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Abstract.

The intensity relurns obtained by a radar from precipitation are weil known to f1uctu:lle

violcntly in spaœ and time. We present a systematic study of the resolUlion dependence time series

with overlapping time resolutions spanning 10 orders of magnitude (0.77 ms to 4 months), of the

l1uctuating radar eeho from precipitation. The re:;ults undermine the current assumptions of

homogencity of rainfield at scales smaller than the radar resolution, du: to Marshall and Hitschfeld

(1953). by showing that the only length scales identifiable in the time series are those of the radar

pulse volume, the wavelength, and a very small inner scale of the order of miHimeters. An analysis

c~ "'e multiscaling nature of the time series of echo fluctuations reveals multiscaling behaviour at

s~:iles down to the resolution or pulse volume scale. Since there are no apriori scales in the rainfield

we proceed to modcl the fluctu:uing radar echo by assuming a multiscaling model of rainfield

variability which extends 10 sub-resolution scales. A systematic analysis of the statistical behaviour

or computed reflectivities from this variability gives a full statistical description of reflectivity

originating from multiscaling variability, andsolves the scalarmultifractal radarobserver's problem.

Compl1tation or time series of reflectivities from a time-space representation of this variability

reveals quantitative and qualitative behaviours consistent with those of observed echo fluctuation

time series. We conclude that a multiscaling model of the rainfield which extends to the smallest

scales of the rainfield is consistent with observation.
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Résumé.

On sait que les échos radar provenanl de la précipitation fluctuent énonnément dans le tcmps

ct l'espace. Nous présentons une étude systématique de la dépendance sur la résollllion d'unc

longue série chronologique de mesures d'échos radar de la précipitation, Ces mesure s'étcndcnt

sur 10 ordres de magnitude dans le temps, de 0.77 ms jusqu'à 4 mois. Lcs résultats ne supportent

pas les hypothéses fom1ulées par Marshall et l-litschfeld (1953) et couramment acceptées concemant

l'homogénité des champs de pluie à la sous-échelle. Nos résultats indiquent que les seules échelles

identifiable dans notre longue serie de mesures sont le volume unitaire du r.ldar,la longueur d'ondc

et une très petite échelle de l'ordre de millimètres. L'analyse de ces données révèlc missi un

comportement "multiscliling" pour toutes les échelle jusqu'à la plus petite résolution possible.

Puisque il n'y a a priori aucune échelle préférentielle dans les champs de pluie, nous avons cffcctué

unc modélisation des échos radar en utilisant un modèle "multiscaling" qui s'étcnd juSqU'llllX

échelles plus petites que la résolution de base du r.ldar, Une analyse systématique du comportcmcnt

statistique des réflectivités dérivée de cette variabilité donne unc description statistiquc complètc

d'une réflectivité provenant d'une variabilité "multiscaling", Ceci résout aussi lc problèmc dc

l'observateur radar dans un scalaire "multifractal", La simulation de la variabilité temporellc des

réflectivités à partir d'une représentation spatio-temporelle démontre des comportcmcnts

qU:llltitatifset qualitatifs qui SOnt compatibles avec ceux qui sont observés en réalité dans une longuc

série chronologiq:Je, Nous concluons donc qu'un modèle "multiscaling" qui s'étend jusqu'aux plus

petites échelles est compatible avec les observations,
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Statement of Originalit),.

This th"sis pr~s~nts a n~w modd for the sub-radar·resolution scale varîability respon~:ble for

Ih<: Ilu<.:tuating radar ccho,

'l'hl. data analysis s~ctions represent a systematic study. using spectr:ll and multifractal

I~chnitju~s. of Ih~ r~solution d~p~ndanceof r.ldar echo statistics of very long. very hig:l resolution

lil11~ s~ri~s of th~ lluctuating ~cho. The analyses allow the foilowing contributions to knowledge:

1) the tim~ s~ri<:s r~v<:al scaling b~haviour (E(k)ock~ to a scale consistent with the pulse volume

s<.::t1~ of Ihe radar. 1) the only I~ngth scales that could be identified in time series of the lluctuating

~cho are those:: of the radar pulse volume and radar wavelength. there is no evidence ofa homogeneity

scalc ~xc<:pt at millisecond timescales. 3) the spectr:ll characteristics of the fluctuating echo time

s~ri~s b~tween th~se two scales is close to that of white noise, 4) there is another scaling range l'rom

a scale consistent with the radar wavelength ta the smallest scales of the rainfield where evidence

el' homogeneity c:m be found.

A new multifractal parameter estimation technique was created by combining the tr:lce

moments estimation technique with a genetic algorithm. Multifractal analysis of the time series of

Ihe 1l1icIll:lting ccho allows th~ following contributions ta knowledge: 1) the echo fluctuation

sta:istics are multiscaling to a scale consistent with the radar pulse volume scale, 1) the statistics

are lit very weil by the fomls provided by universal multifractals, 3) the presence of zeros in data

sets used tû estimate multifr.lctal par.lmeters willlead to spurious estimates of the parameters.

The modelling section of this thesis makes the original assumption that the multiscaling

behaviour nOled at scales greater than the radar resolution or pulse volume scale continues to the

smallest scales of the r.linfield. Modelling the fluctuating echo as a Fourier component of a

multiscaling field yields a complete statistical description ofZ•• frçm a scaling rainfield and solves

the scalar multifractal r.ldar observer's problem. The general implications are that rain statistics

can be inferred l'rom r.ldar measurements ofeffective reflectivity. The following results were found:

1) the Fourier component of multiscaling variability exhibits multiscaling behaviour, 1) the inner

scale of the r.linfield variability, in time series of Z... is replaced by the wavelength scale of the

r:ldar, 3) the dressing oper:uion of the Fourier component results in a linear bias, KA,R(l), in the

exponents char.lcterizing the statistics ofZ••, 4) the magnitude of the bias is a !inear function of the

variability of the r.linfield characterized by Cl'

The first space-time multifractal model ofthe fluctuatingecho is introduced. The implications

of this model are that l) the statistical behaviours ofZ. and Z•• are identical at scales greater than
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the pulse volume scait: with CI = 2" that of the raintidd variability. 2) th~ spe.:tral pl:tteau is a dire.:t

result of the Fourier componem operating on a scaling raintidd. 3) the bias in distributi(lllS of Z'À

resu!ts from the intluence of K" .•(1).
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Index into the Lévy-Stabk distributions lO < Cl. < ,!.O). Cl. is an indkatl)r Ilf
the singular nature of a universal mu!tifr.lcta lield.

Spectral exponent (E(k)""k-P• where E(k) is spectr.\l energy).

This variable is taken to represent the pulse volume scale of the radar.

The codimension of the ensembk mean of a proccss or ticld. A l11eaSlire
of the variabi!ity of a licld.

Codimension f~nction describing the scaling of probabilities of
singularitit:s y.

The sampling dimension. A measure of the size of a data sel. D, detincs
the maximum singularity y, as weIl as the maximum moment '1, that can
be observed with a data set.

An exponent used in the description of universaI mliItifmctals.

The singularity strcngth (intensity) which is a fllnction of the scalc of
measurement (y= K·(q)).

The maximum order of singularity observable within a d:lta set of
sampling dimenSiOn D,.

The order of singularity corresponding to divergence of moments.

Exponent for fiItering a conservative multifmct:ll lieId to pl"\KIliCe :1
non-conservative multifractal field.

The radar wavevector (1 k 1= 27r1i...,).

Scaling moment function for multifractals.

Scale r.uio between the outer scale of a process and an aver.lging sC:lh: or
'box' scale 1. À. = LI/.

The '.vavelength scale of a r.ldar. Defines the wavenumber k as k =2n/i...,

The OUler scale of a field.

Pulse Repetition Frequency. The rate (in Hz) at which a radar sends out
pulses of energy. The PRF determines the temporJ.l resolution of rJ.d:lr
::Iata.

The order of scaling moment (q =c '(y».

The highest order of scaling moment that can be observed given a data set
whose sampling dimension (size) is D,.

The critical order of mOme'lt above which statistics diverge.

The radar cross section field in lime and space.
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Ze Of Z.. :..

Universal 1'.lultifr.lctal Cascade Generator. The technique used ta
generate multifractals as inputs ta the RCS mode!. The shonhand
lerminology employed ta specify the input fields for discussion is
UMCG(C,.H).

Rdkctivity factor. The mean of which CUITent radar data processing
strategies attempt t0 ~stimate by averaging measures of effective
rdkctivity.

Effective n:flecùvity factor. The quantity measured by a radar.
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1.0 Introduction.

The lropical mill/cil ill drcllchillg Shl'l'IS...

Michael Crichton

lurassic Park

Radar.

The technology known as radar went l'rom its infancy to maturity during the years (If lhe

second world war. The history of weather radar begins ar the end of WW2 and was cenlered al

M.I.T. and at McGill University in Montreal. The earliest work on the statistics and interpl"~t:ltion

of echoes received by radars l'rom rain are those of Ryde (see the review by Atlas :lIld Ulbrich,

1990, and references therein). The aClUal development of the results necessary to convert r:tdar

echoes l'rom precipitation into estimates of precipitation rate involved a number of sleps that were

taken during the years 1947 to 1951 (see Atlas and Ulbrich, 1990). The Stormy Wealher Group,

led by the late J.S. Marshall, was one of the most active centers of the development of the Iheory

of weather radar al'ter the war (see Douglas, 1990). The issue related to this early work that is of

concem to this thesis is that of the interpretation of the fluctuating echo l'rom precipitation. Early

researeh on the statistics of the fluctuating echo was conducted at M.LT. (Lawson and Uhlenbeck,

1950; Austin, 1952). The work published by Marshall and Hitschfeld (1953) and Wallace (1953),

and referred to hereafter as the 'standard theory', presented a set of assumptions which are now

routinely used to convert the fluctuations tO an estimate of mean reflectivity.

Radar presented awesome potential as a hydrological and meteorologicaltool since it is able

to measure, almost instantly over great distances and over a great range of scales, reflectivity l'rom

precipitation. The use ofrelationships between the quantity of reflected energy and drop sizes as

weil as drop fall speeds allowed for the measured energy backscattered by drops to be converted

intoestimates ofrainrate through a "Z-R" (orreflectivity factorZ to rainrate R) relationship (Marshall

and Palmer, 1948). The potential of radar as a hydrologicaltool was immediately recognized and

attempts made to exploit the information provided by radar. However, as the use of weather radar

became more widespread it was increasingly noticed that the rainfield displays extreme vari~.biIity
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in time and space. The various communities using radar slowly became aware of the extreme

variability of the rain process and of the corresponding limilS of predictability. Although the

operational use of radar is widespread it neve-r achieved the respect that the early researchers felt

sure it would achieve. Undoubtedly the major reason is the eXlraordinary space-time variability

for which no theoretical frameworks existed at the time. This lead to the continuai disagreement

of raingauge and radar estimates of rainfall amount.

The issues conceming the disparity of radar and raingauge estimates of rainfall have always

centered on the following areas, the drop size distribution (DSD), drop fall speedrelations, scattering

relations, and the electronic considerations relating to radars (see, for example, Zawadzki (1984)

or Austin (1987)). The ensuing debate has therefore always centered on the Z-R relation (see Banan

(1973) for a variety ofZ-R relations). To date, Iittle attention has been payed to the possibility that

the estimates of r.tinfall from mdars and gauges are different primarily bccause the scales of the

devices used are different. Such an argument requires the fundamental recognition that measures

acquired from the rainfidd are non-trivially dependent upon the scale ofmeasurement. This notion

is fundamentally incompatible with the accepted belief that rainfall is homogeneous at radar

measurement scales. However, in the review by Katz and Hamey (1990) the argument is presented,

basedon the work ofKerr (1951), that drop motions aredictated by turbulent airmotions. Turbulence

has long been known for its scaling statistics, especially the Komolgorov (1941) k·slJ power-Iaw

specrrum (E(k)ock-S13
). In the last ten years major advances in scaling theories oflUrbulence have

been the recognition that scaling generally leads to multifractals, and funher that the ~caling can

be far more general than simple self-similarity. A multifractal rainfield would explain a great deal

of the difficuIty in comparing statistical quantities such as 'mean' rainrate. Applying this argument

to the Z-R relation argument, both radars and raingauges have inherent measurement scales which,

in a multifractal rainfield, would result in estimaœs of precipitation that depend in a systematic

power-law way on the scale of the measurement.

Weather radars have provided much of the meteorological and hydrological communities'

understanding of rainfield variability. Particularly influential radar rainfield studies were those

conducted by Austin and Houze (1972) and Zawadzki (1973) which inspired a host ofmathematical

modeisofrainfall. However, modern radars, equippedwith digitalacquisition andrecordingsystems

are far more informative as to the fine structure of rainfall man were the early analog displays that

showed up to only seven levels of intensity and recording was accomplished using photographic

1.0 Introduction. 2
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lechniques. In recording Ihe exrreme variabilily of rainfall. modern r:\dar systems h:we pushed our

knowledge of Ihe rainfield to Ihe limil. Early models of r.linfall. based on radar observalions of

rain pallerns (Kessler. 1966: Annijo. 1966). have f:lllen by Ihe wayside as il was realized Ih:1t Ihe

exrremely variable nalure of Ihe rainfall proccss. revealed by more sophislicaled radar appar.llus.

far exceeded Ihe abiIily of Ihe models to represent it. The general problem was Ihat most modds

could account for the observations at a single scale but not over a significant range of scalcs. \Vhat

was required was a new class ofmodels with the objective ofrepresenling how the minfield operates

l'rom the sm::llest te the largest scales. \vithin such a framework the interpretalion of me:\sures of

Ihe rainfield. such as those provided by radars. can !Je interpreled properly.

Physical Models ofRainfall.

The lack of knowledge of Ihe non-linear partial differenlial equalions which govern the

development of rain. coupled wilh the exrreme variability of r.linfall has led 10 Ihe development of

slochaslic models ofrainfall. Early stochastic models include Ihose by Cole (1964). Arn1ijo (1966)

and Bras and Rodriguez-llurbe (1976). The growing recognition of scaling symmelries in rainf'lll

during Ihe 1980·s. largely due to Ihe analysis of radar dala. led to Ihe incorpor:llion of scaling

symmetries in stochaslic models ofrainf:!ll (Lovejoy. 1981; Lovejoy and Mandelbrol. 1985: Lovejoy

and Schertzer. 1985). The early scaling models were tOlally ad hoc and were designed 10 respect

a purely slatislical scaling symmetry referred 10 now as 'simple scaiing'. Simple scaling. also ealled

'scaling of the increments·. was the tirst scaling behaviour thought to be associaled with rainfall

and can be represemed as

(1.1)

•

where R is rainmle. The small scale difference is M(ï..-'6x) =R(x, + i..-'6x) -R(x,) and Ihe large

scale difference is M (6x) =R (X2 +6x) - R (x~ wheredX, and X2 are arbitrary, i.. is a reduction mtio.

and H is the (unique) scaiing parameter. The equaiity '=' means equality in probability distributions
d

viz. a =b if Pr(a>q) =Pr(b>q) for ail q. where Pr indicates probabiIity. This formula states that

differences in rainrate observed at different intervailengths are identicai except for the scale factor

i..-II. This type of scaiing was introduced by Lamperti (1962) and later by Mandelbrot and Van Ness

(1968) and called ·self-similarity'. However, since gmphs of R(x) are in fact not self-similar but

self-affine, and self-similarity is a much wider concept, this is a misnomer. The parameter H is
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known as the Hurst exponent and was introduced by Hurst (1951) 10 describe ;he long r:tnge

dependence in streamflow for the Nile river. The special case where the probability distributions

are Gaussian is Brownian motion where H = 112. Mandelbrot and Wallis (1969) proposed a

streamf10w modcI with frJctional Brownian motions (characterized by H ~ 112).

The ideas of simple scaling can go a long way to suggesting methods of interpreting the

extremcly variable measures that are acquired with radars and raingauges. Lovejoy (1981)

hypothesized that simple scaling holds forrain but noticed that the extreme variability ofrain results

in algebraic or 'fat' tails of the probability distribution (see Waymire (1985) or Schertzer and

Lovejoy (1985a». Probability distributions with fat tails have the form

Pr(M > tir) ~ t!.r-'0 (tir» 1) for the probability of a r:tndom rainfall fluctuation M exceeding a

lïxed value t!.r. The subscript D is necessary since the value of the exponent is expected to depend

on the dimension ofspace over which the averages are produced. While the ideas conceming scaling

have evolved beyond th':" notion of simple scaling the algebraic tails of probability measures of

rainfall recorded by gauge and radar continue to be observed. Estimates of qo from radar data and

raingauge data reveal qo to be in the r.inge of 1 to 3 (Segal, 1979; Ladoy et al., 1991; Ladoy et al.,

1993). The combination of 5caling with algebraic tails is an indicator of self-organized systems

(Bak et al., 1987) and can now be understood in terms of multifractal phase transitions (Schenzer

et al. 1993).

The incorporation of scaling behaviour into stochastic models of rainfall yielded a

considemble simplification of the modellingprocess as well as increasing the ability ofthese models

to represent the extreme spatial variability of rainfall over wide r:tnges of scale. Scaling models

can offer a single description for the behaviour of rain flux from small scales to meso-scales. The

'Fractal Sums of Pulses' model of Lovejoy and Mandelbrot (1985) had features in common with

other stochastic min models of the time (e.g. Waymire and Gupta (1981a,b,c), Rodriguez-lturbe et

al. (1984» in that they were additive, but its philosophy and properties were different. The FSP

model used a construction process to combine structures of various scales and frequency of

occurrence to produce a field which respected simple scaling with~= H·I (with 1<cIo<2, ll2<H<I).

Lovejoy and Schenzer (1985b) introduced the Scaling Sums of Pulses (SCP) model which allowed

qo and H to be varied separately. In contrast, rainfall models such as those reviewed in

Rodriguez-Iturbe et al. (1987) and Eagleston et al. (1987) are based on an ad hoc division of the

atmosphere into regimes where different pararneterizations were posrolated. The difficulty with
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these mode!s is that realistic statistics were realized over only the very narrow ranges of s.:ak over

which they were calibrated. The mode! of Bell (1987) was another moJcl whieh involved a large

number of parameters and produced statistics that were intended to be realistic (i.e lognomlal

distributions of intensity were produced). The modclling process of Bell was an 'lllempt to produee

noises which resembled those of radar data. but unfortunate!y scaling behaviour was not rcspected.

Detailed observations of the statistical structure of the minficld over various scale ranges using

radar have revealed no distinct scale breaks separating regimes where differcnt par:ulleterizations

might be required.

In parallclto the devclopment of the simple scaling modcls. work in cascade processes .md

strange attractors showed that real dynamical systems were much more likely to bc multifmcml.md

hence will respect multiple-scaling (e.g. a different fr.lctal dimension for e.lch intensity) (Hel1lchcl

and Procaccia. 1983; Grassberger. 1983: Schertze:r and Lovejoy. 1983. 1984. 1985a,b: Parisi .md

Frisch. 1985; Halsey et al.. 1986). Indeed. Meneveau and Srcenivas:m (1987) introJuced a simple

2 state ex-model whose statistical properties they claimed were indistinguishable from those of

turbulence. It was realized by Schertzer and Lovejoy (1987) and Gupta and Waymire (1993) thm

mathematical cascade processes posses the same scaling structure as rccorded r.linfall mtes and

involve a relatively simple construction process. Thus. the possibility of modelling the extrcme

variability of minfall statistics l'rom very large scales to very small scales with a single physically

based description became a possibility. Multifmctals arise when cascade processes concentr:lle

energy. waterorother flux quantities into smallerandsmallerregions ofspace. and genemlly requirc

an infinite number of exponents to specify their statistics. blOl these arc fixcd by the construction

process. Cascade model~ are designed to respect seveml of the basic symmetries of the goveming

non-lineardynamical (Navier-Stokes) equation. There are three properties associated with a cascade

phenomenology. 1) a scaling symmetry (invariance of statistics under dilation ("zooms")). 2) a

quantity conserved by the cascade (Le. in turbulence the conserved quantity is energy flux l'rom

large to small ,;cale). and 3) localness in Fourier space (the dynamics are most effective between

neighbouring scales).

The cascade model is predicated on the idea that fluxes. such as min flux ~ (normalize:d such

that <ID = l, where <> denote the ensemble avemge), are concentrated into progressivcly smaller

volumes. The number ofvolumes over which the flux is progressively concentrated increases while

the volume, identified by its characteristic scale l, decreases. This concept can be represented as a

1.0 Introduction. 5



• multiplicative process (see Appendix A). The end result of this process is that a small number of

the volumes will contain a great deal of flux while the rest are close to zero. The range of scales

over which this process can be defined is limited only by the outer and inner scale of the rai;] process.

The outer scalt: is the largest scale of the process. The inner scale of the rainfield is a statistical

'1uantity. but would presumably be limited to scales above the turbulent viscosity scale (which is

measured in millimeters). The highest resolution element of a cascade (i.e. the smallest scale of

the cascade) is usually defined by the dimensionless ratio A of the outer cascade scale L to the inner

scale 1(i.e. A =Ul). thus the highest resolution element is given by 11.-'. The distribution ofintensities

y of a rain flux )l at scale ratio À. (A ~ À. ~ 1) is given by

Pr()l" ~ 1..') = p(y)À.-«y) (1.2)

•

where)ll. is the flux averaged over scale 1..-1 (the subscript À. is added to show thatthe flux estimate

is dependent upon the scale over which it was averaged). y is the singularity (or intensity). pey) is

a slowly varying (sub exponential) intensity dependent prefactor (which is generally ignored in

most developments). and c(y) is a codimension function which depends on the intensity. When

c(y) < D.the codimension has a simple geometric interpretation as the difference between the space

dimension D (the embedded space) and the fractal dimension D (y). Codimensions are useful in

stochastic processes as they characterize the process independenùy ofthe dimension ofthe observing

space. The codimension function c (y) defines a continuous speetrum of exponents goveming the

probabilities ofvarious flux intensities yofflux Ill. integrated to sorne sCale ratio À.. c(y) is constrained

to be a convex function.

Considering the cascade construction process. each stage of construction is independent of

the history of the earlier stages of construction. However. due to the hierarchical nature of the

construction process the result has long range statistical correlations. This is a basic properry of

cascades and hence multifractals and is a conceptembodied by exponents such as the Hurst exponent

H (Hurst, 1951). Thus. moments of a multifractal are also power-Iaw functions of scale. The

multiscaling relation for moments is given by

• 1.0 Introduction.

(1.3)
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• where q is a moment and À defines the box scale over which Il was aver.lged. This relation was

first tested in radar rain data by Schertzer and Lovejoy (1985b). The function K(q) defines a

continuum of exponents which characterize the scaling behaviour of Ill.' The scaling behaviour of

moments of Ill., characterized by the exponents K(q). can be estimated by plotting the aver.lges as

a function of scale for different values of q on a log-log graph.

There are fairly general conditions under which knowledge of probability distributions is

equivaIentto knowledge of the moment structure ofa field. The relationship between c(y) and K(q)

for multifractaIs was shown by Parisi and Frisch (1985). K(q) and c(y) are a Legendre transfonn

pair,

K(q) =max (qy-c(y» ; c(y) =max (qy-K(q))
y q

(1.4)

•

•

which defines a one-to-one correspondence between singularity y= K'(q) and moments q = c '(y).

Thus, knowledge of the moment structure is equivalent to knowledge of the probability distributions

(see section 3).

The obvious implication of the above scaling relations is that measures from cascade fields

are dependent upon the scale of observation. The scaIing of the cascade may be exploited, simply

by examining moments computed overdifferent scales,to produce functions which are independent

of scaIe and characterize the measures precisely. The functions K(q) and c(y) are scale invariant

descriptors of the underlying cascade process and hence characterize the flux Ill. independent of

what scaIes were used to estimate Ill.' Such descriptions allow the cross comparison of data sets

(e.g. as in calibration) acquired with different resolutions from the same multifractal field. Indeed,

if a field exhibits scaling behaviour the only way to compare measures acquired with different

resolution sensors is through the scaIe invariant functions.

Schertzer and Lovejoy (1987) present an argument relevant to atmospheric processes that

gives K(q) and c (y) specific fonns. The argument they present suggeslS thatthe turbulent inter.lction

("mixing") of cascades yields cascades of the same type. Thus, there are stable and attractive

"universaIity" classes. A useful result of the universality assumption, forconservative multifractals.

is that K(q) and c(y), which define an infinite hierarchy of scaIing exponenlS, are dependent upon

1.0 Introduction. 7



• two parameters, Cland C" Clis an index 10 the Levy-Stable distributions characterizing the generator.

C, is the codimension of the ensemble mean of the cascade field and is a measure of the sparsity

of the field. The forms for c(y) and K(q) are

c(y) =
1 1
~+-= 1,(0.>' 1,0$0.$2)
a. a.

if 0.=1

(1.5)

ICI a

K(q) = 0.-1 (q -q),

Clq 1n(q),

(1.6)

•

•

The various tests of these relations over the last six years using radar data have been

surprisingly successful. Direct verification of relation 1.5 wa$ accomplished by Seed (1989) using

a very large database of radar CAPPI maps (Constant Altitude Plan Position Indicators or CAPPls

are constant altitude cuts through volumetric radar data recorded by volume scanning weather

r.ldars). Schenzer and Lovejoy (1985a.1987) and Lovejoy and Schenzer (1990a) have tested the

universal forms. Gabriel et al. (1988) made a test of universclity using radar data. Gupta and

Waymire (1990) have shown that multiscaling holds using GATE radardata. Duncan et al. (1992a),

and Tessier et al. (1993) present funher evidence that radar data conforms to the predictions of

universality. Ladoy et al. (1993) and Huben et al. (1993) show that universality holds using

raingauge data. The analyses ofDuncan et al. (1992a,b) and Tessier et al. (1993) involve radar data

sets of very high spatial and temporal resolution. Both analyses indicate that multifractal behaviour

is observed to space scales of40 meters (which is the resolution scaleofthe radardata) and timescales

of less than seconds in radar data. The data sets used will be described in section 2, but comprise

time series of echo fluctuations from a single range gate. The time series analyzed by Tessier et

al. (1993) have a temporal resolution of 2 s and the total time series length was one momh. The

time series analyzed by Duncan et al. (1992a.b) were more varied in their resolutions but suppon

the observation ofscaling behaviour, ifnot the acrual pararneters exttacted from these scalingranges

(see section 5.2), to the pulse volume scale of the radar (sec sections 4 and 5).

1.0 Introduction. 8
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Radars and Rainfall.

The most outstanding characteristic of radar echoes from precipitation is the fact th:ll the)'

lluctuate violently in space and time. We will argue that the lluctuation is due to the extreme

variability of the I".lin flux Il in space and time. The violent changes in Il at ail scales are representeJ

in time series of the fluctuating echo. There are a large number of factors which c:m affect the

space-time behaviour of Il, included are turbulent advection, sedimentation due to gI".lvity, :mJ

natural variations due to the inhomogeneous nature of the rain generating regions (sec figure 1.1).

While large raindrops cannat be considered as passive admixtures, the effect of turbulence will be

to concentrate water onto progressively smaller volumes creating an inhomogeneous min flux Il.

The "homogenization" of turbulence is largely a misconception since viscosity is the agent th:ll

homogenizes. Turbulence merely concentrates quantities onto smaller volumes in order to gener:lle

the large gradients necessary forefficient dissipation. lrrespective ofthe mechanism, the observation

of scaling behaviour in radar data is consistent with cascades which systematically conccntmte min

flux to progressively smaller scales. Figure 2.2 is an idealization of a radar opemting in a typical

rainfield, the inhomogeneity of the rainfield appears organized and highly variable. This picture

of the rainfield is completely incompatible with the picture currently used in the interpretation of

radar signal fluctuations.

The current theory of the statistical behaviour of radar echoes from rainfall, introduced above

as standard theory, is due to Marshall and Hitschfeld (1953), Wallace (1953) and Rogers (1971),

but is based on work conducted at the M.LT. radiation labs and reponed by Lawson and Uhlenbeck

(1950). The critical assumption of the standard theory is that the drop phases (relative to the mdar)

are independent random variables. A Poisson model is used to model the drop phases, or positions

relative to the radar. in time and space. Wallace (1953) computes the Fourier component of the

distribution of drops and examines the statistical behaviour of the resuiting amplitude. 19noring

geometrical and dimensional constants the signal amplitude received by a radar from a volume' Bl.

of scatterers (volume Vj) is given by

1Bl. serves a double purpose. it defines both the set of drops found within the ilIuminated

volume and the sCale of the iIIuminated volume ).-' .

1.0 Introduction. 9



• A,(X) = (1.7)

where k is the radar wavevector and Î; is the position vector of the jlh drop of volume VJ. We

anticipate that this Fourier component of the drop positions will be dependent on the scales of

observation À and wavelength scale À,. = ::'. However. if the drop positions obey Poisson statistics
1'1

the probability offinding a drop is homogeneous in space and the phases will be independent random

variables. If, in addition. the volume variance is finite. then the standard result follows. The

"effective rcl1cctivitl factor" Z,>. mcasured by a radar is related to the amplitude of the scanered

wave by

1 V ;;.-;, 2 _ - 2
Z,>. = Vol(B>.!1 j!n, je 1 - 1A.(x) 1 V;>I(B,) (1.8)

•
The corresponding "rel1ectivity factor" z.. is defined by

(1.9)

Thcse relations define Z>. and Z,>.. and initially. assume that only Rayleigh scattering is imponant

Given that the drop phases are random variables with Poisson statistics the c1assical result for the

conditional probability distribution of Z,>. given z.. can be established by considering eq. 1.7 as a

rJ.ndom walk in phase space:

PreZ, 1Z) = ~ e-Z,IZ (1.10)

•

Following the belief that different scale regimes of the rainfield exhibit different statistical

behaviours. Rogers (1971) applied the standard theory to the problemofgradients ofrainfall intensity

affecting estimates of Z,>.. The scale separation that Rogers (1971) implicitly employed was the

2 The subscript À is appended to indicate the fact that in a scaling rainfield the measured value of
intensity Z. is dependent upon the radar measurement scales.
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assumption that gradients are unimponant below the pulse volume scale B so that .he standard

theory would apply there. This assumption avoids the need to mode! the sub-resolution gradients.

The concept was predicated on then current data processing strategies which involved cross range

ordownrange averaging to form estimates ofZ from many neighbouring measurements ofZ,. Thus.

estimates of Z involved averaging volumes larger than Band within these volumes it W,\s possible

that gradients in rainfall rate couId affect the average that produced 2". Rogers (1971) expressed

this possibility as a conditional probability and used an ad hoc rainrate gradient mode! to show how

the statistics of Z,,, are affected.

Lovejoy and Schertzer (1990a,b) have discussed various corrections to the st:mdard theory

for multifractal rainfields. Lovejoy and Schertzer (1990a) calculated corrections to mean Z" and

Z,,,assuming f,,1cta! distributions of drops. Lovejoy and Schertzer (1 990b) calculated correction

factors assuming sub-resolution homogeneity of drop statistics but that larger scale fluctuations

were multifractal. Neither study addresses the problem of sub-resolution inhomogeneity. While

the blouing paperexperimentofLovejoy and Schertzer (1990a) could certainly be taken forevidence

of rainfield gradients to very small scales no effort was made on their part to compute the Fourier

components of such a rainfield.

