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Abstract

This thesis draws from music technology to cre~te novel sonifications of heart rate

information that may be of clinical utility to physicians. Current visually-based methods

of analysis involve filtering the data, so that by definition sorne aspects are illuminated at

the expense of others, which are decimated. However, earlier research has demonstrated

the suitability of the auditory system for following multiple streams of information. With

this in mind, sonification may offer a means to display a potentially unlimited number of

signal processing operations simultaneously, allowing correlations among various

analytical techniques to be observed. This study proposes a flexible listening

environment in which a cardiologist or researcher may adjust the rate of playback and

relative levels of several parallel sonifications that represent different processing

operations. Each sonification "track" is meant to remain perceptually segregated so that

the listener may create an optimal audio mix. A distinction is made between parameters

that are suited for illustrating information and parameters that carry Jess perceptual

weight, which are employed as stream separators. The proposed sonification model is

assessed with a perception test in which participants are asked to identify four different

cardiological conditions by auditory and visual displays. The results show a higher

degree of accuracy in the identification of obstructive sleep apnea by the auditory

displays than by visual displays. The sonification model is then fine-tuned to reflect

unambiguously the oscillatory characteristics of sleep apnea that may not be evident from

a visual representation. Since the identification of sleep apnea through the heart rate is a

CUITent priority in cardiology, it is thus feasible that sonification couId become a valuable

component in apnea diagnosis.
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Résumé

Cette thèse s'inspire de l'informatique musicale.pour générer de nouvelles sonifications

des informations tirées des battements cardiaques, ce qui pourrait s'avérer utile en milieu

clinique pour les médecins. Les méthodes d'analyse visuelle actuelles procèdent par

filtrage des données de façon à ce que, par définition, l'emphase soit mise sur cenains

aspects plutôt que d'autres, ces derniers -Stant ainsi écanés. Toutefois, des recherches

antérieures ont démontrées la capacité du système auditif à décoder plusieurs séries

simultanées de données. Grâce à cette aptitude, la sonification peut offrir des moyens de

représenter un nombre potentiellement illimité de traitement effectué sur le signal,

permettant ainsi l'observation de corrélation par le biais de diverses méthodes

analytiques. Cette étude propose un environnement d'écoute versatile dans lequel

cardiologistes et chercheurs peuvent ajuster la vitesse de lecture et les niveaux relatifs de

plusieurs sonifications simultanées, chacune représentant différentes opérations

effectuées sur le signal. Chaque piste de sonification est conçue pour être différencier

perceptivement afin que l'utilisateur ait la liberté de réaliser un mixage audio optimal.

Dans l'environnement d'écoute une distinction a été faite entre les paramètres aptes a

représenter l'information directement pertinente et les paramètres de caractère perceptif

sécondaire, ces derniers étant employés à la séparation des séries. Le modèle de

sonification proposé a été validé par un test de perception pendant lequel les participants

ont dû identifier quatre états cardiologiques differents à l'aide de représentation visuelles

et auditives. Les résultats ont démontrés que la représentation auditive pennet une plus

grande précision de l'identification d'un des états cardiologiques appellé apnée

obstructive du sommeil. Le modèle de sonification est ensuite finement réglé pour mettre

en exergue de façon indubitable les caractéristiques oscillatoires de l'apnée du sommeil,

caracteristique qui ne peuvent pas être mise en évidence par une représentation visuelle.

Puisque l'identification de l'apnée du sommeil à partir des battements cardiaques est une

imponance capitale en cardiologie, la sonification est donc un candidat potentiel de

premier choix pour le diagnostic de l'apnée.
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1. Introduction

1.1 Purpose of the Study

This study explores the use of sound as a means of representing and examining

data sets. Specifie focus is given to applications in cardiology with examples

intended to generate novel methods for displaying heart rate information that may

be of potential clinical utility to physicians. Methods from music technology and

computer music will be used to examine the representation of heart rate variability

data with sound. The question explored will be whether clinically valuable

infonnation (which may not be evident with a conventional graphie

representation) might become apparenllhrough a sonic representation. The use of

non-speech sound for purposes of conveying information is termed audilory

display.

Auditory display represents a recent development in the intersection of multi­

media technologies and scientific research. Just as the eyes and the ears play

complementary roles in interactions with our environment. the complemenlary

strengths of the two senses can play essenlial roles in data analysis. To date,

graphical displays serve as the primary medium for presenting data. The 1980s

brought tremendous increases in computing power, among them advanced

visualization capabilities. Researchers building upon established graphing

methods have employed these technologies. Over lime. the various techniques

have been combined, resulting in a vocabulary of commonly used images that are

quickly understood (Kramer, el. al.. 1997). An example is the pie chan, which is

a well-known illustration of proportional subdivisions. Pie charts are common

vocabulary, appearing in specialized Iiterature as weil as in junior high school­

level math textbooks.

In the 1990s, new and inexpensive computer technologies were developed that

could generate and process digital audio content. Consumer-Ievel personal

computers are now capable of advanced sound signal processing in real lime.

leading a growing number of researchers to take up the question of utilizing sound

to illustrate and distinguish relative elements of large data sets. Auditory display.

however, lacks the recognized vocabulary of graphicaI displays. There is no

audilory equivalent of the pie chart.
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The development of auditory display technologies is an inherently multi­

disciplinary activity. A successful auditory display must combine elements from

perceptual psychology, music, acoustics and engineering (Kramer et. al., 1997).

Auditory displays, then, are hest realized in an inter-disciplinary environment,

with sound specialists who possess a working knowledge of the research area

working alongside researchers who have a working knowledge of sound

realization. A university music technology program is an environment that

encourages such multi-disciplinary exchanges.

The work described herein explores various sound parameters and their suitability

for conveying information in a way that permits meaningful discrimination.

Through a succession of auditory models, a set of data operations is matched with

a set of sonic parameters. As a result, new insights into the dynamics of the data

sets are obtained, and general principles are discussed pertaining to the

components of an optimal auditory display. It is hoped that the models presented

here will reinforce the value of sound as an illustration medium and that the

techniques will form a constructive step toward a standardized auditory display

methodology.

1.2 Auditory Display

The idea of sound containing information is not new. Levarie and Levy (1980)

point out that the trained ear can gain information through sound that is just as

valid as infonnation gained visually. For example, if asked to eut a string in half,

most people wouId probably reach for a ruler. They point out that an alternative

approach of measurement would he to find the dampening point of the string at

which, when plucked, it sounds a perfect octave above its original frequency.

Along the same lines, they report a humorous story published in the September 3,

1955 issue of The New Yorker about two violists who took an extended road trip

in an automobile with a broken speedometer. When asked how they were able to

maiotain proper speed limits, one of them replied, uThis DeSoto hums in B-flat at

fifty. That's ail we need to know." They point out that what is actually peculiar is

that this story should be considered humorous. To the trained ear of a string

player, such a measurement is as explicit as a distinguishing color on a road sign

or a number read from a speedometer.

2
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Current efforts towards advancing the use of sound to convey information have

been largely due to the efforts of the International Community on Auditory

Display (ICAD). This study will draw extensively from the precedents set by

their work. Their publication Auditory Display: Sonification, Audification and

Auditory Interfaces, a collection of papers taken from the first conference in 1992,

defines the field and its objectives.

The distinction between the terms sonification and audification is defined in

Gregory Kramer's introductory survey. He suggests that the terro audification he

used in reference to Udirect playback of data samples," while the definition of

sonification is taken from Carla Scaletti's paper to refer to Ua mapping of

numerically represented relations." This distinction, presented in 1994, is still in

use in the JCAD Iiterature, and will be employed in this study. The tenn mapping

will appear throughout this study to refer to the translation of information to

illustrative elements. While mapping of information to visual elements has an

established canon of techniques in the field of visualization, auditory mapping is

still in its formative stages.

1.3 Types of Auditory Display

As defined by Gregory Kramer, the objective of IeAO is to e}(plore the uses and

potential for conveying information through sound in technology. This broad

definition encompasses a number of functions. One is the addition of sound

elements to graphical user interfaces such as the Macintosh or Windows operating

systems to enhance their functionality or ease of use. Another is implementations

to make such user interfaces accessible to visually impaired users.

A number of real-time auditory monitoring implementations are in common use,

such as the sonar and the Geiger counter. In medical settings personnel are weil

used to monitoring vital signs with sound-producing equipment. Relieved of

having to keep their eyes on a visual monitor, medical workers can engage in

other activities while still remaining aware of the conditions summarized by the

auditory signals.

While the value of monitoring May be evident enough, the possibility of data

analysis brings up new problems. The object of monitoring is to highlight known

3
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conditions. Ali that is required is for steady states to be easily distinguishable

from a set of known conditions that trigger sorne sort of alarm signal. Il aIso, by

definition, describes events as they are occurring, in real time. An analytical

system, however, must have an added level of flexibility so that unknown

conditions may be brought out. This flexibility is due to the fact that an analytical

system does not exist in real time, but rather is something that is studied after the

facto The non-real-time nature of an analytical system introduces great f1exibility

in time resolution. Great volumes of data can be compressed to whatever

playback time is desired. Varying levels of abstraction may err.erge, depending

on the degree of compression employed.

This study proposes an analytical model as a means of analyzing a complex data

set. The specific data set explored represents heart rate variability.

1.4 Heart Rate Variability

The causes of fatal arrhythmias are central to cardiology. Heart rate fluctuations

can be readily measured from an electrocardiogram and are thought to provide

important insights into cardiac function. While clinicians may refer to healthy

activity as "normal sinus rhythm," this tenn is merely a convenience (Peng, et. al.,

1993), since in real ity healthy subjects often display more erratic patterns than

unhealthy subjects do. For example, following a heart attack, patients whose heart

rates are overly steady are prone to sudden, often fatal arrhythmia.

These heart rate fluctuations are referred to as heart rate variabilitv (HRV), and

are the result of three principal components. The heart's contractions are the

result of electrochemical waves produced by the sinus node. The sinus node is the

pacemaker of the heart and produces excitation waves spontaneously and very

regularly, al roughly 70 epm. The sinus frequency is modulated by the presence

of ehemicals seereled by the autonomie nervous system. The autonomie nervous

system's eomponents are twofold: sympathetic nerves secrete norepinephrine,

whieh increases the heart rate, while the parasympathetic (or vaga/) nerves secrete

acetylcholine, whieh deereases the heart rate. Experiments to isolate the effects of

eaeh of these eomponents have brought out interbeat intervals of 0.6s when the

sympathetic and parasympathetic nervous impulses have been suppressed.

Suppressing input from the sympathetic nerves ean produce interbeat intervals up

4



• to l.5s. Suppressing input from the parasympathetic nerves produces interbeat

intervals as low as 0.3s (Ivanov, et. al., (998). It is thought that nonlinear

interactions between these two competing components are responsible for the

heart rate' s continuai fluctuations, as weil as external factors such as stress, or

periods of exercise or rest. (Nonlinear interactions will be discussed in more

àetail in the next chapter).

To obtain HRV data, a medical technician attaches a series of electrical sensors to

a patient's skin. A Holter monitor, a walkman-sized device that the patient can

keep in a pocket or attach to a belt while engaging in normal activities, measures

the voltage differences. The voltage differences recorded by the Holter monitor

reflect cardiac activity. The voltage is sampled periodically just as an audio signal

sampled for a CO recording. The result is a signal called an electrocardiogram.

voltage

RR interval

QAScomplex

/

tlme

•

Figure 1_1: Eleclrocardiogram recording ofheart aClivily

Of interest are the voltage spikes known as the QRS complexes. These electrical

bursts are associated with the muscular contraction that is the heartbeat. The time

interval between these bursts is known as the RR or NN (for normal-to-normal)

interval. Following the recording, the samples of the continuous voltage signal

are put through a beat recognition algorithm that timestamps each QRS complex.

(These algorithms are generally proprietary, depending on the company

manufacturing a given brand of Holter monitor). From these timestamps the NN

intervals are saved as a one-dimensional data vector. The NN intervals are the

data set used in heart rate variability analysis.

Such a series of discrete data points, measurements taken in time, is known as a

time series. Operations on the time series are called signal processing (Kaplan

and Glass, (995). There are many types oftime series. Computer musicians are

5
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familiar with audio signais, such as those stored on compact dises, and operations

perfonned with digital filters on the audio signai. An audio signal is an example

of a continuous time series, in which measurements are taken periodically and the

signal is reconstructed from these measurements. The degree of accuracy in the

reconstruction is dependent on the sampling rate and the bit resolution.

A heart rate variability series represents an abstraction of the continuous data

series. The heart rate variability time series consists solely of the NN intervals.

Thus, the use of such a series restricts analysis to what can be determined by the

time intervals between successive heartbeats, the heart rhythm. Such a series,

which does not represent the complete contents of a continuous time series, but

rather a select subset of points from it. is called a point process series. The NN

interval series can be described as originating from a point process series.

There have been a large number of different statistical measures proposed to

evaluate heart rate variability and there is not general agreement as to which are

the most useful in explaining the erratic changes in heart rates, even those of

subjects at rest. Many composers have explored applications of chaos theories to

music composition and synthesis. Heart rhythms are also not new to musical

contexts (Davids, 1995; Lombreglia, 1993). This project, however, takes a

different focus. Rather than setting out to create musically interesting sounds, the

approach is to explore whether these chaotic patterns can be a source of medically

useful sounds. The question pursued here is: can cardiological diagnoses be

aided by information taken from an auditory display?

1.S Design of the Thesis

This introductory chapter has outlined the context of the work, providing essential

concepts and terminology. Chaptèr 2 explores relevant background. Its

categories include examples of musical compositions with data sets as their basis,

work done to date in the field of auditory display, and current research in the field

of heart rate variability. Chapter 3 introduces features of software sound synthesis

and SuperCollider, the software programming language used to create the auditory

display models. Chapter 4 reviews the steps that lead to a model auditory display

program for heart rate variability. Once a general model is proposed, a listening

perception test is carried out that compares auditory and visual displays of heart

6
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rate variability data. Based on the results of the test, refinements are made to the

general model to identify a particular heart condition. Chapter 5 provides a

summary and conclusions. The appendices include a variety of background

materials. Appendix 1 is a review of the physics of sound, pitch, timbre, volume,

localization and phase. These topics have been the subject of exhaustive research;

readers wishing for a more thorough study are directed to the references (Blauert,

1997; Bregman, 1990; Handel, 1989; Levarie and Levy, 1980; B.C.I. rvloore,

1989; Pierce, 1983; Rossing, 1990; Helmholtz, 1885). Appendix 2 is an

introduction to nonlinear dynamics, including the output of iterative equations,

components of deterministic chaos, fractals and scaled noise. Appendix 3 is a

brief summary of the Poisson Distribution to supplement the musical issues

discussed in Chapter 2. Subsequent appendices include code examples of the

sonification models and materials used in the listening perception tests. An

accompanying CO contains audio tracks and a Macintosh-format CD-ROM

portion that contains examples of the SuperCollider sonification models.

7



•

•

2. Survey of Related Literature

2.1 Data in Music

2.1.1 Data in Music-Making Art from Information

Interesting illustrations that bear on the topic of infonnation and sound date back

to sorne of the earliest written examples of c1assical Western science and

phitosophy. The most direct predecessors to the subject at hand can be found in

the Twentieth Century, called by many Uthe scientific age," with the emergence of

a scientific current among certain important composers.

We are indebted to the ancient Greeks for originating the idea of representing

information through structured sound. The concept of a seven-tone diatonic scale

derives from Greek cosmology, and until the Sixteenth Century cardiological

diagnoses were conducted according to metrical patterns used by the Greeks in

music and poetry.

ln 6th Century BC Greece, Pythagoras used sound as the basis for illustrating

cosmologically significant numbers. He derived a tuning system by

experimenting with a monochord, a single-stringed instrument with a movable

damper that allowed the string to be divided into two parts. White the ancient

Greeks were not able to observe numbers of oscillations per second in a vibrating

string, Pythagoras was able to codify aurally relationships between string length

and pitch. His theory was based on two significant intervals: one with string

lengths at a ratio of 2: l, which he called the diapason, and the other with lengths

at a ratio of 3:2, which he called the diapente. Recognizing first the concept of

tonal equivalence when a string length is either doubled or halved, Pythagoras

derived successive diapentes. Ali intervals were nonnalized to faIl within one

diapason by multiplying ratios greater than 2 by 1/2, and ratios less than 1 by 2.

The result was a diapason divided into seven steps, derived as follows:

lx 213 = 2/3; 213 x 2 = 4/3

lx 2 = 2

lx 3/2 = 3/2

3/2 x 3/2 = 9/4; 9/4 x 1/2 = 9/8

9/8 x 3/2 = 27/15

27/16 x 312 = 81/32; 81/32 x 1/2 = 81/64

81/54 x 3/2 = 243/128

In ascending arder: 1 9/8 81/54 413 3/2 27/15 243/128 2/1

8
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Pythagorean tuning is thought by many historians (Wilkinson, 1988) to be based

on the Greek perception of the number 3 as representing divine perfection. The

scale, as shown above, is derived from the numbers 1, 2, and 3. Furthermore, aIl

ratios of the scale are based on numbers that contain no prime factors greater than

three. For the Greeks, music was part of an integrated cosmology that

encompassed arithmetic, harmony, poetry and astronomy. This series of numbers

was thought to represent physical and spiritual perfection (Grout and Palisca~

1988). Certain tones, as weil as elements of Greek music theory ~ were thought to

correspond to the motions of heavenly bodies. Thus, the Pythagorean tuning

system was part of Plato t s description in The Republic of the "music of the

spheres."

Mastery of Greek music theory was considered an essential component of a

physician t s training (Cosman, 1978). The importance of music in perceiving

patterns in the human pulse was an important element in the writings of Galen of

Pergamum, the Third Century Greek physician whose voluminous output was the

keystone of medical training untilthe Sixteenth Century. Galen' s writings

identify twenty-seven metric pulse varieties. The pulse of infants was described

as having a trochaic meter, while a pulse of iambotrochaic meter described the

pulse of elderly patients. Specialized pulses were thought to correlate with a

variety of medical conditions. Dy the medieval times, pulse was just one concept

of time that had far-reaching implications for physicians, whose diagnoses were

based on the time of the patient's birth, time of injury and time of treatment, ail of

which were correlated with the motions of the stars and moon.

The early 1900s brought a number of scientific breakthroughs such as relativity

and quantum physics. These concepts became an important inspirational focus in

the music of Edgard Varèse. Anderson (1984) argues that scientific principles are

essential to any serious analysis ofVarèse's work. Rather than relying on

classical ideas of harmony, his music seems to consist ofjuxtapositions of sonic

events and their interactions. Varèse described his music as being composed of

··unrelated sound masses," distinguished by timbre. Anderson speculates that his

inspiration came from quantum theory, the discovery of x-rays and radiation.

In his interviews and lectures, Varèse frequently equated the act of composition

with that of scientific research, as indicated by his tilles (Ionisation, Density 2/.5,
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Intégrales, etc.). However. his daims of music as science are subjective at best

since his pieces are not meant to reveal quantitative data about the natural world.

Rather, scientific analogies for Varèse are perhaps comparable to the exoticism

practiced by sorne of the previous generation of composers. The Oriental

elements incorporated in the compositions of Rimsky-Korsakov and Ravel were

not a serious exploration into ethnomusicology. Similarly, Varèse's references to

science contain no more information about physics than Vivaldi's The Four

Seasons contains information about climatology.

Iannis Xenakis, an admirer of Varèse, made his mark as a composer by using

calculations as primary musical material. This innovation was the result of two

factors. One was his background. His formai education was in engineering,

coupled with a more than passing interest in the Greek c1assics. Though bom in

Romania, Xenakis was raised in Greece, which he considered to be his country.

He was highly influenced its philosophical heritage of attempting to find order in

the universe, an interest that seems to have helped him come to terrns with his

violent experiences as a political activist in Greece during World War II. The

second factor was the musical context of the time. Xenakis attempted to fuse his

range of experiences into musical expression at a time when the European musical

community was increasingly preoccupied with seriai composition.

Serialism can be traced to a set of compositional strategies conceived by Arnold

Schoenberg beginning in 1908. As a reaction to the increasing chromaticism in

musical works of the late Romantic era, Schoenberg began writing pieces that

were not based on a tonal center, and were thus terrned atonal. By 1923,

Schoenberg had developed a system of twelve-tone or dodecaphonic principles

that treated aIl twelve notes of the octave with equal rank. His system relied on a

row, a sequential ordering of the twelve pitch classes. No note was to be repeated

until ail the others had sounded, although this stipulation has been treated with

more stringency by subsequent theorists than it ever was by Schoenberg himself.

A piece was based on operations performed on the row, chiefly transposition

Cmaintaining aIl intervals between pitches, but starting with a different pitch

c1ass). inversion (reversing the direction of ail intervals within the row),

retrograde (reversing the order of pitches in the row), and retrograde inversion

(an inversion played in reverse order).
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The Ferienkursefuer Neue Musik, which began at Darmstadt in 1946, featured a

group of young composers who looked to first to Schoenberg, and later to his

student Anton Webern, as the originator of music's next evolutionary step. Pierre

Boulez observed in Webern' s music extensions of row operations to sequential

ordering of other musical elements, such as note duration. Total serialism was

characterized to a large extent by a high degree of determinism in a composition,

achieved through extending twelve-tone pitch techniques to other musical

parameters such as rhythm, dynamics, articulation or instrumentation. Precise

control over musical elements was achieved by writing material that occurred in a

predetermined sequence according to its place in a row. The preoccupation with

total serialism was exemplified by Boulez' s statement "1, in turn, assert that any

musician who has not experienced-I do not say understood, but in ail exactness,

experienced-the necessity for serialism is useless.n

In a 1956 article in Gravesaner Bliitter (Xenakis, 1956), Xenakis asserted that, so

to speak, the emperor was wearing no clothes. As a case for the ultimate futility

of seriai music, he wrote that its coherence was based on permutations of 12-tone

matrices that no one could actually hear. The result was not the supreme order

and clarity claimed by serialism's proponents, but rather an Incoherent mass of

sound. The linearity of the rows was lost with the intersecting lines of activity.

The structure was evident only when the work was perceived as a whole, an

impossibility since music exists in time and only a fraction of a whole work is

audible at any given instant. He reasoned that since listeners were presented with

a mass of sound based on these rather trivial arithmetic operations, it would be in

composers' interests to acknowledge the nature of a sound mass, and manipulate il

with more sophisticated mathematical equations found in nature.

Xenakis' first three works are of particular interest as they are partially

sonifications of non-musical information. The first contains formai divisions

according to classical proportion and musical representations of an architectural

design. The second contains a sonification of Brownian motion. The third

contains an Implementation of probability.

In the 19505, as a structural engineer and architect at the firm of Le Corbusier in

Paris, Xenakis took interest in Le Corbusier's implementations of the Golden

Mean, a proportion found throughout nature and classical Greek architecture. The

Il



• Golden Mean involves forming elements according to the ratio B:A =A+B:B, as

shown below:

A+8 .
.-.-------70------........
~27 ---+ f 43 ~

• A· 8 ~.

8:A =A+B:B
43 : 27 =70 : 43 ~ 1.6

Figure 2_1: Golden Mean proportions

The Fibonacci series is a related number series:

1. 1. 2, 3,5, 8, 13,21,34,55, 89, 144.233 ...

Leonardo Fibonacci was one of the first great mathematicians in European

culture. He derived the sequence above in the early Thirteenth Century as an

analysis of optimal reproduction rates among rabbits (Gillipsie, 1970-90). [t was

subsequently demonstrated that the asymptotic ratio between successive numbers

in the series was equivalent to the Golden Ratio shown in Figure 2_1, an irrational

number represented by:

1+.ys
2 ~ 1.618 ...

•

Many composers have employed the Golden Mean and Fibonacci series. Webster

(1950) cites fonnal divisions that approach Golden Mean proportions in

composers from the Classical period to the Twentieth Century, including Haydn,

Mozart, Beethoven, Schumann, Chopin, Debussy, Schoenberg and Bartok. It is

not clear, however, whether this proportion was applied consciously, or whether it

was employed intuitively, as a division point Iying between one half and two­

thirds of a given length. Kramer (1973) cites several Twentieth Century

composers who employed Fibonacci numbers in their work, including Bartok,

Stockhausen and Nono. Bartok, in particular, extended their use beyond formaI

divisions to derive scales with interval contents taken from the Fibonacci series

and in the lengths of repetitions of certain themes.

12



•

•

In the early 1950s Xenakis also began to study composition in his off-hours.

While Xenakis did not possess a great deal of formai musical training, his teacher,

Olivier Messiaen (who had also taught Boulez and Stockhausen), fostered his

interest in applying architectural principles into a compositional methodology.

Xenakis began attending the workshops at Darmstadt, established himself as a

maverick with his article in Gravesaner Bliitter, and began his own explorations.

Xenakis' approach was to treat music as a field of sound in which material could

be plotted as a series of vectors over multi-dimensional axes of dynamic,

frequency, intensity, duration, etc. (Matossian, 1986). His first major work,

Metastaseis (.f 953-54), was written entirely divisi for 61 players-46 strings, 7

brass, 6 winds "nd 2 percussion. With its sixty-one independent parts, the piece

was his first experiment in what he tenned the sound cloud. He used the Golden

Mean for formai sub-divisions, pitch. articulation, duration and dynamics. He

also adopted an architectural fad of the time, the hyperbolic paraboloid, which he

later used in the design of the Philips Pavilion for the World's Fair of 1956.

Attracted to the creation of curved shapes created by component straight lines,

Xenakis wrote the climax of Merastaseis based on this shape. Each straight Hne

represented a glissando trajectory of one string instrument. The starting and

ending height were represented by pitch, the horizontal point of origin by time of

entry.

Xenakis applied this system of proportion to a number of architectural projects

during this time, which culminated in a chapter included in Le Corbusier' s

Modulor Il (1958). In this chapter, Xenakis recalled Goëthe's description of

....architecture [as] music become stone." and inverted it to ~~music is architecture in

movement."

After Merastaseis , Xenakis began to incorporate other types of sonification into

his work that were not based in architecture. His second piece, Pirhoprakta

(1957), took the sound cloud/string glissandi concept a step further. The glissandi

are not homogeneous, but in various directions and speeds. As with the

'''architectural'' section of Merastaseis, it is most helpful to view Xenakis' graph of

the relevant section. Matossian (1986) provides many illustrations meant to

illuminate the underlying principles of Xenakis' work. In Pithoprakta, the
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trajectories were a mapping of a Lévy distribution, simulating the Brownian

ricochets of gas molecules, as described in Appendix 2.

Xenakis' third work, Achorripsis (1958) was a musical examination of

probability. A matrix of activity determines interaction among timbrai elements

over time. The number of events from each instrument group per time unit is

distributed according to the Poisson distribution. Due largely to his use of it, the

Poisson distribution is now a common probability formula employed in

algorithmic composition. White algorithms for the Poisson distribution appear in

many sources, its history and what exactly it illustrates are not as commonly

described. A brief summary of the Poisson Distribution is provided in

Appendix 3. The wide range of its applications makes it clear why it would be

attractive for a composer such as Xenakis, who was seeking ways to reflect

universallaws in music.

In a series of articles, which eventually culminated in the publication of his book

Fonnalized Music in 1971, Xenakis articulated his theories of what he terrned

stochastic music. The term derived from the Greek stochos, which he defines as

an equilibrium state that is eventually reached after a very large number of

particles are taken through a very large number of interactions that contain sorne

element of randomness. Examples from nature might include the sound of rainfall

or a swarm of insects. In each of these cases, listeners do not perceive the activity

of any one individual particle, but instead perceive a macroscopic sound mass, or

gestalt, that is the sum of ail the micro-Ievel interactions. He describes music as

an organization of operations of logic and relations on sound (and, by implication.

time).

2.1.2 Biofeedback Music-Medical Monitoring as Performance Art

Among the aesthetic explorations of the 1960s were inquiries into the nature of a

performance event. New elements of spontaneity were 50ught in events termed

~~happenings," in which an artist assembled an environment of sorne kind, and the

audience's interactions with it became the performance. This spirit of "anything

goes, everything is art" caused sorne performers to look literally inward. offering

sonic monitors of their physical vital signs as performance material. Alvin

Lucier's 1965 performance piece Music/or Solo Performer involves a performer

sitting silently on-stage, wired to a set of electrodes and an EEG machine. The
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Iow frequency alpha brain waves are amplified, and their vibrations cause

percussion instruments placed near the speakers to resonate. This piece was

perfonned in the FaU of 1999 at McGilI University, made possible by the donation

of an older, out of service EEG machine from the Montreal Neurological Institute.

A grounding electrode was placed on one of the performer' s ears, and four others

were placed on his forehead, temple, top and rear of the skull. The EEG measured

and amplified the potentials between pairs of these electrodes. The altemating

current was al frequencies in the range of 5-15Hz. The four frequency channels

were fed to four channels of a mixing console, from which they were distributed

to a four-channel amplifier. Each channel fed a speaker near a percussion

instrument. The performer, Andrew Brouse, reported that the goal was to reach a

"meditative, non-visual state" in which the alpha brain frequencies became active.

The trick was not to focus the attention, but to reach a semi-conscious state. The

piece ends when the performer opens his eyes, dropping the alpha waves to low

levels.

Benjamin Knapp's Biomuse (1990) is a MIDI adaptation ofthis idea. Bands are

placed around a performer' s wrist, knees and head. The bands track neuroelectric

(brain and eye potentials) and myoelectric (muscle potential) signais and send

them to a DSP processor that converts their values to MIDI information.

Since the 1960s, David Rosenboom has produced a number of biofeedback pieces

in which signais from the performer's brain waves controlled structural events in

the music. In his piece On Being Invisible (1977, 1995), the computer' s role is

threefold. The piece begins with the computer generating musical material based

on pre-programmed algorithms. As it generates the material, a Iistening process

analyzes the output, searching for events that would likely be perceived as

structurally significant. At the same time, it is monitoring the EEG output of a

perfonner with the aim of extracting Event-Related-Potentials (ERPs) from the

ongoing brain wave activity. ERPs are more embedded transient waves that are

related to recognition of beginnings of events. If the computer listener finds that

new musical events correspond with the performer' s ERPs, it generates a new

type of pattern that is based on its analysis of previously generated patterns and is

meant as a logical continuation of them.
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2.1.3 Nonlinear Dynamics in Music

With the publication of Mandelbrot' s The Fractal Geometry ofNature in 1983,

and the popularization of terms such as "self-similarity," "chaotic dynamics" and

"strange attractors," visual art based on the output of iterative functions became a

standard item in poster shops. Besides the abstract beauty held in these images,

chaos theory's appeal to the public imagination was due in part to hyperbolic

claims such as ~~a butterfly f1apping its wings in Beijing can cause a rainstorm in

Montreal five days later" (Kaplan and Glass, 1995).

The interest of the computer music community was similarly sparked. as

musicians adapted the instigations of Xenakis to create music by mapping the

output of fractal and chaotic equations. The following survey, while not meant to

be exhaustive, details many of the ways that nonlinear dynamics have been

applied to musical composition. An introduction to fundamentals of nonlinear

dynamics is provided in Appendix 2.

2.1.3.1 Fractal Music

Statistical self-similarity seems to have supplemented the Poisson Distribution as

a ubiquitous principle that has been found to underlie the nature of many

phenomena. Just as Xenakis was drawn to the Poisson Distribution to reflect

naturalistic distributions of musical events. fractal dynamics have been the basis

of a number of musical investigations.

Voss and Clarke, studying extended radio broadcasts. found that loudness

fluctuations in music displayed a llfdistribution below 1 Hz (Voss and Clarke.

1975; Voss and Clarke. 1978). Voss and Clark then expanded their study to the

creation of music by self-similar principles. Gardner (1978) describes the

algorithms created by Voss and Clark for generating a series of numbers that

follows the statistical properties of scaled noise. These algorithms are

summarized in Appendix 2. Once generated. the numbers can be mapped to pitch,

duration, or any musical parameter. Voss and Clarke conducted numerous

experiments in which melodies with pitch and duration generated by each of these

methods were played for listeners who were asked to evaluate them. It is perhaps

not surprising that listeners found "white" melodies to sound consistently random

and "Brown" melodies to sound consistently monotonous. "Pink" melodies, on
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the other hand, sounded "about right" in teons of consistency and change. The

conclusiveness of these studies is limited in that only short segments were played

for the Iisteners. The results say much more about the nature of these scaled

noises than they do about music itself. It would be a mistake to assume the

converse, that great music can be generated by a simple li! algorithm. Still, it is

intriguing that a series of Ilfdistributed numbers can produce melodies that

appear to have sorne planned intention behind them.

Bolognesi (1983) extends the Ilfnumber generation algorithm described by

Gardner in two ways. One way is to add a random element to the number of die

cast with each iteration, by use of a probability distribution that maintains the

average scope of any given die's value. This variation in the number of die cast at

each step serves to disrupt the strict binary hierarchy of the running total that

results From Voss and Clark's algorithm. Bolognesi then goes a step further by

"weighting" the dice, with the result that there are tendencies towards certain

pitches. The melodies produced by these modifications have a c1ustered

character. The changing pitch centers are determined by the values generated

from the dice corresponding to the most significant bits of the incremented binary

number.

Bolognesi then deseribes the generation of self-similar material via Lévy walks

(or "random walks," as described in Appendix 2). The size of each step is

determined by a probability function introduced by Mandelbrot (1983) as a model

to describe the c1ustering of galaxies. The result is a "melodie c1ustering" of

changing pitch centers, but with a more continuous scale than the discrete scale

that resulted From the dice algorithm. Using the Lévy walk over multiple axes

allows each axis to represent different musical elements, as the steps and the

multiple axes then become similar in function to the vector system employed by

Xenakis. Generating more than one musical Hne produces similarities in the rate

of change in pitch centers among the multiple melodies.

Dodge (1988) takes a different approach to fractal methodology, describing the

creation of self-similar values via Iist processing operations. A list of pitch

classes is created. A member of the Iist is selected at random and copied into a

Melodie line. Random numbers are generated, and serve as indices to the list of

pitches. Pitches are added to the melody until a1l the pitches From the list have
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been selected. Thus, the melody will Hkely contain a high nurober of repeated

notes. For the second Hne, a second list of accompanying pitches is created, with

shorter durations, for each note of the first Hne. In the same fashion, a third Hne is

created. To derive durations, Dodge then worked backwards. Using the same

generation technique, a duration value was found for each pitch in the third Hne.

The durations of each pitch in the second line were then determined by simply

summing the durations of the notes in the third line that corresponded to each of

the second line's pitches. The durations of the first Hne were then taken as the

sum of corresponding notes from the second line.

Gary Lee Nelson uses a fractal image as the basis for generating microtonal

pitches in HFractal Mountains" (Rowe, 1996; Nelson also describes this piece on

his web page: http://www.timara.oberlin.edu/people/-gnelson/gnelson.htm).An

interactive piece for Nelson' s MIDlhom instrument, his fractal algorithm tracks

the onset time of successive notes and their interval difference. Treating each

lime and interval as an (x,y) pair, the program then interpolates pitches in 96-tone

equal tempcrament that subdivide the resulting Hne. (Appendix 1contains a

description of equal temperamenl).

The work of Bolognesi. Dodge and Nelson bears conceptual parallels with the

music of Varèse. They are not nonlinear dynamics specialists, yet they take a

keen interest in adapting scientific elements for their compositions. White they do

not use fractal principles to explore data in a quantitative manner, the self-similar

algorilhms they employ provide new means for generating material. Thus, these

algorithms might be seen as providing an element of exoticism to their work

similar to the adaptations of physics created by Varèse.

Mapping Chaotic (and other) Data

Other musical investigations have focused on the output of iterative equations.

Pressing ( 198?) describes sonifications of the logistic difference equation

described in Appendix 2:

Figure A2_4 in Appendix 2 shows the bifurcation diagram that describes the

asymptotic output of the equation depending on the value chosen for R. Pressing
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used the Csound synthesis language. constructing a Karplus-Strong plucked string

algorithm (Karplus and Strong, 1983; Jaffe and Smith, (983) to map the iterated

values to pitch. His mapping formula was 2u
+-

J
, where 2J was the frequency ofthc

lowest note, C was the octave range, and x was the value of the data point. Setting

d to 6 and c to 3, he established a three-octave range from C at 64 Hz (two octaves

below middle C) to C 512 Hz (an octave above middle Cl.

Choosing an initial value of x al 0.5, he worked with values of R above 3.6, which

fall in the grey areas of the diagram, just before the onset of a new cycle. He

described these regions as Hquasi-periodic" (although this is not a correct use of

the term) according to his observations. For example, setting R to 3.828, a cycle

of 3 emerged following a transient period of ISO iterations. After continued

iterations, Pressing noticed that the cycle length would shift to different lengths, in

the range of 2-7. He identified the start of each cycle when a frequency over

400 Hz was produced. It was an easy delineation, as subsequent pitches fell weil

below this value. He found that cycles of n pitches ail had similar contours. This

was a fealure not found in any mathematical descriptions, yet c1early audible with

his mapping of values to frequencies.

