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ABSTRACT 

 

Limei Chen                       M.Sc. (Bioresource Engineering) 

 

Non-destructive Measurement of Tomato Quality using Visible and 

Near-infrared Reflectance Spectroscopy 

 

Experiments were conducted to assess the feasibility of determining the quality 

attributes of tomato (Lycopersicon esculentum Mill cv ‗DRK 453‘ and ‗Trust‘) based 

upon visible/near-infrared reflectance (VIS/NIR) spectroscopy. A partial least squares 

regression (PLS) method was used to build prediction models.  

Excellent prediction performance was achieved for lycopene content (LC), 

colour value a*/b* ratio, tomato colour index (TCI), and firmness. Coefficient of 

determination (R
2
) for each of the parameters was respectively 0.96, 0.99, 0.99, and 

0.97. All these R
2 

were significant at 1% level. The root mean square errors of 

prediction (RMSEP) for all the parameters were low indicating the high quality of the 

fit of the prediction models. The values were 2.15, 0.06, 1.52, and 1.44 for LC, a*/b* 

ratio, TCI, and firmness, respectively. However, the models for prediction of titratable 

acidity, soluble solids content (SSC) and acid-Brix ratio showed relatively poor 

reliability, with R
2
 value of 0.49, 0.03 and 0.65, and RMSEP of 0.43, 0.15 and 0.08, 

respectively.  

Further, a model built by the PLS2 method showed good performance in 

simultaneously predicting a*/b* ratio, TCI, firmness, and LC of tomato, with R
2
 

values of 0.99, 0.99, 0.97, and 0.92, and RMSEP of 0.06, 1.75, 1.44, and 3.03, 

respectively. Once again here all the R
2
 values were significant at 1% level. 

 

 

 



 ii 

RÉSUMÉ 

 

Limei Chen                       M.Sc. (Génie des Bioressources) 

 

Évaluation non destructive de la qualité de la tomate par 

spectroscopie de réflectance dans le visible et le proche infrarouge 

 

 Des essais visant à évaluer la faisabilité d'utiliser la spectroscopie de 

réflectance dans le visible et le proche infrarouge (VIS/PIR) pour déterminer certaines 

caractéristiques contribuant à la qualité de la tomate (Lycopersicon esculentum Mill. 

cv. ‗DRK 453‘ et ‗Trust‘) ont été menés. Une analyse de régression partielle par les 

moindres carrés a servi à bâtir des modèles de prédiction. 

D'excellentes prédictions ont été obtenues pour la teneur en lycopène (TL), la 

valeur chromatique a*/b*, l'indice de couleur de la tomate (ICT), et la fermeté. Les 

coefficients de détermination (R
2
) pour chacun de ces paramètres ont été de 0.96, 0.99, 

0.99 et 0.97. Tous ces R
2 

ont été significatifs à un niveau de 1%. L'erreur-type de 

prédiction (ETP) a été petite pour tous ces paramètres, indiquant un très bon degré 

d'ajustement des modèles. Des valeurs d'ETP de  2.15, 0.06, 1.52 et 1.44 ont 

respectivement été obtenues pour le TL, le rapport a*/b*, l'ICT, et la fermeté. 

Cependant, les modèles visant à prédire l'acidité totale, la teneur en solides solubles et 

le rapport acide-Brix se sont montrés peu fiables avec des valeurs respectives de R
2
 de 

0.49, 0.03 et 0.65 et de ETP de 0.43, 0.15 et 0.08. 

De plus, un modèle multivariable bâti par une méthode de régression partielle 

par des moindres carrés (PLS2) s‘est montrée très performant pour la prédiction 

simultanée du rapport a*/b*, de l'ICT, de la fermeté et de la TL avec des valeurs 

respectives de R
2
 de 0.99, 0.99, 0.97 et 0.92 et de ETP de 0.06, 1.75, 1.44 et 3.03. 

Comme auparavant toutes les valeurs de R
2
 ont été significatives à un niveau de 1%. 
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CHAPTER I 

GENERAL INTRODUCTION 

1.1 Introduction 

Tomato (Lycopersicon esculentum Mill.) is one of the most widely produced 

fruits in the world. In 2007, world production of tomato was 126 Tg (FAOSTAT). The 

production quantities of all continents and countries with over 5 Tg are shown in Table 

1.1. Tomato is considered high nutritional food because it is low in fat, calories and 

cholesterol-free, and rich in vitamins A and C. Additionally, tomato is also important 

sources of phytochemicals such as carotenoids, mainly lycopene and β-carotene. 

Many studies have shown that lycopene may have a protective effect against 

carcinogens in the liver, brain, colon, breast, cervix and prostate, therefore preventing 

or delaying certain types of cancer (Bramley, 2000). In addition, lycopene has a 

preventive effect against coronary heart disease (Manson et al., 1993). 

With such intensive tomato production, it is important to develop efficient 

analytical methods for quality evaluation and sorting. Visible/near-infrared (VIS/NIR) 

reflectance spectroscopy has been established as a non-destructive analytical technique 

for determining chemical constituents and quality parameters in many agricultural 

produces and transformed products. It is gaining attention in the field of postharvest 

quality evaluation of fruits, owing to its many distinct advantages of 

non-destructiveness, quick measurement time, simplicity of sample preparation, 

chemical-free measurement, and simultaneous measurement of multiple attributes. 

Although several studies have investigated the application of VIS/NIR 

spectroscopy to the evaluation of tomato fruit and produce quality, few of these have 

achieved good results in terms of predicting lycopene content and firmness. 

 

1.2 Hypothesis 

It is hypothesized here that tomato properties, including lycopene content, 

acidity, soluble solids content, colour, and firmness, can be quantified using VIS/NIR 
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spectroscopy and chemometric analysis. The NIR spectroscopic method is rapid, 

non-destructive and requires no hazardous chemicals. Hence, developing a new assay 

based upon VIS/NIR spectroscopy is very important in the fields of food analysis and 

postharvest technology. 

 

1.3 Objectives 

1. To study the feasibility of determining quality attributes of intact tomato fruits 

based upon VIS/NIR reflectance spectroscopy; 

2. To establish calibration models for predicting physico-chemical properties of 

tomato, including lycopene content, titratable acidity, soluble solids content, 

colour, and firmness. 

 

Table 1.1: Tomato production quantity of continents and countries (over 5 Tg) in 

2007  

Continent Production Quantity (Tg) Country Production Quantity (Tg) 

Asia  67.65  

China 33.50  

Turkey 9.92  

India 8.59  

Iran 5.00  

        

America 22.88  USA 11.50  

        

Europe  20.50  Italy 6.03  

        

Africa  14.51  Egypt 7.55  

        

Oceania  0.56    

      

Total  126.10      

(Source: FAOSTAT) 
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CHAPTER II 

 LITERATURE REVIEW 

Discovery of the near-infrared (NIR) spectrum was reported in 1800 by 

William Herschel during his measurements of the heat energy of solar emissions 

beyond the red portion of the visible spectrum (Davies, 2000). However, it is only 

since 1970 that NIR technology has progressed rapidly, owing to the development of 

modern instruments. VIS/NIR spectroscopy has recently become an increasingly 

important non-destructive analytical technique in food science. VIS/NIR spectroscopy 

has many advantages over chemical and other instrumental methods of food analysis. 

Its quick response time, the simplicity of sample preparation, chemical-free and 

non-invasive measurement, easy use in process control and grading systems, and 

simultaneous measurement of multiple attributes have made this technique expand 

into the field of food production and processing where frequent food quality 

evaluation is necessary. However, there are also some disadvantages to NIR 

spectroscopy which limit its application in food science. For instance, the price of NIR 

instruments is high, model building linking VIS/NIR spectra and quality attributes is 

complicated, such models are usually only used for a limited time, and little research 

has been made on model transfer. Although numerous studies have investigated the 

application of VIS/NIR spectroscopy within the food industry, much more exploration 

is needed to overcome limitations to its practical application. 

Grown worldwide, tomato (Lycopersicon esculentum Mill.) is a well-known, 

and highly nutritious fruit. In 2007, world production was 126 Tg (FAOSTAT), most 

of which was processed into products, such as ketchup, tomato sauce and tomato juice, 

but a significant volume was still sold fresh. Given the magnitude of tomato 

production, the use of NIR spectroscopy for measuring the quality of tomato has been 

a matter of serious consideration.  

In light of the above, this chapter reviews VIS/NIR spectroscopy, 

chemometrics, application of NIR spectroscopy and quality attributes of tomatoes. 
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2.1  Principles of VIS/NIR spectroscopy 

2.1.1 Chemical principles 

The near-infrared spectrum is located between the infrared and the visible 

range covering the region of the electromagnetic spectrum from 750 to 2500 nm 

(Figure 2.1). The impact of NIR region on matter involves the response of O-H, N-H, 

C-H, and S-H molecular bonds. When organic molecules are irradiated with NIR 

frequencies, these bonds are subject to vibrational energy changes. The NIR 

absorption of polymers originates from the overtones and combination tones of these 

bonds‘ stretching vibrations and stretching-bending combinations. Thanks to modern 

instrumentation, it is possible to explain the NIR spectra by assignment of the 

positions of the bands to bonds involving hydrogen. The absorption intensity 

decreases as the overtone increases. Large numbers of overtones and combination 

bands result in broader and weaker NIR bands compared to mid-infrared bands. 

However, it may be difficult to assign NIR bands because of the overlapping of bands 

and complicated combinations of vibrational modes. VIS/NIR spectroscopy has a 

number of advantages when a precise and proper spectral analysis of VIS/NIR spectra 

is made. For example, it is quick, suitable for non-destructive analysis, and it allows 

multiple analyses relating to different properties from a single scan.  

 

 

(Photo: http://www.baylor.edu/bucas/index.php?id=37025) 

Figure 2.1: Light spectrum showing the VIS/NIR region 

 

 

 

http://www.baylor.edu/bucas/index.php?id=37025
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2.1.2 Physical principles 

When radiation interacts with a sample, the incident radiation will be remitted, 

absorbed or transmitted, and the relative contribution of each phenomenon depends on 

the chemical constitution and physical parameters of the sample. The remission is 

considered to have two elements: (i) reflection (either specular or diffuse) induced by 

the surface of the sample, and (ii) scatter resulting from multiple refractions at phase 

changes inside the material. The cell wall interfaces which induce abrupt changes in 

refractive index are the main elements of scatter in fruit and vegetables (McGlone et 

al., 1997). 

 

2.2  NIR Instrumentation 

2.2.1 NIR Spectrometers 

An NIR spectrometer consists of a light source (usually a tungsten halogen 

lamp), sample presentation accessory, monochromator, detector, and optical 

components, such as lenses, collimators, beam splitters, integrating spheres and 

optical fibers.  

According to the type of monochromator, spectrometers are classified as diode 

instruments, such as emitting diode arrays (EDA), photodiode detector arrays (PDA) 

and laser diode spectrometers; filter instruments, including fix-filter, 

wedge-interference filter, tilting-filter, acousto-optical tunable filter (AOTF), and 

liquid crystal tunable filter (LCTF) spectrometers; scanning monochromator 

instruments in which gratings or prisms are used to separate the frequencies, 

producing spectra with equally spaced data across the full range from 750 to 2500 nm; 

Fourier transform NIR (FT-NIR) spectrometers using an interferometer to generate 

modulated light, where the time domain signal of the light reflected or transmitted by 

the sample onto the detector can be converted into a spectrum via a fast Fourier 

transform; and Hadamard-transform spectrometer. The most popular detectors are lead 

sulfide (PbS)-, indium gallium arsenide (InGAS)-, and silicon-based devices.  
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2.2.2 Trends 

Because of their high acquisition speed and operation without moving parts, 

which enables them to be mounted on fruit grading lines, there is a clear trend towards 

PDA systems in which a fixed grating focuses the dispersed radiation onto an array of 

silicon (350-1100nm) or InGAS (1100-2500nm) photodiode detectors,. Compact 

portable and hand-held instruments continue to attract attention. In Japan, the Kubota 

and FANTEC companies have developed a series of portable instruments to measure 

the properties of many kinds of fruits, such as apple (Malus domestica Borkh.), orange 

(Citrus sinensis (L.) Osbeck), peach (Prunus persica (L.) Batsch), melon (Cucumis 

melo L.) and watermelon (Citrullus lanatus (Thunb.) Matsum. & Nakai) in the field. 

Saranwong et al. (2003a) used the FT20, a portable device from FANTEC company, 

to determine the sugar value of mangoes (Mangifera indica L.) and obtained a result 

of standard error of prediction (SEP)=0.40 and R=0.98 which was similar to the 

research-grade NIRS6500 (FOSS). A European consortium of research institutes 

created a portable glove-shaped apparatus which was equipped with various 

miniaturized sensors for measuring soluble solids content (SSC), internal colour and 

maturity (Hernandex Sanchez et al., 2003). Other applications of portable devices 

have been studied by Walsh et al. (2000), Temma et al. (2002a), Miller and 

Zude-Sasse (2004), and Zude et al. (2006). As there is a bright future for applications 

of portable devices, more research is required in this area. 

