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ANALYSES OF GRAVITY GRAIN FLOWS

ABSTRACT

This investigation consists of two separate parts. In
the first part the subaqueous flow of a cloud of coarse
particles down an inclined bed was investigated
experimentally and theoretically. This work is relevant to
the mechanics of transportation of ocean bed sediment in the
form of submarine grain flows. It was found experimentally
that after an initial growth period, the cloud collapsed as
a result of sedimentation. A theoretical analysis for the
development of a two-dimensional cloud was derived based
upon the overall conservation equitions; the sediment mass
balance equation, the ambient f£luid entrainment equation and
the linear momentum ~quation along the bed.

The second part of the thesis is a study of the flow and
spreading of a finite mass of dry cohesionless granular
material released from rest on rough inclines. Firstly, a
two-dimensional depth - averaged model which describes both
the longitudinal and the lateral spreading during flow down
a rough inclined plane was developed. From the results of
the numerical studies, it was concluded that the lateral
spreading is insignificant relative to the longitudinal
spreading. Therefore, a depth- averaged model which
describes the one-dimensional longitudinal spreading down
rough, curved beds was developed. It was concluded that the
traveling distance and velocity of the center of mass of a
rock pile can be approximately predicted by a simple
analysis of a point mass sliding down the same incline. The
long runout distance of the leading edge of the slide debris
can result from extreme spreading of the pile as it

accelerates down the slope after initial release.
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RESUME

L'2coulement sous-aqueux d'un nuage de grosses particules
ie long d'un lit incliné a eté etudié expérimentalement et
théoriquement. Ces travaux sont applicables aux mécanismes
de charriage de sédiment au fond des océans sous la forme
d'écoulements de grains sous-marins. Il a eté trouvé
qu'aprés une période de croissance initiale, le nuage
s'affaissait a cause de la sédimentation. Une analyse
théorique pour le développement d'un nuage bidimensionnel a
eté dérivée a partir des equations de conservation globale:
1'éguation de balance de la masse du sédiment, l'équation
d'entralnement du fluide ambient, et 1'équation de force 1la
d'impulsion linéairé le long du 1lit.

Une etude de 1'écoulement et de la propagation d'une
masse finie d'un matériau sec granuleux sans cohésion lachee
du repos sur des pentes rugeuses est presentée.
Premierement, un modeéle bidimensionnel a profondeur moyenne
décrivant la propagation longitudinale et latérale durant
l1'écoulement le long d'un plan rugueux incliné est
développé. D'apres les résultats de les études numériques,
il est conclu que la propagation laterale est sans
importance en comparaison a la oropagation longitudinale.
Ainsi, un modéle a profondeur moyenne décrivant la
propagation longitudinale unidimensionnelle le long de lits
rugueux courbes est developpé. I1 est conclu que 1la
distance parcourue et la vitesse du centre de masse du tas
de rochers peuvent &tre predites par une analyse simple
d'une masse ponctuelle glissant le long de 1la méme pente.
La longue portée du bord d'attaque du tas de debris
d'avalanche peut etre le résultat d'une propagation extréme
du tas lorsqu'il accélére le long de la pente apres le

13chage initial.
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GENERAL INTRODUCTION

This thesis contains the results of two studies which are
distinctly different bu: are nevertheless related; both deal
with problems of a geotechnical nature related to the motion
of discrete geological macerials down slopes. In both cases
the discrete nature of the materials is taken into account,
but continuum 'fluid-like' models are used to model the flow
behaviour. Both deal with unsteady, developing flows
resulting from the initial release of a finite mass of
particulate materials on rough inclined beds. The
investigations examine the flows from the time of initiation
until the collapse phase when all motion ceases. The main
focus is on the mechanics of the flow processes.

The first study, Part I, deals with the flow of
relatively small particles which are suspended in a fluid,
where sedimentation and turbulent mixing of the fluid are
important. Examples of such flows are submarine debris
flows which might be initiated by underwater earthquakes,
and powder snow avalanches. Submarine debris flows are of
current interest in connection with o0il exploration on the
continental shelf regions.

The study of Part I corresponds to one limit of the
general particulate flow problem in which the presence of
the interstitial fluid plays an essential role in the flow
mechanics. In this sense, we regard the particles to be
'small' and/or the mass density of the particles to be not

too different from that of the surrounding fluid.
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On the other hand, the second study, Part II, deals with
the other limit in which the interstitial fluid effects are
negligible. Attention is directed to the mechanics of
rockfalls that initiate on steep slopes, 'flow' down the
slope and eventually come to rest on a shallower slope or a
horizontal region. Rockfalls of very large masses have been
observed to exhibit extremely long runout distances. This
phenomenon has puzzled geophysicists for many years and
numerous hypotheses, based upon unusual constitutive
behaviour of the discrete rock material, have been proposed
to explain it. At best, all are controversial. Turthermore
no detailed calculations of flow events based upon these
hypotheses have been performed. Part II contains a
numerical study of the rockfall problem using constitutive
equations which are commonly accepted in quasi-static flows.

The main body of the presentation has been divided up
into two seper te sections, Part I and Part II, which

discuss each of the separate problems in detail.

-¥1i-
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SUBAQUEOUS FLOW OF A CLOUD OF COARSE PARTICLES
DOWN AN INCLINED BED

ABSTRACT

The subaqueous flow of a cloud of coarse particles down
an inclined bed was investigated experimentally and
theoretically. This work is relevant to the mechanics of
transportation of ocean bed sediment in the form of
submarine grain flows. These flows are of current interest
in connection with ocil exploration on the continental shelf
regions.

Following a set of preliminary experiments, large scale
experiments were carried out in a 4 m long tilting water
tank using suspensions of sand particles and polystyrene
beads. It was found that aZter an initial growth period,
the cloud collapsed as a result of sedimentation. This was
in strong contrast with the previous studies involving only
fluids by Beghin, et al. (23) which showed the cloud would
continue to grow without bound. Dimensional arguments and
experimental observations suggested that the entrainment
coefficient might be expressed as a function of both the
Richardson number and the ratio of the particle net fall
velocity to the cloud center of mass velocity.

A theoretical analysis for the development of a two-
dimensional cloud was derived based upon the overall
conservation equaticns; the sediment mass balance equation,
the ambient fluid entrainment equation and the linear
momentum equation along the bed. The mass diffusion
coefficient involved in the model was taken as a multiple of
the eddy viscosity; it then was related to the shear stress
distribution within the cloud. The predicted behavicur of
the flow was found to agree well with the experimental

results.
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CHAPTER 1
INTRODUCTION

Ocean bed sediment can be transported in the form of
subaqueous grain flows moving down slopes under the action
of gravity. The development and maintenance of such flows
and the forces generated when they strike and flow around
underwater objects are of interest in connection with oil
exploration on the continental shelf regions. We may
classify the flows broadly as 'two-dimensional' or 'three-
dimensional'. Two-dimensional flows which are confined in a
channel-like path of approximately uniform width have
received the most attention. Three-dimensional flows, such
as those characteristic of a current spreading in fan-like
fashion over a surface, are important to the geologist, but
little is known about their hydraulic or sedimentological
properties.

Among two-dimensional subaqueous flows, two distinct
types may be distinguished: surges involving a finite wvolume
of dispersed particles and uniform flows or currents.
Surges (alternatively called negatively buoyant clouds) are
nonuniform, unsteady phenomena. They may be formed in
nature by events such as a large slump or an underwater
earthgquake which creates a large volume of dispersed
sediment. Gravity currents of these kinds occur in many
different natural situations, and knowledge of their
properties is of importance in many scientific disciplines.
For example, powder snow avalanches which take place in an
aerial environment are analogous to subaqueous debris flows.
In fact, model studies of snow avalanches have been carried
out in the laboratory (1,2) using solid particles released
in water.

The mechanics of subaqueous grain flows and related kinds
of gravity currents is poorly understood, despite the
frequent occurrence of and the serious damage caused by
these flows. The present study is an attempt to further our

1
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understanding of these complex flows. After a brief
literature review presented in the next subsection,
attention is directed to two-dimensional flows which involve
the underwater release of a cloud of solid particles and the
subsequent flow of the cloud down an inclined surface. Two
sets of laboratory experiments (small and large scale) and
an analysis of the growth and collapse of the sedimenting

cloud are presented.

1.1 Review of Previous Work

A gravity current or density current is the flow of a
fluid within another caused by a density difference between
the two fluids. The difference in specific weight that
provides the driving force may be due to either dissolved or
suspended material or to temperature differences. At the
leading edge of a gravity current there is a head which is
characterized by a higher depth than the rest of the
current. The head is followed by the body of the current
which moves, in general, as a steady flow. The shape of a
buoyant cloud resembles the head of a gravity current. 1In
this review, attention is directed toward the subaqueous
gravity currents which are composed of particle suspensions
originating from continuous sources or instantaneous

sources.

1.1.1 Gravity Currents and Related Phenomena

In the ocean, gravity currents of interest to this study
consist of suspended mud, silt or sand. Examples of the
damage that can be caused by this type of mass movement are
the breaks in submarine telephone cables in 1966 and 1968
that were due to earthquake-triggered turbidity currents
(3). Studies of turbidity currents have been performed
mainly in two contexts, the geological context and the
hydrodynamics context.

In geology, the concept of turbidity currents first
attracted great interest after the suggestion by Daly (4)
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that turbidity currents produced by wave action might flow
down the continental shelves and erode submarine canyons.
Kuenen (5) performed experimental studies to test this
hypothesis and his results supported the idea. However, the
interest in turbidity currents was changed from considering
them as an ei1o0sive agent to their capacity to transport
sediments intc deep water and to form graded beds. Kuenen
(6) produced graded beds in laboratory experiments with
mixture of sand and mud. Kuenen and Migliorini (7) also
used laboratory experiments to explain graded beds in the
Apennines in Italy. Hezzen and Ewing (8) used their
experimental results to explain cable breaks and sand layers
in the Atlantic Ocean. Middleton, in his classical papers
(9,10,11), reviewed in length both the geoclogical and the
hydrodynamical aspects of the subject. In his first paper,
Middleton studied experimentally the flow at the head of
density currents, including the nature of the motion around
and within the head using a saline water beneath fresh
water. In the second paper, the laws of uniform flow of the
density currents were studied and in the third paper,
deposition of the sediment from the turbidity current and
the formation of graded beds were discussed. Lengthy
reviews on the history of the studies of the turbidity
currents were presented by Middleton (12) and Simpson (13).

Hydrodynamic investigations of gravity currents can be
classified under two main categories, the flow of the
current along horizontal boundaries and the motion of the
current flowing down a slope. It was found that when a
current flowed along a horizontal boundary, the head was a
controlling feature of the flow. The dynamics of the head
was investigated thoroughly by Britter and Simpson (14,15).
They showed how mixing occurring immediately behind the head
determined the rate of advance of the current. A semi-
empirical analysis was presented to describe the
experimental results. Nevertheless, the flow of gravity

currents on horizontal boundaries is often not the case in
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practical situations. The continental shelves over which
turbidity currents flow are not flat and the motion of
avalanches is essentially from one level to another.

The motion of a gravity current flowingy down a slope has
received some attention. Recently, Hopfinger and
Tochon-Danguy (1,2) studied the flow of powder snow
avalanches experimentally. Powder snow avalanches
correspond to gravity currents in the limit where the
density difference is small. A common salt solution was
used by Hopfinger and Tochon-Danguy to model the avalanche
and a simple theoretical analysis was proposed to predict
the velocity and the development of the avalanche. From the
experimental results they concluded that, the entrainment
coefficient is only a function of the angle of inclination.
Britter and Linden (16) presented results of an experimental
study of gravity currents traveling down an incline. In
these tests the slopes ranged between 0 and 90 degrees, in
contrast with the previous experiments which covered only a
limited range of the angle of bed inclination. The emphasis
in these experiments was on the behaviour of the head of the
current. The experiments provided evidence of considerable
mixing and entrainment of the ambient fluid. It was
concluded that, on small slopes (less than 5 degrees) the
velocity of the head decreased with distance as the
component of buoyancy force was insufficient to overcome the
friction at the lower boundary. Also, they found that the
head velocity was constant over the whole range of slopes
from 5 to 90 degrees. They explained these results by
stating that the increase of buoyancy force was counteracted
by the increase in the entrainment as the angle of
inclination increased.

Ellison and Turner (17), on the other hand, were
interested in the flow behind the head. They studied the
properties of this steady flow and showed that the mean
velocity down the slope was independent of the distance

downstream from the source. However, the thickness of the



current increased downstream at a constant rate due to the
entrainment of the ambient fluid.

The gravity currents mentioned above were modeled
experimentally using a common salt water solution. This
corresponds in real situations to either of two categories,
non-particulate material gravity currents or equilibrium
turbidity currents where the rate of erosion is equal to the
rate of deposition. The first case includes most of the
atmospheric gravity currents or oceanic gravity currents
(river plumes at the surface and salt wedges on a river
bed). However, in the case of powder snow avalanches
(subaerial gravity currents) and non-equilibrium turbidity
currents, sedimentation and erosion play a crucial role in
the development of the flow. Evidence of fan formation and
canyon erosion were found and discussed by Daly (4) and
Kuenen (5); these are instances where erosion is a dominant
factor. Erosion of the snow cover was discussed in
References (1,2). An example where sedimentation is
dominant is described by Kuenen (6); the formation of a
graded bed was evident from both field observations and
experimental studies.

Several disadvantages of attempting to model turbidity
currents by using fluids can be identified by discussing the
following three features of the flow: the entrainment
coefficient, the lower boundary resistance and the form drag
forces.

Entrainment implies a flow of ambient fluid into a
turbulent flow. In the case where a gravity current is
modeled using a dense fluid , the degree of turbulence is
the major factor to be considered in evaluating the
entrainment coefficient. Based on this concept, the
entrainment coefficient has been expressed as a function of
the Richardson number (the inverse sqguare of the densimetric
Froude number). Experimental observations of the
nonhomogeneous flows, jets, plumes and mixing layers in
References (16,17,19,20) show that the entrainment
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coefficient may vary significantly for the various types of
flows. A comparison of the entrainment coefficient values
for different types of flows of miscible fluids as a
function of the Richardson number was presented by Turner
(21). While correlations are possible for each type of
flow, there are differences in entrainment coefficient
values between the various types of flow. In cases like the
present study which involve discrete solid particles and a
fluid (instead of two miscible fluids) we must generalize
the entrainment concept to account for the possibility of
sedimentation. This can be clearly seen if we consider a
turbidity current which is composed of a suspension of large
particles having high fall velocities which flows on an
incline of small slope. A subsiding current due to
sedimentation and no entrainment are to be expected. 1In
fact, only negative entrainment (or "detrainment") is
possible in this situation.

Typically (16), the stress at the lower boundary has been
considered in analyses of density currents only for the case
of small bed slopes. The effects of bed friction have been
assumed negligible for large slopes (l16). These assumptions
are appropriate for the case of a dense fluid flowing
adjacent to a smooth bed boundary. A current consisting of
particle suspensions flowing down a rough bed composed of
particles is a quite different situation since the
interaction between the particle suspensions and the bed
particles has to be considered. Bed friction due to
particle interactions can be much larger than that due to a
fluid alone.

The form drag of the density currents involving only
fluids typically has been neglected since it is small
compared to the (negative) buoyancy force during flow down
steep slopes. However, in the present case in which the
lower boundary resistance force is significant, the form
drag is no longer negligible in the streamwise force balance

equation.
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Semi-empirical descriptions of density currents have been
proposed in References (1,9,10,14,15,16). Parker (22)
recently introduced a simple model to analyze a continuous
turbidity current, considering the sedimentation as well as
the erosion. However, he only considered the case where
erosion is just equal to sedimentation. Moreover, he
neglected the entrainment and both the form drag and the
lower boundary resistance so that a steady state flow was
obtained. The analysis provides only qualitative results and
no quantitative bounds for the case where either the

sedimentation or the erosion is dominant.

1.1.2. Gravitational Convection from Instantaneous Sources

Morton et al. (19) studied both experimentally and
theoretically the flow of a rising cloud of light fluid in
another fluid. The idea of the entrainment coefficient was
first introduced by them, and they made it the basis of
their theory of plumes. Conservation laws of volume ,
momentum and buoyancy were the basis of the analysis which
involved a constant entrainment coefficient. An exact
solution of the governing equations was given to estimate
the maximum height that a cloud might reach under a given
set of conditions.

More recently, Beghin et al. (23) studied the flow of an
'inclined thermal' (negatively bouyant cloud in these
experiments) which moves down a smooth inclined bed. Most
of the experiments were performed using a common salt
solution as the dense fluid. Some runs were made with a
sand suspensior. The sand used was graded to give grain
sizes less than 20 um. Such small grains have a very small
fall velocity in water; results of the tests with sand did
not differ areatly from those obtained with the miscible
fluids.

