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ANALYSES OP GRAVITY GRAIN FLOWS 

ABSTRACT 

This investigation consi sts of two separa te parts. In 

the first part the subaqueous flow of 3 cloud of coarse 

particles down an inclined bed was investigated 

exper1mentally and theoretically. This work is relevant to 

the mechanics of transportation of ocean bed sediment in the 

forrn of submarine grain flows. It was found experimentally 

that after an initial growth period, the cloud collapsed as 

a result of sedimentation. A theoretical analysis for the 

development of a two-dimensional cloud was derived based 

upon the overall conservation equ~tions; the sediment mass 

balance equation, the ambient fluid entrainment equation and 

the linear momenturn 0quation along the bed. 

The second part of the thesis is a study of the flow and 

spreading of a finite mass of dry cohesionless granular 

material released from rest on rough inclines. Firstly, a 

two-dimensional depth - averaged mode~ which describes both 

the longitudinal and the lateral spreading during flow down 

a rough inclined plane was developed. From the results of 

the numerical studies, it was concluded that the lateral 

spread1ng is insignificant relative to the longitudinal 

spread1ng. Therefore, a depth- averaged model which 

describes the one-dimensional longitudinal spreading down 

rough, curved beds was developed. It was concluded that the 

traveling distance and velocity of the center of mass of a 

rock pile can be approximately predicted by a simple 

analysis of a point mass sliding down the same incline. The 

long runout distance of the leading edge of the slide debris 

can result from extreme spreading of the pile as it 

ac~elerates down the slope after initial release. 
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RESUME 

L'écoulement sous-aqueux d'un nuage de grosses partIcules 

le long d'un lit incliné a été étudié expérimentalement et 

th~oriquement. Ces travaux sont applicables aux mécanismes 

de charriage de sédiment au fond des océans sous la forme 

d'écoulements de grains sous-marins. Il a été trouvé 

qU'après une période de croissance initiale, le nuage 

s'affaissait ~ cause de la sédimentation. Une analyse 

théorique pour le développement d'un nuage bidimensionnel a 

été dérivée à partir des équations de conservation globale: 

l'équation de balance de la masse du sédiment, l'équation 

d'entratnement du fluide ambient, et l'équation de force la 

d'impulsion linéairé le long du lit. 

Une etude de l'écoulement et de la propagation d'une 

masse finie d'un matériau sec granuleux sans cohésion 1achée 

du repos sur des pentes rugeuses est presentée. 

Premièrement, un modèle bidimensionnel à profondeur moyenne 

décrivant la propagation longitudinale et latérale durant 

l'écoulement le long d'un plan rugueux incliné est 

développé. D'après les résultats de les études numériques, 

il est conclu que la propagation latera1e est sans 

importance en comparaison à la propagation longitudinale. 
, " , Ainsi, un modele a profondeur moyenne dec~ivant la 

propagation longitudinale unidimensionnelle le long de lIts 

rugueux courbes est developpé. Il est conclu que la 

distance parcourue et la vitesse du centre de masse du tas 

de rochers peuvent ~tre predites par une analyse simple 

d'une masse ponctuelle glissant le long de la même pente. 

La longue portèe du bord d'attaque du tas de debris 

d'avalanche peut être le résultat d'une propagation extrême 

du tas lorsqu'il accélère le long de la pente apres le 

lâchage initial. 
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GENERAL INTRODUCTION 

This thesis contains the results of two studies which are 

distinctly different bu~ are nevertheless related; both deal 

with problems of a geotechnical nature related to the motion 

of discrete geological ma~erials down slopes. In both cases 

the discrete nature of the materials is taken into account, 

but continuum 'fluid-like' models are used to model the flow 

behaviour. Both deal with unsteady, developing flows 

resulting from the initial release of a finite mass of 

particulate materials on rough inclined beds. The 

investigations examine the flows from the time of initiation 

until the collapse phase when aIl motion cease~. The main 

focus is on the mechanics of the flow processes. 

The first study, Part l, deals with the flow of 

relatively small particles which are suspended in a fluid, 

where sedimentation and turbulent mixing of the fluid are 

important. Examples of such flows are submarine debris 

flows which might be initiated by underwater earthquakes, 

and powder snow avalanches. Submarine debris flows are of 

current interest in connection with oil exploration on the 

continental shelf regions. 

The study of Part l corresponds to one limit of the 

general particulate flow problem in which the presence of 

the interstitial fluid plays an essential role in the flow 

mechanics. In this se~se, we regard the particles to be 

'small' and/or the mass density of the particles to be not 

too different from that of the surrounding fluide 
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On the other hand, the second study, Part II, deals with 

the other limit in which the interstitial fluid effects are 

negligible. Attention is directed to the mechanics of 

rockfalls that initiate on steep slopes, 'flow' down the 

slope and eventually come to rest on a shallower slope or a 

horizontal region. Rockfalls of very large masses have been 

observed to exhibit extrsmely long runout distances. This 

phenomenon has puzzled geophysicists for many years and 

numerous hypotheses, based upon unusual constitutive 

behaviour of the discrete rock material, have been proposed 

to explain it. At best, aIl are controversial. Furthermore 

no detailed calculations of flow events based upon the se 

hypotheses have been performed. Part II contains a 

numerical study of the rockfall problem using constitutive 

equations which are commonly accepted in quasi-static flows. 

The main body of the presentation has been divided up 

into two sepÇr' te sections, Part l and Part II, which 

discuss each of the separate problems in detail. 

-Vl;-



{ 

( 

PAR'!' 1 

SUBA('UEOUS PLOW OP A CLOUD OP COARSE 

PAR'!'ICLES DOWN AN IRCLlRED BED 



SUBAQUEOUS FLOW OF A CLOUD OF COARSB PARTICLES 

DOWN AR INCLINBD BEn 

ABSTRACT 

The subaqueous flow of a cloud of coarse particles down 

an inclined bed was investigated experimentally and 

theoretically. This work is relevant to the mechûnics of 

transportation of ocean bed sediment in the form of 

submarine grain flows. These flows are of curren~ interest 

in connection with 011 exploration on the continental shelf 

regions. 

Following a set of preliminary experiments, large scale 

experiments were carried out in a 4 m long tilting water 

tank using suspensions of sand particles and polystyrene 

bearls. It was found that alter an initial growth period, 

the cloud collapsed as a result of sedimentation. This was 

in strong contra st with the previous studies involving only 

fluids by Beghin, et al. (23) which showed the cloud would 

continue to grow without bound. Dimensional arguments and 

experimental observations suggested that the entrainment 

coefficient might be expressed as a function of both the 

Richardson number and the ratio of the parti cIe net fall 

velocity to the cloud center of mass velocity. 

A theoretical analysis for the development of a two­

dimensional cloud was derived baseà upon the overall 

conservation equations; the sediment mass balance equation, 

the ambient fluid entrainment equation and the linear 

momentum equation along the bed. The mass diffusion 

coefficient involved in the model was taken as a multiple of 

the eddy viscositYi it th en was related to the shear stress 

distribution within the cloud. The predicted behaviour of 

the flow was found to agree weIl wit~ the experimental 

results. 
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INTRODUCTION 

Ocean bed sediment can be transported in the form of 

subaqueous grain flows moving down slopes under the action 

of gravity. The development and maintenance of such flows 

and the forces generated when the y strike and flow around 

underwater objects are of interest in connection with oil 

exploration on the continental shelf regions. We may 

classify the flows broadlyas 'two-dimensional' or 'three­

dimensional'. Two-dimensional flows which are confined in a 

channel-like path of approximately uniform width have 

received the most attention. Three-dimensional flows, such 

as those characteristic of a current spreading in fan-like 

fashion over a surface, are important to the geologist, but 

little is known about their hydraulic or sedimentological 

properties. 

Among two-dimensional subaqueous flows, two distinct 

types may be distinguished: surges involving a finite volume 

of dispersed particles and uniform flows or currents. 

Surges (alternatively called negatively buoyant clouds) are 

nonuniform, unsteady phenomena. They may be formed in 

nature by events such as a large slump or an underwater 

earthquake which creates a large volume of dispersed 

sediment. Gravit y currents of these kinds occur in many 

different natural situations, and knowledge of their 

properties is of importance in many scientific disciplines. 

For example, powder snow avalanches which take place in an 

aerial environment are analogous to subaqueous debris flows. 

In fact, model studies of snow avalanches have been carried 

out in the laboratory (1,2) using solid particles released 

in water. 

The mechanics of subaqueous grain flows and related kinds 

of gravit y currents is poorly understood, despite the 

frequent occurrence of and the serious damage caused by 

the se flows. The present study is an attempt to further our 
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understanding of these comp1ex flows. After a brief 

literature review presented in the next subsection, 

attention is directed to two-dimensional flows which involve 

the underwater release of a cloud of solid particles and the 

subsequent flow of the cloud down an inclined surface. Two 

sets of laboratory experiments (small and large scale) and 

an analysis of the growth and collapse of the sed1menting 

cloud are presented. 

1.1 Review of Previous Work 

A gravit y current or density current is the flow of a 

fluid within another caused by a density difference between 

the two fluids. The difference in specific weight that 

provides the driving force may be due to either dissolved or 

suspended material or to temperature differences. At the 

leading edge of a gravit y current there is a head which is 

characterized by a higher depth than the rest of the 

current. The head is followed by the body of the current 

which moves, in general, as a steady flow. The shape of a 

buoyant cloud resembles the head of a gravit y current. In 

this review, attention is directed toward the subaqueous 

gravit y currents which are composed of particle suspensions 

originating from continuous sources or instantaneous 

sources. 

1.1.1 Gravit y Currents and Related Phenomena 

In the ocean, gravit y currents of interest to this study 

consist of suspended mud, silt or sand. Examples of the 

damage that can be caused by this type of mass movement are 

the breaks in s~bmarine telephone cables in 1966 and 1968 

that wer€ due to earthquake-triqgered turbidity currents 

(3). Studies of turbidity currents have been performed 

mainly in two contexts, the geological context and the 

hydrodynamics contexte 

In geology, the concept of turbidity currents first 

attracted great interest after the suggestion by Daly (4) 
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that turbidity currents produced by wave action might flow 

down the continental shelves and erode submarine canyons. 

Kuenen (5) performed experimental studies to test this 

hypothesis and his results supported the idea. However, the 

interest in turbidity currents was changed from considering 

them as an elosive agent to their capacity to transport 

sediments intG deep water and to form graded beds. Kuenen 

(6) produced graded beds in laboratory experiments with 

mixture of sand and mud. Kuenen and Migliorini (7) also 

used laboratory experiments to explain graded beds in the 

Apennlnes in Italy. Hezzen and Ewing (8) used their 

experimental results to explain cable breaks and sand layers 

in the Atlantic Ocean. Middleton, in his classical papers 

(9,10,11), reviewed in length both the geologica1 and the 

hydrodynamical aspects of the subject. In his first paper, 

Middleton studied experimentally the flow at the head of 

density currents, including the nature of the motion around 

and within the head using a saline water beneath fresh 

water. In the second paper, the laws of uniform flow of the 

density currents were studied and in the third paper, 

deposition of the sediment from the turbidity current and 

the formation of graded beds wer~ discussed. Lengthy 

reviews on the history of the studies of the turbidity 

currents were presented by Middleton (12) and Simpson (13). 

Hydrodynamic investigations of gravit y currents can be 

classified under two main categories, the f low of the 

current along horizontal boundaries and the motion of the 

current flowing down a slope. It was found that when a 

current flowed a10ng a horizontal boundary, the head was a 

contro11ing feature of the f1ow. The dynamics of the head 

was investigated thoroughly by Britter and Simpson (14,15). 

They showed how mixing occurring immediately behind the he ad 

determined the rate of advance of the current. A semi­

empirical ana1ysis was presented to describe the 

experimenta1 results. Nevertheless, the flow of gravit y 

currents on horizontal boundaries is often not the case in 
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practical situations. Th~ continental shelves over which 

turbidity currents flow are not fIat and the motion of 

avalanches is essentially from one 1evel to another. 

The motion of a gravit y current f10winq down a slope has 

received sorne attention. Recent1y, Hopfinger and 

Tochon-Oanguy (1,2) studied the flow of powder snow 

avalanches experimentally. Powder snow avalanches 

correspond to gravit y currents in the 1imit where the 

density difference is srnall. A cornmon salt solution was 

used by Hopfinger and Tochon-Oanguy to mode1 the avalanche 

and a simple theoretical analysis was proposed to predict 

the velocity and the development of the avalanche. From the 

experimental results the y concluded that, the entrainment 

coefficient is only a function of the angle of inclination. 

Britter and Linden (16) presented results of an experimental 

study of gravit y currents traveling down an incline. In 

these tests the slopes ranged between 0 and 90 degrees, in 

contra st with the previous experiment~ which covered only a 

limited range of the angle of bed inclination. The emphasis 

in these experiments was on the behaviour of the he ad of the 

current. The experiments provided evidence of considerable 

mixing and entrainment of the ambient fluide It was 

concluded that, on small slopes (less than 5 degrees) the 

velocity of the head decreased with distance as the 

component of buoyancy force was insufficient to overcome the 

friction at the lower boundary. Also, they found that the 

head velocity was constant over the whole range of slopes 

from 5 to 90 deqrees. They explained these results by 

stating that the increase of buoyancy force was counteracted 

by the increase in the entrainment as the anqle of 

inclination increased. 

Ellison and Turner (17), on the other hand, were 

interested in the flow behind the head. They studied the 

properties of this steady flow and showed that the rnean 

velocity down the slope was independent of the distance 

downstream from the source. However, the thickness of the 
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current increased downstream at a constant rate due to the 

entrainment of the ambient fluid. 

The gravit y currents mentioned above were modeled 

experlmentally using a common salt water solution. This 

corresponds in real situations to either of two categories, 

non-particulate material gravit y currents or equilibrium 

turbidity currents where the rate of erosion is equal to the 

rate of deposition. The first case includes most of the 

atmospheric gravit y currents or oceanic gravit y currents 

(river plumes at the surface and salt wedges on a river 

bed). However, in the case of powder snow avalanches 

(subaerial gravit y currents) and non-equilibrium turbidity 

currents, sedimentation and erosion play a crucial role in 

the deve10pment of the flow. Evidence of fan formation and 

canyon erosion were found and discussed by Daly (4) and 

Kuenen (5); these are instances where erosion is a dominant 

factor. Erosion of the snow cover was discussed in 

References (1,2). An example where sedimentation is 

dominant is described by Kuenen (6); the formation of a 

graded bed was evident from both field observations and 

experimental studies. 

Severa1 disadvantages of attempting to model turbidity 

currents by using fluids can be identified by discussing the 

fo11owing three features of the flow: the entrainment 

coefficient, the lower boundary resistance and the form drag 

forces. 

Entrainment implies a f10w of ambient fluid into a 

turbulent flow. In the case where a gravit y current is 

modeled using a dense fluid , the degree of turbulence is 

the major factor to be considered in evaluating the 

entrainment coefficient. Based on this concept, the 

entrainment coefficient has been expressed as a function of 

the Richardson number (the inverse square of the densimetric 

Froude number). Experimental observations of the 

nonhomogeneous f1ows, jets, plumes and mixing layers in 

References (16,17,19,20) show that the entrainment 
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coefficient may vary significantly for the various types of 

flows. A comparison of the entrain~ent coefficient values 

for different types of flows of miscible fluids as a 

function of the Richardson number was presented by Turner 

(21). While correlations are possible for each type of 

flow, there are differences in entrainment coefficient 

values between the various types of flow. In cases l~ke the 

present study which involve discrete solid particles and a 

fluid (instead of two miscible fluids) we must generalize 

the entrainment concept to account for the possibility of 

sedimentation. This can be clearly seen if we consider a 

turbidity current which is composed of a suspension of larqe 

particles having high faii ve10cities which flows on an 

incline of small slope. A subsiding current due to 

sedimentation and no entrainment are to be expected. In 

fact, only negative entrainment (or "detrainment") is 

possible in this situation. 

Typically (16), the stress at the 10wer boundary has been 

considered 1n analyses of density currents only for the case 

of small bed slop~s. The effects of bed friction have been 

assumed negligible for large siopes (16). These assumptlons 

are appropriate for the case of a dense fluid flowing 

adjacent to a smooth bed boundary. A current consisting of 

particle suspensions flowing down a rough bed composed of 

particles is a quite different situation since the 

interaction between the particie suspensions and the bed 

particles has to be considered. Bed friction due to 

particle interactions can be much larger than that due to a 

fluid alone. 

The form drag of the density currents involving only 

fluids typically has been neglected since it is small 

compared to the (negative) buoyancy force during flow down 

steep slopes. However, in the present case in which the 

lower boundary resistance force is significant, the form 

drag is no longer negligible in the streamwise force balance 

equation. 
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Semi-empirica1 descriptions of density currents have been 

proposed in References (1,9,10,14,15,16). Parker (22) 

recent1y introduced a simple mode1 to ana1yze a continuous 

turbidity current, considering the sedimentation as weIl as 

the erosion. However, he only considered the case where 

erosion is just equa1 to sedimentation. Moreover, he 

neglected the entrajnment and both the form drag and the 

lower boundary resistance so that a stead~ state flow was 

obtained. The analysis provides only qualitative results and 

no quantitative bounds for the case where either the 

sedimentation or the erosion is dominant. 

1.1.2. Gravitational Convection from Instantaneous Sources 

Morton et al. (19) studied both experirnentally and 

theoretica1ly the flow of a risinq cloud of light fluid in 

another f1uid. The idea of the entrainment coefficient was 

first introduced by them, and they made it the basis of 

their theory of plumes. Conservation laws of volume , 

mornentum and buoyancy were the basis of the analysis which 

involved a constant entrainment coefficient. An exact 

solution of the governinq equations was given to estimate 

the maximum height that a cloud might reach under a given 

set of conditions. 

More recently, Beghin et al. (23) studied the flow of an 

'inc1ined thermal' (neqatively bouyant cloud in these 

experiments) which moves down a smooth inclined bed. Most 

of the experiments were performed using a common salt 

solution as the dense fluide Sorne runs were made with a 

sand suspensio~. The sand used was graded to give grain 

sizes 1ess than 20 ume Su ch small grains have a very small 

fall velocity in water; results of the tests with sand did 

not differ qreatly from those obtained with the miscible 

f1uids. 

It was found that the spatial growth rates of the height 

and length of the cloud were linear functions of the angle 

of inclination. The height to length ratio was found to be 
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constant for a given bed slope. The shape of the cloud was 

weIl approximated by half an ellipse. The entrainment 

coefficient was found to be constant for a given bed angle 

of inclination but increased linearly with the increase of 

bed slope. 

A theoretical model based on the conservation laws of 

mass and linear momentum with the assumption of small 

density differences was developed (23). The theory 

predicted that the cloud would continue to grow linearly 

with the traveling distance, and the velocity would decay ~s 

the inverse of the square root of the traveling distance. 

It may be concluded from the above review that, there is 

a lack of experimental data on density currents in which 

there are particles large and dense enough to play an 

important role in the flow dynamics. There is little 

available experimental or theoretical information on the 

entrainment, erosion and sedimentation processes in the 

context of gravit y currents. The present study will focus 

on an idealization of the natural problem in an effort to 

gain sorne understanding of the mechanics involved in sorne of 

these questions. 
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CBAPTER 2 

EXPERIMENTAL INVESTIGATION 

The experiments were directed toward investigating the 

flow behaviour subsequent to the subaqueous release of a 

cloud of dense, coarse particles down a rough inclined bed. 