1.0 Introduction. 11
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Ohjectives and Organization ofehe Thesis.

The main objective of this thesis is the qualitative and quantitative exploration of the effect

of multifrJctai sub pulse volume variability on the statistics of radar echo fluctuations from

precipitation. Evidence of the existence of multifractal behaviour of echo fluctuations down to the

resolution seale B of the radar will be provided by specially collected time series of the f1uctuating

echo. Severa! original observations of the statistical natOlre of the echo fluctuations are made. The

multifractal behaviour of the fluctllating echo will be parameterized by Ct and CI' Another special

data set provides evidence that the rainfield exhibits scaling behaviour below the resolution scale

B. but since there is no a priori scale dependence in the rainfield that resulted in the data sets

collected it will be argued that the rainfield is multifractai to its smallest scales which we find to

be typically ofthe orderofmm. Modelling ofthe fluctuatingecho is accomplished by first examining

the statistica! behaviour of Fouriercomponents ofmultifractal variability to determine the statistical

propenies of Z,l.' This corresponds to the assumption that the sub-resolution variability has the

s.tme scaling behaviour as the super-resolution variability in the rainfield. A simple assumption

conceming the relation between temporal and spatial scaling exponents will then be introduced to

explore the effect of temporJI as well as spatial scaling or. • - statistical behaviour of Z.l.' The

results of this study will slrongly suggest that a more appr~.emodel for the Interpretation of

echo fluctuations is given by multifractal models of rain f .x IL A large concluding section will

outline the implications of scaling rainfield to radar measurement strategies and will point out that

this information can be used to measure the dynamical properties of the rainfield.

Since the ability to produce multifractals with prescribed properties is a relatively recent

capability. the behaviour of a Fourier component of these models has not been known until now.

The results developed in this thesis will be presented in the language of universal multifractals.

al though every effon will be made to incorporate the language ofthe standard theory forcomparison.

The recent development ofcomplex valued Lie cascades (Schenzer and Lovejoy, 1993a) allow the

results of the Fourier component of multifractals to be expressed quantitatively in simple terms.

Examination of the fluctuating echo resulting from a multifractai rainfield will serve to answer the

question as to the statistical behaviour of the fluctuating echo, which is a Fourier component, from

a multifractal rainfield. Il will also serve to show that there is a great deal of information available

in the fluctuating echo that is ignored by current processing strategies.

1.0 Introduction. 12
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Chapter 2: Data Collection and Processing.

Sorne unique time series of the l1uctuating echo were collected with a vertically pointing r:ldar

that provided spatial resolution of 40 m and temporal resolution to millisecond time scales. Time

series of the l1uctuating echo with lower temporal resolution were also collected. These data sets

are supported by a number of corroborating data sets. Data collection procedures. quality control.

and details of the devices used to collect the data arc provided.

Chapter 3: Universai Mu/tifractais.

This chapter summarizes relevant results of the universal multifractal formalism. Results

necessary for the analysis and modelling of multifractals are preSt'nted. Emphasis in this chapter

is placed on the details pertaining to accurate estimation of universal multifractal parameter.;. The

results for spectral behaviour arc also provided.

Chapter 4: Spectrai Anaiysis ofRainfieid Intensiry Time Series.

This chapter examines the spectral nature of the various data sets collected for this thesis.

The objective is to determine the ranges of scales over which scaling behaviours may be observed

in rime series of the l1uctuaring echo. The spectral behaviour of time series of rainfall intensities

is examined and discussed. A new fealUre of the spectral behaviour of time series of the l1uctu:lling

echo is examined and discussed. This chapter also examines the scaling behaviour of distributions

of the l1uctuating echo. Estimates of spectral and intensity distribution parameters are presented

in tabular formaI.

Coopter 5: Estimation ofMuitifractai Parameters.

In this chapter the universal multifractal nature of the echo l1uctuation time series is examined

and discussed. A general objective is to determine the range of scales over which universal

multifractal behaviours can be expected in time series of the fluctuatingecho. The specific objective

of this chapter is to examine whether universal multifractals are an appropriate model for the

sub-resolution variability in radar measurements of precipitation. A new multifractal parameter

estimation technique is introduced. The new technique is applied to the data sets along with

parameters estimation techniques presented in chapter 3. Estimates of universal multifractal

parameters are presented in tabular format and a discussion of issues relevant to the accuracy of

the estimates is provided.
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Chaptcr 6: The Statistics ofZ,,.from a Spatially Scaling Rainfield.

ln this chapter the results of the dala analysis seclions juslify lhe assumplion lhal radar

sub-resolution variabilily can be modelled as a universai multifraclai. The scaling behaviour of a

Fourier component is found 10 lead 10 generai slatisticai forms which relaIe the statistics of

reflcclivily 10 lhal of rainfield variabilily. The statisticai forms in lhis chapter represent lhe solution

to lhe scalar mullifmclal mdar observer's problem.

Chaprer 7: Radar Measuresfrom a Temporally and Spatially Scaling Rainfield.

A space-lime muitifraclai model of lhe mdar echo fluctuation problem is presenlecL This

chapler examines the influence of radar measurement scaies on the slatistical behaviour ofartificiai

time series of Z,l. and 2,.. The scaling behaviours examined in this chapler are qualilatively and

quantitatively similar 10 the behaviours isolaled in the observed inlensity time series.

Chaprer 8: C01lclusions, Implications and Possible Extensions.

In lhis chapler lhe results of the data analysis sections and the modelling section are

summarized. This chapler also considers lhe implicalions of mdar measures acquired from a

multiscaling minfield and speculales on possible dala processing Slr.llegïes lhat preserve and exploit

lhis information.
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2.0 Data Collection and Processing.

Radar Measuremem Seales and Termùwlogy.

Most meteorological radars operate by send:ng out a finite length pulse ofmicrowaves. Figure

2.1 is an idealization of the microwave pulse rravellingaway from the radar. The pulse has a volum~.

heneeforth referred to as the pulse volume (B,), that is given by v =1 • ra• • ra., where 1is the pulse

length (for the VPR 1- 37 m, the aetual signal is relUmed from a volume half this length). r is the

distance of the pulse from the rJdar, and a. and a. are the vertical and horizontal beamwidths. In

what follows the radar is assumed to average over a volume Ir~a~ (a. =a.) and defines a scale mtio

À. of the outer scale of the rain process Lover the pulse volume seale 1(1 is taken to symbolize the

characteristic scale of the pulse volume in 3D). Thus, B), is the set of drops in a 3D volume ofseale

raùo 1... Figure 2.2 shows an idealization of the VPR operating in a typical r.linfield. The pulse

length 1is selectable on sorne systems, but remains fixed during measurement. The pulse volume

is a function of range due to the beamwidths. Therefore as the pulse trJvels further away from the

radar its lateral dimensions increase and the signal relUmed :lVerages more of the structure of the

rainfield. The wavelength used by a given radar is generally fixed. Meteorological r:ldar systems

are rraditionally X-band (-3 cm), C-band (-5 cm), or S-band (-10 cm). For a given mdar system

the number of wavelengths within a pulse volume is a function of the pulse length. Within e:lch

wavelength, planes of constant phase (relative to the radar) can be defined.

The rate at which pulses are sent out by a given radar is known as the pulse repetition frequency

(PRF) which has units ofHz. The primary data sets collected for this thesis (table 2.1) were collected

with a PRF of 1300 Hz3
• The time between successive pulses is 0.77 ms. In a 0.77 ms interval a

drop moving at a velocity of 5 rn/s could move 3.85 mm.

The reason that weather radars work is that water is a dielectric molecule and hence when a

drop is hit by an electromagnetic wave il produces a backscatter wave which can be measured. The

quantity of backscattered energy is a funcùon of a number of parameters including drop size and

wavelength. The various relationships between scattering variables is weil known and can be found

in many references including Gunn and East (1954) an" Bauan (1973). Acknowledging the various

difficulties the naive assumption that the backscattering is Iimited to the Rayleigh regime is often

3 Exceptions as noted in Table 2.1.
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made. Rayleigh scattering means thatthe retlectivity factor Z of a drop is proponional to the square

of its volume. The Rayleigh scattering condition is thatthe size factor of the drop Ct =7 is much

less than 1 (in fact it is valid up to around Ct =0.1. Gunn and East (1954)).

The Data Sers.

A vertically pointing X-band radar (VPR) was used to collect a number of unique data sets.

The only unique feature of the VPR is thatthe dish is fixed and faces upward. The VPR is nonnally

used to collecttime series of the vertical structure of precipitation. The height-time indic:llor (Hl1)

diagrams (see figure 1.1) represent very high spatial and tempor.ll resolution records of the

development ofprecipitation over the radar. For the purposes ofstudying the fluctuating echo sorne

special data collection routines were wriuen. The special data sets collected with the VPR consist

of time series of echo tluctuations from a single volume at fixed r.lnge (i.e. fixed pulse volume

scale) at the highest pulse repetition frequency (PRF) of the VPR (see figure 2.2). The bulk ofthese

special data sets consist of time series of intensities at two or four heights. These data sets.labelled

A through 1. are detailed in tables 2.1 and 2.2. However. echo time series A through 1are of limited

duration (the duration of sampling was limited by available resources). In ordt'~ to examine a larger

range of scales a longer time series was constructed from the HTI data archi\;::s of the VPR (the

VPR has been in nearly continuous operation since 1989. see Fabry. 1990; Fabry et al. 1993). In

its normal mode of operation the VPR collects a vertical retlectivity profile up to 8 km in altitude

using oversampling to 7.5 m resolution of a 37.5 m pulse length. The estimates of the profile are

collected at 2 s intervals and represent averages of values of Z,l.' Two time series were composed

from this record representing the varlability at 1 and 1.41 km altitudes. Table 2.3 contains the two

time series. labelled VPR1 and VPR2. of four months duration. Thus. the total range of scales

collected to examine the fluclUating echo spans timescales from 0.77 ms to 4 months. or 10 orders

of magnitude.

Secondary data sets were employed to verify the observations made with the time series of

the fiuctuating echo. Of course. il was not possible for one device to overlap the timescales

observable with the radar. so a number of devices were used. These secondary data sets include

two series of rainfall intensities collected by electronic raingauges presented in table 2.4. and two

series of 'sonic' gauge data collected with a device of unique construction presented in table 2.5.

The sonic raingauge was constructed by Mr. F. Fabry of the McGill Radar Weather Observatory

to provide time series of rainfall intensity that could overlap the time resolution of the hi-res radar

2.0 Data Collection and Processing. 16
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Figure 2.2: An idealized schematic of the VPR operating in a rainfield. The device can be used to
collect a continuous vertical profile. The device can also be used to collect a time series of
echoes at a fixed altitude. The resulting time series for a collection at a fixed altitude would
have a temporal resolution given by the PRF of the VPR. The spatial resolution for a given
time series is fixed.

data below 2 s. The timeframe for data collection extends from fall 1990, when series A was

collected, to the fall of 1992. The most intensive collection periods were fall1991 and the spring,

summer and fall of 1992. Instrumentation involved four different radar systems, two electronic

mingauges and one'sonic' mingauge.

Table 2.1 outlines the ultra-high space and time resolution intensity time series acquired with

the VPF. Series A was collected with a 1700 Hz PRF X-band marine transminer which has a 10

dB noise figure. Series B through G were collected with the VPR using a new (installed 1990)

1300 Hz PRF marine transminer which has a very linear response with a 4 dB noise figure (see

ligure 2.3). The ability of the newer radar 10 represent even the smallesl rainrates L~ remarkable,

2.0 Data Collection and Processing. 17
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its low intensity resolution limit is estimated at -10 dB or roughly 0.01 mm/hr. Both r:ldars art'

based on magnerrons which are incoherent devices. An incoherent device is one whose phase is

random from pulse to pulse·. The time series are direct digital recordings of the output of the

logarithmic amplifier of the radar set. Pre-processing was avoided. The precipilation events were

selected such thatthe entire time series was collected inside the dumtion of a min evenl. Thus. ail

time series of echoes were collected from "continuous" precipitation. This collection scheme

represents a bias towards stratiform rain events. However. in Montreal. frontal convection is

general1y associated with large exte,llS of stratiform precipitation which follow. Further. close

examination of the vertical records of stratiform precipitation reveal a great deal of embedded

convection.

4 The incoherence of the collection device is important since it will he shown in the spectral
analysis section that the echo fluctuations are coherent
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Figure 2.3: Calibration curve for the 1300 PRF transmitter. The linearity of response of the

receiver covers nearly 60 dB.
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Table 2.1: Radar Echo Fluctuation Time Series Colleeted with the VPR.

Series Precip. Date PRF Hcight Pulse # of Points
(Hz) (km) Volume (x 102-1)

1000 m'

A Convective 19/09/90 1700 1 -15 716S
Rain

B, Convective 26/09/91 1300 1 45 35S4
Rain

Bz Convective 26/09/91 1300 1.4 90 3584
Rain

C, Stral. 23/09/91 1300 1 45 3584
Rain

Cz Strat. 23/09/91 1300 1.4 90 3584
Rain

D, Stral. 15/10/91 1300 1 45 1792
Rain

Oz Strat. 15/10/91 1300 1.4 90 1792
Rain

E, Strat. 15/11/91 BOO 2.0 183 1792
Rain

F, Strat. 15/09/91 1300 1.0 45 3584
Rain

Fz Stral. 15/09/91 1300 1.4 90 3584
Rain

G Strat. 20/10/91 1300 1.7 150 1792
Rain

TI,e intensity time series demiled in mble 2.2 were collected using the X-band and S-band

operational radars at MRWQ to observe the effect of horizontal incidence (as opposed to vertical

incidence). Three collection periods were allempted and the resulting time series are detailed in

table 2.2. As with the VPR time series, the collection was from fixed volumes ofspace in continuous

precipitation. Echo time series H was collected with the McGiII FPS-18 S-band radar system. The

10 m antenna was used with an elevation angle of 1'. The beamwidth for S-band is 0.86' and for

X-band operation the beamwidth is < 0.3'. Ranges and azimuth angles were selected to minimize
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• ground duiter signais. The noise figure of the S-band radar is very high and is estimated at 17 dB.

Echo time series 1was collected with the McGill X-band radar through the same antenna and with

th" same collection strategy using 16 range gates. The noise figure ofthe X-band system is estimated

at XdB. Results from series 1will bc presented as an average of these 16 bins.

Table 2.2: Radar Echo Fluctuation Time Series Collected with Horizontal Pointing Radars

Series Precip. Date PRF Height Pulse # of Points
(Hz) (km) Volume (x 1024)

lOOOm3

H, Convective 13/03/92 300 < 1.0 6800 1024
Rain

H, Convective 13/03/92 300 < 1.0 9700 1024
Rain

1 Strat. 17/09/91 300 < 1.0 N/A 16 x 256
Rain

The VPR system is normally used to make continuous records ofvertical rainfield variabiIity.

During the summer months of 1992 the VPR was operated continuously. The resulting HTI data

• set has two second temporal resolution with vertical spatial resolution of 7.5 m (see figure Li).

Horizontal spatial resolution is a function ofheight (follows the beamwidth). From these long HTI

series it was possible to extract time series of reflectivity at fixed altitude. Table 2.3 details !Wo

dependent series, VPR1 and VPR2, extracted from the summer HTI data set. These series contain

a continuous record ofrainfield variability overthe MRWO site for the indicated four month period.

The VPRI and VPR2 time series comprise averages of 512 Z.l. values taken every 2 s. Thus, the

outer timescale resolvable with VPR1 and VPR2 is several orders of magnitude larger than that of

series A through 1.

•

Table 2.3: Time Series of Z. collected with the VPR.

Series Dates Temporal PRF Spatial
Resolution Resolution

VPRI July 15, 1992-> 2s 1300 45,OOOm3

October li, 1992

VPR2 July 15, 1992-> 2s 1300 90,OOOm3

October Il, 1992
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Supporting Dara Sets.

ln order to support and aid in quality control of the radar observations. e!ectwnic recorùing

raingauges were used to simultaneously sample the I".linfield variability. The gauges arc known as

HYDRAs and are a product of Prof. D. Stow of the University of Auckland in New Zealand. Table

2.4 details the data sets collected by the two HYDRA raingauges locatcd atthe radar sitc (MR\VO)

and on the McGill campus in downtown Montreal somc 40 km away. A limitation of the HYDRAs

is thatthey sample only every 15 s. A further limitation common to ail rain mcasuremcnts is their

lack of sensiùvity to extremely low rainfall rates. The VPR is sensitive to -0.01 mm/hr (based on

noise figures), the HYDRAs are much less sensitive -0.5 mm/hr.

Table 2.4: ElecO'onic Gauge Data

Series Dates/Location Resolution Description

HYDRA 1 June, 1992 -> 15 s Counts of fixed sire Drops.
November, 1992

AtMRWO

HYDRA 2 June, 1992-> 15 s Counts of fixed sire Drops.
November, 1992
McGill Campus

The drop counts produced by the HYDRAs were converted to rainfall rates. Integration of

the rainfall rates over storms and over the extended collecùon period yielded rainfall accumulation

estimates in good agreement with local accumulation gauges and radar estimates of rainfall.

Initial spectral plots of the echo time series data revealed a plateau at frequencies highcr than

0.2 Hz. A method was conceived to record the variations of intensities of min to very high

frequencies. An analog recording device (a Walkman) was placed beneath a metal plate at the

MRWO site and two rainfall events were recorded. The device was termed a 'sonic' gauge. No

attempt has, as yet, been made to calibrate the sonic gauge in terms of rain rates. The soune!

recordings were digitized using the video digitirer employed to collect the radar data. The two time

series detailed in Table 3.5 represent simple temporal variations of the sound of rain. The sonie

gauge data was introduced in order to overlap the ultra-high time resolution of the VPR data of
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table 2.1. The sonic gauge recordings were digitally processed to have 0.1 s time reso1ution and a

lotaltimespan of 45 minutes. The time series can be used to verify the scaling behaviour observed

wilh the radars.

Table 2.5: Sonic Gauge Data

Series Date Sequence length

S, August 29, 1992 45 min

S2 September 3, 1992 45 min

The data sets outlined in this section shou1d be adequate for an initial exploration of the

spectr.ll char.lcteristics of the rainfield atthe highest reso1utions offered by radars and raingauges.

The over1apping data collection strategies employed and cross checking of data series limit the

possibility of gross data errors.
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3.0 Universal Multifractals.

The progression of understanding of the statistical propenies of fully developed turbulence

has led to a stochastic modelling process known as the multiplicative cascade. Cascades reve:ll

interminency, extreme variability and scale invariance propenies entirely like those found in

turbulence. Indeed, the scale invariance found in turbulence, and modelied by cascades. can be

found in a large number of other geophysical fields ranging from the rainfield to land surf:lce

topography. The justification for cascades is more than skin deep. Cascades embody both the scale

invariance permitted by the Navier-Stokes equations as weil as the phenomenological 'eddies within

eddies' description of turbulence that is currently accepted. The existence of scale invariant or

scaling behaviour represents a symmetty of geophysical systems that can be exploited in order 10

fully characterize the extreme variability of measures acquired from geophysical fields.

Measurement of scale invariant fields leads to measures which are scale dependent. The

introduction by most remote sensing devices of one or more scales into the measurement process

affects the nature of the measures. This effect can be understood in terms of the aver.lging

Cdressing') ofa cascade field. Measures resulting from cascade fields are multifr.lctal. Multifr.lctal

formalisms provide a framework within which the scale invariant nature of a measured field can

be exploited in order to fully characterize the measured field. It also provides a fr.lmework for

understanding the extreme inhomogeneity and variability found in most geophysical fields. The

study of multifractals is therefore the study of measures resulting from scale invariant fields.

This section constitutes a summary of the concepts ofuniversal multifractals that are used 10

characterize and model the time series of echo fluctuations. The development will follow that of

Schertzer and Lovejoy (1983, 1985, 1987, 1989, 1993a) and Lovejoy and Schenzer (1990a,b, 1991)

and will coyer results peninem to the statistical characterization and modelling of time series of

radar echo fluctuations. A comprehensive review of multifractal concepts and their application to

rain in generaI can be found in Lovejoy and Schertzer (l993b). The development will also include

details of the measuremem techniques introduced by Lavallee (1991).
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• Turbulence Theory: The Roo/s ofScaiing Theories and Cascade Phenomenologies.

MultifmctaI formalisms are used to describe the behaviours of fluxes of quantities such as

turbulentenergy in the atmosphere. Auxes of turbulent energy are increasingly understood in terms

of the statistical behaviours ofcascade processes. The development of the cascade phenomenology

extcnds atleast back tO Richardson (1922) and his Iittle poem,

Big whorls have iiI/le whorls.

Whiehfeed on Iheir velociry;

And iiI/le whorls have lesser whorls,

And so on to viseosiry

(in the moleeular sense)

which describes a cascade process which carries kinetic energy, as weil as passive admixtures, to

progressively smallcr scales. The work of Kolmogorov (1941) used this conceptual model and

showed how a homogeneous cascade of turbulent energy carried by space filling eddies might

appear on a spectral representation of velocity fluctuations. Komolgorov (1941) used the term

'universal' to describe the cascade behaviour within the inertial range. This use ofthe term universal

refers to the factthat inenial range cascades are sufficiently far from either the dissipation scale or

• the scale of introduction ofenergy that they are free ofany influence and always develop according

tO the symmetries of the governing equations. (The use of the term universal in the description of

universal multifractals is in a different sense and the two should not be confused). Kolmogorov

CI 941) first proposed forms forthe distributions offluctuations based on the assumptions. Namely,

the velocity structure functions obey the relation

(3.1)

where Lo is the outerscale ofthe turbulent process and Fh is sorne unknown function whose argument

goes to zero for scales significantly larger than the dissipation scale 110' This assumptions leads

directly to the following form of the energy spectrum

• 3.0 Universal Multifractals.
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• for scales sufficiently far from the dissipation scale and outer macroscale Lu. Whatthis prediction

suggests is that in the inenial range the rransfer of energy is most efficientto adjacent scales. This

represems the localness of transfer from one scale to another and embodies the whorls within whorls

description of turbulence that has come to he accepted. As work on, and measuremems of.turbulcnt

energy dissipation progressed it was realized that the statistics of the homogeneous cascade model

were neither extreme enough nor imermillent enough to fully descrihe the field. Progressivc

modifications to the theory. Obhukhov (1962) and Kolmogorov (1962) allempted to account for

the highly variable nature of the distributions of velociry fluctuations. However. the statistical

dependence of the structure functions remained unchanged. It was shown by Ansclmct et al. (1984)

that the prediction for the velociry fluctuation structure functions breaks down for h > 4. This

breakdown suggests a new form for the structure functions.

<1 t.v(L) 1·> oc L r;..) (3.3)

•
where Ç(h) is a non-linear function such that Ç(h) =hI3 for h < 4 and Ç(h) < hl3 r or h > 4. lt should

be noted that the structure functions retain their scaling structure. but no! with the exponents

predicted by Komolgorov (1941.1962). As the theory of turbulence developed. the spatial

information carried by turbulence. namely the intermittency and spatial inhomogeneity of

turbulence. became more of a concem. It was realized that turbulence was not homogeneous. but

rather, was inhomogeneous. The j3-model, introduced by Novikov and Stewan (1964), allempted

to provide a conceplUal model for the imermittency of turbulence. Frisch et al. (1978) showed how

the Kolmogorov (1941,1962) description could also be applied to the imermittent13-model. Thus

began the coupling of spatial description of turbulent imermittency with the statistical nature of the

extreme variability ofvelociry fluctuations. The proposed cascade models have always obeyed the

scale invariance suggested by the form of the power spectrum. The governing equations of fluid

motions, the Navier-Stokes equations, cenainly permit scale invariance and therefore the scale

invariant models can be said to respect a symmetry of the governing equations.
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Multiplicative Cascades.

The cascade modcl is predicaœd on the idea thm fluxes, such as turbulent energy or rainfall

J.l,. are conccntrated onto progressively smaller volumes without any a priori scales. While this

docs not rule out the possibility that limiœd samples of a cascade will contain structure (there are

structures in figure 3.1) it says that the scales of these structures are nDt important in an ensemble

sense (i.e. the next realization willlikely show Dther scales). It is assumed in a cascade construction

that energy is introduced to a system at sorne large scale L. The energy is then multiplicatively

cascaded to progressively smallerscaies 1. Mathematical detailsofthe a-model construction process

can be found in appendix A. The scale ratio À =Lll (we also make use of À-t ta indicate the box

scale l) can be used to index the scale of boxes in the CUITent construction step. The" range of scales

over which this process can be defined is limited only by the outer scale of the field and the 'inner'

or dissipation scale. The number of volumes over which the flux is progressively concentrated

increases while the volume, identified by its characteristic scale l, decreases. The highest resolution

clement of a c'lscade construction is therefore given by A-I
. At progressive construction stages,

indexed by scale r.ltio 1.., the flux density Ilk becomes more singular. The gener.ll measure of

singularity of the flux field Ilk at scale r.ltio À is defined by

(3.4)

where 0 is the dimension ofthe space. The singularityytherefore represents an average or 'dressing'

of the flux density over boxes of scale À-'. The term singularity is used instead of the term intensity

ta emphasize the fact that for scaling fields intensity is a scale dependent quantity. Thus, intensity

can be thought of as singularities integrated over a fixed scale ratio À.. The result of the cascade

construction process is that a small number of the volumes will contain a great deal of flux while

the rest are close to zero. Thus, the measures of flux Ilk in the limit À -7 00 is very singular. The

r.mge of singularities available to the system depend on whether a micro-canonical or canonical

cascade is being examined. In the case ofthe micro-canonical cascade the singularities are bounded

(i.e. y".., < 00). In the case of the canonical cascade the singuIarities are unbounded (i.e. Ym.. -7 00

:lS À. -7 00).
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Flux Density from an Alpha Model
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Figure 3.1: Flux density Il(x) resulting from a cascade model. The scale ratio of this cascade is À.
= 1000, since the inner scale is 1 pixel and the outer scale is 1000 pixels. The singular nature
of Il(x) is intended to reflect the singular nature of atmospheric fields. Mcasurement of a
field such as that depicted here will generally involve averJ.ging over a scale larger than the
inner scale and will therefore involve 'dressing' (averaging). If, for instance, we measure
this field with a resolution of 4 pixels then our measurement volume B. has $Cale mtio 256
and each of our measures will contain an average of 4 pixels.

The differer..:e between micro-canonical and canonical cascades 1S non-trivial. A

micro-canonical cascade is very restrictive in the sense that flux conservation is guarantecd foreach

construction step. Thus, each member of an ensemble of micro-canonical cascades obeys strict

conservation (Le. the total density remains constant at every step). The maximum orderofsingularity

that can be achieved with a micro-canonical cascade constructed in a space of dimension D is
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'( = D. Thus. the singularities are bounded. The micro-canonical a-model is sometimes referredm.. ,

lo :ts lhe p-m'xle! since the pro', lbilities of increase and decreasing are fixed at the outset. The

more inter~sting canonical cascades. or n-state r.tndom cascades. have a less stringent flux

conservation condition: flux is conservedonly in the ensemble. Thus. each memberofthe ensemble

orcanonical cascades does no! strictly conserve flux. The maximum orderofsingularity achievable

with canonical cascades leads to Ym.. > D, which is interpreted to mean that there are extreme

singularities that are not seen on ail realizations. Thus, there is a distinction between 'calm'

micro-canonical multifr.lctals whereY.... =D, and 'wild' canonical multifractals where y.... >D.

C;monical multifr.lctals therefore, necessarily involve the concept of divergence of moments since

the singularities yare unbounded. The remainderofthe discussion will deal with canonical cascades

since these are belter able to representthe extreme variability ofr.tinfall intensity.

Drcssitlg OpcrariOlL\' atld Barc Cascades,

A 'bare' cascade is defined as a cascade construction terminated at sorne scale r.ttio A.. The

cascade density field in figure 3.1 is a bare cascade constructed to scale r.ttio À = 1000. Any of the

lields gener.lted by the processes described in appendix A will result in bare cascades. As indicated

previously a dressed cascade could be constructed l'rom the bare cascade in figure 3.1 simply by

aver.tging (dressing) over boxes of sorne scale r.ttio A.. If we consider the small scale limit of the

cascade construction process ÎI. ~ 00, we find it to be very singular. If we consider ~,-Îl.Y for ail

y> 0, ~, ~ 00 and < ~t >= ÀKI<1~ 00 for ail q > 1. Therefore, if a limit exists it is not in the sense

offunctions. Indeed. weil defined limits existonly l'orthe fluxes n,(B,) ~ n..(B) which are integr.tls

over the flux densiries~: Dressing oper.ttions are defined as integrals over the density of flux found

in a bare cascade

n_(B) = lim n,(B) = lim fJ.ldDxl. ... _ 1. __
B

(3.5)

•

ln order to see why the integration leads to such a drastic calming effect it is necessary to consider

the integration of the flux density ~overaballB,embedded in a space ofdimension D. Considering

a singularity of order yat the origin yields:
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ln microcanonic:11 cascades y < 0 by construction so ail singularities can be smo{lthed llut Il\'

averaging: À-0" -7 O. However. in canonical cascades singularities y> 0 are present which cannot

be averaged out. so the canonical fomls retain theirdivergent behaviour even under aver.'ging. The

singular nature of the limit À -7 00 and the possibility of smoothing out sorne of the singul:\riües by

integr.llion lead Schertzer and Lovejoy (1987) to distinguish between bare and dressed Ctlsctldes.

The integrJting effectofmost remote sensingdevices overthe scales they use formeasurement

makes the distinction between bare and dressed cascades necessary. Since atmospheric processes

will generJlly carry out a cascade to only a finite scale ratio 1... it is necessary to have a reasonable

explanation why statistics compiled from remote sensing devices indicate divergence of moments.

Muicifraccais: Measuresfrom Scale illvariam Fields.

Multifractals arise when cascade processes concentrJte fluxes into progressively snmller :md

smaller regions. The term multifractal was coined to represent the factthat different intcnsities or

singularities of the flux resulting from a cascade have different frJctal dimensions. The measures

ofcascade fields produced by remote sensing devices are also multifrJctal. Multifractal fommlisms

provide a framework within which the scale invariant nature of cascade fields can be exploited III

yield a statistical characterization of the field which is independent of scale.

A number of notations for the description of multifractals exist in the litcrature. The basic

elements of multifractal descriptions are embodied in the (aD.JD(C1.0 ),'tO(q)) notationS (sec e.g.

Hentschel and Procaccia, 1983. Parisi and Frisch 1985, Halsey ct al. 1986. Meneveau and

Sreenivasan, 1989) or the (y,c(y),K(q» notation of Schertzer and Lovejoy (1987). However. the

two notations were developed to explol": different questions. The (C1.o.Jo(C1.o), to(q» notation was

intended for low dimensional work in strange attractors. The Schertzer and Lovejoy notation is

specifically suited tt' analysis of geophysical fields where stochastic processes can involve

dimensions approaching infinity. The two notations share concepl~, but liule terminology. For

5 The 0 subscript is added to show that these measures of dimension depend on the dimension 0
of space in which the field is embedded.
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• exalllpie. averages ovcr scalc 1of measures are characterized by exponents Ct.D in the (Ct.D,fD(Ct.D»

Ilotalion and by y in the (Y. cry)) notation. where Ct.D =D - Y(D is the dimension of the space). y is

a singularily as is U[). but cry) is a codimension function whereas fD(Ct.D) is a dimension function.

