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FICA ’ ' ) b \\
'variou:dﬁspects of the Traveling Salesman Perlem (TSP) are studie%.

For the Euc dean TSP an enumerative algorithm is presented that yields

the optima fsolution to problems which have a small number of cities.*

This algppﬁthm is utilized to obtain‘emp%rical estimates of the expected

number of/feasiﬁle solutions. Approximafe solutions to the EuElidea; TSP

are ca%fhlated based on triangﬁlations of points in the plane. : When the

problem is not necessarily Euclidean, but still symmetric, two heurist;c .
algqgithms'are described that use graph-theoretic techniques to reach F N
sub%éptimal solutions for largé problems. One of the two algorithms is
moﬁifiéd to work for the asymmetric case. Two topics related to the TSP ¢ \
af@ also examined in some detail: triangulations.and convex hulls.

,ﬁaximal triangulations are studied in .connection with optimal drawings
"@and Hamiltonian graphs. An efficient convex hull algorithm is presented

whose asymptogic expected run-time is linearly proportioyal to the size

s

of the ipput for uniform distributions on the square.
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Divers aspects du probleme du commis voyageur (PCV) sont étudiés.

“Pour le PCV Euclidien (PCVE), une ﬁihode d'enumeration est presentée

- qui ob@&ent la solution exacte aux problémes ou lé nombre de villes es
1y

+

petit. Cette méme technique est expl\iteeqpour calculer des estim s"
empiriques de 1'espérance mathématique \du nombre de solutions possibles,.
Des -solutions approximatives au PCVE sbnt obtenues ¥ partir de
triangulations de points dans le plan. "ﬁﬁns le cas de problames -
symétriques, mais pas nécessairement Euclidiens deux algorithmes
heuristiques sont décrits qui utilisent des p{incipes de la théorie des
graphes pour arriver a des solutions sous— optfhales aux problames de
grande dimension. L'un des deux algorithmes estimodifié et appliqué aug
problémes non—symétriqUQS, Enfin deux sujets reli%s au PCV sont
examinés en plus de*détail: les triangulations et I\enveloppe convexe
(EC). La relation entre les triangulations max1males\¢t les dessins
optimaux d une part, et les graphes Hamiltoniens de 1' adtre est

étudide. Un algorithme efficace est présenté pour 1'EC ﬁour lequel

I\l'espéranQ§ mathématique du temps d'exécution varie linéairement avec

le nombre de points donné pBur des distributions uniformes daﬁ§ le

s . ) \
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_ "It appears likely that nome of these
ap,

equivaler;t problems can be solved in
polynomial time. The evidence for
this belief stems from our inability
to find polynomial-time algorithms
for these problems despite the(inten-

stve efforts of many workers,
from the theoretical result tifat a
poZynomiaZA time algorithm one of
these problems would imply that ...

polynomial-time algorithms ext for
an uneapectediy wide class of combin-

atorial search problems."

R. Karp, Algorithms and Complexity,
J.F. Traub, Ed., Academic Press,
New York, 1976.

* s

"But just as it would have been
wnfair to argue in the seventeenth
century tha; to.place a manmade
objeet into Earth orbit is impossible
on the grounds that no one at that
time had the slightest idea about how
to accomplish it; so i1t would be -
wrong today to make impossibility
arguments about what éomputers can do
entirely on the grownds of our

present ignorance.'

J. Weizenbaum, Computer Power and
Human Reason, Freeman, San Francisco,
1976."
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( Chapter One

Introduction

The Traveiiné Salesman Problem (TSP) has beén studied extensively by
. a wide variety of researchers. For over forty years engineers, combin-
atorists, grapﬂ theoretists, operations researchers, management scientists
and many others have been interested in finding efficient techniques for
solving . it. This is due to the importance of the practical applications
in which it arises, as well as its theoretical appeal. Today, more
than two hundred (English) publications on the TSP may be found in tﬁe,

literature. - ) .
]

"An allegorical way of stating the TSP, which gave it its name, goes

-

as follows:

'

"A number of cities are given along with the cost of

1 B e i

traveling between each pair. Starting at one city a

traveling salesman wishes to visit ch of the
remaining cities and return to his|point of
departure, What-*itinerary should

]
( to minimize the cost of his trip?"

one."

In practice, the difficulty with this approach (for applied mathematicians

that is) is its unfeasability for solving problems that involve a large '
number of cities. To see this, note that for an n-city prohlem, if one
starts at any city and wishes to visit each/of the remaining cities just .
is (n~1)! Wifh n as sﬁall as - ”ﬁ#
21,645,100,408,832,000; a ' i

\
ing each tour in one micro-

once, then the number of ways of doing this
20, the number of different round trips is
very fast digital computer capable of exami

A \
second would require more than 38 centuries to exhaust all possibilities

and hence chobse the cheapest tour! \\ a
Methods - other than of an enumerative nature - were sought and, i

1
( : for small values of n (n < 40), some algorithms have been quite success-



> ful'ln providing the optimal solution to the &roblem. For large values
( of n, however, space along with time puts sev liﬁitations on the size
of problems that C&nrbe attacked by these methods. -For problems
involving a latge numbe of citieg anoth;r appr& ch is adopted"elgorithms
based on a variety of heuristic technlques can be used to obtain approx- -
imate solutions that are satisfactory for pract1g§l“purposes. The
o importance of th1s approach has been put in perspe five by current
reséﬁrch in complexity theory Recént work in thlS‘@lela has shown that
the TSP is a member of a wide class of comblnatormal prqb ems for which

¢

' no efficgent algorithm that guarantees .an optimal solutio

is likel}y to

. be discovered. o

This thesis provides an.analysis of various aspects of the TSP.

o

N When the cities to be visited are in the plane, estimates of the ex

’ number of feasible solutions are obtained for %mall values of n. ‘A stat- «

1st1cal analysis 1s also carried out on approx1Pation algorithms that vield
) very good near- optlmal solutions to the TSP.' ¥inally, a set of other -

4
problems, related to the TSP, is studied; this 1ncludes the convex hull
. i

pro lem, _the trlangulatlon problem and a generallzatl of Sylvester's

LY
(' problem. The main contributions of this thesis dre Jfi3ted below.

« -
s

1) TFive algorithms - TSPl to TSP5 - for the TSP that es;entially use
graph~theoretic techniques are descrlbed along with an appraisal of )
e , these algorithms as carried out by then51ve Monte Carlo experiments.
The first two algorithms are for the planar TSP: when the number of
¥ c1t1es is small, algorithm TSP1 emplrlcally estimates the expected e
o ' value of Che number of feasible tours in a random map; algorithm- TSP2
uses a new tool - trlangulatlons of pq;nts in the plane - to obtaln
- approximate solutions to larger problems. The next two algorlthms are
© s ) \ for the general (1 e. not necessarlly planar) symmetrlc TSP ¢
Algorithm ¥SP3 is basically a reward-punishment method that yields
near-optlmal solutions‘ a bound on the quallty of the solutlon is
; proy1ded, as welllas_an emplrlcal estimate oé th expected run~time qf
‘ the algorithm. Algorithm TSP4 is an extremely ejf1c1ent approx1mat10n

aIgorlthm that combines the:powers (whlle trying to avoid the short—

( s comlngs) of some of the presently best known heuristics that have been
e used to approach the TSP. The major advantagés of TSP4 are its '
- ’ « = : ) - )
1 . .
I “ N . >
N
& - W 0 ,{'/
. < L . - - 1 .
P o - v oy N
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simplicity and speed as well as the quality of the approximate solution
. At provides. It is also superior to the other approximation méthods in
that it can be easily éxtended to attack the asymmetric TSP. Algorithm

v : TSP5 is an extension of TSP4 to the asymmetric case.

L) A study of maxlpal triangulations in connection with optimal

5

ings and Hamilton' cycles is carried out. We give a method of placing

n p01nts in the plane and joining them by straight- llng segments tha

-
yleids a trlangulatlon with the maximuim, possible number of edges.
” Triangulations of this type are sh?wn to be Hamiltonian and an express
ion for the number of Hamilton cycies they .contain is derived. .We
prove a theorem relating these t%iangulétions and crossing-number-
.optimal rggtiiinear Arawings of complete graphs. A new lower bound is
also presented for the maximum number of crossing-free Hamilton‘cycles
in a rectilinear drawing of a complete graph. ’
3) An algorithm - CH - is presented for solvihg the convex hull
£ -problem in two,dimensioné. We use éeometrical probability theory to
{' analyze the algorithm: It is shown that fof a uniform distribution of
) the n data pbints on the unit sqgaré the asymptotic expecteg run-time
of CH is 0(n) . This is in contfast to all existing algoritbms whose
expected run—tlme is at least O(n log n) . Experiments with‘the
algorithm conflrm its iptuitive apd theore;ical merits. A second '
algorithm for the planar problem - CH2 - is also described. Ideas for )
' - extefding CH2 to Higher dimensions are suggested. ;
e ' . P . Lt -
N
T In the present chaptér we 1ntroduce Lhe termlnologg adoptgd

u‘

- ' throughout the thgsis and review the varidus approaches that have been - ’

i . . used tp address the(? '
%i

,1.1 Terﬁinologz
. R o

1.1.1 Definitions

A graph ¢ is a pair (V, E), where
o . 4

- . 0

( ; RS ‘ hY . | &

\ ‘J
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.

(v iﬁna finite non—emgty seF {vl, vz,...:\vfj of points, and .
(2) E is family of pairs of points of V called 17 :
A line (v j) is saild to connect A and vJ ; 'if 2 =‘yjffﬁe line 1is
called a Zoop ;
A graph is said to be simple if
(1) it contains no loops; and
(2) no more than one line connects two points.
The complete graph K has every pair of its n. points connected by a/line
A graph may be either a directed or an undirected graph. In an
undirected graph each line can be represented by the unordered pair

(vi, vj) and.vertex v, is said to beé adjacent to vy - Line (Vi’ Vj) is

i
said to be inmeident to its ends vy and Vj . In'a directed graph each

line has a definite orientation assigned to it and is represented by the

-

ordered pair (Vi’ vj) . .
A subgraph G' & G is defined by a subset of the lines of G where G' has

~—

the same points as G.
A graph in which a number,wij is associated with every line (vi, vj)
in the graph is called a weighted graph and the number i is called the
weight of line (Vi’ vj). ‘ : L.

In an undirected (directed) graph G, an elementary chain (elementary

path) from point v, to vj is a subset of E conéisting of a sequence of

undirected (directed) llnes’(vi, vk) . (Vk’ vm),...,(vs, vj) , represented

b Vv, V, V ...V V, where points v,, v v ...,v and v, are dis-
y ( i m s 3) ? P i’ 'k’ mw’ ’'s j

k
tinct with the possible exceptions Of-vi and vj . If v, = vy then the

elementary chain (elementary path) is calldd a eycle (circuit).
A graph is said to be comnected if it comtains an elementary chain
(elementary path) for each pair {vi, vj} of distinct points.

A Hamilton cycle (HC) is a cycle in wh%?h every point of the graph
appears onceland only once. The same definition holds for a Hamilton
chain, path and circuit. A graph possessing a Hamilton cycle (circuit;

is termed Hamiltonian. - When the lines are weighted, the shortest

Hamilton cycle (SHC) is that HC with the minimum sum of line-weights.. A.

shortest Hamilton circuit. is defined similarly.

The number of lines of suﬁgraph G'& G incident at point vk is

called the degree of point v, in G' and is represented by d(vk, G') .

In a dirsctgd subgraph G';E(;q the number of lines from Vk to the other




@

»

points in G' is called the outdegree of point v, , d°(v,, G') ; and the

k)
number of lines from every point to Vi is called the indegree of point -
i
vy d (vk s

Fuler circuit of a directed graph) is a cycle (circuit) such that every

G') . An Euler cycle (EC) of an undirected graph (or an

line appears on it exactly once. An undirected (directed) graph which

has an Euler cycle (circuit) is termed Eulerian. An undirected

connected graph possesses an Euler cycle if and onli if all its points o
are of even degree. A directed graph G whose underlying unidirected

graph is connected possesses an Euler circuit if and only if for all of

. . o i,
its points v, d (vk, G) =d (vk, G)

A tree is a connected graph which contains no cycles. Given an
undirected connected graph G , a subgraph G'& G which is a tree (connect~
ing together all nodes) is called a spanning tree (ST). A directed tree
isﬁpither rooted to a point or from.; point. A tree rooted from point Ui
is a tree in which the indegree Of \ is zero and the indegree of each of -
the other points-is at most ome. A tree rooted to pofnt v, is a tree in

which the outdegree of v, is zero and the outdegree of the other points

i

" is at most one. A directed spanning tree (DST) is as its name suggests.

When the lines are weighted, a minimal spanning tree (MST) is that ST with
the minimum sum of line-weights. The minimal directed spanning tree
(MDST) 1is defined similarly.

A matehing (M) of G(V, E) is a subset of E such  that no two lines

.meet at the same point. A perfect matching (PM) of G(V, E) is a matching

which covers all points of V . When the lines are weighted an optimal
s
perfect matching (OPM) is that PM with the minimum sum of line-weights.

1
4

1.1.2 Synonyms and Abbreviations P 3

The abbreviations introduced in section 1.1.1 are used throughout
the thesis, Note that HC and‘EC also stand/for'HaméiFon ci&cuitland
Euler circuit respectively when there is no place for ambiguity. We also
point out that for our purposes, line, edge, link, branch, arc and segment
are all ‘equivalent. This also applies to point, vertex and node.

When we talk about the tour of a traveling salesman, we mean an HC

1
-

- 7
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(or circuit) in a graph.each ;ode of which represents a city. The words
optimal, shortest and cheapest are used interchangeably. Some abbrev-
iations - 1ike SHCy; MST or OPM for exampf? - not only denote the cofres—
ponding graphs but also their costs when the lines are weighted. B&

"the cost of traveling from a to b' we mean 'the weight of line (a, b)'

as well as 'the distance between Bﬁénd b'. ?

}

P
*

1.1.3 Computer Programsg

All computer programs mentioned in this t;esis are writggn in FORTRAN
for the IBM 370/158 and all running times reported are for this machine
(unless otherwise speqified). McGill's time-sharing system MUSIC was
used to run all programs. The maximum run-time allowable for a job under
that system is 60 CfU seconds. ' . ’ p

In analyzing algorithms and programs, we use the nogaéion 0(f(n)) to
denote a quantity not greater than c*f(n) where ¢ is a positive constant.

All logarithms mentioned in this thesis are base' 2.

1.2 Previous Work . . N ¢

F

Algorithms for the TSP are usually classified into two categories;
exact algorithms, i.e. those guaranteeing an optimal solution and
approximation algorithmg that yield a near-optimal solution in a relativ-

ely short amount of time. R

Among the various approaches‘usedvtodevise exact algorithms we
mention dyndmic programming [Beal, Gon, Hel], the branch-and-bound
technique [Ag, As,‘ga,FGar, Lal, Lit, Pan, Si, Ste], linear programming
[Danl, Dan2, Mil, Mo, Mu, Rao], combinatorial programming [Ri, Ross], a
generating function method [Ko], ané the algorithm of [Gim] for a special
form of the TSP.

Approximation élgorithms have beep obtained by applying the

principles of local-neighborhood search\{Ad, Ba, Boc, Chr3, Cr, Dac,
Linl, Lin2, Lin3, Lin4, Rei, Stel, Ste2,\Weil], the minimal spanning tree
[chr2, Chré, Dii, Di2, Deo, Gibl, Han, He?d, He3, Kar3, Kru, 0, Pri,
Rosl, Ros2], nearest-neighbors [Beél, Gav]:stour—building [Jo, Ka, Net,
Ray, Rosl; Ros2, Web], enumeration [Robl, Roh2, Qg,QRot], statistics

{Gol, and man-machine interaction [Kro, pic]

- . A
//

Cmp 7




" much attention [Bof,'Hav, Pi, Sak] .and several bounds onﬁthg optimai tour

N

‘have been derived [Be, Chr4, Ei, Fe, Ham, Hel;-Ma,\Sm, v].

. Ei, F1, Hen, I, La2, Lel, Le2, Liu, Roy, Sas, Sav3, Wa, Wel]. Finally,
" the complexity of the TSP ané its relation to ether combinatorial problems

/ -7-

e o

The shortest-path probiem, in connection with the TSP, has received

Surveys of the different methods of solution and applications of the
TSP are given in [Acl, Ac2, Bea2, Beol, Beo2, Bre, Chrl, ChfS, Cof, Con,

is studied in [Gael, Gae2, Karl, Kar2, Kar}, Lew, Papa, Reg, Sah, Sav2,
Sav3, Wed]. ) ' ’ ‘

In the following, we briefly describe some algoritgms examplifying ~
the Various teghn%ques used to "attack the TSP. OQur description is based
on the excellent survey works in [Beol] and [Ei]., We denote by .
N = {1, 2, ... , n} the set of cities to be visited by the salesman and |

by cxy the cost .of going from x to y '.

4

! )

1.2.1 Exact Algorithms
1.2.1.1 Integer Linear Programming [Danl]

Let S and S be a partition of N, such that | ' o
" SMS=¢ ad sUS =V . , '72:
Thé optimal tour can ?g 9b£ained by pin;mizipg - .
L - n j-1 T
jE2 i1 G4y *yy . . v
subject to . X =01 v G =2qon; =1, 35D

* [

and the loop constraints

S) where e / : .

@

for all non-empty partiiiqps'(s,
. ! s

x,. = 1 1if the salesman proceeds from city 1 to clity j ;
- a :

ij

.

= (0 otherwise. o - o7

» ~
The exponential number of constraints and the fact that intege
linear programming algorithms ate not always guaranteed to converge
rapidly, make this approach the least attractive of the exact methods.

Only one large problem (n = 42) is knéwn for having been solved usirg
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_optimization problems [Lal]l. " As mentioned earlier, several algbrithms

this method [Beoll].

1.2.1.2 Dynamic Prqgrammiﬁg [BJal]b '

% Let N

|

N/{ll"I}‘ ‘ '

(233!'--,[')]: .

We denote by c(5, x) , where SN’ and xeS , the cost of the shortest

chain with endpoints 1 and x that includes all the elements of 'S .

quantity is determined from ;
_ min
¢, = = yeS/{x} [C(s/tx) , y) + ”ny]

<

°

The “above equation can be'applled recursively for’/all subsets S of N' ,

/ , .

c({x}y, x) = iy for all x o

and for all c¢ities x , beginning with

and terminating with the cost of the opt%mal tour given by

/

/
/ —
/

' , . .
[c(N ’ x) ‘ + C/Xl] .

min
xeN’

0

This approach is primarily-handicapped by the exponentidl.amount of
storage required when solving the recursive equatlons on a computer.

Computationdl results are only avallableﬂfor n < 13 {Beol, E1]

’ N ’

1.2.1.3 The Branch-and~B und Method [qu] , j

o

Branch-and~Bound is/an efficient technique for solVing constrained

based on a branch—and—bound approaoh have heen proposed for solving the
TSP. One of these/algorithms [Lit] dis now described. - ’

Let T be thé set of all feasible tpurs to an n—city traveling salesman
problem with a cost matrix [c. } , in which all diagonal elements are ‘
set to infin{ty. It is possible to reduce the matrix [c ] as follows:
subtract from every entry of each row the smallest element of that row

and thgn subtract froqyevery entry of each column (of the resulting

& .
matr;k) the smallest elementr of that column. Let the final matrix be

[c'{] . The optimal tour under [c ] is the same as the optimal tour

/nader [c:ij

] . Every row and column of [c! ij] now contdins at %east one



i
R ) | :
< zero element. If we could find a tour among the zefbs, it wqu1d<ﬁg

\

optimal and in qgtm of the original matrix the cost would be equal to P

~ the amount of the\reduction. Let r be the reduction. Every tour in T
‘will cost at least\T L We say that T, 1s a lower bound on the tours
contained ;F T . Thj set T is now partitioned into two mutually exclusive
subsets and~}oher bounds for each are computed. The subset with the

P smaller lower bound is then partitioned and two more lower bounds are

computed. At each stage the subset with the smallest lower bound ’

obtained so far is selected and partitioned again. A subset that con-

» x -
tains'a single tour whose cost equals the lower bound is eventually

\ .
obtaineg: this is the &ptimal tour. . V' /
: \ |
We now describe the partitioning process. TFor each zero element
c'ij of the reduced matrix, a minimum penalty that would have to be \

incurred i\\link (1,3) 1s not selected is computed from,

\Pyy =min c + min ¢
1 k#j 1k L#i

Neéxt, that link whose penaltx is the largest is chosen. Let this link

PRI

be (s, q) . The total number of tours is hence divided into two sub-

sets: ttﬁose thaé include 1link (s, q) and those that do not. The lower
bound of all tours not including (s, q) is thus T + Peq * To compute -
the lower bound of all tours including (s, q) , row s and column q are
crossed out and c'qsﬁis set to Infindity. Ifxthe deflated matrix can be
reduced the reduction is denoted by L else r = 0 . Now, .the lower
bound sought is ro + rl .
This method is believed to be the most powerful of the exact *~
algorithms although the time and storage requirements increase expon-
entially with the size of the problems. Computational experience is

< 40 [Ei] .

El
-reported for n £ P

1.2.2 Approximation Algofithms ) - . 3 ‘
1.2.2.1 Sub-optimal Tour Building

Dynamic programming and the branch-and-bound method just described

are known as exact tour-building algorithms.  There exist also approx- C
imation tour-building algorithms. Basically, one starts with an ' n
.  arbitrary city, say 1 , buildéra sequence (i, j, k,...) by successively

\‘including other cities into the sequence and stops when a tour is



~

obtalhed. The simplest algoritbg ghooses the nearest unvisited neighbor
city as the next city to be inclu ed in the sequence. When no more cities
are left the last:Wisited city is connected to the starting city thus
yieldipg a tour [Beol, Ros], Ros2]. Since the tour reached at termination
depends on the startipg.city, it is possible to produce many/final tours ’
by using different starting cities and then select the best, of these final

tours [\av] (Note that this is a property which the majofity of approximation

algorit share). It is obvious that the run time of this algorithm is
O(mn ) where m is the number of different final=tours obtained.

Another method [Ka, Rhy, Rosl, Ros2] inserts cities sequentdally
into @ patrtial tour such that the cost of the resulting partial tour is
the least possible. Essentially, one Eries to minimize 'ﬁik + ckj - cij
when city k is to be Inserted between cities 1 and j in the partial tour.
Tpe process\continues until no horEKEitdes are to be inserted. Methods
vary according to the criteria used for choosing the next city to be )
added. The run time of thé algorithms of [Ka, Rosl, Ros2] is of O(QZP .

while that of \[Ray] is ofJO(nB) .

1.2.2.2 Minimun Spanning Tree-based Methods
. e o
The basic 1dea behind all these-algorithms is the following: first,.

the MST is obtained, then a sequence of transformations is apblied to it
finally yielding an\approximate solution to the TSP.