2.2.3 Measurement setup 

Three measurement setups are predominantly used to obtain NIR spectra: 

reflectance mode, transmittance mode and interactance mode. Since penetration of 

NIR radiation into product tissue decreases exponentially with depth (Lammertyn et 

al., 2000), it is important to choose the measurement configuration. Fraser et al. (2001) 

found a penetration depth of at least 25 mm in the 700-900nm range, but less than 

1 mm in the 1400-1600 nm range. Later, they found that the skin was the main 

obstacle for light penetration when they evaluated the quality of mandarin (Citrus 

reticulata) fruit (Fraser et al. 2003). Compared to reflectance mode and interactance 

mode, transmittance mode carries information about the core of the product.  

http://en.wikipedia.org/wiki/L.
http://en.wikipedia.org/wiki/Osbeck
http://en.wikipedia.org/wiki/Carolus_Linnaeus
http://en.wikipedia.org/wiki/August_Batsch
http://en.wikipedia.org/wiki/Carolus_Linnaeus
http://en.wikipedia.org/wiki/Carl_Peter_Thunberg
http://en.wikipedia.org/wiki/Ninzo_Matsumura
http://en.wikipedia.org/wiki/Takenoshin_Nakai
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2.3  Chemometrics 

Due to the large amount of information hidden in NIR spectral data and the 

fact that it is difficult to assign specific absorption bands to specific functional groups, 

multivariate statistical techniques (also called chemometrics) are required to extract 

the information. Chemometrics in NIR spectroscopy analysis includes three aspects 

including spectral preprocessing, calibration model building and model transfer. 

2.3.1 Spectral preprocessing  

The data acquired from a NIR spectrometer contain irrelevant information 

such as scattering effects, instrumental noises and so on, which have no bearing on 

sample-related parameters. Spectral preprocessing is used to remove this information 

so that regression techniques can properly handle the data and generate reliable and 

accurate calibration models. Several methods have been developed for this purpose, 

such as smoothing, multiplicative scatter correction (MSC) transformation, standard 

normal variate (SNV) transformation, and derivative (Naes et al., 2004). Several 

smoothing techniques have been proposed to remove random noise from NIR spectra, 

including moving average and Savitzky-Golay algorithm (Naes et al., 2004). MSC is 

used to compensate for additive (offset shifts) and/or multiplicative (amplification) 

effects in spectral data; moreover, a number of similar effects can be successfully 

treated with MSC, such as path length problems, interference, etc. Extended 

multiplicative scatter correction (EMSC) works in a similar way; in addition, it allows 

compensation for wavelength-dependent spectral effects, such as chemical 

interference effects (Martens and Stark, 1991). The results of SNV are similar to those 

of MSC. The practical difference is that SNV standardizes each spectrum using only 

the data from that spectrum. The choice between SNV and MSC is a matter of taste. 

The derivative process attempts to correct for baseline effects in spectra. The 

Savitzky-Golay method is the most frequently used algorithm to do derivation, and 

first- and second-order derivatives are most popular. In food analysis, many 
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calibration models of NIR spectra obtained from the derivative method gave good 

results (Lammertyn et al., 1998). 

2.3.2 Calibration models  

Recently, most calibration models have been built by multivariate regression 

techniques trying to establish a relationship between Y-variables and X-variables. In 

spectroscopy, the X- and Y-variables can be denoted as spectra and quality attributes 

of interest. A good regression model should extract all the relevant information from 

the spectra, and avoid over fitting. There are a variety of approaches to multivariate 

regression, in which multiple linear regression (MLR), principal component 

regression (PCR) and partial least squares regression (PLS) are the main used 

methods.  

MLR is a method used for relating the variations in a Y-variable to the 

variations of several X-variables. MLR is applied when the number of X-variables is 

smaller than the number of samples, and the X-variables are linearly independent. 

However, due to the high collinearity of the NIR spectra, MLR models usually do not 

perform well (Naes et al., 2004). PCR is a two-step method, which first performs a 

principal component analysis (PCA) on the X-variables and then uses the principal 

components (PCs) as predictors in a MLR. PLS carries out both the X- and Y-matrices 

simultaneously to find the latent variables in X which will best predict the latent 

variables in Y. These latent variables are referred to as PLS-components (PCs). The 

PCs are ordered according to their significance for predicting the Y-variables, so the 

first PC is the most relevant, the second the next most relevant, and so on. PLS1 and 

PLS2 are two type methods of PLS, the difference being that PLS1 predicts one 

Y-variable at a time while PLS2 predicts several Y-variables simultaneously. However, 

if the Y-variables are independent, PLS1 may provide better prediction (Wold et al., 

2001). PCR and PLS1 are the methods most frequently chosen when strong 

collinearity exists in X-variables, when there is noise in the data, or when there are 

numerous X-variables, which is the case for NIR spectral data. With respect to PLS1 

and PCR, PLS1 usually gives results similar to those of PCR, but uses fewer PCs. 

2.3.3 Models transfer  
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The reliability of property measurement by NIR spectroscopic method depends 

on the calibration model, however the model accuracy might dramatically decrease 

when using a different instrument. It is important to share model libraries and realize 

the model transfer to improve the practical application of NIR technology. Several 

transfer techniques (also known as instrumental standardization) have been reported 

and discussed. Sjoblom et al. (1998) reported that better results were obtained with 

orthogonal signal correction (OSC). While Greensill et al. (2001) compared a number 

of techniques for calibration model transfer between diode array systems, including 

piecewise direct standardization (PDS), OSC, finite impulse response technique, 

model updating and a wavelet transform-based standardization technique (WT). The 

best performance was obtained after transformation by WT and model updating. 

Although there are many methods for calibration model transfer, the accuracy of 

transferred models cannot reach the level of the original models. 

 

2.4  Application of VIS/NIR spectroscopy in quality analysis of 

horticultural produce  

Since the 1990s, a number of studies have measured the quality attributes of 

fruits and vegetables using VIS/NIR spectroscopy. However, most research has been 

carried out on fruits such as apple and mandarin, and only a few reports have focused 

on vegetables. With respect to the attributes of interest in produce, most papers 

focused on soluble solids content, and other characteristics such as firmness, pH, 

acidity, colour, dry matter, chemical content, and maturity. 

2.4.1 Application to apples 

Many studies (Moons et al., 1997; Cho et al., 1998; Lammertyn et al., 1998; 

Ventura et al., 1998; Lu et al., 2000; Peirs et al., 2000, 2001, 2002, 2003a, 2003b, 

2005; McGlone et al., 2002a, 2003b, 2005; Temma et al., 2002a, 2002b; Clark et al., 

2003; Park et al., 2003; McGlone and Martinsen, 2004; Walsh et al., 2004; Liu and 

Ying, 2005; Liu et al., 2006; Xing et al., 2006; Xing and De Baerdmaeker, 2007) have 

reported the determination of different attributes of apples.  



 10 

For SSC, the reported root mean square error of prediction (RMSEP) were 

mostly in the range of 0.4-0.7% Brix. Liu and Ying (2005) generated models which 

gave a RMSEP of 0.0043 and 0.0678 for titratable acidity (TA) and pH respectively. 

As for firmness, Moons et al. (1997) and Lu et al. (2000) both reported poor accuracy, 

whereas Park et al. (2003) obtained relatively better results for firmness of apples 

(SEP=7.02, R
2
=0.786). Peirs et al. (2000) found a method to predict the maturity of 

apples, with their best model having an r of 0.90 and SEP of 7.4 days. Xing and De 

Baerdmaeker (2007) obtained an accuracy of over 95% in detecting bruise spots on 

the surface of apples. Clark et al. (2003) detected brown hearts in ―Braeburn‖ apples 

using NIR spectroscopy with R
2
 values ranging from 0.69 to 0.91 and RMSEP from 

7.9% to 15.4%.  

2.4.2 Application to tomatoes and its products 

With respect to the non-destructive analysis of quality of tomatoes and tomato 

products, some papers have been published (Slaughter et al., 1996; Hong and Tsou, 

1998; Goula and Adamopoulos, 2003; Jha and Matsuoka, 2004; Khuriyati et al., 2004; 

Pedro and Ferreira, 2005, 2007; Baranska et al., 2006; Shao et al., 2007; Clement et al., 

2008).  

The model developed by Slaughter et al. (1996) predicted SSC of intact 

tomatoes by VIS/NIR interactance mode, with r=0.89 and SEP=0.33 ºBrix. Hong and 

Tsou (1998) reported calibration models, obtained by using second derivative 

preprocessing and the MLR method, to predict total soluble solids (TSS), TA and 

colour (a/b) of tomatoes with SEP values of 0.34, 0.06 and 0.09 and R
2
 of 0.96, 0.94 

and 0.98, respectively. Goula and Adamopoulos (2003) studied NIR spectroscopic 

methods to measure the percent moisture, sugars, acidity, proteins and salts of tomato 

juice; the best model, established using MLR, gave correlation coefficients for all 

parameter over 0.95. Jha and Matsuoka (2004) developed a calibration model to 

predict acid-Brix ratio (ABR) in tomato juice using PLS over wavelengths ranging 

from 1059.5 to 1124.8 nm. The model with the best performance had SEP and r value 

of 0.009 and 0.92, respectively. A good prediction of the dry matter of tomato was 

obtained (SEP=0.36 and R
2
=0.96) by Khuriyati et al. (2004). Pedro and Ferreira (2005) 
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presented a nondestructive method for determining total solids, SSC, lycopene content 

and β-catotene content of tomato concentrate products. A splitting approach for 

spectra selection, MSC pretreatment and PLS were applied to achieve optimal 

prediction abilities, with RMSEP and r values for total solids 0.4157, 0.9998; SSC 

0.6333, 0.9996; lycopene 21.5779, 0.9996; β-carotene 0.7296, 0.9981, respectively. In 

2007 they studied the feasibility of calibrating different properties of tomato products 

by PLS2. They established a very good model to predict four properties — total solids, 

total sugars, glucose and fructose — with resulting SEP of 2.67, 18.69, 11.60, and 

13.45, respectively. Baranska et al. (2006) compared FR-Raman, ATR-IR and NIR 

spectroscopy methods for measuring lycopene and β-carotene content in tomatoes and 

tomato products. The best prediction of quality was achieved using IR spectroscopy. 

Shao et al. (2007) evaluated the application of NIR in measuring the quality 

characteristics of ―Heatwave‖ tomatoes, including SSC, pH and firmness [indicated by 

compression force (Fc) and puncture force (Fp)]. The RMSEP and r value obtained 

were 0.19% Brix and 0.90, 0.09 and 0.83, 16.017N and 0.81, and 1.18N and 0.83, for 

SSC, PH, Fc
 
and Fp

 
respectively. Clement et al. (2008) proposed an approach of factor 

analysis to evaluate the ripening and taste of tomatoes. A new variable, called ―tomato 

maturity stage (TMS)‖, which is related to colour, lycopene content, firmness, TA, pH, 

and SSC was proposed. The regression model to predict TMS was obtained with an 

RMSEP of 0.259 and R
2
 of 0.93. They also presented a model to discriminate varieties 

of pink tomato types and field-grown tomatoes from other varieties. However, they 

found it impossible to measure the gustatory index which is linked to electrical 

conductivity (EC), SSC, TA, and pH by VIS/NIR spectroscopy. 

 

2.5  Tomato 

Tomato (Lycopersicon esculentum Mill.) is a tropical fruit native to Central, 

South, and southern North America from Mexico to Peru. It is now grown worldwide 

with thousands of cultivars and it is the second most consumed culinary vegetable in 

the world after potato (Solanum tuberosum L.) (Gould, 1992). Tomatoes are 

http://en.wikipedia.org/wiki/Central_America
http://en.wikipedia.org/wiki/South_America
http://en.wikipedia.org/wiki/North_America
http://en.wikipedia.org/wiki/Mexico
http://en.wikipedia.org/wiki/Peru
http://en.wikipedia.org/wiki/Cultivar
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considered a highly nutritional food because they are low in fat, calories and 

cholesterol. Additionally, they are rich in vitamins A and C, lycopene, β-carotene 

(Mangels et al., 1993) and other antioxidants (Davies and Hobson, 1981). 

The fruit is mainly composed of water, soluble solids (SS), insoluble solids, 

organic acids, micronutrients. Soluble solids are mainly sugars, including equal 

amounts of glucose and fructose with a small amount of sucrose, and minerals (mainly 

K, Ca, Mg and P). Insoluble solids are mainly constituted of fibers, like 

hemicelluloses, celluloses and pectins. Usually tomato presents 4.5-8.5% total solids 

which include soluble and insoluble solids, excluding seeds and skin (Gould, 1992). 

Titratable acids are composed primarily of organic acids, such as citric and malic acid. 

Micronutrients include vitamins, phytochemicals, etc.  

