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Abstract.

The intensity returns obtained by a radar from precipitation are well known to fluctuate
violently in space and time. We preseat a systematic study of the resolution dependence time series
with overlapping time resolutions spanning 10 orders of magnitude (0.77 ms to 4 months), of the
fluctuating radar echo from precipitation. The results undermine the current assumptions of
homogeneity of rainfield at scales smaller than the radar resolution, dus to Marshall and Hitschfeld
(1933), by showing that the only length scales identifiable in the time series are those of the radar
pulse volume, the wavelength, and a very small inner scale of the order of millimeters. An analysis
cr *he multiscaling nature of the time series of echo fluctuations reveals multiscaling behaviour at
seiles down to the resolution or pulse volume scale. Since there are no a priori scales in the rainfield
we proceed to model the fluctuating radar echo by assuming a multiscaling mode! of rainfield
variability which extends to sub-resolution scales. A systematic analysis of the statistical behaviour
of computed reflectivities from this variability gives a full statistical description of reflectivity
originating from multiscaling variability, and solves the scalarmultifractal radar observer’s problem.
Computation of time series of reflectivities from a time-space representation of this vartability
reveals quantitative and qualitative behaviours consistent with those of observed echo fluctuation
time series. We conclude that a multiscaling model of the rainfield which extends to the smallest
sciles of the rainfield is consistent with observation.

.
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Résumé.

On sait que les €chos radar provenant de la précipitation fluctuent énormément dans le temps
et I'espace. Nous présentons une €tude systématique de la dépendance sur la résolution d'unc
longue série chronologique de mesures d’échos radar de la précipitation. Ces miesure s'étendent
sur 10 ordres de magnitude dans le temps, de 0.77 ms jusqu’a 4 mois. Les résultats ne supportent
pas les hypothéses formulées par Marshall et Hitschfeld (1953) et couramment acceptées concernant
I"homogenité des champs de pluie & la sous-échelle. Nos résultats indiquent que les seules échelles
identifiable dans notre longue serie de mesures sont le volume unitaire du radar, la longueur d’onde
et une tres petite échelle de 'ordre de millimétres. L’analyse de ces donndes révele aussi un
comportement "multiscaling” pour toutes les échelle jusqu™d la plus petite résolution possible.
Puisque il n’y a a priori aucune échelle préférentielle dans les champs de pluie, nous avons effectud
une modélisation des échos radar en utilisant un modele "multiscaling” qui s’étend jusgu'aux
échelles plus petites que la résolution de base du radar. Une analyse systématique du comportement
statistique des réflectivités dérivée de cette variabilité donne une description statistique compléte
d’une réflectivité provenan: d'une variabilit¢ "multiscaling”, Ceci résout ausst Ie probléme de
I’observateur radar dans un scalaire "multifractal”. La simulation de la variabilit¢ temporelle des
réflectivit€s & partir d’une représentation spatio-temporelle démontre des comportements
quantitatifs et qualitatifs qui sont compatibles avec ceux qui sont observés en réalité dans une longue
série chronologique. Nous concluons donc qu’un modele "multiscaling” qui s’étend jusqu’aux plus
petites €chelles est compatible avee les observations.




Statement of Qriginality.

This thesis presents a new model for the sub-radar-resolution scale variability responsible for

the fluciuating radar echo.

The data analysis sections represent a systematic study, using spectral and multifractal
technigues, of the resolution dependance of radar echo statistics of very long, very high resolution
time series of the fluctuating echo. The analyses allow the foilowing contributions to knowledge:
1) the time series reveal scaling behaviour (E(k)e<k™) 1o a scale consistent with the pulse volume
scale of the radar, 2) the only length scales that could be identified in time series of the fluctuating
ccho are those of the radar pulse volume and radar wavelength, there is noevidence of ahomogeneity
scale except at millisecond timescales, 3) the spectral characteristics of the fluctuating echo time
serics between these two scales is close to that of white noise, 4) there is another scaling range from
a scale consistent with the radar wavelength 10 the smallest scales of the rainfield where evidence
of homogeneity can be found.

A new multifractal parameter estimation technique was created by combining the trace
moments estimation technique with a genetic algorithm, Multifractal analysis of the time series of
the fluctuating echo allows the following contributions to knowledge: 1) the echo fluctuation
statistics are multiscaling to a scale consistent with the radar pulse volume scale, 2) the statistics
are fit very well by the forms provided by universal multifractals, 3) the presence of zeros in data
sets used to estimate multifractal parameters will lead to spurious estimates of the parameters.

The modelling section of this thesis makes the original assumption that the multiscaling
behaviour noted at scales greater than the radar resolution or pulse volume scale continues to the
smallest scales of the ruinfield. Modelling the fluctuating echo as a Fourier component of a
multiscaling field yields a complete statistical description of Z,; frem a scaling rainfield and solves
the scalar multifractal radar observer’s problem. The general implications are that rain statstics
can be inferred from radar measurements of effective reflectivity. The following results were found:
1) the Fourier component of multiscaling variability exhibits multiscaling behaviour, 2) the inner
scale of the rainfield variability, in time series of Z,,, is replaced by the wavelength scale of the
radar, 3) the dressing operation of the Fourier component results in a linear bias, K, (1), in the
exponents characterizing the statistics of Z,, 4) the magnitude of the bias is a linear function of the
variability of the rainfield characterized by C,. '

The firstspace-time muttifractal model of the fluctuating echo is introduced. The implications
of this model are that 1) the statistical behaviours of Z, and Z,, are identical at scales greater than




the pulse volume scale with C, = s that of the rainfield variability, 2) the spectral plaeau is a direct
result of the Fourter component operating on & scaling rainfield. 3) the bias in distributions of Z,,

‘ results from the influence of K, x(1).
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Glossary of Symbols.

Index into the Lévy-Stabie distributions (0 < a < 2.0). ais an indicator of
the singular nawre of a universal multifracta field.

Spectral exponent (£ (k)e<k ™, where E(k) is spectral enerey).
This variable is taken to represent the pulse volume scale of the radar.

The codimension of the ensemble mean of a process or field. A measure
of the vartability of a field.

Codimension function describing the scaling of probabilities of
singularities Y.

The sampling dimension. A measure of the size of a data set. D, detines
the maximum singularity ¥, as well as the maximum moment ¢, that can
be observed with a data set.

An exponent used in the description of universal multifractals,

The singularity strength (intensity) which is a function of the scale of
measurement (Y=K'(g)).

The maximum order of singularity observable within a data set of
sumpling dimension D,.

The order of singularity corresponding to divergence of moments.

Exponent for filtering a conservative multifractal field to produce a
non-conservative multifractal field.

The radar wavevector (| &k [= 2/A.,).
Scaling moment function for multifractals.

Scale ratio between the outer scale of a process and an averaging scale or
"box’ scale I. A=L/L.
The wavelength scale of a radar. Defines the wavenumber k as £ = 2IVA,,

The outer scale of a field.

Pulse Repetition Frequency. The rate (in Hz) at which a radar sends out
pulses of energy. The PRF determines the temporal resolution of radar
data.

The order of scaling moment (q = ¢’(Y)).

The highest order of scaling moment that can be observed given a data set
whose sampling dimension (size) is D,.

The critical order of moment above which statistics diverge.
The radar cross section field in time and space.
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UMCG Universal Multifrucial Cascade Generator, The technigue used to
generate multifractals as inputs to the RCS model. The shorthand
terminotogy emploved to specify the input fields for discussion is
UMCG(C,.H).

. ZorZ, Reflectivity factor. The mean of which current radar data processing
strategies attempt to ssumate by averaging measures of effective
reflectivity.

ZeorZ, Effective reflectivity factor. The quantity measured by a radar.
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1.0 Introduction.

The tropical rain fell in drenciiing sheets...

Michael Crichtion

Jurassic Park

Radar.

The technology known as radar went from its infancy to maturity during the years of the
second world war, The history of weather radar begins ar the end of WW?2 and was centered at
ML.IT. and at McGill University in Montreal. The earliest work on the statistics and interpretation
of echoes received by radars from rain are those of Ryde (see the review by Atlas and Ulbrich,
1990, and references therein). The actual development of the results necessary to convert radar
echoes from precipitation into estimates of precipitation rate involved a number of steps that were
taken during the years 1947 to 1951 (see Atlas and Ulbrich, 1990). The Stormy Weather Group,
led by the late 1.S. Marshall, was one of the most active centers of the development of the theory
of weather radar after the war (see Douglas, 1990). The issue related to this early work that is of
concem to this thesis is that of the interpretation of the fluctuating echo from precipitation. Early
research on the statistics of the fluctuating echo was conducted at MLLT. (Lawson and Uhlenbeck,
1950; Austin, 1952). The work published by Marshall and Hitschfeld (1953) and Wallace (1953),
and referred to hereafter as the ’standard theory’, presented a set of assumptions which are now
routinely used to convert the fluctuations to an estimate of mean reflectivity.

Radar presented awesome potential as a hydrological and meteorological tool since it is able
to measure, almost instantly over great distances and over a great range of scales, reflectivity from
precipitation. The use of relationships between the quantity of reflected energy and drop sizes as
well as drop fall speeds allowed for the measured energy backscattered by drops to be converted
intoestimates of rainrate througha "Z-R" (orreflectivity factor Z torainrate R) relationship (Marshall
and Palmer, 1948). The potential of radar as a hydrological tool was immediately recognized and
attempts made to exploit the information provided by radar. However, as the use of weather radar
became more widespread it was increasingly noticed that the rainfield displays extreme variability
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in time and space. The various communities using radar slowly became aware of the extreme
variability of the rain process and of the corresponding limits of predictability. Although the
operational use of radar is widespread it never achieved the respect that the early researchers felt
sure it would achieve. Undoubtedly the major reason is the extraordinary space-time variability
for which no theoretical frameworks existed at the time. This lead to the continual disagreement
of raingauge and radar estimates of rainfall amount.

The issues conceming the disparity of radar and raingauge estimates of rainfall have always
centered on the following areas, the drop size distribution (DSD), drop fall speed relations, scattering
relations, and the electronic considerations relating to radars (see, for example, Zawadzki (1984)
or Austin (1987)). The ensuing debate has therefore always centered on the Z-R relation (see Battan
(1973) for a varicty of Z-R relations). To date, little attention has been payed to the possibility that
the estimates of rainfall from radars and gauges are different primarily because the scales of the
devices used are different. Such an argument requires the fundamental recognition that measures
acquired from the rainfield are non-trivially dependent upon the scale of measurement. This notion
is fondamentally incompatible with the accepted belief that rainfall is homogeneous at radar
measurement scales. However, in the review by Katz and Harney (1990) the argument is presented,
based on the work of Kerr (1951), that drop motions are dictated by turbulentairmotions. Turbulence
has long been known for its scaling statistics, especially the Komolgorov (1941) k*? power-law
spectrum (E (k)o<k™?). In the last ten years major advances in scaling theories of turbulence have
been the recognition that scaling generally leads to multifractals, and further that the scaling can
be far more general than simple self-similarity. A multifractal rainfield would explain a great deal
of the difficulty in comparing statistical quantities such as 'mean’ rainrate. Applying this argument
to the Z-R relation argument, both radars and rainganges have inherent measurement scales which,
in a multifractal rainfield, would result in estimates of precipitation that depend in a systematic
power-law way on the scale of the measurement.

Weather radars have provided much of the meteorological and hydrological communities’
understanding of rainfield variability. Particularly influential radar rainfield studies were those
conducted by Austin and Houze (1972) and Zawadzki (1973) which inspired a host of mathematical
modelsof rainfall. However, modern radars, equipped with digital acquisition and recording systems
are far more informative as to the fine structure of rainfall than were the early analog displays that
showed up to only seven levels of intensity and recording was accomplished using photographic
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Figure 1.1: HTI time series of the vertical structure of rainfall over
the VPR located at the McGill Radar Weather Observatory.
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techniques. Inrecording the extreme variabtlity of rainfall, modern radur systerns have pushed our
knowledge of the rainfield to the limit. Early models of rainfall, based on radar observations of
rain paterns (Kessler, 1966: Armijo, 1966), have fallen by the wayside as it was realized that the
extremely variable nature of the rainfall process, revealed by more sophisticated radar apparatus,
far exceeded the ability of the models to represent it. The general problem was that most models
could account for the observations at a single scale but not over a significant range of scales. What
was required was a new class of models with the objective of representing how the ruinficld operates
from the smallest to the largest scales. Within such a framework the interpretation of measures of
the rainfield, such as those provided by radars, can be interpreted properly.

Physical Models of Rainfall.

The lack of knowledge of the non-linear partial differential equations which govern the
development of rain, coupled with the extreme variability of rainfall has led to the development of
stochastic models of rainfall. Early stochastic models include those by Cole (1964), Armijo (1966)
and Bras and Rodriguez-lturbe (1976). The growing recognition of scaling symmuetries in rainfall
during the 1980’s, largely due to the analysis of radar data, led to the incorporation of scaling
symmetries in stochastic models of rainfall (Lovejoy, 1981; Lovejoy and Mandelbrot, 1985; Lovejoy
and Schertzer, 1985). The early scaling models were totally ad hoc and were designed to respect
a purely statistical scaling symmetry referred to now as 'simple scaling’. Simple scaling, also called
*scaling of the increments’, was the first scaling behaviour thought to be associated with rainfall
and can be represented as

. d
AR(MAx) = AAR(AX) (1.1)

where R is rainrate. The small scale difference is AR(A'Ax) =R (x, + L Ax) - R (x,} and the large

scale difference is AR(Ax) = R(x, + Ax) — R (x,) where g3 and x, are arbitrary, A is a reduction ratio,
and H ids the (unique) scaling parameter. The equality '=" means equality in probability distributions
viz. a = b if Pr(a>q) = Pr(b>q) for all q, where Pr indicates probability. This formula states that
differences in rainrate observed at different interval lengths are identical except for the scale factor
A™. This type of scaling was introduced by Lamperti (1962) and later by Mandelbrot and Van Ness
(1968) and called ’self-similarity’. However, since graphs of R(x) are in fact not self-similar but
self-affine, and self-similarity is a much wider concept, this is a misnomer. The parameter H is
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known as the Hurst exponent and was introduced by Hurst (1951) to describe ihe long range
dependence in streamflow for the Nile river. The special case where the probability distributions
are Gaussian is Brownian motion where H = 1/2. Mandelbrot and Wallis (1969) proposed a
streamflow model with fractional Brownian motions (characterized by H = 1/2).

The ideas of simple scaling can go a long way to suggesting methods of interpreting the
extremely variable measures that are acquired with radars and raingauges. Lovejoy (1981)
hypothesized that simple scaling holds for rain but noticed that the extreme variability of rain results
in algebraic or 'far’ tails of the probability distribution (see Waymire (1985) or Schertzer and
Lovejoy  (1985a)). Probability distributions with fat 1tails have the form
Pr(AR > Ar)=Ar~® (Ar » 1) for the probability of a random rainfall fluctuation AR exceeding a
fixed value Ar. The subscript D is necessary since the value of the exponent is expected to depend
on the dimension of space over which the averages are produced. While the ideas concerning scaling
have evolved beyond th= notion of simple scaling the algebraic tails of probability measures of
rainfall recorded by gauge and radar continue to be observed. Estimates of qp from radar data and
riaingauge data reveal qp 1o be in the runge of 1 to 3 (Segal, 1979; Ladoy et al., 1991; Ladoy et al.,
1993). The combination of scaling with algebraic tails is an indicator of self-organized systems
(Bak et al., 1987) and can now be understood in terms of multifractal phase transitions (Schenzer
et al. 1993).

The incorporation of scaling behaviour into stochastic models of rainfall yielded a
considerable simplification of the modelling process as well as increasing the ability of these models
to represent the extreme spatial variability of rainfall over wide ranges of scale. Scaling models
can offer a single description for the behaviour of rain flux from small scales to meso-scales. The
"Fractal Sums of Pulses’ model of Lovejoy and Mandelbrot (1985) had features in common with
other stochastic rain models of the time (e.g. Waymire and Gupta (1981a,b,c), Rodriguez-Tturbe et
al. (1984)) in that they were additive, but its philosophy and properties were different. The FSP
model used a construction process to combine structures of various scales and frequency of
occurrence to produce a field which respected simple scaling with q, = H'! (with 1<qp<2, 1/2<H<1).
Lovejoy and Schertzer (1985b) introduced the Scaling Sums of Pulses (SCP) model which allowed
qp and H to be varied separately. In contrast, rainfall models such as those reviewed in
Rodriguez-Tturbe et al. (1987) and Eagleston et al. (1987) ure based on an ad hoc division of the
atmosphere into regimes where different parameterizations were postulated. The difficulty with
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these models is that realistic statstics were realized over only the very narrow ranges of scale over
which they were calibrated. The model of Bell (1987) was another model which involved a large
number of parameters and produced statistics that were intended to be realistic (e lognormal
distributions of intensity were produced). The modelling process of Bell was an attempt to produce
noises which resembled those of radar data, but unfortunately scaling behaviour was not respected.
Detailed observations of the statistical structure of the rainfield over various scale ranges using
radar have revealed no distinct scale breaks separating regimes where different parameterizations
might be required. '

In parallel to the development of the simple scaling models, work in cascade processes and
strange attractors showed that real dynamical systems were much more likely to be multifractal and
hence will respect multiple-scaling (¢.g. a different fractal dimension for each intensity) (Henwchel
and Procaccia, 1983; Grassberger, 1983: Schertzer and Lovejoy, 1983, 1984, 1985a,b: Parisi and
Frisch, 1985; Halsey et al., 1986). Indeed, Meneveau and Sreenivasan (1987) introduced a simple
2 state o-model whose statistical properties they claimed were indistinguishable from those of
turbulence, It was realized by Schertzer and Lovejoy (1987) and Gupta and Waymire (1993) that
mathematical cascade processes posses the same scaling structure as recorded rainfall rates and
involve a relatively simple construction process. Thus, the possibility of modelling the extreme
variability of rainfall statstics from very large scales to very small scales with a single physically
based description became a possibility. Multifractals arise when cascade processes concentrate
energy, water or other flux quantities into smaller and smaller regions of space, and generally require
an infinite number of exponents to specify their statistics, but these are fixed by the construction
process. Cascade mode!s are designed to respect several of the basic symmetries of the governing
non-linear dynamical (Navier-Stokes) equation. There are three properties associated with a cascade
phenomenology: 1) a scaling symmerry (invariance of statistics under dilation ("zooms")), 2) a
quantity conserved by the cascade (i.e. in turbulence the conserved quantity is energy flux from
large to small scale), and 3) localness in Fourier space (the dynamics are most effective between
neighbouring scales).

The cascade model is predicated on the idea that fluxes, such as rain flux it (normalized such

that <p> = 1, where <> denote the ensemble average), are concentrated into progressively smaller
volumes. The number of volumes over which the flux is progressively concentrated increases while
the volume, identified by its characteristic scale /, decreases. This concept can be represented as a
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multiplicative process (see Appendix A). The end result of this process is that a small number of
the volumes will contain a great deal of flux while the rest are close to zero. The range of scales
over which this process can be defined is limited only by the outer and inner scale of the rain process.
The outer scale is the largest scale of the process. The inner scale of the rainfield is a statistical
quantity, but would presumably be limited to scales above the turbulent viscosity scale (which is
measured in millimeters). The highest resolution element of a cascade (i.e. the smallest scale of
the cascade) ts usually defined by the dimensionless ratio A of the outer cascade scale L to the inner
scale [ (i.e. A=L/I), thus the highest resolution elementis given by A™. The distribution of intensities
vof a rain flux p at scale ratio A (A 2A 2 1) is given by

Pr(,2d) = pa~® (1.2)

where 1, is the flux averaged over scale A~ (the subscript A is added 1o show that the flux estimate

is dependent upon the scale over which it was averaged), vy is the singularity (or intensity), p(y) is
a slowly varying (sub exponential) intensity dependent prefactor (which s generally ignored in
most developments), and ¢(y) is a codimension function which depends on the intensity. When
¢(y) <D, the codimension has a simple geometric interpretation as the difference between the space
dimension D (the embedded space) and the fractal dimension D (y). Codimensions are useful in
stochastic processes as they characterize the process independently of the dimension of the observing
space. The codimension function ¢ (Y} defines a continuous spectrurmn of exponents governing the
probabilities of various flux intensities yof flux ; integrated to some scale ratio A ¢ (Y) is constrained
to be a convex function.

Constdering the cascade construction process, each stage of construction is independent of
the history of the earlier stages of construction. However, due to the hierarchical nature cf the
construction process the result has long range statistical correlations. This is a basic property of
cascades and hence multifractals and is a conceptembodied by exponents such as the Hurst exponent
H (Hurst, 1951). Thus, moments of a multifractal are also power-law functions of scale. The
multiscaling relation for moments is given by

<pi> e AW (1.3)
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where q is 2 moment and A defines the box scale over which p was averaged. This relation was
first tested in radar rain data by Schertzer and Lovejoy (1985b). The function K(q) defines a
continuurmn of exponents which characterize the scaling behaviour of y,. The scaling behaviour of
momenis of |,, characterized by the exponents K(q). can be estimated by plotting the averages as
a function of scale for different values of q on a log-log graph.

There are fairly general conditions under which knowledge of probability distributions is
equivalent to knowledge of the moment structure of a field. The relationship between c(y) and K(q)
for multifractals was shown by Parist and Frisch (1985). K(q) and c(y) are a Legendre transform
pair,

K(g)= mgx (@Y=c() ;s c= mfx(qY—K (@) (1.4)

which defines a one-to-one correspondence between singulanity Y= K '(g) and moments ¢ = ¢ '(y).

Thus, knowledge of the moment structure is equivalent to knowledge of the probability distributions
(see section 3).

The obvious implication of the above scaling relations is that measures from cascade fields
are dependent upon the scale of observation. The scaling of the cascade may be exploited, simply
by examining moments computed over different scales, to produce functions which are independent
of scale and characterize the measures precisely. The functions K(q) and c(Y) are scale invariant
descriptors of the underlying cascade process and hence characterize the flux p, independent of
what scales were used to estimate p;. Such descriptions allow the cross comparison of data sets
(e.g. as in calibration) acquired with different resolutions from the same multifractal field. Indeed,
if a field exhibits scaling behaviour the only way to compare measures acquired with different
resolution sensors is through the scale invariant functions.

Schertzer and Lovejoy (1987) present an argument relevant to atmospheric processes that
gives K(q) and ¢ () specific forms. Theargument they present suggests that the turbulent interaction
("mixing") of cascades yields cascades of the same type. Thus, there are stable and atractive
"universality” classes. A useful result of the universality assumption, for conservative multifractals,
is that K(q) and c¢(Y), which define an infinite hierarchy of scaling exponents, are dependent upon
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. two parameters, gand C,. ¢eisanindex tothe Levy-Stable distributions characterizing the generator.
C, is the codimension of the ensemble mean of the cascade field and is a measure of the sparsity
of the field. The forms for ¢(y) and K(q) are

1)
Cl(_~/_+_} with —l—'+l=1,(a¢1,05a52)
_ o o

cp=] \O% @ (1.5)
C,cxp[cl—lJ if a=1
1
Cl a .
K@)=ja—19 ~9 F o=l (16)
C.q In(q), a=1

The various tests of these relations over the last six years using radar data have been
surprisingly successful. Direct verification of relation 1.5 was accomplished by Seed (1989) using
a very large database of radar CAPPI maps (Constant Altitude Plan Position Indicators or CAPPIs
are constant altitude cuts through volumetric radar data recorded by volume scanning weather
radars). Schertzer and Lovejoy (19853,1987) and Lovejoy and Schertzer (1990z) have tested the
universal forms. Gabriel et al. (1988) made a test of universality using radar data. Gupta and

. Waymire (1990) have shown that multiscaling holds using GATE radardata. Duncan etal. (1992a),
and Tessier et al. (1993) present further evidence that radar data conforms to the predictions of
universality. Ladoy et al. (1993) and Hubert et al. (1993) show that universality holds using
raingauge data. The analyses of Duncan et al. (1992a,b) and Tessier et al. (1993) involve radar data
sets of very high spatial and temporal resolution. Both analyses indicate that multifractal behaviour
is observed to space scales of 40 meters {which is the resolution scale of the radardata) and timescales
of less than seconds in radar data. The data sets used will be described in section 2, but comprise
time series of echo fluctuations from a single range gate. The time series analyzed by Tessier et
al. (1993) have a temporal resolution of 2 s and the total time series length was one month. The
time series analyzed by Duncan et al. (1992a,b) were more varied in their resolutions but support
the observation of scaling behaviour, if not the actual parameters extracted from these scaling ranges
(see section 5.2), to the pulse volume scale of the radar (see sections 4 and 5).

1.0 Introduction. 8



Radars and Rainfall.

The most outstanding characteristic of radar echoes from precipitation is the fact that they
fluctuate violently in space and time. We will argue that the fluctuation is due to the extreme
variability of the rain flux [ in space and time. The violent changes in [ at all scales are represented
in time series of the fluctuating echo. There are a large number of factors which can affect the
space-time behaviour of W, included are turbulent advecton, sedimentation due to gravity, and
natural variations due to the inhomogeneous nature of the rain generating regions (see figure 1.1).
While large raindrops cannot be considered as passive admixtures, the effect of turbulence will be
to concentrate water onto progressively smaller volumes creating an inhomogenceous rain flux .
The "homogenization” of turbulence is largely a misconception since viscosity is the agent that
homogenizes. Turbulence merely concentrates quantities onto smailer volumes in order to generate
the large gradients necessary forefficientdissipation. Irrespective of the mechanism, the observation
of scaling behaviour in radar data is consistent with cascades which systematically concentrate rain
flux to progressively smaller scales. Figure 2.2 is an idealization of a radar operating in a typical
rainfield, the inhomogeneity of the rainfield appears organized and highly variable. This picture
of the rainfield is completely incompatible with the picture currently used in the interpretation of
radar signal fluctuations.

The curren: theory of the statistical behaviour of radar echoes from rainfall, introduced above
as standard theory, is due to Marshall and Hitschfeld (1953), Wallace (1953) and Rogers (1971),
but is based on work conducted at the M.I.T. radiation labs and reported by Lawson and Uhlenbeck
(1950). The critical assumption of the standard theory is that the drop phases (relative to the radar)
are independent random variables. A Poisson model is used to model the drop phases, or positions
relative to the radar, in time and space. Wallace (1953) computes the Fourier component of the
distribution of drops and examines the statistical behaviour of the resulting amplitude. Ignoring
geometrical and dimensional constants the signal amplitude received by a radar from a volume' 8,
of scatterers (volume V)) is given by

1 B, serves a double purpose, it defines both the set of drops found within the illuminated
volume and the scale of the illuminated volume A",
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where k is the radar wavevector and X, is the position vector of the j* drop of volume V). We
anticipate that this Fourier component of the drop positions will be dependent on the scales of

. 2% . . - . s
observation A and wavelength scale A, = = However, if the drop positions obey Poisson statistics

the probability of finding a drop is homogeneous in space and the phases will be independent random
variables. If, in addition, the volume variance is finite, then the standard result follows. The
"effective reflectivity® factor” Z,, measured by a radar is related to the amplitude of the scattered
wave by

! E‘?J 2 - 2
) ‘ - : 1.
Za Vol(B,) | j‘zslvfe | JA(x)|" Val(By) (1.8)

The corresponding “reflectivity factor” Z, is defined by

_ 1 2
4 = Vol(B,) ,-.zalvi

(1.9)

These relations define Z, and Z,,, and initially, assume that only Rayleigh scattering is important.

Given that the drop phases are random variables with Poisson statistics the classical result for the
conditional probability distribution of Z,, given Z, can be established by consideringeq. 1.7 asa
random walk in phase space:

Pr(z,12) = %e"""z (1.10)
Following the belief that different scale regimes of the rainfield exhibit different statistical
behaviours, Rogers (1971) applied the standard theory to the problem of gradients of rainfall intensity

affecting estimates of Z,,. The scale separation that Rogers (1971) implicitly employed was the

2 The subscript A is appended to indicate the fact that in a scaling rainfield the measured value of
intensity Z, is dependent upon the radar measurement scales,
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assumption that gradients are unimporiant below the pulse volume scale B so that the standard
theory would apply there. This assumption avoids the need to model the sub-resolution gradients.
The concept was predicated on then current data processing strategies which involved cross range
ordownrange averaging to form estimates of Z from many neighbouring measurements of Z,. Thus,
estimates of Z involved averaging volumes larger than B and within these volumes it was possible
that gradients in rainfall rate could affect the average that produced Z.. Rogers (1971) expressed
this possibility as a conditional probability and used an ad hoc rainrate gradient model to show how
the statstics of Z,, are affected.

Lovejoy and Schertzer (1990a,b) have discussed various corrections to the standard theory
for multifractal rainfields. Lovejoy and Schertzer (1990a) calculated corrections to mean Z, and
Z,,assuming fractal distributions of drops. Lovejoy and Schertzer (1990b) calculated correction
factors assuming sub-resolution homogeneity of drop statistics but that larger scale fluctuations
were multifractal. Neither study addresses the problem of sub-resolution inhomogeneity. While
the blotting paper experiment of Lovejoy and Schertzer (1990a) could certainly be taken forevidence
of rainfield gradients to very small scales no effort was made on their part to compute the Fourier
components of such a rainfield.
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Objectives and Organization of the Thesis.

