
argue that there exists a universal skin tone in which all tones are accounted, from the
darker shades of Africans, to the lighter shades of Caucasians [Chai and Ngan, 1999].
This amounts to stating that there exists a region in RGB space that encapsulates all
possible values of skin tone. This is not a terribly profound statement as it simply
expresses the fact that a specific color exists in a certain region of RGB space, as do all
other colors! Of course, it is the shape of this region that is important. Whether the RGB
values are used directly [Birchfield, 1998] or indirectly, by converting to HSV, YUV, or
some other transformation [Bregler, 1997; Ayers and Shah, 1998], specific values to

define the region must be determined a priori.

4.1.1 RGB
The most basic color scheme is red, green, and blue (RGB). As mentioned earlier, these
three, monochromatic colors in combination can produce any other color in the visible

spectrum. Figure 4.1 shows these colors as a function of wavelength [Lammens, 1994].



Figure 4.1 — Color as a function of wavelength, (nm) [Lammens, 1994]

In the field of computer vision, this model is seldom used as a method to detect skin tone
directly. This is mainly due to its inherit inseparability of colors into easily
distinguishable regions. For instance, most skin tone based algorithms begin by
accumulating a data set of known skin colors at various lighting intensities [Campbell et
al. 1997]. Next, either a lookup table is implemented (Ishibuchi et al, 1992], the mean
and variance are calculated directly from the data {Yang and Waibel, 1995] or an
unsupervised learning approach is implemented [Campbell et al. 1997]. This translates
into a three-dimensional region in RGB space in which all pixel values are labeled as skin
tone candidates, while those exterior to the space are not. It is vital that the region
denoting skin tone is smail enough in proportion to the entire color space such that a
lookup table (LUT) is minimized to reduce processing time. However, it must include
enough tones to account for skins of varying pigment and different lighting conditions.
Figure 4.2 exhibits the RGB values of varying skin tones, grouped by pigment as Asians,
Caucasians, Latin Americans, and Africans. As is evident from the graphs, all of the
different skin pigments evaluated occur along a common diagonal region protruding from
the origin, and stretching towards full white, (RGB=255,255,255). This to be expected

due as to account for most skin tones scenarios, the swatches were taken using different
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lighting intensities. Images of humans can occur in any lighting condition, from in
shadows to an intense sunlight or electronic flash. The final outcome produces swatches
ranging from near-black values (RGB=0,0,0) to full white, with the proportions of R, G,

and B being roughly equal.

(a) (b

@

Figure 4. 2 — RGB color space denoting different racial skin tones deriving from,
(a) Asian, (b) Caucasian, (¢) Latin American and (d) African descent

Even though the region denoting various skin tones seems sufficiently clustered, applying
a color matching scheme using RGB space does not always yield good results [Zarit et al.

1999]. What is needed is a color space that is less susceptible to variances in lighting



intensity, and deals specificaily with color, not shade. This requirement led to the

development of hue, saturation, and value color space (HSV).

412 HSV
The shape of the HSV space allows for a better understanding of colors as the pixel
location moves about its cylindrical coordinate system. The hue, for instance, spans from
0 to 360 degrees, and normally denotes the family of color. This value is most closely
related to how humans distinguish between colors, by referring to the general color type,
such as red or yellow. The distance from the center of the cylinder, or saturation, refers
to the strength of the color. A saturation of O signifies a color in the grayscale range. As
this number increases, the contribution of the color family associated with the angle has a
greater effect. For example, travelling from the center along the green hue will grow
from a dark green to an intense green. Finally, height within the cylindrical space
denotes the value component. This translates to how dark or bright a color family
becomes. The value is synonymous with brightness or grayscale.

The calculation of HSV from RGB is more complex than most other color spaces,
as it must transform a Cartesian space into cylindrical coordinates (see table 1).

Using HSV color space to amalgamate skin tone values produces a closer knit
region than RGB space, and hence is much faster as a lookup table scheme, as can be
seen from figure 4.3. More importantly, there exists a specific hue region that

encapsulates many pigments of skin under varying lighting conditions.
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Table I —Steps to transform a given value of RGB to HSV

1 Normalize RGB values

2 Determine the global minimum and maximum value of RGB
3 V = maximum value
4 Delta = maximum — minimum

S(a) | If (maximum !'=0), then S = Delta/maximum

S5(b) | Else, S = 0, and H = undefined (i.e. Since this occurs at the center of the
cylinder, no angle is appropriate

6(a) | If(R = maximum), then H =(G - B) / delta

6(b) | Elseif (G = maximum), then H =2 + (B - R)/delta

6(c) | Else, H=4 +(R - G)delta

7 H=H* 60 (to convert to degrees)

8 If (H is negative), H=H + 360

Figure 4.3 — Skin tone values denoted in HSV for people of
(a) Asian and (b) Caucasian descent
* The vertical line denotes the grayscale pixel values within this cylindrical coordinate system
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Figure4. 3 (cont’d) — Skin tone values denoted in HSV for people of
(c) Latin American and (d) African descent.
* The vertical line denotes the grayscale pixel values within this cylindrical coordinate system

The intuitive architecture of the HSV space has inspired many skin tone detection
algorithms. Bregler found that the data set identifying skin tone within HSV space was
very effective [Bregler, 1997], and used this to narrow down the possible poses of a
user’s legs. However, there is no mention as to how the data set was compared against
the incoming scene, whether it uses a lookup table or statistical variables.

HSV has also been adopted for the recognition of hand gestures {Ishibuchi et al.
1992]. In this case, only hue and saturation were employed in the detection of skin tone,
while the value data was used in a separate background differencing step. Excluding the
value component from the detection of skin tone is appropriate as this value is most
closely related to shading, or light intensity. While the published results are promising,
the test scenes were basic in the sense that a monochromatic background was used, with

only a few books in the scene. However, Bregler's work was tested on people in real
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world backgrounds, such as a runner at a track meet with many different colors appearing

in the background and was far more encouraging.