2.5.1 Quality of tomatoes 

Tomato maturity is usually assessed by fruit colour, firmness and flavour 

(Dorais et al., 2001; Batu 2004). Fruit colour is probably the most important attribute 

that determines overall quality. The maturity of tomatoes are traditionally classified 

in six stages based on the external colour change of the fruit from green to red, which 

are mature-green, breaker, turning, pink, light-red and red-ripe. Colour evolution 

during fruit ripening is mainly related to the breakdown of chlorophyll and synthesis 

of lycopene, which is responsible for the red colour and constitutes 75-83% of the 

total pigment content at full ripeness, whereas β-carotene occupies only 3-8.4% of 

total carotenoids (Gould, 1992; Abushita et al., 1997; Raffo et al., 2002). The colour 

is strongly dependent on cultivar and storage conditions (López et al., 2003). Gómez 

et al. (2001) also found that the a*/b* ratio was better than a* in distinguishing 

varieties.  

Besides colour, firmness is one of the most important quality attributes to 

consumers (Tijskens & Evelo, 1994). Marketable fruits should have firmness values 

above 1.45 N mm
-1

 (Batu, 2004). The exact molecular changes that lead to fruit 

softening are still unknown. However, it is known that number of cell wall hydrolytic 

enzymes contribute to tissue softening and lessening of intercellular adhesion (Fisher 

and Bennett, 1991).  
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The SS and TA are important components of flavour. Fruits high in both acids 

and sugars have excellent flavour, while tart fruits have low sugar content and bland 

fruits have low acidity. The large variation in acid content has a much greater impact 

on tomato flavour than the limited variation in sugar content (Saltveit, 2005).  

2.5.2 Importance of tomato phytochemicals in human health 

Phytochemicals, also known as phytonutrients, are non-nutritive plant 

chemicals which are associated with the prevention of certain chronic diseases, 

including cardiovascular diseases, cancers, diabetes, osteoporosis and vision diseases. 

Phytochemicals contained in tomatoes are mainly carotenoids, of which lycopene 

predominantly contributes and also there is also a small amount of β-carotene. 

Lycopene is a red carotenoid mainly found in tomato, watermelon and other 

red fruits, and it has been recognized as the most effective carotenoid. It has attracted 

attention due to its effect as a natural antioxidant. Many studies have shown that 

lycopene might have a protective effect against many types of cancer, such as liver 

cancer, breast cancer, cervical cancer and prostate cancer (Clinton, 1998; De Stefani et 

al., 2000). In addition, lycopene has a preventive effect against coronary heart disease 

(Manson et al., 1993). β-carotene has the highest provitamin A activity. In addition, 

hundreds of studies have shown that β-carotene may decrease risks of cancer and heart 

disease (Ziegler, 1991). 

2.5.3 Non-destructive methods for measuring tomato quality 

Many studies have proposed non-destructive methods for measuring internal 

quality of fruits and vegetables. Most technologies are focused on spectroscopy and 

spectroscopic imaging, including nuclear magnetic resonance (NMR), Raman 

spectroscopy, fluorescence spectroscopy, magnetic resonance imaging (MRI), 

laser-scattering imaging, etc. 

Many studies have used NMR spectroscopy to determine of quality attributes 

of tomato fruit, such as firmness and ripeness (Chen et al., 1989; Stroshine et al., 1991; 

Kim et al., 1994). MRI, based on the principles of NMR, has been used to monitor 

fruit maturity and detect internal defects of tomatoes (Ishida et al., 1989; Pech et al., 

1990; Saltveit, 1991). Baranski et al. (2005) illustrated Raman spectroscopy and 
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showed that Raman mapping could be used to measure the carotenoid distribution and 

content in tomatoes. Lai et al. (2007) showed the feasibility of using fluorescence 

spectroscopy and imaging to identify pigments involved in ripening, thereby detecting 

the stage of maturity and fruit damage. Tu et al. (2000) reported that a laser-scattering 

image system has the potential to evaluate the ripeness of tomatoes.  

Besides spectroscopic methods, other technologies have also been studied. 

Gómez et al. (2006) evaluated the capacity of an electronic nose to monitor the change 

in volatile production associated with ripeness states for tomato and found that it was 

possible to differentiate and to classify the different tomato maturity states by this 

technology. Schotte et al. (1999) studied the acoustic impulse-response technique to 

evaluate firmness of tomatoes. 

 

2.6 Conclusion 

Application of NIR spectroscopy as a non-destructive analysis method has 

shows great promise in the field of food analysis which includes quality evaluation of 

fresh fruits and vegetables. The survey of literature reveals that most research on 

evaluating quality of horticultural produce by this technology has focused on 

measurement of SSC of fruits, especially apples. However, limited studies have 

examined the feasibility of using NIR spectroscopy to assess quality of tomato, one of 

the most widely produced and consumed fruits. Hence, it is of great interest to study 

the possibility of using this method to measure important characteristics of tomatoes, 

including SSC, TA, lycopene content, firmness and colour.  
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CHAPTER III 

 ASSESSMENT OF LYCOPENE, ACIDITY AND SOLUBLE 

SOLIDS CONTENT OF TOMATOES THROUGH VIS/NIR 

SPECTROSCOPY  

 

3.1 Abstract 

Non-destructive models based on visible/near-infrared (VIS/NIR) reflectance 

spectroscopic technique have been evaluated for predicting physiological properties of 

two varieties of tomatoes (Lycopersicon esculentum Mill cv. ‗DRK 453‘ and ‗Trust‘), 

including lycopene content, soluble solids content (SSC), titratable acidity (TA) and 

acid-Brix ratio (ABR). Partial least squares (PLS) regression analysis was performed 

on the spectral data to build prediction models. Various spectral windows within the 

400-2350 nm spectral range and pre-processing methods including multiple scatter 

correction (MSC) and Savitzky-Golay first derivative were assessed in optimizing the 

model for each parameter. Excellent prediction performance was achieved for 

lycopene content, which was R
2
=0.96 and root mean square error of prediction 

(RMSEP)=2.15 mg kg
-1

. The models of TA (RMSEP = 0.43 mg ml
-1

, R
2
 = 0.49), SSC 

(RMSEP = 0.15 ºBrix, R
2
 = 0.03) and ABR (RMSEP = 0.08, R

2
 = 0.65) gave 

relatively poor reliability. 

 

3.2 Introduction 

Tomato is one of the most widely produced and consumed fruits in the world. 

In 2007, world production of tomato was 126 Tg (FAOSTAT), most of which was 

processed into products such as ketchup, tomato sauce and tomato juice, though a 

significant volume was sold fresh. Tomatoes are favored by many people because they 

are low in fat, calories, cholesterol-free, and tasty. Additionally, the tomato is rich in 

vitamins A and C, lycopene, β-carotene (Mangels et al., 1993) and other antioxidants 
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(Davies and Hobson, 1981). 

Maturity of tomatoes is usually assessed by their colour, firmness and flavor 

(Dorais et al., 2001; Batu, 2004). However, at present tomatoes are sorted mostly 

based on their external appearance, such as size, colour and surface defects (Abbott, 

1999). Beyond these organoleptic parameters, flavour and nutritional attributes of 

tomatoes should also be included, such as soluble solids content, acidity and lycopene 

content for evaluation.  

Several studies have found that content of sugar, acids and their interactions 

were highly related to flavour quality of tomatoes (Stevens et al., 1979; Hobson and 

Bedford, 1989). Simandle et al. (1966) reported that taste panel scores were correlated 

with SSC in tomatoes. According to Jones and Scott (1983), tomato flavour could be 

improved by increasing SSC and acidity. SSC is traditionally determined by 

refractometry, while acidity is usually measured by titration using phenolphthalein as 

indicator. These standard analytical methods are destructive and are not applicable to 

continuous systems. 

Lycopene, the major carotenoid of ripe tomato fruit, has been found to be 

largely responsible for tomato‘s beneficial health effects (Gerster, 1997; Rao and 

Agarwal, 1999). Lycopene acts as a potent antioxidant to protect cells against 

oxidative damages and thereby decreasing the risk of chronic diseases (Rao and 

Agarwal, 1999). In addition, many studies have indicated that lycopene may have a 

protective and preventive effect against many types of cancer, such as prostate, breast, 

cervical and liver cancer (Gerster, 1997; Clinton, 1998; De Stefani et al., 2000) and 

coronary heart disease (Manson et al., 1993). Beyond its organoleptic role, lycopene 

could also be seen as a nutraceutical component of tomato. Therefore its concentration 

in tomatoes could be used in the evaluation and sorting processes. Conventional 

quantification methods for lycopene are usually laborious, require destructive 

sampling and employ hazardous organic solvents (Adsule and Dan 1979; Fish et al., 

2002). Consequently it would be advantageous to develop a non-destructive and quick 

method to assess the lycopene content of tomatoes. 

Since its introduction in the early 1970s, the use of near-infrared (NIR) 



 17 

spectroscopy as a non-destructive analytical technique has progressed rapidly in a 

number of fields. Its rapid adoption owes much to its distinct advantages: quick 

response time, simplicity of sample preparation, chemical-free measurement, and 

simultaneous measurement of multiple attributes. Food chemistry has greatly 

benefited from these developments which allow the determination of a series of 

properties, such as soluble solid content (SSC), acidity and dry matter, in different 

food matrices.  

SSC, an important characteristic of fruits and vegetables, has attracted the 

greatest attention from researchers. Good prediction results have been achieved for a 

wide range of produce using VIS/NIR spectroscopic technology, including apple 

(Lammertyn et al., 1998; Walsh et al., 2004; Nicolaï et al., 2006), mandarin (Kawano 

et al., 1993; McGlone et al., 2003a; Gómez et al., 2006), mango (Saranwong et al., 

2001, 2003a, 2003b), peach (Slaughter, 1995; Walsh et al., 2004), melon (Long and 

Walsh, 2006), kiwifruit (Actinidia deliciosa C.F.Liang.& A.R.Ferguson) (McGlone et 

al., 2002b; McGlone and Kawano, 1998), etc. Many studies also reported the NIR 

technology on acidity prediction of different fruits (Moons et al., 1997; Schmilovitch 

et al., 2000; McGlone et al., 2002a, 2003a; Saranwong et al., 2003b; Liu and Ying, 

2005). However, compared to SSC, it seems more difficult to predict acidity based on 

this method. It is probably because the concentration of acids in most fruits and 

vegetables is too low to affect the NIR spectrum significantly (Nicolaï et al., 2007). 

Several studies have investigated the applications of NIR spectroscopy to the 

evaluation of tomato fruit and product quality. The first publication on tomato quality 

parameters is by Slaughter et al. (1996) in which they predicted SSC of tomato fruits. 

Hong and Tsou (1998) reported using an multiple linear regression (MLR) method to 

develop calibration models to predict total soluble solids (TSS), TA and colour value 

(a/b ratio) of tomato with a standard error of prediction (SEP) of 0.34, 0.06, 0.09 and 

R
2
 of 0.96, 0.94, 0.98 respectively. Goula and Adamopoulos (2003) have determined 

moisture, sugars, TA, salts, and proteins in tomato juice. Jha and Matsuoka (2004) 

have calibrated the acid-Brix ratio of various tomato juices using PLS. A good result 

for calibration of tomato dry matter was obtained by Khuriyati et al. (2004). Pedro and 
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Ferreira (2005) developed PLS calibration models which performed very well in 

determining total solids, SSC, lycopene and β-carotene of tomato concentrate products. 

Later in 2007, they reported a good model to simultaneously predict four further 

properties: total solids, total sugars, glucose and fructose content. Shao et al. (2007) 

evaluated the application of VIS/NIR in measuring the quality characteristics of 

tomato ―Heatwave‖, including SSC, pH and firmness and achieved satisfying results. 

Clément et al. (2008) proposed an approach of factor analysis to evaluate the ripening 

and taste of tomatoes. A regression model to predict ―tomato maturity stage (TMS)‖, 

which is related to colour, lycopene content, firmness, TA, pH, and SSC, was obtained 

and had an RMSEP of 0.259 and R
2
 of 0.93. Nevertheless, they found it is impossible 

to measure the gustatory index, which is linked to electrical conductivity (EC), SSC, 

TA, and pH, using VIS/NIR spectroscopy. However, most of these studies on fresh 

tomatoes were focused on measurement of SSC or acidity, whereas research about 

prediction of lycopene content by VIS/NIR spectroscopy requires investigation.  

 

3.3 Objectives 

In light of all the research performed, the present study on VIS/NIR 

spectroscopy was undertaken and had the following objectives. 

1. To study the feasibility of determining the internal quality attributes of intact 

tomato fruits based upon VIS/NIR reflectance spectroscopy; 

2. To establish calibration models for predicting physico-chemical properties of 

tomato, including lycopene content, TA, SSC, and acid-Brix ratio. 

 

3.4  Materials and methods  

3.4.1 Sample preparation 

Tomato fruits (L. esculentum Mill.) of two varieties (cv. 'DRK 453' and cv. 