Bidlack (1992) describes four chaotic equations. Two are iterated maps that are

notated by difference equations, as described in Appendix 2. His third and founh

equations are continuous maps in three dimensions, which are notated with

differential equations. These last two require integration, which Bidlack employs

with the Euler method (Kaplan and Glass, 1995). More a tutorial than a musical

analysis, Bidlack's article is a straightforward introduction to nonlinear dynamics

complete with accompanying C code to demonstrate the translation of each of the

equations into computer algorithms. Bidlack suggests piteh as a mapping of one

variable, leaving it to the reader to imagine musical parameters that might be

modulated by mappings from other variables of the equations.

Harley (1994a) provides a general discussion on the question of creating effective

data mappings of the output of iterative equations. Two issues of eoncem are

resolution and Iistener comprehension. The first is an issue shared by scientists.

The output of a chaotie function is highly dependent on how Many decimal places

their values are rounded to. For a visual anist, the sereen resolution can, in the

same way, change the appearance of the funetion's visual plot. For a musician,
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this problem translates into working with an appropriate averaging of the data

values. The second question is more overriding, addressing the translatability of

functions that produce effective spatial (visual) representations into the time-based

(aurai) medium of music. Composers interested in implementing iterative

equations face the same problem observed by Xenakis pertaining to seriai music.

It is far from certain that music generated by iterative equations has the same

power as visual representations produced by these equations. The totality of the

function cannot be perceived in music, only a moment-to-moment iteration of data

points. Unlike the viewer of the visual output, the Iistener's appreciation of the

aurai output is Iimited by the amount that can be remembered effectively.

The question of resolution was the creative basis of another work by Charles

Dodge, described in (Dodge and Jerse, 1995). In Earth 's Magnetic Field (1970),

Dodge sonified measurements of the sun' s radiation onto the magnetic field that

surrounds the earth. He look averages of the radiation over three-hour periods

taken from twelve measuring stations placed throughout the world, resulting in a

total of 2,920 readings for a year' s worth of data (he worked with the year 1961).

Twenty-eight possible values were mapped to diatonic Meantone pitches 1. The

piece's section breaks were taken from the 21 Hsudden commencement" points of

sudden increase in value. These section breaks were grouped into five

movements. In three of them, the sudden commencements were mapped to tempo

change. The length of each commencement section was plotted on a horizontal

axis, with the highest value in each section plotted on the vertical axis. The

resulting function described continuous tempo changes within these movements.

In the other two sections, the tempo was constant, with one note sounding for a

one second duration whenever there were two identical readings in succession,

with the next second containing ail pitches corresponding to readings between the

next two identical successive readings.

The question of resolution is termed binning in Ary Goldberger' s description of

Zach Davids' piano album Heartsongs: Musical Mappings ofthe Heartbeat

(Goldberger, et. al., 1995; Goldberger, 1995). Binning breaks a data set into

IMeantone temperament was an atternpt lO resolve the disparities between Pythagorean and Just
tunings. Il involved tlallening the primary fifths of the scale. 50 that sorne degree of transposition
was possible. Tt was used in sorne Baroque pieces prior ta the universal adoption ofequal
temperament (Wilkinson. 1988).
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coarser subsets, with a bin containing ail data points within a given range of

possible values. Davids' recording is a mapping of heart rate variability data. A

data set of approximately 100,000 points is averaged over every 300 beats,

leaving approximately 330 values. The range covered by these points (the highest

value minus the lowest value) is then divided into 18 equally spaced bins. Having

thus collapsed the data set into 18 values, each value is then assigned to a musical

pitch, creating a melody of 330 notes. Davids then composed harmonies and

rhythms to underlie this melody.

The examples of Davids and Dodge raise the issue of freely composed material

vs. generated material. Since the melodies in each of these pieces were a matter

of the composer's taste, the reHance of the music on the data is qualitative rather

than informative. The experience of hearing these pieces May be equally effective

if the same melodies are heard over freely composed harmonies.

The problem of effectively translating imagery to music was undertaken by Gary

Kendall in Five LeafRose (1981). His solution was to base his composition on a

simple and periodic image, the polar plot r =Isin2.5al. The shape of this plot is a

five-leaf curve, with each leaf moving down from multiples of seventy-two

degrees: 72° to 0°,144° to 72°, 216° to 144°, etc.

Figure 2_2 Five-Ieafrose plol olr = 1sin(2.58) 1

The progression of the piece takes the listener through 360°, with a changing

accompaniment pattern throughout. The plot is divided into points every 2°, with

each point mapped to a particular pitch and timbre. The changes occur gradually

ovec 360°. Given the Ujumps" that occur al the starting point of each leaf, the
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changes divide the piece into five sections. The traversai of the curve is at a

constant velocity of radians per time unit. This means that more space is covered

per time unit in areas of the curve farthest from the origin, as can be seen from

examination of the above figure. The result is that there is a denser series of notes

in the farther than in the nearer regions. There are always six notes that sound,

sorne ahead of the present position, sorne behind. The timbre changes over the

course of the plot via a three-operator cascade FM algorithm (FM synthesis is

discussed in the description of the HRV Sonification). While the frequency of

one modulator is fixed, the other goes through a series from one to twelve. The

result is a series of harmonies that correspond to five pitch classes. Each of these

five pitches is used as the fundamental of another equivalent harmonie series.

Each leaf has two such harmonie series sounding simultaneously. Thus, larger­

scale elements of the piece are based on the curve, as are the moment-to-moment

elements. Creative elements are added to the strict mapping of curve elements by

modulating entry times of the accompanying notes, and mapping other elements

such as detune and low-pass filtering to the positional angle as weil, with ail such

changes out of synchronization with each other for maximum variety. Over this

accompaniment the melody was freely composed.

A less literai form of mapping is described by Harley ( 1994b) with the aid of his

CHAOTICS software. Performing iterations of the logistic difference equation.

the output can be re-scaled to whatever range is desired and the values mapped to

pitch or any other parameter. Such a direct function. however, is not the primary

purpose of the software. A statistical module creates a histogram that keeps track

of how many times each value has been generated. Musical parameters can then

be created from these values based on the number of occurrences of the output

value. For example, pitches couId he assigned according to diatonie function.

When a value is generated that matches the most frequently generated value, the

tonie tone may be output; when the value generated matches the second most

frequently generated value, the dominant tone may be output. Thus, the output of

the equation is mapped to musieal functions that are chosen by the composer.

Harley stresses that the software was not created to represent sonic mathematical

analyses, such as those described earlier, created by Pressing or Bidlack. Rather,

the CHAOTICS modules are meant to provide a level of musical cohesion by that

composers may choose structural elements that maintain a balance according to

values output from the chaotic equation.
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2.1.4 Concluding Thoughts on Data as Music

The examples discussed in this section provide orientation into the kinds of

sound-making methodologies that must be at the heart of an effective auditory

display. The use of nonlinear functions as a musical basis is a compelling and

potentially fruitful compositional tool representing a blending of scientific and

music theories. In order for il to succeed, however. those who choose to engage

in it must appreciate its multi-disciplinary nature. Articles on chaos theory and

music are often written by authors who specialize in one field but who have

limited understanding of the other. As cited above. Pressing misuses the term

Hquasi-periodic" in his description of the output of the logistic difference

equation. By the same token. Harley, while his software modules provide

interesting musical possibilities. misuses terms such as '·aurocorrelational,"

Udeterministie" and '·chaotic" to the extent that discussions with nonlinear

dynamics specialists would be limited at best.

Similarly, an article by mathematician Diana Dabby (1996) associates the output

of a chaotic equation to successive pitches of a Bach Prelude. Changing the initial

conditions of the equation produces different output. Using the same output-to­

pitch rnapping, the new equation' s output is associated with rnelodic sequences

that are similar to the original melodies composed by Bach, but which contain

substitute pitches taken from elsewhere in the composition. Different forms of the

equation produce different versions of the Prelude, sorne of which are similar to

the original material and some of which are very different due to greater degrees

of pitch substitution. Besides the misuse of terms such as "appoggiatura" and

"contrapuntal," Dabby terms her substitute pitches as "variations" on Bach's work

without acknowledging that musical variations based on good compositional craft

involve more than pitch rearrangernent. As a result, it is not clear from her article

whether there is any inherent relationship between the Prelude and the Lorenz

equation that she uses beyond that of an artificial superimposition.

Similarly, Gogins (1991) describes a system of iterative functions that is meant to

produce fractal computer graphies. Each successive value is fed into a different

function, chosen at random or in sequence. The focus ofthis article is prirnarily

on graphie output. although MIDI files are created from these visualizations.

However, it is Dot c1ear how weil MIDI' s resolution of 0-127 represents the

gradations of these fractal images. Gogins goes on to describe briefly Julia sets as
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variants of the Mandelbrot set, derived by changing the constant in the

Mandelbrot equation in order to highlight one area of the Mandelbrot set. Thus,

the Mandelbrot set is termed a "one volume dictionary" of aH Julia sets. It seems

a stretch, however, when Gogins follows this Hne of thought with the concept of a

Mandelbrot set for music that would be a "one volume dictionary of ail possible

musical scores."

It might be argued that the above citings of misused terminology amount to little

more than semantic nit picking. After aIl. if these authors are able to produce

material with their respective algorithms. why does it matter if their terminology

lacks precision? The answer lies in the fact that composition of this nature is still

a recent development. The question of effective representation of chaotic

dynamics in music remains largely unsolved. A straightforward mapping of

output from a chaotic equation may be too fundamental to create compelling

musical representations. The approach of Kendall. in which the time progression

follows a specifie trajectory through the visualized data set. is an interesting

possibil ity. However, the choice of trajectory would be a difficult matter with a

more complex image. Retuming to the question raised by Harley as to the manner

in which chaos and music may relate to each other most effectively, it seems that

a general methodology would have to take into account the abilities of both the

eye and the ear in perceiving chaotic dynamics. The eye is able to perceive ail

iterations simultaneously on a visual graph, while the ear's perception is time­

based and subject to the constraints of shon-term memory. Therefore. trying to

map the complexity of these visual images to an aurai representation may be

taking the wrong approach.

The next section will take up the subject of what the particular strengths of the

auditory system are. A feature of the auditory system that will be expanded in the

next section has to do with the ear' s strength in following simultaneous streams of

information. An effective musical representation of chaos is likely to be one that

seeks to extract as many dimensions as possible from the generated data set. An

intertwining of these parameters may be an effective musical substitute for the

visual nature of all iterations being present simultaneously.

The solutions explored in auditory displays with sound parameters assigned to

multi-dimensional data sets may provide practical solutions for researchers as weil
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as composers. However, for such displays to be created it is important that sound

and data specialists be able to work together with a solid grasp of the concepts

central to each field. It is hypothesized that the sonification models presented in

this thesis will be useful for successful future work in research as weil as for

music creation.

2.2 Auditory Display

As stated in the Introduction, a primary source for auditory display work is

Kramer (1994). In comparing functional elements of auditory and visual displays,

another essential primary source is Bregman (1990), who explores perceptual

principles of audition. The grouping of auditory elements and their perceptual

assignment to an object or event creates an auditory stream.

2.2.1 Elements of Auditory and Visual Displays

Many elements of visual displays have intuitive correlates in the sonie domain.

Height often means '·more," a greater magnitude of sorne kind. A natural sonie

correlate is pitch, such that a higher pitch can signify greater magnitude. The use

of pitch involves relative changes. Only the rare individual who possesses perfect

pitch would be able to identify the numerical value of a sounding frequency.

However, fluctuations in pitch are adequate to indicate relative changes in value.

The human ear is highly sensitive to changes in frequeney, such that even small

changes are perceivable as differences in pitch. Another possible magnitude

correlate is volume, although this parameter is problematic due to the difficulty in

assigning definite loudness scales, described in Appendix 1. Given the ambiguity

of loudness as a percept, this is a mapping that is Iikely to be most effective in

measuring changes on a large seale, perhaps in tandem with other paramelers. It

is not Iikely to be effective in conveying small-scale changes in magnitude.

Frequeney, then, would be the preferred method to convey magnitude, although

due consideration must be given to the size of the changes involved. Due to the

logarithmic nature of the auditory system's pitch perception, also described in

Appendix l, changes in the lower frequency ranges of only a few cycles per

second can produce differences on the order of a number of musical scale steps,

while much larger changes in frequency are required to produce the same relative

pitch change in higher ranges. Hence, il is often preferable to map changes of

frequency on a logarithmic, rather than linear, scale.
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Color, or brightness, is often an important component in a visual display to

differentiate between different types of elements. A literai mapping of color to

the auditory domain might involve pitch, since bath color and pitch are related ta

frequency. But if pitch is best employed to represent changes in magnitude, then

perhaps a more suitable correlate for color is timbre. Musicians often informally

refer to timbrai characteristics as color, with comments such as "This piece brings

interesting colors out of the piano." With the advent of computer music synthesis,

many studies (Moorer and Grey, 1977; Gordon and Grey, 1978; Wessel. 1979)

have added quantitative classifications of timbre based on overtone content and

attack time. It is far from certain, however, that small changes in these parameters

could be an effective basis for an auditory measurement. Like loudness. timbre is

probably best employed to refIect large-scale changes, or as an enhancement in

combination with other parameters. The cardiology model presented later will

provide an example of a suggested use of timbre.

Another possible component is that of location. As described in Appendix 1.

Blauert (1997) concJudes that the eye displays greater precision in disceming

changes in location than does the ear. Localization, however. is not a simple eue.

Bregman (1990) observes that localization alone is not sufficient as a means to

discriminate independent auditory streams. In Iife it is rare that we hear only a

direct sound source; enclosed spaces. surfaces and obstacles ail create a multitude

of reflections. Thus. ail identification of objects through hearing would break

down if each reflection were indicative of a new auditory event. However. we get

a great deal of information from the timbrai changes introduced by these multiple

reflections. The superimposition of the sound wave with copies of itself creates

reinforcements or cancellations of certain frequency regions, an effect known as

comb filtering. The pinnae (outer ear) also carry out comb filtering to assist in

identifying vertical placement of sound objects. As is the case with small

frequency differences, the auditory system is highly sensitive to small differences

of inter-onset time. This sensitivity is used to assess acoustic environments.

Reverberation filters sound. depending on the size, shape and material contents of

a room. It would appear that the evolutionary process has been carefully selective

in how our perception of location has developed. As discussed in Appendix 1.

differences in phases of a complex tone do not change the tone's primary

characteristics: if the tone is steady, introducing phase differences will have at

best a minimally audible effect. However, phase differences experienced as inter-
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onset times of sound events, either among overtone components during the attack

portion of a sound event, or as reflections of a sound as a component of

reverberation, give infonnation about the listening environment.

Localization can also be highly effective when used in conjunction with other

parameters. Two tones close to each other in frequency may be indistinguishable

if heard over headphones, balanced equally in each channel of a stereo playback

system. Simulating spatial separation via interaural intensity difference, however,

can cause the two tones to segregate and be perceived as two separate pitches

(Cutting, 1976). Early papers on multi-channel recording noted that the effect of

adding channels was not so much the ability of the Iistener to perceive precise

apparent locations of instruments, but rather a more qualitative impression of

spaciousness (Steinberg and Snow. 1934). While Iistening to music through one

speaker, the impression was that of hearing through a window the size of the

speaker; listening to music through two speakers gave the impression of an

elongated window that filled the space between the two speakers. Bregman

confirms this experience anecdotally by reporting his experiments of switching a

sound system back and forth from stereo to mono. or covering one ear in a concert

hall. He noted an increased level of segregation among the various instruments. a

factor that audio engineers cali transparency.

This auditory distinctiveness among sound sources suggests a tenet lhal will recur

throughout this work: the auditory system is partieu/ar/y weLl suitedfor following

s;multaneous streams ofinfonnation. This strength related to the attentional

filtering the auditory system is able to carry out, commonly known as the

"cocktail party effect" (Handel, 1989). With multiple sound sources, we have the

ability to selectively prioritize a single source. By the same token, unchanging

sounds tend to recede into the attentional background. In clinical environments

such as hospitals, patients may be monitored by a variety of sound-producing

devices. The consistent output of these devices keeps any one of them from being

prominent until a particular vital sign crosses a critical threshold. causing ilS

associaled monitor to emit an alarm noise and "pop out" of the sound field.

2.2.2 Background Work in Auditory Display

In his introduction to Auditory Display: Sonification, Audification and Auditory

Interfaces, Gregory Kramer provides a hislorical survey that ascribes the first
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consolidated exploration of sonification to Sara Bly's 1982 dissertation from

University ofCalifornia Davis (unpublished). Her most definitive conclusions

involved multi-variate data parameters. Participants were asked to identify

different f10wer species based on four measurements per plant, represented with

sound parameters such as pitch, loudness and attack time. She found a high

degree of accuracy in participants' identifications.

Bly performed further experiments comparing illustrations involving sound only,

graphics only, and both. Asking participants to identify test samples as belonging

to one of two differentiated sets, she found that both the auditory and the visual

displays to be equally effective, with the bimodal display yielding the highest

degree of accuracy. Steven Frysinger also took up the issue of graphie, auditory

and bimodal perception, reported in Journal of the American Statistical

Association (Mezrich, et. al., 1984), his 1988 master's thesis from the Stevens

Institute of Technology in Hoboken (unpublished), and in the 1990 SPIE

Proceedings (out of print). Participants in his tests were asked to identify patterns

in single-dimensioned data sets after a period of training. His results showed the

same degree of accuracy with a bimodal format as with an auditory-only format.

Kramer' s conclusion is that auditory displays are thus valuable on their own merit,

not only as adjuncts to visual displays.

Kramer cites a 1982 study for the London Civi1Aviation Authority by R.D.

Patterson as an important step in developing a standardized sonie vocabulary. It

corroborates many factors found independently by others. Patterson' s study

reported on the effectiveness of warning systems on commercial aircraft. He

defined three priority levels: emergency, abnormal and advisory.

Recommendations \Vere made for alarms in these categories in terms of sound

level, temporal characteristics, spectral characteristics, and ergonomies. Signal

levels at 10-15 dB above the cockpit noise threshold were found to he optimal,

being loud enough to ensure notice, but not so loud as to interfere with pilots'

verbal communications. Attack limes of 20-30 ms were found optimal, with

shorter attack times tending to be overly startling in their abruptness. Alarms

consisted of on-off temporal patterns. Patterson found that sounds with similar

changes in volume over time tended to be confused, even if lheir spectral content

differed greatly. This observation correlates with that ofChowning (1974), noted

in Appendix 1 in the discussion of a synthesized tone's envelope shape. Faster

28



•

•

pulses resulted in a greater sense of urgency. The optimal frequency range was

found to be 143-1000 Hz, with harmonies in the range of 500-5000 Hz. Spectral

contents outside of this range were found to be either to low to be perceptible, or

too shrill.

Listeners were found to learn 4-6 waming signal types quickly, after whieh

leaming slowed to a maximum of ten signais. Speech wamings were found to be

problematie. On the one hand, they were highly versatile in that they could

convey any meaning expressible in language. However, they also tended to

interfere with other cockpit communication, and often did not to contrast enough

with pilot's communication to signal a waming effectively. This qualification on

the use of speech eues is consistent with Kramer' s definition of auditory display

as being composed of non-speech eues in order to rely on reactions acquired

through evolution, and not on cognitive processing. This view of speech is also

consistent with Bregman' s observations. Many perceptual researchers have noted

that the processing of spoken eues appears to rely on a specialized area of the

brain that humans have developed. It is reasonable to speculate that speech

perception. not being a primitive percept. relies on a higher level of functioning

that requires more time and leaming for proper decoding.

2.2.3 Monitoring Implementations

Kramer and Fitch (1994) describe simulation of an operating room environment

with auditory eues. Students played the role of anesthesiologists, with eight vital

signs of a virtual patient represented. Taken through a series of simulated

emergencies, students responded more quickly and accurately to the auditory eues

than they did to a similar simulation involving visual eues. This is another

example of the ear' s effectiveness in tracking multiple streams of information.

Wenzel (1994) cites three areas explored by NASA Ames laboratories. The first,

in telerobotics. was a virtual reality environment that allowed remote maintenance

of machinery in distant locations. via goggles and gloves through which operators

couId perform actions such as inserting circuits into a circuit board. Auditory

eues served as reinforcement to the actions being performed. Physical contact

with objects was registered by a beep sound. Similar eues signified correct or

incorrect insertion of the parts. Often the vinual hand's proximity to a target was

uncertain, 50 a range finder produced two simultaneous tones, one of which
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changed frequency as the glove veered from the target. Successful approach was

indicated when the two tones were al the same frequency.

The two other areas explored by NASA involved spatialization. In an air traffie

controller simulation, subjects wore headphones in which the location of close

aircraft was simulated by interaural intensity differences. Responses were found

to he faster with these spatial cues than were responses to visual cues or non­

localized audio cues. [n a similar experiment, shuttle launch communications

were transmitted via headphanes, with each voice separated by different simulated

location. Subjects found the multiple voices to be much more intelligible when

localized than when ail voices appeared at equal volume thraugh one speaker.

This result corroborates with the spaciousness observation of early audio

engineers to stereo braadcasts, as weil as with Bregman' s discussion of

localization as an enhancer of other streaming eues.

Jameson (1994) describes a software debugger that is enhaneed by auditory cues.

He points out that fixing bugs is often quite simple: it is finding them that ean

waste hours or days of time. His system has enabled him ta deteet bugs quiekly

through the use of sound to register events such as beginning, inerementing and

ending loops. Jameson gives twa examples in which atone saunded the initiation

of funetion caUs. The tone corresponding to one funetion would change in

volume with each iterated loop, the tone associated with the other function would

change in timbre. Not hearing the expeeted changes, either steady increase in

volume or brightness, enabled quiek identification ofwhere the program's bug

was Iikely to be found. This sonification, Iike Kramer and Fitch's operating room

simulation, makes use of the auditory system' s ability ta track multiple streams of

information.

2.2.4 Analysis Implementations

Kramer's 1994 assessment of auditory analysis is that while it is a provoeative

prospect, there has not yet been a sueeessfui enough demonstration of it to result

in any universal implementation. His point is borne out by the fact that most of

his references are either to unpublished theses or out-of-print volumes.

Further evidenee of the difficulty is shown by Bly ( 1994). [n preparation for the

1992 JCAO, participants were given two data sets and asked to perform the
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exercise of creating sonifications of them. The first challenge was a multivariate

identification9 the second was an analysis problem. The multivariate data set

involved the mapping of six soil characteristics in an attempt to identify which

soil types were Iikely to contain gold. With this static data exercise, a number of

interesting sonifications were created. The analysis exercise contained a set of

time-varying data in which six atmospheric measurements were supposed to

determine the likelihood of thunderstorms. Three sets of measurements were

given, each representing 100 days of data. For the first two analysis sets, stormy

days were given; the participants' task was to try to identify which days in the

third analysis set were likely to have storms. The difficulty of this second

challenge was great enough that no one submitted a sonification solution. Thus,

the pattern of analysis involving pattern recognition is not a trivial problem. Ils

difficulty, however. makes the successes to date that much more compelling.

2.2.4.1 Rings of Saturn

Kramer ( (994) ci tes an example from NASA's space exploration history. In 1979

the Voyager craft reached the rings of Saturne The eight-channel plasma wave

data was translated into sound. Each electrical field's frequency was in the

audible range, so it was a straightforward mapping of the frequency values to a

synthesizer program contained in an Apple fi computer. Various wave types were

easily distinguishable. The audification was received as a pleasant novelty, but

appeared to contain no panicular scientific contribution. In 1981, however. the

Voyager 2 craft transmitted sorne peculiarities that could not be traced to any

information contained on the visual printouts. When the audification was

employed. the cause of the irregularities became c1ear. The plasma was giving

many of the dust panicles in the rings a negative charge. The irregularities were

the result of these particles striking the craft, and creating an electromagnetic

"splash" across the frequency bands that came across as a distinct "machine

gunning" sound in the audification.

2.2.4.2 Seismology

Chris Hayward (1994) describes the use of sound for seismology. Seismology

involves the study of waves in the range of40 Hz that travel through the surface

of the eanh. Hayward transposes their frequencies into auditory regions for

analysis through listening. At the same time, he takes advantage of the fact that
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audified data can he played back at any desired speed, and thus a new fonn of data

compression is achieved.

Hayward describes two branches of seismology, exploratory and planetary.

Exploratory seismology involves placement of geophones in concentric circles

and a controlled impulse from a hammer or small explosion is sent into the

ground. The reflections from the impulse are captured by the geophones. People

interested in a local geology, such as civil engineers use the infonnation. By

audifying the data, Hayward speculates that the training time involved in leaming

to recognize significant patterns can be reduced. Also, audifying the patterns as

they are recorded can be of help on-site, since supervisors of exploratory

seismology are kept constantly busy scheduling successive impulses; giving

directions and following up on general troubleshooting. If they were able to Iisten

to eues rathee than watch them on a visual monitor, their eyes would be free to

attend to the multitude of other tasks before them.

Planetary seismology deals with large-scale sources of disruptions that keep the

earth t s surface in constant motion. Sources may be volcanic activity, earthquakes

or nuclear explosions. Data is gathered at numerous observatories situated in

quiet spots around the globe, and the results are compared and correlated to trace

the time and place of various events. Again, Hayward cites the ·'eyes free"

heuristic as being of panicular value. The work at these observatories involves

constantly monitoring information from many different sites, and decisions must

be made about which sources to examine more c1osely. Given the auditory

system's ability to track simultaneous streams, the efficiency of these decisions

could be increased by audifying, rathee than visualizing, spectrographic data from

different sites.

Hayward also cites certain ~·ringing" patterns that show up in his audifications that

do not correspond to anything in conventional visual displays. This observation

suggests that there may be information present in the seismological signais that is

better represented in an auditory display than a visual display.
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Hayward is not the only seismologist who has audified earthquake data. CNN

reported on February 5, 20002 on Andrew Michael, a U.S. Geological Survey

researcher who also audifies sped up versions of seismograms. Michael's aims

are apparently more pedagogical than analytic. In lectures on the physics of

earthquakes and the processes of seismograms, musical instruments are employed

as analogs to the physics of earthquakes. A trombone slide, for example, is used

to show the effect of the wave propagations in the earth. A musical performance

features an audified seismogram that is looped to fonn a rhythm track. A trio of

trombone, vocal and cello plays melodies that are meant to represent the stresses
~

within the earth's surface. Apparently, the audifications contained an unexpected

"windy" noise, the source of which neither he nor Chris Hayward was able to

identify.

2.2.4.3 Financial Analysis

Kramer ( 19948) presents a multi-variate representation of financial data. Two

pulsing tones sonify 265 data points, representing American financial indices from

September 1987 through March 1992. The display contains five dimensions.

Closing figures of the Dow Jones Industrial Average are mapped to the tones'

pitch. Bond priees, taken frorn the Lehman Brothers T-Bond Index, are mapped

to the pulsing speed. The value of the V.S. dollar, taken from the J.P. Morgan

Index vs. 15 Currencies. is mapped to brightness (strength of higher harmonies).

Interest rates, taken from the Federal Funds Rate, New York Federal Reserve, are

mapped to detuning (slight difference in frequency between the two tones).

Commodities, from the CRB Futures Index, are mapped to attack time. The

dimensions are flexible. Sorne exarnples feature more than one parameter applied

to an index for c1arity, with stereo location an added parameter. Examples are

contained on the CO that aceompanies Auditory Display: Sonification,

Audijication, and Auditory Interfaces.

Sorne of the dimensional parameters are more apparent than others. Sorne

training would be required to appreciate subtle differences in detuning and attack

time. Kramer introduces a reference "sound bite" that he terms a beacon. Using

beaeons to represent a smaller number of points focused at market extrernes, the

2http://www.cnn.coml2000/SHOWBfZ/MlIsic/02l05/earthquake.nmsic/index.html. Chris Hayward
reported his impressions ofone of Michael"s lectures in priyale correspondence.
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combined effect of the five dimensions can be leamed more readily as a cornbined

gestalt.

This paper was written sorne years before the advent of Hday trading~" in which

investors (or would-be investors) buy and sell stocks quickly via special software

packages. Day traders make decisions on a minute-by-minute basis, tracking

various indices to time a decisive mouse-c1ick to buy or sell. It is easy to imagine

a flexible investment auditory display package with which traders could set sonic

parameters to track chosen indices or even individual stocks. Such a display

could be used in both monitoring and analysis applications. For monitoring, real­

time changes could be tracked. For research, sets of dates could be sonified to

compare trends at different times.

2.2.4.4 Quantum Mechanics

Researchers at ue Berkeley used sonification to detect quantum interactions

(Pereverzev, et al., 1997). Quantum mechanics equations have long predicted

particle current oscillations between two weakly coupled macroscopic quantum

systems, although these oscillations had never been observed. These researchers

used two reservoirs of a helium superfluid. Membranes in the reservoirs traced

voltage changes. Oscilloscopes revealed nothing useful in terms of the

oscillations between the two reservoirs, but when the voltage was audified, a c1ear

tone revealed the expected oscillations. Further observations were then carried

out through the study of sound recordings of these tones.

2.2.4.5 Fluid Dynamics

McCabe and Rangwalla (1994) look to auditory displays to improve the

representation of computational fluid dynamies data. The data describes fluid

flow, analyzed within a grid of three-dimensional volumes. Visualization

programs are able to represent the three dimensions effectively, but the illustration

is statie, as these programs (Plot3D. FAST) are not weil suited to reflect changes

in time. An auditory representation is their solution for the presentation of data of

higher than three dimensions. They present two examples.

The first example is a model of an anificial heart pump. Fluid dynamics give

solutions for location of blood ceUs, pressure and vorticilY al various points within
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the heart chamber; critical points for their exploration of the heart cycle were the

moments when the valves opened and closed, and the times at which blood cells

reached unsafe levels of vorticity. Their mo.del added auditory elements to a

visual animation by sending data to a MIDI synthesizer. The auditory elements

sonified three of the model' s components. The pressure plate' s changes were

mapped to a continuous tone, with pitch-bend changes corresponding to changes

in pressure. A note-on message to a wood block timbre corresponded to particles

reaching threshold vorticity. A note-on message to a bass drum timbre

corresponded to valves opening or closing. Informai responses to the combined

audio-visual display were favorable. The auditory cues made it easier to correlate

the activities of the various components, allowing researchers to focus visually on

one area of the visual display and listen for a cue from another area.

Their second example is an audification of pressure changes inside a jet turbine.

The compressor produces rotating air pressure patterns at a potentially infinite

number of harmonies to the blade' s rotating frequency. Such engines are modeled

in computer programs, with wave equations simulating the pressure changes.

McCabe and Rangwalla divided the area inta a grid and "sampled" the pressure

changes within each grid. Listening to the resultant audio signal and observing

the changes in timbre gave them insights into the changes aver time among the

harmonies of the rotating pressure patterns.

2.3 Heart Rate Variability

Having completed a survey of work to date in auditory display, the discussion will

now shift to background work in the field of cardiology, the focus of the

sonification models to be presented in upcoming chapters. As the focus of this

thesis, discussion of this work will necessarily contain more detail than did the

previous sections.

As stated in the Introduction, heart rate variability is the measure of changes in

interbeat interval times. The analysis of HRV can be broadly classified into two

methodologies. One considers absolute time, with the heartbeat indexed by a

continuous clock. This approach introduces problems since it requires

interpolation of a curve to estimate a function that wouId include the data points

on a best-fit basis. This work will focus on the second approach, which focuses

35
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absolute time.

2.3.1 Spectral Analyses

While digital signal processing operations can be performed on any discrete series

of measurements, what they represent depends on the contents of the series. The

fluctuations reflected in a discrete Fourier transform, for example, need to be seen

in the context of what the data set represents. An NN interval series, as discussed

in the Introduction, is derived from a point process series rather than a time series.

Its Fourier transform does not reflect the frequency content of a continuous signal,

but rather the changes present within the contim.:ous signal; as such, the Fourier

transfonn of an NN interval series is analogous to its first derivative, reflecting the

frequencies of the signal's fluctuations 3•

Spectral interpretations ofNN interval sets fall into four frequency ranges

(Roach, 1996):

High Frequencies (HF)

Low Frequencies (LF)

.15 - .4 Hz. Related to respiration.

.04 - .15 Hz A =.1 Hz cycle (l0 seconds) li kely related to
blood pressure

•

Very Low Frequencies (VLF) .003 - .04 Hz

Ultra Low Frequencies (ULF) S; .003 Hz

The VLF and ULF regions are of particular interest, since they seem irregular and

not associated with any physiological cause. Changes in these regions are likely

due in part to changes in external activity, such as sleeping or exercising, or in

emotional condition. Exploration of these regions plays a major role in the

analytical methods to be described subsequently. A variety of methods will be

described that are performed to extract externally based factors from the intrinsic

behavior of the heart. The intrinsic spectra of frequencies lower than 0.1 Hz tends

ta display 1if-like characteristics (Peng, et. al., (993). ( llfcharacteristics are

discussed in Appendix 2.)

3Private consultation with Carsten Schaefer ofMcGill t s Center for Nonlinear Dynamics.
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2.3.2 Statistical Analyses

Statistical analyses fonn another class of HRV operations (Task Force of the

European Society of Cardiology and NASPE, 1996). Statistical measurements

include the mean of a measured timespan and the SDNN, the standard deviation of

a timespan. The RMSSD, root-mean-squared standard deviation. is the standard

deviation of interbeat interval differences. Changes due to cycles of less than five

minutes are represented by the SDNN index, which is the mean of a series of 288

standard deviations over five minute periods, spanning twenty-four hours.

Changes in cycles greater than five minutes in length are represented by the

SDANN (standard deviation of average nonnal to normal intervals), which is the

standard deviation of a series of rnean values over five minute periods.

The SDANN is a fonn of lowpass filtering. It can be represented by the lowpass

filter difference equation that is familiar to audio filter designers. For N samples

aver a span of 5 minutes, we have:

output = (l/N)*x[n] + (l/N)·x[n-l] + (1/N)*x[n-2] ...

A more statie view is given by the NN50, which is the total number of successive

interval differences exceeding 50 ms (that is, beats representing a sudden change

in the heart rate). As a statistical measurement, the NN50 count is a single

number, and gives no indication of the heart rate activity as a function of lime.

A geometric view is given by the NN interval histogram. in which the intervals

are categorized into bins that span .0078125s (1/128). The number of intervals

within the set that falls into each bin is plotted vertically. Cardiologists then may

analyze the area under the resultant curve, or atlempt to create a function to

describe its shape.

2.3.3 Nonlinear Dynamics

2.3.3.1 Nonlinear Dynamics and Biological Systems

Conventional statistics are often not successful in differentiating between

significantly different cardiological conditions. Heart rate data from a healthy

subject and a patient who has just suffered a heart attack may contain identical

means and standard deviations, while even a naive observer can differentiate
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between the two data sets when they are plotted (Goldberger, 1999). With

complex data sets of this nature, conventional statistics offer just one lens through

which to view them. Important information is often obtained via methods taken

from nonlinear dynamics. Nonlinear dynamics have revealed patterns concealed

by conventional statistics in a number of aspects of human physiology, including

respiration, gait and white blood cell counts (Goldberger, (996). A summary of

nonlinear dynamics fundamentals is provided in Appendix 2.

Many cardiologists suspect that heart dysfunctions are the result of overly regular

cycles. Cardiac tissue is an example of an excitable medium (Kaplan and Glass,

1995). An excitable medium is one that propagates waves, yet can only support

waves with a suitable length of time between them. The oscillations produced by

the sinus node travel in a circuitous path, with excitations moving in opposite

directions from the sinus node. When these oscillations meet at a point on this

pathway opposite the sinus node, they cancel each other out under normal

circumstances. Under sorne conditions, however. the wave fronts do not cancel

each other. and the result is a re-entrant wave that cycles continuously throughout

its path. The excitations from the sinus node are then overridden by the re-entrant

wave, so that the sinus node no longer functions as the pacemaker. The

synchronization present within a healthy heart then breaks down. a condition

known as atrial fibrillation. At the opposite extreme is congestive heart fa i/ure

(CHF). a condition in which a ventricle is not pumping properly. CHF data sets

may contain Iittle or no variability, appearing as a tlat line. They also may display

low-amplitude oscillations within a frequency range of 0.01-0.02 Hz (50-100

seconds per cycle). corresponding to a cyclical respiratory condition that

originates from the centraJ nervous system known as Cheyne-Stokes respiration';.

People who suffer from congestive heart failure are at high risk for sudden cardiac

death (Peng, et. aL, 1999).