Codimensions arc simply defined by cry) =D - D(y). where cry) is the codimension. D is the

dimension of the embedded space (i.e. for time series D =l, for CAPPIs D =2, etc...), and D(y) is

lhe fr.lClal dimension of the space D occupied by singularities exceedingy. Codimensions are more

practical fordescribing slochastic processes since they remain invariant as the numberofdimensions

of lhe systems tends to infinity. cry) is preferred l'orthe simple reason that as D -700 cry) is defined

whilch,(Ct.[) is not.

The distribution of intensities yof the flux ~, l'rom a cascade at scale ratio À for a cascade

Iïcld is given by (see ScherlZer and Lovejoy, 1987),

(3.7)

•
where~, is the flux aver.lged over scale À-l, yis the singularity (orint,,:!sÎly), p(y) is a slowly varying

intensity dependent prefaclOr (which is generally ignored in most developmi.':nts), and cry) is a

codimension function which depends on the intensity. The codimension f!.inction cry) defines a

continuous spectrum of exponents governing the probabilities of va1'Ïous intensities y of flux ~,

integraled to sorne scale ratio À.. cry) is constrained to be a convex function.

At a fixed scale ratio À. the probabilities can be estimated as the ratios of the number of

structures with singularities ~ y to the total number cf structures N,. (Recall that a scale r.uio À

means that a data set is being dressed over 'boxes' of scale 1..-1 and therefore the singularity y

represents the avemge inte:lsity over the box). Thus, the probabilities can be approximated as

(3.8)

•

WheneverD ~ c (y), cry) also has a geometrical interpretation. In this case, on almost ail realizations

N,(Y) = ÀD(Y), where D (y) =D - cry) and cry) is the fractal dimension ofsingularities exceeding sorne

threshold (This relation is centralto the 'functional box counting' technique ofLovejoy et al. (1987)

to estimate cry»~. Thus, different singularities (or intensities) have different fractal dimensions and
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• the field is multifractal. The case where c(y) > D represents the "han!" singu!:lrities that are almosl

never observed in finite samples but lead ta divergence of moments and first order multifractal

phase 'l"ansitions (see below).

The moments of a multifractal are also dependent upon scale. By moments we rd'cr to

avemges of the quantity of flux within boxes of scale À.-1 exponentiated 10 some power '1. The

relation for moments is given by

(-'.'1)

•

where q is a real valued moment and À. defines the box scale over which Il,, W:1S aver:lged. The

function K(q) defines a continuum of exponents which chamcterize the scaling bchaviour of Il,,.

The scaling behaviour of moments of Il,,, or more precisely estimates of K(q), are examined by

plotting the averages as a function of scale for different values of q on a log-log gr:lph (sec ligure
~ ~)
~.~ .

There are fairly general conditions under which knowledge of probability distributions is

equivalentto knowledge of the moment structure of a field. The relationship between c(y) and K(q)

for multifractals was shown by Parisi and Frisch (1985). K(q) and c(y) are a Legendre tr:msfonn

pair,

K(q) = ma."(qy-c(y)) : c(y) = max(qy-K(q))
y q

(3.10)

•

These equations establish a one-to-one correspondence q = c'(y) and y= K'(q), where prime (')

indicates differentiation. Thus, knowledge of the moment structure is equivalent to knowledge of

the probability distributions.

The obvious implication of the relations for moments and probabilities presented above are

thatmeasures from cascade fields are dependent upon the scale ofobservation. The scale inavariance

or self-similarity of the cascade may be exploited in measurements simply by examining moments

computed over different scales to produce functions which are independent ofscale and char.lcterize

the measures precisely. The functions K(q) and c(y) are scale invariant descriptors of the underlying

cascade process and hence chamcterize the flux Il,, independent of what scales were used to collect

estimates of Il,,. Such descriptions allow the cross comparison of data sets ..cquired with different

3.0 Universal Multifractals. 32



• resolutions From the same cascade field. Indeed. ifa field exhibits cascade behaviour the only way

10 compare measures acquired with different resolution sensors is through the scale invariant

functions.

UTlivcrsal Multifraerals and the GeTlerator r,..

Schenzer and Lovejoy (1987) present an argument relevant to atmospheric mixing processes

that gives K(q) and c(y) specifie forms. The argument they present suggests that the turbulent

mixing of cascades yields other cascades of the same type. Thus, there are stable and attractive

classes [0 which multifractals can belong. The most useful result of this universality assumption

is that K(q) and c(y) are dependent upon only two parameters, ex and CI' ex is an index to the

Levy-Stable distributions used to generate the multiplicative terms in the cascade construction

process. CI is the codimension of the ensemble mean of the cascade field and is a measure of its

sparsity. The forms for K(q) and c(y) are

•
c(y) =

1 1
with ---;+-= 1,(ex .. l,OSexS2)

ex ex

if ex=l

Cl" Il
Cl=l

(3.11 )

(3.12)

•

(Sometimes, CI is mistaken as the support (geometty or dimension of the nOn-zero densities) of a

cascade field).

The 'universal' multifractal formalism is cast in terms of the codimension functions c(y) and

K(q) (which has led to the new name 'codimension multifractal formalism" Lovejoy, personal

communication, 1993). The parameter Cl, in relations 3.11 and 3.12, is an index to the c\ass of

Levy-Stable distributions to which a given multifractal belongs. The range of possible Cl values is

OS Cl S 2. The special case of Cl = 2 produces a nearly log-normal distribution, which is nearly the

same as the log-normal multiscaling models of turbulence proposed by Kolmogorov (1962) and

Obhukhov (1962). The Cl = 2 case uses a Gaussian sub-generator (see Appendix A) and will be

used fonhe bulkofthe modelling performedin chapters 6 and7. However, analysis ofthe fluctuating
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echo will reveal that estimates of Cl. can COYer the range 1.4 $ Cl. $ 2. Multifr.lctal processes \Vith

1< Cl. < 2 have Levy-Stable generators. the case Cl. = 1 has multifractal proccsses \Vith Cauchy

generators. These three cases involve "unconditionally hard" multifr:lctals. which me:ms that for

sorne moment q. given by qo. the moments will diverge. The case 0 < Cl. < 1 yields multifractal

processes with Levy-Stable generators. but these processes have bounded singularities as long as

sufficient averaging of the process is involved. which give rise to the tem1 "conditionally hard"

multifractal processes. The case Cl. = 0 (actually it should be considered as Cl. approaching zero from

above) produces a ~-model after the turbulence model by Novikov and Stewart (1964).

Universal mu1tifractals have found application in a wide r.lnge of fields. Gabriel el al. (I9SS)

provides the firsllest ofuniversality with empirical data (measurement techniques will be discussed

be1ow). Seed (1989) measured Cl. and Cl using radar data. Universalily in turbulenttempertllUre

and wind data was found by Schenzer et al. (1991). Schmitt et al. (1991 J. Kida (1991). Universalily

has also been found in high energy physics by Br.lX and Pechanski (1991). Ratti (1991 ). Rani el al.

(1991). oceanogmphy by Lavallee et al. (1991). land topography by Lavallee et al. (1991). and the

low frequency component of the human voice by Lardner et al. (1993). The work by Tessier et :11.

(1993) reveals universality in cloud mdiances measured by satellite. but most important is the

documentation of universality in lime series of radar echoes down to time scales of seconds (which

corresponds to a space scale consistent with the radar resolution volume B" with the application of

an appropriate velocity).

Universality is embodied in the definition of the multifmcml genemtor r". The genemtor r"
is defined by r" =ln Il,, and represents a cascade completed to scale mtio À. r" is funher defined

by

Sorne details of the genemtor. which is used to produce multifractal noises with specific Cl. and Cio

can be found in Appendix A. The basic result is that generators are additive. Thus. addition of two

or more generators results in a generator of the same type

• 3.0 Universal Multifractals.
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wh~r~ rl.' is a cascade dt:vcloped lO scalt: ratio À,', and Tl. is a scale change operator. The scaling

n()is~s d~fin~d this way bclong to a stable and attractive or 'universal' class.

.S·ample Size and the Sampling Dimension D,.

A major featur~ of multifr.lctal characterizations of variability is the Legendre transform

h~tw~en moments and probability distributions ofsingularities. Due lO this relation, limitations in

dynamic rang~ of remott: sensing devices, .vhich limits the range of singularities observable, may

b~ d~scrib~d in terms of limitations of accessibility 10 moments. Sarnpling strategies play a large

mit: in the estimation of multifractal pararneters. Due to the convexity of c(y) larger samples of the

same variability invariably hold a wider range of intensities a1lowing a greater range of statistical

1110mt:nts to be defined. Such relations are defined in terms of the sampling dimension D, (Schenzer

:md Lovejoy, 1989). The sampling dimension D, quantifies the extent to which the probability

space is explored. D. allows us to define the highest singularity y, observed on N, independent

realizations of a field.

The maximum singularity y observed atleasl once in N. samples of volume D is defined as

y, and is approximated by

(3.15)

A sampling dimension D, can be defined by the number of samples N, of dimension D by

10g(N,)

10g(À.)
(3.16)

this allows for the following relatien for y,

c(YS> = D+D, (3.17)

Using the Legendre transform between probabilities and moments (q, =c '(y,» defined by relation

3.4 the 1argest momentthal can be reliably estimated from a sample size N, is
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• q, represents a sampling limitation to the moments that can be rcliably analyzed.

Second Order Ml/ilifraccal Phase TraIL~iciol!S.

The upper bound of observable singularities y, and moments q, leads to a second order

multifractal phase transition (Schenzer et al., 1993). The Legendre transform of c(y) with y"? y,

leads to a spurious linear form forthe exponents K(q) for moments q > q,. q, = c '(y,) is the m;\Xillllllll

momentthat can accurately be estimated given a sample of dimension D,. The form of K.(q) is

K,(q) = y,(q -q,) +K(q,) , q"? q,:K,(q) = K(q), q S, q, (3.19)

If we consider thatthe probability description (y,c(y)) is the multifr-Jctal analogue of the (energy,

entropy) description of standard thermodynamics, then the moment description (q.K(q)) is the

analogue of the (inverse temperature, Massieu potentia!) description. An analogue of the free energy

is C(q) = K(q)j(q-I). (Entropy,Massieu potential) and (c(y),K(q)) are Lengendre tmnsform pairs.

ln this analogy the change in K.(q) from the familiar non-linear behaviour for q S, q, to linear

behaviour for q > q, represents a change in the free energy of the system. The corresponding C.(q)

becomes frozen at the value Y,:

• !:>C"(q,)
K n

( )
;: Cn ( ) - cn( ) = - q,

1 qs q$ -1
q,

(3.20)

•

This phase transition causes a spurious satumtion in the statistics of measures of a scaling

field. The major implication is that if the data set is not large enough then the statistics satumte

and no more information can be eXlracted from the data. This effect makes the measurement of

multifractal pammeters a delicate matter. Depending on the convexity of c(y) and on the sampling

dimension D. q, can take on values close to zero.

An imponant result is that for moments q smaller than q. the bare and dressed statistical

properties ofcascades are exactly the same. From a measurement standpoint it is imponant to keep

the phase transition in mind, but below q. the behaviour of bare and dressed moments are

indistinguishable.

The scaling limit of very small moments q is also very imponanL A high signal-to-noise

ratio is required to detect small moments. The moment q can be considered as a microscope which

examines the statistical propenies of different singularities y (using the Legendre relation tO
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Demonstration of the effects of qs
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Figure 3.2: Demonstration of the effectof q.. q, is 2 forthis example. The graph shows how K,(q)

exhibits str.lightline behaviour beyond q, and deviates from K(q) near q =2. The slope of
K,.(q) at q values beyond q. is y, = 0.61 (butthis value depends on the lX and Cl of the cascade
field). A line of slope 0.61 is plolled for reference.

lr.msfOllTl between moments and singularities). Smaller moments examine the behaviour of lower

singularities. At sorne small q the scaling behaviour will be broken because taking low powers
kills the extreme singularities and allows the measurement noise (which is space filling CI=O.O) to

dominale. The noise figure of the VPR is very low (sensitivity to 0.01 mm/hr rainrates), as such,

it permits very small moments to he defined. Lesser devices affect the range of moments over

which the scale invariant function may be investigated.
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Figure 3.3: The mechanics of the determination of scaling moments and hence
the scale invariant function K(q). The notation used here involves sums
rather than integrals. The outer scale L remains constant while the inner or
averaging scale 1 decreases hy factors of 2. Estimates of the slopes of
Log(Trace Moments) vs Log( h) for moment q gives K(q).
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A mon: critica! transition in the statistics occurs when q is increased beyond a critical value

'iD' The moment 'iD corresponds 10 the divergence of statistical moments beyond which the statistics

an: no longer defined ÎOl te:rms of smooth functions. In this case the more serious first order

mdtifractal phase transition is encountered. However, if q, is smaller that qc then divergence of

moments will not be observed. Funher, small q, can lead to erroneous estimates of ~ from

histograms. The divergence ofstatistics is a real phenomenon and necessarily implies fat algebraic

tails on distributions of intensity. However. for small samples the singularities responsible for this

divergence: may not be sampled. The behaviour of the tails of histograms of intensities for small

samples may exhibit fat behaviour that is not due to divergence of moments~.

Trace Momenes: Measuremene o!C1.and C/.

The standard techniques used to estimate the moment functio;ls are the partition functions

which give t(q) (see for example Halsey et al.. 1986; Meneveau and Sreenivasan. 1987. 1989;

Gupta and Waymire. 1990; Sreenivasan. 1991). The trace moments are used to estimate the function

K(q) at points q, and combine the partition function w;;.. ;:;nsemble averaging (Schenzer and

Lovejoy.1987). Given a cascade developed to scale ratio A of the flux Il.... estimates ofK(q) can

be :Ichievcd by ~xamining the log-log behaviour of powers q of the total flux over successive scales

À. of :IvcrJ.ging. The integrated or total rain flux TI over a box of scale B" is given by

(3.21)

(3.22)

•

where 0 is the dimension over which the integral is computed (Le. 0 =1 for time series data. 0 =
2 for 2-D data. etc...). The definition of the flux integral only differs from that defining singularity

(relation 3.4) by the normalization. TI...(BJ simply represents the total flux over sorne box of scale

ratio À. of a cascade developed to scale ratio A. The trace moments are then defined as

Tr"CJ.Lq) =< LCTI.,(B,.)q >'= Â-K(q)-lq-I)D

•

where the subscript i indexes the boxes of size B" for the sumo Figure 3.3 shows an idealization of

the trJ.ce moments computation for a scaling field. Estimates of C1. and CI from trace moments are
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nearly impossible duc 10 the ill-conditioned non-linear regn:ssion required to fit the estimateù K(q)

ta the universal form. Conventional fiuing techniques an: quickly bogged down by the functiona!

correlation between etand C, as well as the diftïculties associated with second orderphase trJnsitions.

Demons!rJtion ofsca!ing moments and the resulting K(q) function for a multifracta! proùuccù

by the universa! mu!tifractal cascade generator (UMCG) (see appendix A) is presentcù in figures

3.4 and 3.5. The muhifracta! field was created with ex =2 and C, =0.1. Figure 3.4 shows the scaling

of the various moments. The intensities were summed over box sizes rJnging l'rom 2x2 to 256x256

pixels by integer orders of 2 in scale. Plotting the scaling exponent for each moment q in figure

3.5 gives a realization of the K(q) function (only the first60 moments are shown). The K(q) function

is expected to exhibit straight line behaviour for moments gn:ater than qo. which for this realization

qo -4.4.

The trace moments. and hence the techniques to estimate 't(q). is actually a very limitcù

estimation technique. The trace moments an: adversely affected by cithcr low q. or qo. TrJcc

moments an: therefore only applicable to data sets large enough (large D.) or calm cnough that

convergence of moments is not a problem. The trace moments for q > max(q••qo) results in a lincar

dependence of K(q) on q. Consequently. K(q) can be used to estimate q. and hencc Y,. This

considerable limitation to the applicability of trace moments led to the creation of the double tmcc

moments (DTM) by Lavalleé (1991) (see next section).
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Trace Moments for UMCG(2.0,O.l,O.0)
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Figure 3.4: Demonstration of scaling moments for a realization of the Universal Multifractal
Cascade Generator (UMCG) (see appendix A). The UMCG field was created to produce a
multifractal wilh Ct = 2.0 and CI = 0.1, the H parameter is set to zero for convenience since
it has no effect on the moments. Moments are expected to scale and do so in a convincing
manner for this 'anificial' data set. Only six of the 80 scaling moments caiculated are shown.
The moments q used to compute these curves ranged between 0 and 2 with an intervai of
0.025.
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•
TM/GA for UMCG(2.0.0.I.O.O)
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Figure 3.5: Estimate of the function K(q) resulting from the scaling moments in figure 3.4. The
points on the curve correspond to estimates of the slopes of the 80 moment curves computcd
for figure 3.4. The legend gives the Cl and C, parameters estimated From the points using the
TM/GA technique (see section 4.1.2).

Double Trace Momenrs and K (q ,").

The double trace moments (DTM) technique was introduced by Lavallee (1991) to directly

estimate Cl and C, for universa! multifrdctals. The technique is interesting since il introduces a new

exponent into the description of multifractals which is germane to the analysis and discussion of

I"Jdar echo fluctuation time series. The DTM introduces a second exponent (in addition to q) " by

transforming Il into Ilq• This transforms the flux n into an "" flux" nq
• The total or integrated flux

œis given by
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• n~(BJ=fll~dDx
8.

The double trace moments are then defined as

Trl,«ll~)") =< I(n~(Bl,)q> = ;l,,'~(q.~)-(q-I)D
i

(3.23)

(3.24)

where the double exponent K(q,Tl) is introduced. K(q.Tl) reduces to the usual exponent K(q) when

Tl = 1(i.e. intuitively K(q.l) =K(q». An example ofthe utility ofK(q.Tl) is provided by the following

example. If th.: statistics of concentration ofwater (= IV) is known and can be described via K(q)
1

then the statistics ofZ (= l V/) can be intuited as being described by K(q.2). The relation between
1

Thus, K(q,1'\) has a simple dependence upon 1'\. This simple dependence on o.allows il to be estimated

by ploning 1K(q.1'\) 1Vs 1'\ on log-log graph paper and performing a regression on the linear part

of the curve. If the 1K(q.1'\) 1Vs 1'\ ploned on log-log graph paperre\'eais no linearregion then the

cascade cannet be approximated by a universal multifractai.

•
K(q) or K(q,l) and K(q.Tl) is given by

K (q, Tl) =Tl"K(q. 1) Jo.~ 11'\"(q"- q), o. .. 1)
l C,1'\q In(q). a. =1

(3.25)

•

The r.tnge 01'1'\ values where universaiity is expected to hold is dependent upon qs andlorqo.

K(q,1'\) will beccme independent 01'1'\ whenever max(q1'\.q) > min(qs,Qo) (Lavallee. 1991). Since

lio is the exponent above which divergence ofmoments is expected itis natur.tl toexpect the statisticai

structure to break down beyond this point. q. is related to the sampling dimension and revea1s that

samples must be large enough for at least some moments to converge.

The effect of 'l, on the DTM is graphicaily illusttated in figure 3.6. The field being examined

in figure 3.6 is the same as that in figure 3.4 and 3.5. The linear behaviour of K(q.Tll for '1 =1.5
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• t~rminates near Tl =3. which is consistent with the estimate of a q. of 4A. The estim:lt~sof ex and

C, made l'rom the linear region are very close to the input values of ex =2.0 anù C, =0.1 (th~

ùifference is due to the stochastic nature of the UMCG generator).

DTM Curves for UMCG(2.0.0.I.O.O)
°r----------r----:-:;;;;+<i!fi

•

•

-1

·3

.4 L.- --' --'- ....L... ...J- ---J

-1.5 ·1 -0.5 0 0.5

Log(eta)

___ q = 0.5 (2.0.0.113) q = 1.5 (2.0.0.114)

Figure 3.6: Plots ofLog(K(q,T\)) Vs. Log(T\) for the same UMCG field presented in the last section.
The two cUrves represent the two moments q =0.5 and q =1.5. Regression of the lines gives
estimates of ex. The estimates of lX and C, are given in the legend for the two moments q.
The value of qo is -2.0 which gives 10g(T\) = 0.5.
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• Spectral Be/zaviour of Universal Multifractals.

The power ~pectrum E(k) can be used to examine the scaling behaviour of universal

multifractal~. The ~caling nature of the cascade construction process guarantees the power law

behaviour of the ~pectrum of the flux and hence localness of uansfer of flux in Fourier space. For

~tati~tically i~otropic ~caling fields E(k) will he of the form k-ll where k is a wavevector modulus

and p i~ the ~pectrJl exponenl. The relationship between the speclrJl exponent Pand the universal

parameter~ Ct. and CI is given by (Lavallee. 1991).

P= I-K(2. 11) (3.26)

•

•

The non-conservative nature of a multifractal can be natural. as it is in the case of turbulence

or rainfall mea~ures. or it can be the result of signal processing by sorne remote sensing device.

Given a measured multifractal field Pl. measured with sorne remOle sensing device. Pl. can be

con~idcred in the following way (Schertzer and Lovejoy. 1987):
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Power Spectrum of an Alpha Model
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Figure 3.7: Power Specrrum of an a-model created with the UMCG. A straight Hm: of slope O.!!
is plotted for reference. The a-model has 0. =2.0 and CI =0.1 (see figure 3.2). The spectrum
is an average of 64 spectra, each of length 1024. The spectl".ll slope can he seen to match
closely the expected ~ =1 - K(2,1), which for 0. = 2 is ~ = 1 - 2C, =0.8.

(3.27)

(with < Pl. >= 1) where ch is a conservative multifractal field characterized by 0. and C" and H is a

filtering exponent. In turbulence this relation gives
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• where El is th~ (knsity of the energy flux. f-.v (1) is the characteristics fluctuation in velocity at scare,
/. The scaling l' can be und~rstood.ls a power law filter. The effect ofthis filter should be removed

to anaJyz~ th~ ~nergy density E directly. A multifractal field with spectral exponent ~ > 1 can be

interpreted as the product of sorne conservative universal multifractal and a filter. Once estimates

of (Land C, have been achieved fora measured field (observing the necessity 10 fractionally integrate

the fidd), the rdation between the various variables is given by (Schenzer and Lovejoy, 1987)

~-I C,(2"-2)
H=--+....:..:-~

2 2(Cl-I)
(3.29)

•

A subtle point conceming the measurement of universal parameters arises due to the

non-conservative aspect of most geophysical multifractals. The trace moments and DTM analysis

techniques require thatthe multifractal beingmeasured be conservative. In ordertoproperlymeasure

Cl and C, from, for instance, turbulence data, the data must be fractionally integrated such that ~ <

1. This can be accomplished using spectral techniques but under most circumstances a simple

differencing operation (Le. replacing a time series by the differences between adjacent intensities)

will serve (see Tessier et al. 1993 for applications in ID and 2D radar data).

Non-conservative fields such as rainfall intensity which have spectral exponents in excess of

1 can be modelled by employing a spectral filter to the multifractal construction process. The

speetr.ll exponent for a filtered, or non-conservative, multifractal is given by (Lavallee, 1991),

~ = 1+2H-K(2,,!,\) (3.30)

•

where H is the value of the exponent of a power law spectral filter. H can be considered as a third

universal multifractal parameter. Figure A.2 which shows the UMCG algorithm shows that the

spectral filter is applied after the creation of the universal multifractal. Thus, the statistical

characterization of the multifractal is retained (i.e. Cl and C, do not change) but the spectral slope

is altered and the field is made non-conservative.
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Drcssed Cascades. Diver!<ellce ofMomellts and Ille Firsl Order MuIlIfracwI Pluzse TrmL~Îli{)ll.

The existence of divergence of moments leads to a first order multifractal phase transition

(Schcnzer et al. 1993). There exists a moment 'ln bcyond which the statistics will no longer be

describable in terms of smooth functions. By definition bare cascades have ail of their moments '1

defined since they are only constructed to finite À. A dressed cascade (i.e. a cascllde produced by

dressing a bare canonical cascade) will generally have divergent moments forq > qo (for a complete

argument see Schenzer and Lovejoy, 1987). In terms of the C(q) (= K(q)/(q-I)) function dclïned

above, the behaviourofC(q) will display ajump in slope ora first order phase tr:ltlsition. Multifr.lctal

analysis techniques such as DTM will break down for moments greater than qo. The rcsult that is

relevant here is that if 'ln is greater than q, then the analysis will break down for moments grellter

than qo otherwise it will break down for moments greater than q•.
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• 4.0 Spectral Analysis of Rainfield Intensity Time Series.

This chapter is devoted to the examination of the spectral behaviour of time series of the

lluclUating echo as weil as of the HYDRA data and tlte sonic gauge data. The objective is to

detcrmine the range of scaling. A scaling regime on a power spectrum is indicated by a power-Iaw

dependence of the spectral energy on frequency E(k)ock-ll, where k is a wavenumber. This chapter

"Iso shows the beh"viour of distributions of the f1uctuating echo. The standard theory predicts that

the distribution of intensities l'rom independent scalterers is Rayleigh. Contrary to this expectation

the echo fluctuation time series yield distributi'lns of intensity with algebraic tails.

The power spectrum of the retum intensity can be expressed as:

T

1 J.E,(w) =2T e"'" < l(k,O)I(k;r) > d't
-T

(4.1)

•

•

The dependence upon wavelength is left as an index since it is anticipated thar the staùstical

behaviour of the intensity time series from a radar will depend upon this measurement scale and

hence so will the spectml behaviour. The powerspectrum is the Fouriertmnsform of the correlation

function of intensities. This follows from the Wiener-Khintchin :.'1eorem (using the assumption

that I(k,t) is stationary in time). The implementation of fast Fourier tmnsforms (FFTs) makes

computation of spectm and examination of spectral behaviour a simple malter (See Press et al.

(992).

4.1 Scaling Spectral Behaviour in the Rainfield.

Before analyzing the high resolution echo fluctuation time series of tables 2.1 and 2.2, the

10wcr resolUlion time series of VPR1 and the HYDRA data are analyzed to provide a framework

into which the analysisofthe higherresolution data may be introduced. The spectral characterisùcs

of the minfield revealed by the HYDRA gauges and the VPR1 time series are shown in figures

4.1, 4.2 and 4.3. Figures 4.1 and 4.2 are spectm formed from the rainfall intensity series collected

by the HYDRA gauges. The specrr:: were formed by averaging several hundred 1D24 point spectra

(timescalcs mnge from~.3 hours to 15 seconds). The spectml slopes estimated from figures 4.1

and 4.2 are 13 = -1.5 ±D.1. As mentioned previously. the scaling regime in figure 4.3. that ofVPRl.
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• extends ta longer timescalcs than those of figures 4.1 and 4.2. The scaling range sho\\"n by the

HYDRA time series have a scaling break at a timescale bdo\\" J(XXl seconùs. The spectrum of

VPRI has a scaling range that extends ta weil beyond 3000 s (or 50 minutes).

HYDRA Gauge June - Octobcr 1992
0.------------------------,
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Figure 4.1: Power spectrum of rainfall intensities recorded by HYDRA 1. Data resolution is 15
s. The spectrum is an average oi 228 4096 point spectra. The spectrJ.I slope is estimated
at ~ = -1.5 ± 0.1.

Characteristics to be nOled in figures 4.1. 4.2 and 4.3 are an obvious break in the scaling

behaviour at low frequencies. The reason for this break could be related to the temporJ.l dUrJ.tion

of rainfall during the sampling period. but it could also be related to limits of sensitivity in the

recording devices. Indeed. comparison of figures 4.1 and 4.2 with figure 4.3 reveals that lhe low

frequency scaling break occurs al different frequencies. Recent work by Lardner el al. (1993) has
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shown that the extent of the scaling regime present on a power spectrum is dependent upon the

dynamic range of intensities resolved by a data acquisition sy:aem. Narrowerdynamic ranges wil!

result in smaller scaling r..mges. Generally, the loss will be observed as a scaIing break at the low

frequency end of the spectrum which moves ta higher frequencies as the dynamic range is reduced.

This result is of interest since the devices, specifically the HYDRAs and the VPR. used ta collect

rainfall time series for this thesis have very different dynamic ranges. The VPR has a very high

signal ta noise ratio (SNR) which allows it ta resoIve rainratesdown ta -0.01 mm/hr. The HYDRA

gauges have significantly Iess intensity resoIution. The result of these differences is the low

frequency scaling break in figures 4.1 and 4.2 for the HYDRA occurs at a timescaIe of -700

seconds while that for the VPR in figure 4.3 occurs at a timescaIe of -3000 seconds.

4.0 Spectral AnaIysis of RainfieId Intensity Time Series. 50



•
Power Spectrum for HYDRA2 @ McGill Campus
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Figure 4.2: Power spectrum of rainfall intensities recorded by HYDRA2. Data resolution is 15

s. The spectrum is an average of 276 4096 point spectra. The spectml slopc is estimatcu
at ~ = 1.5.
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Power Spectrum

VPR Data July - August 1992
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Figure 4.3: Power spectrum ofa time series ofradarreflectivity intensities from a 2 month sequence
of HTI data collected by the vertical pointing radar (Series VPR1). The spectral slope is
estimated at ~ =1.5.

Figure 4.3 reveals a plateau at frequencies beyond Log(f) = -0.3 (2 s time resolution). This

feature. which extends from second time scales to millisecond timescales. will be examined in

detail in the next sub-section. We wish to show here evidence that the piateau is an artifact due

to the rJdar measurement process in the statistics of the f1uctu3ting echo. Series S2 is a sound

recording of the intensity of rainfall. however. no attempt has becn made to relate the intensity of

the sound to rainrate. The scaling behaviour of the spectrum (figure 4.4) extends from 45 minutes

to 0.2 seconds. which overlaps the spectral plateau found with the radar data. What the sonic

gauge data tells us is that the intensities of sound support scaling behaviour over the entire range
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• of temporal measurement scales. The lower limit for scaling behaviour in the r;lintield is an

imponant issue. Tessier et al. (1993) and figure 4.3 show scaling behaviour ta second tîmc

resolutions. The sonic gauge is able ta show that the scaling extends ta time scalcs smaller than

seconds. and therefore ta spacc scales smaller than the resolution scale of the VPR. Sealing power

spectra in dynamic fields will occur ifthere is no preferred scale in the system. There is. thereforc.

no a priori reason why the scaling behaviour shawn by the gauge data and the r.ldar data should

not extend ta very small scales. The fact that the scaling spectrum of S2 is not broken below the

scale of the plateau in figure 4.3 strongly suggests that the spectral plateau found in the eeho

fluctuation time series is a radar measurement anifact.