The main objective of this thesis is the qualitative and quantitative exploration of the effect
of multifractal sub pulse volume variability on the statistics of radar echo fluctuations from
precipitation. Evidence of the existence of multifractal behaviour of echo flucteations down to the
resolution scale B of the radar will be provided by specially collected time series of the fluctuating
echo. Several original observations of the statistical natare of the echo fluctuations are made. The
multifractal behaviour of the fluctuating echo will be parameterized by @ and C,. Another special
data set provides evidence that the rainfield exhibits scaling behaviour below the resolution scale
B. but since there is no a priori scale dependence in the rainfield that resulted in the data sets
collected it will be argued that the rainfield is multifractal to its smallest scales which we find to
be typically of the order of mm. Modelling of the fluctuating echois accomplished by first examining
the statistical behaviour of Fourier components of multifractal variability to determine the stadstical
properties of Z,,. This corresponds to the assumption that the sub-resolution variability has the
same scaling behaviour as the super-resolution variability in the rainfield. A simple assumption
concerning the relation between temporal and spatial scaling exponents will then be introduced to
explore the effect of temporal as well as spatial scaling or ' = statistical behaviour of Z,;. The
results of this study will strongly suggest that a more appr  ..¢ model for the interpretation of
echo fluctuations is given by multifractal models of rain { .x . A large concluding section will
outline the implications of scaling rainfield to radar measurement strategies and will point out that
this information can be used to measure the dynamical properties of the rainfield.

Since the ability to produce multifractals with prescribed properties is a relatively recent
capability, the behaviour of a Fourier component of these models has not been known until now.
The results developed in this thesis will be presented in the language of universal multifractals,
although every effort will be made to incorporate the language of the standard theory for comparison.
The recent development of complex valued Lie cascades (Schertzer and Lovejoy, 1993a) allow the
results of the Fourier component of multifractals to be expressed quantitatively in simple terms,
Examination of the fluctuating echo resulting from a multifractal rainfield will serve to answer the
question as to the statistical behaviour of the fluctuating echo, which is a Fourier component, from
a multifractal rainfield. It will also serve to show that there is a great deal of information available
in the fluctuating echo that is ignored by current processing strategies.
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Chaprer 2: Data Collection and Processing.

Some unique time series of the fluctuating echo were collected with a vertically pointing radar
that provided spatial resolution of 40 m and temporal resolution to millisecond time scales. Time
series of the fluctuating echo with lower temporal resolution were also collected. These data sets
are supported by 2 number of corroborating data sets. Data collection procedures, quality control,
and details of the devices used to collect the data are provided.

Chapter 3: Universal Multifractals.

This chapter summarizes relevant results of the universal multifractal formalism.  Results
necessary for the analysis and modelling of multifractals are presented. Emphasis in this chapter
is placed on the details pertaining to accurate estimation of universal multifractal parameters, The
results for spectral behaviour are also provided.

Chapter 4: Spectral Analysis of Rainfield Intensity Time Series.

This chapter examines the spectral nature of the various data sets collected for this thesis.
The objective is to determine the ranges of scales over which scaling behaviours may be observed
in time series of the fluctuating echo. The spectral behaviour of time series of rainfall intensities
is examined and discussed. A new feature of the spectral behaviour of time series of the fluctuating
echo is examined and discussed. This chapter also examines the scaling behaviour of distributions
of the fluctuating echo. Estimates of spectral and intensity distribution parameters are presented
in tabular format.

Chapier 5: Estimation of Multifractal Parameters.

In this chapter the universal multifractal nature of the echo fluctuation time series is examined
and discussed. A general objective is to determine the range of scales over which universal
multifractal behaviours can be expected in time series of the fluctuating echo. The specific objective
of this chapter is to examine whether universal multifractals are an appropriate model for the
sub-resolution variability in radar measurements of precipitation. A new multifractal parameter
estimaton technique is introduced. The new technique is applied to the data sets along with
parameters estimation techniques presented in chapter 3. Estimates of universal multifractal
parameters are presented in tabular format and a discussion of issues relevant to the accuracy of
the estimates is provided.

1.0 Introduction. 13



Chaprer 6: The Statistics of Z,; from a Spatially Scaling Rainfield.

In this chapter the results of the data analysis sections justify the assumption that radar
sub-resolution variability can be modelled as a universal multifractal. The scaling behaviour of a
Fourier component is found to lead to general staustical forms which relate the statistics of
reflectivity to that of rainfield variability. The statistical forms in this chapter represent the solution

to the scalar multifractal radar observer’s problem.
Chapter 7: Radar Measures from a Temporally and Spatially Scaling Rainfield.

A space-time multifractal model of the radar echo fluctuation problem is presented. This
chapter examines the influence of radar measurement scales on the statistical behaviour of artificial
time series of Z,; and Z,. The scaling behaviours examined in this chapter are qualitatvely and
quantitatively similar to the behaviours isolated in the observed intensity time series.

Chapter 8: Conclusions, Implications and Possible Extensions.

In this chapter the results of the data analysis sections and the modelling section are
summarized. This chapter also considers the implications of radar measures acquired from a
multiscaling rainfield and speculates on possible data processing strategies that preserve and exploit
this information.
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2.0 Data Collection and Processing.
Radar Measurement Scales and Terminology.

Mostmeteorological radars operate by sending out a finite length pulse of microwaves. Figure
2.1isan idealization of the microwave pulse travelling away from the radar. The pulse has a volume,
henceforth referred to as the pulse volume (8,), that is given by v =1 + r8, « 8, where ! is the pulse
length (for the VPR [ ~ 37 m, the actual signal is retumed from a volume half this length). r is the
distance of the pulse from the radar, and 6, and 9, are the vertical and horizontal beamwidths. In
what follows the radar is assumed to average over a volume [r 6" (8, = 8,) and defines a scale ratio
A of the outer scale of the rain process L over the pulse volume scale / ({ is taken to symbolize the
characteristic scale of the pulse volume in 3D). Thus, B, is the set of drops in a 3D volume of scale
ratio A. Figure 2.2 shows an idealization of the VPR operating in a typical rainfield. The pulse
length ! is selectable on some systems, but remains fixed during measurement. The pulse volume
is a function of range due to the beamwidths. Therefore as the pulse travels further away from the
radar its lateral dimensions increase and the signal returned averages more of the structure of the
rainfield. The wavelength used by a given radar is generally fixed. Meteorological radar systems
are traditionally X-band (~3 cm), C-band (~5 cm), or S-band (~10 cm). For a given radar system
the number of wavelengths within a pulse volume is a function of the pulse length. Within each
wavelength, planes of constant phase (relative to the radar) can be defined.

The rate at which pulses are sentout by a given radar is known as the pulse repetition frequency
(PRF) which has units of Hz. The primary data sets collected for this thesis (table 2.1) were collected
with a PRF of 1300 Hz. The time between successive pulses is 0.77 ms. In 2 0,77 ms interval a
drop moving at a velocity of 5 m/s could move 3.85 mm.

The reason that weather radars work is that water is a dielectric molecule and hence when a
drop is hit by an electromagnetic wave it produces a backscatter wave which can be measured. The
quantity of backscattered energy is a function of a number of parameters including drop size and
wavelength. The various relationships between scattering variables is well known and can be found
in many references including Gunn and East (1954) ane” Battan (1973). Acknowledging the various
difficulties the naive assumption that the backscattering is limited to the Rayleigh regime is often

3 Exceptions as noted in Table 2.1.
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Radar Measurement Scales
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Figure 2.1: Radar measurement scales. As the microwave pulse
travels downrange its lateral dimensions change due to the

beamwidth. The wavelength A, and the pulse volume scale B
remain constant.




made. Rayleigh scattering means that the reflectivity factor Z of a drop is proportional to the square
of its volume. The Rayleigh scattering condition is that the size factor of the drop @ = :T” is much
less than 1 (in fact it is valid up to around o = 0.1, Gunn and East (1954)).

The Data Sets.

A vertically pointing X-band radar (VPR) was used to collect 2 number of unique data sets.
The only unique feature of the VPR is that the dish is fixed and faces upward. The VPR is normally
used to collect time series of the vertical structure of precipitation. The height-time indicator (HTD
diagrams (see figure 1.1) represent very high spatial and temporal resolution records of the
development of precipitation over the radar. For the purposes of studying the fluctuating echo some
special data collection routines were written. The special data sets collected with the VPR consist
of time series of echo fluctuations from a single volume at fixed range (i.e. fixed pulse volume
scale) at the highest pulse repetition frequency (PRF) of the VPR (see figure 2.2). The bulk of these
special data sets consist of time series of intensities at two or four heights. These data sets, labelled
A through I, are detailed in tables 2.1 and 2.2. However, echo time series A through I are of limited
duration (the duration of sampling was limited by available resources). In ordeto examine a targer
range of scales a longer time series was constructed from the HTI data archivzs of the VPR (the
VPR has been in nearly continuous operation since 1989, see Fabry, 1990; Fabry et al, 1993). In
its normal mode of operation the VPR collects a vertical reflectivity profile up to 8 km in altitude
using oversampling to 7.5 m resolution of a 37.5 m pulse length. The estimates of the profile are
collected at 2 s intervals and represent averages of values of Z,;. Two time series were composed
from this record representing the variability at 1 and 1.41 km altitudes. Table 2.3 contains the two
time series, labelled VPR1 and VPR2, of four months duration. Thus, the total range of scales

collected to examine the fluctuating echo spans timescales from 0.77 ms to 4 months, or 10 orders
of magnitude.

Secondary data sets were employed to verify the observations made with the time series of
the fluctuating echo. Of course, it was not possible for one device to overlap the timescales
observable with the radar, so a number of devices were used. These secondary data sets include
two series of rainfall intensities collected by electronic raingauges presented in table 2.4, and two
series of “sonic’ gauge data collected with a device of unique construction presented in table 2.5.
The sonic raingauge was constructed by Mr. F. Fabry of the McGill Radar Weather Cbservatory
to provide time series of rainfall intensity that could overlap the time resolution of the hi-res radar
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Figure 2.2: An idealized schematic of the VPR operating in 2 rainfield. The device can be used to
collect a continuous vertical profile. The device can also be used to collect a time senies of
echoes at a fixed altitude. The resulting time series for a collection at a fixed altitude would
have a temporal resolution given by the PRF of the VPR. The spatial resolution for a given
time series is fixed.

data below 2 s. The timeframe for data collection extends from fall 1990, when series A was

collected, to the fall of 1992. The most intensive collection periods were fall 1991 and the spring,

summer and fall of 1992, Instrumentation involved four different radar systems, two electronic

raingauges and one ‘sonic’ raingauge.

Table 2.1 outlines the ultra-high space and time resolution intensity time series acquired with
the VPR. Series A was collected with a 1700 Hz PRF X-band marine transmitter which has a 10
dB noise figure. Series B through G were collected with the VPR using a new (installed 1990)
1300 Hz PRF marine wransmitter which has a very linear response with a 4 dB noise figure (see
figure 2.3). The ability of the newer radar to represent even the smallest rainrates i remarkable,
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its Jow intensity resolution limit is estimated at -10 dB or roughly 0.01 mnvhr. Both radars are
based on magnetrons which are incoherent devices. An incoherent device is one whose phase is
random from pulse to pulse’. The time series are direct digital recordings of the output of the
logarithmic amplifier of the radar set. Pre-processing was avoided. The precipiiation events were
selected such that the entire time series was collected inside the duration of a rain event. Thus, all
time series of echoes were collected from "contnuous” precipitation. This collection scheme
represents a bias towards stratiform rain events. However, in Montreal, frontal convection is
generally associated with large extzus of stratiform precipitation which follow, Further, close
examination of the vertical records of stratiform precipitation reveal a great deal of embedded
convection,

4 The incoherence of the collection device is important since it will be shown in the spectral
analysis section that the echo fluctuations are coherent.
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Figure 2.3: Calibration curve for the 1300 PRF wansmitter. The linearity of response of the
receiver covers nearly 60 dB.
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Table 2.1: Radar Echo Fluctuation Time Series Collected with the VPR,
Series Precip. Date PRF Height Pulse |# of Points
(Hz) (km) Volume | (x 1024
1000 m*

A Convective 19/09/90 1700 1 45 7168
Rain

B, Convective 26/09/91 1300 1 45 3584
Rain

B, Convective 26/09/91 1300 14 Q0 3584
Rain

G Strat. 23/09/91 1300 1 45 3584
Rain

C. Stat. 23/09/91 1300 1.4 90 3584
Rain

D, Strat. 15/10/91 1300 1 45 1792
Rain

D, Strat. 15/10/91 1300 1.4 90 1792
Rain

E, Strat. 15/11/51 1300 20 183 1792
Rain

F, Strat. 15/09/91 1300 1.0 45 3584
Rain

F, Strat. 15/09/91 1300 1.4 90 3584
Rain

G Strat, 20/10/91 1300 1.7 150 1792
Rain

The intensity time series detailed in table 2.2 were collected using the X-band and S-band
operational radars at MRWO 1o observe the effect of horizontal incidence (as opposed to vertical
incidence). Three collection periods were attempted and the resulting time series are detailed in
table 2.2. Aswith the VPR time series, the collection was from fixed volumes of space in continuous
precipitation. Echo time series H was collected with the McGill FPS-18 S-band radar system. The
10 m antenna was used with an elevation angle of 1°. The beamwidth for S-band is 0.86" and for
X-band operation the beamwidth is < 0.3°. Ranges and azimuth angles were selected to minimize
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. ground clutter signals. The noise figure of the S-band radar is very high and is estimated at 17 dB.
cho time series [ was collected with the McGill X-band radar through the same antenna and with
the same collection strategy using 16 range gates. The noise figure of the X-band system is estimated
at 8 dB. Results from series I will be presented as an average of these 16 bins.

Table 2.2: Radar Echo Fluctuation Time Series Collected with Horizontal Pointing Radars
Series Precip. Date PRF Height Pulse |# of Points
(Hz) (km) Volume | (x 1024)
1000 m®
H, Convective 13/03/92 300 <10 6800 1024
Rain
H, Convective 13/03/92 300 < 1.0 9700 1024
Rain
I Strat. 17/09/91 300 < 1.0 N/A 16 x 256
Rain

The VPR system is normally used to make continuous records of vertical rainfield variability.
During the summer months of 1992 the VPR was operated continuously. The resulting HTI data
. set has two second temporal resolution with vertical spatial resolution of 7.5 m (see figure 1.1).
Horizontal spatial resolution is a function of height (follows the beamwidth). From these long HTI
scrics it was possible to extract time series of reflectivity at fixed altitude. Table 2.3 details two
dependent series, VPRI and VPR2, extracted from the summer HTI data set. These series contain
acontinuous record of rainfield variability over the MRWO site for the indicated four month period.
The VPRI and VPR2 time series comprise averages of 512 Z,; values taken every 2 s. Thus, the
outer timescale resolvable with VPRI and VPR2 is several orders of magnitude larger than that of
series A through L

Table 2.3: Time Series of Z_ collected with the VPR.
Series Dates Temporal PRF Spatial
Resolution Resolution
VPR1 |July 15, 1992 -> 2s 1300 45,000 m®
October 11, 1992
VPR2 | July 15, 1992 -> 2s 1300 90,000 m®
October 11, 1992
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Supporting Data Sets,

In order to support and aid in quality control of the radar observations, electronic recording
raingauges were used to simultaneously sample the rainfield variability. The gauges are known as
HYDRASs and are a product of Prof. D. Stow of the University of Auckland in New Zealand. Table
2.4 details the data sets collected by the two HYDRA raingauges located at the radar site (MRWO)
and on the McGill campus in downtown Montreal some 40 km away. A limitation of the HYDRAs
is that they sample only every 15 s. A further limitation common to all rain measurements is their
lack of sensitivity to extremely low rainfall rates. The VPR is sensitive to ~0.01 mmy/hr (based on
noise figures), the HYDRAS are much less sensitive ~0.5 mm/hr.

Table 2.4: Electronic Gauge Data
Series Dates/Location | Resolution Description
HYDRA 1 June, 1992 -> 15s Counts of fixed size Drops.
November, 1992
At MRWO
HYDRA 2 June, 1992 -> 15s Counts of fixed size Drops.
November, 1992
McGill Campus

The drop counts produced by the HYDRAs were converted to rainfall rates, Integration of
the rainfall rates over storms and over the extended collection period yielded rainfall accumulation
estimates in good agreement with local accumulation gauges and radar estimates of rainfall.

Initial spectral plots of the echo time series data revealed a plateau at frequencies higher than
(.2 Hz. A method was conceived to record the variations of intensities of rain to very high
frequencies. An analog recording device (a Walkman) was placed beneath a metal plate at the
MRWO site and two rainfall events were recorded. The device was termed a sonic’ gauge. No
atternpt has, as yet, been made to calibrate the sonic gauge in terms of rain rates. The sound
recordings were digitized using the video digitizer employed to collect the radar data. The two time
series detailed in Table 3.5 represent simple temporal variations of the sound of rain. The sonic
gauge data was introduced in order to overlap the ultra-high time resolution of the VPR data of
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. table 2,1, The sonic gauge recordings were digitally processed to have 0.1 s time resolution and a
total timespan of 45 minutes. The time series can be used to verify the scaling behaviour observed

with the radars,

Table 2.5: Sonic Gauge Data
Scries Date Sequence length
S, August 29, 1992 45 min
S, September 3, 1992 45 min

The data sets outlined in this section should be adequate for an initial exploration of the
spectral characteristics of the rainfield at the highest resolutions offered by radars and raingauges.
The overlapping data collection strategies employed and cross checking of data series limit the
possibility of gross data errors.
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3.0 Universal Multifractals.

The progression of understanding of the statistical propernties of fully developed turbulence
has led to a stochastic modelling process known as the multiplicative cascade. Cascades reveal
intermittency, extreme variability and scale invariance properties entirely like those found in
turbulence. Indeed, the scale invariance found in wrbulence, and modelled by cascades, can be
found in a large number of other geophysical ficlds ranging from the rainfield to land surface
topography. The justification for cascades is more than skin deep. Cascades embody both the scale
invariance permitted by the Navier-Stokes equations as well as the phenomenological "eddies within
eddies’ description of turbulence that is currently accepted. The existence of scale invariant or
scaling behaviour represents a symmetry of geophysical systems that can be exploited in order 10
fully characterize the extreme variability of measures acquired from geophysical fields.

Measurement of scale invariant fields leads to measures which are scale dependent. The
introduction by most remote sensing devices of one or more scales into the measurement process
affects the nature of the measures. This effect can be understood in terms of the averaging
(*dressing’) of a cascade ficld. Measures resulting from cascade fields are multifractal. Multifractal
formalisms provide a framework within which the scale invariant nature of 2 measured field can
be exploited in order to fully characterize the measured field. It also provides a framework for
understanding the extreme inhomogeneity and variability found in most geophysical fields. The
study of multifractals is therefore the study of measures resulting from scale invariant fields.

This section constitutes a summary of the concepts of universal multifractals that are used to
characterize and model the time series of echo fluctuations. The development will follow that of
Schertzer and Lovejoy (1983, 1985, 1987, 1989, 1993a) and Lovejoy and Schertzer (1990a,b, 1991)
and will cover results pertinent to the statistical characterization and modelling of time series of
radar echo fluctuations. A comprehensive review of multifractal concepts and their application to
rain in general can be found in Lovejoy and Schertzer (1993b). The development will also include
details of the measurement techniques introduced by Lavallee (1991).
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. Turbulence Theory: The Roots of Scaling Theories and Cascade Phenomenologies.

Multifractal formalisms are used to describe the behaviours of fluxes of quantities such as
turbulentenergy in the atmosphere. Fluxes of turbulent energy are increasingly understood in terms
of the statistical behaviours of cascade processes. The development of the cascade phenomenology
extends at least back to Richardson (1922) and his little poem,

Big whorls have little whorls,
Which feed on their velocity;
And iinle whorls have lesser whorls,
And so on to viscosity
(in the molecular sense)

which describes a cascade process which carries kinetic energy, as well as passive admixtures, to
progressively smaller scales. The work of Kolmogorov (1941) used this conceptual model and
showed how a homogeneous cascade of turbulent energy carried by space filling eddies might
appear on a spectral representation of velocity fluctuations. Komolgorov (1941) used the term
"universal’ to describe the cascade behaviour within the inertial range. This use of the termuniversal
refers to the fact that inertial range cascades are sufficiently far from either the dissipation scale or

. the scale of introduction of energy that they are free of any influence and always develop according
1o the symmetries of the governing equations. (The use of the term universal in the description of
universal multifractals is in a different sense and the two should not be confused). Kolmogorov
(1941) first proposed forms for the distributions of fluctuations based on the assumptions. Namely,
the velocity structure functions obey the relation

davi)> = F;.(%)(Eol');, L<i, G.1)

where Ly is the outer scale of the turbulent process and F, is some unknown function whose argument
soes to zero for scales significantly larger than the dissipation scale N, This assumptions leads
directly to the following form of the energy spectrum

Ek) = Ce%™ (3.2)
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for scales sufficiently far from the dissipation scale and outer macroscale L,. What this prediction
suggesis is that in the inertial range the transfer of energy is most efficient to adjacent scales. This
represents the localness of transfer from one scale to another and embodies the whorls within whorls
description of turbulence that has come to be accepted. As work on, and measurements of, turbulent
energy dissipation progressed it was realized that the statistics of the homogeneous cascade model
were neither extreme enough nor intermittent enough to fully describe the field. Progressive
modifications to the theory, Obhukhov (1962) and Kolmogorov (1962) attempted to account for
the highly variable nature of the distributions of velocity fluctuations. However, the statistical
dependence of the structure functions remained unchanged. It was shown by Anselmetetal. (1984)
that the prediction for the velocity fluctuation structure functions breaks down for h > 4. This
breakdown suggests a new form for the structure functions,

<JAVLY > e LYW (3.3)

where {(k) is a non-linear function such that {(h) = h/3 forh <4 and (k) < h/3 “or h > 4. Itshould
be noted that the structure functions retain their scaling structure, but not with the exponents
predicted by Komolgorov (1941,1962). As the theory of turbulence developed, the spatial
information carried by turbulence, namely the intermittency and spatial inhomogeneity of
turbulence, became more of a concern. It was realized that turbulence was not homogeneous, but
rather, was inhormnogeneous. The B-model, introduced by Novikov and Stewart (1964), atiempted
1o provide a conceptual model for the intermittency of turbulence. Frisch et al. (1978) showed how
the Kolmogorov (1941, 1962) description could also be applied to the intermittent B-model. Thus
began the coupling of spatial description of turbulent intermittency with the statistical nature of the
extreme variability of velocity fluctuations. The proposed cascade models have always obeyed the
scale invariance suggested by the form of the power spectrum. The governing equations of fluid
motions, the Navier-Stokes equations, certainly permit scale invariance and therefore the scale
invariant models can be said to respect a symmetry of the governing equations.
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Multiplicative Cascades.

The cascade model is predicated on the idea that fluxes, such as turbulent energy or rainfall
H,. are concentrated onto progressively smaller volumes without any a priori scales. While this
does not rule out the possibility that limited samples of a cascade will contain structure (there are
structures in figure 3.1) it says that the scales of these structures are not important in an ensemble
sense (i.e. the next realization will likely show other scales). Itis assumed in a cascade construction
that energy is introduced to a system at some large scale L. The energy is then multiplicatively
cascaded to progressively smallerscales /. Mathematical details of the -model construction process
can be found in appendix A. The scale ratio A = L/ (we also make use of A™' to indicate the box
scale [) can be used to index the scale of boxes in the current construction step. The range of scales
over which this process can be defined is limited only by the outer scale of the field and the “inner’
or dissipation scale. The number of volumes over which the flux is progressively concentrated
increases while the volume, identified by its characteristic scale /, decreases. The highest resolution
clement of a cascade construction is therefore given by A™. At progressive construction stages,
indexed by scale ratio A, the flux density 1, becomes more singular. The general measure of
singularity of the flux field p; at scale ratio A is defined by

[uexnas

A= Ell_—o (3.4)

where Dis the dimension of the space. The singularity ytherefore represents an average or "dressing’

of the flux density over boxes of scale A™'. The term singularity is used instead of the term intensity
to emphasize the fact that for scaling fields intensity is a scale dependent quantity. Thus, intensity
can be thought of as singularities integrated over a fixed scale ratio A. The result of the cascade
construction process is that a small number of the volumes will contain a great deal of flux while
the rest are close to zero. Thus, the measures of flux 1, in the limit A — oo is very singular. The
range of singularities available to the system depend on whether a micro-canonical or canonical
cascade is being examined. In the case of the micro-canonical cascade the singularities are bounded
(i.€. Ynan <©0). In the case of the canonical cascade the singularities are unbounded (i.e. ¥,,, = oo
a8 A — o00),
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Figure 3.1: Flux density p(x) resulting from a cascade model. The scale ratio of this cascade is A
= 1000, since the inner scale is 1 pixel and the outer scale is 1000 pixels. The singular nature
of p(x) is intended to reflect the singular nature of atmospheric fields. Measurement of a
field such as that depicted here will generally involve averaging over a scale larger than the
inner scale and will therefore involve ’dressing’ (averaging). If, for instance, we measure

this field with a resolution of 4 pixels then our measurement volume B, has scale ratio 256
and each of our measures will contain an average of 4 pixels.

The difference between micro-canonical and canonical cascades is non-trivial. A
micro-canonical cascade is very restrictive in the sense that flux conservation is guaranteed foreach
construction step. Thus, each member of an ensemble of micro-canonical cascades obeys strict
conservation (i.e. the total density remains constantatevery step). The maximum order of singularity
that can be achieved with a micro-canonical cascade constructed in a space of dimension D is
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... = 1. Thus, the singularities are bounded. The micro-canonical g-model is sometimes referred
to as the p-model since the pre'ibilites of increase and decreasing are fixed at the outset. The
more interesting canonical cascades, or n-state random cascades, have a less stringent flux
conservation condition: flux is conserved only in the ensemble. Thus, each member of the ensemble
of canonical cascades does not strictly conserve flux, The maximum order of singularity achievable
with canonical cascades leads 10 Y., > D, which is interpreted to mean that there are extreme
singularitics that are not seen on all realizations. Thus, there is a distinction between ‘calm’
micro-canonical multifractals wherey,,, =D, and 'wild’ canonical multifractals where ¥.,, > D.
Canonical multifractals therefore, necessarily involve the concept of divergence of moments since
the singularities Yare unbounded. The remainder of the discussion will deal with canonical cascades
since these are better able to represent the extreme variability of rainfall intensity.

Dressing Operations and Bare Cascades.

A 'bare’ cascade is defined as a cascade construction terminated at some scale ratio A. The
cascade density field in figure 3.1 is a bare cascade constructed to scale ratio A = 1000. Any of the
ficlds generated by the processes described in appendix A will result in bare cascades. As indicated
previously a dressed cascade could be constructed from the bare cascade in figure 3.1 simply by
averaging (dressing) over boxes of some scale ratio A. If we consider the small scale limit of the
cascade construction process A — oo, we find it 10 be very singular. If we consider p,~A" for all
¥>0, pp = o and < p§ >=A2%9 — oo for all q > 1. Therefore, if a limit exists it is not in the sense
of functions. Indeed, well defined limits existonly for the fluxes I[T,(8,) — I'.(B) which are integrals
over the flux densities p: Dressing operations are defined as integrals over the density of flux found
in a bare cascade

@) = LmI,B) = lm pd’x (3.5)
—- - 2
In order to see why the integration leads to such a drastic calming effect it is necessary to consider

the integration of the fiux density [ over a ball B, embedded in a space of dimension D. Considering
a singularity of order yat the origin yields:
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In microcanonical cascades ¥ < D by construction so all singularities can be smoothed out by
averaging: A~ — 0. However, in canonical cascades singularities Y> D are present which cannot
‘be averaged out, so the canonical forms retain their divergent behaviour even under averaging, The
singular nature of the limit A — oo and the possibility of smoothing out some of the singularitics by
integration lead Schertzer and Lovejoy (1987) to distinguish between bare and dressed cascades.

The integrating effectof most remote sensing devices over the scales they use formeasurement
makes the distinction between bare and dressed cascades necessary. Since atmospheric processes
will generally carry out a cascade to only a finite scale ratio A, it is necessary to have a reasonable
explanation why stanistics compiled from remote sensing devices indicate divergence of moments.

Multifractals: Measures from Scale Invariant Fields.

Multifractals arise when cascade processes concentrate fluxes into progressively smaller and
smaller regions. The term multifractal was coined to represent the fact that different intensities or
singularities of the flux resulting from a cascade have different fractal dimensions. The measures
of cascade fields produced by remote sensing devices are also multifractal. Multifractal formalisms
provide a framework within which the scale invariant nature of cascade fields can be exploited to
yield a statistical characterization of the field which is independent of scale.

A number of notations for the description of multifractals exist in the literature. The basic
elements of multifractal descriptions are embodied in the (@, f(¢t), To(q)) notation® (see e.g.
Hentschel and Procaccia, 1983, Parisi and Frisch 1985, Halsey et al, 1986, Meneveau and
Sreenivasan, 1989) or the (y, ¢(), K (g)) notation of Schertzer and Lovejoy (1987). However, the
two notations were developed to explor: different questions. The (¢, f5(®p), Tp(g)) notation was
intended for low dimensional work in strange attractors. The Schertzer and Lovejoy notation is
specifically suited to analysis of geophysical fields where stochastic processes can involve
dimensions approaching infinity. The two notations share concepts, but little terminology. For

5 The D subscript is added to show that these measures of dimension depend on the dimension D
of space in which the field is embedded.
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example, averages over scale £ of measures are characterized by exponents ¢, in the (o, f(0p))
notation and by ¥ in the (7, ¢ (7)) notation, where &, =D =¥ (D is the dimension of the space). Yis
a singularity as is i, but ¢(y) is a codimension function whereas fp(@p) ts a dimension function.
Codimensions are simply defined by ¢(y) = D - D(y), where ¢(¥) 1s the codimension, D is the
dimension of the embedded space (i.e. for time series D = 1, for CAPPIs D =2, ete...), and D (V) is
the fractal dimension of the space D occupied by singularities exceeding ¥. Codimensions are more
practical fordescribing stochastic processes since they remain invariant as the number of dimensions
of the systems tends to infinity. ¢(y) is preferred for the simple reason thatas D — oo ¢(y) is defined
while f,{¢t,) is not.