Many nonlinear dynamics approaches require that the behavior of the system

under observation be similar throughout ilS duration. Such a system is termed

stationary (Kaplan and Glass, 1995). One definition of stationary behavior is that

.;A central condition refers ta a problem originating in the central nervous system. With a
condition such as Cheyne-Stokes respiration. the brain is not sending the signais that initiale
nonnal respiration (NIB. 1995).
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the mean and standard deviation remain unchanged throughout the series (Kaplan

and Glass, 1995; Ivanov, et. al., 1996). Biological systems, however, are typically

non-stationary, as local means and standard deviations can vary for different time

intervals of a time series. Many of these drifts result from low frequency

fluctuations that, as stated above, are due to extemal factors (Roach, 1996; Peng,

et. al., 1995; Viswanathan, el. al., 1997). To analyze non-stationary data sets such

as NN intervals, which may span a period of hours. signal processing may be

applied to the time series so that it exhibits stationarity. The purpose of the signal

processing is to extract the nonstationarities due to external factors. The

processed data set presumably reflects the internaI heart dynamics.

Dynamical systems may be correlated, meaning present values are related to past

values, even those that occurred many hours earlier (Pilgram and Kaplan, 1997).

A correlated system hhas a memory" in that its values are not random, as in white

noise, but determinislic, in that present values determine future values. In

biological systems, correlatÎons that extend over multiple scales of space or time

are sometimes termedfractal ordering (Goldberger, 1999). An HRV time series

may he analyzed as an example of a correlated time series. NonlinearitÎes due to

external factors have a shorter Hmemory," indicated by correlations that exist over

shorter time scales. On the other hand, nonlinearities due to inherent dynamics

show longer-term correlations.

2.3.3.2 Magnitude Fluctuation Analysis

A magnitude fluctuation analysis. notated F(n), is one method for iIIustrating

correlations over different timescales (Peng, el. al., 1993). An interval set is

lowpass filtered to remove fluctuations over time periods greater than three

minutes or so, and notated Bdn). The analysis is performed by choosing a

difference in beat index, n, than beginning with the first beat and moving through

the time series sequentially, Il' = 1, 2, ..., taking the difference between each beat

and the one n beats ahead of it over the entire interval set, and then taking the

average of these differences. The process is represented by the following

equation, in which the bar indicates an average over aH difference values over the

course of the set:
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• F(n), representing the magnitude of fluctuations over beat difference n, is then

taken for many values of n. The values F(n) are then plotted as a fonction of n on

a log-log plot. The slope of the resulting line shows the degree of correlation

within the series. The slope is tenned the scaling exponent, a. A healthy subject

will have a scaling exponent near zero, which corresponds to the "memory"

inherent in the pink noise generating algorithm described by Voss and Clark,

described in the discussion of Scaled Noises in Appendix 2. A diseased subject

will have a slope near 0.5, which corresponds to a random walk or Brown noise,

showing that for such a diseased state, the beat intervals are uncorrelated on a

scale greater than three minutes. Figure 2_3 shows lowpass filtered interbeat

interval plots for a healthy subject and a diseased subject (dilated

cardiomyopathy). The bottom graph shows the magnitude fluctuation for each,

with reference lines to show a slope of a = 0 for lifnoise and a = 0.5 for Brown

noise.
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Figure 2_3: Magnitude fluctutll;ons /or healthy and diseased subjects
(Source: C.K. Peng, et. al., Pbysical Review Letters 10, p. 1344, 1993.

Copyright 1993 by the American Pltysical Society)
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• For purposes of reducing extemal factors, it is useful to use the first derivative, or

first-difference series, of the set B(n). The first difference series is obtained by

taking the inter-interval differences, I(n) == B(n+l) - B(n). This process removes

Iinear trends in the series and often generates stationarity (Kaplan and Glass,

1995; Viswanathan, et. al., 1997). In heart rate analysis, Iinear trends are Iikely

due to external factors. The first difference series is meant to remove extemal

factors.

The differences between diseased and healthy states can become blurred when

their interval differences are reduced to a statie interval histogram. Figure 2_4

compares the interval histogram of I(n) for both for both healthy and diseased

time series. Both histograms are seen to be identical. The histogram similarity

signifies that it is the sequence of inter-beat interval differences, and not the set of

intervals themselves, that distinguishes healthy from diseased patients

(Peng, et. al., 1993).
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Figure 2_4:
HRV intenal histogramfor hea/thy (circles) and diseased subjects (triangles)

compared with UllY stable distribution (dashed)
(Source: C.X. Peng, eL al., Physical Review Letters 70, p. 1344, 1993.

Copyright 1993 by the American Physkal Society)
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2.3.3.3 Spectrum of First Difference Series

The value of [en) is in its power spectrum, which is created by plotting the series

as a function of beat number, taking the FFT of the function, and squaring the

amplitudes. The power spectrum is only meaningful for stationary signais, since

linear trends can mask the underlying frequency content (Peng, et. al., 1993)_

Thus, the first-difference series allows the power spectrum to be implemented in a

useful way. The slope of the power spectrum, when plotted on a log-log plot,
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• determines the degree of correlation among NN intervals. Notated 13, it is related

to a by 13 =1 - 2a. If 13 =0, then there is no correlation in the lime series, making

it analogous to white noise. If -1 < 13 < 0, lh~ correlation is such that positive

values in l(n) are likely to be close to each other, as are negative values. If

0<13 < l, then positive values are more likely to be followed by negative values,

and vice versa, an anticorrelation.
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Figure 2_5: Power spectra for heall/.y and diseased subjects
(Source: C.K. Peng, eL al., Physical Review Letters 70, p. 1345, 1993.

Copyright 1993 by the American Physical Society)

Figure 2_5 shows the power spectrum for a healthy subject and a subject with

heart disease. For the diseased subject, the slope of the power curve is nearly tlat

for the very low frequencies (longer time scales), which suggests that this subject

does not display correlation (deterministic patterns) over longer time scales. The

slope of the power curve for the healthy subject has a value of 13 close to 1.0 for

ail frequencies (time scales), indicating an anticorrelation over longer lime scales.

•
The principle of Itomeostasis, introduced by Walter Cannon, is defined as a

constant internai environment within the prescribed Iimits for cellular Iife

(Cannon, 1929). Many researchers have assumed (Peng, et. al., 1995) that

regulating mechanisms within an organism will work to keep it at a unifonn state.
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• Figure 2_'
OetRnded fluctuation Analysjs

Take an NN interval series, B(i). Each value of i is an NN interval value. The
sequence has k values.

Take the mean of B(ï), Bavg •

Integrate the series BO), into a new series, y(k) :

k

y(k) =L[B(i) - Bavg ]

;=1

y(k) represents an integrated version of BU).
Subdivide y(k) into windows of equallength, n points each.

Create a least-squares line in each window, which represents the trend within the
window.
This line of n points is y,,(k).

Within each window, take the difference between each corresponding point of y(k)
and Yn(k). Use each difference measurement 10 get the RMS of the fluctuations
present within each window, F(n):

, N

F(n) =~ ~ t;[Y(k) - y.(k»)'

Gel a single value F(n) for each window. Take the average of ail F(n) values.

Repeat for ail sizes of n.

Make a log-log plot, with the average F(n) value as a funclion of each corresponding
value of n.

~

logF(n)

-
logn-'

The slope of the line is also called the scaling exponent, a. It gives information about
the degree of correlation within the series B(i).

•

a=O:
0< a<05:
a=O.5:
0.5 <a< 1.0:

a= 1.0:

a> 1.0:

a= 1.5:

random, white noise
power law correlation; large and small values a1ternate

random walk. uncorrelated
anticorrelation; large values tend to be followed by large values,
small values by small values

IIfnoise

non-power law correlations

Brown noise

Sources: Viswanathan. el. al.• 1997; Goldberger. 1999.
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This assumption has been modified in light of the erratic nature of healthy

systems, and the correlative propenies of their fluctuations. Many current models

are based on stochastic feedback systems, that is, regulatory systems that maintain

fluctuations within safe limits, keeping the system from reaching extreme values.

The anticorrelations iIlustrated in the magnitude fluctuation analysis may suggest

such a regulating mechanism (Peng, et. al., 1993). Absence of this regulation may

underlie certain diseased states that are characterized by mode locking, an

inflexible periodic state observed in sorne types of malignancies such as Cheyne­

Stokes respiration (described above), sudden cardiac death, epilepsy and fetal

distress syndromes (Peng, et. al., 1993). An HRV series that displays either

random walk, white noise or high periodicity is Iikely to be indicative of a

diseased diagnosis. This idea is termed complexity loss in disease (Lipsitz and

Goldberger, 1992; Goldberger, 1999). The regulating mechanism of a healthy set

keeps it from reaching any of these steady states.

2.3.3.4 Detrended Fluctuation Analysis

Another method of removing nonstationarities in a signal is the detrended

fluctuation analysis (DFA). Once this process has been performed the fractal

dimension of the time series may be estimated by a method similar to the "'box

counting" technique described in Appendix 2. The steps for the DFA are shown

in Figure 2_6.

2.3.3.5 Cumulative Variation Amplitude Analysis (CVAA)

The spectral results described above contain an inherent shortcoming found in ail

Fourier transforms, which is that there is always a conflict between the resolution

of time and frequency. The cunzulative variation amplitude analysis ([vanov, et.

aL., 1996; Ivanov, 1999) offers more refinement through a series of convolution

operations.

The convolution h of two discrete signais x and y is described by the equation

n

h(n) = (x * y)(n) =Lx(m)y(n - m) n =0, 1, 2, ...
m=O
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• Graphically, the process can he visualized as sliding one signal over anolher, one

entry al a lime, multiplying overlapping members at each time increment, and

taking the sum of these products.

output.
Time Value

o

y4 y3 y2 yi yO 1
[xO xl x2 x3 ...

y4 y3 y2 yi yD 1
(xD xl x2 x3 ... 1

l

2

3

xl*yO + xO*yi

x2*yO + xl*yi + xO*y2

... etc.

... y4 y3 y2 yi yD 1
[xO xl x2 x3 .'. J

... y4 y3 y2 yi yO 1
[xO xl x2 x3

[ ... y4 y3 y2 yi yD
[xO xl x2 x3

•

Convolution is a crucial signal processing operation due to the tenet that the

convolution of two signais produces a multiplication of their spectra. Filtering

any signal can be described as a convolution of that signal with the filter's

impulse response, with the result that the spectrum of the signal is multiplied by

the frequency response of the filler.

A discrete Fourier series is theoretical in that a finite set of signais is assumed to

represent one period of a signal with an infinite length. This transform is

accomplished by convolving the signal with a series of signais that represent the

signal's harmonies. Through the resultant spectral multiplications, the

contribution of each harmonie to the signal may be quantified. Thus, a Fourier

transfonn is analogous to the output of a set of bandpass filters at a fixed

bandwidth.

These harmonies may he termed a hasis sel, whieh describes a set of linked

(dependent) basis vectors in a system, such that any point in the system may be

described as a linear combination of these basis vectors; conversely, these basis

vectors are able to describe any point in the system. The Fourier transform of a

continuous time signal has a basis set consisting of an infinite number of vectors

that are able to describe any possible frequency component of the analog signaL

A discrete Fourier series of N data points has a basis set of N vectors, which

represent N harmonies of the signal.
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The infinite theoretical length of the signais convoived by the Fourier transfonn

make it an effective process to describe stationary signais, but it has shortcomings

in the description of non-stationary signais. Any transient behavior in the signal

will he interpreted as resulting from frequency components whose contributions

of constructive and destructive interference over the total length of the signal

produce the transient. The non-stationary nature of the transient is translated as a

coincidence brought about by the amplitudes and phases of a number of stationary

components. The appearance of the transient will be lost in the Fourier transform.

Thus, it is said that a Fourier transform loses time localization of events in a

signal, resulting in the tension between time and frequency resolution mentioned

above. A longer signal will contain more points, and thus a Fourier transform will

reveal the presence of more harmonies. Any non-stationary activity will be

"'smeared" over the length of the signal. A shorter signal will be better able to

describe the timing of an event, but due to its fewer data points, will be translated

as containing fewer frequency components. There is an inverse relationship

between time and frequency resolution. This tradeoff is analogous to the

uncertainty principle in physics, which states that the better a particle' s position

can be observed, the less accurate its velocity can be estimated, while a more

accurate measurement of its velocity will bring about more uncertainty as to its

precise position. Since biological systems, including the heart, are typically non­

stationary, sorne information will necessarily be lost in a Fourier transforrn of its

behavior as a function of time.

One solution to this tradeoff is to divide a signal into shorter pieees, called

windows, and to perform a Short Time Fourier Transfonn (STFT) of each

window. A suitable window length must be found to provide a workable

compromise, since the shorter window will divide the spectrum into fewer

components. Each window, representing one period of a waveform, will thus

have a higher fundamental frequency than the entire signal would have if it were

to be transformed. This solution is not suitable to a heart rate variability set since

the spectral components of interest are those in the lower frequency ranges.

The first step of the CVAA is to use an alternative transformation method, the

wavelet transfonn. This wavelet transfonn is a variant of the Fourier transform

that has been widely reported in a number of fields, computer music among them

(Kronland-Martinet, 1988; Strang, 1989; Graps, 1995; von Baeyer, 1995). The
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wavelet transform is an attempt to resolve the time-frequency resolution mismatch

through an alternative basis set. The alternative basis set relies on the principle

that the amount of time required to understand the behavior of a frequency

component is dependent on that frequency. Lower frequencies evolve slowly, and

thus require a longer observation time to be understood, while the opposite is true

of high frequencics. The basis set for a wavelet transforrn, in contrast to that of a

Fourier transform, consists of a series of signais that have a finite effective

duration characterized by their scale. The length of the wavelet signal is the

inverse of its scale. Ali scales contain the same number of cycles of the wavelet

signal. Higher scales, then, are higher frequency representations of the wavelet.

The spectral result of the wavelet convolution is dependent on the wavelet shape

and its scale. There are many wavelet types, which are intended for specifie

analysis applications. The bandwidth of a wavelet is dependent on its scale.

Signais of shorter length are composed of a greater number of frequency

components than are longer signais. The extreme example is an impulse signal,

consisting of a single value of 1 followed by zeroes. The spectrum of an impulse

is ail frequencies at equal amplitudes, as can be demonstrated mathematically by a

Fourier transform. Roads (1996) offers an intuitive explanation. Just as transients

in a Fourier transform are interpreted as being the result of the interaction of many

components. so is the nature of a finite signal, which starts and ends due to the

presence of many components that combine in such a way that amplitude values

of zero exist outside of the observation window. Thus. the length of a signal is

inversely proportional to its spectral bandwidth. Therefore the result of a wavelet

transform is analogous to the output of a series of bandpass filters at a fixed Q

(center frequeneylbandwidth). At the same time, the shorter length of higher

scaled wavelets allows for better time localization of high frequency behaviors, so

that transients may be better represented than in a Fourier transform.

For heart rate variability analysis, a wavelet transform offers a greater degree of

refinement in extracting the heart's intrinsic dynamics than does the integrated

time series used in the magnitude fluctuation analysis described earlier. Different

scales of the wavelet can extract features over different time seales. Wavelet

filtering, as used in the cumulative variation alDplitude analysis, is a first step

towards revealing distinctively different characteristics between healthy cardiae

dynamics and unhealthy cardiae dynamies that display cyclic behavior. With a
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Derivatives of Gaussian Function

2

-1

4

",(3) = (_x3 + 3x)e-Q·sx:

1

,-
4 5

1jI(61 =(x6 -15x4 + 45x2 _15)e-Q.5s:

1

-10

48



•

•

wavelet scale corresponding to the length of the cycles, the filtering is highly

responsive to cycles of this length and represents them c1early (Ivanov, 1999). A

Gaussian wavelet and its derivatives (exam~les are shown in Figure 2_7) are used

in the cumulative variation amplitude analysis since these wavelet types are

orthogonal to linear trends in the data that result from extemal factors. The

wavelet scale is an integrating procedure, since transients that occur within the

wavelet scale are smoothed over the length of the wavelet by the convolution

process, while frequencies with a longer period than the wavelet length are not

represented. A single wavelet scale that spans thirty-two beats is used by Ivanov

to study characteristics of obstructive sleep apnea, that is characterized by heart

rate cycles at 0.17-0.35 Hz, spanning 30-40 beats.

Obstructive sleep apnea is caused by excessive relaxation of muscles in the back

of the throat during sleep. The airway becomes c10sed and breathing can stop for

time periods on the order of a minute or so. Breathing is suddenly resumed by a

loud snorting. These episodes may occur twenty to thirty times in an hour,

hundreds of times in a night. without the sufferer even being aware of them. The

symptom most noticeable for those in close proximity is a loud snoring. The

daytime result is a loss of a]ertness due to lack of sleep, even to the point of

suddenly nodding off. In the long term, apnea sufferers are at increased risk for

high blood pressure, heart attack and stroke. There are an estimated 20 million

apnea sufferers in the United States (McMillan, 1999). Most are not aware of

their condition, a hazardous reality if these people work in professions requiring

alertness, such as truck drivers, airline pilots or air traffic controllers. Ideally such

jobs would require regular screening for sleep apnea, just as they require periodic

vision tests. Sleep apnea can often be treated easily and non-invasively by

devices such as machines that provide patients with continuous air pressure while

they sleep. While doctors are required to report patients who suffer from apnea­

related blackouts to the Department of Motor Vehicles, many apnea sufferers

remain undiagnosed. The reason is that apnea diagnosis involves a patient

spending a night in a sleep clinie, monitored by a variety of respiratory equipment.

Il is an expensive procedure and therefore not currently an economically

justifiable element of routine job screening.

Sleep apnea is currently a compelling issue in cardiology, as these respiratory

starts and stops have a distinct effect on the heart rate. Figure 2_8 is a segment of
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an RR interval plot from a patient diagnosed with obstructive sleep apnea. The

RR intervaIs, which are the inverse of the heart rate, are plotted as a function of

time. The black triangles that appear along the time axis correspond to apneic

episodes as identified by a respiratory analysis. Apneic episodes can also he

recognized in the heart rate, which increases while breathing stops and quickly

normalizes when breathing resumes. Since heart rate information is much easier

to obtain than respiratory information, effective diagnosis of sleep apnea via the

heart rate could make easy apnea diagnosis economical.
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Figure 2_8: Segment ofan BRV data set displaying obstructive sleep apnea

As described above, the first step of the cumulative variation amplitude analysis is

to filter the NN interval series with a wavelet signal of a length that corresponds to

the apnea cycles. The wavelet transform, Iike an integrated data set, provides a

representation that is akin to the set' s first derivative. The data set is converted to

a series of positive and negative values that oscillate about a value of zero.

Following the wavelet filtering, the filtered signal is put through a Hilbert

transfonn. The Hilbert transform is used to make a link between data sets used by

physicists, who are accustomed to working with complex signais, and signal

processing researchers, who are accustomed to working with real signais. The

Hilbert transfonn produces a signal with an imaginary part such that when this

signal is added to the original signal, the result is an ana/ytie signal in which ail

negative frequency components have been removed. A signal x added to its

Hilbert transfonn h(x) produces an analytic signal z:

z= x+ h(x),

and expressed as spectral components:

Z(f) = Xif) + Hif) ,

where H(j) is the Fourier transform of h(x).
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The Hilbert transfonn is a complex operation that produces real and imaginary

spectral components. The real components are the same as the positive spectral

components of the original signal. As a result, when the spectrum of a signal is

added to the spectrum of its Hilbert transform, the positive spectral components

are doubled. The imaginary components of the Hilbert transform correspond to

the negative spectral components of the original, but with the opposite sign. As a

result, the negative spectral components are eliminated when the (WO spectra are

surnmed. Thus, adding a signal with its Hilbert transform may be thought of as a

spectral multiplication involving the Heavisidefunction, U(j):

U(j) ={ 1; /~ 0
0; /<0

U(j)

f
Figure 2_9: the Hellvisidejunction

A Heaviside variant used to derive the Hilbert transform can be described in terms

of a value and its sign S, such that S(x) = ±l. Any value x may be described as ilS

absolute value Ixl times its sign S(x); conversely, the sign S(x) of any value x is the

value x divided by its absolute value Ixl. The spectrum of a signal's Hilbert

transforrn, which reinforces the positive components of a signal and cancels out its

negative spectral components, may thus he described as a multiplication of the

signal' s spectrurn by twice the Heaviside function:

2U(/) = 1 + S(j)

Thus, the analytic signal may be re-written as:

Z(j) =Xif) x 2U(j)

= Xif) x [l + S(f)]

=X(j) + X(j)S(j)

This equation, when combined with the definition of the analytic signal given

above, produces:

Z(f) =Xif) + H(f) =X(jJ + X(f)S(j)

~ H(f) = X(j)S(j)
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• Thus, the Hilben transform of a signal is accomplished via a spectral

multiplication. Spectral multiplication, as described earlier, is accomplished by

time domain convolution, that is, a convolution of the inverse Fourier transforms

of Km and S(j). According to a principal valued signal processing tenet, the

inverse Fourier transform of Sm is r:n (Papoulis, 1977) . Thus the Hilbert

transform is accomplished by the convolution:

1h(n) = x*­
7tn

The Hilbert transform of a signal produces a phase-shifted version of the signal,

delayed by -1tI2 radians, or 90°. With Euler's identity, e;" = cos~ + ;sin~, as the

basis of the Fourier derivation, it can be demonstrated, as shown in Figure 2_10,

that the spectrum of the base case function x(~) = cos(~), when combined with the

speclrum of ilS phase-shifted signal, x(0) = sin(0), produces an analytic signal

consisting of only positive spectral components:

ei" = cos~ + isin~

+ e-i" = cOs9' - isin9'
ei" + e- i'" = 2cos9'
~ cos~ = O.5(e;'" + e-;")

T
1.0

-1.0

e;" = cos~ + isin~

- e-;" =cos~ - isin9'
el" - e-;" = 2isin,
~ sin, =O.5rel" - e-;" )

i

__L
1.0

--
-l.0

1.0 1
0.s~~_0~j~ ~_ f

-0.5
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Figure 2_10: Analylie signal derived from a signalplus ils Hilbert transform

The Hilbert transform has many applications in physics. A simple use is to derive

a constant amplitude envelope for a fluctuating signal by laking the square root of

the sum of the squares of the signal and of its Hilbert transfonn:

amplitude = ""x2 + h(xP
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Using the simple example above, cos(0) combined thus with its Hilbert transform,

the amplitude of an oscillating signal Acos0 would be a constant value of A, due to

the trigonometric identity sin 2x + cos 2X =1.

Ail amplitudes taken from the Hilbert transform are thus positive. Aline

interpolated from amplitude point to amplitude point fonns an envelope that

provides both time and spectral domain information. In the CVAA. the oscillating

signal produced by the wavelet filtering of a signal is combined with its Hilbert

transform, after which an amplitude envelope is computed as described above.

The values of this amplitude envelope are then put into a histogram. In this

instance. a histogram of Hilbert amplitudes produces a uniform function curve

that fits a group of healthy subjects. The shape of this function is a uniform

probability curve, even when data sets of different lengths are used, indicating that

it is scale-invariant. Sleep apnea subjects. however, do not have histograms that

fall onto this uniform probability curve. The CVAA, then, represents a new level

of information than that produced by the first-difference series, since the results of

the first-difference series produced identical histograms from healthy and diseased

subjects.

Additional information is derived from the generation of a surrogate data set

(Ivanov et. al., 1996). A surrogate data set is a set created artificially from a

mathematical fonnula that is thought to underlie a real data set. Comparing the

surrogate data set to an actual data set is a means of comparing the accuracy of the

mathematical description. In this case. a Fourier transfonn is performed on the

actual HRV time series. The phases of the spectral components are then

randomized, and a surrogate set is generated that has the same spectral amplitudes

as the original set, but with randomized phase values. When the CVAA is

performed on the surrogate signal, the result yields a different probability curve

from that produced by the original signal. Assuming that the difference is not an

artifact of the transform process, the different probability curves suggest that the

phases of the low frequency Fourier components play a critical role in

differentiating healthy from non-healthy heart rate dynamics.

Further work by Ivanov, as yet in preliminary (and unpublished) stages, suggests

that apneic episodes may be identifiable through a third step to the CVAA.

Following the wavelet and Hilbert transforms, a median tiller is applied to the
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data set. The values are normalized to fall within the range S 1.0 and a histogram

is kept of values within different subdivisions of the total range of values.

A median filter is distinctly different from a mean filter, such as the lowpass filter

described in the section describing statistical analyses. A mean filter takes the

mean of ail values within a window of data points. Abrupt changes are smoothed

and widened. A median filler sorts ail values within a window and outputs the

mid-point of the sorted set of values. Thus, a median filter preserves abrupt

changes in the data, giving a better representation of the range of interval sizes.

Figure 2_11 gives an approximation of the difference between mean and median

filtering.

original data

mean filter

Figure 2_11: Comparison ofmean and median jiltering

Median filtering, applied to a set that has already been smoothed by the wavelet

and Hilbert transforms, produces a jagged set of abrupt changes and plateaus. A

median filtered apneic set, sLp37, is shown in Figure 2_12.

Dividing the range of values into a series of steps approximates an identification

of apneic episodes. A count is kept of the number of discrete sets of intervals that

fall above each step. Since apneic episodes are characterized by a series of

oscillations spanning al least five minutes, the interval sets must contain at least

150 beats to be counted as a discrete set. As shown in Figure 2_12, ail intervals

will fall above a boundary at 0.1, so that the count of sets for this step would be

one. For a boundary at 0.2, ail of the beats until -11,650 would couot as one set.

Another set would he from -15,150-16,300, a third set would extend from

-16,350--24,000, and a fourth set would run from -24,400 to the end of the set.

The changes above the 0.2 boundary that fall within the range -11,641-15,200

may not count as discrete sets if they do not contain enough beats. For a boundary

of 0.3, more discrete sets would appear in the range of -5,900--11,640, while the

smaller peaks in the range of -Il ,640--15,200 would he lost altogether.
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Thus, as the boundary value increases, the large sets of values that exceed it break

into smaller peaks, while lower-Ievel values that do not exceed the boundary are

lost. Lower-valued boundaries will have a small number of discrete sets, as will

higher values. In the figure, a boundary of -0.7 produces the greatest number of

discrete sets.

A systematic analysis ofthis nature for a given data set produces a threshold value

above which faH the greatest number of discrete sets of data points. The values

above this threshold correspond with the oscillations produced by apneic episodes,

and show significant overlap with the regions identified as apneic by the

respiratory analysis. Figure 2_13 shows a segment of an NN interval set with the

apneic episodes indicated by black triangles, and the crossings of the median filter

threshold indicated by a heavy dark Une along the top of the graph.

2.0.. _

~ 1.5
u
-: 1.0 "..f\I-.~J~VV4'v.,r
ac 0.5
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Figure 2_13:
Plot ofNN intervals, annotations ofapneic episodes and median Jilter threshold crossings

Factors in this work include the choice of step boundaries, the minimum number

of beats above each boundary to count as a discrete set, the size of the filter

window, and the numberoftimes to apply the filtering process. The median

filtered sets used in the sonification examples described in Chapter 4 are produced

with a window size of 201 beats, and the set is filtered two times. The more times

the set is filtered, the steeper the slopes in it become. Similarly, shoner window

sizes a1so result in steeper slopes.

This analysis method remains tentative and has yet to be verified by comparison

with tests done with healthy data sets to compare their differences. However,

since the wavelet-Hilbert transformed data sets of healthy subjects differ markedly

from apneic subjects, there is reason to believe that there will he differences

reflected in median filtered versions of these sets. Further work in this area is

likely to proceed in tandem with auditory display realizations.
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3. Choice of Software

3.1 Software Synthesis

A software sound synthesis program (SWSS) realizes the HRV sonification

presented in the next chapter. These programs represent the air pressure changes

of musical events as a discrete series of numbers or sampLes. White the set of

samples for a piece of music may be very large and complex, software synthesis is

viable due to the redundancy of musical signais. Composed of periodic

waveforms, a soundwave lasting for a span of several minutes need not be

specified for this length of time. Rather, a template can be created (a wavetable)

and its sampies referred to repeatedly for the amount of time that the sound source

is needed.

Samples are audified by being passed into a digital to audio converter (DAC),

which converts the numbers into voltage changes that are used to vibrate the cone

of a loudspeaker, thus producing the desired sound. For example, an audio

compact dise (CD) contains a set of discrete samples. The CD player contains a

DAC that feeds the numbers to an amplifier, hence driving a loudspeaker

proponionally to the discrete sample values. A commercial synthesizer also

contains wavetables and a DAC to produce its unique set of sounds. Software

synthesis enables a composer to create a set of samples so that a composition May

be realized and stored digitally.

SWSS systems originated with the work of Max Mathews at Bell Laboratories in

the 1950s. His book The Techno!ogy o/Computer Music (Mathews, 1969) is the

seminal volume of computer music systems. It is a description of his software

Music V, the fifth incarnation of a software series commonly referred to as

Music N. The Music series established the conceptual building blacks that remain

in place in most music software systems. Ali synthesis algorithms found on

commercial synthesizers were first realized on computers running SWSS systems.

Commercial synthesizers simply bum these algorithms onto a microchip. In the

early 1980s, these microchip implementations made digital synthesis affordable to

large numbers of musicians. With the computing advances of the 1990s, SWSS

systems have become implernentable on home personal computers, and have thus

become popular to a wider population of musicians/programmers.
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3.2. Method of Dlustration: Unit Generators and Signal Flow
Charts

Fundamental to the Music N series was the unit generator. A unit generator (or

u ugen") is an algorithm that either generates or modifies an audio signal. For

example, a primary unit generator is an oscillator that produces a periodic

waveform. A synthesis instrument consists of a number of interconnected

("patched," a term borrowed from telephony) unit generators. Software synthesis

instruments, also called patches, are commonly illustrated with flowehart

diagrams, as deseribed in numerous sources (Dodge and Jerse. 1995; Moore,

1990; Roads, 1996). Each unit generator has parameters to describe specifie

characteristics of its operation. An oseillator, for example, is described by its

waveform table lookup method. as weil as the wave's frequency, phase and

amplitude. A sine wave oscillator with a frequency at 440 Hz. phase of 0 and

amplitude of 0.5 would be illustrated as in Figure 3_1.

Figure 3_1: Sine oscillator unit generator

The unit generator is conventionally represented as half an ellipse, with a

description of its function printed within it. Its parameters are printed along the

top, and function as inputs. Aline extending from the bottom of the ellipse figure

represents the unit generator' s output. A unit generator may have one or more

outputs.

Figure 3_1 is a simple example in that ail of its parameters are fixed. Complete

patches are rarely so statie. Connecting them to eaeh other can modify unit

generator output signais, so that the output of one can he directed to an input

parameter of one or more other unit generators. For example, a patch consisting

of two sine oseillators al frequencies of 440 and 880, each with periodic volume
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• oscillations, can be created by patching another sine oscillator with a very low

frequency to their amplitude inputs, as in Figure 3_2.

0.5 0 0.5

440 0

•

Figure 3_2: Two sine oscillators with a tremolo

Unit generators' output may have arithmetic operations applied to il. In the figure

above, the output of both sine oscillators at audible frequencies is combined with

an adder into the sound output. Unit generators may be patched in any

configuration, with the restriction that no output may he patched to another

output.

A sine oscillator is a unit generator type common to virtually ail software

synthesis programs. In addition to such standard unit generators, software

synthesis programs are likely to have specialized unit generators developed for the

product.

3.3 Software Synthesis and Real Time Systems

The popularity of SWSS systems on personal computer plaüorms is due to their

capability of running in real lime. Before the 1990s, SWSS systems were far

from being reat time. Users had to wait, often for hours, until their code was

compiled into files that could he translated into sound, a process that often took
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place at another facility altogether. In general, a real time computer system is one

in which processing activity must respond to external stimuli within a specified

delay time. Systems requiring real-lime processing include laboratory monitors,

missile guided systems, telecommunications switching or aircraft navigation. Due

to the timing requirements of real-time systems and the necessity for a variety of

input/output routines with drivers to interface with extemal devices, real-time

systems often blur the distinction between operating system and program. The

real time system often works at a level very close to the hardware with only a

minimal nucleus of an operating system (Young, (982). The implication of real

time music systems is that they can be used in time-critical situations such as

concerts, in which the computer is to respond to a performer' s input in order to

work in tandem with it, as a player in a duel.

The early versions of the sonifications presented in the next chapter were done in

Csound, a descendant of the Music N family. More flexibility and sophistication

was then obtained in later versions that use SuperCollider, a newer, specialized

programming language for real time audio applications. Its effectiveness is due

largely to:

• a virtual machine that mns at interrupt level

• dynamic typing

• real time garbage collee tion

• an object oriented user interface

Each of these features will he discussed in tum.s

3.4 Operational Features of SuperCollider

3.4.1 A virtual machine that rUBS at interrupt level

A virtllal machine is software that behaves like a processor. The vinual machine

is a device module that handles hardware-Ievel operations. A common example is

VirtualPC for the Macintosh that makes the PowerPC processor imitate an Intel

processor and look to the user like a Windows operating system interface. This is

a virtual machine that provides hardware emulation. Another example is the Java

s[nformaùon on SuperCollider·s functionality was obtained through personal correspondence with
its creator. James McCanney. as well as through postings from him on the music-dsp internet
mailing list.
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programming language. Java virtual machines have been written for many

computer platforms. With a common user interface for aIl platform versions of

the virtual machine, programmers do not have to modify their code to work on

multiple platforms. This allows Java programmers portability, a luxury that

enables them to write only one version of their programs, yet know that they will

run witbin the Java virtual machine for any platform.

Internlpt Level means tbat a process takes control of the CPU's operations to

execute timing-critical functions. Processors are constantly at work updating

memory registers, polling active programs for their states, updating the screen,

polling input/output (i/o) devices, etc. Interrupt level commands suspend the CPU

operations until a prioritized action has been carried out. Interrupt level routines

May vary in priority level. For example, the highest priority interrupt level

command in an operating system is a shut down command, which immediately

switches the computer off regardless of what other actions may be in progress.

Interrupt mode allows the CPU to work in tandem with ilo operations, such as

storing or retrieving files from disk, or taking input from a keyboard, modem or

mouse. Rather than stopping other processes during i/o actions, the i/o sends an

interrupt signal when it begins. The CPU does what is necessary to initiate the

action and then can continue with other tasks until anotber interrupt is received

when the î/o is completed. At that point, the CPU saves the state of its other

procedures and performs any necessary completion operations required by the ilo

device. When the i/o process is terminated, the CPU retums the system to its

former state.

That SuperColiider' s virtual machine runs at interrupt level means that its audio

routines can preempt CPU operations as necessary to carry out their tasks (within

limitations of memory and processor speed). Other features of the virtual machine

will be discussed in subsequent sections.
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3.4.2 Dynamic typing

Computer data objects exist at a number of conceptual levels6• Simple data

objects have only one value and are typed into various categories such as integer,

f10at or character. Structured data types hold many values. Two examples are

arrays or records. These types, however. are starie types. The length of an array

or record sequence is declared at runtime and cannot be changed subsequently.

Dynamic types are data objects that may change in size or form during a

program' s execution. An example is a Iinked Iist that may have nodes added or

removed during the course of a program. Dynamic data objects are not created by

variable declaration but by memory storage procedures. They cannot be

referenced directly but must be referenced indirectly by pointers. Dynamic

structures change in size or form through pointer operations.

Most SWSS systems are statie in nature in that their structure cannot be changed

after the program begins running. SuperCollider is interactive in nature in that

any component may be altered during playback due to user input (such as pressure

on a key, the pitch of a key, the position of a graphical slider), the number of

times a function has been called, or anything else. In a sonification model

described in the next chapter, a continuous sound event is continuously updated so

that its harmonie content and tremolo rate are determined by the cureent HRV data

value. There are only a small number of SWSS systems that offer this level of

tlexibility.

3.4.3 Real lime garbage collection

Garbage collection refers to allocating and de-allocating memory. As a program

runs, memory for dynamic objects is taken from a temporary storage area-the

heap. When these objects are no longer needed they are termed garbage and their

memory ceUs may be reclaimed. If memory is not reclaimed often enough the

program' s operation will be hindered by a shortage of heap space, termed a

memory leak. Care must be taken, however, to ensure that when objects are

reclaimed they are not referenced by any pointers originating from objects still in

use. The result will he a dangling pointer and problems can arise if new pointers

6(n this and the next sc:ction. the term object is used generally to refer to any item in memory that
is part of a program's computation. A more specialized definition will be introduced in the section
on object oriented programming.

62



•

•

are created that point to the same memory ceUs, most particularly if these pointers

are from new objects that are of a different type than the original object. Changes

to the new object may bring about unexpected side effects in the original object

that still points to the same memory cells. Such a condition may lead to

unpredictable (and often fatal) problems due to memory conflicts.