It was found that the spatial growth rates of the height
and length of the cloud were linear functions of the angle

of inclination. The height to length ratio was found to be
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constant for a given bed slope. The shape of the cloud was
well approximated by half an ellipse. The entrainment
coefficient was found to be constant for a given bed angle
of inclination but increased linearly with the increase of
bed slope.

A theoretical model based on the conservation laws of
mass and linear momentum with the assumption of small
density differences was developed (23). The thecry
predicted that the cloud would continue to grow linearly
with the traveling distance, and the velocity would decay as
the inverse of the square root of the traveling distance.

It may be concluded from the above review that, there is
a lack of experimental data on density currents in which
there are particles large and dense enough to play an
important role in the flow dynamics. There is little
available experimental or theoretical information on the
entrainment, erosion and sedimentation processes in the
context of gravity currents. The present study will focus
on an idealization of the natural problem in an effort to
gain some understanding of the mechanics involved in some of

these questions.



CHAPTER 2
EXPERIMENTAL. INVESTIGATION

The experiments were directed toward investigating the
flow behaviour subsequent to the subaqueous release of a
cloud of dense, coarse particles down a rough inclined bed.
The emphasis of these experiments was on understanding how
the tendency of the particles to sediment affects the
entrainment process and the growth and collapse of the
cloud. The bed resistance due to particle interactions and
the form drag of the moving cloud were significant in these
experiments. The results of some preliminary exploratory
experiments performec¢ in a small scale apparatus will be
described first. These are followed by the presentation of
results obtained in a larger apparatus designed on the basis

of the preliminary experiments.

2.1 Preliminary Tests

Small scale laboratory experiments were carried out to
determine the essential flow characteristics as a
preliminary to the design of a larger scale tilting tank.

The small scale experiments were carried out in a
plexiglass water tank a sketch of which is shown in fig.
2.1. The tank was 2 m long, 0.12 m wide and 0.3 m deep. It
could be capped and set to any angle of inclination from 0
to 45 degrees. A release gate spanning the width of the
tank was positioned at the upper end of the tank. It was
used to release a suspension of particles into the fresh
water contained in the tank. A collection chamber was
positioned at the lower end of the tank. Its bed level was
lower than the bed level of the tank in order to both
collect the particles which reached the end of the tank and
to reduce the possibility of waves reflected from the end
wall.

Some of the tests were performed with a suspension of

sand having an average diameter of 0.1-0.2 mm, specific

9
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gravity of 2.5 and particle free fall velocity of 0.048
m/sec. Further runs were performed with a suspension
composed of spherical polystyrene beads with an average
diameter of 1-2 mm, specific gravity of 1.12 and particle
free fall velocity of 0.036 m/sec. The angles of repose of
the sand and the beads particles were determined to be 36
and 26 degrees respectively. The bed of the tank was
covered with two sided sticky tape normally used for holding
down floor carpets. Dry particles of the same type that
were used in the flowing cloud experiments were placed in a
pile on the top of the tape. A layer of particles became
attached to the tape and the excess particles were removed
.eaving a rigid surface having a roughness corresponding to
that of the individual particles. ©Note that while this
creates a roughened bed, it does not permit the possibility
of erosion which may be present in some natural flows. The
experiments were performed at bed angles of inclination of
30, 34, 38 and 44 degrees. During the introduction of the
beads behind the release gate prior to the test run, air
bubbles sometimes became attached to the beads causing them
to flocculate. To remedy this a small amount of Kodak
'Photo-Flo 200 Solution' was added to the suspension to
reduce the surface tension of the water and minimize the
development and attachment of the air bubbles.

The tank was adjusted to the required angle of
inclination and then filled with fresh water. The required
volume of material was then introduced behind the release
gate. The initial volume per unit width ( A ) for both the
sand and the bead suspensions was .003 m?. The initial
masses of sand and beads were .5 kg and .25 kg recpectively.
The gate was quickly withdrawn by hand and the suspension
started to flow down the slope. Care was taken to release
the cloud as smoothly as possible, consistent with a rapid
release. The tank was repositioned to the hcrizontal just
after the cloud collapsed so that the amount of solids which

sedimented from the cloud during its travel could be
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determined as a function of the traveling distance.

The moving cloud was photographed at regular tine
intervals using a 35mm Canon A-1 camera with a high speed
motor drive. The exposure time was (1/125) sec. A digital
stop watch placed adjacent to the tank recorded the time
each photograph was taken (within an accuracy of 1/100 sec).
A 50mm x 50mm grid covering the back of the tank assisted in
the determination of the cloud velocity and geometry. From
the photographs, the following quantities were measured: the
cloud's height and length, its area and circumference. By
knowing the time between subsequent photographs the front
velocity could be determined.

From the photograph, it was relatively easy to define the
front position, but the bulgy nature of the contour made the
determination of the cloud length somewhat subjective. A
smooth curve was drawn by hand through the 'middle’' of the
irregular cloud boundary and was used to define the cloud
geometry for the determination of its overall length 1,

maximum height h, area A and circumference P.

2.2 Results and Conclusions

All of the data presented in this section were obtained
from slide-by-slide examination of the 35mm film of the
flow. The observed cloud of particulate material was found
to be similar in shape to the two-dimensional thermal on
inclined boundaries studied by Beghin, et al. (23). The
latter involved the flow of miscible fluids of fresh and
salt water. However, the coarse particle cloud did not
continue to grow without limit as was the case of the
thermal, but it collapsed after an initial growth period.
The shape of both kinds of clouds can be approximated by
half an ellipse as will be later shown in Section 3.1. In
the following discussion, the odd-numbered figqures will
refer to the sand suspension clouds and the even-numbered
figures will refer to the bead suspension clouds. The ratio
of the height to the length of the cloud (K = h / 1) was

s ;:a%@nﬁ“
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found to be practically constant for a given angle of bed
inclination as can be seen in Figs. 2.2 and 2.3. 1In these
figures, the ratio K was varied somewhat with distance.
Near the end of the cloud travel K dropped considerably
during the final collapse phase. For the same angle of bed
inclination, it can be noticed that the ratio K for the bead
suspension cloud was somewhat higher than that of the sand
suspension cloud. This can be attributed to the lower fall
velocity of the beads which allowed for larger vertical
growth of the cloud.

Figs. 2.4 and 2.5 show the length of the cloud normalized
by the square root of the initial volume per unit widthJ_K;,
versus the traveling distance normalized by the same factor.
The general behaviour which is obvious from these figures is
that the cloud initially grew in size, reached a maximum and
then collapsed. Fig. 2.4 shows that at the largest angle of
inclination ( 44 degrees ), the sand cloud just reached 1its
maximum size and started the collapse phase at the end of
the tank. At the same bed inclination angle of 44 degrees,
the plastic bead cloud had achieved its maximum size but had
not completed its collapse phase by the end of the tank.

Figs. 2.6 and 2.7 show the cloud mean volumetric
concentration against the traveling distance normalized by
J—K;. The mean volumetric concentration was calculated for
each slide by using the measuréd cloud area and the amount
of material within the cloud at that particular time. The
amount of particulate material within the cloud at a
particular station was determined by subtracting the amount
deposited on the bed up to that station from the total
amount of material that was initially released. These
figures show that the concentration initially decreased, due
to the expansion of the cloud and the associated ambient
fluid entrainment. During the final stage of the collapse
of the cloud, the concentration increased again as a result
of the detrainment of the cloud fluid.
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Figs. 2.8 and 2.9 show the cloud Fﬂont velocity
normalized by the initial buoyancy ( g; AE’ 1 versus the
traveling distance normalized by A%/z, where g = g %f Co, and
g is the gravitational acceleration, Ap is the density
difference between the particle Pp and the ambient fluid
p, and c, is the initial concentration before the release of
the cloud. These figures show that the cloud reached a
maximum velocity (which increased with the angle of bed
inclination) and then decelerated until it finally

collapsed.

Based on the above observations, the processes of growth
and collapse could be described as follows. As the gate is
withdrawn, the cloud starts to accelerate down the slope.
The motion of the particles develops shear stresses between
the different layers of the cloud whi~h in turn create
dispersive stresses ( due to the collisions between the
particles (24)) that cause the suspension to expand. Shear
instabilities create turbulence within the cloud which, in
addition to the high concentration, reduces the particle
fall velocity which in turn enhanntes the growth of the
cloud. Entrainment of the ambient fluid into the cloud
decreases the solids concentration. As the cloud grows in
size the streamwise mean flow velocity and mean flow shear
rates decrease as a result of the decreased (negative)
buoyancy forces, the form drag and the bed resistance.
Particle sedimentation becomes increasingly important as the
cloud slows down and the flow thereafter enters the collapse
phase in which the cloud volume decreases. Finally all of
the particles are deposited on the bed and motion ceases.

2.3. Large Scale Experiments

The cdesign of the large scale apparatus was based on the
experience gained by the preliminary experiments which were
described in the previous section. One apparent problem
with the preliminary experiments was the small size of the
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apparatus. It was noted that the length of the tank was
insufficient for the complete initiation, growth and
collapse cycle at high angles of bed inclination.
Therefore, the length of the new apparatus was doubled to be
4 m. It was also observed in the preliminary tests tha* the
flow was not truly two-dimensional since the width of the
small tank was small ( 0.12 m ). Thus, the width of the new
tank was increased to 0.3 m to reduce the side wall effects.
Finally, since the initial volume of the suspension planned
for the new experiments was larger than that used in the
preliminary experiments, it was expec'.ed that the height of
the cloud would be correspondingly increased. To avoid
disturhances to the flow of the cloud due to the presence of
the top wall (ceiling), the depth of the new tank was
doubled and made equal to 0.6 m.

Another difficulty experienced with the small apparatus
was the release of the cloud. If the gate was withdrawn too
quickly, large disturbances were created in the water and
the suspension tended to diffuse and then to sediment
immediately without forming a traveling cloud. Therefore, a
release mechanism was designed for the large tank that would
not only minimize this disturbance during the release of the
cloud but would also achieve consistent releases for all the
experimental runs.

Fig. 2.10 shows a photograph of the water tank. The tank
was 4 m in length, 0.3 m in width, 0.6 m in depth and could
be capped and set at any angle of inclination from 0 to 45
degrees. Fig. 2.11 shows the detailed drawing of the tank.
The tank was made of an aluminum frame with glass sides; the
supports were made of steel. Without going through any of
the structural details, it suffices to say that the design
met the specification c¢f the Canadian Code (CSA standard
CAN3-S16.1 (37)). The tank was completely built in the
Hydraulics Laboratory of the Department of Civil Engineeriag

and Applied Mechanics, McGill University.
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During the preliminary tests, the front lighting
technique produced a shadow of the cloud which in some cases
was confused with the cloud itself. In the new experiments,
a different lighting technique was used. The back glass
windows of the tank were covered with opaque Mylar sheets
and spot lights were positioned behind the tank and directed
towards the Mylar sheets. The opaque Mylar sheets
effectively diffused the light to provide a uniform
backlighting. The experimental runs were carried out at
night with all the laboratory lights turned off so that the
only source of light was the spot lamps. Thus, as the cloud
flowed, it blocked the background light and a sharp dark
image of the cloud could be seen ( see Figs. 2.12 , 2.13 and
2.14). The photographic technique was the same as that
explained previously for the preliminary tests. However,
the negatives were underexposed by two stops and
overdeveloped in order to increase the contrast.

The tests were performed with suspensions similar to
those used in the preliminary experiments. However, the
initial volumes per unit width ( A, ) for both the sand and
the bead suspensions were 0.018 m2and 0.0226 mzrespectively.
Initial masses of 7 kg and 4.5 kg of sand and beads
respectively were used. The experimental procedures were

similar to those of the preliminary tests.

2.4 Results
The results were obtained from slide—-by-slide examination

of the 35mm film of the flow. The data were reduced from
the slides by an interactive program written for a Hewlett-
Packard HP model 9816 microcomputer with a HP Graphics
Tablet model 9111A. A photograph of the data acquisition
setup shown in Fig. 2.15.

A slide projector was used to project the image from the
slides towards a mirror inclined at 45 degrees to the
graphics tablet. The outer boundary of the cloud was traced

using the special graphics tablet pen (stylus). The
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graphics tablet recorded the coordinates of the traced
points with respect to a predetermined point of reference.
The computer program then used this input to calculate the
cloud length and height, the circumference, the area of the
cloud and the center of area position relative to a fixed
origin. The mass of the particles and the distribution of
the material deposited on the bed at the end of each
experimental run was part of the input to the computer
program. Hence the mean volumetric concentration of the
cloud could be calculated for each slide. Also, the time of
each slide was input to calculate the center of mass
velocity between two consecutive slides. This calculation
assumed that the particle concentration was distribiLted
uniformly throughout the cloud. Several other parameters
were calculated and these will be discussed later in Chapter
3. The collected data were stored on a disc and another
program was used to retrieve the stored data and to plot it
in the form which will be presented in the next Chapter.

The obtained results were in good agreement with the
general trends observed in the preliminary tests. The
problems encountered during the preliminary tests were
eliminated to a great extent. However, another problem
arose during the experimental runs with polystyrene beads.
The presence of air in the water inside the tank caused the
formation of air bubbles on the beads. The combined air
bubble and the bead configuration was sometimes positively
buoyant and instead of flowing down the slope under gravity,
the beads rose to the ceiling of the tank! The problem was
solved by heating the water, cooling it and then storing it
in a storage tank for 24 hours prior to running the
experiment. Detailed results of these tests will be
presented and compared with the theoretical predictions in

Section 3.4.



CHAPTER 3
THEORETICAL ANALYSIS

A two-dimensional model of the flow of a cloud of coarse
particles down an inclined bed is presented in this Chapter.
The analysis is based on the consideration of the overall
conservation equations for the cloud instead of using a
detailed infinitesimal element approach. An estimation of
the parameters involved in the governing equations is
presented. A new function to estimate the entrainment
coefficient is proposed in Section 3.2.3. A comparison
between the experimental results and the predictions
obtained from the numerical solution of the governing

equations is presented in Section 3.4.

3.1 The Governing Equations

The analysis consliders a two-dimensional flow of a cloud
down an inclined rough boundary and treats the cloud as a
continuum. The particles are regarded as sufficiently large
that electrostatic and other interparticle forces can be
neglected in the continuum model. The flow Reynolds number
is assumed to be sufficiently high such that the viscous
effects can be neglected for the overall flow development.
(Note that the Reynolds number associated with the particle
fall velocity is not necessary large and the particle fall
velocity 1s determined in an appropriate way.) Fig. 3.1
shows a sketch of the cloud and the considered control
volume. The control surface is shown on Fig. 3.1 as a line
which separates the ambient fluid from the body of the
cloud. The shape of the control volume is taken to be a
half elliptic form which, as will be seen later, is a good
representation of the observed flow. The ambient fluid is
assumed to be infinitely deep and unstratified. The bed is
inclined at a constant angle of inclination. The motion of
the cloud is referred to a rectangular Cartesian coordinate

system in which the x-axis is directed downstream tangential

17
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to the bed and the y-axis is normal to the bed.

i The governing equations of the motion are the sediment
mass balance equation, the ambient fluid entrainment
equation and the linear momentum equation along the bed.
These are similar to but extended versions of equations
presented by Beghin, et al. (23), Britter and Linden (16)
and Ellison and Turner (17).

The mass balance equation is

d a - dc’
at[p,c Al pp[wcosrc+e,%]l (3.1)

where
Pp = particle mass density

c = volumetric mean concentration
A = area of the cloud

\ = particle fall velocity

$ = bed angle of inclination

€s = mass diffusion coefficient

de* _ . .

15; = concentration gradient at the bed

1 = length of the cloud

Equation (3.1) relates the rate of increase of the mass
solid particles within the cloud (Pp ¢ A ) to the difference
between particle sedimentation and diffusion rates at the

-~ bottom of the cloud over the length 1.

4
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The ambient fluid entrainment egquation is chosen to have

a standard form

Qe (1-c)A)=p PUE (3.2)
where

P, = ambient fluid mass density

P = perimeter of the cloud

u = center of mass velocity

E = entrainment coefficient

The linear momentum equation along the bed is

agt-[pa(1-c)Au+kvpaAu+ppcAu]=

ApcgAsiny -ApcgAcos? tan ¢ - %‘P, Cp h v? (3.3)

where
k, = added mass coefficient
Ap-pp-p,
g = gravitational acceleration
¢ = bed friction angle for the solid particles

chosen to be approximately equal to the
angle of repose of the material

[
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Cp drag coefficient

h height of the cloud

The first term in the square brackets on the left hand
side of equation (3.3) is the momentum of the cloud £1luid,
the second term is the added mass contribution and the third
term is the momentum of the solids. The first term on the
right hand side is the net buoyant weight component, the
second term is the bed friction force (assuming that the
shear stress at the bed equals tan¢ times the normal
stress) and the third term is the form drag force.