Series S2
Il r--------------------r------,

o·1-3
s '-------'-------'-------'------'------'
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Figure 4.4: Power spectrum of series S2. The spectral slope is estimated at 13 = 1.3 ± 0.1.
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Spectral analysis of the various time series of rainfall intensities agree that the rainfield

exhibits scaling spectr.ll behaviour to the sma11est observable scales with ~ in the neighborhood

of 1.5. The small scale limit of the scaling behaviour present in the VPR1 time series is the same

as that shown by Tessier et al. (1993). Tbe spectrum of the rainfield as revealed by VPRI extends

ùown ta timescales of 2 s, which corresponds to a space scale of around 40 m. The spectrum of

the sonic gauge time series S2 reveals no plateau at these timescales, but, rather shows a nearly

smooth scaling regime from 45 minute time scales to the 0.4 s nyquist resolution limit

The sonic gauge data suppons the notion that rainfield variabiliry exhibits scaling behaviour

to very small time/space scales in the rainfield. This is the first indication that sub radar resolution

variability has a form which is easily related to the variabiliry at superresolution scales by a simple

scale changing oper,ltion. Thus, rainfield gradients at large scale are plausibly related in a simple

scaling way to grJdients at sub-resolution (for the radar) scales.

4.2 Pulse Volume Erreet.

The most striking feature common to ail power spectra of the ultra-high time resolution

intensity time series, figures 4.6a-j, is that there are three distinct regions c1early evident on each

spectrum. The longest of the high time resolution time series extends for only 40 minutes (limited

by computer resources), as such, it would not be expected to show the 50 minute scale break

noticed on the spectrum of VPR 1. The immediate implication of the spectra is that there are three

distinct statistical regions in the time series, each relating to a specific scale range. The three

regions, idealized in figure 4.6, are referred to as (from left to right) the low frequency scaling

regime, the plateau and the high frequency scaling regime.

The specrra presented in figures 4.5 represent averages 262144 point specrra. Figure 4.5-a,

the spectrum for series A, is an average of28 262144 point spectra. The number ofspectra aver.lged

to produce each figure is directly related to the size of the time series sample.
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Power Spectrum for Series A
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Figure 4.5-a: Power spectrum of series A revealing the charJcteristic shape of the low

frequency scaling regime. the plateau and the high frequency scating regime.
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Power Spectra of Echo Fluctuation Time Series
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Figure 4.5-b: Power specrrum of series BI (Top) through D2 (botlom). A constant is added to
each spectrum to space them for comparison purposes. Comparison of the scale breaks
shows thm the low frequency break separating the plateau From the low frequency scaling
regime is consistent From sample to sample. The same is true of the high frequency
scaling break.
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Figure 4.5-c: Power specrrum of series E.
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Figure 4.S-d: Power spectrum of series G. Only the low frequency scaling regime and low
frequency ponion of the plateau are shown.
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Figure 4.5-<:: Pow<:r sp<:ctrum of s<:ri<:s HI' Only the low frequency scaling regime and low
frequ<:ncy portion of the plat<:au are shown.
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Figure 4.5-f: Power sp<:ctrum of series 1. Only the low frequency scaling regime and low
frequ<:ncy portion of the plateau are shown.
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Spectral Scale Ranges for Echo Fluctuation

Time Series
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Figure 4.6: An idealization of the power spectrum of time series of
echo fluctuations. The low frequency scaling regime, high
frequency scaling regime, pulse volume plateau, and the 'foot'
are shown.
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erude estimates of the two scales which separJte the low frequcncy scaling ~cgime from the

plateau and the plateau from the high frequcncy sca!ing regime can be achieved by fitting straight

lines to the three spectrJl regimes. Figures 4.7 and 4.8 show the crude scale estimation procedure

applied to the spectrum of series A. Observing the scale at the intersection of the two regression

lines and applying a suitable velocity yields an estimate of scale. An advection velocity during

th<: coll<:ction of tim<: series A was determined to be 9.0 mis (velocities were determined by the

PPS syst<:m locat<:d at MRWO. for a description see Duncan et al.. 1992). Estimates of the

corrcsponding scales are -36 m and -1.0 cm which are very close to the pulse volume and

wavel<:ngth scales respectively. Table 4.1 contains a complete summary of the application of this

proœdure to the time series. The column titled L.F. Scale is an estimate of the time scale of the

low frequency end of the plateau. as the column titled H.F. Scale is an estimate of the time scale

of the high frequency end of the plateau.
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Figure 4.7: Law frequency end of the power spectrum for series A showing the Hne fï:ting

technique used to estimate the scale separating the plateau from the low frequency scaling
regime. The Hne has slope ~ = 2. The figure shows the noise of the spcctrum that results
in uncenainty of the scale estimates.
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Series A
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Figure 4.8: High frequency end of the power spectrum for series A. The line has slope ~ =

-1.9. The intersection point of the two fitted lines, one for the plateau and one for the
scaling regime, is taken as an estimate for the wavelength scale.

Examin:ltion of table 4.1 reveals that the spectral slope of the high frequency scaling regime

for series H, and Hz is much different from the other time series. Series HI and H2 were collected

from:lI1 S-band radar which has a wavelength three times that used to collect the other series. The

low frequency spectr.ll slopes ofHI and Hz are nor significantlydifferent from the other rime series.

The low frequency scaling regime is representedon all spectraofecho rime series and extends

from the longest timescales available with the time series to the pulse volume scale. The existence

of the low frequency scaling regime in the spectra of the echo rime series is consistent with the

spectr".1 of HYDRA 1. HYDRA2. VPRI, and that of the sonic gauge. This is the scaling range that
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• will be used in funher analysis. Estimates of the spectr.ll slope ~ for the low frcquency scalin~

regime are found in table 4.1. Errors quoted in table 4.1 an: for the selccteJ filling range. but

additional uncertainty results from the arbirrary decision of which range 10 apply t!le litting.

Ho\Vever, the range ofvalues is not too great. thus. the sclected fitting range \Vas chosen tomaximize

the R' goodness of fit parame1er. The 10\V frcquency scaling rcgimes of time series D, and D,

wcre of exceptionally poor quality. probably duc to the re!ativcly shontime series. IndeeJ. series

E is also very shon and resulted in a very poor fiL The exceptional quality of the spectra for series

FI and F' (see figures 4.9 and 4.10) contrasts with this poor spectral behaviour. The fitting region

for the high frequency scaling regimes was much less than an order of magnitude. As such. the

estimates should be rreated with appropriate suspicion.
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Figure 4.9: Low frequency end of the power specrrum for series F" The line has slopc 13 =
-1.8.
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Figure 4.10: Low frequency end of the power spectrum for series F,. The line has slope ~ =
-1.7.

•
The spectral parameters estimated from series 1 are for the average of 16 spectra, each of

which is for a time series collected from a different range gate. The averaged spectrum of series

1produces an exceptionally good fit with very littie error. The spectruIT! for VPRI is an average

of 9284096 point spectra (see figure 4.3). 4096 points represents a scale regime of 4 seconds to

2.27 hours. The scale regime used to produce the estimate of ~ is between 2 seconds and 17

minutes (3 orders of magnitude). The fit is quite good and can be considered a reliable estimate

of the ensemble spectml sIope.
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Table 4.1: Parameters derived from spectral plots of the VPR echo time series

Series L.F. Scale I3l.F RZ H.F. Scale I3I1F

A 4s 2.01 ±0.04 0.89 0.010 s 1.9

B, 10 s 1.50 ± 0.10 O.iS 0.016 s 0.7

Bz 8 s 1.55 ± 0.08 0.80 0.013 s 1.1

C, 6s 1.40 ± 0.12 0.70 0.006 s 0.7

Cz 4s 1.35 ± 0.07 0.75 0.Ql0 s 0.7

D, 8. 0.6 0.45 0.Ql0 s 0.6

Dz 6s 1.0 0.55 0.013 s 0.8

E 25 s 1.75 ± 0.34 0.65 0.010 s 1.1

F, 13s 1.82 ± 0.08 0.90 0.Ql0 s 1.0

Fz 13s 1.70 ± 0.05 0.95 0.Ql0 s 0.8

G 6s 1.45 ± 0.08 0.83 0.Ql0 s 1.0

H, 20s 2.14 ± 0.09 0.87 0.020 s 4.0

Hz 20 s 1.98 ± 0.14 0.88 0.020 s 4.1

1 I3s .1.86 ± 0.05 0.98 0.032 s 1.3

VPRI 10 s 1.70 ± 0.01 0.97 NIA NIA
VPR2 10 s 1.68 ±0.04 0.95 NIA NIA

The 'foot' region of the spectnlm is not weil represented on ail spectr.l. The 'fOOl' shows

a transition from the high frequency scaling regime towards white noise. The h)t only appcars

at millisecond timescales or millimeter space scales. In the modelling section it will be shown

that this regime can be artificially imposed upon the high frequency scaling behaviour by

introducing white noise below the wavelength scale.

The existence of a r.ldar measurement effect has never been displayed before and represcnts

a simple relationship between measurement scales and rainfield variability that will be

demonstrated in chapter 7. Its consequences on the statistics of Z." have never bccn cxamincd.

The sonic gauge data SI and S2 reveal no spectral plateau, and there is no a priori rcason that a

scale break should exist in the rainfield at 40 m space scales and then at centimeter scales. The

only artificial scales present in the problem are the 40 m pulse volume scale B" and the wavelength
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scak À,.. Th~ pr~sence of a plateau oflimited scale range intennediate to these two artificial scales

cannot b~ simple coincid~nce. The question as to how the spatial measurement scales of the radar

w~r~ impress~d upon the time series of the fluctuating echo is answerable in tenns of drop field

that ~xhibits temporal coherence. The simpkst assumption about the nature of the coherence that

~xplains the observations of scaling behaviour is a rainfield that is scaling over a broad range of

scales extending from the inner scale of the rainfield to sorne scale larger than the pulse volume.

The inner scale in the rainfield could be of the order of millimeters and would then correspond to

turbulent viscosity scales which fonns a plausible hypothesis for the 'foot'. The distributions of

intensities from a random scaling rainfield have propenies much different from homogeneous

r.mdom fields.

4.3 The Distributions of Intensity.

A generic feature of measurements of fields thal display scaling behaviour is that the

distributions of intensities display 'fat' tails. However, the ability tO observe the pure divergent

behaviour of moments is related to whether adequate data is available (i.e. is the sampling

dimension D, high enough to allow CIo to be observed). The value of CIo forrainfaU is expected to

be in the range of 2 < qo < 3 (see the review by Lovejoy and Schenzer, 1993, and Ladoy et al.

1993). If the data set is no! large enough then the moment q. will be found as the maximum

moments supported by the data, butthere is no stringent reason why this moment should exhibit

'fat' behaviour. A technique that can be used to estimate CIo is the Probability Distribution/Multiple

Scaling technique (Lavallee et al. 1991). This technique was used by Seed (1989) (in a very early

implementation) to show multiple scaling of radar data and by Ladoy et al (1993) to estimate CIo

for an Il year sequence of daily raingauge totaIs from Nimes, France. The technique examines

the behaviour of histograms of intensity as a function of scale ratio (i.e. outer scale to averaging

scale) and tries to show the scale invariance of c(y) from Pr(jJ. > À.'I)-À.....(y) by showing

c(y)=-logPr/logÀ. is invariantto averaging scale. However, the technique can suffer greatly

from difficulties related to the proper nonnalization of the statistics by the ensemble mean, which

is a very dif:icult parameter to estimate. The technique is also prone to prefactor oscillations (see

relation 3.7). The implementation of PDMS by Seed (1989) simp1y assumed the prefactors to be

unity and proceeded to make estimates of c(oy). The existence of the spectral plateau in the time

series of the fluctuating echo make the use of PDMS techniques impossible. In addition, the
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ensembles are not large enough to properly normalize the disoibutions. If D. is smallthcn '1. <

qo and the divergence of moments will not be observed. Given these limitations estimates of 'Ill

are simply taken as the slope of the tail of the disoibution, and it should be considered tha! if the

dat.. set is notlarge enough then linearity of the tail is not expected and qo will he underestim:ued.

The comparison of the results for the disoibutions of intensities presented here and those in

the literature of the standard theory is difficult. The difficulty arises due 10 the very different

circumstances under which the various data sets were collected. The evidcnce provided by

Lhermitte and Kessler (1966) of the adherence of the fluctuating echo to the Rayleigh distribution

was collected under very different circumstances. Comparison of the linearity of response for the

radar used by Lhermitte and Kessler and the VPR (see figure 2.2) shows that the VPR is linear

over a much greater range. The perspective is also different, the VPR is vertical incidence while

the radar of Lhermille and Kessler used horizontal incidence. However, the most impOrt:1Il1

differences relate to the scale of the measurement volume used and the sample size. The s:lmp\es

were very small (-10000 points). The data analysis of Lhermille and Kessler (1966) used pulse

volumes of enormous size. Estimates of their smallest pulse volume scale place the beam at 1 km

above the surface with a beamwidth of between 3 and 4 km. As pulse volume scale increases the

number of data points required to disùnguish the extreme events becomes greater. The results of

Lhermitte and Kessler, who examine the disoibutions only to probability levels of 10'" could

therefore be from a scaling rainfield. While this seems a convenient explanation il is in fact a

physical reality when dealing with measures of scaling fields.

Fat or algebraic probability tails appear as straight lines on log-log grJphs of cumulative

probability. The radar intensity time series collected for this study reveal this charJcteristic

behaviour in the range expected for ql)o Figures 4.11 a-f show the tail behaviour of the cumulative

disoibutions of intensity for a number of the ùme series collected. Il is immediately apparent that

the distribuùons differ significantly from the Rayleigh form predicted for independent drops.

Estimates of the exponents governing the tail behaviour of the cumulative disoibution are found

via

•

Pr(Z > z)ocz~D

where~ is the slope or hyperbolic exponent of the fat tail.
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Figure 4.11-a: Asymptotic tail behaviour of the distribution of intensities for echo series A.
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Tail Behaviour for Series BI and B2
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Figure 4.l1-b: Asymptotic tail behaviour of the distribution ofintensities forecho series BI and
Bz·
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Figure 4.II-c: AsymptOlic tail behaviour of the distribution of intensitics for echo series C, :md
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Figure 4.11-d: Asymptotic tail behaviour of the distribution of intensities for echo seric:s D, and
D2•
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Figure 4.II-e: Asymptotic tai! behaviour of the distribution of intensities for echo series E.

Table 4.2 contains estimates of qD for the rime series of the fluctuating echo estimated from

ligures 4.11. The values fall within the range expected for rainfall (see Ladoy et al.. 1993 or

Lovcjoy and Schertzcr. 1993).

Table 4.2: Estimates of~ for the
echo fluctuation time series.

Series qD

A -3.2

BI -2.6

B, -2.4

CI -1.9

C, -2.4

D, -2.7

D, -2.6

E -3.1
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As a graphical demonstration of the scaling propenies of histograms of intensities ùrawn

from a scaling field. it will be demonstrated that histograms of the long time series of the l1uetuating

echo VPR 1have the same general characteristics as hislogr.lmS from a scaling lield. The behaviour

of distributions under aver.lging of a multifractal is very different from th:lt of purely r:lIlÙOIll

numbers. Figures 4.12 and 4.13 show histograms resulting from averages over successively l:trge

scales oï aver.lging of a field of random numbers and of a scaling lield respectively. Figure 4.12

shows how the distribution of intensities of averages ofr.lndom numbcrs narrows as the aver:lging

scale is increased. Figure 4.13 shows how the distributions of intensities over longer ;\Ver;lging

lengths have a much different behaviour. This propeny results from the structure of the Iïelù anù

the non-homogeneous distributions of singularities in the field. Thus. while both fielùs. when

averaged over the entire extent of the field. will result in a random variable with a me:1Il of 1. the

behaviour of the two with respect to averaging is very different for scales sm:lller than the outer

scale of the field. The averaging over successively longer scales of the scaling regime of VPR 1

is shown in figure 4.14. This figure has a great deal in common with the cascade field and little

in common with the averaging of random numbers.
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Figure 4.12: The effect ofaveraging scaie on a log-normal random field. Construction of the field
was a simple malter of filling a 2-D array with exponentiated N(O,I) numbers.
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Figure 4.13: The effect of averaging scale on a cascade field. Construction of the cascaùe fielù

follows the construction process outlined in Appendix B.
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Figure 4.14: The effect ofaveraging scale on cumulative distributions ofintensity for VPR 1. Em:h
curve is a histogram ofintensities averaged over the scale indicated in the legend (the number
in the legend indicates the number of points averaged. Each point represents a 2 s aver:lge
of intensities).

The effect of averaging scale on the tail behaviour of distributions of intensily from the

scaling regime of VPR1 was examined. The averaging seales can be taken as diff"rent scale mlios

1... Histograms are compUled over the full time series. The behaviour of the curves reflecl the

invariance of c(y) = [ogPrllogÂ. (relation 3.7 but ignoring prefactors) to averJging scale.

According to figure 4.3 the histograms of averages of intensities plolled in figure 4.15 come from

a scaling regime. The histograms offigure 4.15 suggest power law tails. Estimates of the exponents

goveming the tail behaviour of the intensities formed by avemging over different scales arc given

in table 4.3 as a function of the averaging seale. The difficulty in allempting to estimate the
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cxponcnts is that progrcssivcly larger averaging scales resu1t in progressively fewer points on the

lus!ograms. As such.the accuracy of the estimates fall as averaging scale increases. The exponents

in tahlc 4.3 arc similar to those in table 4.2.

Table 4.3: Estimates of qo for
averages of VPR 1.

Averaging ~
Scale

4 -2.3

8 -2.3

16 -2.3

32 -2.1

64 -2.0

128 -2.3
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5.0 Estimation of MultifractaI Parameters.

This chapter is devoted 10 exami'1ing the universal multifractal behaviour of the time series

of echo fluctuations. The analysis will concentrate on the low frequency scaling regime as the high

frequency scaling regime is not sufficiently long to permit a meaningful analysis. The results of

the spectral analysis show a scale break introduced by the pulse volume plateau. This scalc break

prever.ts the use of multifractal measurement techniques at scalcs bdow B". The objective of the

:nalysis willthen be to determine whether the echo fluctuations at scales just above B" exhibit

universal multifractal behaviour. In the rainfield there is no a priori reason why scaling behaviour

cannot extend from the outer scale of the storm to the smallest scales of the rainfield. This chapter

will first introduce a new multifractal measurement technique and will then employ it. along with

the DTM technique. 10 examine the universa: multifractal nature of the echo time series at scalcs

just greater than the resolution scale B".

This chapter consists of three sections. The first section introduces a new measurement

technique which is based on the trace moments parameter estimation technique summarized in

section 3. The second section investigates a problem relating to the application of multifr.lctal

parameter estimation techniques to large data sets such as VPR1. The third section presents the

evidence of multiscaling in the echo fluctuation time series and concludes with a table summarizing

the estimates of universal multifractal pararneters.

5.1 Trace Moments and a Genetic AIgorithm.

The trace momentscan he usedto form arealization ofK{q) foragiven data set. By making

the assumption that the given data set is a realization of a universal multifractal process (which

can be verified using DTM), K{q) Can be fit to the universal form. The difficulties in optimally

fining K{q) to the universal form are varied. The most important difficulty is that expressed in

section 3. K{q) (= K{q,1)) will not be universal if K{q;rl) is independent ofT] at T] = 1. If this can

be shown to be the case then K{q) cannot be used to reliably estimate ex and CI' If K{q) is in the

universal range then the most difficult problem is as follows: the two independent parameters ex

and Cl are highly correlated. Also, the minimum, corresponding to the estimate ofex. is very broad.

In such a situation sophisticated optimization schemes such as gradient search techniques

experience great difficulty. The range of ex is belWeen 0 and 2. The range of C, is between 0 and

o (the dimension ofthe embedded space, for time series 0 = 1). Small changes in either parameter
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r~sults in significant changes in K(q). This sensitivity to the parameters makes the search for an

optimal solution more difficult since the precision required is greater and hence the search space

is larg~r. The filting of K(q) is an ill-conditioned non-linear regression problem.

As an exercise a genetic a1gorithm was selected 10 try to solve the problem (see Goldberg,

1989 or Holland, 1992 for a discussion of genetic a1gorithms). The genetic a1gorithm is a very

powerful heuristic algorithm which chaotically searches a function space for an optimal solution.

The optimality of the solution is judged in terms of a fit:less function (cr goodness of fit function).

The fitness function can have any shape over the domain of optimization. Given sufficient

information, which is by most standards a very small subset of the search space, the genetic

algorithm will find the optimal solution. The beauly of the genetic a1gorithm is that it is not fooled

by local minima and its convergence rate is initially exceptionally fast. Since this thesis is

concerned with the statistical behaviour of the f1uctuating echo, and not with the development of

new artificial intelligence techniques, a briefdiscussion of genetic algorithm specifics is relegated

10 appendix C. However, it should be noted thatthe approach and use of a genetic algorithm in

this problem is original.

For a genctic algorithm to work a fitness function which measures the goodness of fit and

a one to one transformation for the parameters to the genetic coding are required. The fitness

function was taken as the sum of absolute differences between predicted and measured values of

K(q)

F" 1
ltness =:E 1K.(qi) - K (qi) 1

i

(5.1)

•

where K,,(q) is computed using trace moments. A mean absolute difference (MAD) approach was

chosen, but a least squares approach also works weIl. The fitness function is used as an informaI

measure of the errer of the fit The higher the value of the fitness the beller the match belWeen

K,,(q) and K(q).

The genetic a1gorithm uses the fitness function to operate on sequences of Os and Is called

chromosomes and decide which chromosome is best (sec Appendix C for a detailed discussion).

ln order to make this scheme fit K(q), CL and CI are coded into chromosomes. Each chromosome

is composedof41 positions ora1leles which can be either 1 orO. This means that each chromosome
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can represent a number up to 2"'. In order ta fit K(q). Cl is coded into the top 21 positions and C,

is coded inta the bouom 20 positions. FIoating point division of Cl by 2", gi"es a number between

oand 2. FIoating point division of C, by 2'0 gives a number in the range 0 to I. This simple

one-to-one relation between chromosomes and Cl and C, allows the genctic algorithm to lit K(q)

to 1(,,('1).

5.2 Long Time Series and the Zero Problem.

A difficuIty with the application of the muItifractai analysis techniques to long rainfall data

sets was noted. This difficulty likely affects the majority of resuIts quoted in the litcmture (sec

e.g. Tessieret al., 1993). Analysis usingTM/GA and DTM ofintensity series A through H revealed

estimates of Cl in the range 1.8 to 2.0 while esrimates of C, were centered around 0.3 (see bc!ow).

Estimates of these parameters for rainfall in the literature from Seed (1989), reported in Lovejoy

and Schenzer (1991,1992), and Tessier et al. (1993) reported Cl centered on 0.5 and C, about 0.6.

Up to the time that echo fluctuation series A through F, were analyzed consistency demandcd th:1t

Cl be around 0.5 and C, be around 0.6. Obviously both ranges cannot be simultaneously cam:ct.

The data sets analyzed by Tessier et al. (1993) were re-analyzed. The data used by Tessier

et al. (1993) comprise long rime sequences of HTI data from the VPR taken during the summer

of 1990. These sets are very similar to VPRI and VPR2. The re-analyzed data revealed the

esrimates of Cl and C, reponed in Tessier et al. (1993) (namely Cl =0.6 and C, =0.6). Analysis of

VPR1 and VPR2 in a similar manner yielded estimates ofCl and C, consistent with those in Tessier

et al. The appearance of the K(q) function estimated by Tessier et al. (1993) is as shown in figure

5.1 and is the curve noted as 'with zeros'.

The difference between imensity time series A through 1and the long time series VPR 1and

VPR2 is that the series A through 1 were recorded in continuous rainfall. Long time sequences

such as VPR1 and VPR2, as weil as the data used by Tessier et al. (1993), contain subsets of

continuai rainfall as weil as subsets filled panially orentirely with zeros. The recording ofintensity

time series A through 1 representa a 'conditional sampling' of the rainfield in order to maximize

the number of fluctuating echoes from precipitation. However, parameter estimation using these

time series yields results that differ from those of Tessier et al. (1993).
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Figure 5.1: The behaviourofK(q) from analysisofVPRl with zeros and withoutzeros. The K(q)
funetion without zeros is from subsets eonditionally sampled to have no zero rainfall values.
The lines fit to the K(q) funetion with zeros give estimates OfYmin = 0.39 and Ys = 0.6. ~In

is estimated to be - 0.2 and C(YmiJ is estimated at 0.46.

Analysis of the long time series VPR1 and VPR2 using a eonditional sampling strategy

aehieved estimates ofex and CI consistent with those from time series A through I. Theeonditional

sampling strategy aeeumulated statisties only over subsets of VPR1 and VPR2 whieh eontained

no zero rainfall rates. The appearanee of the resulting K(q) funetion is shown in figure 5.1 and is

noted as 'without zeros'. The diserepaney belWeen the two estimates has been termed the 'zero
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problem·. The conditiona! sampling approach to dealing with the zero problem is not \'Cry

satisfa~lOry. Conditional sampling. in this context. represents a 'quick fix' for a comp!icatcd

behaviour that bears funher examination.

The existence of zeros within a data set has at leasttwo possible explanations. The tirst is

thatthe rainfall rate is very small but not zero and the zero problem is duc to Ihrcshold limitations

of the instrumentation (i.e. a typical raingauge has a dynamical range of 3 orders of magnitude in

intensity while a radar rypically has 6 or 7). The other possibility is thatthe r.linfall r.lle is exactly

zero. The first assumption allows for the possibility thatthe rainfall field is finite over ail spacc.

The second assumption limilS rainfallto a fractal subset. The first assumption allows a single.

continuous multifractal model of rainfall. The second assumption forces a two step mode!. a mode!

of the spatial distribution ofnon zero rain areas and then a multifractal model ofthe min intensities.

This question will no doubt be pursued funher al a later date.

5.3 Results

In this sub-section the results of the analysis of universal multifr.lcml behaviour of the echo

fluctuatiun time series is examined. Echo fluctuation time series A through G. VPRI• and VPR~

were examined. The first section presents sorne examples of the scaling behaviour of the echo

fluctuation rime series. The following section presents a gallery of K(q) and K(q.Tl) functions

revealing that the behaviours are consistently observed. The final section contains the tabulated

estimates of CL and CI as weil as a discussion of uncertainties in the estimates.

5.3.1 Multiscaling of Moments of Z..

The measuremellt of muitiscaling behaviour to scales down to the pulse volume scale will

provide adequate evidence that multiscaling models represent an adequate mode for

sub-resolution variability. lt must be considered that the pulse volume scale employed by the

VPR is much smaller than the resolution scales used for most opemtional mdars wÎlh opcmtional

ranges that extend up to hundreds ofkilometers. Access to the scaling information in the intensity

rime series is obscured by the existence of the pulse volume plateau which introduces a scale

break. The effect of this scaling break is evident in figure 5.2. The scale break can be avoided

by averaging the data over 16 s rimescales. In the case of series Bio however. the scale break

serves to decrease the available range of scales to the extent that the estimation of multifmctal
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• param~l~rs b~com~s v~ry poor (see bclow). Where scale breaks were encountered at short

tim~scales increased averaging scalcs were used 10 produce scaling moments with no scaling

breaks.
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Figure 5.2: Computed moments for series B,. The scaling break at short timescales can be

removed by averaging the data over longer timescales.

Before estimates of multifractal parameters can be attempted the data must be shown to

respect multiple scaling. The low frequency scaling ranges identified in section 3 were the target

ranges for application of trace moments and DTM techniques. The range where scaling of

moments could he expected to hold was revea1ed, by the spectral analysis, to he belWeen 3000

sand 2 s (a factor of 1500).
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Figure 5.3: Multiscaling behavio:lr ror series A. No break in the scaling behaviour is evident.

Figures 5.3, 5.4 and 5.5 are three examples of the multiscaling behaviour of the rJdar echo

fluctuations. Ali of the time series examined displayed multiple scaling behaviour. The slopes

of these lines are estimates of the function K(q) for a given q. The moment q was varied over

the range 0 to 4 with an interval of 0.025 yielding 160 estimates of K(q) for each intensity time

series examined.
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Figure 5.4: Multiscaling behaviour for series B,_
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Figure 5.5: Multiscaling moments for series VPR1.

Thescaling range displayed in figures 5.3, SA and 5.5 is between 4seconds :lnd-30 minutes.

This scaling range extends down to scales just larger than the pulse volume scale. The scaling

of moments of the rainfield to such small scales acts as proof that gradients are very imponant

to small scale sin the rainfield. Funher, it shows that the statistical structure of the rainfield over

a large range of scales from kilometers to tens of me!ers is scaling. Estimation of the universal

parameters Ct and CI from this multiple scaling regime in the rainfield will provide a modc1 for

this variability.
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5.3.2 Graphs of K(q) and K(q,l'l) for Zc'

This s~ction provid~s a gall~ry of K(q) and K(q.T!) functions used to estimate multifracwl

param~t~rs. Th~ fits to the K(q.T]) functions are accomplished by simple linear regression to the

lin~ar r~gion of the function yieIding estimates of CL The linearity of the K(q.T!) function is over

a wid~ range ofT]. The linearity of K(q.T]) to very small T] value;; is due to the extreme sensitivity

of the VPR radar system. If the radar were less sensitive the K(q.T]) function would assume a

sigmoid shape. The T] rolnge over which K(q.T]) is universal is generally seen to end before 1.0

(log(eta) =0). Thus. it is expected thatestimates ofaand CI by TM/GA will no! be very reEable.

The figures in this section are testament to the applicability cf universal multifractals to

the echo fluctuation time series. Mathematical theories in general usually make poor filS to 'real'

data. The figures in this section reveal a diverse set of rain cases being very weIl fit by the

universal multifractal scale invariant function K(q.T]). In part the sensitivity of the VPR is

responsible. Remote sensing devices with less sensitivity. such as most raingauges (including

the HYDRAs) produce much less convincing results.

Figures 5.7 and 5.8 show an examination ofthe statistics oftime series A. Figure 5.7 shows

the trJce moments K(q) for a limited range ofq to emphasize the fit to K(q) of the universal form

in the mnge a< q < 1. where bare and dressed cascade staùstics are expected to be the same.