In languages such as C/C++ or Pascal, the programmer must reclaim memory

explicitly with commands such as "free" or "dispose'". Languages such as LISP,

Smalltalk and SuperCollider, reclaim memory automatically by a hidden process

that identifies data objects no longer referenced. There are various garbage

collection methods, most requiring significant overhead. Due to the varying sizes

of dynamic objects, unpredictable amounts of time (numbers of CPU cycles) May

be necessary for the garbage collection routines to be carried out. Thus, automatic

garbage collection is problematic in real-time systems, as lengthy garbage

collection routines can interfere with time-critical operations, particularly with

dynamic data types. However, garbage collection is essential for real time

operations of an indeterminate length. For a non-real time environment, the space

required to store a sound signal is computed and allocated before any of the

computational work begins. For a real time system, the sound signal is produced

incrementaIly. Samples are created for the next time increment, after which they

are reclaimed. The requirement is that the lime to compute samples for the next

increment be less than the time interval spanned by that increment (Dannenberg

and Mercer, 1992).

SuperCollider' s memory efficiency is due to incremental garbage collection, as

described by Wilson and Johnstone (Wilson, 1992; Wilson and Johnstone, 1993).

Incrementai methodologies create garbage collectors that work in small steps

between operations of the main program rather than in uninterrupted sweeps. The

identification of garbage objects is carried out through pointer traversai from the

roof set that includes global variables. local variables in the activation stack ~nd

registers used by active procedures. Any objects that can be reached by pointers

descending from the root set are considered live. Objects not reachable from the

root set are dead to the main program, as they cannot affect future events. They

are thus considered "garbage" and may he marked for reclamation. Reclamation

May take place immediately or the object's location May he stored in a list that
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contains locations of objects to be reclaimed when there is a sufficient percentage

of CPU available.

Care must be taken, however, since the structure of a program May change the

graph of pointer traversais during the course of its operation between garbage

collection increments. If a pointer to an unexamined object is modified sa that it

originates from an object that has been examined in an earlier increment, the

garbage collector needs to be updated. Otherwise the object May be

"lost"-subject to reclamation and a dangling pointer.

The incremental identification is conceptually i1lustrated by a tricolar marking

scheme. White objects are those that have not yet been scanned. Grey objects are

those that have been reached from the root set, but which have not had aIl their

pointers traversed. Black objects are those that have been reached from the root

set. and ail of their pointers have been traversed. The problem described above

occurs if a pointer to a white object is modified so that it originates from a black

abject. An incremental updating plan keeps track of changes to black abjects'

pointers. If any are found to point to white objects then one of the objects is

turned grey immediately, which in more practical terms means that one of the

abjects is placed into the garbage collector's examination queue. This

methodology is termed tric%r invariance.

The reclamation stage is alsa optimized for efficiency under Wilson and

Johnstone's methodology. It is an improvement on implicit copying reclamation

in which live objects are copied ta another memory region. When ail live objects

have been identified and moved to a separate area of memory. the original

memory May be reclaimed in its entirety without further examination since it

implicitly contains only garbage objects. Wilson and Johnstone describe a

process of non-copying implicit reclamation. Objects are stored into sets that are

identified in each objects' header. The sets are kept in doubly linked lîsts. When

an object is found to be live, it can be moved to a second Iist by reassignment of

its pointers, a more efficient procedure than actually moving the object to another

memory location. When ail live objects have been re-linked to the second list, the

first list can be reclaimed in its entirety.
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SuperCollider' s garbage collector works according to this methodology. Any

time anything is allocated, a bit of garbage collection takes place. A running CPU

indicator during the program's execution shows that SuperCollider's CPU use is

consistently low, even for complicated operations. Much of SuperCollider's

elegance lies in its effective solution to the problem of resolving real-time

memory needs with the need for garbage collection.

3.4.4 Object oriented paradigm

Programs such as Pascal and C are imperative programs, also classified as running

under the procedural paradigm. Their basis is in modifying storage locations by

assigning values to variables. Their operations are carried out via selection.

sequencing, Iteration, and procedure (function) calI. They are characterized by

speed and efficient memory usage. As structured programming languages. they

allow function calls for repeated tasks.

The object oriented paradigm (OOP) takes structured programming a step further,

allowing larger and more complex programs to be created via the creation of

specialized modules. These modules can he modified. added or replaced without

compromising the overall functionality of the system. The object oriented

paradigm is based on real world modeling. Many elements of its functionality are

similar to those of procedural languages. but have different terms in an OOP

system. Objects are independent and interacting. sending data to each other to

modify characteristics or monitor conditions in another object. The use of objects

allows decomposition. breaking an operation into its component parts to change

resource allocation or distribution.

Object oriented programming IS an environment suitable for the complexity of

modern programs that may consist of many components and many release

versions. It allows code to be highly reusable: components can be (virtually)

wired together for the creation of new objects. OOP is also optimal for graphical

user interfaces (GUIs). A GUI exists as an object that can activate functions

within other objects within the system, either to display their status or to modify

them. OOP software is also amenable for network management, as interconnected

workstations are weil represented by interacting software objects.
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An object is derived from a class. A class is an extension of the C struct or the

Pascal record, in which a variety of variables is contained within a preset

structure. The data variables contained by a class are known as its instance

variables. The c1ass extends tbis idea to include functions, called methods in OOP

parlance. This enables a c1ass to store various types of information and carry out

certain operations. It is a template for the objects that will be used in the

program's operation. Each object is an instance of a declared class. As many

objects may he created as needed for a particular program.

The use of objects and classes involves three characteristics: encapsulation,

inheritance and polymurphism.

Encapsulation refers to hiding the steps by which a c1ass carries out its methods.

The program user is not aware of these steps, but simply calls the methods needed

to carry out the necessary actions. Activating a function is termed sending a

message in OOP parlance. Objects typically are method-oriented in that their data

is private. The status of its instance variables is generally only modifiable via a

method cali to that object. Encapsulation renders objects into hblack boxes"

where, given a certain input, a certain output can be expected without the user

needing to worry about how the result is calculated.

lnheritance allows variation on a class via the creation of subclasses. A subclass

inherits ail methods and instance variables from its parent class. A subclass may

also contain additional instance variables and methods or it may overwrite the

methods of its parent class. Overwriting involves changing the steps of a method

without changing the name of the method. Thus, inherited classes benefit from

encapsulation in that the same method cali may be used though the inherited class

may carry out the method differently.

Overwriting method names is an example of polymorphism in which identical

caUs may activate different types of methods in different types of classes or

inherited classes. The names of methods and instance variables may be shared by

various class types, allowing encapsulation.

An objects are descendants of a master class called simply Object. This

overriding template may have few or no methods and instance variables as il is
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simply the basis for subsequent inherited classes. Object is often an abstract

class. which means that it contains only placeholders for methods that are to be

specifically defined in its inherited classes.

As a real-world analogy, consider the components of a computerized orchestra7•

Ali members may be descended from a top-Ievel c1ass called Musician, which

may have methods such as play, stop, louder and softer. Musician would he an

abstract class, as methods are only listed but not defined, leaving the actual

methodology to be filled in by subclasses. Subclasses of Musician might inc1ude

String, Wind and Percussion. The play method could be written for each of these

classes so that string players wauld use the bow, wind players would blow and

percussion players would strike an abject. The stop method would cause them ta

cease the playing activity. Each of these classes may also have subclasses. Wind.

for example, may have Brass and Woodwind classes with overwritten methods for

blowing to suit these instrument types. These subclasses would also contain new

methods to define the articulations for each instrument. Strings would have

methods for playing techniques such as sul ponticello, jeté and martello. Finally,

there would be classes corresponding to each instrument that would contain

methods to determine the individual characteristics for each.

Object oriented systems are dynamic by nature. Memory is allocated for objects

when they are created and reclaimed when objects are destroyed. The binding of

variable names to variables is also dynamic, in that any variable name can be

assigned to any type of object, and subsequently re-assigned to another object

type. The penalty for this dynamic nature is in overhead time, as the system must

constantly allocate memory as needed, and check variable types before carrying

out operations by a given variable.

SuperCollider makes the best of object oriented and procedural languages. Ils

virtual machine is written in C so that the hardware interactions are carried out

with optimal speed and efficiency. To the programmer, however, SuperCollider' s

semantics are like Smalltalk as the virtual machine creates an object-oriented

language. Il is entirely object oriented, with the benefit that ail classes have

similar functions and operations. Ali sound modules, for example, can respond to

71 am indebted to Zack Settel for this analogy.
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• the play method. New classes of objects can also he created by users, permitting a

high degree of customization.

3.5 SuperCollider Syntax

Fundamentals of SuperCollider cading can he appreciated by the functionality of

the following fragment (de Campo, 1999):

Synth.play( { FSinOsc.ar( 800, 0.1 ) }, 5 )
Figure 3_3: SuperColiidercode example

The instructions in the above fragment can he summarized as follows:

• An instance of c1ass Synth is created, and is passed the play message. Synth

is a container for a group of signal generators that execute together.

• Specific instructions on how to carry out play are contained in parentheses.

To carry out the play method, two instructions, called arguments, are

provided, enclosed by parentheses. The first, (FSinOsc. ar (800, a .1) } ,

describes the signal generators to be executed; the second argument, the

number 5. specifies the duration over which to play.

• The signal generators specified in the first argument are contained within

curly braces, { }. These braces create an instance of the c1ass Function,

which contains a set of instructions to he carried out. Unnamed functions,

created ··on the fly" in this manner, are called closures because they operate

as sealed (closed) entities within the overriding environment.

• The first argument to the play method is a function (closure) containing

graph of signal generators.

A graph is a topological terro referring to a collection of nodes (or venices)

connected by links called edges. Graphs appear in numerous computer

science contexts (Standish, (994). One example might be a transportation

network in which each vertex represents a city and each edge represents the

distance from one city to another. A shortest path problem would

investigate the path with the fewest stops or the shortest overall distance

between two cities. Trees and Iinked 1ists are subsets of graphs. For

operations that do not contain cycles, the topological ordering is

• represented by the edges pointing in a given a direction (output to input)

68



•

•

and no feedhack cycles (otherwise it is impossible to establish an order of

operations). These types of graphs are called directed acyclic graphs

(DAGs). An example of a DAG might be vertices that represent university

courses with edges from one vertex to another indicating that the first

course is a pre-requisite for the second. SWSS systems use DAGs that are

illustrated in the unit generator flowcharts shawn earlier.

In SuperCollider, the first argument to the play method is a DAO of unit

generators, which are created as a function and are thus contained by curly

braces.

• In this simple example, the graph contains only one signal generator, an

instance of the class FSinOsc (Fast Sine Oscillator). The oscillator is

passed the method ar, which means to generate samples at the CD audio

rate of 44, 100 samples per second.

• Two arguments to the FS inOsc are contained in parentheses. The first, the

number 800, specifies frequency; the second, the number 0.1 specifies

amplitude. Different signal generators have different sets of arguments.

• After the function is closed, the second argument to Synth is given.

directing it to play over a five second duration.

The simple example of Figure 3_3 is meant to introduce important features of

SuperColiider's syntax. A more complex sample will he shown at the end of this

chapter.

3.6 Other Features of SuperCollider

3.6.1 Graphical User Interface

In keeping with its object oriented environment, SuperCollider allows easy

creation of GUIs to control and observe sound playhack from the screen. Any

parameter of a sound playback system can be associated with a GUI element such

as a data slider, number box, checkbox or radio button. In the HRV sonification

model presented in the next chapter, a GUI allows various elements of the data set

to he adjusted during playback.
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3.6.2 Ease of use

In languages such as LISP and Smalltalk, pointers are implicit. Items can be

added and removed from dynamic structures such as lists without the added

pointer housekeeping required in languages such as C or Pascal. These programs

aIso streamline the compile-run cycle found in these procedurallanguages.

Testing a program simply involves highlighting ilS code and pressing the ENTER

key. The code will then execute immediately. This flexibility allows changes to

be made and auditioned with ease. Larger programs can be constructed

incrementally by creating each step and verifying its results before integrating it

into a larger set of operations.

3.6.3 Spawning events

Figure 3_3 contains one sound event lasting for five seconds. Wilh a

methodology original to SuperCollider, a series of events can be spawned

(generated) through the use of a class that allows the user to specify the type of

event to spawn, the frequency with which to spawn events, and a tenninating

condition for the spawning process. In the HRV sonification model, sound events

are spawned for each member of the data set.

3.6.4 Collection classes

SuperCollider allows the creation and manipulation of list and array objects,

which are part of the Collection class. Collections allow list processing

operations. The upcoming code example that demonstrates the effect of

randomized phases will create twenty-five odd harmonies of a fundamental

frequency by employing the following Hne of instructions:

Array.fill(25, { arg item; (2*item+l)*440 })

The code creates an instance of the class Array and passes it the fill method. The

fill method is carried out by two arguments: the number of items to go into the

Array, and the instructions for creating each item. The instructions are in the form

of a function that is iterated the number of times specified by the first argument, in

this case twenty-five. Each time the function is iterated it is given an argument,

item, which gives a count of the current iteration numbered zero to twenty-four.

This function creates a set of twenty-five odd harmonies to the frequency 440.
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The collection classes cao he used as arguments to signal generators in a process

known as multi-channel expansion. If the FSinOsc in Figure 3_3 above had a

frequency argument that was an array of two values, for example

FSinOsc. ar ( [400, 800], 0.1 ), the result would have been the creation of

two fSinOsc objects. One would produce a sine wave al a frequency of 400 Hz.

the other would produce a sine wave al a frequency of 800 Hz. Both oscillators

would have amplitudes of 0.1. Each fSinOsc would be sent to a different output

channel, left and right on a stereo playback system.

3.6.5 Sample Accurate Scheduling of Events

Many synthesis languages compute samples in groups, called blocks. Greater

efficiency is gained by computing samples in blocks rather than individually.

Computing samples in groups saves the computation time that would be necessary

to carry out setup routines for each individual sample. The block size is

determined by the control rate, a user-settable parameter that determines the

update rate of synthesis parameters. In many languages, the block size is constant

for the duration of the synthesis oPeration. Note event times must occur at block

boundaries (Dannenberg and Mercer, 1992). Forexample, a block size of 100

samples means that al standard audio rate, there will be 441 blacks per second.

This means that event times are quantized at a resolution of 1/441 ::: 2 msec.

SuperCollider allows each event to have its own black size. This flexibility

allows sample accurate scheduling, meaning possible event stan times are

quantized at the sampling rate. This is particularly important in scheduling many

events of extremely shon duration. For the sonification model presented here,

multiple arrays of data parameters are sonified at a rate determined by the user.

The sample accurate quantization of event times means that the information from

the arrays will be processed in synchronization, and that the playback rate may be

altered on the fly without any fonn of distortion.

3.7 Another Example: Can the Ear Detect Randomized Phases?

A final example presents a test of the tenet presented in Appendix 1 that the ear is

insensitive to the phase of steady state tones.
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Three arrays are created by the list processing routine described above.

harmonielist is a set of twenty-five odd harmonie panials of the frequency 440.

amplist takes the order of these odd harmonies and invens eaeh of them. phaselist

creates an array of twenty-five random values, ail of which fall between 0 and 27t.

A Synth object is created, and passed the scope method, that plays and displays

the sound wave in oscilloscope fashion. The signal-generating graph consists of

an instance of the SinOse c1ass, which takes arguments for frequency, phase and

amplitude. With harmonielist and a scaled version of amplist as the frequency

and amplitude arguments, twenty-five SinOse abjects will be created, with

corresponding frequencies and amplitudes taken from corresponding members of

the two arrays. The first will have a frequency of 440 and an amplitude of 1, the

second will have a frequency of 440x3 and an amplitude of 1/3, etc. The phase

will be 0 for aH SinOse objects. The Mix abject encloses aH of them, mixing their

output to one playbaek channel.

With ail phases set to zero, the output will consist of the square wave, the shape of

that will be e'lident as it is shown in the oscilloscope window. Running the code a

second time with phaselist as the second argument to SinOse will randomize the

phases of each SinOse abject. On playback, the visual image in the seope window

will look distinctly different, while the square wave sound will be

indistinguishable from the first time the code was run with phases set to zero.

var length. fundamental. harrnoniclist. amplist, phaselist:
length=25:
fundamental=440i
harrnoniclist=Array.fillClength, (arg item;
C2*item+l)*fundamental});
amplist=Array.fillClength, (arg item; 1/C2-item+l)});
phaselist=Array.fillClength. {2pi.rand});
Synth.scopeC ( Mix.arC SinOsc.arCharrnoniclist. O. amplist*0.5)
} )
)

The coding methodology and structure of SuperCollider environments may have a

steeper learning curve than other SWSS packages but the long-term advantages

are c1ear from the above example.
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Sorne SWSS environments are visual, such as the program MaxlMSP. In these,

users define graphic objects to appear on the screen and connect them with

patchcords. Users may define an object of a certain type, then connect them by

drawing a patchcord from an outlet of one object to the inlet of another object.

The result is a group of interconnected objects, similar to the unit generator

tlowcharts shown earlier. While these visual environments are more intuitive,

they also raise problems. One is the issue of CPU overhead. The CPU usage of

MaxlMSP is typically far greater than is necessary for SuperCollider, due in part

to the additional processing necessary to maintain the screen graphies. The

graphical nature of these programs also makes them inherently less tlexible. An

example such as the one above wouId be a laborious affair to create as it would

involve defining twenty-five sine oscillators with three values connected to each.

Furthermore, the SuperCollider patch can be explored by simply changing the

values assigned to variables length andfundamental. Changing one number will

affect the subsequent values and signal generators created. In a visual

environment, such a change would require further creation or deletion of graphic

elements and ensuring that they are patched together properly. In SuperCollider,

the patch may be changed with just a few keystrokes.

The next chapter will expand on the techniques covered here to describe the

creation of the HRV sonification model.
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4. Description of BRV Sonitication

4.1 Development of a Heart Rate Variability Sonification Model

The perceptual issues of auditory displays discussed in the Literature Review

chapter in the section Elements of Auditory and Visual Displays are the result of a

series of sonification models for heart rate variability. This chapter will describe

each of these models.

4.1.1 Sonitication of Heart Rhythms in Csound

4.1.1.1 Description of Csound Model

The first stage of this work was carried out in 1996, and is described in (Ballora,

Pennycook and Glass, 2000). The first decision was the type of software to use.

A MIDI implernentation seemed too constrained: the basic MIDI specification

caUs for values within the range of 0-127. Sorne compromise would have been

necessary to map, for example, NN intervals to pitches. The wide range of values

in the data set would either have to have been divided into bins, thus losing

precision, or significant computational overhead wouId have been necessary for a

procedure such as adding pitch bend values to each MIDI note event. To avoid

these compromises, and to gain the flexibility of mapping data values to any

synthesis parameter. the SWSS program Csound was used, that is a member of the

Music N Iineage. A quadraphonic file was created, with data values mapped to

note-entry time, pitch, amplitude, timbre and localization.

Csound creates sound files by taking information from two text files. One file

contains specifications of the synthesis algorithms, grouped as a series of

instruments. This is termed the orchestrafile. The second file contains a Iist of

musical events and a set of wavetable specifications, and is termed the scorefile.

In the score file, instructions for each musical event are arranged in columns of

information. Figure 4_1 shows the opening lines of the score file for the heart rate

variability sonification.
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tl 0 B192 9 1 1 0 4 .2 0 9.1 0 12 .1 0 1.5.1 0 "1.1 45 :glassy
f2 0 8192 10 .3 J 0 0 .1 .1 .1 .1 .1 .1 ;fundameneal+higher partials
f3 0 B192 9 3 l 0 4 1 0 5 l 0 6 1 0 ; partials 3.4,5,6
f4 0 B192 10 1 0 .3 a .2 a .143 a .111 ; square• il
il
il
il
il

searetime susldeltal
o 0.0101504 np3 ;3,551 time values, divided by 100
0.0101504 0.0107519
0.0209023 0.0106767
0.031579 0.0106767
0.0422557 0.0106015

Figure 4_1: Sample codefrom Csound score file

•

The first four lines are four wavetable descriptions. Following the wavetable

descriptions, the columned section describes each musical event. The first column

specifies which instrument from the orchestra file is to play the event. The second

column specifies the start time for each event, and the third column is a value for

duration. Additional columns are optional, and may contain any parameters used

by the orchestra synthesis algorithms so that parameters may be modified with

each musical event. Wavetables are referred to by number in the orchestra file,

corresponding to their number in the score file. The orchestra file may also

contain variables that reference values taken from a given column in the score file.

The HRV orchestra file contained four instruments, each of which corresponded

to a quadraphonic channel. Due to the complexity and density of the data set, the

synthesis algorithm was left as simple as possible to allow the listener to focus on

the properties of the data. A single wavetable oscillator performed each channel's

sonification. The score file was created with the aid of a spreadsheet. Each data

point was multiplied by a fractional amount that determined the playback rate.

This amount was arbitrarily chosen as 1/100, so that three thousand data points

would play back over approximately thirty seconds. The duration of each event,

contained in the third column, was the data point divided by one hundred. The

note-entry time of each event in the second column was a running total of each

event in the third column, so that each new note began just after the previous note

had ended. The values in the third column were used as variables for various

synthesis parameters in the orchestra file.

The pitch of each event was derived by multiplying each member of the third

column by 100, taking the inverse of each result and multiplying it by 440. Thus,

each pitch was centered about Middle A. The amplitude of each event was taken

by converting each value to decibels and multiplying it by a constant (3000). The

timbre was taken from one of four wavetables, depending on which of four bins

the data point was assigned (0-0.8, 0.8-0.95, 0.95-1.1, greater than 1.1). Early
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versions of the instrument created a continuous glissando from note to note. A

second oscillator was also employed to create either vibrato or tremolo based on

the current data value. This was accomplished by the foueth column Figure 4_1,

with the annotation np3. This is a directive to assign the next event' s third

column value to an element of the present event. (The period in ail rows other

than the first specifies that the previous value should be used again, in other

words, ail events should have an np3 in the fourth column). This aHowed

instruments to be created in the score file that specified that the frequency should

slide from the value in the third column to the value in the fourth column over the

course of each event. Due to the high playback speed, however, none of these

changes were audible, so these elements were discarded to avoid unnecessary

computationaloverhead. The directive was left in the score file in case it should

prove useful in the future.

Each data point was also assigned to a quadraphonic localization, using the

Ambisonics algorithm described by Malham and Myatt (1995). Ambisonics is a

localization formula that emulates the signal received by a Soundfield

microphone. which is actually four microphones in one. Three perpendicular

figure-eight microphones form X, Y and Z axes, with an omnidirectional

microphone acting as an overall scalar. The Ambisonics algorithm is meant to

emulate the four signais recorded by each of these microphones, which, when

combined, may be used to create the illusion through interaural intensity

differences that a musical event occurs at any specified point around the listener.

Localization may be either quadraphonic, placing the listener at the center of a

square of four speakers, or octaphonic, placing the Iistener within a cube of eight

speakers. The Csound Ambisonics algorithms described by Malham and Myatt

allow each note event to contain a polar angle in radians, with 0° being the

direction to the listener' s right. With this orientation, quadraphonic speakers at

four corners faH at radian positions 1tI4, 31t14, 57t14 and 71t14. For instrument one,

each data value was multiplied by 0.7854, an approximation of1tI4, so that this

instrument's events would "hover" in positions centered about the right front

speaker. Since four, not eight, speakers were used, the vertical coordinate was set

to zero for a1l events.

Instruments two through four were ail based on this same model, plus sorne

modifications. As each was meant to play from a discrete quadraphonic channel.
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the localization multiplication was changed for each of the instruments so that

each would be centered about the speakers at the left front, left rear and right rear.

To investigate whether there might have been any fractal ordering in the data,

successive averagings of the data points were assigned to each channel. Channel

1 played a11 data points. each multiplied by 100. as described earlier.

Channel/instrument 2 was the average of every two values; each value was

divided by 50, so that the playback duration wouId be approximately the same as

that of channel/instrument 1. (Since the values were interbeat intervals, and not

elapsed time, it was unlikely that half the number of beats occurred over exactly

half the time of the full beat set). In the same manner, channel/instrument 3 was

an averaging of every four data values, with each value divided by 25;

channel/instrument 4 was an averaging of every eight data values, with each value

divided by 12.5.

Use of the Ambisonics algorithm is a two-step process. The musical events and

their locations are encoded, with the compiled sound file acting as an intermediate

data file. This sound file is then imported into a second Csound orchestra file,

where decoding equations are performed on each channel. This second

instrument creates the final quadraphonic sound file.

4.1.1.2 Flowchart Illustration

A flowchart illustration of the encoding instrument 1 is shown in Figure 4_2. The

Csound code for the quadraphonic instrument is in Appendix 4. The (wo-channel

stereo version of the sonification can be heard on the accompanying CD on audio

track 1.

4.1.1.3 Evaluation of the Csound Model

This first sonification model showed that a software synthesis program couId be

used as a spreadsheet, perfonning calculations 00 a set of values and displaying

them in an auditory graph. The result was an interesting and pleasant listening

experience. Further work was needed, however, to create an effective diagnostic

tool.

The Csound model cootained a number of arbitrary elements. The choice to

derive pitches by multiplying each value by 440 was arbitrary since the value of
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• 440 had no inherent relation to the dat~ but was simply a convenience due to its

function in Western music as a tuning reference. Furthermore, deriving pitches by

multiplication creates an uneven distribution of pitches due to the logarithmic

nature of the auditory system's perception of pitch, as described in Appendix 1.

Taking the inverse of each data point, a value of (111.0) will produce the

multiplier, 440. A data value of (1/0.5) wiIJ produce a frequency of 880, an

octave above the multiplier pitch. A change to the same degree in the opposite

direction, a data value of (1/1.5), produces a frequency of 293, a perfect fifth

below the central value. Thus, equal changes above and below 1.0 do not produce

equai pitch intervals above and below the multiplier.

The successive averaging of data points to explore possible fractal relationships

also had the shortcoming of being arbitrary. While geometric progressions of this

type bring about geometrically fractal images, the fractal nature of data sets, as

discussed in the previous chapter, is more often statistical in nature. A statisticai

fractal analysis is a more complicated procedure, involving either a correlation

function or the spectrum of an integrated data set.

The division of data values into four bins, delineated by four timbres. was meant

to highlight any possible tendencies of the data to certain value ranges. If data

points were predominantly within one of the bin ranges, the timbre would give a

coarse approximation of the value. Such distinct delineations. however, run the

risk of distorting the data. Given the four arbitrary bin divisions

{ - 0.8
0.8 - 0.95
0.95 - 1.1
1.1 - } 1

•

a change in data value from 0.95 to 0.96 would produce minimal change in pitch

but a change in timbre, while a Iarger change from 0.81 to 0.94 would bring about

a more discernible change in pitch but no timbraI change whatsoever. A more

effective system would avoid potential mismatches such as this.

Another problem with programs such as Csound, as discussed in the last chapter,

is that the structure of a synthesis patch is static, and cannot be changed easily

while the sound is being produced. The configuration here is also cumbersome
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due to the need for two compilation cycles, the first of which creates the encoded

Ambisonics file that must then be recompiled to produce a decoded sound file.

4.1.2 Unit Generators Used in SuperCollider Sonifications

To achieve higher levels of flexibility, the software package SuperCollider was

employed in subsequent sonification models that were airned at improving the

diagnostic potential. The following is a description of the SuperCollider unit

generators that were used in this sonification.

4.1.2.1 PSinGrain

This unit generator produces a sine wave with an invened parabolic envelope. as

shown in Figure 4_3. The waveform may be described as the equation (l-x2)sinh

for sorne frequency k2rr, within the domain -1 to 1.

Figure 4_3: PSinGrain wavefom.

Ils parameters are frequency, duration and amplitude. This type of unit generator

is effective at creating musical events of very short durations. often termed

··grains,'· in contexts such as the sound c10uds created by Xenakis that are

described in Chapter 2.

4.1.2.2 Phase Modulator

Phase modulatiol1 is a general implementation of frequellcy modulation, described

by Chowning (1974). In the early 1970s, Chowning developed synthesis

techniques based on frequency modulation (FM). A simple FM configuration

involves a pair of sinusoidal oscillators, with one oscillator, the modulator.

sending its output into the frequency input of the second oscillator, the carrier.

White frequency modulation had long been in use for radio transmission, in

broadcasting the carrier wave is demodulated by the receiving antenna, leaving
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the modulating signal to be heard by the listener. Chowning instead focused on

the modulated carrier wave. At sub-audio frequencies, the result was a vibrato.

As the modulating frequency moved into the audio realm, above 20 Hz or so, the

result was a complex set of harmonies, the frequency and respective amplitudes of

which could be determined from the modulator:carrier ratio and the amplitude

(modulation index) of the modulating oscillator. This was an extremely

economical method of synthesis, as only two oscillators were required to create a

wide range of timbres. Commercial implementation of FM synthesis led to the

widespread adoption of digital synthesis technology in the 1980s.

It has since been reported (Bate, 1990; Holm, 1992; Beauchamp, 1992) that the

initial phase of the modulator had a significant effect on the spectral content. In

commercial FM implementations, the modulator was given a 90° phase shift, so

that in a simple unit generator pair, the carrier was a sine wave and the modulator

was a cosine wave. This variant, an example of phase modulation, is

implemented in many software synthesis programs8•

In SuperCollider, the phase modulator unit generator has parameters of carrier

frequency, modulator frequency, modulation index, modulator phase and overall

amplitude.

4.1.2.3 Wavetable

A wavetable is a more general oscillator than the sine oscillator used in the above

illustrations. A wavetable contains samples that can describe any waveform; a

sine osciUator is one example of a wavetable oscillator.

In SuperCollider, the wavetable unit generator has parameters for the wavetable

itself, frequency, phase and amplitude.

8More generally. phase modulation is based on the definition that a frequency May also be
expressed as the derivative of a signa" s phase. divided by 27t. The audible effects of frequency
modulation May thus he produced in two ways. One way is to modulate the carrier frequency. as
described in the text. The other is to integrate a change in phase orthe modulator.
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4.1.3.4 Band Limited Impulse Oscillator

This unit generator (abbreviated Blip in SuperCollider, and called BUZZ in Musie

N programs) produces a spectrally rieh waveform consisting of harmonies of the

fundamental frequency, ail at equal amplitude, up to the Nyquist frequency (half

the sampling rate). In SuperCollider, the parameters for this unit generator are

frequency, number of harmonies, and ampl itude.

4.1.3.5 Klang

Klang creates a bank of sine oscillators. Its specifications include three arrays that

define the frequency of each oscillator, their amplitudes and their phases. This

unit generator is highly optimized, making it far more efficient than specifying a

group of individual sine oscillators.

4.1.3.6 Pan

Musical events may be localized within a two- or four-channel stereophonie

listening space by using a unit generator that employs intensity panning. The first

argument to a pan generator is a unit generator graph. The second argument

defines the pan position. A position of 0 places the sound center, a position of -1

pans the sound fully left, and a position of 1 pans the sound fully right. As is the

case with ail SuperCollider objects, any argument may be defined by a unit

generator. Thus, a continually moving source cao be created by using a Pan unit

generator with the position argument defined by a sine oscillator.

4.1.3.7 Envelope Generator

Another unit generator common to virtually ail synthesis programs, an envelope

generator produces a time-varying change in signal level. Envelope refers to the

changes in volume over time in a tone (or one of a tone's partials). An envelope

generator typically has parameters for envelope shape, maximum amplitude and

duration. The illustration in Figure 4_4 illustrates the envelope shape as a box

containing a graph of signal level as a function of lime. The figure shows a

common four-segment envelope, consisting of attack time, decay time, sustain

level and release time segments (also called an ADSR envelope).
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Figure 4_4: Envelope genera/or w;th ADSR envelope type

4.1.3 SuperCollider Sonitication 1:
Cumulative Variation Amplitude Analysis

4.1.3.1 Components of the CVAA Sonitication

The first sonifications created in SuperCollider rendered data from four data sets

taken from the cumulative variability amplitude analysis (CVAA) described in the

Literature Review. The sonification creates mappings taken from the NN

intervals, the wavelet-based filtering of the NN intervals, the amplitudes taken of

the wavelet values when combined with their Hilbert transform, and the values

taken from the median filtering of the Hilbert amplitudes.

The basis of the SuperCollider sonifications is the use of the Spawn unit

generator, described in Section 3.6.3. There are a number of unit generator

classes that derive from Spawn, including OrcScore, which creates musical events

in a manner similar to Csound. The first argument, the "orchestra," is a list

containing graphs of unit generator functions. Each item in the Iist is an

"instrument," indexed by its position in the Iist. The second argument, the ··score'·

is a list of Iists. The first two arguments of each sublist specify event time and

instrument number, followcd by optional arguments that may refer to parameters

of the instruments. Both the orchestra and the score may be separate files that are

read by the SuperCollider patch. Thus, SuperCollider can function exactly as a

Csound patch.

It is far more flexible, however, to read in each data file separately and treat them

as list variables. The main Spawn class can then be employed. Ali Spawn classes

contain an automatic incrementer that keeps track of how m~.,y events have been

spawned. This increment value can be used as an index value that increments
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through the data lists and spawns musical events based on the value contained in

the Iist at the position corresponding to the value of the incrementer. Flexibility is

also gained by having the playback speed set as a global variable that the Spawn

object uses to determine the timing of successive events. With this methodology,

different data sets can be easily added or removed from the patch without the need

to assemble "score" files every time a change is needed. One advantage is that the

playback speed can be altered by adjusting the global variable, without any need

for making adjustments to a "score" file. This may be described as a "multi­

track" approach, with each data set representing a track that may be added or

removed from the overall "mix."

To obtain a better relationship between data values and pitch than was obtained in

the Csound model, the data value was used as an exponent. Due to the

logarithmic nature of the auditory system' s perception of pitch, changes in data of

the same magnitude in a positive or negative direction produce pitches at equal

musical intervals up or down. This approach, however, still does not solve the

problem of data sets that have a wide range of values. The values obtained by the

wavelet filtering, for example, are frequently very close to zero, so that it becomes

difficult to find a mantissa large enough to bring the resulting frequency into

audible range. The solution is to have the data value he an exponent applied to a

mantissa of two. This mapping function can then he transposed up any number of

octaves by multiplying il by sorne number that is a power of two. Thus, the pitch

mapping function employed can be described as a power-of-two mantissa that is

multiplied by two to the power of the inverse of the current data value. Data

values at or near zero will produce pitches at a frequency of the mantissa, and data

values at equal distances above or below zero will produce pitches at equal

intervals above or below the mantissa.

The user can control elements of playback via a GUI, shown in Figure 4_5. The

GUI panel is modeled after an audio mixing board, with which each track of a

multi-track recording may he controlled individually for elements such as volume,

equalization and stereo pan. This panel is meant to allow users their own umix"

of the HRV sonification. Two number boxes at the top of the panel display the

current NN interval and median filter values for reference. The eight sliders

control the volume of eight simultaneous sonifications, each of which will he

described in tum.
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Figure 4_5: GUI/or CVAA sonifiCalion

Beat·to-beat

This slider controls the volume of a sonification of the NN intervals. A wavetable

with a hglassy" sound (reminiscent of the sound created by rubbing a fingenip

around the rim of a wineglass) plays a pitch that is associated with each data

point. The frequency of each pitch is a function of the current NN interval:

NNlMedian tilt

r(NN)= 128x (2 NN ) (4-1)

A second sonification of each NN interval uses a phase modulator. The carrier

frequency is the same pitch mapping as that used for the Beat-to-beat sonification

described above with equation (4-1). The modulator frequency is derived from

the current median filtered value:

1

r(Med ) = 512x (2 Mt<d ) (4-2)

•
This sonification produces events with the same pitch as the beat-to-beat

sonification, but the modulator frequency formula produces a ri~her, non­

harmonie timbre for events that correspond to a higher median filtered value.
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NN50

As described in the section on statistical measurement of HRV, the NN50 count is

the total number of suceessive interbeat intervals that differ by more than 50

milliseconds. To give sorne indication of the occurrence of such intervals as they

appear, an additional annotation is given to them in the sonification. As each NN

interval is spawned, it is compared to the last. If the difference exceeds an

absolute value of 50 ms, the volume of another phase modulator is set to a value

proportional to the position of the GUI slider. The carrier frequency is the same

as that of the beat-to-beat interval. derived according to equation (4-1). The

modulator frequency is this same value, multiplied by 15. The index has a value

of 3. The volume envelope is percussive, a decaying exponential curve. The high

modulator to carrier ratio and the abrupt attack of the envelope create a Htinkling"

sound to identify these beats. If successive beats do not differ by a value greater

than 0.05. the volume of the phase modulator is set to zero, and no sonification is

produced.