413 YUV

Another widely applied color model is the luminance and chrominance space, also known
as YUV. Computationally less expensive than HSV, YUV has gained widespread
popularity in the area of skin tone recognition [Wren et al. 1997]. Its color space is

Cartesian thus accounting for its ease of calculation:
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Like HSV, it extracts the shading or luminance component from the color, leaving pure
chromatic components. This model is the basis of the European standard for television
broadcasting known as PAL.

Many researchers have turned to YUV over HSV due to its ease of computation,
and hence, ability to process at faster frame rates. For instance, Wren et al. employed
YUV to identify skin tones for several applications including American Sign Language
recognition and vision-driven avatars [Wren et al. 1997]. Their algorithm uses the mean
and variance of a priori data set of skin tones to identify possible skin tone matches. This
approximating technique risks identifying tones that do not occur in the test set, as the

simplified estimate of the skin tome region is inexact, compared to a lookup table.



Reducing the variance to cut down on false positives leads to more false negatives. This
is a typical tradeoff in such models. It is interesting to note that Wren et al. incorporated
a slight mutation of YUV space in order to eliminate pixel values due to shadows.
Normalizing the chrominance components by the luminance as in equation 3, they claim

that the resulting true color, (U*, V*), is independent of illumination.

U*=U0/Y 3)

V¥=V/Y

Ayers and Shah have also been successful in detecting skin tone using YUV [Ayers, and
Shah 1998]. Their goal is to identify general actions that take place in a static
environment. By tracking the position and velocity of the hands and face, actions such as
picking up a phone, or exiting a room are determined. Again, as Wren et al., they utilize
the Gaussian variables of mean and variance in order to detect skin tone matches. While
the results were promising for static environments, it is difficult to ascertain whether the
background included objects such as beige colored corkboards, which may be identified
falsely as skin in YUV space. Unfortunately, as with most other color matching papers,
the authors fail to describe any experiment with such background distracters. The pitfalls
of color matching are addressed further in section 4.3.

Again, the region denoting various skin tones is more refined in YUV compared
to RGB, as can be seen in figure 44. More importantly, using only UV components
provide a reasonable trade-off in data versus the error rate, as will be discussed in section

43.
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Figure 4.4 — YUV color space of skin tones of people from
(a) Asian, (b) Caucasian, (c) Latin American and (d) African descent

414 YIQ

Another important color model is YIQ, which exploits particular features of the human
visual system in order to minimize bandwidth [Levine, 1985]. Closely related to HSV,
the YIQ model has been adopted as the North American standard for television broadcast
known as NTSC (National Television System Committee). The Y component serves the
same definition as the luminance factor in YUV. However the in-phase or I component
determines the orange-cyan content, while the Q or quadrature component determines

the green-magenta content of the color. This scheme evolved as researchers noted that 64
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levels of V in HSV space, with only 32 levels of hue and 8 levels of saturation, are

sufficient to denote colors for typical human observers. (See equation 4)

Y 0.299 0.587 0.114 R—]
G

[ | =(0596 -0.274 -0.322 4)

Q 0.212 -0.523 0.311 B
e - —d

4.1.5 Normalized RGB
The final color space that we discuss is normalized RGB space. As the name implies, the
values of red, green, and blue are converted such that they represent the percentage of

total contribution to the color:

nR=R/(R+G +B)
nG=G/(R+G +B) (5)

nB=B/(R+G +B)

where nR, nG, and nB represent the normalized red, green, and blue components
respectively. It is important to note that this particular representation is unique in its
ability to reconstruct the entire color with the use of only two of its components i.e. nR +
nG + nB = 1. This further restricts the region, hence allowing for a more condensed
lookup table and facilitating faster processing. The range of skin tone data for various

pigments is shown in figure 4.5.
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Figure 4.5 - Normalized color space for people of
(a) Asian, (b) Caucasian, (c) Latin American and (d) African descent

This color space has been employed in a real-time fa;ce tracking algorithm with notable
success [Yang and Waibel, 1995]. The authors claim that any skin tone can be discerned
from the background using the normalized RGB color space in concert with motion
detection. Using the mean and variance approach, as opposed to a lookup table, they
were able to track humans at a frame rate of 30 Hz. Unfortunately, no data is provided to
indicate its robustness when it is in the presence of objects of similar color to skin, or

under extreme lighting conditions such as shadows or high illomination.



4.2 LUT vs. Gaussians

In implementing the various color space matching schemes, the most important choice is
whether to use a lookup table (LUT) or Gaussian variables. As mentioned before, the
advantage of a LUT is that it categorizes pixels based on a priori knowledge of skin tone
rather than an approximation of the enclosed region. Since the appropriate region of
most color spaces does not conform to an easily approximated shape, (i.e. figure 4.2), this
results in fewer false positives (and negatives). However, due to the LUT’s massive size,
it does not lend well to real-time application, as the process of comparing each pixel
value to every cell of the table is very expensive.

Due to the heavy computational requirements of such a scheme, the most popular
alternative is to approximate the skin tone data using a Gaussian function. Comparison
based on the mean and variance of this data, can then be performed efficiently. However,
this strategy suffers from potential over-simplification of the data space and risks

increasing the number of false positives.

43 Results

Figures 4.6 and 4.7 display the resuits of applying six different color spaces to the
skin data set and finding the appropriate values in the image based on a lookup table.
The table was created from swatches of skin from 25 different individuals of different
skin pigmentation, and under a variety of lighting conditions. From these resuits, two
conclusions can be drawn. First, the color segmentation is highly dependent on the
lighting conditions and imaging characteristics of the system used to produce the LUT.