The emphasis of these experiments was on understanding how 

the tendency of the particles to sediment affects the 

entrainment process and the growth and collapse of the 

cloud. The bed resistance due to particle interactions and 

the form drag of the rnoving cloud were significant in these 

experiments. The results of sorne preliminary exploratory 

experiments performe(; in a small scale apparatus will be 

described first. These are followed by the presentation of 

results obtained in a larger apparatus designed on the basis 

of the preliminary experiments. 

2.1 Preliminary Tests 

Small scale laboratory experiments were carried out to 

determine the essential flow characteristics as a 

preliminary to the design of a larger scale tilting tank. 

The small scale experiments were carried out in a 

plexiglass water tank a sketch of which is shown in ?ig. 

2.1. The tank was 2 m long, 0.12 m wide and 0.3 m deep. It 

could be capped and set to any angle of inclination from 0 

to 45 degrees. A release gate spanning the width of the 

tank was positioned at the upper end of the tank. It was 

used to release a suspension of particles into the fresh 

water contained in the tank. A collection charnber was 

positioned at the lower end of the tank. Its bed level was 

lower than the bed level of the tank in order to both 

collect the particles which reached the end of the tank and 

to reduce the possibility of waves reflected from the end 

wall. 

Sorne of the tests were performed with a suspension of 

sand having an average diarneter of 0.1-0.2 mm, specific 

9 
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gravit y of 2.5 and particle free fall velocity of 0.048 

rn/sec. Further runs were performed with a suspension 

cornposed of spherical polystyrene beads with an average 

diarneter of 1-2 mm, specifie gravit y of 1.12 and particle 

free fall velocity of 0.0~6 rn/sec. The angles of repose of 

the sand and the beads particles were deterrnined to be 36 

and 26 degrees respectively. The bed of the tank was 

covered with two sided sticky tape normally used for holding 

down floor carpets. Dry particles of the sarne type that 

were used in the flowing cloud experiments were placed in a 

pile on the top of the tape. A layer of particles becarne 

attached to the tape and the excess particles were rernoved 

_eaving a rigid surface having a roughness corresponding to 

that of the individual particles. Note that while this 

creates a roughened bed, it does not permit the possibility 

of erosion which may be present in sorne natural flows. The 

experiments were performed at bed angles of inclination of 

30, 34, 38 and 44 degrees. During the introduction of the 

beads behind the release gate prior to the test run, air 

bubbles sometimes became attached to the beads causing them 

to flocculate. To remedy this a srnall amount of Kodak 

'Photo-Flo 200 Solution' was added to the suspension to 

reduce the surface tension of the water and minimize the 

development and attachrnent of the air bubbles. 

The tank was adjusted to the required angle of 

inclination and then filled with fresh water. The required 

volume of material was then introduced behind the release 

gate. The initial volume per unit width ( Ao ) for both the 

sand and the bead suspensions was .003 m2 . The initial 

masses of sand and beads were .5 kg and .25 kg re~pe~tively. 

The gate was quickly withdrawn by hand and the suspension 

started to flow down the slope. Care was taken to release 

the cloud as smoothly as possible, consistent with a rapid 

release. The tank was repositioned to the horizontal just 

after the cloud collapsed so that the arnount of solids which 

sedimented from the cloud during its travel could be 
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determined as a function of the traveling distance. 

The moving cloud was photoqraphed at regular time 

intervals using a 35mm Canon A-l camera with a high speed 

motor drive. The exposure time was (1/125) sec. A digital 

stop watch placed adjacent to the tank recorded the time 

each photograph was taken (within an accuracy of 1/100 sec). 

A 50mm x 50mm grid covering the back of the tank assisted in 

the determination of the cloud velocity and geometry. From 

the photographs, the following quantities were measured: the 

cloud's height and length, its area and circumference. By 

knowing the time between subsequent photographs the front 

velocity could be determined. 

From the photograph, it was relatively easy to define the 

front position, but the bulgy nature of the contour made the 

deterrnination of the cloud length somewhat subjective. A 

smooth curve was drawn by hand through the 'middle' of the 

irregular cloud boundary and was used to define the cloud 

geometry for the determination of its overall length l, 

maximum height h, are a A and circumference P. 

2.2 Results and Conclusions 

AlI of the data presented in this section were obtained 

from slide-by-slide examination of the 35mm film of the 

flow. The observed cloud of particulate material W3S found 

to be similar in shape to the two-dimensional thermal on 

inclined boundaries studied by Beghin, et al. (23). The 

latter involved the flow of miscible fluids of fresh and 

salt water. However, the coarse particle cloud did not 

continue to grow without limit as was the case of the 

thermal, but it collapsed after an initial growth periode 

The shape of both kinds of clouds can be approximated by 

half an ellipse as will be later shown in Section 3.1. In 

the following discussion, the odd-numbered figures will 

refer to the sand suspension clouds and the even-numbered 

figures will refer to the bead suspension clouds. The ratio 

of the height ta the length of the cloud (K = h / 1) was 
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found ta be practically constant for a given angle of bed 

inclination as can be seen in Figs. 2.2 and 2.3. In these 

figures, the ratio Kwas varied somewhat with distance. 

Near the end of the cloud travel K dropped considerably 

during the final collapse phase. For the same angle of bed 

inclination, it can be noticed that the ratio K for the bead 

suspension cloud was somewhat higher than that of the sand 

suspension cloud. This can be attributed to the lower fall 

velocity of the beads which allowed for larger vertical 

growth of the cloud. 

Figs. 2.4 and 2.5 show the length of the cloud normalized 

by the square root of the initial volume per unit width~, 

versus the traveling distance normalized by the saffie factor. 

The general behaviour which is obvious from these figures is 

that the cloud initially grew in size, reached a maximum and 

then collapsed. Fig. 2.4 shows that at the largest angle of 

inclination ( 44 degrees ), the sand cloud just reached its 

maximum size and started the collapse phase at the end of 

the tank. At the same bed inclination angle of 44 degrees, 

the plastic bead cloud had achieved its maximum size but had 

not completed its collapse phase by the end of the tank. 

Figs. 2.6 and 2.7 show the cloud mean volumetrie 

concentration against the traveling distance normalized by 

~. The mean volumetric concentration was calcula ted for 

each slide by using the measured cloud area and the amount 

of material within the cloud at that particular time. The 

amount of particulate material within the cloud at a 

particular station was determined by subtracting the amount 

deposited on the bed up to that station from the total 

amount of material that was initially released. These 

figures show that the concentration initially decreased, due 

to the expansion of the cloud and the assoeiated ambient 

fluid entrainment. During the final stage of the collapse 

of the cloud, the concentration increased again as a result 

of the detrainment of the cloud fluide 
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Figs. 2.8 and 2.9 show the cloud front 
J J 

velocity 

normalized by the initial buoyancy ( .. " A,2 J2 versus 
o 0 A 

traveling distance normalized by A~/2, where g~ • g ~ Co and 

the 

g is the gravitational 

difference between the 

• acceleration, Ap is the density 

particle Pp and the ambienr. fluid 

Pa and Co is the initial concentration before the release of 

the cloud. These figures show that the cloud reached a 

maximum velocity (which increased with the angle of bed 

inclination) and then decelerated until it finally 

collapsed. 

Based on the above observations, the processes of growth 

and collapse cou Id be descri~ed as follows. As the gate is 

withdrawn, the cloud starts to accelerate down the slope. 

The motion of the particle& develops shear stresses between 

the different layers of the cloud whi~h in turn create 

dispersive stresses ( due to the collisions between the 

particles (24)) that cause the suspension to expand. Shear 

instabilities create turbulence within the cloud which, in 

addition to the high concentration, reduces the particle 

fall velocity which in turn enhan~es the growth of the 

cloud. Entrainment of the ambient fluid into the cloud 

decreases the solids concentration. As the cloud grows in 

size the streamwise mean flow velocity and mean flow shear 

rates decrease as a result of the decreased (negative) 

buoyancy forces, the form drag and the bed resistance. 

Parti cIe sedimentation becomes increasingly important as the 

cloud slows down and the flow thereafter enters the collapse 

phase in which the cloud volume decreases. Finally aIl of 

the particles are deposited on the bed and motion ceases. 

2.3. Large Scale Experiments 

The ~esign of the large scale apparatus was based on the 

experience gained by the preliminary experiments which were 

described in the previous section. One apparent problem 

with the preliminary experiments was the small size of the 
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apparatus. It was noted that the length of the tank was 

insufficient for the complete initiation, growth and 

collapse cycle at high angles of bed inclination. 

Therefore, the length of the new apparatus was doubled ta be 

4 m. It was also observed in the preliminary tests tha~ the 

flow was not truly two-dimensional since the width of the 

small tank was small ( 0.12 m). Thus, the width of the new 

tank was increased ta 0.3 m ta reduce the side wall effects. 

Finally, since the initial volume of the suspension planned 

for the new experiments was larqer than that used in the 

preliminary experiments, it was expec~ed that the height of 

the cloud would be correspondingly increased. To avoid 

distur;)ances to the flow of the cloud due ta the presence of 

the top wall (ceiling), the depth of the new tank was 

doubled and made equal ta 0.6 m. 

Another difficulty experienced with the small apparatus 

was the release of the cloud. If the gate was withdrawn tao 

quickly, large disturbances were created in the water and 

the suspension tended ta diffuse and then ta sediment 

irnmediately without forming a traveling cloud. Therefore, ~ 

release mechanism was designed for the large tank that would 

not only minimize this disturbance during the release of the 

cloud but would aiso achieve consistent releases for aIl the 

experimental runs. 

Fig. 2.10 shows a photograph of the water tank. The tank 

was 4 m in length, 0.3 m in width, 0.6 m in depth and could 

be capped and set at any angle of inclination from 0 ta 45 

degrees. Fig. 2.11 shows the detailed drawing of the tank. 

The tank was made of an aluminum frame with glass sides; the 

supports were made of steel. Without qoing through any of 

the structural details, it suffices to say that the design 

met the specification cf the Canadian Code (CSA standard 

CAN3-S16.1 (37)). The tank was completely built in the 

Hydraulics Laboratory of the Department of Civil Engineeri~g 

and Applied Mechanics, McGill University. 
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During the prpliminary tests, the front lighting 

technique produced a shadow of the cloud which in sorne cases 

was confused with the cloud itself. In the new experiments, 

a different lighting technique was used. The back glass 

windows of the tank were covered with opaque Mylar sheets 

and spot lights were positioned behind the tank and directed 

towards the Mylar sheets. The opaque Mylar sheets 

effeetively diffused the light to provide a uniform 

backlighting. The experimental runs were carried out at 

night with aIl the laboratory lights turned off so that the 

only source of light was the spot lamps. Thus, as the cloud 

flowed, it blocked the background light and a sharp dark 

image of the cloud eould be se en ( see Figs. 2.12 , 2.13 and 

2.14). The photographie technique was the same as that 

explained previously for the preliminary tests. However, 

the negatives were underexposed by two stops and 

overdeveloped in order to inerease the contrast. 

The tests were performed with suspensions similar to 

those used in the preliminary experiments. However, the 

initial volumes per unit width ( Ao ) for both the sand and 

the bead suspensions were 0.018 m2and 0.0226 m2respectively. 

Initial masses of 7 kg and 4.5 kg of sand and beads 

respectively were used. The experimental procedures were 

similar to those of the preliminary tests. 

2.4 Results 

The results were obtained from slide-by-slide examination 

of the 35mm film of the flow. The data were reduced from 

the slides by an interactive program written for a Hewlett­

Packard HP model 9816 microcomputer with a HP Graphies 

Tablet model 9lllA. A photograph of the data acquisition 

setup shown in Fig. 2.15. 

A slide projector was used to project the image from the 

slides towards a mirror inelined at 45 deqrees to the 

graphies tablet. The outer boundary of the cloud was traced 

usinq the special graphics tablet pen (stylus). The 
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graphics tablet recorded the coordinates of the traced 

points with respect to a predetermined point of reference. 

The computer program then used this input to calculate the 

cloud length and height, the circumferenee, the area of the 

cloud and the center of area position relative to a fixed 

origine The mass of the particles and the distribution of 

the material deposited on the bed at the end of eaeh 

experimental run was part of the input to the computer 

program. Bence the mean volumetric concentration of the 

cloud could be ealculated for eaeh slide. AIso, the time of 

each slide was input to ealculate the center of mass 

veloeity between two consecutive slides. This calculation 

assumed that the particle concentration was distribLted 

uniformly throughout the cloud. Several other parameters 

were calculated and the se will be discussed la ter in Chapter 

3. The collected data were stored on a dise and another 

program was used to retrieve the stored data and to plot it 

in the form whieh will be presented in the next Chapter. 

The obtained results were in good agreement with the 

general trends observed in the preliminary tests. The 

problems encountered during the prelimLlary tests were 

eliminated to a qreat extent. However, another problem 

arose during the experimental runs with polystyrene beads. 

The presence of air in the water inside the tank caused the 

formation of air bubbles on the beads. The combined air 

bubble and the bead configuration was sometimes positively 

buoyant and instead of flowing down the slope under gravit y, 

the beads rose to the ceiling of the tank! The problem was 

solved by heating the water, cooling it and then storing it 

in a storage tank for 24 hours prior to running the 

experiment. Detailed results of these tests will be 

presented and compared with the theoretieal predictions in 

Section 3.4. 
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CHAPTER 3 

THEORETlCAL AHALYSIS 

A two-dimensional model of the flow of a cloud of coarse 

particles down an inclined bed is presented in this Chapter. 

The analysis is based on the consideration of the overall 

conservation equations for the cloud instead of using a 

deta~led infinitesimal element approach. An estimation of 

the parameters involved in the governing equations is 

presented. A new function to estimate the entrainment 

coefficient is proposed in Section 3.2.3. A comparison 

between the experimental results and the predictions 

obtained from the numerical solution of the governing 

equations is presented in Section 3.4. 

3.1 The Governing Equations 

The analysis conslders a two-dimensional flow of a cloud 

down an inclined rough boundary and treats the cloud as a 

continuum. The particles are regarded as sufficiently large 

that electrostatic and other interp~rticle forces can be 

neglected in the continuum modela The flow Reynolds number 

is assumed to be sufficiently high such that the viscous 

effects can be neglected for the overall flow development. 

(Note that the Reynolds number associated with the particle 

fall velocity is not necessary large and the parti cIe fall 

velocity ~s determined in an appropriate way.) Fig. 3.1 

shows a sketch of the cloud and the considered control 

volume. The control surface is shown on Fig. 3.1 as a line 

which separa tes the ambient fluid from the body of the 

cloud. The shape of the control volume is taken to be a 

half elliptic form which, as will be seen la ter 1 i s a good 

representation of the observed flow. The ambient fluid is 

assumed to be infinitely deep and unstratified. The bed is 

inclined at a constant angle of inclination. The motion of 

the cloud is referred to a rectangular Carte sian coordinate 

system in which the x-axis is directed downstream tangential 

17 
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to the bed and the y-axis is normal to the bed. 

The governing equations of the motion are the sediment 

mass balance equation, the ambient fluid entrainment 

equation and the linear momentum equation a10ng the bed. 

These are similar to but extended v~rsions of equations 

presented by Beghin, et al. (23), Britter and Linden (16) 

and Ellison and Turner (17). 

The mass balance equation is 

(3.1) 

where 

Pp = particle mass density 

c = volumetrie Mean concentration 

A = area of the cloud 

w = partic1e fall velocity 

= bed angle of inclination 

Es = mass diffusion coefficient 

de' concentra ti on gradient at the bed dy = 

1 = length of the cloud 

Equation (3.1) relates the rate of increase of the mass 

solid particles within the cloud (pp cA) to the differ6nce 

between particle sedimentation and diffusion rates at the 

bottom of the cloud over the length 1. 
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The ambient fluid entrainment equation is chosen to have 

a standard form 

d~ [ Pa ( 1 - c ) A ) • Pa PuE (3.2) 

where 

Pa = ambient fluid mass density 

p = perimeter of the cloud 

u = center of mass velocity 

E = entrainment coefficient 

The linear momentum equation along the bed is 

ddt [p (l-c)Au+kvp Au+p cAu)-
a a p 

where 

âp c g A sin r - âp c g A cos r tan t/J - ~ Pa CD h U:a (3.3) 

kv = added mass coefficient 

g = gravitational acceleration 

~ = bed friction angle for the solid particles 
chosen to be approximately equal to the 

angle of repose of the material 
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= drag coefficient 

h = height of the cloud 

The first term in the square brackets on the left hand 

side of equation (3.3) is the momentum of the cloud fluid, 

the second term is the added mass contribution and the third 

term is the momentum of the solids. The first term on the 

right hand si de is the net buoyant weight component, the 

second term is the bed friction force (assuming that the 

shear stress at the bed equals tan~ times the normal 

stress) and the third term is the form drag force. 

It was suggested by the experimental results that the 

shape of the cloud can be approximated by ha If an ellipse 

having major and minor axes 1 and 2h respective1y (Fig. 

3.1). In order to verify this assumption, the area and the 

perimeter of the cloud were expressed in these forms 

A = SI h 1 ( 3 .4 ) 

( 3 • 5 ) 

where SI and S2 are shape factors. For the half elliptic 

shape, SI is equal to 7r /4 and S2 can be expressed as (23) 

(3.6) 

where K is the height to length ratio (h/l). Tables (3.1) 

and'(3.2) show the average values of the shape factors S 1 

and S2 for both the sand suspension and the beads suspension 

respective1y as calculated from the experimenta1 data. The 

tables show a reasonab1e agreement between the theoretical 

values and the corresponding experimental values. 
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3.2 Estimation of Parameters 

In this Section, all the parameters appearing in the 

governing equations (3.1), (3.2) and (3.3) will be 

presented. 

For the added mass coefficient kv in equation (3.3), it 

is reasonable to take the value of this coefficient for an 

elliptic cylinder as given by Batchelor (25) 

(3.7) 

For the present study, the value of the form drag 

coefficient for the flow over an elliptic shaped body (0.1 < 
hll < 0.2) was taken ta be 0.05 based upon data from Heorner 

( 26 ) • 

3.2.1 The PaIL Velocity of the Parti=le 

In the classical sediment transport literature, the 

concentration of the suspended sediment load i5 commonly 

small enough such that the fall velocity w on the right hand 

side of equation (3.1) is customarily taken as the free fall 

velocity. Also the bed angle of inclination is commonly 

very small such that the value of the fall velocity is used 

instead of its component normal to the bed. However, in the 

present study, the bed angle of inclination is high and the 

cosine of the angle of bed inclination can no longer be 

taken to be one. Alsa the cloud mean concen tra tion i s 

relatively high and the fali velocity of the particles 

within the suspension needs to be determined. 

Maude and Whitmore (27) presented the following simple 

relation to express the particle fall velocity as a function 

of the concentration 

(3.8) 

where Wo is the free fall velocity of a particle in still 

surroundings and the exponent ex is a function of the 

Reynolds number. The range of ex values are ( 2.5 - 4.5 ) 
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corresponding to a range cf the Reynolds number ( 1 - 1000). 

A reasonable value for the Reynolds number was chosen to 

gi ve Cl = 3.25. 