' One method reduges the MST into a chain, by means of additions and
deletiods of lines [Chr2, 0]. In [Han, He2, He3] the relatiomnship
between the TSP and the\MST is explored to derive a very sharp lower

bound on the cost of an gptimum tour. This method may be used in a
branch-and-bound algorith for the exact solution of a TSP.
A sequential tour-buildding algorithm described in [Rosl, Ros2]

chooses nodes for igclusion ‘in the partial tour in the same order in

\which they would have entered the MST. The algorithm has a run-time Df

O(n ) and the cost of the near\optimal solution it obtains is guaranteed
to be smaller than twice the cost of the optimal solution. .
In [Chr6] a solution is obta \sed by adding to the branches of the

MST those of an OPM of the odd- degree nodes: ,the resulting gra?h is

used to yleld a Hamilton cycle whose ,cost is no more than %'times the

a
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, cost of the optimal tour. The algorithm runs in O(n3) time. -~

1.2.2.3 Local Neighbdrhobd Search

: £
7 Local neighborhood search algorithms—

[

P

-

(1) start with an initial tour chosen either randomly or
arbitrarily, dnd ] ‘ |
(2) attempt to improve upon it by ;earching its neiéhborg
hood follow1ng some speciflc policy that yields a
2 _better tour. . G-
As soon as an improvement is found it is immediately adopted and the
above procedure is now applied to the new tour thus obtained. If no
&
further improwement is possible the tour on hand is called a local
optiﬁﬁm. The entire procedure can now be, repeated as many times as /
required each time qsing a different initial tour. The cost of the“/

various local optima is then chosen as the final approximate solution

to the TSP.

This idea was first exp101ted in [Ba] startlng with ‘an afbitrary
tour a series of ever shorter tours is obtained where the (m-1)st tour
has each of the n groups of m, consecutive edges constituting it form a
path of minimum length. This tour is said to be "mini per set of n"
When m=n-1, the "mini per set of n'" tour is obtained and represents an
apbroximqte solution to the TSP. : y

' A similar method is described in [Cr]: starting with an arbitrary
tour, apply simple transformations (called inversionsé/iteratively to
obtain a crossing-free tour. An inversion is the repigvement of two
edges in a tour by two ogher edges to form a new tour.
furrher developments 8§ the original .ideas of [Ba] and [Cr]lwere
provided in [Chr3, Linl, Lin2, Lin3, Lin4, Rei,-Stel, Ste2],yielding an
optimization criterion considered today as one of the best approximation
algorithms for the TSP. The technique, known as "k~optimality", was first -
formally described in [Linl]. A tour is sald to be "k-optimal” if it is

"(k~1) —,optimal" and if, in additlon, no better téur cam be obtained by

replacing any k edges of the tour with k other edges. Experiments [Ei,-

Lin3] have demonstrated that 3—opﬁ}ma1'tours have a high probability of
being optimal. In general, the cost of a 3-optimal tour exceeds that of
the dptlmal tour by a very small amount. Problems of up to 110

cities have been at%empted us;ng this method [Lin3l]. R
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On_the Expected Numbe® of Feasible Solutions to

: “ the Euclidgkn TSP - -

L} I i Ve
In the statement of a classical TSP the only A%té provided are the

costs of traveling between cities. For an n-city problem these are
s 1) >

4
usually represented by an n x n magyixlc - the cost matrix. Thus,

~

' cij = cost of traveling from i to j , for 1 # j
’ = @ y for 1 = §

- N
& -
EAY

When the-entries of C are Euclidean distafces in two dimensions,
the TSP is termed Euclidean (ETSP) and has special exploitable prop-

erties. Some of these are obvious and they are stated below without

prbof. )
For an ETSP, : )
(1) the cost matrix is symmetric, .

. i.e. cij = Cji « for all i and j ; o “

and the triangular inequality holds, , ‘v !

i.e. Cij»; Sy ” Sy fo§ all i'# j # k ; ~

(i1) every city is visited once and only once 4n the optimai tour;
and v

(iii) the optimal tour does not intersect itgelf [Beol], under the

assumption that no three cities are on a straight line.

[ . ! .
From (i) and (i1i) it follows that the pumber of different tours
. (n-1)1 , Lz

tis =5 for an n-city problem each being a Hamilton cycle.

; From (iii) it follows t?at only crossing-free Hamilton cycles (CFHC)

' need be considered [Beol]l‘ It should b% clear that property (ii) is an

“immediate result of the triangular inequality and is not necessarily tgqe ’

]
|

|

| in a general TSP. This property has so much influenced the literature
il o

f

that véry often it is stated as a condition of the prohlem, even for
TSP's where the triangular inequdlity does not hold [Lin3]. .

In this chapter we present an algorithm for empirically calculating E CHFC) -

7
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the expected number of feasible Tolutions in a random TSP, For small

values of ny a refinement of the/algorithm will serve in finding the
. \

solution of an ETSP. This approach will be useful in the appraisal of

various techniques examined in later chapters. Finally, a related

1

problem is investigated.

2.1 An alporithm for estimating E(CFHC) .

In,gn ETSP, cities lie in the cartesian plane and the cost of
travellng “from one to the other ig the length of the straight line seg-
ment joiffing them. Usually, we are given a map of the problem, each
city being defined by a pair of cartesian coordinates (x,'y). This map

is a rectilinear drawing of K , the complete undirected graph with n

nodes, defined by the cities (1ts nodes) and the segments joining them
(its edges). Our program for estimating E(CFHC) is essentlally cqmposed ;
In section 2.1.1 we describe procedure CROX for
Procedure PERMU for

< In sec,tio‘f; 201.3 the

of two subroutines.
< L 4

determining all crossings in a drawing of Kn"

generating CFHC's is presented in $ection 2.1.2.

two procedures are used to estimate the expected pumber of CFHC's in a

random drawing of Kn ., I

L)

2.1.1 Determining all the crossings in a drawing of Kn ‘ v

A'rectilinear drawing of Kn in the plane is'given. For every four

different vertices of Kn , say 1, j, k and 2 , it is required to deter=-
mine whether the straight-line segments [i, j] and [k, 2] intersect.

We assume that the vertices are given by their cartesian coordlnates,
‘that no two of them coincide (Fig. 2.1.a), and that no three of them
are collinear (Fig. 2.1.b). The four possible situations are 'shown in,

Figure 2.1.c . ) “
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(a) (b)
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- Figure 2.1 |

“

-

Two different imﬁlemengétioné oéipxécédure CROX are pow described.

[P 7

Method 1
"For every pair of independent segments, find the point of/i;ter~

section, if any, of the two straight lines determined yyf e segments

and check whether it lies on both segments." -~

4_/
- 1

This is done as follows. - =~ — . ——

e T

pute the parameters of the two straight lines,

First

T YTy 2 7 N Ty
= - ! ’ = -—
b1 xj‘ *i énd b2 X, - X
€1 T *yYy T Xy 2 TR T Rk
e ~
Then find dl = c,b - c1b2 and d, =Aalb2 - ab, . If d2 = 0 the seg-

ments do not intersect (they are parallel).

Else x = dl/d2 » 18 the x-coordinate of the point of intersectionm.




e

( Now, if x 1lies "between" %y and x, on the one hand and "between" Xy and

. X, on the other hand the two segments intersect; this can be deﬁtermine& oo

by at most six comparisons as shown in the partial flow-chart in %igure '
2.2 . : ‘ ’ -

' - - w

v v
| : o ! R ‘;‘;/,j\
‘ segments do W
: intersect v
) , - S
1 0
| / ;
/
// L v - ‘,1
L ‘ | segments do not’ - . f
\ intersect &= ,'? ) :
\  { P
d ° \
y ' "“.,q‘:; 1
PERL , ~ N
L &
. o - .v ‘
i
R ,
¥
. ; . j
- - ’ T
,/// S segments do not v g ]
. terse H
- \ in ct :
. 1 _ ‘:
\ A
segments | segments do not ' ®
- " intersect intersect
o "
- ¢ !
{
3 ’ N !
. The total numbe elementary operations regpired by this method is l :
( : then 24 as shown in,Table 2.1 . v

@
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. Operation Number
Subtracticn 8
.. Comparison ) 7
Multiplication 8
- Division 1
Table 2.1

&

<o '

Method 2[Av1]

&

line determined by the other segment"

*

This can be done as foliows.

P a
First compute !

a = Oy ':¥k) G

l')l = (YR' - Yk) (xi -
< (
‘a, = (yj - )éxl

-

J

_—Y
% %)

[V

“For every pair of independent segme%§§ check whether the twe
extreme points of each segment 1ie on different sides of the straight \\ d

xkj .and compare (al 2 bl) 3

Cxy
'y
by, = Gy - Lu@ﬁd‘k@wﬁ()%ﬁm@semmre (ap i Dad &

If the outcomes qf the first and second.comparisons ‘are different,

- compute 1 s

ay = (y - yi_?‘ (‘i,j

yy) Oy -

o
w
[}
~
-]
fmia
|

a, = (y, - yi) (xj_ - xi)

b4} = (yj - yi) (x,

- xi)

&

5 2 '
xi) and compare (a3

-

xi) . and compare {a

&

i1
If the outcomes of the third and fourth comparisons

two sgz:ents intersect.

flow-chart in Figure 2.3 .

4

/

U" 1

are°different, the

er of comparisons required is at most 4 as shown in the partial

3

L. :
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-
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Segments do not
intersect

segments segments do not
intersect intersect
-]
J .
. / .
\ | . M
\ ‘ ,
“ /
Figure 2.3 - »

C\q
RO o

The total num‘Ber of elementary operations required by this method 1is
then 24 as shown in Table 2.2 .

Operation Number - -
Subtraction _ 12
Q »
Comparison

" <! multiplication

. § /b’l‘able 2.2 »f‘ ”

Although the two implementationéﬁrequlre the same nunber of ’
elementary operations for every pair of segments, the second method is
recommended since it involves no- divisions. . »

el -

The output of procedure CROX is stored in a 4—dig;ens;s\nal integer

r

array I1CROX. . i
If segments [1, j] and Tk, .2] intersect.then eight entries of ICROX will

#

be set to 1y namely,

e A . L el e , N . N _ L -

[P D
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¢

ICROX (i, j, k, 2)

ICROX (k, %, 1, §)

ICROX (§, 1, k, R)

. ICROX (k, %, j, 1)
ICROX (1, j, £, k)

ICROX (%, k, i, i)

& IcROX (3, i, 2, k)

. _ICROX (&, k, j, 1)

Else the eight ent‘ries are set to 0 .

2

2.1.2 Determining all CFHC in a drawing of Kn |

\ .

Procedure PERMU upon being given the ICROX array will generate all

CFHC's as follows.

"A'tour is a permutation of the cities.

Starting with a city) generate

a crossing-free permutation by sequentiatiy‘ adding those edge% that

introduce new cities and do not intersect previous edges. Lf

i

he tour
is complete generate the next permutation. When all branching possibil-

#ies have been exhausted.  Stop" .

Two 1-dimensional .arrays ge used in the implementation of the above

idea:

RERM : montains the permutati}on being formed.

NEXT : contains available cities.

' 3

»

The basic algorithm, along with three special procedures, are outlined

below. All arrays and simple variables are common to all procedures.

Procedure PERMU
Step 1 «(Initialization)

-
»

N

For J = 1 toN set NEXT(J) =J +1 ;-

Set NEXT(N+1) =1 and I =20

Step 2 (Add an edge)

Call procedure ADDELE .
Step 3 (Test length)

If I'< 3, go to Step 2

Else continue.

Step 4 (Using array ICROX ‘heck for intersections)

b

>

v

If most recently added edge (PERM(I-1), PERM(I)) intersects

"

- \
, B
'
.




-19- §

N

with any previous edge, go to Steﬁ 8 ;
Else continue. )

) Step 5 (Is permutation complete?) v
JEI<N, gotoStep2;
Else continue. c -

Step 6 {Check for repetitions)

If PER]E'I\(Z)o > PERM(N) , go to Step 8 ;
Else continue.

Step 7 : (Add last edge, then check for intersections)
If last edge (PERM(N) , PERM(1)) intersects with any
previously introduced edge, go to Step 9 ; -
Else output cycle and go to Step 9 .

Step 8 : (Done?)

If PERM(2) = N , exit';

Else continue.
Step 9 : (Increment permutation)

Call procedure INCPER ; =
- Go to Step 3 . ' P

o

Procedure ADDELiE . . ) , !

1

- Step 1 :'If NEXT(NH1) = N+1 call procedure INCPERMand exit ;

Else continue.
Step 2 : Set I = I+ 1 , PERM(I) = NEXT(N+1) , NEXT (N+1) =
- NEXT (PERM(I)) and J = 1 .
Step 3 : If NEXT(J) = ﬁEx'r('Nﬂ) , exit ; T .
Else set NEXT(J) = NEXT(N+1) , J = J+1
and repeat Step 3 .

Procedure INCPEX* | ) : -
Step 1 : If NEXT(PERM(I)) = N+1 , go to Step 4 ; ,
Else continue. - ’ * ‘ ‘}? 1
Step 2 : Set Q = PERM(I) ; ¥ ' “P,;,, 5’» )
oy . Call procedure RESTORE ;* }\ * : o ',
Set PERM(I) = NEXT(Q) . \ . A
Step 3 : If NEXT(Q) = NEXT(PERM(I)) , exit ; - -
Else set NEXT(Q) = NEXT(PERM(I)) , Q = Q+l and repeat .
Step 3 . o ’
[}
' > .



P

- _20_' »
¢ .
Step 4 : Call procedure RESTORE { .
Set I = I-1 and go to Step 1, . - .
Procedure RESTORE P ;
Step 1 : Set J = PERM(I) - 1 ; ) .

Step 2 : 1f J=0 , go to Step 3 ;
Else if NEXT(J) < PERM(I) , exit ;
Else set NEXT (J) = PERM(I) ,
- J=J-1 and repeat Step 2 . .
Step 3 : If NEXT(N+1l) < PERM(I) , exit ;
Else set NEXT(N+1) = PERM(I) and exit .

- = -

7

2.1.3 Determining E(CFHC) : .
At this point it is not difficult to see how procedures CROX and

PERMU can be used to obtain the number of CFHC's in a given configur-

» ' .

ation of cities. ‘ ’ N .

v

‘ In order to get E(CFHC) in a random map a Monte Carlo experiment is
performed. For each value of n from 4 to 10, the following three steps
were repeated 1000 times to get the average number of CFHC's as well as

the standard deviation, rounded to the nearest integer.

Step 1 Use a uniform randomipumber generator to generate .
g . coordinages of cities in the unit square.
Step 2 Use CROX tg find ai} crgssings in'the drawing generated
< -in Step 1.' :
Step 3 Use PERMU ‘to determine the number of CFHC's in the
drawing generated in Step 1 .
Table 2.3 shows the results obtained . .
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P
. ) n
n n1=(n~l) /2 n2=E(CFHC) Standard deviation = x 100
0 J 2 ®
4. 3 2 1 66.66
5 12 3 2 25.00
6 60 8 5 13.33 7
7 360 20, 14 5.55
8 2520 54 39 2.14
9 20160 160 118 0.79
10 181440 474 365 i 0.26 |
V4
Tablg' 2.3 .
2.2 An exhaustive algorithm for obtaining the optimal tour y

4

The two procedures ‘described in the previous section can be used
to obtain the shortest Hamilton cycle (SHC), in a drawing of K by

exhaustive enumeration. TB&,&lgorlthm is described below.

%

Stég 1 Given the coordinates of the cities use the “ ‘ ' \
Euclidean metric to obtain the intercity
X distances, i.e. form tHe )cost matrix. L .
~ Step 2 Use CROX to find all Trossings.
Step 3 Use PERMU to find all CFHC's along with /
: their costs. - ’ - ™ -
Step 4 Choose the SHC.

-

Although the number of ‘candidate tours ,is substantially decreased by
this method from (n-1)!/2 , as shown in section 2.1.3, procedures CROX

and PERMU , however, are still exponential algorithms. .

- . . )
In section 2.2.1 we describe a refinement which, when introduced in

. N . . s

the algorithm above, causes a dramatic reduction in<the number of cases

investigated. The modified algorithm is used in section 2.2.2 to obtain

a new estimate of the expected number of feasible solutiong” in a random
map.

a

: -
2.2.1 Kink-free cycles need only be -considered

A rule of thumb will now be described that we shall use to redgce

-

Freate
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y e
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the number of ¢ycles considered in our exhaustive enumeré%ioﬁ of feasible

' solutions. . The idea - although remotely related to the brinciples used

in [Ba) and [Linl] -~ is entirely novel as far as the ETSP is considered
since it is solely based on a geometric coneideration and is applied

during the sehuenfial construction of a tour.

Let a crossing-free chain‘be composed of (r+2) edges where
r=1,2y..., n~-2 . Further, let (a,b) and (e,d) be the first and last

’

edges of the chain respectively, as shown in Figure 2.4 s

Figure 2.4

” v

We 'say that this chain has an rikink if ©b + Cod > C e + Chd °

Now, obétgzﬁiy, a tour which has an r~kink is not to be considered since
edgeé (a,b) and (e,d) can be replaced by (a,e) and (b,d) yielding a
cheaper tour. This idea is exploited in procedure PERMU .

"In the process of building a tour, every time an edge 4s added to-a
chain of length 2-1 , which does mot cross any previous edge, a test for
an r—kink follows, for r=1,2,...,28~2 , If the new edge creates an r—&ink
it is disfégarded, else it is kept and a new edge is fetched."

Listed below is/brocedure PERMUL the new version of PERMW . It
shows the tests for r-kinks and how the shortest cycle ig determined.
At exit from the procedire, a one-dimensional array SHC stores the

.shortest cycle.
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( . Procedure PERMUL %
Step 1': \
N I For J=1 to N 'set NEXT(J) = J+1 ;
Set NEXT(N+1) = 1 and I = O ;
. : Set”SCOST = « - - ’
Step 2:
. . Call ADDELE .
“ Step 3: ’ ‘ . 3
.- . S .If,1 <3, go to Step 2 ; . '
- Else continue. ;
) Step 4': . [ A
:é*Lf nev edge creates an intersection, go to Step 8 ;
’ ' Else | 3 .
-,,:~ if new edge ‘¢reates an rjkink, go to Step 8 ;
Else continue. |
: Step 5: ‘ ' E
If I <N, go to Step 2 ; ‘ ’
Else continue.
Step 6: ) o
o If PERM(2) > PERM(N) , go to Step 8 P
. Else continue. .
Step 7':" - * | |
- If last edge creates an intersection go to Step 9 ;

Else
If last edge creates an r-kink go to Step 9 ;

J

Else compute COST, the cost of the new cycle ;
If COST > SCOST go to Step 9 ; )
Else set SKOST = COST and store cycle in SHC ;

,“““\\\\\\ Go to Step 9 .

Else continye .

Call procedure INCP
Go to Step 3 .
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The ﬁéaified algorithm - referred to as TSPl.- solves a 12-city problem
in less than 18 secs on the average. )

In later chapters we shall make use of TSPl for purposes of comparison
and appraisal of various heu;i§tic techniques for the TSP. .

2. 2 2 A new estimate of the number of feasible solutions

The modified algorithm is now used - in a manner similar to that
described in section 2.1.3 -"to obtain a new estimate of the number of
feasible solutions for an ETSP. By a feasible sdlﬁtionh;t should be 7
;nderstood that we mean a crossing-and-kink-free Hamilton cycle (CKFHC) .
Table 2.4 shows the average number of CKFHC's as well as the standard

"deviation rounded to the nearest integer, in a random map.

-

__:2 E (CKFHG) St. dev.
4 1 d 0
5 1 0
6 1 0
7 1 1
8 1 1
9 2 1 .
10 2 1
11 2 1
12 ) 3 2
;

Table 2.4

~

Some typical distributions are shown in Table’ 2.5 where F denotes the
number of CKFHC's and P(F) the probability of F .

» ©
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n F P(F)
- 1 0.853
6 2 0.140
3 0.007
1 0.766
. #
2 0.197 P
7 3 0.032
4 0.005 )
P E)
1 0.647
2 7 0.271
3 0.063
8 . 4 0:613 4
5 0.004
6 0.002
Table 2.5
2.3 Number of crossings and crpssing—free Hamil ton éycles ’ o
So far we have considered only random drawings of Kn 2 In [New] a

special class of drawings of Kn is studied : the CFHC - optimal drawings.

These are (rectilinear -and non-rectilinear) drawings of Kn poésessing

‘the maximum possible number of CFHC's. In the rectilinear case this

number is denqted'by é(n) . Table 2.6 (from [New]) shows the known

values of é(n) . .

¢

4 ()
1 .
3
8
29
92% A
339% . I

1228% N
*conjectured . ‘ i
-Table 2.6
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It was observed in [New] that for small n, CFHC - optimal drawings of Kn are
also crossing—number—gptimal. The latter are drawings possessing the

minimum possible number of crossings [Er] . This leads us to ask the .

following question: is there a cc;rrelatibetwegn the number of cross- ~

ings and the number of CFHC's in a drawing—of K ?« In other words, is
it true that the more the crossings the fewer the CFHC's and vice versa?
Procedures CROX and PERMU are used to answer these questions. It turns
out that for the majority of cases, tﬁé above statement is true; however
this property does not hold in general. The two drawings of K6 shown

in Figure 2.5 illustrate a counter-example. (See Chapter 7 for the

derivation of a lower bound on $(n)) .