Second, differentiating skin tone from background objects is by no means robust, at least,

45



not when applied in isolation. However, color matching does serve as a useful tool in
finding possible areas of interest in the scene.

In figure 4.6b, RGB color matching successfully identified the general outline of
five out of the six people in the scene. However, it mislabeled the leftmost person’s pants
as skin and entirely missed the face of the individual kneeling. With this color space,
densely packed candidate pixels would not result in finding all six people, not even a
shape detecting scheme like Birchfield’s elliptical head tracker would be sufficient to
extract the person’s elliptical face with the number of candidate pixels present for the
kneeling individual [Birchfield, 1998].

The YUV scheme, illustrated in figure 4.6d did not perform well either. While a
few more pixels were correctly labeled for the face of the man kneeling, the various
regions denoting pants at both sides of the image introduced far too many false positives
to be of use. Furthermore, contrary to the claims of a number of papers, the effects of
shadows were not completely eliminated. This can be seen in terms of the differing
proportion of correctly identified pixels for faces and hands for the gentleman on the far
right.

Isolating the search to match pixel values only of common UV components
proved beneficial at correctly identifying more of the skin pixels. At the same time, it
also introduced a much higher density of false positives, as the LUT criteria were
broadened. Following the UV color matching with an elliptical or circular face detector,
such as Birchfield’s scheme (Birchfield, 1998], may prove effective. @ However,
extracting the location of hands is likely to be far more difficult. Using knowledge of the

head location may be a good starting point as to possible search areas for hands.



(a)

Figure 4.6 — Resulting skin tone detected images

(a) Original image, (Courtesy of: http://www.execpc.com/~lanystartrek.html)
(b) Pixels found in RGB space, (c) Distribution of skin tone in RGB
(d) Pixels found in YUV space, (e) Distribution of skin tone in YUV
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Figure 4. 6 (cont’d) - Resulting skin tone detected images
(f) Pixels found in UV space, (g) Distribution of skin tone in UV
(h) Pixels found in HSV space, (i) Distribution of skin tone in HSV
(§) Pixels found in HS space, (k) Distribution of skin tone in HS
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Figure 4.6 (cont’d) - Resulting skin tone detected images
(1) Pixels found in Normalized RGB space,
(m) Distribution of skin tone in Normalized RGB

HSV color matching, shown in figure 4.6h performed well under various lighting
conditions. The five people standing all exhibited a high density of identified pixels for
their faces, while the kneeling gentleman had far fewer candidate pixels. Again, the
pants of the woman on the extreme left introduced many false positives. However, this
may be addressed by later applying an elliptical or circular face detector as mentioned
before.

Limiting the search to matches of hue and saturation as shown in figure 4.6j,
yielded the best results of all the color spaces tested in this experiment. Nearly all of the
face pixels were identified in the image. Even the outline of the kneeling man’s face was
recognized as skin tone. Incorporating a circle-finding mechanism would certainly lead
to six humans in the scene, despite the added noise introduced by some of the
individuals’ pants.

Finally, normalized RGB color space, shown in figure 4.6/ was by far the worst at

differentiating skin tone from background colors. Normalization of the optimized region
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of skin tone may have been responsible for the poor performance. As with the other
schemes, the color space may be expanded by adding a few skin swatches to the lookup
table. In its defense, it could be said that the normalized RGB space provides a
conservative approach to color matching such that any faces found with this method have
a higher probability of being valid matches than those resulting from other schemes.

The same LUT’s were then compared against another scene to ascertain whether
the results were consistent. Improved results were observed overall, but in particular for
the UV space, possibly as a result of biased data. As can be seen in figure 4.3d, data
collected for the African skin pigment was quite spread out. In contrast, the density of

identified pixels for the Caucasian boxer is quite low in comparison.

(a)

Figure 4.7 — Resulting skin tone detected images
(a) Original image, (Courtesy of: http://www.espn.com)
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Figure 4.7 (cont’d) - Resulting skin tone detected images
(b) Pixels found in RGB space, (c) Distribution of skin tone in RGB
(d) Pixels found in YUV space, (e) Distribution of skin tone in YUV
(f) Pixels found in UV space, (g) Distribution of skin tone in UV
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(m)

Figure 4.7 (cont’d) - Resulting skin tone detected images
(h) Pixels found in HSV space, (i) Distribution of skin tone in HSV
(j) Pixels found in HS space, (k) Distribution of skin tone in HS
() Pixels found in Normalized RGB space,
(m) Distribution of skin tone in Normalized RGB
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One possible direction for further research is to examine methods of optimizing
the data selected for the LUT. In order to obtain the most appropriate data, a common
method of reducing the size of the table is to ignore data for skin tones that have a
saturated value for any of the red, green or blue components. These colors are normally
due to very bright lighting, and while useful in identifying skin under bright lighting, the
same values can result from bright lighting on any surface. Another possible method of
reducing the LUT would be to eliminate outliers or values that are sufficiently separated
from clusters of the data. This could be done through a number of pattern recognition
techniques such as simple partitioning using a minimal spanning tree (Zhan, 1971] or a
variant of the nearest neighbor technique with a mre;hold. Once the data has been
properly optimized, the choice of technique depends heavily on the application. If an
unmodified lookup table is employed the processing demands will reduce the achievable
frame rate but no approximation is required, thus the identified pixels are certain to have
a skin tone from the data set. On the other hand, simplifying the data allows much higher
frame rates. Simplifications can be made by noting the Gaussian distribution variables or

by approximating the contour of the data by a simple geometric shape.