'Trust') were harvested from a commercial greenhouse located in Saint-Damase, QC, 

Canada. The experiment was repeated three times. On each occasion 30 mature green 

tomatoes (15 ‗DRK 453‘ and 15 ‗Trust‘) were stored and allowed to ripen at 16ºC and 



 19 

90-93% RH. Six tomato fruits (3 from each variety) were subjected to spectroscopic 

measurements and reference physico-chemical analyses at 1, 5, 8, 12 and 16 days of 

ripening (DOR), allowing most tomato maturity stages to be sampled. The tomatoes 

were washed with distilled water and dried thoroughly before spectroscopic 

measurements.  

3.4.2 Acquisition of spectra 

All spectral measurements were performed using a spectroradiometer 

(FieldSpec
®

 Pro FSP 350-2500P/A110000, Analytical Spectral Devices Inc., Boulder, 

CO) coupled with a contact probe of 10mm spot size (Analytical Spectral Devices Inc., 

Boulder, CO). For each fruit, reflectance spectra (350-2500 nm) were taken at six (1 

and 5 DOR) or four (8, 12 and 16 DOR) equidistant positions around the equator. For 

each reflectance spectrum, 10 scans were averaged at any given time/position, for a 

total of 60 or 40 scans per fruit per sampling. Reflectance, R, was calculated as the 

ratio of the visible and near-infrared energy reflected from the sample surface to a 

standard reference (Spectralon disk). The signals were preprocessed with ViewSpec 

Pro V2.14 (Analytical Spectral Devices Inc., Boulder, CO).  

3.4.3 Reference analyses 

After spectral measurements, each fruit was homogenized with a Waring 

blender for 1 min at maximum speed and the resultant slurry filtered through two 

layers of cotton cloth. The filtered tomato juice was used for chemical reference 

analyses.  

3.4.3.1 Lycopene content 

Lycopene content was determined according to the reduced volumes of organic 

solvents method of Fish et al. (2002). A 0.6 g (determined to the nearest 0.01 g) 

aliquot of tomato juice filtrate was placed in a 40 ml amber screw-top vial containing 

5 ml of 0.05% (w/v) butylated hydroxytoluene (BHT) in acetone, 5 ml of 95% USP 

grade ethanol, and 10 ml of hexane. The sample was extracted on an orbital shaker at 

180 RPM for 15 minutes on ice. After shaking, 3 ml of deionized water was added to 

the vial and the sample was shaken for an additional 5 minutes on ice. The vial was 

then left at room temperature for 5 minutes to allow for phase separation. The 
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absorbance of the upper (hexane) phase was measured by spectrophotometer 

(Biochrome, Ultrospec 3100 Pro, UK) at 503 nm, blanked against hexane solvent. The 

lycopene content was estimated from an average of two aliquots of the same 

homogenate using equation 3.1:  

(g) used sample ofWeight 

31.2) * (A
   )kg(mg Lycopene

5031-                      (3.1) 

3.4.3.2 Titratable acidity 

TA was determined using an automatic titrator (Titrino 719S, Metrohm, 

Switzerland) with 2 ml of tomato juice filtrate diluted in 30 ml of distilled water. The 

tomato juice extract was titrated by 0.1N sodium hydroxide (NaOH) to pH 8.1. 

Titratable acidity was expressed as g citric acid/mL tomato juice. The readings were 

averaged from duplicate measurements. 

3.4.3.3 Soluble solids content 

SSC was determined with a hand-held digital refractometer (AR200, Reichert 

Analytical Instruments, Depew, NY) operating at room temperature. A few drops of 

tomato juice extract were placed on a dry and clean refractometer prism and a reading 

was immediately taken. Total soluble solids were expressed as ºBrix.  

3.4.4 Data analysis 

Experimental tomato fruit were split into two sets: for the first and second 

batches of tomato fruits, 60 samples were used for calibration and a further 24 tomato 

fruits served as an external validation set. Data analysis was carried out using ―The 

Unscrambler v9.7‖ (CAMO Inc., Woodbridge, NJ), a statistical software package for 

multivariate calibration.  

All fruit reflectance measurements were transformed to absorbance (log (1/R)) 

values to obtain linear correlations of the NIR values with physico-chemical 

parameters measured by reference methods (e.g., lycopene content, TA, SSC, and 

acid-Brix ratio). Given that noise, that would affect the accuracy of calibration, was 

clearly present at the extremities of all reflectance spectra, only the range of 400 nm to 

2350 nm was taken into consideration.  
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3.4.4.1 Wavelength range selection 

To improve calibration results (McGlone et al., 2002a, 2002b, 2003a) several 

spectral windows of exclusively visible, exclusively NIR or combined VIS-NIR 

wavelengths were used to assess various attributes. The best wavelength ranges were 

selected based on the root mean square error of prediction (RMSEP) of models. 

For lycopene content, five windows (A: 400-750nm, B: 400-2350nm, C: 

400-1300nm, D: 450-1000nm, E: 750-1300nm) were chosen. For TA, five windows 

(A: 400-750nm, B: 400-2350nm, C: 400-1300nm, D: 750-2350nm, E: 1200-1800nm) 

were chosen. For SSC, four windows (A: 400-750nm, B: 400-2350nm, C: 

400-1000nm, E: 750-1500nm) were chosen. For acid/Brix, four windows (A: 

400-750nm, B: 400-2350nm, C: 700-1000nm, D: 750-2350nm) were chosen. These 

ranges were chosen on the basis of prior research on various fruits and Martens‘ 

automatic uncertainty test which shows significant X variables (Westad and Marten, 

2000).  

3.4.4.2 Spectra pre-processing  

The data obtained from the VIS/NIR spectroradiometer contained irrelevant 

information such as scattering effects and instrumental noise, which would have no 

bearing in assessing sample characteristics. Pre-processing was used to diminish such 

irrelevant information and to obtain reliable and accurate calibration models. To test 

the influence of this pre-processing on the quality of calibration models, two types of 

methods, multiple scatter correction (MSC) and Savitzky-Golay first derivative, were 

used on the best wavelength range selected for each parameter.  

MSC was used to compensate for additive (offset shifts) and multiplicative 

(amplification) effects in spectral data and to deal with path length problems (Martens 

and Naes, 1989). Due to the fresh fruit‘s scattering of light, light does not always 

travel the same distance in the sample before it is detected. A longer light-travel path 

results in a lower relative reflectance value, since more light is absorbed. This kind of 

variation is eliminated by MSC. First order derivative was applied using the 

Savitzky-Golay algorithm to correct for baseline effects in spectra.  

 

mk:@MSITStore:C:\Program%20Files\The%20Unscrambler\Unscramb.CHM::/uncertaintytest.htm
mk:@MSITStore:C:\Program%20Files\The%20Unscrambler\Unscramb.CHM::/significant.htm
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3.4.4.3 Multivariate calibration 

A PLS regression method was used to build the calibration models. In general, 

principal component regression (PCR) and PLS are the methods most often chosen for 

NIR spectral analysis. PLS usually gives similar results as PCR, but uses fewer PCs 

(De Jong, 1993). PLS is a two-step method. Firstly the original independent 

information (X-variables) is projected onto a small number of latent variables (LV) to 

simplify the relationship between X-variables and Y-variables as the relationship is 

concentrated on the smallest number of LVs (Naes, et al., 2004). 

X = TP + E (3.2) 

Y = UQ + F (3.3) 

 

where T and U are the scores of the X and Y matrices, P and Q are the loadings of the 

X and Y matrices, and E and F are the residuals for matrices X and Y. In the second 

step T and U are processed by linear regression. Thus PLS not only estimates 

component concentrations, but also assesses chemical and physical properties from 

VIS/NIR spectra (Lammertyn et al., 1998; Gómez et al., 2006). 

Full cross validation was performed on the calibration samples to determine 

the optimal number of PCs and also to validate the models. With this method, one 

sample is left out from the calibration data set and the model is calibrated with the 

remaining data points. Then the value for the left-out sample is predicted and the 

prediction residual is computed. The process is repeated until every observation has 

been left out of the calibration set once; then all prediction residuals are combined to 

calculate the root mean square error of cross validation (RMSECV).  

3.4.4.4  Selection of the best models 

Choosing the best models should be based on a number of parameters, 

including RMSECV, root mean square error of calibration (RMSEC), the difference 

between RMSECV and RMSEC, the correlation coefficient (r) of validation, and the 

number of PCs. A good model should have a low RMSEC, a low RMSECV or 

RMSEP, a high correlation coefficient but a small difference between RMSEC and 

RMSEP. A large difference between RMSEC and RMSEP would indicate that too 
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many PCs are used in the model and noise is being modeled (Lammertyn et al., 1998). 

Moreover, a relatively low number of PCs is generally desirable. 

RMSEC and RMSECV or RMSEP are defined using equation 3.4 and equation 

3.5:  

 RMSEC = 



c

i

I

i

i

c

yy
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 (3.4) 

 RMSECV or RMSEP = 



p

i

p

I

i

iyy
I 1

2)ˆ(
1

 (3.5) 

where,  

  iŷ = predicted value of the i
th

 observation,  

  yi = measured value of the i
th

 observation, 

  Ic = number of observations in the calibration set,  

  Ip = number of observations in the validation set,   

The standard deviation ratio (SDR), defined as the deviation ratio of the 

response variable to the RMSEP (McGlone and Kawano 1998), was used to evaluate 

the quality of models. An SDR value between 2.5 and 3 or above corresponds to good 

and excellent prediction accuracies. 

3.4.4.5  External validation 

By means of full cross validation, the validation samples originate from the 

same sample set as calibration, so that spectral variability is included. It is necessary 

to validate models with an independent set of samples. After the optimal calibration 

model for each parameter was selected, it was applied to the external validation set. 

The prediction results, such as R
2
, RMSEP and SDR, were calculated to assess the 

accuracy of the model. 

 

3.5  Results and Discussion 

3.5.1 Quality characteristics of tomato 

The summary of the statistical results of all quality attributes of the calibration 

and validation sample sets are listed in Table 3.1 and the changes in these quality 
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attributes for calibration samples of both varieties are illustrated in Figure 3.1. The 

mean (± standard deviation) lycopene content, SSC, TA and acid-Brix ratio (ABR) of 

the validation set, measured by reference methods were 14.08 mg kg
-1

 (±11.14 mg 

kg
-1

), 4.70 ºBrix (±0.16 ºBrix), 3.81 mg ml
-1 

(±0.56 mg ml
-1

), and 0.81 (±0.12), 

respectively. As expected, lycopene content increased during ripening, while TA and 

ABR tended to decrease slightly. However, changes in SSC presented a complex 

pattern. SSC increased until 8 days of ripening (DOR), at which tomatoes were at 

about the pink stage, decreased at 12 DOR, then increased slightly again for variety 

‗DRK 453‘ but remained constant for variety ‗Trust‘.  

3.5.2 VIS/NIR spectra 

Figure 3.2 shows the mean raw reflectance spectrum of one tomato at 

wavelengths ranging between 350 and 2500 nm. The absorbance spectra (400-2350 

nm) of tomatoes of the two different varieties tested at different stages of maturity 

(Figure 3.3) show the spectra to be quite similar, with some characteristic peaks and 

valleys revealing the fruit characteristics.  

For variety ‗DRK 453‘ (Figure 3.3a), it is clear that the variation between the 

mean spectrum of mature green tomatoes (1 DOR) and that of other maturity stages is 

significant across the entire wavelength range. Variations among the spectral curves at 

the four maturity stages after mature green are only apparent between 400 to 700 nm. 

A continuous absorbance decrease in the visible region (from 400 to 750 nm) with two 

small peaks at 560 nm, except for the spectrum of tomato at 1 DOR, and 675 nm can 

be observed, followed by a fluctuating increase in the whole NIR region until 2350 

nm, with a maximum at about 1930 nm. The absorption curve for tomato at 1 DOR 

has an obvious peak in the visible range around 675 nm. High absorbance in this 

region is indicative of red absorbing pigments, particularly chlorophyll which gives 

the fruit its green colour. After the 675 nm peak, the spectrum remains relatively flat 

until 900nm. There is a prominent peak at 980 nm which is due to absorption by water 

and carbohydrates. This corresponds to the strong 960-990 nm absorption band of 

water, which dominates fruit components (Williams and Norris, 2001). Another two 

peaks appear at 1197 nm and 1448 nm, related to strong water absorption bands from 
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1125 to 1270 nm and from 1440 to 1485 nm. The absorbance curve pattern for 

tomatoes is very similar to that of other fruits, such as apple, cherry (Prunus cerasus 

L.), mandarin, and orange (Lu et al., 2000; Lu, 2001; Gómez et al., 2006; Cayuela, 

2008). Tomatoes at 1 DOR, had the lowest lycopene content but the highest levels of 

TA, SSC and acid/Brix value (Figure 3.1), had lower absorbance in most wavelength 

ranges except for 400-505 nm, 590-720 nm, and 1830-2350nm Comparatively, 

tomatoes at 16 DOR had the highest lycopene content,lowest TA, and greater 

absorbance in the 400-615 nm and 710-1380 nm ranges. 