”

{a) 8 crossings Q‘.
.12 CFHC's

(b) 9 crossings
13 CFHC's . ’ ' ’ ,

/ Figure 2.5 -

I it
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2.4 Conclusion )
In this chapter we demonstrated how the set of candidate tours for
the ETSP could siénificantly be reduced in size when some simple . )
' &
heuristics are used. In fact, it was experimentally shown how small the
subset of feasible éblutioﬁs actually is. We therefore ask: Will more
powerful techniques be developed in the future to search 'intelligently'

the astronomical set of candidate tours looking for this subset.of feas-

ible solutions? Will these techniques have a running-time that groWs'J
polynomially with the size of the input? It is hoped that the above /

questions will some day be answered affirmatively. ) / \
{
A proof i that the ETSP is NP-complete [Aho] was given in [Gaez,/@apa].\

v

When a problem is shown to be a member of this class, the general tend- ’ \
/

ency today is to conclude that no efficient algorithm is likely to be \

discovered for solving it. No one, however, has beén able to prove this ,
;tatement. The present writer believes that we still lack the approp- ]
riate mathematical tools to tackle these problems. Once (and if) these
tools are discovered and the right representation for each problem

chosen, we may be able to deviée solution methods with the required
Idegree of efficilency. Without the invention of calculus, it is hard to

believe that man would have been able to walk on the moon! .
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Chapter Three
égproximate Triangulations and the Euclidean TSP

The concept of the minimal spamning tree (MST) has been exten51vely
used [Chr6, Han, He2, He3, Kar3, 0, Rosl, Ros2] to obtain an approx1mate
solution to the TSP (See Chapters 4 and 5). It has been shown [Sh2]
that for the ETSP an algorithm [Rosl] with running time 0(n log ),
where n 1s the number of cities, can be used to get an approximate

solution which is no worse than twice the optimal.

v

Another concept‘which led to a theorem [Beol] for the
Euclidean TSP. is.that of the convex huil® (CH) of a set of points in the
plane, i.e. thé‘;ﬁallest convex polygon contdining all the points This
theorem states that the order in which the p01nts foymlng the vertices
bf the CH appear in the shortest tour, is the same ag the order in which .
they appear in the CH. The theorem follows d}rectly fgom the obvious
geometridal fact'that the shortest tour doe&”not intersect itself.
»Several‘alg ithms have been described for obtaining the CH {Akl, Gr,
Ja, Pre, Sh2] and they all have an expected run-time of O(n lag.n). A

.detailed treatment of the\problem is provided in Chapter 8.

v

It is ngt diffiéglt to show that the MST and the CH of a set of
points ih two dimensional Euclidean space are related to a (little bit
more involved) étructure that we define shortly: the minimum—&éight
triangulation (MWT). A\triangulation of n points in the pla;e is the’
plane éraph obtained by joiging the points by non-intersecting straight
line segmentgﬂuntil no edge can be added 'without creating an inter-
section [Berm, Sku, Wh]. From this definition it follows directly
that: '

' ~

1) The CH of the set of points is a subset of every triangut—

ation since -~ by definition - no edge of the CH intersects

another edge of the‘complete graph. . -
2) Every region of the triangulation interior to the CH is a__—
T
jp\\ER *  triangle. . ‘ . T

e
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( . : Two algorithms have bgen published to obtain the : [Du, Sh2] and
they have both been proven incorrect by counterexample in [L1}, where. /\
‘4' it is also conjectured that the MWT ﬁroblem is NP-complete. .
J " . -, In this chapter we study approximate (minimur;:—weight) friangulaations
", (AT) in connéction with the ETSP (Note that AT > MWT). In particular
we show that the AT 1s a source’ of potential candidates for the edges L
" of an optimal- solution to the ETSP. /
3.1 An Algorithm for the Approximate Triangulation
“ In. this section we present an algorithm for obtaining an approx-
imate triangulation (AT). The algorithm will also allcy the MST to ‘be .
derived. Our interest in the MST in this context is due o the follow—
, ing reasons: ) ‘ R .
1) It was demonstrated in [L_l] that th’“é‘ MST is not negessariiﬂr\ R Cow
a subset of the MWT. Nevertheless, the MST 1is a subset of - 5
’/“” 27 " the dual\of a Voronoi diagram [Shl] as shov;n in [Sh2]. THis R
/' ‘ lat\ter was.believed for sometime to be the MWT; although it D '
/ ' s, is not so in general, it turms out to be - in most of the
= 333 ca%es - a very good AT. It follows that the MST is a subset
S L% of: some AT. )
- > 2) The MST provides a gogd approximation to the optimal tour ) N
- in a TSP (see Cnhapter 5)‘. . ‘
k - R From (1) apd (2) it is obgions that we will need the MST f;r comparison
:1.,: < . ) purposes when constructing an approximate “solution to the TSP based on
5 .- . theEAT. f::'fg , p
A s "w__ - . ;
’ ~ 2 3477 Algorithm AT . - AR ( ! !
| \\\ Step 1. S>ort edges in ascending ordér of wedght. = Let
- . ‘ E'=({e1’,;32,.. »e, } be the set of soxted edges V -
’ ) where ey < e if12 3 and % =n(n-1)/2 ; gt g
! ! o s \ MST =@ ; set 1 = 1 , LIST = E-and j =L0\. -
— i Sthp 2. | IF (§°= n-1) or (eip creates a cycle in MST)

go to Step 3; o
Elge 'set MST = MSTU{ei} and j = §+1 . -

[P

b
1
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» N ERe L}
§£§R_§-‘ 1f e, ¢ LIST go to Step 4;
i
Else set AT = ATU{ei}

and LIST = LIST/{e, * e, and e, intersect}
s k k i

Stepr4. If i =2 ,'stop ; ;
Else set 1 = i+l and go to Step 2. o

©

[

3.1.2 Remarks

One should oebserve that

' \f 1) Algorithm AT (without the operations for the MST) resembles
’

&

an algorithm described in [Du] which was believed to yield
the MWT. ’ : o

2) The MST id baéicaI{y obtained in algorithm AT by ‘the 'greedy' -
method of [Kru]. (The name qggeedy' is actually used for a
whole class of algorithms [LaZi). ‘ RN

3) The complete graph of n points has (;) edges; the AT being
a plane graph, the maximum number of edges it can have is

-t 3n-6 , and this happens when its CH is a triangie. (The .

minimum being 2n-3 and this occurs when-.the n points form a

convex n—gop). Theé running-time of AT can thus bey described

as' shown in Table 3.1 .. ’ .o
Step 'Complegity Maximum number
of times executed
2 " ) =
1 ° 0(n” leg n) 1 .
2 ¢ 0(n) O(nz)
d 2 . '
3 *  0(n*) o . 0(n) -
4 0(1) 0(a?)
\ g r
N e YN il i
Table 3.1

v ’,

“g
It follows that the computation is dominated by Step 3 and that the

overall domplexity of algorithm AT is 0(n3)«.
' 5

\

-~ - G P

A

3.1.3 Detection of cycles o TP

iIn Step 2 of algorithm AT , when an edge becomes a candidate for
the MST ghe question of .whether or not it creatés a cycle with the

previous tree edges is posed. Here we show how this questioid can be
&

-
N M

~ TN eSS i ¥ B G f wed W
:
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( answered. We first note that in the procedure described above, the MST

may be created by growing several subtrees that are ulfimately merged

N
[
x

to yield the final spanning tree. Figure 3.1 shows an example of this -

£y

process.
g
. - , , t
" L 4 ® [ ]
\ s -~
. ¢ ®
‘ ® ® .—"""" -
. P .
¢ [ ) ‘ ' kY
‘r
. 3 (a) Given seven points irn* (b) The first three closest
. the plane. pairs are connected and 2
. three subtrees result.
Iy »
a ~
. v . v’
A
" ©
. > R
5 ' o °
' a ‘
' e
i - |
} - .
| - L . .
! (c) The next two shortest y (d) When the ldst edge is
‘ edges are introduced A included the two subtrees .
) reducing the number are merged to yield the 4
‘of subtrees to two. " MST. / ) 5N 2
o v )
- 1” - /. n—‘
' ) - 3 4 :
‘ ) e 7 /(‘ Q
pl
(‘ » Figure 3.1 :
4 » . !
9 o
1 - i
- -
» 13
1:' \ 4 -
il

.
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In order to detect cycles, we attach two labels to each node i , LAB (i)
and MV(i) , as follows: - '

N

(1) all nodes belonging to the same sugﬁree have the same label
LAB ; initially LAB(1) = i for all 1 ; and . -
(2) 4if a node has not been entered into, any subtree its label

MV is 0 , else it is 1 ; initially MV(i) = O for all i .

Now, when an edge comnecting nodes i and j is considered for: inclusion

into the tree: . ) ,

- *

If LAB(i) = LAB(j) the edge is rejected since nodes i and j belong to

the same subtree (and hence the new edge would

-

create a*cycle).
Oéherwise the edge is accepted (singf it obviously merges two subtrees
into one). - -
When an edge merges two subtrees, the labels are updated as %olloﬁs:
"a) If MV(4) = 0 and MV(3) = 0 , this
is the case of two totally new y

N Qo= o m — P
vertices (see Figure 3.2); we

arbitrarily set LAB(i) = j then Figure 3.2
Mvg')=1andmv(j)=1. ) *
! '
b) If MV(i) = O and MV(j) = 1 , this is o—— —~—
the case of a new vertex, i , that
is be;pg connected to aySubtree . 2
(see Figure 3.3); we set LAB(i) = Figure 3.3 )

LAB(j) and MV(i) = 1 .

¢) If MV(i) = 1 and MV(j) = 1 , this L,
is the case of two subtrees mepged O__ -— _Q‘“
by the edgelbonnecting 1 to j (see i

Figure 3.4); we arbitrarily set

(k)  LAB(1) Figure 3.4 B

all rnodes k/with

A, i e o e ot ke b
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A set ofypoints and AT.
[ 4 . ; _ °
lq"’” } ) ‘f
B Figure 3.5
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( - 3.2 Algorithmg for -the ETSP 3 :
. In this section we present three algorithms for the ETSP based om
! the AT . ‘
)
3.2.,1 Preliminaries .

We first relate optimal Hamilton chains to, optimal Hamilton cycles - .

in the Euclidean plane. The following propositions- are straightforward{f‘w
. ' T

. Proposition 3.1
Given the shortest Hamilton chain through a set of points, the

shortest Hamilton cycle is not necessarily obtained by adding an edge

to the chain.
Proof: ' - '
By'counterexample, as shown in Figure 3.6 . X

7/

Ve _ .
' g l
] 14

Shortest Hamilton Chain ~ Shortest Hamilton Cycle

Figure 3.6 - o

Obviously: Shortest Hamilton~Chain + Clbsing Edge # Shortest Hamilton
) »  Q.E.D.

a -

: Cycle. .

»

Proposition 32
Given the shortest Hamilton cyclé through a set of points, two

v

- ,
points Py and pj adjacent on the cycle are joined by the shortest

. Hamilton chain with end-points Py and p:1 .

L

Proof:
Given the shortest Hamilton cycle, as shown in. Figure 3.7,

P Pj .
Py n q
- ) . ‘ Figure 3.7 ~ h , f
- , i - , ’ 0’ %
, we want to prove that Py Pp Py Py pj is the shortest Hamilton chain }
( with end points 1 and pj . Assume this 1s not the shortest Hamilton

H

e
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chain with end-points Pi and pjg; this means that there exists a shorter
chain, contradicting the optimality of the Hamilton cycle. tHence,
Shortest Hamilton Cycle -~ edge (pi s ?j) = Shortest Hamilton
Chain with end-points Py and pj,.
Q.E.b.

Proposition 3.3

Civen the shortest Hamilton chain through a set of points; if its
end points are Py and pj and edge (pi, pj) happens to'be in the shortest

Hamilton eycle, then'
Shortest Hamilton Chain + edge‘(pi, pj) =aShoftest Hamilton Cycle.

Proof: - .

Assume the resulting Hamilton cycle is not the shortest.

Since edge (pi, pj) %s in the shortes; Hamilton cycle, its removaln
from that cycle would yield a Hamilton chain shorter than the initial
one, hence a Qontradictioﬁ.
= ‘ Q.E.D.

?

We now proceed to define and discuss a few concepts relating to a

set of points in the plane_and on which the technique is based.

3.2.2 Nearest—Neighbors Algorithms

The "nearest-neighbors" principle was used with relative success
to obtain an approximate solution to the TSP. One of the 'simplest
algorithms [Beql] starts with a city, connects it to its mnearest neigh-
bor, then connects this last one to its nearestfneighbof not yet
included and continues in this fas n thus creating a Hamflton chain.
Thépfirst and last cities are then%%gnnected yielding a tour. (This
approach is\also knovn as a 'gréedy’ heuristic [Goo]). An improve-

ment on the method ié described in [Gav] and bounds on its genera;

'performance are given in [Rosl, Ros2].

Another technique known as the "engineering approach" [Robl, Rob2]

enumerates all ﬁossible Hamilton cycles in which each node branches

only to one of its m nearest neighbors, where m is arbitrary.

- - .

. +
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In the so-called "linear 2-opting" method [Stel] an attempt is
made to improve on the efficiency of the 2-opting procedure [Linl] by
only considering the closest neighbors of every city.

The approach adopted in this chapter belongs to this family of
algorithms. We call two points "neighbors" if they are connected by a
line segment in the AT .

3.2.3 An Approximation Algorithm for the ETSP

Proposition 3.2 above suggests that the shortest Hamilton cycle can
be obtained by finding the shortest Hamilton chain - between every two
points in the given set. However, this is far from being a reasonable

approach to the problem, the number of Hamilton chains being equal to’

n” times the number of Hamilton cyclesr let alone the fact that getting

the shortest chain is by no means easier than getting the shortest
cycle. Nevertheless, we shall describe a heuristic technique for
obtaining an approximation to the shortéét Hamilton_cycle that uses a
variant of the above idea Solutions obtained by this method were
always optimal and led to an interesting observation regarding the ETSP.
We note that, although the procedure has a complexity which grows
exponentially with n , it 1s presented for its theoretical interest.
Algorithms based on the same principles, but with lower time requi}e—
ments, will be presented in section 3.2.4. ‘ . »
3.2.3,1 Algofithm TSP2

b Step 1 Find an AT .

Step 2 Identify points on the CH . -

Step 3 For every point py on the CH do the following

" a) Enumerate all Hamilton chains starting at Py
and composed only of edges of the AT

b) Add to every chain found in (a) an edge
connecting the first and last points, thus
creating a Hamilton cycle. n

\ , . )

Step 4 Among all cycles found in Step 3 choose the

PSRN

shortest.
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Figure 3.8 shows a set of 12 points in the plane, the corresponding AT
and the cycle obtained by TSP2 . .We note that this cycle is the SHC .

o

L\

)
—_ AT
————  Cycle obtained by TSP2
' /l
. o
Figure 3.8

i

\
~°3.2.3.2 Analysis of Algorithm TSP2
_Let d be 'a random variable denoﬁing the degree (;.e. number of

l neighbors) of a node in the -AT and taﬁing the value di for node 1 .
Hence

Also let t bé the number of edges in the AT .

!

( ' "M
.
.

1%
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N and E(d) = ln'i . \

Now, when node 1 is connected to node j in the process of con-
structing a cycle, the number of branching possibilities of node j is -
at least .- reduced by one since j cannot braqch back to 1 .

Thus, .an upper bound on the number of chains for every étarfing point

is given by

: p [E@) - 1% . :

¢ k]

In the following theorem we develop an expression for t and show
that
MM-3<t<3m-6 .

Theorem 3.1 Given n points in the plane, the number of edges in a tri- -

angulation of the points is given by
= (2n-3) + (n - h)
where h is the number of edges on thé CH of the points.

Proof: - . .

- |

| The maximum-value that h can -take is n . In that case, the number

of edges of the triangulation is given by:

n edges on the convex hull '
? . ' ' + ” .
;’” (n-3) edges connecting a node to its (n-3) non - (CH)
neighbbrs. ’ '
'This‘is illustrated in Figure 3.9 for n=28." "

e *
:

Figure 3.9

( ) We have just proved that 2n-3 is the minimum value t ¢an take.

- I4
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Since the minimum value of h is 3 , the upper bound of 3n-6 follows.
This is the maximum number of edges a plane graph can have. A triangul-
ation with t = 3n-6 ‘s called maximal and “can be obtained by, for example,

placing the n points as lf/gj concentric triangles (see Cﬂapter 7).
To prove that the formula is valid in general, assume it is true for

, *

h-1, i.e.

-

t = (2n —13) + (n-htl)

If we now increase the number of nodes on the copnvex hull by one, by
- {
pulling an interior point outwards, as shotm in' Figure 3.10, the number

of edges of the{fkiangulation is then reduced/by one,

!

a
’
' (o}
v , i
’ [}
7 b '
! ! '
Y/ ! ]
d"‘ -— § ]
-.e----.‘
f
Figur
LAl

i.e. t= (2n-3) + {(n-
' Q.E.D.

‘The expected values of t and d are given by

E(t) = (3n-3) -
E(d) = 2E(t)/n/=

(h) -
6 + 2E(h)

-
6 - () ‘
where E(h) is th
an upper bound on the expected running time of the glgorithm is given by
E(h) . [E(@) £ 11%F . ,]

Table 3.2 slows the values of E(h) — as given in Chapter 8 for a uniform

expected number of edges on the CH . It follows that
Ve

distribution of the points in the unit square - and the corresponding.

computed/E(d) for various n . We note that {E(h) . [E(d) —.1]n—1} .

— 1 '
—(—“—z—ll‘—fornzlo.

[] . o
d

although an upper bound, is less than

AN

i
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n E(h) E(d)
“. 3 3 2.0
4 3 3.0
5 4 R
6 4 3.6
7 5 3.7
8 5 4.0
9 5 4.2
10 5 4.4
20, ” 77 5.0°
30 8 5.2
.40 9 5.4
50 10 5.4
60 10 5.5
70 11 5.6
80 11 5.6
90 11 5.6
100 11 5.7
Table 3.2

To get more insight, we stochastically estimated by a Monte Carlo
experiment the aétual expected number of Hamilton chains and cycles
pre;ent in ‘a random triangulation, for various values of n and a uniform _p .
discfibution of the points in the unit square. These values are listed.
in Table 3.3 . -

Vet L ETaete =

X3

-

.
N
'
1 ; |
7
o
=
%
¥
2
. 3
b
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/
n E(chains) E(cycles) «
¢ 4 2 2 | e
5 3 ; 2 ;
6 7 ‘ 4 ‘
. 7 11- N T
| 8 33 15 " - C
9 ) 46 , o - 23
10 104 ‘ 45 ,
’ 11 T8 72 o
12 .. 59 196
.13 674 376 ‘
14 830° 566 ) ) , .
T ' Table 3.3, ' i

- 1 4
s

For n = 8 , e.g., algorithm TSP2'will have to- search through 5 x 33 = 165

!
cycles on the average before yielding“an answer. Experiments with the

algorithm (described in the next segtjon) lead us to conjucture that this

)
t #
. B B [

(: ) . answer is almost always optimal.- "

i3, 2 3.3 Experiments with Algorithm TSP2 ’ “ar "

<4

The following expeg%ment was conducted several times for various

'
z

values of n:
A

1. A set of points was placed in the unit square using a

D e S R
H

unlfprm random‘number generator. =
« 2. A solutlon was sought using algorithm TSP2 . I
3. The optimal solution was obtained by exhaustive search. ’ f
, -
-~ , The TSPZ solution was always optimal. -
. " This result%}ed~us’to[ask the following question: '"How good is a, Q

random solution composed only of edges of the AT as cbmpareé to a purely

@ " ;
y random solution." , , ., .,f

Y 1 N L

' \ For small values of mn , i.e. 4 <'™m £ 12 , the reference p01nt wag nfMJ{
. the optimal tour obtained by exhaustive search. For 25 <n <100 , the w~ f& |
various tours were compared to 1.102*MST » an approximation of the ‘ ) /
v ( N, optimél tour detived in Chapter 5. The results are shown in Tables 3:L |

P
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n “RandAE/Optimal Random from AT/Optimal
A T 1.056 1.004
5 1.175 1,043
6 1.386 1.091 - )
L7 1.466 1,114 N
B - 1.&36 1.127
9 ~1.708 1261
0 1.862 1.163
11 1.866 1.179.
: 12 1.888 1194 ,
ax — Table 3.4 )
. i ;\\ Random/1.102*MST Random from AT/l.lOZ*MS& N
: ©25 \ | 3.642 1.365
50 .\\ - 4.949 1.422
75 ) 6.035 1.489
100 / 6.847 - 1.517 .
Table 3.5 - . “ﬁﬂ .
¥ e €

square. As the tables show a random1cycleschosen from the AT is defini

=

ely superior to a purely random one.

1)

Each entry in Tables 3.4 and 3.5 is an average over 100 tqialhgiaphs

randomly generated for every value of n by generating uniformly and
independently the two cartesian coordinates’of n points in the unit

make three remarks: ©
Determining 'a priori if a graph contains a Hamilton
cycle is one of the most difficult unsolved problems in-

graph theory [Gael]. We sshall not attempt ‘to examine. this

L]
the AT does‘ not contain,a, Hamilton cycle?"_‘To answer this question we

|

problem here even for thEBSpecial case of the AT.
Mo§t authors iprl, Rob2, Se] assume tacitly that‘their

graphs are dense enough (i.e. contain a sufficiently

t-

‘

At thi%rpoint"we believe that a question is legitimate: "What if:




N

. quality of the angver it ;}pvidéd; in contrast TSP2.1 fails to find the

large number of edges) to possess.at least one Hamilton \

cycle. We shall follow them in this[assumption. S
3), The algofithm does not look for Hamilton cycles but, -

/
rather, for Hamilton chains ~ a less restricted- structure..

-

»

The algorithm was tested on several hundreds of graphs. In each
case the AT contained numerous Hamilton cycles. (For a further discuss-

jon of triangulations, see Chapter 7). -

‘

rand

3.2.4 Better Algorithms for the ETSP based on the AT ! ﬂ

’

We saw-that algoritmn TSP2 was not very ‘efficient with respectaFc -

running time. Two variants are suggested in this “section that are con-
. .ot

siderably faster. K
- \ N .
3,2.4.1 Algorithm TSP2.1 .

' ‘Step 1, Get the AT.

5

’
i o .

Step 2 Enumerate all different' Hamilton cycles whose edges
belong to the AT. - - . .
Step 3 Choose the cheabest cycle: thig is an approximate

t

S
. -

,soluéion to the TSP. .

!
This algorithm - which is, for- obvious reasons, many times faster

than ‘TSP2 - suffers from the following draw@acks* . .
1) Rufining time is st111° handicapped by the exhaustive nature
of Step 2; ’ ’ .
é) The ﬁdssib;ligy that an'AT may not contain gﬁ HC is now

»

present.’ ’ . »

Our experlence with algorithm TSP2 gave us a very good confidence in the

optimél solution to a 6-city problem as shown in Figure 3.11 .

te N

& .
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AT T Solution by TSP2.1 Optigal tour
w \
Figure 3.11
. We tHerefore consider another variant of TSB\,Z .
; 3.2.4.2 Algorithm TSP2.2 ~ ‘ ’ . T
P
Step 1 "Get the AT . 4 .
p - Steg ‘2 Get the CH . ’ ;
‘ : tep 3 Use any heuristic technique to obtain n good TSP tours. i
. Steg 4 Within the tours found in Step 3, consider only the set
| c. ‘ . S of edges joining a point on the CH to an interio§
‘ $
' > ' point. Let T&S such that T = {t : t ¢ AT} . ! .
e . If T=@ then T =S . Among the edges of T choose thg
‘ m Y . “one with the highest frequency of occurrence: [
- \
{ let it be (a,b) )
(l Step 5 Enumerate at most 1:12 Hamilton chains with end--’points p :
‘ T . a and b and whose edges belong to the AT ".
‘ /‘ Step 6 The shortest chain found in Step 5, plus edge! (a,b) .o
, T ) is an approximate- solution to, the TSP . . - - .
- . ' . ] ; A . ; ‘
\ - P ' o . “
. . q ~ !
1 V( B
v - , v :
, . N , t -
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® The two examples of Figures 3.12 and 3.13 illustrate the algorithm.