44  Conclusions

After testing color matching schemes in six different color spaces, several outcomes
emerged. First, it was found that there do exist certain color spaces that yield satisfactory
results in finding pixel values related to human skin tone. Most importantly, though,

these results indicate that color matching schemes, alone, are insufficient as a person
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locating algorithm due to the high density of false positives and the potential for false
negatives.

Now that we have considered various strategies for localizing an individual within
a scene, we now turn to the task of extracting information relevant for action recognition.

The next chapter considers one such strategy based on contouring methods.



Chapter §

Contour Extraction

51  Contours

After an image has been segmented sufficiently such that the user’s whereabouts are
known, information must then be extracted to facilitate action recognition. If one
examines how humans interpret actions, some key features come to mind, notably, joint
angles, the velocity and acceleration of movements, and the context of the environment.
For instance, consider the actions of the conductor of a symphony orchestra. Observing
the position or pose of the hands and the velocity and acceleration of their movement
determine such factors as tempo and volume. Furthermore, the context, in this case a
concert hall, allows one to, for example, discern that the conductor is trying to convey
musical instructions as opposed to flagging down a taxi cab! While this latter factor
plays a role in action recognition, it is beyond the scope of this chapter. Instead, our
focus will rest in locating key points, as well as their relative characteristics, in pursuit of
an action recognition algorithm.

This chapter discusses various computer vision tools to extract the contour of a
given object, as well as possible methods of utilizing this information to develop an
action feature vector. First, a general review of object properties useful in obtaining
feature vector elements is offered, followed by a discussion of boundary following
techniques. = Next, region segmentation is considered . for multiple objects, and

skeletonization methods and active contours are presented. Finally, some preliminary
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conclusions are drawn concerning the utility of these techniques to the field of action

recognition.

5.2  Action Feature Vector Elements

In the area of object recognition, three key variables are normally considered: size,
position, (denoted by the center of the object), and orientation. Together, these features
determine whether or not the object matches a preconceived model or template. We

begin this section with a brief overview of these features.

5.2.1 Size

Since the realm of image processing lies in the discrete domain, many of the calculations
are simplified versions of their continuous domain counterparts. One such example is the
calculation of size, or area of an object. Given a binary image', the area may be found as

follows:

N M

Area=2 X B(i, ) (D
i=l j=l
where the region or image is of size N x M, and B(i, j) denotes the pixel value at location
(i, j) in the binary image. This calculation, which also refers to the zeroth-order moment,
is commonly used in situations where the camera remains at a fixed distance from the

object in question, for example on an assembly line conveyer belt.

! The term binary image refers to an image in which a pixel value of 1 denotes a potential user pixel and
denotes the backgrcund
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5.2.2 Position

One of the more important feature elements in action recognition is position. The center
location of various regions, such as those denoting hands is vital in determining actions.
In image processing, position is often used to denote the center of mass of an object.
This calculation, also known as the first-order moment, is easily determined for discrete
space:

N M

X=2 2 ()@} (2a)

i=l j=l

N M

Y=2 X () @) (2b)
i=l =1
Given that we are dealing with a binary image, the object is assumed to have uniform

mass throughout, i.e. each pixel has an equal weighting of 1.

5.2.3 Orientation

Another important feature element to action recognition is orientation. This element
serves as the basis of angular velocity and acceleration, which are often fundamental to
discerning an action. For example, if someone is pointing to an object, the orientation is
vital to determine which object the user wishes to identify. Without the orientation value,
no distinction could be made as to whether the user is pointing at the book on the top, or
the bottom shelf. The most commonly used tool to obtain this information is the second-
order moment, which determines the orientation along the elongated center line of the

object (See figure 5.1).
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Figure 5.1 - The dashed line denotes orientation along the most elongated region of the

object, forming the second-order moment.

This helps to interpret actions as these normally occur along the skeletal equivalent of the
user. For instance, pointing direction can be established directly by noting the hand-to-
elbow vector, typically the most elongated portion of the arm.

The equation for the second-order moment is calculated by minimizing the sum of
the squared distances between object points and the centerline. The centerline that
provides the least second moment is the line that denotes the orientation of the object.

Firstly, second-order moment is calculated as noted in equation 3:

N M

Z=2 ¥ ;B ) 3)

=l =l

where d;; denotes the distance of object pixel at (i, j) to the axis. Using polar coordinates
to account for axes that exhibit a slope of 90°, the problem now becomes a minimization

equation to find the minimum value of Z*. (For full details, see [Jain et al, 1995])

58



5.3 Regions

Once a reasonable binary image is created identifying the possible location of the user, it
is often useful to segment and label the connected regions. Grouping connected regions
allows for the efficient elimination of those clusters smaller in area than a pre-determined
threshold (See section 3.2). In general, regions may be labeled recursively or

sequentially. The recursive algorithm follows the steps outlined below:

Table I: Recursive Region Labeling Method

Recursive Labeling Algorithm

1 | START position, (top-left of image) and perform raster style search

2 | Find an unlabeled pixel, if none then stop

3 | If any neighbors have no labels, label them and goto (1)

While this algorithm is easy to visualize, its recursive nature makes it computationally
expensive. Fortunately, the same result can be achieved using the following, more

efficient, sequential algorithm:

Table 2: Sequential Region Labeling Method [Jain et al. 1995]

Sequential Labeling Algorithm

1 Scan image in raster format, (top left, to bottom right)

[f pixel is value ‘1’ (denoting potential user pixel, not label)

2a | If the upper or left pixels are labeled, copy either label

2b | If both upper and left have same label, copy label

2c | Ifupper and left have different labels copy upper label, and add both labels to
equivalence table

2d__| Otherwise, assign new label

3 Goto 2 until all pixels have been labeled

4 | Sweep entire image again re-labeling as per the equivalence table
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This method requires only two sweeps through the image, whereas the cost of the
recursive method is dependent upon the number of regions. It should also be noted that
the sequential labeling algorithm can be easily modified to label 8-connected regions,

simply by noting the northwest pixel in addition to the northern and western neighbors.