3.2.2 The Mass Diffusion Coefficient 

The mass diffusion coefficient €s can be wri tten as 

( 3 • 9 ) 

where {3 is constant and E is the kinematic :::·idy viscosity 

(the turbulent momentum diffusion coefficient). The 

reciprocal of {3 is often called the turbulent Schmidt number 

(Dailyand Harleman (28)). The value of {3 apparently 

changes with the concentration, however, the vzr~ation 1s 

small (Vanoni (29)). The approximate value of the Schmidt 

number can be taken to be 0.7 (28). The kinernatic eddy 

viscosity can be expressed considering the Prandtl mixing­

length theo:y as 

(3.10) 

where L is the mixing length and v is the velocity at any 

position y. It is reasonable to assume that the bed 

boundary layer is sufficiently small that it can be 

neglected. This assumption suggests that the mixing length 

might be taken to be constant over the depth. Since the 

mixing process depends on the shear stress distribution 

which in turn depends on the velocity distribution across 

the flow, a flow which has a velocity distribution similar 

te that of a gravit y current he ad was searched fo~. It was 

feund that the wall jet flow has a velocity distribution 

(Guitton and Newman (30)) similar to the velocity 

distribution in gravit y current heads for the cases where a 

salt water solution was used to generate the gravit y 

currents (Hopfinger and Tochon-Oanguy (1), Ellison and 
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Turner (17». Recently, Hermann and Scheiwil1er (31) have 

used an ultrasonic dopp1er technique to successfu11y measure 

mean partic1e velocity profiles in a steady current 

consisting of a suspension of po1ystyrene beads. The 

measured profiles rese~b1ed the ones measured for the wall 

jet f1ow. An expressic.;n given by Schlichting (32) for the 

mixing 1ength for a wall jet is 

L = 0.068 b (3.11) 

where b is the width of the jet (taken equal to the height h 

of the cloud for the present work). Combining equations 

(3.10) and (3.11) and substituting into equation (3.9) 

yields a simple expression for the rnass diffusion 

coeff icient 

es • J3 ( 0.068 h )2 1 dv 
dy (3.12 ) 

The right hand side of equation (3.1) should be eva1uated 

at the bed 1evel since mass 1eaves the control volume 

through sedimentation at the bed level. Thus, both the 

concentration derivative in the right hand side of equation 

(3.1) and the velocity derivative in equation (3.12) have to 

be eva1uated at the bed level (again remernbering that the 

bed boundary layer is being neglected in the present 

discussion). Since both the ve10city and the concentration 

profiles were not available from the present experimental 

study, an approximation of the shape of these prcfiles was 

lLlade based on the previous1y measured prof i1es for gravi ty 

current heads (1,18,31). Thus, an estirnate of the required 

gradients of the ve10city and concentration can be made. 
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3.2.2.1 Simi1arity Assumption 
It was found from the preliminary experiments that, for a 

qiven angle of bed inclination, the ratio of the height to 

the lenqth of the cloud Kwas approximately constant (Fig. 

2.4 and Fig. 2.5). Also these observations were consistent 
with the results of the large scale experiments which can be 

seen clearly from Figs. 3.2 and 3.3 for the sand clouds and 

the bead clouds respectively. These results suggested that 

a similarity assumption regarding the profiles of both the 

velocity and concentration distribution across the cloud 

could be made. It is convenient and reasonable to assume 

that both the velocity and concentration ha, ~ similar 

profiles in the y-direction as the cloud flows downstream. 

Fig. 3.4 shows a sketch of the assumed profiles. 

Let U, H and C be characteristic values of the ve1ocity, 

height and concentration respectively; they are defined by 

the followinq relations 

Il 
U H • Jo v dy (3.13) 

(3.14) 

CH· 1: c' dy (3.15) 

where v and c' are the velocity and concentration at any 

position y. It can be ea"'il~' shown that the characteristic 

velocity, height and concentration are equal to 

(3.16) 



( 

( 

( 

H • 3 h 
4 

c. 2 c ·c 3 b 

25 

(3.17) 

(3018) 

where the subscript b refers to the bed value of the 

variable. Thus, both the velocity and the concentration 

derivatives at the bed 1eve1 can be written as 

dv ub 9 U 
dy . - 11 . - 8 H 

(3.19) 

de' . - cb . - 9 C 
dy 11 8 H (3.20) 

Therefore, the mass diffusion coefficient, in equation 

(3.9) can be expressed as 

(3.2l) 

or 

Es • 0.0132 H U (3.22) 

and th(~ second term in the right hand side of equation (3.1) 

can be written as 

Es ~~ • - 0.0149 CU. - 0.0149 c u (3.23) 
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3.2.3 The Entrainment Coefficient 

As was mentioned earlier in the Introduction, aIl the 

available relevant studies on the entrainment coefficient 

were a result of the dense flow simulations of gravit y 

currents and clouds using miscible fluids. In the se 

investigations, the entrainment coefficient was usually 

expressed as a function of the Richardson number. However, 

for the present study, the Richardson number alone is 

insufficient to specify this coefficient since it does not 

reflect the raIe of the particle properties on the 

entrainment process. 

Thus, a dimensional analysis was performed to seek the 

relevant dimensionless groups upon which the entrainment 

coefficient might depend. Consider the following parameters 

to be important; the cloud characteristic height H, the 

reduced gravitational acceleration perpendicular to the 

flow direction g' cos rand g' = g c ~p the cloud 
a 

characteristics velocity U and the particle net fall 
. -veloc~ty w. 

The length of the cloud was not select~d since the ratio 

of the height to the length of the cloud was found to be 

constant for a given angle of bed inclination. The particle 

net fall velocity can be evaluated from the right hand side 

of equation (3.1) as follows 

IV €g dc' 
W = w cos t - C dy (3.24) 

Substituting equations (3.8) and (3.23) into equation (3.24) 

yields 

W = wa ( 1 - c la cos t - 0.0149 u (3.25) 
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The selected parameters can be written as 

N 

r ( H • " cos t' • U • W ) = 0 (3.26) 

By using the Buckingham rr theorem, the following 

dimensionless groups were obtained 

cos r H W 
f (g' U2 • U ) • 0 (3.27) 

The first term is, of course, the Richardson number R = 

" cos r H 1 U2 The second term is the ratio of the 

particle net fall velocity to the cloud characteristic 

velocity which is an important parameter upon which the 

entrainment coefficient depends. This can be seen clearly 

if we consider the case of a cloud which consists of a 

suspension of large particles huving high fall velocities. 

Only a subsiding flow and a very small or even a negative 

entrainment coefficient might be expected. Therefore, we 

propose that the entrainment coefficient can be expressed as 

follows 

(3.28) 

The evaluation of the this function can be achieved by 

using the experimental results. The entrainment coefficient 

can be calculated from the experimental data by using 

equation (3.1) since it can be written in the following form 

A ( A ( 1 - c ) ) • PuE At av (3.29) 
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where A means the difference in the magni tude of the 

variable between two consecutive s lides, â t i s the time 

interval between the same two slides and Pav is the average 

of the cloud perimeter measured from both slides. The 

entrainment coefficient, the Richardson number and the -velocity ratio W / U were calculated from the data collected 

using the computer program mentioned in Section 2.4. 

A multiple linear regression analysis was performed on 

the data and the following expressions were obtained for the 

sand cloud and the beads cloud respectively 

,..., 
E • 0.0792 - 0.0117 R - 0.1087 ~ (3.30) 

<IV 

E • 0.0923 - 0.0127 R - 0.1194 ~ (3.31) 

with r~ the correlation coefficient, equal to 0.95 and 0.97 

respecti vely. 

Figs. 3.5 and 3.6 show the entrainment coefficient versus 

the Richardson number for different values of the velocity 
~ 

ratio W / U for sand clouds and bead clouds respectively. 

Figs. 3.7 and 3.8 show the entrainment coefficient versus 

the velocity ratio for different values of the Richardson 

number for both the sand clouds and the bead clouds 

respectively. 

The good agreement between equations (3.30) and (3.31) 

and the experimental results suggested that, there migtt ~e 

only one functional relationship for the entrainment 

coefficient regardless of the particle type since the 

particle properties were involved in the dimensionless -parameter W / U . Therefore, another regression analysis 

was performed on aIl the data collected from both the sand 

and the bead cloud experiments. The least square regression 
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gave the following expression for the entrainment 

coefficient 

lU 

E • 0.0882 - 0.0149 R - 0.0679 rI (3.32) 

with r 2 = 0.94 which shows strong support for the proposed 

expression for the entrainment coefficient. Note, that the 

entrainment coefficient increases with the decrease in the - - . velocity ratio W / U and at the 1imit where W van~shes, the 

expression shows reasonable agreement with the salt solution 

experiments which were reported by Beghinl et al. (23). 

Figs. 3.9 and 3.10 show the same trend observed in the 

i nd i v i d ua 1 cloud s h own in Fig s. 3. 5, 3. 6, 3. 7 and 3. 8 • 

Equation (3.32) was used to evaluate the entrainment 

coefficient in the numerical solution of the governing 

equations which will be presented in the next Section. 

3.3 Numerica1 Solution 

The governing equations (3.1), (3.2) and (3.3) can be 

written, considering the obtained expressions for the 

parameters in the previous Section, as follows 

where 

A du A dl + A~ ddCt • D~ 4ëit+ sëit a ~ 

(3.33) 

(3.34) 

(3.35) 
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(3.36) 

(3.37) 

(3.38) 

A4 • S1 1 [ Pa ( 1 + kv ) + âp c ] (3.39) 

As = 2 SI U [ Pa ( 1 + k" ) + âp c ] 
(3.40) 

(3.41) 

Dl = - [ Wc cos r c ( 1 - c )" - 0.0194 cu] (3.42) 

(3.43) 

(3.44) 

Equations (3.33), (3.34) and (3.35) can be solved 

together to give three ordinary differential equations in l, 

c and u as follows 

(3.45) 

de • Z 
dt 2 (3.46) 
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.ru! = Z dt 3 (3.47) 

where 

(3.48) 

(3.49) 

(3.50) 

A fourth ordinary differential equation was added to the 

system of equations (3.45), (3.46) and (3.47) in order to 

obtain the results as functions of the downstream distance 

as weIL as functions of the time 

dx = u 
dt (3.51) 

The governing ordinary differential equations (3.45), 

(3.46), (3.47) and (3.51) were integrated numerically using 

the Runge-Kutta method. Initial values were needed to start 

the integrations, these values were taken from the 

experimental data. The starting position was selected at the 

position where the cloud was fully developed. This position 

was a small distance downstream the release gate. 

3.4 Predictions and Comparison with Experimental Results 

The results of the numerical integration of the governing 

differential equations are presented and compared wi th the 

experimental data obtained from the large scale experiments 

(the even-numbered figures will refer to sand clouds and the 

odd-numbered figures will refer to bead clouds). 
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Figs. 3.11 and 3.12 show the predicted length of the 

cloud normalized by the square root of the initial volume of 

the cloud per unit width ( A~/2 ) versus the traveling 

distance normalized by the same factor for different bed 

inclinations. In Fig. 3.11 numerical solutions only for bed 

angles of inclination of 44 and 38 degrees are presented. 

Since the angle of repose of the sand was taken to be 36 

degrees, the nurnerical solutions for the angles of bed 

inclination 34 and 30 degrees show an irnrnediate collapse of 

the cloud which contradicts the experimental observation. It 

is believed that, as the suspension was released the shear 

stress which was created between the different layer of the 

cloud due to the sudden motion created a dispersive stress 

(24) which might have rnobilized the cloud for a short 

distance. Then the retarding forces ( the bed friction and 

the forrn drag) dominated and the cloud collapsed. 

Figs. 3.13 and 3.14 show the cloud mean volumetrie 

concentration versus the non-dimensional traveling dis:ance. 

The graphs show that the model accounts well for the 

increase of the cloud rnean concentration at the f~nal 

collapse phase. 

Figs. 3.15 and 3.16 show the non-dimensional center-of­

mass velocity versus the non-dimensional traveling distance. 

Figs. 3.17 and 3.18 show the entrainment coefficient versus 

the non-dirnensional traveling distance. These figures show 

that, the entrainment coefficient increased dur~ng the 

acceleration phase of the flow then it decreased through the 

deceleration phase. At the final stage of the deceleration 

phase, the entrainment coefficient becarne negative, i.e. 

fluid was detrai~ed from the cloud. 

In general, the numerical solution slightly overestimated 

the experimental results. The discrepancy might be 

attributed to the estimation of the pararneters as weIl as 

the experirnental data measurements. Also another possible 

reason is that, the model did not include the effect of 

particle interactions which may play an important role at 
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high concentrations in the processes of growth and collapse 

of the cloud. 



CBAPTER 4 

SUMMARY AND CONCLUSIONS 

Although there have been many studies of flows generated 

by density differences, most of these have involved 

different fluids (either miscible or immiscible) or 

tempe rature differences to create the density differences 

that drive the flow. On the other hand, there are instances 

in which the density differences arise because of the 

presence of solids suspended in the fluide Sorne examples 

of density currents of this kind are turbidity currents in 

the ocean, the discharqe of mine tailinqs into oceans and 

lakes, the 'silting Up' of water supp1y reservoirs, powder 

snow avalanches and dust laden atmospheric gravit y currents 

such as the Sudanese 'haboobs'. Subaqueous qrain flows and 

the forces generated when they strike and f10w around 

underwater objects are of current interest in connection 

with oi1 exploration on the continental shelf regions. 

The presence of particle sedimentation and bed erosion 

can cause unsteady or developing density currents to behave 

in very different ways than density currents involvinq only 

fluids. Surprisingly, there have been very few fundamental 

studies of the mechanics of such flows. As an initial 

attempt to gain sorne insight into these flows, the present 

investigation has concentrated on the effects of finite 

partie le size on the subaqueous flow of a cloud of particles 

down a rough inclined bed. The f10w is analogous to one 

which miqht be initiated by a submarine earthquake. 

Preliminary small scale laboratory experiments were 

carried out in a 2 m long til tinq wa ter tank to determi ne 

essential flow characteristics and variables. Suspensions 

of particles were released by agate positioned at the upper 

end of the tank and the growth and collapse of the ensuing 

cloud was measured as it moved down the roughened bed of the 

tank. Two sets of tests were performed using suspensions of 

a) fine sanrt particles and b) po1ystyrene beads. The 

34 
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results of these experiments in which sedimentation and 

cloud collapse occurred were quite different from those 

carried out by Beghin, et al. using fresh water and salt 

water in which the clouds continued to grow without bound. 

Based on the experience gained by these preliminary tests, a 

larqe scale tilting tank was designed and a second series of 

tests was performed. The results obtained from the new 

experiments were consistent with those of the preliminary 

tests. 

It was found that the shape of the particles cloud could 

be approximated by half an ellipse having major and minor 

axes 1 and 2h. The aspect ratio K = hll was found to be 

approximately constant during the flow for each bed 

inclination. It was observed that the cloua initially grew 

in size, reached a maximum and then collapsed. The distance 

of travel from initiation to collapse increased with an 

increase in the bed inclination. After the entry of the 

particulate material at the upper end of the tank, the clouà 

accelerated from rest, its velocity reached a maximum and 

then decayed to zero at the final collapse time. The peak 

center-of-mass velocity for a qiven bed slope increased with 

bed slope. 

A theory to describe these two-dimensional flows was 

developed based upon three overall conservation equationsi 

the sediment mass balance equation, the ambient fluid 

entrainment equation and the linear momentum equation along 

the bed. The sediment mass balance equation involved the 

tendency of the dense particles to settle and the opposite 

tendency for them to disperse as a result of tu~bulent 

mixing. The mass diffusion coefficient involved in the 

equation was taken as a multiple of the eddy viscosity which 

in turn could be related to the shear stress iistribution 

within the cloud. An expression for this coefficient was 

devised by assuming that the shear stress distribution is 

similar to that of the wall jet. 
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previous experimental observations of the dense fluid 

simulation of gravit y currents and clouds involving only 

fluids showed that the entrainment coefficient which appears 

in the ambient fluid entrainment equation was only a 

function of the Richardson number and was constant for each 

bed slope. The present study, in which the cloud was made 

up of particulate solids, revealed that the entrainment 

coefficient not only varied along the flow path but could 

become negative after a particular station. Through 

dimensional analysis, the entrainment coefficient was 

expressed as a function of both the Richardson number and 

the ratio cf the pa~ticle net fall velocity to the cloud 

center of mass velocity. A multiple regression analysis was 

performed using the experimental data, and the least square 

regression gave support for the proposed functional form 

entrainment coefficient. 

The rate of change of the linear momentum of the cloud is 

due to the combination of the component of the net buoyancy 

force along the bed as a driving force and both the bed 

friction and the cloud form drag as a retardant forces. In 

the present study, the bed friction arising from particle 

interactions was found to be very significant. In previous 

studies by Beghin, et al. which involved only fluids, both 

the bed friction and the form draq were taken to be 

negligible. 

The set of overall conservation equations was integrated 

numerically using a Runge-Kut~a method and it was found that 

the present simple model predicted the main features of the 

development of the sedimenting cloud and was in good 

quantitative agreement with the laboratory experiments. 

The experimental results obtained in the present 

experiments, the proposed law for the entrainment 

coefficient, the identification of the importance of 

particle bed friction and form drag, etc. can be applied in 

further investigations of density currents involving 

sedimenting particles. Detailed measurements of the 
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distributions of parti cIe velocities and concentration would 

make a significant contribution to our understanding of 

these flows. Acquisition of such data await3 the 

development of instrumentation capable of making 

measurements in a sufficiently short time for these time 

dependent flows. A theory to predict the detailed particla 

velocity and concentrat~on distributions requires an 

appropriate constitutive equation Eor the fluid-particle 

mixture: this also is not presently available. The effects 

of erosion of bed materials of various kinds on the flows 

should be investigated. Finally the flows around and the 

forces developed on submerged bodies by density currents of 

suspensions should be investigated. 
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Table 3.1 

Sand Suspension Cloud 

Angle of bed 44° 38 0 34° 30° 
inclination 

K = hll .215 .170 .135 .103 

81 (experiments) .792 .814 .809 .817 

SI (for ellipse) .7854 .7854 .7854 .7854 

S2 (experiments) 2.892 2.876 2.953 3.241 

8 2 (Eq. 3.6) 2.608 2.813 3.131 3.534 
(for ellipse) 

Table 3.2 

Bead Suspension Cloud 

Angle of bed 44° 38 0 34° 30 0 

inclination 

K = hll .299 .22 .145 .12 

81 (experiments) .783 .801 .793 .781 

81 (for ellipse) .7854 .7854 .7854 .7854 

8 2 (experiments) 2.425 2.873 2.981 3.214 

8 2 (Eq. 3.6) 2.367 2.587 3.037 3.297 
(for ellipse) 
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Fig.2.l0 Photograph of the large scale water tank 
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Fig.2.l2 Typical photograph from the large scale experiments 
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(c) 
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(d) 

Fig.2.13 The sand cloud on slopes of (a) 30, (b) 34, 

(c) 38 and (d) 44 degrees respectively 
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Fig.2.l4 The bead cloud on slopes of (a) 30, (b) 34, 

(c) 38 and (d) 44 deqrees respectively 
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Fig.2.15 Photograph of the data acquisition system 
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Fig.3.l Sketch of the cloud and the assumed half 
elliptic shape 
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SPREADING OP ROCE AVALANCHES 

ABSTRACT 

A study of the flow and spreading of a finite mass of dry 

cohesionless granular material released from rest on rough 

inclines i5 presented. Firstly, a two-dimensional depth­

averaged modei which describes both the longjtudinal and the 

lateral spreading during tlow down a rough inclined plane 

was developed. The relationship between the stress 

components was simply approximated by using a quasi-statlc 

Coulo,1b-like constitutive equation. A finite difference 

scheme applied on a staggered grid was employed ta carry out 

the numerical integration of the qoverning partlal 

differentiai equations. From the results of these numerica! 

studies, it was conclud'ld that the latera! spreading is 

insignificant relative to the lonqitudinal spreading. This 

suggested that a simple one-dimensionai spreading model 

wouid be adequate for preliminary studies. 