The distribution of intensities v of the flux p, from a cascade at scale ratio A for a cascade

ficld is given by (see Schertzer and Lovejoy, 1987),
Pri;2A) = p(pa~® (3.7

where 1, is the flux averaged over scale A", yis the singularity (or intensity), p{y) is a slowly varying

intensity dependent prefactor (which is generally ignored in most developments), and ¢(Y) is a
codimension function which depends on the intensity. The codimension function ¢(Y) defines a
continuous spectrum of exponents governing the probabilities of various intensities ¥ of flux [,
integrated to some scale ratio A, ¢(y) is constrained to be a convex function.

At a fixed scale ratio A, the probabilities can be estimated as the ratios of the number of

structures with singularities 2 v to the total number of structures N,. (Recall that a scale ratio A
means that a data set is being dressed over "boxes’ of scale A™' and therefore the singularity ¥
represents the average inteasity over the box). Thus, the probabilities can be approximated as

Priu, =AY = N, (YN, (3.8)

WheneverD 2 ¢(y), cfy) also has a geometrical interpretation. In this case, on almost all realizations
Ny(¥) = AP® where D (y) = D — c(y) and c () is the fractal dimension of singularities exceeding some
threshold (This relation is central to the "functional box counting’ technique of Lovejoy et al. (1987)
to estimate ¢(¥)). Thus, different singularities (or intensities) have different fractal dimensions and
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the field is multifractal. The case where ¢(y) > D represents the "hard” singularities that are almost
never observed in finite samples but lead to divergence of moments and first order multifractal
phase ransitions (sce below),

The moments of a multifractal are also dependent upon scale. By moments we reter to

averages of the quantity of flux within boxes of scale A™' exponentiated to some power . The
relation for moments 18 given by

O (3.9)

where g is a real valued moment and A defines the box scale over which y, was averaged. The
function K(q) defines a continuum of exponents which characterize the scaling behaviour of .
The scaling behaviour of moments of y,, or more precisely estimates of K(q), are examined by
plotting the averages as a function of scale for different values of g on a log-log graph (see figure
3).

L)

There are fairly general conditions under which knowledge of probability distributions is
equivalent to knowledge of the moment structure of a field. The relationship between ¢ () and K(y)
for multifractals was shown by Parisi and Frisch (1985). K(q) and ¢(y) are a Legendre transform
pair,

K{g)=max(gy=-c(y)) ; c(y)= max(gy-K(g)) (3.10)
Y q

These equations establish a one-to-one correspondence ¢ =¢’(y) and y=K"(g), where prime (°)
indicates differentiation. Thus, knowledge of the moment structure is equivalent to knowledge of
the probability distributions.

The obvious implication of the relations for moments and probabilitics presented above are
thatmeasures from cascade fields are dependent upon the scale of observation. The scale inavariance
or self-similarity of the cascade may be exploited in measurements simply by examining moments
computed over different scales to produce functions which are independent of scale and charactenze
the measures precisely. The functions K(g) and ¢ (y) are scale invariant descriptors of the underlying
cascade process and hence characterize the flux 1, independent of what scales were used o collect
estimates of i;. Such descriptions allow the cross comparison of data sets acquired with different
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resolutions from the same cascade field. Indeed, if 2 field exhibits cascade behaviour the only way
to compare measures acquired with different resolution sensors is through the scale invariant

functions.

Universal Multifractals and the Generator T,

Schertzer and Lovejoy (1987) present an argument relevant to atmospheric mixing processes
that gives K(q) and ¢(y) specific forms. The argument they present suggests that the turbulent
mixing of cascades yields other cascades of the same type. Thus, there are stable and attractive
classes 1o which multifractals can belong. The most useful result of this universality assumption
is that K(q) and c(y) are dependent upon only two parameters, & and C,. «& is an index 10 the
Levy-Stable distributions used 1o generate the multiplicative terms in the cascade construction
process. C, is the codimension of the ensemble mean of the cascade field and is a measure of its
sparsity. The forms for K(q) and ¢(y) are

1Y
c,( Y +—) with $+é=1,(a¢1,05asz)

c)= G (3.11)
C, cxp[cll— l] if a=1
Cl a .
Kiq)={a-19 ~9 ¥ o=l (.12)

Clq 1“(4), a= 1

(Sometimes, C, is mistaken as the support (geometry or dimension of the non-zero densites) of a
cascade field).

The "universal’ multifractal formalism is cast in terms of the codimension functions ¢(y) and

K(q) (which has led to the new name *codimension multifractal formalism’, Lovejoy, personal
communication, 1993). The parameter ¢, in relations 3.11 and 3.12, is an index to the class of
Levy-Stable distributions to which a given multifractal belongs. The range of possible & values is
0 <o <2. The special case of &t =2 produces a nearly log-normal distribution, which is nearly the
same as the log-normal multiscaling models of turbulence proposed by Kolmogorov (1962) and
Obhukhov (1962). The & = 2 case uses a Gaussian sub-generator (see Appendix A) and will be
used for the bulk of the modelling performed in chapters 6 and 7. However, analysis of the fluctuating
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echo will reveal that estimates of ¢ can cover the range 1.4 < o £2. Multifractal processes with
I <a <2 have Levy-Stable generators, the case =1 has multifractal processes with Cauchy
generators. These three cases involve "unconditionally hard” multifractals, which means that for
some moment q, given by ¢p. the momenis will diverge. The case 0 <ot < 1 yields multifractal
processes with Levy-Stable generators, but these processes have bounded singularities as long as
sufficient averaging of the process is involved, which give rise 10 the term "conditionally hard”
multifractal processes. The case o = 0 (actually it should be considered as @ approaching zero from
above) produces a B-mode! after the turbulence model by Novikov and Stewart (1964).

Universal multifractals have found application in a wide range of fields. Gabriel et al. (1988)
provides the first test of universality with empirnical data (measurement techniques will be discussed
below). Seed (1989) measured & and C, using radar data. Universality in turbulent temperature
and wind data was found by Schertzeretal. (1991), Schmittetal. (1991), Kida (1991). Universality
has also been found in high energy physics by Brax and Pechanski (1991), Rarti (1991), Rauti etal.
(1991). oceanography by Lavallee et al. (1991), land topography by Lavallee et al. (1991), and the
low frequency component of the human voice by Lardner et al. (1993). The work by Tessier et al,
(1993) reveals universality in cloud radiances measured by satellite, but most important is the
documentation of universality in time series of radar echoes down to time scales of seconds (which
corresponds to 2 space scale consistent with the radar resolution volume B, with the application of
an appropiate velocity).

Universality is embodied in the definition of the multifractal generator I';, The generator [T,
is defined by [, =Iny, and represents a cascade completed to scale ratio A. Ty is further defined
by

T. Kilq)
<pis=ce’ *ome N = oMK} - R K@) (3.13)

Some details of the generator, which is used to produce multifractal noises with specific cc and C,,

can be found in Appendix A. The basic result is that generators are additive. Thus, addition of two
or more generators results in a generator of the same type

T = The+D (3.14)
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. where [ is a cascade developed to scale ratio A°, and T, is a scale change operator. The scaling
noises defined this way belong to a stable and attractive or "universal’ class.
Sample Size and the Sampling Dimension D,

A major feature of multifractal characterizations of variability is the Legendre transform
between moments and probability distributions of singularities. Due to this relation, limitations in
dynamic range of remote sensing devices, which limits the range of singularities observable, may
be described in terms of limitations of accessibility to moments. Sampling strategies play a large
role in the estimation of multifractal parameters. Due to the convexity of ¢ (y) larger samples of the
same variability invariably hold a wider range of intensities allowing 2 greater range of statistical
moments to be defined. Such relations are defined in terms of the sampling dimension D, (Schertzer
and Lovejoy, 1989). The sampling dimension D, quantifies the extent to which the probability
space is explored. D, allows us to define the highest singularity v, observed on N, independent
realizations of a field.

The maximum singularity Y observed at least once in N, samples of volume D is defined as

v, and is approximated by

o NP (3.15)

A sampling dimension D, ¢an be defined by the number of samples N, of dimension D by

log(N,)
= — 3.16
s Tog(h) (3.16)
this allows for the following relaticn for ¥,
c(t) = D+D, (3.17)

Using the Legendre ransform between probabilities and moments {(g, = ¢ *(y,)) defined by relation

3.4 the largest moment that can be reliably estimated from a sample size N, is

_ (p+D,Y 318
Q; - Cl ( . )
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q, represents a sampling limitation to the moments that can be reliably analyzed.
Second Order Multifractal Phase Transitions.

The upper bound of observable singularities ¥, and moments ¢, leads to a second order

multifractal phase transition (Schertzer et al., 1993). The Legendre transform of ¢(y) with y2y,
leads 10 a spurious linear form for the exponents K(q) formoments q> q,. q, = ¢ '(¥,) is the maximum
moment that ¢an accurately be estimated given a sample of dimension D,. The form of K (q) is

K(@)=v(qe-9)+K(q), ¢2¢:K,q)=K(q). g<gq, (3.19)

If we consider that the probability description (Y.c(Y)) is the multifractal analogue of the (energy,
entropy) description of standard thermodynamics, then the moment description (q.K(q)) is the
analogue of the (inverse temperature, Massieu potential) description. An analogue of the free energy
is C(q) = K(g)/(q-1). (Entropy,Massieu potential) and (c(¥).K(q)) are Lengendre transform pairs.
In this analogy the change in K,(q) from the familiar non-linear behaviour for q < q, 1o linear
behaviour for q > g represents a change in the free energy of the system. The corresponding C,(q)
becomes frozen at the value ¥,:

. o . ~-K"(q,)
AC™g) = C'(g)-C"@g,) = = (3.20)

*

This phase transition causes a spurious saturation in the statistics of measures of a scaling
field. The major implication is that if the data set is not large enough then the statistics saturate
and no more information can be extracted from the data. This effect makes the measurement of
multifractal parameters a delicate matter. Depending on the convexity of ¢(y) and on the sampling
dimension D, g, can take on values close to zero.

An important result is that for moments q smaller than g, the bare and dressed statistical
properties of cascades are exactly the same. From a measurement standpoint it is important to keep
the phase transition in mind, but below g, the behaviour of bare and dressed moments are
indistinguishable.

The scaling limit of very small moments q is also very important. A high signal-to-noise
ratio is required to detect small moments. The moment g ¢an be considered as a microscope which
examines the statistical properties of different singularities y (using the Legendre relation to
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Demonstration of the effects of gs

[N

K(q)
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Figure 3.2: Demonstration of the effect of q,. g, is 2 for this example. The graph shows how K (q)
exhibits straight line behaviour beyond q, and deviates from K(q) near g = 2. The slope of
K.,(q) at q values beyond g, is ¥, = 0.61 (but this value depends on the & and C, of the cascade
field). A line of slope 0.61 is plotted for reference.

transform between moments and singularities). Smatler moments examine the behaviour of lower
singularities. At some small q the scaling behaviour will be broken because taking low powers
kills the extreme singularities and allows the measurement noise (which is space filling C,=0.0) to
dominate. The noise figure of the VPR is very low (sensitivity to 0.01 mm/hr rainrates), as such,
it permits very small moments to be defined. Lesser devices affect the range of moments over
which the scale invariant function may be investigated.
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T : Trace Moments Calculation

Boxes -1 on Cascade Field () .(x)
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Figure 3.3: The mechanics of the determination of scaling moments and hence
the scale invariant function K(g). The notation used here involves sums
rather than integrals. The outer scale L remains constant while the inner or
averaging scale ! decreases by factors of 2. Estimates of the slopes of

Log(Trace Moments) vs Log(A) for moment q gives K(q).




A more critical transition in the statistics occurs when q is increased beyond a critical value
p The moment g, corresponds 1o the divergence of statistical moments beyond which the statistics
are no longer defined it terms of smooth functions. In this case the more serious first order
multifractal phase transition is encountered. However, if q, is smaller that g5 then divergence of
moments will not be observed. Further, small g, can lead to erroneous estimates of gy from
histograms. The divergence of statistics is a real phenomenon and necessarily implies fat algebraic
tails on distributions of intensity. However, for small samples the singularities responsible for this
divergence may not be sampled. The behaviour of the tails of histograms of intensities for small
samples may exhibit fat behaviour that is not due to divergence of moments qp.

Trace Moments: Measurement of o and C,.

The standard techniques used to estimate the moment functious are the partition functions
which give 72(g) (see for example Halsey et al., 1986; Meneveau and Sreenivasan, 1987, 1989;
Guptaand Waymire, 1990; Sreenivasan, 1991). The trace moments are used toestimate the function
K(q) at points q, and combine the partition function wi... cnsemble averaging (Schertzer and
Lovejoy, 1987). Given a cascade developed 1o scale ratio A of the flux ., estimates of K(q) can
be achieved by examining the log-log behaviour of powers q of the total flux over successive scales
A of averaging. The integrated or total rain flux I1 over a box of scale B, is given by

My = [ (321)
8y

where D is the dimension over which the integral is computed (i.e. D = 1 for time series data, D =
2 for 2-D data, etc...). The definition of the flux integral only differs from that defining singularity
(relation 3.4) by the normalization. I1,(B,) simply represents the total flux over some box of scale
ratio A of a cascade developed to scale ratio A, The trace moments are then defined as

Trp)=< Z(1{B, ) >= @0 (3.22)

where the subscript i indexes the boxes of size B, for the sum. Figure 3.3 shows an idealization of

the trace moments computation for a scaling field. Estimates of o and C, from trace moments are
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nearly impossible due to the ill-conditioned non-linear regression required to fit the estimated K(q)
to the universal form. Conventional fitting techniques are quickly bogged down by the tunctional
correlation betweenaand C, as well as the difficulties associated with second order phase transitions.

Demonstration of scaling moments and the resulting K(q) function for a multifractal produced
by the universal multifractal cascade generator (UMCG) (see appendix A) is presented in figures
3.4 and 3.5. The multifractal field was created with =2 and C, =0.1. Figure 3.4 shows the scaling
of the various moments. The intensities were summed over box sizes ranging from 2x2 10 256x256
pixels by integer orders of 2 in scale. Plotting the scaling exponent for each moment q in figure
3.5 gives arealization of the K(q) function (only the first 60 moments are shown). The K(q) function

is expected to exhibit straight line behaviour for moments greater than qy,, which for this realization
qD -~ 4.4.

The trace moments, and hence the techniques to estimate ©(g), is actually a very limited

estimaton technique. The trace moments are adversely affected by either low q, or p. Trace
moments are therefore only applicable to data sets large enough (large D,) or calm enough that
convergence of moments is not a problem. The trace moments for q > max{qg,.qy) Tesults in a linear
dependence of K(q) on q. Consequently, K(q) can be used to estimate q, and hence y,. This
considerable limitation to the applicability of trace moments led to the creation of the double trace
moments (DTM) by Lavalleg (1991) (see next section).
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Trace Moments for UMCG(2.0,0.1,0.0)
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Figure 3.4: Demonstration of scaling moments for a realization of the Universal Multifractal
Cascade Generator (UMCG) (see appendix A). The UMCG field was created to produce a
multifractal with o = 2.0 and C, = 0.1, the H parameter is set to zero for convenience since
it has no effect on the moments. Moments are expected to scale and do so in a convincing
manner for this "antificial’ data set. Only six of the 80 scaling moments calculated are shown.
'6‘16% ;noments q used to compute these curves ranged between 0 and 2 with an interval of
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TM/GA for UMCG(2.0.0.1.0.0)
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Figure 3.5: Estimate of the function K(q) resulting from the scaling moments in figure 3.4, The
points on the curve correspond to estimates of the slopes of the 80 moment curves computed

for figure 3.4. The legend gives the e and C, parameters estimated from the points using the
TM/GA technique (see section 4.1.2).

Double Trace Moments and K(q,m).

The double trace moments (DTM) technique was introduced by Lavallee (1991) to directly
estimate & and C, for universal multifractals. The technique is interesting since it introduces a new
exponent into the description of multifractals which is germane to the analysis and discussion of
radar echo fluctuation time series. The DTM introduces a second exponent (in addition to q) 1} by
transforming y into u". This ransforms the flux IT into an "1 flux" 1. The total or integrated flux
IT"is given by
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s, = f wrd®x (3.23)
L
The double trace moments are then defined as
Tr(@") =< T(MHB, ) >= 5w (3.24)

where the double exponent K(q,n) is introduced. K(q.n) reduces to the usual exponent K(q) when
n =1 (i.c. intuitively K(q,1) = K(q)). Anexample of the utility of K(q,n) is provided by the following

example. If the statistics of concentration of water (= 2 V) is known and can be described via K(q)
i
then the statistics of Z (= £ V) can be intuited as being described by K(q,2). The relation between
)
K{(q) or K(q,1) and K(g,n) is given by

¢
« —n%g%-¢q), a=l
K@ =K@ D={a-11 39 9

C,ng In{q), a=1

(3.25)

Thus, K(q.n) has a simple dependence upon 1. This simple dependence on ceallows itto be estimated
by plotting | K(g,1) | Vs 1 on log-log graph paper and performing a regression on the linear part
of the curve. If the | K(g,M) | Vs 7 plotted on log-log graph paper reveals no linear region then the
cascade cannot be approximated by a universal multifractal.

The range of 1 values where universality is expected to hold is dependent upon qg and/or qp,.
K(q.n) will beceme independent of 1 whenever max(qn,q) > min(qs,qp) (Lavallee, 1991). Since
{p isthe exponentabove which divergence of momentsisexpected itis natural toexpect the statistical
structure to break down beyond this point. g, is related to the sampling dimension and reveals that
samples must be large enough for at least some moments to converge.

The effect of q, on the DTM is graphically illustrated in figure 3.6. The field being examined
in figure 3.6 is the same as that in figure 3.4 and 3.5. The linear behaviour of K(q,n) forq=1.5
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terminates near ny = 3, which is consistent with the estimate of a g, of 4.4, The estimates of ¢ and
C, made from the linear region are very close to the input values of & = 2.0 and C, = 0.1 (the

difference is due to the stochastic nature of the UMCG generator).

DTM Curves for UMCG(2.0.0.1.0.0)

Log(K(q,cta))

ol 2
-1.5 -1 05 0 0.5 |

Log(eta)
-a-q=0.5(2.00.113) - q=1.5(2.0,0.114)

Figure 3.6: Plots of Log(K(q,n)) Vs. Log(n) for the same UMCG field presented in the last section.
The two curves represent the two moments q = 0.5 and g = 1.5. Regression of the lines gives
estimates of & The estimates of & and C, are given in the legend for the two moments ¢.

The value of qp is ~2.0 which gives log(n) = 0.5.
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Spectral Behaviour of Universal Multifractals.

The power spectrum E(k) can be used to examine the scaling behaviour of universal
multifractals, The scaling nature of the cascade construction process guarantees the power law
behaviour of the spectrum of the flux and hence localness of ransfer of flux in Fourier space. For
statistically isotropic scaling fields E(k) will be of the form & where k is 2 wavevector modulus
and B is the spectral exponent. The relationship between the spectral exponent B and the universal
parameters & and C, is given by (Lavallee, 1991),

B=1-K(2,M) (3.26)

The non-conservative nature of a multifractal can be natural, as it is in the case of wrbulence
or rainfall measures, or it can be the result of signal processing by some remote sensing device.
Given a measured multifractal field p, measured with some remote sensing device, p, can be
considered in the following way (Schertzer and Lovejoy, 1987):
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Power Spectrum of an Alpha Model
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Figure 3.7: Power Spectrum of an a-model created with the UMCG. A straight line of slope (.8
is plotted for reference. The a-model has c=2.0 and C, =0.1 (see figure 3.2). The spectrum
is an average of 64 spectra, each of length 1024. The spectral slope can be seen to match
closely the expected f =1 - K(2,1), which forae=2is f=1-2C, =038.

=A™ (3.27)
(with < p, >=1) where G, is u conservative multifractal field characterized by cand C,,and His a

filtering exponent. In turbulence this relation gives

Av(l) = g (3.28)
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where € is the density of the energy flux. Av(/) is the charactenistics fluctuation in velocity at scale

1

I. The scaling I* can be understood as a power law filter. The effect of this filter should be removed
to analyze the energy density € directly. A multifractal field with spectral exponent § > 1 can be
interpreted as the product of some conservative universal multifractal and a filter. Once estimates
of wand C, have been achieved for a measured field (observing the necessity to fractionally integrate
the field), the relation between the various variables is given by (Schertzer and Lovejoy, 1987)

B-1 C(2°-2)

= e

(3.29)

A subte point concerning the measurement of universal parameters arises due to the
nen-conservative aspect of most geophysical multifractals. The trace moments and DTM analysis
techniques require that the multifractal being measured be conservative. Inorderto properly measure
o and C, from, for instance, turbulence data, the data must be fractionally integrated such that B <
1. This can be accomplished using spectral techniques but under most circumstances a simple
differencing operation (i.e. replacing a time series by the differences between adjacent intensities)
will serve (see Tessier et al. 1993 for applications in 1D and 2D radar data).

Non-conservative fields such as rainfall intensity which have spectral exponents in excess of
1 can be modelled by employing a spectral filter to the multifractal construction process. The
spectral exponent for a filtered, or non-conservative, multifractal is given by (Lavallee, 1991),

B = 1+2H-K(@2,m) (3.30)

where H is the value of the exponent of a power law spectral filter. H can be considered as a third
universal multifractal parameter. Figure A.2 which shows the UMCG algorithm shows that the
spectral filter is applied after the creation of the universal multifractal. Thus, the statstical
characterization of the multifractal is retained (i.e. & and C, do not change) but the spectral slope
is altered and the field is made non-conservative.
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Dressed Cascades, Divergence of Moments and the First Order Multifractal Phase Transition,

The existence of divergence of moments leads to a first order multifractal phase transition
(Schertzer et al. 1993). There exists a moment qp bevond which the statistics will no longer be
describable in terms of smooth functions. By definition bare cascades have all of their moments g
defined since they are only constructed to finite A. A dressed cascade (i.e. a cascade produced by
dressing a bare canonical cascade) will generally have divergent moments for q > qy, (for a comiplete
argument see Schertzer and Lovejoy, 1987). In terms of the C(q) (= K(q)/(g-1)) function defined
above, the behaviour of C(q) will display a jump in slope ora first order phase transition. Multifractal
analysis techniques such as DTM will break down for moments greater than q,. The result that is
relevant here is that if qp is greater than g, then the analysis will break down for moments greater
than qp otherwise it will break down for moments greater than q,.
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4.0 Spectral Analysis of Rainfield Intensity Time Series.

This chapter is devoted to the examination of the spectral behaviour of time series of the
fluctuating echo as well as of the HYDRA data and the sonic gauge data. The objective is to
determine the range of scaling, A scaling regime on a power spectrum is indicated by a power-law
dependence of the spectral energy on frequency £ (k)e<k™, where k is a wavenumber. This chapter
also shows the behaviour of distributions of the fluctuating echo. The standard theory predicts that
the distribution of intensities from independent scatterers is Rayleigh. Contrary to this expectation
the echo fluctuation time series yield distributions of intensity with algebraic tails.

The power spectrum of the return intensity can be expressed as:
1 T
Ek(m)=FJ.e"‘"‘<I(k,0)I(k,t)>dt (4.1)
= Ir

The dependence upon wavelength is left as an index since it is anticipated that the statistical
behaviour of the intensity time series from a radar will depend upon this measurement scale and
hence so will the spectral behaviour. The power spectrum is the Fourier transform of the correlation
function of intensities. This follows from the Wiener-Khintchin theorem (using the assumption
that I(k,t) is stationary in time). The implementation of fast Fourier transforms (FFTs) makes
computation of spectra and examination of spectral behaviour a simple matter (See Press et al.
1992).

4.1 Scaling Spectral Behaviour in the Rainfield.

Before analyzing the high resolution echo fluctuation time series of tables 2.1 and 2.2, the
lower resolution time series of VPR and the HYDRA darta are analyzed to provide a framework
into which the analysis of the higher resolution data may be introduced. The spectral characteristics
of the rainfield revealed by the HYDRA gauges and the VPRI time series are shown in figures
4.1,4.2 and 4.3. Figures 4.1 and 4.2 are spectra formed from the rainfall intensity series collected
by the HYDRA gauges. The spectrz were formed by averaging several hundred 1024 point spectra
(timescales range from 4.3 hours to 15 seconds). The spectral slopes estimated from figures 4.1
and 4.2 are B=-1.5+0.1. Asmentioned previously, the scaling regime in figure 4.3, thatof VPRI,
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. extends to longer timescales than those of figures 4.1 and 4.2. The scaling range shown by the
HYDRA time series have a scaling break at a timescale below 1000 seconds. The spectrum of

VPRI has a scaling range that extends to well beyond 3000 s (or 50 minutes).

HYDRA Gauge June - October 1992
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Figure 4.1: Power spectrum of rainfall intensities recorded by HYDRAIL. Data resolution is 15
s. The spectrum is an average of 228 4096 point spectra. The spectral slope is estimated
atp=-15%0.1.

Characteristics to be noted in figures 4.1, 4.2 and 4.3 are an obvious break in the scaling
behaviour at low frequencies. The reason for this break could be related to the temporal duration
of rainfall during the sampling period, but it could also be related to limits of sensitivity in the
recording devices. Indeed, comparison of figures 4.1 and 4.2 with figure 4.3 reveals that the low
frequency scaling break occurs at different frequencies. Recent work by Lardner et al. (1993) has
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. shown that the extent of the scaling regime present on a power spectrum is dependent upon the
dynamic range of intensities resolved by a data acquisition system. Narrower dynamic ranges will
result in smaller scaling ranges. Generally, the loss will be observed as a scaling break at the low
freqquency end of the spectrum which moves to higher frequencies as the dynamic range is reduced.
This result is of interest since the devices, specifically the HYDRAs and the VPR, used to collect
rainfall time series for this thesis have very different dynamic ranges. The VPR has a very high
signal to noise ratio (SNR) which allows it to resolve rainrates down to ~0.01 mmy/hr, The HYDRA
gauges have significantly less intensity resclution. The result of these differences is the low
frequency scaling break in figures 4.1 and 4.2 for the HYDRA occurs at a timescale of ~700
seconds while that for the VPR in figure 4.3 occurs at a timescale of ~3000 seconds.
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Power Spectrum for HYDRA2 @ McGill Campus
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Figure 4.2: Power spectrum of rainfall intensities recorded by HYDRA2. Data resolution is 15
s. The spectrum is an average of 276 4096 point spectra. The spectral slope is estimated
atp=15.
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Power Spectrum

VPR Data July - August 1992
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Figure 4.3: Power spectrum of a time series of radar reflectivity intensities from a 2 month sequence
of HTI data collected by the vertical pointing radar (Series VPR1). The spectral slope is

estimated at f = 1.5,

Figure 4.3 reveals a plateau at frequencies beyond Log(f) =-0.3 (2 s time resolution). This
feature, which extends from second time scales to millisecond timescales, will be examined in
detail in the next sub-section. We wish to show here evidence that the piateau is an artifact due
to the radar measurement process in the statistics of the fluctuating echo. Series S2 is a sound
recording of the intensity of rainfall, however, no attempt has been made to relate the intensity of
the sound to rainrate. The scaling behaviour of the spectrum (figure 4.4) extends from 45 minutes
to 0.2 seconds, which overlaps the spectral plateau found with the radar data. What the sonic
gauge data tells us is that the intensities of sound support scaling behaviour over the entire range
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. of temporal measurement scales. The lower limit for scaling behaviour in the minticld is an
important issue. Tessier et al. (1993) and figure 4.3 show scaling behaviour to second time
resolutions. The sonic gauge is able to show that the scaling extends to time scales smaller than
seconds, and therefore to space scales smaller than the resolution scale of the VPR, Scaling power
spectra in dynamic fields will occur if there is no preferred scale in the system. There is, therefore,
no a priori reason why the scaling behaviour shown by the gauge data and the radar data should
not extend to very small scales. The fact that the scaling spectrum of S2 is not broken below the
scale of the plateau in figure 4.3 strongly suggests that the spectral plateau found in the echo
fluctuation time series is a radar measurement artifact.

Series S2
11

10

Log(E(f)

Figure 4.4: Power spectrum of series $2. The spectral slope is estimated at B = 1.3 £ 0.1,
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Spectral analysis of the various time series of rainfall intensities agree that the rainfield
exhibits scaling spectral behaviour to the smallest observable scales with B in the neighborhood
of 1.5. The small scale limit of the scaling behaviour present in the VPR1 time series is the same
as that shown by Tessieret al. (1993). The spectrum of the rainfield as revealed by VPRI extends
down 1o timescales of 2 s, which corresponds to a space scale of around 40 m. The spectrum of
the sonic gauge time series S2 reveals no plateau at these timescales, but, rather shows a nearly
smooth scaling regime from 45 minute time scales to the 0.4 s nyquist resolution limit.

The sonic gauge data supports the notion that rainfield variability exhibits scaling behaviour
to very small time/space scales in the rainfield. This is the first indication that sub radar resolution
variability has a form which is easily related to the variability at super resolution scales by a simple
scale changing operation. Thus, rainfield gradients at large scale are plausibly related in a simple
scaling way to gradients at sub-resolution (for the radar) scales.

4.2 Pulse Volume Effect.

The most striking feature common 1o all power spectra of the ultra-high time resolution
intensity time series, figures 4.6a-), ts that there are three distinct regions clearly evident on each
spectrum. The longest of the high time resolution time series extends for only 40 minutes (limited
by computer resources), as such, it would not be expected to show the 50 minute scale break
noticed on the spectrum of VPR1. The immediate implication of the spectra is that there are three
distinct statistical regions in the time series, each relating to a specific scale range. The three
regions, idealized in figure 4.6, are referred to as (from left to right) the low frequency scaling
regime, the plateau and the high frequency scaling regime.