In each example a set of points and their AR are shown along with the
Hamilton cycle found by algorithm TSP2.2 . In Figure 3.12, the points

were drawn at random from a uniform distribution over the unit square.

Figure 3.13 is from [L1]. Edge (a,b) .chosen by the algorithm in Step 4
is also shown in each case. Note that in both examples the cycle obtain-

ed by TSP2.2 is the SHC. ‘

s

Before contiuding the description of TSPZ.?, we rémark that the
algorithm used in Stef Qgﬁhould allow~us to obtain n different good tours.
The nearest—neighbor method [Beol] and the heuristic technique of [Ka]

. are both 0(n ) and have this property of yielding different tours for

differgﬂt starting cities. Another algorithm which shares this property
is the hearest:i%sertion of [Rosl] which gets an approximate solution to
the ETSP in 6(n log n). as shown in [Sh2]. A very good tour coul@{also
be obtalned by the 0(n log n) algorithm of [Kar3] B e
: . \i
3.2.4. 3 Analysis of TSP2.2.&
From Table 3.6 it follows that TSP2.2 is O(n ) .

N
Step . Complexity
1 ) 0(n35
q
v 2 O(n log n)
: 3 0(n3)
’ ‘ 4 O(nz)
5 0(n3)
g - //’/’ 6 , . 0() . )
. Table 3.6 ; '
&
- \ X
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3.3 Conclusion )

( r The experiments described in thils chapter provide an empirical
evidence that triangulations of points in the piane can be used to obtain
good approximate solutions to the Euclidean Traveling Salesman Problem.

' Very little is known however, about-the geometric properties of triang-
ulations. Our experience leads us to believe that triangulations could
be a powerful tool in solving combinatorial optimization problems in the
plape. It is hoped that the results obtained in this chapter will

Vyv*vstiﬁsiate an interest in the study of the intrinsic properties of tri-

" |
// angflations.

\
\ﬁ_‘ ) _ ’ ) . (5 .‘ ) “(;}f f

.
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: Chapter -Four
The Shortest ?amilton Chain of a Graph and the TSP
‘ N

In Chapter 3 a solution to the ETSP was obtained via enumeration of

a class of Hamilton chains. 'The same approach will be used here to

attack the general (1.e. not necessarily Euclidean) symmefric TSP.

]

In

the Euclidean case the method relied primarily on a p}anar struigure,,the

AT; in this chapter the tool used is the MST. Basically, a sequence of

transformatioﬁs is applied to the MST ultimately ylelding the shortest

on the quality of the solution is provided, as well as an empirical

estimate of the expected run-time of the algorithm.

"Hamilton chain and hence an approximate solution to the TSP. A bound

4.1 An approximation algorithm for the TSP ,
g
The propositions of section 3.2 lead to the following algorithm for

getting an approximate solution to the TSP, given a weighted complete

graph..on n nodes.
Algorithm TSP3
Step 1 Find the shortest Hamilton chain of the graph,

Step 2 Conmnect the end points of the chain: the resulting
Hamil ton cycle is thus an eppro%imate solution to
the TSP. - ./

Proposition 4.1 ‘ T - .

When the cost matrix obeys the triangular inequality, the solution

obtained by algorithm TSP3 is at most 50% more expensive than the
optinml solution.

Proof: .

We want to show that__pproximate solution <‘§
exact solution 2

Since, 1

approximate solutior _ shortest Hamilton chain + last edge -
exact solution shartest-Hamilton cycle

. shortest Hamilton chain + last edge

| SHC ‘ SHC
’we;prove that . .
| .
* ' shortest Hamilton chain last edge 1
t . T . - sHC S lgand === <y

v
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N

Removal of an edge from the SHC yields a Hamilton cha}n which 1s at

least equal to the shortest Hamilton chain; in other words

(SHC - edge) > shortest Hamilton chain.

Thus, SHC > shortest Hamilton chain.

.

Let (x, y) be the longest edge in the graph. There are two possibil-
5 .

ities:

a) (x, y) is in the SHC

Let o be the.length of the chain resulting from the exclusion

of edge (x, y) from the SHC as shown in Figure 4.1

7 \
/ 1
X“\\\\\‘ ! (
P d -
* y - i
SHC ®

Figure 4.1

From the triangular inequality it follows that xy < o and that

2xy < o + xy . Hence,

. SHC
A

b) (x,y) is not in the SHC

Let o and B be the lengths of the two chains with end points x

and'y and whose concateﬁg%ion yields the SHC as shown in Figure

4.2 , . N

SHC
' §§Zure 4.2

|
Again from the triangular inequality, xy < a ,‘xy < B and

2xy <a+ B .

Hence,

1

w
fiiéA
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¥

( - s » ‘»—/xy“_::?ij
Q.E.D.

The difficulty with algorithm TSP3 lies of course in the fact that
finding the shortest Hamilton chain is a hard task in its own right. . In
fac& the complexity of that problem is of the same order as that of the

% “ TSP. Nevertheless various ‘techniques for obtaining the shortest Hamilton
. chain were given in [Chr2, Chr5, He2, He3}. We now describe a heuristic
, technique called "the vertex penalty method", first given in [Chr2] and

then developed in [Chr5]. -

4.2 The Vertex Penalty Method . 4

The essence of the technique is to force the MST of the Lset of points

. to become a Hamilton chain by penalizing vertices wrth degree other than

B 2. Let di be the degree of vertex X; in the MST ,~

cij (2 c(i,))) the cost of edge fi} i)

and p(i) a penalty imposed on vertex X ." Then, . A

Step 1 Get the MST. 4 5
' Step 2 If the MST is a Hamilton chain, stop.. .
Else continue o - ) .

, ' Step 3 For every %y with di $# 2,

oo _ new _ old
, cij = cij + p(;) 0
and
A
new _ , new -
cji = cij) , for all j

Go to Step I with the new cost-matrix .
A

In [Chr2] it is shown that the Hamilton chain obtained in S p 2 is

- ‘the shortest Hamilton chain of the graph and in [Chr5] the following
penalizing‘strategy is prescribed for use in Step 3 .

l?_ When di >2

V2R

( ‘ a) Remove from the MST just one of the links’(xi, xr) incident &t

P Es




(\ ’ %, thus c¢reating two subtrees T1 and T2 as shown in Figure 4.3.

Figure 4.3

- - ~

b) Find the least cost link joining these two suﬁtrees; i.e. find

r r o
the link (xj s xk) such that
( ) ( )
c x.j » X n c xj s Xy R
' xje Tl
el ‘ |

- xjﬁk#x ‘ |

as showﬁ in Figure 4.4 . y
& v

’ e
» . 1
X xJ

) i Figu;e‘4.4 . '

Then, p(i) = min  feGE 52 - el )] .

Q en, p ' xj > ¥ : clxy » xJ1 -
- (x X JeMST :
§
In other words, p{d) is the minimum positive penalty which when '

applied to xi alone causes di to he reduced by one.

’

2) When di =1

. e Co -
- a) Add a link (xi , xr) to the tree as shown in Figure 4.5 .



AN

4

V4

Figure 4.5 -~

b) Let Sri be the set of links?in the path from X to x, - excluding

i

the last link incident tq x, : if (x1 s xr) is added to the

%71
tree and any one of the links in Sri is removed, another

tree results in whigh di =2 . -

.

r
X, , (xj,xk)esri

Iﬁnother words, p(i) is the maximum negative penaléy which when applied

‘Then, p(i) = min [E(xi , X ) -  min {E(xj, xk}] . , \Qhé

to X, alone causes di to become 2 , ‘
‘ [

We have used the heuristic technique and penalizing strategy just
outlined in Step 1 of our approximation algorithm TSP3 . Two minor

medifications were however introduced that are describe& below.

1

1) In the case of di =1, p(i) is, by definition, the maximum

- negative penalty (i.e. least negative) which when appliEd to

node xi alone causes di to becone iq. It follows that

:p(l) J3 mix [(x, ma;tes {c(xj,xk)} - elxx)] .
T 3777 1 i
We note that the expression in square brackets:

a) 1is ‘always negative because c(xi,xr) is larger than any edge

. e

in the tree (or else it would replace an edge of the tree),
- '

b) is maximized for every Sri by choasing the longest edge in
. | e YV
the pagp to be (xj, xk) . ] ‘ o

The'éxpression above, therefore, agrees with the definition and is
the correct negative penalty for di = 1 . To show the difference

with ‘the expression ‘given in [Chr5] we write

e
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- p(1) = max( - [e(x,, x) - max {c(x YD
( xr 1" r (x ,xk)es ) xk
= - min '[c(xi,' xr) - max {c(xj, xk)}] .
X ' (xj,xk)ssri B .

Note thlat the minus sign has been introduced angi max now replaces
. min inside the square brackets._
2) The penalties (positive or negative) that we use 'ﬁre given by
) | (1 + €) p(i) where ¢ is very small (e = 10 -4 , say). To
P illustrate this point ‘we take the following example where n=4 ,
g the MST 1is indicated by solid lirnes and edge ‘costs are as shown
in Figure. 4.6 .

h
.
; 8
- i
/ i
Figure 4.6
v
a) Positive penalties : -
Node b is to be pénalized. There are three alternatives
depicted in Figure 4.7 which show that p(b) =
g ' a
- A Y —
N . ’
2 1
\
3TN ) .
. c c - am —- —pr:— - -.d
’ }
ad-ab = 5-1=4 cd-cb = 4-2=2 de-db = 4-3-1

- Figure 4.7
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,After addiné this penalty to the edges incident at'b the new
edge costs will be as in Figure 4.8 .

'

Q 4 " }

.
,’I\
1. N
6,’ b|2 \5
/ ,f'.\‘\ B
02:2—£;~:-.
c 4 d
Ny
Figure 4.8

-~

One can éee that edges (b, d) and‘kc, d) are eqhal and the
MST may very well be thé‘same as the original one (see

© Figure 4.9) causing the procedure to never converge.

-

- S
BT ! {

ut _ v

“ B
o -

Figufé 4.9

t

If, however, the penalty is taken as (1 + €) p(b) we get
the new edgercosts of Figure 4.10 . |

[
b

Figare 4.10

The new MST shown in Figure 4.11 is now as required.

0 a‘ﬂ

Ad -

4 ' i e

Figure 4.11 ~ v
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A

( ‘ b) Negative penalfies . -
Node c is to-be penalized. There are twd’élternatives depicted
in Figure 4.12 which show that p(c) = —l .

“F;%E;re 4,12

Adding this penalty to the edges incider’t at c yields the L

) " new edge costs of Figure 4.13 .
N 3 *
- . \& ) /
. ' ,’l‘h\ __// §
y | \
¢ w -«b i /7 l’.‘~ N\
/s” IS N -
.:li_—- -----‘-.
3 !
Q -
' Figure 4.13 ) - . !
~ {
Edges (b, d) and (c, 4) have the same cost and the new MST f
* could very well be the same as it was originally, see 1 !
Figure 4.14 . . . : - - :
. e ‘ g Vi ) =X _ .
N i _ .
1 ”
ro L4 .
' ! : . { ) —- ";:‘;“* ) a‘ //
K Figure 4.4 . ‘ T
.' / 4
- . - - If, however, the penalty is taken as (1'+- e) ) we get
( , . the new edge costs of Figure 4.15 . ';



‘and the new MST.shown

Figure 4.15 ,

in!Figere 4.16 is now as required.

)

a - .

When ‘all penalties are applied to a, b, ¢ amd d,

are as sbown in Figure 4.17 .

sl

Figure 4.16

a

the MST and edge costs

c

Figure 4,17

4.3 A Monte Carlo Experiment )

Random points were genergted unif/;mly in the unit square. ' In eve
g §§ q ry

*

case the approximate soluytionm, to'the TSP was compared to the exact sol-

utlon obtained by exhaustive

experience with the algorithm.

was observed in all cases counsidered.

enumerat{on. Table 4.1 summarizes our

It *is worth mentioning that termination

Furthermore the average number of

iterations required before convergence was roughly IE/QJ (taking only™
into account cases where initial MST # Hamilton chain).

l

!

¥

¥

el

A ot A

-

s et

O ey o
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. . W
[ ’ . Average number of Average over 100
( n iterations before convergence runs of TSP3/TSPl
4 1 o . 1.000
5 1 1 1.005
N 6 - ‘o1 1.007 - .
’ C%,’ 1 1.010 L
' 8/ "2 1.014
A of 2 11015 '
s . |10 2 g 1.026
11 2 1.058 .
; f . 12 3 R . 1.061 .
v , ) Retio of answer giovided by TSP3 to exact answer provided by TSP1

Table 4.1 N

=

4.4 An Empirical Estimate of the Expeéled Run-Time of TSP3 »
The ¢ost of getting the MST s O(n ) . Since k iteratiohs are

needed for convergence the overall complexity is 0(kn ) « As mentioged
* = before the observed k was[_/&l this means that algorithm TSP3 has an
(g@piri&ally—estimated) expected run-time of O(Z—) and guarantees - wher

the triangular inequality holds - an approx;éhte solution to the TSP
“which is no worse than~% times the optimal. - ¢

- 4.5 é,Modificatlon of TSP3 -

-

. In a TSP, if an edge has ‘a very high probability of being in the
optimal solution, then the followiﬁg algorithm 1is suggested by Proposition
co 3.3 ' !
: Algorithm TSP3.1 * '
Step 1. Use a very fast heuéistic technique to obia;n a\number of ,

»

Id ~ .
- goad tours. .

tep 2 Within the tpurs found in Step 1, choose -the edge with the

) highest frequency of occurrence. Let.this edge “be (a b) °
A Steg gbt the shortest Hamilton chain with end oints a and b .
‘ - : , Step 4 The chain obéained in Step 3 plus edge (a,b) is afl approx— N

@

imate solution to the TSP. .

( ’ This algorithm which is believed to yield bettler answers in sﬂ;rter

times{is sugges ted for future'research. S

» '

- o n r ' ’
b y o N
e ] . o o T wwme.numw“"‘“ . ’ - e L

ISR, ULV IR




4.6 Conclusion
An algorithm, based on a modification of the " reward-pupishment”

" me thod originally proposed ino[C r2], hagubeen'tésted on theTSP.

Theoretically, the algorithm prodices an answer no worse than ¥ times *
the optimal. A Monte Carlc experilment showed the tours obtained to be
.very close, to the exact solutions. An empirical.estimate of the expected
run~time of the qlgorit@p is 0(n3/4) . It would be,ipteresting to find

out whether this method 4s applicable to otﬁer combinatorial optimization
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( ( - Chapter Five .
' : - Experiments with Efficient Algqrithms for the TSP S
. v S
’ -

Various concepts from graph %peory haye greatly influenced the work
. on approximation algorithms for the TSP. These include,ﬁtﬂe minimal R

spanning tree (MST), the optimal perfect matching (OPM), the Euler cycle

(EC) and the Hamilton cycle (HC). 1In particule&, the contribution of the

MST was twofold: 1t provided good estimates\for the optimal tour o
i ‘[Chr4, Ei]l as well as efficient algorithms for an epproximate solution’

[Chr6, Ros1]. | -
' 2
In this chapter we analyze two algof&thms for the general TSP: the

. (first from [Rosl] is a typicai sequential tour-building technique (sec-
tion 5.1); the second is essentielly based on the above-mentioned graph-
theoretic concepfs (section 5.2).. In section 5.3 a variant of the egcond
algorithm - that addresses the directed TSP - is ipvestigated.

|

’ 5.1 Experiments with'a sequential tour-building approximation algbrithm

In dealing with a class of combinatorial problems - like the TSP -
for which all known exact algorithms have a running time that grows ¢
exponentially with the size of 'the input, it is often useful to estimate
the expected solution, orkﬁit i&Pe bounds on it. This estimate (or
bound) can serve several purpofes:

N 1) In some distribution management problems it is sometimesvnecessary
¥ to estipate the expected distance that would be inyelved in
supplying customers - when the eéxact locations of the customers
are not knowu in advance - in order to decide, for example, upon
- the mumber and locations of depots.
. 2) The branch~and-bound approach uses lower bounds to eliminate from
o further consideration wﬁgle parts of the decision tree that would

k4

otherwise have to be investigated. ‘ 3 -

3). Finally, and most important £6r our purpose,xwhen an approximatYon

. .r algorithm is tested a lower bound serveJ as% reference point
/
" against which near—pptimal solutions are compared.

%

]

»

( - . . The present section is concerned with this last application. 1In
N . .
:




-
»
>
fy
P
Kd

~
-

A ~61-
' ~ }/\

f. . section 5.1.1 estimates and bounds for an optimal TSP tour are d‘scussed.
Experiments with a sequential tour-building approximgtion algorjithm are
described in section 5.1.2 . In section 5.1.3 a possible improyement on
the quality of the solution provided by this algorithm for the-dase of an
ETSP is investigated. j ¥ , .

D W
*5.1.1 Estimates and bounds for an optimal TSP tour #

%

%y 5.1.1.1 An asymptotic estimate of the expecteﬁ value of _the optimal tour

( The length of the SHC throwgh n polntsAf; a bounded plane region of
| area A is shown in [Be] to be almost always asymptotically equal to
— K/_K for large n , where K. is a constant of proportionality. This con-
stant - whlch is independent on the shape of the region - was estlmated
ih [Ham] as being equal to 0.75. The skme theoretical and experimental
results of [Be] and [Ham] are obtained in [Ei]. ‘
: Co o , , o . e

. 51.1.2 Lower bounds on the optimal tour

( ‘) .,  These are described in [Ei] and [Chr4]. : - ' p
i) The sum of the shortest links ‘ .

4

In an HC each d%de has degree two. Let djl and dj2 be the
shortest and next shortest edges*dbnnected to node j in the _ ¢

. complete graph. Thus a lower bbund_on the SHC is given by

L
- g A
- & 1
i A

1: 1
i1) The minima} spbanning’ tree . .

2 If the longeét edge is removed from the SHC we are left ,
. . with a spanning tree which may or may not be the MST. ‘. ]
‘& - Thus ,; | R g . .
A SHC L~longest edge in SHC > MST s .

i . D o

o Let djz'denote the dis&&nce separating node j from its
v 8 . second meighbor. Then ; .2 !

v / P : max (d j2) < longest edge in SHC .
. 3 .

( t L 'y ,
It follows-that B, = MST + max (d..) is a lower bound "

( . : 2 3 j2
f on the:SHC. o g , -

— . ¥
~ |

»
) . o . R K
. { . '
[
‘
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iii) The asg}gnment;préblem o

The aséignment problem (AP) is represented by the following

linear program

L : !
; TERWE g1 321 Cag *ig
subject tO”'f Xgy = § %y =1 for all i and j ; and .

If we let ¢

must

TSP.

P
X = 0or 1. ,

13

@ , for all 4 , and add the condition that the solution

11
be a single HC, then the solution to the AP is a solution to the

Noting that the AP (vithout'the extra condition that the tour be

.a cycle) 1s much easier to solve than the TSP we get .

another lower bound on the SHC.

' ' ‘ than

an approximation 'algorithm.

We believe that the lower bounds B

2

Bs = min w , ‘

1* By and By are of better value

0.75 VAn for estimating the SHC when one is testing the performance of
This superiority 1is due to the followi%g

reasons: - ‘

1)

they are problem-dependent; in other words they provide a
value of the expected optimal tour which rnot only depends -
on the number of cities but alse on the structure of a \

given instance of the TSP; -

[E——

\ 2) they are not asymptotic estimates and hence can be - .
practically used for small as well as for large values of n ; \ ‘ E
. 35 they neither over - nor underestimate the opt{mal solution; 1
they are not restricted to the special case where the inter-

| city distance 1s a metric. g

L 4

; . ‘ . \
- It 'should be pointed out that Bl’ B2 and B3 are listed in the ordeﬂ
'The easiest bound \ "

A bepter

’ of increasing quality and computational difficulty.
to compute, Bl , relatively underestimates tﬁe solution,
esFima#e is provided by B2 and several efficlent algorithms exist [Dil,, |
Di2, Kru, PriJtto obtain the MST of a complete graph very rapidly. The

( ' ) sharpeét bo?nd, B3 ’ can ‘also be computed in polynomial time but require;

A

» 3

.
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" 5.1.2 "Experiments with NEARINSERT

3

~

a little bit more effort. Further improvements on B2 and B3 are desgrib—
ed in [E1] and [Chr4] to obtain even better bounds at the cost of addit-

ional computation time. -

An estimate of the expected solution that - in our opinion - combines

simplicity and quality will now be derived*@ﬁr the case where the inter-

city distance is a metric. It has been shown [Gibl] that for a large
number n of points in a région of area A , the expected length of the

MST is approximately equal to 0.68 YnA . It follows that, *for large n ,
|

/ / SHC _ 0.75/An = 1.102
"ST  0.68/An

An gstimate of the expected value of the SHC ielthus given by

B, = 1.102 * MST
4 g

Experiments with this estimaggyshowed‘tﬁat itlis tighter than Bl and B2 N

further it is easier to compute than B3 .

5.1.1.3 Ar? upper bound on the optimal tour - 3
In [Fe] it is shown that there always exist% a Hamilton chéin

through n points in a unit square of length less, than
/2n + 1.75 . -

It follows that ' B .
SHC < V2 (L + /o) + 1.75 .

B
e

NEARINS%B?Wis an appfbxima;ion algorithm for the TSP describgd.in
[Rosl, Ros2]. When the intercity distance is a metric the sglution .
obtained is always less tggn twice the optimal. -
5.1.2.1 NEARINSERT , . ,

Step 1 Start with a subgraph consisting of a single node,

~ say node 1.

Step 2 Find a node k , such that Sk is miqimal; add this P

+« pode to the subgraph and construct dn HC (for the:

’
o

I
1
|
|
B
' |
'l
i

LS

e Tt Pt

P

POV
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¢

subgraph) consisting of two occurrences of the edge
(1, ¥ . . '
Given an HC containing a subset of the nodes, find the

pred

63

Step 3

uncontained node k , closest to any contained_node

(i.e. find a minimal LI such that node m is in the

3
cycle and j is not, and take k = j) .

v

b Step-4 inen k find an edge (i, j) 1& the BC for the sub~
graph such that'cik + ckj - cij is minimal.
Step 5 Given k and the edge (1, j) obtain a new HC by
replacing edge (1, j) with edges (i, k) and (k, J) .
Step 6 'If there are any remaining nodes not in the HC go to
i ‘ Step 3 ; '
Else stop. )

5.1.2.2 A bound on the approximate solution

We now give a simple argument to prove that the solution obtained
by NEARINSERT is never greater than twice the optimal when the distance
measure is a metric. Fir?t we note that the nodes enter the cycle in
exactly.the same jorder §B§¥h1Ch they would have entered the MST when the
latter is obtained by the algorithm of [Pri].”