Therefore, a depth-averaqed model which describes the 

one-djmensional longitudinal spreading down rough, curved 

beds was developed. Three rockfall events, Frank (24), 

Madison Canyon (25) and Medicine Lake (26) were analyzed and 

the predicted results agree reasonably weIl with che 

observed field data. It was concluded that, the traveling 

distance and velocity of the center of mass of a rock pile 

can be approximately predicted by a simple analysis of a 

point mass sliding down the same incline. The long runout 

distance of the Ieading edge of the slide debris ran re5uIt 

from extreme spreading of the pile as it accelerates down 

the slope after initial release. 
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CIIAPTBR 1 

IR'l'RODUCTIOR 

Landslides or rockfalls that i~itiate on a steep slope 

eventually com~ to rest after flowing for sorne runout 

distance en a fIat. Rockfalls of very large masses have 

been observed to exhibit unexpectedly long runout distances. 

Fig. 1.1 (data is quoted from Scheideqger (1» shows the 

reduction in the so-called equivalent coefficient of 

friction (total fall height/total travel distance) as a 

fun=tion of the rockfall volume. It can be seen clearly 

that the total runout distance increases with the increase 

of the debris masse Numerous hypotheses have been proposed 

to explain this puzzling phenomenon. However, none of these 

have been completely satisfactory or generally accepted. 

This study is concerned with the development of a simple 

model for the flow and spreading of a finite mass of 

cohesionless granular material re1eased from rest on rough 

inclines. The purpose is to determine whether such a model 

can be used to predict the general features of at 1east sorne 

of the natural rockfall events. 

1.1 Historical Review 

As early as 1881, Albert Hiem noted the extraordinari1y 

long travel distance that can occur in a large volume 

rockfall. Heim observed and described the Elm rockfal1 of 

Switzerland (see articles by Hsu (2,3». This rockfa11 

produced a debris which moved more than 2 Km along a near1y 

horizo~tal valley floOT and one of its branches surged up 

the si de of the valley to a height of 100 m. From the 

deposit of the Elm and the eyewitness accounts Heim 

concluded that the debris behaved as a flowing fluid rather 

than sliding solid blocks. A simi1ar slide occurred in 1903 

which destroyed the town of Frank, Alberta, in Canada. Such 

mobile debris flows which are called "sturzstroms" occur 

every year in different rnountainous parts of the world (4). 

84 

; 



( 

( 

( 

85 

The presence of small broken debris, fine stones, sand and 

dust is common dnd is believed to be present within the 

sturzstrom as interstitial material. 

In an attempt to describe the fluidisation mechanism, 

Kent (5) suggested that the debris blocks were kept in a 

fluid-like state due to the rapid upward flow of air through 

the voids between the blocks. He proposed that this 

dilatation might reduce ~he frictional resistance and permit 

the debris to travel for a longer distance across a fIat 

course. Shreve (4,6,7) postulated a similar mechanism, in 

which the alr was also the mobilizing agent. He suggested 

that, as the debris mass rushes down the slope over an 

obstacle or hump, it leaves the ground and jumps into the 

air. As it does so it might confine a cushion of compressed 

air beneath it, perrnitting the debris to slide like a 

hovercraft. It is to be noticed that Shreve is one of the 

few to insist that the debris slides rather than flows, 

despite evidence of the fluid-like behaviour presented by, 

among others, Hsü (2,3). Another similar hypothesis by 

Goguel (8) was that high pressure steam would, in pa~t, 

support the weight of the rock debris. This mlght reduce the 

frictional resistance thereby allowing the debris to flow 

for longer distances. The steam was assumed to be generated 

by the heat resulting from the sliding and colliding 

surfaces of the boulders. It is to be mentioned that, 

evidences of water presence in the rock debris were not 

found in man y of the rockfalls. 

The previous three hypotheses have been undermined by the 

observations of large volume landslides on th~ surface of 

the Moon and Mars (9,lO). These observations suggest that 

neither air nor water is reauired for the mobility of the 

debris even though air or water May enhance the debris 

mobility. 



Davies (11), amonq others, suqqested that the excessive 

runout distance is volume dependent and the larqer the 

volume of the debris, the longer the relative travel 

distance. From reqression analysis Davies found that the 

final deposit extent of a sturzstrom depended mainly on its 

volume. The analysis also suggested that aIl struzstrom 

deposits were similar in shape and that the shape did not 

depend on the fall height. However, the analysis showed that 

the travel distance depends on the fall height. Davies 

suggested that the line connecting the initial and final 

center of mass positions of the debris makes an angle of 

inclination equal to the angle of normal friction of 

granular material and th~ long runout distance was due to 

the fluidlike spreading of the debris under the action of 

gravity. This spreading occurred due to mechanical 

fluidization caused by high basal shear rates as the debris 

moved rapidly across the ground. This mechanism was based on 

the grain f10w the ory of Bagn01d (12,13). It should be 

mentioned that Bagno1d's experiments provided information up 

to the edge of the grain-inertia region (moderate shear 

rates) anQ Davies used linear extrapolation of Bagnold's 

data points to suggest that the ratio of the shear stress to 

the normal stress which represents the angle of dynamic 

friction can be drastica1ly reduced at hi~h shear rates. 

However, Savage and Sayed (14) in their recent 

experiments found that at high shear rates, the stress ratio 

either increases or decreases on1y slightly with the 

increase of the shear rates. In MOSt of their experiments 

the particles were nearly uniform sized spheres (one series 

of tests was done with a bimoda1 mixture) and the tests were 

perform~d with dry material so that the effects of the 

interstitial f1uid were not present. Lun et al. (15) found 

in their kinetic theory, for dry inelastic spherical 

particles of uniform diameter, that the stress ratio at hiqh 

shear rates was independent of the shear rate and only 
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weak1y dependent upon solids concentration. 

Hsü (2,3) recalled Heim' s remarks about the kinetic 

energy associated with the collisions between the falling 

rocks. Based on Bagno1d's theory (12,13) of the flow of 

cohesionless grains in a fluid, he proposed that the 

dispersion of fine debris particles between colliding blocks 

behaved in a rnanner similar to the intercititial fluid 

between the grains in Bagnold's theory. Hsü applied his 

hypothesis to the Elm event and he inferred that the 

interstitia1 materials were probab1y a mixture of one third 

dust and stones and two thirds air. Thi s hypothesi s, based 

on certain assumptions about the behaviour of the dust in a 

vacuum, wa:=; criticised by McSaveney (16). Moreover, it did 

not explain the runout distance dependency on the volume of 

the debris and it required prior knowledge of the reduction 

in the normal coefficient of friction (the tangent. of the 

angle of repose of granu1ar material). 

Erismann (17) proposed a mechanism of self lubrication in 

which a thin layer of mo1ten rock is generated at the base 

of the debris. The heat needed for such a process would 

result from the friction between the sliding surfaces under 

the weight of the debris. By a thermodynamic analysis, 

Erismann attempted ta show the feasibility of this 

hypothesis. However, it requires the estimation of five 

parameters. These parameters may vary for the different 

events and, as Erismann mentioned, re1iable figures are 

difficult ta obtain. 

Melosh (18,19) postulated a theory of acoustic 

fluidization. The proposed mechanism is a high frequency 

vibration which occurs ei ther as a resul t of the impact of 

the debris rocks against the ground or natura1ly from an 

earthquake. This vibra tion may be capable of temporari ly 

releasing the effective normal pressure in limited areas of 



the debris and hence reducing the frictional resi~tance 

considerably and allowing sliding to take place in the 

unloaded areas. However, the analysis is only qualitativé 

and it is hard to see how it could be implemented in a 

physic~l model undergoing shearing deformation of discrete 

irregular blocks. 

It is clear from above review that aIl the authors have 

merely offered hypotheses of physical mechanisms to explain 

debris mobility. Furthermore, there is still considerable 

controversy about the plausibility of aIl of these proposed 

mechanisms. Aiso it should be noted that no quantitative 

physical model explaining the flow and spreading of 

rockfalls and debris flows is currently available. This 

section of the thesis is concerned with development of such 

a physical model. 

1 
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CIIAP'l'ER 2 

TWO-DXMENSXONAL SPREADXHG MODEL 

A continuum model of the flow and spreadinq of qranular 

material down plane inclines is presented in this Chapter. 

Due to the lack of detailed and weIl proven constitutive 

equations relatinq the stresses and strain rates for the 

non-steady non-uniform flow of qranular materials, we are 

forced to make several assumptions to simplify the 

constitutive relations. It is hoped that the present model 

will constitute the basis for a qeneral model describinq the 

mechanics of rockfalls as more refined constitutive 

equations become available. 

2.1 Governinq Equations 

A sim~le model for the flow and spreadinq of a finite 

mass of cohesionless qranular material released from rest 

down a rouqh inclined plane bed is now presented. The motion 

of the qranular materials is referred to rectanqular 

cartesian coordinates. The material point is denoted by x, y 

and z at time t. The x-coordinate is taken as positive in 

the streamwise direction, y is directed laterally and z is 

normal to the bed. For the analysis of a three-dimensional 

incompressible flow, the motion can be described by the 

continuity and momentum equations 

v.it • 0 (2.1) 

(2.2) 

where 

v = gradient operator 

-u = material velocity vector 
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P = mass density of the granular rnaterial 

8t = material derivative 

-p = stress tensor 

-y = gravitational acceleration vector 

These equations can now be written out for the cartesian 

coordinate system (x, y, z) as follows 

au + av + aw = 0 ax ay az ( 2 • 3 ) 

au au + au au ap 
p [ + u v + w ] • p g sin r -.!!. 

at ax ay az - ax 

ap 
xy apxz 

- ay- az ( 2 .4) 

P [ av av av ~v ] 
ap ap apyZ 

at + u ax + v ay + w = - ---1! _ -Yi. 
( 2 • 5 ) dZ ax ay - az 

aw aw aw aw ap 
p [ + u + v + w ] • - p g cos r -~ at ax ay az ax 

ôp apzz ( 2 .6) zy 
- ay - az 

where u = u (x,y,z,t) , v = v (x,y,z,t) and w = w (x,y,z,t) 

are the velocity components in the x, y and z directions 

respectively, r is the angle of inclination of the x-axis 

with the horizontal, Pxx ' Pyy and Pzz are the normal 

stresses in the x, y and z directions respectively, and Pxy' 

Pxz ' Pyx ' Pyz ' Pzx and Pzy are the shear stresses. 
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Multiplying equation (2.3) by pu and adding it to 

equation (2.4) yields 

p [ ~~ + :x ( u2 ) + a~ ( uv ) + aaz ( uw ) ] = p g sin r 

ap_ apyv ap 
.... -J xz -ax--ay--az (2.7) 

In a similar manner equation (2.5) can be reduced to 

p [ ~~ + ! ( uv ) + a~ ( v2 ) • Iz ( vw ) ] • _ a::x 

(2.8) 

Several assurnptions are now made in order to simplify the 

analysis. It was found from the available field data that, 

typical ratios of the height to the length of the debris 

were very small and of order 1/1000 for the final rest 

state. This suggests that it is acceptable to make use of 

what corresponds to the long wave approximation used in free 

surface hydrodynamics, 

w « u w « v (2.9 ) 

a a 
az » ax a a 

az » ay 
(2.10) 

As a result the inertia effects in the z-direction are 

negligible and equation (2.6) simplifies to the hydrostatic 

equilibrium equation 
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ap 
P C cos r + ~ • 0 

which can be !nteqrated over the depth to qive 

p • p g cos r ( h - z ) zz 

(2.11 ) 

(2.12) 

where h (x,y,t) is the instantaneous depth of the f10w at 

any (x,y) position. Depth averaqed x and y-momentum 

equations are derived in the next Section. 

2.2 Depth Averaged Model 

By inteqratinq the momentum equations (2.7) and (2.8) 

over the depth of the f1ow, we obtain 

[ a lb d ah • A. lb u2 dz _ u2 ah + a lb uv dz 
P aï D U Z - Us at ax 0 s ax ay 0 

ah 
Us Vs ay + Us vs] • p g 5 in r h 

aIb alh 1 -- dz-- dz-ax 0 PD ay 0 P zy P ZZ 0 (2.13) 

a fb ah a lb ah a lb p [ at 0 v dz - Vs at + ai D uv dz - Us Vs 3X + ay 0 y2 dz 

(2.14 ) 
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Nowat the upper boundary (free surface), we have the 

kinematic condition that 

(2.15) 

where the subscript s refers to the surface value of the 

ve10city component. Then, we can define the fo11owing depth 

average quantities, 

1 l h 
) d ü (x.y. t) • fi 0 u (x.y.z. t z 

(2.16:' 

=- ! h 
Y (x,y,tl l y (x,y,z, tl dz 

h 0 (2.17) 

Pu • 1 h J P dz (2.18) h o u 

Pyy = 1 Jh Pyy dz h 0 (2.19) 

P - 1 Jh Pzy dz 
:r.y h 0 (2.20) 

Moreover, it is assumed that, 

;2 N ! lh u2 dz --2 • h • u (2.21) 
0 

;2 - 1 Jh ,,2 dz --2 • il • v 
0 (2.22) 
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üy • 1 Jh uv dz -; ü\i 
h 0 
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(2.23) 

Then, by using equations (2.15) - (2.23), equations (2.13) 

and (2.14) can be reduced to 

p [ :t ( Üh ) + aax ( u2 h ) + a~ ( ü\ih ) ] =- P g h sin t' 

(2.24) 

_..2...(p- h)-p 1 ay yy yz 0 (2.25) 

2.2.1 Constitutive Equations 

A further assumption regarding the constitutive relation 

between the stress components is made. Since the appropria te 

relation for the type of flow of interest here is not 

available, it is proposed to consider a simple quasi-static 

constitutive relation (see reference (20». For an ideal 

cohesionless granular material, the Mohr-Coulomb condition 

states that yield occurs on a plane element when 

1 TI=- P tan tp (2.26) 

where T and P are the shear and normal stresses respectively 

acting on the element and cP is the quasi-static internaI 

angle of friction. As a slight extension of this concept, 

the fol1owing constitutive relation for the stress 
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cornponents in plane deforrnations is now ernployed 

(2.27 ) 

where the subscripts i and j take the values 1,2 '~i is 

Kronecker delta, Po is the mean quasi-static normal stress -(see Fig. 2.1) and D is the strain rate tensor defined as 

(2.28) 

Equation (2.27) implies a coincidence between principal 

axes of stress and rate of deformation. In the present 

problem of the rockfall development, it is assurned that the 

shear planes are very nearly parallel to the plane of the 

bed such that au is the dominant component of the rate of az 
deformation tensor and that the plane xl ,x2 coordinates are 

approximately lined up along the x,z axes. Hence we can 

write that, 

1 pxy = Pyx « pxx (2.29) 

pxx Po (2.30) 

At the bed, it can be assurned that the friction force is 
~ 

colinear with the depth of averaged velocity vector q = 
(u,v) (see Fig. 2.2) and opposes the motion such that 

_
ü . - q 

Pyz '0 
T 

~. . - q (2.31) 
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where q is the magnitude of the depth averaged velocity 

q = -2 + v (2.32) 

and T is the magnitude of the total bed shear stress. From 

equation (2.27) we obtain 

T = p sfnctl = p tanô 
a a 

(2.33) 

where 0 is the bed angle of friction. In order for the 

deformation to be more general than planar, two of the 

principal stresses must be equal. For the problem under 

consideration, the flow of the material will tend to expand 

laterally in the y-direction and we take the normal stress 

in the y-direction to be the minor principal axis (rather 

than the major principal axis), hence 

p - p (1 - sin C1l ) yy a 
(2.34) 

Then, from equation (2.11), (2.18) and (2.30), we obtain 

or 

and 

h 

P-h=P- h=I p dz 
xx zz 0 Z% 

h2 
ph· P g cos r 2' 

xx 

(2.35 ) 

(2.36) 
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Thus equations (2.24) and (2.25) can be rewritten as 

p [ :t ( iih ) + :x ( ü~ ) + a~ ( ü\ih ) ] • p g h sin r 

- p g b cos r ah - P Ir h cos r tan .s ( ~ ) 
a~ q 

p [ :t ( vh ) + :x ( ü\ih ) + a~ ( v~ ) J • 

- p g h ( 1 - sin .1.. Je'" ah .,. os lo ay 

- P Ir h cos r tan 6 ( ~ ) 
q 

,497 

(2.37) 

(2.38) 

Finally, the continuity equation (2.3) can be depth 

averaged in a similar manner using equation (2.l5),the 

kinematic condition at the surface, to give 

ah + a (Üh)+...2... ( \ih ) = 0 at ax ay (2.39) 

Then using equation (2.39), equations (2.37) and (2.38) can 

be reduced to 

~ ~ ~ ~ aï + ü ax + \i ay • p sin r - lE cos r ax 

- r cos r tan ô ( ~ ) q (2.40) 
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~~ + Ü ix + v §-yV • - ( 1 - sin tP ) g cos r ~ 
ay 

- g cos r tan 6 ( ~ ) 
q (2.41) 

The resulting equations (2.39) - (2.41) are sufficient to 

describe the longitudinal and lateral spreading of the flow. 

2.3 Non-Dimensional Porm of the Governing Equations 

Let us introduce the following non-dirnensiona1. pararneters 

(see Fig. 2.3) 

H • h X • x y • Y... 
h. 17 1. (2.42) 

U ::a Ü V ::a V T • t (2.43) 
~ W7 VI,/g 

A • h Q • --L (2.44) 
~ ~ 

where hi and li are the initial height and length of the 

pile of granular rnaterial. Substituting equations (2.42) 

(2.44) in equations (2.39) - (2.41), we obtain the 

non-dirnensional form of the proposed governing equations 

(2.45) 
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( 
~~ + u ~~ + v ~~ • sin t" - A cos r ~~ 

- cos r tan lS ( g ) (2.46) 

av u av v av • _ A ( 1 . ) ,. aH aT + ax + ay - sm 4> cos, ay 

( 
- cos r tan li ( 6 ) (2.47) 

( 
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CIIAP'lER 3 

THE STAGGERED GRID PINI:TE DIPPERENCE MODEL 

A finite difference approximation to the governing 

partial differential equations proposed in the previous 

Chapter is now presented. A simple explicit scheme applied 

ta a staggered grid will be used. In Section 3.3, a 

stability analysis will be performed to obtain the necessary 

stabi1ity condition for the proposed scheme. Computationa1 

results arising from the finite difference computer programs 

are discussed in Section 3.4. 

3.1 Ptnite Difference Equations 

Of aIl the methods of integrating a system of partial 

differential equations, the characteristics method is the 

most accurate one since the characteristic lines fo11ow the 

true solution and tend to be cl oser together in areas of 

rapid changes. However, the chief disadvantage of this 

method is that the data at the intermediate points in the 

x-y-z space are difficult to obtain and a tedious 

interpolation is involved in obtaining the flow height and 

velocities on sorne 1ine from the calculated points. 