54  Boundary Algorithms

Once the regions in the binary image are properly segmented, their boundaries can be
found. As a general definition, a path exists between (x;,y1) and (xn, yn) if, forall k, 1 <k
< (N-1), (xx, ) and (xx41, Yx+1) are 4 or 8-connected neighbors. A boundary can theﬁ be
defined as the maximum length closed path consisting entirely of pixels with at least one
background pixel as a neighbor. From this definition, it is clear that only the dashed line
of Figure 5.2, constitutes a boundary of the enclosed region.

sssanesess region A

== == == region B

Figure 5.2 — A valid (dashed) and invalid (dotted) boundary of the shaded region.

5.4.1 Boundary Following Algorithm

One of the simplest methods for extracting boundary information is the Boundary
Following Algorithm [Rosenfeld and Melter, 1989]. Also known as Moore Tracing, this
technique first identifies a pixel that is part of the object and has at least one background

neighbor, denoted as PI. Following a clockwise direction, each of this pixel’s eight



neighbors is checked to see whether this condition also applies. If so, the corresponding

pixel is labeled successively as P2, P3, etc., until the following two conditions are met:

L. P1 is found again; and
2. The next pixel found after PI is P2.

These conditions ensure that the algorithm will continue until a maximum length path is
identified, thus preventing an erroneous identification of path A as the boundary of the
region in Figure 5.2. The final outcome is a connected boundary in the form of a list of
pixel location. In terms of its effectiveness, this algorithm works well for binary images
with densely connected regions. However, for highly fragmented regions, other

techniques such as dilation must be used to obtain a reasonable contour (see Section 2.5).

5.4.2 Dilate and Compare

One method that is quite effective in dealing with highly fragmented edges is the dilate
and compare algorithm [Yang and Levine, 1992]. The first step, as the name implies, is
to perform a number of dilations on a copy of the binary image. Assuming that only one
region is found, i.e. corresponding to a person in the scene, the outermost boundary layer
of the dilated image is then labeled BI. This boundary is then removed and the second
outermost boundary is labeled B2. The process continues until there are no more
boundaries to label. The second step calculates the number of candidate pixels in the
original binary image that match locations in each of the boundaries {B;,..,By}. The layer

with the maximum number of matches is chosen as the boundary for the binary image.
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It is interesting to note that because of dilation, this method works quite well for
several independent regions of edges throughout the image as they fill the broken regions.
Since the pixels are expanded from known edges, the middle, or median boundary is
usually the most likely candidate. This algorithm also works well as a global technique
as opposed to a neighborhood or local technique as a dilation may be performed for the
entire image in one step which significantly reduces the computational requirements
compared to the local approaches.

The drawback of dilation and compare is that the first step may join regions that
are truly non-contiguous, thus adversely affecting the final result. The advantages,
however, are that it eliminates small fragments in the edges, and offers an inexpensive

computational approach to locating the boundary.

5.4.3 Pixel Sweep

Another method to extract contour information from a binary image is to perform a pixel
sweep [Arseneau and Cooperstock, 1999a]. Essentially, a row of pixels sweeps from one
side of the image to the other until it contacts a candidate pixel. The result is analogous
to dragging a flexible snake from one side to the other, however no energy values are
optimized. This technique, illustrated in Figure 5.3, is computationally inexpensive and
provides a reasonably accurate assessment of the most likely contour. To reduce noise-
related errors, an impulse detector can be implemented. This detector rates the likelihood
of each pixel belonging to the user by noting the slope of the preceding and successive N
candidate pixels. If its value fails to meet a pre-determined threshold, it is recalculated as

the average value of its immediate neighbors (ie. interpolated).
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(b)

Figure 5.3 - (a) original image, (b) pixel sweep denoted in white

5.5  Skeletonization

Once the boundary information is obtained, it is sometimes useful to extract the basic or
skeletal form of the object. Skeletonization shrinks the boundary shape until it forms a
series of curves and lines that are of unity width. The resulting skeleton easily allows one
to identifies key elements relevant to action recognition such as joint angles. Before the

various strategies are examined, it is important to define the distance metric.

5.5.1 Distance Metric
The three most common methods of determining the distance between two pixels are the

Euclidean metric, Minkowski metric, and the chessboard metric, as illustrated in figure

5.4.

N |

(@) (b) (©
Figure 5.4 - (a) Euclidean metric, (b) Minkowski metric, and (c) chessboard metric
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The Euclidean metric provides the most accurate distance between two pixels, but unlike
the Minkowski and chessboard metrics, does not guarantee an integer valued result. Of
course, the result can be rounded up or down as needed. The Minkowski, or city-block
metric, is well suited to finding boundary skeletons while the chessboard metric, which
measures only in a single dimension has a much smaller application base. In the
following sections, the Minkowski metric shall be used to demonstrate the medial axis

transform.

5.5.2 Medial Axis
The medial axis algorithm re-labels object pixels according to their distance to the nearest

background pixel.

@ o

Figure 5.5 — Medial Axis, numbers denote distance from the object pixel (gray), to
nearest background pixel (white cell). (a) All object pixels with accompanying distance
to background, (b) Medial axis. *The Minkowski metric was used in the exampie



Next, pixels are eliminated if this distance is less than that of their 4-connected neighbors.

The results of the algorithm are illustrated in figure 5.6.