-

Since” .

MST < SHC - longest edge

il.e. MST < 'SHC -

it follows that if we can show

NEARINSERT < 2 MST

1

we would have immediately

*

NEARINSERT < 2 SHC »

A simple inductiv4 argument is now used to Qemonsﬁraie that NEARINSERT
3 ; Figure 5.1 shows that

. ]
< 2MST . ?Eis is obviously true for n

-
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b4 X, .
z . ' z
y y ;
NEARINSERT : | MST
¢ Figure 5.1
N . e
NEARINSERT = ¢ : + ¢+ c <c  +c + c + ¢
xy X2z yz xy Xz Xy XZ
~ =2 (c +c )=2MST ..
Xy Xz

Now,lassuhe this is trué for a number of nodes m , 3 £ m<n , i.e.
assume a partial HC has been constructed'by NEARINSERT which is no more
than twice longer than the corresponding MST (see Figure 5.2) .

- X .

Partial HC Partial MST

‘h
Figure 5.2

7 An uncontained node z is now inserted adjacent to x in the partial MST

as shown in Figure 5.3 .

ki

New Partial HC . New Partial MST

a

Figure 5.3 . D~
s
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4
7

The increase in total length will be Crr +c

- ny for the HC, and .
s for the MST. Since ; ‘

zy

- it follows that .

+ c S
- Xz zy xy Xz -

We have tacitly assumed that z was inserted between x and its neighbor
y in the partial HC. If this was not the case, but, instead, z was
inserted between u ‘and v '(say) then evidently

c +c _— f£c._+e¢e -c¢ .
uz zZv uv Xz zy Xy

Hence, in ge}('eral,

/ " New partial HC < 2 New partial MST .
P .
This bompletes the proof.

|
Ay

— £

5.1.2.3 Experi’lizents and result;s

Tables 5.1, 5.2 and 5.3 show the results obtained when applying the
algorith}n to ra}ldomly generated problems where the Intercity distance is
a metric. Every entryis an average over 100 problems. .

N

n I NEARINSERT/B,
. ' 4
- 25 : 1.287
.1 50 o . 1.276
. ; o
75 ) 1.274 T
100 1.272

. Ratio of the answer provided by NEARﬁISERT to the estimated answer Bl‘ for

various values of n .

< Table 5.1

¢ e
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:
n NEARINSERT/TSP1
. e
4 B 1.0000 )
5 ‘ 1.0113 ‘ d
6 1.0276 L
7 .1.0439
8 1.0468
9 1.0511 .
10 1.0547 )
’ 11 1.0738
12 1.0874

Ratio of answer provided by NEARINSERT to the exact answer provided by
TSP1 for 4 < n < 12 .

- Table 5.2
Average
n ‘ Running Time
25 . 0.033
50 0.130
, 75 ‘ i 0.275
- 100 : 0.485

Solution time in seconds required by NEARINSERT for various values of n

Table 5.3

From Table 5.1 it is seen that the'solution obtained by NEARINSERT
is about 7% more expensive than the estimate B4 . In Table 5.3 ; the
problems are Euclidean in two dimensions and TSPl refers to the exact
solution obtained by the algorithm of Chapter-2. The run-time of the
algoritﬁé‘is approximately equal to (0.5 x 10_4 X n2) secs, on the
average, see Table 5.3 . Note that it was shown in [Sh2] tbat,'for the
ETSP, NEARINSERT can be modified so that it has a run-time proportional
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ton log n . n Various prob‘}lemis that have appeared in the literature were
- ! |

tried using NEARINSERT ; the results are displayed in Table 5.4 .

‘ A
Best known y A Run-time

" .Source solution | NEARINSERT, deviation | in seconds

10 [Ba] 378 399 _ 5.5 0.005
¥ é
20 [Cr] 246 344 39.8 0.020
25 [Hel] 1711 2003 " 17.0 04030
33 [Ka] 10861 12520 15.2 0.050
42 [Ka] 699 834 19.3 0.080
48 [Hel] 11461 13157 14.7 0.110 .
57 [ Ka] 12955 14667 13.2 0.160 | H
100 [Kro] 21282 25785 21.1 0.480 !
+ .
\ ’
F Table 5- 4 ‘ = - /

5.1.2.4 A modification for the ETSP
— As Tables 5.1 to 5.4 show, NEARINSERT is quite fast in obtaining a
sa'tisfactory solution to the TSP. In the case offan ETSP the quality of
the solution can even be improved upon by modifying Step 6 of the

/ .

algorithm as follows:

Step 6' If there ‘are any remaining nodes not in the HC / '
go to-Step 3 ; \ A Lo
{
Else repeat the following as long as possible :
o - "Replace every intersecting pair of edges (a, b) _— i
- " and (e, d) by the pair (a, e) and (b, d)." ’ — i
v _ ° } |
Note that if (a, b) and (e, d) intersect then, obviously, d
N N P - “Z’ !
B
é cae+cbd'<‘cab+ced ’ / [
N $ . '
as it can be seen from Figure 5.4 ,
A
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b When the modified algorithm was tested, the resules were rather dis-

couraging as seen in Table 5.5 . The improvemenfon the tour is

x extremely small, on the average, almost n_one)'cistent in the majority of i
cases and%does not compensate for the additional time spent looking for '

\_( ) intersection.;;. ) " ‘

) ", n NEARINSERT/B4 .
> . + | 2 1.273 ‘ " ‘
, 50 '1.268 v ' )
75 1.265 ' ’
i 100 1.261 - ¢

/ . !

Average over 100 randomly generated ETSP's .of the ratio of the answ’er b

:provided by NEARINSERT (with some intersectlons removed) to the ’ -
) estimated answer B4 for various values of n . s
4 .
. Table 5.5 T ~\ ’ ‘ ;
This leads us to believe' that the tour obtained by NEARINSERT is in fact "
very close to optimal and that the&worst—case bound of (2 #*° optimal) is
U ’ for the majority of cases overly pess:_mlstlc.~ :
\\ 5.2 A rlxew heuristic algorithm for the symmetric TSP
, .
\\ 4 4 In th1s section we descr‘lbe and emplrically analyze a new heuristic )
B a:lgorithm for the TSP. The algorithm ‘whlch has relailvely limited -

. . . N
1 N ® R %‘c-(

) -
. N ""‘""q\-‘——-\
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( . storage and time‘:uniremenFs - ylelds a very goad approximate solution
to the problem. It combines the following ideas: k~optimality [Linl,
Lin2, Lin3, Lin4], perfect matching [Chr6], the minimal spanning tree
[Chr6 0, Rosl], Euler and Hamilton cycles [Chr6], the firgt two of which
areg discussed in sect@on 5.2.1 . " A description’'of the algorithm as well
as experimental results are the subject of seZtion g.2.2‘.
‘ L
o 5. 2 1 Z—Op;imal perfect matching fm
5.2.1. 1 k—c timalir
A travéling saleeman‘tour is said to be k—optimal-if it 1s (k-1)-

optimal and no k e@ge%gban be replaced by k other edges to yieln a

cheaper tour. &hié“écncept'—\used in the literature under one form or

[&]

the other - was first formalized and generalized in {Linl].
’ M L] }

The question of the applicability of a heuristic.rule to various .
combinatorial problems is posed in [Wei]. 1In particular, the problem of

determining the versatility of "k-optimality" was given as an example.
We shall try to provide a very partial answer to this question by

g k-optimality to the matching problem. We define a 2-optimal ' N
ot matching (TOPM) as a perfect matching‘no two edges of whigh can .
epfaced by two other edges to yield a cheaper matching. Efficient

) algorithms exist’ for obtaining the OPM for a graph of n nodes .
[Galy, La2] By using 2-optimality we propose to obtain a near-optimal
matching in time proportional on the average to n2 The algorithm to

be described is a typical local neighborhood searc algorithm (see

Chapter 6) and each iteration requires O(n ) operations.

M
.

“ Ay
-

"5.2.1.2 “2zoptimal perfect matching algorithm

‘s ‘ , Given a complete weighted graph with n nodes, where n is even.
Algorithm TOPM .

. ‘gﬁgg_l: Start with an avbitrary matching (ml, Wyseeesl J. ' . 2

,- 1-0dd,

where m is a node and (m s i+1)

. ks regresents ‘an edge of the matching.
Step:2 For i = 1,3,5,...,9-3 do )
> ' For § = i+2, i+4;, ... , n-1 do C " -

v b ~ v “y
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“5.2.1.3 Analysis of TOPM i .

» -71- [ S,
)
n’/} ‘
If‘cm o + < o < Ch m + c m
- S 1+1 M+l B 5 B B P 1
. then interchange m1 and mj 3
" Ao If 1 m + < Im <C + 2 m . p
‘A i j+1 _j 1+1 i i+l § i+l
then interchange mi+% and mj+1 .

/7

Step 3-. If an interchangé took piace in Step 2, go to Step 2 ;.
Else the matching on hand-is 2-optimal,
StOp- * -7
s

- We observe that Step 2 takes time proportional to n2 . In fact,
since-i is the number o?“edges in the matching, there are ( g ) ways of
choosing 2 edges out of n/2 and each choice gives two alternatives.

Every"iteratidﬁ of Step 2 therefore requires C%) * (%-— 1) comparisons. .

u

A very easy and efficient way of appraising the above algorithm is
now described. We are mainly interested in evaluating the’ quality of
the solution obtained and the time spent to obtain it. To‘gchieve our
first purpose we derive an upper bound for the optimal perfect matching

Given the SHC define two perfect matchings Ml and M2 such that,

M &< sic  %gad M, & SHC ;
. ‘ M, f\ M, g
MUy, = siC .

Assume without loss of generality that

.
]

hence c Mo %- SHC . o | ‘ 77

Now M, may or may not be the geM ; it follows that
oPM < L sHC . ™ :

2 ) P

From the upper bound defined in 5.1.1.3 , : _—

A ' -
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’ 4
[EARA ] -
( : . SHC < vV2 (1_# /\E) +1.75 , . *
o+ _ : N .
we have , OPM ‘5% [V2(1 + vn) +1.75] . i -
o The ratio (TdPM/Upper bound) determifies ‘the quality of the solﬁtioh. ‘ ‘
[ .
C e , A measure of the rurming time of 'the hﬂ.gorithm is the number of
-
£ RS times Step 2 is executed. :Table 5.6 shows the results of a Monte-Carlo
si){nulation where points were generated in the unit“fgsquare of the
- ' Cthesian plane and the Euclidean distakce used to represent the cost.
’ s . E'very entry is a.ri\av/erage over 100 runs.
w . 'f' ‘ - 1/.\x ; . . 2
. . ! TOPM/v ﬁ d Numb £t ti f Step 2 !
. . ) { n . pper Bound , umber o xecu’/ ons o ep 2 -
* / — -~ '
: N P T) 0.310 “ 2 1 -
d r »
\ e ; 20 0.360. o Ut 3 1
: " 30 0.378 1 3 .
/ o o B .
; 40 0.389 : 3 ‘
. s » .
P # : ! - o M
R - Sg(y) ’ 0.404 " 4@ )
‘. | 60 | . 0,407 . ‘ 4
I | o} 0.413 . 4- -
oo ) eo © 0420 o
.t ‘ g0 | - 0.424 : L ' ‘
S0 7] 100 0.426 . ‘ - |
. r 0 . a N - f '
. & . 3
m‘ ° 3 S N , ' » ! ,’ H
L : . Table 5.6 ) ' ) s
, CRg . ) W - o .
. . \?2% it can be seen from Table 5.6 , TOPM s are very good’ approximatipns .
/. o' o, , «
’ L . of OPM's that can be obtained in a‘very shor't -amount of time, on the N
i ; ’ i
Ll ’ fo -average proportional to n2 + k~optimality has thus been used success- .
, . N’& .V fully for the matching préblem ta o'bte?m a near-optimal solut‘ifgh at low a
’ . -. - expense. . " ’ o T
{ ’ ' . . # - , S
e . L ; , S Y : :
) . 5.2. 2 "Algorithm TSP4 ‘ . ) ‘ T Co
o G:[ven a complete gqaph with n/nodes, the following algorithm fyields ' \\’\ o
~(0’ <" ) an approximate solution to' the 'I‘SP. JThe ’%ondition imposed on the input
‘ ~ E w W »
' 0',1 " - < ! - . %
. " -~ v )
{ L : ] ,
i o \ . ® -
g . ’} fn ’ ] ” .
L & “‘ r . L - - .t ‘
. EY 2 byt g-um € -.-v~'1 Lol ""‘:"F' '"T:"““‘*""“'M’-—M‘ “ .u.\ta'; “3”"':"“;_ i . , . -&‘ ¥ g
TR et ,;‘_,“,‘;,;:_”MLAL_’ ‘_‘_ R ’:i}:=| ° ~ - “
A , . L — J T : * o ~
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Dy,

i d

C A fact that every node has even &gree. A simple back-
{

“plexity of Step 2 was empirically estimated fn section 5.2.1.3 to be .

’ ¥ ] ® ’
. 7 j : ) :
J \ 7 f :
- 3 ' . 57_7,3_ Y ¢ r n
b 7 \ :
' ¢
. 2lv .
1g that the cost matrix be\ symmetric; the cg;xdition on the output is that
every tity. be vesited just\once. N J
« Step 1. Find the MST.| ) : _
Step 2. . For the complé}le\ subgraph formed by "the nédes.with odd

degree in the MST, g;e’})a TOPM,

Step 3. Construct an Euler cycle through the Eulerian graph . f

f . ‘ '
formed by the edges of the plus the edges of "the
v m TOPM. =77 ' . s -
Step 4. Starting with each of the nodes appearing in the EC,

! obtain \a new Hamilton cycle. The chgapest, of the HC 8 ‘

i thus obtained\is chosen as fe fina] answer. Stop.

L X

zU
» ‘\ 1 i S
Although t:he algorithm is quite straightforward every .-step deserves i

'a few vords of- explanation. ) « ‘ .
Step 1 Any efficient algorjthm [Dil D12 Pri] can be used
a to get the MST. ’ ! .

- Step ‘2 The procédure %cribed in s ct&on 5.2.1.2 serves to |

s A

obtain. a TOPM. ‘ s o

That, the graph resulting from the-union of the edges ‘
~. of the MST and the TOPM is Eulerdan follows from the ' "

tratking proecedure will generpte the Euler cyclg. ¥ k]
Step 4 The method of getting a Hamilton cycle from the EC
is as follows: ! o ( »;
1 oy S
Aslsgme the EC ig (nl, n,

represent the .nodes of the graph and are not

ooty Ao nz) where the n,'s

&

‘".Enecessarily distinct. If tifo cbpies of the'EG are T .
: R N N )
' : placed contiguously, ) \\ :

o " '(\ N ‘L Va

! nl‘ nz, n3,_-..:,£/n£_1, 'n.z, nl, Fz, n3,... ,nl.‘l, ng’ \\ ,
X 1 . 1
. . one can build an HC by: startjing at a node, moving ‘\n . -
|
i

. N,
to the right and ‘introclucing node in the HC only ",
’ if it appears «or the first time. T e N

L3 , , . Vi . .
The run-time complexity Bf Steps 1 and 4 is (nz) . - The expected com—

<

- - : i

~ ‘

™ T, WD e el G AW ¢‘~{ % ' L , —
x '

R ——— . v ML B . ¢ N ' ‘

o
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# !
A ¥ O(n ) . Step 3 requires 0(n) operations. Therefore, the overall
expected complexity of ’I{Pl; can be regarded as being equal. to O(n ) .
The memory requirement is also.0(n ) when the-cost matrix is stored in
4 core. %) o . "

o ?
»
v
.

Ililus trative examples

5. 2;/1
P f We
{

b \

. " lower hapf of phe’{sWtriq matrix is shown along with the best known

“solution

-

‘ fgllows.

. 5ptimal one. T

¢

small problems that appeared in the literature.

to the p/roblefn.

Note that in every case the answer agrees w?th the conjectured

¥

'

=/

illustrate the above algorithm by showing its performance on

In every example

- B *
The step-by-step solution provided by TSP4

A

)

the

. Example 5.1 [Dec] 4
v . . .
\ For the cost ;guatrix in Table 5.7 the best known solution to the TSP
is (1, 5, 246, 4, 3, 1) , with a cost of 33 units - i
v . : . ' ’ L
' ‘ 2’ & . ' ' '
v ‘ 3 |0 12 ‘ - l
12 ( . r& * . e . - 3
: 4 | 18 s 4 <. :
I ad e 2 *
5 5 12, 18 14 . “ .
6 |'10 j6 16, , 6 16 o
~ | 3 ¥ 3
", ‘ v 3 M4 - !
. i
“ ' Table 5. 7 . , ’ 7 i H
. . -
E - RO
.o . Step 1. Get the MST as s owyn in Fig'ure 55. ) N / g K
V: Step 2. Get”a TOPM : - ) v ] . !
. . SRR . : ,
, o Starting with the perfect matching : ..
\ ) h - )
3 o {,2) , (5,5)} , we get the TPPM o i
¥ L4 - ' ’
(@a,», @, . r4 m
Step 3. An Euler cycle is obtajned inllthe Eulerian ;‘f ’
. “ §raph formed by the edges of MST UTOP—M ]
: - . (see Figure ?.6) The EC is Moo \ "' ‘
. Sy 2,5,2,76, 4,3, ). BN
Step 4. Get the shortest Hamilton cycle obtainable from the EC Y "‘Z{

9! =




J . .
L
2 )
*
* ~
.
i * + .
' o
H t
' )
)
‘>
i) v -
a .

e LT L i
' ] PR
i P
e T I

°

o




[ peTee—

¥ e s T

¢ s
(shown by asterisk in Table 5.8) .

HC Cost .
(1,2,5,6,4,3,1) | 42
. *(5,2,6,4,3,1,5) 33
- 'g
) ' Table 5.8

Example 5.2 [Danl]

~ 1is 1, 3 2, 4, 5, 6, l) , with a cost of 22 units.

For the cost matrix in Table 5.9 the best known solution to the TSP

-
EY

2 4 -
\
3 3 2 . .
s |7 s \
5 7 7 .
< .6 16 7. 3
"
1 2 3 4 5
Table"S5.9 : e
” ! 4 . . , ,
. Step 1 Get the MST as shown in Figure 5.7 . ¢ ) ‘ "
Step 2 Get a TOPM : N . . A , p
* , _. ‘the only choice is {(1,6)} . . f A

Step 3 From the gragx in Figure 5.8 get )
A art Euler Cycle' : : ) ¢ Py
v EC = (1, 3, 2, 4, 5, 6 1) .

Step 4 Get the sho‘rte‘st HC ob:t'ainable e y ‘
\/ from. the EC ; v ’ a ’ '
there is' only one choice: HC = (1, 3, 2, 4, 5, 6, 1) .

Example 5.3 [Rzg]{ ' * ;

e
For the cost matrix in Table 5.10 the best known sglution to’ the
TSP :l;'g“ (1, .6, 2, 3, 5, 4, 7§ 1) , vith a cost of 179 units.

e e R
5
~

.

v . v 3 . P

\
N
EN
&
.~
%
- ik e -
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40 29

55 68 47

®s5 |28 35 22 31

17 20 24 5L° 20

7 |33 56 46 27 25 36

Ny Table 5.10
Step 1  Get the MST (see Figure 5.9).
/ Step 2 _ Get a TOPM :

~r

GStarting with PM = {(1,2), (3,4), (5,6)}

we get the TOPM = {(1,6), (2,3), (4,5)} . ”
Step 3  From the graph in Figure 5'.10 éet an - ™
_Euler cycle: c -
~
EC = (l’ 6)‘ 2’ 39 5: 4’ 7! 5, 6’ l) .
s t
Step 4  Get the shortest HC obt}ainable from the EC
(' " (shown by asterdsk in Table 5.11)
: YoHC Cost .
- g f . L4
. %(1,6,2,3,5,4,7,1) 179 .’
(2,3,5,4,7,6,1,2) 192
' ,7,5,6,1,2,3,4) 195
1 i .
Table 5.11 ' '
L7 . -
- . ¢ .
»532.2.2 Experiments . . g -g’(" i

" k’
» ' In order to evaluatethe performance of TSP4 on larger problems

,various expefiﬁxengs are performed. First, the TSP's of Table 5.4 are

tried. The results are shown in Table 5.12 .

{
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a | Source Cost of best Cost of solution AR Solution time
known sélution by TSP4 deviation | in seconds

10 [Ba] 378 387 \ 2 0.01

20 [Cr] 246 280 13 0.04
, 25 [Hel] 1711 1796 4 0.04

33 [Ka] 10861 12078 11 0.11

42 [Ra] 699 752 7 0.15

48 | [Hell 11461 13478 14 0.23

57 [Ka} 12955 14182 9 0.42°
100 | [keo] | 21282 123789 11 © 1.86

' | ek e T
Table 5.12 ) 7

Monte Carlo experiments are now described. Random points are generated ;
uniformly in the unit square of the'Cartesian plane and the traight— < ?
line) Euclidean distance is used to refresént the cost of going from one f
city to the other. The préblems aré tﬁus symmetric and - incidently ~ )
the triangular inequality holds. Results are shown in Tables 5.13 to
5.15 where : / -
TSP4 = cost of ggproximate solution obtained by TSP4 » ) ‘
B, = 1.102 % MST , -y
TSP1 = cost $f exact solution obtained by TSPl , .
RAND = cost of a random solution obtafned by a fast algorithm to {

k £
generate random permutat®ns [Mas] .

~ - ‘ e
Every entry in Tables 5.13 - 5.15 is an average over 100 runs.

n TSP4/B4
25 ¥ 1.231
. 50 . 1178
B, ¥1.177
. 100 1.171
Table 5.13




O

( : n TSP4 /TSPL
4 1.000
¢ 5 . 1.010
6 : 1.025
~} 7 1.018
8 . 1.037
9 1.027
10 1.027
11 e
i________*________Q_;__.,,*——~—-”’”"”12’///””” 1.033
S Table 5.14
» 3 lé X
Ay M’T L
. , \K’ -
n ‘ TSP4 /RAND
(» . ‘ . 25 0.338
50 0.238
75 0.195
| ' 100 0.171
: T e ‘ Table 5.15
v ¢ N -

,. b
e et o o A
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We note that
- . “1)" For n >

\ - than the lower, bound.

1
than the exact solution.

- o3) For n 2 50 a random solution is mor@wthan 4 ¢

the approximate solutt:n.

* verified as shown in Table 5.16 .
, » . ‘ . -

T

50 the approximate solution is less than.

2) /For n < 12 the approximate solution is less than 4% more costly
» a \

A

The run-time of ¥ISP4 ., proportional to n2 s Was also experium;talfé

“

X 2

imes as costly as

« oo

20% mére costly”

Pial

M.
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We observe the following

‘
-

-5

1) Solution time is equal to kn 'where k"ﬁ 14 x 10 .