Wavelet

Each value of the wavelet-filtered data set is sonified by a phase modulator. The

carrier frequency is derived in the same way that the modulator frequency is

derived for NNlMedian. according to equation (4-2).

The modulator frequency is the current carrier frequency value multiplied by five.

and the value of the index is set to three. The effect is that of a resonant buzzing.

The oscillations of this data about zero are further sonified through stereo

panning. The phase modulator is placed within a Pan unit generator. and each

wavelet data point also functions as the position argument.

Hilbert

The amplitude values derived from the combination of the wavelet-filtered signal

with ilS Hilbert lransform are sonified by a square wave. As described in

Appendix 1, this wave shape will produce a vaguely clarinet-like timbre. The

frequencies used for each pitch are derived by equation (4-2), the same formula as

that used to create pitches from the wavelet-filtered data set.
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A running window of the last thirty-two values (corresponding to the size of the

wavelet signal) from the median filtered data set is used as the frequency

argument to a Klang unit generator. Each pitch is derived according to the

formula:

1

f( Med ) =256x (2 M&'u ) (4-3)

•

The amplitude argument to the Klang is a Iinearly decreasing set of values, so that

the most recent median filtered value sounds at the greatest amplitude, and the

value 32 data points earlier is at the minimum value. The result of this

sonification might be described as a "resonant throbbing," the timbre of which

becomes brighter with higher-valued data points.

Timbres

A second sonification of the median filtered data sonifies the current data value

according to equation (4-1). The sonification is produced by one of several

wavetable oscillators. The wavetable employed depends on the value of the

current data point. The range of values is broken into five regions, each of which

produces a different timbre when data values are within its sub-range. When data

points cross the apnea threshold, as described in the Literature Review 1 the pitch is

transposed up a perfect fifth. When values fall within the highest possible range,

the pitch is transposed up an octave. Since the median filtered values remain

constant over extended periods, the effect of this sonification is a drone that

changes infrequently in timbre and sometimes pitch as weil.

Median Kunning Window

An u on-the-f1y" median filtering is performed with a running window of 32 data

points in the NN interval set, with the current interval at the window' s mid-point.

The median of these values is determined by equation (4-1). The pitch is sonified

by a wavetable that produces a sound that might he descrihed as a "hollow

ringing."
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4.1.3.2 Flowchart, Code and Demonstration

The code for the patch is contained in Appendix 5.1. Figure 4_6 is a flowchart

illustration of the CVAA sonification patch. A demonstration of the patch can be

run from the CD-ROM portion of the accompanying CD by launching the SCPlay

program and running the file cvaa. 1 ib.

4.1.3.3 Evaluation of the CVAA Sonitication

This second sonification contains significant improvements over the original

Csound sonification. The ability of SuperColiider to combine Iist iteration with

the spawning of musical events opens up a far greater range of f1exibility. Its

operation of simply highlighting data and pressing ENTER allows quick

evaluation and easy changes to parameters such as playback speed. The mapping

of pitches on a logarithmic basis is also much more workable as it can

accommodate a wide range of values, positive or negative. This patch also

contains a number of interesting synthesis algorithms, providing a compelling

electroacoustic listening environment.

The diagnostic value of this patch, however, is far from certain. While Iistening to

successive stages of the CVAA process may have sorne pedagogical interest in

leuing Iisteners appreciate the similarities and differences in each step, bringing

up ail sliders at the same time produces a sound mass of such complexity that it

would take sorne time (if ever) for any Iistener to leam to differentiate among ail

of its aspects. Furthermore, the CVAA itself is a speculative process that is meant

to illuminate a very specifie set of propenies about an URV data set. Sonifying

each of its steps does not provide any immediate insights, although as research in

this direction continues, more value may be found in modifications of this

sonification.

The objective of the next step was to employ methodologies gained in this second

model towards the construction of a more general model of heart rate variability

sonification. The number of elements sonified was pared down, and their nature

was simpler, involving more straightforward calculations. This general model is

designed to allow listeners to be able to differentiate among four cardiologicaI

diagnoses: healthy, congestive heart failure, atrial fibrillation and obstructive

sleep apnea. Once this basic level of differentiation is attained, the model may be
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• appended to represent whatever complementary data manipulations May appear

useful.

4.1.4 SuperCollider Sonification 2: A General Model

4.1.4.1 Components of the Sonification

Since it is far from c1ear what an optimal playback rate might he, the general

model allows the playback rate to be adjusted while the sonification is heing

carried out. Rather than using a single global variable to determine the playback

rate, as in the previous example, a slider is added to the GUI. This slider is polled

with each spawned event, and its position is used to determine the elapsed time

after which the next event is to he spawned. The number of beats to be sonified

per second may be set via moving the slider or entering a value into the number

box that reflects the slider's value. The GUI for the general model is shown

below:

Figure 4_7: GUIfor the general model sonijication

The sonifications that correspond to each of the five sliders will be discussed

separately.
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Discrete Events

NN Intervals

The most fondamental element of the sonification remains that of mapping each

NN interval to a pitch. The frequency of each pitch is taken from equation (4-1),

the same mapping formula as that employed in the previous model. Due to the

density and fundamental nature of the data set, this sonification employs a simpler

timbre to avoid the possibility of any misrepresentations due to interference of

overtones in successive values. In the general model the NN intervals are sonified

by a PSinGrain unit generator. The duration of the event is entered by the user via

the GUI rate slider. The volume value is also entered by the user, via the

amplitude slider. For a visual reference, the current NN interval is displayed in a

number box.

NNSO Intervals

This element is unchanged from the CVAA sonification, with a phase modulator

unit generator and frequencies derived from equation (4-1).

Continuous Events

The other two data parameters contain data averages. The current NN interval is

considered as the center point of a window that contains 300 interbeat intervals,

thus corresponding to approximately five minutes of cardiac activity. The mean

and standard deviation of this window are determined and updated for each data

point to create a sliding window that reflects beat-to-beat changes in local mean

and standard deviation. The values are pre-computed in a C program that

implements a circular queue. The first 300 data points are read, stored in a linked

list, and their mean and standard deviation are taken. The first list member is then

discarded, the next data value is added ta the end of the Iist, and the mean and

standard deviation are computed again. This process is repeated until a11 data

values have been read from the source file. The C routine saves the Mean and

standard deviation values into two files that are "SuperCollider-ready" in that they

are formatted in the format that SuperCollider reads lists. A Iist is demarcated by

the presence of square brackets, with alllist members separated by commas. A

pound sign before the open bracket signifies that the list contains Iiterals, rather

than variables, which enables SuperCollider to read through it more quickly.
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#[ 0.147, 0.148, 0.503, ... ]

Figure 4_8: Format ofa SuperCoUüJer list varillble

The mean and standard deviation pararneters are not sonified with separate events

for each beat, but each is reflected by an event that lasts for the duration of the

sonification, and is updated with each spawned event.

Mean Value

The mean value of the window is used as the variable in the same function that

determined the pitch of the NN intervals and NN50 intervals, equation (4-1). The

result is used as the frequency input to a wavetable oscillator. The wavetable is

the set of harmonies with a "glassy" sound, used in the previous sonification. The

amplitude value is entered by the user via a GUI slider. For a visual reference, the

current Mean value is displayed in a number box.

Standard Deviation Value

The standard deviation of the window is sonified by a band limited impulse

oscillator. The frequency input is the frequency value derived from the Mean of

the window by equation (4-1). The number of harmonies is a multiple of the

window's standard deviation, with the result that higher standard deviations

produce a brighter sound. The volume of the impulse oscillator is a tremolo,

controlled by a sine oscillator. The frequency of the sine oscillator is the standard

deviation value for the window, with the result that higher standard deviation

values produce a (aster tremolo. The amplitude of this modulating oscillator, the

overall amplitude of the standard deviation sonification, is the value is entered by

the user via a GUI slider. For a visual reference, the current standard deviation

value is displayed in a number box.

4.1.3.2 Flowchart Illustration, Code and Demonstrations

The code for the patch is contained in Appendix 5.2. A f10wchart illustration of

the processes described above is shown in Figure 4_9. Demonstration patches of

healthy, congestive heart failure, atrial fibrillation and obstructive sleep apnea

may be run from the CD-ROM portion of the accompanying CD by launching the

SCPlay program and running the files GenModel_Healthy . lib,

GenModel_CHF .lib, GenModel_AtFib .lib and GenModel_Apnea .lib .
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4.1.3.3 Evaluation of the General Model

The general model offers a feasible basis to make auditory distinctions among

different cardiac conditions. The four paraJ1.1eters are distinct enough to be

perceived separately, yet they ail blend to the degree that hearing to the four of

them simultaneously may be described as an intelligible and pleasant listening

experience. The NN intervals fonn the data set with the most variability.

Sonifying them with a sinusoidal unit generator, which produces a simple timbre,

a1lows the variability to be perceived without excessive high overtones creating a

grating or irritating sensation. The NN50 intervals are sonified with the same

pitch as the NN intervals, yet sound distinct from them due to the presence of

higher harmonies and the percussive envelope. The glassy tone assigned to the

running mean, being based on the same pitch fonnula, will always be similar in

pitch to the current NN interval sonification. Timbrally t the glassy tone is sine­

like, but the presence of higher harmonics, plus the continuous nature of this

sonification, allows this tone to blend easily with the NN intervals while still

remaining distinct from them.

The standard deviation tone was more difficult to map to pitch, due to the

different scale frorn the mean and NN interval values, as weil as the range. The

standard deviation may differ by more than a hundred fold over the course of a

data set, making a pitch mapping that follows the same formula as the other two

problematic. The standard deviation sonification offered in this model offers a

solution to this problem. Its pitch is the same as that of the mean. The tremolo

sonification of the deviations is intuitively related to the nature of a standard

deviation, which measures a range of values centered about a mean. By using the

same pitch as the mean, there is no possibility of confusion on the part of the

listener trying to relate both parameters. The volume oscillations are non­

intrusive and easily distinguished from the other elements in the sound field. The

tremolo rate with this mapping falls into a low frequency range of roughly 0.1 Hz

to 8 Hz. While the range is wide, approximately eighty-fold, changes to the

standard deviation occur gradually. Updates to the frequency value occur much

more quickly, on the order of thirty to sixty times per second, depending on the

setting of the GUI rate slider. While there is the possibility that aliasing may

occur in the oscillations due to the fact that the tremolo rate is updated several

times during the course of one cycle, in practice this has not been a problem. At
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tbis comparatively fast update rate to the tremolo oscillation frequency, any

distonions of the tremolo rate are not perceptible. The standard deviation

sonification also provides a workable use of timbraI changes to convey

information. The number of hannonies is proportional to the standard deviation

value, just as is the tremolo rate. While the timbre is not the primary eue, the

higher harmonies, which are associated with higher tremolo rates, become a

reinforcing factor, aiding in the perception of Ua higher degree of something."

The use of these four parameters allows distinction among the four cardiological

conditions. A healthy set sounds "regularly irregular," with sporadic, but not

extreme, fluctuations in ail parameters. Periodic changes in the mean and

standard deviation are easily perceived, and there are patches of higher variability

that produce clusters of NN50 interval sounds.

Congestive heart failure, on the other hand, sounds monotonous, corresponding to

a data set with greatly reduced variability. The NN pitches are fairly constant, and

the running mean is virtually constant as weil. The standard deviation sonification

has such a low oscillation rate and such a reduced harmonie content that it is

almost lost altogether. The NN50 intervals are virtually nonexistent.

At the opposite extreme is atrial fibrillation. which produces a highly agitated

sonification that might be described qualitatively as Ueverywhere at once." The

NN interval sonification is reminiscent of boiling water. The NN50 sounds are

constant throughout. Due to the high activity, the mean does not change

markedly. but the standard deviation is continually at a high rate.

Obstructive sleep apnea sounds similar to a healthy set, due to the fact that apneic

episodes may be sporadic, and not a constant factor. Apneic episodes, however.

do become perceptible as oscillations in the NN intervals. While the heart rate

speeds up and then nonnalizes, it does not tend toward a constant rate, presumably

due to the constant state of oscillatory flux. The result is that the normalizing of

the heart rate is characterized by a high number of NN50 intervals, whieh are

heard in regular uclumps" during apneic episodes.

These perceptions, however, must be verified by untrained Iisteners before any

daims can be made regarding the effectiveness ofthis model. Having arrived at a
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(theoretically) workable sonification model, a perception test was conducted to

verify its effectiveness in conveying information.

4.2 Listening Perception Test

4.2.1 Purpose of the Test

The test described here explores the viability of the sonification model outlined in

the previous section. Would an auditory display of this type be a valuable tool for

cardiologists in making diagnoses? Exploring this type of question is an inherent

component of any auditory display presentation. As observed by Kramer in the

ICAO white paper prepared for the National Science Foundation (1999):

Sonification effons must be carefully evaluated with appropriate user validation
studies ... [l]he absence of such sludies in the early days of visualization slowed
ils acceptance. Without lhis multidisciplinary approach. the field ofsonification
will mature slowly or not al ail; instead. applications of sonification will he
developed occasionally on an ad hoc basis. but no theoretical framework guiding
effective sonification will resull.

To this end, a simple Iistening recognition test was conducted to provide a starting

basis for funher study. To explore the issue of how c1early the heart rate

variability sonification model presents information, the test addresses two

questions:

• Can untrained Iisteners differentiate auditory displays representing four

cardiological diagnoses?

• As a diagnostic tool, are auditory displays of the information as effective

as visual displays?

Ideally, such a display would require minimal (or no) training to be

comprehensible. Music students typically invest years in musicianship and ear

training courses in which recognition of pitch intervals and rhythmic patterns are

considered an essential component of their professional competence. While

cardiologists must develop acute listening sensitivities to detect heart rate patterns

via a stethoscope, the HRV sonification model presented here requires a different

type of analytic listening. It certainly would not he feasihle to expect

cardiologists to undertake music training in order to sensitize themselves to subtle

differences in auditory stimuli. Therefore, the information presented by an
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auditory display must be evident with only a minimal amount of training time. It

is hoped that an ideal auditory display would contain layers of infonnation that

become meaningful to experienced listeners, but sorne benefit must be

immediately apparent before any deeper examination can be undertaken.

4.2.2 Method

Thirty-nine undergraduate students in a session of the c1ass "Math and

Physiology" consented to participate in this study.

The participants were asked to try to identify cardiological diagnoses presented as

two Conditions: Auditory and Visual. A test was prepared with stimuli

representing examples of four cardiological diagnoses: healthy, congestive heart

failure, atrial fibrillation and obstructive sleep apnea. For the Auditory Condition,

four ten-second samples of each diagnosis were prepared consisting of

sonifications of the NN intervals and the NN50 intervals, as described in the last

section. The sonifications presented sixtYNN intervals per second, so that the

ten-second samples represented approximately ten minutes of heart rate activity.

In addition to these sixteen samples, (Wo examples of each diagnosis were

repeated. making a total of twenty-four auditory stimuli. This repetition was done

in order to verify that the participants responded similarly to identical stimuli. For

the Visual Condition, four visual graphs of each diagnosis were also prepared,

plotting 600 NN intervals as a function of beat number. The visual displays

illustrated the same interval sets as those presented by the auditory displays. Two

examples of each diagnosis were also repeated, just as they were for the Auditory

Condition, for a corresponding total of twenty-four visual stimuli.

The participants received approximately ten minutes of training before the test

began. The training included a brief introduction to the subject of heart rate

variability, the four diagnoses under consideration and the auditory display

methods employed. The full text of the ten-minute training session is contained in

Appendix 6.1. Following the explanation ofeach diagnosis, an auditory display

example was played. After ail four diagnoses had been explained and illustrated

the four examples were played again without interruption. To aid in the

identification of each diagnosis, participants' attention was directed to their
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response sheets, which contained a visual display of each of the four examples for

their reference. The response sheets are shown in Appendix 6.2.

The test began with the Auditory Condition, in which the twenty-four stimuli were

played without interruption in random order. The four demonstrations and the

twenty-four stimuli cao he heard on the accompanying CO, audio tracks 2-29.

There was a pause of eight seconds between stimuli to allow participants to select

one of the four diagnoses and mark the corresponding answer on the response

sheet. Following the twenty-fourth stimulus, the response sheets for the Auditory

Condition were then collected. Response sheets were then distributed for the

Visual Condition.

For the Visual Condition. visual displays that corresponded to each of the auditory

displays were presented in a random sequence that was different from the

sequence of auditory stimuli. Each was projected onto a screen for ten seconds,

with a pause between projections to allow participants to identify each image and

mark the corresponding answer on the response sheet. The twenty-four visual

displays are shown in Appendix 6.3. The response forms used for the Visual

Condition were identical to those used for the Auditory Condition, containing a

visual display of each of the four examples for reference.

4.2.3 Results

Figures 4_10 and 4_11 summarize the responses ta the Auditory and Visual

Conditions, respectively. The graphs present the breakdown of responses to each

stimulus, the correct identification, and which stimuli were repeated.

A cursory examination of the response summaries shown in Figures 4_10 and

4_11 reveals that the majority of participants were most often correct in their

identification of the four diagnoses, both for the Auditory and the Visual

Conditions. Of the eight exact repetitions of the auditory samples, six show a

higher number of correct identifications for the repeated display. The increased

level of accuracy in identifying the second display suggests that the participants

experienced sorne level of learning during the course of the test. To explore the
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• Figure 4_10
Auditory Display Response Distribution

39 participants

Response breakdown for each stimulus
(correct identifications shown in bold)
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• Figure 4_11
Visual Display Response Distrlbution (unscrambled)

38 participants t

Response breakdown for each stimulus
(correct identifications shown in bold)

Sleep
A

Atrial
F"b 11 .

Congestive
H tF lHealthyNo. ear al ure 1 n atlon .pnea

1 0 39 0 0
2* 8 0 5 25
3 0 1 38 0
4 8 27 0 4
5 0 0 39 0
6 37 0 1 0
7 0 39 0 0
8 24 0 0 14
9 16 0 2 20
10 0 2 37 0
11* 5 29 1 3
12 Il 18 0 10
13* 8 0 29 1
14 0 39 0 0
15 14 0 6 19
16 10 0 27 2
17 25 0 0 14
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19 0 39 0 0
20 12 0 2 2S
21 0 0 39 0
22 1 0 38 0
23 0 0 39 0

24 0 39 0 0

Arrows indicate
matching Stimulus
stimuli

•
t One participant out of the 39 leftlhe room briefly and did nOl mark responses to the firsl five displays.

* Responses left blank by one or more participants .
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effectiveness of repeated stimuli further, statistical analyses of the responses were

performed.

The participants' responses for each stimulus of each Condition were scored with

either a 1 for a correct identification or a 0 for an incorrect identification. To

assess the reliability of the test, responses to identical items were compared

through t tests. A t test measures the difference between two sets of means, and is

used to test a hypothesis about a population. The hypothesis here was that the

repeated displays would be identified identically both times they were displayed.

The mean number of correct responses to each display of the repeated stimuli was

compared. The value of p for each pair of stimuli represents the degree of error

present in the hypothesis, by giving a percentage of the time the hypothesis will

Iikely prove to be correct. In perception tests of this type, a p value greater than

.05, indicating that the hypothesis is acceptable more than 5% of the time, is seen

to support the hypothesis. When p is greater than .05. the result is summarized as

Ils (not significant) to indicate that there is no significant difference in the

identifications of identical stimuli. A value of p that is less than .05 is seen as a

significant difference in the identification. Table 4_1 presents the results of the t

tests.

Table 4_1
t Test Comparison of Same Items

AuditoQ

1 & 14 (CHF) Ils Ils

4 & 12 (Healthy) p <.05 Ils

5 & 21 (Atnal Fibrillation) Ils IJS

8 & 17 (Healthy) Ils Ils

10 & 23 (Atrial Fibrillation) p <.05 Ils

13 & 16 (Apnea) ns ns

15 & 20 (Apnea) P <.05 p <.05

19 & 24 (CHF) ns ns
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Table 4_1 shows that for the Visual Condition, subjects responded differently to

items 15 and 20, which represented apnea. This indicates that subjects identified

this apnea stimulus more accurately the second time it was presented, suggesting

that sorne leaming had taken place. No other differences were found between the

responses to identical stimuli in the visual test.

For the Auditory Condition, differences between identical stimuli were found for

one healthy stimulus, one atrial fibrillation stimulus and one apnea stimulus. As

shown in Figure 4_10, participants identified the healthy and the apnea diagnoses

more accurately the second time they heard the stimuli, which also suggests a

degree of leaming. However, when identifying the atrial fibrillation stimuli,

participants provided more accurate responses the first time they Iistened to the

stimulus than the second time. It should be noticed that differences to identical

stimuli were found for only three of the eight repeated stimuli. indicating an

acceptable level of reliability for the test.

4.2.4 Other Descriptive Statistics

In order to understand better the effectiveness of the displays, a comparison of the

total number of correct identifications the participants provided for bath

Conditions is shawn in Figures 4_12 and 4_13. Given that there were 24 stimuli,

scores could range from zero to 24. The spread of correct identifications is greater

for the Auditory Condition. While the lowest score for the Visual Condition was

13 correct identifications, there were seven scores below 13 for the Auditory

Condition. At the high end of the spread, the highest score for the Visual

Condition was 21 correct identifications. while there were three scores greater

than 21 for the Auditory Condition. including one perfect score. While there are

more low scores for the Auditory Condition, there is also a greater proportion of

high scores. The median number of correct responses for the Auditory Condition

was 18.5. This score is slightly higher than the median score for the Visual

Condition. One participant left the room during the first six Visual displays. That

participant' s score was 13 correct out of 19. If this score is included, the median

for the Visual Condition is 17; if it is not, the median is 18.25.
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Table 4_2 presents the mean number of correct responses for each diagnosis. The

values are determined by totaling the correct responses to the six stimuli presented

for each diagnosis, shown in Figures 4_10 and 4_11, and dividing the total by six.

Thus, the maximum possible score would have been 39: if ail six presentations of

a diagnosis were identified correctly by everyone the mean value would be

(39*6)/6 =39. The diagnosis that was most difficult to identify was clearly

obstructive sleep apnea. Equally clear is that congestive heart failure and atrial

fibrillation were the easiest to identify. This is not surprising since these two

diagnoses are characterized by extremely low and high degrees of interbeat

variability. Interestingly, the total correct identifications of healthy and

obstructive sleep apnea diagnoses had a higher average with Auditory than with

Visual stimuli. A more rigorous examination of response breakdowns in the four

diagnosis categories is presented below.

Table 4_2

Mean Number of Correct Identifications of Each Diagnosis

Auditory Visual

Healthy 26.5 22.é

Congestive Heart Failure 33.5 37.3

Atrial Fibrillaùon 29..5 38.3

Obstructive Sleep Apnea 21.If 15.3

4.2.5 ResuUs for Each Diagnosis

The main purpose of the experiment was to detennine whether presenting subjects

with auditory and visual information would yield similar numbers of correct

identifications of four cardiological diagnoses. Statistical analyses were

perforrned to examine whether one condition elicited more correct identifications

of the diagnoses than did the other.

Each panicipant' s correct responses for each of the four diagnoses were totaled,

allowing a maximum score of 6 and a minimum score of 0 for each of the four

cardiological diagnoses. Analysis of variance (ANOVA) with repeated measures

for each testing Condition showed no significant differences in the identification

of diagnoses presented visually or aurally. The results are summarized in

Table 4_3.
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Table 4_3

Anova table for a 2-factor repeated mea.ures Anove

Source:
Sumot

dt: . Squares:
Mean

Square: F-test: P value:

Testing Condition (auditory or visual) 1 .93 .93 .36 .5481

subjects within groups 76 193.41 2.54
Repeated Measure (four diagnoses) 3 355.45 118.48 122.35 .0001

Testing Condition x diagnosis 3 63.01 21 21.69 .0001
subjects within groups 228 220.79 .97

However, results of the analysis showed significant differences in the

identification of the four cardiological diagnoses and a significant interaction

between Testing Condition and diagnosis. This interaction between testing

Condition and cardiological diagnoses was explored further through factorial

ANOVAs. An ANOVA for each Testing Condition was performed on

participants' scores for the four cardiological diagnoses (Tables 4_4, 4_5). For

the Auditory Condition, there were significant differences in recognition among

the four cardiological diagnoses. Scheffe comparisons (p < .05) indicated that

congestive heart failure was significantly easier to identify than obstructive sleep

apnea, healthy and atrial fibrillation, and that the apnea diagnosis was

significantly more difficult to identify than atrial fibrillation and healthy

diagnoses.

F

Table 4_4

Auditory Condition

One Factor ANOVA

Cardiologieal Diagno"s1-4

No. Correct Identifications

Analysis of Variance Table

S S M SDFource: . um iQUares: ean iQUare: -test:.
Setween groups 3 72.79 24.26 13.29

Within arOUDS 152 2n.44 1.83 p =.0001

Total 155 350.22

s

•
Model Il estimate of between component variance = .58
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• Table 4_5

Audltory Condition

One Factor ANOVA

Cardlologiea. Diagnoses 1-4

No. Correct Identifications

S ft FOffMompanson: ean i .: ehe e ·test:

CHF vs. Apnea 1.87 12.48 •

CHF vs. Atnal Fibrillation .62 1.35

CHF vs. Healthy 1.0a 4.13 •

Apnea vs. Atrial Fibrillation -1.26 5.62 •

Apnea vs. Healthy -.79 2.25

C

• Signifieant at 95%

For the Visual Condition, there were also significant differences in the recognition

of the four diagnoses. Scheffe comparisons yielded similar results to those

reponed for the Auditory Condition: congestive heart failure was significantly

easier to identify than obstructive sleep apnea, healthy and atrial fibrillation, and

apnea was significantly more difficult to identify than atrial fibrillation and

healthy (Tables 4_6, 4_7).

F

Table 4_6

Visual Condition

One Factor ANOVA

Cardiologieal Diagnose. 1-4

No. Correct Identifications

Analysis of Variance Table

S S M SDFSource: um iauares: ean iauare: -test:

Between groups 3 345.67 115.22 128.05

Within aroups 152 136.n .9 p =.0001

Total 155 482.44

Model Il estimate of between component variance = 2.93
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• Table 4_7

Visual Condition

One Factor ANOVA

CardiologiC81 Diagnoses 1-4

No. Correct Identifications

S fto·ftomDanson: Mean 1 .: ehe e F-test:

CHF vs. Apnea 3.36 81.5*

CHF vs. Atrial Fibrillation -.13 .12

CHF vs. Healthy 2.26 36.78 *

Apnea vs. Atriaf Fibrillation -3.49 87.85 *

Apnea vs. Healthy -1.1 8.78 *

c

* Signifieant at 95%

This interaction between testing Condition and cardiological diagnosis was

explored further through factorial ANOVAs. An ANOVA for both testing

Conditions was performed on subjects' scores for each of the four cardiological

diagnoses. The results of these four ANOVAs indicated that the Visual Condition

elicited significantly more accurate identifications for congestive heart failure and

atrial fibrillation than did the Auditory Condition (Tables 4_S and 4_9). On the

other hand, the Auditory Condition elicited significantly more accurate

identifications of healthy and obstructive sleep apnea diagnoses than did the

Visual Condition (Tables 4_10 and 4_11).

Table 4_8
One Factor ANOVA

CHF - No. Correct Identifications

S ES 0Mcrouo: ount: ean: td. ev.: td. rrar:

Group 1: Auditory 39 5.15 .9 .14

Group 2: Visuaf 39 5.74 .44 .07

G

Table 4_9
One Factor ANOVA

Atria' Fibrillation - No. Correct IdentifiC8tions

Std 0 Std EMcroup: ount: ean: . ev.: . rror:

Group 1: Auditory 39 4.54 1.29 .21

Group 2: Visuaf 39 5.87 .41 .07

G

• lOS



Table 4_10
One Factor ANOVA

Healthy - No. Correct Identifications

C M SdD SdEroup: ount: ean: t . ev.: t . rror:

Group 1: Auditory 39 4.08 1.46 .23

Group 2: Visual 39 3.49 1.12 .18

G•
Table 4_11

One Factor ANOVA
Apne. - No. Correct Identifications

Sd ESd 0MCroup: ount: ean: t . ev.: t . rror:

Group 1: Auditory 39 3.28 1.64 .26

Group 2: Visual 39 2.38 1.41 .23

G

4.2.6 Discussion

•

This test provides a preliminary benchmark to evaluate the effectiveness of

auditory vs. visual displays. The results of the test indicate that the participants

leamed to differentiate among the diagnoses over the course of its duration.

While sorne participants did seem to have difficulties with sorne of the displays,

evidenced during the test by use of erasers and furrowing of brows, sorne of them

expressed afterwards a c1ear preference for the auditory displays. This

informally-stated preference for auditory displays perhaps accounts for the greater

number of higher scores in the auditory than in the visual presentations. Sorne

difficulty for the participants is perhaps to be expected given that they were an

untrained population being asked to confront the type of diagnostic issues that

cardiologists spend years studying. Thus, the percentage of correct responses is

compelling, particularly when the responses differed for the Auditory and the

Visual Conditions. As we can see from Figures 4_10 and 4_11, the congestive

heart failure and the atrial fibrillation diagnoses presented litde difficulty in being

identified correctly, although the degree of accuracy was higher in the visual

presentation. Greater difficulty was present in both presentation modes with the

healthy and obstructive sleep apnea diagnoses. Interestingly, the Auditory

Condition was more effective in eliciting correct identifications for these

particularly difficult stimuli.
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Limitations of the test included the number of display elements present in the

displays, the education level of the test participants, the training time available,

and sorne elements of presentation. It is possible that a higher degree of accuracy

for aIl diagnoses would result with greater training and with a presentation that

included of aIl four of the display elernents described in the last chapter. In the

interests of time, only the NN intervals and NN50 intervals were presented in this

test. Further information may he gained, however, from the running mean and

standard deviation sonifications. A future study could Iikely yield a greater

degree of accuracy if these other two display elements were included.

Conducting further experiments with cardiologists who are more familiar with

what the data is illustrating may produce relevant results. It would also be

valuable to match the visual and auditory response forros from each participant sa

that the performance of individual participants under each testing condition may

be evaluated. Additionally, it would be desirable to work with more than one

group of participants with sorne being tested with visual stimuli first, and sorne

being tested with the auditory stimuli first. Different response forms could be

used for different groups, with one group of forros having the visual references

and the second group of forros having no visual references. Revisions could also

be made to the visual presentation ta ensure that the display times and response

limes matched those of the auditory displays exactly.

The most compelling outcome of the test is the significant difference in accuracy

in identifying obstructive sleep apnea. As discussed in the Literature Review

chapter, the pervasiveness of this condition is a concem for many physicians.

Current diagnostic methods. however, are problematic in the identification of

apnea sufferers. The expense of hospitaltime and respiratory analysis equipment

often makes the diagnosis prohibitive with the result that many sufferers are

untreated. posing a possible danger to themselves and athers. The superior

accuracy of this group of participants in identifying apneic episodes through

auditory displays indicates that there is high potential for easy and economic

diagnosis of sleep apnea through heart rate variability data that is taken from an

ambulatory Holter monitor and mapped to an auditory display.

Given the encouraging results in auditory identification of sleep apnea shawn by

the test, and the current focus in the cardiology field towards identifying sleep
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apnea, the general model was refined to focus specifically on the characteristics of

sleep apnea. The aim was to create sonifications that provide quick and

unambiguous identification of apneic cardiac pathology.

4.3 SuperCoUider Sonitication 3: Diagnosis of Sleep Apnea

4.3.1 Modifications to General Model

The general model that was used in the perception tests was easily modified to

highlight characteristics of sleep apnea. As described earlier. the heart rate during

apneic episodes oscillates over a period of approximately 40 beats. These

oscillations can be made audible via modifications to the running Mean

sonification. The general model used a window of 300 beats for running Mean

and standard deviation values as this figure represents approximately five minutes

of cardiac activity. While this is a useful window for the standard deviation value,

which requires larger quantities of values to be meaningful, it can blur the

representation of a running Mean. As described in the section on median filtering,

a Mean (Iowpass) filter tends to smooth transient activity that occurs within its

window. Ta bring out the oscillations that accur during sleep apnea, the window

length was shortened. To use the running mean window to highlight oscillations,

the window length must be no larger than half the number of beats per oscillation

cycle. Since apneic oscillations occur over fortYbeats, the window should be no

larger than twenty data points. The C program that computes the mean and

standard deviation values was modified to prompt the user for a window size to

allow experimentation to determine an optimal window length.

An additionallevel of lowpass filtering was achieved by having SuperColiider

round each Mean value to a given number of decimal places before computing the

pitch values used in the sonification. This has the effect of binning (or quantizing)

the values that are represented. Through trial and error, it was found that an

effective playback rate was 60 beat values per second, with a window size of 15

and with each Mean value rounded to the nearest hundredth. With these settings,

the sonification of the running Mean produces a distinct oscillation. reminiscent of

a siren, during the apneic episodes.

Not ail oscillatory patterns are as equally straightforward, however. Oscillation

patterns May vary within a given data set. The example shown earlier is
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illustrated again beIow, along with an earlier portion of the same data set. The

two segments show different wave shapes, the eariier pattern dispIaying sharper

transitions than the rounded patterns found thirty minutes later.

2.0

~ 1.S

=1.0 ~~"~r~t"'''~~t"'~r/\''r,}-~!'-N
0.5

4---...lIto..oLA.A--t ,......~ &..A~~ A.A ....a_ • t ~ ·L,o·---""t-t0.0
0:00:00 0:15:00

2.0

i 1.5

~ ~~ !'M",~·"t'.{\'f'.!'.rA!'.r'JW~
0.0
0:30:00 0:45:00

Figure 4_14: Two segments from the same data set, displaying different oscillIItion panerns

Identifications of apnea can be more problematic with subjects who exhibit more

erratic hean rate patterns. The set illustrated in Figure 4_14 was chosen as a base

case due to its c1ear oscillatory behavior that is evident from a quick glance at the

visual graph. The illustration in Figure 4_15 is from another data set, in which the

apneic oscillations are far less c1ear. They have been identified by conventional

respiratory analyses but are more difficult to detect from a visual representation of

the heart rate.
2.0

j 1.S

i 1.0 ~1.M~~J!4JJ·'W~"fJt_~~I'W~~~~~'~J~J~vWiJIij
O.S
o.o~...+...4L.A..""''''''~'''''''.A..A....A.....l~a...&.''''''''-'''''~LA.A...A''''''''''~A..A. .......................~.,........................,
2:00:00 2:15:00

Figure 4_15: A contrasting datll set

Figure 4_15 is c1early much more arnbiguous in representing oscillatory behavior.

The oscillations becorne c1earer through sonification, however, when a second

running Mean "track" is impIemented. [n addition to the window of fifteen points,

described above, a second set, with a running window of five points, is added.

This second window is rounded to the nearesl value of 0.21, with the result that ilS
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intervals have a much coarser degree of quantization than the window of fifteen,

which is rounded to the nearest 0.01. For Many of the apneic episodes, the coarser

window sonification simply altemates between two high and low pitches. Other

episodes are less binary in nature, with one or two intennediate pitches heard

between the higher and lower points of the oscillation. Thus, differing wave

shapes May he perceived. More importantly, a more complicated oscillation, such

as that shown in Figure 4_15, emerges as an oscillating pattern, though such a

pattern is not evident by looking at the illustration. While the original mean

sonification contains sorne oscillation, it is not the manifest siren-call that resulted

from the earlier set. The coarser sonification, however, produces a similarly

regular up and down alternation. This type of alternation has not resulted when

other conditions, such as healthy or congestive heart failure, have been sonified.

Thus, an important clue into apneic diagnosis is provided with the use of these

two running mean elements.

The two sonification "tracks" complement each other in several ways. The

second window is sonified with a square wave, which provides a sufficient

blendldistinction balance with the window of fifteen points. The coarser

sonification provides a more stable basis for large-scale oscillatory patterns. At a

1istener-comfort level, it serves to offset a sensation of seasickness that can set in

if the constantly oscillating, smooth waves of the finer sonification are heard over

extended periods of time. There are also smaller-scale oscillations that are not

reflected in the coarser oscillation, but which are accentuated when the finer

sonification f1uctuates about the unchanging coarser pitch.

This model contains other additions besides the modified mean sonifications. It

re-implements the median filtering described earlier as an additional step to the

CVAA, and which was sonified in the CVAA sonification modeL However, its

representation is simplified. Intennediate levels of the median filtering are

unimportant; what is significant is to be able to hear when the filtered values have

crossed the "apnea threshold" that has been determined for the particular data set.

Thus, the sonification only requires that a trigger tone be either off or on,

depending on whether or not the threshold has been exceeded.

A steady trigger tone, however, is easily lost among the other sonification

parameters when ail of the sonification tracks are being heard simultaneously. To
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create a sound that appears to "change without changing," six sine oscillators were

employed. Three of them produce audible frequencies at 400, 600 and 1100Hz.