It was suggested by the experimental results that the
shape of the cloud can be approximated by half an ellipse
having major and minor axes 1 and 2h respectively (Fig.
3.1). 1In order to verify this assumption, the area and the

perimeter of the cloud were expressed in these forms

P-Sz\/h_l— (3.5)

where S; and S, are shape factors. For the half elliptic
shape, S; is equal to m /4 and S, can be expressed as (23)

1
2 2
(4K »1) (3.6)

KZ

s:-

Nl

where K is the height to length ratio ( h/l). Tables (3.1)
and '(3.2) show the average values of the shape factors S ;
and S, for both the sand suspension and the beads suspension
respectively as calculated from the experimental data. The
tables show a reasonable agreement between the theoretical
values and the corresponding experimental values.
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3.2 Estimation of Parameters

In this Section, all the parameters appearing in the
governing equations (3.1), (3.2) and (3.3) will be
presented.

For the added mass coefficient k, in equation (3.3), it
is reasonable to take the value of this coefficient for an

elliptic cylinder as given by Batchelor (25)

2h 3.7
For the present study, the value of the form drag
coefficient for the flow over an elliptic shaped body (3.1 <
h/l < 0.2) was taken to be 0.05 based upon data from Heorner
(26).

3.2.1 The Pall Velocity of the Particle

In the classical sediment transport literature, the
concentration of the suspended sediment load is commonly
small enough such that the f£all velocity w on the right hand
side of equation (3.1) is customarily taken as the free fall
velocity. Alsc the bed angle of inclination is commonly
very small such that the value of the fall velocity is used
instead of its component normal to the bed. However, in the
present study, the bed angle of inclination is high and the
cosine of the angle of bed inclination can no longer be
taken to be one. Also the cloud mean concentration is
relatively high and the fall velocity of the particles
within the suspension needs to be determined.

Maude and Whitmore (27) presented the following simple
relation to express the particle fall velocity as a function

of the concentration

w = 1 - &
Wo ( ) (3.8)

where w, is the free fall velocity of a particle in still

surroundings and the exponent o« is a function of the

Reynolds number. The range of  values are ( 2.5 - 4.5 )
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corresponding to a range cf the Reynolds number ( 1 - 1000).
A reasonable value for the Reynolds number was chosen to

give o = 3.25.

3.2.2 The Mass Diffusion Coefficient

The mass diffusion coefficient €5 can be written as
-ﬂe (3.9)

where‘3is constant and € is the kinematic =3ddy viscosity
(the turbulent momentum diffusion coefficient). The
reciprocal of B is often called the turbulent Schmidt number
(Daily and Harleman (28)). The value of [3 apparently
changes with the concentration, however, the vcriation is
small (Vanoni (29)). The approximate value of the Schmidt
number can be taken to be 0.7 (28). The kinematic eddy
viscosity can be expressed considering the Prandtl mixing-

length theorsy as

e =121,
dy (3.10)

where L is the mixing length and v is the velocity at any
position y. It is reasonable to assume that the bed
boundary layer is sufficiently small that it can be
neglected. This assumption suggests that the mixing length
might be taken to be constant cver the depth. Since the
mixing process depends on the shear stress distribution
which in turn depends on the velocity distribution across
the flow, a flow which has a velocity distribution similar
to that of a gravity current head was searched for. It was
found that the wall jet flow has a velocity distribution
(Guitton and Newman (30)) similar to the velocity
distribution in gravity current heads for the cases where a
salt water solution was used to generate the gravity
currents (Hopfinger and Tochon-Danguy (1), Ellison and
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Turner (17)). Recently, Hermann and Scheiwiller (31) have
used an ultrasonic doppler technique to successfully measure
mean particle velocity profiles in a steady current
consisting of a suspension of polystyrene beads. The
measured profiles resembled the ones measured for the wall
jet flow. An expressicn given by Schlichting (32) for the
mixing length for a wall jet is

L =10.068Db (3.11)

where b is the width of the jet (taken equal to the height h
of the cloud for the present work). Combining equations
(3.10) and (3.11) and substituting into equation (3.9)
yields a simple expression for the mass diffusion

coefficient

e, = B ( o.ossn)zng—;l (3.12)

The right hand side of equation (3.1) should be evaluated
at the bed level since mass leaves the control volume
through sedimentation at the bed level. Thus, both the
concentration derivative in the right hand side of equation
(3.1) and the velocity derivative in equation (3.12) have to
be evaluated at the bed level (again remembering that the
bed boundary layer is being neglected in the present
discussion). Since both the velocity and the concentration
profiles were not available from the present experimental
study, an approximation of the shape of these prcfiles was
made based on the previously measured profiles for gravity
current heads (1,18,31). Thus, an estimate of the required
gradients of the velocity and concentration can be made.
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3.2.2.1 Similarity Assumption

It was found from the preliminary experiments that, for a
given angle of bed inclination, the ratio of the height to
the length of the cloud K was approximately constant (Fig.
2.4 and Fig. 2.5). Also these observations were consistent
with the results of the large scale experiments which can be
seen clearly from Figs. 3.2 and 3.3 for the sand clouds and
the bead clouds respectively. These results suggested that
a similarity assumption regarding the profiles of both the
velocity and concentration distribution across the cloud
could be made. It is convenient and reasonable to assume
that both the velocity and concentration ha.2 similar
profiles in the y-direction as the cloud flows downstream.
Fig. 3.4 shows a sketch of the assumed profiles.

lLet U, H and C be characteristic values of the velocity,
height and concentration respectively; they are defined by

the following relations

UH = j':vdy

(3.13)
UVH= jh v2 dy
o (3.14)
h ’
CH= [ o dy (3.15)

where v and ¢' are the velocity and concentration at any
position y. It can be eacily shown that the characteristic
velocity, height and concentration are equal to

U=2u=u (3.16)
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=3
H=3h (3.17)
c -%—cb-c (3.18)

where the subscript b refers to the bed value of the
variable. Thus, both the velocity and the concentration
derivatives at the bed level can be written as

dv Uy, 9 U

&y we-8h

Y (3.19)
dc’

(3.20)

Therefore, the mass diffusion coefficient, in equation

(3.9) can be expressed as

e, = P (0.068)? ( % H )? g-g (3.21)

or
e, = 00132 HU (3.22)

and the second term in the right hand side of equation (3.1)
can be written as

e S'd—‘;,'- = -0.0149 C U = - 0.0149 c u (3.23)
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3.2.3 The Entrainment Coefficient

As was mentioned earlier in the Introduction, all the
available relevant studies on the entrainment coefficient
were a result of the dense flow simulations of gravity
currents and clouds using miscible £luids. In these
investigations, the entrainment coefficient was usually
expressed as a function of the Richardson number. However,
for the present study, the Richardson number alone is
insufficient to specify this coefficient since it does not
reflect the role of the particle properties on the
entrainment process.

Thus, a dimensional analysis was performed to seek the
relevant dimensionless groups upon which the entrainment
coefficient might depend. Consider the following parameters
to be important; the cloud characteristic height H, the
reduced gravitational acceleration perpendicular to the
flow direction g' ¢€0s { and g' = g cés- , the cloud
characteristics velocity U and the particle net fall
velocity W.

The length of the cloud was not selected since the ratio
of the height to the length of the cloud was found to be
constant for a given angle of bed inclination. The particle
net fall velocity can be evaluated from the right hand side

of equation (3.1) as follows

W=wecos ¢ -89 (3.24)

Substituting equations (3.8) and (3.23) into equation (3.24)
yields

W=w, (1-c)®cos¥ -0.0149 u (3.25)
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The selected parameters can be written as

f[H.g'cosr.U.W)=0 (3.26)

By using the Buckingham Il theorem, the following

dimensionless groups were obtained

g cos T H
f ( —mr—o
u?

cl&

)= 0 (3.27)

The first term is, of course, the Richardson number R =
g cos U H 7 U? . The second term is the ratio of the
particle net fall velocity to the cloud characteristic
velocity which is an important parameter upon which the
entrainment coefficient depends. This can be seen clearly
if we consider the case of a cloud which consists of a
suspension of large particles huaving high fall velocities.
Only a subsiding flow and a very small or even a negative
entrainment coefficient might be expected. Therefore, we
propose that the entrainment coefficient can be expressed as

follows

cle
L=

E'f[Rp (3.28)

The evaluation of the this function can be achieved by
using the experimental results. The entrainment coefficient
can be calculated from the experimental data by using
equation (3.1) since it can be written in the following form

A[A(l-c]]-PquAt (3.29)
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where A means the difference in the magnitude of the
variable between two consecutive slides, At is the time
interval between the same two slides and P,y is the average
of the cloud perimeter measured from both slides. The
entrainment coefficient, the Richardson number and the
velocity ratio ﬁ'/ U were calculated from the data collected
using the computer program mentioned in Section 2.4.

A multiple linear regression analysis was performed on
the data and the following expressions were obtained for the
sand cloud and the beads cloud respectively

(3.30)

cl=r

E = 0.0792 - 0.0117 R - 0.1087

s

E = 0.0923 - 0.0127 R - 0.1194 (3.31)

with r% the correlation coefficient, equal to 0.95 and 0.97
respectively.

Figs. 3.5 and 3.6 show the entrainment coefficient versus
the Richardson number for different values of the velocity
ratiofﬁ / U for sand clouds and bead clouds respectively.
Figs. 3.7 and 3.8 show the entrainment coefficient versus
the velocity ratio for different values of the Richardson
number for both the sand clouds and the bead clouds
respectively.

The good agreement between equations (3.30) and (3.31)
and the experimental results suggested that, there migltt Le
only one functional relationship for the entrainment
coefficient regardless of the particle type since the
particle properties were involved in the dimensionless
parameter W’/ U . Therefore, another regression analysis
was performed on all the data collected from both the sand

and the bead cloud experiments. The least square regression
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gave the following expression for the entrainment

coefficient

E = 0.0882 - 0.0149 R - 0.0679 (3.32)

=27

with r2 = 0.94 which shows strong support for the proposed
expression for the entrainment coefficient. Note, that the
entrainment coefficient increases with the decrease in the
velocity ratio W / U and at the limit where W vanishes, the
expression shows reasonable agreement with the salt solution
experiments which were reported by Beghin, et al. (23).
Figs. 3.9 and 3.10 show the same trend observed in the
individual cloud shown in Figs. 3.5, 3.6, 3.7 and 3.8.
Equation (3.32) was used to evaluate the entrainment
coefficient in the numerical solution of the governing
equations which will be presented in the next Section.

3.3 Numerical Solution

The governing equations (3.1), (3.2) and (3.3) can be
written, considering the obtained expressions for the
parameters in the previous Section, as follows

d
Axg%*"z‘&%'nx (3.33)
d
Ay S + A, S v A G = Ds (3.35)

where
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Ay=5 K1 (3.37)
Ay =28 K(1l~=-¢) (3.38)
Ag=S1lp, (1+k)+tpc] (3.39)

As=2S ulp (1 +k, )+ cl]

(3.40)

Ag = Spul (3.41)

B Dy =-[wycos U c (1 -c)®-0.0194 cu ] (3.42)
ﬂ D, =S, VK u E (3.43)
Da=sllcg(sinr-cosrtan¢]-%pacnuz (3.44)

Equations (3.33), (3.34) and (3.35) can be solved
together to give three ordinary differential equations in 1,
¢ and u as follows

1
at =4 (3.45)

dc _ 7
dt 2 (3.46)
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at = %3 (3.47)
where
Z, .Dl_"'_D_Z
Ay + Ag (3.48)

zz_szx'nz

- A, (3.49)

A fourth ordinary differential equation was added to the
system of equations (3.45), (3.46) and (3.47) in order to
obtain the results as functions of the downstream distance

as well as functions of the time

at ° ¢ (3.51)

The governing ordinary differential equations (3.45),
(3.46), (3.47) and (3.51) were integrated numerically using
the Runge—-Kutta method. Initial values were needed to start
the integrations, these values were taken from the
experimental data. The starting position was selected at the
position where the cloud was fully developed. This position

was a small distance downstream the release gate.

3.4 Predictions and Comparison with Experimental Results

The results of the numerical integration of the governing
differential equations are presented and compared with the
experimental data obtained from the large scale experiments
(the even-numbered figures will refer to sand clouds and the

odd-numbered figqures will refer to bead clouds).
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Figs. 3.11 and 3.12 show the predicted 1length of the
cloud normalized by the square root of the initial volume of
the cloud per unit width ( Aé/z ) versus the traveling
distance normalized by the same factor for different bed
inclinations. In Fig. 3.11 numerical solutions only for bed
angles of inclination of 44 and 38 degrees are presented.
Since the angle of repose of the sand was taken to be 36
degrees, the numerical solutions for the angles of bed
inclination 34 and 30 degrees show an immediate collapse of
the cloud which contradicts the experimental observation. It
is believed that, as the suspension was released the shear
stress which was created between the different layer of the
cloud due to the sudden motion created a dispersive stress
(24) which might have mobilized the cloud for a short
distance. Then the retarding forces ( the bed friction and
the form drag ) dominated and the cloud collapsed.

Figs. 3.13 and 3.14 show the cloud mean volumetric
concentration versus the non~dimensional traveling distance.
The graphs show that the model accounts well for the
increase of the cloud mean concentration at the final
collapse phase.

Figs. 3.15 and 3.16 show the non-dimensional center-of-
mass velocity versus the non-dimensional traveling distance.
Figs. 3.17 and 3.18 show the entrainment coefficient versus
the non-dimensional traveling distance. These figures show
that, the entrainment coefficient increased during the
acceleration phase of the flow then it decreased through the
deceleration phase. At the final stage of the deceleration
phase, the entrainment coefficient became negative, i.e.
fluid was detrained from the cloud.

In general, the numerical solution slightly overestimated
the experimental results. The discrepancy might be
attributed to the estimation of the parameters as well as
the experimental data measurements. Also another possible
reason is that, the model did not include the effect of

particle interactions which may play an important role at
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high concentrations in the processes of growth and collapse
of the cloud.
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CHAPTER 4
SUMMARY AND CONCLUSIONS

Although there have been many studies of flows generated
by density differences, most of these have involved
different fluids (either miscible or immiscible) or
temperature differences to create the density differences
that drive the flow. On the other hand, there are instances
in which the density differences arise because of the
presence of solids suspended in the fluid. Some examples
of density currents of this kind are turbidity currents in
the ocean, the discharge of mine tailings into oceans and
lakes, the 'silting up' of water supply reservoirs, powder
snow avalanches and dust laden atmospheric gravity currents
such as the Sudanese 'haboobs'. Subaqueous grain flows and
the forces generated when they strike and flow around
underwater objects are of current interest in connection
with 0il exploration on the continental shelf regions.

The presence of particle sedimentation and bed erosion
can cause unsteady or developing density currents to behave
in very different ways than density currents involving only
fluids. Surprisingly, there have been very few fundamental
studies of the mechanics of such flows. As an initial
attempt to gain some insight into these flows, the present
investigation has concentrated on the effects of finite
particle size on the subaqueous flow of a cloud of particles
down a rough inclined bed. The flow is analogous to one
which might be initiated by a submarine earthquake.

Preliminary small scale laboratory experiments were
carried out in a 2 m long tilting water tank to determine
essential flow characteristics and variables. Suspensions
of particles were released by a gate positioned at the upper
end of the tank and the growth and collapse of the ensuing
cloud was measured as it moved down the roughened bed of the
tank. Two sets of tests were performed using suspensions of

a) fine sand particles and b) polystyrene beads. The

34
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results of these experiments in which sedimentation and
cloud collapse occurred were quite different from those
carried out by Beghin, et al. using fresh water and salt
water in which the clouds continued to grow without bound.
Based on the experience gained by these preliminary tests, a
large scale tilting tank was designed and a second series of
tests was performed. The results obtained from the new
experiments were consistent with those of the preliminary
tests.

It was found that the shape of the particles cloud could
be approximated by half an ellipse having major and minor
axes 1 and 2h. The aspect ratio K = h/l was found to be
approximately constant during the flow for each bed
inclination. It was observed that the cloud initially grew
in size, reached a maximum and then collapsed. The distance
of travel from initiation to collapse increased with an
increase in the bed inclination. After the entry of the
particulate material at the upper end of the tank, the cloud
accelerated from rest, its velocity reached a maximum and
then decayed to zero at the final collapse time. The peak

center-of -mass velocity for a given bed slope increased with

bed slope.