The spectra presented in figures 4.5 represent averages 262144 point spectra. Figure 4.5-2,
the spectrum forseries A, is an average of 28 262144 point spectra. The number of spectra averaged
to produce each figure is directly related to the size of the time series sample.

4.0 Spectral Analysis of Rainfield Intensity Time Series. 54



Power Spectrum for Serics A

Log(E(D)

[ 5]

0
Log(f)

Figure 4.5-a: Power spectrum of series A revealing the characteristic shape of the low
frequency scaling regime, the plateau and the high frequency scaling regime.
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Power Spectra of Echo Fluctuation Time Series
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Figure 4.5-b: Power spectrum of series B, (Top) through D2 (bottom). A constant is added to
cach spectrum to space them for comparison purposes. Comparison of the scale breaks
shows that the low frequency break separating the plateau from the low frequency scaling
regime is consistent from sample to sample. The same is true of the high frequency
scaling break.
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Figure 4.5-c: Power spectrum of series E.
Powcer Spectrum for Senes G

]

7k
gl
E'i‘
(]
—Q. 3 1= l

i

Nl

3

-3 3 b4 a3 -] 03

s
Logif)

Figure 4.5-d: Power spectrum of series G. Only the low frequency scaling regime and low
frequency portion of the plateau are shown.
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Figure 4.5-¢: Power spectrum of series H;. Only the low frequency scaling regime and low
frequency portion of the plateau are shown.
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Figure 4.5-f: Power spectrum of series . Only the low frequency scaling regime and low
frequency portion of the plateau are shown.
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Spectral Scale Ranges for Echo Fluctuation
Time Series
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Figure 4.6: An idealization of the power spectrum of time series of
echo fluctuations. The low frequency scaling regime, high
frequency scaling regime, pulse volume plateau, and the 'foot’
are shown.




. Crude estimates of the two scales which separate the low frequency scaling regime from the
plateau and the plateau from the high frequency scaling regime can be achieved by fitting straight
lines to the three spectral regimes. Figures 4.7 and 4.8 show the crude scale estimation procedure
applicd to the spectrum of series A. Observing the scale at the intersection of the two regression
lines and applying a suitable velocity yields an estimate of scale. An advection velocity during
the collection of time series A was determined to be 9.0 m/s (velocities were determined by the
PPS system located at MRWO, for a description see Duncan et al,, 1992). Estimates of the
corresponding scales are ~36 m and ~1.0 ecm which are very close to the pulse volume and
wavelengih scales respectively. Table 4.1 contains a complete summary of the application of this
procedure to the time series. The column iitled L.F. Scale is an estimate of the time scale of the
low frequency end of the plateau, as the column titled H.F. Scale is an estimate of the time scale
of the high frequency end of the plateau.

4.0 Spectral Analysis of Rainfield Intensity Time Series. 59



Series A

Log(E()

w
I

-3 25 -2

Figure 4.7: Low frequency end of the power spectrum for series A showing the line fitting
technique used to estimate the scale separating the plateau from the low frequency scaling
regime. The line has slope B = 2. The figure shows the noise of the spectrum that results
in uncertainty of the scale estimates.
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Log(E(f))

Log(b

Figure 4.8: High frequency end of the power spectrum for series A. The line has slope § =
-1.9. The intersection point of the two fitted lines, one for the plateau and one for the
scaling regime, is taken as an estimate for the wavelength scale.

Examination of table 4.1 reveals that the spectral slope of the high frequency scaling regime
tor series H, and H, is much different from the other time series. Series H, and H, were collected
from an S-band radar which has a wavelengih three times that used to collect the other series. The
low frequency spectral slopes of H, and H, are not significantly different from the other time series.

Thelow frequency scaling regime is represented on all spectra of echo time series and extends
from the longest timescales available with the time series to the pulse volume scale. The existence
of the low frequency scaling regime in the spectra of the echo time series is consistent with the
spectra of HYDRAL, HYDRA2, VPR, and that of the sonic gauge. This is the scaling range that
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will be used in further analysis. Estimates of the spectral slope J for the low frequency scaling
regime are found in table 4.1. Ermrors quoted in table 4.1 are for the selected fitiing range, but
additional uncertainty results from the arbitrary decision of which range 10 apply the fitting.
However, therange of values is not too great, thus, the selected fitting range was chosen to maximize
the R* goodness of fit parameter. The low frequency scaling regimes of time series D, and D,
were of exceptionally poor quality, probably due to the relatively short time series. Indeed, series
E is also very short and resulted in a very poor fit. The exceptional quality of the spectra for series
F' and F? (see figures 4.9 and 4.10) contrasts with this poor spectral behaviour. The fining region
for the high frequency scaling regimes was much less than an order of magnitude. As such, the
estimares should be reated with appropriate suspicion.

Senes Fl

Log(E(N)

Log(h

Figure 4.9: Low frequency end of the power spectrum for series F,. The line has slope B =
-1.8.
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Figure 4.71 0: Low frequency end of the power spectrum for series F,. The line has slope =

-1.7.

The spectral parameters estimated from series [ are for the average of 16 spectra, each of
which is for a time series collected from a different range gate. The averaged spectrum of series
I produces an exceptionally good fit with very little error. The spectrum for VPRI is an average
of 928 4096 point spectra (see figure 4.3). 4096 points represents a scale regime of 4 seconds to
2.27 hours. The scale regime used to produce the estimate of B is between 2 seconds and 17
minutes (3 orders of magnitude). The fit is quite good and can be considered a reliable estimate

of the ensemble spectral slope.
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Table 4.1: Parameters derived from spectral plots of the VPR echo time series
Series | L.F. Scale Bee R’ H.F. Scale B
A 4s 201 £0.04 0.89 0.010s 1.9
B, 10s 1.50+0.10 0.78 0016 0.7
B, 8s 1.55 £ 0.08 0.80 0013 s 1.1
G 6s 1.40£0.12 0.70 0.006 s 0.7
G 4s 1.35 £0.07 0.75 0.010s 0.7
D, 8s 0.6 0.45 0.010s 0.6
D, 6s 1.0 0.55 0.013s 0.8
E 25s 1.75+0.34 0.65 0.010s 1.1
F, 13s 1.82+£0.08 0.90 0.010s 1.0
F, 135 1.70 £ G.05 0.95 0.010s 0.8
G 6s 1.45+0.08 0.83 0.010s 1.0
H, 20s 2.14+£0.09 0.87 0.020 s 40
H, 20s 1.98+0.14 0.88 0.020 s 4.1
I 13s . 1.86 £0.05 0.98 0.032s 1.3
VPR1 10s 1.70£0.01 0.97 N/A N/A
VPR2 10s 1.68 £0.04 0.95 N/A N/A

The foot’ region of the spectrum is not well represented on all spectra. The foot” shows
a transition from the high frequency scaling regime towards white noise. The frot only appears
at millisecond timescales or millimeter space scales. In the modelling section it will be shown
that this regime can be artificially imposed upon the high frequency scaling behaviour by
introducing white noise below the wavelength scale.

The existence of a radar measurement effect has never been displayed before and represents
a simple relationship between measurement scales and rainfield variability that will be
demonstrated in chapter 7. Its consequences on the statistics of Z,; have never been examined.
The sonic gauge data S1 and S2 reveal no spectral plateau, and there is no g priori reason that a
scale break should exist in the rainfield at 40 m space scales and then at centimeter scales. The
only artificial scales present in the problem are the 40 m pulse volume scale B, and the wavelength
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. scale &_. The presence of a plateau of limited scale range intermediate to these two artificial scales
cannot be simple coincidence. The question as to how the spatial measurement scales of the radar
were impressed upon the time series of the fluctuating echo is answerable in terms of drop field
that exhibits temporal coherence. The simplest assumption about the nature of the coherence that
explains the observations of scaling behaviour is a rainfield that is scaling over a broad range of
scales extending from the inner scale of the rainfield to some scale larger than the pulse volume.
The inner scale in the rainfield could be of the order of millimeters and would then correspond to
turbulent viscosity scales which forms a plausible hypothesis for the *foot’. The distributions of
intensities from a random scaling rainfield have properties much different from homogeneous
random fields.

4.3 The Distributions of Intensity.

A generic feature of measurements of fields that display scaling behaviour is that the
distributions of intensities display 'fat’ tails. However, the ability to observe the pure divergent
behaviour of moments is related to whether adequate data is available (i.e. is the sampling
dimension D, high enough 1o allow qp, to be observed). The value of qp, for rainfall is expected to
be in the range of 2 < qp < 3 (see the review by Lovejoy and Schertzer, 1993, and Ladoy et al.

. 1993). If the data set is not large enough then the moment g, will be found as the maximum
moments supported by the data, but there is no stringent reason why this moment should exhibit
*fat’ behaviour. A technique thatcan be used to estimate qp, is the Probability Distribution/Multiple
Scaling technique (Lavallee et al. 1991). This technique was used by Seed (1989) (in a very early
implementation) to show multiple scaling of radar data and by Ladoy et al (1993) to estimate qp
for an 11 year sequence of daily raingauge totals from Nimes, France. The technique examines
the behaviour of histograms of intensity as a function of scale ratio (i.e. outer scale to averaging
scale) and tries to show the scale invariance of ¢(y) from Pr(u>AN~A~® by showing
c(y)=—logPrilogX is invariant 1o averaging scale. However, the technique can suffer greatly
from difficulties related to the proper normalization of the statistics by the ensemble mean, which
is a very diflicult parameter to estimate. The technique is also prone to prefactor oscillations (see
relation 3.7). The implementation of PDMS by Seed (1989) simply assumed the prefactors to be
unity and proceeded to make estimates of ¢(y). The existence of the spectral plateau in the time
series of the fluctuating echo make the use of PDMS techniques impossible. In addition, the
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ensembles are not large enough to properly normalize the distributions. If D, is small then g, <
gp and the divergence of moments will not be observed. Given these limitations estimates of q,
are simply taken as the slope of the 1ail of the distribution, and it should be considered that if the
data set is not large enough then linearity of the tail is not expected and qy, will be underestimated.

The comparison of the results for the distributions of intensitics presented here and those in
the literature of the standard theory is difficult. The difficulty arises due 10 the very different
circumstances under which the various data sets were collected. The evidence provided by
Lhermitte and Kessler (1966) of the adherence of the fluctuating echo to the Rayleigh distribution
was collected under very different circumstances. Comparison of the linearity of response for the
radar used by Lhermitte and Kessler and the VPR (see figure 2.2) shows that the VPR is linear
over a much greater range., The perspective is also different, the VPR is vertical incidence while
the radar of Lhermitte and Kessler used horizontal incidence. However, the most important
differences relate to the scale of the measurement volume used and the sample size. The samples
were very small (~10000 points). The data analysis of Lhermitte and Kessler (1966) used pulse
volumes of enormous size. Estimates of their smallest pulse volume scale place the beam ut 1 km
above the surface with a beamwidth of between 3 and 4 km. As pulse volume scale increases the
number of data points required to distinguish the extreme events becomes greater. The results of
Lhermitte and Kessler, who examine the distributions only to probability levels of 107, could
therefore be from a scaling rainfield. While this seems a convenient explanation it is in fact a
physical reality when dealing with measures of scaling fields.

Fat or algebraic probability tails appear as straight lines on log-log graphs of cumulative
probability. The radar intensity time series collected for this study reveal this characteristic
behaviour in the range expected for qp. Figures 4.11a-f show the tail behaviour of the cumulative
distributions of intensity for a number of the time series collected. Itis immediately apparent that
the diswributions differ significantly from the Rayleigh form predicted for independent drops.

Estimates of the exponents governing the tail behaviour of the cumulative distribution are found
via

Pr(Z >z)xz"® (4.2)

where qy, is the slope or hyperbolic exponent of the fat tail.

4.0 Spectral Analysis of Rainfield Intensity Time Series. 66



Tail Behaviour for Series A

Pr{>?)

43 30 S; [ “3 T0
dB
= A (slope = -3.2)

Figure 4.11-a: Asymptotic tail behaviour of the distribution of intensities for echo series A.
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Figure 4.11-b: Asymptotic tail behaviour of the distribution of intensities for echo series B, and
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Figure 4.11-c: Asymptotic tail behaviour of the distribution of intensities for echo series C, and
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Figure 4.11-d: Asymptotic tail behaviour of the distribution of intensities for echo series D, and
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Figure 4.11-e: Asymptotic tail behaviour of the distribution of intensities for echo series E.

Tuble 4.2 contains estimates of qp, for the time series of the fluctuating echo estimated from
figures 4.11. The values fall within the range expected for rainfall (see Ladoy et al., 1993 or
Lovcjoy and Schertzer, 1993).

Table 4.2: Estimates of qp for the
echo fluctuation time series.
Series do
A -3.2
B, -2.6
B, 2.4
C -1
C -2
D, -2.7
D, -2.6
E -3.1
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As a graphical demonstration of the scaling properties of histograms of intensities drawn
froma scaling field, it will be demonstrated that histograms of the long time series of the tluctuating
echo VPR have the same general characteristics as histograms from a scaling field. The behaviour
of distributions under averaging of a multifractad is very different from that of purely random
numbers. Figures 4.12 and 4.13 show histograms resulting from averages over successively large
scales ol averaging of a field of random numbers and of a scaling ficld respectively. Figure 4.12
shows how the distribution of intensities of averages of random numbers narrows as the averaging
scale is increased. Figure 4.13 shows how the distributions of intensitics over longer averaging
lengths have a much different behaviour. This property results from the structure of the field and
the non-homogeneous distributions of singularities in the field. Thus, while both fields, when
averaged over the entire extent of the field, will result in a random variable with a mean of 1, the
behaviour of the two with respect to averaging is very different for scales smaller than the outer
scale of the field. The averaging over successively longer scales of the scaling regime of VPRI
is shown in figure 4.14. This figure has a great deal in common with the cascade field and little
in common with the averaging of random numbers.
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Figure 4.12: The effect of averaging scale on a log-normal random field. Construction of the field
was a simple matter of filling a 2-D armay with exponentiated N(0,1) numbers.
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Figure 4.13: The effect of averaging scale on a cascade field. Construction of the cascade field
follows the construction process outlined in Appendix B.

4.0 Spectral Analysis of Rainfieid Intensity Time Series.



-1
2k
z T
£
E;
3 -t
S5
-6 H L 1 ]
3.5 4 4.5 5 55 6
Log(Intensity)
. 2> o <d> <8 __<16> 5 <32> _,_<64>

Figure 4.14: The effect of averaging scale on cumulative distributions of intensity for VPR1. Euch
curve is a histogram of intensities averaged over the scale indicated in the legend (the number
in the legend indicates the number of points averaged. Each point represents a 2 s average
of intensities).

The effect of averaging scale on the tail behaviour of distributions of intensity from the
scaling regime of VPR1 was examined. The averaging scales can be taken as different scale ratios
A. Histograms are computed over the full time senies. The behaviour of the curves reflect the
invariance of c(y) =logPri/log) (relation 3.7 but ignoring prefactors) to averaging scale,
According to figure 4.3 the histograms of averages of intensities plotted in figure 4,15 come from
ascaling regime. The histograms of figure 4.15 suggest power law tails. Estimates of the exponents
governing the tail behaviour of the intensities formed by averaging over different scales are given
in table 4.3 as a function of the averaging scale. The difficulty in attempting to estimate the
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exponents is that progressively larger averaging scales result in progressively fewer points on the
histograms. As such, the accuracy of the estimates fall as averaging scale increases. The exponenis

in tzble 4.3 are similar to those in table 4.2,

Table 4.3; Estimates of gy, for
averages of VPR1.
Averaging dp
Scale
4 -2.3
3 -2.3
16 -2.3
32 -2
-2
128 -2
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. 5.0 Estimation of Multifractal Parameters.

This chapter is devoted to examining the universal multifractal behaviour of the time series
of echo fluctuations. The analysis will concentrate on the low frequency scaling regime as the high
frequency scaling regime is not sufficiently long to permit a meaningful analysis. The results of
the spectral analysis show a scale break introduced by the pulse volume plateau. This scale break
prevents the use of multifractal measurement techniques at scales below B;. The objective of the
analysis will then be to determine whether the echo fluctuations at scales just above B, exhibit
universal multifractal behaviour. In the rainfield there is no a priori reason why scaling behaviour
cannot extend from the outer scale of the storm to the smailest scales of the rainfield. This chapter
will first introduce a new multifractal measurement technique and will then employ it, along with
the DTM technique, to examine the universal multifractal nature of the echo time series at scales
just greater than the resolution scale B,

This chapter consists of three sections. The first section introdtices 2 new measurement
technique which is based on the trace moments parameter estimation technique summarized in
section 3. The second section investigates a problem relating to the application of multifractal
parameter estimation techniques to large data sets such as VPR1. The third section presents the

. evidence of multiscaling in the echo fluctuation time series and concludes with a table summarizing
the estimates of universal multifractal parameters.

5.1 Trace Moments and a Genetic Algorithm.

The trace moments can be used to form arealization of K(q) for a given data set. By making
the assumption that the given data set is a realization of a universal multifractal process (which
can be verified using DTM), K(g) can be fit to the universal form. The difficulties in optimally
fitting K(q) to the universal form are varied. The most important difficulty is that expressed in
section 3. K(q) (= K(q,1)) will not be universal if K(q,n) is independent of n at 1 = 1. If this can
be shown to be the case then K(q) cannot be used to reliably estimate & and C,. If K(q) is in the
universal range then the most difficult problem is as follows: the two independent parameters o
and C, are highly correlated. Also, the minimum, corresponding to the estimate of ¢, is very broad.
In such a situation sophisticated optimization schemes such as gradient search techniques
experience great difficulty. The range of e is between 0 and 2. The range of C, is between O and
D (the dimension of the embedded space, for time series D = 1). Small changes in either parameter
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. results in significant changes in K(g). This sensitivity to the parameters makes the search for an
optimal solution more difficult since the precision required is greater and hence the search space

is larger. The fitting of K(q) is an ill-conditioned non-linear regression problem.

As an exercise a genetic algorithm was selected to try to solve the problem (see Goldberg,
1989 or Holland, 1992 for a discussion of genetic algorithms). The genetic algonithm is a very
powerful heuristic algorithm which chaotically searches a function space for an optimal solution.
The optimality of the solution is judged in terms of a fitness functicn (or goodness of fit function).
The fitness function can have any shape over the domain of optimization. Given sufficient
information, which is by most standards a very small subset of the search space, the genetic
algorithm will find the optimal solution. The beauty of the genetic algorithm is that it is not fooled
by local minima and its convergence rate is initially exceptionally fast. Since this thesis is
concerned with the statistical behaviour of the fluctuating echo, and not with the development of
new artificial intelligence techniques, a brief discussion of genetic algorithm specifics is relegated
to appendix C. However, it should be noted that the approach and use of a genetic algorithm in
this problem is original.

For a genetic algorithm to work a fitness function which measures the goodness of fit and
. a one to one transformation for the parameters to the genetic coding are required. The fitness
function was taken as the sum of absolute differences between predicted and measured values of
K@)
1

Finess = STk @ - K@) D

where K (q) is computed using trace moments. A mean absolute difference (MAD) approach was
chosen, but a least squares approach also works well. The finess function is used as an informal
measure of the error of the fit. The higher the value of the fitness the better the match between
K.(@) and K(q).

The genetic algorithm uses the fitness function to operate on sequences of Os and 1s called
chromosomes and decide which chromosome is best (see Appendix C for a detailed discussion).
In order to make this scheme fit K(q), & and C, are coded into chromosomes. Each chromosome
is composed of 41 positions or alleles which can be either 1 or 0. This means that each chromosome
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Q can represent a number up to 2°'. In order to fit K(q). ¢ is coded into the top 21 positions and C,
is coded into the bottom 20 positions. Floating point division of & by 2, gives a number between
0 and 2. Floating point division of C, by 2% gives a number in the range 0 to 1. This sinple
one-to-one relation between chromosomes and @ and C, allows the genetic algorithm to it K(y)

to K (q).

5.2 Long Time Series and the Zero Problem.

A difficulty with the application of the multifractal analysis techniques to long rainfall data
sets was noted. This difficulty likely affects the majority of results quoted in the literature (sce
e.g. Tessieretal., 1993). Analysis using TM/GA and DTM of intensity series A through H revealed
estimates of o in the range 1.8 to 2.0 while estimates of C; were centered around 0.3 (see below).
Estimates of these parameters for rainfall in the literature from Seed (1989), reported in Lovejoy
and Schertzer (1991,1992), and Tessier et al. (1993) reported o centered on 0.5 and C, about 0.6,
Up to the time that echo fluctuation series A through F, were analyzed consistency demanded that
& be around 0.5 and C; be around 0.6. Obviously both ranges cannot be simultaneously correct.

The data sets analyzed by Tessier et al. (1993) were re-analyzed. The data used by Tessier
. et al. (1993) comprise long time sequences of HTI data from the VPR taken during the summer
of 1990. These sets are very similar to VPR1 and VPR2. The re-analyzed data revealed the
estimates of & and C, reported in Tessier et al. (1993) (namely @ =0.6 and C, = 0.6). Analysis of
VPR1 and VPR2 in a similar manner yielded estimates of & and C, consistent with those in Tessier
et al. The appearance of the K(q) function estimated by Tessier et al. (1993) is as shown in figure
5.1 and is the curve noted as "with zeros’,

The difference between intensity time series A through I and the long time series VPR1 and
VPR2 is that the series A through I were recorded in continuous rainfall. Long time sequences
such as VPR1 and VPR2, as well as the data used by Tessier et al. (1993), contain subsets of
continual rainfall as well as subsets filled partially orentirely with zeros. The recording of intensity
time series A through I representa a *conditional sampling’ of the rainfield in order to maximize
the number of fluctuating echoes from precipitation. However, parameter estimation using these
time series yields results that differ from those of Tessier et al. (1993).
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Effect of Zeros on K(q) for VPR1
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Figure 5.1: The behaviour of K(q) from analysis of VPR1 with zeros and without zeros. The K(q)
function without zeros is from subsets conditionally sampled to have no zero rainfall values.
The lines fit to the K(q) function with zeros give estimates of v, =0.39 and v, =0.6. q,

is estimated to be ~ 0.2 and ¢(Y,,,) is estimated at 0.46.

Analysis of the long time series VPR1 and VPR2 using a conditional sampling strategy
achieved estimates of ccand C, consistent with those from time series A through L. The conditional
sampling strategy accumulated statistics only over subsets of VPR1 and VPR2 which contained
no zero rainfall rates. The appearance of the resulting K(q) function is shown in figure 5.1 and is
noted as "without zeros’. The discrepancy between the two estimates has been termed the ’zero
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0 problem’. The conditional sampling approach to dealing with the zero problem is not very
satisfactory. Conditional sampling. in this context, represents a "quick fix” for a complicated
behaviour that bears further examination.

The existence of zeros within a data set has at least two possible explanations. The first is
that the rainfall rate is very small but not zero and the zero problem is due to threshold limitations
of the instrumentation (i.c. a typical raingauge has a dynamical range of 3 orders of magnitude in
intensity while a radar typically has 6 or 7). The other possibility is that the rainfall rate is exactly
zero. The first assumption allows for the possibility that the rainfall field is finite over all space.
The second assumption limits rainfall to a fractal subset. The first assumption allows a single,
continuous multifractal model of rainfall, The second assumption forces a two step model, a model
of the spatial distribution of non zero rain areas and then a multifractal model of the rain intensities.
This question will no doubt be pursued further at a later date.

5.3 Results

In this sub-section the results of the analysis of universal multifractal behaviour of the echo
fluctuatiun time series is examined. Echo fluctuation time series A through G, VPR, and VPR,
. were examined. The first section presents some examples of the scaling behaviour of the echo
fluctuation time series. The following section presents a gallery of K(q) and K(q.1) functions
revealing that the behaviours are consistently observed. The final section contains the tabulated
estimates of & and C, as well as a discussion of uncertainties in the estimates.

5.3.1 Multiscaling of Moments of Z..

The measurement of multiscaling behaviour to scales down to the pulse velume scale will
provide adequate evidence that multiscaling models represent an adequate mode for
sub-resolution variability. It must be considered that the pulse volume scale employed by the
VPR is much smaller than the resolution scales used for most operational radars with operational
ranges that extend up to hundreds of kilometers. Access to the scaling information in the intensity
time series is obscured by the existence of the pulse volume platean which introduces a scale
break. The effect of this scaling break is evident in figure 5.2. The scale break can be avoided
by averaging the data over 16 s imescales. In the case of series B, however, the scale break
serves 1o decrease the available range of scales 1o the extent that the estimation of multifractal
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. parameters becomes very poor (see below). Where scale breaks were encountered at short

timescales increased averaging scales were used to produce scaling moments with no scaling

breaks.

Moments for Series Bl

15 F

Log(<sigma®q> * lambdar((q-1)D))

0.5 1 15 2 25 3 35
Log(Seconds)

Figure 5.2: Computed moments for series B,. The scaling break at short timescales can be
removed by averaging the data over longer timescales.

Before estimates of multifractal parameters can be attempted the data must be shown to
respect multiple scaling. The low frequency scaling ranges identified in section 3 were the target
ranges for application of trace moments and DTM techniques. The range where scaling of
moments could be expected to hold was revealed, by the spectral analysis, to be between 3000
sand 2 s (a factor of 1500).
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Multiscaling Moments for Series A
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Figure 5.3: Multiscaling behaviour ror series A. No break in the scaling behaviour is evident,

Figures 5.3, 5.4 and 5.5 are three examples of the multiscaling behaviour of the radar echo
fluctuations. All of the time series examined displayed multiple scaling behaviour. The slopes
of these lines are estimates of the function K(q) for a given . The moment q was varied over
the range 0 to 4 with an interval of 0.025 yielding 160 estimates of K(q) for each intensity time
series examined.
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Multiscaling Moments for Series B2
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Figure 5.4: Multiscaling behaviour for series B,.
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Multiscaling Moments for VPRI
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Figure 5.5: Multiscaling moments for series VPRI.

The scaling range displayedin figures 5.3, 5.4 and 5.5 is between 4 seconds and ~30 minutes,
This scaling range extends down to scales just larger than the pulse volume scale, The scaling
of moments of the rainfield to such small scales acts as proof that gradients are very important
to small scale sin the rainfield, Further, it shows that the statistical structure of the rainficld over
a large range of scales from kilometers to tens of meters is scaling. Estimation of the universal
parameters & and C, from this multiple scaling regime in the rainfield will provide a model for
this variability.
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5.3.2 Graphs of K(q) and K(g,n) for Z..

This section provides a gallery of K(q) and K(q.1) functions used to estimate multifractal
parameters. The fits 10 the K(g.n) functions are accomplished by simple linear regression to the
linear region of the function yielding estimates of a. The linearity of the K(g,n) function is over
a wide range of . The linearity of K(g,n) to very small 1 values is due to the extreme sensitivity
of the VPR radar system. If the radar were less sensitive the K(q.n) function would assume 2
sigmoid shape. The T range over which K(q,n) is universal is generally seen to end before 1.0
(log(eta) = 0). Thus. it is expected that estimates of @ and C, by TM/GA will not be very reliable.

The figures in this section are testament to the applicability cf universal multifractals to
the echo fluctuation time series. Mathematical theories in general usually make poor fits to "real’
data. The figures in this section reveal a diverse set of rain cases being very well fit by the
universal multifractal scale invariant function K(q.n). In part the sensitivity of the VPR is
responsible. Remote sensing devices with less sensitivity, such as most raingauges (including
the HYDRAS) produce much less convincing results.

Figures 5.7 and 5 .8 show an examination of the stadstics of ime series A. Figure 5.7 shows
the trace moments K(q) for a limited range of q to emphasize the fit to K(q) of the universal form
in the range 0 < g < 1, where bare and dressed cascade statistics are expected to be the same.
Figure 5.8 shows 1 wider range of q to show how, at higher values of g, the estimates of K(q)
differ from the universal formin a manner consistent with a second order phase transition (relation
3.19 and figure 3.2). Figures 5.9-a.and 5.9-b show a number of computed K(q) function for the
acho fluctuation time series (the curves are offset vertically to allow inter-comparison) and show
the K(q) curve thought 10 best represent the statistics of the fluctuating echo (see Table 5.1 and
the discussion in sub-section 5.3.3).
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Figure 5.6-a: Log(K(q.n)) plotted against Log(n) for series A. The data were taken in three (N,
= 3) realizations of scale ratio A = 256 (i.e. 256 averages of 8192 points). a and C, are
drawn from the DTM columns of table 5.1. q, for this computation is estimated at 2.45.
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Figure 5.6-b: Log(K(g,n)) plotted against Log(n} for series B,. g, forthis computation is estimated
at 1.75 (N, =3,A=128).
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Double Trace Moments for Series B2
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Figure 5.6-c: Log(K(g,n)) plotted against Log(n) for series B,. g, for this computation isestimated
at 1.75 (N, =3, A =128).
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Figure 5.6-d: Log(K(q.n)) plotted against Log(m) for series C,. q, is estimated at 1.75 (N, = 1,
A=128).
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Figure 5.6-e: Log(K(g,n)) plotted against Log(n) for senes C,. q, is estimated at L.75 (N, = 1,
A=128).
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Figure 5.6-f: Log(K(g,n)) plotted against Log(n) for series F,. q, isestimated at L8 (N, =1, 4
=128).
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Double Truce Moments for Series 12
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Figure 5.6-

g: Log(K(q,n)) plotied against Log(n) for series F,. q, is estimatedat 1.8 (N, =1, A
=128).