2) The data structure that achieves this speed -"at the expense of

storage - is the adjacency matrix form used to store the

Eulerian graph.

to save one space - an increase in computation time of 25% is

observed.

.

1f on€ uses instead the edge-list &tructure —

»

3)" The run-time can still be‘improved‘ upon 1if the Eulerian graph

is stored in the (more cogplex) form of.a doubly-linked

adjacency list. -

b

5.2.2.3 Comparison with other #lgorithms

In this section we briefly compare TSP4 with the three other algorithms
that have appeared in the literature and use similar ideas. The main

The algorithm of [Lin3],

differences are summariz

presently considered as the most efficient (published) heuristic -’

words, in connection with 2-optimality used in TSP4.
1) Getting a 2-optimal tour would require much more computation - i ‘e.

is high in ¢

the constant c

ed in Table 5.17 .

v

<«

1 1

LY

c?_m2 where m i{s the number of nodes with odd degregi.@n MST
(usually m << n) , and c, is a constant (<:2 << m as shown in
T’able 5.6) . " "
1 »

- ° f .’

9 - P

We note that:

,regarding the quality of the approximate answer - deserves a few more

J
2 . Average sclution time Solution Time
( n n Ratio in seconds for TSP4 Ratio
] n
L < . {“1 g -
25 625 Y 0.085 ﬁ 136 x 10 -
» 4 ' 4.1
. I
50 00 0.349° . 139 x 10
‘ X 2,25 2.3
75 5625 s 0.831 | 147 % 1070
38010000 | '1.462 146 x 10
; - , ra—
‘ Table 5.16 '

’

n2/— than getting a TOPM which requiresa
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'\t‘
Concepfs Average solution .
Algorithm “ eed time for a Quality of solution | Complexity | #
100~-city TSP ) ,
" ' v
_—]Less than 0.5 NEAREST -
s OPTIMAL © 2 ‘¢,
| [Rosi} | MST sec. for the IBM 0(a")
370/158 Statistically,
NEARNSERE *; 5
/ 4
: 2.2
Optimum obtained " (empiricq
[Lin3] k-optimality| 3-4minutes on al estimate
GE 635 with above 9g7% N
confidence. | of expected :
\ run-time) 4
- More than 100 >
MST ore than Approx.Sol./Optimal
(Chr6] OPM secs. (estimat- | o). < 1.5°. 0(n)
EC = | ed for the IBM X \ L}
370/158) ‘
& [ ol 2
MST Less than 1.5 Statistically, n- (empiric~
- N
TSP4 TOPM secs. for the TSP4 <'1.2 al estimate /
EC IBM 370/158. B4 - " of expected '
HC [ run-time) %
2 & t
Table 5.17
2) The algorithm for getting a'2—optimal tour starts with a random tour Lo
which . may be quite far from optimal, several runs are thus needed to y
guarantee,a high probability of getting a good tour. TSPA starts L\_»
with the MST which is a very good approximation to the final solut— .
ion: in fact most of the edges of the MST are very likely to bé in “64
the optimal tour. (This point is studied in more detail in Chapter 6). ;
3) For large m , it is pgipted out in [Linl] that 'the p}obability for a
- 2-0pti&a1 tour ta befthe optimal solution is very Yow. ' §
o :
2 X, t .
/ ' .
&‘\\//’ s 3 ‘
- ! % ) ‘ . .
\‘? s } @ — ° oy .
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5.3 A new heuristic algorithm for the directed TSP

The majority of publig&ed algorithms for the TSP rely primarily on
the symmetry of the cost matrix. On the other hand, algorithms for »
general problems - which do not assume symmetry - behave very badiy on

" symmetric cases [Beo2, Chr&].‘ In this section we describe ;n algorithm
especially désigned for the directed (i.e. non-symmetric) TSP. «The,
algorithm is'intiﬁate{y related to TSP4 and uses the same general con-

L} °

cepts.
!

@ Before stating theﬁalgorithm and reporting on coﬁo;tational exper~ o
ience we give one definition. A minimal directed spanning graph (MDSG)
is a subgraph of* the complete directed and yeighted.graphkon n nodes
which has minimum weight and whose underlying graph is connected and
acyclic. This}is equivalent to saying that the underlying undirected
‘graph is a MST in which edge (a, b) is sucﬁ\that T min’ (c ab ? cba)

where (a, b) and (b, a) are edges of the comp ete graph. -

& [ w

It should be noted that the MDSG differs from_rhe"MpST in that it

N

1) 1is umrooted, and . ' A - {\

2) has no restrictions imposed.on the in or out—dggreq,of’its nodes.

-

e !

5.3.1 Algorithm TSP5 : R

leen a complete digraph with n nodes and its (nonhsymmetric) cost

>

matrix, the following algorithm gets a nearly optimal solution to the
. Y
j'\ ISP defined on that digraph. ’ . / ) -

eV |

-

Step I Get the MDSG. ¥

-

" Stepf2. Add a*2—optimal set of args to the MDSG in order to
nake the digraPh thus obtained Eulerian. A

Step 3. Fdind an Euler circait in the &igraph. |

o« Step 4. Among all Hamilton circuits obtainable from the EC

choose the one with minimum cost. Stop.

Comments: - . S v

Step 1. If we replace every 4 by ofin (cij , cji) in
*  matrix, and apply an MST algorithm on the-Tg
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( , MDSG. It is important to store along with,every entry in
.- the cost matrix the direction of the edge having that cost,

‘ o i.e,i=>jorj+1. .

, Step 2. By adding to the MDéG arcs leaving nodes with out-degree

) ’ deficiency and entering nodes with in-degree deflciency

S we getla balanced graph which is also;connected and hence
Eulerian. This set of arcs can easily be made 2-optimal
whide keeping the arc directions.

. . Steg”3?f Here we note the importance of keeping the arc directions"

as described in Steps 1 anﬂ 2 above. This is clear from

3 . v’
. the examplé In Figure 5.11. . -

)
i
)
i
1
{
{

//// MDSG + Matchiﬁg arcs . MST + Match}ng arc }
! ? - !
- ! ' \‘\ !
Figure 5 11 N ,
. . ) ;lVQ; . , LN
s The Euler circuits resulting from the two graphs in, ° "o
) Figurg 5.11 will be quite different! ?33 ] ; ’ . i
; Step 4. This step is straightforward (see the discgfsion on %
' _ Step 4 of TSP4 in sectio O
I . 'I }
" - g LI

as'it can be easily observed.

. 5.3.2 Illustrative exangples

»

As we did forygsfzr we illustratgfthe operation of TSPS by trying

L it “on small probléms published in the TSP literatﬁig. The. (non~- , -

symmetricbcggt—matrix is firgtrgiven, alshg with "the best—known tour.
. The step; 6§;step solution of TSP5 ﬁollows. . .
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Example 5.4 [Lit] - . :” %

For the cpost-matrix in Table 5.18 the best known (directed) TSP tour
© 4is (1, 4, 3, 5,

6, 2, 1) , with cost 63 units.

7 o L <
" 1 @ 27 43 ) 16 30 26 ’
- 2 7 - 16 -1 30 25 /
- 3 | 20 13 - 3 .5 0 ’
4 | 21 16 25 w- 18 18 - '
s | 12 Tae T 27 7 - us = 5
. 6| 23 s 5 9 5 - / -
: . /
~ 1 2 ' 3 4 5 6 77
\ Table 5.18 ' //
~ 1
Step 1. Get the MDSG as shown 1n'F1guré‘5:12 . .
’ Step 2. Get a 2-optimal set 6f additional
. Tarcs, ‘ K .
Nodes with out-degree deficiency = {1,4,6}
J | :
Nodes with in-degree deficiency = {2,3,5}
We start with {1, 2) s (4 3) , (6,5)} and improvg by
exchanges to get the 2-optimal set {(1,2) , (4,5) , (6,3)} .
Step 3. Get an Euler circuit in the Euilerian WA s
( graph of Figire 5,13 ;
1 . . EC = (1,2,4,5,6,3,6,2,1) ‘
[ . . {
: . v
Step 4. Get the shortest Hamilton elrcuit obtainable
A c from the EC (marked with-asterisk dn‘ Table 5.19).

i T o

I
HC Cost—]{; o
aoimesn |l |
- & '
*(4,5,6,3,2,1,4) 64 i .
(3)6’2,1,4,5,3) 73 "- . )
* ' /3: ) 4
Table 5.19 T
‘ I
et + e “"Em ‘ d

v
R an B mat T3
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Example S5g9: [Beo2] ‘
For the cost matrix of Table 5.20 the best known (directed) TSP tour
is (1,2,4,5,6,3,1)¢, with cost 94 }giit:s"’

1| - 7. 65 68 3 81
2 |19 ® 22 27 59 29"
3 |14 43 ® 62 7 65 ‘
4 76 53 64 a6 51 ,
il 5 |39 58 38 27 w 13 S
6 |46 67 27 1 - 38 *f o« -
° 4 2 2 3 4 5 6 3 )

Table 5.20 -

% v

1
e aarand

Step 1 Get the MDSG (see Figure 5.14) .
~ Step 2 Get a 2-optimal set of additional arcs. ‘ (
( Starting with {(5,3) , (4,6)} we get the 2-optimal set
{(5,6) , §4,3)] . .
Step 3 Get an Euler ircuit fr‘om the graph in ‘ 4
. Figure 5.15 ; C ‘ " .
EC = (1,2,4,5,6,4,3,1) '

/0 ' . «
. .

-

Step 4 Get the shortest HC obtainable from the EC »
(marked by asterisk in Table 5.21) .

HC L Cost ’
. *(1,2,4,5,6,3,1) - 94 , MW

~o . . I
) (5,6,4,3,1,2,5) 168
i ) -

Table 5. 21

L
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Example 5.6 [Lall] ‘ ~

»

For the cost matrix of Table 522" the best known (directed) TSP tour °

is (1,3,9,4,8,5,10,6,7,2,1) ’ with cost 146 units. ’

L] . .
1 24" 18 22 31 19 33 25 .30 26
2 |15,/ = 19 (22 26 32, 25  31. 28 18
3|22 23 © 23 16 29 27 18 16 . 27
4 |24 31 18 w 19 13 , 28 .9 19 27
, 5 123/ V18 34 20 © 31 24 - 15 25 8
6 |24\ /12 17 15 10 - 11 16 21 31
7 128" 15 27 35 19 18 & 21 22 19 e
8|13 24 18§ 13 13 22 25 = 297, 24
< ‘ i
9|17 2 18 24 27 24 3 31 [ 18 -3
10 f 18,7 19 29 16 - 23 12 18 31 23 © !
1 2 .3 & 5 6 7 8 9 10"
Table 5.22 - |
. . N ¢
@ t ), > .
— .' ' L \/\-—\ 1 '
ét%g 1 Get the MDSG (see Figure 5.16) . ' ;
Step 2 Get a 2-optimal additional set of arcs. -

This is given by: A . R

{(1,6) , (2,3) , (5,8) , (5,4) , (7,6) , (9,3) , (10,6)} .
.Step 3 Get an Euler ‘edrcuit in the graph of+
" Figure 5.17' ; EC = o " -
(16239354,8,?10676583[) ‘ ﬂ‘?

’
’
=

t .

3

Step Z Get from the EC the shertest possible HC. . %
Thisj,s. (123948510671) H
with cost 169 .~ . ) ' -

B ey
A
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5.3.3)fExEEriments ‘ _ 0 ' d
éry feﬁ ;symmetric cost-matrices for the TSP appear in the
1ite4§ture, and even these are for trivial values of n [Ac2, Beo2, Conm,
La%?’Lit, S®s, Wal. 1In contrast with the symmetric case it is quite

cofiplicated tg derive an estimate for the sdlutions, or put some bounds .

y : -
on it, for-general directed TSP's. A variety of lower, bounds can bes
dbtained by solving the corresponding assignment problem [Beo2, Chré4].

/These usually involve non-trivial computations. Therefore we consider

ﬁ‘only asymmetric cost-matrices where the triangular inequality holds
| (every city visited once) and take the MDSG as our lower bound. We
describe two ways of getting a random asymmetrisﬁgggp matrix where the
triangular inequality liolds. ° ' . , v
1) Every entry in the cost-matrix is generated randomly usiﬁg the ;
appropriate distribution; then a large number K (larggr than any g ' ?
cost) is adde& to every entry. g )
It is obvious that, ‘

if a+b < ¢ then (atK) + (b+K) > (c+K) .

2) ~and y coordinates of n points are generated randomly. Then,

of theé cost-matrix is taken as the Euclidean distance

il .
between p&intS~i‘and j . . Entry Cji is now obta%?ed from .

entry c

c =cC + 6 ‘ L

, ' 31 - %43 T ‘
where § is an arbitrary small number. This method is 11lustrated
4n Figure,5:18 ; note that if in the cost matrix of Figure 5.18(a),.

- L . N
i’ - .
i j k /
¢ 7
i w atS b-6 .
i a w " ct+6 ’ > . *
]
k b c L] -
: r(a) Cost - matrix (b) Complete directeﬁ graph

'Y v
ob

Figure 5.18

’

.« ¢ {
it X LTI i TR N Saainihah A
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' ¥
2 { i g:H: >c¢ , atc > b and btc > a hold, then the six inequalities in the
po T digraph of Figure 5.18(b) also hbld. ’

Table 5.23 summarizes the results of Monte Carlo experiments where: -
N TSP5

1]

cost of approximate solution provided by TSP5,. and

OEN : ) - MDSG = cost of the MDSG.
" o,
o Y . Every entry is an _average of 100 problems with asymmetric matrices and
. " N
"f : .\f Py the triangular inequality holding
[N ‘:‘ '; ¥ ~
DI n TSP5/MDSG Run-time in seconds L
/NS W « > —
el s i f 25 1.50 . 0.1 u
~—t "{ .
- '.3., '; 50 . 1.48 0.7
o 75 1.45 - , 7
100 | 1.45 3.2
™ i 1
1 .
¢ i
Table 5.23 : .
» "We notice that the computation time is - on the average — equal to
B ) {32 x 10'_S b4 nz) seconds approximately. v
oo ' Finally we point out that the quality of the®answer can be highly .
. A impr/oved - at the cost of an increase in -the run—time - by getting an
/
- optimal ’bipartite matching :Ln Step” 2, us;Lng the 0(n ) algorithm for, the
assignment problem [Bou]. ¢ T .
6 i .
) ’ 4 . ’ . . - '
|,' - . ¢ N n(‘ e %
- . .L. - , N
" r Al
P ) , q‘ .
) - \ Y
» L3 ' ‘
[ e
v
- . @ . J
1 N h '
o s ~ i - k" !
, 1 '
® ) - 5
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5.4 Conclusion - '
(‘ ' The main results of this chapter can be symmarized as fo4lows~
' )f‘\mVarious - apparently unrelated - methods were. combined ;:o yield ' »

!

0

efficient approximation algérithms for the TSP. /
/
2) Near—optimal solutibns to the minimum-weight perfecﬁmatching

!

problem have been obt,ained‘byu applying the concept of ’k—optimaliity.
3) The minimal directed spanming graph < a generalization of the

minimal spanning tree for diret’:ted._’graphsl - was used to address

the asyn% TSP. L 1/
! ¢

% W1 :
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o " Chaptef_81x ' e
On Local Neighborhood Search and the TSP

~ N

A very efficient technique for obtaining approximate solutiens to

combinatorial optimization problems is known asg 1ocaﬂlneighbqrhood search

i
I

(LNS). LNS is defined as follows [Cof]: j

"Let S be the set of feasible solutions to a combiqétorial optimizétion L
° 3

prob}em, then . ) ! \

1) A neighborhood N'is defined for‘thg problem if for eyvery s € S we

define
| N(s) €& S as the neighborhood of s . -
C 2) An initial solution sl € S5 1s chosen by a technique T .
3y If C(Si) is the cost of solution 8 » then a policy P is used
: to search N(s) and choose Sif} £ N(si) such Fhat i
C(s;,q) < CGs)) , i .
whenever this is possible.
—— If -such an impro%ement does not exist we say that sidis locally

optimal with respect to N ."

<
-

' Thus LNS algorithms start with anm initial solution and attempt to

orhood, following some specific

improve upon- it by searching its neig
" rule that yields a better solution. I provements are adopted as soon as
they are found and the above procedurd is applied to the new solution {
thus created. When no futther imprgvement can be made the solution on , ,z
hand 1s called a local optimum and| represents an aﬁ%rqximate solution
to the problem. The process may be repeated several times each time
starting from a different initial swg}ution. The best of the various
local optima is then selected as the fimal solution., |

.

< ° -~ Q
Algorithms of this type have proved excellent at obtaining near-

optimal solutions. A very good example of a successful application of

this technique is the principle of k-optimality (see Chapter 5) and its ,
variants described in [Ad, Ba, Chr3, Cr, Linl, Lin2, Lin3, Lin4, Rei,

Stel, Ste2] for the TSP. Yarious analyses of LNS algorithms can he found
in.[Cof, Pap, Savl, Sav?]. '
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As in [Co%], iet us denote this category of algorithms by LNS (T,P,N)
where ,
1) T is the technique by whitch an ipitial solution is chosen;
2) P is the policy by which the neighborhood is searched for improve-
ments; and | )

33 N is the neighborhood searched.

'
-

Obviously T, P and N are, in general, problem-dependent. However, the

initial solution provided by T falls naturally under one of the classes

1 - Random solutions
2 - Constructed solutions
3 - A combination of (1) and (2). ¥ ’

Now, although P is independent of T, -the local optima arrived at in N

will heavily rely on the initial starting points.

; .

A very impértant issue in designing an LNS (T,P,N) algorithm is
hence to decide on whether'it is preferable to commence with a biased
solution or a purely random one. Again the finaf decision will inevitaﬁly'
be problem-dependent. It is generally believed that for the TSP pu}ely
random skarting tours work best [Cof]. Given a neighborhood N and a search
policy P, , for the TSP, the theme of this chapter is an attempt to
answer the above question about T. We essentially show that our experiénce
with a new heuristic algorithm that uses LNS contradicts tﬂe ;bo;e
assertion about random starting tours. In section 6.1 we describe how
biased starting solutions are constructed and used to obtain local o
optima. Solutions of 'classical' TSP's, obtaiéed by both random and
biased starts are compared in section 6.2 . Our conclusions, supported

v

by extensive Monte Carlo runs, are presented in section 6.3 .

- -
6.1 An LNS algorithm for the TSP using biased starts

Algorithm TSP6

Step 1. Get the MST.

Step 2. Get a TOPM of the odd-degree nodes.

Step 3. Get an ECpin the graph composed of the edges of the
MST and those of the TOPM.




s

N :

"
\

Stép 4. Among all HC's obtainable from the EC choose the one s
( with minimum cost. ’

Step 5. Starting with that cycle get a 2-optimal golution. |
We observe that _ ‘ . E
’ 1) 1LINS exist; in two places in the above algorithm: .in Step 2 Qﬁére//
" a TOPM is obtained and in Step 5 where a 2—optima1(HC is used aj/

the TOPM is

the final approximate solution to the TSP. As far a
conéqﬁned we always start with a ran?om perfect g\t?hing and make
it 2-optimal by the usual procedure. This is dug to the fact
that we do not know of any efficient way of biasi g.profitably
the starting solution when the distribution of the wgights is
not known [Av2]. Hence, Step 2.will not be discussed. further.
In obtaining the 2-optimal HC, however, we start with the best,
’ < " circuit obtainable from the EC (Step 4): this is hence a "biased"
stgrting solution.
2) Steps 1 to 4 are precisely algorithﬁ TSP4. One could therefore
phrase the above algorithm simély as follows:
"Get a 2-optimal tour starting wiﬁh the HC provided by algorithm

rsBan.

A Y

’ We propose to compare the apbroximate solution thus obtained, to a

local optimum arrived at starting with a purely random toyr.

.

6.2 Testing TSP6 on 'classical' problems
Table 6.1 shows: ‘ '
1) the results obtained when applying the new algorithm to the set

~

a of famous TSP's of Table 5.4, the cost of the final tour in .
each case being denoted by TSbG; and

N
w

2) the corresponding figures oﬁfpined when starting with a random
solution and making it 2-optimal, the costs of the final tours
being denoted.by RENDL . ’
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‘ } ‘
‘ - | Cost gf best ‘ Run- Run-
" n Source | o o colution | = TSP6 " time | RAND1 § time
: in secs. in secs.
10 [Ba] ) 378 381] o.01 378} o.01
20 | [cr] 246 © 21| o.05 292 ] 0.12
25 | (Hell 171} c1m1 ) o.os | 1) o.04
33 [Ka] 10861 10861 | 0.13 | 11317 | 0.06
42 [Ka] " 699 724 o0.29 | 788] 0.12
N X [Hel) © 11461 12585 ] 0.35 | 11828 0.20
57 | [ka} ~ 12955 13747} 0.65°'] 14221} 0.31
100 [Kre] 21282 22004 | 2.16 | 23626 | 1.73

* Table 6.1

Here we should.note that TSP6 as_.it stands leads to one solution

3

However, in order/to apply the concept of LNS in 1ts full pgwé;, one

should start wiZhanz;ral -either biased or random - feasible solutions
For the purpose

and choose the best local optimum that these lead to.

of comparison we achieve this by m dif*ing our algorithm as follows:

AlgoriéﬁijTSPG.l o

“Steps 1 - 3 : (as before) ¥ \ :
Step %' : Obtain all different HC's obtainable from the EC.
Step 5' : Make every orle of these cycles 2-~optimal and choose

Also, the number of 0dd degree nodes in the MST being at most n , the
/ -
maximum number of edges the TOPM (can possibly havelis n/2 . It follows

that the Eulerian graph, regulting from {MST l) TOPh), has at most
%% - 1 edges. Now, if every ndode on the EC leads to a different HC,

. s ‘ \
then the maximum possible number of{gf's'is
3n

mentally observed that weach of the 5 - 1 HC's reﬁuiées on the average

Pl T
O(nz) steps to be made 2~optimal. It follows that the overall run-time

5

¥

3n "

1. It was experi-

Y

!
:

,-\
S T

LS
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of algo&ithm TSP6.1 is proportional to n3 .

Table' 6.2 exhibits the result ;
1) Using TSP6.%‘ to obtain an approximate solution, the cost of which
we denote by TSP631 .

btained ‘by:

2) Starting with 2n random solutions,'making each one of them 2—op§ima1
and‘choosing the best solution thus .obtained, the cost of .which we
denote by RANDN .