A theory to describe these two-dimensional flows was
developed based upon three overall conservation equations;
the sediment mass balance equation, the ambient fluid
entrainment equation and the linear momentum equation along
the bed. The sediment mass balance equation involved the
tendency of the dense particles to settle and the opposite
tendency for them to disperse as a result of turbulent
mixing. The mass diffusion coefficient involved in the
equation was taken as a multiple of the eddy viscosity which
in turn could be related to the shear stress iistribution
within the cloud. An expression for this coefficient was
devised by assuming that the shear stress distribution is

similar to that of the wall jet.
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Previous experimental observations of the dense fluid
simulation of gravity currents and clouds involving only
fluids showed that the entrainment coefficient which appears
in the ambient fluid entrainment equation was only a
function of the Richardson number and was constant for each
bed slope. The present study, in which the cloud was made
vp of particulate solids, revealed that the entrainment
coefficient not only varied along the flow path but could
become negative after a particular station. Through
dimensional analysis, the entrainment coefficient was
expressed as a function of both the Richardson number and
the ratio of the pacrticle net fall velocity to the cloud
center of mass velocity. A multiple regression analysis was
performed using the experimental data, and the least square
regression gave support for the proposed functional form
entrainment coefficient.

The rate of change of the linear momentum of the cloud is
due to the combination of the component of the net buoyancy
force along the bed as a driving force and both the bed
friction and the clouda form drag as a retardant forces. 1In
the present study, the bed friction arising from particle
interactions was found to be very significant. 1In previous
studies by Beghin, et al. which involved only fluids, both
the bed friction and the form drag were taken to be
negligible.

The set of overall conservation equations was integrated
numerically using a Runge-Kutta method and it was found that
the present simple model predicted the main features of the
development of the sedimenting cloud and was in good
gquantitative agreement with the laboratory experiments.

The experimental results obtained in the present
experiments, the proposed law for the entrainment
coefficient, the identification of the importance of
particle bed friction and form drag, etc. can be applied in
further investigations of density currents involving

sedimenting particles. Detailed measurements of the
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distributions of particle velocities and concentration would
make a significant contribution to our understanding of
these flows. Acquisition of such data awaits the
development of instrumentation capable of making
measurements in a sufficiently short time for these time
dependent flows. A theory to predict the detailed particle
velocity and concentration distributions requires an
appropriate constitutive equation for the fluid-particle
mixture; this also is not presently available. The effects
of erosion of bed materials of various kinds on the flows
should be investigated. Finally the flows around and the
forces developed on submerged bodies by density currents of

suspensions should be investigated.
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. Table 3.1
- Sand Suspension Cloud
Angle of bed 44° 38° 34° 30°
inclination
K = h/1 .215 .170 .135 .103
S; (experiments)| .792 .814 .809 .817
S; (for ellipse)| .7854 .7854 .7854 .7854
S, (experiments)]2.892 2.876 2.953 3.241
S, (Eq. 3.6) 2.608 2.813 3.131 3.534
(for ellipse)
Table 3.2
Bead Suspension Cloud
Angle of bed 44° 38° 34° 30°
inclination
K = h/1 .299 .22 .145 .12
S; (experiments)]| .783 .801 .793 .781
S; (for ellipse)| .7854 .7854 .7854 .7854
S, (experiments)| 2.425 2.873 2.981 3.214
Sy (Egq. 3.6) 2.367 2.587 3.037 3.297

(for ellipse)
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Fig.2.10 Photograph of the large scale water tank
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Fig.2.12 Typical photograph from the large scale experiments
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Fig.2.13 The sand cloud on slopes of (a) 30, (b) 34,
(c) 38 and (d) 44 degrees respectively
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Fig.2.14 The bead cloud on slopes of (a) 30, (b) 34,
(c) 38 and (d) 44 degrees respectively
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Fig.2.15 Photograph of the data acquisition system
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Fig.3.1

Sketch of the cloud and the assumed half
elliptic shape
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SPREADING OF ROCK AVALANCHES

ABSTRACT

A study of the flow and spreading of a finite mass of dry
cohesionless granular material released from rest on rough
inclines is presented. Firstly, a two-dimensional depth-
averaged model which describes both the longitudinal and the
lateral spreading during tlow down a rough inclined plane
was developed. The relationship between the stress
components was simply approximated by using a guasi-static
Coulo.ib-like constitutive equation. A finite difference
scheme applied on a staggered grid was employed to carry out
the numerical integration of the governing partial
differential equations. From the results of these numerical
studies, it was conclud~nd that the lateral spreading is
insignificant relative to the longitudinal spreading. This
suggested that a simple one-dimensional spreading model
would be adequate for preliminary studies.

Therefore, a depth-averaged model which describes the
one-dimensional longitudinal spreading down rough, curved
beds was developed. Three rockfall events, Frank (24),
Madison Canyon (25) and Medicine Lake (26) were analyzed and
the predicted results agree reasonably well with che
observed field data. It was concluded that, the traveling
distance and velocity of the center of mass of a rock pile
can be approximately predicted by a simple analysis of a
point mass sliding down the same incline. The long runout
distance of the leading edge of the slide debris ran result
from extreme spreading of the pile as it accelerates down

the slope after initial release.
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CHAPTER 1
INTRODUCTION

Landslides or rcckfalls that initiate on a steep slope
eventually come to rest after flowing for some runout
distance cn a flat. Rockfalls of very large masses have
been observed to exhibit unexpectedly long runout distances.
Fig. 1.1 (data is quoted from Scheidegger (1)) shows the
reduction in the so-called equivalent coefficient of
friction (total fall height/total travel distance) as a
function of the rockfall volume. It can be seen clearly
that the total runout distance increases with the increase
of the debris mass. Numerous hypotheses have been proposed
to explain this puzzling phenomenon. However, none of these
have been completely satisfactory or generally accepted.
This study is concerned with the development of a simple
model for the flow and spreading of a finite mass of
cohesionless granular material released from rest on rough
inclines. The purpose is to determine whether such a model
can be used to predict the general features of at least some

of the natural rockfall events.

1.1 Historical Review

As early as 1881, Albert Hiem noted the extraordinarily
long travel distance that can occur in a large volume
rockfall. Heim observed and described the Elm rockfall of
Switzerland (see articles by Hsu (2,3)). This rockfall
produced a debris which moved more than 2 Km along a nearly
horizontal valley floor and one of its branches surged up
the side of the valley to a height of 100 m. From the
deposit of the Elm and the eyewitness accounts Heim
concluded that the debris behaved as a flowing fluid rather
than sliding solid blocks. A similar slide occurred in 1903
which destroyed the town of Frank, Alberta, in Canada. Such
mobile debris flows which are called "sturzstroms" occur

every year in different mountainous parts of the world (4).
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The presence of small broken debris, fine stones, sand and
dust is common and is believed to be present within the

sturzstrom as interstitial material.

In an attempt to describe the fluidisation mechanism,
Kent (5) suggested that the debris blocks were kept in a
fluid-like state due to the rapid upward flow of air through
the voids between the blocks. He proposed that this
dilatation might reduce the frictional resistance and permit
the debris to travel for a longer distance across a flat
course. Shreve (4,6,7) postulated a similar mechanism, in
which the air was also the mobilizing agent. He suggested
that, as the debris mass rushes down the slope over an
obstacle or hump, it leaves the ground and jumps into the
air. As it does so it might confine a cushion of compressed
air beneath it, permitting the debris to slide like a
hovercraft. It is to be noticed that Shreve is one of the
few to insist that the debris slides rather than flows,
despite evidence of the fluid-like behaviour presented by,
among others, Hsu (2,3). Another similar hypothesis by
Goguel (8) was that high pressure steam would, in partt,
support the weight of the rock debris. This might reduce the
frictional resistance thereby allowing the debris to flow
for longer distances. The steam was assumed to be generated
by the heat resulting from the sliding and colliding
surfaces of the boulders. It is to be mentioned that,
evidences of water presence in the rock debris were not

found in many of the rockfalls.

The previous three hypotheses have been undermined by the
observations of large volume landslides on the surface of
the Moon and Mars (9,10). These observations suggest that
neither air nor water is required for the mobility of the
debris even though air or water may enhance the debris

mobility.
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Davies (11), among others, suggested that the excessive
runout distance is volume dependent and the larger the
volume of the debris, the longer the relative travel
distance. From regression analysis Davies found that the
final deposit extent of a sturzstrom depended mainly on its
volume. The analysis also suggested that all struzstrom
deposits were similar in shape and that the shape did not
depend on the fall height. However, the analysis showed that
the travel distance depends on the fall height. Davies
suggested that the line connecting the initial and final
center of mass positions of the debris makes an angle of
inclination equal to the angle of normal friction of
granular material and th2 long runout distance was due to
the fluidlike spreading of the debris under the action of
gravity. This spreading occurred due to mechanical
fluidization caused by high basal shear rates as the debris
moved rapidly across the ground. This mechanism was based on
the grain flow theory of Bagnold (12,13). It should be
mentioned that Bagnold's experiments provided information up
to the edge of the grain-inertia region (moderate shear
rates) and Davies used linear extrapolation of Bagnold's
data points to suggest that the ratio of the shear stress to
the normal stress which represents the angle of dynamic
friction can be drastically reduced at high shear rates.

However, Savage and Sayed (14) in their recent
experiments found that at high shear rates, the stress ratio
either increases or decreases only slightly with the
increase of the shear rates. In most of their experiments
the particles were nearly uniform sized spheres (one series
of tests was done with a bimodal mixture) and the tests were
performed with dry material so that the effects of the
interstitial fluid were not present. Lun et al. (15) found
in their kinetic theory, for dry inelastic spherical
particles of uniform diameter, that the stress ratio at high
shear rates was independent of the shear rate and only
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weakly dependent upon solids concentration.

Hsu (2,3) recalled Heim's remarks about the kinetic
energy associated with the collisions between the falling
rocks. Based on Bagnold's theory (12,13) of the flow of
cohesionless grains in a fluid, he proposed that the
dispersion of fine debris particles between colliding blocks
behaved in a manner similar to the interstitial fluid
between the grains in Bagnold's theory. Hsi applied his
hypothesis to the Elm event and he inferred that the
interstitial materials were probably a mixture of one third
dust and stones and two thirds air. This hypothesis, based
on certain assumptions about the behaviour of the dust in a
vacuum, was criticised by McSaveney (16). Moreover, it did
not explain the runout distance dependency on the volume of
the debris and it required prior knowledge of the reduction
in the normal coefficient of friction (the tangent of the

angle of repose of granular material).

Erismann (17) proposed a mechanism of self lubrication in
which a thin layer of molten rock is generated at the base
of the debris. The heat needed for such a process would
result from the friction between the sliding surfaces under
the weight of the debris. By a thermodynamic analysis,
Erismann attempted to show the feasibility of this
hypothesis. However, it requires the estimation of five
parameters. These parameters may vary for the different
events and, as Erismann mentioned, reliable figures are

difficult to obtain.

Melosh (18,19) postulated a theory of acoustic
fluidization. The proposed mechanism is a high frequency
vibration which occurs either as a result of the impact of
the debris rocks against the ground or naturally from an
earthquake. This vibration may be capable of temporarily

releasing the effective normal pressure in limited areas of
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the debris and hence reducing the frictional resistance
considerably and allowing sliding to take place in the
unloaded areas. However, the analysis is only qualitative
and it is hard to see how it could be implemented in a
physic3al model undergoing shearing deformation of discrete

irregular blocks.

It is clear from above review that all the authors have
merely offered hypotheses of physical mechanisms to explain
debris mobility. Furthermore, there is still considerable
controversy about the plausibility of all of these proposed
mechanisms. Also it should be noted that no guantitative
physical model explaining the flow and spreading of
rockfalls and debris flows is currently available. This
section of the thesis is concerned with development of such

a physical model.




CHAPTER 2
TWO-DIMENSIONAL SPREADING MODEL

A continuum model of the flow and spreading of granular
material down plane inclines is presented in this Chapter.
Due to the lack of detailed and well proven constitutive
equations relating the stresses and strain rates for the
non-steady non-uniform flow of granular materials, we are
forced to make several assumptions to simplify the
constitutive relations. It is hoped that the present model
will constitute the basis for a general model describing the
mechanics of rockfalls as more refined constitutive

equations become available.

2.1 Governing Equations

A simple model for the flow and spreading of a finite
mass of cohesionless granular material released from rest
down a rough inclined plane bed is now presented. The motion
of the granular materials is referred to rectangular
cartesian coordinates. The material point is denoted by x, y
and z at time t. The x-coordinate is taken as positive in
the streamwise direction, y is directed laterally and z is
normal to the bed. For the analysis of a three-dimensional
incompressible flow, the motion can be described by the

continuity and momentum equations

Vew = O (2.1)
gj‘__ _ - -
* Dt VP +r g (2.2)

where
V = gradient operator

-l
u = material velocity vector
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= mass density of the granular material

[
ﬁnt' = material derivative

P = stress tensor

Y = gravitational acceleration vector

These equations can now be written out for the cartesian

coordinate system (x, vy, 2z) as follows

Q)
=
oY)
<
Q
€
)

=)

x Ty te”© (2.3)
9p
p[%%*-u%';*vg;,l*wg—‘z’l-pgsmr-—a;
_ Py Oy,
ay az (2.4)
ap 3
av av av v . _ yx _ Pyy P
AR AR R R R el e L (2.5)
aw ow aw oaw apzx
P[—T+uax+v-a—y- W l=-pgcos i -—3F
-asz_apzz (2.6)
ay az

where u = u (x,y,z,t) , v = v (x,y,2,t) and w=w (x,¥,2,t)
are the velocity components in the x, y and z directions
respectively, ¢ is the angle of inclination of the x-axis
with the horizontal, Pxx * Pyy and P, are the normal
stresses in the x, y and z directions respectively, and Pyy

Pxz + Pyx ' Pyz + Pzx and Ppy are the shear stresses.
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i Multiplying equation (2.3) by pPu and adding it to
equation (2.4) yields

du . 3 2
pl3g +xg ()~

S

ay(uvli--a%-(uw]]=pgsin(

- apzx - apr - apxz
ax ay 9z (2.7)

In a similar manner equation (2.5) can be reduced to

v . a3 3 2y . 3 3p
P[at¢-ax(uv)+ay(v)+-—az(m,,)]__a:x
ap ap
_ Py Py,
3y 3z (2.8)

Several assumptions are now made in order to simplify the
analysis. It was found from the available field data that,
typical ratios of the height to the length of the debris
were very small and of order 1/1000 for the final rest
state. This suggests that it is acceptable to make use of
what corresponds to the long wave approximation used in free

surface hydrodynamics,

w << u : w << v (2.9)
3 5 2 . 3. 3
3z 7 ’ 3z~ ay (2.10)

As a result the inertia effects in the z-direction are
( negligible and equation (2.6) simplifies to the hydrostatic

equilibrium equation
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ap
pgcos!’-o-—azguo (2.11)
which can be integrated over the depth to give
pzz.pgcosi'(h-z) (2.12)

where h (x,y,t) is the instantaneous depth of the flow at
any (x,y) position. Depth averaged x and y-momentum
equations are derived in the next Section.