Figure 5.8 shows a wider mnge of q to show how. at higher values of q. the estimates of K(q)

dil'fer l'rom the universal form in a mannerconsistent with a second orderphase transition (relation

3.19 and figure 3.2). Figures 5.9-a and 5.9·b show a number of computed K(q) function for the

echo fluctuation time series (the curves are offset vertically to allow inter-comparison) and show

the K(q) curve thought to best represent the statistics of the fluctuating echo (see Table 5.1 and

the discussion in sub-section 5.3.3).
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Figure 5.6-a: Log(K(q.TJ)) plotted against Log(TJ) for series A. Th..: data wen' tak..:n in thrœ (N,
=3) realizations of scalt.: r.ltio À =256 (Le. 256 aver.Jges of 8192 points). a and C, arc
drawn from the DTM columns of table 5.1. q, for this computation is cstimatcd at 2.45.
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Figure5.6-b: Log(K(q.TJ» plottedagainst Log(TJ) for series B,. q, forthis computation is estimated
al 1.75 (N, =3. À =128).
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Figure 5.6-c: Log(K(q.")) plonedagainst Log(,,) for series B,. q, forthis computation isestimated
al 1.75 (N, = 3. À = 128).
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Figure 5.6-d: Log(K(q.")) p10ued against Log(,,) for series Cl' q. is estimated at 1.75 (N, = l,
1..=128).
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Figure 5.6-e: Log(K(q,l1)) ploned against Log(l1) for series Cz. q, is estimateù:1t 1.75 (N, = 1.
A. =128).
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Figure 5.6-f: Log(K(q,l1)) ploned against Log(l1) for series FI' q. is estimated at 1.8 (N, = 1, A.
= 128).
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Figure 5.6-g: Log(K(q,ll)) plotted against Log(ll) for series F2• CI. is estimated at 1.8 (N, = 1, À
=128).

• DouNc Trace Moments ior VPRI
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Figure 5.6-h: Log(K(q,ll» plolledagainst Log(ll) for series VPRI. VPRI is a10ngtimesequence.
N, is coumed as the number of subsets ofscale ratio À that comain no zeros. CI. in this case
isestimated at 2.6. Note the extension to the linearregion of the curve due to the substantial
increase in data size.
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Figure 5.7: K(q) vs q computed by the trJce moments algorithm and fit by the TM/GA tcchniquc

for series A.

• K(q) vs. q for series A
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Figure 5.8: K.(q) vs q plOlted for a wider range of q in order to show the effect of q., Beyond
q, the K,(q) has Iinear behaviour with slope Y. = 0.3. The theoretical K(q) curve is also

ploned forcompariscn with Ct = 1.7 and CI = 0.16. q, is estimated using relations 3.15to
3.18 and gives q, = 2.0 which agrees weil with the behaviour of K.(q).
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Figure 5.9-a: K(q) vs q curves for the indicated time series of the fluctuating echo. A constant
is added to each curve for viewing purposes. The curves should be compared with the
'K(q) Fit' curve which has lX = 2 and C, = 0.3 (drawn from table 5.1). These estimates of
lX and C, appear to fit the bulk of the data very weIl.
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Figure 5.9-b: K(q) vs q for the indicated time series of the fluctuating echo. A constant is added
to each curve for viewing purposes.
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5.3.3 Estimates of Universal Multifractal Parameters.

A summary of the estimates of multifractal parameters for the intensity time series anô l'Dr

VPRI and VPR1 are found in table 5.1. Table 5.1 shows that, in gener.ll. '.:L is qllite accllr.ndy

estimated while Cl is much more difficult to estimate. CI is an estimate of the codimension of

the ensemble mean. The estimation ofthis quantity l'rom such small data sets is expeeted to reslill

in considerable uncertaÏnty. The C, parameter generally requires an enom10US amount of data

to estimate accuralCly. The large amount of averaging of the data required to remove the scalc

break of the spectral plateau results in data series that are too short to provide high statistical

accumcy. The shortened data selS also result in q. values that are too smallto allow TM/GA to

accumtely estimate CL and C" The estimares of CL for TM/GA in table 5.1 are local slopes of

10g(K(q,1l) vs log(ll) at log(ll) =0.0. The corresponding estimates of C, are therefore entirdy

suspect. The case of series A, the longest echo time series, reveals consistent estimates of (X anô

C, by both DTM and TM/GA.

In order to increase the statistical reliability of the results. the time series A through G were

combined into a long series in order to approximate the ensemble statistics. The time series A

through G were avemged over 4 second time scales to produce time series of the low frcqueney

scaling regime free of the effeclS of the plateau. The resulting II short time series comprise '\Il

ensemble and represent a cvnditional sampling of rainfield variability during the summer of 1991.

DTM and TM/GA were applied to this 'ensemble' series to produce estimates of CL .md Cl' The

time series VPR1 represents a true ensemble of min events over the summer min variability. The

agreement ofestimates of CL and C, belWeen the two ensembles is quite strong. This is particularly

interesting since the two estimatesresult l'rom data sets collected in successive years using entirc1y

different sampling approaches. Figures 5.9 a and b show that the CL and C, estimated l'rom the

two ensembles fit the bulk of the data very well. The possibility that ensemble realizations of

measured statistical properties l'rom successive years could he so close suggests further research.
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Table 5.1: Estimates of MuItifractal Parameters using DTM and
TM/GA Analysis Techniques.

DTM TM/GA

Series CI Cl CI Cl FIT H

A 1.9 + 0.1 0.2 ± 0.1 1.74 0.16 184 0.7

BI 2.0 ± 0.4 0.4 ± 0.4 1.46 0.21 22 0.4

B2 1.9 ± 0.4 0.4 ± 0.4 1.52 0.21 36 0.5

CI 2.0 ± 0.1 0.4 ± 0.1 1.76 0.29 33 0.5

C2 2.0 ± 0.1 0.4 + 0.1 1.74 0.30 20 0.5

Dl 1.9 ± 0.4 0.1 ± 0.2 1.87 0.08 318 0.0

D2 1.8 ± 0.4 0.1 ± 0.3 1.64 0.07 394 0.0

E 1.9 ± 0.3 0.1 ± 0.2 1.80 0.08 279 0.5

FI 2.0 ±0.1 0.2 ± 0.1 1.91 0.19 336 0.6

F2 2.0 ± 0.1 0.2 :t: 0.1 1.86 0.20 168 0.5

G 1.9 ± 0.3 0.3 ±0.2 1.75 0.20 125 0.4

Ensemble 2.0 ± 0.1 0.32 ± 0.09 1.73 0.23 52 NIA
VPR1 1.9 ± 0.2 0.3 ± 0.05 1.70 0.22 48 0.5

VPR2 1.9 ± 0.2 0.3 ±0.07 1.76 0.22 55 0.5

The last column of table 5.1 holds estimates of the H exponent. The calcu1ation of H

combines the estimates of spectral slope ~ from table 4.1 with the estimates of lX and CI from the

DTM co1ums of table 5.1. The estimates of H are remarkably uniform and agree weil with the

value of H = 0.5 estimated by Lovejoy (1981). The estimates of H for series Dl and D2 are
compromised by poor spectral behaviour (see table 4.1) due to the very short data set available

after the plateau effect is removed.

The resuIts of this section support previous slUdies of scaling behaviour in the rainfield,

and provide the answer to the question as to the scale limit accessible to these measurement

techniques using radardata. Very high temporal resolution verification ofmultiscaling behaviour

(i.e. below the 2 s timescale associated with the pulse volume scale) in the rainfield will have to

be providedby otherremote sensing devices such as the sonic gauge, keeping in mind the necessity

for a large dynamical range. The bulk ofscaling slUdies in the rainfield have been of spatial data
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in the form of CAPPls etc... Thus. the results presented here support these spatial obser.,.:ttions

and show that scaling in time occurs to very small scales not accessible with most oper:ltion:ll

radar data. The observation of temporal scaling by Tessier et al. (\993) is compromised by the

zero problem. but re-analyzing his data sets providcd results consistent with those in table 5.1.

Theradarecho fluctuation timeseries exhibit good scaling behaviour. The function K(q.ll)

reveals that the time series respect universal multifractal behaviours for Tl up to q, - 2.3. The

existence of the zero problem, of course compromises the bulk of estimates of cr. and CI found

in the literature, but the observation of scaling behaviour is similar. This chapter reveals that

scaling behaviour can be observed in radar data to scales just above the resolution scale B. of the

radar. The stability of the estimates of cr. and CI over IWO successive years presents an indication

of the staùonarity of the staùstics over lime. Indeed. estimates of the pammeters from the

individual echo time series, while someùmes compromised by uncertainty due to their short

length, show a narraw range of results centered on the ensemble estimates.

5.0 Estimaùon of Mulùfractal Parameters. 93



•

•

6.0 The Statistics of Ze~ from a Spatially Scaling Rainfield.

'The fuct thur Euclidean geometry seems so accurately to rej/ect the structure ofthe' space'

ofour world hasfooled us (or our ancestors!) inlO thinking thatthis geometry is a logical necessiry,

or illlo thinking that we have an innare a nrjrri intuitive grasp that Euclidean geometry llJ1ill apply

lo the world in which we /ive."

Roger Penrose

The Emperor's New Mind

This and the next chapter describe the assumptions and steps taken to model the eclJo

l1uctuations from a multifractal rainfield with variability extending to sub-resolution scales. The

ultimate objective of the modelling effor. is to create anificial time series of intensities which have

the same quantitative and qualitative statistical characteristics as the observed intensity time series.

ln this chapter a complete statistical characterization of the measur~ reflectivity Z... from

multifr.lctal sub-resolution variability is achieved. The results of this chapter constitute a generaI

solution to the scalar multifractal radar observer's problem. The solution allows the statistical

parameters of the drop field to be estimated from measured echoes. The previous data analysis

section serve to justify the assumption of sub-resolution variability by showing thatthe only scales

identifiable in time series of radar echo fluctuations are those of the radar. Given that there are no

Cl priori scales in the rainfield the scaling behaviour observed at super resolution scales extends to

sub-resolution scales.

6.1 Theory.

The theory developed here is for the statistics of the fluctuating echo from a multifractal

field of scatlerers. The development of the theory fmt documents that the scaling of ::. :;dd that

we define as the radar cross-section field scales with the same statistics as the drop field. This is

necessary since we do not intend to model the positions of drops but rather the radar cross section

of volumes of rain flux. The development then covers how the statistics of reflectivity factor 2,.
scale relative to the radar cross section field. The development then concentrates on the effective
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reflectivity factor Z,l. which is a Fourier component of the radar cross-se:clion tield. Up until now

statistics of a Fourier component of a multifractal tield have been unknown. Howevcr. wilh the:

extension ofscalar cascades to complex, vectorand lensorcascade (Schertzer and Lovejoy. 1993a),

the radar measurements can be viewed as a dressed complex cascade. The following development

is supported by the numerics presented in section 6.1.2 which show that each stcp of the theory

governing the statistics of Z,l. from a multifractal field is supported.

The relation berween the radar cross section field and the drop field.

The amplitude of a radar echo is related to the volume of a drop through lhe cross section.

The smallest scale of the rainfield will be denored by B~I. A,t is the 'inner scale' of the l".Iintield

and is the smallest scale to which scaling behaviourcan be expected to hold. The radarme:\surement

volume or 'pulse volume' scale (size 1..,1> A,I) will be denored by Bl. (Bl. should be interpreted as

the set contained by baIl B of scale À., likewise for B~t). Bl. is the smallest spatial scale resolvable

by the radar. The radar also uses the wavelength scale À.,. which is related to the l".Idar w:lVevec\or

modulus 1k 1in the usual way (= 21t1À.,.). Given these definitions the relation between lhe effective

cross-section cr of the smallest scale of the rainfield BA and the drop field can be defined. If the

position vector of the center of a small scale clement B,. is Xi then the following represents the

radar echo amplitude from a cross-section field

(6.1)

where the sum on the right hand side is over all the drops volume Vj in the small rest lution dement

BAi' This relation can be rewriuen as

crA(xi) = (6.2)

with !:>Xij =Xj -Xi' As long as A »k, then !:>Xij 4: À.,. and we have

1 L V
Vol(BJj.8.. J

(6.3)
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• This relation serves as the approximation thatthe cross section of an extended volume of scallerers

can be represented by the total cross section atthe center of the volume. This relation impii..; that

the scaling propenies of radar cross section field cr and the drop field (or rainfield), represented

by V. are the sarne as iong as A-1 is small enough:

(6.4)

and

Which means that the statistics of the cross-section field are the same as the drop field.

Tize sraciscics ofreflecrivity in a scaling rainfield.

The retlectivity factor is defined (ignoring radar constants) as

(6.5)

and hcnce•
z. = (6.6)

(6.7)

For universal multifractals (index ex) we have

hence

(6.8)

(6.9)

•

Thus. the statistics of the retlectivity factor Z. are simply related tO the drop field and the radar

cross section field.
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• The sralisrics of effecrive reJ)ecriviry Z." in a scaling rail/fie/d.

Radars do not measure Z" direetly but rather measure an effective rellectivity Z.". \Ve haw

seen that in the idealized case where the phases of the scallerers are independent r:lIldom variables

Marshall and Hitschfeld (1953) and Wallace (1953) elegantly showed thatthe resulting marginal

distribution does not depend on any of the r.Jdar measurement scaks. In a scaling rainlield.

however. il is expected that the measured intensities are dependent upon the measurement scales.

The amplitude of the scallered wave is the modulus of the Fourier component of the radar cross

section field cr(x). lI' the drops are no longer independent then the Fourier component is no longer

that of a simple white noise but is dependent upon the scaling behaviour. Fortunately. universal

multifractals can be used to quantil'y and model the scaling behaviours.

The amplitude A. of the backscallered wave is the result of a Fourier eomponent. using the

pulse volume and wavelength scales. of the r.Jdarcross section field cr(x) withinthe pulse volume.

ln considering the statistics of A•• both the real and imaginary parts must be dealt with. Recent

advances in vectorcascades basedon Lie algebras (as opposed tothe more f:lmiliarscalarcasc:ldcs)

allow the definition of complex K(q) functions in the universal multifr:lct:11 fomlalism (Schertzer

and Lovejoy. 1993a). The scattering amplitude A is given by•
The scaling statistics of the amplitude. given a scaling rainfield. are given by

A, _,Ki')
< .. > - II.

(6.10)

(6.11 )

It is necessary to introduce the real and imaginary parts of the generator 1 (recall for cascades thm

•

InA.. =1>,>:

A..
r~+ir,

= e

which gives

IA.. I
r.

; Arg(AJ Il= e =

6.0 The Statistics of Z... l'rom a SpatiaIIy Scaling RainfieId.

(6.12)

(6.13)
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• th~r~r()n: il is p()ssibl~ to ddin~ a r~al and an imaginary K(q) function. one for the real part of the

g~n~ralor and one for the imaginary part of the generJ.tor:

(6.14)

The KAJl(q) charJ.clerizes the scaling of the modulus of Ak and KA.I(q) charJ.cterizes the scaling of

the phase of Ak• The scaling of the phase will be relevant to the characlerization of doppier radar

data. The effective retlectivity can be defined as

(6.15)

hence. by comparing the definitions above:

(6.17)

•
where the -qD term arises due to the standard volume normalization (space dimension 0) of Z•••

and the 2q arises due to the factthat the statistics are of a squared quantity.

There are two scale regimes that can be analyzed. The situation where k « À corresponds

to the pulse length being smaller than the wavelength. and hence is unphysical. In this situation

ea. is approximately constant over the pulse volume scale 1..-'. In this limit

Kz.(q) = Kv(2q)-qD; k ~ À (6.18)

The more interesting limit k» À corresponds tO the situation where real measurements are made

with wavelength smaller than the pulse volume scale. A. (and hence Z.J can be considered to be

the result of dressing the comr~ex cascade AA = (JAea. to scale ratio À.. The difference from the

normal dressing (averaging) operation is that the "inner scale" of the complex factor ea. is the

wavelength À,.. Because of the change in the inner scale (from A to À,.) the variability will be

lower. In this case. the results foruniversal complex (Lie) cascades (SchenzerandLovejoy. 1993a)

apply. and give.
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• (i.e. bare and dressed cascades have equivalent scaling except that for a drcssed Cl'mplcx casc:lde

K,,-,,(l) need not be zero. hence the additionallinear term in the exponents). This rc1ation shows

that except for the normalization term KA.R(I). which corresponds to the multiplication hy "-,,,,lll.
the entire statistical behaviour of the amplitude A~ can be described in tenns of that (If the scalin~

radar cross-section field cr(x). Applying the above formulae to relate A~ and Z.~ wc obtain:

(6.20)

The implication of this relation is that

(6.21 )

•

which is the simplest deduction that can be made concerning the relation between the minfield

and the measured reflectivity. Thus, direct knowledge of the statistics of the drop field c:m be

rneasured through Z.~. The scaling behaviours of z" and Z.~ can be rel:lled using

(6.22)

In the following section a relationship between KA.R(l) and the CI of the cr(.r) field is

established numerically.

In a scaling rainfield the statistics of Z.~ will preserve the scaling of the r.ldar cross section

field cr(x) with the following results: The a-value of the cr(x) remains invariant to the

transformation. Estimates of CI from Z.~ are 2
Q

times those of the input cr(x) field. The statistics

ofZ~ andZ.~differonly by a linear term in the exponents. The linear term is KA.R(I) which results

from the dressing operation of the Fourier component performed on the complex cascade. KA•R( 1)

would be responsible for, for example, biases in estimates of mean Z.~. These results will hoid

exactlyas long as the inner scale of the rainfield A-I is smaller than the wavelength À.,..

The formulation permits the statistics of any of the related fields to be deduced simply by

measuring Z.~. Relation 6.21 presents the result that the statistics of the drop field are simply

related to those of the echo fluctuations. The stablishment of KA.R( 1) by numericaltechniques in

the following section will allow the relation to be used in a quantitative sense. However. the

existence of this relation obviates the necessity of considering Z. The establishment of a Z.~-R.
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(the subscript indexing the sc~;e over which the rainfield is to be considered) relation requires the

det~nnination of R" in tenns of V". The establishement of the scaling conditional probability

runctions will allow errors ta be estimated (see Extensions in chapter 8.2).

6.2 Numcricai Results.

This secüon will expiore the statistical behaviour of the Fouriercomponent ofa scaling rada:­

cross section field cr(x). The cr(x) field will he constructed using the universal multifractal cascade

genermor (UMCG) described in Appendix A. The purpose of the UMCG will be to generate

mu Iti fr.lctals with specific Ct and C" The Fourier component will be computed for systematically

varying pulse volume scales B" for a variety of wavelength À,. scales. There are three possible

regimes defined by the scales of the problem, only one ofwhich is relevantto radar measurements.

The regimes are wavelength À,. < A-1 (the inner or pixel scale of the cascade), À,. > outer cascade

scale, and À,. between the inner and outer scale. The case of À,. smaller than the inner cascade

scale is only relevant to millimeoic wavelength radars which have other problems including severe

attenuation and Mie scattering. The case of À,. greater than the outer scale of the cascade requires

that the pulse volume he shorter than the wavelength and is therefore unphysical. The third regime,

where À,. is between the innerand outercascade scales is relevant to the radarmeasurement process.

Figures 6.1 ta 6.3 show the scaling moments for A(r,x) for moments q = 0.1, 1.0 and 4.0

n:spectively. The legend gives the corresponding wavelengths (recall k =ÎJ used. The outer scale

of the cr(x) field is 32768 pixels and each moment curve represents an average over 32 realizations.

Estimation of the scaling moments in the scaling regime results in the moment function KA.R(q).

The Sca/ing ofA(r,x).

The scaling behaviours shown in figure 6.1, 6.2 and 6.3 are for five differem wavevectors

k (wavelength scale in pixels is given in the legend). The moments are computed from 32

realizations and revealthatthe curve for the various wavevectors are exacüy parallel.
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Figure 6.1: Scaling moments for q =0.1. compuled from A(f,x), for a(x) Wilh CI =0.25.
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Moment q = 1.0 for Cl = 0.25
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Figure 6.2: Scaling moments for q =1.0, computed from A{f,X>, for cr(x) with Ct =0.25.
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Moment q =4.0 for CI =0.25
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• K".R!q) FW!CrjoIL~.

Figure 6.5 shows the KA.•(q) curve for a number of wavelengths (given in pixels) comput,'d

over a cr(i) field with Ct = 2.0 and C, = 0.25. Thus. the statistics of A(k) arc exactly related tll

those of cr(i) by a renormalization of the moments. The renom1alization of the scaling statistics

by the Fourier operation docs not affect the scaling behaviour but introduces the linear tenn KA.•t 1)

into the exponents. This set of relations represents the complete solution to the problcm of the

statistical behaviour of Z,l. measured from a scaling field by any wavelengthlpulse volume

combination.
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Figure 6.5: K..,R(q) plolled with Ka(q) for a number of wavelengths. The cr(i) field has Ct = 2.0
and C, = 0.25.
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• Figures 6.6. 6.7 and 6.8 present three cases of K•.R(q)-qK•.R(l) curves ploned for C,

value;s of 0.05.0.15 and 0.25. The figures reveals that the curves overlap with no apparent

de;pe;nde;nce on C, or upon wavelength. The errors in the overlap are entirely explainable in terms

of the; e;stimation e;ITors of the exponents for the various moments curves.

Kar(q)-q*Kar(l) for Cl =0.05

•
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Figure 6.6: K.,R(q)-qK.,R(I) ploned against q. The cr(X) field has CI = 0.05. The legend gives

the wavelengths in pixels. The K(q) function for the cr(x) field is offset vertically to allow
comparison.
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Kar(q)-q*Kar(l) forCI =0.15
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Figure 6.7: KA,R(q) - qKA.R(I) plotted against q. The cr(x) field has C, = 0.15. The K(q) funclion
for the cr(x) field is offset vertically to allow comparison.
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Kar(q) - q*Kar(l) for Cl = 0.25
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Figure 6.8: KA.R(q) - qKA.R(l) plotted against q. The a(X) field has CI = 0.25. The K(q) function
for the a(x) field is offset vertically to allow comparison.

ln order to show that the results are general across all values of lX the relationships for lX =

1.5 \Vere computed and are plotted in figure 6.9 and 6.10. The values of lX measured from the time

series of echo fluctuations revealed lX to be in the range 1.4 to 2. The results presented in the

previous section suggest that KA,R(l) will depend upon lX. Table 6.1 will reveal the dependence

of KA,R( 1) upon lX.
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Kar(q) - qKar(l) for Alpha =1.5. CI =0.2
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Figure 6.1 0: K•.R(q) - qK•.R(1) plotted against q. The cr(X} field has lX = 1.5 and C, = 0.20.

The Belzaviour ofK.;!1J.

KA,R( 1) is expected to be independent of pulse volume scale or wavelength. and this is in

fact observed. The dependence of KA,R(!) on the C, of the cr(x) field is roughly linear. but the

slope of the relation depends on CL. Table 6.1 shows values ofKA,R(1) forcr(x) fields with lX= 1.5.

lX = 1.75 and lX = 2 and with C, ranging from 0.1 to 0.55. Figure 6.11 shows the behaviour of

K",R( 1) versus C, for the three values of CL. The curves are computed to show that the relations

appear to be general for rainfields with any lX (we will take advantage of this in order to restrict

the number of variable pararneters in the space-time RCS model (see section 62». The estimates

of lX and C, from K•.R(q) - qK••R(1) are consistent with those of the input cr(X} fields.
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Table 6.1: Values of K"J<(\)'

Input Cl Cl=2 Cl = 1.7S Cl = I.S

0.\0 OAO ±0.02 OAS ±O.OOS 0.48 ± 0.(X1S

O.IS 0.36 ± 0.008 0.42±0.OOS 0.48 ± o.oos

0.20 0.34 ± o.oos OAO±O.ooS 0.4S ±O.OOS

0.2S 0.30±0.OOS 0.38 ±O.OOS 0.44 ± o.oos

0.30 0.28±0.OOS 0.36 ± O.ooS 0.42±0.oos

0.3S 0.2S±0.OOS 0.33 ±O.OOS OAO ±O.OOS

OAO 0.24 ± o.oos 0.31 ±O.OOS 0.39±0.oos

OAS 0.22 ±O.OOS 0.33 ±O.OOS 0.3S ±O.ooS

O.SO 0.22 ±O.OOS 0.31 ± o.oos 0.34±0.ooS

O.SS 0.\9 ± o.oos 0.2S ±O.OOS 0.33 ±O.OOS
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Figure 6.11: KA.R(I) plotted as a function of CI for a. =2, a. =1.75. and a. =1.5.

Theresults ofthis section suppon the theoretical assertions as to the statistics ofZ,Àpresented

in the previous section. The statistics of Z'À from a scaling rainfield are therefore dependent on

the measurement scales BÀand À". The standard theory of Marshall and Hitschfeld (1953) and

Wallace (1953) or Lawson and Uhlenbeck (1950) have no such dependencies.
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7.0 The Statistics of Z,).(t) from a Temporally and Spatially Scaling Rainlield.

The temporal behaviours of Z,,, will be explored in this section using a simple spacc-til1l~

l1lultiscaling model. The spacc-time model is rcferred to as the r.ldar cross section (ReS) mlldL'! in

arder to retain continuity with Duncan et al. (1992a.b). The tempor.ll evalution al' the spati:ll radar

cross section field a(i'l used in the last section will be simulated using 2D multifr.lctallïclds a(x. c).
lntensities will be computed over the x-component (com:sponding to columns) of the 2D a(x. t)

fields and the evolution of the intensities in ùme is a function of the t-component (corrcsponding

[0 rows) of the 20 a(x, r) fields. The 20 multiscaling model necessita:es an assumption :lboll! the

relation between spatial and temporal scaling. The simplest assumption concerning the tempor.l\

and spatial scaling is that they scale in the same way. The multifmcta\s used 10 modclthc a(x, t)

field will therefore be isotropic. Howcver, this need not be the case as Gener.llized Scale Invari:mcc

(GSI) (Schertzer and Lovejoy. 1983) can be employed to change the tempor.ll or spatial scaling

exponents independently (see Pecknold et al. (1993) for a discussion).

The assumption of isotfopy between tempoml and spatial scaling exponents has implication

to the arguments concerning the application of Taylor's hypothesis in the minficld. T:lylor's

hypothesis was originally intended toallow fluctuation velocities in labor.ltory flows to be quantificd

relative to sorne mean motion (Taylor, 1938). In a multifractal, the variability at pregressivc1y

larger scales modulates the fluctuations at smaller scales in a scale invariant way. Thus, in :1

space-time representation there exists no 'mean' velocity, but mther a scale dcpcndent 'avcmg,c'

velocity below which the 'fluctuations' can bedefined. This relationship is ofcourse scale inavariant

in a multifr.lctal and results in a velocity function that is an exponential function of scale. This

would represent a scale invariant fonn of Taylor's hypothesis where the notion of a 'mean' flaw

velocity is replaced by a scale invariant velocity function. The considemtion of scale dependcnt

velocities and Taylor's hypothesis have been dealt with in Tessier et al. (1993).

The computations carried out in the space-time ReS model are str.lightforward. Two tilllc

series, one of reflectivity Z"Cr) and one of effective reflectivity Z,,,Cr), are gener.lted for each aCx, r)

field. The computation for Z"Cr) is
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•
and the computation for Z••(r) is

1 J 'Z.(r) = Vo/(B;.) (J(x.r)"dr., (7.1 )

(7.2)

where B. and À,. will be given in units of pixels of the (J(x.r) fields. The (J(x.r) fidds will be

generated by the UMCG cascade generator described in appendix A. The range of scales availablc

tO the space-time model is limited to 20 arrays of 1024xl024 pixels. Figure 7.1 shows the

relationships between the pulse volume scale Bl. and the wavelength scale À,. on the spectr.!l

representaùon of the Z,.(t) ùme series. The relation between the space scales B. and À,. and thc:r

position on the spectrum of the time series is defined by the space time isotropy assumption. Thus.

with isotropy. spatial scales of 64 pixels will appear at a fœquency of f = 1/64. This relation could

be changed by aItering the relation between spaùal and temporal scaling. Indeed. this may occur

in the rainfield. but it cannet be quantified from a time series.

• Due to the limited range of scales available with current computer resources the analysis of

the artificial ùme series ofZl.(r) andZ,l.(r) will be restricted to two scale regimes that can be regarded

as 'universal' to the radar measurement problem. The regimes of interest (see figure 7.1) are the

low frequency scaling regime. given by small Bl. and small À,.. and the high frequency scaling

regime. given by large Bl. and large À,. (with Bl. > À,.). The ratio À. of scales in a realization of a

time series for Z;.(r) or2,l.(r) is À. = 1024 (=ur' = 1024/1). Within the 1024 values of the artificial

ùme series for2,l.(r) the low frequency scaling. high frequency scaling. and plateau regimes coexist.

The raùo of scales in the low frequency scaling regime is then À. =1024/8•. The ratio of scales in

the high frequency regime is given by the wavelength scale À,. and can be increased by increasing

À,..

7.1 Theory.

In this section sorne usefui results will be drawn from chapter 6 on the spatial staùstics of

2,•. The objective of the space-ùme model is to create time series of the fluctuaùng echo which
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• can then be analyzed in the same manner as those collectcd from the VPR. 1 ;'e results in chapter

6 reveal that CL is unaltered by the transformation and that the results for specific CL values are

generaI. This a110ws a restriction on the parameter space of the RCS model to CL = 2. Another

restriction on the parameter space of the RCS model results from the 2a relation for the Ct of the

a(x ,1) field and the CI of Z,l.' The CI of the a(x, 1) field will be restricted to values less than 0.25.

This restriction is understandable by considering that if the CI of a time series exceeds 1 the

ensemble mean of the process being considered will not be visible on any given time series.

Consequently the reliability of statistical estimaœs made by either DTM or TM/GA will be

compromised since they require a measurable ensemble mean.

Using the relations derivcd in chapter 6 we can anticipate the relation between the statistics

ofZl.(l) and Z,l.(t) in the low frequency scaling regime. We examine the scaling of2,.(t) andZ,l.(l)

for ;\.-1 > B. or at scales greater than the pulse volume scale. At these scales the behaviours ofZl.(t)

and Z,l.(t) should reflect the fact that they are bath squared measures of the a(x,t) field. Indeed,

from

and•
(7.3)

(7.4)

we know, using relations 6.20 and 6.7 that

(7.5)

and

(7.6)

which means that for the case of CL = 2.

and

(7.7)
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• Kz(q) = 4C,q' + temlS...

Thus. due to the construction of multifractals where large scale vari:\bility modulates the small

scale. the small scale operations on the cr(x .r) field are unimportant atlarge sC:lles and the statistics

of2,.(r) andZ,..(r) are similarwithin an approximation ofterms ofq oforder 1. Therefore. estim:ltcs

of multifractal parameters and spectral slopes from the low frequency scaling regime should De

the same for bOlh quantities.

The development of the statistical description ofZ.. and Z,.. in chapter 6 did not include the

development for the disoibutions ofsingularities. The following development l'orthe c(y) functions

ofboth fields is necessary to interpret the numerical results that will follow. The distribution of

singularities within the time series Z,..(r) is governed by

(7.9)

•
employing the Lengendre rransform and using relation 6.20 we get

(7.10)

which can be rewritlen

(7.11)

which means that

(7.12)

Thus, the operation of the Fourier component on the variability of cr(x, r) (recal1 that

Ko(q ,11) ;: K.(q,11)) results in a shift of the specrrum of singularities present in the cr(x, r) field by

KA.R(1). The shift is a reduction of the singularities by KA.R(l) which is a direct result of the dressing
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• ()p~ration (recall from s~ction 3that dressing (averaging) kills singu!arities). This is very imponant

sincc th~ sp~ctral and distributiona! behaviours of Z.>.(1) depend on the singularities present in the

lime scrics.