St

Double Trace Moments for VPRI
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Figure 5.6-h: Log(K(q.n)) plotted against Log(n) for series VPR1. VPR1is along time sequence.
N, is counted as the number of subsets of scale ratio A that contain no zeros. q, in this case

isestimated at 2.6. Note the extension to the linear region of the curve due to the substantial
increase in data size.

5.0 Estimation of Multifractal Parameters. 88



K(g) vs q for Senex A

ace
aos .
~
am >~
’.
acy I's
I
qo: |
r
T ef ’f
Z . Fd
201
a0
a0
ao
-a03 e
¢ us 1 L
q

Figure 5.7: K(q) vs q computed by the trace moments algorithm and fit by the TM/GA technique
for series A,

K(q) vs. q for series A

Ki{q

Figure 5.8: K,(q) vs q plotted for a wider range of q in order to show the effect of q,. Beyond
q, the K (q) has linear behaviour with slope v, = 0.3. The theoretical K(q) curve is also

plotted for comparisca with a = 1.7 and C, = 0.16. q, is estimated using relations 3.15 to
3.18 and gives q, = 2.0 which agrees well with the behaviour of K.(q).
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Figure 5.9-a: K(q) vs q curves for the indicated time series of the fluctuating echo. A constant
is added to each curve for viewing purposes. The curves should be compared with the
*K(q) Fit’ curve which has a=2 and C, = 0.3 (drawn from table 5.1). These estimates of
c and C, appear to fit the bulk of the data very well.
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Figure 5.9-b: K(q) vs q for the indicated time series of the fluctuating echo. A constant is added
to each curve for viewing purposes.
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3.3.3 Estimates of Universal Multifractal Parameters.

A summary of the estimates of multifractal parameters for the intensity time series and tor
VPR1 and VPR2 are found in table 5.1. Table 5.1 shows that, in general, 2 is quite accuratcly
estimated while C, 1s much more difficult to estimate. C, is an estimate of the codimension of
the ensemble mean. The estimation of this quantity from such smal! data sets is expected to result
in considerable uncertainty. The C, parameter generally requires an enormous amount of data
to estimate accurately. The large amount of averaging of the data required 10 remove the scale
break of the spectral plateau results in data series that are too short to provide high statistical
accuracy. The shortened data sets also result in g, values that are too small to allow TM/GA to
accurately estimate & and C,. The estimates of & for TM/GA in table 5.1 are local slopes of
log(K(g.n) vs log() at log(n) = 0.0. The corresponding estimates of C, are therefore entirely
suspect. The case of series A, the longest echo time series, reveals consistent estimates of a and
C, by both DTM and TM/GA.

In order to increase the statistical reliability of the results, the time series A through G were
combined into a long series in order to approximate the ensemble statistics. The time series A
through G were averaged over 4 second time scales to produce time series of the low frequency
scaling regime free of the effects of the plateau. The resulting 11 short time series comprise an
ensemble and represent a conditional sampling of rainfield variability during the summerof 1991,
DTM and TM/GA were applied to this 'ensemble’ series to produce estimates of ¢ and C,. The
time series VPRI represents a true ensemble of rain events over the summer rain variability. The
agreement of estimates of ccand C, between the twoensembles is quite strong. This is particularly
interesting since the two estimates result fromdata setscollected in successive years using entirely
different sampling approaches. Figures 5.9 a and b show that the a and C, estimated from the
two ensembles fit the bulk of the data very well. The possibility that ensemble realizations of
measured statistical properties from successive years could be so close suggests further research.
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. Table 5.1: Estimates of Multifractal Parameters using DTM and
TM/GA Analysis Techniques.
DTM TM/GA

Series (o4 C, o C, | FIT H

A 1.9+0.1 02£0.1 1.74 | 0.16 | 184 0.7
B1 2004 04+04 146 | 021 | 22 0.4

B2 1.9+04 04+04 152 | 021 36 0.5

Ci 20%0.1 04%0.1 176 | 0293 33 0.5

c2 20%0.1 04%0.1 174 | 0304 20 05
D1 1.9+04 0.1£0.2 1.87 | 0.08§ 318 0.0
D2 1.8£04 0.1%£03 1.64 | 0.07 | 394 0.0

E 1.9%£03 0.1x£0.2 1.80 | 0.08 ] 279 0.5
F1 20+01 | 02+0.1 | 191 [0.19] 336 | 0.6
F2 20201 02%0.1 1.86 | 0.20 | 168 ,J 0.5
G 1.9+0.3 0302 175 | 020 | 125 | 0.4
Ensemble] 200. [032£009| 173 | 023 52 LN_/A"

. VPR1 1.9+02 | 03005} 1.70 [ 022 | 48 0.5
VPR2 19+02 [ 03+£007 | 176 | 022 55 0.5

The last column of table 5.1 holds estimates of the H exponent. The calculaton of H
combines the estimates of spectral slope [ from table 4.1 with the estimates of @ and C; from the
DTM colums of table 5.1. The estimates of H are remarkably uniform and agree well with the
value of H = 0.5 estimated by Lovejoy (1981). The estimates of H for series D, and D, are
compromised by poor spectral behaviour (see table 4.1) due to the very short data set available
after the plateau effect is removed.

The results of this section support previous studies of scaling behaviour in the rainfield,
and provide the answer to the question as to the scale limit accessible to these measurement
techniques using radardata. Very high temporal resolution verification of multiscaling behaviour
(i.e. below the 2 s timescale associated with the pulse volume scale) in the rainfield will have to
be provided by other remote sensing devices such as the sonic gauge, keeping in mind the necessity
fora large dynamical range. The bulk of scaling studies in the rainfield have been of spatial data
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in the form of CAPPIs etc... Thus, the results presented here support these spatial observations
and show that scaling in time occurs to very small scales not accessible with most operational
radar data. The observation of temporal scaling by Tessier et al. (1993) is compromised by the
zero problem, but re-analyzing his data sets provided results consistent with those in table 5.1,

The radar echo fluctuation time series exhibit good scaling behaviour. The function K(q.n)
reveals that the time series respect universal multifractal behaviours fornup 1o g, ~ 2.3, The
existence of the zero problem, of course compromises the bulk of estimates of & and C, found
in the literature, but the observation of scaling behaviour is similar. This chapter reveals tha
scaling behaviour can be observed in radar data to scales just above the resolution scale B, of the
radar. The stability of the estimares of cw and C, over two successive years presents an indication
of the stadonarity of the statistics over time. Indeed, estimates of the parameters from the
individual echo time series, while sometimes compromised by uncertainty due to their short
length, show a narrow range of results centered on the ensemble estimates.
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. 6.0 The Statistics of Z,, from a Spatially Scaling Rainfield.

"The fact that Euclidean geometry seems so accurately to reflect the structure of the 'space’
of our world has fooled us (or our ancestors!) into thinking thar this geometry is a logical necessity,
or into thinking that we have an innate g priori intuitive grasp that Euclidean geometry mugst apply

1 the world in which we live.”

Roger Penrose
The Emperor’s New Mind

This and the next chapter describe the assumptions and steps taken to model the echo
fluctuations from a multifractal rainfield with variability extending to sub-resolution scales. The
ultimate objective of the modelling effor. is to create artificial time series of intensities which have
the same quantitative and qualitative statistical characteristics as the observed intensity time series,
In this chapter a complete statistical characterization of the measurcd reflectivity Z,, from
multifractal sub-resolution variability is achieved. The results of this chapter constitute a general

. solution to the scalar multifractal radar observer’s problem. The solution allows the statistical
parameters of the drop field to be estimated from measured echoes. The previous data analysis
section serve to justify the assumption of sub-resolution variability by showing that the only scales
identifiable in time series of radar echo fluctuations are those of the radar. Given that there are no
a priori scales in the rainfield the scaling behaviour observed at super resolution scales extends 10
sub-resolution scales.

6.1 Theory.

The theory developed here is for the statistics of the fluctuating echo from a multifractal
field of scatterers. The development of the theory first documents that the scaling of 2 ficld that
we define as the radar cross-section field scales with the same statistics as the drop field. This is
necessary since we do not intend to model the positions of drops but rather the radar cross section
of volumes of rain flux. The development then covers how the statistics of reflectivity factor Z,
scale relative to the radar cross section field. The development then concentrates on the effective
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. reflectivity factor Z_, which is a Fourier component of the radar cross-section field. Up until now
statistics of a Fourier component of 2 multifractal field have been unknown. However, with the
extensionof scalar cascades to complex, vector and tensor cascade (Schertzer and Lovejoy, 1993a),
the radar measurements can be viewed as a dressed complex cascade. The following development
is supported by the numerics presented in section 6.1.2 which show that each step of the theory
governing the statistics of Z,, from a multifractal field is supported.

The relation berween the radar cross section field and the drop field.

The amplitude of a radar echo is related to the volume of a drop through the cross section.
The smallest scale of the rainfield will be denoted by B'. A™ is the "inner scale’ of the rainficld
and is the smallest scale to which scaling behaviour canbe expected to hold. The radar measurement
volume or "pulse volume” scale (size A™' > A™) will be denoted by B, (B, should be interpreted as
the set contained by ball B of scale A, likewise for B'). B, is the smallest spatial scale resolvable
by the radar. The radar also uses the wavelength scale A, which is related to the radar wavevector
modulus | k ] in the usual way (= 21/A,)). Given these definitions the relation between the effective
cross-section ¢ of the smallest scale of the rainfield B, and the drop field can be defined. If the
position vector of the center of a small scale element By, 1s X; then the following represents the

. radar echo amplitude from a cross-section ficld
- &-%, 1 -7,
G,(x,)e = 2 Ve 6.1)

Vol(B)j« B, !

where the sum on the right hand side is over all the drops volume V; in the small resc lution element
B,;. This relation can be rewritten as
1 kAT,

Ve ¥ 2
Vol B o e 6.2)

GAG;‘) =

with AX; =X, -X,. Aslongas A»k, then Ax; A, and we have

1 Z Vv (6.3)

D Vol(B,)e8,
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This relation serves as the approximation that the cross section of an extended volume of scatierers

can be represented by the total cross section at the center of the volume. This relation impiies that

the scaling properties of radar cross section field o and the drop field (or rainfield), represented

by V, are the same as iong as A™ is small enough:
e Ky(a.m)
<(,3.V) > werayr = A

and

K(g.,m) = KJq,m)

Which means that the statistics of the cross-section field are the same as the drop field.

The statistics of reflectivity in a scaling rainfield.
The reflectivity factor is defined (ignoring radar constants) as

1 2
4 = Vol(8,); 339,, Vi

and hence
K.(@m) = Ky(q.2n)
For universal multifractals (index &) we have
K@.m = K@) = nK(g)
hence

Kzl(q ) = 2°K(q)

(6.4)

(6.5)

(6.6)

(6.7

(6.8)

(6.9)

Thus, the statistics of the reflectivity factor Z, are simply related to the drop field and the radar

cross section field.
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. The statistics of effective reflectivity Z,; in a scaling rainfield.

Radars do not measure Z; directly but rather measure an effective reflectivity Z,,. We have
seen that in the idealized case where the phases of the scatterers are independent random variables
Marshall and Hitschfeld (1953) and Wallace (1953) elegantly showed that the resulting marginal
distribution does not depend on any of the radar measurenent scales,  In a scaling rainficld.
however, it is expected that the measured intensities are dependent upon the measurement scales,
The amplitude of the scattered wave is the modulus of the Fourier component of the radar ¢ross
section field 6(x). If the drops are no longer independent then the Fourier component is no longer
that of a simple white noise but is dependent upon the scaling behaviour. Fortunately, universal
multifractals can be used to quantify and model the scaling behaviours.

The amplitude A, of the backscattered wave is the result of a Fourier component, using the
pulse volume and wavelength scales, of the radar cross section field 6(X) within the pulse volume,
In considering the statistics of A, both the real and imaginary parts must be dealt with. Recent
advances in vector cascades bused on Lie algebras (as opposed to the more familiar scalar cascades)
allow the definition of complex K(q) functions in the universal multifractal formalism (Schentzer

o VOI(BI_)J( B, J :

The scaling statistics of the amplitude, given a scaling rainfield, are given by

<Ai> = A (6.11)

[tis necessary to introduce the real and imaginary parts of the generator I' (recall for cascades that
InA, =)

A, = e* (6.12)

which gives

14,1 = e Arg4) = T, (6.13)
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. therefore it is possible to define a real and an imaginary K(q) function, one for the real part of the
generator and one for the imaginary part of the generator:

K(q) = K,x(q)+iK, (q) (6.14)

The K, x(q) characterizes the scaling of the modulus of A, and K, ;(q) charucterizes the scaling of
the phase of A,. The scaling of the phase will be relevant to the characterization of doppier radar
data. The effective reflectivity can be defined as

1 , ik o
Za = gy, 5,0 615

hence, by comparing the definitions above:

K. (@) = K,x(29)-qD (6.17)

where the -qD term arises due to the standard volume normalization (space dimension D) of Z,,,

and the 2q arises due to the fact that the statistics are of a squared quantity.

There are two scale regimes that can be analyzed. The situation where k << A corresponds

. to the pulse length being smaller than the wavelength, and hence is unphysical. In this situation
™ is approximately constant over the pulse volume scale ™. In this limit

Kn(q) = KyQq)-qD; ki (6.18)

The more interesting limit k >> A corresponds to the situation where real measurements are made

with wavelength smaller than the pulse volume scale. A, (and hence Z,,) can be considered to be
the result of dressing the comp!ex cascade A, = G,e* to scale ratio A. The difference from the
normal dressing (averaging) operation is that the "inner scale” of the complex factor e is the
wavelength A,,. Because of the change in the inner scale (from A to A,,) the variability will be
lower. In thiscase, the results foruniversal complex (Lie) cascades (Schertzerand Lovejoy, 1993a)
apply, and give,

K, 2lg)-aK, (1) = KJfq) = K/q) 6.19)
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. (1.e. bare and dressed cascades have equivalent scaling except that for a dressed complex cascade
K, x(1) need not be zero, hence the additional linear term in the exponents). This relation shows
that except for the normalization term K, 4(1), which corresponds to the multiplication by At
the entire statistical behaviour of the amplitude A, can be described in terms of that of the scaling
radar cross-section field o(x). Applying the above formulae to relate A, and Z,, we obtain:

K@) = K,Q2q)+qQ2K, (1)-D) (6.20
The implication of this relation is that

4 K, aD)-Dr2

Vi = Z7A (6.21)
which is the simplest deduction that can be made concerning the relation between the rainfield
and the measured reflectivity. Thus, direct knowledge of the statistics of the drop field can be
measured through Z,;. The scaling behaviours of Z, and Z,, can be related using

K@) = 27K, 2q)+q(2K, (1)-D) (6.22)

In the following section a relationship between K, (1) and the C, of the o(x) field is
. established numerically.

In a scaling rainfield the statdstics of Z,, will preserve the scaling of the radar cross section

field o(x) with the following results: The o-value of the o(x) remains invariant to the
transformation. Estimates of C, from Z,, are 2° times those of the input 6(x) field. The statistics
of Z, and Z,, differ only by a linear term in the exponents. The linear term is K, x(1) which results
from the dressing operation of the Fourier component performed on the complex cascade. K, (1)
would be responsible for, for example, biases in estimates of mean Z,,. These results will hoid
exactly as long as the inner scale of the rainfield A™ is smaller than the wavelength A,,.

The formulation permits the statistics of any of the related fields to be deduced simply by
measuring Z,,. Relation 6.21 presents the result that the statistics of the drop field are simply
related to those of the echo fluctuations. The stablishment of K, (1) by numerical techniques in
the following section will allow the relation to be used in a quantitative sense. However, the
existence of this relation cbviates the necessity of considering Z. The establishment of a Z,,-R,
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(the subscript indexing the scuie over which the rainfield is to be considered) relation requires the
determination of R, in terms of V. The establishement of the scaling conditional probability
functions will allow errors 1o be estimated (see Extensions in chapter 8.2).

6.2 Numericai Results.

This section will expiore the statistical behaviour of the Fourier component of a scaling radar
cross section field 6(x). The o(x) field will be constructed using the universal multifractal cascade
generator (UMCG) described in Appendix A. The purpose of the UMCG will be to generate
multifractals with specific e and C,. The Fourier component will be computed for systematically
varying pulse volume scales B, for a variety of wavelength A, scales. There are three possible
regimes defined by the scales of the problem, only one of which is relevant 1o radar measurements.
The regimes are wavelength A, < A7l (the inner or pixel scale of the cascade), A, > outer cascade
scale, and A, between the inner and outer scale. The case of A, smaller than the inner cascade
scale is only relevant to millimetric wavelength radars which have other problems including severe
attenuation and Mie scattering. The case of A,, greater than the outer scale of the cascade requires
that the pulse volume be shorter than the wavelength and is therefore unphysical. The third regime,
where A,, is between the inner and outercascade scales is relevant to the radar measurement process.
Figures 6.1 to 6.3 show the scaling moments for A (k,X) for moments q = 0.1, 1.0 and 4.0
respectively. The legend gives the corresponding wavelengths (recallk = % used. The outer scale
of the o(x) field is 32768 pixels and each moment curve represents an average over 32 realizations.
Estimation of the scaling moments in the scaling regime results in the moment function K, »(q).

The Scaling of A(k,X).

The scaling behaviours shown in figure 6.1, 6.2 and 6.3 are for five different wavevectors
k (wavelength scale in pixels is given in the legend). The moments are computed from 32
realizations and reveal that the curve for the various wavevectors are exactly parallel.
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Figure 6.1: Scaling moments for q = 0.1, computed from A (?c',f). for o(x) with C, = 0.25.
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Moment g = 1.0 for C1 =0.25
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Figure 6.2: Scaling moments for q = 1.0, computed from A (k, X), for 6(x) with C, = 0.25.
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Moment q=4.0 for C1 =0.25
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Figure 6.3: Scaling moments for q = 4.0, computed from A (E,.'f), for o(x) with C, = 0.25.
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Figure 6.4: Scaling moments for q = 0.1, computed from A (k, %), for 6(X) with C, = 0.05. Each
momentcurve has been shifted to show the overlap of the moments and hence the invariance

10 M.
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. K, x(q) Funciions.

Figure 6.5 shows the K, x(q) curve for a number of wavelengths (given in pixels) computed
over a 6(x) field with & = 2.0 and C, = 0.25. Thus, the statistics of A(k) are exactly related to
those of 6(X) by a renormalization of the moments. The renormalization of the scaling statistics
by the Fourier operation does not affect the scaling behaviour but introduces the linear werm K (1)
into the exponents. This set of relations represents the complete solution to the problem of the
statistical behaviour of Z,; measured from a scaling field by any wavelength/pulse volume
cornbination.

Kar(q) Plotted with K(q)

®
K(q)

—a-Sigma .2 - -3 - 16 - 32

Figure 6.5: K, z(g) ploued with K,(q) for a number of wavelengths. The o(x) field has @ = 2.0
and C, =0.25.
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. Figures 6.6, 6.7 and 6.8 present three cases of K, z(q)—¢qK, z(1) curves plotted for C,

values of 0.05, 0.15 and 0.25. The figures reveals that the curves overlap with no apparent
dependence on C, or upon wavelength. The errors in the overlap are entirely explainable in terms
of the estimation errors of the exponents for the various moments curves.

Kar(q)-g*Kar(1) for C1 =0.05

0.07

0.06

(.05

0.4

0.03

K(q)

0.02

9,01

-0.01

-0.02

—e-Oigma _,_8 - 16 - 32 - 64

Figure 6.6: K, 2(¢)—gK, »(1) plotted against q. The o(x) field has C, =0.05. The legend gives

the wavelengths in pixels. The K(q) function for the o(x) field is offset vertically to allow
comparison,
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Kar(q)-g*Kar(1) for C1 =0.15

0.15

0.1

0.05

K{q)

Figure 6.7: K, 2(q)—qK, (1) plotted against q. The 6(x) field has C, =0.15. The K(q) function

for the o(x) field is offset vertically to allow comparison.
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Kar(q) - g*Kar(1) for C1 =0.25
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-0.05

o 0.5 1 1.5

Figure 6.8: K, z(q)—gK, p(1) plotted againstq. The o(x) field has C, = 0.25. The K(q) function
for the 6(x) field is offset vertically to allow comparison.

In order to show that the results are general across all values of ¢ the relationships for o =
1.5 were computed and are plotted in figure 6.9 and 6.10. The values of & measured from the time
series of echo fluctuations revealed  to be in the range 1.4 10 2. The results presented in the
previous section suggest that K, (1) will depend upon ¢ Table 6.1 will reveal the dependence
of Kox(1) upon a.
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Figure 6.9: Scaling moments for g = 1.0, computed from A (k,X), for 6(x) with &= 1.5 and C, =
0.20.
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Kar(q) - gKar(1) for Alpha=1.5,C1=0.2
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Figure 6.10: K, x(g)— @K, ¢(1) plotted againstq. The o(x) field has & = 1.5 and C, = 0.20.

The Behaviour of K, x(1).

Kax(1) is expected to be independent of pulse volume scale or wavelength, and this is in
fact observed. The dependence of K, (1) on the C, of the o(x) field is roughly linear, but the
slope of the relation depends on c. Table 6.1 shows values of K, x(1) for o(x) fields with cc= 1.5,
o =175 and a = 2 and with C, ranging from 0.1 to 0.55. Figure 6.11 shows the behaviour of
Kax(1) versus C; for the three values of c.. The curves are computed to show that the relations
appear to be general for rainfields with any o (we will take advantage of this in order to restrict
the number of variable parameters in the space-time RCS model (see section 6.2)). The estimates
of & and C, from X, z(q) — gK,, (1) are consistent with those of the input o(x) fields.
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Table 6.1: Values of K, x(1).

Input C, a=2 a=1.75 a=15
0.10 0.40x0.02 0.45 £ 0.005 0.48 £ 0.005
0.15 0.36 £ 0.008 0.42 £0.005 0.48 £ 0.005
0.20 0.34 £0.005 0.40 = 0.005 0.45 £0.005
0.25 0.30 £0.005 0.38 £ 0.005 0.44 £ 0.005
0.30 0.28 £ 0.005 0.36 £ 0.005 0.42 £ 0.005
0.35 0.25 £0.005 0.33x0.005 0.40 £ 0.005
0.40 0.24£0.005 0.31£0.005 0.39 £0.005
0.45 0.22 £0.005 0.33 £0.005 0.35 £ 0.005
0.50 0.22 £0.005 0.31 £0.005 0.34 £0.005
0.55 0.19 £0.005 0.25 £0.005 0.33 £0.005
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Figure 6.11: K, (1) plotted as a functionof C; fora =2, =175, and @ = 1.5.

The results of this section support the theoretical assertions as to the statistics of Z,; presented

in the previous section. The statistics of Z,; from a scaling rainfield are therefore dependent on
the measurement scales B, and A,,. The standard theory of Marshall and Hitschfeld (1953) and
Wallace (1953) or Lawson and Uhlenbeck (1950) have no such dependencies.
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7.0 The Statistics of Z,,(r) from a Temporally and Spatially Scaling Rainficld.

The temporal behaviours of Z,; will be explored in this section using a simple space-time

multiscaling model. The space-time model is referred to as the radar cross section (RCS) model in
order to retain continuity with Duncan et al. (1992a,b). The temporal evolution of the spatial radar
cross section field 6(x) used in the last section will be simulated using 2D multifractal fields o(x. 1),
Intensities will be computed over the x-component (corresponding to columns) of the 2D o(xv.1)
fields and the evolution of the intensities in time is a function of the t-component (corresponding
10 rows) of the 2D o(x, 7) fields. The 2D multiscaling model necessitates an assumption about the
relation between spatial and temporal scaling. The simplest assumption concerning the temporal
and spatial scaling is that they scale in the same way. The multifractals used to model the o(x, f)
field will therefore be isotropic. However, this need not be the case as Generalized Scale Invariance
(GSY) (Schertzer and Lovejoy. 1983) can be employed to change the temporal or spatial scaling
exponents independently (see Pecknold et al. (1993) for a discussion).

The assumption of isotropy between temporal and spatial scaling exponents has implication
to the arguments conceming the application of Taylor’s hypothesis in the rainfield. Taylor’s
hypothesis was originally intended to allow fluctuation velocities in laboratory flows to be quantificd
relative to some mean motion (Taylor, 1938). In a mulufractal, the variability at pregressively
larger scales modulates the fluctuations at smaller scales in a scale invariant way. Thus, in a
space-time representation there exists no "mean’ velocity, but rather a scale dependent "average’
velocity below whichthe *fluctuations’ can be defined. This relationship is of course scale inavariant
in a muldfractal and results in a velocity function that is an exponential function of scale. This
would represent a scale invariant form of Taylor’s hypothesis where the notion of a "mean’ flow
velocity is replaced by a scale invariant velocity function. The consideration of scale dependent
velocities and Taylor’s hypothesis have been dealt with in Tessier et al. (1993).

The computations carried out in the space-time RCS model are straightforward. Two time
series, one of reflectivity Z,(¢) and one of effective reflectivity Z,,(¢), are generated for each o(x, 1)
field. The computation for Z,(z) is
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. Z@ = L J.o(x.r)zdr (7.1
a£,

Vol(B,)
and the computation for Z,,(r) is

1
Vol(B,)

Z,(0) ; f o(x, 1)e X dx |° (7.2)
8

where B, and A, will be given in units of pixels of the o(x,r) fields. The o(x,r) fields will be

generated by the UMCG cascade generator described in appendix A. The range of scales availabic
to the space-time model is limited to 2D arrays of 1024x1024 pixels. Figure 7.1 shows the
relationships between the pulse volume scale B, and the wavelength scale A, on the spectral
representation of the Z,,(1) time series. The relation between the space scales B, and A, and their
position on the spectrum of the time series is defined by the space time isotropy assumption. Thus,
with isotropy, spatial scales of 64 pixels will appear at a frequency of f = 1/64. This relation could
be changed by altering the relation between spatial and temporal scaling. Indeed, this may occur
in the rainfield, but it cannot be quantified from a time serics.

. Due to the limited range of scales available with current computer resources the analysis of
the artificial time series of Z,(r) and Z,,(¢) will be restricted to two scale regimes that can be regarded
as “universal’ to the radar measurement problem. The regimes of interest (see figure 7.1) are the
low frequency scaling regime, given by small B, and small A, and the high frequency scaling
regime, given by large B, and large A, (with B, > A,). The ratio A of scales in a realization of a
time series for Z,(¢) or Z,,(¢) is A = 1024 (= L/I" = 1024/1). Within the 1024 values of the artificial
time series for Z,;(r) the low frequency scaling, high frequency scaling, and plateau regimes coexist.
The ratio of scales in the low frequency scaling regime is then A = 1024/B,. The ratio of scales in
the high frequency regime is given by the wavelength scale A, and can be increased by increasing

-
7.1 Theory.

In this section some useful results will be drawn from chapter 6 on the spatial statistics of
Z,;. The objective of the space-time model is to create time series of the fluctuating echo which
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. can then be analyzed in the same manner as those collected from the VPR. T:e results in chapter
6 reveal that o is unaltered by the ransformation and that the results for specific o values are
general. This allows a restriction on the parameter space of the RCS model to & = 2. Another
restriction on the parameter space of the RCS model results from the 2% relation for the C, of the
o(x,r) field and the C, of Z,;. The C, of the o(x, £) field will be restricted to values less than 0.25.
This restriction is understandable by considering that if the C, of a time series exceeds 1 the
ensemble mean of the process being considered will not be visible on any given time series.
Consequently the reliability of statistical estimates made by either DTM or TM/GA will be
compromised since they require a measurable ensemble mean.

Using the relations derived in chapter 6 we can anticipate the relation between the statistics
of Z,(t) and Z,,(z) in the low frequency scaling regime. We examine the scaling of Z,(¢) and Z_,(1)
for A™' > B, or at scales greater than the pulse volume scale. At these scales the behaviours of Z(f)
and Z,,(z) should reflect the fact that they are both squared measures of the o(x,z) field. Indeed,

from
<zy> = AW 73)
. and
<ZI> = A (7.4)
we know, using relations 6.20 and 6.7 that
Kz (q)=Ci((29)"-29)+q (2K, ;(1)-D) (7.5)
and
Ky(q)=2°Cy(¢"~q) (7.6)
which means that for the case of = 2,
Kz.(q) = 4C,c,72 + terms... 7.7)

and
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K q) = 4Cq° + terms... (7.8)

Thus, due to the construction of multifractals where large scale variability modulates the small
scale, the small scale operations on the 6(x, 1) field are unimportant at large scales and the statistics
of Z,(1) and Z,, (1) are similar within an approximation of terms of q of order 1. Therefore, estimates
of multifractal parameters and spectral slopes from the low frequency scaling regime should be
the same for both quantities.

The development of the statistical description of Z, and Z,, in chapter 6 did not include the

development for the distributions of singularities. The following development for the ¢ () functions
of both fields is necessary to interpret the numerical results that will follow. The distribution of
singularities within the time series Z,,(t) is governed by

~, ¥z,
Pr( A > 73:‘) = A ol (7.9)
employing the Lengendre transform and using relation 6.20 we get
KA.R(I) -
¢z, = max\qY, —|K,(Q2q)+2q—5— (7.10)
@ “ i
which can be rewritten
o = max[zq[’ﬁ-x*‘-“m]—lc,(zq)) (.11)
‘ % 2 2
which means that
y — Ky p(1
¢, = c,(y__" 2“'"( )) (7.12)

Thus, the operation of the Fourier component on the variability of o(x,t) (recall that

K.(q,n) =K,(g,n)) results in a shift of the spectrum of singularities present in the &(x, ) field by
K x(1). Theshiftis areduction of the singularities by K, 3 (1) which is adirect resultof the dressing
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operation (recall from section 3 thatdressing (averaging) kills singularities). This 1s very important
since the spectral and distributional behaviours of Z,,(1) depend on the singularities present in the

lime series,
Relation 7.12 reveals a bias in the distributions of Z,,(¢) that differs greatly from the bias

noted by Rogers (1971). The bias noted by Rogers (1971) is the result of averaging a quantity
with 2 mean that varies in time and space. The bias in relation 7.12 results froin the dressing by
the radar of a complex quantity. A further bias can be introduced by averaging Z,, values in cross
range or downrange averaging schemes. The measurements made by Schaffner et al. (1980)
represent the post-detection processing scenario and will reveal a bias for any type of rainfield
variability. However, further analysis by Schaffner et al. (1980) might have revealed scaling
behaviour. The existence of K, x(1) results from sub-resolution variability and has not been dealt
with previously. It affects all moments of the distribution at all averaging scales.