2.2 Depth Averaged Model
By integrating the momentum equations (2.7) and (2.8)
over the depth of the flow, we obtain

3 dh L3 M 2,4 _,2230, 3
P[ﬁjg“dz'“sat’axjo“ dz “Sax'ayfu“"dz

-usvs-g—;%a-usv,]-pgsinrh
am .am -
"axfo P 92 ayfo nydz Pz, Io (2.13)
3 (b dh 3 (b sh 3 (b
p[ﬁovdz-v,-é—t-+é;jouvdz-usv,-3-;+wfov"'dz

[e1d

h
-vi-—t-‘-o-v,w,]--%j'apyxdz

<

3lo Py 2 * Py, |y (2.14)



Now at the upper boundary (free surface), we have the

kinematic condition that

3h
w, =W eu, Py, P (2.15)

where the subscript s refers to the surface value of the
velocity component. Then, we can define the following depth

average quantities,

B Gyt) = L I: u (cyzt) dz (2.16;
v tyt) = j‘: v (ky.z.t) dz (2.17)
b - L IZ b &z (2.18)
b, - % I: p,, 4z (2.19)
b, - % I: P, 42 (2.20)

2w L [ u?dz & il (2.21)
2 ¢ L 2 z o2
Io ve dz v (2.22)
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v =y Ih uv dz ¥ §v
- n J,uwvdz @ (2.23)

Then, by using equations (2.15) - (2.23), equations (2.13)
and (2.14) can be reduced to

Pigg (i) e 2iwh)+ 2 (Fh)lapaghsing

plFemrediam)+ L (vi)1=-F (5 )
3 (5 n)-
- "3y (Bph) - ey g (2.25)

LY 4

2.2.1 Constitutive Equations

A further assumption regarding the constitutive relation
between the stress components is made. Since the appropriate
relation for the type of flow of interest here is not
available, it is proposed to consider a simple quasi-static
constitutive relation (see reference (20)). For an ideal
cohesionless granular material, the Mohr-Coulomb condition

states that yield occurs on a plane element when

] T | =P tan ¢ (2.26)

where T and P are the shear and normal stresses respectively
acting on the element and ¢ is the quasi-static internal
angle of friction. As a slight extension of this concept,
the following constitutive relation for the stress

.
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components in plane deformations is now employed

D,

Py = Py 8y - P, sino (2.27)

Nj—

1
[5 tr D, D]

where the subscripts i and j take the values 1,2 ,5n is
Kronecker delta, p, is the mean quasi-static normal stress

(see Fig. 2.1) and D is the strain rate tensor defined as

Dsl[éﬂ+aj (2.28)
4 2 axj ax,

Equation (2.27) implies a coincidence between principal
axes of stress and rate of deformation. In the present
problem of the rockfall development, it is assumed that the
shear planes are very nearly parallel to the plane of the
bed such that Q%— is the dominant component of the rate of
deformation tensor and that the plane X1 rXg coocrdinates are
approximately 1lined up along the x,z axes. Hence we can
write that,

<< (2.29)

Pxy Pyx Pxx

e

Pxx = pg (2.30)
At the bed, it can be assumed that the friction force is
colinear with the depth of averaged velocity vector E{ =
(u,v) (see Fig. 2.2) and opposes the motion such that

[ ]
]
Qe
q
Ll

(2.31)
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where q is the magnitude of the depth averaged velocity

(2.32)

and 7 1is the magnitude of the total bed shear stress. From
equation (2.27) we obtain

T =p, slna&=pCI tans (2.33)

where § is the bed angle of friction. In order for the
deformation to be more general than planar, two of the
principal stresses must be equal. For the problem under
consideration, the flow of the material will tend to expand
laterally in the y-direction and we take the normal stress
in the y-direction to be the minor principal axis (rather

than the major principal axis), hence

Py =P, (1 -sing) (2.34)

yy
Then, from equation (2.11), (2.18) and (2.30), we obtain
n
- ~ =2 dZ
pnh = Pzz h -[0 pzz

or n? (2.35)
ph =p8 cos ¥ >

and

) . i (2.36)
pyy-(l-sm@]pzz
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Thus equations (2.24) and (2.25) can be rewritten as
p L (ih)+ 2 (&h)+ 2 (aw
at ax g;(uvhllapxhslnr
- dsh a
pEhcos ¥ 50 -pghcos{ tan § ( a-] (2.37)

plgg () e L (®n)ed ()
-p&h (1-sing¢ ) cost g%

~pg&hcos{ tan § (

<
ama?

(2.38)

Finally, the continuity equation (2.3) can be depth
averaged in a similar manner using equation (2.15),the

kinematic condition at the surface, to give

1]

h k-3 i 3 v =
5t *ax () gy (Fh)=0 (2.39)

Then using equation (2.39), equations (2.37) and (2.38) can
be reduced to

apsin{ -gcos { %%

212
+
(=

¥l
+
<

<&

-gcos { tan 8 {

Tl
—

(2.40)
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4~ a_v_ -i -a\-l :
at *lig ¥ 5; = ~(1-sin¢ ) gcos? g%
_ v
g cos U tan § ( 3 ) (2.41)
The resulting equations (2.39) - (2.41) are sufficient to

describe the longitudinal and lateral spreading of the flow.

2.3 Non-Dimensional Form of the Governing Equations
Let us introduce the following non-dimensiona' parameters
(see Fig. 2.3)

H-l—:!’- 3 X=5- 3 Y-l (2.42)

-

-

Va2 Y T = -t 2.43
vel, ' /g (2.43)

[ o
[}
sk

(2.44)

$ho

where hi and li are the initial height and 1length of the
pile of granular material. Substituting equations (2.42) -~
(2.44) in equations (2.39) - (2.41), we obtain the
non-dimensional form of the proposed governing equations

(2.45)
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CHAPTER 3
THE STAGGERED GRID PINITE DIFFERENCE MODEL

A finite difference approximation to the governing
partial differential equations proposed in the previous
Chapter is now presented. A simple explicit scheme applied
to a staggered grid will be used. In Section 3.3, a
stability analysis will be performed to obtain the necessary
stability condition for the proposed scheme. Computational
results arising from the finite difference computer programs
are discussed in Section 3.4.

3.1 Finite Difference Equations

Of all the methods of integrating a system of partial
differential equations, the characteristics method is the
most accurate one since the characteristic 1lines follow the
true solution and tend to be closer together in areas of
rapid changes. However, the chief disadvantage of this
method is that the data at the intermediate points in the
X-y-z space are difficult to obtain and a tedious
interpolation is involved in obtaining the flow height and
velocities on some line from the calculated points.
Therefore, the finite difference method was selected because
of its simplicity of formulation and the ease of
interpreting the results that it yields. Furthermore, with
the appropriate precautions, a high accuracy can be achieved
as will be explained later.

This Section starts by defining some of the finite
difference operators, and deriving some of the relations
between them and the differential operators. Using these
basic concepts, the finite difference approximation to the
system of partial differential equations (2.45)-(2.47) is
developed along with the appropriate approximations for the
boundary condition.

Finite difference equations arise as approximations to

partial differential equations whose solution cannot easily

T1u0
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be found analytically. In order to develop these
approximations, it is convenient to define various
difference operators, and derive some of the relationships
between them and the differential operators. Let d, be the
non-dimersional spacing between the abscissas in the x-
direction, dy be the non - dimensional spacing between
ordinates in the y-direction and d, be the non-dimensional
time step. In addition to the space index, defined in Fig.
3.1, we use a superscript index n to number the time cycle.
The U and V, and H computation are performed at different
time levels. The U and V values are computed first and then
used to obtain the H values as indicated in the flowchart

diagram in Fig. 3.2. The forward difference operators are

defined by

At(x] = tn (X+dx’y+d-y] - tn (X»y*dy] (3-1)
Afiy) = f° (x+dyy+dy) =  (x+dy) (3.2)
ant) = 1 (xedpy+dy) - 7 (xedgy+dy) (3.3)

where £ represents any of the problem variables (U,V and H).
The relations between the finite difference operators and
the differential operators can be defined as follows

Af(x
DE) = =g (3.4)

Df(y} = (3.5)
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Df(t) = aft) (3.6)

dy

The construction of a difference equation from a
differential equation is not a unique process. Many
approximations are possible for a given differential
equation. The selection of a particular difference relation
is usually determined by the nature of the truncation error
associated with the approximation. The difference relations
which will be used here were shown to have a minimum total
error with the appropriate selection of the time step (22),
as we will see in Section 3.4.

The grid used (see Fig. 3.1) consists of cells, with the
continuity and the momentum equations expressed in terms of
the velocities' values at the nodes and the flow height at
the center of each cell (staggered grid). Equations (2.46)
and (2.47) are approximated by means of the following
difference equations; using equations (3.1)-(3.6)

DU(t) + U"'% (i+1j+1) DU(x) + v“'% DUCy) = B - C DH(x) (3.7)

DV(t) + 2 (i+1.j*1) DV(x) + v“'% DV(y) = - E DH(y) - G (3.8)
where

B = sin [(i+1) - R, cos {(i+1) tan & ( 3 ) (3.9)

C = A cos [(i+l) (3.10)

E=C (1~ sing¢)
(3.11)
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G = cos (is1) tan 5 ( ¥ ) (3.12)

Furthermore, The Lax-Wendroff (45) type of approximation
to the velocities Un'l/z(i+l,j+l) and Vn'1/2(1+1,j+1)

in equations (3.7) and (3.8) was employed to improve .the

accuracy of the scheme as follows

.1
(+1g+1) + U 2 (el e1) (3.13)

n+

(U

DN

N

n—l
U 2 (i+1,j+1)

Py

-1
[ V72 (ergen) - V2 (uggen) (3.14)

V2 (fagge1)

N~

Substituting equations (3.13) and (3.14) in equations (3.7)
and (3.8) and solving for UP*1/2(ji+1,441) and vP*1/2i+1, 5+1)

yields

+d

1
Un 3 g s . 1 n-% ..
(iel,j+1) = [ U (i+1,j+1) - d, { 5 U (i+1,j+1) DU(x)

L
¢ VU2 (jagje1) DU(y) - B + C DH(x) } ]

/11 +41 4 pu
2 % DUty 1 (3.15)

- Ne=

vn2 ; : 2 : n-3
(i+1,j+1) = [ Vv (i+1,j+1) - dy { U 2 (f+1,j+1) DV (x)

*

L
3 v (i+1,j+1) DV(y) + E DH(x) + N ) ]

/11 +4 4 V) ] (3.16)
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The difference equation form of the continuity equation
can be introduced in a way, such that it satisfies a
physical representation of the continuity equation on the
grid scheme in order to improve the accuracy of the
solution. We start by introducing the following intermediate

variables,
1 n+—l- n#%
UUL = 5 [ U 2 (+14+1) + U € (+14+2) ] (3.17)
Lo ™7 o A3 oo
uuz =5 [ U (i+2,j+1) + U (i+2,j+2) ] (3.18)

Uul - UU2
DUU(x) = o (3.19)

N

n+zs

N
[ V72 (i+1,j¢1) + V' 2 (i+2,4+1) ] (3.20)

¥
Njr=

1 1

VVL - VV2
DVViy) = a (3.22)

H' (ivLjsl) = 3 [ H® (ieLje1) « H* (ieLje1) ] (3.23)

Finally equation (2.45) can be written as follows

!
H® (f+1,§+1) = [ H*! (js14+1) - d, { U" 2 (i+Lj+1) DH(x)

1
V2 (i+1j+1) DH(y) + % H"™! ( DUU(x) + DVVI(y) 3 ) |

-~

/11 +4q @UUE + DV ] (3.24)
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The solution of the system of equations (3.15), (3.16)
and (3.24) proceeds in the following way. First all
variables are initialized ( the initial shape of the
granular material pile is specified and all velocities are
taken to be zero). Then, equations (3.15) and (3.16) and
equation (3.24) can alternately be evaluated for all n.

3.2 Boundary Condition

The boundary condition for a rigid wall may be either of
two types, no-slip or free- slip. The latter type may be
considered to represent a plane of symmetry, rather than a
true wall, or, in the case of modeling an idealized fluid,
it may represent a non-adhering surface. Symmetry planes are
restricted in orientation so that they lie along the
boundaries of the scheme. Relaxation of this restriction
could be accomplished only at the expense of considerable
increase of complication.

For the case under consideration, the vertical x,z plane
is considered to be a plane of symmetry. Therefore,
calculations will be performed on only one half of the pile
(see Fig. 2.1). A boundary condition has to be imposed at
this vertical plane in order to accommodate this situation.
For a free-slip wall, the normal velocity (in adjacent
cells) reverses while the tangential velocity remains the
same (22). The flow height h, also remains the same in
grY-i = 0 at the center line.

Fig. 3.3 schematically represents the no-slip boundary

adjacent cells, corresponding to
condition.

3.3 Stability Analysis

A finite difference procedure for calculating time -
dependent phenomena 1is considered stable when small
numerical truncation and round - off errors inevitably
introduced at stage T = 0, are not amplified during
successive applications of the procedure, and at subsequent
time t have not grown so as to obscure the valid part of the
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solution. A method for investigating the stability aspects
of the proposed finite difference scheme is outlined next.

A commonly used technique for investigating the stability
of numerical schemes for partial differential equations
involves the representation of pertinent functions in terms
of the Fourier series. A rigorous mathematical presentation
of this technique appears in the classic book by Robert
Richtmyer (23). The basic approach to the problem is to
postulate that at some time T, of the calculations a
distribution of small numerical errors has crept into the
computed results such that the computed results have
deviated from the true solution. The growth or decay of
these errors during the repeated application of a particular
finite difference scheme is investigated for a local
linearized version of the scheme, with coefficients assumed
constant. The error functions are assumed to be composed of
the Fourier series, any component of which satisfies the
modified difference scheme. An examination is made to see if
the amplitude of any component increases during repeated
application of the difference equations. If the amplitude of
every component remains bounded, the scheme is judged to be
stable.

The general term of the Fourier expansion for U, V and H
at arbitrarily time t =0 is e iax o 13 Y, apart from a
constant . At a time t' later, these terms will become

(3.25)
U:yp elocxelPY

Vivelaox by (3.26)

Hiec elx el PY
{3.27)
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Substituting the above in equation (3.7) yields

Y -y eluxelﬂy+U'Me’“!e’py-e’a(x-d') elpy]

d, dy
+V‘p[elnxe’ﬂ)'_eluzeiuly-dy)]-B
dy
_ce[elaxelﬂy_e“x(x’dx] elﬁYJ (3.28)
de
which can be simplified to the form
] - -1
Y -¥v LU wit-e " * % + v Yi-e “y] -
d, d, dy
BelaxelBy el "% (3.2
dy
or
¥ = AA ¢ + BB ¢ (3.30)
where
-1 o d LB d
1- - -
le-dtlu(edx 1+V(1edy ]l (3.31)
- -1 -1 o d,
BB =B 4 & e “-cut[l‘-e—Tx——l (3.32)
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Similarly equation (3.8) can be reduced to the following

form
v = AA v + CC €
(3.33)
where
_-lud! ~-lax _~1pYy
CC=-E a,i‘-—‘?-ﬁx——)--cate e (3.34)

and finally equation (3.24) can be reduced in a similar

manner to the form

€ = AA € -DD ¢ - EE v (3.35)
where
ltxd!
1 - e
DD = H d, ——g—— (3.36)
i
EE =H ¢, L = ¢ R

d, (3.37)

Equations (3.33), (3.36) and (3.38) can be rewritten in a
matrix form as follows

[2]-[5 & ] [:]

18



or

8 = F O (3.39)

where F is the amplification factor. For stability each

eigenvalue of F must not exceed unity

IAA | <=1 (3.40)
Let us define
U q;
a= _d_x— (3.41)
b vV d,
dy (3.42)
hence,
AA = (l-a-b) + 2 e | % e-‘ B dy (3.43)

The coefficients o« and B are real and positive, and by
representing AA on an Argand diagram (23); it can be shown
that the maximum modulus of AA occurs when ¢ d;, = m7 and
] dy =n7  where m and n are integers and hence occur
when AA is real. For 4, sufficiently large, the value of AA
is greatest when m and n are odd integers; in which case

AA=1-2(a+b) (3.44)

which becomes more negative as dy increases. Now to satisfy
' AA I<= 1, the most allowable value is AA = -1, therefore

a+b<=1 (3.45)
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Thus the stability condition is

g [¥+¥).g (3.46)

u
d,

£l<

which is equivalent to the well known Courant stability
criterion (21) for the integration of the hyperbolic partial

differential equations.

3.4 Results
3.4.1 Introduction

A computer code was developed for the two-dimensional
spreading model to predict the shape and the velocity
variations with time, of a finite mass of cohesionless
granular material piled up at the top of a rough inclined
plane. The code starts by declaring first, the constants
such as the initial maximum height and length of the pile
( h; and 1; ), angle of inclination of the bed plane, the
internal angle of friction, the bed angle of friction, the
maximum number of steps and the coefficients A,B, .. etc. of
equations (3.15), (3.16) and (3.24). The spatial increments
d,and dy and the time step d, are then introduced. Finally,
the variables H, U and V are initialized by establishing
the initial shape of the pile and setting the velocities to
zero. Following that, equations (3.15) and (3.16) are used
to calculate new velocities at the first time step. After
the computations of U and V are done for each node, the
stability is checked by using equation (3.46) to assure the
scheme stability. Equation (3.24) then is used to compute
the new shape of the pile using the newly calculated
velocities U and V. The number of time steps is checked and
if that is less than the maximum, the program resumes the
calculations by going back to compute the new velocities at
the next time step and so on. Since the stability of the
scheme was secured, the last concern was to insure that the
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scheme is conservative, that is to insure that the numerical
diffusion is minimum. The numerical diffusion is defined as
the dissipation of the initial function ( the mass of the
pile ) with time, which 1is due to the difference between
the solution constant speed of propagation ( dy / d¢ ) and
the physical unsteady true solution (phase 2rror). Therefore
computer experimentation was carried out to select the best
time step to insure the minimum numerical diffusion. The
method used to check on the accuracy was to compute the
volume of the new pile after each time step and compare it
with the initial volume of the pile. The relative difference
in volume was chosen as the measure of the scheme accuracy
and it was called the 'Error - relative volume change'.