Therefore, the fini te difference method was se1ected because 

of its simplicity of formulation and the ease of 

interpreting the results that it yields. Furthermore, with 

the appropriate precautions, a high accuracy can be achieved 

as will he explained later. 

This Section starts by defining sorne of the finite 

difference operators, and deriving sorne of the relations 

between them and the differential operators. Using th~se 

basic concepts, the finite difference approximation to the 

system of partial differentia1 equations (2.45)-(2.47) is 

developed along with the appropriate approximations for the 

boundary condition. 

Finite difference equations arise as approximations to 

partial differential equations whose solution cannot easi1y 

1 uO 
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be found analytically. In order to develop these 

approximations, it is convenient to define various 

difference operators, and derive some of the relationships 

between them and the differential operators. Let d x be the 

non-dimer.sional spacing between the abscissas in the x­

direction, d y 
ordinates in the 

be the non - dimensional spacing between 

y-direction and dt be the non-dimensional 

time step. In addition to the space index, defined ln Fig. 

3.1, we use a superscript index n to number the time cycle. 

The U and V, and H computation are performed at different 

time levels. The U and V values are computed first and then 

used to obtain the H values as indicated in the flowchart 

diagram in Fig. 3.2. The forward difference operators are 

defined by 

( 3.1 ) 

( 3 .2) 

(3.3) 

where f repr~sents anyof the prob1em variables (U,V and H). 

The relations between the finite difference operators and 

the differentia1 operators can be defined as follows 

Df(x) • t.~x) ( 3 .4) 

Df(y) • t.~y) (3.5) 

l 'J l 
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( 3 .6) 

The construction of a difference equation from a 

differential equation is not a unique process. Many 

approximations are possible for a given differential 

equation. The selection of a particular difference relation 

is usually determined by the nature' of the trunca tion error 

associated with the approximation. The difference relations 

which will be used here were shown ta have a minimum total 

error with the appropriate selection of the time step (22), 

as we will see in Section 3.4. 

The grid used (see Fig. 3.ll consists of cells, with the 

continuity and the momenturn equations expressed in terms of 

the velocities' values at the nodes and the flow height at 

the center of each cell (staggered qrid). Equations (2.46) 

and (2.47) are approximated by means of the following 

difference equations; using equations (3.1)-(3.6) 

1 n-1 
DU(t) + U

n -'2 U+lj+l) DU(x) + V 2 DU(y) = B - C DH(x) (3.71 

1 1 
DV(t) + Un -'2 O+lj+1) DV(x) + V

n
-'2 DV(y) = - E OHey) - G ( 3 .8) 

where 

B = sin rU+l) - RI cos rU+l) tan ô ( g ) (3.9) 

C =- A cos r(i+l) (3.10) 

E • C ( 1 - 5 in ~ ) 

(3.1ll 
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G • cos ru+!) tan 6 ( ~ ) (3.12) 

Furthermore, The Lax-Wendroff (45) type of approximation 

to the ve10cities un- 1 / 2 (i+1,j+1) and vn - 1/ 2 (i+l,j+l) 

in equations (3.7) and (3.8) was emp10yed to improve .the 

accuracy of the scheme as fo11ows 

n-1 
1 n+1 n-1 U 2 Ci+lj+1) = 2" [ U 2 Ci+lj+1J + U 2 (t+1J+1) ] (3.13) 

n-1 
l [ n+1 n-1 V 2 U+IJ+1) = V 2 O+lJ+1) J V 2 (i+lJ+1) ] 2 (3.14) 

Substituting equations (3.13) and (3.14) in equations (3.7) 

and (3.8) and solving for un +1/ 2 (i+l,j+1) and vn+1/fi+l,j+1) 

yie1ds 

n+1 n-1. 1 
2 2 1 n--

U U+l,j+l) - [ U O+l,j+l) - dt { 2" U 2 (i+l,j+J) DU(x) 

n-! 
+ V 2 Ci+lJ+l) DUCy) - B + C DH(x) ) ] 

1 [ 1 + ~ dt DU(x) ] 
(3.15) 

1 U1 

n+1 n-1. n-1 
V 2 (i + l,j + 1) - [ V 2 (i + l,j + 1) - dt { U 2 Ci + l,j + 1) D V (x) 

1 n-1 
+ 2 V 2 U+l,j+l) DV(y) + E DH(x) + N ) ) 

1 [ 1 + ~ dt DV(y) ] 
(3.16 ) 
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The difference equation form of the continui ty equa tion 

can be introduced in a way, such that it satisfies a 

physical representation of the continui ty equation on the 

grid scheme in order to improve the accuracy of the 

solution. We start by introducing the following intermediate 

variables, 

.1. n+1 n+1 
UUl [ U 2 (l+!J+1) + u 2 (j+lJ+2) ] (3.17) 

2 

UU2 = ~ [ 
n ... ! 

U 2 O+2,j+1) 
n+1 

+ U 2 O+2j+2) ] (3.18) 

DUU(x) = ;:.UU=I....,-,.....;::::;.UU=2 
dz (3.19) 

1 n+1 n+1 
VVl = 2" [ V 2 (i+l,j+l) + V 2 O+2J+l) ] (3.20) 

1 n+1 n+1 
VV2 = 2" [ V 2 (i+lJ+2) ... V 2 (i +2J+2) ] ( 3 .21) 

DVV(y) • VVt - VV2 
dy (3.22) 

Hn (i+l.j+l) • ~ [ Hn (i+l.j+l) + Hn - 1 (i+l,j+l) ) 
(3.23) 

Finally equation (2.45) can be written as follows 

n+1 
Hn U+l.J+l) :1 [ Hn - 1 (l+lJ+1) - dt {U 2 n+lj+1) DH(x) 

1 
+ Vn+'2 Ci+lJ+ll OHey) + ~ Hn - I ( OUU(x) + OW(y) ) } ] 

1 [ 1 + ~ dt (DUU(x) + DVV(y)) ] (3.24) 
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\ The solution of the system of equations (3.15), (3.16) 

and (3.24) proceeds in the following way. First aIl 

variables are initialized ( the initial shape of the 

granular material pile is specified and aIl velocities are 

taken to be zero). Then, equations (3.15) and (3.16) and 

equation (3.24) can alternately be evaluated for aIl n. 

3 .2 Boundary Condition 

The boundary condi tio!! for a rigid wall may be ei ther of 

two types, no-slip or free- slip. The latter type may be 

considered to represent a plane of symmetry, rather than a 

true wall, or, in the case of modeling an idealized fluid, 

it may represent a non-adhering surface. Symmetry planes are 

restricted in orientation so that they lie along the 

boundaries of the scheme. Relaxation of this restriction 

could be accomplished only at the expense of considerable 

increase of complication. 

For the case under consideration, the vertical x,z plane 

is considered to be a plane of symmetry. Therefore, 

calculations will be performed on only one half of the pile 

(see Fig. 2.1). A boundary condi tion ha s to be imposed a t 

this vertical plane in order to accommodate this situation. 

For a free-slip wall, the normal velocity (in adjacent 

cells) reverses while the tangential velocity remains the 

same (22). The flow height h, also remains the same in 

adjacent cells, corresponding to g~ = 0 at the center line. 

Fig. 3.3 schematically represents the no-slip boundary 

condi tion. 

3.3 Stabili ty Analysis 

A finite difference procedure for calculating time -

dependent phenomena is considered stable when small 

numerical truncation and round - off errors inevitably 

introduced at stage T = 0, are not amplified during 

successive applications of the procedure, and at subsequent 

time t have not grown so as to obscure the valid part of the 
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solution. A method for investigating the stability aspects 

of the proposed finite difference scheme is outlined next. 

A cornrnonly used technique for investigating the stability 

of numerical schemes for partial differential equations 

involves the representation of pertinent functions in terms 

of the Fourier series. A rigorous mathematical presentation 

of this technique appears in the classic book by Robert 

Richtmyer (23). The basic approach to tha problem is to 

postulate that at sorne time To of the calculations a 

distribution of small numerical errors has crept into the 

computed results such that the computed results have 

deviated from the true solution. The growth or decay of 

these errors during the repeated application of a particular 

finite difference scheme is investigated for a local 

linearized version of the scheme, with coefficients assumed 

constant. The error functions are assumed to be composed of 

the Fourier series, any component of which satisfies the 

modified difference scheme. An examination is made to see if 

the amplitude of any component increases during repeated 

application of the difference equations. If the amplitude of 

every component remains bounded, the scheme is judged te be 

stable. 

The general term of the Fourier expansion for U, V and H 

at arbitrarily time t = 0 is e i a x e i {3 Y, apart from a 

constant. At a time t' later, these terms will become 

(3.25) 

(3.26) 

H • e el a x el P y 
(3.27) 

l !)6 
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SUbstituting the above in equation (3.7) yields 

.1,' • .1, .1,[ 1 Il x 1 P Y 1 «(z-dz) t p y] 
Of' Of' el Il Z el P y + U Of' e e - e e 
~ ~ 

which can be simp1ified to the form 

or 

where 

+ U 
\II[1-e -1 Il dz] 

dz + V 
-1 ~ d.._ 

\II[1-e -y] 

dy • 

-1 Il dz 
B e-1 (X li: e -1 P Y _ C €[1-e ] 

~ 

, 
111 = M \II .... BB e 

(1-e -t Il ~) -1 P <1y 
AA -= 1 - dt [ U + V 

(l-e ) 

dz dy ] 

BB = B dt 
e-1 cr li: e -1 p Y 

- C dt 
(l-e -1 a ~) 

€ dz 
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(3.28) 

(3.29) 

(3.30) 

(3.31) 

(3.32) 
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Similarly equation (3.8) can he reduced to the following 

ferm 

v' • hA 11 + CC e 
(3.33) 

where 

cc = - ( 3.34 ) 

and finally equation (3.24) can he reduced in a similar 

manner to the ferm 

• • AA e - DO 1/J - EE li ( 3 . 35 ) e 

where 

1 -
1 a d.z 

DD ::1 H dt 
e 
dx (3.36) 

EE = H 1 -
1 Il dy 

dt 
e 

(3.37) dy 

Equations (3.33), (3.36) and (3.38) can he rewritten in a 

matrix ferro as follows 

o 
AA 

EE 

BD] 
CC 
AI. 

(3.38) 

l'lB 
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or 

• e Il F e (3.39) 

where F is the amplification factor. For stability each 

eigenvalue of F must not exceed unit y 

IAA 1 <= l (3.40) 

Let us define 

(3.41 ) 

(3.42) 

hence, 

AA • (l-a-b) + il e -1 IX <ix e -1 Il dy (3.43) 

The coefficients ex and ~ are rea land posi ti ve, and by 

representing AA on an Argand diagram (23)~ it can be shown 

that the maximum modulus of AA occurs when ex d x = In 'Ir and 

~ dy = n ~ where m and n are integers and hence occur 

when AA is real. For dt sufficiently large, the value of AA 

is greatest when m and n are odd integers; in which case 

AA = 1 - 2 ( a + b (3.44) 

which becomes more negative as dt increases. Now to satisfy 

1 AA 1 <= l, the most allowable value is AA = -l, therefore 

a + b <= l (3.45 ) 

11J9 
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Thus the stability condition is 

u V 
dt [ dz + dy ] s 1 (3.46) 

which is equivalent to the weIl known Courant stabi1ity 

criterion (21) for the integration of the hyperbolic partial 

differential equations. 

3.4 Results 

3.4.1 Introduction 

A computer code was developed for the two-dirnensional 

spreading mode1 to predict the shape and the velocity 

variations with tirne, of a finite mass of cohesion1ess 

granular material piled up at the top of a rou'gh inclined 

plane. The code starts by declaring first, the constants 

such as the initial maximum height and length of the pile 

( hi and li ), angle of inclination of the bed plane, the 

internaI angle of friction, the bed angle of friction, the 

maximum number of steps and the coefficients A,B, .. etc. of 

equations (3.15), (3.16) and (3.24). The spatial increments 

dxand dy and the time step dt are then introduced. Finally, 

the variables H, U and V are initialized by establishing 

the initial shape of the pile and setting the velocities to 

zero. Following that, equations (3.lS) and (3.16) are used 

to ca1culate new velocities at the first time step. After 

the computations of U and V are done for each node, the 

stabi1ity is checked by using equation (3.46) to assure the 

scheme stability. Equation (3.24) then is used to compute 

the new shape of the pile using the newly calculated 

velocities U and V. The number of time steps is checked and 

if that is less than the maximum, the prograrn resumes the 

calcu1ations by going back to compute the new velocities at 

the next time step and so on. Since the stability of the 

scheme was secured, the last concern was to insure that the 

110 
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scheme is conservative, that is ta insure that the numerical 

diffusion is minimum. The numerical diffusion is defined as 

the dissipation of the initial function ( the mass of the 

pile ) with time, which is due ta the difference between 

the solution constant speed of propagation (dx / dt ) and 

the physical unsteady true solution (phase ~rror). Therefore 

computer experimentation was carried out ta select the best 

time step to insure the minimum numerical diffusion. The 

method used to check on the accuracy was to compute the 

volume of the new pile after each time step and compare it 

with the initial volume of the pile. The relative difference 

in volume was chosen as the measure of the scheme accuracy 

and it was called the 'Error - relative volume change'. 

The programs were developed and run on a Hewlett Packard 

Series 200'HP9816 microcomputer with graphies capabilities. 

The program runs interactively and results can be displayed 

on both the screen and the pIotter. 

3.4.2 Results and Discussion 

Initially, the program was tested on a simplified one­

dimensional spreading version of the model to check whether 

the results predicted were correct for sorne very simple 

physical problems. For aIl the following cases, the angle of 

bed friction (DELTA) was taken to be 320 • 

The one-dimensional version of the governing equations 

can be written as follows 

aH + L (UH) = 0 aT ax 

~~ + U ~~ • sinr - A cosr ~~ - cosr tanô sgn(U) 

(3.47) 

(3.48) 

In the first test the program was used ta predict the 
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timewise development of the shape of a finite volume of 

granular material piled on a horizontal plane. The pile was 

initially triangular in shape having free surface slopes of 

60 0 with the horizontal bed plane ( A = hi / li = 1.154). 

Fig. 3.4 shows the non-dimensional heiqht of the ~ile versus 

the streamwise distance for hoth the initial and the final 

non-dimensional times. It was found that the free surface 

of the final shape of the pile made an angle equal to the 

angle of bed friction. This result is consi stent wi th the 

physical situation of a simple test to determine the angle 

of repose of granular material. 

A second test was made to predict the shape of a finite 

volume of granular mater~al piled on an inclined plane which 

makes an angle of inclination ZETA) of 20 0 with the 

horizontal. The pile itself was of the form of an isosceles 

triangle whose equal sides are inclined at 40 0 te the 

sloping bed plane ( A = 0.419). Hence one leg was inclined 

at 20 0 to the horizontal and the other was inclined at 60 0 

to the horizontal. Fig. 3.5 shows the spreading of the pile 

at different non-dimensional times. The flow stopped when 

the front free surface slope made an angle close to the 

angle of bed friction. This result is consistent with the 

stability condition which can he seen from equation (3.48) 

by setting the velocity to zero. 

The last test was performed to check on the velocity 

prediction of the Modele By canceling the second term in the 

right hand si de of equation (3.48), the prediction of the 

model should correspond to a point mass sliding down a rough 

inclined plane. The lower graph in Fig. 3.6 represents a 

pile of granular rnaterial flowing down a plane having an 

angle of inclination (ZETA) of 60°. The position of the 

pile at different non-dimensional times is presented and as 

expected, no spreading occurs. The upper graph of Fig. 3.6 

shows the non-dimensional velocity of the pile which was 

found to match very closely the prediction of a point mass 

analysis. The difference hetween the two predictions is less 
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than 1 %; this is due to the errors associated with the 

finite difference calculation. 

The satisfactory results of the previous tests indicated 

that both the finite difference approximations to the 

governing equations and the developed program were ready to 

be generalized to handle the problem of spreading down 

general inclined surfaces. 

The full governing equations (3.15), (3.16) and (3.24) 

were programed and used to predict the velocities and both 

the longitudinal and the Iateral spreading of a finite 

volume of granular material released from rest down an 

inclined rough plane surface. The initial shape of the pile 

was taken to be a one half cycle of a sinusoidal curve. The 

selection of the initial aspect ratio (A = hi / li) for the 

this investigation was based on the field data presented by, 

among others, Davies (10). The field data showed, from the 

deposit of the different rockfalls debris, that the ratio of 

the thickness to the length of the final deposit was of 

order 0(1/1000). For example, the Sherman landslide debris 

deposit (4) was about 6 km in Iength and 3 to 6 rn in 

thickness. Calculations showed that an initial shape having 

A of about 1/10 would spread to a final depth to length 

ratio of 1/1000 after going through the corresponding travel 

distance. Hence ~. = 1/10 was used for the calculations of 

this section. The bed angle of friction (DELTA) was selected 

to be equal to 32° which corresponds to an angle of internaI 

friction of 38.670 (see Fig. 2.1). Three Qifferent 

inclinations were selected, a mild one close to the angle of 

bed friction ( ZETA = 40°), a medium one ( ZETA= 60°) and a 

steep one (ZETA = 80° ). The typical execution times for the 

three examples were about 30-45 minutes: 

Fig. 3.7 shows both the longitudinal and the lateral 

spreading of the pile released down a bed having an angle of 

inclination of 40 0 and the pile shapes at different non­

dimensional times. The lower graph shows the non-dimensional 

height of the pile versus the non-dimensional streamwise 
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distance and the upper graph shows the non-dimensional half 

width versus the non-dimensional distance. The spa ce stepsdx 
and dy were taken to be equal 0.1 and the time step was 

taken to be equal 0.1. 

Fig. 3.7 clearly shows that the longitudinal spreading is 

much more significant than the lateral spreading. The net 

lateral force arising from the free surface slope is 

balanced by the bed friction, while in the longitudinal x­

direction, bed friction is insufficient to prevent the 

spreading which is initiated as a result of free surface 

slopes. The final shape of the pile gave an aspect ratio of 

approximately 1/1500. Fig. 3.8 shows the non-dimensional 

center of mass velocity U versus the non-dimensional 

streamwise distance. It can be seen that, the velocity 

profile resembles the one presented in Fig. 3.6. At the 

center of mass of the pile, the second term on the right 

hand side of equation (2.46) approximately vanishes. Hence 

the center of mass velocity is very close to that predicted 

by the analysis of a point mass sliding down an inclined 

plane (the difference is less than 6%). 

The upper graph of Fig. 3.7 indicates that the lateral 

velocity is very small; it may be seen that sides of the 

pile hardly move from their original lateral positions. 

Fig. 3.9 shows the errors corresponding to the relative 

pile volume changes versus the computation time. The figure 

shows that the scheme is stable ( no oscillations )and the 

numerical diffusion is weIl controlled. 

The same calculations were repeated for bed angles of 

inclination ZETA = 60 0 ( Figs. 3.10 - 3.12 ) and for ZETA = 
SOo( Figs. ~.13 - 3.15 ). The re~ults were similar to those 

discussed earlier. As expected, higher accelerations and 

hence higher longitudinal velocities occurred. The a8~ect 

ratios for the final shape of the pile were approximately 

1/2000 and 1/4500 respective1y. However, the 1ateral 

spreading remained unnoticeable due to the balance between 

the net lateral force and the bed friction. 
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Fig. 3.15 shows a discontinui ty in slope near the middle 

of the graph. Due to the high acceleration rate, the 

velocity increased in such a manner that the stability 

condition (equation (3.46» was violated. An extrapolation 

of the first part of the graph at the point of inflection 

shows that the errors could have grown exponentially with 

time and the resul ts would have been useless. Thi s is ta ken 

care of ln the computer program by resetting the time step 

to be half its value if the stability condition is not met. 