Further, the relation between ¢, (y) and cz'('y) can be defined relative to ¢,(y) and therefore

to cach other. Indeed, using relation 3.11 and restricting ¢x to 2,

-K, (1 1 K, DY
e = c.,(——T 2l )J = _4CIG+C*‘ A )) (.13
and
1
) = 4ct22(7+c‘)2 (7.14)

which yields the relation between the singularities present in either time series,
e =6z (Y= C,+ K, (1)) (7.15)

when C, is small K, x(1) is large and Z,(¢) has much larger singularities than Z,;(r). The opposite

is true when C, is large and K, z(1) is small. The restriction of c to the value 2 has the deeper
significance that it is the only value of & for which an identity of distributions between Z,, and Z,
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can be achieved (all other values of o will involve a shift and multiplication factor). This
development reveals that if C, = K, z(1) then Pr(Z,) = Pr(Z,,). This equality is found, using figure
6.11, at approximately C, = 0.3 (for the o(x,7) field with o = 2).

The relations between the codimension functions of Z,;(¢) and Z,(¢) are necessary to interpret

the spectral behaviour of the artificial time series as well as the distributional behaviour. The first
thing that relation 7.15 reveals is that a relative bias between distributions of Z,,(t) and Z,(r) are
dependent upon C, and K, z(1), which is itself dependent upon C,. Using relation 7.15 we can
also speculate on the spectral energy of the time series of Z,; and Z,. 1f C, < K, 4(1) the toul
spectral energy of Z,(r) will be greater than that of Z,(1) due to the presence of increased
singularities. If C, < K, (1) then the reverse is true. Thus, the relative spectral energies of Z,,(1)
and Z,(¢) are dependent upon C, and K, x(1).

The statistics of Z, (1) and Z,,(t} would be expected to differ markedly for scales smaller than

B,. In the case of Z,,(r) we expect to find the spectral plateau associated with the pulse volume
scale. In the case of Z,(¢) a corresponding scaling break at the pulse volume scale By, separating
the low frequency scaling regime from the high frequency scaling regime, would be expected.
Statistics at scales B, reflect the modulation by larger scale variability. The statistics of scales
smaller than B, are within the correlation length associated with B,, and hence are not casily
described. The nature of the statistics in the high frequency scaling regime of both Z,(r) and Z,,(r)
admit the likelihood that the statistics cannot be described in terms of universal multifractals (see
section 7.3.4). The statistics will be explored in terms of a *projection” of the spatial variability
of the o(x, r) field onto the time axis. This "projection’ will involve the modification of available
singularities due to dressing and modification of the ¢(y) function to a form different from that
predicted under universality.

In summary, we expect a shift in singularity as a function of C,. This shift will be reflected
in spectral as well as distributional behaviours. Further, it is expected that the statistics of the low
frequency scaling regimes of Z,(t) and Z,;(r) to be almost identical. A scaling break in the artificial
time series is also expected to coincide with the pulse volume scale B,. The break in the time
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series of Z,,(¢) should be more obvious that thatin Z,(r) due to the prescence of the spectral plateau.
The numerical explorations and results of these theoretical assertions will be presented in section
7.3.

7.2 The Parameter Space of the RCS Model.

The total parameter space of the model is potentially very large. The free parameters used
to model Z,, include the multifractal parameters o, C,, and H as well as the measurement scales
B, and A,,. The H parameter will generally be kept at 0 for the current study. The value of & will
be kept at 2. The truly interesting parameters are B, A,, and C,. However, C, will be restricted
to values between 0 and 0.25 for reasons presented in the previous section. Table 7.1 outlines the
range of these parameters investigated with the RCS model. Of the ranges of parameters shown
intable 7.1 only select values will be depicted in the following analysis. Many of the combinations
of the values present in table 7.1 are uninteresting and were used to isolate the interesting

behaviours.
Table 7.1: Ranges of RCS model parameters explored.
Parameter Range
Grid Scale 1024 x 1024
Pulse Volume B 8, 16, 64, 128, 256, 1024
Wavelength A, 4,8, 16, 32, 64, 128, 256, 512
C, 0.01 to 0.25 at increments of 0.02.

A shorthand notation is employed to identify the parameters used in constructing the UMCG
fields as well as each artificial intensity time series. The notation for the UMCG fields is
UMCG(C,,H) indicating a multifractal field with specific C, and H (o is held constantat 2.0). The
notation for parameters of the RCS model used to create artificial time series is RCS(Pulse Volume
scale, Wavelength scale, C,, H) or RCS(8,, A.,, C;, H). Anexample would be RCS(256,8,0.07,0.1)
where B, is 256 pixels, A, is 8 pixels, C, is 0.07 and His 0.1.
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An alternative to the numerical RCS model was explored. Appendix C contains the first
few lines of an early analytical formulation for the problem of reproducing the spectra of time
series of the fluctuating echo assuming that the radar cross section field is scaling. The analytical
expression involves the four point correlation functions of log-normal multifractals. Integration
of these functions was found to be more CPU intensive than the numerical model and the approach
was abandoned.

The RCS model is used to create time series of Z,(¢) and Z,,(r) from realizations of 2D

multifractal variability created by the UMCG. The time series comprise 1024 vatues. Repetition
of the model create independent time series for the same set of input parameters. Generally, 256
independent runs of the RCS model were performed to create adequate quantities of data toexplore
the model parameter space and verify the theoretical assertions. The effect of fixed model runs
can be analysed using sampling dimension (relations 3.15 through 3.18). For the analyses of the
low frequency scaling regime (see below) N, is 256, A is 32, ac is 2, and C, ranges from 0.04 to 1
(recall the 2 result). Thus g, ranges from 8 for C, = 0.04 to 1.6 for C, = 1. This effect can actually
be discerned in figures 7.17 and 7.18 as the point at which the universal curves bend over at
progressively lower n-values for higher C,. The effect is not likely to be severe since it can be
account for exactly, but the limitations of computer resources (and time) had to be taken into
account.

7.3 Numerical Results.

This section will proceed as follows: Section 7.3.1 will present examples of the time series
created by the RCS model. Section 7.3.2 will present general observations of the spectral
behaviours of Z,,(r) and Z,(t) with emphasis on the dependencies of spectral appearance on B,
and A,,. Section 7.3.3 will examine the statistical nature of the low frequency scaling regime in
depth. Section 7.3.4 will examine the statistical nature of the high frequency scaling regime.
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. 7.3.1 The Time Series of Z,, and Z, Created by the RCS Model.

This section provides some observations of the time series of the fluctuating echo created
with the RCS model. The outer scale of the time series of Z,(r) and Z,;{r) is 1024 values. Siatistics
are computed over 256 independent realizations of each time series with the same set of input

values.

RCS(256,8,0.01,0.0)

(5]

' l !
; a
| |

Log(I(1))

-1k

Figure 7.2: Z,(¢) and Z,,(r) for RCS(256,8,0.01,0.0}. The top curve is Log,o(Z,(2)) and the bottom
curve is Log,(Z,.(2)).

The effect of the complex spatial *dressing’ implied by the integral over (6(x,)e™) is
clearly visible when Z,(r) and Z,,(r) are plotted together. Figure 7.2 shows 1000 elements of the
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two time series plotted side by side for a C, of 0.01. Due to the spectral plateau (below), the high
frequencies are more pronounced in Z,;(f) than in Z,(f), hence the differences in appearance.
According to the data analysis sections a C, of 0.01 would be unrealistic, but it serves a purpose
in the demonstration. Figure 7.3 shows the distribution of the values plotted in figure 7.2, 256
realizations of 1024 elements of each time series are used to compute the distributions depicted
in figure 7.3. For low C,, asin figures 7.2 and 7.3, the widening of the distribution of Z,, (r) over
Z,(r) by the Fourier computation is quite pronounced. However, the order of singularity is much
smaller as is predicted by relation 7.15. The shape of the distribution of Z,,(t) is suggestive of a
Rayleigh distribution, but is in fact a log-normal distribution. The Rayleigh is plotted for
comparison. The similarity of the distribution of Z,, to the Rayleigh is superficial. The Z,,
distribution is derived from a highly correlated field. None of the values of Z,; can be considered
independent. The centering, or bias, of the distribution is given by relation 7.15.
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Figure 7.3: Centered distributions of Z, and Z,, for RCS(256,8,0.01,0.0). The Rayleigh
distribution is plotted as a line for comparison,

Comparison of figures 7.2 and 7.4 reveals the marked increase in the variability of Z,,(r)

and Z,(¢) as the C, of the o(x, ) is increased. However, the relative increase is as qualitatively
predicted by relation 7.15. Figure 7.4 reveals that C, = 0.05 results in a Z,,(¢) with a dynamic
range that overlaps that of Z,(¢). The data analysis suggests that a C, of 0.05 for the 6(x, 1) is not
too far from the measured C, ~ 0.1. Comparison of the distributions plotted in figures 7.3 and
7.5 reveals that the distribution of Z,(¢t) widens quickly as a function of increasing C,.
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Figure 7.4: Z,(¢) and Z,,(z) for RCS(256,8,0.05,0.0). The top curve is {Log,o(Zy(t)) + 2} and the
bottom curve is Log,o(Z,(2)). The factor 2 is added to separate the two curves.
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Figure 7.5: Distributions of Z, and Z,; for RCS(256,8,0.05,0.0). The Rayleigh distribution is
plotted for comparison.

From an experimental perspective the apparent proximity of the distribution of Z,,(z) to

the Rayleigh represents a potential problem. The shape of the distributions is a product of the
Fourier component calculation, one for Poisson variability and one for scaling variability. The
definition of a Poisson distribution (see Vanmarcke, 1983) requires the variability to be Poisson.
The two distributions are tremendously different in the sense that the distribution of Z,;(¢) from
a multiscaling field is entirely dominated by the algebraic tail. Which means that the distribution
with the Rayleigh appearance actually has the description Pr(Z,, > A% = l-‘z‘m. Observation of
this tail requires that adequate data is collected (i.e. D, must be high enough). The amount of
data required to distinguish this distributional behaviour from the Rayleigh behaviour is likely
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prohibitive with operational radar scales and ranges considering the scale dependence ot the
distributions. The initial implication is that the data of Lhermitte and Kessler (1966) would be
inadequate to rule out the possibility that the distribution resulted from a scaling rainfield,

7.3.2 General Observations of the Spectral Behaviours of Z,(r) and Z,,(1).

A specral analysis of Z,(r) and Z,,(¢) from the RCS model reveals the characteristic shape

noted in the spectral analysis of echo fluctuation time senies A through 1 (see figure 7.6). Figure
7.6 was produced to enhance the resolution on the scale breaks and has an outer scale of 2048
pixels. Each spectrum represents an average of 256 spectra of the 1024 intensitics comprising
each time series. This section will explore the general spectral characteristics of the artificial
time series of Z,(¢) and Z,,(2).

The Re-creation of the Pulse Volume Plateau.

The most obvious features revealed by spectral analysis of Z,,(2) are the three speciral

regions (figure 7.6). The scales on either side of the plateau correspond exactly to the pulse
volume scale B, at the low frequency end and A, at the high frequency end. The extent of the
scaling behaviour of the low frequency scaling regime can therefore be controlled by adjusting
B, and the exient of the high frequency scaling regime can be adjusted by altering A,
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Figure 7.6: Average spectrum of Z,,(¢) resulting from the RCS model (this spectrum has an outer

A scale of 2048 pixels). The spectrum is an average of 256 spectra of 2048 intensities. The
wavelength scale is 8 pixels (log(f) =-0.9). The pulse volume scale is 256 pixels (log(f)
=-2.4).
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. The Dependence of Spectral Energy on C,.

General observations about the spectral behaviour of Z,(r) and Z,,(r) that result from the
RCS mode!l are as follows: The total spectral energy is a strong function of C,. This is

. .. . 1 2 .
straightforward result when it is considered that e¢(y) == (y+C,), which means that the
1

singularities present in the time series are quadratic function of the C, of the G(x.r) (i.e. the
variance increases quickly with C,). Figure 7.7 shows the spectra of Z,(r) computed at increasing
values of C, with the corresponding spectra for Z,;(r) in figure 7.8. Figure 7.7 shows that the
spectral slope B of Z,(r) is also a function of C, as expected from the relation B=1-K(2,2). This
relation is less obvious in figure 7.8 due to the strong scaling breaks.
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Power Spectra of Z from RCS(256,8,C1,0.0)
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Figure 7.7: Spectra of Z,(¢). The bottom line is for C; = 0.01 and successively higher lines are
at 0.02 increments of C,.
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Power Spectra of Ze from RCS(256.8.C1.0.0)
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Figure 7.8: Spectra of Z,;(z). The bottom line is for C, = 0.01 and successively higher lines are
at 0.02 increments.

The relative spectral energy of Z,(r) and Z,,(z) is a function of C, as predicted by relation

7.15, which shows the relative ranges of singularities available to each. Increasing the value of
C, of the o{x, ) field results in higher spectral energies for both curves as was shown in figures
7.7 and 7.8, but figures 7.9 and 7.10 show that the spectral energy of Z,,(t) increases at a faster
rate for increasing C,, again as expected from relation 7.15 due to the effect of K, ,(1). The
spectra in figure 7.10 show a great deal more noise than those in figure 7.9. The increasing
variance of G,(x, ) as a function of C, as well as the limited ratio of scales available affects the
quality of the spectra.
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Power Spectra of Z and Ze from RCS(256,8.0.01,0.0)
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Figure 7.9: Power spectra of Z,(f) and Z,,(¢) for RCS(256,8,0.01,0.0). The axes are log of
frequency and log of spectral energy (or variance per unit wavelength) making the curve
for Z,(¢) a power law (the power law has a scaling break at log(f) =-2.4 (see below)). The

time senies of Z,(t) and Z,, () resulted from exacty the same variability controlled by C,
=0.01. The un-obvious scaling break in Z,(r) occurs at log(f) =-2.4.
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Power Spectra of Z and Ze from RCS(256.8.0.13,0.0)
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Figure 7.10: Power spectra of Z,{r) (bottom curve) and Z,,(¢) (top curve) for RCS(256,8,0.13,0.0).
The axes are labelled as in figure 7.9.
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The Effect of Pulse Volume Scale B,

The pulse volume scale erves to divide the spectra into two effectively different statistical
regimes. There exists a scale break on the spectra of both Z,(r) and Z,,(¢) at Log(Scale = 1/B,)).
The statistics on either side of the break are distinct for the two time series. Aside from the
obvious spectral plateau of Z,,(r) the statistics of both time series at scales A™' smaller than the
pulse volume scale 8, are not universal multifractals and wiil be dealt with below. The statistics
of the time series at scales greater than the pulse volume are the result of modulation, by the large
scale temporal variability, which is a universal multifractal.

The alteration of the pulse volume scale B; has the straightforward effect of moving the

scaling breaks in the power spectra of Z,(¢) and Z,,(z). In both cases increasing B, causes the
break to extend to progressively lower frequencies. Another general observation is that spectral
energy increases with increasing pulse volume scale. The movement of the scale break with
increasing B, for Z,;(¢) is shown in figure 7.11. Three curves appearin figure 7.11, the top curve
was computed with By = 256 pixels, the middle curve was computed with B; = 128 pixels, and
the bottom curve was computed with B, = 64 pixels. This result reflects the fact that larger pulse
volumes contain more variance and result in high spectral energies. All three curves were
computed with a fixed wavelength of &, = 8 pixels. The plateau of the top curve extends further
towards low frequencies. The bottom curve, which has the smallest pulse volume, has the shortest
plateau. Note that the high frequency endpoint of the plateau, due to A,,, is the same for all three
curves.
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The Effect of Pulse Volume Scale
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Figure 7.11: Spectra of three realizations of the RCS model with changing pulse volume scale.
The top spectrum has a pulse volume scale of 256 pixels, the middle spectrum has a pulse
volume scale of 128 pixels, and the bottom spectrum has a pulse volume scale of 64 pixels.

The break in the scaling of Z,(¢) is less pronounced as it has no spectral plateau indicating

its presence. In figure 7.12 regression lines have been fit to the spectrum on cither side of the
scale break. The scale break occurs at the "frequency’ corresponding to the pulse volume scale
B, which is set at 64 pixels, hence the break is at Log(1/64) = -1.8. The scale breaking operation
is idealized in figure 7.13. The figure shows a transition zone around the scale break. If statistics
of Z,(r) or Z,,(¢) are to be compiled it must be at scales far removed from the transition zone.
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Scaling Break in Z(t)
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Figure 7.12: A power spectrum of Z,(¢t) showing the break in scaling due to the pulse volume
scale B,. The scaling break is emphasized using regression lines fit to the two scaling

regimes, the break is where the regression lines cross. The exponent of the low frequency
regime is -1.26 and that of the high frequency regime is -1.66.
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Spectra'l Scaling Breaks in Z(t) and Ze(t)
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Figure 7.13: Anidealization ofthe spectral representations of 7, ({)
and Z, (1) emphasizing the scaling break due to the pulse

volume B,, The zone around the break is marked as a
‘transition’ zone where the statistics are expected to change
from the relatively simple forms at low frequency to the forms
at high frequency. Estimates of statistical parameters should
be taken from scales much larger or much smatler than the scale

break.




The Effect of Wavelength Scale A,,.

The spectral dependence upon the wavelength scale affects only Z,,(r) and gives a

struightforward break at f = 1/A,,. Figure 7.14 shows that as wavelength increases (by factors of
2 from bottom to top) the spectral slope appears to be a function of wavelength. It is only at
wavelengths in excess of 64 pixels thart the high frequency scaling regime seems uncontaminated
by the transition zone about the break point. The figure also shows how the scaling break
assoctated with A, moves towards lower frequencies as the wavelength increases. For A, > 64
pixels we can attempt toanalyse the statistics of the high frequency scaling regime. Thedifficulties
with this regime will be dealt with in section 7.3.4.

In erms of measurements made by most operational radar systems this result would imply
that duta taken in this scale regime is dependent upon wavelength. For radar systems with much
longer wavelengths, such as profilers, the high frequency scaling regime may or may not be

clearly visible.
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Figure 7.14: The effect of different wavelengths on the spectral representation of the Z,,(r) time

series. The figure clearly shows that the spectral slope is wavelength dependent for short
wavelengths but seems to become wavelength independent for longer wavelengths. The
figure also shows clearly how spectral energy increases with wavelength. The mode! used
for these compurtation was RCS(1024, Wavelength, 0.1, 0.0) with wavelength scales of
(from bottom to top) 16, 32, 64, 128, 256 and 512 pixels.

7.3.3 The Low Frequency Scaling Regime.

In this section we verify the approximations made in relations 7.7 and 7.8. We expect Zy(t)

and Z,,(¢) to have similar scaling behaviours at scales sufficiently larger than the pusle volume
scale. Far from the pulse volume scale B the statistics of Z,; and Z, will likely only reflect the
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fact that they are both squares of the o,(x, ) field. The analysis of the low frequency scaling
regime was conducted using a pulse volume scale B, of 16 pixels, and a wavelength scale A,, of
8 pixels. The multifractal analysis was straightforward: A scale ratio A of 32 was used (i.e. L =
1024 pixels and [ = 32 pixels leaving a factor of 2 in scale between the scale break and the inner
scale f of the analysis). DTM was used to establish the extent of the universal regime and estimate
the universal parameters. The analysis will be presented graphically in figure 7.15 through 7.19.
Each figure contains curves for 5 values of C,. Results are tabulaicd in table 7.2.
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. Scaling Moments for Z,(t).

Scaling moments of Z,(¢) are presented in figure 7.15 for a selection of 5 of the 13 values

of C, auempted. In each figure the ratio of scales examined was A = 32. The scale range
corresponds to scales from 32 pixels 1o 1024 pixels. Computationally, this involves summing
each 1024 point time series of Z,(¢) over 32 values and examining the scaling behaviours of the
resulting 32 values. Statistics are then accumulated over the 256 independent runs of the RCS

model.
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Figure 7.15-a: Scaling moments for Z,(t) from RCS5(16,8,0.01,0.0). The legend gives the order
of moment q for the curves.
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Trace moments for Z from RCS$(16,8,0.05,0.0)
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Figure 7.15-b: Scaling moments for Z,(r) from RCS(16,8,0.05,0.0). The scale ratios are as in
figure 7.15-a. The scaling of Z,(r) at C, = 0.05 is good and is robust. The legend gives the
order of moment q for the curves.
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Figure 7.15-c: Scaling moments for Z,(¢) from RCS(16,8,0.09,0.0). The scale ratios are as in

figure 7.15-a. The scaling of Z,(r) at C, = 0.09 is very good and is robust. The legend
gives the order of moment q for the curves.
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Figure 7.15-d: Scaling moments for Z,(¢) from RCS(16,8,0.13,0.0). The scale ratios are as in
figure 7.15-a. The scaling of Z,(r) at C, = 0.13 is very good and is robust. The legend
gives the order of moment g for the curves.
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Figure 7.15-e: Scaling moments for Z,(t) from RCS(16,8,0.17,0.0). The scale ratios are as in

figure 7.15-a. The scaling of Z;(r) at C, =0.17 is excellent and is robust. The legend gives
the order of moment q for the curves.
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Scualing Maoments for Z,,(1).

Scaling moments of Z,,(z) are presented in figure 7.16 for the same scale ranges and C,

values presented in figure 7.16. Comparison of corresponding graphs of figures 7.15 and 7.16

reveals that the scaling behaviours are almost identical.
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Figure 7.16-a: Scaling moments for Z,,(t) from RCS(16,8,0.01,0.0). The scalingofZ,, atC, =
0.05 is good and is robust. The legend gives the order of moment q for the curves.
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Trace moments for Ze from RCS(16,5,0.05,0.0)
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Figure 7.16-b: Scaling moments for Z,,(z) from RCS(16,8,0.05,0.0). The scale ratios are as in

figure 7.16-a. The scaling of Z,; at C, =0.05 is very good and is robust. The legend gives
the order of moment q for the curves.
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Figure 7.16-c: Scaling moments for Z,,(t) from RCS(16,8,0.09,0.0). The scale ratios are as in

figure 7.16-a. The scaling of Z,; at C, =0.09 is very good and is robust. The legend gives
the order of moment q for the curves.
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Truce moments for Zc from RCS(16,8,0.13,0.0)
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Figure 7.16-d: Scaling moments for Z,,{r) from RCS(16,8,0.13,0.0). The scale ratios are as in
figure 7.16-a. The scaling of Z,; at C, =0.13 is very good and is robust. The legend gives
the order of moment q for the curves.
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Figure 7.16-e: Scaling moments for Z,,(r) from RCS(16,8,0.17,0.0). The scale ratios are as in

figure 7.16-a. The scaling of Z,, at C, = 0.17 is good and is robust. The legend gives the
order of moment q for the curves.
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Universal Function curves Log(K (q.m)) vs Log(n) for Z,(z).

Figures 7.17 and 7.18 present the universal functions Log(K (¢.M)) vs Log(M) for Z, (1) and
2., (r) respectively. The deviation from universal behaviour at high 1-values corresponds roughly
to the q, values computed from the fixed size of the time series. Estimates of the exponents of
the linear regions between -1 <1 <-0.5 are summarised in table 7.2. A line of slope = 2 is
plotted on each graph for reference. The scaling regime used for the DTM analysis is the same
as that presented in figures 7.15 and 7.16.
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Figure 7.17-a: Thc untversal function curves Log(K(q,n)) vs Log(n) for Z(1) from
RCS5(16,8,0.01,0.0).
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DTM for Z from RCS(16,5,0.05,0.0)
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Figure 7.17-b: The universal function curves Log(K(g,n)) vs Log(n) for Z,(r) from
RCS(16,8,0.05,0.0).
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Figure 7.17-c:  The universal function curves Log(K(g,n)) vs Log(n) for Z,(¢) from
RCS(16,8,0.09,0.0).
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Figure 7.17-d: The universal function curves Log(X(g,n)) vs Log() for Z(r) from
RCS(16.8,0.13,0.0).
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Figure 7.17-e: The universal function curves Log(K(g,n)) vs Log(n) for Z(t) from
RCS(16,8,0.17,0.0).

7.0 The Statistics of Z,;(r) from a Temporally and Spatially Scaling Rainfield. 147



. Universal Function curves Log(K(q,m)) vs Log(n) for Z,;(t).
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Figure 7.18-a: The universal function curves Log(K{g,m)) vs Log(m) for Z,(t) frem
RCS(16,8,0.01,0.0).
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Figure 7.18-b: The universal function curves Log(K(g.n)) vs Log(n) for Z,{t) from
RCS(16,8,0.05,0.0).
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Figure 7.18-c: The universal function curves Log(K(g,n)) vs Logn) for Z,(z) from
RCS(16,8,0.09,0.0).
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Figure 7.18-d:  The universal function curves Log(K(g,m)) vs Log(n) for Z,(r) from
RCS(16,8.0.13,0.0).
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Figure 7.18-e:  The universal function curves Log(K(g,m)) vs Log(m) for Z,,(t) from
RCS(16.8,0.17,0.0).
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’ Trace Moment curves K(q) vs q for Z,(t) and Z ,(2).

Relations 7.7 and 7.8 show that in the low frequency scaling regime the K(q) functions tor
Z,(1) and Z,,{z) should be very similar. An additional effect is present in the time-space RCS
model. The effect of averaging in time to examine the low frequency scaling requires additional
“dressing’ which further suppresses the linear term qK, (1) that differentiates the two curves.
The near coincident nature of the K(q) curves for Z,(¢) and Z,,(¢r) that follow support this
explanation.
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Figure 7.19-a: K(q) vs q curves for Z,(r) and Z,,(r) for RCS(16,8,0.01,0.0). These curves show

that for C, =0.01 the stadstics of the low frequency scaling regime of Z,(r) and Z,,(¢) arc
very close.
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Figure 7.19-b: K{(q) vs q curves for Z,(t) and Z,,(r) for RCS(16,8,0.05,0.0). The strong overlap
of these curves shows that for C, =0.05 the statistics of Z,(t) and Z,;(¢) in the low frequency
scaling regime are very close.
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Figure 7.19-c: K(q) vs q curves for Z,(¢) and Z,,(r) for RCS(16,8,0.09,0.0). The strong overlap
of these curves shows that for C, =0.09 the statistics of Z,(r) and Z,,(¢) in the low frequency
scaling regime are very close.
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Figure 7.19-d: K(q) vs q curves for Z,(r) and Z,,(¢) for RCS(16,8.0.13,0.0). The strong overlap
of these curves shows that for C, =0.13 the statistics of Z, (1) and Z,,(¢) in the low frequency
scaling regime are very close.

K(q) for Z and Ze from RCS(16,8,0.17,0.0)

a2

ol -

al

K

ols

Figure 7.19-e: K(q) vs q curves for Z,(¢) and Z,;(¢) for RCS(16,8,0.17,0.0). The strong overlap
of these curves shows that for C, =0.17 the statistics of Z,(¢) and Z,,(¢) in the low frequency
scaling regime are very close.
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. Tuble 7.2 shows the estimates of o and C, obtained from the linear regions of figures 7.17
and 7.18. computed from time series of Z,(r) and Z,;(r) resulting from RCS(16,8,C,,0.0). The
estimates of & and C, in the low frequency scaling regime show the behaviour expected from
relations 7.7 and 7.8 within experimental error. The estimates of C, are very similar for the two
time series and are generally four times (2%) the input C, values. Numerous trials of these results
were produced and the resulting behaviours are exactly similar for smaller pulse volume scales
(i.c. the analyses were performed for numerous runs of RCS(8,8,C,,0.0) with exactly similar
results). The similarity of results for different small pulse volume scales suggests the mansition
zone about the pulse volume scale break does not extend to measures taken from scales at least
a factor of two greater than the B, scale.

Table 7.2: Estimates of Universal Multifractal Parameters for Z,(r) and Z,,(¢) from
RCS(16,8,C,,0.0)
G(x,1) Zp, Z,
C (v3 G o C
. 0.01 1.90.4 0.120.2 190.4 0.1%0.2
0.03 1.9+0.3 02+02 19%0.3 02£02
0.05 1.9+0.2 02+£02 1.9+0.3 02£0.2
0.07 1.9+0.2 03%0.1 19£0.2 03£0.1
0.09 1.9%0.1 04£0.1 2.0+0.1 04x0.1
0.11 20x0.1 04+0. 20x0.1 04£0.1
0.13 2001 04+0.1 20x0.1 04+0.1
0.15 20+0.1 05+0.1 2001 05%0.1
0.17 20+0.1 0.6+0.1 20£0.1 05£0.1
0.19 20+0.1 06x0.1 20£0.1 0.6x0.1
0.21 2.0x01 0.74 £0.04 20+0.1 0.7x0.1
0.23 2001 0.7+0.1 20x0.1 07£0.1
0.25 20£0.1 0.8+0.1 20+0.1 08+0.1
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. The Benaviour of Distributions of Z,,.