Relation 7.12 reveals a bias in the distributions of Z.>.(1) that differs greatly from the bias

n()t~d by Rogers (1971). The bias noted by Rogers (1971) is the result of averaging a quantity

with a mean that varies in time and space. The bias in relation 7.12 results from the dressing by

the radar of a complex quantity. A funher bias can be introduced by averaging Z.>. values in cross

range or downrange averaging schemes. The measurements made by Schaffner et al. (1980)

r~pres~nt the post-detection processing scenario and wiIJ reveal a bias for any type of rainfield

variability. However. funher analysis by Schaffner et al. (1980) might have revealed scaling

behaviour. The existence of KAJl(1) results from sub-resolution variability and has not been dealt

with previously. 1t affects ail moments of the distribution at ail averaging scales.

Funher. the relation between cAY) and cz.(y) can be defined relative to c.{y) and therefore

[0 each other. Indeed. using relation 3.11 and restricting Cl to 2.

• and

1 2
cz{Y) = 4C

I
22 (y+ Cl)

(7.13)

(7.14)

which yields the relation between the singularities present in either time series,

(7.15)

when CI is small KAJl(1) is large and 2,,(1) has much larger singularities than Z.>..{r). The opposite

is true when CI is large and KA.R{l) is small. The restriction of Cl to the value 2 has the deeper

sil;nificance that it is the only value of Cl for which an identity of distributions between 2.>.. and 2"
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can be achieved (ail other values of CL will involve a shift and multiplication f:lctor). 111is

development reveals that if Cl = KA,R(l) then Pr(Z,) = Pr(Z,,). This equality is found. using tïglln:

6.11. at approximately C, = 0.3 (for the a(x. e) tïeld with a. = 2).

The relations between the codimension functions ofZ,,,(e) andZ,,(e) are necess:lry to intcrpn:t

the spectral behaviour of the anitïcial time series as weil as the distributional bchaviollr. The lirs!

thing that relation 7.15 reveals is that a relative bias between distributions of Z,,,(t) and Z,,(t) arc

dependent upon Cl and KA,R(l), which is itselfdependent upon Cl' Using relation 7.15 wc C:lll

also speculate on the spectral energy of the time series of Z,,, and Z". If Cl < KA.•(I) the total

spectral energy of 2,,(e) will be greater than that of Z,,,(e) due to the presence of incrcased

singularities. If Cl < KA,R( 1) then the reverse is true. Thus, the relative spectr'.11 energies of Z,,,(e)

andZ,,(e) are dependent upon Cl and KA,R(l).

The statistics of2,,(e) and Z,,,(e) would be expected to differ markedly for scales smaller th:lll

8". In the case of Z,,,(e) we expectto find the spectral plateau associated with the pulse volume

scale. In the case of Z,,(e) a corresponding scaling break at the pulse volume scale 8". separ:lling

the low frequency scaling regime from the high frequency scaling rcgime, would be expected.

Statistics at scales 8" reflect the modulation by larger scale variability. The st:llistics of scales

smaller than 8" are within the correlation length associated with 8", and hence arc not e:lsily

described. The nature of the statistics in the high frequency scaling regime ofbOlh Z,,(e) and Z,,,(r)

admit the likelihood thatthe statistics cannot be described in terms of universal multifmctals (sec

section 7.3.4). The statistics will be explored in terms of a 'projection' of the spatial variability

of the a(x, e) field onto the time axis. This 'projection' will involve the modification of available

singularities due to dressing and modification of the c(y) function to a form differcnt from that

predicted under universality.

In summary, we expect a shift in singularity as a function of Cl' This shift will be reflected

in spectr'J.I as weil as distributional behaviours. Funher, it is expected that the statistics of the low

frequency scaling regimes of2,,(t) andZ,,,(t) to be almost identicaI. A scaling break in the anificial

time series is also expected to coincide with the pulse volume scale 8". The break in the time
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scrics ofZ,,,(I) should be more obvious thatthat in 2,.(1) due to the prescence of the spectral plateau.

The numerical explor..ltions and results of these theoretical assenions will be presented in section

7.3.

7.2 The Parameter Space of the ReS Model.

The total parameter space of the model is potentially very large. The free parameters used

to model Z,,, include the multifractal pararneters ex, CI> and H as weil as the measurement scales

B" and À,.. The H parameter will generally be kept at 0 for the current study. The value of lX will

be kept at 2. The truly interesting pararneters are B.., À,. and CI' However, CI will be restricted

to values between 0 and 0.25 for reasons presented in the previous section. Table 7.1 oudines the

range of these parameters investigated with the RCS mode!. Of the ranges of parameters shown

in table 7.1 only select values will be depicted in the following analysis. Many of the combinations

of the values present in table 7.1 are uninteresting and were used to isolate the interesting

behaviours.

Table 7.1: Ranges of RCS model parameters explored.

Parameter Range

Grid Scale 1024 x 1024

Pulse Volume B 8,16,64,128,256,1024

Wavelength À,. 4,8,16,32,64,128,256,512

CI 0.01 to 0.25 at increments of 0.02.

A shonhand notation is employed to identify the parameters used in constrllcting the UMCG

fields as weil as each anificial intensity time series. The notation for the UMCG fields is

UMCG(C"H) indicating a multifractal field with specific CI and H (Ct is heldconstant at 2.0). The

notation for parameters of the RCS model used to create artificial time series is RCS(Pulse Volume

seale. Wavelength scale, CI> H) or RCS(B.., À,., CI> H). An example would be RCS(256,8,0.07,0.1)

where B" is 256 pixels, À,. is 8 pixels, CI is 0.07 and H is 0.1.
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An alternative to the numerical RCS model was explored. Appendix C cOnlains the lirst

few lines of an early analytical formulation for the problem of reproducing the spectr~ of time

series of the fluctualing echo assuming thatthe radar cross section lie!d is scaling. The amllytical

expression involves the four point correlation functions of log-normal multifr~ctals. !nlegr~tion

ofthese functions was found to be more CPU intensive than the numerical mode! and the :lppro:1Ch

was abandoned.

The RCS model is used to create time series of 2,.(1) and 2,,,(1) from realizations of 2D

multifractal variabi!ity created by the UMCG. The time series comprise! 024 values. Repetition

of the mode! create independent time series for the same set of input parameters. Generally. 256

independent runs of the RCS mode! were perfonned toereate adequate quantities ofdata toexplore

the mode! parameter space and verify the theoretical assenions. The effect of lixed mode! runs

can be analysed using sampling dimension (relations 3.15 through 3.18). For the an:llyses of the

low frequency scaling regime (see below) N. is 256. À. is 32. Ct is 2. and C, ranges from 0.04 to 1

(recall the 2'" result). Thus Ch ranges from 8 for C, = 0.04 to 1.6 for C, = 1. This effect can actually

be discemed in figures 7.17 and 7.18 as the point at which the universal curves bcnd over al

progressively lower Tl-values for higher C" The effect is not like!y to be severe since it can he

account for exacùy, but the limitations of computer resources (and time) had to be taken inlo

account.

7.3 Numerical Results.

This section will proceed as follows: Section 7.3.1 will present examples of lhe lime series

created by the ReS mode!. Section 7.3.2 will present general observations of the spectr~l

behaviours of 2,..(1) and 2,.(1) with emphasis on the dependencies of spectral appearance on B"

and A,.. Section 7.3.3 will examine the statistical nature of the low frequency scaling regime in

depth. Section 7.3.4 will examine the statistical nature of the high frequency scaling regimc.
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7.3.1 The Time Series of Z,~ and Z~ Created by the RCS Mode!.

This section provides sorne observations of the time series of the f1uctuating echo created

with the RCS mode!. The outer scale of the time series of2,.(c) andZ,.,<c) is 1024 values. Statistics

are cornputed over 256 independent rea1izations of each time series with the same set of input

values.

RCS(256,8,0.01,0.0)
3.-------------------------,

.2 '-------'-----........----'-------'------'
o 200 400

t
600 800 tooo

Figure 7.2: Z.(r) andZ,.(r) for RCS(256,8,O.01,O.0). The top curve is Log1o(2,.(r» and the boltom

curve is Log1o(Z,.(r».

The effect of the complex spatial 'dressing' implied by the integral over (cr(x,r)e~ is

clearly visible when Z.(r) andZ,.(r) are plolted together. Figure 7.2 shows 1000 elements of the
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two time series plolled side by side for a C, ofO.O\. Due ta the spectr.ll platcau (bdow). the high

frequencies are more pronounced in l.x(l) than in lx(I). hence the differences in :lppearanc.:.

According to the data analysis sections a C, of 0.01 would be unrealistic. but it serves a purpose

in the demonstration. Figure 7.3 shows the distribution of the values plotted in ligure 7.2. 256

realizations of 1024 elements of each time series are used to compute the distributions depicted

in figure 7.3. For low C" as in figures 7.2 and 7.3. the widening of the distribution ofl.x(l) ovt:r

lÀ(I) by the Fourier computation is quite pronounced. However. the order of singularity is much

smaller as is predicted by relation 7.15. The shape of the distribution of l.À(I) is suggestive of :,

Rayleigh distribution. but is in fact a log-normal distribution. The Rayleigh is plolled for

comparison. The similarity of the distribution of l'À to the Rayleigh is superficial. The l.x

distribution is derived from a highly correlated field. None of the values of l.x can be considered

independem. The cemering. or bias. of the distribution is given by relation 7.15.
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Figure 7.3: Cenlered distributions of ~ and Z.~ for RCS(256.8.0.01.0.0). The Rayleigh

distribution is ploued as a line for comparison.

Comparison of figures 7.2 and 7.4 reveals the marked increase in the variability of Z.~(t)

and Z~(t) as the CI of the cr(x,t) is increased. However. the relative increase is as qualitatively

predicted by relation 7.15. Figure 7.4 reveals that Cl = 0.05 results in aZ.~(t) with a dynamic

range that overlaps that of~(t). The data analysis suggests thala CI of0.05 forthe cr(x,t) is not

too far from the measured Cl - 0.1. Comparison of the distributions ploued in figures 7.3 and

7.5 reveals that the distribution of~(t) widens quickly as a function ofincreasing CI'
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Figure 7.4: Z.(l) andZ••(l) for RCS(256,8.0.0S,O.0). The top curve is (Log,o(Z.(r)) + 21 and Ihe
bouom curve is Log,o(Z••(r)). The factor 2 is added to separate the two curves.
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Figure 7.5: Disnibutions of z,. and Z,). for RCS(256,8.0.05.0.0). The Rayleigh distribution is
ploned for comparison.

From an experimental perspective the apparent proximity of the distribution of Z,).(t) to

the Rayleigh represents a potential problem. The shape of the distributions is a product of the

Fourier component calculation. one for Poisson variability and one for scaling variability. The

definition of a Poisson disnibution (see Vanmarcke. 1983) requires the variability to be Poisson.

The two distributions are tremendously different in the sense that the distribution ofZ,).(t) from

a muliiscaling field is entirely dominated by the a1gebraic tai!. Which means that the disnibution
with the Rayleigh appearance actual1y has the description PreZ,). > À."I) =À.-<.,(Y). Observation of

Ihis tai! requires that adequate data is collected (i.e. D. must be high enough). The amount of

data required to distinguish this disnibutional behaviour from the Rayleigh behaviour is likely
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prohibitive \Vith operational radar scales and ranges considering the scale dependencc <lf the

distributions. The initial implication is that the data of Lhenniue and Kesslcr (1960) w<luld be

inadequate to rule out the possibility that the distribution resulted fmm a scaling rainticld.

7.3.2 General Observations of the Spectral Behaviours of Z,,<C) and Z,I.U).

A spectr.tl analysis of21.(c) and2,,,(t) from the ReS model revellis the charllcterislÎc shape

noted in the spectral analysis of echo fluctuation time series A through 1(see ligure 7.6). Figure

7.6 \Vas produced to enhance the resolution on the scale breaks and has an outer scale oi :!().\s

pixels. Each spectrum represents an average of 256 spectra of the 1024 intensities comprising

each time series. This section will explore the general spectml chamclerislÎcs of Ihe aniticial

time series of 2,,(t) and 2,,,(t).

The Re-creation ofthe Pulse Volume Plateau.

The mosl obvious features revealed by spectr-.tl analysis of 2,,,(1) are the thrce sp.:ctral

regions (figure 7.6). The scales on either side of the plateau correspond exactly to the pulse

volume scale B" at the low frequency end and À,. al the high frequency end. The extem of th.:

scaling behaviour of the low frequency scaling regime can therefore be comrollcd by adjusting

B.. and the extem of the high frequency scaling regime can be adjusted by altering À,. .
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Figure 7.6: AverJge spectrum ofZ.,(r)resulring from the ReS model (this spectrum has an outer

scale of 2048 pixels). The spectrum is an average of 256 spectra of 2048 intensiries. The
wavelength scale is 8 pixels (log(f) = -0.9). The pulse volume scale is 256 pixels (log(f)
=-2.4).
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The Dependence ofSpeclral Encrgy on CI'

General observations about the spectral behaviour of 2,.<r) and 2".<r) that result l'rom the

RCS model are as follows: The total spectrJl energy is a strong function of Cl' This is :,

straightforward result when it is considered that c(y) =.:: (y+ C,)'. which me:lIls th:n the,

singularities present in the time series are quadratic function of the Cl of the a(x. r) (i.e. the

variance increases quickly with Cl)' Figure 7.7 shows the spectr:l of2,'(1) computed at increasing

values of Cl with the corresponding speclr:l for 2,>.(1) in figure 7.8. Figure 7.7 shows that the

speclr:ll slope 13 of2>.(1) is also a function of Cl as expected from the relation 13 = 1 - K (2. 2). This

relation is less obvious in figure 7.8 due to the strong scaling breaks.
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Figure 7.7: Spectra of z,,(t). The botlom line is for C, = 0.01 and successively higher lines are
at 0.02 increments of C"
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Figure 7.8: Spectra of 2,,,(t). The bollom line is for C, = 0.01 and successive1y higher Iines arc

at 0.02 incremems.

The relative spectral energy of2.(t) and 2,.(t) is a function of C, as predicted by relation

7.15, which shows the relative ranges ofsingularities available to each. Increasing Ille value of

C, of the cr(x, t) field results in higher spectral energies for both curves as was shown in figures

7.7 and 7.8, but figures 7.9 and 7.10 show thatthe spectral energy of 2,,,(t) increases at a faster

rate for increasing C" again as expected from relation 7.15 due to the effect of KA,R(1). The

spectra in figure 7.10 show a great deal more noise than those in figure 7.9. The increasing

variance of cr,,(x,t) as a function of CI as weil as the limited rJtio of scales available affects the

quality of the spectra.

• 7.0 The Statistics of2,,,(t) from a Temporally and Spatially Scaling Rainfield. 130



•

•

Power Spectra of Z :md Ze from RCS(256.8.0.01.0.0)
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Figure 7.9: Power spectra of Z).(t) and Z.).(t) for RCS(256.8.0.Q1.0.0). The axes are log of
frequency and log of spectral energy (or variance per unit wavelenglh) making the curve
for 2).(t) a power law (the power law has a scaling break at log(f) = -2.4 (see below». The

time series of "4(t) and Z.).(t) resulted from exacùy the same variability controlled by CI
=0.01. The un-obvious scaling break in "4(t) occurs at log(f) =-2.4.
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Figure 7.10: Powerspectra ofZ>.(r) (botlom curve) andZ.>.(r) (topcurve) for RCS(256.8,O. 13,0.0).
The axes are labelled as in figure 7.9.
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The l:ffect ofPulse Volume Seale Bl.

Th~ puls~ volum~ scal~ :·';rves 10 divide the spectra imo two effectively differem statistica!

r~gil11~s. Th~re ~xists a sca!e break on the spectra of bath 2,.(t) and 2,l.(t) at Log(Scale =I/BJ).

Th~ statistics on either side of the break are distinct for the two time series. Aside from the

obvious sp~ctr.ll plateau of 2,l.(t) the statistics of both time scries at scales 1..-1 smaller than the

puls~ volum~ scale Bl. are not universal multifractals and will be dealt with below. The statistics

of th~ time series at scales greater than the pulse volume are the result ofmodulation. by the large

scale temporal variability. which is a universal multifracml.

The alteration of the pulse volume scale Bl. has the straightforward effect of moving the

scaling breaks in th~ power spectra of 2l.(t) and 2,l.(t). In both cases increasing Bl. causes the

break 10 extend to progressively lower frequencies. AnOlher genera! observation is that spectral

energy increases with increasing pulse volume scale. The movement of the scale break with

increasing Bl. for 2,l.(t) is shown in figure 7.11. Three curves appear in figure 7.11. the top curve

was compulcd with Bl. =256 pixels. the middle curve was computed with Bl. =128 pixels, and

the bonom curve was computed with Bl. = 64 pixels. This result refleclS the factthatlarger pulse

volul11~s comain more variance and result in high spectral energies. Ali three curves were

computed wilh a fixed wavelength of A,. = 8 pixels. The plateau of the top curve extends funher

towards low frequencies. The bonom curve, which has the smallest pulse volume, has the shonest

plateau. Note thatthe high frequency endpoint of the plateau, due to A,., is the same for allthree

curves.
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The Effect of Pulse Volume Scale

•

0.5

0

~

C .0.5
~

t:.l
~

Cl)
0 ·1.....J

-1.5

·2

-2.5
-3.5 ·3 -2.S ·2 ·1.5 ·1

Log(l)
-0.5 ()

Figure 7.1 i: Speetra of three realizations of the ReS model with ehanging pulse volume seale.
The top speetrum has a pulse volume seale of 256 pixels, the middle speetrum has a pulse
volume seale of 128 pixels, and the bottom speetrum has a pulse volume seale of 64 pixels.

The break in the sealing ofZl.(t) is less pronouneed as it has no speetml plateau indieating

its presence. ln figure 7.12 regression lines have been fit to the speetrum on either side of the

seale break. The seale break oceurs at the 'frequeney' eorresponding to the pulse volume seale

B. whieh is set at 64 pixels, henee the break is at LogO/64) =-1.8. The seale breaking opemtio;l

is idealized in figure 7.13. The figure shows a transition zone around the seale break. If ,tatisties

of Zl.(t) or Z.l.(t) are to be eompiled it must be at seales far removed from the tr..lOsition zone.
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Figure 7.12: A power specrrum oÏ Z.(r) showing the break in scaling due to the pulse volume

scale 8... The scaling break is emphasized using regression lines fit to the two scaling
regimes, the break is where the regression lines cross. The exponent of the low frequency
regime is ·1.26 and that of the high frequency regime is ·1.66.
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Figure 7.13: An idealization of the spectral representations of 7. " ( 1)

and Z, (1) emphasizing the scaling break due to the pulse
volume B ',' The zone around the break is marked as a
'transition' zone where the statistics are expected to change
from the relatively simple forms at low frequency to the forms
at high frequency. EsUmates of statistical parameters should
be taken from scales much larger or much smaller than the scale
break.
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The Effecl of Waveleniilh Scale A".

Th~ sp~ctr.lI d~p~nd~nœ upon the wavelength scale affects only 2,>.(1) and giv~s a

slraightforward br~ak atf= liA". Figure 7.14 shows that as wavel~ngth increases (by factors of

2 from bOllom ta top) the spectr.ll slope appears ta be a function of wavelength. It is only at

wavt.:l~ngths in excess of 64 pixels thatthe high frequency scaling regime seems uncontaminated

by th~ transition zone about the break point. The figure also shows how the scaling break

associated with A" moves towards lower frequencies as the wavelength increases. For A" > 64

pixels we can allempt toanalyse the statisticsofthe high frequency scalingregime. Thedifficulties

with this regimc will be dealt with in section 7.3.4.

ln lCrms of measurements made by most operational r.ldar s)'stems this result wouId imply

Ihal data taken in this scale regime is dependent upon wavelength. For radar systems with much

longer wavelengths, such as profilers, the high frequency scaling regime may or may not be

c1early visible.
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Figure 7.14: The effect ofdifferent wavelengths on the spectral reprcsentation of the 2,).(1) time

series. The figure c\early shows that the spectral slope is wave1ength dependent for short
wavelengths but seems to become wavelength independent for longer wave1engths. The
figure also shows c\early how spectral energy increases with wavelength. The modd used
for these computation was RCS(l024, Wavelength, 0.1, 0.0) with wavelength sc'lles of
(from botlom to top) 16,32,64, 128,256 and 512 pixels.

7.33 The Low Frequency Scaling Regime.

ln this section we verify the approximations made in relations 7.7 and 7.8. We expcct2).(I)

and 2,).(1) to have similar scaling behaviours at scales sufficiently larger than the pusle volume

scale. Far from the pulse volume scale B the statistics of 2.). and~ willlikely only rcllect the
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fact that they are both squares of the cr,,(x,t) field. The analysis of the low frequency scaling

regirne was conducted using a pulse volume scale B" of 16 pixels, and a wavelength scale À,. of

Xpixels. The multifractal analysis was srraightforward: A scale ratio À of 32 was used (i.e. L =
1024 pixels and 1= 32 pixels leaving a factor of 2 in scale between the scale break and the inner

scalc 1of the analysis). DTM was used to establish the extent of the universal regime and estimate

the universal par.lmetcrs. The analysis will be presented graphically in figure 7.15 through 7.19.

Each figure contains curves for 5 values ofC,. Results are tabulat.:d in table 7.2.
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• Scalillg Momelllsfor l,,,/).

Scaling moments of l,,(t) are presented in figure 7.15 for a selection of 5 of the 13 values

of CI anempted. In each figure the ratio of scales examined was À = 32. The seale range

corresponds to scales l'rom 32 pixels to 1024 pixels. Computationally. this involves sutllming

each 1024 point time series of l,,(/) over 32 values and examining the scaling behaviours of the

resulting 32 values. Statistics are then accumulated over the 256 independent runs of the RCS

mode!.

Trace moments for Z from ReS( 16.8.0.01.0.0)
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Figure 7.15-a: Scaling moments for 2,,(/) from RCS(l6.8.0.01.0.0). The legend gives the order
of moment q for the curves.
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Tl"oiCC moments for Z trom RCS(16.8.0.0S.0.0)., ~_"":"::=':==='::"::=-==-==':':":"'---.
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Figure 7.IS-b: Scaling moments for Z,,(r) from RCS(l6.8.0.0S.0.0). The scale ratios are as in
figure 7.IS-a. The scaling ofZ,,(r) at C, =O.OS is good and is robust. The legend gives the
order of moment q for the curves.

Tr:L"'C moments for Z (rom RCS(16,8.0.09.0.0).. .---_.:.:..:...-------------------,

Figure 7.IS-c: Scaling moments for Z,,(r) from RCS(16,8.0.09,O.0). The scale ratios are as in

figure 7.1S-a. The scaling of 2,.(r) at Cl = 0.09 is very good and is robust. The legend
gives the order of moment q for the curves.
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Figure 7.15-d: Scaling moments for Z,'<I) from RCS(16,8.0.13.0.0). The scale mlios are as in
figure 7.15-a. The scaling of Z~(I) at C, = 0.13 is very good and is robuSI. The lcgenù
gives the order of moment q for the curves.
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Figure 7.15-e: Scaling moments for ~(r) from RCS(l6.8.0.17.0.0). The scale mtios are as in
figure 7.15-a. The scalingof~(r)at CI =0.17 is excellent and is robust. The 1egend gives
the order of moment q for the curves.
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• Sm/ill/: MomelllS for 2••(1).

Scaling moments of 2••(1) are presented in figure 7.16 for the same scale ranges and CI

values presented in figure 7.16. Comparison of corresponding graphs of figures 7.15 and 7.16

reveals that the scaling behaviours are aimost identical.
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Figure 7.16-a: Scaling moments forZ.>.(t) from RCS(l6,8,0.01,0.0). The scaling ofZ.>.at Cl =
0.05 is good and is robust. The legend gives the order of moment q for the curves.
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Trace moments for 'I.e fl\\ltl RCS(l('l.~.O.OS.O.ll)
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Figure 7.16-b: Scaling moments for l ••(I) from RCS(l6.8.0.05.0.0). The scale r.llios arc as in
figure 7.16-a. The scaling ofl•• at CI =0.05 is very good and is robust. The lcgcnd givcs
the order of moment q for the curves.
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Figure 7.16-c: Scaling moments for l ••(r) from RCS(l6.8.0.09.0.0). The scale ratios are as in

figure 7.16-a. The scaling of l •• at CI = 0.09 is very good and is robus!. The legend gives
the order of moment q for the curves.
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TI'DCC moments for Zc from RCS(l6,8,O.13,O.O).,
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Figure 7.16-d: Scaling moments for Z...(t) from RCS(l 6,8,0. 13,0.0). The scale ratios are as in
figure 7.16-a. The scaling ofZ... at C, = 0.13 is very good and is robust. The legend gives
the arder of moment q for the curves.
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Figure 7.16-e: Scaling moments for Z (t) from RCS(l6,8,0.17,O.0). The scale ratios are as in
figure 7.l6-a. The scaling ofZ at CI =0.17 is good and is robust. The legend gives the
arder of moment q for the curves.
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• Ulliversai FUllctioll curves Log!K(q. Tl) vs Log!Tl) for Z.(t).

Figures 7.17 and 7.18 present the univ~rsal functions Log(K (q. Tl)) vs Log(Tl) for Z.(t) :lllÙ

Z••(t) n:spectivcly. The deviation from universal behaviour at high Tl-values com:sponds roughly

te the q, values computed from the fixed size of the time series. Estimates of the exponenls of

the linear regions between -1 < Tl < -0.5 are summarised in table 7.2. A line of slope Ct = 2 is

ploued on each graph for reference. The scaling regime used for the DTM analysis is the same

as that presented in figures 7.15 and 7.16.

DTM for Z ITOm RCS(16.8.0.01.0.0)
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Figure 7.17-a: The universal function curves Log(K(q,Tl)) vs Log(Tl) for ~(t) from
RCS(16,8,0.01.0.0).
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• DTM forZ from RCS(l6.8.0.0S.0.0)
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Figure 7.17-b: The universal function curves Log(K(q, TI» vs Log(TI) for 4(r) from
RCS( 16,8,0.05,0.0).
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Figure 7.17-c: The universal function curves Log(K(q,TI») vs Log(TI) for 4(r) from
RCS(l6,8,0.09,0.0).
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• DTM forZfrom RCS(16.S.0.13.0.0)
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Figure 7.17-d: The universal function curves Log(K(q,T\)) vs Log(T\) for Z,,(n from
RCS(16,8,0.13,0.0).
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Figure 7.17-e: The universal function curves Log(K(q,T\» vs Log(T\) for .l,,(t) from
RCS(16,8,0.17,0.0).

• 7.0 The Statistics ofZ.,.(t) from a Temporally and Spatially Scaling Rainfield. 147



• Ulliversal FUflclion curves Log(K(q, Tl») vs Log(Tl) for 2".(1).

DTM for Ze from RCS(16,8.0.01.0.0)
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Figure 7.18-a: The universal function curves Log(K(q,,,)) vs Log(,,) for 2,.(r) frem
ReS(16.8,0.01.0.0).
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• DTM CorZe fmm RCS(16.S.0.0S.0.0)
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Figure 7.18-b: The universa1 funclion curves Log(K(q.TJ)) vs Log(TJ) for 2.,,(1) l'rom
RCS(l6.8.0.0S.0.0).
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Figure 7.18-c: The universal funclion curves Log(K(q,TJ)) vs Log(TJ) for 2.,,(1) l'rom
RCS(l6.8.0.09.0.0).
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• DTM for 7.e from RCS(l6.B.O.13.0.0)
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Figure 7.l8-d: The universal function curves Log(K(q,Tl» vs Log(Tl) for Z,1-(t) from
RCS( 16.8.0.13.0.0).
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Figure 7.l8-e: The universal function curves Log(K(q,Tl» vs Log(Tl) for Z,1-(t) from
RCS(l6.8.0.17.0.0).
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Trace Momelll cilrves K(q) vs qfor 2,,(1) and 2,,,(1).

Relations 7.7 and 7.S show that in the low frequency sc:l1ing regime the K(q) funetions for

2,,(1) and 2,,,(1) should be very similar. An additional effect is present in Ihe time-spal'c ReS

mode!. The effect of avet"Jging in time to examine the low frequency scaling requires :Iùùitional

'Jressing' which further suppresses the linear lenn qK".R(1) Ihal differentiates the IwO eurvcs.

The near coincident nalure of Ihe K(q) curves for 2,..(1) and 2,,,(1) Ihat follow support Ihis

explanation.

K(q) for Z and Ze from RCS(16,8,0.01,0.0)
O.OS

0.07

0.06

0.05

O.().l

0.03,......

• S 0.02
~

0.01

a
-0.01

.0.02

-0.03

-O.().l
0 0.5 1.5

q

--...Z ..... Ze

Figure 7.l9-a: K(q) vs q curves for 2,..(1) and 2••(r) for RCS(16,8,O.01,O.0). These curves show

that for CI = 0.01 the statistics of the low frequency scaling regime of2,..(r) and 2••(1) are
very close.
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• K(q) for Z and 7.e from RCS(l6.'.O.05.0.0)
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Figure 7.19-b: K(q) vs q curves for Z,.(r) and Z,,,,(r) for RCS(l6,8,O.05,O.0). The strong overlap
of these curves shows that for C, =0.05 the statistics ofZ",(r) and Z".(r) in the low frequency
scaling regime an: very close.

• K(q) for Z and 7.0 rrom RCS(16.8.0.09.0.0}
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Figure 7.19-c: K(q) vs q curves for 2",(r) and Z,,,,(r) for RCS(l6,8,O.09,O.0). The strong overlap
ofthese curves shows that forC, = 0.09 the statistics of2",(r) andZ,,,(r) in the low frequency
scaling regime an: very close.
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• K(q) 1urZ and Ze (n1m RCS(1f't,S,O.13,lHl)
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Figure 7.19-d: K(q) vs q curves for Z,,(r) andZ,,,(r) for RCS(16.8.0.13.0.0). The strong overlap

ofthese curves shows that for CI = 0.13 the statistics ofZ,,(r) andZ,,,(r) in the low frequency
scaling regime are very close.

• K(q) for Z and 7.., from RCS(l6.8.0.17.0.Ql
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Figure 7.19-e: K(q) vs q curves for z,,(r) and Z.,,(r) for RCS(l6.8.0.17.0.0). The strong overlap

ofthesecurves shows that forC, =0.17 the statisticsofz,,(r) andZ.,,(r) in the low frequency
scaling regime are very close.
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Table 7.2 shows the estimates of ex and C, obtained from the linear regions of figures 7.17

and 7.1 R. computed from time series of 2,.(1) and Z.l.(I) resulting from RCS(16,S,C,,0.0). The

estimates of ex and C, in the low frcquency scaling regime show the behaviour expected from

relations 7.7 and 7.S within experimental errer. The estimates of C, are very simi!ar for the two

lime series and arc generally four times (2U
) the input CI values. Numerous trials of these results

were produccd and the resulting behaviours are exactly similar for smaller pulse volume scales

(i.e. the analyses were performed for numerous runs of RCS(S,S,CI,O.O) with exactly similar

results). The similarity ofresults fordifferent small pulse volume scales suggests the rransition

zone about the pulse volume scale break does not extend to measures taken from scales at least

a factor of two greater than the Bl. scale.