The programs were developed and run on a Hewlett Packard
Series 200+HP9816 microcomputer with graphics capabilities.
The program runs interactively and results can be displayed

on both the screen and the plotter.

3.4.2 Results and Discussion

Initially, the program was tested on a simplified one-
dimensional spreading version of the model to check whether
the results predicted were correct for some very simple
physical problems. For all the following cases, the angle of
bed friction (DELTA) was taken to be 32°

The one-dimensional version of the governing equations

can be written as follows

(3.47)
dH 3
ﬁ- + é-)? (UH] = 0
-g%-ru—g%asinr -Acosrg%-cosi‘ tand sgn(U) (3.48)

h! In the first test the program was used to predict the
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timewise development of the shape of a finite volume of
granular material piled on a horizontal plane. The pile was
initially triangular in shape having free surface slopes of
60° with the horizontal bed plane ( A =hy / 1; = 1.154).
Fig. 3.4 shows the non-dimensicnal height of the pile versus
the streamwise distance for both the initial and the final
non-dimensional times. It was found that the free surface
of the final shape of the pile made an angle equal to the
angle of bed friction. This result is consistent with the
physical situation of a simple test to determine the angle
of repose of granular material.

A second test was made to predict the shape of a finite
volume of granular mater.ial piled on an inclined plane which
makes an angle of inclination ( ZETA ) of 20° with the
horizontal. The pile itself was of the form of an isosceles
triangle whose equal sides are inclined at 40° to the
sloping bed plane { A = 0.419 ). Hence one leg was inclined
at 20° to the horizontal and the other was inclined at 60°
to the horizontal. Fig. 3.5 shows the spreading of the pile
at different non-dimensional times. The flow stopped when
the front free surface slope made an angle close to the
angle of bed friction. This result is consistent with the
stability condition which can be seen from equation (3.48)
by setting the velocity to =zero.

The last test was performed to check on the velocity
prediction of the model. By canceling the second term in the
right hand side of equation (3.48), the prediction of the
model should correspond to a point mass sliding down a rough
inclined plane. The lower graph in Fig. 3.6 represents a
pile of granular material flowing down a plane having an
angle of inclination (ZETA) of 60°. The position of the
pile at different non-dimensional times is presented and as
expected, no spreading occurs. The upper graph of Fig. 3.6
shows the non-dimensional velocity of the pile which was
found to match very closely the prediction of a point mass

analysis. The difference between the two predictions is less
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than 1 %; this is due to the errors associated with the
finite difference calculation.

The satisfactory results of the previous tests indicated
that both the finite difference approximations to the
governing equations and the developed program were ready to
be generalized to handle the problem of spreading down
general inclined surfaces.

The full governing equations (3.15), (3.16) and (3.24)
were programed and used to predict the velocities and both
the longitudinal and the lateral spreading of a finite
volume of granular material released from rest down an
inclined rough plane surface. The initial shape of the pile
was taken to be a one half cycle of a sinusoidal curve. The
selection of the initial aspect ratio (A = h; / 1;) for the
this investigation was based on the field data presented by,
among others, Davies (10). The field data showed, from the
deposit of the different rockfalls debris, that the ratio of
the thickness to the length of the final deposit was of
order 0(1/1000). For example, the Sherman landslide debris
deposit (4) was about 6 km in length and 3 to 6 m in
thickness. Calculations showed that an initial shape having
A of about 1/10 would spread to a final depth to length
ratio of 1/1000 after going through the corresponding travel
distance. Hence A.= 1/10 was used for the calculations of
this section. The bed angle of friction (DELTA) was selected
to be equal to 32° which corresponds to an angle of internal
friction of 38.67° (see Fig. 2.1 ) . Three different
inclinations were selected, a mild one close to the angle of
bed friction ( ZETA = 40°), a medium one ( ZETA= 60°) and a
steep one (ZETA = 80° ). The typical execution times for the
three examples were about 30-45 minutes.

Fig. 3.7 shows both the longitudinal and the lateral
spreading of the pile released down a bed having an angle of
inclination of 40° and the pile shapes at different non-
dimensional times. The lower graph shows the non-dimensional

height of the pile versus the non-dimensional streamwise
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a distance and the upper graph shows the non-dimensional half
width versus the non-dimensional distance. The space stepsdy
and dy were taken to be equal 0.1 and the time step was
taken to be equal 0.1.

Fig. 3.7 clearly shows that the longitudinal spreading is
much more significant than the lateral spreading. The net
lateral force arising from the free surface slope is
balanced by the bed friction, while in the longitudinal x-
direction, bed friction is insufficient to prevent the
spreading which is initiated as a result of free surface
slopes. The final shape of the pile gave an aspect ratio of
approximately 1/1500. Fig. 3.8 shows the non-dimensional
center of mass velocity U versus the non-dimensional
streamwise distance. It can be seen that, the velocity
profile resembles the one presented in Fig. 3.6. At the
center of mass of the pile, the second term on the right

- hand side of equation (2.46) approximately vanishes. Hence

the center of mass velocity is very close to that predicted

by the analysis of a point mass sliding down an inclined

plane (the difference is less than 6%).

The upper graph of Fig. 3.7 indicates that the lateral
velocity is very small,; it may be seen that sides of the
pile hardly move from their original lateral positions.

Fig. 3.9 shows the errors corresponding to the relative
pile volume changes versus the computation time. The figure
shows that the scheme is stable ( no oscillations )and the
numerical diffusion is well controlled.

The same calculations were repeated for bed angles of
inclination ZETA = 60° ( Figs. 3.10 - 3.12 ) and for ZETA =
80°( Figs. 5.13 = 3.15 ). The results were similar to those
discussed earlier. As expected, higher accelerations and
hence higher longitudinal velocities occurred. The a:sLect
ratios for the final shape of the pile were approximately
™ 1/2000 and 1/4500 respectively. However, the lateral
. spreading remained unnoticeable due to the balance between

the net lateral force and the bed friction.
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Fig. 3.15 shows a discontinuity in slope near the middle
of the graph. Due to the high acceleration rate, the
velocity increased in such a manner that the stability
condition (equation (3.46)) was violated. An extrapolation
of the first part of the graph at the point of inflection
shows that the errors could have grown exponentially with
time and the results would have been useless. This is taken
care of 1n the computer program by resetting the time step
to be half its value if the stability condition is not met.
The 'kink' near the middle of the plot corresponds to this

resetting of the time step.

3.5 Summary and Conclusions

In this Chapter, a simple continuum model was developed
for the two-dimensional flow and spreading of a finite mass
of granular material released from rest on rough inclined
plane beds. The present model describes both the
longitudinal and the lateral spreading of the pile. An
explicit finite difference scheme applied on a staggered
grid was employed for the numerical integration of the
governing partial differential equations. The computation
results seem to be stable and accurate. From these results,
it was concluded that the lateral spreading is insignificant
with respect to the longitudinal spreading. This result
suggests that a simple one - dimensional spreading model is
adequate for preliminary studies. It was also observed that
the predicted center of mass velocity of the pile resembles
very closely that predicted by the analysis of a point mass
sliding down the same inclined plane surface.

In the next Chapter, a one-dimensional spreading model
will be developed. The mathematical model will be derived
for the flow and spreading of a finite mass of cohesionless
granular material down rough curved beds. The governing
eqguations will be written for a curvilinear coordinate
system to accommodate the shape of the curved beds on which
the material will flow. In this case, the normal to the bed
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stress will include the centrifugal force effects arising
from curvature of the particle paths.



CHAPTER 4
ONE-DIMENSIONAL SPREADING MODEL

The results of the two-dimensional spreading model
presented in Chapter 3 showed that the lateral spreading was
insignificant and they suggested that, a one-dimensional
spreading model would be adequate for the purpose of this
study. A one-dimensional depth—-averaged model is developed
now for the flow and spreading of a finite mass of
cohesionless granular material released from rest on rough
curved beds. The governing partial differential equations
for a curvilinear coordinate system are developed in Section
4.1. A finite difference approximation for the governing
equations 1is presented in Section 4.2 along with the
stability condition for the chosen scheme. Finally in
Section 4.3, the results obtained from the computer programs

are discussed.

4.1 Governing Equations

A simple continuum depth-averaged model for the flow of
granular materials is now presented. The motion of the
material is referred to a curvilinear coordinate system. The
material point positior is denoted by the coordinates £and?
at time t. The &-coordinate is taken as positive in the
streamwise direction following the bed curvature and the
coordinate 7 is directed normal to the bed. Thus the
curvilinear scheme consists of curves which are parallel to
the bed and of straight lines perpendicular to the tangent
to the bed at any point (Fig. 4.1).

For the analysis of the two-dimensional incompressible
flow down a curved bed, the motion can be described by the

continuity and momentum equations

v-u = 0 (4.1)
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DU = P
=" vVprre (4.2)

The radius of curvature r (§) is to be taken to be

positive for the concave shaped incline. Hence, these

equations can be written for the curvilinear coordinate

system (£, 7n ) as follows

du av v _
3 *an 7v=0 (4.3)
prM g,y Pe Py
t 3E an P g 3E an (4.4)
dp ap
v v v, ud . _nt _ Pap (4.5)
. PIFE * U3 *Vaq * 1] pECS T -F -R

wherel% and p are the normal stresses, p and p_, are

the shedr stresses and { is the local bed inclination angle
(see Fig. 4.1).

Multiplying equation (4.3) by pu and adding it to equation
(4.4) yields

d

e

PISE* g 0+ 55 @) + % ] =p g siny -

asjas
=

Pg Py (4.6
aE an

The model can be simplified further by employing the long

wave approximation. This approximation can be written out as

v << u (4.7)
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3 3
5;>>3E (4.8)
r > (4.9)

Hence, equation (4.5) can be simplified, using equations
(4.7) - (4.9), to the hydrostatic equilibrium equation,
including the centrifugal force effects arising from the

curved particle paths.

ap w2
.__ar;m.. p € COS rtpr = 0 (4.10)

or

(4.11)

= - L
P, PECOSC(th+rI“u dn

where h is the depth ¢f the pile at any position.
Integrating equation (4.6) over the depth yields

Qs

n h
| udnous—aa—tf’-«f%j' uzdn-ug—?-+usvs]

p [ 0 0

|

. 3 h
=pgsint -5 IO Per di + p.. Ig (4.12)

where the subscript s refers to the free surface value of
the velocity component. At the free surface, we have the

kinematic cond’ticon,

3h 3h
Vs " 3t T Us 3F (4.13)
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Then, we define the following depth averaged quantities,

1 (4.14)

(4.15)
E Also, we assume that
2=4 M 2 2 (=12
u? = [Du dn % (i) (4.16)
| By using equation (4.13) - (4.16), equation (4.12) can be
reduced to
3 5 -
3 (BB ) - Py g (4.17)
The constitutive relation between the stress components
is assumed to be the same relation introduced earlier in
Section 2.2.1 (Fig. 2.1). Hence, we write
Pee = Pon = P, (4.18)
;
b = -
| = - L S n{d
i PEn = T ol T 5K (Q)
[
| T = p, sing = p, tans (4.19)
i 2
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Using equation (4.16), equation (4.11) can be reduced to

=2
P, = f g cos ¥ (h-n) + B2 (nn (4.20)

From equations (4.20) and (4.15), we obtain

=[pgcos;‘—2—+ = hzl (4.21)

Finally, equation (4.17) can be rewritten using equations
(4.21) and equation (4.19) as

2
P[—a{(hﬁ]+-a%-[h1'iz]]=pghsin§'-ga;g.-[pgcosr%-r

(V]

=2 3
p,.u z-%—]-r[pght:os;"cans

n

+ 22 n tan 5 ] san(i) (4.22)

Integrating equation (4.3) over the depth and using the
free surface kinematic condition, equation (4.13), yields

Qr

—%+5%(hﬁ )= 0 (4.23)

Using equation (4.23), equation (4.22) can be reduced to

[,

R e 2L A B at e e 2 5k Bnteme e
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i | - ai .
Pt ~iggImpasint -glcosy ., 0050,
_r8 3 . ha &
[T 3t * 2 3F {(T+)1
2
~[&gcos ¥ tan 6§ + 4 tan § ] sen(d) (4.24)

The resulting equations (4.23) and (4.24) are sufficient
to describe the longitudinal spreading of the flow. The
above depth-averaged equations can now be expressed in non -
dimensional form following the same procedure which was used
in Section 2.4. Let us start by introducing the following

non-dimensional parameters

- L -
H =% ' $ =1 ; R =1 (4.25)

t h

Ve 1 V1,7g 1, y

where h; and 1; are the maximum height and length of
the debris mass before release. Then, by substituting
equations (4.25) and (4.26) in equations (4.23) and (4.24),

the non-dimensional form of the model can be written as

3H . 3
3T *s (HU) =0 (4.27)
U, ;U i -al H , H dcos T
3T s = sin¢ cos ¥ 3¢ * 3 Ta%
v ,Ha (U
Al R s +*as (7)1
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2
-[cosi‘tanéfA%—tanS]SGTl )] (4.28)

4.2 Pinite Difference Equations

A simple explicit scheme applied to a staggered grid is
presented. Fig. 4.2 shows the proposed grid with the space
index i. The superscript n is used to number the time cycle.
The U values are computed first and used to obtain the H
values as indicated in the flowchart diagram in Fig. 4.3.
Computational results arising from the finite difference
programs are discussed later in Section 4.3.

We start by defining various difference operators and
their relationship with the differential operators. Let d
be the non-dimensional spacing between abscissas in the s-
direction and de be the non-dimensional time step. The

forward difference operators are defined by

A k() = k" (E+dy) - k" (§) (4.29)

= 0tl . - 1N +
A k(t) = k71 (Eedg) - K" (E+dy) (4.30)

where k represents either dependent variable H or U. The

differential operators are defined by

Dz) - Ak (4.31)

ka=A_(3;_(tl (4.32)
t
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The difference equations, approximating the continuity
and the momentum equations (4.27) and (4.28) can be written
in terms of the velocity values at the nodes of the scheme
and the flow height at the center of each cell. Starting
with the momentum equation (4.28), the following difference
approximation was used

- L
DU + U™ 2 (1+1) DUGE) = B' - C DH(E) - 3 H" (i+1) Dcos

- L H™ (i+1) DUR(E) - E

(4.33)
where

B = sin C(i+l) - cos {(i*l) tan &5 sen (U) (4.34)

' . U2
C = A [ cos r(l*l)*'ﬁ-] (4.35)
Dcos = A [ cos {(i+l) - cos {(i) ] (4.36)

@_% (i+1))2 (u“'% (i))2
DUR &) = Al g — - wrm ) (4.37)
. "'% 2

E = A tan 5 & UeD” of (4.38)

R(i+I)

A Lax~Wendroff (45) type of approximation to the velocity
Un"l/z(i+l) in equation (4.33) was used as follows

1 WL 1
U2 (e = L U2 o) » U 2 (4] (4.39)
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Substituting equation (4.39) in equation (4.33) and
solving for UM*1/2(i41) yields

L 1 ) ,
U2 gen) « [ U2 o) - gy (4 UTTZ a1 DU - B

+ C’ DH(E) + —é— H" (i+1) Dcos + -% H" (i+1) DUR()

+E)1/[1+3d DUE ] (4.40)

Similarly, equation (4.27) can be approximated by the
following finite difference equation

WL
DH(t) + H" (1+1) DU(E) + U" 2 (1+1) DH(E) = O (4.41)

By using the Lax-Wendroff approximation, equation (4.41)
can be rearranged and solved for Hn+l(i+l) to yield

1
B2 (o) = [ H® (+1) - d, ( 3 H® (1#1) DUGE) +
1
U™Z (1) DHE® 3> 1/ [ 1+ 4 ¢ DUG) T (4.42)

The solution of the system of equations (4.40) and (4.42)
proceeds in a manner similar to that described earlier for
the two-dimensional spreading model. First all variables are
initialized and then equations (4.40) and (4.42) can
alternately be evaluated for all n.

A stability analysis was worked out following the same



126

procedures explained previously in Section 3.3 and the

stability condition obtained was

Uud
'a?l 1 (4.43)

4.3 Results and Discussion

A computer code similar in logic to the one presented in
Section 3.4 was constructed. It was necessary to add a
segment which is used to generate the desired curved bed
shape and to calculate the radius of curvature. The program
was used to predict the longitudinal spreading and velocity
of three different rockslides. The selection of these
particular cases was based on the availability of the
required data for the computations, namely, a cross section
of the bed along the slide path and an estimation of the
dislodged mass dimensions before the slide occurred. The
angle of bed friction (DELTA) was chosen to be 35°.