The centering of dismibutions of Z,,(z) 1s influenced by K, x(1) and is dependent upon the

pulse volume scale B, as 1s expected from relations 7.13 and 7.14 and their Legendre transforms
6.7 and 6.20. The centering of the distributions at fixed wavelength A, and C, of the o(x. 1) ficld
is then controlled by B, and is expected to decrease with increasing B,. Figure 7.20 shows that
this is in fact the case. The centering of the distributions, or bias, decreases as a function of
increasing B,. The disuribution can also be seen to narrow as B, increases. This behaviour, if
taken to the limit of very large pulse volumes (at long range for instance) would result in &
distribution that would be superficially indistinguishable from a Rayleigh distribution for small
data sets.

The behaviour of distributions of Z,,(r) with increasing pulse volume scale is presented in

figure 7.20. The distributions presented in figure 7.20 include the distributions for 4, 64 and
1024 pixel pulse volumes. The Rayleigh curve is presented to show he-w increasing pulse volume
scale produces distributions which superficially approach the Rayleigh shape. Each of the
distributions is an average from 256 histograms, each resulting from a realization of the RCS

. model for the given parameters. The wavelength A,, is held constant at 4 pixels. The distributions
are seen to narrow with increasing B,. This behaviour is particularly evident in the high tail of
thedistribution where the 1024 pixel pulse volume severely underestimates the number of extreme
values found with the 4 pixel pulse volume. The bias in the distribution is inversely related to
B,. The 4 pixel pulse volume is biased to -5.5 dB, the 64 pixel pulse volume is biased 10 -3.5 dB
and the 1024 pixel pulse volume is biased to -1.0 dB. It is clearly evident from these results that
even in a multifractal rainfield a very large pulse volume will produce only a small bias in the
distribution. Indeed, the scale ratio A of 256 for the 1024 pixel pulse volume (i.c. L = 1024 pixels
and ! = 4 pixels) should be compared to the scale ratio of 1500 for most operationa! radars (i.c.
150 m pulse of 10 cm wavelengths), which are then averaged in downrange or cross range
averaging schemes.

The immediate consequence of dependence of the distribution on pulse volume scale is
range depeudent stadstics. Figure 7.20 clearly shows that as the pulse volume scale B, increases
the distribution narrows and a bias results. Relation 3.7 is the standard result for scale dependence
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Distributions of Ze for C1 =0.05
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Figure 7.20: The effect of pulse volume scale on distributions of intensity for C, = 0.05. The
legend gives the puise volume scale L in pixels used to compute the distributions, Each
distribution is an average of 256 distributions. The Rayleigh curve is plotted for reference
to show that increasing pulse volume scale results in distributions superficially approaching
the characteristic Rayleigh shape.

of staitstics. It must be kept in mind that the pulse volume scale of a radar is a function of range

and hence each range gate will have a different scale. The range dependence of distributions of

radar reflectivities is therefore displayed in figure 7.20 and is quantifiable in terms of relation

3.7

Kax(1) is a function of the C, of the g,(x,?) field. The bias of the distributions is therefore

a function of the underlying variability. Figure 7.21 shows that as the C, of the oy(x, 1) field
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Distributions of Ze for RCS(256.8.C1.0.0)
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Figure 7.21: The effect of increasing C, on distributions of Z,,(¢). The pulse volume scale is
256 pixels and the wavelength is 8 pixels. The legend gives the value of C, for the computed

distributton. The bias in the distribution is a function of C,.
increases, for fixed B, and A,,, the bias of the distribution also increases. This characteristic
behaviour has already been established by Rogers (1971) for an ad-hoc function specifying
gradients in the rainfield at super resolution scales, but we can exactly specify the variability and
hence explore the bias. For example, with B, = 256 pixels and A,, = 8 pixels, a C, of 0.05 gives
a bias of -2 dB, a C, of .13 gives a bias of -8 dB and a C, of 0.17 gives a bias of -11 dB. The
*bias function’ is a 2D function with dependences on scale as well as on the C, of the ¢(x, ¢) field.
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This section shows that the behaviours of the distributions of Z,;(¢) are fully determined

in terms of measurable parameters. As an alternative to the standard theory of Rogers (1971) the
multiscaling arguments presented here can explain and quantify all the observables related to the
distributional behaviour of Z,,(¢) resulting from sub-resolution variability. The dependence of
the various effects on « and C, provides a solid framework from which it is possible to
meaningfully compare radar data sets resulting from different resolutions and different dynamical
variability.

The Spectral Behaviour of Z,(t) and Z,,(¢).

The spectral behaviour of the low frequency scaling regime, with o fixed at 2, is a function
of C,. Therealization that the time series of Z,(r) and Z;(r) are squared quantities and are therefore
governed statistically by K(g,m) with 1 = 2 allows the prediction of the spectral slopes of Z,(z)
and Z,,(r) for different C,. The fact that & = 2 means that the spectral slope f=1-K(2,2)=1 -
4C,. Table 7.3 shows that this relation is well respected, within error bars, for Z,(z). Estimates
of the spectral slope for Z,;(r) reveals some persistent difficulties at low C, (persistent over all 5
trials).
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Table 7.3: Esumates of B from the Low Frequency Scaling Regime for
Zy(#)and Z,,(1).
of Bz B, B
1- K,(2.2)

0.01 1.0+£0.2 0.8+0.1 0.96
0.03 0.95+0.07 0.78 £ 0.05 0.88
0.05 0.85+0.06 0.70+0.07 0.80
0.07 0.69 £0.07 0.65£0.02 0.72
0.09 070x0.04 05+0.2 0.64
0.11 0.56 +0.04 0.50 £0.07 0.56
0.13 0.54£0.06 047 £0.04 0.48
0.15 0.45£0.09 03+0.1 0.40
0.17 0.35+£0.05 0.28 £0.04 0.32
0.19 040x=0.07 0.28 £0.07 0.24
0.21 0.26 £0.07 0.25 £0.08 0.16
0.23 0.2£0.1 02x0.1 0.08
0.25 02£02 02+£02 0.0

The adherence of the low frequency spectral behaviour of Z,(f) and Z,(t) is within

experimental error of the expected results. Differences from the expected behasinur are
attributable to the limited range of scales available to the RCS model.

7.3.4 The High Frequency Scaling Regime.

The high frequency scaling regime exists at scales smaller than the wavelength scale.
Results from this regime are likely to be more pedagogical than useful since the wavelength
scales of most operational radars are very close to the inner scales of the radar cross section field.
Although, the evidence in section 4 suggests that operationally the high frequency scaling regime
could be used to estimate the inner scale of the rainfield by estimating the scale break associated
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. with the "foot’. Systematic analysis of this regime requires that the pulse volume scale be made
as large as possible (1024 pixels) and the wavelength scale be left as a free variable with the
proviso that it is large enough to avoid the transition zones around the scale break atA,,. Analysis
of this regime must be conducted at scales much smaller than the wavelength scale break.

It was demonstrated previously, for a constant value of C,, that the spectral slope of the
high frequency scaling regime for Z,,(z) becomes free of the transition around the high frequency
scaling break for wavelengths greater than 64 pixels. Thus, selection of a wavelength larger than
64 pixels allows the statistical nature of the high frequency scaling regime to be explored. The
statistics of the high frequency scaling regime of both Z,(r) and Z,,(r) will be examined as a
function of input C,.

The statistics of Z,(¢) and Z,;(¢) in the high frequency scale regime are those of a *projection’

of the spatial variability of 6(x,#) onto the time axis. The notion of a multifractal projection is
relatively new (see Garrido et al., 1993), but can be understood to involve a shift in singularities
¥— yv— 1 and a shift in c(y) to c(y) = c(Y) — 1 with the provision that ¢ (Y) > 0. This transition is
likely to result in a fundamental scale breaking and hence the statistics will no longer adhere 10
the universal forms. Few results are available for such projections, therefore the emphasis in this

. section will be mostly on the cataloguing of these behaviours for consideration when an adequate
theory becomes available.

Universal Multifractal Behaviour of the High Frequency Scaling Regime.

Estimates of universal multifractal parameters from the high frequency scaling regime
reveal a very slow dependence upon the C, of the o(x, ) fields. Estimates of scaling moments
from this regime were made using a pulse volume scale B, of 1024 pixels and a wavelength scale
A, of 256 pixels. Scales up to 64 pixels were examined to avoid the transition zone around the
scale break at 256 pixels in the Z,;(¢) time series. The Z,(¢) time series has no break at this scale,
Estimates of universal parameters were made using DTM and are presented in table 7.4,

Slight curvature is noticeable in the scaling moments. This curvature is stronger for small
input C, values and is consistent for independent runs of the model. Estimates of the universal
parameters from independent model runs are very consistent. The behaviour of the universal
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. curves in figure 7.23 and 7.24 seems adequate for estimation of . The K(q) curves for Z, (1) and
Z,,(f) shows a marked difference in behaviour. However, there exists no theoretical results to
quantify the difference.

Scaling Moments for RCS(1024,256,0.09,0.0)

Log(<sigmatg> * Lambda®{q-1)D)

Figure 7.22-a: Scaling moments for Z,,(¢) from RCS(1024,256,0.09,0.0). The scaling moments
. are computed over 64 pixels in the high frequency scaling regime.
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Sculing Moments for RC5(1024,256,0.18,0.0)

Log(c<sigmatg> * Lambdar{(q-1)D)

Figure 7.22-b: Scaling moments for Z,,(r) from RCS(1024,256,0.18.0.0).

The lincarity of the Log(K(g,m)) Vs Log(n) curves indicates that universal multifractal

behaviour is carried through to the high frequency scaling regime. The linearity is over 2
substantial range of 1. The q, value is around 2 (1 = 0.3).
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DTM for Z from RCS(1024.256,0.08,0.0)
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Figure 7.23-a: Log(K(g,n)) Vs Log() for Z from RC8(1024,256,0.09,0.0).

DTM for Z from RCS(1024,256,0.18,0.0)
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Figure 7.23-b: Log(K(g,m)) Vs Log(M) for Z from RCS(1024,256,0.18,0.0).

7.0 The Statistics of Z,;(¢) from a Temporally and Spatially Scaling Rainfield. 163



DTM for 7z from RCS(1024 256,0.09,0.0)

\

Log(K(q.e1a))

Figure 7.24-a: Log(K(g,m)} Vs Log(n) for Z_ from RCS§(1024,256,0.09,0.0).

DTM for Ze from RCS(1024,256,0,18,0.0)
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Figure 7.24-b: Log(K(g.m)) Vs Log(n) for Z_ from RCS(1024,256,0.18,0.0).

7.0 The Statistics of Z,,(¢) from a Temporally and Spatially Scaling Rainfield.

164



K(q) for Ze from RCS(L024,250,C1,0.0)
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Figure 7.25: K(q) vs q for Z,,(t) from RCS5(1024,256,C,,0.0) with C, = 0.09 and 0.18. The

linearity of the q = 0.5 K(g,n) curve at 1| = 0 suggests that the K(q) curves are accurate
representations of the statistical moments. Estimates of the universal parameters from these
curves coincide with those tabulated in table 6.7.

Table 7.4: Universal multifractal parameters from the high frequency
scaling regime.

Z, Za

C o C, o C
0.03 1.9£0.1 0.12 £ 0.02 19+0.1 0.09£0.03
0.06 1.9+0.1 0.13+0.02 1.9£0.1 0.10+0.03
0.09 1.90.1 0.14 £0.02 1.9£0.1 0.12+£0.02
0.12 1.9x0.1 0.15+£0.01 1.9£0.1 0.14+0.03

0.15 1.9%0.1 0.16£0.01 19%0.1 0.17£0.02
0.18 19+0.1 0.18£0.02 19+0.1 0.20£0.02
0.21 1.9+0.1 0.20+0.01 1.9%0.1 0.22 £0.0]

0.24 1.9+0.1 0.21 £0.01 1.910.1 0.25 +0.01
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Spectral Behaviour of the High Frequency Scaling Regime.

The spectral exponents B presented in table 7.5 are those of a non-conservative multifractal.
Figures 7.22 10 7.25 and table 7.4 shows that the high frequency scaling regime seems to display
universal multifractal behaviour. Thus the non-conservative nature of the spectrum originates
with the projection, a sum of squares for Z,(r) and the Fourier component for Z,,(z).The spectrum
of Z,,(z) appears less dependent upon C,.

Table 7.5: Estimates of B for the high frequency
scaling regime of Z,(¢) and Z,,(2) as a function of input
C.

Cl BZ BZ:
0.03 1.30+£0.01 1.93 £ 0.01
0.06 1.51 £0.004 1.86 £0.01
0.09 1.382£0.01 1.78 £0.01
0.12 1.13+£0.02 1.65 £ 0.02
0.15 1.06 £0.01 1.57 £0.01
0.18 0.86 £0.02 1.45+0.02
0.21 077 x£0.02 1.290£0.02
0.24 0.69 £0.01 1.17 £0.01

Demonytration of Scale Dependent Means in the High Frequency Scaling Regime.

A demonstration of the effect of varying the wavelength on the computed means of Z,,(z)

is given in figure 7.26. The dependence of the mean upon wavelength, with B, held constant, is
given by

Kz, (1)
<Z,> o [ZJ (6.25)
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Figure 7.26 shows the behaviour of <Z,;> as a function of increasing A, tor C, = 0.1, which gives

Ky.(1) = 0.80 (from table 6.1, K,(1) = 2K, x(1)). The change of wavelength intutively has no
effect on moments of Z,(r). Measurement of the slope of Log(<Z,,>) vs Log(A,,) gives a value
of 0.86 which is another method to estimate K, x(1).

The effect of wavelength on mean Ze and Z

a5 |

Log(Intensity)

35

3 1 L 1
1 1.5 2 25 3

Log(Wavelength in Pixels)
- <Ze> _g <>

Figure 7.26: The effect of wavelength on <Z,,(2)> and <Z,(1)> for 6 wavelengths, The

wavelengths used were 16, 32, 64, 128, 256, 512 pi«els. <Z,,(f)> is clearly a function of
wavelength.

The results of this demonstration clearly emphasize the dependence or measurement scale
of intensities measured by a radar from a scaling rainfield. Simply by changing wavelength there
is a shift of singularities moderated by K, (1), and the distributions are centered differently.
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. Simulataneous observation of the same rainfield by multiple radars of different wavelengath will
face difficulties such as this. The results show that even if the radars are electronically ¢calibrated
to high precision the mean intensities will differ by an amount dependent on the scales of
observation B, and A,,. as well as on the variability of the drop field characterized by C,.

7.3.4.1 The *Foot’ Region.

Reproduction of the *foot’ region noticed in the spectra of the echo fluctuation time serics
is possible by introducing white noise below the wavelength scale. Recall that the *foot” appears
at the highest frequencies as a break in the high frequency scaling regime and results in the
bending of the spectral slope towards a white noise (zero slope) character. The application of
the successful modelling of this effect is to any field which exhibits scaling behaviour down 1o
some inner scale A~ and below this scale is independent.

The RCS model construction process was altered to allow the introduction of white noisc
at scales smaller than the wavelength scale. The computation of Z,,(¢) was modified such that
white noise was introduced at a scale of A,,/2. Modifying the percentage of the wavelength
filled with noise affects the point at which the high frequency scaling regime is broken. Figure
7.27 shows the high frequency scaling regime when white noise is introduced. The spectrum

. is clearly not of the form E(k)e<k™, as there is a scaling break at A,, corresponding exactly to
the scale at which white noise was intoduced.

The reproducibility of the foot suggests that there is a scale in the rainfield below which
the drops no longer exhibit scaling behaviour. Corroborating evidence for this idea is provided
by the work of Rodi et al. (1992). Rodi et al. examined the behaviour of droplet concentrations
using the FFSSP probe (Brenguier, 1992). The spectral analysis of this droplet concentration
data reveals the same spectral behaviour shown by the foot region. The droplet field is likely
non-scaling at millimeter scales. The scale breaking of the high frequency scaling regime
roughly coincides with the viscous scales of the turbulent windfield.

The lack of scaling behaviour in the high frequency scaling regime makes muitifractal
analysis tools inapplicable to this regime. The simplicity of the scaling assumption is shattered
by the introduction of white noise.

7.0 The Statistics of Z,,(z) from a Temporally and Spatially Scaling Rainfield. 168



Introduction of Noise at Half-Wavelength
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Figure 7.27: RCS model construction including a *foot’. The foot was introduced by replacing
half of the variability in each wavelength with white noise. Note that the scaling behaviour
is broken at half wavelength.
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. 8.0 Conclusions, Implications, and Extensions.
8.1 Conclusions.

The major contribution that this thesis makes is in the introduction of the stmple idea thu
the scaling veoriability of rainfall observed by radars at super-resolution scales extends to
sub-resolution scales. This simple idea leads immediately to the core of central results which
comprise a full statstical description of the fluctuating radar echo from multiscaling rainfield
variability. The qualitative and quantitative features of the statistics arising from this assumption,
and the resulting models, match those of observed time series of the fluctuating echo very well.
The staustical formulation provides a complete framework for the interpretation of echo
fluctuations from a scale invariant rainfield and represents the general solution to the scalar
multifractal radar observer’s problem. What is special about the solution is that it relates the
measured effective reflectivity directly to the radar cross section field and hence to the concentration
of water without the necessity of invoking the standard definition of reflectivity. Specific results
concerning the conditional probabilities of radar echoes and the rainfield which would allow the
question of accuracy to be adressed remain as an extension to this thesis (sce below), The
interpretaton of the fluctuating echo offered by this approach differs greatly from the approach

. of the standard theory, whose only objective is to measure the mean reflectivity. The theory also
shows that a great deal of additional information about the statistical/dynamical nature of the
rainfield can be extracted from the fluctuating echo.

The ability of a simple time-space multifractal model to reproduce the spectral behaviours
foundin time serics of the fluctuatingecho is a major achievement which cannot easily be dismissed.
The spectral plateau is the most graphic evidence that the measures and statistics of the fluctuating
echo are affected by the measurement scales of the radar. The assumptions used in the time-space
model were kept as simple as possible to emphasize the importance of the multifractal variability.
The low and high frequency scaling regimes reproduced in the time-space model correspond to
those observed on spectra of time series of radarecho fluctuations. The spectral analysis performed
on the fluctuating echo, as well as the modelling results which show the scale dependent nature
of the distribution of intensities, reveals that a simple comparison of measured intensity of radar
echoes with the Rayleigh form, as performed by Lhermitte and Kessler (1966), is not adequate to
determine the statistical nature of radar echoes.
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. Of the specific results that this thesis introduces to the interpretation of the fluctuating echo
the most important and interesting is the term K, z(1). K, g(1) is a linear term introduced into the
multifractal exponents describing the statstics of the amplitude of a radar signal from a scaling
rainfield. Itis the result of the complex dressing operation performed by the Fourier component
operation of a radar on rainfield variability. K, z(1) can be interpreted as a shift in the singularities
() that can be observed within time series of the fluctuating echo. In this sense K, z(1), because
itis a function of the variability of the rainfield described by C,, affects the observed distributions
of intensities as well as second order statistics such as the power spectrum. If the rainfield is
scaling, then K, x(1) is a fundamental quantity that must be known to interpret radar data. The
bias in the mean of the distribution of Z,, relative to the distribution of Z, as well as the behaviour
of the distribution with scale are all dependent upon K, »(1). Indeed, the relation between the
statistics of the drops V and the measured reflectivity of a scaling rainfield are described in terms
of Kax(1).

Another useful result is the 2% relation between C, of the radar cross section field o(x, ) and

the measured C, of the echo fluctuation time series Z,;(¢). This result shows that estimates of C;,
or sparsity of the mean rainfield, derived from radar data are actually 2° times those of the o(x, )

. ficld. In the case of the estimates of & and C, made by this thesis, this result would indicate that
the C, of the V field over the VPR is around 0.1 from year to year.

The impressive ability of the multifractal models to reproduce the observables of the radar
echo fluctuation problem makes the notion of multifractal sub-resolution variability the logical
alternative to the sub-resolution homogeneity assumptions of the standard theory. The assumption
of sub-resolution homogeneity in the interpretation of radar echo fluctuations is no longer
necessary. The relatively simple forms that result from the assumption of scaling sub-resolution
rainfield variability belie the comprehensive statistical knowledge of the rainfield that they
represent once the necessary parameters are estimated from measurements of the fluciaating echo.,

8.2 Implications and Extensions.

The implications and possible extensions of the work presented in this thesis are enormous.
This is due largely to the originality of the assumption of scaling sub-resolution variability and
the ensuing complete statistical characterization of Z,;. A large number of studies using radar
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have attempted to draw attention to these problems, bu: without result. It is my hope that the
simple modelling techniques presented within this thesis inspire modifications and applications
to other areas. There are a very large number of rescarch areas where extension of the methods
presented here could result in practical and theoretical results that are very valuable. Only a few
of these possibilities will be outlined below. Some of the following possibilities are mere
extrapolations of the results presented herein and can therefore show a personal bias towards a
problem, some of the possibilities have already been discussed with experts and will be
appropriately credited.

The Cross Moments of Z,, with V..

The result that (relatdon 6.21)

K, x()-Dr2

d
V, = ZI2A

is the simplest deduction that can be made conceming the distributions of Z,; and V,. Examination

of the cross moments of the distribution could provide an exact form for the vonditional probability

of Z,; given V,_(ie. Pr[z',L S f‘- sV > fv) = l"(Tz"Tv)). Knowledge of this relation would permit

errors on the accuracy of the statistics of V to be computed from measures of Z,,, and would
suggest new data acquisition strategies to minimize those errors. The cross moments are of the
form

<ZiVi> = A

Analysis of the resulting scaling functions represents a significant amount of work but should yicld
a general expression for the cross moments. From the derived expression a general form for the
conditional probabilities would result, and a more specific relation between Z,, and V, could be
established.
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Limits on the knowledge of Z,,?

The existence of a scaling rainfield requires a fundamental shift in how data is considered
and processed. The first recognition of the echo fluctuation problem was interpreted as a limit on
the knowledge of <Z,,>. In the assumptions of the standard theory each data point acquired by
the radar is independent, hence each carries no information. The standard theory provides an
invariant prescription for the limits of knowledge on Z_. This is embodied in the joint probability
distribution Pr(Z/Z). The well known standard deviation on averages of radar echoes 5.6dB/k'?,
where k is the number of echoes averaged, is directly dependent upon the rainfield being uniform.
In the universal multifractal formalism the mean is just another moment of Z,;. Determination of
the universal function K(q) represents a complete characterization of the signal information. The
degree of moment that can be directly verified is given by D,. Determination of the K(q) function
is not dependent upon the accurate measurement of <Z,,>. All that is necessary is sufficient data
to define a small range of K(g,7M) vs 1. Thus, within the universal multifractal formalism each
data pointrepresents a contribution to the determination of all 1.;oments. The universal multifractal
formalism represents a more efficient use of the information present in the signal returning to a
radar from precipitation.

Information Conservation: Storage and Display Strategies.

As in Marshall and Hitschfeld (1953) the recognition of the statistics of the problem affect
how the data is stored. The conservation of this information places heavy requirements on the
data acquisition and storage technology. Indeed, the technology may still not exist for efficient
storage and retrieval from a source such as a volume scanning radar. The preservation of scaling
structure in radar data requires that the data be stored in unmodified form (this assumes the data
contains no scaling breaks like the plateau). For scanning radars the data must be stored in its
native radial format without any averaging. Averaging operations necessarily reduce the
information content of signals. This vastly increases the storage requirements for radar data, but
provides the opportunity of greater understanding of the dynamical context of rainfall
measurements. Display systems would therefore be required to cope with the data in radial format
which would imply a large number of computations.
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Sub-Resolution Dependence of SAR Measurements.

Synthetic Aperture Radar (SAR) is probably the application for the results presented in this
thesis that represents the most exciting possibility. The image construction process used for SAR
radar data necessarily involves assumptions about the sub-resolution homogeneity of targets. The
difficulty is that SAR radars are used to examine a very wide variety of targets of which rain is
not one. The SAR problem represents the possibility of further applications of complex cascades
since the SAR radar processing strategy is fully coherent. Thus, a tensorial form of the RCS model
would be required. The number of free parameters to the model would therefore be enormous.
Current SAR processing strategies do not deal with sub-resolution inhomogeneity (Livingston,
personal communication, 1993).

Sub-Resolution Dependence of Doppler Radar Measurements.
The formulation for the marginal statistics of Z,, involves the following expression for the

complex moments of the amplitude of the signal returned from rain

T+l
e

A, =

which gives
rk
[A] = e Ars(A) = T

therefore it is possible to define two K(q) functions, one for the real part of the generator and one
for the imaginary part of the generator:

Kilg) = K,r(q)+iK, (q)

The complex component of the K, (¢) function governs the scaling of the doppler phase component

of doppler measurements. Irrespective of whether this term turns out to be trivial the inclusion of
sub-resolution variability with the attendant change in assumptions about the velocity dependences
in the drop field, immediately yields an explanation for the width of the doppler spectrum. Itis
likely that doppler spectrum width will be found to depend on the dynamical quantities acand C,.
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Range Dependent Z,,-R.

The statistics of Z,, are dependent upon the ratio of the pulse volume scale B tothe wavelength

scale A.. In the RCS model the scale of the pulse volume was kept constant in keeping with the
observed data sets and the limitations of the computer model. The volume of the pulse as a function
of rangeisgivenbyv =1  r@, « r6,. Formostoperatior.2l weatherradars the pulse will be observed
out to ranges of at least 200 km. At this range the lateral scales far exceed the pulse length scale
1. As a result the expanding pulse volume will have a different characteristic scale at each range
gate. As such, the statistics of Z,;, will depend on this characteristic scale and will therefore be
range dependent. A small correction for this effect could easily be introduced to any processing
strategy.

Dynamically Determined Z-K.

The recent suggestion by Atlas and Rosenfeld (1993) that Z-R relationships be implemented
in a case sensitive fashion. The work of Atlas and Rosenfeid (1993) shows that the most
representative Z-R relation can be categorized according to rain type. In an automated system the
appropriate Z-R relation would be used based on observation of storm type.

A possible alternative to this plan, which at this stage is very speculative, would consist of
us.ng the measured dynamical quantities & and C, to determine the dynamical context of the rain
in order to determine the appropriate Z,,-R relation. The relations for the marginal statistics of
Z, provide the relation between measured universal parameters and those of the ¢(x, ) field. The
advantage of the dynamical quantities is that they are measured rather than being subjective
descriptions of rain type. Such an ability could vastly improve rainfall raingauge comparisons by
providing an exact context for comparison of the two scale dependent measures of rainfield
variability. Currently there exists no such database of dynamics versus Z-R relationship.
Implementation of a calibrated, or self-calibrating, form of this strategy in an automated setting
would be relatively straightforward.
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The Effect of Droplet Clustering on Drop Formation.

A natural question that arises from the consideration of the rain flux Py as a cageide quantity

is the nature of drop clustering. The clustering of rain flux onto smaller volumes inevitably results
in the concentration of liquid water. The range of scales over which this clustering occurs likely
extend from the large outer scales observed in section 4.1 to very small scales. In this thesis itis
assumed that the rain flux exhibits self-similar behaviour to scales smaller than the 3 cm wavelength
scale. To date only Poisson type clustering (trivial clusiering) has been considered in the solution
of the formation of drops. The effect of non-trivial clustering of the type inherent to multifractals
onthe formation rate and distribution size of drops has never been examined. Aneffort by Zawadzki
(1993, personal communication) is currently underway to examine this effect. In the context of
ascaling theory of radar echo fluctuations the dynamics of a particular rain event can be determined
and the degree of clustering, measured as C,, couid be estimated. Parameterization of a scaling
drop formation model could then be implemented in real time with the correct data acquisition
strategy.

Z,,-A relations.

Attenuation is a quantity that is also determined with the supposition that Z,, is a well

determined quantity. Scaling non-uniformity of the rainfield introduces an exponent into any path
integrated quantity, of which attenuation is only an example. This is important to the extent that

it adds another dimension to the problem of microwave communications or to short wavelength
cloud radars.
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Figure END: HTI time series of the vertical structure of a small
shower which passed over the VPR during the summer of
1990. Note the bright band. The startling nuclear cloud
appearance of this storm shouid be compared to the RHI
figure of a real nuclear cloud in Swingle (1990).




Appendix A: The Universal Multifractal Cascade Generator (UMCG). A
Brief Explanation of the Generation of Multifractals.

In this appendix a brief, but complete, explanation of how to create universal multifractais is
provided. The universal multifractal cascade generator (UMCG) is based on the work of Schertzer
and Lovejoy (1987) and Wilson et al. (1991). Examples of the use of versions ¢f the UMCG can
be found in Wilson et al. (1991), Tessier et al. (1993) and Pecknold et al. (1993). The shorthand
UMCG(c.,C,.H) is used to indicate a simulated multifractal field with specified &, C,, and H.

The a-Model.