The spectra of calibration samples of the variety ―Trust‖ (Figure 3.3b) showed 

almost the same trends and characteristics as ―DRK 453‖, but differences between 

mean spectra for mature green tomatoes vs. those at other stages were not as distinctly 

different in ―Trust‖ as in ―DRK 453‖.  

Calibration samples‘ raw absorbance spectra (400-2350nm; Figure 3.4a)  and 

the same spectra preprocessed by MSC (Figure 3.4b) or S. Golay first derivative 

(Figure 3.4c) show that consistent offset shifts and baseline shifts initially exist in the 

spectra, due to light scattering. It is apparent that the peak and valley positions of the 

preprocessed spectra correspond to those of the original spectra; however, it can be 

seen that the MSC method eliminates the baseline shifts and makes the peaks and 

valleys clearer, while the Savistzky-Golay first derivative method differentiates the 

overlapped peaks in the spectra. 

3.5.3 Prediction of quality parameters     

3.5.3.1 Lycopene content  

Performance of PLS models for lycopene content prediction in different 

spectral ranges was evaluated using the RMSECV statistic (Figure 3.5). Compared to 

other spectral windows, spectral window D (450-1000 nm) offered the best results in 

predicting lycopene content (RMSECV=2.57). Any ranges including visible 

wavelengths were distinctly superior to those restricted to NIR wavelengths (window 

E). This is attributable to the fact that lycopene is the principal red pigment of tomato 

fruit and absorbs light between 600-750 nm. Additionally, in order to test if 

450-1000nm was the optimal spectral range, a further study was made by altering the 
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lower and upper wavelength limit on window D at intervals of 50 nm (Figure 3.6). 

The lowest RMSECV values along each curve were achieved at wavelengths of 

450nm and 1000 nm respectively. Predictive performance sharply deteriorated as the 

lower limit of the window extended beyond 650 nm, thus excluding the chlorophyll 

absorbance band (Figure 3.6a). If wavelengths from 900-1000 nm were omitted, the 

model quality deteriorated (Figure 3.6b).   

Two preprocessing methods, MSC and Savitzky-Golay first derivative, were 

applied on the optimal spectral range to find the best calibration model for lycopene 

content prediction. Since model statistics and a graphical comparison of all models 

(Table 3.2 and Figure 3.7a), showed model 2 to have the lowest RMSECV (2.57), with 

8 PC and no data preprocessing, this model was chosen as the optimal calibration 

model (R
2
=0.94, and SDR=4.14). When the model was used to predict a further 24 

external samples, the prediction results were also excellent (R
2
 = 0.96, RMSEP = 2.15, 

SDR=5.18; Table 3.3, Figure 3.8a). This result was superior to that obtained by 

Baranska et al. (2006) using NIR spectroscopy to quantify lycopene in tomato fruits 

and related products (R
2
=0.85 and SECV=91.19). 

3.5.3.2 Titratable acidity 

A comparison of RMSECVs for PLS regression models used in TA prediction 

with different spectral ranges (Figure 3.9), showed the lowest value was obtained for 

NIR window E (1200-1800 nm). Consequently, this band was chosen as the best range 

for TA prediction. There were no further improvements, but rather deterioration when 

MSC and first derivative methods were used on the spectral data (Table 3.2 and Figure 

3.7b). Therefore, the best result of multivariate regression (model 6) obtained between 

NIR measurements and the TA of tomatoes was R
2
=0.69, RMSECV=0.31 and 

SDR=1.93 with 8 PCs. When the PLS model 6 was applied to predict 24 prediction 

samples, the prediction results (Table 3.3 and Figure 3.8b), showed an R
2
 of 0.49, 

RMSEP of 0.43 and SDR of 1.30. Apparently this technique was not adequate in 

predicting TA of unseen tomato fruits. 

The one possible reason leading to the difficulty for acidity prediction of fruit 

is that the covalent bond between carbon and oxygen in the acid functional group 
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–COOH has very low absorptivity when compared to the bond of C-H or O-H. 

Another reason for the poor prediction could be the low concentration of acid and 

small SD of the reference data. In previous literature, difficulties in predicting acidity 

of fruits were also encountered (McGlone et al., 2003a, Liu and Ying, 2005; Shao et 

al., 2007; Cayuela, 2008).  

3.5.3.3 Soluble solids content 

A comparison of the accuracies of models calibrated on different spectral 

windows (Figure 3.10) showed a lower RMSECV for the full wavelength range than 

for the visible or NIR ranges singly or in combination. Therefore preprocessing 

methods and multivariate calibration were applied on the full wavelength range 

(400-2350 nm) instead of on a limited spectral range for SSC prediction. 

The calibration statistics for PLS modeling of SSC prediction (Table 3.2) and 

differences in model performance, depicted graphically (Figure 3.7c), indicate that 

calibration results were improved by the MSC methods. Model 10 appeared to have 

the lowest RMSECV (0.17) and highest R
2
 (0.65), with 7 PCs. However, the optimal 

model, with its poor accuracy resulted in an even poorer prediction for the external 

validation (Table 3.3 and Figure 3.8c) with an R
2
 of 0.03, RMSEP of 0.15 and SDR of 

1.07. 

 Although, SSC had been successfully predicted by VIS/NIR spectroscopic 

methods in various fruits including apple and kiwifruit, statistics of models for 

non-destructive measurement of tomato SSC by spectroscopic methods have generally 

been poorer (Peiris et al., 1998; Walsh et al., 2004; Shao et al., 2007). Hence, it was 

not unexpected to obtain such unsatisfactory results when the reference SSC values of 

calibration samples were analyzed (Figure 3.1c). During later maturity stages, SSC 

values of both varieties fluctuated without showing any trend. Although SSC usually 

increases with tomato ripeness stage, it tends to decrease at the red-ripe stage for some 

cultivars (Renquist and Reid, 1998). Thus we failed to correlate the SSC values of 

fruits with their light absorption over the entire spectral range employed. Additionally, 

the SDs of two sample sets (0.29 for calibration set and 0.16 for validation set), were 

relatively small compared to those of samples in other studies, making prediction 



 28 

more difficult (Walsh et al., 2004). According to McGlone et al. (2007), it was 

impossible for spectral analysis to differentiate between soluble and insoluble 

carbohydrate absorbance bands, therefore, it was only possible to predict fruit SSC 

after the fruit had fully ripened and had no remaining starch.    

3.5.3.4 Acid-Brix ratio 

The performance of PLS regression models in selected spectral windows were 

compared (Figure 3.11). The spectral range from 700-1000 nm (window C) was 

selected as the optimal wavelength range for predicting ABR because the RMSECV 

for this range was the lowest (RMSECV=0.068). The calibration and validation 

statistics for the PLS modeling of ABR are shown in Table 3.2. Instead of being 

improved, the predictive ability of model 13 was worsened by both preprocessing 

methods (Figure 3.7d). Therefore, model 13, with R
2
=0.63, RMSECV=0.068 and 

SDR=1.65, was considered as the best model among all the models tested. When 

model 13 was used to predict the external validation sample set, values of R
2
=0.65, 

RMSEP=0.077 and SDR=1.52 were obtained (Table 3.3, Figure 3.8d). It is not 

surprising to achieve an unsatisfactory result for ABR prediction, because neither TA 

nor SSC had been predicted successfully and the absorption of light in the selected 

spectral range was relatively low.  

 

3.6  Conclusion 

By means of PLS regression methods, calibration models based on VIS/NIR 

spectral reflectance measurements were established to predict lycopene content, 

soluble solids content, titratable acidity and acid-Brix ratio of tomato fruits. It was 

possible to use a non-destructive technique to quantify the lycopene content of 

tomatoes, whereas accuracies of prediction for other properties were not satisfactory. 

The statistics of the best model for each parameter were as follows:  

i. for lycopene content, R
2
=0.93 and RMSEP=2.87 with 4 PCs; 

ii. for TA, R
2
=0.33 and RMSEP=0.51 mg ml

-1
 with 6 PCs; 

iii. for SSC, R
2
=0.03 and RMSEP=0.15 ºBrix with 7 PCs; and 
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iv. for ABR, R
2
=0.65 and RMSEP=0.077 with 4 PCs. 

In a further study, the use of different measurement modes will be investigated 

for predicting SSC and TA, such as interactance and transmittance modes. 

Additionally, a wider range of tomato varieties should be included in new research to 

develop robust models.  
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Table 3.1: Statistical analysis of the calibration and validation sample sets, including the data range, mean and standard deviation (S.D.) 

 

Characteristic  
Calibration (Number of Sample: 60)   Validation (Number of Sample: 24) 

Range Mean S.D.   Range Mean S.D. 

Lycopene (mg/kg) 0-41.15 14.51  10.63  0-36.62 14.08 11.14 

SSC (ºBrix) 4.10-5.30 4.70  0.29  4.30-5.00 4.70 0.16 

TA (mg/ml) 3.16-5.89 4.10  0.60   2.99-4.92 3.81 0.56 

Acid/Brix 0.67-1.18 0.88 0.11   0.62-1.02 0.81 0.12 
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Table 3.2: Results of calibration and full-cross validation of the models  

 

Characteristic  Model Wavelength range (nm) Preprocessing method 
No. of 

PCs 

Calibration   Full-cross validation Outlier 

No. RMSEC R
2
   RMSECV R

2
 SDR 

Lycopene 

(mg/Kg)  

model 1 400-2350 - 8 1.97  0.97   2.96  0.92   0 

model 2 450-1000 - 8 1.88  0.97   2.57  0.94  4.14  0 

model 3 450-1000 MSC 2 3.42  0.89   3.62  0.89   0 

model 4 450-1000 S.Golay 1st derivative 4 2.04  0.96   2.82  0.93   0 

            

TA 

(mg/ml) 

model 5 400-2350 - 8 0.26  0.78   0.36  0.59   1 

model 6 1200-1800 - 8 0.25  0.80   0.31  0.69  1.93  1 

model 7 1200-1800 MSC 5 0.32  0.66   0.37  0.57   1 

model 8 1200-1800 S.Golay 1st derivative 3 0.31  0.68   0.40  0.48   1 

            

SSC 

(ºBrix) 

model 9 400-2350 - 9 0.11  0.85   0.18  0.63   0 

model 10 400-2350 MSC 7 0.12  0.84   0.17  0.65  1.71  0 

model 11 400-2350 S.Golay 1st derivative 3 0.14  0.78   0.24  0.34   0 

            

Acid/Brix 

model 12 400-2350 - 2 0.07  0.60   0.07  0.56   0 

model 13 700-1000 - 4 0.06  0.68   0.07 0.63  1.65  0 

model 14 700-1000 MSC 2 0.07  0.55   0.08  0.49   0 

model 15 700-1000 S.Golay 1st derivative 4 0.06  0.70    0.09  0.44    0 
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Table 3.3: Results of external validation of the optimal models 

 

Characteristic  Model Wavelength range (nm) Preprocessing method No. of PCs RMSEP R
2
 SDR 

Lycopene  model 2 450-1000 - 8 2.15 0.96 5.18  

TA model 6 1200-1800 - 8 0.43 0.49 1.30  

SSC model 10 400-2350 MSC 7 0.15 0.03 1.07  

Acid/Brix model 13 700-1000 - 4 0.08  0.65 1.52  
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Figure 3.1: Changes of quality properties of tomatoes vs. day of ripening (DOR): 

(a) lycopene content; (b) titratable acidity; (c) soluble solids content; (d) 

acid/Brix ratio. The solid lines indicate tomatoes of cv. ‘DRK 453’; the dotted 

lines indicate tomatoes of cv. ‘Trust’. 
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Figure 3.2: Original reflectance spectrum of one tomato (cv. ‘DRK 453’) at 1 day 

of ripening (350-2500nm). 
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Figure 3.3: Absorbance spectra of tomatoes of two varieties measured at 1, 5, 8, 

12 and 16 days of ripening (400-2350 nm): (a) cv. ‘DRK453’ ; (b) cv. ‘Trust’. 
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(a) 

 

 (b) 

 

 (c) 

 

Figure 3.4: (a) Absorbance (log (1/R)) spectra of all tomatoes of calibration set. 

Preprocessed spectra by (b) MSC and (c) Savitzky-Golay first derivative. 
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Figure 3.5: Root mean square error of full-cross validation (RMSECV) for 

lycopene content prediction vs. the spectral window. The vertical bars in the 

bottom chart indicate the wavelength range for each spectral window. 
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Figure 3.6: Root mean square error of full-cross validation (RMSECV) for 

lycopene content prediction vs. the spectral window: (a) upper wavelength limit 

is fixed; (b) lower wavelength limit is fixed. The bold vertical lines indicate the 

position for the fixed upper and lower limits in (a) and (b), respectively.  