The 'kink' near the Middle of the plot corresponds to this 

resetting of the time step. 

3.5 Summary and Conclusions 

In this Chapter, a simple continuum model was developed 

for the two-dimensional flow and spreading of a finite mass 

of granular material released from rest on rough inclined 

plane beds. The present model describes both the 

longitudinal and the lateral sprE:!dding of the pile. An 

explicit fini te difference scheme applied on a staggered 

grid was employed for the numerical integration of the 

governing partial differential equations. The computation 

results seem to be stable and accurate. From these results, 

it was concluded that the lateral spreading is insignificant 

with respect to the longitudinal spreading. This result 

suggests that a simple one - dimensional spreading model is 

adequate for preliminary studies. It was also observed that 

the predicted center of mass velocity of the pile resembles 

very closely that predicted by the analysis of a point mass 

sliding down the same inclined plane surface. 

In the next Chapter, a one-dimensional spreading model 

will be developed. The mathematical model will be derived 

for the flow and spreading of a finite mass of cohesionless 

granular material down rough curved beds. The governing 

equations will be written for a curvilinear coordinate 

system to accommodate the shape of the curved beds on which 

the material will flow. In this case, the normal to the bed 
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stress will incIude the centrifugaI force effects arising 

from curvature of the particle paths. 
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ONE-DIMENSIONAL SPREADING MODEL 

The results of the two-dimensional spreading model 

presented in Chapter 3 showed that the lateral spreading was 

insignificant and they suggested that, a one-dimensional 

spreading model wou1d be adequate for the purpose of this 

study. A one-dimensional depth-averaged model is developed 

now for the flow and spreading of a finite mass of 

cohesionless granular material released from rest on rough 

curved beds. The governing partial differentia1 equations 

for a curvilinear coordinate system are developed in Section 

4.1. A fini te difference approximation for the governing 

equations is presented in Section 4.2 along with the 

stability condition for the chosen scheme. Finally in 

Section 4.3, the results obtained from the computer programs 

are discussed. 

4.1 Governinq Equations 

A simple continuum depth-averaged model for the flow of 

granular materials is now presented. The motion of the 

material is referred to a curvilinear coordinate system. The 

material point posi tioI" is denoted by the coordinates ~ and71 

at time t. The ~-coordinate is taken as positive in the 

streamwise direction following the bed curvature and the 

coordinate 71 is directed normal to the bed. Thus the 

curvilinear scheme consists of curves which are parallel to 

the bed and of straight lines perpendicular to the tangent 

to the bed at any point (Fig. 4.1). 

For the analysis of the two-dimensional incompressible 

flow down a curved bed, the motion can be described by the 

continuity and momentum equations 

V-ô • 0 (4.1) 

11 7 
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( 4 • 2 ) 

The radius of curvature r (~) is to be taken to be 

positive for the concave shaped incline. Hence, these 

equations can be written for the curvilinear coordinate 

system (~, TJ ) as f ollows 

au 
al; 

av 
+ -aT} 

au au au ôp-= _ô P" 1'1 
P [ ôt + u at: + v an 1 • p g sin t" .... .. .. .. ar - dll 

âPnc âPnf'l = .. p g cos r .. ar .. aï) 

( 4 • 3 ) 

( 4 • 4 ) 

( 4.5 ) 

where p~~ 
the shear 

and 2 are the 
TF1 

stresses and r 
norma l stre s se s, PE1J and PYJ~ are 

is the local bed inclination angle 

(see Fig. 4.1) . 

Multiplying equation (4.3) by pu and adding it to equation 

(4.4) yields 

[ au a (2) a () uv 
p at + a~ u + ôll uv + T ] = ( 4 .6) 

The model can be sirnplified further by employing the long 

wave approximation. This approximation can be written out as 

v « u ( 4 .7) 
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a » a (4.8) 
il'l ili 

r » " 
(4.9) 

Hence, equation (4.5) can be simplified, using equations 

(4.7) - (4.9), to the hydrostatic equilibrium equation, 

including the centrifugal force effects arising from the 

curved particle paths. 

(4.10) 

or 

p .. p g cos r (h -Tl) + t Ih 
u2 dTl 

~ ~ 

(4.11 ) 

where h is the depth of the pile at any position. 

Integrating equation (4.6) over the depth yields 

[ a Ih 
d + u ah + L Ih 

u2 dn - u2 ah + uv] p at 0 u Tl s at a~ 0 s a~ 5 5 

a 10 h 1 • p g sin r - a~ p& d~ + Pé~ 0 (4.12) 

where the subscript s refers to the free surface value of 

the velocity component. At the free surface, we have the 

kinematic cond~tivn, 

• ah • u ah 
Vs at s a~ (4.13 ) 
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Then, we define the fe110wing depth averaged quantities, 

AIse, we assume that 

ü .. ! rh u dn 
h 0 (4.14) 

(4.15) 

(4.16) 

By using equation (4.13) - (4.16), equation (4.12) can be 
reduced to 

p [ aat ( hü ] + aaÇ ( hü2 
) 1 = p g h sin r -

(4.17 ) 

The constitutive relation between the stress components 

is assumed to be the same relation introduced earlier in 

Section 2.2.1 (Fig. 2.1). Hence, we write 

p~ -= Pnn -= Po (4.18) 

P~n 
__ _ T Ü = - T sgn(ü) 

lü\ 

T :z p s in~ = p tanô o a 
(4.19) 
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Using equatian (4.16), equation (4.11) can be reduced ta 

P ü2 
P ,. p g cos t" (h-11) + -r- (h-11) nn (4.20 ) 

From equations (4.20) and (4.15), we abtain 

h 
Pli" h - I P dll 

., 0 "" 

( 4 .21 ) 

Fina11y, equation (4.17) can be rewritten using equations 
(4.21) and equation (4.19) as 

a a 2 a h2 
p [ at ( hü ) + al; (hü )] = p g h sin t" - al; [ p g cos r 2" + 

-2 2 P U h r- '2 ] + [ p g h cos r tan Ô 

-2 
+ P rU h tan ô] sgn(ü) (4.22 ) 

Integrating equation (4.3) over the depth and using the 

free surface kinernatic condition, equation (4.13), yields 

ah a at + a~ ( bu )= 0 (4.23) 

Using equation (4.23), equation (4.22) can be reduced to 

j 

1 
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p [ LaÜt + ü aa~ ] • p g sin r - g [ cos )- ah + h àcos 
r; 10 a~ 2 a~ r 1 

-2 
- [ g cos r tan S + ~ tan 6 ) sgn(ü) (4.24) 

The resulting equations (4.23) and (4.24) are sufficient 

to describe the longitudinal spreading of the flow. The 

above depth-averaged equations can now be expressed in non -

dimensional forro following the same procedure which was used 

in Section 2.4. Let us start by introducing the following 

noa-dimensional parameters 

H • h S ~ R r 
hl • ï; • ï; (4.25) 

u = ü 
T • 

t A = hl 

..jg Il -/llg -.; (4.26) 

where h· 
~ 

and li are the maximum height and length of 

the debris mass before release. Then, by substituting 

equations (4.25) and (4.26) in equations (4.23) and (4.24), 

the non-dirnensional form of the model can be written as 

(4.27) 

au + u au sl'n y _ A [ cos ,.. aH, + H acos r ] 
aT as • li> 11>-a~ 2 as 
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2 
- [ cos r tan 0 t A ~ tan 0 ] sgn (U) (4.28) 

4.2 Pinite Difference Equations 

A simple expli ci t scheme applied to a staggered gr id i s 

presented. Fig. 4.2 shows the proposed gr id wi th the space 

index i. The superscript n is used to number the time cycle. 

The cr values are computed first and used to obtain the H 

values as indicated in the f lowchart diagram in Fig. 4.3. 

Computational results arising from the finite difference 

programs are discussed later in Section 4.3. 

We start by defining various difference operators and 

their relationship with the differential opera tors. Let d~ 

be the non-dimensional spacing between abscissas in the s­

direction and dt be the non-dimensional time step. The 

forward difference opera tors are defined by 

(4.29) 

(4.30) 

where k represents either dependent variable H or cr. The 

differential opera tors are defined by 

Dk(~) • Il k{~) ( 4 • 31 ) 
d~ 

Dk(t) :1 A k(t) 
dl 

(4.32) 
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The difference equations, approximating the continuity 

and the momentum equations (4.27) and (4.2B) can be written 

in terms of the velocity values at the nodes of the scheme 

and the flow height at the center of each cell. Starting 

with the momentum equation (4.28), the fOllowing difference 

approximation was used 

DU(t) + un-~ Ci + 1) DUCE) = B' - C' DH(~) - t Hn (1+1) Dcos 

where 

! Hn U+ll DUR(~) - E' 
2 

B' = sin r(i+l) - cos rCi+!) tan 5 5gB (U) 

u2 
c' • Il [ CDS ro+!) + "if 

DC05 • Il [ cos r{i+!) - cos ni) ] 

n-1 n-1 
[ 

{U 2 (i+!))2 _ {U 2 (i)}2 
DUR (1;) • A RU.l) R(f)] 

n-1 
E' • A tan 5 ru 2 (f+l)}2 sgn (U) 

RU+!) 

(4.33) 

(4.34) 

(4.35) 

(4.36) 

(4.37) 

(4.38) 

A Lax-Wendroff (45) type of approximation te the velocity 

un - 1 / 2 (i+l) in equation (4.33) was used as follows 

n-1 n+! n-1 
U 2 Ci+!) = ~ ru 2 0+1) + U 2 U+1)] (4.39) 
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Substituting equation (4.39) in equation (4.33) and 

solving for un+l !2(i+l) yields 

n+1 n-1 1 n-1 · 
U 2 Ci +1) - [U 2 (1 +1) - dl ( 2 U 2 Ci +1) DU CI; ) - B 

+ C' DH(I;) + ~ Hn (i+l) Dcos + ~ Hn (i+1) DUR(ç) 

+ E' ) ] 1 [ 1 + ~ dl DU(~) ] (4.40) 

Similarly, equation (4.27) can be approximated by the 

following finite difference equation 

n+1 
DH(t) + Hn (1+1) DU(~) + U 2 (1+1) DH(ç) = 0 (4.41 ) 

By using the Lax-Wendroff approximation, equation (4.41) 

can be rearranged and solved for Hn+lCi+l) to yield 

n+1 1 
U :2 (1+1) DH(~) } ] 1 [ 1 + 2 dt DUn;) ] (4.42) 

The solution of the system of equations (4.40) and (4.42) 

proceeds in a manner sirnilar to that described earlier for 

the two-dimensional spreading model. First aIl variables are 

initialized and th en equations (4.40) and (4.42) can 

alternately be evaluated for all n. 

A stability analysis was worked out following the sarne 
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procedures explained previously in Section 3.3 and the 

stability condition obtained was 

(4.43) 

4.3 Results and Discussion 

A computer code similar in logic to the one presented in 

Section 3.4 was constructed. It was necessary to add a 

segment which is used to generate the desired curved bed 

shape and to calculate the radius of curvature. The program 

was used to predict the longitudinal spreading and velocity 

of three different rockslides. The selection of these 

particular cases was based on the availability of the 

required data for the computations, namely, a cross sectlon 

of the bed along the slide path and an estimation of the 

dislodged mass dimensions before the slide occurred. The 

angle of bed friction (DELTA) was chosen to be 35°. 

4.3.1 Frank Rockslide 

The Frank rockslide which occurred in 1903 is one of 

several rockslides that have taken place in the Canadian 

Rockies. This particular slide is one of the most studied 

events bec2use of the destruction it caused to the town of 

Frank in the southern part of Alberta, Canada (25). The 

volume of the rock mass which was estimated to be 3 x 10 7m3 . 

The extent of the final deposit was about 1600 m with an 

average thickness of 13.7 m. The total fall height was 

estirnated to be 775 m. Fig 4.4, shows a longitudinal cross 

section which was constructed from both a topographic map 

and a cross section through the path of the slide which were 

given in reference (25). 

An analytical expression to sirnulate the shape of the bed 

was constructed as follows. The initial position of the 

shape was a plane surface inclined at 500 ta the 

horizontal. At station x = 500 m (see Fig. 4.4) this was 
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joined with a smooth exponential curve which approached 

horizon~al surface at large x, i.e. 

y = 180 e-0.0066 (x-SaD) ,x >= 500 (4.44) 

The radius of curvature of the incline is defined by 

d2y 
! • dx

2 

r 3 

[ 1 + ( :)2 ] 2 
(4.45) 

The initial maximum height and length of the rock mass 

before the slide occurred were estimated to be 150 m and 625 

m respectively which give an initial aspect ratio A = 1 / 4. 

The initial shape of the rock mass was approximated by a 

sine curve shape. Fig. 4.5 shows the non-dimensional shape 

of the debris versus the non-dimensional travel distance 

along the slide pa th at different non dimensiona1 times. The 

calcu1ated final deposit 1ength was found to be 1600 m and 

the averaqed thickness was 40 m. These dimensions 

(especially the thickness) are larger than the observed 

dimensions of the Frank slide debris. The difference can be 

attributed to three-dimensional effects since both the 

topographic map and the oblique aeria1 photograph of the 

slide site (25) show that lateral spreading of the debris 

occurred because of a slight 1aterai bed inclination. 

Fig. 4.4 shows the initial rock mass before release and 

the ca1culated final shape of the debris. It was found that 

the line connecting the initial and final center of mass 

positions makes an angle of inclination equal to 35.50 which 

is close to the assumed angle of bed friction of 35 0 • The 

difference is no doubt due to the finite size of the debris 

mass whose shape is changing and to errors associated with 

the fini te difference computations. The predicted total 

travel distance of the farthest point of the debris (at x = 
1950 m) was found to be consistent with the observed runout 
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distance (25). 

It was found that the line connecting the highest point 

in the slide path with the farthest point of the debris 

makes an angle of inclination of 21.60 which gives an 

equivalent coefficient of friction of 0.396. Fig. 4.6 shows 

the non-dimensional center of mass velocity versus the non­

dimensional traveling distance along the slide path. Fig. 

4.7 shows the 'Error' expressed in terms of the relative 

volume change versus the computation time. The figure shows 

four points of discontinuity in slope which correspond to 

changes in the time step. 

Computations were performed for two other slide volumes 

of 10 % and 50 % of the Frank slide. The results of these 

computations are shown in Figs. 4.8 and 4.9. Two 

interesting things may be observed. First the angles of 

inclination of the line connecting the initial and final 

centers of mass are aIl much the same and very close to the 

bed friction angle of 350 . In addition, the angles of 

inclination of the line connecting the aft end of the 

initial position of the debris with the nose of the final 

shape of the debris pile are seen to decrease moderately 

with the increasing debris volume. A similar computation was 

performed for a slide volume of 350 % of the Frank slide. 

The result of this computation is shown in Fig. 4.10. It was 

observed that the line connecting the initial and 

final centers of mass are very close to the bed friction 

angle, however, the angle of inclination of the line 

connecting the aft end of the initial position with the no se 

of the final shape is larger than that of the Frank slide. 

The reason of this behaviour is that after its initial 

acceleration the front of the pile decelerates more rapidly 

than the rest of the pile since it flows on the fIat part of 

the incline earlier than the rest of the debris. This 

behaviour is copsistent with the field data of the Medicine 

lake rockRljde as will be seen later in Section 4.3.3. 
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4.3.2 Madison Canyon Rockslide 

In 1959, a large rockslide took place in a steep walled 

canyor of the Madison River (24) in Montana, U.S.A. The 

slide was a direct result of a strong earthquake. A volume 

of approximately 2xl0 7 m3 was dislodged and rushed down the 

steep slope of the canyo.l to an almost fIat valley. The 

total fall height was about 575 m. The debris traveled 

about 1200 m across the fIat valley. The final deposit was 

1380 m in length, an average of 7.5 m in thickness and an 

average of 2000 m in width. 

The shape of the slide path cross section was constructed 

from the topographie map given by Hadley ( Fig. 6 of 

reference (24) ). This shape was approximated by the 

following exponential function (Fig. 4.12) 

y = 575 e-O. Ol x (4.46) 

The initial maximum height and length of the debris pile 

before the slide was estimated to be 75 m and 150 m which 

gives an initial aspect ratio A of 0.5. The shape of the 

initial pile was approximated by a sine curve shape. 

In the computer program, the governing equations (4.27) 

and (4.28) were used throughout the curved part of the bed 

up to station x = 600 m and then equation (4.28) was 

simplified by eanceling out the terms involving R, the 

radius of eurvature, since R has the value of infinity in 

the fIat part of the bed. 

Fig. 4.12 shows the non-dimensional shape of the pile 

versus the non-dimensional traveling distance along the 

incline ~t different non-dimensional times. The graph shows 

that the rock mass spread to a final physical aspect ratio 

of 1 / 400. The calculated final deposit length was found 

to be 1490 m and the average thickness was found to be 

approximately 3.25 m. These results are considered to be 

satisfactory considering both the errors associated with the 

estimation of the geometry of the actual slide debris, 
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three-dimensional flow effects and the approximations made 

in the computation. 

Fig. 4.12 sho~s the initial shape of the rock mass and 

the calculated final shape of the debris. Note that the 

thickness shown in this graph is distorted to permit a 

representation of the depth variations with distance along 

the slide path. The graph shows that the line connectinj the 

initial and final center of mass positions makes an angle of 

inclination of 36 0 which is approximately equal to the angle 

of bed friction which was assumed ta be 35 0 . ThlS result 

agrees with the simple analysis of a point mass sliding down 

the same incline. The graph also shows that the line 

connecting the highest point of the incline with the 

farthest point of the debris makes an angle of 21° • This 

line gives an equivalent coefficient of friction of 0.384. 

Fig. 4.14 shows the non-dimensional center of mass 

velocity versus the non-dimensional traveling distance along 

the slide path. Again the calculated profile r~sembles the 

one which might be obtained from the point mass analysis and 

the velocity reaches a maximum at the point where the bed 

angle of inclination is equal to the angle of bed friction. 

A few remarks about how the debris cornes ta rest are in 

arder. Fig. 4.l3a shows the non-dimensional longitudinal 

velocity profile versus the non-dimensional traveling 

distance along the incline at different non-dimensional 

times just before the motion ceased. The graph shows that 

the front part of the slide is moving faster than the rear 

end of the debris which results in the spreading behaviour. 

Just prior to thè end of the motion, portions at the rear 

end of the debris come to rest while the front part 

continues to move. As time progresses more and more 

material at the back end cornes to rest until finally aIl 

motion ceases. During this process the center of mass of 

the complete debris mass continued to move in the downstream 

direction and the center of mass velocity became zero at the 

same time that aIl the mat~rial came to reste 
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4.3.? Medicine Lake Rockslide 

The Medicine Lake slide occurred in the sarne gen~ral area 

of the Frank rockslide in the Rocky Mountains. It was 

estimated that the dislodged volume was about 8.6 x 107 m3 . 

A cross-section along the path of slide was given by Cruden 

in Fig Il of reference (26). This graph also showed the 

estimated initial profile before the slide occurred as weIl 

as the shape of the final debris deposit. The total fall 

height was was about 600 m. 