The most widely known of the cascade models is the @-model (Schertzer and Lovejoy, 1983),
so named because of the divergence of moments exponent o that it introduces. The symbol gy, has
already been introduced to describe the divergence of moments and will replace @ in what follows.
In the cascade construction process a constant field of flux, for our purposes it will be assumed that
the flux quantity is rain p, is introduced. If the outer scale of the field is 1 then successive
construction steps subdivide the field into *boxes® of scale &A™, where A is the ratio of the outer scale
to the scale of the current construction step. The fraction of rain flux p, concentrated to each of
the new boxes depends on the probabilites,

PY(IJ,R ._:l'f*) = A~
which represents an increase or boost in flux 10 a box and

Prlpg=27) = 1-x°

which represents a decrease in the flux to a box. ¥ =cfccand ¥~ = ¢/ with §+al = 1. In this way

the initial flux is randomly distributed to finer and finer scale hoxes. The parameters ", 7, and ¢
are usually constrained such that the ensemble average flux <ji;> is conserved at each construction
step. This relation gives

ATACHAT(-AT) = 1
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(there are only two free parameters among ¥", ¥, and ¢). The a-model can be further constrained

such that only one free parameter exists. This results in a micro-canonical a-model or p-model.
The properties of micro-canonical cascades are outlined in section 3. After n steps of the a-model
the fraction of the original flux 1, associated with a box is given by

(l-lg). = }L.T‘
with
Y =%(k'f+ (n—k)y). withk=1,..n

where k is the number of boosts and (n-k) is the number of decreases to the flux in the chain of
multiplications that led to a given box of scale A™. The probability of the flux intensity or singularity
is given by

Prigg=ah = (pta-ay™

where (k) is the number of combinations of n objects taken k at a time. This can be rewritten as

Priea,200) = Tpa™

where i indexes each box, scale A7, of the completed cascade. The p; are the scale dependant

prefactors of the probability distribution and the ¢;; are the exponents characterizing the codimension
of each of the singularities ¥.. A" is the final scale ratio of the outer to the inner scale of the cascade.
‘The a-model will have bounded singularities (=} £, £¥"). Schertzer and Lovejoy (1987) carry
the renormalization further by replacing this n step two state cascade by a single A" step cascade
with n+1 states. This cascade process will then correspond to the random cascade described by
Gupta and Waymire (1993). Making the replacement 1" -= A, and taking the limit A = oo, the term
in the sum with the smallest ¢; will dominate. Defining

¢, = min{c,;} = c(y)
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. which yields for A — oo}

-

Pl 2% = pa~

where ¢, is the codimension and p, is the scale dependant prefactor. Dropping the subscript i and
allowing for a continuum of states the probabilities may be written as

Pr((u,e)l 2 l’) = py)-A~?
This basic multifractal relation for cascade is usually wriiten as
Prltae, 23] = A=

with the understanding that the equality takes into account the unstated logarithmic prefactors. This
relation shows that each singularity or intensity of the final cascade field has a codimension given
by the codimension function ¢(y). For continuous processes ¢(y) is a continuous convex function.

While adequate for the production of multifractals, the most serious deficiency of the a-model

is the lack of control over C, and . The next sub-section presents a process which creates universal
. multifractals with specific o and C,.

The Generator T, and the Simulation of Universal Multifractals.

In the above development some quantity, such as rain flux i, is concentrated by a cascade

process to smaller and smaller regions. The cascade process is multiplicative. It is perhaps more
intuitive to consider it as an additive process. Schertzerand Lovejoy (1991) introduced the generator
I, = In(u,), and consider that the comparison of two stages of construction of a cascade, for instance
atscale ratio A and at scale ratio &, can be considered in terms of the addition of the two generators.
The importance of I is that it represents a cascade completed to scale ratio A. In this sense,
constructing a multiplicative cascade through n steps, from A to A’ can be accomplished by adding
the generators I and I.. The following relation defines T,

qT; Kyle}
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AX@ is the "Laplace characteristics function” of T,. T, can be considered 1o be a noise source. The
purpose of the generator is to describe the multiplicative cascade as an additive process, as such,
there are stringent conditions on the form of the generator.

The determination of an appropriate form for the generator I, has been accomplished by

Wilson et al. (1991). Pecknold et al. (1993) go through the details much more thoroughly. The
basic result is that

L&) = f FEYE dE
S,
The domain of integration §,, is the domain of Fourier space with 1 < X |S X since I, must be

smooth for scales smaller than A~*. f(f) is areal non-random filter that produces a 1/f or pink noise.
(k) is a stationary noise source (referred to as the sub-generator) which must satisfy the following
conditions:

1) (&) = T (=k) since T3(X) is real.

2) <Yk y(k)> = 6°8(k + k"), which follows from the fact that J(k) is stationary and the Gaussian

assumption which means that 6° < o,

3) <y(k)>=0. This is done for convenience.

?(T{:.) is usually chosen to be a Levy noise, but depends on the desired « (i.e. if @ = 1 is desired, a

Cauchy generatoris required, if =2 is desired, which is the case for nearly lognormal multifractals,
a Gaussian generator is used). Thus, a affects the singular nature of the multifractal. C, is affected
by the variance of the noise source ¥(k). As such, appropriate normalization of the variance of (k)
results in multifractals with a prescribed C,.

In order for the generator to be multiscaling it must obey the following properties:

1) The spectrum must scale as k', in order to obtain scaling behaviour: that is , a logA divergence
of K(q).
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2) The generator must be band-limited to wave-number between [1,A]. This requirement ensures

that for scales smaller than A~ the field will be smooth. A~ will therefore be the resolution
of the field.

3) The probabiliy distribution of the generator must fall off more than exponentiaily for positive
fluctuations. This requirement ensures the convergence of K(q) forq > 0.

4) The generator must be normalized such that K(1) = 0. This is the condition for the conservation
of the mean of the field at varying scales.

A generator, such as the UMCG that is used in this thesis, which obeys these conditions will produce
universal mulufractals.

The Universal Multif-actal Cascade Generator.

The implementation of the multifractal generator used for this thesis is referred to as the
Universal Multifractal Cascade Generator (UMCG). Figure A.1 shows the systematic construction
steps necessary to build a universal multifractal. Creating muitifractals in Fourier space has the
advantage that the clusters that inevitably result in the field are not restricted by the (normally) ratio
of 2 construction process common to multiplicative techniques. The filtering process that occurs
after the creation of the universal multifractal field will be discussed below. Multifractal fields
produced with the UMCG generally have the prescribed o+ 5% and C, £ 10%.

The UMCG construction process detailed in figure A.2 is illustrated by figures A.3, A4 and
A.S. Figure A3 is the sub-generator field (white noise). The sub-generator field is a white noise
(uncorrelated) field of random numbers distributed, in this case, as a Gaussian (o = 2). The
sub-generator field is then taken into Fourier space using a fast Fourier ransform (FFT) and
multiplied (filtered) as k™. Following an inverse FFT the generator field is identified as a 1/f or
'pink nois¢ distributed as the sub-generator. rigure A.4 is the multifractal resulting from
exponentiation of the generator field. Figure A5 is the resuit of filtering (fractional integration) of
the multifractal in figure A.4 by k™, with H=0.2. The H-filter is intended to carry the conservative
multifractal, which has spectral slope B = 1 ~ K(2) to 2 non-conservative field with a deeper spectral
slope, given by B=2H +1-K(2).
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Generation of (J, by Multiplicative Cascade

Figure A.l: ldealization of the multiplicative cascade construction
process. An array filled with initial values is successively
sub-divided into smalier volumes each of which is multiplied
by a random number drawn from a distribution W.
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Figure A.4: The universal multifractal that results from performing
an 1, filtering operation on the sub-generator field in figure A3
in Fourter space and then exponentiatniz the result




Figure A.5! The multifractal after filtering with a spectral filter with
exponent H = 0.2. The smooth appearance (Le. lacking the
blocky appearance of real-space multiplicative construction
processes) of the multifractal is due entirely to the Founer
space construction process.
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Figure A.6: Calibration of the UMCG used for the RCS model. The line of slope 1 indicates that
the UMCG produces multifractals with the correct C,. The input ¢ is held constant at 2.0
and the output « is also 2.0.

The component sub-routines of the UMCG generator and the RCS model can be found in
Numerical Recipes (Press et al., 1992). The routines used include: FOURI1, and FOURN (FFT
algorithms), and RAN3, GASDEV (random number generators). Typical run times on a 16 MFlop
SGI Elan were on the order of 4 minutes per 1024x1024 array. The UMCG was coded initially to
run on PC machines in the memory space beyond 1 Meg in PC "protected mode’ operation. Special
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. assernbler (machine language) routines were written 10 enter protected mode and then to perform
floating point operations on the high memory locations. Inspiration and some know-how for these
routines is due to Williams (Dr Dobbs Journal, 19%0).

The 2D g,(x, ¢} fields produced by the UMCG generator for the RCS model (see Chapter 7)

were tested using the TM/GA technique. For each model input C, the output C, was computed.
The plot of C,(input) against C,(output) is shown in figure A.6. The slope of the line is 1 £ 0.05.
It should be noted from figure A.6 that the variance of C,{output) increases with C,(input). This
property is expected since the UMCG is a stochastic process. The linearity of the calibration curve
in fig. A.6 is the major justification for using the UMCG to generate G,(x, 1) fields.
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Appendix B: The Genetic Algorithm and TM/GA.

The genetic algorithm (GA) is an optimization algerithm modelled on the genetic replication,
crossover, and mutation processes found in biological systems. The algorithm’s uses the natural
optimization ability of the genetic processes of mutation and crossover to optimize functions with
_ arbitrary criteria in non-linear search spaces. According to Holland (1992) genetics may be seen
as nature’s method of searching non-linear function spaces in the presence of optimizing criteria
(generally referred to as fimess and presented as a fitness function). In nature, however, itis possible
that the conditions for a given optimal solution may be variable in time and hence the search
represents the non-ending quest of producing the best adapted population to deal with the

eavironment.

T me v e e Sk S L S S S S R S - *
GENERATION 0 Average Fitness 1.4838

Initial Population Maximum Fitness 15.98225

Initial Population Average Fitness = 1.4838

Initial Population Minimum Fitness 0.0858482

Initial Population Sum of Fitness 2%9.6761
] L L P S —— *

Chromosome Fit Parents X (@) c,

0) 100011011001111100100000001001100 0.843 ( 0, 0) 0 1.106 0.251
1) 000010001101101121011001101001010 0.086 ( O, 0) 0 0.069 0.700
2) 111000101000001110110111000100111 0.524 ( 0, 0) 0 1.770 0.430
3) 110111111010000010010011111010111 15.9 ( 0, 0} O 1.747 0.156
4) 001021100101100101001010101110111 0.137 (0, 0) 0 0.362 0.584
5) 101011011010011001010001000100011 0.239 ( 0, 0) O 1.357 0.633
6) 0100011100111011111100101110112111 0.097 ( O, O) O 0.557 0.898
7) 101011001001110111011100011111010 0.202 ( O, 0) O 1.349 0.723
8) 010021011100110011101000011111011 0.3132 ( 0, 0) O 0.608 0.816
9) 010111101000001001101100010111010 0.1217 ( O, 0) O© 0.738 0.847
10) 001111111010001110001101101011100 2.44 ( 0, 0) 0 0.4%7 0.107
11) 101000110000101000011200100101000 .1.3 (0, 0}y O 1.274 0.223
12) 111001100101100100110011110011000 0.59 ( 0, 0) O 1.800 0.405
13) 111111011011001010001210101001000 2.33 ( 0, 0) 0 1.982 0.114
14) 010101101001100001010002110101111 0.156 ( 0, 0) O 0.677 0.639
15) 101010100110000001000011110000111 0.299 ( 0, 0y 0 1.331 0.529
16) 101010201010010010010101101121010 3.85 ( 0, 0) 0 1.333 0.170
17) 011110000000101101111001100101010 0.116 ( 0, O) O 0.938 0.950
18) 0100110010000110010011100100011210 0.155 ( 0, 0) 0 0.598 0.612
19) 0011001112110100011000110100211111 0.151 ( O, O) O 0.406 0.552
W o o o o e e e = s o T S — ——— T — T —— . T 1 ——— T *
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The coding of a generic algorithm on a computer is 2 ssimple process that need be conducted
only once. GA code consists largely of flexible indexing of a population of strings which represent
the chromosomes or genetic information (strings of 1s and 0s). This code and that for mutation
and crossover of the strings remains invariant from one problem to the next. The heart of the GA
is the fitness function, and this function will differ for each problem. The function space will also
differ for each problem. In the TM/GA application the function search space is limited to two
variables of known range and the fimess function is easily formulated as a function of the sum of
absolute differences between the estimated and theoretical K(q) function at a known set of points
(see eq. 7.11).

Five generations of a TM/GA run are provided to show the progression of a genetic algorithm
towards an optimal solution. For the example, only 20 individuals and 5 generations were used.
In normal operadon 500 individuals and 11 generations are used. Each panel gives the full
information of a generation of the GA. Average fitness, total fimess, as well as a listing of cach
individual in the population with corresponding fimess, parents, crossover point, & and C,. The
reader is encouraged to examine the panels successively and gain reassurance that the algorithm is
systematically moving the population towards maximum fitness and hence is optimizing the fitness
function.

The figure "GENERATION 0’ shows the initial population of a GA algorithm for the TM/GA
technique. The population of chromosomes are numbered from 0 to 19 for 20 individuals. Initially
the 0’sand 1's are chosen atrandom, which is clearly visible in the lack of pattern in GENERATION

0. The Fit number is the fitness of the corresponding chromosome. The & and C, are shown for
each chromosome.
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GENERATION 1 Average Fitness = 7.84108

P L L e R R E R EEE SRR S A SRR SRR EE RS S EEEEE SRR EEEREEEEESEEEEESE N

Population Maximum Fitness = 16.3417

Population Average Fitness = 7.84108

Population Minimum Fitness = (0.523554

Population Sum of Fitness = 156.822

Number of Mutations =1

Number of Crossovers =7

T e o o e - —————— T ——— i 1L N T T S - S S - S S T Sk e T —————— — *
Chromosome Fit Parents X (@) C,

0) 110111111010000010010011111020111 15.9 ( 3, 3) 32 1.747 0

1) 1101111110100000100100111110101211 15.9 ( 3, 3) 32 1.747 0.

2) 10101010101001001001020112101C111 3.68 ( 3,16) 8 1.333 0.171
3) 110111111010000010010011101111010 13.7 ( 3,16) 8 1.747 0

4) 001111111010001110010101101111010 0.941 (16,10) 14 0.497 0.

5) 101010101010010010001101101011100 3.57 (l16,10) 14 1.333 0.107
6) 111111011010000010010011111010111 6.59 ( 3,13) 25 1.981 0.156
7) 110121111011001010001110101001000 2.75 ( 3,13) 25 1.748 0.114
8) 101000110000101000011100100111010 1.3 (16,11) S5 1.274 0.224
9) 101010101010010010010101101101000 3.89 (i6,11) S5 1.333 0.170
10) 001111111010001110001101111010111 2.39 ( 3,10) 8 0.497 0.109
11) 110111111010000010010011101011100 13.1 ( 3,10) 8 1.747 0.154
12) 110111110010000010010011111010111 16.3 ( 3, 3) 15 1.743 0.156
13) 110111111010000010010011111010111 15.9 ( 3, 3) 15 1.747 0.156
14) 101010101010010010010101101111111 3.84 ( 3,16) 3 1.333 0.170
15) 110111111010000010010011111010010 15.8 ( 3,16) 3 1.747 0.156
16) 001111111010001110001101101011100 2.44 (10, 2) 32 0.487 0.107
17) 111000101000001110110111000100111 0.524 (10, 2) 32 1.770 0.430
18) 110111111010000010010011111010111 15.9 ( 3,13) 32 1.747 0.156
19) 111111011011001010001110101001000 2.33 ( 3,13) 32 1.982 0.114

The population of chromosomes in GENERATION 1 shows the surprising power of the GA.
Individuals are selected on the basis of their fimess. The probability that a particular individual
will be selected is given by its fimess divided by the population sum of fitness. This weighted
probability favours the more fit individuals but does not exclusively select them, the reasoning for
this is subtle but is related to the necessity of retaining a good mix of information across generations.
Once two individuals are selected there is a 60% probability (a variable) that a crossover will take
place. If a crossover does take place a crossover point is randomly selected and the transfer of
information executed. The Parents column gives the index of the two parents of the previous
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generation and the column marked X gives the position along the chromosome that crossover took
place. For example, individuals 14 and 15 share parents 3 and 16 in the previous generation.
Examination of the fitnesses for individuals 3 and 16 of GENERATION 0 reveals fitnesses of 15.9
and 3.85. Individuals 14 and 15 of GENERATION 1 have fimesses of 3.84 and 15.8, which reveals
that the crossover actually decreased the fimess of both individuals. However, the average
population fimess increased 500% due largely to the high probability of selecting individual 3 of
GENERATION 0. It should also be noted that individual 12 of GENERATION 1 is a product of
a crossover of individual 3 of GENERATION 0 with itself. Given this fact its fitess should not
be different, however, the fimess of individual 12 of GENERATION 1 increased due to a mutation.
Mutations occur with a probability of 0.5% for each 1 or 0 carried to another individual. The
mutation process introduces new information randomly into a population. Too high a mutation rate
(> 1%) tends to destroy a population by randomizing the individuals.
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GENERATION 2 Average Fitness = 11.7211
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Population Maximum Fitness = 16.3121
Population Average Fitness = 11.7211
Population Minimum Fitness = 2.3342
Population Sum of Fitness = 234.421
Number of Mutations = 6

Number of Crossovers = 11

T . ———— T — - T S S T T it A L S L S S S e e o — —— — — *
Chromosone Fit Parents X (o) C,

0) 110111111G6100000100100111110190111 15.9 (1, 3) 321

1y 110111111010000010010011201121010 13.7 (1, 3) 321

2) 001111111010001110001101101011100 2.44 (16, 0) 32 0.

3) 110111111010010010010011111010111 15.5 (16, 0) 32 1.747 0.156
4) 110111111010000010001110101001000 2.76 ( 7,11) 14 1

5) 110111111011001010010011101011100 13 (7,11) 14 1

6) 1101111110100000:9010011111010111 15.9 ( 1,15) 32 1.

7) 110111111010000010010011111010010 15.8 ( 1,15) 32 1.747 0.156
8) 110111111010000010010011101111010 13.7 ( 3,19) 32 1.747 0.154
9) 111111011011001010001110101001000 2.33 ( 3,19) 32 1.982 0.114
10) 110111111010000010010011111010111 15.9 ( 1,13) 3 1.747 0.156
11) 110111111010000010010011112010111 15.9 1,13) 3 1.747 0.156
12) 110111111010001010010011201011100 13.1 (11, 1) 32 1.747 0.154
13) 100111111010000010010011111010111 5.24 (11, 1) 32 1.247 0.156
14) 110111111010000010020011101211011 13.7 (12, 3) 1 1.747 0.154
15) 110111110010000010020011211010110 16.3 (12, 3) 1 1.743 0.156
16) 100111111010G600010010011111010111 5.24 ( 0,13) 32 1.247 0.156
17) 110111111010000010010011111G10111 15.% ( 0,13) 32 1.747 0.156
18) 110111110010000010010001111010111 5.71 (13,12) 4 1.743 0.140
19) 110111111010000010010011111010111 15.9 (13,12) 4 1.747 0.156

GENERATION 2 reveals that the chromosomes are almost completely organized. It should
be noted that the average population fitness has increased greatly over that of GENERATION 1.
It should also be noted that much of the randomness of GENERATIONS 0 and 1 is now gone. The
ability of GAs to quickly search spaces and center on the pattern of 1s and Os (known as schemata
or schemas) that gives the most fit population makes them potentially very valuable in pattern
recognition problems.
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GENERATION 3

Average Fitness = 13.1895
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Population Maximum Fitness = 16.3417

Population Average Fitness = 13.1995%5

Population Minimum Fitness = 2.34258

Population Sum of Fitness = 263.989

Number of Mutations = 8

Number of Crossovers = 16
W o e e A T S S W T e e S S ey ——— k.

Chromosome Fit Parents X (@) C,

0y 110111111010000010010011121020111 15.9 (0, 7) 32 1.747 0.156
1) 110111111010000010010011111010010 15.8 ( 0, 7) 32 1.747 0.156
2) 110111111010000010010011111010121 15.9 (19,17) 32 1.747 0.156
3) 110111111010000010010011111010111 15.9 (19,17) 32 1.747 0.156
4y 110111111011000010010011113010111 15.9 (16, 4) 20 1.748 0.156
5) 100111111010000010001110101001000 5.14 (16, 4) 20 1.247 0.114
6) 110111110010000010010001121010111 5.71 (17,18) 9 1.743 0.140
7)  110111111010000010010011111010111 15.9 (17,18) 9 1.747 0.156
§) 110111111010000010010011101011100 13.1 (12, 1) 11 1.747 0.154
9) 110111111010001020010011101111010 13.7 (12, 1) 11 1.747 0.154
10) 110111111010000010020011111010121 15.9 (19, 7) 32 1.747 0.156
11) 11011111101000001001011111101001C 6.06 (19, 7) 32 1.747 0.187
12) 110111111010000010010011111001000 15.5 ( $,10) 5 1.747 0.155
13) 111111011011001010001110101010111 2.34 ( 9,10) 5 1.982 0.115
14) 11011111001000001001001111101011C 16.3 (15, 6) 32 1.743 0.156
15) 110111111010000010010011112010111 125.9 (15, 6) 32 1.747 0.156
16) 110111111011001010010011101011100 13 ( 5,14) 32 1.748 0.154
17) 110111111010000010010011101112011 13.7 ( 5,14) 32 1.747 0.154
18) 110111111010000010010011111010110 15.8 (15,19) 20 1.747 0.15¢6
19) 110111110010000010010011111010211 16.3 (15,19

Appendix B: The Genetic Algorithm and TM/GA.

198



© g gk drdc ot et Tt gt sk w e ok W T o o Te W % W % e Ok b dk ok 9k ok S e o T O Jk e S0 W Ok ok ok v b kO i ok b ok e o ok R Rk ok e ok

GENERATION 4 Average Fitness = 13.1729
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Population Maximum Fitness = 16.3283
Population Average Fitness = 13.172%
Population Minimum Fitness = 2.75571
Population Sum of Fitness = 263.457
Number of Mutations = 13

Number of Crossovers = 22

[ P ————— R el e e L %
Chromosome Fit Parents X (&) o

0) 110111111011001010020011101011100 13 (16, 8) 25 1.748 0.154
1) 110111111010000010010011101011100 13.1 (16, 8) 25 1.747 0.154
2) 11011111101100101C010011101011100 13 (16, 6) 32 1.748 0.154
3) 110111110010000010010001111010111 5.71 (16, 6) 32 1.743 0.140
4) 110111111010000010001110101001000 2.76 ( 5, 8) 15 1.747 0.114

5) 100111111010000010010011101012100 5.66 ( 5, 8) 15 1.247 0.154
) 110111111010000010010012111010111 15.9 ( 4,10) 0 1.747 0.15¢6
7) 110111111011000010010011111010111 15.9 ( 4,10) 0 1.748 0.156
8) 110111111011001010010011101011100 13 (16,16) 32 1.748 0.154
9) 110111111011001010010021101011100 13 (16,16) 32 1.748 0.154
10) 110111111021001010010011101001100 12.7 (16, 7) 32 1.748 0.154
11) 110111111010000010010011101010111 13 (16, 7) 32 1.747 0.154
12) 110111111011000010010011111010111 15.9 ( 4, 4) 1 1.748 0.156
13) 110111111011000010010011121010111 15.9 ( 4, 4) 1 1.748 0.156
14y 110111111010000010010011111010111 15.% ( O, 1} 20 1.747 0.156
15) 110111111010000010010011111000010 15.4 (0, 1) 20 1.747 0.155
(

16) 110111111010000010010021111010010 1215.8 (1, 7) 30 1.747 0.156
17) 110111111010000010020011111010211 15.9 (1, 7) 30 1.747 0.156
18) 110111111010000010010011111001000 15.5 (12,18) 32 1.747 0.155
19) 110111110010010010010011111010111 16.3 (12,19) 32 1.743 0.156

The operational implementation of TM/GA uses a large number of individuals and a larger
number of generations. The TM/GA uses 500 individuals and 11 generations. Convergence to the
optimal answer is similar to that presented in this section. The process is repeated a number of
times for confidence. Correlations within the random number generators can play havoc with the
GA and cause it to produce poor optimal fits. Repetitions of the TM/GA process over the same
data set a numver of times provides a number of optimal solutions. The solution with the highest
fimess is then selected from among the repetitions.
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The convergence of a genetic population to a particular answer is a theoretically infinite
process. Given an infinite amount of time the GA will find the answer. For the purposes of TM/GA
where other estimation errors, such as the estimates of the slopes of the various scaling moments
in TM place a limit on the ultimate accuracy it is only necessary for the GA to get the answer within
a neighborhood. This may be viewed as a flexibility rather than a limittion since deterministic
algorithms work very hard to find the answer, but GAs can be limited to provide an estimate. The
precision of the estimate will be at the discretion of the user.
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GENERATION 5 Average = 14.9278
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Population Maximum Fitness = 31.4956
Population Average Fitness = 14.9278
Population Minimum Fitness = 5.24125
Population Sum of Fitness = 298.557
Number of Mutations = 17

Number of Crossovers = 28

T o e e o s T e Y e T e T T S S St Sy o T o S i e S S T S o *
Chromosome Fit Parents X (o) C,

0y 110111111011001010010011101011100 13 (2,13) 32 1.748 0.154
1) 110110111011000010010011111010111 20 (2,13) 32 1.716 0.156
2) 100111111010000010010011111010111 5.24 (14, 0) 32 1.247 0.156
3) 110111111011001010010011101011100Q 13 (14, 0) 32 1.748 0.154
4) 110111111011000010010011101011100 13 (8,12) 8 1.748 0.154
5) 110111111011001010010011111010111 15.8 ( 8,12) 8 1.748 0.156
6) 110112111010000010010011111010111 15.9 (17, 2) 24 1.747 0.156
7) 110011111011001010010011101011100 31.5 (17, 2) 24 1.623 0.154
8) 110111111010000010010011211010111 115.9 (12,16) 8 1.747 0.156
9) 110111111011000010010011111010010 15.7 (12,16) B8 1.748 0.156
10) 110211111011001010010011101011100 13 (1, 0) 9 1.748 0.154
11) 11011111101000001001001110101110C¢ 13.1 (1, O0) 9 1.747 0.154
12) 110111111011001010010011101011100 13 (8, 1) 32 1.748 0.154
13) 110111111010000010010011101011100 13.1 ( 8, 1) 32 1.747 0.154
14) 110111111010000010010011111010010 15.8 (16, 7) 32 1.747 0.156
15) 110111111011000010010011111010111 15.9 (16, 7) 32 1.748 0.156
16) 110111111010000010010011101101000 13.3 (18,11) 5 1.747 0.154
17) 110111111010000010010011111010121 15.9 (18,11) S5 1.747 0.156
18) 110111111011001010010011101011100 13 (1, B) 1 1.748 0.154
18) 110111111010000010010011101011200 13.1 (1, 8) 1 1.747 0.154
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In a GA spontaneous improvements in individual fitnesz are common, but the main concern
is that the population fitness increase from generation to generation. Individual 7of GENERATION
5 has the parents 17 and 2 from GENERATION 4 and represents an obvious improvement. If the
sequence of generations were continued it is likely that individual 7 would be carried over and the
improvements distributed among the population. It is important to note the well ordered structure
of the chromosome pattern after only 5 generations. All the individuals look similar and the
aigorithm has largely exhausted the initial information and is making improvements slowly by
mutation,

The mutation/crossover heuristic represents an extremely powerful optimizing capability. As
discussed in Goldberg (1989), theoreticaily there is only one condition under which a GA will fail
to find an optimal answer, and that situation is very hard to reproduce. Operationally there are some
considerations that relate to the initial amount of information that a GA is fed about a problem prior
to search. Allred and Kelly (1993) show that a GA rapidly uses the initial information and grinds
to a halt (as seen by GENERATION 2). The speed at which a GA searches through a function
space is simply amazing, but this also means that a great deal of information must initially be
supplied if the GA is to find an answer in a complex space. Allred and Kelly (1993) proposed the
Differentially Applied Genetic Algorithm (DAGA) to help with this problem. DAGA involves the
process of reintroducing variability into the search space during successive generations of the GA.
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. Appendix C: An Analytical Framework for Modelling the Fluctuating Echo.

It was originally thought that the direct analytical and numerical modelling of the power
spectrum represented the best course of action for understanding the spectral behaviour of time
series of the fluctuating echo. However, the analytical forms were quickly bogged down by the
number of assumptions necessary to realize the functional forms of lognormal multifractals. The
successes of the numerical model far outweighed the numerical cumberances of the analytical forms
which eventually had to be integrated numenically. Thus, the numerical modelling approach was
pursued in 1 and 2 dimensions and led to the results in chapter 6 and 7.

As was mentioned in section 7 the analytical form of the power spectrum is based on the
behaviour of the four point correlation function of o,(x, ). From the evidence presented it is now
assumed that G,{x,?) is a multifractal field. The following development terminates with the
definition of the power spectrum as the four-point correlation function of o(x, ).

Consider a one dimensional distribution of radar scatterers 6,(x, ) varying in time with an

inner dissipation scale A™. The radar wavenumber is k/2 (the factor 2 is for convenience as it takes
into account the round trip distance). The pulse volume length is L. We will take the outer scale

. of the process to be 1 hence L will be restricted to the region L<1. We will use units such that the
velocity is unity. The amplitude of the reflected wave is:

L
Alk,0)= J‘e““cl(x,r)dx (C.1)
-L
The measured intensity normalized for pulse length is:

I(k,t)=%AA' . (€.2)

We seek an expression for the (ensemble averaged) spectrum of I(k,t), for signals of duration
T. T is expected to be long duration. The power spectrum is expressed as :

;
E,(0) =% e < Ik, 0} (k,T)>dT (C.3)
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The power spectrum is the forward Fourier transform of the correlation function of intensities.
This follows from the Wiener-Khintchin theorem (using the assumption that I(k,t) is stationary in
time). The limits of integration are determined by the size of the pulse volume. The power spectrum
expressed in terms of the signal amplitudes is a function of the four point correlation function of

the amplitudes:
T Iy

1 iwr [ ikx ikk ikxy ks, -
E(w)= S—TE fe‘ J e e e e < o(x,, 0oz, Hu(x,, 1Yoz, T) > dxdx,dx,dx,dt(C .4)

r J1e
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