[o]

o

Note that:

PO

1) The observed run-time-for TSP6.1 +s approximately 10—4 n3seconds, .

on the average. » '
2) The number (2n) was chosen since it is considerably larger fhan the

possible number of different HC's obtainable from the EC.
. » ~ (f

n Source | DeStknovm TSP6.} ‘,gggg RANDN E?;;
solution in secs. in secs.
10 [Ba] 378 378 | o.10 | 378 0.12 | °
20 [crl 246 266 | ° 0.80 259 2.25
25, [Hel] 1711 | 1711 ASl.éS 1711 2.84
"33 [Ka] 10861 | 10861 | (J3.70 | 10861 |  7.36
42 [Kal 699 | 699 | 7.80 713 22.05
48 [Hell 11461 | 11574 11.30° | 11769 22.90 | ¢
57 | ixal 12955 13300 19.50 | 13169 51.79
100 [Kro] 21282 | 22112 | 110.20 | 21503 | "190.62
“‘ Tahle 6.2 ,
o . _ ) )
6.3 Discussion s . |

Looking .at the figures iﬁ Tables 6.1 and 6.2, it appears at first

T t 3
glance that in some cases random starts lead to very gqu results: | some-

times better than the biased starts, sometimes even optimal. This
observation, however, is misiéading.' To explain why‘one should ndt over-
estimate tﬁe‘;elatively good results obtained by starting with random

initial, solutions we give the following two reasons:

1) k-optimality can be tested in O(m) comparisons, where

/

<

ey, ofi 1 W s 0
N -t

PR Rl

-

R ]




do

- -100-~

’

k-1 as shown in [Chr3}. This is the Eomplexity of

= () (e-1)1.2
each iteration. We noticed that a large number of starting solutions
is needed in general to obtain a good final solution among all local

optima. It follows that if this number is of 0(n) then the -

“~

° theoretical - complexity of the algorithm for Zioptima% solutions
" jumps/ frem nztto . o

]

2) In most ¢ases a random solution is further from a local optim;; than
a biased one; and one particular random solution may require

(n“) iterations before it becomes 2-optimal. This point

several
is ver

in

important for a correct interpretation of the results:

T expériments, when it was noticed that a random solution

i vill require a prohibitive computation time the program was stopped

this Happened quite often. Only 2-optimal tours obtained- from

<

3

random ones in less than one minute of CPU time are reported upon

i

in this chapter, ,

The two points made abeve lead us to ask the following question:

’how many cycles would have at worst to be considered by a LNS algorithm -

looking for a 2-optimal solution starting from a random one - before the

answer is obtained? ‘ \ ‘

& 3 L] \

We knbw that all pefmutations of'nvobiects can be obtained by pair-

wise exchanges [Sd] A tour being a permutation of the cities, it is

" .therefore easy to deduce that one can obtain all (n-1)1/2 different

. tours of a traveling;salesman by starting with a random tour and then

exchanging two edges at a time as illustrated in Figure 6.1 for'n=5 .
Each of the 12 tours, ekcepk the first, differs from the preceeding one

o -

by exactly two edges. , «
- .
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Figure 6.2 [Avl] shows a complete weighted graph on 5 nodes for
which an LNS algorithm, starting with the random tour (135241), has to
, consider ‘7 other.tours before the 2-optimal tour (123451) is found.
. .I ’ l 3
‘ 3 By —
X >
4
3 7 ’
{ ' Figure 6.2 o " .
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Tﬁi sequence examined is: (135?41) , (132541) , (1254315!, (i25341)\,
(143251) , (142351) , (124351) , (123451) .

For n = 6 ,an LNS algorithm that w;rks on the graph of Figure 6.3
lookiﬂg for a 2-optimal tour, may ﬁave to consider 16 tours it starts
with f;e random tour (132564i5 to finally\terminate with (1263451) as
shown in Table 6.3 . This is af increase by a factor of 27~ Notdng that
the complete/graph of Figure 6.3 is obtained.from the one in Figure 6.2°
by adding one node, we conjecture gn_exponential growth of the comput- -
‘ation time, as n increases, for the worst case behavior of this LNS
algorithm.

v

o~

Figure 6.3

¢
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\\ - ) 2
) o, § -
ey
Tour Ordér in which examirged
1325641 {@j’ﬂl 1
1325461 =N 2
1352461 3 )
1246531 \\ ‘ 4
1324651 5
1326451 6
1462351 7
1453261 8 °
1452361 9
1254361 10 -
1245361 11
1542361 - 12
1362451 13
1426351 14
1263541 . 15
1263451 . 16 P
Table 6.3
|
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(‘ . 6.4 Conclu;ioh ' : ) S

We céﬁ conclude from our éxperiencé\that: iﬁ order to get a good

. ) balance - on the long'run - between quélf&y of solqtion and amount of
computation it is preferable, in solving @he TSP by LNS, to use biased
starting solutions rather than random oneé. Table 6.4 confirms this
conclusion. The results shown are averaged over the ‘same 100 problems

ob%aiﬁed by_gene;as}y@ uniforyly n random points in the unit square.

!

(e - i

<

i o , &

n .| TSP6/1.102*MST 'Run-time) RAND1/1.302*MST | Run-time

x 25" s | o2 J 1.161 0.67

¢ /

. 50 1.130 0.50/ 1.170 3.18

‘ : o 1.119 . )/1\2\ 1.179 9.34

100 1.114 2.00 "+l 7 1,186 . 19.41

- ' 7 ~

.Comparison between quality of solutiep%>TSPQh§§dkRANDl'ana corrésponding

%ﬁ‘, run~time in seconds. B , o,
e . A . |
- .
¢ , . Table 6.4 ;
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T
L -
j' - <%
-
k)
¥
A .
-
e
1 + 7/
- €
. \ )
o +
L
“i - ! 1\
4 ~ N
. 3 - -
e
o a - o
4.

sy Tay DY .-




/ ' ~-105~

/
/

Chapter Seven y///
On Maximal Triangulatione, Optimal Drawings v
/
and Hamilton Cycles //

This chapter and the follewing one investigate a few problems P
- -

related to the ETSP, and may be considered as a sequel to Chapters 2 and

3. In Chapter 3 we used triangulations to obtain an dpptoximate solution

to the ETSP. Other applications in which triangulations arise are the

finite element method [B, Br2] and the numerlcal interpolation of functions
of two varlables [Dav]. Very little is known howvever, about the geoqet-

rical properties of triangulations and.their relation ‘to other qt}uctures.

In this chapter we stedy a spéci;l type of triangulations. In
particular, we give . a method of plgcing n points in the plane and joining
them by‘straight—line segments thiat yields a triangulation with the maxi-
mum possible number of edges. Trlangulatlons of this type are shown to
be Hamlltonlan and an expression for the number of Hamilton’ cycles they
contain is derived. We also conjecture a relation between these triang-
ulations and crossing—numﬁer—optimal rectilinear\dtawings of cokplete graphs
[Ex]. Finally, 4 lower bound is presented for the maximum number of
crossing-free Hamilton cycles in a rectilinear drawing of a complete

graph. This bound is an improvement over the one that appears in [New].

; ’

VA 9

7 1 Maximal Tr;angulatlons

It is knohn that the maximum number of edges a plane graph can
possibly hayé (i.e. no edge could be, added without creating a crossing) -
is 3n-6 :,in that case-the plane graph is said to be maximal [Harl]. -

-/ ) ‘ .

Also, the 3n-6 upper bound is achievéﬁ’g;‘a\alane graph if every one of
its fpces is a triangle {Harl] It follows that-a triangulation is
meylmal only if its conmvex hull 1s a triangle.
/o, <
/ Theorem 7.1
A triangulation of n points placed in the plane as lP/%J concentric

triangles is maximal.

\ f 4
' ¥

’

Proof
The theorem is a consequence of the last sentence in the previous
paragraph. A counting argument is given below that 111ustrates the

construction. When the n points are placed in lp/%J concentrlc triangles .

/
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7

‘ there will he 0 , 1 or 2 interior points according to whether nz0 , 1 or 2

“3

(mod 3) respectively. We examine every case separately. i
a)’ =0 (mod3) o r

The triangulation will contain , ’

n edges =
+2n-é edges =

b) nzl (mod 3)

* 2 :
obtained by connecting every triangle - .

contributed by the n/3 concentric triangles - "

v

=2x3 o .,

=]

except the innermost - to the next interior
one by 6 non-crossing edges

The triangulation will contain

n-1 edges =

+2n-8 edges

i

+ 3 edges =

a

'e) n=2 (mod 3)

as before (= Eg; * 3)
‘ n-4 ’
as before, (= 3 * 6) .

conmnecting the innermost triangle to the

interior point.

I3 o

The triangulation will contain © * =~
; .
n'—Z - .
n-~2 edges = as before (= 3 * 3) . |

3

]

+2n~10 edges

[

+ 5 edges

+ 1l edge =

as before (= E%i * 6) I

[l

\ . ‘
connecting the innermost triangle to the J
two interior points.

connecting the -two terior points.

Hence a total of 3n-6 edges in every case.

r

Let us denote by T

the construction of

Q.E.D.

n ° the maximal triangulation of n points obtained By

Theorem 7.1 . Figures 7.1, 7:& and 7.3 show the

various Tn's for 3 <n< 9.

-
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It-should‘ye noted that

7.1 is. not the only way of obtaining a maximal triangulation.
?gimal triangulations of 8 points. '

shows three m

\

‘

N

form 27,

.

the construction described in Theorgm

Figure 7.4

s

.

. ’Figufe 7.2 (cont'd.)ﬁ
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7.2 Maximal Eriangulations and Optimal Drawings

"( A crossing-number-optimal rectilinear drawing (CNORD) of Kn
that has the
|

s the

s /'C:omplete graph with n nodes, is a rectilinear drawing of Kn

minimum possible number of crossings [Har2]. In spite of the considerable -

attention optimal drawings have recently been given [Eg, Er, Gul, Gu2
Figure 7.5 shows th

Je] , CNORD's of Kn are only known for m < 9 .

st‘!!aﬂ
CNORD of K6 . ’ \

> |
' ¥ »
{ v _ j l
Figure 7.5 ®o '
Theorem 7.2 . - ' . —
For 3 £ n £ 9 a CNORD oﬁ Kn can be obtained from a Tn . - ;
e Proof'
: ' . A drawing of K can be obtaineﬂ by adding the missing edges, if any, -
'to a T v For 3 <n _<_ 9 , comparison ‘of the resulting’'drawings with the
; known CNORD's of K_ [Har3, Je], shows them to be isomoxphic [Gul].
; n - .
i : Q.E.D.
. .
Theorem 7;2 is 1llustrated in Figure 7.6 for n=7 . . ’ . ! 4
1 ! ;%
' §
1




Xl

“versa. -

. -111- : .

CNeRD of K, with 9 crossings

Sa

Figure 7. - o T v

We.believe that Theorem 7.2 could be generaiized for-all values of n .
Loosely speaking, we conjecture that the more the edges in a-triangulation

of n points, the fewer the crossings in.a rectilinear drawing and vice

a
$

3
~ - e

7.3 Maxinthl Triangulations and Hémiltonyé%ﬁaes

.t
- ‘]

A '
A graph is cqlled Hamiltonian if it comtaihs a Hamiltog gycle

. “l;,
[Berg]l. We know from [Mn] that’'not every triangulation is Hamiltonian. ")

Figure 7.7 shows a triangulation’that does not contain a-Hamilton cycle

»
'
.
[Skul ,
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r Figure 7.7/ %
. . 15 4 §
" On the other hand, is was sl-/)wn in [Wh] that a triangulation which :
a) is maximal v !
and b) contains no cycle of length 3 apart from the triangles bounding
" its faces, a - ) ) ‘ ' -
+ is guaranteed to.possess a Hamilton cycle. An example is shown in J$ ,
N ' : TG
Figure 7.8 .. v . . ; 4
4 ) - . ° N '£§'
» s K i e . 4
- ' - !
9 ) " . ;
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\ N ’ A
' . . 9 - A - - . . K
—m Y - Figure' 7.8 ‘ '
A et ¢ N in o e o ’
° Theorem 7.3 = WURSSBE RgnvSest Sy Codimig wsemmipedngg oo ©
y, i Every T is Hamiltonian. B
p e g Y . & . ¥ .
Proof:’ -8
- By induction. p . -
1) Since the innermost triangle of any T has either O, 1 or 2 ¥
: interior pointk we start by showing the theorem true for
j - ‘n=3 , 4 and 5 . . .
. ' In Figures 7.9, 7.10 Emd 7.11. the Hamilton cycle is indicated
’ I, by directed arcs. , o {
- - * ’{A{ - v o " 1
\ - o A% 31 .
‘\/\' é '
1 ' - \ D
(. - _ \ " 1 \
3 - .
: ) '
L]
{
) Q - 1
3 » . ' : B ° :
T e T T . B
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) N Figure 7.9 . Y
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Figure 7.10 . ;
v ) A
0 :'b '“\\(\69 ’ - - PF/‘ ' ‘ 575(“\k
. o«
2) We now assume that for n > 3 every Tn contains a Hamilton cycle.
" Let the outermost triangle of a Tn be given by the vertices a ,,
Toe _ b and ¢ and assume ‘edge (a,b) is part of the Hamilton cycle, as 3 3
. & s ) =,
LS
shown in Figure 7.12. . )
s - ~ , v
~ s o I
£ .\ 1
. o
b \
’ ' H
[4 . -
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. e * :“
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“3) We complete.the proof by showing that the .theorem is true for

n+3‘:

Following the construction in ﬁxeorem 7.1,

(a)

« . and (b)

N

In order to obtain a Hamilton cycle in T
‘Hamilton -cycle of 'I‘n by the path (a,p,r,q,b).

a

\

I°]

three vertices, say p , q and r , are added to those

of T , -
n

<

edges (p,q) , (q,x) , (r,p) , (p,a) , (p,c) , (q,a) ,
(a,b) 4 (r,b) and (r,c) are drawn, yielding T .3 35
shown in Figure 7,13 . - L=

-

2 Figure 7.13
Q -

s Ve replace edge .(a,b) in ‘the

. LQ-E.D.

L

b N

We conclude this section by counting the number of different Hamilton

cycles in a Tn .". For ’1‘4 , T, and T6 this number is 3, 6 and 16 respect-

5

ively as shown in Figures 7.14, 7.15 and 7.16.

¢

Let ti denote the number of Hamilton cycles in a Tn having i edges

on the convex*hull of ’1‘n s part of dach cycle. Figures 7.14, 7.15 and

7.16 show that the values of ti for(n=4; 5 and 6, and i~1 or 2 are as

follows:

a ~N . °
- 1

e R :

%
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7
1 2
t4 = 0 t4 = 3
1 2
t5 “- 2 .tS = 4
1 2
t6 = 6 v t6 = 9,
B 3 f
Excluding the two specilal cases tg = 1 and tg =1 , 1t is clear‘ that
tz = tg =0 , for all n , so that the only i:ypes of Hamilton Jc}cles =

possible are for i=2 or 1 as shown in Figure 7.17 . Hence, given a Tn N

witﬁ n >3, and the initial conditions\in (7.1), the -number of Hamilton

t:ycles in Tn+3 will be, 4 . o |
1 .,.2 : ' :
Ert3 = T3t e ‘ )
1 2 !
-lwhere . t o3 2 t (7.2)
t2 =6 t2 + 3 tl . ¢
‘ n . n

Equations (7.2) are illustratéd in Figures 7.18 afid 7.19 .

7.4 An Improved Lower Bound For &(n) ° “
In [I\!ew] the following 'brobiem is posed:

"What is the value of ¢(n) , the maximum number of crossing-free
Hamilton cycles (CFHC) in a rectilinear drawing of K 2"

o = . 2y , v
7
’
\
e "

.

Figure 7.14 /

Figure 7.15 M
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(a) Removal of one edge from the convex hull- of a Hamtlton cycle in a T with i=2 yields 6

» Hamilton cycles in Tn+3 with i=2 . ; . * . °
- i o 1 . A = <.
\, . N I - “ ' ’ . . . s
-
! N -
| N
i 7/ - £y

| ° -

| o J a .
& (b) Removal of the two edges from the convex hull of a Hamilton cycle in a Tn,with i=2 yields i
\ K 2 Hamilton cycles in Tn+3 with iﬁl_.ﬁ :
! s+ - . ] : . Figure 7.18 R °
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and it is shown that

1}

§ F@) 2 52 (10)° (7.3)

.

forn > 6 .

- .

que described in the previous section for counting

Using the techni
Esgentially,

Hamilton cycles, we obtain a sharper lower bound on ¢(n) .
we show that a rectilinear drawing of a subgraph of 1(.n » denoted by Dn ’

contains more CFHC's' than-in (7.3). . R

\U - t .
the n points are placed in Lp/éj concentric

Draw Dn as follows:
triangles. The vertices of each triangle are’ then connected to those of
the next interlor one by all possible edges as shown in Figure 7.20 .

’

-

(a) n=0 (mod 3)

Tl ®

et Ty lgaT

\(c) nz2 (mod 3)

pd

. Figure 7.20 \\X
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j 3 - R
( Let us denote by d:x the number of CFHC's' in a Dn heving i edges on
) the convex hull of Dnas parwt of each cycle{ For D4 s D5 and D6 , and
i=1 or 2 we have
1 2., .
da = 0 d4 = 3 (as shown 'in Figure 7.14)
1 -2 o ‘ . 2
. d5 = 3 /dS = 5 (as shown in Figures 7.15 and 7.21) (7.4)
4 1 2 E
d6 = 12 d6 = 15 (as shown in Figures 7.16 and 7.22)
Excluding the two special cases d;33 = 1 and dg =2 , it is clear“that
dj = 7{2 =0 , for all n , so that the only possible CFHC's in a Dn are
when i=2 or 1 , as shown in Figure 7.23 .
, JEach CFHC in D with 1=2 leads to 10 and 4 CFHC's in D_  with i=2 and 1
o k respectively as shown in Figures 7.18 and 7.24 . Similarly each CFHC in
Dn with 1=1 leads to 5 CFHC in Dn+3 with 1=2 as shown'in Figures 7.19
and 7.25 .
It follows(that, for n>6 and the initial conditions in° (7.4) , the number
e N -
of CFHC in a Dn is given by )
1, 2 !
e dn = .dn + d s
where ’
1 _ 2 _
dn = 4 dn~3 \
(7.5)
2 2 1 , : v
: d =10 d _ +5d , l ‘
. - - ! 7 \
Solving the recurrence equations (7.5) we get - ’ ’
9 3 3 J
d = — [x - X ] nZ0 (mod3)
B L 2 o o
; . n-4 . n~4 i
~ | 1 3 _ 3 T | |
= — [(9+3/§>xl - (9-3/5‘)x2 ] n=1(mod3) (7.6) 7
2/5 . ' ¢
' , cn—5 . n"5 ' .
' " ) ' 1 T I ——3— * :
, = —— [(5+8/5)x, - (15-8/5)x, ~.]1 n=2(mod3)
2/5 : oo
(K where % = 5¢3Y5 = 11.7 and X, = 5-3/5 = - 1.7 ; :

y -~

o &3‘"
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That‘dn~> 20,(10)

1

a

optimal drawings of complete graphs.

I'd

.

follows -directly

aR

formula for the number of such cycles was derived
a lower bound on the numbér of crossimg free Hamilton cycles in a

rectilinear drawing of a complete graph.

Triangulations belonging to this

7.5 Conclusion
We -have studied a speéiaf class of maximal triangulgtions. Evidence
was provided that a relationship exists between this class and rectilinear

class were shown to always contain a Hamilton cycle and a recurrence
1"

We finally presented
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R Chapter Eight '

. On Convex Hulls

Convex hulis (CH) have been extensively studied in the pase few years
[Ak1, Ak2, Ap, Cha, Di2, Ed, Ef, Fr, Gibl, Gr, Ja, Ku, Pre, Ren, Shil, Sh2,’
Skl, T]. The algorlthms of Chapter 3 made use of this concept in counect—
ion with approximate triangulatioms. -Other applications include computer -

graphics, design automation, pattern recognitien and operations research.

A

In this chapter an efficient algorithm for obtaining the CH of a set
of points in the plane is presented and theoretically analyzed. For uniform
distributidns on the edUare, the algorithm has an expected run-time
of 0(n) . - This is in contrast to all other published algorlthms whose C
expected running time is bounded below by 0(n log n) . Experiments with\

!

the algorlthm are described that confirm its intuitive ind theoretical

merlts. A generalization to the d—dlmens%onal case is also suggested.

Finally, empirical estimates of some comnvex hull expectatlons are C

obtained. , ‘ .
8.1 An Algorithm for the Convex Hull in 2-dimensions »:;u'“' .
8.1.1 Definitions . -
‘ . Let 89 be the d-dimensional real Euclidean space. A set
KQ Rd is convex if and only if for eac¢h pair of distinct h
points a,b £ K the segment w1th end-.points a aﬁd b is con~- -
tained in K4[{Gru}. 1If SC:IR then the convex huli of S,
denoted by eomv § , is the intersection of -all the convex
sets in Rd which contain S [Gru] '
The example of Figure B.l shows,.for d = 2 , 5 and conv § . ¢
® . '
° ° ,
@ ® . .
3 e ® ' *
. ® O -
o . {“ .

S ’ ., eonv § LY

e

- Figure 8. 1 e - ) e

a2 e v w
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[Pre, Shl] as being of O(n log n) for a set of n points. .

I
-
o
N
~

\ . . -127-

P

The convex hull of g set of points in the plane 1s, therefore, the
shallest convex polygon including all™the points. '

-

°.

-

8.1.2 Previous Work

Several algorithms have been presented for obtaining the’convex hull
of a set of points. Some of them apply only to the planar [Gr, Ja, Sh2
Ed] or 3-dimensional [Ap, Di2] case, while others are for the general
d~ diegnsional convex hull problem [Cha, Pre]. 1In the 2-dimensional case,
the -algorithms of [Gr, Rre] require sorting, while the algorlthm of
[Sh2] is based 'on finding the Voronoi diagram [Shl] : each of these
operations has a complexity of O0(n log n), where n is the numher of
points The aigorithms of [Ja, Ed] have a complexity of O(mn), where!m
is the number of vertices of the CH H this means that their worst- case
behaviour is O(n ) . Also, it was shown in [Ren] that ‘the expected value

of m is 0(log n) for a unlform distribution of ,the n points; the

algorithms of [Ja, Ed] have therefore an expected run-time of O(n log n).
[ ) '

The compléxity of the ¢onvex hull problem has been established in .

D |

¥

8.1.3 The Algorithm- 4
8.1.3.1 Basic Ideas’ ) \V

The new algorithm is based on .the following. simpie ideas:

i

(1 Determining thé four extremal points of the/set and discarding

it

all points interior to the convex quadrllaterai they form.

() Breaking.ﬁhe problem into four subprobl

s determined by the

extremal points. '

(3) Using the vector cross-product” to find the &onvex path in

2

- each problem. . p xx Cod

v.‘ . 0
These ideas are now explained in detail. We assutyme throughout the * ‘?‘
following discussion that points are given by sheiraca tesian coordinates. -

/

N N L‘So
1) Extremal points: ' — f//;/"““‘*
M poin v | \\* )

These are the fqyx/p’ints with minimum and maximum X and'Y . !
coordinates:. say XMIN, XMAX, YMIN, 'YMAX, respectively. From Figure 8.2,

A

- g S z
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(b) Any point interior to the convex quadri teral whose corners

-129- .

s

¢
two facts are obvious, P

(a) The extremal points must belong to the izzzgg\hull.