The shape of the incline (see Fig. 4.15) was approximated 

by a straight line having an angle of inclination equal to 

45 0 followed after station x = 500 by an exponential curve 

of the form 

y = 100 e- 0.01 (x-SOO) , x >= 500 ( 4 .47 ) 

The initial height and length of the rock mass were taken 

to be 110 m and 860 m respe~tively. Fig. 4.16 shows that the 

front of the pile accelerates and then slows down more 

rapidly than the rest of the pile since it flows on the fIat 

part of the incline earller than the rest of the debris. 

Fig. 4.17 shows a comparison of the calculated final profile 

of the debris and the profile observed in the field. The 

computed profile in the final state was found to be somewhat 

lower than the observed deposit of the rockfall. Notice that 

the final 'center line' cross-sectional area of the observed 

debris is less than that before the slide occurred. This 

anomaly is evidently due to lateral convergence of the flow 

that occurred in the actual slide. 

Fig. 4.18 shows the non-dimensional velocity profile 

which again resembles the profile which might be obtained 

from an analysis of a point mass sliding down the same 

incline. 
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4.3.4 Other Rockslides 

The rest of the available data on rockslides events fr0m 

the literature can be divided into two categories. First, 

there are events that could not be analyzed by the present 

model because no detailed information about the shape of the 

cross-section along the slide path was found in the 

literature. For the second group of events, the required 

data for the computation was available but the bed angle of 

inclination at the starting zone was less than the angle of 

bed friction. These cases can not be handled by the present 

model and the mobili ty of these events is no doubt due to 

factors not considered in the present model. S~ch factors 

might be the occurrence of a strong earthquake which could 

supply the debris with the enough vibrational energy to 

mobilize the flow. Another might be the presence of water 

and or mud within the discrete rock material which could 

change the constitutive behaviour to that of a non-Newtonian 

fluid, thereby allowing the debris to travel for extended 

distances over a nearly fIat course. 

4.4 Summary and Conc1usions 

In this Chapter, a one dimensional spreading model was 

developed for the prediction of the flow and spreading of a 

finite mass of dry cohesionless granular material released 

from rest on a rough curved beds. The computational results 

agree reasonably weIl with the field data of three 

rockslides which were selected because of the availability 

of the required data for the calculations. The main 

conclusions of these results are as follows. The movemen t 

of the center of mass of the rock debris resembles the 

simple motion of a point mass sliding down the same incline. 

The lonq runout distance of the leading edge of the debr i s 

can be attributed ta the spreading of the material which 

occurs as the debris traverses the slide path. 

One of the problp.ms which arose during the selection of 

the three cases presented here was the lack of 
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correspondence between the data published in the original 

sources and the data which appeared in subsequent 

publications describing the same event. Also, it seems that 

the estimation of the dislodged rock volume varies widely 

and hence no accurate figure can be obtained. For example, 

the estimated volumes of the Sherman rockslide (16) were 

found to vary between 1.2 x 10 7 rn3 and 10.1 x 10 7 rn 3 which 

is a factor of about 8. Shreve (4) estirnated the equivalent 

coefficient of friction for this rockslide to be 0.22; it 

was subsequently quoted by Scheidegger (1) to be 0.19 and by 

Lucchitta (10) to be 0.18. Other cases of a similar nature 

can be found in the literature. More accurate data would be 

helpful for any further investigations into the mechanics of 

rockfalls. 
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CBAPTER 5 

SUMMARY AND CONCLUSIONS 

Landslides and rockfalls that initiate on steep slopes 

eventually come to rest after flowing for sorne runout 

distance on a horizontal bed. It has been observed that the 

granular rnaterial making up the slide can be deposited in a 

very long and thin layer such that th~ nose of the slide 

moves through a surprisingly long distance. To those 

familiar with soil mechanics and geology or even someone 

aware that the angle of repose (surface slope of a static 

pile of material) of typical geological materials is around 

350- 50°, these long runout distances seem extraordinary. 

For over 100 years, since Albert Hiem observed and described 

the Elm rockfall in Switzerland in 1881, attempts have been 

made to explain the apparent fluid-like behaviour of the se 

slides. Various proposaIs have involved upward f10w of air 

as a fluidizing mechanism, hovercraft action, generation of 

high pressure steam, lubrication by mol ten rock, etc. AlI 

of these hypotheses have been at best controversial and 

none have been universally accepted. It also appears that 

none of the proposaIs have been accompanied by a detalled 

computation of the flow development for a typical fleld 

event in an effort to establish the validity of the proposed 

fluidizing mechanism. In view of this in addition to the 

questionable nature of the fluidization hypotheses, lt 

seerned worthwhile at the outset of this investigation to 

attempt to predict the gross flow features of a typical 

rockfall by a numerical computer simulation based upon the 

assumption of simple and common-place constitutive 

behaviour. The idea was that the extreme spreading might be 

a consequence merely of the flow dynamics for a very 

ordinary Coulomb-like material and that nothing 

extraordinary such as an external fluidization of the 

granular material was required. 

133 
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The investigation began with the development of the 

governing equations for the somewhat idealized problern of 

the two-dimensional flow and spreading of a pile of granular 

material down rough inclined plane beds. The equations of 

motion were sirnplified by depth averaging and by making use 

of approximations analogous to the long wave approximation 

used in hydraulics. The granular material was treated as a 

continuum and the stresses were simply approximated by using 

a quasi-static constitutive relation based upon the Mohr­

Coulomb yield criterion. Numerical solutions of the 

governing partial differential equations were obtained by 

usinq a finite difference approximation applied on a 

staggered grid scheme. A stability analysis was performed to 

obtain the necessary stability condition to assure the 

accuracy and stability of the computation. The analysis 

predicts both the longitudinal and the lateral spreading of 

the pile as weIl as the velocities. It was concluded from 

the results of the two-dimensional spreading computations 

that the lateral spreading is insignificant relative to the 

longitudinal spread~ng and that a one-dimensional spreading 

model would be adequate for preliminary studies. 

Based upon this work, a depth - averaged model was 

developed to describe the one-dimensional spreading of a 

finite mass of cohesionless granular material released from 

rest on a rough curved bed. The governing equations were 

expressed in terms of a curvilinear coordinate system and 

the centrifugaI force effects arising from the curvature of 

the particle paths were included. A finite difference 

scheme for the numerical integration of the governing 

equations was used to predict the longitudinal spreading and 

the flow velocities. 

Of aIl the available information on rockfalls, there are 

only three events, the Frank, Madison Canyon and Medicine 

Lake slides, for which sufficient data exist to make a 

detailed simulation using the present model. The basis of 

the selection of these three events was the availability of 
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a cross section along the slide path and the condition that 

the bed angle of inclination at the original position of the 

dislodged mass was larger than typical values of the bed 

friction angle. The results obtained from the simulation of 

the three selected cases were found to agree satisfactori1y 

with the field data. It was found that extreme spreadinq 

cou1d indeed occur without introducing any unusua1 

fluidization mechanisms. For the case of the Madison Canyon 

rockslide the final length to depth ratio of the debris was 

400 whereas the initial length to depth ratio of the pile 

was 2. Additional computations for fictitious slides havinq 

volumes of 10 % and 50 % of the Frank event and f10wing down 

the same curved bed showed that the angle of inclination of 

the 1ine connecting the aft end of the initial position of 

the debris with the nose of the final shape of the debris 

pile decreased moderately with increase in slide volume. 

It was concluded that the motion of the center of mass of 

a rock pile resemb1es the motion of a point mass sliding 

down the same incline. Also, the long runout distance of 

the 1eading edge of the debris can be due to the spreadinq 

of the pile under gravit y during its trave1 down the slope. 

Nevertheless, several other rockfal1s have shown extreme 

mobi1ity over mild inclines. In these cases the bed slopes 

over the whole slide travel distance was less than bed 

friction angles for typical geological materials. It is 

believed that other factors such as continued vibration from 

earthquakes or the presence of mud within the debris might 

have contributed to the mobility of the debris in these 

instances. 

The present analysis has used a very simple mode1 of the 

-constitutive behaviour and further work is needed to develop 

improved and more detai1ed constitutive theories. The 

effects of the interstitial fluid such as mud wou1d be of 

considerable interest in connection with 

investigations into the large rockfa11s. 

further 
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Appendix . 

Typical computer program listing 
(Madison Canyon Rockslide) 



( 

( 

10 
20 
30 
40 
50 
60 
70 
80 
90 
100 
110 
120 
130 
140 
150 
160 
170 
180 
190 
200 
210 
220 
230 
240 
250 
260 
270 
280 
290 
300 
310 
320 
330 
340 
350 
360 
370 
380 
390 
400 
410 
420 
430 
440 
450 
460 
470 
480 
490 
500 
510 
520 
530 
540 
550 

1*********************************1 
1 Madison Canyon Rocks1ide 1 

1***************************·*****1 
OPTION BASE 1 
SET T1ME T1ME("OO:OO:OO") 
GINIT 
DIM U(lS1),H(151),U u(501),Vo1(1500),Chg(1500) 
DIM Hh(lS1,2S),Ze(lS1),CmCS01),R(lSl) 
DEG 
Dt=.005 TIME STEP 
Tmax=8.7 
T=O 
Dx=.l SPACE STEP 
L1=150 
Ah=75 

Xi=O 
Xx=O 
Ze(1)=ATN(S7S*.Ol) 

1 75 

PR1NT " ZETA xx 
Dxi=L1/10 

XI SR" 
equiva1ent to Dx 

5=1 
5um1=0 
Hhh=2 
Xi=Xi+Dxi 
CALL Zeta(Xi,Xx,Sum1,Hhh,Zeta,Rr,L1) 
Ze(S)=Zeta 
R(S)=Rr 

PRINT USING "5X,K,15X,K,15X,K,12X,K";Ze(S),Xx,Xi,S+1,Rr 
IF Ze(S)<.5 THEN 
Ze(5)=0 
GOTO 370 
END IF 
! 
5=5+1 
GOTO 250 

FOR 1=5 TO 150 
Ze(I)=O 
NEXT 1 

Phy=35. 
Zl=TAN( Phy) 
A=Ah/L1 

FOR 1=1 TO 151 
H ( 1 )=0 
U CI )=0 

NEXT 1 

FOR 1=1 TO Il 
H(I)=5IN«I-1)*18) 

NEXT 1 
! 
N=1S 
K=1 
Kkk=1 

Initial shape of the slide 

1 Initial Number of 5teps 

1 



Il 

560 
570 
580 
590 
600 
610 
620 
630 
640 
650 
660 
670 
680 
690 
700 
710 
720 
730 
740 
750 
760 
770 
780 
790 
800 
810 
820 
830 
840 
850 
860 
870 
880 
890 
900 
910 
920 
930 
940 
950 
960 
970 
980 
990 
1000 
1010 
1020 
1030 
1040 
1050 
1060 
1070 
1080 
1090 
1100 
1110 
1120 

PR!NT " l 

FOR 1=1 TO N 
Z2=~IN(Ze(I+l) ) 
Z3=COS(Ze(I+1» 
B=Z2-Z3*Zl 

Dux=(U(I+1)-U(I»/Dx 
Dhx=(H(I+1)-H(I»/Dx 

H U " 

IF Ze(I)<.S THEN 810 
C=A*(Z3+(U(I+1»A2!R(I+1» 
Dcos=Z3-COS(Ze(I» 
E=A*Zl*(U(I+1»A2/R(I+1) 
Dur=«U(I+1)A2/R(I+l»-(U(I)A2/R(1») 
Ft=.S*U(I+1)*Dux 
Td=C*Dhx 
Fh=.S*H(I+1}*Dcos*A 
Sh=.5*H(I+1)*Dur*A 
La=1+.5*Dt*Dux 

U(I+1)=(U(I+l)-Dt*(Ft-B+Td+Fh+Sh+E»!La 

1 76 

Chk=ZS*(ABS{U(I+1»)*Dt!Dx Stabi1ity Conditiùn 
IF Chk<.90 TH EN GOTO 870 
Dt=Dt*.S 
PRINT " REDUCED TIME STEP " 

GOTO 880 
C=A*Z3 
Ft=.5*U(I+1)*Dux 
Td=C*Dhx 
La=l+.S*Dt*Dux 

U(I+1}=(U(I+1}-Dt*(Ft-B+Td»!La 
GOTO 760 

NEXT l 
FOR 1=1 TO N 

Dux2=(U(1+2}-U(I+1}}/Dx 
Dhx=(H(1+1}-H(1}}/Dx 

H(1+l)=(H(I+1)-Dt*(U(I+1)*Dhx+.S*H(I+1)*Dux2» 
H(I+1)=H(I+l)!(1+.S*Dt*Dux2) 

NEXT l 

FOR 1=1 TO N 
IF H(I)<.OOOOOOI THEN GOTO 1020 

PR1NT USING "4X,DD,13X,DD.DDDD,8X,DD.DDDD";I,H(I},U(I) 
NEXT l 

Volume=O 
FOR 1=1 TO N-l 

Vo1ume=Vo1ume+(H(I)+H(I+1)}/2*Dx 
NEXT l 

PRINT USING "" "VOLUME = "", DD. DOD" ;Vo1ume 
Vol(K)=Volume 
Vol ref=Vo1(1} 
Chg(K}=(Vo1(K)/Vo1_ref) *100-100 



( 

( 

( 

1130 
1140 
1150 
1160 
1170 
1180 
1190 
1200 
1210 
1220 
1230 
1240 
1250 
1260 
1270 
1280 
1290 
1300 
1310 
1320 
1330 
1340 
1350 
1360 
1370 
1380 
1390 
1400 
1410 
1420 
1430 
1440 
1450 
1460 
1470 
1480 
1490 
1500 
1510 
1520 
1530 
1540 
1550 
1560 
1570 
1580 
1590 
1600 
1610 
1620 
1630 
1640 
1650 
1660 
1670 

T-T+Dt 
PRINT USING 
PRINT USING 
K=-K+1 

""" 
""" 

TIME - "",DD.DDD":T 
% OF ERR OR = "",K";Chq(K) 

! 
CALL C m(I,H(*),N,C m,Dx,Vo1ume) 
Uu=U(C-m) -
CALL U-x(I,T,C m,Uu) 
Cm(KkkT=c m -
U u(Kkk)=Uu 
Kkk=Kkk+1 

SELECT T 

CASE .:Dt 
Kk=1 
CALL H x(I,H(*),T,N) 
FOR I=Ï TO N 
Hh(I+1,Kk)=H(I+1) 
NEXT l 

CASE .50 
Kk=2 
CALL H x(I,H(*),T,N) 
FOR I=Ï TO N 
Hh(I+l,Kk)=H(1+1) 
NEXT l 

CASE 6.00 
Kk=3 
CALL H x(I,H(*),T,N) 
FOR I=Ï TO N 
Hh(I+l,Kk)=H(1+1) 
NEXT l 

CASE Tmax 
Kk=4 
CA~L H x{I,H(*),T,N) 
FOR 1=1 TO N 
Hh(I+l,Kk)=H(I+1) 
NEXT l 

CASE ELSE 
GOTO 1550 

END SELECT 

IF T>Tmax THEN GOTO 1680 
Tota1=0 
FOR 1=1 TO N 

IF T>1 THEN 
Tota1=(Tota1+U(I» 

ELSE 
Tota1=Tota1+U(I)+1 

END IF 
NEXT l 

Average=Total/N*3 
L=INT (Average) 
N=N+L 

GOTO 580 

1 17 
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-

1680 
1690 
1700 
1710 
1720 
1730 
1740 
1750 
1760 
1770 
1780 
1790 
1800 
1810 
1820 
1830 
1840 
1850 
1860 
1870 
1880 
1890 
1900 
1910 
1920 
1930 
1940 
1950 
1960 
1970 
1980 
1990 
2000 
2010 
2020 
2030 
2040 
2050 
2060 
2070 
2080 
2090 
2100 
2110 
2120 
2130 
2.1..40 
2150 
2160 
2170 
2180 
2190 
2200 
2210 
2220 
2230 

BEEP 
PRINT 
PRINT TIME$(TIMEDATE) 
! 
PRINT "PRESS CONTINUE" 

PAUSE 
GCLEAR Error Plot 
GINIT 

GRAPHICS ON 
VIEWPORT 20,120,30,70 
WINDOW 0,K+2,-6,6 
FRAME 
AXES 0,2 
VIEWPORT 0,120,0,100 
MOVE K/2,5. 
LORG 5 
LABEL " Madison Canyon " 
MOVE K-15,. 65 
LABEL "COMPUTATION TIME" 
MOVE -11,0 
LDIR 90 
LABEL "1 Error-re1ati ve" 
MOVE -9,0 
LABEL "volume change l " 

LOIR 0 
FOR 1=-6 TO 6 STEP 2 
MOVE -4.5,I 
LABEL l 
NEXT l 
MOVE 0,0 
FOR 1=1 TO K-1 

DRAW I,Chg(I) 
NEXT l 

178 

PR1NT 11 DO Y~U WANT TO PLOT THE GRAPHS (ERROR GRAPH) ?" 
PR1NT "RELAY (YiN)" 
PRINT " PRESS CONTINUE " 

PAUSE 
LINPUT Ans$ 

IF Ans$="Y" THEN 
GINIT 

PLOTTER IS 705, "HPGL" 
GOTO 1750 

ELSE 
GOTO 2150 
END IF 

**** 
PR1NT "DO YOU WANT TO PLOT THE GRAPHS? REPLAY (y IN) " 
PRINT " PRESS CONTINUE " 

PAUSE 
LINPUT Ans$ 

IF Ans$="Y" THEN 
GOTO 2240 
ELSE 
GOTO 3030 
END IF 



" ' 

( 

( 

( 

2240 
2250 
2260 
2270 
2280 
2290 
2300 
2310 
2320 
2330 
2340 
2350 
2360 
2370 
2380 
2390 
2400 
2410 
2420 
2430 
2440 
2450 
2460 
2470 
2480 
2490 
2500 
2510 
2520 
2530 
2540 
2550 
2560 
2570 
2580 
2590 
2600 
2610 
2620 
2630 
2640 
2650 
2660 
2670 
2680 
2690 
2700 
2710 
2730 
2740 

G1NIT 
PLOTTER IS 705,"HPGL" 
V1EWPORT 20,120,40,80 
W1NOQW 0,15,0,1.5 
FRAME H vs. X Plot 
AXES 1,.2 

VIEWPORT 0,130,0,100 
MOVE 12,1.4 
LORG 5 
LABEL "DELTA = 35 .. 
MOVE 14.5,1.43 
CSIZE 2 
LABEL " 0 " 
CSIZE 5 
MOVE 3,1. 3 
LABEL "Madison Canyon" 
MOVE -2,.75 
LDIR 90 
LABEL "HIGHT" 
LDIR 0 
MOVE 7. 5 , - • 4 5 
LABEL "STREAMWISE DISTA!,TCE" 
MOVE 0, -.2 
FOR 1=0 TO 15 
MOVE 1,-.2 
LABEL 1/2 
NEXT l 
MOVE -1,0 
FOR 1=0 TO 1.3 STEP .4 
IF 1=0 THEN 
LABEL" .0" 
GOTO 2640 
END IF 
IF 1=1 THEN 
MOVE -1. 1 , l • 2 
LABEL "1.2" 
ELSE 
MOVE -1,1 
LABEL l 
END IF 
NEXT l 
MOVE 0,0 