 



 37 

(a) 

 

 

(b) 

 

 

 

 

 

 

 

 

 

 



 38 

 

(c) 

 

(d) 

 

 

Figure 3.7: Root mean square error of full-cross validation (RMSECV) of models 

for each property vs. PLS components: (a) lycopene content; (b) titratable acidity; 

(c) soluble solids content; (d) acid/Brix ratio. 
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(c) 
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Figure 3.8: The predicted vs. the measured values of the properties of the 

validation set for the optimal models: (a) lycopene content; (b) titratable acidity; 

(c) soluble solids content; (d) acid/Brix ratio. 
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Figure 3.9: Root mean square error of full-cross validation (RMSECV) for 

titratable acidity prediction vs. the spectral window. The vertical bars in the 

bottom chart indicate the wavelength range for each spectral window. 
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Figure 3.10: Root mean square error of full-cross validation (RMSECV) for 

soluble solids content prediction vs. the spectral window. The vertical bars in the 

bottom chart indicate the wavelength range for each spectral window. 
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Figure 3.11: Root mean square error of full-cross validation (RMSECV) for 

acid/Brix ratio prediction vs. the spectral window. The vertical bars in the 

bottom chart indicate the wavelength range for each spectral window. 
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CONNECTING TEXT 

 

The visible/near-infrared (VIS/NIR) reflectance spectra of two varieties of 

tomato (variety ‗DRK 453‘ and ‗Trust‘) at 1, 5, 8, 12 and 16 days of ripening were 

measured. The feasibility of predicting the nutraceutical and organoleptic parameters, 

including lycopene content, soluble solids content (SSC), titratable acidity (TA), and 

acid-Brix ratio (ABR), using a partial least square 1 (PLS1) method was studied and 

the results were discussed in Chapter III. Further, the prediction models for physical 

parameters of tomato, including colour and firmness, were established and validated. 

Colour, firmness and lycopene content were simultaneously calibrated using a PLS2 

method. The results are presented and discussed in Chapter IV.        

 

 

 

 

 

 

 

 

 

 

 

 

 



 44 

CHAPTER IV 

MODELING OF PHYSICAL AND CHEMCIAL ATTRIBUTES OF 

TOMATOES USING VIS/NIR SPECTROSCOPY 

 

4.1 Abstract 

Non-destructive models employing visible/near-infrared (VIS/NIR) reflectance 

spectroscopy were developed to predict characteristics of two varieties of tomato 

(Lycopersicon esculentum Mill cv. ‗DRK 453‘ and ‗Trust‘). Tomato properties 

including colour, firmness and lycopene content were also measured by conventional 

methods. Partial least squares (PLS) regression analysis was performed on the spectral 

data to build prediction models. Various spectral windows within the 400-2350 nm 

spectral range and pre-processing methods including multiple scatter correction (MSC) 

and Savitzky-Golay first derivative were assessed in optimizing the model for each 

parameter. R
2
 values of 0.99, 0.99 and 0.97, and root mean square errors of prediction 

(RMSEP) of 0.06, 1.52 and 1.44 N for individual prediction models of colour values 

a*/b*, tomato colour index (TCI) and firmness, respectively. Further, a model built by 

the PLS2 method showed excellent performance in simultaneously predicting colour, 

firmness and lycopene content of tomato. The R
2
 values of the PLS2 model for a*/b*, 

TCI, firmness and lycopene content were 0.99, 0.99, 0.97, and 0.92, respectively, 

while their RMSEP values were 0.06, 1.75, 1.44 N, and 3.03 mg kg
-1

.  

 

4.2 Introduction 

Skin colour and firmness are the two most important attributes of tomato for 

customer evaluation (Tijskens and Evelo, 1994). Therefore, the perception of fruit 

colour is probably the very first quality evaluation that determines consumers‘ buying 

decision (Garrett et al., 1960). This is also the case because colour is also an indicator 

of tomato ripeness. Colour evolves during fruit ripening from green to red and is 
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mainly related to the breakdown of chlorophyll and synthesis of lycopene (Hobson 

and Davies, 1971). Tomato maturity is traditionally classified in six stages, based on 

the external colour changes of the fruit: mature-green, breaker, turning, pink, light-red 

and red-ripe (Gould, 1992). According to CIELAB L*, a*, b* color space, an increase 

in a* corresponds to a change from green to red, a more positive b* value represents 

increasing yellowness and L* represents lightness of the colour. The tomato colour 

index (TCI) relates these three parameters in a single-value criterion (Richardson and 

Hobson, 1987). Although a* is suitable to assess red colour development, colour 

changes in tomato are usually recorded as a*/b* ratio (Tijskens and Evelo, 1994) since 

it was proven to be a better index than a* alone or the TCI in distinguishing varieties 

(Gómez et al., 2001). 

Firmness of tomatoes may be the final index by which the purchase decisions 

are made (Gormley and Egan, 1978). Softening takes place during storage and 

ripening of tomatoes. The exact molecular changes that drive fruit softening are still 

unknown. However, it is known that number of cell wall hydrolytic enzymes 

contribute to tissue softening and intercellular adhesion (Fisher and Bennett, 1991). 

Neither unripe nor overripe fruits are desirable.      

Colour is commonly measured by chromameter which can give accurate 

values about colour, while different instruments for measuring firmness of fruits and 

vegetables have been used, such as penetrometers and universal testing machines. Not 

only the instrumental methods for firmness measurement are destructive, but also 

measurements for each attributes have to be done separately. One of the advantages of 

NIR spectroscopic method for quality analysis is that it would potentially be possible 

to measure different attributes simultaneously.    

The use of NIR spectroscopy in assessing firmness has been already studied 

for various fruits, including apple (Moons et al., 1997; Lammertyn et al., 1998; Lu et 

al., 2000; McGlone et al., 2002a; Park et al., 2003), kiwifruit (McGlone and Kawano, 

1997); mandarine (Gómez et al., 2006), mango (Schmilovitch et al., 2000), pear 

(Nicolaï et al., 2008), cherry (Lu, 2001), tomato (Shao et al., 2007). Moons et al. 

(1997) reported a good correlation of 0.96, but the prediction error was high (standard 
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error of prediction (SEP)=9.3 N). Schmilovitch et al. (2000) compared MLR and PLS 

methods in predicting mango firmness and found that MLR gave a better result 

(R
2
=0.8226 and SEP=17.14). Lu (2001) developed calibration models with good 

results to predict firmness of two varieties of sweet berries. Park et al. (2003) obtained 

a result of R
2
=0.786 and SEP=7.02 using principal component regression (PCR) and a 

spectral range from 400nm to 1800nm. Gómez et al. (2006) established their best 

calibration model for firmness of mandarine to have a correlation of 0.83 and RMSEP 

of 8.53 based on PLS. However, some researchers consider that VIS/NIR 

spectroscopy is not a robust method for firmness measurement (McGlone and Kawano, 

1997; Lu et al., 2000; McGlone et al., 2002a, Nicolai et al., 2008).  

The potential of VIS/NIR spectroscopy in predicting the quality attributes of 

tomatoes and tomato products has been evaluated by several researchers (Slaughter et 

al., 1996; Hong and Tsou, 1998; Goula and Adamopoulos, 2003; Jha and Matsuoka, 

2004; Khuriyati et al., 2004; Pedro and Ferreira, 2005, 2007; Baranska et al., 2006; 

Shao et al., 2007; Clément et al., 2008). However, only one paper has been published 

about predicting the firmness of tomatoes (Shao et al., 2007). They investigated 

VIS/NIR spectroscopy to measure the firmness of tomato variety ―Heatwave‖ which 

was also determined by two reference methods, including a compression test and a 

Magness-Taylor puncture test. Relatively good results were obtained for the two types 

of firmness indices, which are r=0.81 and SEP=16.017N for compression force and 

r=0.83 and SEP=1.18N for puncture force. More research to develop calibration 

models for a wider range of tomato varieties is needed.  

 

4.3 Objectives 

 In light of all the research performed, the present study on VIS/NIR 

spectroscopy was undertaken with the following objectives. 

1. To evaluate the feasibility of determining the quality attributes of intact tomato 

fruits based on VIS/NIR spectroscopy; 

2. To establish calibration models for predicting colour and firmness of tomato; 

3. To build a calibration model by PLS2 method to simultaneously predict 
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physico-chemical properties of tomato, including colour, firmness and lycopene 

content. 

 

4.4  Materials and methods  

4.4.1 Sample preparation 

Tomato fruits (L. esculentum Mill.) of two varieties (cv. 'DRK 453' and cv. 

'Trust') were harvested from a commercial greenhouse located in Saint-Damase, QC, 

Canada. The experiment was repeated three times. On each occasion 30 mature green 

tomatoes (15 'DRK 453' and 15 'Trust') were stored and allowed to ripen at 16ºC and 

90-93% RH. Six tomato fruits (3 from each variety) were subjected to spectroscopic 

measurements and reference physico-chemical analyses at 1, 5, 8, 12 and 16 days of 

ripening (DOR), allowing most tomato maturity stages to be sampled. The tomatoes 

were washed with distilled water and dried thoroughly before spectroscopic 

measurements.  

4.4.2 Acquisition of spectra 

All spectral measurements were performed using a spectroradiometer 

(FieldSpec
®

 Pro FSP 350-2500P/A110000, Analytical Spectral Devices Inc., Boulder, 

CO) coupled with a contact probe of 10mm spot size (Analytical Spectral Devices Inc., 

Boulder, CO). For each fruit, reflectance spectra (350-2500 nm) were taken at six (1 

and 5 DOR) or four (8, 12 and 16 DOR) equidistant positions around the equator. For 

each reflectance spectrum, 10 scans were averaged at any given time/position, for a 

total of 60 or 40 scans per fruit per sampling. Reflectance, R, was calculated as the 

ratio of the near-infrared energy reflected from the sample surface to a standard 

reference (Spectralon disk). The signals were preprocessed with ViewSpec Pro V2.14 

(Analytical Spectral Devices Inc., Boulder, CO).  

4.4.3 Reference analyses 

After the spectral measurements, each fruit was subjected to colour and 

firmness measurements at the same positions around the equator.  
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4.4.3.1 Colour 

Based on the Commission Internationale de l‘Éclairage (CIE), the colour of 

tomatoes was determined in terms of the colour values L*, a* and b* using a Minolta 

chromameter CR-400 (Minolta Co., Osaka, Japan). The three colour values were used 

to calculate the tomato colour index (TCI) according to the equation 4.1 (Richardson 

and Hobson, 1987). 

 
0.522 )*b  *(a*L

*a2000
  TCI


                                       (4.1) 

4.4.3.2 Firmness 

A universal testing machine (Lloyd Instrument, LRX, Fareham, UK) equipped 

with a 100 N load cell and fitted with a standard 11 mm diameter hemispherical-tip 

probe driven downwards at a speed of 25 mm min
-1

 

to a depth of 5.5 mm was used in 

firmness testing. The firmness was expressed as the peak force and recorded in N.  

4.4.3.3 Lycopene content 

After the firmness measurements, each fruit was homogenized with a Waring 

blender for 1 minute at maximum speed and the resultant slurry filtered through two 

layers of cotton cloth. The tomato juice extract was used for lycopene content 

analysis.  

Lycopene content was determined according to the reduced volumes of organic 

solvents method of Fish et al. (2002). Absorbance of the hexane upper phase was 

measured at 503 nm against a pure hexane blank, using a spectrophotometer 

(Biochrome, Ultrospec 3100 Pro, UK). The lycopene content of each tomato was 

estimated from an average of two aliquots of the same homogenate using equation 4.2: 

(g) used sample ofWeight 

31.2) * (A
   )kg(mg Lycopene

5031-                          (4.2) 

4.4.4 Data analysis 

Tomato samples were split into two sets. For the first and second batches of 

tomato fruits, 60 samples were used for calibration and the third batch had 24 tomato 

fruits which served as an external validation set. Data analysis was carried out using 
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―The Unscrambler v9.7‖ (CAMO Inc., Woodbridge, NJ), a statistical software 

package for multivariate calibration.  

All fruit reflectance measurements were transformed to absorbance (log (1/R)) 

values to obtain linear correlations of the NIR values with physico-chemical 

parameters measured by reference methods (e.g., a*/b*, TCI and firmness). Given that 

noise was clearly present at the extremities of all reflectance spectra, and would affect 

the accuracy of calibration, only spectral data in the range of 400 nm to 2350 nm were 

taken into consideration. 

4.4.4.1 Wavelength range selection 

To improve calibration results when assessing various tomato fruit attributes 

(McGlone et al., 2002a, 2002b, 2003a) several spectral windows were tested from 

exclusively visible to exclusively NIR wavelengths, as well as various VIS/NIR 

combinations. The best wavelength ranges were selected based on the root mean 

square error of prediction (RMSEP) of models. 