4.3.1 Prank Rockslide

The Frank rockslide which occurred in 1903 is one of
several rockslides that have taken place in the Canadian
Rockies. This particular slide is one of the most studied
events becazuse of the destruction it caused to the town of
Frank in the southern part of Alberta, Canada (25). The
volume of the rock mass which was estimated to be 3 x 107m>.
The extent of the final deposit was about 1600 m with an
average thickness of 13.7 m. The total fall height was
estimated to be 775 m. Fig 4.4, shows a longitudinal cross
section which was constructed from both a topographic map
and a cross section through the path of the slide which were
given in reference (25).

An analytical expression to simulate the shape of the bed
was constructed as follows. The initial position of the
shape was a plane surface inclined at 50° to the
horizontal. At station x = 500 m (see Fig. 4.4) this was
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joined with a smooth exponential curve which approached

horizontal surface at large x, i.e.

y = 180 e—0.0066 (x-500) ,X >= 500 (4.44)

The radius of curvature of the incline is defined by
&
dx2
3 (4.45)

[gr T

The initial maximum height and length of the rock mass
before the slide occurred were estimated to be 150 m and 625

1
r

m respectively which give an initial aspect ratio A =1 / 4.
The initial shape of the rock mass was approximated by a
sine curve shape. Fig. 4.5 shows the non-dimensional shape
of the debris versus the non-dimensional travel distance
along the slide path at different non dimensional times. The
calculated final deposit length was found to be 1600 m and
the averayed thickness was 40 m. These dimensions
(especially the thickness) are larger than the observed
dimensions of the Frank slide debris. The difference can be
attributed to three-dimensional effects since both the
topographic map and the oblique aerial photograph of the
slide site (25) show that lateral spreading of the debris
occurred because of a slight lateral bed inclination.

Fig. 4.4 shows the initial rock mass before release and
the calculated final shape of the debris. It was found that
the line connecting the initial and final center of mass
positions makes an angle of inclination equal to 35.5° which
is close to the assumed angle of bed friction of 35° . The
difference is no doubt due to the finite size of the debris
mass whose shape is changing and to errors associated with
the finite difference computations. The predicted total
travel distance of the farthest point of the debris (at x =
1950 m) was found to be consistent with the observed runout
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distance (25).

v It was found that the line connecting the highest point
in the slide path with the farthest point of the debris
makes an angle of inclination of 21.6° which gives an
equivalent coefficient of friction of 0.396. Fig. 4.6 shows

; the non-dimensional center of mass velocity versus the non-
dimensional traveling distance along the slide path. Fig.
: 4.7 shows the 'Error' expressed in terms of the relative
volume change versus the computation time. The figure shows
four points of discontinuity in slope which correspond to
changes in the time step.

Computations were performed for two other slide volumes
of 10 % and 50 % of the Frank slide. The results of these
computations are shown in Figs. 4.8 and 4.9 . Two
interesting things may be observed. First the angles of
inclination of the line connecting the initial and final
centers of mass are all much the same and very close to the
bed friction angle of 35°. In addition, the angles of
inclination of the 1line connecting the aft end of the
initial position of the debris with the nose of the final
shape of the debris pile are seen to decrease moderately
with the increasing debris volume. A similar computation was
performed for a slide volume of 350 % of the Frank slide.
The result of this computation is shown in Fig. 4.10. It was
observed that the 1line <connecting the initial and
final centers of mass are very close to the bed friction
angle, however, the angle of inclination of the 1line
connecting the aft end of the initial position with the nose
of the final shape is larger than that of the Frank slide.
The reason of this behaviour is that after its initial
acceleration the front of the pile decelerates more rapidly
than the rest of the pile since it flows on the flat part of
the incline earlier than the rest of the debris. This
behaviour is corsistent with the field data of the Medicine

lake rockslide as will be seen later in Section 4.3.3.

e
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4.3.2 Madison Canyon Rockslide

In 1959, a large rockslide took place in a steep walled
canyor of the Madison River (24) in Montana, U.S.A. The
slide was a direct result of a strong earthquake. A volume
of approximately 2x107 m3 was dislodged and rushed down the
steep slope of the canyo.l to an almost flat valley. The
total fall height was about 575 m. The debris traveled
about 1200 m across the flat valley. The final deposit was
1380 m in length, an average of 7.5 m in thickness and an
average of 2000 m in width.

The shape of the slide path cross section was constructed
from the topographic map given by Hadley ( Fig. 6 of
reference (24) ). This shape was approximated by the

following exponential function (Fig. 4.12)

y = 575 ~0-01 x (4.46)

The initial maximum height and length of the debris pile
before the slide was estimated to be 75 m and 150 m which
gives an initial aspect ratio A of 0.5. The shape of the
initial pile was approximated by a sine curve shape.

In the computer program, the governing equations (4.27)
and (4.28) were used throughout the curved part of the bed
up to station x = 600 m and then eqguation (4.28) was
simplified by canceling out the terms involving R, the
radius of curvature, since R has the value of infinity in
the flat part of the bed.

Fig. 4.12 shows the non-dimensional shape of the pile
versus the non-dimensional traveling distance aiong the
incline at different non-dimensional times. The graph shows
that the rock mass spread to a final physical aspect ratio
of 1 / 400. The calculated final deposit length was found
to be 1490 m and the average thickness was found to be
approximately 3.25 m. These results are considered to be
satisfactory considering both the errors associated with the
estimation of the geometry of the actual slide debris,
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three-dimensional flow effects and the approximations made
in the computation.

Fig. 4.12 shows the initial shape of the rock mass and
the calculated final shape of the debris. Note that the
thickness shown in this graph is distorted to permit a
representation of the depth variations with distance along
the slide path. The graph shows that the line connectin.g the
initial and final center of mass positions makes an angle of
inclination of 36° which is approximately equal to the angle
of bed friction which was assumed to be 35°. This result
agrees with the simple analysis of a point mass sliding down
the same incline. The graph also shows that the line
connecting the highest point of the incline with the
farthest point of the debris makes an angle of 21° . This
line gives an equivalent coefficient of friction of 0.384.

Fig. 4.14 shows the non-dimensional center of mass
velocity versus the non-dimensional traveling distance along
the slide path. Again the calculated profile resembles the
one which might be obtained from the point mass analysis and
the velocity reaches a maximum at the point where the bed
angle of inclination is equal to the angle of bed friction.

A few remarks about how the debris comes to rest are in
order. Fig. 4.13a shows the non-dimensional longitudinal
velocity profile versus the non-dimensional traveling
distance along the incline at different non-dimensional
times just before the motion ceased. The graph shows that
the front part of the slide is moving faster than the rear
end of the debris which results in the spreading behaviour.
Just prior to the end of the motion, portions at the rear
end of the debris come to rest while the front part
continues to move. As time progresses more and more
material at the back end comes to rest until finally all
motion ceases. During this process the center of mass of
the complete debris mass continued to move in the downstream
direction and the center of mass velocity became zero at the

same time that all the material came to rest.
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4.3.7 Medicine Lake Rockslide

The Medicine Lake slide occurred in the same gencral area
of the Frank rockslide 1in the Rocky Mountains. It was
estimated that the dislodged volume was about 8.6 x 107 m3.
A cross-section along the path of slide was given by Cruden
in Fig 11 of reference (26). This graph also showed the
estimated initial profile before the slide occurred as well
as the shape of the final debris deposit. The total fall
height was was about 600 m.

The shape of the incline (see Fig. 4.15) was approximated
by a straight line having an angle of inclination -equal to
45° followed after station x = 500 by an exponential curve

of the form

y = 100 e~ 0.01 (x-500) . 5= 500 (4.47)

The initial height and length of the rock mass were taken
to be 110 m and 860 m respentively. Fig. 4.16 shows that the
front of the pile accelerates and then slows down more
rapidly than the rest of the pile since it flows on the flat
part of the incline earlier than the rest of the debris.
Fig. 4.17 shows a comparison of the calculated final profile
of the debris and the profile observed in the field. The
computed profile in the final state was found to be somewhat
lower than the observed deposit of the rockfall. Notice that
the final 'center line' cross-sectional area of the observed
debris is less than that before the slide occurred. This
anomaly is evidently due to lateral convergence of the flow
that occurred in the actual slide.

Fig. 4.18 shows the non-dimensional velocity profile
which again resembles the profile which might be obtained
from an analysis of a point mass sliding down the same

incline.
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4.3.4 Oother Rockslides

The rest of the available data on rockslides events from
the literature can be divided into two categories. First,
there are events that could not be analyzed by the present
model because no detailed information about the shape of the
cross-section along the slide path was found in the
literature. For the second group of events, the required
data for the computation was available but the bed angle of
inclination at the starting zone was less than the angle of
bed friction. These cases can not be handled by the present
model and the mobility of these events is no doubt due to
factors not considered in the present model. Such factors
might be the occurrence of a strong earthquake which could
supply the debris with the enough vibrational energy to
mobilize the flow. Another might be the presence of water
and or mud within the discrete rock material which could
change the constitutive behaviour to that of a non-Newtonian
fluid, thereby allowing the debris to travel for extended

distances over a nearly flat course.

4.4 Summary and Conclusions

In this Chapter, a one dimensional spreading model was
developed for the prediction of the flow and spreading of a
finite mass of dry cohesionless granular material released
from rest on a rough curved beds. The computational results
agree reasonably well with the field data of three
rockslides which were selected because of the availability
of the required data for the calculations. The main
conclusions of these results are as follows. The movement
of the center of mass of the rock debris resembles the
simple motion of a point mass sliding down the same incline.
The long runout distance of the leading edge of the debris
can be attributed to the spreading of the material which
occurs as the debris traverses the slide path.

One of the problems which arose during the selection of

the three cases presented here was the lack of
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correspondence between the data published in the original
sources and the data which appeared in subsequent
publications describing the same event. Also, it seems that
the estimation of the dislodged rock volume varies widely
and hence no accurate figure can be obtained. For example,
the estimated volumes of the Sherman rockslide (16) were
found to vary between 1.2 x 107 n3 and 10.1 x 107 3 which
is a factor of about 8. Shreve (4) estimated the equivalent
coefficient of friction for this rockslide to be 0.22; it
was subsequently quoted by Scheidegger (1) to be 0.19 and by
Lucchitta (10) to be 0.18. Other cases of a similar nature
can be found in the literature. More accurate data would be
helpful for any further investigations into the mechanics of

rockfalls.



CHAPTER 5
SUMMARY AND CONCLUSIONS

Landslides and rockfalls that initiate on steep slopes
eventually come to rest after flowing for some runout
distance on a horizontal bed. It has been observed that the
granular material making up the slide can be deposited in a
very long and thin layer such that the nose of the slide
moves through a surprisingly 1long distance. To those
familiar with soil mechanics and geology or even someone
aware that the angle of repose (surface slope of a static
pile of material) of typical geological materials is around
35°- 509, these long runout distances seem extraordinary.
For over 100 years, since Albert Hiem observed and described
the Elm rockfall in Switzerland in 1881, attempts have been
made to explain the apparent fluid-like behaviour of these
slides. Various proposals have involved upward flow of air
as a fluidizing mechanism, hovercraft action, generation of
high pressure steam, lubrication by molten rock, etc. All
of these hypotheses have been at Dbest controversial and
none have been universally accepted. It also appears that
none of the proposals have been accompanied by a detailed
computation of the flow development for a typical field
event in an effort to establish the validity of the proposed
fluidizing mechanism. In view of this in addition to the
guestionable nature of the fluidization hypotheses, 1t
seemed worthwhile at the outset of this investigation to
attempt to predict the gross flow features of a typical
rockfall by a numerical computer simulation based upon the
assumption of simple and common-place constitutive
behaviour. The idea was that the extreme spreading might be
a consequence merely of the flow dynamics for a very
ordinary Coulomb-like material and that nothing
extraordinary such as an external fluidization of the

granular material was required.
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The investigation began with the development of the
governing equations for the somewhat idealized problem of
the two-dimensional flow and spreading of a pile of granular
material down rough inclined plane beds. The equations of
motion were simplified by depth averaging and by making use
of approximations analogous to the long wave approximation
used in hydraulics. The granular material was treated as a
continuum and the stresses were simply approximated by using
a quasi-static constitutive relation based upon the Mohr-
Coulomb yield criterion. Numerical solutions of the
governing partial differential equations were obtained by
using a finite difference approximation applied on a
staggered grid scheme. A stability analysis was performed to
obtain the necessary stability condition to assure the
accuracy and stability of the computation. The analysis
predicts both the longitudinal and the lateral spreading of
the pile as well as the velocities. It was concluded from
the results of the two-dimensional spreading computations
that the lateral spreading is insignificant relative to the
longitudinal spreading and that a one-dimensional spreading
model would be adequate for preliminary studies.

Based wupon this work, a depth - averaged model was
developed to describe the one-dimensional spreading of a
finite mass of cohesionless granular material released from
rest on a rough curved bed. The governing equations were
expressed in terms of a curvilinear coordinate system and
the centrifugal force effects arising from the curvature of
the particle paths were included. A finite difference
scheme for the numerical 1integration of the governing
equations was used to predict the longitudinal spreading and
the flow velocities.

Of all the available information on rockfalls, there are
only three events, the Frank, Madison Canyon and Medicine
Lake slides, for which sufficient data exist to make a
detailed simulation using the present model. The basis of

the selection of these three events was the availability of
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a cross section along the slide path and the condition that
the bed angle of inclination at the original position of the
dislodged mass was larger than typical values of the bed
friction angle. The results obtained from the simulation of
the three selected cases were found to ayree satisfactorily
with the field data. It was found that extreme spreading
could indeed occur without introducing any wunusual
fluidization mechanisms. For the case of the Madison Canyon
rockslide the final length to depth ratio of the debris was
400 whereas the initial length to depth ratio of the pile
was 2. Additional computations for fictitious slides having
volumes of 10 % and 50 % of the Frank event and flowing down
the same curved bed showed that the angle of inclination of
the line connecting the aft end of the initial position of
the debris with the nose of the final shape of the debris
pile decreased moderately with increase in slide volume.

It was concluded that the motion of the center of mass of
a rock pile resembles the motion of a point mass sliding
down the same incline. Also, the long runout distance of
the leading edge of the debris can be due to the spreading
of the pile under gravity during its travel down the slope.
Nevertheless, several other rockfalls have shown extreme
mobility over mild inclines. 1In these cases the bed slopes
over the whole slide travel distance was less than bed
friction angles for typical geological materials. It is
believed that other factors such as continued vibration from
earthquakes or the presence of mud within the debris might
have contributed to the mobility of the debris in these
instances.

The present analysis has used a very simple model of the

-constitutive behaviour and further work is needed to develop

improved and more detailed constitutive theories. The
effects of the interstitial fluid such as mud would be of
considerable interest in connection with further

investigations into the large rockfalls.
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2.1 Definition sketch of the proposed approximation of the
Coulomb-like yield and flow criterion
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2.2 Definition sketch of the assumed colinearity between the

friction force and the velocity vector
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Fig. 2.3 Definition sketch of the initial dimensions of the pile
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Fig. 3.2 Flowchart of the computation procedure
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Appendix .

Typical computer program listing
(Madison Canyon Rockslide)



10
20

30

40

50

60

70

80

90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
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l*********************************l

! Madison Canyon Rockslide !
!***************************k*****!

OPTION BASE 1

SET TIME TIME("00:00:00")

GINIT

DIM U(151),H(151),U_u(501),Vol(lSOO),Chg(lSOO)
DIM Bh(151,25),2e(151),Cm(501),R(151)
DEG

Dt=.005 ! TIME STEP
Tmax=8.7

T=0

Dx=.1 ! SPACE STEP
L1=150

Ah=75

Xi=0

Xx=0

Ze(l)=ATN(575*.01)

PRINT " ZETA XX XI S R

Dxi=L1/10 ! equivalent to Dx

S=1

Suml=0

Hhh=2

Xi=Xi+Dxi

CALL Zeta(Xi,Xx,Suml,Hhh,Zeta,Rr,Ll1)
Ze(S)=2Zeta

R(S)=Rr

PRINT USING "5X,K,15X,K,15X,K,12X,K";Ze(S),Xx,Xi,S+1,Rr

IF Ze(S)<.5 THEN
Ze(S)=0
GOTO 370
END IF
]
S=S+1
GOTO 250
FOR I=S TO 150
Ze(I)=0
NEXT I
Phy=35.
Z21=TAN(Phy)
A=Ah/Ll
]

FOR I=1 TO 151
H(I)=0
U(1)=0

NEXT I

|

FOR I=1 TO 11 { Initial shape of the slide
H(I)=SIN((I-1)*18)

NEXT 1

!