While these frequencies share a common fundamental of 100Hz, the absence of

this frequency in the sonification lessens thdr percept as a single, complex tone.

Ta add variation, the volume of eaeh of the oscillators is eontrolled by another

sine oscillator producing a sub-audio frequency. The effeet is a slow tremolo with

a different rate for each of the three audible oscillators. The phases of these

modulating oscillators differ by amounts that are not multiples of each other with

the effect that the amplitudes are constantly in flux and non-periodic in relation ta

each other. The result is atone that is constantly oscillating timbrally but does not

mask any of the other parameters. The changing nature of the tone keeps it from

receding completely into the attentional background. Ta ensure that the other

sonification tracks remain audible, they are increased slightly in volume when the

lrigger lone is activated by adding a constant to the value represented by eaeh of

their sliders. When the trigger tone is de-activated, the constant is removed sa

that their volumes retum to those represented by the slider positions.

The apneic oscillations can also be perceived in the NN intervals. However, the

greater complexity of the NN interval set produces a rougher quality that is

superimposed on the oscillations. The mean sonification, having been lowpass

filtered at two levels, succeeds in creating a smoother, eompletely unambiguous

oscillatory quality that may be quickly recognized even by untrained Iîsteners.

CAry Goldberger, in a rare blend of poetry and cardiology, referred to il as the

Hsiren song of apnea.") The up and down nature of the coarser mean sonification

provides a complementary representation that serves ta clarify oscillatory

behavior, as described above. Listeners accustomed to the sonification, however,

may perceive additional information if the other sonification tracks are added.

This conclusion was borne out when this apnea model was developed in the

company of Plamen 1vanov, a physicist with no formaI musical training. In less

than two hours, Ivanov was making observations about the sonifications and

asking for adjustments in the volume balance to listen to them more closely.

A healthy data set contained intennittent fluctuations, but never produced the

consistent siren-like quality of an apneic set. The NN intervals of a healthy set

also seemed to sound more turbulent than a set undergoing apneie episodes. With

an apneie set, the periodic clustering of the NN50 sonifieation became evident
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during apneic episodes, as described earHer. Congestive heart failure sets sounded

consistently fiat. Listening to both the running mean and the NN intervals

produced beating, since the two were so close in frequency. While CHF sets often

undergo mild oscillations due to Cheyne-Stokes respiration, as described in

Section 2.3.3.1, these oscillations are distinct from apneic oscillations in both

speed and in the absence of NN50 intervals.

The difference between obstructive apnea oscillations and Cheyne-Stokes

oscillations is in sorne ways a moot point as the two conditions are related. Any

fonn of regular oscillatory behavior warrants further examination, whether the

cause is central or obstructive. By the same token, intermittent oscillation is

normal. There is only evidence of sorne pathology when there are consistent

oscillations for more than three or four distinct periods. Once a consistent

oscillatory pattern has been identified, tracing each specifie oscillation lessens in

importance. Diagnoses of sleep apnea seem to contain sorne margin of error. We

can see in Figure 4_16 below that oscillatory behavior in the heart rate begins near

the time of 2:45:00, a full five minutes before the respiratory analysis identifies

obstructive sleep apnea. The median filtering extension of the CVAA would cross

its threshold at the 2:45:00 mark. Both methods of identification may contain

sorne rnargin of error. Therefore, the fact that the respiratory and the median

filtered identifications may not correlate 100% of the time is relatively

unimportant; both methods indicate a high incidence of apneic episodes,

warranting sorne sort of Medical intervention.

l
3:00:00

• •••••••••••i
2:45:00

•
Figure 4_16: Comparison ofheart rate oscillations and respiratory identifications ofapnea

A further addition to this model was also made to allow a higher level of user

interaction. A routine was added to the pre-processing program to keep a
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cumulative total of the data values so that its timespan could be tracked. The

program created an additionai file that was a list that contains elapsed hours,

minutes and seconds. This time file is read into the SuperColliçier patch, stored as

a variable, and is traversed in the same way as are the other external files, adding

a time "track" as a component of the sonification. As each musical event is

spawned, the index value is aIso applied to the time list, and the current time is

displayed. This feature makes for easier comparisons of the sonifications with

visual graphs.

To allow users greater flexibility in listening to selected portions of the data, a

checkbox was added to the GUI. Un-checking the box pauses the sonification.

Users may then choose a new starting time via a slider. Re-checking the

checkbox causes the sonification to resume from the selected point. This feature

was accomplished by having the current slider position, rather than the Spawn

object's incrementer, function as the global index value to alllists. The time

slider is polled periodically at a rate detennined by the rate slider. The current

position is read and stored into a variable that functions as the global list index

value. The time slider is then incremented by one. With uninterrupted playback.

the slider acts as a Uthennometer" moving gradually from left to right, its

positions corresponding to the time value displayed in the number boxes. When

the final data point is reached, synthesis stops automatically. The ability to move

to desired points in the data was invaluable when testing this model for features

such as optimal levels of rounding.

4.3.2 Flowchart Illustration, Code and Demonstration

The GUI of this modified version appears in Figure 4_17. A flowchart illustration

of the sleep apnea sonification is shown in Figure 4_18. The SuperCollider code

can be seen in Appendix 6.3. Demonstration patches that sonify the data sets

corresponding to Figures 4_ 14 and 4_15 May he run from the CD-ROM portion

of the accompanying CD by launching the SCPlay program and running the files

ApneaDiagnosisl.lib and ApneaDiagnosis2 . lib.
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Figure 4_17: GUI ofapnea dÛlgnosis sonification model

This sonification realizes the primary goal of this study. A complex data set has

had its values mapped to sound parameters in such a way that features of the set

that are not evident with a visual illustration can he heard. The identification is

not created via a single parameter that could just as easily he represented visually.

but through a combination of sonifications of the NN intervals, NN50 intervals

and two running means. Adjusting these four tracks depending on the particular

data set being sonified allows the characteristics of apneic oscillations to be

brought out. It is thus conceivable that this sonification model could prove

beneficial to cardiologists in the diagnosis of obstructive sleep apnea. More

general conclusions will be discussed in the following chapter.
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Figure 4_18
Diagram of URV Sonification for Sleep Apnea Diagnosis
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5. SummaIT and Conclusions

5.1 Method of Sonification

The methodology behind the sonifications models presented in this thesis is

termed the "multi-track" model: the data is presented as a series of simultaneous

tracks, each of which represents a different signal processing operation. This

methodology is distinct from the methodology taken by Kramer with his stock

market analysis sonification, described in Chapter 2. Kramer' s approach might be

termed the "gestalt" model: multiple data streams are consolidated to represent

different aspects of each sound event. The concem with this methodology is that

it is questionable whether aIl of the cues employed function equally weIl

perceptuaIly. Of the five cues Kramer employs-pitch, pulse speed, brightness,

detune and attack time-the first two are the most likely to reflect changes

effectively on both small and large levels. The last three, as discussed in

Appendix 1, are perceptually interrelated. Thus, a change in one, such as attack

time, may be eonfused with another, such as brightness. Similarly, the level of

detune perceived May depend on the harmonie content (brightness) of the tone at

the time the detune factor changes. Granted, Kramer' s intention is not for

listeners to perceive these factors individually, but to sense changes based on

multi-faeeted impressions. But these impressions would be difficult to quantify

given the conflicting nature of the factors employed. Such blending of parameters

is an attractive option for the creation of music, in which "chimeric" effects. as

termed by Bregman, May be obtained through the creative blending of timbre and

envelope shapes. Unusual instrument combinations May surprise the ear,

producing sounds that are not normally associated with the instruments producing

them. For analytieal purposes, however, this ambiguity is a detriment.

These eomments are not meant to diseredit the use of a gestalt display entirely,

only to justify why the approaeh was oot used in the models presented here.

Whether the sonification methodology is gestalt or multi-track, due consideration

must be given to the matter of which sound parameters are meant as primary eues

and which are meant as supporting cues. A primary eue would be one that

reflects changes on a moment-to-moment basis in the data; a supporting cue

would either eohance a primary cue or provide distinction among various primary

eues. In the general model and sleep apnea diagnosis models, piteh and tremolo
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rate fonction as primary eues. Each track is related in pitch to the other tracks,

producing a harmonie blend of sounds. The tremolo rate reflects changes in

standard deviation. Changes to either of these parameters are easily distinguished.

Since the two effects May he perceived simultaneously without being confused

with each other, they may be tenned orthogonal percepts of the sonification.

Timbre, on the other hand, is a supporting parameter. It is used in conjunction

with the tremolo that reflects the standard deviation, adding salience to faster

tremolo speeds with higher hannonic content. Timbre is also used to differentiate

among the different data tracks. The different data sets are assigned to timbres

that are meant to blend amongst themselves, while remaining distinct if the

listener focuses on them. Thus, the multi-track sonification employs the Hcocktail

party effect" discussed in Section 2.2.1 to enable listeners to choose which stream

to focus on. Changes in volume are also used as a supporting parameter, lending

another level of distinction among the tracks. The volume changes in the median

filtered data track give it a slow shimmer effect that keeps it from becoming lost

in the sound field. Other tracks are distinguished by the presence or absence of

volume changes. The mean and standard deviation tracks are continuous and thus

distinct from the NN intervals, which have a '"bubbling" effect due to their

temporal nature-a sinusoidal envelope for each data point.

While localization was employed in sorne of the earHer sonification models, it

does not appear in the general and sleep apnea models. It is likely, however, that

localization would be an effective supporting cue for comparisons of more than

one data set. It would he possible, for example, to compare the mean and standard

deviation of (WO data sets by listening to them simultaneously, panned to separate

stereo channels. Differences in pitch or tremolo rate would be easily

distinguished when separated and heard binaurally. If more than two data sets

were to be compared, they could aIl be panned to different locations to rernain

autonornous from each other (the same principle employed by Wenzel, described

in Chapter 2, in which multiple voices heard over headphones have a higher

degree of intelligibility when panned to different locations).

The strength of the rnulti-track model is in its flexibility. It is comparative in

nature, with an open ended structure that allows any number of processing

operations to be heard in tandem.
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5.2 Auditory Display in Cardiology

The advantage of using a multi-track sonification to analyze complex data sets is

that the number of layers is potentially unlimited. It is thus a highly inclusive

method of representation, as opposed to many processing techniques that result in

certain elements of the original signal being lost. Heart rate variability data sets

are highly complex. The analytical methods for heart rate variability discussed in

Chapter 2 a11 attempt to describe factors of the complexity through filtering

operations. While the filtering produces valuable results, these signal processing

operations by their very nature eliminate other elements. A simple example is in

Fourier transforms. Besides the loss of time resolution that results from a Fourier

transfonn, the phase components of HRV spectra are often 50 complex that they

are simply discarded, and focus is instead given to the amplitudes. Thus, ail such

operations are a tradeoff, in which certain parts of the data set must be deemed

expendable. Correlations among these operations are therefore problematic.

Even if such correlations are attempted, they are often difficult to display visually.

as it is difficult to create visualizations containing more than four dimensions.

The auditory system, with its suitability towards multiple stream intelligibility, is

the preferable sensory means for comprehending data in higher dimensions.

A tenet of the models presented here is that the original data set always remains

intact. Different levels of processing may be applied to it and added or removed

from the model at will, but the basis of this processing is always available for

comparison. The number of parameters is Iimited only by the power of the

computer platform and the distinctiveness of the synthesis algorithms employed.

Listeners may learn to relate processing operations gradually, Iistening only to a

few ofthem initially, and adding layers to the sonification when it becomes useful

to Iisten to them. Thus, the Iistening environment may he made as simple or as

complex as is desired.

5.3 Future Work

The analyses presented here represent a subset of the methods currently explored

in the study of heart rate variability. Given the open-endedness of the model and

its suitability for comparing different types of analytical data, different approaches

could he consolidated for a more comprehensive sonification model.
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Many researchers examine the spectrum of variability over varying timescales.

There could he value in mapping a sliding spectral window to a sonification. As

was done with the mean in the apnea model, various timescales/window sizes

couId be represented simuItaneously. Other researchers prefer a time-based

approach, in which a fonction is interpolated resulting in peaks at times that

correspond to the NN intervals as identified by beat recognition algorithms.

While this approach was ruled out for this work, it May he valuable to incorporate

research in this direction into future sonifications.

Finally, nonlinear dynamics present a new range of analytical possibilities. As the

role of nonlinear analysis in heart rate variability remains speculative, its results

did not play a large part in the more recent sonifications. It was decided that more

straightforward statistical measurements should be employed and proven effective

before incorporating more complex operations. Having established a general

model and an apnea diagnostic model, it would be interesting, both artistically and

analytically, to focus on the implementation of nonlinear operations through

sonification. As was pointed out in Chapter 2, chaos theory remains a compelling

and largely uncharted area of music composition. The same can be said about

chaos theory in auditory display analysis. The methods explored in heart rate

variability could provide the basis for intriguing and informative sonifications.

5.4 General Guidelines for the Creation of Auditory Displays

The work presented here May be summarized by the following general guidelines

for the creation of effective sonification models:

• Analysis of the dynamics underlying complex data sets May benefit from a

number of signal processing operations that highlight different

characteristics of the set. Correlations among these operations May he

perceived through a simultaneous auditory display, as the auditory system

is weil suited for following changes in multiple sound streams.

• To ensure the integrity of signal processing operations in representing

aspects of the data, the untreated data set should be included as a basis for

comparison.

• A. flexible listening environment May allow the listener independent co ntrol

over each display stream. Control parameters may include relative volume
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arnong streams, rate of playback (number of data points sonified per time

unit), and the ability to selectively listen to chosen portions of the data set.

For a single display stream to be perçeived in a complex sound field, sorne

parameter must he changing at any given moment. Constant and

unchanging sounds will recede into the background and be difficult to

perceive individually.

Pitch and volume pulse rate are particularly effective as primary cues to

reflect moment to moment changes in the data. This effectiveness is due to

the auditory system's high sensitivitYto changes in periodicity. These two

parameters may change separately without interfering with each other' s

distinctiveness.

The most effective mapping of data to pitch is to use data points as an

exponent. This will ensure that changes in the data are reflected in equal

changes of musical pitch interval. The mapping can be performed

according to the range of data values in order to control the resulting pitch

range. The mapping used in the HRV sonifications is one of Many possible

methods. The sonification model can easily be aJtered by changing the

mapping equation.

Overtone content, envelope shape and localization are less effective as

primary eues. They are weil suited to function as parameters that are not

affected by changes in the data, but which May serve as distinguishing

factors to allow different streams to remain distinct from each other. The

precise settings of these parameters is not trivial, and a good deal of trial

and error May he necessary to create a suitable blend of auditory data

tracks.

•

s.s Concluding Thoughts

When R.T.H. Laënnec invented the stethoscope in 1819, his innovation was not as

much in the introduction of a new piece of hardware as it was that he learned to

listen through it and make diagnostic judgments based on what he heard. Today,

listening training is an essential component of a physician' s education. The

potential of sonification lies in the fact that it relies on a skill that physicians have

already spent a significant amount of time developing: learning to hear

diagnostically significant nuances in a changing sound pattern. The only
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adjustment is in the type of information that is being presented. Furthermore, the

tlexibility of sonifications such as those presented here allow physicians to pause

and replay segments of a data set at aoy chosen speed, an ability to "zoom in" on a

portion of the data set at will.

The nature of research is incremental. No one project advances any field of

knowledge to any great degree without corroborating work done by other

researchers. Heart rate variability analysis remains an exploratory avenue of

cardiology with few absolute answers to date. Based on the results reponed here,

it cao he stated that auditory display represents a potentially valuable diagnostic

component and is a compelling avenue for further development.
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Fundamental Auditory Concepts and Terms

Sound and Time

The origin of a sound event is a disturbance of molecules in the air, which might

result from clapping one's bands, plucking a string, blowing into a pipe, striking a

membrane, or using electricity to activate the diaphragm of a speaker. The

displacement of molecules in the area of this disturbance causes collisions with

neighboring molecules, followed by ricochets back towards the original position.

The struck molecules in tum collide with their neighboring molecules. Thus a

sound wave is a series of compressions and rarefactions of air molecules, traveling

outward from the initial point of disturbance. Eventually these oscillations reach

our eardrum, which transduces this oscillating motion into mechanical energy and

then into electrical current that is interpreted by the auditory system as sound.

The pattern of a sound wave is often plotted as in Figure A 1_1, which represents a

simple sine wave. The horizontal axis represents time, and the vertical axis

represents changes in pressure. The zero point of the vertical axis represents the

normal, undisturbed acoustic pressure level.
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Figure Al_l: Sound wave plot
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The back-and-forth motion of these molecules is an example of a longitudinal

wave. A longitudinal wave is defined by the wave oscillations that move in the

same direction that the wave is traveling. The other common wave type is a

transverse wave, such as that seen in water. A transverse wave is defined by
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oscillations that are perpendicular to the direction of the wave's travel. Common

ta bath types, however, is the principle that while the wave moves outward from

its starting point, the displaced molecules are not themselves moving a10ng with

the wave. They simply collide with neighboring Molecules and then reflect back

to their original positions. What moves outward is the energy from the initial

disturbance. In the case of a sound wave, air Molecules are initially at an

undisturbed level of pressure. When disturbed, they altemate between pressure

levels that are higher and lower than normal. Eventually, the energy from the

disturbance diffuses, with the Molecules retuming to their equilibrium spacing,

and the sound ceases. The elapsed time from the initial disturbance to the end of

the sound makes up the sound's duratiolz.

While the differences between auditory and visual perception are many, the idea

of duration is the most significant among them. An image may or May not change

over time. A viewer May decide how long to view it, and on which parts of it to

focus the attention. Sound, in contrast, exists inherently in time. Sound events

have a beginning, middle and end. A sound event can never be perceived

simultaneously in its entirety.

Prior to the invention of sound recording technologies in the laIe nineleenth

century, there was no way to control sound events explicitly. It is now

commonplace to manipulate sound recordings by changing lheir speed, playing

them in reverse or manipulating the output wave in various ways. Still, the

comparatively shon history of sound event storage is no doubt pan of the reason

for the "visual bias" in representing information noted by the International

Committee on Auditory Display (Kramer, et. al., 1999).

Pitch

The sine wave plotted in Figure Al_1 is an example of aperiodic wave. While

the majority of natural sounds, such as speech, waves crashing, trafflc, etc.,

produce erratic, non-repeating wave forms, the category of sounds commonly

described as musical can be quantitatively defined as those wave forms that are

repeating, or periodic, in nature.
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The musical pitch of a sound is correlated with the: frequency of its waveform.

The human auditory system is able to perceive pitches roughly in the range of 20

- 20,000 cycles per second. Higher frequencies produce higher pitches. The

assignment of frequencies to musical pitches, however, is somewhat arbitrary.

While the pitch called middle A is commonly defined the frequency of 440 cycles

per second (also referred to as Hertz, abbreviated Hz), in reality many orchestras

tune to a frequency of 444. An appendix of Helmholtz (1885) contains a table of

frequencies assigned to the pitch A in cathedral bells throughout Europe. The

lowest "A" is below 400, while the highest is in the range of 480.

When more than two pitches are sounded simultaneously, the blending of tones

takes on varying degrees of consonance or dissonance, depending on the

frequency relationship of the two tones. The most fundamental pitch relationship

in music is that of frequencies having a 2: 1 frequency ratio. Two pitches with this

relationship will blend to the degree that they sound very much like a single tone.

The similarity is such that musicians will refer to these two pitches as virtually

identical, belonging to the same pitch class. Western classical music consists of

twelve pitch classes. The layout of a piano keyboard is simplified once students

learn the repeating pattern of white and black keys, and that corresponding keys of

the pattern belong to the same pitch class. The convention in familiar Western

music of seven-tone sets of pitch classes, scales, means that pitch classes will

repeat after each progression of eight scale tones. This 2: 1 (or the inverse, 1:2)

relationship, then, is commonly referred to as the octave. The repetition of pitch

classes from octave to octave is the source of psychologist Roger Shepard's

illustration of musical tones on a helix (Figure A1_2). The helix is a spiral shape

oriented vertically. Moving up the spiral is visualized as moving up in frequency,

with a doubling of frequency with each full cîrcle. Thus, a full circle represents

the span of an octave, lines adjoining corresponding points along subsequent

traversais indicating repetitions of pitch class.
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Figure Al_2: Pilch helix
(From: The Science of Musical Sound by John R. Pierce

© 1983 by W.N. Freeman and Company. Used wilh permission.)

The repetition of pitch classes with every doubling of frequency means that the

correspondence of musical pitches to frequencies is not Iinear, but logarithmic.

Western music is based on a pitch system in which each tone is equally spaced

within the octave. An octave sequence of musical tones, then, starting from a

frequency F, can be expressed mathematicaJly as

.!!...
F*2 11 n = 0, l, 2, ... , 12

•

Similarly, any pitch of A can be expressed mathernatically as 55*2", with n as

sorne integer.

The wavelength, commonly notated Â, of a pitch varies according to the inverse of

its frequency. It cao be calculated by dividing the speed of sound (~ 330

meters/second, depending on air temperature) by the frequency. Thus, the

wavelength of A440 would be 330/440 ~ O.75rn. Wavelengths of lower pitches

cao he several meters in length.

The wavelengths of sound waves are many orders of magnitude larger than those

of light, which accounts for our ability to hear events that occur behind obstacles,

where we cannot see them. Waves are reflected when they strike a surface that is

larger than the wavelength, and diffracted around the object if the wavelength is

larger. Sound wave fronts, particularly of low frequencies, cao easily travel

around obstacles, while Iight waves cannot.
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When two tones close in frequency are sounded simultaneously, the two

waveforms create constructive and destructive interference patterns that are heard

as beats. If the two frequencies are within a difference of 10 Hz, the Perceived

frequency will he the average of the two with loudness oscillations at a rate of the

difference hetween the two. For example, playing tones of 440 and 444 Hz will

result in a pereeived tone of 442 Hz, with a tremolo at a rate of 4 Hz. This type of

oscillation can he seen in Figure A 1_3.

Figure Al_3:
Oscillations due to interference pauerns between IWo pure tones close in jrequency

If the two frequencies are moved farther apart, the oscillations quicken until the

perception is more one of roughness than tremolo. As the frequencies fall outside

of the critical band, the width of which varies with the frequency range, the

roughness ceases and the perception is of two different tones.

The concept of beating plus the logarithmic nature of the auditory system's pitch

perception is the reason why chords played in lower registers will often sound

"'muddy," while the same interval set played a few octaves higher will sound

consonant. The frequency differences at the lower registers are much less than in

the higher registers, and the resultant beating ereates the Umuddy" sensation.

Timbre

The simple sine wave shown in Figure AI_I exists as sound only in synthetic

environments. In everyday Iife, they can he heard late at night on television,
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• accompanying a test pattern after a station has stopped broadcasting. Tuning

forks also produce a sine-like tone. What is unusual about the sinusoidal wave is

that it consists of only one frequency, and is thus aIso ealled a pure tone.

Natural sounds are composed of multiple frequencies, and thus the shape of the

wave will he more complex. The shape of the wave determines the sound's

timbre, which is the quality of sound that allows us to differentiate between two

different instruments playing the same pitch.

A primary component of timbre has to do with a phenomenon that oceurs when

vibrations occur within a bounded area. A clear illustration can be taken frorn a

plucked string, which is secured at both ends. The wavelength of the resultant

wave will he twice the length of the string, and the perceived pitch, also called the

fundamental pitch (ft, will be speed of sound divided by the wavelength.

~ L_~_ Â. =2L; f =330/2L

•

Figure Al_4: Fundllmentlll piteh ofIl plueked string

The curved shape of Figure A1_4 actually represents the maximum deviation

traversed by the vibrating string. The string's actual shape at any given moment is

angular, with a point resulting from the string heing stretched and plucked that

moves along the length of the string to an endpoint. is reflected in the opposite

direction, and continues to move back and forth.

The bounded nature of the string confines the propagation of the wave, and the

range of frequencies it can support. Only frequency components that rernain at

the same phase following one motion back and forth along the string's length will

continue to propagate within the string's bounded space. Other frequency

components will cancel each other out, with the result that only wavelengths that

have an integer relationship to the length of the string will continue to propagate.

People can leam to uhear out" these frequencies added frequencies above the

fundamental, a process called analytic listening .
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Figure Al_5: Harmonies ofa plucked string

Instruments and other natural sounds may contain many frequency components

above the fundamental frequency. As these additional components play a part in

the overall sound produced, they are termed partials. The first partial is the

fundamental frequency. The term overtones is also used to deseribe ail partials

excJuding the fundamentaL The term harmonies refers to the frequency

components that are at integer multiples of the fundamentaJ. String players are

taught to produce harmonie tones by placing a finger Iightly at the mid-point of a

string, thus produeing frequencies higher than the string's fundamental. The term

is also used in mathematics. A harmonie series is a succession of inverse

integers: l, 112, 1/3, 1/4 ... The first harmonie is equivalent to the fundamental.

•

The difference in timbre between a violin and a flute playing the same pitch is

threefold. One has to do with the initial attack portion of each instrument' s sound,

which may be a breathy chijffrom a flute or a seraping sound From a violin. The

other has to do with the different composition of the instrument bodies that

produces different resonances, a concept that does not fall into the scope of this

work. The final difference has to do with the overtone content of each instrument.

Each instrument has a charaeteristic set of overtones at different relative volumes

to each other. This fact is the basis of additive sound synthesis, in which pure

tones at various frequencies are relative amplitudes are combined. A trumpet, for

example, may be emulated by combining harmonies of a fundamental frequency,

with volumes at the inverse of the harmonie number. A clarinet may he emulated
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in a similar fashion, using only odd hannonics. A f1ute-like sound may be

synthesized by using only odd harmonies with amplitudes al the inverse square of

the harmonie number.

The mathematician Joseph Fourier (1768-1830) demonstrated a vital theorem of

spectral analysis, whieh is that all periodic vibrations are eomposed of a series of

sinusoïdal vibrations, eaeh of whieh are harmonies of the fundamental vibration

frequency, eaeh at a particular amplitude and phase (these two terms will be

discussed presently). The deeomposition of a complex waveform into its

harmonie components is ealled a Fourier analysis.

Examination of harmonies gives insight as to the consonance or dissonance of

various intervals. Figure AI_5 shows the harmonies oftwo tODes at 100 and

200 Hz. We cao see that ail of the harmonies coincide, whieh is why the two fuse

into a sound that can be mistaken for just one tone.

,.. - - - - - ,.. 1"-

1

frequency: 100 200 300 400 500 600 700 800

Figure A1_6: Harmonics oftwo tones an octave apan

Figure A 1_7 shows the harmonies of two tones spaced at a perfect fifth, a

frequency ratio of 3:2. We can see significant overlap among the harmonies,

whieh explains why the perfeet fifth is considered the most consonant interval

after the octave.

1"- - - ~ - - - -

1 1 1 1 • • • • • 1

frequency: 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600

Figure 111_7: Harmonies oftwo tones a perlect fifth apart
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• Figure A 1_8 shows the harmonies of two tones spaced at a major second, a

fundamental at 200 Hz and another tone at 200 x 9/8 Hz. It is clear from the

graph why this interval is considered a dissonance: there is Httle overlap of

harmonies; furthermore, the close proximity of the partials is Iikely to produce

beating or roughness among many of them.

frequency: 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

Figure AI_8: Harmonies o/lwo lones a IIUIjor second apart

Volume

The magnitude of maximum molecular disturbance detennines the overall degree

of change in pressure leveI. In Figure A 1_1, the pressure level oscillates between

±A. The maximum level of pressure change is the sound's amplitude.

The loudness of a sound is based on changes in atmospheric pressure, measured in

Newtons per square meter (N/m:!). The smallest perceptible change in pressure at

1000 Hz is 2 x IO·s N/m:!. The threshold of pain is approximately a million limes

greater than this threshold of hearing. Given the wide range of audible pressure

levels. pressure changes are usually expressed on a logarithmic scale, in decibeLs

(dB). The decibel scale is a comparison of a given sound's pressure level with the

threshold level, which is abbreviated Pu and assigned a sound pressure LeveL (Lp )

of O. The pressure level Lp of a sound, measured in decibels, is

(Al-I)

A doser description of loudness is based on the sound's power level. measured in

Watts ( W). Watts are also measured in decibels with the equation (A1-1):

•
Lw (dB) = 10 logll.cW~J,

with Wo equal to 10-12 watts, corresponding to Pli'
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• A change in power is proponional to the change in pressure squared. Therefore,

to use change of pressure to express changes in power, equations (A1-1) and

(AI-2) may be combined:

Thus, a doubling of power results in an increase of 3 dB of power level. A

doubling of pressure results in an increase of 6 dB of power level.

Typical sound power levels range from soft rustling leaves of 10 dB, to normal

conversation at 60 dB, to a construction site at 110 dB, to the threshold of pain at

approximately 125 dB (Rossing, 1990).

The power of a sound remains constant, radiating outward from the sound source

as an expanding sphere of energy. The power level remains constant, distributed

evenly over the surface of the sphere. The perceived loudness, then, is dependent

both on the sound' s power level and the distance of the listener from the source.

This value is quantified as intensity (1), measured in Watts per square meter
(W/m 2 ). Intensity is also rneasured in decibels, with 10 equal to 1(}-12 W/m!:

(AI-4)

•

The perception of loudness, however, is a complex phenomenon. determined by a

number of factors other than an objective measurement of intensity. Sorne

researchers have tried to create measurement scales that reflect perceived volume.

The phon is a subjective measurement that uses a pure tone at 1000Hz as a

reference. At 1 kHz. the phon level matches the dB level. Sounds that are

perceived as marching this loudness are considered to be at the same phon level.

Fletcher and Munson in the 1930s studied the ear's sensitivity to volume at

different frequencies. They used a phon scale to determine the different sound

pressure levels of different frequencies that create the same perceived volume.

They created a set of equal loudness curves that are recognized by the

International Standards Organization that illustrate the changes in pressure level

necessary to maintain a constant phon level at a given frequency (Figure Al_9).
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• Sound pressure level
Loudness level (phons)

Newtons/ml
(dB)

120 2x 10

110 2

80 2 X 10-1

60 2 X 10-2

40 2 X 10-3

20 2x l()-l

0 2x 10-5

20 100 500 1.000 5.000 10.000
Frequency (Hz)

Figure A1Y: Equalloudness cUl'lles
(From: The Science of Musical Sound by John R. Pierce

© 1983 by w'N. Freeman and Company. Used wilh permission.)

The phon measurement reflects only the perception of extended steady-state tones.

Equal loudness measurements need to be modified to account for the transients of

sound levels changes over lime, which occur in natural sounds. To account for

transients, which typically contain a greater degree of higher frequencies than the

steady state ponion of a sound, a bias is given to the measurements to give greater

weight to the higher frequencies in the finalloudness determination (B.C.J.

Moore, 1989).

•

As is funher reponed by Brian C.I. Moore (1989), the sone was a measurement

proposed by S.S. Stevens in 1957. At pure tone at 1000Hz at 40 dB is assigned a

level of one sone. Stevens found that atone at 50 dB was generally perceived as

being twice as loud, and assigned an increase of 10 dB to he an increase of one

sone. Within the critical band of frequencies discussed above, Stevens found that

loudness was proportional to the cube root of the intensity. Thus, if one

instrumentalist plays a certain pitch, and is then joined by a second instrumentalist

who plays the same pitch, the intensity will he doubled but the perceived loudness
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will not. Eight players would be required for a doubling of volume (Moore,

1990).

Further studies (B .C.J. Moore, (989) have attempted to quantify loudness

perception by breaking a complex sound into frequency bands (usually one-third

octave), assigning the loudness of each band according to the power law described

above, and then summing the loudness of each power band to determine the total

loudness of the sound. However, the bandwidth of a sound also adds to the

perceived volume level. Noises at a fixed intensity but variable bandwidth

increase in perceived loudness once the bandwidth exceeds 175 Hz or so (B.C.J.

Moore, 1989).

Definitive loudness scaling remains elusive. Numerous tests have produced

varied results, depending on factors such as the range of stimuli, first stimulus

presented, instructions given to the subject, etc. It cannot be said with any

certainty that any perceptual scale measures loudness more effectively than does a

measurement of intensity. It has also been argued that the perception of loudness

in everyday life is due to a number of higher-Ievel processes that estimate the

distance, context and import of a sound event. B.C.J. Moore (1989) cites the

summation of Helmholtz ( 1885):

... we are exceedingly weil lrained in finding out by our sensations the objective
nature of the objects around us, but we are completely unskilled in observing these
sensations per se; and the practice of associating them with things outside of us
actually prevents us from being distinctly conscious of the pure sensations.

Localization

The ability to localize auditory objects is based on nurnerous cues, some physical,

sorne learned. There are three primary physical eues: interauraltime difference

(lTD), interaural intensity difference (IID) and spectral difference.

Interaural time difference is due to an off-center sound object' s wave front

reaching the nearer ear before it reaches the fanher ear. This is the most powerful

localization cue. It is also called the precedence effect or the Haas effect in sound

reproduction contexts. With an identical sound stimulus emanating from multiple

loudspeakers, aIl of which are at different distances from the Iistener, listeners will

tend to localize the sound al the nearest loudspeaker, which produces the wave
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front that reaches the ear first. In localization tests involving pure tones, ITD is

the strongest perceptual cue for frequencies under 1500 Hz.

Frequencies above 1500 Hz have a wavelength under 21 cm, the average diameter

of the human head. These higher frequencies tend to reflect off of the head,

resulting an acoustic shadow in the region of the farther ear. Therefore, the

strongest localization eue for these higher frequencies is no.

The perception of elevation is due to reflections of the wave front off of the

shoulders, as weil as filtering carried out by the pinnae. This filtering provides the

spectral cues that give information about elevation.

In describing the perceptual system's treatment of location, Blauert (1997)

quantifies its tendencies with the term "localization blur," which is a measure in

degrees of the average margin of error present in a given region. In the sanitized

conditions of a laboratory, where stimuli are tightly controlled and limited to pure

tones, clicks, noise and speech samples, the minimum localization blur in any

direction has an average near 10
• In this regard, the auditory perceptual system

demonstrates less resolution than does the visual system, with which changes in

position have been perceived at less than one minute of an arc.

Perception of direction is most sensitive in a forward, horizontal direction (also

known as the lateral field), with 0° being the direction in which the Iistener' s nose

points. Localization blue increases as sound sources move away from this area.

At ±90°, localization blur is three to ten times as great as at 0°. Sideways

localization accuracy decreases due to the cone ofconfusion, which refers to the

fact objects toward the front by a given number of degrees are difficult to

differentiate from objects that are rearward by the same degree factor. Imaging

re-consolidates towards the rear, where the localization blur of objects directly

behind averages twice that of the forward perception.

Elevation perception is less certain. Elevation tests involving continuous speech

of an unfamiliar voice have shown a localization blur of 17°, a blur of 90 when the

speech is that of a familiar voice, and 4° for wideband noise. With the stimulus of

narrowband noise, there is virtually no perceptibility in elevation; instead, the
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perception of height becomes associated with the pitch of the sound. The higher

the pitch, the higher in height the sound's location is perceived.

Audio engineers simulate localization via loudspeakers by creating phantom

images. A sound source from two equidistant loudspeakers will be localized in

space, directly between them. Changing the intensity of one speaker will "pull"

the phantom image toward the louder source; placing a delay on one speaker will

upull" the phantom image towards the loudspeaker that produces the first wave

front to reach the listener. In comparing the effects of ITD and 110, it has been

found that a difference of approximately 18 dB in amplitude (9 dB in intensity) is

necessary to overcome the precedence effect. While ITD is by far the stronger

cue, its effectiveness is dependent on the Iistener being in a central "sweet spot,"

equidistant from each speaker. The effectiveness of intensity panning, on the

other hand, can be appreciated within a much wider 1istening area. It is only the

rare audiophile who sits stationary in a central Iistening position when listening to

music at home. For this reason intensity panning, rather than delay panning, is

employed in the vast majority of commercial recordings.

More specific localization images can be obtained by simulating the filtering done

by the pinnae. Attempting to create such effects is problematic for two reasons.

One is that each individual's pinnae produce a different filtering operation.

Researchers have had sorne success through the use of head related transfer

functions (HRTFs), which are a general model of a typical ear's response. Effects

through HRTFs are very dependent on Iistener location, however, and are usually

only effective is played over headphones, or with close Jistening environments

such as personal computer speakers.

Phase

Phase concems the time relationship of two sinusoidal waveforms that do not

have simultaneous zero-crossings. Figure AI_IO shows (WO sinusoidal waves of

the same amplitude and frequency, but of different phases, and the resultant

combination wave.
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Figure Al_JO: Sum ofIWo sine waves with the same frequency and different phases

Curiously, the phase relationship of sound waves is at times critical and at other

times not perceivable at ail. Analysis of timbres considers the volume changes

over time (the envelope) of a sound's overtones. The envelope is often broken

into two coarse segments: the attack portion and the steady state portion. Timbrai

research has shown that the attack portion of atone is its defining characteristic.