For a*/b* ratio, four windows (A: 400-750nm, B: 450-600nm, C: 400-2350nm, 

D: 400-1500nm) were chosen. For TCI, four windows (A: 400-750nm, B: 430-700nm, 

C: 400-2350nm, D: 430-1400nm) were chosen. For firmness, four windows (A: 

400-750nm, B: 400-2350nm, C: 500-1100nm, D: 750-1100nm) were chosen. These 

ranges were chosen on the basis of prior research on various fruits and Martens‘ 

automatic uncertainty test which shows significant variables (Westad and Marten, 

2000). 

4.4.4.2 Spectra preprocessing  

The data obtained from the NIR spectrometer contained information not 

relevant to predicting sample information, such as scattering effects and instrument 

noise. Pre-processing was used to diminish such irrelevant information and obtain 

reliable and accurate calibration models. To test the influence of this pre-processing on 

the quality of calibration models, two types of pre-processing methods, MSC and 

Savitzky-Golay first derivative, were used on the best wavelength range selected for 

each parameter.  

MSC was used to compensate for additive (offset shifts) and multiplicative 

mk:@MSITStore:C:\Program%20Files\The%20Unscrambler\Unscramb.CHM::/uncertaintytest.htm
mk:@MSITStore:C:\Program%20Files\The%20Unscrambler\Unscramb.CHM::/significant.htm
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(amplification) effects in spectral data and deal with path length problems (Martens 

and Naes, 1989). Light scattering occurs in fresh fruit, as light does not always travel 

the same distance in the sample before returning to the detector. A longer light travel 

path corresponds to a lower relative reflectance value, since more light is absorbed. 

This kind of variation was eliminated by MSC. First order derivative pre-processing 

was applied using the Savitzky-Golay algorithm to correct for baseline effects in 

spectra. 

4.4.4.3 Multivariate calibration 

A PLS regression method was used to build the calibration models. In general, 

PCR and PLS are the methods most often chosen for NIR spectral analysis. PLS 

usually gives similar results as PCR, but uses fewer PCs (De Jong, 1993). PLS is a 

two-step method. Firstly the original independent information (X-variables) is 

projected onto a small number of latent variables (LV) to simplified the relationship 

between X-variables and Y-variables as the relationship is concentrated on the 

smallest number of LVs (Naes, et al., 2004). 

X = TP + E                                                        (4.3) 

Y = UQ + F                                                       (4.4) 

where T and U are the scores of the X and Y matrices, P and Q are the loadings of the 

X and Y matrices, and E and F are the residuals for matrices X and Y. In the second 

step T and U are processed by linear regression. Thus PLS not only estimates 

component concentrations, but also assesses chemical and physical properties from 

VIS/NIR spectra (Lammertyn et al., 1998; Gómez et al., 2006). 

The PLS2 method was used to build a calibration model to simultaneously 

predict a*/b* ratio, TCI, firmness, and lycopene content, with spectral data within the 

wavelength range of 450-1000 nm.  

Full cross validation was performed on the calibration samples to determine 

the optimal number of PCs and also to validate the models. With this method, one 

sample is left out from the calibration data set and the model is calibrated with the 

remaining data points. Then the value for the left-out sample is predicted and the 

prediction residual is computed. The process is repeated until every observation has 
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been left out of the calibration set once; then all prediction residuals are combined to 

calculate the root mean square error of cross validation (RMSECV).  

4.4.4.4 Selection of the best models 

Choosing the best models should be based on a number of parameters, 

including RMSECV, root mean square error of calibration (RMSEC), the difference 

between RMSECV and RMSEC, the correlation coefficient (r) of validation, and the 

number of PCs. A good model should have a low RMSEC, a low RMSECV or 

RMSEP, a high correlation coefficient but also a small difference between RMSEC 

and RMSEP. A large difference indicates that too many PCs are used in the model and 

noise is being modelled (Lammertyn et al., 1998). Moreover, a relatively low number 

of PCs is generally desirable. RMSEC and RMSECV or RMSEP are defined using 

equation 4.5 and equation 4.6:  

 RMSEC = 

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where  

  iŷ = is the predicted value of the i
th

 observation,  

  yi = is the measured value of the i
th

 observation, 

  Ic = is the number of observations in the calibration set,  

  Ip = is the number of observations in the validation set.  

The, standard deviation ratio (SDR) is defined as the deviation ratio of the 

response variable to the RMSEP (McGlone and Kawano 1998). This was also used as 

a parameter to evaluate the quality of models. An SDR value between 2.5 and 3 or 

above corresponds to good and excellent prediction accuracies, respectively. 

4.4.4.5 External validation 

By means of full cross validation, the validation samples originate from the 

same sample set as the calibration, so spectral variability is included. It is necessary to 
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validate models with an independent set of samples. After the optimal calibration 

model for each parameter was selected, it was applied to the external validation set. 

The prediction results, such as R
2
, RMSEP and SDR, were calculated to assess the 

accuracy of the model. 

 

4.5  Results and Discussion 

4.5.1 Quality characteristics of tomato 

The summary of the statistics for all quality attributes of calibration and 

validation sample sets are listed in Table 4.1 and the changes in these quality attributes 

of calibration samples of both varieties are illustrated in Figure 4.1. The mean (± 

standard deviation) colour value a*/b* ratio, TCI and firmness of the validation set, 

measured by reference methods were 0.68 (±0.64), 21.64 (±20.38) and 16.33 N (±8.81 

N), respectively. As can be seen, colour value a*/b* ratio, TCI and firmness showed a 

linear correlation with the ripening stages of the tomatoes. Colour value a*/b* ratio 

and TCI increased while fruit firmness decreased as the fruits ripened.  

4.5.2 VIS/NIR spectra 

Figure 4.2 shows the average original reflectance spectrum of one tomato in 

the wavelength range between 350 and 2500 nm. The absorbance spectra of tomatoes 

of different maturity stages for both varieties from 400nm to 2350 nm are shown in 

Figure 4.3a and Figure 4.3b, respectively. The shapes of the spectra are quite 

consistent and some peaks and valleys revealing the characteristics of the fruit are in 

evidence.  

For variety ‗DRK 453‘, important differences exist between the mean 

spectrum of mature green tomatoes and those at later ripening stages over the entire 

wavelength range. Variations among the spectral curves of maturity stages after 

mature green are only apparent between 400 to 700 nm, Except for the spectrum of 

mature green tomatoes (measured at DOR 1), a continuous decrease in absorbance in 

the visible region (400-750 nm) with two small peaks at 560 nm and 675 nm can be 

observed, followed by a fluctuating increase in the whole NIR region until 2350 nm, 
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with a maximum at about 1930 nm. The absorption curve of mature green tomatoes 

has an obvious peak in the visible range around 675 nm, which corresponds to the 

chlorophyll absorbance band. After this peak, the absorbance spectrum remains 

relatively flat until 900 nm. A prominent peak occurs at 980 nm, attributable to 

absorption by water and carbohydrates and corresponds with a strong absorption band 

of water (960-990 nm), a dominant component of fruit (Williams and Norris, 2001). 

Another two peaks occurred at 1197 nm and 1448 nm, related to strong water 

absorption bands from 1125 to 1270 nm and from 1440 to 1485 nm. Basically the 

absorbance curve pattern for tomatoes is very similar to that of other fruits, such as 

apple, cherry, mandarin, and orange (Lu et al., 2000; Lu, 2001; Gómez et al., 2006; 

Cayuela, 2008). Within the wavelength range of 400-1300 nm, except for 600-715 nm, 

the more mature tomatoes were, the higher was the absorbance. The change in the 

average absorbance with storage time was consistent with that of colour value a*/b*, 

TCI and firmness. 

As for the spectra of calibration samples of variety ‗Trust‘, they showed 

similar trends and characteristics as those of DRK 453, except that spectral differences 

between mature green and riper tomatoes more muted in ‗Trust‘ than ‗DRK 453‘.   

Calibration samples‘ raw absorbance spectra (400-2350nm; Figure 4.4a) and 

the same spectra preprocessed by MSC (Figure 4.4b) or S. Golay first derivative 

(Figure 4.4c) show that consistent offset shifts and baseline shifts initially exist in the 

spectra, due to light scattering. It is apparent that the peak and valley positions of the 

preprocessed spectra correspond to those of original spectra. However, it can be seen 

that the MSC method eliminates the baseline shifts and make the peaks and valleys 

clearer, whereas the Savitzky-Golay first derivative method differentiate overlapped 

peaks in the spectra. Taken together, these observations suggest that the possibility 

exists of relating the spectra of tomatoes to their quality attributes, particularly in the 

visible wavelength range of 400-700 nm.  

4.5.3 Prediction of quality parameters 

4.5.3.1 Colour value a*/b* ratio 

The lowest value of RMSECVs for a*/b* ratio prediction by PLS regression 
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models was obtained for a visible range window of 450-600 nm (window B; Figure 

4.5). Windows within the visible range were distinctly superior to the full range 

window or a combined VIS/NIR range (window C and D; Figure 4.5). Colours 

perceived by the human eye are due to the reflection of visible light ranging from 380 

to 750 nm from objects, and it is essential to include this range to predict fruit colour. 

However, there are several water absorption bands in the NIR range which are much 

stronger than the absorption bands of pigment components (Williams and Norris, 

2001). Therefore, in the present study, the NIR range was excluded to avoid its 

influence on colour prediction. Additionally, a further study was made to find the 

optimal wavelength range by altering the lower and upper wavelength limit on 

window B. Figure 4.6 shows that the lowest RMSECV value in each plot was 

achieved at wavelengths of 450nm and 600 nm respectively. So window B was chosen 

as the best range for a*/b* prediction. 

A comparison of the performances of the PLS-built model without 

pretreatment and with MSC and Savitzky-Golay first derivative pre-treatments (Table 

4.2, Figure 4.7a) shows that the lowest RMSECV was achieved with model 4, with 2 

PCs. Model 4, calibrated by data pretreated by first derivative on a range of 450-600 

nm, was selected as the best model (R
2
=0.99, RMSECV=0.06 and SDR=8.89). The 

prediction accuracy for external validation was also excellent (R
2
=0.99 and 

RMSEP=0.06; Table 4.3, Figure 4.8a). 

4.5.3.2 Tomato colour index 

Performance of PLS models built on different spectral ranges for TCI 

prediction was evaluated by their RMSECVs (Figure 4.9). The model derived from 

spectral window D (430-1400nm) generated a lower RMSECV (2.02) than those 

obtained with other spectral windows. Further study to test if window D was the 

optimal wavelength range was done by altering its lower and upper wavelength limits. 

The RMSECVs for every range were plotted (Figure 4.10), and showed that the 

lowest RMSECV values in each plot was achieved for wavelengths of 430nm and 

1400 nm respectively. 

Coupling of PLS models for TCI with MSC or Savitzky-Golay first derivative 
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pre-processing methods showed no improvement in predictive performance over the 

PLS model alone (Table 4.2, Figure 4.7b). Model 6 was the optimal model in 

predicting TCI (R
2
 ≥ 0.99), RMSECV = 2.02 and SDR = 8.84, and contained three 

PCs. Used in a predictive capacity (validation), Model 6 performed well (R
2
=0.99 and 

RMSEP=1.52; Table 4.3, Figure 4.8b). The calibration and validation statistics for 

PLS modelling of TCI prediction are shown in Table 4.2.  

4.5.3.3 Firmness 

A PLS model with 4 PCs and using spectral window C (500-1100 nm) showed 

the lowest RMSECV (2.24; Figure 4.11), and thus a slightly better performance than 

the visible range (window A) or full wavelength range (window B), and clearly 

superior performance to the NIR range (window D). In order to test if 500-1100 nm 

was the optimal spectral range for firmness prediction, the lower and upper 

wavelength limits on window C were shifted, as shown in Figure 4.12. The lowest 

RMSECV value appeared at wavelengths boundaries of 500nm and 1100 nm, 

respectively. So window C was chosen as the best range for firmness prediction. 

Predictive performance of the model sharply deteriorated as the lower limit of the 

window was set beyond 700 nm which excluded the chlorophyll absorbance band at 

680 nm (Figure 4.12a). 