N=15 t Initial Number of Steps

K=1
Kkk=1

P P Ry o A PP

T T

A St




<

560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950
960
970
980
990
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120

176
PRINT " I H U ]
1

FOR I=1 TO N
22=SIN(Ze(I+l))
Z23=C0S(Ze(I+1l))
B=Z2-23*Z21
Dux=(U(I+1)-U(I))/Dx
Dhx=(H(I+1)-H(I))/Dx
IF Ze(I)<.5 THEN 810
C=A*(23+(U(I+1))"2/R(I+1))
Dcos=Z3-C0S(Ze(I))
E=A*Z1*(U(I+1))"2/R(I+1)
Dur=( (U(I+1)"2/R(I+1))-(U(I)"2/R(I)))
Ft=.5*U(I+1)*Dux
Td=C*Dhx
Fh=.S*H(I+1)*Dcos*A
Sh=.5*H(I+1)*Dur*a
La=1+.5*Dt*Dux
U(I+1)=(U(I+1l)-Dt*(Ft-B+Td+Fh+Sh+E))/La
i

Chk=25*(ABS{U(I+1)))*Dt/Dx ! Stability Condition
IF Chk<.90 THEN GOTO 870
Dt=Dt*.5
PRINT " REDUCED TIME STEP "
GOTO 880

C=A*Z3

Ft=.5*U(I+1)*Dux

Td=C*Dhx

La=1+.5*Dt*Dux
U(I+1)=(U(I+1)-Dt*(Ft-B+Td))/La
GOTO 760
1
NEXT I
FOR I=1 TO N

Dux2=(U(I+2)-U(I+1))/Dx
Dhx=(H(I+1)-H(I))/Dx

H(I+1)=(H(I+1)-Dt*(U(I+1)*Dhx+.5*H(I+1l)*Dux2))
H(I+1)=H(I+1)/(1+.5*Dt*Dux2)
!

ﬁEXT I
]
FOR I=1 TO N

IF H(I)<.0000001 THEN GOTO 1020
PRINT USING "4X,DD,13X,DD.DDDD,8X,DD.DDDD";I,H(I),U(I)
NEXT I

!

Volume=0
FOR I=1 TO N-1

Volume=Volume+ (H(I)+H(I+l))/2*Dx
NEXT I
!
PRINT UGSING """VOLUME = "",DD.DDD";Volume
Vol(K)=Volume
Vol_ref=Vol(1l)
Chg(K)=(Vol(K)/Vol_ref)*100-100



1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670

1717

T=T+Dt

PRINT USING """ TIME = "",DD.DDD";T
PRINT USING """ % OF ERROR = "",K";Chg(K)
K=K+1
!
CALL C_m(I,H(*),N,C_m,Dx,Volume)
Uu=U(C_m)
CALL U_x(I,T,C_m,Uu)
Cm(Kkk)=C_m
U_u(Kkk)=Uu
Kkk=Kkk+1
!
SELECT T
]
CASE =Dt
Kk=1

CALL H_x(I,H(*),T,N)
FOR I=1 TO N
Hh(I+l,Kk)=H(I+1)
NEXT I
CASE .50
Kk=2
CALL H_x(I,H(*),T,N)
FOR I=1 TO N
Hh(I+l,Kk)=H(I+1)
NEXT I
CASE 6.00
Kk=3
CALL H_x(I,H(*),T,N)
FOR I=1 TO N
Hh(I+l,Kk)=H(I+1)
NEXT I
CASE Tmax
Kk=4
CALL H_x{I,H(*),T,N)
FOR I=1 TO N
Hh(I+1l,Kk)=H(I+l)
NEXT I
CASE ELSE
GOTO 1550
END SELECT
]
IF T>Tmax THEN GOTO 1680
Total=0
FOR I=1 TO N
IF T>1 THEN
Total=(Total+U(I))
ELSE
Total=Total+U(I)+1
END IF
NEXT I
Average=Total/N*3
L=INT (Average)
=N+1L,
GOTO 580




L

1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230

BEEP
PRINT
PRINT TIMES (TIMEDATE)

PRINT "PRESS CONTINUE"

PAUSE
GCLEAR ! Error Plot
GINIT
GRAPHICS ON
VIEWPORT 20,120,30,70
WINDOW 0,K+2,-6,6
FRAME
AXES 0,2
VIEWPORT 0,120,0,100
MOVE K/2,5.
LORG 5
LABEL " Madison Canyon "
MOVE K-15,.65
LABEL "COMPUTATION TIME"
MOVE -11,0
LDIR 90
LABEL "'Error-relative"
MOVE _9 ’ 0
LABEL "volume change'"
LDIR O
FOR I=-6 TO 6 STEP 2
MOVE -4.5,1
LABEL I
NEXT I
MOVE 0,0
FOR I=1 TO K-1

DRAW I,Chg(I)

NEXT I
]

PAUSE

LINPUT AnsS$
IF Ans$="Y" THEN
GINIT

PLOTTER IS 705, "HPGL"

GOTO 1750
ELSE
GOTO 2150

END IF
1 kkkk

PRINT "DO YOU WANT TO PLOT THE GRAPHS ?
PRINT " PRESS CONTINUE "

PAUSE
LINPUT AnsS$
IF AnsS$S="Y" THEN
GOTO 2240
ELSE
GOTO 3030
END IF

178

PRINT "DO YOU WANT TO PLOT THE GRAPHS (ERROR GRAPH) ?"
PRINT "RELAY (Y/N)"
PRINT " PRESS CONTINUE "

REPLAY (Y/N)"



2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360
2370
2380
2390
2400
2410
2420
2430
2440
2450
2460
2470
2480
2490
2500
2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660

2670
2680

2690
2700
2710
2730
2740

GINIT
PLOTTER IS 70
VIEWPORT 20,1
WINDOW 0,15,0
FRAME
AXES 1,.2
VIEWPORT 0,130,0,10
MOVE 12,1.4
LORG 5
LABEL "DELTA = 35
MOVE 14.5,1.43
CSIZE 2
LABEL " o "
CSIZE 5
MOVE 3,1.3

5,"HEGL"
20,40,80
(1.5

! H vs.

0

LABEL "Madison Canyon"

MOVE -2,.75
LDIR 90

LABEL "HIGHT"
LDIR O

MOVE 7.5,-.45
LABEL "STREAMWISE D
MOVE 31-02
FOR I=0 TO 15
MOVE I,-.2
LABEL I/2
NEXT I

MOVE -1,0

FOR I=0 TO 1.3 STEP
IF I=0 THEN
LABEL ".0"
GOTO 2640

END IF

IF I=1 THEN
MOVE -1.1,1.2
LABEL "1.2"
ELSE

MOVE -1,I
LABEL I

END IF

NEXT I

MOVE 0,0

ISTANCE"

.4

FOR Kk=1 TO Kk

FOR I=1 TO
DRAW (I+l

NEXT I
MOVE 0,0
NEXT Kk

BEEP
|

N
)/10,Hh(I+1,Kk)

X Plot
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2750
2760
2770
2780
2790
2800
2810
2820
2830
2840
2850
2860
2870
2880
2890
2900
2970
2920
2930
2940
2950
2960
2970
2980
2990
3000
3010
3020
3030
3040
3050

VIEWPORT 20,120,60,100
WINDOW 0,15,1,1.8
AXES 1,.2
FRAME 1 U vs.
VIEWPORT 0,120,60,100
MOVE 4,1.5
LORG 5
LABEL "Madison Canyon"
MOVE 12,1.5
LABEL "DELTA = 35"
MOVE 12,1.55
CSIZE 3
LABEL " o"
MOVE -205' -9
LDIR 90
CSIZE 3
LABEL "NONDIMENSIONAL VELOCITY"
LDIR O
MOVE -1.0,0
FOR I=0 TO 1.8 STEP .4
MOVE -1,I
LABEL I
NEXT I
Nn=Tmax/Dt
FOR I=1 TO Nn
DRAW Cm(I),U_u(I)
NEXT I
BEEP
PRINT "END OF NORMAL PROGRAM"
BEEP
END
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3UbU
3070
3080
3090
3100
3110
3120
3130
3140
3150
3160
3170
3180
3190
3200
3210
3220
3230
3240
3250
3260
3270
3280
3290
3300
3310
3320
3330
3340
3350
3360
3370
3380
3390
3400
3410
3420
3430
3440
3450
3460
3470
3480
3490
3500
3510
3520
3530
3540
3550
3560
3570
3580

RRRRRRRRR AR R R R A RN AR AR R hhhhhhk

{

! SCREEN PLOT

! RRRAARRRARRRR AR R AR AR RNk A kR
1 *kkkkt PLOT H VS. X  Rekrkhkkihn
{

!

SUB H_x(I,H(*),T,N)
BEEP
IF T>.16 THEN GOTO 3520
GRAPHICS ON
VIEWPORT 20,120,20,50
WINDOW 0,15,0,1.5
FRAME
AXES 1,.2
VIEWPORT 0,130,0,100
MOVE 7.5,1.3
LORG 5
LABEL "PHY = 35 "
MOVE 8.5,1.43
CSIZE 2
LABEL " o "
CSIZE 5
MOVE -2,.75
LABEL "H"
MOVE 7.5,-.45
LABEL "X"
MOVE 0'-.2
FOR I=0 TO 15 STEP 2
MOVE I,-.2
LABEL I
NEXT I
MOVE -1,0
FOR I=0 TO 1.5 STEP .4
IF I=0 THEN
MOVE -1,0
LABEL ".0"
GOTO 3510
END IF
IF I=1 THEN
MOVE "lclpl
LABEL "1.0"
ELSE
MOVE -1,I
LABEL I
END IF
NEXT I
MOVE 0,0
}
FOR I=1 TO N
DRAW I/10,H(I+1)
NEXT I
!
SUBEND
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3590
3600
3610
3620
3630
3640
3650
3660
3670
3680
3690
3700
3710
3720
3730
3740
3750
3760
3770
3780
3790
3800
3810
3820
3830
3840
3850
3860
3870
3880
3890
3900

khkhkhkhh

Sum gom gum Sum fem Sem

SUB U_x(I,T,C_m,Uu)
Dt=.005

SCREEN PLOT

L2222 222222222222 22 XX R X2 2 R R R OoX

PILOT U VS. X khhkdkhkkhkk

Rk hhhkhhhhhhkhhhhhhhhhhhkhhdhhii

IF T>(Dt+.002) THEN GOTO 3870

GRAPHICS ON

VIEWPORT 20,120,60,100
WINDOW 0,15,0,1.8

AXES 1,.2

FRAME

VIEWPORT 0,120,0,100
MOVE 25,8.5

LORG 5

MOVE -2.0,.9

LABEL "U"

MOVE -1,0

FOR I=0 TO 1.8 STEP .4
MOVE -1,1

LABEL I

NEXT I
{

Cc=C_m
Uuu=Uu
PRINT Cc,Uuu
MOVE Cc,Uuu
DRAW C_m,Uu
1

SUBEND
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W

3910
3920
3930
3940
3950
3960
3970
3980
3990
4000
4010

4020
4030

4040
4050
4060
4070
4080
4090
4100
4110
4120
4130
4140
4150
4160
4170
4180
4190
4200
4210
4220
4230
4240
4250
4260
4270
4280
4290
4300
4310
4320
4330
4340
4350
4360

e pew g bem

!

SUB Zeta (Xi,Xx,Suml,Hhh,Zeta,Rr,Ll)
INTEGER J3j

183

rerparperrr e TSI IR XL S R LL LA S L AL

sxxxx%* angle of inclination and *¥#**rkx

xkkk** radius of curvature kkkkthk
*****t*******i***************************

C=(-.01)
Hs=Hhh/5
Sum0=0
Sum0=Sum0+(1+(C*C)*EXP(2*C*Xx))".5
M=6
Hl=Hs/M
FOR Jjj=1 TO M
Xx=Xx+Hl i
IF Jjj=M THEN GOTO 4120
IF Jj=Jj/2*2 THEN GOTO 4100
Sum0=Sum0+4* (1+575"2*(C*C)*EXP(2*C*Xx))".5
GOTO 4130
Sum0=Sum0+2* (1+575"2*(C*C)*EXP(2*C*Xx))" .5
GO10 4130
Sum0=Sum0+(1+575"2* (C*C) *EXP(2*C*Xx))".5
NEXT J3jj
Simps=5um0*H1/3
Suml=Suml+Simps
IF Suml>Xi THEN GOTO 4180
GOTO 4000
Zeta=ATN(575*ABS (C)*EXP(C*Xx) )
Up=C~ 2*575*EXP(C*Xx)
Bo={1+575"2*C"2*EXP(2*C*Xx)) 1.5
Rr=(Bo/Up)/L1 ! Non-dimensional
SUBEND
1

I TR XSRS SRR SRR R LR EL S &

**kkk* center of mass Arkk*
I LR 22 X2ZXX2X22X223X R 222 2 2

UB C_m(I,H(*),N,C_m,Dx,Volume)

tn ) 0= 0= s sm o

M=0

FOR I=1 TO N-1
L=(H(I)+H(I+1l))/2*Dx
M=M+L*(I+I+1)/2

NEXT I

C_m=M/Volume

SUBEND
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GENERAL CONCLUSIONS

The main conclusions of the two studies described in this

thesis are given below.

Part I: Subaqueous Flow of a Cloud of Coarse Particles Down

an Inclined Bed.

Based upon the two series of laboratory experiments and

the theoretical analysis, it may be concluded that:

1.

The flow behaviour of a density current involving
sedimenting particles can be very different from that of
one involving miscible fluids. The previous experiments
and the analysis of Beghin, et al. involving the release
of salt water into fresh water on a sloping bed showed
that the ensuing (negatively buoyant) cloud continued to
grow without bound as it moved down the bed. 1In the
present experiments the cloud of particles initially grew

but then collapsed at some downstream position.

The aspect ratio (the height to length) of the c¢loud was
found to be approximately constant for each bed
inclination and did not vary greatly for different
inclinations. This is similar to results found

previously for miscible fluids.

The entrainment coefficient for turbulent density
currents has commonly been expressed as a function of the
Richardson number. This is inadegquate for flows
involving sedimenting particles, and on the basis of
dimensional analysis it is proposed that the entrainment
coefficient be expressed as a function of both the
Richardson number and the ratio of the particle net fall
velocity to the cloud center-of-mass velocity. The

proposed functional form agrees well with the present set
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of experiments and roughly predicts the previous results
for miscible fluids as the particle fall velocity tends

to zero.

4, The effects of the cloud form drag and the bed friction
arising from particle interactions were found to be
very significant in the present work. Both have been

regarded as negligible in the previous investigations.

5. The present analysis based upon the three overall
conservation equations; the sediment balance equation,
the ambient fluid entrainment equation and the linear
momentum equation along the bed, was found to give
reasonably good predictions of the observed flow
behaviour for cloud size and shape, mean velocity and

mean particle concentration and cloud collapse location.

6. The above effects which have previously been neglected,
but which were found to be important in the present
investigation, should be included in further

investigations of gravity currents involving sedimenting

particles.

Part II: Spreading of Rock Avalanches

The second part of the thesis considered a related
problem of flow of particles down an inclined bed, but in
this instance the interstitial fluid effects were taken to
be negligible. The development of numerical computer codes
to simulate rockfalls was undertaken in an attempt to
investigate the surprisingly long runout distances that have
been observed in some field events involving very large
volumes. The codes were based upon the use of continuum
depth-averaged equations of motion and a simple quasi-static
form of the constitutive equation for the granular rock

material. The conclusions derived from the numerical
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studies of the rockfall problem are as follows:

1.

From the results of computer simulations which involved
two-dimensiénal spreading of granular material down an
inclined rough plane, it was found that lateral spreading
of the material was small compared to longitudinal

spreading in the streamwise direction.

As a result of these studies, a two-dimensional flow
model which considered only one-dimensional spreading was
regarded as sufficiently accurate for the present
investigation. This one-dimensional spreading model
showed that extreme spreading of the granular material
could occur without introducing any unusual fluidizing
mechanisms such as have been deemed necessary in the

past.

There were only three rockfall events, the Frank, Madison
Canyon and Medicine Lake slides, for which sufficient
data existed to perform detailed numerical simulations
using the present model. The predictions for the overall
flow features for these events were in good agreement
with the field observations and the behaviour inferred

from these observations.

It was concluded that the motion of the center of mass of
the rockfall resembled the motion of a point mass moving

down the same incline.

The long runout distance of the leading edge of the
debris can be due to the spreading of the pile under

gravity during its travel down the slope.
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