- -

(a) (b)

Figure 5.6 - (a) Medial Axis Transformation, (b) Effect of noise on the Medial Axis

The resulting skeletonization of a noise-free boundary forms a good approximation,

however the presence of noise can have a significant impact, as illustrated in Figure 5.6.

§.5.3 Thinning

A more robust approach to skeletonization, less susceptible to noise, is to thin the object.
This involves stripping successive layers from the object until it has reduced to a line or
curve. In order to maintain end points, a series of checks are performed to ensure that the

appropriate skeletal form is maintained. (See table 3)

Table 3: Conditions for Thinning (Jain et al. 1995]

1 | Connected regions must thin to connected structures

The final connected structure should be minimaily 8-connected
End points should be maintained

The final connected structure should approximate the Medial Axis
Short branches caused by thinning should be eliminated

w| & |l o
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This method provides a good approximation of the skeletal structure of a given object,
although the threshold for eliminating short branches (criterion 5) must be chosen

carefully so as not to eliminate important branches.

5.6 Simplifying Data Set Information

Once a reasonable boundary or skeletonization is attained, the next step toward action
recognition is to transform this discrete set of points into lines, quadratic, or cubic curves
that approximate their general shape. [Bharatkumar et al. 1994; Birchfield, 1998]
Beyond simplifying later processing, this serves the added benefit of reducing memory
requirements. Though the various algorithms available for such transformations,
surveyed in the following pages, are quite effective, they are only as accurate as the
information passed to them. The presence of noise can have a significant impact on the

curves chosen to represent the contour list.

5.6.1 Chain Codes

Chain codes describe a shape by noting the direction of coinciding pixels over its
boundary. This provides a quick method of comparing object shapes that may differ only
in scale, translation or rotation. Unlike other techniques, chain codes do not approximate
the boundary, hence errors introduced due to improper approximation are eliminated.
However, no data reduction results.

The first step is to label the neighborhood of a boundary pixel as per figure 5.7:
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Figure 5.7 - Slope representation for chain codes

The contour boundary is followed in a clockwise direction and each binary pixel is
replaced by the appropriate label (1 to 8) corresponding to the slope of its neighbor. The
resuiting chain code is a general shape description, of equal length to the original
boundary list.

Since chain codes do not reduce the data set, the contour of complex shapes may
prove less efficient that those created from an approximation technique. On the other
hand, by not approximating the data set, less error is introduced as to the exact shape of
the object in question. Therefore, the final decision will rely heavily on the application

needs.

5.6.2 Curve Fitting
Polyline approximation, or curve fitting, is widely used in computer vision due to its
inherit simplification of data. {Birchfield, 1998; Benjamin, 1990; Lipardi et al., 1989] To
simplify the following discussion, we will consider the boundary to be reduced to an
open path to facilitate simpler curves.

This approach tests different curves and notes how well each approximates the
general path of existing pixels. This is reminiscent of the dilate and compare method,

discussed in section 5.4.2, in which the number of matching locations with the boundary
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is compared to the original binary image. However, with polyline approximation, the
shortest distance of each of the N boundary pixels to the curve is noted, and the curve is

updated until the maximum absolute error is minimized. (See equation 4)

Emax = max(d)) for(1<i<N) 4)

where the distance d; refers to the minimum distance from the point to the curve. For
instance, approximating only with lines, equations 5 and 6 describe the calculation of

distance of each point, (¥, v) from the line with endpoints, (xi, y1) and (x2, y2).

r=u(y —y2) + vixa —x1) + yo2x1 — y1x2 G)

d=r/((-x)+ n-y)H "2 (6)

where equation 6 normalizes the absolute distance, r, by the length of the line. If there
are no sign changes over the set of r values, this indicates that the chosen curve should be
translated closer to the data set. Jain et al. propose that the number of sign changes of r
should be used to choose the next curve to fit, for exampie, selecting a quadratic if there
are two sign changes or a cubic for three sign changes [Jain et al.,, 1995]. If there are no
sign changes, it is a good indication that the curve chosen should be translated closer to
the data set.

While there are many situations for which this heuristic fails, it appears to be a
reasonable approach in determining the complexity of the curve needed to approximate

the data set.
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5.6.3 Recursive Subdivision and Polygonal Approximation

If either a connected sequence of lines or a polygon can reasonably approximate the data
then recursive subdivision or polygonal approximation prove useful. [Zhu and Poh, 1988;
Laumond et al., 1994] These techniques follow the same general approach outlined in

Table 3 with polygonal approximation adding the constraint that the polyline must form a

closed loop.
Table 4. Recursive Subdivision
1 Construct a line joining the end points of the data setand add these to the vertex
list
2 Calculate the maximum absolute error (equation 4) with respect to the vertex list
3 While the error is above a given threshold, add the point corresponding to this
error to the vertex list, and goto 2
4 Otherwise, stop

A restriction on the number of recursive subdivision may be desirable in order constrain
the polyline to a maximum number of segments. For example, five segments would seem
a reasonable breakdown of a human’s arms, in order to discern the two forearms, upper
arms and shoulder region. The angles formed at the vertices could then be used to

interpret the action being performed.

5.6.4 Hop Along Recursive Subdivision
A slight refinement of this technique, known as hop-along recursive subdivision obtains
the same results with less computation [Jain et al., 1995]. The first-step of the algorithm

remains unchanged. However, after the first subdivision, the algorithm considers only
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those points between the first two vertices in order to determine the maximum error and
select a new point for the next subdivision. This continues recursively, as before, until
the maximum error falls below the chosen threshold. The process is then repeated on the
second half. This reduces the calculations needed for each subdivision by concerning
itself only with data points close to the line segment currently being examined. While the
authors do not explain how to determine these points without explicitly performing the
distance calculations, a nearest neighbor type of algorithm might be used to group the

data set.