The overtone content of a synthesized instrument has far less to do with its

perceived simulation of an acoustic instrument than does the envelope shape

(Chowning, 1974). The phases of the partials can be critical in defining the attack

of a sound. Audio engineers frequently need to employ phase-correcting filters to

avoid blurring due to amplification systems in which the phase relationship of the

partials has been altered. In a concert setting, the sound of a solo performer is

very different from the sound of multiple performers, even playing the same

material on the same instruments. No two human beings will ever be in perfeet

synehronization, so there will be a less distinct attaek on ensemble playing than

there will be on solo playing.

On the other hand, the ear is completely insensitive to phase in steady-state tones,

a diseovery that dates back to Helmholtz (1885). This phenomenon is in sorne

ways counter-intuitive, as the sum wave of many harmonies can have a drastically

different shape, depending on the phases of the harmonies. Yet, the sound of a

steady-state complex tone with uniform phases will be indistinguishable from a

tone containing the same set of hannonies with different phase relationships to

eaeh other. This auditory insensitivity is likely an evolutionary development. The

reason for it becomes clear with the example of solo versus ensemble

perfonnance. If, during the performance of a duet, one player should take a step

toward or away from the listener, the phase relationship of the two instruments
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will be changed. If such phase changes produced drastic changes in sound

quality, the sound would he altered by any movement the performers make,

resulting in auditory disarray. The absence of significant qualitative changes in

sound due to phase is a vital element in our ability to make sense of our

environment through sound.
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Appendix2

Fundamentals of Nonlinear Dynamics

Iterative Functions, Asymptotic Sta"tes and Chaos

A linear equation is one that has only one variable, to the power of 1. The generic

linear equation is y =mx + b. Plotted on a Cartesian plane, this equation will

produce a straight line, with a slope of m that intersects the y-axis at value b.

Examples of linear equations include Ohm's law, V = IR, in which electrical

voltage (V) increases proportionally to increases in current (1) provided the

resistance (R) remains constant. Another example is the equation Distance =
RatexTime, in which the distance traveled is a simple function of time, provided

the rate remains constant. Linear systems are "weil behaved," in that the output of

such a system is proportional to the sum of ilS inputs, and the entire system can be

understood by looking at each component separately (Goldberger, 1996).

Biological systems, however, are usually not so easily described. They are often

described by equations with more than one variable or equations with one or more

variables at higher powers than 1. Such equations, when graphed. do not produce

a straight line, and are thus termed nonlinear. Nonlinear systems are not as easily

decomposed as linear systems. Minute changes in input elements can produce

large-scale changes in the output, and the interactions of the elements role out

explanation by simple examination of each element separately. In cardiology, as

was noted in the Introduction, it is thought that fluctuations in the heart rate are

due to nonlinear interactions among the sinus node and the sympathetic and

parasympathetic nervous systems.

While biological systems are in a continuaI state of change, they must be

measured at discrete time increments, notated t to mean Uat time t.n The condition

of the system at the present time is dependent on its condition in the past, just as

the present condition determines future states of the system. Discrete

measurements of deterministic systems are described by iterative equations. An

iterative equation is one that takes the form: x,. 1 = f(x r), which states that the

condition of the system al time t + 1 is dependent on the state of the system at

time t .
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systems: X'.l = Rx,O - x,). This equation is useful for modeling dynamics such as

population levels in an environment with a finite amount of space and a Iimited

food supply. For values of R greater than 1, the output will grow steadily when x,

is small, and diminish as x, approaches a value of 1 (that is, 100% of the

population capacity in a given environment). The output of such equations, like

audio signais, often begins with a short, highly active state (the transient), before

a stable state or cycle is emerges that does not change significantly even as the

number of iterations approaches infinity (the steady, or asymptotic state).

The asymptotic state is determined by the initial value, XO' and the value of the

scalar R. Choosing both of these values and plotting a number of iterations shows

that the asymptotic state of the logistic equation can take a number of forms. At

low values of R, afixed poinr will emerge. The approach to the fixed point may

he monotonie (a steady approach) or alternating (altemating above and below the

fixed point value). Figure A2_1 illustrates both approaches with an initial value

of 0.25. and scalar values of 1.5 and 2.9.

10050

0'7~tlW' •
0.5

0.25

o ----......-----....,
100 050

O'7~b0.5
0.25 -,--------

o --_-----...
o

X'+l =1.5 (1 • .r,jr,
Irom (Kaplan and Glass, 1995)

.r'+l =2.9 (1 • x,)r,

As R increases, different types of asymptotic behavior result. One type of

behavior is a periodic cycle. Figure A2_2 shows a cycle of 2 that emerges when

R = 3.3.
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FigureA2_2: x,., =3.3 (I-x,)z,
from (Kaplan and Glass~ 1995)

A fixed point may he globalLy stable if ail initial conditions iterate to it, LocaUy

stabLe if initial conditions near the fixed point will iterate to il, or unstable if only

a precise initial condition will iterate to that fixed point. In the same way, cycles

may be globally stable, locally stable if initial conditions near points on the cycle

will iterate to that cycle, or unstable if only a very precise set of initial conditions

lead to then. The set of initial conditions that lead to a panicular fixed point of

cycle is called the basin ofattraction for the fixed point or cycle.

A different type of asymptotic condition occurs for a scalar value of 4. The

condition is called chaos, or detenninistic chaos, to differentiate the condition

From the colloquial definition of random, catastrophic disorder (Goldberger,

1996).
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0 0
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0 0 0 0 00 0 o 0 00

0 0
0 0 0 00 0 0
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0 0 0 0 0

•
FigureA2_3: z,.,=4(l-z,)x,
from (Kapllln and GllIss, 1995)
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Detenninistic chaos displays four characteristics:

• Aperiodic - the system never repeats itself. (Although in practice, long

cycles may be difficult to distinguish from aperiodicity.)

• Bounded - the system will remain in a finite range, and not approach

infinity. The logistic difference equation will always produce values

between 0 and 1 for initial conditions within that range.

• Deterministic - each value is entirely dependent on previous value, with

no random elements. For any Xr there is only one value of X,. l' and ail

future points can he detennined given X O• In practice. it can he difficult to

determine whether a natural system. in which the initial value is not

known, is completely deterministic or contains random elements.

• Sensitive dependence on initial conditions - the iterated points will depend

on the value of XI}" Given two initial conditions, even two values very

close to each other. their iterations will soon diverge and iterate to very

different sets of values.

As the value of R changes in the logistic difference equation, the asymptotic state

may be fixed points, cycles of varying lengths, or chaos. These changes in

asymptotic behavior as a result of a change of one parameter are called

bifurcations. Starting with values of R between 1 and 3, logistic difference

equation's asymptotic behavior goes through a series of cycles, the period of

which double as the value of R increases. This type of behavior is called a period­

doubling bifurcation. When R is increased to the range above 3.57. the

asymptotic behavior takes on a variety of periodic and aperiodic behaviors. A

bifurcation diagram is often employed to illustrate the changes of asymptotic

behavior as a function of R.
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Figure A2_4: Bifurcation dÙJgram for the logistie difference equation.
From (Kapllln and Gms, 1995). Re-printed with permission 01Springer-VerlIIg New York, Inc.

Fractals

This branch of nonlinear dynamics is an exploration of self-similarity over

multiple scales. Magnifications of a fractal object reveal that it is composed of

smaller versions of its whole. The creation of two self-similar images is shown
below.

Koch Snowj1llke Serpinski Gasket

•
Figure A2_5: Creation oflWo sel.fsimilllrfigures

From (Kaplan and Gms, 1995). Re-printed with permission ofSpringer.Verlag New York, Ine.

In the two figures above, successive iterations create smaller versions of the

original drawing on successively smaller scales. To describe the structure of such

objects, mathematician Benoit Mandelbrot created a variant of the term
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• "dimension." (Mandelbrot, 1983; Kaplan and Glass, 1995). For fractal images

such as these, the dimension D is characterized by the number of self-similar

copies present N and the edge length of the original image relative to the edge

length of each successive copy, E, according to the formula

The resulting dimension for objects represented on a fiat surface, such as the Koch

Snowflake of the Serpinski Gasket, will be a number between 1 and 2. Since the

dimension is a fractional number, Mandelbrot coined the termfraclal to apply to

such objects.

These images. in which each iteration produces an identical version of the same

image, are an example of geomelric self-similarity. Musically, this kind of

relationship might be illustrated by equivalent intervals over different time scales,

as illustrated below. This type of hierarchical self-similarity has been observed in

Balinese Gamelan music (Chou, 1971).
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Figure A2_6: "Self-similll,." music

•

These images, however, are a simplified introduction to Mandelbrot' s attempts to

characterize many of the apparently irregular forms present in the natural world.

Classic geometry is concerned with "perfect" forrns such as the sphere or the

cube. These forrns, however, do not exist in nature. Mountains are not cones and

trees are not cylinders. Mountains, however, often contain smaller outcroppings

that resemble the shape of the larger mountain. Coastlines often have inlets or

bays, which themselves contain smaller inlets or bays. Self-similar branching

structures can often be found in trees, the vascular system, the bronchi of the
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lungs, or the system of deltas that branch from a river as it approaches an ocean or

sea. These structures, which contain apparent, rather than exact, copies, are

examples of statistical self-similarity.

As described by Gleick (1987), Mandelbrot' s exploration of self-similarity arose

from his work at the IBM research center in Tarrytown, NY. Researchers were

encountering problems in transfening data among the computers, which were

connected by telephone lines. Data f10w was interrupted by intennittent noise

bursts, which appeared to occur randomly. Mandelbrot found that the electrical

noise that appeared unpredictably was consistent over different lime scales. The

ratio of silence to noise averaged to the same value over scales of a minute. hour,

day, etc. As the theory of self-similarity beeame popularized, statistical self­

similarity was subsequently found to exist in floodings of the Nile river, rainfall in

Amazon rainforests, traffie flow at intersections, and Many other phenomena

(Mandelbrot, 1983). An intuitive sense of statistical self-similarity can be

observed in objects such as coastlines, Mountains or clouds, whose apparent

degree of roughness does not change with magnification. While such objects May

not always appear geometrically self-similar, they May display statistical self­

similarity and their fractal dimension, notated D, ean be estimated by the ""box

counting" method (Kaplan and Glass. 1995). This is a variation on the fractal

dimension equation shown above:

1. Caver ail points in the object with boxes with edge-Iength E o. Count the

number of boxes, and cali the result N( E o.).

2. Repeat step 1, each time halving the edge Jength of the box, so that

Et=E ol2

El= Et/2

E 3= E 012, and so on.

The appropriate number of repetitions will depend on the abject.

3. The fractal dimension can be estimated as

N(E;+I)
log N(e,)

DE E

loge ;:t
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When this formula is applied to a familiar geometric shape such as a square or a

cube, it will give the familiar Euclidean dimensional values of 2 and 3,

respectively. When applied to a self-similar figure, the fractional value that

results provides a quantitative means of describing an object in terms of its degree

of self-similarity.

Scaled Noise

Statistical scale invariance over time is the basis of noise. Generalized from the

common definition of "unpleasant sound," scientists use the term to refer to data

values with varying degrees of randomness and correlation. The most extreme

fonn of noise is a complete absence of correlation, each value being completely

random and unrelated to those that preceded it. A Fourier transfonn performed on

a series of uncorrelated numbers will produce a spectrum in which each frequency

has an equal probability of occurring. If a continuous signal is windowed and a

Fourier transfonn is perfonned on each window, the result will be an averaged

spectrum in which ail frequencies are present at equal magnitudes. This type of

signal referred to as white noise, in an analogy to white Iight, which contains ail

frequencies of the visible spectrum in equal proportion.

White noise is one class of what Mandelbrot tenned scaled noise, a special class

of sounds that, when played on a variable speed tape recorder, do not change in

character as the speed of playback changed (Gardner, 1978). Scaled noises are

also referred to as Ilfanoises, referring to a spectral plot, with power on the

vertical axis as a function of frequency on the horizontal axis. The value of the

exponent a. defines the nature of the noise. For white noise, the magnitude of

each frequency will be at maximum, l, so it may be described as lIi l noise.

A second important class of scaled noise has an exponent of l, J/fnoise. Ilfnoise

is often used interchangeably with the word "fractal," due to an interesting feature

of the function f(x) = l/x. Examining the positive range of this function, the

integral f l/x dx will produce the same result for exponentially equivalent ranges of

dx, as shown below:
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ab"·1 dxJ-= Inxdx n = 0, 1,2 ...
bIt X

cl =In(ab Il + 1) _ In(ab ")

= (n + 1)In(ab) - n In(ab)

=(n + 1 - n)ln(ab)

= In(ab)

As an example, if we let a equal 55 and b equal 2, then incrementing n will

produce ranges of 55-110, 110-220, 220·440, 440-880, 880-1760, etc. The value

of the integral, Inx dx, in aIl cases will he 0.6931472. Regardless of the values we

choose for a and b, the value of the integral will be scale invariant in that there

will always be the same area under exponentially related segments of the curve.

Gardner (1978) presents an algorithm for creating a number series that contains a

1/fdistribution. Sorne number n of random number generators, perhaps dice. is

used. Each die is associated with a bit in a binary number, which is considered to

increment from 0 to 2". An initial roll of aIl the dice sets an initial sumo The

binary number is then incremented. Each time a bit changes from 1 to 0 or from 0

to l, a new value on its associated die is generated. At each increment, the

appropriate dice are rolled, and the sum of ail the dice is taken. Thus, sorne

numbers will change more rapidly than others will. The die associated with the 1

bit will change with every increment, the die associated with the 2 bit will change

every two increments, the die associated with the 4 bit will change every four

iterations, and so on. Numbers produced in this fashion ""have a memory," due ta

the less frequent changes of the random generators representing the larger bits.

If the numbers generated represent audio samples, the resulting signal will contain

a spectrum that follows the curve I/f. The values for a, band n above represent

successive octaves starting on the pitch class A. The power is constant over every

octave. Since the spectrum contains higher magnitudes in the lower frequency

ranges, this type of noise known as pink noise. The name is derived from another

analogy to visible Iight, in which the lower frequencies are at the red end of the

spectrum.

The third important scaled noise is Brown noise, named not in an analogy to light,

but after Roben Brown, who observed the erratic motion of pollen grains in a
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glass of water. His observations led to conclusive proof of molecular diffusion

when Einstein proved that the movements were the result of pollen grains

interacting with the water molecules.

This Brownian motion is often modeled with the udrunken walk,n or random walk,

analogy. We imagine an inebriate's impaired sense of equilibrium resuhs in a

series of steps, each of which goes in a random direction. The distance traveled

will be proportional to the square root of the number of steps taken. Gardner

(1978) also presents an algorithm to generate a "Brownian" series of numbers.

Starting from an initial value, a random number in the range ±1 is added to the

total with each iteration. The spectrum of this Brown noise is IIr.
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Appendix3

The Poisson Distribution

The Poisson Distribution describes uncorrelated events that happen one at a time

over a continuous time or space. If the average number of events to occur within

a given timespan is known, the Poisson distribution attaches a quantitative value

to the probability that an event will occur at a given instant, or how many events

are Iikely to occur within a subset of that timespan. With low means, the

distribution resembles an exponential curve; as the mean increases, the probability

curve resembles a bell curve that is centered about the mean. A detailed overview

of the history and applications of the Poisson Distribution is contained in (Haight,

1967).

Simeon Denis Poisson (1781-1840), a prominent mathematician and physicist

who held many positions in the French academic and scientific community,

derived the Poisson distribution in 1837. Late in his life he concentrated on

probability theory in sociology, specifically in the administration of justice. His

introduction of the distribution was to quantify how often juries were Iikely to

come up with correct verdicts. As probability distributions became linked with

statistics in the nineteenth century, the formula was generalized to describe many

types of discrete events. The earliest application described how often death

occurred by horse kicking in the Prussian army. It is now used in a variety of

descriptions in sociology, industry and science. Many of the phenomena it

describes are similar to those described by Mandelbrot, such as traffic activity

over a period of time or over a stretch of road. Other implementations include

ecological models to determine distribution of animais within an area of terrain,

scientific models to determine events such as how likely an unstable atomic

nucleus is to emit energy, and in industry for problems such as how busy

telephone switchboards are Iikely to be at a given time, how many defective items

are likely to be found in a given shipment, or what the demand is likely to be for

retai! goods. It is also a facet of risk theory, used by insurance companies to

determine the numbers of deaths due to transportation and other accidents.

The shape of the distribution is determined by the mean of the series, notated Â..

With the mean given, the possibility of generating the integer j is given by the

fonnula:
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An algorithm to generate numbers according to the Poisson Distribution is given

in (Dodge and Jerse, 1995), shown in the following program:

#define X some-positive_integer;
#define mean some-positive_integer;
int main (void)
(
float reference;
int i, poissonNumberi
int poissonArray[X];
int poisson(void);

reference = exp(mean);
for (i=O; i<X; i++) (

poissonNumber = poisson();
poissonArray[i] = poissonNumber;
}

return 0;
}

int poisson (void) {
int n=O; r=l; lessThan=Oi
while (lessThan == 0) (

r .... = rand{);
if (r < reference)

{ lessThan = 1;
return n

else
( n += 1
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Appendix4

Csound Code for Encoding Instrument Orchestra File
._-----------------------,

sr = 44100
kr = 441

ksmps = 100
nchnls = 4

i------------------------

instr 1

idur = p3
ihrv = p3 lF 100
iamp = ampdb(ihrv)

ipitch = (1/ihrv) lF 440
ivol = iamplF 3000

kone = ihrv*.7854
ktwo = 0

kenv linen ivol, idurlF.Ol, idur, idurlF .15

if (p3 < .008) goto wave2
if «p3 >= .008) && (p3 < .0095) goto wave3
if «p3 >= .0095) && (p3 < .011) goto wave1
if (p3 >= .011> goto wave4

wave2:
aS oscili kenv, ipitch, 2

goto contin

wave3:
aS oscili kenv, ipitch, 3

goto contin

wave1:
aS oscili kenv, ipitch, 1

goto contin

wave4:
aS oscili kenv, ipitch, 4

goto contin

contin:
kea = cos(kone)
ksa = sin (kone)
kcb = cos(ktwo)
ksb = sin(kewo)

ax = aSlFkcalFkcb
ay = aS"ksalFkcb
az = aS"ksb
aw = aS". 707

outq ax, ay, az, aw

endin
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• instr 2
;------------------------

idur = p3
ihrv = p3*50

ipitch = (1/(ihrv»*440
iamp ampdb (ihrv)

ivol iamp*3000

kone ihrv*2.3562
ktwo = 0

kenv linen ivol, idur*.Ol, idur, idur*.15

if (p3 < .017) goto wave2
if «p3 >= .017) && (p3 < .019») goto wave3
if {(p3 >= .019) && (p3 < .022») goto wavel
if (p3 >= .022) goto wave4

wave2:
aS oscili kenv, ipitch, 2

goto contin

wave3:
aS oscili kenv, ipitch, 3

goto contin

wavel:
aS oscili kenv, ipitch, 1

goto contin

wave4:
aS oscili kenv, ipitch, 4

goto contin

contin:
kca
ksa
kcb
ksb=

cos (kone)
sin(kone)
cos (ktwo)
sinCktwo)

•

ax aS*kca*kcb
ay aS*ksa*kcb
az aS*ksb
aw = aS*.707

outq ax,ay,az,aw

endin
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• instr 3
;------------------------

idur =p3
ihrv = p3-2S

ipitch = (1/ihrv)-440
iamp = ampdb (ihrv)
ivol = iamp-3000

kone = ihrv-3.927
ktwo =a

kenv Iinen ivol, idur*.Ol, idur, idur*.lS

•

if (p3 < .037) goto wave2
if «p3 >= .037) && (p3 < .042» goto wave3
if «p3 >= .042) && (p3 < .046» goto wavel
if (p3 >= .046) goto wave4

wave2:
aS oscili kenv, ipitch, 2

goto contin

wave3:
aS oscili kenv, ipitch, 3

goto contin

wavel:
aS oscili kenv, ipitch, l

goto contin

wave4:
aS oscili kenv, ipitch, 4

goto contin

contin:
kca = cos (kone)
ksa = sin (kone)
kcb cos (kewo)
ksb = sin(kewo)

ax = aS"kca"kcb
ay =aS-ksa"kcb
az = aS"ksb
aw = aS"'.707

outq ax,ay,az,aw

andin
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instr 4

i------------------------
idur =p3
ihrv = p3*12.5

ipitch = (1/ihrv)*440
iamp ampdb (ihrv)
ivol = ian'P*3000

kone
ktwo

ihrv*5.4978
= 0

kenv linen ivol, idur*.Ol, idur, idur*.15

•

if (p3 < .07) goto wave2
if «p3 >= .07) && (p3 < .0811 goto wave3
if «p3 >= .08) && Cp3 < .09)) goto wavel
if Cp3 >= .09) goto wave4

wave2:
aS oscili kenv, ipitch, 2

goto contin

wave3:
aS oscili kenv, ipitch, 3

goto contin

wavel:
aS oscili kenv, ipitch, 1

goto contin

wave4:
aS oscili kenv, ipitch, 4

goto contin

contin:
kca = cos(konel
ksa = sin(konel
kcb = cos (ktwo)
ksb = sin(ktwo)

ax aS*kca*kcb
ay =as*ksa*kcb
az = as*ksb
aw = aS*.707

outq ax,ay,az,aw

enclin
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AppendixS

SuperCoUider Code for Sonitication Models

1. CVAA Sonitication Model

NN INTERVALS, NNSO INTERVALS, WAVELET CONVOLUTION VALUES, HILBERT TRANSFORM VALUES.
MEDIAN FILTERED VALUES, RUNNING WINDOW WITH CURRENT NN POINT IN THE MIDDLE AND THE
MEDIAN VALUE OF THE WINDOW

l
Il GLOBALS
var eimedelta;
var glasscable, metaltable, saweable. f34S6cable, fplushi, squarecable;

1 1 NN INTERVAL RELATED STUFF
var nnlist, nnpicches;
var nnvol;
var nndisplay;
var nn_medVol;

Il NNSO STUFF
var nnSavol;

/ / WAVELE'l' CONVOLUTION STUFF
var wavelisc. wavepitches:
var waveVol;

/1 HILBERT TRANSFORMEO STUFF
var hilblist. hilbpitches;
var hilbvol;

/ / MEDIAN FILTERED HILBERT TRANSFORM RELATED STaFF
var base;
var chreshl. chresh2, chresh3, thresh4, chreshS;
var medianlisc. medianthreshold, medarraylength. medamps, backcrack, currentPoints;
var medianvcl;
var t. imbrevc1;
var mediandisplay;
var medianracics;

// STUFF FOR THE MEDIAN PITCH
var medpiccharraylength;
var medpicch:
var midlength;
var iMax;
var medWinVc 1;

/1 CLOCK
cimedelta ~ 0.016;

/1 WAVETABLE DEFINITIONS
glasscable=Wavecable.sineFilllS12. [1. O. O. 0.2. O. O. O. O. 0.1. 0, a. 0.1. O. O. 0.1. O. O.
O. O. O. 0.1));
mecaltable = Wavecable.sineFilllS12. [1.0.75. 0.5. 0.25. 0.1. 1. 0.75. 0.5. 0.25. 0.111;
saweable ~ Wavetable.sineFilll512. 1/[1. 2. 3. 4. 5. 6. 7));
f3456cable ~ Wavetable.sineFillC512. [1. O. 1. 1. 1. 1));
fplushi = Wavetable.sineFillC512. [0.3. O. O. O. 0.1. 0.1. 0.1. 0.1. 0.1. 0.1));
squareeable = Wavecable.sineFillCS12. [1. O. 0.3. O. 0.2. O. 0.143. O. 0.111));

1 1 DEFINE NN INTERVAL VARIABLES
nnlist. ~ t.hisProcess.incerpreter.execueeFileC-:wavelets:slp66_nnlise-);
nnpitches=Array.fillCnnlist..size. 0);
nnlist..doC( arg it.em. i; nnpitches.pueli. 12S·C2· e Cl/icemll) l);

Il CEFINE WAVELET CONVOLUTION VARIABLES
wavelist. = thisProcess.interpreter.execut.eFilel-:wavelecs:slp66_wavelisc-);
wavepicches=Array.filllwavelisc.size. 0);
wavelist.dol( arg icem. i; wavepicches.pucli. S12·12··icemll lI;

/ / DEFINE HILBERT TRANSFORM VARIABLES
hilblist = chisProcess.incerpreter.execuceFilel-:wavelecs:slp66_hilblisc-);
hilbpicches=Array.filllhilblisc.size. C);
hilblist.dol( arg item. i; hilbpitches.putli. S12 e C2· e itemll lI;

1 1 C~INE MEDIAN FILTER VARIABLES
medianlis~ = ~hisProcess.in~erpreter.execuceFile(-:wavelets:slp66_medlisC-I;

medianthreshold=0.6244;
medarrayleng~h=32;

thresh~=O.3S;

thresh2=O.S;
thresh3=a. 6;
thresh4=medianthreshold;
thresh5=1-Cll-medianchreshold)·O.5);
:,ase=128;
medamps=Array.Eilllmedarraylength, ( arg item; O.1-lCitem/medarraylen9~hlflOI l);

157



•

•

eurrentPoints=Array.fillCmedarraylength. a);
medianracios=Array.fill(medianlist.size, 0);
medianlist.do« arg item. i; medianratios.pucCi. 512-C2--Citem)) ) 1);

backtrack = ( arg index, sourcelist. destlisc, multiple;
medarraylength.do« arg icem; destlist.put(item, multiple-C2--sourcelist.atlindex­

item))); 1)
1;

Il MEDIAN PUCH VALUE STOFF
medpiteharraylength=32;
midlength=Cmedpitcharraylength-0.51.aslnt;
iMax=nnlist.size-midlength:
medpitch= e arg index;

var temparray. sortedlist, medianPoint. otherMedianPoint. theMedian. thePitch;
temparray=Array.filllmedpitcharraylength. a):
medpitcharraylength.dol

( arg i: temparray.putCi. nnlisc.atICindex+il-lmidlengthJ») Il:
sortedlist=temparray.sort:
medianpoint=sortedlist.at«(medpitcharraylength)-O.S).asIntl;
otherMedianpoint=sortedlist.acCllmedpiteharraylength)-O.S).aslnt-l);
theMedian=medianPoint-ccmedianPoint-otherMedianPoint)-O.51;
thePitch=128-C2--11/theMedian»;

thePitch;
} ;

Il GUI
w = GUIWindow.newCwpanel-. Rect.newByC 176. 77. 313. 339 Il;

StringView.newl w, Recc.newByc 11, B, 71. 18 l, wNN InC-I;
StringView.newl w. Recc.newByc 86, B. 71. 18 ). -Median filt-l;
nndisplay=NumeriealView.newl w. Reet. newBy 1 13. 29. 64. 20 1. wNumericalView-. 0.908. -

le+10. 1e+10, O. 'linear'l:
mediandisplay=NumericalView.new1 w. Rect.newByc 86, 29. 128. 20 J. -NumericalView·,

0.817987. -le+10. le+l0, O. 'linear'l;
nnvol=SliderView.newC w. Rect.newByl 13, 62, 128,20 1. wSliderView-. 0.0. O. 0.5, O.

'linear') :
StringView.newC w. Rect.newByC 149. 62. 128. 20 ). wBeat-to-beat-l;
nn_medVol=SliderView.newC w, Rect.newBy( 13. 86. 128. 20 l, ·SliderView-. O. 0, 0.5. O.

'linear') ;
StringView.newC w. Rect.newByC 149. 86. 128. 20 1. ·NN/Median filt·':
nn50vol=SliderView.newC w. Rect.newByl 13, 117. 128. 20 1. ·SliderView·. 0.0, O. 0.5. 0,

'linear') ;
StringView.newl w. Rect.newBy( 149. 117, 128. 20 1. -NNSO-);
wavevol=SliderView.newl w. Rect.newByC 13. 155, 128. 20 1. ·SliderView-. 0.0, O. 0.5. O.

'linear') ;
StringView.newC w. Rect.newByC 149. 155, 128. 20 J. wwavelec-I;
hilbvol=SliderView.newl w. Rect.newByC 13. 183. 128, 20 l. wSliderView-. 0.0. O. 3. 0,

'linear') ;
StringView.newl w. Rect.newByl 149. 183. 128. 20 1. wHilbert W I;
medianvol=SliderView.newC w, Rect.newByC 13. 223. 128. 20 ), wSliderView·. 0.0. O. 3. O.

'linear'] ;
StringView.newl w. Rect.newByC 149. 223. 128. 20 1. wMedian Filtered-I;
timbrevol=SliderView.newC w. Rec~.newBy( 13. 247. 128. 20 l, wSliderView·. 0.0. 0, 0.5. O.

'linear') ;
StrinqView.newC w. Rect.newByl 149, 247. 128. 20 ). -Timbres-);
medWinVol=SliderView.newl w. Rect.newByC 13, 285. 128. 20 1. wsliderView·. O. O. 0.5. O.

'linear' ) :
StrinqView.new( w. Rect.newBy( 149. 285. 140. 20 1. -Median Runninq Window-);

Synth.playC{ arq syntn;
var sineenv, percenv. medarraypercenv;
var ourosc. ourfreq, oscupdate;
var glassosc, metalosc, sawosc. f3456osc. fplushicsc. squareosc. higlass:

sineenV=Env.sineCtimedelta-3);
medarraypercenv=Env.percltimedelta-O.l. timedelta-Z.9, 1. -4l:
percenV=Env.percltimedel~a-O.l.timedelta-4.9. 1. -4);
ourfreq=Pluq.krCbase);

qlassosc=Osc.arlglasstable. ourfreq, O. timbrevol.krJ;
me~alosc=Osc_arCmetaltable.ourfreq. O. timbrevol.krl;
sawosc=Osc.ar(sawtable, Qurfreq. O. ~imbrevol.kr);

f3456osc=Osc.arlf3456table. ourfreq. O. timbrevol.krl:
fplushicsc=Osc.arlfplushi. ourfreq. O. timbrevol.kr);
squareosc=Osc.arlsquare~able,ourfreq-l.S. 0, timbrevol.krl;
hiqlass=Osc.ar(glasstable. ourfreq-2. O. timbrevol.krl:

1 fUSE OOROSe AS THE DRONE, DEPENDING ON THRESHOLDS OF THE MEDIAN F'ILTERED DATA
ourosc=Pluq.arlglassosc. 01;

1/ UPDATE OUROSe EVERY (TIMEOELTA! SECONDS
synth.repeatNIO. timedel~a. medianlist.size-l.

( ars synth. now, COllOt:
var osclist;
osclist=(f3456osc.me~alosc.fplushiosc.qlassosc,squareQsc.hiqlassJ;

if C Imedianlist.atCcount) < threshl).
( ourosc.source=osclist.at(OI; ourfreq=base; 1.
e if C Imedianlist.atCcountl < thresh2 1.

e ourosc.source=osclist.atlll: ourfreq=base-C2--threshll; J,
e if C Cmedianlist.atlcollOt) < threshJ).

( ourosc.source=osclist.atC21: ourfreq=base-C2--thresh2): J,
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ourosc

{ if (medianlisC.ac(countl < chresh4l.
ourosc.source=osclist.ac(3l; ourfreq=base-[2·-chreshJl: l .
if ( (medianlisc.ac(councl < chreshSI.

1 ourosc.source=osclisc.ac(4l: curfreq=base-(2--thresh41: J,
1 ourosc.source=osclisc.ac(SI: ourfreq=base-2; J IJ 1 l IJ Il

•

Il KLANG MAPS THE LAST [MEDARRAYLENGTH} MEDIAN FILTER VALUES TO PITCHES, EACH AT A LO~lER

AMPLITUDE THAN THE LAST
Spawn.ar({ arg spawn. i. synth;

mediandisplay.value = medianlisc.ac(il:

if ( (i > medarraylengthl.
(
backtrack.valueti. medianlist. currentPoints. 2561:
EnvGen.ar(medarraypercenv.

Klang.art • [ currentPoincs. medamps, nil J. 1. a, medianvol.kr 1 )
J,
1 nil JI:
J. l, cimedelta. medianlist.size-11

+
Il NU INTERVALS. WAVELET AND HILBERT TRANSFORMS
Spawn.ar({ arg spawn. i. synth:

nndisplay.value = nnlist.atlil;

Il WAVELET: PHASEMOD PAIR
pan2.ar(

EnvGen.artpercenv. PMosc.artwavepitches.at(il. wavepicches.actiloS. 3. 0, waveVol.krll.
wavelist.actil021

Il HI~BERT: WAVETABLE
EnvGen.artmedarraypercenv, Osc.artsquaretable, hilbpitches.at(il, O. hilbvol.krl)

Il MN INTERVALS l.: WAVETABLE
EnvGen.arlsineenv. Osc.ar(glasstable. nnpitches.atl il. O. nnvol.krll

Il MN INTERVALS • MEDIAN FILTER: PHASE MOD PAIR. C SET BY NNPITCH. M:C RATIO SET BY
MEDIAN

EnvGen.arlsineenv,
PMOsc.arlnnpitches.atlil. medianracios.atlil. 1. O. nn_medVol.krll

l. 2. timedelta. nnpitches.size-ll

Il NNSO VALUES ARE AUDIFIED BY A TINKLING SOUND. PHASE MOD PAIR WITH HIGH M:C
Spawn.arl( arq spawn. i. synth:

var nndiEE. pmvol:
if 1 i > O.

( nndiEE = nnlist.atlil - nnlist.atti-11:
if 1 abslnndifEI > 0.05.

( pmvol=0.2S }. 1 pmvol=O JI;
EnvGen.ar(percenv.

PMOsc.artnnpitches.at(il. nnpitches.atl ilo15. 3. O. pmvolonnSOvol.krll;
} 1 :

L 1. eimedelta. nnlist.size-l

Spawn.arll arg spawn. i. synth;
var oscfreq, oscvol;
if IIi >= midlengthl " t i < iMaxl.

( oscfreq=medpitch.valuelil: oscvol=medWinVol.kr l.
1 oscfreq=O; oscvol=O: ) 1:
EnvGen.arlsineenv.

Osc.arlf34s6table. oscfreq. O. oscvolll
l. 1. timedelta. nnlist.size-1 ,

1.medianlist.sizeOtimedelta+O.51;

w.close
1
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2. General Model
HRV SONIFICATION: GENERAL MODEL

VARIABLE RATE PLAYBACK
NN INTERVALS, NNSO INTERVALS, .
SINE TONE SOONDS WREN MEDIAN VALUE rs OVER THE THRESHOLD
MEAN IS REPRESENTEe BY THE prTCH OF A SQUARE WAVE
STANDARD DEVIATION IS REPRESENTE!) BY VIBRATO RATE AND

• HARMONICS IN A BLIP

1
Il GENERAL GLOBAL VARIABLES
var qlasstable. metaltable, sawtable, fJ456table, fplushi, squaretable. maxLength;
var windowLenq~, halfWindow;
var rateSlider. rateView;

1 1 NN INTERVAL Wl.RIABLES
var nnlist. nnpicches;
var nnvol;
var nndisplay;

Il NNSO VARIABLES
var nn50vol;

1 1 MEAN VARIABLES
var meanList. meanPicches, meanVol. meanSlider. meanView;

Il STANDARD DEVIATION VARIABLES
var sdList, sdWorking, sdVol, sdView, sdosc;

Il SET WINDOW SIZE
windowLp.ngth = 300;
halfWindow = IwindowLength/21 .asInt;

Il SET WAVETABLES
glasseable;:Wavetable.sineFillI512. [l, 0, 0, 0.2, 0, O. O. O. 0.1, 0, 0, 0.1. O. O. O.!.. O. O. 0, O. O. 0.11);
metaltable = Wavetable.sineFilll512, [1.0.75, 0.5, 0.25, 0.1, l, 0.75, 0.5, 0.25. 0.1)1;
sawtable = Wavetable.sineFilllS12, 1/[1, 2, 3, 4, S, 6. 7)1;
f3456table = Wavecable.sineFilllS12, [1. O. 1. l, l, 11l;
fplushi;: Waveeable.sineFil1l512. [0.3,0, 0, O. 0.1. 0.1. 0.1, 0.1. 0.1. O.lJI;
squaretable = Wavetable.sineFillI512. [l, 0, 0.3, O. 0.2. 0, 0.143, 0, O.lllJ);

/ 1 SET NN INTERVAL VARIABLES
nnlist = thisProcess.interpreter.executeFilel":slp37:s1p37_nnol;
nnpitches=Array.filllnnlist.size, 0);
nnlist.dol( arg item, i; nnpitches.putli, 12So12·oI1/iteml)l Il;

Il SET MEAN LIST
meanList = thisProcess.interpreter.executeFilel":slpJ7:s1p37-mean40"l;
meanpitches=Array.filllmeanList.size, 0);
meant.ist.dol( arg item, i; meanPitches.putli, 12S·12··11/iteml)1 Il;

Il SET STANDARD DEVIATION LIST
sdList ;: thisProcess.interpreter.executeFileC":slp37:s1p37_sd40·1;
sdWorking=Array.filllsdList.si:e. al;
sdList.doC( arc] item, i; sdWorking.putCi. item-401 II;

Il FINe THE LONGEST LIST
maxLength=maxlnnlist.si:e, maxlmeanList.si:e, sàList.sizell;

/ / SET GU!
w = GUIWindow.newl~panel-. Rec~.newByC 176, 77, 313. 339 Il;

StringView.new( w. Rect.newByC Il, 8, 71, lS J, "NN Int-l;
nndisplay=NumericalView.newl w, Rect.newByl 13. 29, 64, 20 J. "NumericalView-, 0.90S. -le-la, le-la, O.