Table 7.2: Estimates of Universal Multifractal Pararneters for 2,.(1) and Z.l.(t) from
RCS(l6,S,C,,0.0)

Cil.(X,I) Z,l. Zl.

CI ex C, ex CI

0.01 1.9 ±0.4 0.1 ± 0.2 1.9 ± 0.4 0.1 ±0.2

0.03 1.9 ±0.3 0.2 ± 0.2 1.9 ± 0.3 0.2 + 0.2

0.05 1.9 ± 0.2 0.2 ± 0.2 1.9±0.3 0.2 ± 0.2

0.07 1.9 ± 0.2 0.3 ± 0.1 1.9 ± 0.2 0.3 ±0.1

0.09 1.9 ± 0.1 0.4 ± 0.1 2.0 ± 0.1 0.4 ± 0.1

0.11 2.0 ± 0.1 0.4± 0.1 2.0± 0.1 0.4 ± 0.1

0.13 2.0 ± 0.1 0.4 ± 0.1 2.0 ± 0.1 0.4±0.1

0.15 2.0±0.1 0.5 ±O.l 2.0±O.l 0.5 ±O.l

0.17 2.0 ± 0.1 0.6 ± 0.1 2.0±O.l 0.5 ± 0.1

0.19 2.0 ± 0.1 0.6 ± 0.1 2.0 ± 0.1 0.6 ± 0.1

0.21 2.0±0.1 0.74±0.04 2.0 ± 0.1 0.7 ± 0.1

0.23 2.0 ± 0.1 0.7 ± 0.1 2.0 ± 0.1 0.7 ± 0.1

0.25 2.0 ± 0.1 0.8 ±O.l 2.0 ± 0.1 0.8 ± 0.1
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The Beizaviour ofDisrribwiolLç ofZ,.."

The centering of dis~butionsof Z,l.(r) is inl1uenced by KA.R( 1) and is dependent upon the

pulse volume scale B... as IS expected from relations 7.13 and 7.14 and their Legendre tr:msfomls

6.7 and 6.20. The centering of the disoibutions at fixed wavelength À,. and CI of the <l(x.r) lïelù

is then controlled by B.. and is expected to decrease with increasing B... Figure 7.20 shows tlwt

this is in fact the case. The centering of the disoibutions. or bias. decreases as a function of

increasing B... The disoibution cao also be seen to narrow as B.. increases. This behaviour. if

taken to the limit of very large pulse volumes (at 10:lg range for instance) wouId result in :,

distribution that would be superficially indistinguishable from a Rayleigh distribution for small

data sets.

The behaviour of disoibutions ofZ,..(r) with increasing pulse volume scale is presel1led in

figure 7.20. The disoibutions pre:;ented in figure 7.20 inc1ude the distributions for 4. 64 anù

1024 pixel pulse volumes. The Rayleigh curve is presented to show hlw increasing pulse volume

scale produces disoibutions which sul'trficially approach the Rayleigh shape. Each of the

distributions is an average from 256 histograms. each resulting from a realization of the ReS

model forthe given parameters. The wavelength À,. is held constant at 4 pixels. The distributions

are seen to narrow with increasing Bl.' This behaviour is particularly evident in the high tail of

thedisoibution where the 1024pixel pulse volumeseverely underestimates the numberofextreme

values found with the 4 pixel pulse volume. The bias in the distribution is inversely related to

B... The 4 pixel pulse volume is biased to -5.5 dB. the 64 pÏltel pulse volume is biased to -3.5 dB

and the 1024 pixel pulse volume is biased to -1.0 dB. lt is c1early evident from these results thm

even in a multifractal rainfield a very large pulse volume will produce only a small bias in the

distribution. Indeed.the scaleratio À. of 256 for the 1024 pixel pulse volume (Le. L =1024 pixels

and 1= 4 pixels) should be compared to the scale ratio of 1500 for most opcmtional mdars (Le.

150 m pulse of 10 cm wavelengths). which are then averaged in downmnge or cross range

averaging schemes.

The immediate consequence of dependence of the distribution on pulse volume scale is

range depelldent statistics. Figure 7.20 c1early shows that as the pulse volume scale Bl. increases

the distribution narrows and a bias results. Relation 3.7 is the standard result for scale dependence

• 7.0 The Statistics of Z,l.(r) from a Temporally and Spatially Scaling Rainfield. 155



•
Distributions of Ze for Cl =0.05
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Figure 7.20: The effect of pulse volume scale on distributions of intensity for C, = 0.05. The

legend gives the pulse volume scale L in pixels used to compute the distributions. Each
distribution is an average of 256 distributions. The Rayleigh curve is plotted forreference
to show that increasing pulse volume scaleresults in distributions superficiallyapproaching
the characteristic Rayleigh shape.

of staitstics. It must be kept in mind that the pulse volume scale of a radar is a function of range

and hence each range gate will have a different scale. The range dependence of distributions of

radar reflectivities is therefore displayed in figure 7.20 and is quantifiable in terms of relation

3.7.

K".R(1) is a function of the Cl of the (»),(x, t) field. The bias of the distributions is therefore

a function of the underlying variability. Figure 7.21 shows that as the C, of the (»),(x,t) field
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Dist:ibutions of Ze for RCS(256.8.C 1.0.0)
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Figure 7.21: The effect ofincreasing C, on distributions ofZ,À(t). The pulse volume scale is

256 pixels and the wavelength is 8 pixels. The legend gives the value ofC, for the compUled
distribution. The bias in the distribution is a function of C"

increases, for fixed BÀ and A,., the bias of the distribution also increases. This chamcteristic

behaviour has already been established by Rogers (1971) for an ad-hoc function specifying

gmdiems in the rainfield at super resolution scales, but we can exactly specify the variability and

hence explore the bias. For example, with BÀ = 256 pixels and A,. = 8 pixels, a C, of 0.05 gives

a bias of -2 dB, a CI of 0.13 gives a bias of -8 dB and a CI of 0.17 gives a bias of -II dB. The

'bias function' is a 2D function with dependences on scaleas weil as on the C, of the <:r(x,t) field.

• 7.0 The Statistics of Z,À(t) from a Temporally and Spatially Scaling Rainfield. 157



•

•

This section shows thatthe behaviours of the distributions of 2,,(1) are fu!ly determined

in terms of measur.lble parameters. As an alternative to the standard theory of Rogers (1971) the

multiscaling arguments presented here can explain and quantify allthe observables related to the

distributional behaviour of 2,,(1) resulting from sub-resolution variability. The dependence of

the various effects on CL and C, provides a solid frarnework from which it is possible 10

meaningfully compare radardata sets resulting from different resolutions and different dynamical

variability.

Tile Speclral Beilaviour of2".(r) and 2,,(1).

The spectr.ll behaviour of the low frequency scaling regime, with CL fixed at 2, is a function

ofC,. The realization that the time series of2,(I) and2,,(I) are squaredquantities and are therefore

governed statistically by K(q, Tl) with Tl = 2 allows the prediction of the spectral slopes of 2,(1)

and 2,,(1) for different C" The fact that Ct =2 means that the spectral slope ~ =1 - K(2,2) =1 ­

4C,. Table 7.3 shows that this relation is weil respected, within error bars, for 2".(1). Estimates

of the specrral slope for 2,,(r) reveals sorne persistent difficulties at low CI (persistent over all 5

tri:t1s).
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Table 7.3: Estimates of ~ from the Law Frequency Scaling Regime for
Z,.(r) and Z.,,(r).

Ct ~z ~. ~
1- 1(,,(2.2)

0.01 1.0 ± 0.2 O.S ± 0.1 0.96

0.03 0.95±0.07 0.7S ± 0.05 0.88

0.05 0.85 ±0.06 0.70 ± 0.07 O.SO

0.07 0.69±0.07 0.65 ±0.02 0.72

0.09 0.70±0.04 0.5 ±0.2 0.64

0.11 0.56±0.04 0.50 ± 0.07 0.56

0.13 0.54 ± 0.06 0.47 ±0.04 O.4S

0.15 0.45 ± 0.09 0.3 ± 0.1 0.40

0.17 0.35 ± 0.05 0.2S±0.04 0.32

0.19 0.40±0.07 0.2S±0.07 0.24

0.21 0.26 ± 0.07 0.25±0.OS 0.16

0.23 0.2 ± 0.1 0.2 ± 0.1 O.OS

0.25 0.2±0.2 0.2 ± 0.2 0.0

The adherence of the low frequency spectral behaviour of Z.,,(r) and 2,,(r) is within

experimental errer of the expected results. Differences from the expected beha' L'lur are

attributable tO the limited range of scales available to the RCS model.

7.3.4 The High Frequency Scaling Regime.

The high frequency scaling regime exists at scales smaller than the wavelength scale.

Results from this regime are likely to be more pedagogical than useful since the wavelength

scales ofmost operational radars are very close to the inner scales of the radar cross section field.

Although, the evidence in section 4 suggests that operationally the high frequency scaling regime

could be used to estimate the inner scale of the rainfield by estimating the scale break associated
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with the 'foot'. Systematic analysis of this regime requires thatthe pulse volume scale be made

as large as possible (1024 pixels) and the wavelength scale be left as a free variable with the

proviso that it is large enough to avoid the transition zones around the scale break at Â,.,. Analysis

of this regime must be conducted at scales much smaller than the wavelength scale break.

It was demonstrated previously, for a constant value of C" thatthe spectral slope of the

high frequency scaling regime for2",<r) becomes free of the transition around the high frequency

scaling break for wavelengths greater than 64 pixels. Thus, selection of a wavelength larger than

64 pixels allows the statistical nature of the high frequency scaling regime to be explorecL The

statistics of the high frequency scaling regime of bath 2,.(r) and 2,.(0 will be examined as a

function of input C"

The statistics of2.(r) and2,.(r) in the high frequency scale regime are those ofa 'projection'

of the spatial variability of cr(x, r) Onto the time axis. The notion of a multifractal projection is

n:latively new (see Garrido et al., 1993), but can be understood to involve a shift in singularities

y -7 y-I and a shift in c(y) to c(y) -7 c(y)-1 vo'Ïth the provision that c(y) > O. This transition is

likely to result in a fundamental scale breaking and hence the statistics will no longer adhere to

the universal fonns. Few results are available for such projections, therefore the emphasis in this

section will be mostly on the cataloguing of these behaviours for consideration when an adequate

theory becomes available.

Universa/ Mu/rifracra/ Behaviour ofrhe High Frequcncy Sca/ing Regime.

Estimates of universal multifractal pararneters from the high frequency scaling regime

reveal a very slow dependence upon the C, of the cr(x,r) fields. Estimates ofscaling moments

from this regime were made using a pulse volume scale B. of 1024 pixels and a wavelength scale

Â,., of 256 pixels. Scales up to 64 pixels were examined to avoid the transition zone around the

scale break at256 pixels in the 2,.(r) time series. The 2,.(t) time series has no break atthis scale.

Estimates of universal pararneters were made using DTM and are presented in table 7.4.

Slight curvature is noticeable in the scaling moments. This curvalUre is stronger for small

input CI values and is consistent for independent runs of the model. Estimates of the universal

parameters from independent model runs are very consistent. The behaviour of the universal
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curves in figure 7.23 and 7.24 seems adequate for estimation of a;. The K(q) curves for Zl.(t) and

Z,l.(r) shows a marked difference in behaviour. However. there exists no thcoretical n:sults to

quantify the difference.

Scalinc Moments for RCS(10~4~6.0.09.0,n)

•,
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Figure 7.22-a: Scaling moments forZ,l.(r) from RCS(l024,256,O.09,O.0). The scaling moments
are computed over 64 pixels in the high frequency scaling regime.
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Scaling Moments for RCS(1024,256,O.18,O.O)
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Figure 7.22-b: Scaling moments for 2".(1) from RCS(1024.256.0.18.0.0).

The lincarity of the Log(K(q.1'\» Vs Log(1'\) curves indicates that universal muitifractal

bchaviour is carried through to the high frequency scaling regime. The linearity is over a

substantial r.mge of1'\. The q, value is around 2 (1'\ = 0.3).
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Figure 7.23-a: Log(K (q ,11)) Vs Log(11) for Z from RCS(1024,256,0.09.0.0).
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Figure 7.23-b: Log(K(q,11)) Vs Log(,,) forZ from RCS(1024,256,O.l8,O.0).
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• DTM for7-e from RCS(H114.256.0.09.Q.O)
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Figure 7.24-a: Log(K(q ,11)) Vs Log(11) for Z, from RCS(l024,256,0.09,0.0).
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Figure 7.24-b: Log(K(q, 11» Vs Log(Tl) for Ze from RCS(1024,256,0.18,0.0).
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Figure 7.25: K(q) vs q for Z.>.(t) from RCS(l024.256.C,.0.0) with CI = 0.09 and 0.1l>. The

linearity of the q =0.5 K(q,Tl) curve at Tl =0 suggests thatthe K(q) curves :Irc accur:llc
representations of the statistical moments. Estimates of the univcrsal paramctcrs frolllthcsc
curves coincide with those tabulated in table 6.7.

Table 7.4: Universal multifractal parameters from the high frequency
scaling regime.

Z>. Z.>.

CI Ct. CI Ct. CI

0.03 1.9 ± 0.1 0.12 ± 0.02 1.9 ± 0.1 0.09±0.03

0.06 1.9 ± 0.1 0.13±0.02 1.9 ± 0.1 0.10 ± 0.03

0.09 1.9 ± 0.1 0.14 ± 0.02 1.9 ± 0.1 0.12 ± 0.02

0.12 1.9 ± 0.1 0.15 ± 0.01 1.9 ± 0.1 0.14 ± 0.03

0.15 1.9 ± 0.1 0.16 ± 0.01 1.9 ± 0.1 0.17 ±0.02

0.18 1.9 ± 0.1 0.18 ±0.02 1.9 ± 0.1 0.20±0.02

0.21 1.9 ± 0.1 0.20 ± 0.01 1.9 ± 0.1 0.22 ± 0.01

0.24 1.9 ± 0.1 0.21 ± 0.01 1.9 ± 0.1 0.25 ±0.01
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Spectral Behaviour of the High Frequency Scaling Regime.

The spectml exponents ~ presented in table 7.5 are those ofa non-conservative mullifr.lctaI.

Figures 7.22107.25 and table 7.4 shows thatthe high frequency scaling regime seemsto display

universal multifractal behaviour. Thus the non-conservative nature of the specoum originales

with the projection. a sum of squares for L:.(t) and the Fourier component for Z,l.(t).The specoum

of Z,l.(r) appears less dependent upon CI'

Table 7.5: Estimates of ~ for the high frequency
scaling regime of L:.(r) and Z,l.(r) as a function of input

CI'

C, ~z 13-0'..

0.03 1.80 ± 0.01 1.93 ± 0.01

0.06 1.51 ± 0.004 1.86 ± 0.01

0.09 1.38 ± 0.01 1.78 ± 0.01

0.12 1.13 ± 0.02 1.65 ± 0.02

0.15 i 1.06 ± 0.01 1.57 ± 0.01

0.18 ! 0.86 ± 0.02 1.45 ±0.02

0.21 0.77 ±0.02 L29±0.02

0.24 0.69 ± 0.01 1.17 ± 0.01

Demon~rrarion olScale Dependent Means in rhe High Frequency Scaling Regime.

A demonstrmion of the effect of varying the wavelength on the computed means of Z,l.(r)

is given in figure 7.26. The dependence of the mean upon wavelength. with Bl. held constant. is

given by
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• Figure 7.26 shows the behaviour of <Z,.> as a function of increasing À,.. for C, = 0.1. which giws

K,,(I) =0.80 (from table 6.1. K,,(l) =2KA.!l(I)). The change of w;\vc\ength intuitively has Iln

e:fect on moments of 2,.(t). Measurement of the slope of Log(<Z,.» vs Log(À,..) gives;\ value

of 0.86 which is another method to estimate KA.!l(l).

The effeet of wavelength on mean Zc and Zsr-------------------------.

32515 2
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Figure 7.26: The effeet of wavelength on <Z••(t» and <2,.(t» for 6 wavch:ngths. The

wavelengths used were 16.32.64.128.256.512 p;·;cls. <Z••(t» is clearly a function of
wavelength.

The results of this demonstration clearly emphasize the dependence 01' measurement scalc

of intensities measured by a radar from a scaling rainfield. Simply by changing wavelength there

is a shift of singularities moderated by KA.!l(l). and the distributions are centered differently.
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Simu!ataneous observation of the same rainfield by multiple radars of different wavekngth will

face difficulties such as this. The results show that even if the r.ldars are electronically calibrated

to high precision the mean intensities will differ by an amount dependent on the scaks of

observation Bl. and À.,.. as weil as on the variability of the drop field characterized by CI'

7.3.4.1 The 'Foot' Region.

Reproduction of the 'foot' region nOlicro in the spectra of the echo fluctuation time series

is possible by introducing white noise below the wavelength scale. Recallthatthe 'foot' appears

at the highest frequencies as a break in the high frequency scaling regime and results in the

bending of the spectral slope towards a white noise (zero slope) character. The application of

the successful modelling of this effect is to any field which exhibits scaling behaviour down to

sorne inner scale A-1 and below this scale is independent.

The RCS model construction process was altered to allow the introduction of white noise

at scales smaller than the wavelength scale. The computation ofZ,l.(r) was modified such that

white noise was introduced at a scale of À.,./2. Modifying the percentage of the wavelenglh

filled witll noise affects the point at which the high frequency scaling regime is broken. Figure

7.27 shows the high frequency scaling regime when white noise is introduced. The spectrum

is dearly nOl of the form E(k)ock-f>, as there is a scaling break al À.,. corresponding exactly to

the scale at which white noise was intoduced.

The reproducibility of the foot suggeslS that there is a scale in the rainfield below which

the drops no longer exhibit scaling behaviour. Corroborating evidence for this idea is provided

by the work of Rodi et al. (1992). Rodi et al. examined the behaviour of droplet conccntr.ltions

using the FFSSP probe (Brenguier, 1992). The spectral analysis of this droplet concentr.ltion

data reveals the same spectral behaviour shown by the foot region. The droplet field is likely

non-scaling at millimeter scales. The scale breaking of the high frequency scaling regime

roughly coincides with the viscous scales of the turbulent windfleld.

The lack of scaling behaviour in the high frequency scaling regime makes multifractal

analysis tools inapplicable to this regime. The simplicity of the scaling assumption is shattered

by the introduction of white noise.
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Figure 7.27: ReS model construction including a 'foot'. The foot was introduced by replacing
halfof the variability in each wavelength Wilh white noise. Note that the scaling behaviour
is broken at half wavelength.
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8.0 Conclusions, ImpliC2tions, and Extensions.

8.1 Conclusions.

The major contribution that this thesis makes is in the introduction of the simple idea that

the scaling v:lliability of rainfall observed by radars at super-resolution scales extends to

sub-resoluùon scales. This simple idea leads immediately to the core of ccntr.ll rcsults whieh

comprise a full statistical descripùon of the fluctuaùng radar echo from multiscaling r.linfield

variability. The qualitaùve and quantitative features of the statisùcs arising from this assumption.

and the resulting models, match those of observed ùme series of the fluctuating eeho very weil.

The statistical formulation provides a complete framework for the interpretation of echo

fluctuations from a scale invariant rainfield and represents the general solution to the sealar

multifractal radar observer's problem. What is special about the solution is that it rel:ltes the

measuredeffective reflectivity directly to the radarcross section field and hence to the concentr.ltion

of water without the necessity of invoking the standard definition of reflectivity. Specific results

concerning the conditional probabilities of radar echoes and the rainfield whieh would allow the

quesùon of accuracy to be adressed remain as an extension to this thesis (see below). The

interpretation of the fluctuating echo offered by this approach differs greatly from the approach

of the standard theory. whose only objective is to measure the mean reflectivity. The theory also

shows that a great deal of additional information about the statistie:lVdynamical nature of the

rainfield can be extracted from the fluctuating echo.

The ability of a simple time-space multifractal model ta reproduce the spectral behaviours

found in time series ofthe fluctuatingecho is a majorachievement whieh cannot easily be dismissed.

The spectral plateau is the most graphie evidence that the measures and statistics of the fluctuating

echo are affected by the measurement scales of the radar. The assumptions used in the time-space

model were kept as simple as possible to emphasize the importance of the mllltifractal variability.

The low and high frequency scaling regimes reproduced in the time-space model correspond to

those observed on spectra oftime series ofradarecho fluctuations. The spectral analysis performed

on the fluctuating echo, as weil as the modelling results whieh show the scale dependent nature

of the distribution of intensities, reveals that a simple comparison of measured intensity of r.ldar

echoes with the Rayleigh form, as performed by Lhermitte and Kessler (1966), is not adequate ta

determine the statistical nature of radar echoes.
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Of the specific results that this thesis introduces to the interpretation of the fluctuating echo

the most important and interesting is the term K",R(I). K",R(I) is a line:u- term introduced into the

multifractal exponents describing the statistics of the amplitude of a radar signal from a scaling

rainfield. lt is the result of the complex dressing operation performed by the FOl.:rier component

operation ofa radar on rainfield variabiliry. K",R(l) can be interpreted as a shift in the singularities

(y) that can be observed within time series of the fluctuating ceho. In this sense K",R (1), because

it is a function of the variabiliry of the rainfield described by CI' affects the observed distributions

of intensities as weIl as second order statistics such as the power spectlUm. If the rainfield is

scaling, then K",R(l) is a fundamental quantiry that must be known to interpret radar data. The

bias in the mean of the distribution ofZ•• relative to the distribution ofZ. as weIl as the behaviour

of the distribution with scale are all dependent upon K",R(l). Indeed, the relation belWeen the

statistics of the drops V and the measured reflectiviry of a scaling rainfield are described in terms

of K",R(l).

AnOlher usefui result is the 2a relation belWeen CI of the radar cross section field cr(x, c) and

the measured CI of the echo fluctuation time series Z••(t). This result shows that estimates of Ch

or sparsiry of th~ mean rainfield, derived from radar data are actually 2a times those of the cr(x, t)

field. ln the case of the estimates of CL and CI made by this thesis, this resuit would indicate that

the CI of the V field over the VPR is around 0.1 from year to year.

The impressive abiliry of the multifractal models to reproduce the observables of the radar

echo fluctuation problem makes the notion of multifractal sub-resolution variabiliry the logical

alternative to the sub-resolution homogeneiry assumptions of the standard theory. The assumption

of sub-resolution homogeneiry in the interpretation of radar echo fluctuations is no longer

necessary. The relatively simple forms that result from the assumption of scaling sub-resolution

rainfield variabiliry belie the comprehensive statistical knowledge of the rainfield that they

represent once the necessary parameters are estimated from measurements of the flUClltating echo.

8.2 Implications and Extensions.

The implications and possible extensions of the work presented in this thesis are enormous.

This is due largely to the originaliry of the assumption of scaling sub-resolution variabiliry and

the ensuing complete statistical characterization of Z... A large number of studies using radar
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have attempted to draw attention to these problems. bu, without result. lt is my hllpe tha! the

simple modellir.g techniques presented within this thesis inspire modifications and applications

to other mas. There are a very large number of research mas where extension of the methods

presented here could result in practical and theoretical results that are very valuable. Only a few

of these possibilities will be outlined below. Sorne of the following possibilities are mere

extrapolations of the results presented herein and can therefore show a personal bias towards a

problem, sorne of the possibilities have already becn discussed with expens and will be

appropriately credited.

The Cross Moments o/Z,). with V~.

The result that (relation 6.21)

is the simplest deduction that can be made conceming the distributions ofZ,). and V).. Examination

of the cross moments ofthe distribution could providean exact form for the conditional probability

ofZ,). given V). (i.e. Pr(z,). > '}..Yz, ; V). > '}..Yv) ='}..-«Yz.."Iv~. Knowledge of this relation would permit

errors on the accuracy of the statistics of V to be compu:ed from measures of Z.)., and would

suggest new data acquisition strategies to minimize those errors. The cross moments are of the

form

Analysis ofthe resulting scaling functions represents a significant amount ofwork but should yicld

a general expression for the cross moments. From the derived expression a general form for the

conditional probabilities would result, and a more specific relation between Z,). and V). could be

established.
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Limits on tlze knowledge ofZ",.?

The existence of a scaling rainfield requires a fundamental shift in how data is considered

and processed. The first recognition of the echo fluctuation problem was interpreted as a limit on

the knowledge of <Z,).>. In the assumptions of ihe standard theory each data point acquired by

the radar is independent, hence each carries no information. The standard theory provides an

invariant prescription for the limits of knowledge on z.. This is cmbodied in the joint probability

distribution Pr{ZJZ). The well known standard deviation on averages of radar echoes 5.6dB/k'12,

where k is the number ofechoes averaged, is directly dependent upon the r.tinfield being uniform.

ln the universal multifractal formalism the mean is just another moment ofZ,).. Determination of

the universal function K(q) represents a complete characterization of the signal information. The

degree of moment that can be directly verified is given by Ds' Determination of the K(q) function

is not dependent upon the accurate measurement of<Z,).>. AlI that is necessary is sufficient data

to define a small range of K(q,1]) vs 1]. Thus, within the universal multifractal formalism each

data point represents a contribution to the determination ofa111.10ments. The universal multifractal

formalism represents a more efficient use of the information present in the signal retuming to a

radar from precipitation.

lnfonnation Conservation: Storage and DispIay Strategies.

As in Marshall and Hitschfeld (1953) the recognition of the statistics of the problem affect

how the data is stored. The conservation of this information places heavy requirements on the

data acquisition and storage technology. Indeed, the technology may still not exist for efficient

storage and renieval from a source such as a volume scanning radar. The preservation of scaling

structure in radar data requires that the data he stored in unmodified form (this assumes the data

contains no scaling breaks like the plateau). For scanning radars the data must he stored in its

native radial format without any averaging. Averaging operations necessarily reduce the

information content of signais. This vastly increases the storage requirements for radar data, but

provides the opportunity of greater understanding of the dynamical context of rainfall

measurements. Display systems would therefore he required to cope with the data in radial format

which would imply a large numher of computations.
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Sub-Resolution Dependence ofSAR Measurements.

Synthetic Aperture Radar (SAR) is probably the application for the resu\ts presented in this

thesis that represents the most exciting possibility. The image COnSL'1lction process used for SAR

radar data necessarily involves assumptions about the sub-resolution homogeneity of targets. The

difficulty is that SAR radars are used to examine a very wide variety of targets of which r.lin is

not one. The SAR problem represents the possibility of further applications of complex cascades

since the SAR radar processing strategy is fully coherent. Thus. a tensorial form of the RCS mode!

would be required. The number of free pararneters to the model would therefore be enonllOUS.

Current SAR processing strategies do not deal with sub-resolution inhomogeneity (Livingston.

personal communication. 1993).

Sub-Resolution Dependence ofDoppler Ratklr Measurements.

The formulation for the marginal statistics of Z.>. involves the following expression for the

complex moments of the amplitude of the signal returned from min

A>. =
which gives

•

therefore it is possible to define two K(q) functions. one for the real part of the gener.ltor and one

for the irnaginary part of the generator:

The complex component ofthe KA (q) function govems the scaling of the dopplerphase component

ofdoppler measurements. Irrespective of whether this term tums out to be trivial the inclusion of

sub-reso1ution variability with the attendant change in assumptions about the velocity dependences

in the drop field, irnmediate1y yields an exp1anation for the width of the doppler spectrum. It is

likely that doppler spectrurn width will be found to depend on the dynarnical quantities lX and CI'
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Range Dependent Z....-R.

The statistics ofZ.>.arc dependenl :Jpon the ratio ofthe pulse volume scale B to the wavelength

scale À.,.,. In the RCS modeI the scale of the pulse volume was kept constant in keeping with the

observed data sets and the limitations of the computer mode!. The volume of the pulse as a function

ofrange is given byv = 1• ra, •ra•. Formostoperatior:'Ù weatherradars the pulse will beobserved

outto ranges of alleast 200 km. At this range the laIerai scales far exceed the pulse length scale

1. As a result the expanding pulse volume will have a different characteristic scale at each range

gale. As such, the statistics of Z.>. will depend on this characteristic scale and will therefore be

range dependent A small correction for this effect could easily be introduced to any processing

strategy.

Dynamically Determined Z-R.

The recenl suggeslion by Atlas and Rosenfeld (1993) thal Z-R relationships be implememed

in a case sensitive fashion. The work of Atlas and Rosenfeld (1993) shows that the most

represenlative Z-R relation can be calegorized according to rain type. In an aUlomated system the

appropriale Z-R relation would be used based on observation of slorm type•

A possible alternative to this plan, which at this stage is very speculative, would consist of

us:ng the measured dynamical quantities CL and Ct to determine the dynamical context of the rain

in order to determine the appropriate Z.>.-R relation. The relations for the marginal Statistics of

Z•• provide the relation between measured universal parameters and those of the cr(x,t) field. The

advantage of the dynamical quantities is that they are measured rather than being subjective

descriptions ofrain type. Such an ability could vastly improve rainfall raingauge comparisons by

providing an exact context for comparison of the two scale dependent measures of rainfield

variability. Currently there exislS no such database of dynarnics versus Z-R relationship.

Implementation of a calibrated, or self-calibrating, form of this strategy in an automated setting

would be relatively straightfotward.
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The Effect ofDropIet Clustering on Drop Formation.

A natural quesûon that arises from the consideration of the rain flux ~R as a c:.s,,;:'::e quantity

is the nature of drop clusrcring. The clustering ofrain flux onto smaller volumes inevitably results

in the concentration of liquid water. The range of scales over which this clustering occurs likely

extend from the large outer scales observed in secûon 4.1 to very small scales. ln this thesis it is

assumed that the rain flux exhibits self-similarhehaviour to scales smaller than the 3cm wavelength

scalc. To date only Poisson type clusrcring (trivial clusrcring) has been considered in the solution

of the formation of drops. The effect of non-trivial clusrcring of the type inherent to mulûfractals

on the formation rate and distribution size ofdrops has neverheen examined. An effort by Zawadzki

(1993. personal communication) is currently underway to examine this effect. ln the context of

a scaling theory (lfradarecho fluctuations the dynamics ofa particularrain event can be determined

and the degree of clustering. measured as C" could he estimated. Parameterization of a scaling

drop formaûon model could then he implemented in real time with the correct data acquisition

strategy.

Z.,.-A relations•

Attenuation is a quantiry that is also determined with the supposition that Z.,. is a weil

determinedquantiry. Scaling non-uniformiry of the rainfield introduces an exponent into any path

integrated quantity. of which attenuaûon is only an example. This is important to the extent that

it adds another dimension to the problem of microwave communications or to short wave1ength

cloud radars.
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• Appendix A: The Uni"ersal Multifractal Cascade Generator (UMCG). A

Brief Explanation of the Generation of Multifractals.

In this appendix a brief. but complete. explanation of how to create universal multifractals is

provided. The universal multifractal cascade generator (UMCG) is based on the work ofSchertzer

and Lovejoy (1987) and Wilson et al. (1991). Examples of the use of versions cf the UMCG can

be found in Wilson et al. (1991). Tessier et al. (1993) and Pecknold et al. (1993). The shonhand

UMCG(ex.CI.H) is used to indicate a simulated multifractal field with specified ex. CI' and H.