5.6.5 Hough Transform

Another commonly used method of finding lines in a binary image is the Hough
Transform [Chan and Sandler, 1992}, which maps the (x, y) pixel coordinates to the slope
and y-intercept in another domain, known as the Hough space. The intersections of the
resulting lines are used in a voting scheme to estimate the best approximation. If multiple
lines occur in the initial binary image, a number of clustered intersections typically
appear in the Hough space. Various statistical pattern recognition schemes such as a K-
means approach, or clustering techniques based on Gestalt clusters [Zhan, 1971], could
be used to determine the exact number of lines, while minimizing noise. Although the
Hough transform works reasonably well for images with multiple straight lines, the
presence of curves may lead to an overly complicated representation, making it difficuit

to select appropriate thresholds and intersections.
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5.6.6 Active Contours

Another class of contour extraction methods is the physics-based approach of snakes.
These use a model where a pre-defined deformable line is attracted towards regions of
high energy, while escaping areas of low energy. The effect is a-kin to a snake wrapping
its body in such a manner as to overlay the most pixels, while avoiding areas denoting
background [Blake and Isard, 1998]. With this approach, the initial placement of the
snake is vital to its success. Snakes are also computationally expensive, and at the

present, are not a feasible option for real-time action recognition.

5.7 Summary
This chapter has surveyed various tools that perform operations of importance to action
recognition. Previous chapters investigated filters, background removal techniques, and
color matching. This chapter examined a number of contour extraction techniques, which
provide key information concerning object shapes. Note that this review is by no means
complete, as there exist many other feature elements such as symmetry [Reisfeld et al.,
1995] and other matching techniques including templates and correlation methods
[Sawasaki et al., 1996] that were not explicitly mentioned but may warrant consideration.
Now that a review of the image processing tools is complete, the task now
becomes one of choosing the appropriate algorithms to effectively extract key action

feature elements from a video sequence to facilitate an action recognition scheme.
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Chapter 6
Action Recognition Segmentation

6.1  Steps Towards Action Recognition
Now that the various tools have been described and investigated, we can begin the task of
assembling them into a framework to facilitate action recognition. The general outline

proposed consists of three steps:

1. Segment the user from the scene;
2. enhance the binary image; and

3. locate points of interest (features) and quantify these over a period of time.

A fourth step, outside the scope of this thesis, would then use this information to
classify or recognize specific actions. As a starting point, consider the action that
represents [owering the volume. This action begins with one hand extended high in the
air, followed by lowering the hand along an imaginary, vertical line, until the hand is
pointed downwards (See figure 6.1).

This particular actiocn exhibits features in common with most everyday human
gestures. There is a starting pose, indicating the beginning of a gesture, followed by a
movement, which imitates, to some degree, the idea being expressed. In this case, the
lowering of the arm is reflective of the lowering of volume. Finally, there is an ending

pose denoting the completion of the action.
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Figure 6.1 — Lowering volume action — (a) starting pose, (b) movement period,

(c) ending pose

In order to interpret the action being performed, there are several key elements at work.
First, the person performing the action (the actor) must be located within the observer’s
field of view. Next, key points on the actor, such as elbows, hands and feet, called
feature elements, must also be located. The specific set of points relevant to the action in
any particular frame is known as the fearure vecror. As actions span a period of time, the
collection of feature vector will form the action’s feature set. In addition to identification
of the feature elements, it is important to note the relationship between these points. For
our previous hand-lowering example, the downward movement of the right hand should
be interpreted differently if the upper body is simultaneously lowered, which may
indicate another type of action.

An important issue, but one outside the scope of this work, is the problem of
recognizing which frames of a video sequence contain the start and end poses. We are
primarily concerned with image segmentation to retrieve the salient features of the
person, not the translation of these features into actions. However, some preliminary

efforts to tackle this problem using probabilistic models [Bregler and Omojundro, 1995],
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as well as an examination of poses over time [Emering et al, 1996], are worth noting.
Among the more intuitive approaches, temporal templates, statistical data formed from
the motion within a scene, have been implemented to recognize actions over a fixed
period of time [Davis and Bobick, 1997].

Returning to the task of segmentation for action recognition, two strategies have
evolved. The first follows the approach adopted by Arseneau and Cooperstock
[Arseneau and Cooperstock, 1999a], based on a variation of the background primal
sketch, discussed in Chapter 3 [Yang and Levine, 1992]. The second strategy, not yet

implemented, is based on motion and a virtual skeleton.

6.2  Background Removal Scheme
As this approach is based on the background primal sketch, restrictions of a fixed camera
as well as a relatively static background should be observed for best performance.

To avoid noise due to lighting changes in the scene, the incoming images (Figure
6.2a) are pre-processed by a Sobel edge-detector (Figure 6.2b). This step will help two
fold by reducing the number of candidate pixels, while providing the appropriate pixel
locations denoting contours. These edge-detected images are then used to construct a
background primal sketch (Figure 6.2¢c), containing only high frequency edges. Note that
this reduction in the number of candidate pixels restricts the applicability of later image
processing operations. For example, it would be very difficult to determine which pixels
belong to the largest connected region, or calculate the exact center of mass, without

knowing what is inside the contour.
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(a) (b

Figure 6.2 — (a) Original image, (b) Sobel edge-detection,
(c) Difference image created from edge-detected Background Primal Sketch

Once the user has been segmented from the background, the difference image is
processed to reduce noise pixels while retaining the maximum number of true candidate
pixels. As observed in Chapter 3, removing isolated pixels yields better results on edge-
detected images than does erosion, due to the thinning nature of edge-detection.Also,
pixel locations that denote a low gradient value can be eliminated using Otsu’s adaptive
thresholding technique [Otsu, 1979]. The resulting binary image, illustrated in Figure
6.3, satisfies our requirements of climinating many of the false positives while retaining

most of the true user pixels.
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Figure 6.3 — Noise removal, (a) Original difference image, (b) post-noise removal

The final and most difficult step is to transform pixel locations into useful feature
elements for action recognition. Following edge detection, the logical approach is to
extract the user’s contour, which we perform by the pixel sweep technique discussed in
Chapter 5. The resulting contour information, shown in Figure 6.4, is sufficient to
interpret the action of lowering the volume. However, a more complex scheme may be

required for actions involving a more complex set of feature elements.