'linear') ;
nnval=SliderView.new( w, Rece.newByl 13. 62, 12S, 20 l, "SliderView-. 0.24, O. O.S. 0, 'linear');
S~ringView.new( w, Rect.newByl 149, 62, 12S. 20 1. "Beat-to-beat-);
meanSlider=SliderView.newl w. Rect.newBYI 13, 86, 12S, 20 1. ~SliderView-. 0.0, 0, 0.5, 0, 'linear');

0.035
StringView.new( w, Rec~.newByc 1'9, S6, 12S, 20 1. "Mean-J;
nn50vol=SliderView.newl w. Rec~.newBYI 13, 117. 128. 20 1. "SliderView-. 0.096, O. O.S. O. 'linear');
S~ringView.new( w, Rec~.newBy( 149, 117. 12S, 20 J. -NN50-1;
sdVal=SliderView.new( w, Rect.newByl 13, 165, 128, 20 J, "$liderView-, 0.0, 0, 0.5, 0, 'linear'); Ir a.Olé
Stringview.new( w, Rect.newBYI 149, 165. 128, 20 ), -SO-I;
S~ringView.newC w, Rect.newByl 161, e. 55, la l, "Mean- I ;
meanView=NumericalView.new{ w. Rect.newBy( 160, 28, 5S. 21 1. -NumericalView-. 0.086976. -le-la. le-ra. O.

'linear') ;
S:ringView.new( w, Rect.newBYI 227. 7, 71. 18 J. -Std Dev"l;
sdView:NumericalView.newC w, Rect.newByC 227, 2S, 73. 21 1. -NumericalView", 0.365631. -le-la. le-la. A,

'linear'l;
rateSlider=SliderView.newC w. Rect.newByC 12, 204, 12S. 20 l, ·SliderView-. 60. l, SO, 1, 'linear'l;
rateView=NumericalView.new( w. Rect.newsy( 146. 204. 64, 20 l, -NumericalView-, 60. -le.l0, le.10. O.

'linear'l;
StringView.newC w. Rect.newByl 12, 227. 12S, 20 l, "Beats per Second-);

raeeView.actian = (rateSlider.value rateView.value 1;
rateSlider.aceion = ( rateView.value = rateSlider.value };
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Synth.play({ arg synth;
var percenv;
var meanosc, meanFreq;
var glassosc, metalosc, sawosc. f3456osc, fplushiosc;
var sdLevel, blipvol. medHult, o5cPlay;

Il VOLUME AND FREQUENCY PLUGS FOR MEAN. STANDARD DEVIATION:
meanFreq=Plug.kr(50);
meanVol:Plug.kr{O);
medHult:Plug.kr(O);
sdLevel=Plug.kr(lOO);
blipVol=Plug.kr(O);
Il LEVELFUNC PLUG. USEe IN THE PAUSE.AR Ta SHOT THESE OFF
oscPlay=plug.kr(1);

Il LIBRARY OF WAVETABLES
glassosc=Osc.ar(glasstable, meanFreq. 0, meanVol);
metalosc=Osc.ar(metaltable, meanFreq, 0, meanVol);
sawosc=Osc.arCsawtable, meanFreq. O. meanVolJ;
f3456osc=Osc.arCf3456table, meanFreq, 0, meanVoll;
fplushiosc=Osc.arCfplushi, meanFreq, O. meanVoll;

meanOsc=glassosc;

Il REPEAT FUNCTION FOR MEAN, STANDARD DEVIATION
Il MEAN IS A PITCH, REPRESENTING MEAN OF THE LAST 300 VALUES
Il THE STANDARD DEVIATION 15 HAPPEe Ta A BLIP: TO ITS • OF HARMONICS AND TO ITS
Il VIBRATO RATE
Il CURRENT NN INTERVAL 15 IN THE MIDDLE OF THIS WINDOW
Il 50 THE MEAN PITCH 15 THE CaRRENT caONT • 150
Il THE BLIP 15 ALSO SILENT UNTIL 150 VALUES HAVE BEEN REAC
Il THE MEDIAN 15 AN UNDULATING SET OF SINE OSCILLATORS WHICH SOUND WHEN THE THRESHOLD rs ~~CEEDED

Il WHEN THE MEDIAN OSC saUNDS, THE MEAN AND 50 COME UP IN LEVEL A BIT (IF THEIR LEVEr. ISN'T ZEROI
synth.trepeatNCO. ( 1/CrateSlider,polll ), maxLength-1,

( arg synth, now, count;
var theMeanVol, standDevvol;

theMeanVol=meanSlider.poll;
standDevvo1=sdVo 1 ,poIL;

if ( C count > halfwindow),
( meanFreq.source = meanPitches.cIipAtlcount • halfWindowl;

meanVol.source = theMeanVol;
sdLevel,source=sdWorking.clipAtlcount + halfWindowl;
blipVol.source = standDevvol l,

( meanVol.source = 0;
sdLevel.source=1;
blipVol.source = 0 1 ):

). { oscPlay •source = 0; Synth. stop il;
Pause .ar 1(

Blip.arCmeanFreq, sdLevel-10.aslnt, SinOsc.krlsdLevel, 0, blipVoll1

meanOsc
l, oscPlayl

1 1 NN INTERVAL5
Spawn.arC( arg spawn, i, synth:

var dur, ~~diff, pmvol:

Il SET N~XTTlME AND ENVELOPE BY RATESLIDER POSITION
dur = l/lrateSlider.poll):
spawn.nextTime = dur;
percenv=Env.percldur-O.l, dur-4.9, 1, -4);

/1 DISPLAY VALUES FOR NN INTERVAL, MEDIAN VALUE. STANDARD DEVIATION
nndispIay.vaIue = nnlist.atCi);
sdView.vaIue = sdList.clipAt(i + halfWindowl:
meanView.value = meanList.clipAtli + haIfWindowl:

Il TEST E'OR NNSO
if ri> 0,

( ~~diff = nnlist.atri) - nnIist.atli-1):
if 1 abs(nndiffJ > 0.05,

( pmvol=O.l5 ), { pmvol=O II;
}, ( pmvol=O Il;

/ 1 NN INTERVAL MAPPED TO SINGRAIN FREQUENCY
PSinGrain.ar(r~pitches.atci). dur-l, nnvol.krl

/1 NNSO '/ALUES ARE AUDIFIEe BY A TINKLING SOUND, PHASE MOD PAIR WITH KIGH M:C
EnvGen.arCpercenv,

PMOsc.arCnnpitches.atli). nnpitches.atCi)015. ;. 0, pmvol°nnSOvol.krll;
l. 1, nil. nnpitches.size-li

1 ) ;
w.close

)
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3. Apnea Diagnosis Model
VARIABLE RATE PLAYBACK
NN INTERVALS. NNSO INTERVALS.
SINE TONE SOUNOS WHEN MEDIAN VALUE 15 OVER THE THRESHOLO
MEAN IS REPRESENTED BY THE PITCH OP A SQUARE WAVE
STANPARD DEVIATION' I5 REPRESENTED BY VIBRATO RATE AND

1 aARMON'ICS IN A BLIP

(

1 1 GENERAL GLOBAL VARIABLES
var glass~able. me~altable. sawtable. f34S6~able. fplushi. square~able. twentycable. newtable.
maxLength;
var windowLeng~h. halfWindow;
var rateSlider. ra~~View. rateinit;
var filename;

Il NN' INTERVAL VARIABLES
var nnlist. nnfilename. nnpitches. nninit;
var nnvol;
var nndisplay;

Il NNSO VARIABLES
var nnSOvol. nnSOinit;

Il MEDIAN FILTERED HILBERT TRANSFORM VARIABLES
var medianlist. medianfilename. medianthreshold. medianinit;
var mediandisplay;
var medVol;
var medianOsc;
var medSliàer;

Il var derivativeSlider. derivativeVol. derivaeiveinit;

1,' MEAN VARIABLES
var meanSList. meanSfilename. meanSPitches. meanSVol. meanSSlider. mean5View. mean5init;
il var meanlOList. meanlOfilename. meanlOpitches. meanlOVol. meanlOSlider. meanlOView.
meanlOinit;
var mean15List. mean15filename. meanlSPitches. mean15Vol. meanlS51ider. meanlSView.
mean15 ir'.i t ;
Il var mean20List. mean20filename. mean20pi~ches. mean20Vol. mean20S1ider. mean20View.
mean20ini~:

! 1 STANDARD DEVIATION VARIABLES
var sdLis~. sdfilename. sdWorking. sdVol. sdView. sdosc. sdinit. sdhalfwindow:

!ITI~~ VARIABLES
var ~imefile. ~imefilename. hrdisp. mindisp. secdisp. timeSlider. currentTime. sonS~op:

Il SET SOURCE FILE
filename=-slp04·;

1 1 SET ~lINDOW SIZES
windowLength = 15;
halfWindow = (windowLeng~h/2) .asln~;

sdhalfwindow = 150;

Il SET WAVETABLES
glass~able=Wavetable.sineFill(512. [1. O. O. 0.2. O. O. O. O. 0.1. O. O. 0.1. O. O. 0.1. O. O.
O. O. O. 0.11);
metal~able = Wavetable.sineFillC512. [1.0.75. O.S. 0.25. 0.1. 1. 0.75. 0.5. 0.25. 0.11):
saw~ab1e = Wavetable.sineFillI512. 1/[1. 2. 3. 4. S. 6. 7));
f3456~able = Wavetable.sineFillIS12. [1. O. 1. 1. 1. 1]);
fplushi = Wavetable.sineFillCS12. [0.3. O. O. O. 0.1. 0.1. 0.1. 0.1. 0.1. 0.1]);
squaretable = Wavetable.sineFil1l512. [1. O. 0.3. O. O.Z. O. 0.143. O. 0.111):
twentytable : Wavetable.sineFil1(512. [ 0.447368. 0.25. 0.111. 0.0625. O. O. 0.166. O. O. O.

O. O. O. O. O. O.OS. O.lJ);
newtable = Wavetable.sineFillCS12. [ 0.447368. O. O. O. O. O. O. O. O. O.

O. O. 0.122807. 0.0.0614035. O. 0.11);

Il SET TIME FILE
~imefilename=-:··.filename···:···filename···_time-;

timefile : thisProcess.interpreter.executeFile(~imefilename);

1 1 SET NN' INTERVAL VARIABLES
nnfilename:-:···filename···:···filename···_nn-;
nnlist = thisProcess.interpreter.executeFileCnnfilename);
nnpitches=Array.fillCnnlist.size. 01;
nnlist.dol{ arg item. i; nnpitches.putCi. 12S·IZ··Cl/iteml) II;

1 1 SET MEDIAN FILTER VARIABLES
Ilmedianlist=t[OI;
medianfilename=-:·••filename.··:·.·filename.··_median·;
medianlist = thisProcess.interpreter.executeFilelmedianfilenamel;
medianthreshold=0.5139;

1 1 SET MEAN LIST
meanSfilename=-:· •• filename••·:·••filename•• ·_meanS·;
mean5List = thisProcess.interpreter.executeFileCmeanSfilename);
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meanSPieches=Array. Eill (meanSLise.size, Ol;
meanSLise.doC( arg item. i: meanSpitches.pueli. 128·C2· W CI/Citem.roundCO.21)1 III li:
Il.roundCO.03l

meanlSfilename=-:- ••filename••-:-+.Eilename•• -_meanlS-;
meanlSList = thisProcess.interpreter.executeFileCmeanlSfilename);
meanlSPitches=Array.fillCmeanlSList.size, Ol;
meanlSList.doc{ arg ieem, i; mean15Pitches.putCi, 128·l2··(1/Citem.roundlO.01)l }») Il:
1/ .roundCO.031

Il SET STANDARD DEVIATION LIST
sdfilename=-:-+~Eilename++-:-•• filename.+-_sd-.~300:
sdLise = thisProcess.interpreter.executeFile(sdEilename):
sdWorking=Array.EilllsdList.size, a};
sdList.do({ arg item. i; sdWorking.put(i, item·40l l}:

Il FINe THE LONGEST LIST
maxLength=max(maxlnnlist.size, medianlist.sizel. maxlmeanSList.size. sdList.size});

nninit=O.O: 110.24:
meanSinit=0.2; 110.0;
Ilderivativeinit=O.O: 110.0:
meanlSinit=0.1; 110.0;
Ilmean20init=0.0: 110.0;
nn50init=O.O; 110.096;
medianinit=0.3: 110.89;
sdinit=O.O;
rateinit=30;

Il SET GUI
w ; GUIWindow.new(filename, Rect.newByl176, 77, 312, 4491);

StringView.newl w. Rect.newBy( Il. 8, 71, 18 ), -NN Int-';
StringView.newl w, Rect.newByl 82, 8. 71, 18 J. -Median filt-);
StringView.newl w, Rect.newByl 161, 8. 55. 18 J. -Mean-);
StringView.newl w. Rect.newBy( 227. 7. 71. 18 l. -Std Oev-};
nndisplay=NumericaIView.new( w, Rect.newBy( 13, 29, 64. 20 l, -NumericalView-, 0.908. -

le~lO, le~10, 0, 'linear'}:
mediandisplay=NumericalView.newC w. Rect.newBy( 82. 29. 73. 21 l. -NumericalView-. 0.817987.

-le.lO. le.lO. O. 'linear'l;
nnvol=SliderView.new( w. Rect.newBy( 13. 62. 128. 20 1. -SliderView·. nninit. O. 0.5. O.

'linear') ;
StringView.new( w, Rect.newByl 149. 62. 128. 20 1. -Beat-to-beat-I;
nn50vol=SliderView.new( w. Rect.newByI13. 93, 128. 201. -SliderView-. nn50init. O. v.S. O.

'linear' 1;
StringView.new( w. Rect.newBYl149, 93. 128, 20}, -NNSO" 1 ;
mean5S1ider=SliderView.newc w. Rect.newByl13. 127. 128, 20l. -SliderView-, meanSinit, O.

0.5. O. 'linear'l; /1 0.035
StringView.new( w, Rect.newByl149, 127. 128, 201, -MeanS"):
meanlSSlider=SliderView.newl w, Rect.newByI13. 175, 128. 20l, -SliderView-. mean15init, O.

0.5, O. 'linear'};
StringView.newC w. Rect.newBy(149. 175. 128. 201, -MeanlS-};
sdVol=SliderView.newl w. Rect.newByI13. 232, 128. 20}, -SliderView-. sdinic, 0, 0.5, 0,

'linear'l; /1 0.026
StringView.new( w, Rect.newBy(149, 232. 128, 20). -SO-};
medSlider=SliderView.newC w. Rect.newByl13. 259, 128. 20), -SliderViaw-. medianinit, O. 2.0.

0, 'linear'l;
StringView.new( w. Rect.newBy(149, 259. 128. 201. -Median-);
meanlSView=NumeriealVie~,newlw. Reet.newBy( 160, 28. 58.21 l. -NumericalView-. 0.086976. ­

le-lO, le.10, O. 'linear');
sdView=NumeriealView.newl w. Rect.newByl 227, 28. 73. 21 l. -NumeriealView-. 0.365631. ­

le.lO, le+lO, O. 'linear');
rateSlider=SliderView.new( w. Rect.newByCl2. 300. 128, 201. -SliderView·, rateinit. 1. 120.

L • linear' 1;
rateView=NumericalView.newl w, Rect.newByl146, 300. 64. 20}. -NumericalView-, rateinit. -

le~lO. le+10. O. 'linear');
StringView.new( w. Rect.newBy(12. 323, 128. 201. -Beats per Second-':
StringView.newC w, Reet.newBYI121. 387, 80. 191. -Elapsed time-';
hrdisp=NumericalView.new( w, Rect.newByI203. 386. 31, 21l. -NumericalView·. O. -le+10.

le+10, O. 'linear').
StringView.newC w. Rect.newBYC20l. 412. 27. 161. -Hrs-I:
mindisp=NumericalView.newl w. Rect.newBy(236, 386. 31. 211. -Numerica1View·, O. -le.lO.

le+lO. O. . linear' ) ;
StringView.newl w, Rect.newBy(235. 411. 27. 18l, -Min-l:
secdisp=Numeriea1View.newl w. Rect.newByl269 , 386. 31. 211. -NumericalView-, O. -le~10.

1e.lO. O. 'linear'l:
StringView.newl w. Rect.newBy(268. 411. 26, 18}. -Sec-}:
timeSlider=SliderView.newl w, Rect.newByC75. 360. 224. 181, -SliderView·. O. O. nn1ist.si:e.

1. 'linear' 1:
sonStop=CheckBoxView.newl w. Rect.newBy(13. 362. 55. 151, --, 1. O. 1. O. 'linear');
StringView.new( w. Rect.newBy(12. 381. 59, 16). -Un-check·l;
StringView.new( w. Rect.newBy(12, 398. 70, 16). -to pause-};

rateView.action = ( rateSlider.value = rateView.value f:
rateSlider.acticn = ( rateView.value = rateSlider.value };

Il IF THE CHECIŒOX IS tINCHECKED. THE TIME WINDOWS TRACK THE USER' S SL!OE.~ MOVEMENTS
timeslider.action = [ if ( (sonStop.value;; 0).

{ hrdisp.value = timefile.atCtimeSlider.value.asIntl.atIOl;
mindisp.value timefile.atltimeSlider.value.asInt} .acel};
secdisp.value = timefile.at(cimeslider.value.asInC} .atI2~: l) l;
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Synth.playC{ arg synth;
var percenv.
var meanSOsc, meanSFreq;
livar derivacive;
var meanlSOsc, meanlSFreq;
Ilvar mean200sc. mean20Freq.
var glassosc, metalosc. sawosc, f34S6osc, fplushtosc;
var sdLevel, blipVol, medMult.;

Il VOLUME AND FREQUENCY PLUGS FOR MEAN, STANDARD DEVIATION AND MEDIAN:
meanSFreq:Plug.krCSO);
meanSVol=plug.krCO);
Ilderivative=Plug.krClO) •
IlderivativeVol= Plug .kr (0) ;
meanlSFreq:Plug.krCSO);
mean15Vol=Plug.kr(O);
Ilmean20Freq=Plug.kr(50) ;
Ilmean20Vol=Plug.kr(0);
medVol=Plug.krCO) ;
medMult=Pluq.kr(O).
sdLevel=Pluq.kr(lOO) •
blipVol=Pluq.kr(OI.

Il LIBRARY OF WAVETABLES
glassosc=Osc.arlglasst.able. meanlSFreq. O. mean15Vol);
met.alosc=Osc.arlsquaretable. meanSFreq, O. meanSVol};
Il sawosc=Osc.ar(sawtable, meanFreq. O. meanVol);
Ilf3456osc=Osc.arlnewtable, meanlOFreq. O. meanlOVol);
Il fplushiosc=Osc.ar(twentyt.able, mean20Freq, O. mean20Voll.

meanSOsc=metalosc;
IlmeanlOOsc=f3456osc.
mean150sc=glassosc.
Ilmean200sc=fplusniosc;

medianOsc=Mix.ar(
SinOsc.ar([400. 1100. 600J, O. SinOsc.kr([ O.J. 0.4, 0.25 1.

[ O. Jpi/5. 6pi/lll.
0.05. 0.1) "medVoll

) .
Il REPEAT FONCTION FOR TlME UPDATE,
1/ MEAN. STANOARO DEVIATION AND MEDIAN
Il TIMESLIDER tS POLLED, ITS CURRENT POSITION IS THE CURRENT INDEX FOR ALL LISTS.
1/ MEAN rs A PITCH. REPRESENTING MEAN OF THE toAST 300 VALUES
Il THE STANDARD DEVIATION IS HAPPED Ta A BLIP: TO ITS • OF HARMONICS AND TO ITS VIBRATO RATE
Il CURRENT MN INTERVAL IS IN THE MIDDLE OF THIS WINCOW
Il sa THE MEAN PITCH ts THE CURRENT COONT • 150
Il THE BLIP IS ALSO SILENT ONTIL 150 VALUES HAVE BEEN REAC
Il THE MEDIAN IS AN UNDULATING SET OF SINE OSCILLATORS WHICH SOUND i'lHEN THE THRESHOLD 1S

EXCEEOED
Il WHEN THE MEDIAN OSC SOUNeS. THE MEAN AND SO COME OP IN LEVEL A BIT CIF THEIR LEVEL 1SN'T

ZEROl
syntn.trepeat(O. ( l/CrateSlider.polll >,

( arg synth. now, count;
var tneMeanSVol. t.heDerivativevol. theMeanlSVol.t.heMean20Vol, theMedVol.

standDevvol;
currentTime = timeslider.poll.aslnt;
if 1 (currentTime < (maxLenqth-l)1.
(

t.heMeanSVol=mean5S1ider.poll;
Il theDerivativeVol=derivativeSlider.poll;
theMean15Vol=meanlSSlider.poll;

Il theMean20Vcl=mean20S1ider.poll.
tneMedVol=medSlider.poll;
standDevvol=sdVol.poll;
if l( sonStop.value == ll.

( timeSlider.value = timeSlider.value • l });
if ( ( currentTime > 2).

( mean5Freq.source = meanSPit.ches.clipAt.(currentTime • 2).
meanSVcl.source = theMeanSVol;

}.
( meanSVol.source = 0; i 1:

if ( ( currentTime> 71.
( meanlSFreq.source = meanlSPitches.clipAt(CUrrentTime • 71.

meanlSVol.source = theMeanlSVol.
} ,

( meanlSVol.source = 0; } 1;
if ( ( currentTime > sdhalfwindow).

( sdLevel.source=sdWorking.clipAt{currentTime • sdhal:windowl;
blipVol.source = standOevvol },

{ sdLevel.source=l;
blipVol.source = 0 } ).

if ( ( medianlist.clipAt(currentTime) > medianthresholdl.
( medVol.source = theMedVol;
if ( ( mean5S1ider.value > a ) && ( medSlider.value > 0) && eurrentTime> 2),

( meanSVol.source = theHeanSVol.O.02: });
if ( ( meanlSSlider.value > 0 ) && ( medSlider.value > 01 && currentTime> 71,

( meanlSVol.source = theHeanlSVol.O.02; }I;
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if C C sdVol.value > 0 1 && ( medSlider.value > 01 &&
( currentTime > sdhalfwindowl,

( blipVol.source ~ standDevvol+0.02; Il l,
{ medVol.source ~ 0; } 1;

J, (sonStop.value ~ 0; Synth.stop II ) l;
Pause.arC (

Blip.ar(mean15Freq, sdLevel*lO.aslnt, SinOsc.krCsdLevel. 0, blipVol)1
11+ .
IIBlip.ar(meanlSFreq. derivative, derivativeVol)
+
meanSOsc + meanlSOsc 11+ mean200sc

medianOsc

/1 NN INTERVALS
Spawn.arC( arg spawn. i. synth;

var dur, nndiff. currentnn, pmvol;
Il SET NEXTTIME AND ENVELOPE BY RATESLIDER POSITION
dur = 1/(rateSlider.polll;
spawn.nextTime = dur;
pércenv=Env.percldur-O.l, dur*4.9. 1. -41;
currentnn = nnpitches.clipAt(currentTimel;
Il DISPLAY VALUES FOR NN INTERVAL, MEDIAN VALUE. STANDARD DEVIATION. TIME
nndisplay.value = nnlist.clipAtCcurrentTimel;
mediandisplay.value = medianlist.clipAt(currentTime); IICi+11.value:
sdView.value = sdList.clipAtccurrentTime + sdhalfwindowl;
meanlSView.value = meanlS~ist.clipAtCcurrentTime • halfWindowl;
hrdisp.value = timefile.clipAtCcurrentTimel .atIO);
mindisp.value ~ timefile.clipAtlcurrentTimel .atCl);
secdisp.value = timefile.clipAtlcurrentTimel .atI2l;

Il TEST FOR NNSO
if 1 currentTime > 0,

e nndiff = nnlist.clipAt(currentTimel - nnlist.clipAtCcurrentTime-l);
if 1 abs(nndiffl > 0.05,

e pmvol=O.2S l. ( pmvol=O »);
). ( pmvol=O ) 1;

Il NN INTERVAL HAPPED TO SINGRAIN FREQUENCY
PSinGrain.arlcurrentnn. durez, nnvol.kr)

1/ NNSO VALUES ARE AUDIFIED BY A TINKLING SOUND, PHASE MOD PAIR WITH HIGH M:C
EnvGen.ar lpercenv,

PMOsc.arlcurrentnn. currentnn*lS. 3. 0, pmvol*nnSOvol.krl 1;
}. 1. nH)

J, sonStop.kr)
) 1;

w.c:lose
1
}
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Appendix6

Listening Perception Test Materials

1. Training Session

The sounds 1 am going to play for you today are from a research project involving

the illustration of data sets with sound, rather than a visual graph. It' s a new field

of research called auditory display. The question is whether there are patterns in

the data that are perceived just as weil, if not better, by the ears than by the eyes.

The data explored by these displays represents heart rate variability. It is taken

from a branch of cardiology that studies the changes in inter-heartbeat intervals,

that is, how the speed al which the heart beats changes over time. The data is

obtained by the patient wearing an ambulatory holter monitor that records the

heart' s electrical activity. After the recording, a beat recognition algorithm

pinpoints the times of the QRS complex, which corresponds to the muscular

contraction we cali the heartbeat. The times of these events are retained, and the

rest of the data discarded. What is left is a series of numbers representing each

NN (normal to normal) interval, ail within the range of one second, plus or minus

a half second or so, each signifying the amount of time between each heart beat.

Many cardiologists now feel that a great deal can he determined about a patient's

condition by the changes the heart rate undergoes over time. There is not,

however, general agreement about the best methods for interpreting this data, and

many different methods are employed and interpretations proposed. 1am

developing an auditory display methodology for heart rate variability.

ln the samples you will hear today, each inter-beat interval has been mapped to a

pitch, which is played by a high-pitched humming timbre. Higher sound

frequencies (pitches), are associated with faster heart rates, lower pitches are

associated with a slower heart rate. The playback rate is sixtYbeats per second, so

each second corresponds roughly to one minute of heart rate activity. So an

auditory display that sounded like [vocalize glissando up] would indicate a heart

that is beating faster and faster, while a sound like [vocalize gliss down] would

indicate a heartbeat that is getting slower and slower. In addition, the larger

interbeat increments, those exceeding SOms, are given additional annotation.

These intervals are audifies bya tinkling sound. So a display that consists only of

a sound like [whistling] means that ail of the changes are happening gradually,
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and not in sudden jumps. A display that contains [pinging] indicates that the hean

rate is changing in large bursts.

The object oftoday's test is to get a baseline idea ofhow successful the work is to

date. We would like to find out whether four conditions are as clearly defined by

an auditory representation as they are by a visual one. A series of examples will

be played, each lasting ten seconds, representing approximate1y ten minutes of

hean activity. Each example will illustrate one of four conditions. 1win ask you

to indicate which of the four conditions you think each sample represents. 1 will

give you a brief explanation of each condition and play a sample of each in a

moment. After the auditory displays, 1will then show a series of visual graphs on

the overhead projector, and ask you to try to classify them in the same manner.

First, it is imponant to stress that 1am in no way testing your intelligence, your

ears or your eyes. This test is designed to tell me how effective my work is to

date, and that is ail. There is no deception of any kind involved. The test will

contain samples that correspond to the examples 1 will play for you, and nothing

else. The test has been reviewed and approved by the Faculty of Music Ethics

Review Committee. The results of the test will be entirely confidential. 1would

ask that you do not mark your papers in any way other than to fill in the selection

boxes, in order to ensure that no identifying characteristics are present. Your

panicipation is also completely optional. Anyone who is uncomfonable

panicipating for any reason may leave at any time. The results of the test will be

reponed in this c1ass within a week or two. 1will happily answer any questions

about the work or this procedure following the test.

Now let me explain what you will be listening to. The hean rate is determined the

interactions of three components. The sinus node is the pacemaker, which

produces a steady pulse at roughly 70 beats per minute. The pacemaker interacts

with the autonomie nervous system, which has two components. The sympathetic

nervous system produces a chemical that tends to speed up the heart rate, while

the parasympathetic nerves produce a chemical that tends to slow it down. The

result is that the hean rate is changing constantly. Ali of these examples were

recorded at night, during sleep, when extemal factors are presumably minimized.

A normal, healthy hean rate fluctuates in a complex fashion, even in a person at

rest. On your sheets there is an illustration of a graph of 600 NN intervals. Here
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is an auditory display of a healthy subject. Notice that the heart rate is constantly

in ftux, with irregular tinkling sounds, representing higher NN intervals.

Condition two is congestive heart faHure, which describes a condition when the

ventricle is not pumping properly. This unhealthy condition is characterized by an

extremely regular heartbeat. Notice in this example that the pitch hardly changes

at ail, and that the higher interval tinkling sound is virtually non-existent.

Condition three is atrial fibrillation, which occurs when the pacemaker no longer

sets the rhythm of the heart. This is characterized by extreme irregularity. Notice

the extremely erratic character of this sample, and the high number of large

interbeat intervals.

Condition four is obstructive sleep apnea, which occurs in people whose breathing

stops during sleep. Apneic episodes can occur off and on throughout the night,

during which people repeatedly gasp for breath. The condition can be observed in

the heart rate as the heart slows down while breathing stops, then speeds up again

when breathing resumes, displaying a cycling between high and low heart rates.

Here is an example of an apneic episode. Notice that in addition to the alternating

high and low pitch, there are clumps of tinkles as weil.

1will now play ail four examples again.

1 will now play twenty-four examples, each of which represents one of these four

conditions. The examples are taken from different subjects. Please mark on your

page which of the four conditions you feel each sample represents. Each sample

will last ten seconds. Vou will have eight seconds between samples in which to

make your selection.

[DO TEST]

Thank you. Please pass your papers forward.

1 will now distribute response sheets for the visual identifications.

[ will now ask you to do the same identification with visual graphs. The visual

graphs are taken from the same subjects as the auditory displays were. 1will

project each graph for ten seconds, allowing you 8-10 seconds between

projections to make your selection.
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2. Response Forms

A. Auditory Condition response form

• 1.8

1.6 Healthy
1.4

1.2

1 1

l:i 0.8

U

04

0.2

1.8

1.6 Congestive Heart Failure
1.4

1.2

1 1
l:i 0.8

0.6 to--_- ,,-__-"'.-...~ -_.._-_
0.4

0.2

10\ 20\ 301

BalNo.

40\ SOI 10\ 201 301

aalNo.

40\ 50\

1.8

1.6

\4

1.2

1 1
l:
~ 0.8

0.6

04

a2

Atrial Fibrillation
\8

\ 6

1."

1 1
l:i 0.8

0.6

a.4

a.2

Obstructive Sleep Apnea

101 201 301

anrNo.

401 501 101 201 3QI

SeilNo.

..01 501

Twenty-four auditory displays of heart rate variability data will be played.
Each will represent one of the above four data types.
Please mark which type you think each selection represents.

•

1. 0 Healthy

2. 0 Heallhy

3. 0 Heallhy

4. 0 Healthy

5. 0 Healthy

6. 0 Healthy

7. 0 Healthy

8. 0 Healthy

9. 0 Healthy

10. 0 Healthy

, 1. 0 Healthy

12. 0 Healthy

13. 0 Healthy

14. 0 Healthy

15. 0 Healthy

16. 0 Healthy

17. 0 Healthy

18. 0 Healthy

19. 0 Healthy

20. 0 Healthy

21. 0 Healthy

22.. 0 Healthy

23. 0 Healthy

24. 0 Healthy

o Congestive Heart Failure

o Congestive Heart Failure

o Congestive Heart Failure

o Congestive Hean Failure

o Congestive Heart Failure

o Congestive Heart Failure

o Congestive Heart Failure

o Congestive Heart Failure

o Congestive Heart Failure

o Congestive Heart Failure

o Congestive Heart Failure

o Congestive Heart Failure

o Congestive Heart Failure

o Congestive Heart Failure

o Congestive Heart Failure

o Congestive Heart Failure

o Congestive Heart Failure

o Congestive Hean Failure

o Congestive Heart Failure

o Congestive Heart Failure

o Congestive Heart Failure

o Congestive Heart Failure

o Congestive Heart Failure

o Congestive Heart Failure

o Atnal Fibrillation

o Atnal Fibrillation

o Atnal Fibrillation

o Atnal Fibrillation

o Atnal Fibrillation

o Atnal Fibrillation

o Atnal Fibrillation

o Atrial Fibrillation

o Atnal Fibrillation

o Atnal Fibrillation

o Atnal Fibrillation

o Atnal Fibrillation

o Atnal Fibrillation

o Atrial Fibrillation

o Atrial Fibrillation

o Atrial Fibrillation

o Atrial Fibrillation

o Atrial Fibrillation

o Atrial Fibrillation

o Atrial Fibrillation

o Atnal Fibrillation

o Atnal Fibrillation

o Atrial Fibrillation

o Atrial Fibrillation
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o Sleep Apnea

o Sleep Apnea

o Sleep Apnea

o Sleep Apnea

o Sleep Apnea

o Sleep Apnea

o Sleep Apnea

o Sleep Apnea

o Sleep Apnea

o Sleep Apnea

o Sleep Apnea

o Sleep Apnea

o Sleep Apnea

o Sleep Apnea

o Sleep Apnea

o Sleep Apnea

o Sleep Apnea

o Sleep Apnea

Cl Sleep Apnea

Cl Sleep Apnea

Cl Sleep Apnea

o Sleep Apnea

o Sleep Apnea

o Sleep Apnea



B. Visual Condition response fonn

• 1.8

\.6 Healthy
1.4

1.2

1 \

~
~ 0.8

0.6

0.4

0.2

U

1.6 Congestive Heart Failure
1.4

1.2

1 1
~i 0.8

0.6 t-._--""-~~"",,,,-.I. ~""- _

04

0.2

101 201 301

SeliNo.

101 501 101 201 301

Sni No.

401 501

La

1.6

1.4

12

1 1
::
~ 0.8

0.6

04

0.2

Atrial Fibrillation
1 e

16

1.4

1 2

1 1
~
~ 08

06

04

02

Obstructive Sleep Apnea

lOI 201 JOI

SeliNo

401 501 101 201 JOI

SellNo

401 501

Twenty-four graphs of heart rate variability data will be shown.
Each will represent one of the above four data types.
Please mark which type you think each selection represents.

•

1. 0 Healthy

2. 0 Healthy

3. 0 Healthy

4. 0 Healthy

5. 0 Healthy

6. 0 Healthy

7. 0 Healthy

8. 0 Heallhy

9. 0 Heallhy

10. 0 Healthy

11. 0 Healthy

12- 0 Healthy

13. 0 Healthy

14. 0 Healthy

15. 0 Heallhy

16. 0 Healthy

17. 0 Heallhy

18. 0 Healthy

19. 0 Healthy

20. 0 Heallhy

21. 0 HeaJlhy

22- 0 Heallhy

23. 0 Healthy

24. 0 Healthy

o Congestive Heart Failure

o Congestive Heart Failure

o Congestive Heart Failure

o Congestive Heart Failure

o Congestive Heart Failure

o Congestive Heart Failure

o Congestive Heart Failure

o Congestive Heart Failure

o Congestive Heart Failure

o Congestive Heart Failure

o Congestive Heart Failure

o Congestive Heart Failure

o Congestive Heart Failure

o Congestive Heart Failure

o Congestive Heart Failure

o Congestive Heart Failure

o Congestive Heart Failure

o Congestive Heart Failure

o Congestive Heart Failure

o Congestive Heart Failure

o Congestive Heart Failure

o Congestive Heart Failure

o Congestive Heart Failure

o Congestive Heart Failure

o Atrial Fibrillation

o Atnal Fibrillation
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NOTE TO USERS
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It is available for consultation at the author's

graduate schoollibrary.
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