Two preprocessing methods, MSC and Savitzky-Golay first derivative, were 

applied to the spectral range of 500-1100 nm to find the best calibration model for 

firmness prediction (Table 4.2, Figure 4.7c). Model 10, with 4 PCs, showed the lowest 

RMSECV (2.24) and gave a good performance for the calibration set (R
2
=0.90, 

SDR=3.10). Furthermore, results of external validation were also excellent (R
2
=0.97 

and RMSEP=1.44 N; Figure 4.8c). This model‘s performance in predicting tomato 

firmness was superior to that of Shao et al. (2007) whose model performance statistics 

were r = 0.82, RMSEP=15.80 N and SDR=1.54. The present result is also much better 

than those achieved for other fruits: 0.38 < r < 0.58 for apple firmness using 

wavelengths from 800 to 1700 nm (Lu et al., 2000), and a R
2 

of 0.22 and 0.79 for the 

same parameter of Gala apple and Red Delicious apple, respectively, with 

wavelengths of 400-1800 nm (Park et al., 2003).  
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4.5.3.4 Quality parameters prediction using PLS2 

Correlations existing among all quality parameters (y-variables) under study, 

including L*, a*, b*, a*/b*, TCI, firmness, and lycopene content, are shown in a 

correlation loading plot (Figure 4.13). Variables proximal to one another in the loading 

plot have a high positive correlation, while variables diagonally opposite to each other 

are negatively correlated. The values of a*, a*/b*, TCI and lycopene were positively 

correlated, as were L* and firmness; while firmness was negatively correlated with 

TCI, lycopene and a*/b*. However, b* varied independently. Correlation coefficients 

of properties amongst each other (Table 4.4.) show that variables TCI, firmness and 

lycopene content presented high correlation with a*/b* ratio, a property that could be 

determined quite accurately by the VIS/NIR spectroscopic method. Therefore, it 

should be possible to predict a*/b*, TCI, firmness, and lycopene content 

simultaneously by the PLS2 method.  

A pre-test to find an optimal wavelength range was made over different 

spectral ranges, with the range of 450-1100 nm being found optimal for firmness and 

lycopene content prediction, which were relatively hard to predict from spectroscopic 

data. Model 13, built on non-preprocessed data, showed an excellent performance on 

all properties (Table 4.5). Model 14 showed a better performance in predicting 

firmness but poorer for other parameters, and model 15 showed a better performance 

in predicting lycopene content, but a poorer prediction of firmness. Therefore, model 

13 was chosen as the best PLS2 model. The prediction results of external validation 

were also excellent for prediction of colour, firmness and lycopene content (Table 4.5, 

Figure 4.14). 

 

4.6  Conclusion 

By means of PLS regression methods, calibration models based on VIS/NIR 

spectral reflectance measurements were established to predict a*/b* ratio, TCI and 

firmness of tomato fruits, respectively. The model's excellent performance indicates 

that it is possible to use a non-destructive technique to analyze these physico-chemical 
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properties of tomato. Also, a suitable PLS2 calibration model was obtained for 

simultaneous determination of colour, firmness and lycopene content of the fruit. In a 

further study, we should investigate a wider range of tomato varieties to make the 

models more robust. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 58 

Table 4.1: Statistical analysis of the calibration and validation sample sets, including the data range, mean and standard deviation 

(S.D.) 

 

Characteristic  
Calibration (Number of samples: 60)   Validation (Number of samples: 24) 

Range Mean S.D.   Range Mean S.D. 

a*/b* -0.36-1.47 0.73 0.56   -0.45-1.50 0.68 0.64 

TCI -13.92-45.37 24.16 17.85  -14.95-44.37 21.64 20.38 

Firmness (N) 7.65-34.33 15.16 6.95   7.67-39.98 16.33 8.81 

 

 

Table 4.2: Results of calibration and full-cross validation of the models 

 

Characteristic  Model Wavelength range (nm) Preprocessing method 
No. of 

PCs 

Calibration   Cross-validation Outlier 

No. RMSEC R
2
   RMSECV R

2
 SDR 

a*/b* 

model 1 400-2350 - 4 0.08  0.98   0.09  0.97   1 

model 2 450-600 - 3 0.06  0.99   0.07  0.98   1 

model 3 450-600 MSC 2 0.08  0.98   0.09  0.97   1 

model 4 450-600 1st derivative 2 0.06  0.99   0.06  0.99  8.89  1 

            

TCI 

model 5 400-2350 - 4 2.24  0.98   2.53  0.97   0 

model 6 430-1400 - 3 1.84  0.99   2.02  0.99  8.84  0 

model 7 430-1400 MSC 4 2.15  0.98   2.49  0.98   0 

model 8 430-1400 1st derivative 4 1.80  0.99   2.29  0.98   0 

            

Firmness (N) 

model 9 400-2350 - 4 2.16  0.90   2.44  0.88   0 

model 10 500-1100 - 4 1.84  0.93   2.24  0.90  3.10  0 

model 11 500-1100 MSC 2 2.17  0.90   2.33  0.89   0 

model 12 500-1100 1st derivative 1 2.39  0.88    2.53  0.87    0 
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Table 4.3: Results of external validation of the optimal models 

 

Characteristic  Model Wavelength range (nm) Preprocessing method No. of PCs RMSEP R
2
 SDR 

Colour a*/b* model 4 450-600 S.Golay 1st derivative 2 0.06  0.99 10.49  

TCI model 6 430-1400 - 3 1.52 0.99 13.41  

Firmness model 10 500-1100 - 4 1.44 0.97 6.12  

 

 

 

 

 

Table 4.4: Correlation coefficients of the properties of tomatoes  

 

  a*/b* TCI Firmness  Lycopene  

a*/b* 1.00     

TCI 0.98  1.00    

Firmness  0.83  0.63  1.00   

Lycopene 0.56  0.89  0.66  1.00  
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Table 4.5: Results of calibration and full-cross validation of the models built using PLS2 and results of external validation of the 

optimal model 

 

Model 
Preprocessing 

method 
No. of PCs Characteristic  

Calibration   Cross-validation   External validation 

RMSEC R
2
   RMSECV R

2
 SDR   RMSEP R

2
 SDR 

Model 13  6 

Colour a*/b* 0.05  0.99   0.05  0.99  10.57   0.06  0.99  8.89  

TCI 2.25 0.98  2.49 0.98 7.17   1.75 0.99 11.65  

Firmness 1.85  0.93   2.24  0.90  3.10   1.44  0.97  4.83  

Lycopene 2.75  0.93   3.17  0.91  3.35   3.03  0.92  3.51  

              

Model 14 MSC 6 

Colour a*/b* 0.06  0.99   0.07  0.98  8.00      

TCI 2.18 0.98  2.52 0.98 7.08      

Firmness 1.70  0.94   2.00  0.92  3.48      

Lycopene 2.99  0.92   3.44  0.90  3.09      

              

Model 15 1st derivative 6 

Colour a*/b* 0.05  0.99   0.06  0.99  9.03      

TCI 1.93  0.98   2.50  0.98  7.14      

Firmness 2.24  0.89   2.60  0.86  2.67      

Lycopene 1.99  0.96   2.77  0.93  3.84      
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Figure 4.1: Changes of quality properties of tomatoes vs. day of ripening (DOR): (a) 

colour value a*/b* ratio; (b) tomato colour index; (c) firmness. The solid lines indicate 

tomatoes of cv. ‘DRK 453’; the dotted lines indicate tomatoes of cv. ‘Trust’.   
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Figure 4.2: Original reflectance spectrum of one tomato (cv. DRK ‘453’) at 1 day of 

ripening (350-2500nm). 
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Figure 4.3: Absorbance spectra of tomatoes of two varieties measured at 1, 5, 8, 12 and 

16 days of ripening (400-2350nm): (a) cv. ‘DRK453’ ; (b) cv. ‘Trust’. 
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 (a) 

 

 (b) 

 

 (c) 

 

Figure 4.4: (a) Absorbance (log (1/R)) spectra of all tomatoes of calibration set. 

Preprocessed spectra by (b) MSC and (c) Savitzky-Golay first derivative. 
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Figure 4.5: Root mean square error of full-cross validation (RMSECV) for colour value 

a*/b* ratio prediction vs. the spectral window. The vertical bars in the bottom chart 

indicate the wavelength range for each spectral window. 
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Figure 4.6: Root mean square error of full-cross validation (RMSECV) for colour value 

a*/b* ratio prediction vs. the spectral window: (a) the upper wavelength limit is fixed; (b) 

the lower wavelength limit is fixed. The bold vertical lines indicate the position for the 

fixed upper and lower limits in (a) and (b), respectively.   
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(a) 

 

(b) 

 

(c) 

 

Figure 4.7: Root mean square error of full-cross validation (RMSECV) of models for 

each property vs. PLS components: (a) colour value a*/b* ratio; (b) tomato colour index; 

(c) firmness. 
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(a) 

 

 

(b) 

 

 

(c) 

 

Figure 4.8: The predicted vs. the measured values of the properties of the validation set 

for the optimal models: (a) colour value a*/b* ratio; (b) tomato colour index; (c) 

firmness. 
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Figure 4.9: Root mean square error of full-cross validation (RMSECV) for tomato colour 

index prediction vs. the spectral window. The vertical bars in the bottom chart indicate 

the wavelength range for each spectral window. 
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Figure 4.10: Root mean square error of full-cross validation (RMSECV) for tomato 

colour index prediction vs. the spectral window: (a) the upper wavelength limit is fixed; 

(b) the lower wavelength limit is fixed. The bold vertical lines indicate the position for the 

fixed upper and lower limits in (a) and (b), respectively.   



 68 

2.00

3.00

4.00

5.00

A B C D

R
M

S
E

C
V

 (
N

)

 

400

800

1,200

1,600

2,000

2,400

A B C D

W
a
v
e
le

n
g

th
 (

n
m

)

 

Figure 4.11: Root mean square error of full-cross validation (RMSECV) for firmness 

prediction vs. the spectral window. The vertical bars in the bottom chart indicate the 

wavelength range for each spectral window. 
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Figure 4.12: Root mean square error of full-cross validation (RMSECV) for firmness 

prediction vs. the spectral window: (a) the upper wavelength limit is fixed; (b) the lower 

wavelength limit is fixed. The bold vertical lines indicate the position for the fixed upper 

and lower limits in (a) and (b), respectively.   
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Figure 4.13: Correlation loadings of properties under study. 
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 (c) 

 

 

(d) 

 

 

Figure 4.14: The predicted vs. the measured values of the properties of the validation set 

for the model 36 built using PLS2: (a) colour value a*/b* ratio; (b) tomato colour index; 

(c) firmness; (d) lycopene content. 
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CHAPTER V 

GENERAL SUMMARY AND CONCLUSIONS 

Tomatoes are one of the most widely produced and consumed fruits in the world. They 

are favored by many people mainly because they are low in fat, calories and cholesterol-free; 

rich in vitamins A and C. Additionally, tomatoes are also an important source of antioxidant - 

lycopene. Lycopene is known to have a potential protective effect against certain types of 

cancer and coronary heart disease. Visible/near-infrared (VIS/NIR) spectroscopy as a 

non-destructive analytical technique has been widely used with many agricultural products. 

The present study was undertaken to investigate the application of VIS/NIR spectroscopy for 

measuring quality attributes of tomatoes.  

By means of partial least squares (PLS) regression method, calibration model based on 

VIS/NIR spectral reflectance measurements for each quality parameter of tomato fruits, 

including lycopene content, soluble solids content (SSC), titratable acidity (TA), acid-Brix 

ratio (ABR), colour value a*/b* ratio, tomato colour index (TCI), and firmness, was 

established. The model results indicate that it is possible to use this non-destructive technique 

to determine the lycopene content, a*/b* ratio, TCI, and firmness, however, accuracies of 

prediction for SSC, TA and ABR were not satisfactory.  

Various wavelength ranges within 400-2350 nm and pre-processing methods methods 

including multiple scatter correction (MSC) and Savitzky-Golay first derivative were assessed 

to optimize the model for each parameter. The best spectral range for lycopene content, a*/b* 

ratio, TCI, and firmness was found within 450-1000 nm, 450-600 nm, 430-1400 nm, and 

500-1100 nm, respectively. Except for a*/b* ratio, no pre-processing method improved the 

predictive ability.  

The statistics of the best model for each parameter are as followed: for lycopene 

content, R
2
=0.93 and RMSEP=2.87 mg kg

-1
 with 4 PCs; for TA, R

2
=0.33 and RMSEP=0.51 

mg ml
-1

 with 6 PCs; for SSC, R
2
=0.03 and RMSEP=0.15 ºBrix with 7 PCs; for ABR, R

2
=0.65 

and RMSEP=0.077 with 4 PCs; for a*/b* ratio, R
2
=0.99 and RMSEP=0.06 with 2 PCs; for 

TCI, R
2
=0.99 and RMSEP=1.52 with 3 PCs; and for firmness, R

2
=0.97 and RMSEP=1.44 N 

with 4 PCs. 
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A suitable PLS2 calibration model was obtained at the wavelength range of 450-1000 

nm for simultaneously calibrating colour, firmness and lycopene content of the tomato. The R
2
 

values of the PLS2 model with 6 PCs for a*/b*, TCI, firmness and lycopene content were 0.99, 

0.99, 0.97, and 0.92, respectively, while its RMSEP values were 0.06, 1.75, 1.44 N, and 3.03 

mg kg
-1

.  

The study was conducted on two varieties of tomatoes (cv. 'DRK 453' and 'Trust') and 

results may not be applicable to other varieties. In a further study, a wider range of tomato 

varieties can be investigated to make the models more robust. Additionally, different 

measurement setups such as transmittance mode should be test to compare with the present 

measuring mode (reflectance mode). 
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