(@ )
Figure 6.4 — Contour tracing, (a) cropped version of difference image,
(b) pixel sweep from top to bottom. *Note that these images have been cropped manually
so that the pixel sweep is clearly visible.
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Using the pixel sweep contour, pertinent feature information including points such as the
angles formed at the elbows, can be obtained through polygonal approximation.
Tracking endpoints such as the hands and feet could also be accomplished by first noting
their location during a robust pose, for example, with the user’s arms, legs, and body
forming an “X”" shape. Keeping a record of the position and velocity of these features
over time is important, in order to cope with tracking problems, for instance, when the
user’s hand is swept in front of the body. In such a case, the contour-tracing algorithm
would lose one of the user’s arms. This problem helped inspire the second segmentation
algorithm, described in the following section.

The background removal segmentation scheme described here proves efficient at
locating the user, segmenting, and extracting feature information to be used for action
recognition. However, the restriction of a static background is a severe drawback that
precludes a general purpose application. As discussed in Chapter 3, there are various
methods for reducing ghosting effects due to the movement of small objects. However, if
the scene change is dramatic, this algorithm will breakdown. Ideally, we seek an
algorithm that needs minimal a priori knowledge of the scene and imposes no restrictions

on the background. This leads to the second algorithm, based on skeletal attraction.

6.3  Skeletal Attraction
To avoid the need for background construction and remove the restriction of a stationary
camera, we begin with a temporal rather than spatial approach to segmentation. Thus,

subtracting image (t) from image (¢+/) produce the binary image, as shown in Figure 6.5.



(a) (b)

Figure 6.5 Temporal Differencing, (a) Original image,
(b) Difference image resulting from small movement of the user.

The horizontal and vertical lines represent the maxima of the horizontal and vertical

histograms, respectively.

The candidate pixels in the difference image now denote a change in the scene over a
small period of time, as opposed to a difference from the background. Since all actions
involve a sequence of different poses over time, this approach seems well suited for
action recognition. Next, the binary image is enhanced by an erosion to eliminate stray
pixels. At that point, we are ready to isolate key features.

This step requires the use of a virtual skeleton, possibly initialized by the user
standing in a pre-determined pose (ie. with the hands and feet extended in the shape of
the letter “X”). Once initialized, the virtual skeleton would be maintained by deforming
the joints in accordance with the user’s movements (see Figure 6.6). This could be
accomplished in a manner akin to snakes, in which the joints are attracted to areas of high

energy, corresponding to motion in the binary image.
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Figure 6.6 — Skeletal Attraction (a) Gray region denotes initial user position,

(b) Gray region denotes motion, (c) no motion

In this case, feature elements would be much easier to quantify, as the shape and
proportions of the skeleton are pre-defined. This method would also assist in determining
the location of feature elements when the user’s hand is swept in front of the body.
While the earlier background removal algorithm would fail in this situation, the skeletal
attraction scheme would create a potential motion region in front of the user’s body, thus
allowing the virtual skeleton to follow the hand’s position.

In order to implement this algorithm successfully, two important challenges must
be addressed. First, some mechanism is needed to differentiate motion due to the user
from that due to background changes. Certainly, simple segmentation techniques offer a
reasonable approximation, but more accurate methods are called for. Second, a scheme is
required for controlling the movement about each of the joints, while restricting their
movement to physically realizable poses. It is believed that progress can be made fairly
quickly and foresee this algorithm proving itself to be of significant relevance and

applicability due to its simplicity and lack of restrictions on the background.
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6.4 Conclusions

In reviewing both existing and new image processing tools for segmentation, a few key
points have been discovered. In order to construct a reasonable action feature vector,
specific parts of the body must be tracked, both spatially and temporally. Using a
combination of filters and contouring techniques appears logical to aid in the location of
the user. However, the choice of algorithms must be chosen with utmost care. If vision
algorithms are to be applied successfully outside of the laboratory environment, they
must not be encumbered by unrealistic restrictions. Furthermore, the algorithms must be
sufficiently robust enough so as to cope with a wide variety of scenarios without manual
tuning.

The background removal scheme proposed provides a high degree of robustness.
The feature vectors are quite easily calculated from the resulting binary image, which is
the prime goal of the algorithm. However, the restrictions that accompany such an
algorithm may be too detrimental for use outside the laboratory environment. Requiring
both a stationary camera and more importantly a static background, this approach is
significantly limited. Also, adding the constraint on the user as to the color of clothing
they may wear further hinders this approach.

The second algorithm proposed seems to hold promise, providing both robustness
in dynamic environments, as well as accurately identifying key features of the user.
Combining this method with a color matching step, identifying skin tones in UV space,
may provide an added level of stability to this algorithm in situations where the binary

image becomes saturated due to camera motion, or sudden changes to the background.



In the future, multimodal interfaces incorporating gesture and speech are likely to
augment, if not replace the keyboard and mouse. With speech recognition well on its
way to maturity, action recognition must make up for lost time, and provide algorithms

that may be adopted in real world, general-purpose settings.
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