The a-Mode/.

The most widely known ofthe cascade models is the a-model (Schertzer and Lovejoy,1983),

so named because of the divergence of moments exponent a that it inttoduces. The symbolllD has

already been inttoduced to descrlbe the divergence of moments and will replace a in what follows.

In the cascade construction process a constant field offlux, for our purposes il will be assumed that

the flux quantity is rain J.lR. is introduced. If the outer scale of the field is 1 then successive

construction steps subdivide the field into 'boxes' of scale 1..-1, where 1.. is the ratio of the outer scale

to the scale of the current construction step. The fraction of rain flux J.lR concentrated to each of

• the new boxes depends on the probabilities,

Pr(J.lR =1..1') = 1..""

which represents an increase or boast in flux to a box and

which represents a decrease in the flux to a box. y+ = cIo. and or = cio.' with ~+~= 1. In tbis way

the initial flux is randomly distributed to finer and finer scale Ix>xes. The parameters y+, or, and c

are usually constrained such tbat the ensemble average flux <J.lR> is conserved at eacb construction

step. This relation gives
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•

(there are only two free parameters among y" y-. and cl. The a-model can he funher consrrnined

such that only one free parameter e"ists. This results in a miCrtrCanonicai a-model or p-model.

The properties of micro-canonical cascades are outlined in section 3. After n steps of the a-mode!

the fraction of the original fiu" IlR associated with a bo" is given by

with

Y. =!..(kf+(n -kr{). with k = 1•...•n
n

where k is the number of boosts and (n-k) is the number of decreases to the fiu" in the chain of

multiplications that led to agiven bo" ofscale 1..-1• The probability ofthe fiu" intensity orsingularity

is given by

where (~) is the number of combinations of n objects taken k at a time. This can he rewritten as

where i inde"es each bo". scale 1..-', of the completed cascade. The Pi) are the scale dependant

prefactors ofthe probability distribution and the C;j are the e"ponentscharacterizing the codimension

ofeach of the singularities"'(;. À" is the final scale ratio of the outerto the inner scale of the cascade.

The (X-model will have bounded singularities (-y- S"'(; S yJ. Schenzer and Lovejoy (1987) carry

the renormalization funher by replacing this n step IWO state cascade by a single À" step cascade

with n+1 states. This cascade process will then correspond to the random cascade described by

Gupta and Waymire (1993). Making the replacement À" .-+ Â., and taking the limit À~ 00. the term

in the sum with the smallest cij will dominate. Defining

Ci = min{Cv} = c(y,)
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• which yields for ).~ 00;

where Cl is the codimension and p; is the scale d::pendant prefactor. Dropping the subscript i and

allowing for a continuum of states the probabilities may be written as

This basic multifractal relation for cascade is usually written as

with the understanding that the equality takes into account the unstated logarithmic prefactors. This

relation shows that each singularity or intensity of the final cascade field has a codimension givl:n

by the codimension function c(y). For continuous processes c(y) is a continuous convex function.

While adequate forthe production ofmuitifrac:als, the most seriousdeficiency ofthe (X-model

is the lack ofcontrol over CI and ex. The next sub-section presents aprocess which creates universal

• multifractals with specific (X and Ct.

The Generator r .. and the Simulation ofUniversal Multifractals.

In the above development sorne quantity, such as rain flux J.1R, is concentrated by a cascade

process to smaIIer and smaIIer regions. The cascade process is multiplicative. It is perhaps more

intuitive toconsideritas an additive process. SchertzerandLovejoy (1991) introduced the generator

r ..= In(J.1R)' and considerthat the comparison of{Wo stages ofconstnlction ofa cascade, forinslance

at scale ratio). and at scale ratio).', can be considered in terms of the addition of the {wo generators.

The imponance of r .. is that it represents a cascade completed to scale ratio Â.. In this sense,

constnlcting a multiplicative cascade through n steps, from). to).' can he accomplished by adding

the generators r.. and r.... The foIIowing relation defines r..,
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• À."(qlis the "Laplace characteristics function" ofr~. r~ can be considered 10 be a noise source. The

purpose of the generalor is to describe the multiplicative cascade as an additive process. as such.

there are stringent conditions on the form of the generator.

The determination of an appropriate form for the generator r~ has been accomplished by

Wilson et al. (1991). Pecknold et al. (1993) go through the deuils much more thoroughly. The

basic result is that

r~(i) = ff(k'fuk)e;r';dk
S1:l

The domain of integration SI:>' is the domain I)f Fourier space with 1~ k 1:5 À. since r~ must be

smooth for scales smaller than 1.-1
• f(k) is a real non-random filterthat produces a l/for pink noise.

Yck) is a stationary noise source (referred to as the sub-generator) which must satisfy the following

conditions:

2) ~k'fuk'» = crO(k+k·). which follows from the fact that Yck) is stationary and the Gaussian

assumption which means that cr < 00.

3) ~k» = O. This is done for convenience.

Yck) is usually chosen to be a Levy noise. but depends on the desired ex (Le. if ex =1 is desired. a

Cauchy generatoris required. ifex= 2 is desired, which is the case fornearly lognorrnal multifractals.

a Gaussian generator is used). Thus, ex affects the singular nature of the multifractal. CI is affected

by the variance of the noise source Yck). As such, appropriate normalization of the variance ofYck)
results in multifractals with a prescribed CI'

In order for the generator to be multiscaling it must obey the following properties:

1) The spectrum must scale as k", in order tO obtain scaling behaviour: that is ,a 10gÀ. divergence

ofK(q).
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• 2) The generator must be band-limited to wave-number berween [1,1..]. This requiremem ensures

that for scales smaller than 1..-1 the field will be smooth. 1..-1 will therefore be the resolution

of the field.

3) The probabilily distribution of the generator must fall off more than exponentially for positive

fluctuations. This requiremei1l ensures the convergence of K(q) for q > O.

4) The generator must be normalized such that K( 1) = O. This is the condition for the conservation

of the mean of the field at varying scales.

A generator. such as the UMCG that is used in this thesis. which obeys these conditions will produce

universal multifractals.

The UTÙversaI MultifractaI Cascade Generator.

The implememation of the multifractal generator used for this thesis is referred to as the

Universal Multifractal Cascade Generator (UMCG). Figure A.l shows the systematic construction

steps necessary to build a universal multifractal. Creating multifractals in Fourier space has the

advantage that the clusters that inevitably result in the field are not restricted by the (normally) ratio

of 2 construction process common to multiplicative techniques. The filtering process that occurs

after the creation of the universal multifractal field will be discussed below. Multifractal fields

produced with the UMCG generally have the prescribed a± 5% and C, ± 10%.

The UMCG construction process detailed in figure A.2 is illusttated by figures A.3. A.4 and

A.5. Figure A.3 is the sub-generator field (white noise). The sub-generator field is a white noise

(uncorrelated) field of random numbers distributed. in this case, as a Gaussian (a = 2). The

sub-generator field is then taken into Fourier space using a fast Fourier lransform (FFf) and

multiplied (filtered) as k·'. Following an inverse FFI' the generator field is identified as a 1/f or

pink noise distributed as the sub-generator. r'igure A.4 is the multifractal resulting from

exponentiation of the generator field. Figure A.5 is the result offiltering (fractional integration) of

the multifractal in figure A.4 by k·H, with H = 0.2. The H-filteris intended to carry the conservative

multifractal. which has spectral slope ~ = 1- K(2) to a non-conservative field with a deeper spectral

slope. given by ~=2H + l-K(2).
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Figure A.3: The sub-generator field. An array of Gaussian deviates

with variance properly normalized.
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Figure A.4: The universal multifractal that results from performing
an f., filtering operation on the sub-gt:'lerator field in figure A.3
in Fourier space and then exponentiatllitl the resull
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Figure A.S: The multifractal at'ter filtering with a spectral lilter with
exponent H = 0.2. The smooth appearance (Le. l:Icking the
blocky appearance of real-space multiplicative construction
processes) of the multifractal is due entirely to the Fourier
space construction process.
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Figure A.6: Calibration of the UMCG used for the RCS mode!. The line of slope 1indicates that
the UMCG produces multifractals with the correct Ct. The input Ct is held constant at 2.0
and the output Ct is also 2.0.

The component sub-routines of the UMCG generator and the RCS model can be found in

Numerical Recipes (Press et al., 1992). The routines used include: FOURl, and FOURN (FFI'

algorithrns), and RAN3, GASDEV (random number generators). Typical run times on a 16 MFIop

SGI Elan were on the orderof 4 minutes per 1024xl024 array. The UMCG was coded initially to

run on PC machines in the memory space beyond 1 Meg in PC 'protected mode' operation. Special
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•

assembler (machine language) routines were wrillen to enter protected mode and then to pcrfoml

f10ating point operations on the high memory locations. Inspiration and sorne know-how for these

routines is due to Williams (Dr Dobbs Journal, 1990).

The 2D cr.(x,t) fields produced by the UMCG generator for the RCS modc:l (see Chapler 7)

were tested using the TM/GA technique. For each modd input C, the output C, was computed.

The plot of C,(input) against C,(output) is shown in figure A.6. The slope of the line is 1 ±0.05.

It should be noted from figure A.6thatthe variance of C,(output) increases with C,(input). This

propeny is expected since the UMCG is a stochastic process. The linearity of the caIibr.llion curve

in fig. A.6 is the major justification for using the UMCG tO generate cr.(x, t) fields.
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• Appendix B: The Genetic Aigorithm and TM/GA.

The genetic algorithm (GA) is an optimization algorithm model1ed on the genetic replication,

crossover, and mutation processes found in biological systems. The algorithm's uses the natural
optimization ability of the genetic processes of mutation and crossover to optimize functions with

. arbiuary criteria in nGn-linear search spaces. According to Hol1and (1992) genetics may he seen

as nature's method of searching non-Iinear function spaces in the presence of optimizing criteria
(generallyreferred to as fitness and presemed as afitness function). In nature, however, itis possible

that the conditions for a given optimal solution may he variable in time and hence the search

represents the non-ending quest of producing the hest adapted population to deal with the

environmem.

*---------------------------------------------------------------*
GENERATION 0 Average Fitness = 1.4838

Initial Population Maximum Fitness = 15.9225
Initial population Average Fitness = 1.4838
Initial Population Minimum Fitness = 0.0858482
Initial Population Sum of Fitness = 29.6761
*---------------------------------------------------------------*

Chromosome Fit Parents X (ex) Cl• 0) 100011011001111100100000001001100 0.843 ( 0, 0) 0 1.106 0.251
1) 000010001101101111011001101001010 0.086 ( 0, 0) 0 0.069 0.700
2) 111000101000001110110111000100111 0.524 ( 0, 0) 0 1. 770 0.430
3) 110111111010000010010011111010111 15.9 ( 0, 0) 0 1. 747 0.156
4) 001011100101100101001010101110111 0.137 ( 0, 0) 0 0.362 0.584
5) 101011011010011001010001000100011 0.239 ( 0, 0) 0 1.357 0.633
6) 010001110011101111110010111011111 0.097 ( 0, 0) 0 0.557 0.898
7) 101011001001110111011100011111010 0.202 ( 0, 0) 0 1.349 0.723
8) 010011011100110011101000011111011 0.112 ( 0, 0) 0 0.608 0.816
9) 010111101000001001101100010111010 0.117 ( 0, 0) 0 0.738 0.847
10) 001111111010001110001101101011100 2.44 ( 0, 0) 0 0.497 0.107
11) 101000110000101000011100100101000 .1.3 ( 0, 0) 0 1,274 0.223
12) 111001100101100100110011110011000 0.59 ( 0, 0) 0 1.800 0.405
13) 111111011011001010001110101001000 2.33 ( 0, 0) 0 1.982 0.114
14) 010101101001100001010001110101111 0.156 ( 0, 0) 0 0.677 0.639
15) 101010100110000001000011110000111 0.299 ( 0, 0) 0 1.331 0.529
16) 101010101010010010010101101111010 3.85 ( 0, 0) 0 1.333 0.170
17) 011110000000101101111001100101010 0.116 ( 0, 0) 0 0.938 0.950
18) 010011001000011001001110010001110 0.155 ( 0, 0) 0 0.598 0.612
19) 001100111110100011000110100111111 0.151 ( 0, 0) 0 0.406 0.552
*---------------------------------------------------------------*
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• The coding of a genetic algorithm on a computer is a simple process that need he conducted

only once. GA code consists largely of flexible indexing of a population of strings which represent

the chromosomes or genetic information (strings of ls and Os). This code and that for mutation

and crossover of the strings remains invariant from one problem to the next. The hean of the GA

is the fitness function. and this function will differ for each problem. The function space will also

differ for each problem. In the TM/GA application the function search space is limited to two

variables of known range and the fitness function is easily formulated as a function of the sum of

absolute differences between the estimated and theoretical K(q) function at a known set of points

(see eq. 7.11).

Five generations ofa TM/GA run are provided to show the progression ofa genetic algorithm

towards an optimal solution. For the example, only 20 individuals and 5 generations were used.

In normal operation 500 individuals and II generations are used. Each panel gives the full

information of a generation of the GA. Average fitness. total fitness. as well as a listing of each

individual in the population with corresponding fitness. parents. crossover point. lX and C" The

reader is encouraged to examine the panels successively and gain reassurance that the algorithm is

systematically moving the population towards maximum fitness and hence is optimizing the fitness

function.

The figure 'GENERATION 0' shows the initial population ofa GA algorithm forthe TM/GA

technique. The population ofchromosomes are numbered from 0 to 19 for 20 individuals. Initially

the O's and l's are chosen at random. which is clearly visible in the lack ofpanem in GENERAnON

O. The Fit number is the fitness of the corresponding chromosome. The lX and CI are shown for

each chromosome.
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• *****************************************************************
GENERAT~ON 1 Average Fitness = 7.84108

*****************************************************************
population Maximum Fitness = 16.3417
population Average Fitness = 7.84108
population Minimum Fitness = 0.523554
Population Sum of Fitness = 156.822
Number of Mutations = 1
Number of Crossovers = 7

*---------------------------------------------------------------*

Chromosome Fit Parents X (a) C,

0) 110111111010000010010011111010111 15.9 ( 3, 3) 32 1.747 0.156
1) 110111111010000010010011111010111 15.9 ( 3, 3) 32 1. 747 0.156
2) 101010101010010010010101111010111 3.68 ( 3,16) 8 1.333 0.171
3) 110111111010000010010011101111010 13.7 ( 3,16) 81.7470.154
4) 001111111010001110010101101111010 0.941 (16,10) 14 0.497 0.170
5) 101010101010010010001101101011100 3.57 (16,10) 14 1.333 0.107
6) 111111011010000010010011111010111 6.59 ( 3,13) 25 1.981 0.156
7) 110111111011001010001110101001000 2.75 ( 3,13) 25 1. 748 0.114
8) 101000110000101000011100100111010 1.3 (16,11) 5 1.274 0.224
9) 101010101010010010010101101101000 3.89 (16,11) 5 1.333 0.170
10) 001111111010001110001101111010111 2.39 ( 3,10) 8 0.497 0.109

• 11) 110111111010000010010011101011100 13.1 ( 3,10) 8 1. 747 O. 154
12) 110111110010000010010011111010111 16.3 ( 3, 3) 15 1. 743 0.156
13) 110111111010000010010011111010111 15.9 ( 3, 3) 15 1. 747 0.156
14) 101010101010010010010101101111111 3.84 ( 3,16) 3 1. 333 0.170
15) 110111111010000010010011111010010 15.8 ( 3,16) 3 1. 747 0.156
16 ) 001111111010001110001101101011100 2.44 (10, 2) 32 0.497 0.107
17) 111000101000001110110111000100111 0.524 (10, 2) 32 1. 770 0.430
18) 110111111010000010010011111010111 15.9 ( 3,13) 32 1. 747 0.156
19 ) 111111011011001010001110101001000 2.33 ( 3,13) 32 1.982 0.114
*---------------------------------------------------------------*

The population ofchromosomes in GENERATION 1shows the surprising powerofthe GA.

Individuals are selected on the basis of their fiOless. The probability that a particular individual

will be selected is given by its fiOless divided by the population sum of fiOless. This weighted

probability favours the more fit individuals but does not exc\usively select them. the reasoning for

this is subùe butis related to the necessity ofretaining a goodmix ofinformation across generations.

Once two individuals are selected there is a 60% probability (a variable) that a crossover will take

place. If a crossover does take place a crossover point is randomly selected and the transfer of

information execuœd. The Parents column gives the index of the two parents of the previous
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• generation and the column marked X gives the position along the chromosome that crossover look

place. For exarnple. individuals 14 and 15 share parents 3 and 16 in the previous generation.

Exarnh.ation of the fimesses for individuals 3 and 16 of GENERATION 0 reveals fimesses of 15.9

and 3.85. Individuals 14 and 15 ofGENERATION 1 have fitnesses of3.84 and 15.8. which reveals

that the crossover actually decreased the fitness of both individuals. However. the average

population fimess increased 500% due largely to the high probability of selecting individual 3 of

GENERATION O. It should also be noted that individual 12 of GENERATION 1 is a product of

a crossover of individual 3 of GENERATION 0 with itself. Given this fact its fimess should not

be different, however. the fimess of individual12 of GENERATION 1 increased due to a mutation.

Mutations occur with a probability of 05% for each 1 or 0 carried to another individual. The

mutation process introduces new information randomly inlo a population. Too high a mutation rate

(> 1%) tends to destroy a population by randomizing the individuals.
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• *****************************************************************

GENERATION 2 Average Fitness = 11.7211
*****************************************************************

Population Maximum Fitness = 16.3121
Population Average Fitness = 11.7211
Population Minimum Fitness = 2.3342
Population Sum of Fitness = 234.421
Number of Mutations = 6
Number of Crossovers = 11

*---------------------------------------------------------------*

Chromosome Fit Parents X (a) Cl

0) 110111111010000010010011111010111 15.9 ( l, 3) 32 1.747 0.156
1) 110111111010000010010011101111010 13.7 ( l, 3) 32 1. 747 0.154
2) 001111111010001110001101101011100 2.44 (16, 0) 32 0.497 0.107
3) 110111111010010010010011111010111 15.9 (16,0 ) 32 1.747 0.156
4) 110111111010000010001110101001000 2.76 ( 7,11) 14 1.747 0.114
5) 110111111011001010010011101011100 13 ( 7,11) 14 1.748 0.154
6) 110111111010000010010011111010111 15.9 ( 1,15) 32 1. 747 0.156
7) 110111111010000010010011111010010 15.8 ( 1,15) 32 1. 747 0.156
8) 110111111010000010010011101111010 13.7 ( 3,19) 32 1.747 0.154
9) 111111011011001010001110101001000 2.33 ( 3,19) 32 1. 982 0.114
10) 110111111010000010010011111010111 15.9 ( 1,13) 3 1. 747 0.156
11) 110111111010000010010011111010111 15.9 ( 1,13) 3 1.747 0.156
12) 110111111010001010010011101011100 13.1 (11, 1) 32 1. 747 0.154
13) 100111111010000010010011111010111 5.24 (11, 1) 32 1.247 0.156
14) 110111111010000010010011101111011 13.7 (12, 3) 1 1. 747 0.154
15) 110111110010000010010011111010110 16.3 (12, 3) 1 1. 743 0.156
16) 100111111010000010010011111010111 5.24 ( 0,13) 32 1.24; 0.156
17) 110111111010000010010011111010111 15.9 ( 0,13) 32 1. 747 0.156
18 ) 110111110010000010010001111010111 5.71 (13,12) 4 1. 743 0.140
19 ) 110111111010000010010011111010111 15.9 (13,12) 4 1. 747 0.156
*---------------------------------------------------------------*

GENERATION 2 reveals that the chromosomes are almost completely organized. It should

he nOled that the average population fitness has increased greaùy over that of GENERATION 1.

It should also he noted that much of the randomness ofGENERATIONS 0 and 1 is now gone. The

ability of GAs to quickly search spaces and center on the panern of Is and Os (known as schemata

or schemas) that gives the most fit population makes them potentially very valuable in pattern
recognition problems.
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• *****************************************************************

GENERATION 3 Average Fitness = 13.1995
****************************************************************~

Population Maximum Fitness = 16.3417
Population Average Fitness = 13.1995
population Minimum Fitness = 2.34259
Population Sum of Fitness = 263.989
Number of Mutations = 8
Number of Crossovers = 16

*---------------------------------------------------------------*

Chromosome Fit Parents X (a) Cl

0) 110111111010000010010011111010111 15.9 ( 0, 7) 32 1.747 0.156
1) 110111111010000010010011111010010 15.8 ( 0, 7) 32 1. 747 0.156
2) 110111111010000010010011111010111 15.9 (19,17) 32 1. 747 0.156
3) 110111111010000010010011111010111 15.9 (19,17) 32 1. 747 0.156
4) 110111111011000010010011111010111 15.9 (16, 4) 20 1. 748 0.156
5) 100111111010000010001110101001000 5.14 (16, 4) 20 1.247 0.114
6) 110111110010000010010001111010111 5.71 (17,18) 9 1. 743 0.140
7) 110111111010000010010011111010111 15.9 (17,18) 9 1. 747 0.156
8) 110111111010000010010011101011100 13.1 (12, 1) 11 1. 747 0.154
9) 110111111010001010010011101111010 13.7 (12, 1) 11 1. 747 0.154
10) 110111111010000010010011111010111 15.9 (19, 7) 32 1. 747 0.156

• 11) 110111111010000010010111111010010 6.06 (19, 7) 32 1. 747 0.187
12) 110111111010000010010011111001000 15.5 ( 9,10) 5 1. 747 0.155
13) 111111011011001010001110101010111 2.34 ( 9,10) 5 1. 982 0.115
14) 110111110010000010010011111010110 16.3 (15, 6) 32 1. 743 0.156
15) 110111111010000010010011111010111 15.9 (15, 6) 32 1. 747 0.156
16) 110111111011001010010011101011100 13 ( 5,14) 32 1. 748 0.154
17) 110111111010000010010011101111011 13.7 ( 5,14) 32 1. 747 0.154
18) 110111111010000010010011111010110 15.9 (15,19) 20 1. 747 0.156
19) 110111110010000010010011111010111 16.3 (15,19) 20 1.743 0.156
*---------------------------------------------------------------*
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• *********************************~******************** ***********

GENERATION 4 Average Fitness = 13.1729
*****************************************************************

Population Maximum Fitness = 16.3283
Population Average Fitness = 13.1729
Population Minimum Fitness = 2.75571
Population Sum of Fitness = 263.457
Number of Mutations = 13
Number of Crossovers = 22

*---------------------------------------------------------------*

Chromosome Fit Parents X (Ct) C,

0) 110111111011001010010011101011100 13 (16, 8) 25 1. 748 0.154
1) 110111111010000010010011101011100 13.1 (16, 8) 25 1. 747 0.154
2) 110111111011001010010011101011100 .13 (16, 6) 32 1. 748 0.154
3) 110111110010000010010001111010111 5.71 (16, 6) 32 1. 743 0.140
4) 110111111010000010001110101001000 2.76 ( 5, 8) 15 1. 747 0.114
5) 100111111010000010010011101011100 5.66 ( 5, 8) 15 1.247 0.154
6) 110111111010000010010011111010111 15.9 ( 4,10) 0 1. 747 0.156
7) 110111111011000010010011111010111 15.9 ( 4,10) 0 1. 748 0.156
8) 110111111011001010010011101011100 13 (16,16) 32 1. 748 0.154
9) 110111111011001010010011101011100 13 (16,16) 32 1. 748 0.154
10) 110111111011001010010011101001100 12.7 (16, 7) 32 1. 748 0.154

• 11) 110111111010000010010011101010111 13 (16, 7) 32 1. 747 0.154
12) 110111111011000010010011111010111 15.9 ( 4, 4) 1 1. 748 0.156
13) 110111111011000010010011111010111 15.9 ( 4, 4) 1 1. 748 0.156
14 ) 110111111010000010010011111010111 15.9 ( 0, 1) 20 1. 747 0.156
15) 110111111010000010010011111000010 15.4 ( 0, 1) 20 1. 747 0.155
16) 110111111010000010010011111010010 15.8 ( l, 7) 30 1. 747 0.156
17) 110111111010000010010011111010111 15.9 ( l, 7) 30 1. 747 0.156
18 ) 110111111010000010010011111001000 15.5 (12,19) 32 1. 747 0.155
19) 110111110010010010010011111010111 16.3 (12,19) 32 1. 743 0.156
*---------------------------------------------------------------*

The operational implementation of TM/GA uses a large number of individuals and a larger

number ofgenerations. The TM/GA uses 500 individuals and Il generations. Convergence to the

optimal answer is similar to that presented in this section. The process is repeated a number of

times for confidence. Correlations within the random number generators can play havoc with the

GA and cause it to produce poor optimal fits. Repetitions of the TM/GA process over the same

data set a num:X:r of times provides a number ofoptimal solutions. The solution with the highest
fitness is then selected from among the repetitions.
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• The convergence of a genetic population to a particular answer is a theoretically infinite

process. Given an infinite amount oftime the GA will find the answer. For the purposes ofTM/GA

where other estimation errors. such as the estimates of the slopes of the various scaling moments

in TM place a limit on the ultimate accuracy it is only necessary for the GA tO getthe answer within

a neighborhood. This may he viewed as a flexibility rather than a limitation since deterministic

algorithms work very hard to find the answer, but GAs can he limited to provide an estimate. The

precision of the estimate will he atthe discretion of the user.

*****************************************************************
GENERATION 5 Average = 14.9278

*****************************************************************
population Maximum Fitness = 31.4956
population Average Fitness = 14.9278
population Minimum Fitness = 5.24125
population Sum of Fitness = 298.557
Number of Mutations = 17
Number of Crossovers = 28

*---------------------------------------------------------------*

0) 110111111011001010010011101011100 13 ( 2,13) 32 1.748 0.154
1) 110110111011000010010011111010111 20 ( 2,13) 32 1. 716 0.156
2) 100111111010000010010011111010111 5.24 (14, 0) 32 1.247 0.156
3) 110111111011001010010011101011100 13 (14, 0) 32 1.748 0.154
4) 110111111011000010010011101011100 13 (8,12) 8 1.748 0.154
5) 110111111011001010010011111010111 15.9 (8,12) 8 1.748 0.156
6) 110111111010000010010011111010111 15.9 (17, 2) 24 1.747 0.156
7) 110011111011001010010011101011100 31.5 (17, 2) 24 1.623 0.154
8) 110111111010000010010011111010111 15.9 (12,16) 8 1.747 0.156
9) 110111111011000010010011111010010 15.7 (12,16) 8 1.748 0.156
10) 110111111011001010010011101011100 13 ( l, 0) 9 1. 748 0.154
11) 110111111010000010010011101011100 13.1 ( l, 0) 9 1. 747 0.154
12) 110111111011001010010011101011100 13 ( 8, 1) 32 1.748 0.154
13) 110111111010000010010011101011100 13.1 ( 8, 1) 32 1. 747 0.154
14) 110111111010000010010011111010010 15.8 (16, 7) 32 1.747 0.156
15) 110111111011000010010011111010111 15.9 (16, 7) 32 1.748 0.156
16) 110111111010000010010011101101000 13.3 (18,11) 5 1.747 0.154
17) 110111111010000010010011111010111 15.9 (18,11) 5 1.747 0.156
18) 110111111011001010010011101011100 13 ( l, 8) 1 1.748 0.154
19) 110111111010000010010011101011100 13.1 ( l, 8) 1 1. 747 0.154
*---------------------------------------------------------------*

•

•
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• In a GA spontaneous improvements in individual fiUles: are common, but the main concem

is that the population fitness increase from generation to generation. Individual7 ofGENERATION

5 has the parents 17 and 2 from GENERATION 4 and represents an obvious improvemenl If the

sequence of generations were continued it is likely that individual 7 would be carried over and the

improvements distributed among the population. It is important to note the well ordered structure

of the chromosome pattern after only 5 generations. All the individuals look similar and the

algorithm has largely exhausted the initial information and is making improvements slowly by

mutation.

The mutation/crossoverheuristic represents an extremely powerful optimizing capability. As

discussed in Goldberg (1989), theoreticaily there is only one condition under which a GA will fail

to find an optimal answer, and that situation is very hard to reproduce. Operationally there are sorne

considerations that relate to the initial amount ofinformation that a GA is fed about a problem prior

to search. Allred and Kelly (1993) show that a GA rapidly uses the initial information and grinds

to a hait (as seen by GENERATION 2). The speed at which a GA searches through a function

space is simply amazing, but this also means that a great deal of information must initially be

supplied if the GA is to find an answer in a complex space. Allred and Kelly (1993) proposed the

Differentially Applied Genetic Algorithm (DAGA) to help with this problem. DAGA involves the

process ofreintroducing variability into the search space during successive generations of the GA.
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• Appendix C: An Analytical Framework for Modelling the Fluctuating Echo.

It was originally thought that the direct analytical and numerical modelling of the power

specD1lm represented the best course of action for understanding the spectral behaviour of time

series of the fluctuating echo. However. the analytical forms were quickly bogged down by the

nllmber of assumptions necessary to realizc the functional forms of lognonnal multifractals. The

successes ofthe numerical model faroutweighed the numerical cumberances of the analytical forms

which eventually had to be integrated numerically. Thus. the numerical modelling approach was

pursued in 1 and 2 dimensions and led to the results in chapter 6 and 7.

As was mentioned in section 7 the analytical form of the power specD1lm is based on the

behaviour of the four point correlation function of O'~(x. t). From the evidence presented it is now

assumed that O'~(x.t) is a multifractal field. The following development terminates with the

definition of the power specD1lm as the four-point correlation function of O'(x. t).

Consider a one dimensional distribution of radar scanerers O'~(x. t) varying in time with an

inner dissipation scale 1..-1• The radar wavenumber is kJ2 (the factor 2 is for convenience as ittakes

into account the round trip distance). The pulse volume length is L. We will t:lke the outer scale

of the process to be 1 hence L will be restricted to the region L<l. We will use units such thatthe

velocity is unity. The amplitude of the reflected wave is:

L

A(k.t) = Je"'O'~(x.t)dx
-L

The measured intensity normalizcd for pulse length is:

1 •
l(k.t) ="iAA

(C.I)

(C.2)

We seek an expression forthe (ensemble averaged) specD1lm of I(k.t). for signaIs of duration

T. T is expected tO be long duration. The power specD1lm is expressed as :

T

1 J .E.(ro) = 2T eU'" < l(k. O)/(k. -cl> d-c
-T
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• The power spectrum is the forward Fourier transform of the correlation function of intensities.

This follows from the Wiener-Khimchin theorem (using the assumption that I(k,t) is stationary in

time). The limits ofintegration are cietermined by the size of the pulse volume. The powerspectrum

expressed in terms of the signal amplitudes is a function of the four point correlation function of

the amplitudes:

T L'

E.(CJ» =~f e'''''f e·..'e·'""'e·""e·..•< cr(Xl,O)cr(~,Ojcr(~, "t)cr(X4,"t) > dXldXzd~dx4d"t(C.4)
8TL -T -L'

•
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