FOR Kk=l TO Kk 
FOR 1=1 TO N 

DRAW (1+1)/10,Hh(I+1,Kk) 
NEXT l 
MOVE 0,0 

NEXT I<k 
BEEP 

1 79 
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2750 
2760 
2770 
2780 
2790 
2800 
2810 
2820 
2830 
2840 
2850 
2860 
2870 
2880 
2890 
2900 
29: 0 
2920 
2~30 
2940 
2950 
2960 
2970 
2980 
2990 
3000 
3010 
3020 
3030 
3040 
3050 

V1EWPORT 20,120,60,100 
W1NDOW 0,15,1,1.8 
AXES 1,.2 
FRAME 
V1EWPORT 0,120,60,100 
MOVE 4,1.5 
LORG 5 
LABEL "Madison Canyon" 
MOVE 12,1.5 
LABEL "DELTA = 35" 
MOVE 12, 1 • 55 
CSIZE 3 
LABEL" 0" 

MOVE - 2 • 5 , • 9 
LDIR 90 
CSIZE 3 

u vs. X Plot 

LABEL "NOND1MENSIONAL VELOCITY" 
LDIR 0 
MeNE -1.0,0 
FOR 1=0 TO 1.8 STEP .4 
l-10VE -1, l 
LABEL l 
NEXT 1 

Nn=Tmax/Dt 
FOR 1=1 TO Nn 

DRAW Cm(I),U_u(1) 
NEXT l 
BEEP 

PR1NT "END OF NORMAL PROGRAM" 
BEEP 

END 

lRO 



( 

( 

jUbU 
3070 
3080 
3090 
3100 
3110 
3120 
3130 
3140 
3150 
3160 
3170 
3180 
3190 
3200 
3210 
3220 
3230 
3240 
3250 
3260 
3270 
3280 
3290 
3300 
3310 
3320 
3330 
3340 
3350 
3360 
3370 
3380 
3390 
3400 
3410 
3420 
3430 
3440 
3450 
3460 
3470 
3480 
3490 
3500 
3510 
3520 
3530 
3540 
3550 
3560 
3570 
3580 

SCREEN PLOT 
********************************* 
****** PLOT H YS. X *********** 
********************************* 

! 
SUB H_x(I,HC*),T,N) 
BEEP 

IF T>.16 THEN GOTO 3520 
GRAPHIeS ON 
VIEWPORT 20,120,20,50 
WINDOW 0,15,0,1.5 
FRAME 
AXES 1,.2 
VIEWPORT 0,130,0,100 
MOYE 7.5,1.3 
LORG 5 
LABEL "PHY = 35 " 
MOYE 8. 5 , 1. 43 
CSIZE 2 
LABEL " 0 " 

CSIZE 5 
MOYE -2,.75 
LABEL "H" 
MOYE 7.5,-.45 
LABEL "X" 
MOYE 0,-.2 
FOR I=O TO 15 STEP 2 
MOVE I,-.2 
LABEL l 
NEXT l 
MOVE -1,0 
FOR I=O TO 1.5 STEP .4 
IF I=O THEN 
MOVE -1,0 
LABEL ".0" 
GOTO 3510 
END IF 
IF 1=1 THEN 
MOVE -1.1,1 
LABEL "1. 0 •• 
ELSE 
MOVE -1,1 
LABEL l 
END IF 
NEXT l 
MOVE 0,0 

FOR 1=1 TO N 
DRAW I/10,H(I+l) 

NEXT l 
1 
SUBEND 



-

3590 
3600 
3610 
3620 
3630 
3640 
3650 
3660 
3670 
3680 
3690 
3700 
3710 
3720 
3730 
3740 
3750 
3760 
3770 
3780 
3790 
3800 
3810 
3820 
3830 
3840 
3850 
3860 
3870 
3880 
3890 
3900 

! 
! 
! 
! 
! 
! 

SCREEN PLOT 
********************************* 
******** PLOT U VS. X ********** 
********************************* 

SUB U x(I,T,C m,Uu) 
Dt=.005 

IF T>(Dt+.002) THEN GOTO 3870 
GRAPHICS ON 
VIEWPORT 20,120,60,100 
WINDOW 0,15,0,1.8 
AXES 1,.2 
FRAME 
VIEWPORT 0,120,0,100 
MOVE 25,8.5 
LORG 5 
MOVE -2.0,.9 
LABEL "U" 
MOVE -1,0 
FOR 1=0 TO 1.8 STEP .4 
MOVE -l,I 
LABEL l 
NEXT l 

Cc=C m 
Uuu=Uu 
PRINT Cc,Uuu 
MOVE Cc,Uuu 

DRAW C_m,Uu 

SUBEND 
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3910 
3920 
3930 
3940 
3950 
3960 
3970 
3980 
3990 
4000 
4010 
4020 
4030 
4040 
4050 
4060 
4070 
4080 
4090 
4100 
4110 
4120 
4130 
4140 
4150 
4160 
4170 
4180 
4190 
4200 
4210 
4220 
4230 
4240 
4250 
4260 
4270 
4280 
4290 
4300 
4310 
4320 
4330 
4340 
4350 
4360 

1 
1 
1 
1 
! 

***************************************** 
****** angle of inclination and ******* 
****** radius of curvature ******* 
*************-*************************** 

SUB Zeta(Xi,Xx,Sum1,Hhh,Zeta,Rr,L1) 
INTEGER Jjj 

C=( -.01) 
Hs=Hhh/5 
SumO=O 
SumO=SumO+(1+(C*C)*EXP(2*C*Xx»~.S 
M=6 
Hl=Hs/M 
FOR Jjj=l TO M 

Xx=Xx+Hl 
IF Jjj=M THEN GOTO 4120 
IF Jj=Jj/2*2 THEN GOTO 4100 

SumO=SumO+4*(1+575A2*(C*C)*EXP(2*C*Xx»~.5 
GOTO 4130 
SumO=SumO+2*(1+575A2*(C*C)*EXP(2*C*Xx»~.S 
GO'lO 4130 
SumO=SumO+(1+575 A2*(C*C)*EXP(2*C*Xx) )A.S 
NEXT Jjj 
Simps=SumO *Hl/3 
Suml=Suml +Simps 
IF Suml>Xi THEN GOTO 4180 
GOTO 4000 
Zeta=ATN(57S*ABS(C)*EXP(C*Xx) ) 
Up=C A2*575*EXP(C*Xx) 
Bo=(l+575 A2*C A 2*EXP(2*C*Xx)A1.5 
Rr= (Bc/Up) /L l 
SUBEND 

Non-dimensiona1 

**************-************* 
***** center of mass ***** 
**************************** 

SUB C_m(I,H(*),N,C_m,Dx,Volume) 
! 

M=O 
FOR 1=1 TO N-l 

L=(H(I)+H(I+1»/2*Ox 
M=M+L*(I+I+l)/2 

NEXT l 
C m=M/Vo1ume 

SUBEND 

1 ~1 



t 
/,-

RE~ERENCES 

1. Scheidegger, A.E. (1973) On the predi~~ion of the reach 
and velocity of catastrophic landslides. Rock Mech. , 5, 
pp. 231-236. 

" 2. HsU, R.J. (1975) Catastrophic debris streams generated 
by rockfalls. Geel. Soc. Amer. Bull. , 86, pp. 129-140. 

" 3. HsU, R.J. (1978) Albert Hiem: Observations on landslides 
and relevance to modern interpretations. In: Rockslides 
and Avalanches, 1 (Voight, B. ed.), pp. 71-93. Elsevier. 

4. Shreve, R.L. (1966) The Sherman 1ands1ide, Alaska. 
Science, 154, pp. 1639-1643. 

5. Rent, P.E. (1965) The transport mechanism in 
catastrophic rock fal1s. J. Geo1. , 74, pp. 79-83. 

6. Shreve, R.L. (1968a) The B1ackhawk 1andslide. Geo1. soc. 
Amer. Sepc. Paper , 108, pp. 47. 

7. Shre7e, R.L. (1968b) Leakage and f1uidization in air 
layer lubricated avalanches. Geol. Soc. Amer. Bull. , 
79, pp. 653-658. 

8. Goguel, J. (1978) Scale-dependent rocks1ide rnechanisms 
In: Rockslides and Avalanches, 1 (Voight, B. ed.) pp. 
693-705. Elsevier. 

9. Howard, K. (1973) Avalanche mode of motion: Implications 
from lunar exarnples. Science , 180, pp. 1052-1055. 

10. Lucchitta, B.K. (1978) A 1arqe 1ands1ide on M~rs. GeaI. 
Soc. &ùer. Bull. , 89, pp. 1601-1609. 

Il. Davies, T.R.H. (1982) Spreading of rock avalanche debris 
by mechanical fluidization. Rock Mech. , 15, pp. 9-24. 

12. Bagnold, R.A. (1954) Experimenls on a gravity-free 
dispersion of large solid spheres in a Newtonian f1uid 
under shear. Proc. Roy. Soc. London , 225A, pp. 49-63. 

13. Bagnold, R.A. (1966) The shearing and dilatation of 
dry sand. Proc. Roy. Soc. London, 295A, pp. 219-232. 

14. Savage, S.B. and Sayed, M. (1984) Stresses developed 
by dry cohesion1ess granu1ar materia1s sheared in an 
annular shear celle J. F1uid Mech. , 142, pp. 391-430. 

15. Lun, C.K.K. ,Savage, S.B. ,Jeffrey, D.J. and 
Chepurniy, N. (1984) Kinetic theories for granular 
f1ow: ine1astic partic1es in Couette flow and 
slight1y inelastic partic1es in a genera1 flowfield. 
J. F1uid Mech. , 140. pp. 223-256. 

184 



( 

( 

( 

16. McSaveney, M.J. (1978) Sherman glacier rock avalanche. 
In: Rockslides nnd Avalanches,l (Voight, B. ed.), pp. 
197-258. Elsevier. 

17. Erismann, T.H. (1979) Mechanisms of large landslides. 
Rock Mech. , 12, pp. 15-46. 

18. Melosh, H.J. (1979) Acoustic f1uidization: A new 
geo1ogic process? J. Geophys. Res. , 84, pp. 7513 -
7520. 

19. Melosh, H.J. (1982) A schematic model of crater 
modification by gravity. J. Geophys. Res. , 87, pp. 
371-380. 

20. Savage, S.B. (1983) Granular flows down rough inclines. 
In: Mechanics of Granular Material (Jenkins, J.T. and 
Satake, M. eds.), pp. 261-282. Elsevier. 

21. Stre1koff, T. (1970) Numerical solution of Saint -
Venant equations. ASCE , 96, HY1, pp. 223-252. 

22. Koutitas, C.G. (1983) Elements of Computational 
Hydraulics. Pentch Press. 

23. Richtmyer, R.D. (1957) Difference Methods for Initial 
Value Prob1ems. Interscience N.Y. 

24. Hadley, J.B. (1978) Madison canyon rocks1ide, Montana 
U.S.A. In: Rockslides and Avalanches, l(Voight, B., 
ed.), pp. 167-180. Elsevier. 

25. Cruden, D.M. and Krahn, J. (1978) Frank rockslide, 
Alberta, Canada. In: Rockslides and Avalanches, 1 
(Voight, B. ed.), pp. 97-112. Elsevier. 

26. Cruden, D.M. (1976) Major rock slides of the Rockies. 
Cano Geotech. J. , 13, pp. 8-20. 

27. Kamis, A.S. and Savage, S.B. (1985) Spreading of rock 
avalanches. Proc. of Canadian Congress of Applied 
Mechanics , University of Western Ontario, Abstract 
(accepted). 

28. Hungr, O. and Morgenstern, N.R. (1984) Experiments on 
the f10w behaviour of granu1ar ~ataria1s at high 
velocity in an open channel. Ge technigue , 34, No. 3, 
pp. 405-413. 

29. Jeyapa1an, J.K., Duncan, J.M. and Seed, H.B. (1983) 
Analysis of flow failures of mine tai1ings dams. 
ASCE, J. Geotch. En~ , 109, No. 2, pp. 150-171. 

30. Jeyapa1an, J.K., Duncan, J.M. and Seed, H.B. (1983) 
Investigation of f10w failures of tailings dams. 
ASCE, J. Geotch. Eng. , 109, No. 2, pp. 172-189. 

185 



31. Lang, T.E. and Dent, J.O. (1982) Review of surface 
friction, surface resistance and f10w of snow. 
Reviews of Geophys. and Space Phys. , 20, No. 1, pp. 
21-37. 

32. Me1osh, H.J. (1977) Crater modification by qravity: A 
mechanica1 ana1ysis of slumping. In: Impact and 
Explosion Cratering, Pergamon Press., pp. 1245-1260. 

33. Me1osh, H.J. (1983) Acoustic f1uidization. Amer. 
Scientist , 71, pp. 158-165. 

34. Me1osh, H.J. and Gaffney, E.S. (1983) Acoustic 
f1uidization and sca1e dependence of impact crater 
morpho1ogy. J. Geophy. Res. , 88, pp. A830-A834. 

35. Takahashi, T. (1981) Debris f1ow. Ann. Rev. F1uid mech., 
13, pp. 57-77. 

36. Tsubaki, T. ,Hashimoto, H. and Suetsugi, T. (1983) 
Interpartic1e stresses and characteristics of debris 
f1ow. J. Hydroscience and Hydrau1ic Enq. , l, No. 2, 
pp. 67-82. 

37. Va11ejo, L.E. (1979) An exp1anation of mudf1ows. 
Geotechnigue , 29, No. 3, pp. 351-358. 

38. Voight, B. (ed.) (1978) Rocks1ides and Avalanches. 
Vol. 1, Elsevier. 

39. Voight, B. (ed.) (1978) Rocks1ides and Avalanches. 
Vol. 2, Elsevier. 

40. Bauer, S.W. and Schmidt, K.D. (1984) Irrequ1ar-qrid 
finite-difference simulation of 1ake Geneva surge. 
AS CE , 109, HY10, pp. 1285-1297. 

41. Gour1ay, A.R. and Morris, J.L1. (1968) Finite 
difference methods for non1inear hyperbo1ic systems. 
Math. Comp. , 22, pp. 28-39. 

42. Gour1ay, A.R. and Morris, J.L1. (1968) Finite 
difference methods for non1inear hyperbo1ic systems 
II. Math. Comp. , 22, pp. 549-556. 

43. Harlow, F.H. ~nd We1ch, J.E. (1965) Numerica1 
ca1cu1ation ct time-dependent viscous incompressible 
f10w of f1uid with free surface. Phys. of F1uids , 8, 
No. 12, pp. 2182-2189. 

44. Hirt, C.W. (1968) Heuristic stabi1ity theory for 
finite-difference equations. J. Comp. Phys. , 2, No. 
4, pp. 339-355. 

lH6 



" , 

( 

( 

( 

45. Lapidus, L. and Pinder, G.F. (1982) Numerical 
Solution of Partial DifferentiaI Equations in Science 
and Engineering. Wilej-interscience. 

46. Liggett, J.A. and Woolhiser, D.A. (1967) Difference 
solutions of shallow-water equation. ASCE , 93, EM2, 
pp. 39-71. -

47. Dressler, R.F. (1952) Hydraulic resistance effect 
upon the dam-break functions. J. Research, National 
Bureau of standerds , 49, No. 3, pp. 217-225. 

48. Dressler, R.F. (1954) Comparison of theories and 
experiments for hydraulic dam-break wave. International 
Association of Scientific Hydrology , 38, pp. 319-328. 

49. Sakkas, J.G. and Strekloff, T. (1974) Dam-bréak flood 
in a prismatic dry channel. ASCE , 99, HY12, pp. 2195 
-2216. --

50. Whitham, G.B. (1955) The effects of hydraulic 
resistance on the dam-break problem. Proc. Roy. Soc. 
London, 227, pp. 399-407. 

187 



GENERAL CONCLUSIONS 

The main conclusions of the two studies described in this 

thesis are given below. 

Part I: Subaqueous Flow of a Cloud of COârse Particles Down 

an Inclined Bed. 

Based upon the two series of laboratory experiments ùnd 

the theoretical analysis, it may be concluded that: 

1. The flow behaviour of a density current involving 

sedimenting particles can be very different from that of 

one involving miscible fluids. The previous experiments 

and the analysis of Beqhin, et al. involving the release 

of salt water into fresh water on a sloping bed showed 

that the ensuing (negatively buoyant) cloud continued to 

grow without bound as it rnoved down the bed. In the 

present experiments the c]OUG of particles initially qrew 

but then collapsed at sorne downstream position. 

2. The aspect ratio (the height to length) of the cloud was 

found to be approximately constant for each bed 

inclination and did not vary greatly for different 

inclinations. This is similar to results found 

previously for miscible fluids. 

3. The entrainment coefficient for turbulent density 

currents has commonly been expressed as a function of the 

Richardson nurnber. This is inadequate for flows 

involving sedirnenting particIes, and on the basis of 

dimensional analysis it is proposed that the entrainment 

coefficient be expressed as a function of both the 

Richardson number and the ratio of the particle net fall 

velocity to the cloud center-of-rnass velocity. The 

proposed functional form agrees weIl with the present set 
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of experiments and roughly predicts the previous results 

for miscible fluids as the particle fall velocity tends 

to zero. 

4. The effects of the cloud form drag and the bed friction 

arising from particle interactions were found to be 

very significant in the present work. Both have been 

regarded as negligible in the previous investigations. 

5. The present analysis based upon the three overall 

conservation equations; the sediment balance equation, 

the ambient fluid entrainment equation and the linear 

momentum equation along the bed, was found to give 

reasonably good predictions of the observed flow 

behaviour for cloud size and shape, mean velocity and 

me an particle concentration and cloud collapse location. 

6. The above effects which have previously been neglected, 

but which were found to be important in the present 

investigation, should be included in further 

investigations of gravit y currents involving sedimenting 

particles. 

Part II: Spreading of Rock Avalanches 

The second part of the thesis considered a related 

problem of flow of particles down an inclined bed, but in 

this instance the interstitial fluid effects were taken to 

be negligible. The development of numerical computer codes 

to simulate rockfalls was undertaken in an attempt to 

investigate the surprisingly long runout distances that have 

been observed in sorne field events involving very large 

volumes. The codes were based upon the use of continuum 

depth-averaged equations of motion and a simple quasi-static 

form of the constitutive equation for the granular rock 

material. The conclusions derived from the numerical 



studies of the rockfall problem are as follows: 

1. From the results of computer simulations which involved 

two-dimensional spreading of granular material down an 

inclined rough plane, it was found that lateral spreading 

of the material was small compared to longitudinal 

spreading in the streamwise direction. 

2. As a result of these studies, a two-dimensional flow 

model which considered only one-dimensional spreading was 

regarded as sufficiently accurate for the present 

investigation. This one-dimensional spreading model 

showed that extreme spreading of the granular material 

could occur without introducinq any unusual fluidizing 

mechanisms such as have been deemed necessary in the 

pasto 

3. There were only three rockfall events, the Frank, Madison 

Canyon and Medicine Lake slides, for which sufficient 

data existed to perform detailed numerical simulations 

using the present modela The predictions for the overall 

flow feature~ for these events were in good agreement 

with the field observations and the behaviour inferred 

from these observations. 

4. It was concluded that the motion of the center of mass of 

the rockfall resembled the motion of a point mass moving 

down the same incline. 

5. The long runout distance of the leading edge of the 

debris can be due to the spreading of the pile under 

gravit y during its travel down the slope. 
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