A
are the extremal points cannot belong to the convex hull.
It follows that by identifyjﬁg the extremal points one adds these points:
to the convex hull and discards all points falling inside tha quadri-
lateral they form; we-call this the "throw-away" principle.
(2) Subproblems: ) 4 3
Once the four extremal points have been determined, and some points
eventually discarded, one can break the remaining set of points into
four regions, as shown in Fdgure 8.3 . 'All that remains now is to find
a convex "path" from one extfrewmal point to the other in the same region.
® . .“ -
(3) Vector cross-product: ‘
While examiﬁinggzhe points in one of the regions for inclusion in
(or exclusion from) the convex hull, assume that we 5§e advancing along
an edge of the quadrilateral such that the region is at our left, ;s
\
shown in Figure 8.3 . Assume further that we are looking at three ’
consecutive points k, kt+l, and k+2-. Obviously if point k+l is as shown
in Figure 8.4(a) it is to be kept temporarily, while it is to be discard-
ed from further consideration if it is as in Figure B8.4(b) <~ ‘
1f a, b and © are as shown in Figure 8.4(a) and (b), then the cross-
product of the two vectors is given by '
S = a byin © . ;’
. e »
= a b’ sin (ul + az) _ .
=‘a-b [sin 4, cos Fz + cosmu1 sin a2]
* Vb1 e . Fek2 Tkl |,k Tkl ~yk+L/%gﬂ o
=ab | x + X~ ]
ar b. a - b
’ \// i J - M
- =l Oiar = ) Crp M) * O 7 B O ~ V) |
In Fig&rg 4(a), S is positive and in Figure 8.4(b) it is negatfve.
We thus h3ave the lowing simple rule:
o I - °

-
\
That e
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-If S 2 0 keep point (k+l)
else delete point (k+f) . //
) v

Before presenting the algorithm we make the following two remarks:
In some cases two extremal points may coincide as shown in Figure
8.5-. The sole effect of these situations is that the number of

sub-problems 1s reduced.

The "throw-away' principle can be applied further to each of the

foyr regions of Figure 8.3 . We illustrate this idea for region

2 as shown in Figu?§ 8.6 .

. XMAX

Figure 8.6
» ”

-

Let k be a po%nt"inside region 2. It is obvious that any point inside

the triangle formed by points YMAX, k and XMAX cannot %e a point of the

convex hull and should, therefore, be discarded. In order to maximize

the number of points thrown away by this method, we choose point k

3 .
according to the following heuristic:

8.1.

gamong all points inside region 2 choose point (xk,yk)
1 > " i
§uch that X, + Vi ?s maximum”.

3.2 Algorithm CH ;

Given n points in the plane by. thelr cartesian coordinates, find

their convex hull.

Al

Step 1 Determine the four extremal poinfs and remove from further
consideration all points falling inside theé quadrilateral
théy form. The remaining points are distributed among

the four external regions thus created.

'

BN

B

W TS
~

o
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Step 2 TFor every one of the four external regions, determined
by the two extremal points 1 and j , find k , the \
point whose coordinates (kk s yk) maximize the quantity

0 T T

where
my = +1 for regions 2 and 3 '
= -1 for regions 1 and 4 ,
and '
m, = +1 for regions 1 and 2 )

= -1 for regions 3 aqd 4 & )
Remove from further consideration all points falling
inside the triangle ijk .14 -

Step 3 For every one of the four external reéions sort the
remaining points oﬁ their x—qurdinate: in ascending
ordér if in region 1 or 2 and descend}ﬁé order if imn

. region 3 or & } ’

Step 4 For every one of-the four external reéions find the
convex path from one extreﬁgl point i to the other j
using the following rule:

"(1) sStarting with 1 do, (a) and (b) below for
- every three consecutive points k, k+1 and k+2

until j is reached
@) 5= Opg =) Cggp ™ F) +
(e = 1) Oian = Ty
(b) If 8 2 0 move -one point forward; *
ﬁlse delete point (k+l) "and move one point
- -,
o bgekward., o
(2) If (1) dis completed without any-deletion, stop;
else repeat (1)". Y .

Since at every iteration of Step 4(1) a finite number bf points 1is
rémoved, termination of the.algorithm is guaranteed. The remaining

points form the convex hull of the original set.

|
},
|
;
i




8.1.4 .Apalysis
b Al;cxithm CH has the following advantages:

(1) Conversion to polar coordinates and computation of angles [Gr], as
well as shiftiog of axes [Ja]l, gll costly operations, are avoided.

(2) The algorithm is conceptually very simple when compared to those
in [Ed, Pre, Sh2} and thus has pedagogical significance.

(3) The set of points to be sorted is reduced to a very small subset
by the "throw-away" principle.

“

{4 fhe convex path in each region is found by the very-easy-to--=

! implement cross-product rule. ]
(5) aneaking the problem into subproblems makes it easier, and there~
fore fasper, to solve. This is a good illustration of the
‘"divide—agd—éonquer" conceét [Aho].

This

g e e -
.

. (8) The worst-case behayior of the algorithm is 0(n log mn).
happens when all the points lie on their convex huli. For example,

if all the points 1fe on a circular arc ?x ,yl) , (xz,yz),..L,

(X Y ) such that (xl,yl) is YMAX and (x Y ) is both XMAX and k ,

then no points are thrown away in Steps 1 and 2 and therefore

the (n-2) points remalning are sorted. )

. We now present a theoretical analysis of CH. In order to do so we

assume that the n points are ‘independent random variables uniformly '
| aistributed on the unit square. We use the following motation s
. . v ‘ t
i A S&gboi( neaning I
) XMA% point with maximum x- coordinate
YMAX . point with maximum ;— coordinate . .
XMIN ) point with minimum x~ coordinate :
: YMIN point with minimum y- coordinate ~ P
. XYMAX point with maximum (qc%-y) value M
&XMAX point with maximum (y-x) value 52:
. XYMIN - point with minimum (xt+y) value
point value

with minimum (y—k)

¢
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8.1.4.1. Analysis Algorithm Tt ;//

Since algorithm CH itself is very difficult to analyze due to the
cénditional nature of Step 2 we define an analysis algorithm which is |

easier to analyze than CH and which provides an upper bound en CH ; i.e.

on .every instance, algorithm CH will perform equally well or better than

the'anélysi$ algorithm.

Algorithm CHA ,
Step 1 Defermine the eight’points XMAX, XMIN, YMAX, YMIN, XYMAX,
XYMIN, YXMAX; YXMIN and Ehrow—éﬁay any point falling

inside the pol§gpn’they form.
Stef?2 Same as Step 3 of CH .
Step 3 Sdme as.Step 4 of CH.. 1/

o 4

Comments

(1) N&tg that in %tep 1 of the ana1y§is algorithm the 8 points need
not be distinct.

(2) The analyéis algorithm is slower than CH for two reasons:

(a) It requires at least 2nLadditioné and subtractions in
Stép 1 to find XYMAX, XYMIN, YXMAX and YXMIN; whereas
in Step 2 of CH the analogous points (point k in g
Figure 8.6) can be found by performing additions and
subtractions.only for points in the four suﬁ—regions.

(b) The number of points' thrown away in Step 1 of CHA is
smaller than that in Step 1 and Step 2 of CH as
illustrated in Figure 8.7 .

o}

Figure 8.7 ;

°

O Satesy T




St C-137- ' o

( . " In this situation th; above algorithm wéiik:;iose points
" 'B and C for YMAX, XYMAX and XMAX, whereas CH , having
‘ chosen B and C as YMAX and XMAX, will then choose A ds
XYMAX and th?s throw-away the additional pointé falling

in the shaded triang%g.

b
From the above comments, it follows that an upper bound on the expected

rué%ing time of CHA will also sexrve as an upper bound on CH .~

-~
* In order to determine an upper boynd on the expected running time
of algorithm CHA we need to know a lower bound on the expected number

of points discarded in Step 1, which is proportional to the expected-

1] -

area of the polygon formed by %he 8 extreme points.

-

8.1.4.2 ‘Area of polygon o

’
c
§ ¥ ar e i ST

Let the 8 extreme points determined in Step 1 be denoted by
;7 pl(xl,yl) , pz(xz,yz) yeeas p8(x8,y8) . The area of the polygon is 3,

) . given by:
. ( 4= R x e - v (8.1)
‘ ‘ 2 Lafl M Y T 7 s :

where Yo = yg and Vg = §i .

-
~

. - Note that if two or more extreme points coincide (have the same coordin-

ates):tﬂis expression would give the area of the corresponding polygon.

P

The-expected value of (8.1) is given by

. 8 4
=1 - « ;
B} =5 E L] 4L % Ggy -y P (8.2)
£
/! - . ' ’ °
Since the absolute value function is concave, 1t follows from Jensen's
inequality that T ' ) o
. R Al 8
Efay2g | EL 8 x SAREI AR oY
. ' (8.3) Pe
. -1 g E {x } - E {x, vy, .}
o 2 | if 17141 1711

p
| Now é{xi‘yi+1} = E{xi} E{yi+l} + cov {xi yi+1} . Since, as n ?> © ,
(\ . ‘ cové{x1 yi+1} + 0 faster than 1/log n + 0 [Ak2], we have .7

Jup— [V U —_
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1
e

| E {xi\yi+1}.= E {xi} E {Xi+1} for {arge n .

d thus
and thu 8

Bl 2g ] (8 Elxd By 3Bty D

-

(8.4)

Therefore, we can obtain a lower bound on the expected area if we know
the expected values of the coordinates of the extreme points, to which
~ A i

-

5

we now turn.

Expected valdes of extreme points
The extreme points fall int6 two categories: type 1 consisting of

XMAX, XMIN, YMAX, YMIN, and type 2 made up of XYMAX, XYMIN, YXMAX,
R :

4

YXMIN. ]

Expected values of type.l points |
The problem is essentially the following: 'given n independent

random variables Xis Kgpeors X distributed uniformly. on [0,1], what is

the expected value of _
V= max (xl, xz,..., Xn) . i ‘ ‘

!

Consider first the c.d.f. of V R -
P[Vvx a] = g [max (xl,xz,...,xn) < a] ;
} ) l"‘ (8-5). " T~ .
1= P [x,,%X,,...,% < a] . ’
l’ 2’ "’-n i !v
-
Since the i;s are inéependent apd identicélly/histributed
P[v<al =P [xl <a] . P [x2 < a) ... ? [xn < a] B .
’ ' o | ) (8.6) ..
|

B [x < a]® (

2

L4 f 3

where we drop the subscript for convenience.f Since x is uniformly

distributed on [0,1], it follows that P [V <;é] =a . By differentiation; /

I

° the density f£(a) of V is given by , L
£(a) = na" - ,'
i [
‘ , ¥ ’ //
= 3 Com rB—
Hence ~ E{v} = [yaf(a) da P

H -
!
N

/
By symmetry it follows that the expected value of min (xl,xz,...,xg)l=

e o

£
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l_n =\1 ‘ o h ' o3
ntl ntl .

t
'

-

has a coordfnate that is not extrem-
ized and whose expected valqg‘is thus equal to 1/2 . It follows that the

Every one of* the four extreme poinﬁs

expected values of the cdordinates of the four extreme points of type 1
are as shown in Figure 8.8 *

\

17 1

Ga 32

o i)
-

Expected values of type 2 points ° ' . .

The problgm reduces to the following: Given n independent random '
variables Zl,'Zz,..., z éuéh that Z ™= X +y 4 = 1,2,...,n , and
X435 ¥y, are independent random variﬁbies uniformly distributéd on [Og1] ,

what 1s the expected value of W = max (le 22 ,.;:, Zn)“: Consider first
the c.d.f. of W . . - . . s
1 >

’ .y .

~ Figure 8.8 - ' - N
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. ‘ ~ ws i @ . ) .- .
1 r N “4 9 o
‘( . ) ! N ‘v, B
" P(W < a] = P [max (Zl’ Zz,...,_Zn) < a] ¥ o
“ ¥ " [ LI T ,
« . ‘ =P [Z,l’ 22?"”Zn1< a] v . oo
' .= " “a] ... Pz < ”
P[Zl < ?] P[ZZ’< al ‘,P[Zn a) .
=p[z <ta)®, o o
/ Lo \ :
) et
& , . . ° 3.
where we drop the subscript for convenience. We therefore need the
' . c.d.f. of Z 'Sin§e Z=x+y , it follows that Z has a triangular
density on [0,2] with corresponding c.d.f. given by ) .
B I N ' “ , when a<0
B L4 ! \ ' ' i
3}
o D l "2 o
! > a . when 0 < a < 1
- @' 2 .. - .
P[z < a] = 4 ' 1 ° . ’
1- ‘2"(2'-8)2 . when 1 < a <2 . .
’ ot N = s
. (1 ® ' when, a>2
. . It follows that the c.d.f. of ® s given by . )
(" 3 R R o . - \‘ ,/ -
S T when - a:< 0 .
n s ’ t
3 B ‘
‘ . - aZn : “whenps_a<1
. n £ t AN e
o . 2 i N ., ]
P[W < a] = < : P N . »
[1.- %— (-2—3)2]n’ ’ /xghen 1<axg?
‘\ ~1 Q i . . ® ~ - 3 h
- - \ . SO | o when a > ?2
e . . g . ' .
Do ° | | o
. ' By differentiating we obtajn the density g(a) of W ;L
& , . Y 3 " . . ) .
? . s . ¥ . -
. . . . s | I '
» ( * ’ t . ° K 8 ‘
- v ’ v " . »
- ﬁv t ' L r L |

TR ey

e

A

'
B
B
¥
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o )
’/ 'y \_\
P * )\
R .(,/‘:3 .
® — 0 - ,when a <0
2n ,2n- when 0 < a <1
27 -
w gla) = oé L s
’ ’ n[l -’]2; (2-a) ] (2—a) when 1 < a < 2
* -
/0
~ 0 . when ~-a > 2
a b= -

]

Hence the experted value of W is given by

E {wW} ='fg a g(a) da ®

4

Substituting for g(a) we obtain

E{w)= st 2 2n a?™da + f an[l - L2-a)217 (2 2)da

\ 0 B »2 -
,=l[(2n]+ ._\l_v/_(Zn)"
P 2ntl. on (2n+1) 1!

( s Al

p _
‘ 4
. , o . .

~ s ) i .
Let' (8.7) be denoted by w{(n) . By symmetry the’ expectedwgalue.of
min (Z 2, .

denote the x and y coordinates of XYMAX . Then W= x_,__ + y  _ and
. < - “max max

E {W} = E {xmax} + E {ymax} . Because x and y are identically
distributed . ¢

.

E {xma);} =E {ymai(} = % E {W} = % w(n) (8.8)

= - ! ] ’ ’
,Zn) 2 - w(n) . !Consider regionm 2. Let Xoax and Y nax n ,

ey

e Sl o -

> Iy

It followg\ that thg expected values of the coordingtes of the four

extreme points of type 2 arg’ as shown.in,Figure 8.9 . ’ L

-
!
res
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points of type 2 define four'iQentical triangles T .

written as "

Kl R ' ]
"ﬂ; expected values of the four extreme points bf type 1 define a |,

quadrilateral Q.. Similarly, the expected values of the four extreme

E {4} = E {Q} + 4 E {'ﬁ

-

PE

* N N
Substituting imn (8.4) the coordinates of the 4 points in Figure 8.8 yields

{

Hence (8.4) can be

a9

R
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1 n-1,2
E Q)25 &p° - (8.10)

Substituting in (8.4) the coordinates of points YMAX, XMAX and XYMAX in
‘Figure 8.9 yields

: *

P rms em Sp - (22 L (8.11)

2

By substituting (8.10) and (8.11) into (8.9) we obtain the desired ﬁower %

- ~

bound on E {4} .

g | E {4} 2 [w(n) -1] (%% . - (8.12)

Let n' be the e);pecteci number of points discarded in Step 1 of the

algorithm. A lower bound on n' is thus given by

7

n' .= n E{4'} 2 n[w(n-1)-1] (R:%) 3

XY

where 4’ is computed over (n-1) points [Ak2].

’ v
( . Theorem 8.1 — y SRR i
B ~ ' For large n , n' = n . |
- K Proof: It suffices to show that w(n) 2 as n » w . From (8.70)
) 1
lim w(n) = 2 - lim {—=—7 - /2 lim {-(_g—z%;—,} (8.13)
f  Thee n-> e 27(2n+1) n¥ e prR e f
, . L
The first limit on the right hand side of (8.13) is equal ‘to zero., . ,
Consider the second limit term. Ve have o
- - {
' @n)!! 2 .4 .6 8 ... 2n) _ ¢ _1 -
- GatDIT 3. 5.7 .9 ... o) 301 T (8.14)
< o 23 -

The denominator of (8.14) is given by

L. - (L + =&
/ _ B @9y

v
=
+‘

-~
2

+
=

- +
o=

4+

f
—
+
=~}

/’
1

I

[

+
N N e
~~
[ aad
4
N[
+
W
+
>

=]
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\

where Hn is the harmonic series. Since Hn goes to infinity, the second
limit goes to zero and w(n) -+ 2 . The remaining part of the proof is

straightforward using this result in (8.12) .
d T Q.E.D.

-

>

Remarks ; ) . .
) This theorem implies that for most practical situations the majority
of points is discarded in Steps 1 and 2 of CH . Furthermore, for large

n a;d uniformly distributed points on the unit square, CH discards almost
all peints.- This is because points such as YMAX in Figure 8.9 converge
to %,])aM)meto(l,l)a;p+w. o

N .

8.1.4.3 Asymptotic Expected Complexity

Finding the extreme'points and discarding points ins@de the polygon
in Step 1 can alays bg done in time proportional to n [Bu]l. Ifen* points
are discarded in :Sép 1 then n - n* points are sorted in Step 2. This

can be done in time proportional to (n-n*) log (n - n*) . Stepvg can be

- done in time proportional to (n-n*) . The complexity of this algorithm

can thus be written as
£

C=kn + k, (n-n*) log (n-n*)

i

1 2
< kyn ot kz(n—n*) log n (8.15)
. where k»1 and k2 are constants. The expected complexity is tHus ,
’ _. . ° .
E{C} < kln +k, (n-n') log n'% \

v

kln +'k2(n—n E {4’} 10g“n

)

0(n) +k, (1 -'E{2’}) n log n- . (8.16)

I

. ‘
Theorem 8,2
mHEOLEl et ,
For uniform distributions on the square, the expected running tdme

of the algorithm is O(n).

Proof: It is IEquirea?%p show that the first term in (8.16) dominates
ea}ly'enough. Theorem 8.1 tells us that (8.12) tends to 1 ; we'now’

demonstrate that this happens sufficiently fast: the convergence of each

we
rs

e

, -
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term in (8.12) to its limit is shown to be faster than the convergence of
the logarithmic function. Consider w(n) first: '

ooy w2 g :
' »2 7 (2n+1) . o
-2 w2 1+2.’ii
>2- logn 1logn 2 Q- log n
i 1 2
since = <
M2n+1) 2"y 108D 7 _
(20) 11 1 2 4 /
and < < = < . -
: 11
(2n+1) ! 1+‘l 1 Hn log n
2 n . ¢ :
1 w . wf;}'
~ Now consider —;T :
n=1 _ 2 2
ntl =1- n+1 1- log n
Q.E.D.
Y '

8.1.5 A Monte Carlo Experiment

The expected number of points tbrown away in Steps 1 and 2 of CH was
estimated empirically by a Monte Carlo experiment where n random points

were generated uniformly. in the unit square. The results are shown in

Table 8.1 for various values of n (every value of n' is an average over

100 runs). C .
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n = totaéé n' = points a'/n
number of points thrown away, -
100 i 88.72 0.8872
200 183.06 %.9153
300 278.97 0.9299.<
400 376.58 0.9414
7 500 - 472.36 0.9447
600 ' 571.44 0.9524
700 - 668.58 0.9551
800 766.14 0.9576
900 864.67 0.9607
1000 - 963.60 0.9636
Table 8.1

The average run time in seconds of CH was 0.19 for n = 1000

algorithm of [Ja] required over 4 seconds on the average to perform the

same task. Both averages were computed over 100 runs.

8.2 An Algorithm for the Convex Hull in d-dimensions

8.2.1 Basic Idea

Given a convex polyhedron in d-dimensional space. From the simplex
method, of linear programming'we know that for each extreme point of the
polyhedron there is an objective function for which that point is an

optimal solution. In Figure 8.10, for example, d = 2 %ng only point A}

maximizes Z .

1

The

“
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. Figure 8.10 }

The new algorithm we propose in this section relies on' the observation

that objective functions imply extremecg:ints. .

8.2.2 Illustration of basic idea for d=2

Let n points in the plane be given by their cartesian coerdinates.

It is required to determine the set C of edges forming their CH. We

observe that: : a

(1) The points with maximum and minimum X and Y coordinates are
points of the CH.%, '

(2)/ The points with maximum and ﬁinimum (X+Y¥) and (Y-X) are
poinis of 'the CH. . ' =

(3) No point inside the possfbly octagonal polygon formed: by dﬁe
above points is a péint of the CH.

(4) A partial CH and up to eight external regions have just been

created: ig each external region determined by points i and

j the polygonal Zine~Eij¢:;CH is now sought.

The above observationgeare illustrated in Figure 8.11 .
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Assume a partial CH is known and a set of unexamined points is still leff
(Figure 8.12) .

—

Triangle asgociated with (%sm)
and unexamined points

[N _ x
\/
~ A 3
/ , y

RS v Y

Figure 8.12

{
A new point can be added to the CH by considering the edge (2,m) , and .

g,

choosing one bf the unexamined points in the triangle associated with
’ . (2,m) . Choose the point p(xp,yp) whose coordinates maximize the
function N ' ) "
Z = m xp[yz—ym'l o+ m, yp’lxz—xm-l . (8.17) ;
where ' ’
4-1'”’%0:' regions 1, 2, 3, 4
-l r reg:Lons 5 6, 7, 8 -,

2.‘ '+{,\§or regions 1 &7), 8 .

/= ;;'1 for regions 3, 4, 5, 6 . , v -

=
ll

and

, M

: "iL

In other words, ';ve"are choosing p the furthest poiﬁt in a perpendicular
" direcl:ion from (2, m) . ' We have :
. (1) pisa point of the CH.
," (2) edges (l,fp) and (p,m) replace edge (2 m) in the partial CH.

-(3) any poinft inside the triangle Jme need not be considered any

more and can thus be "thrown—away . , 7

1 —

Algorithm CH2

Step' l: Determine the eight extremal points and remove from
further consideration all points falling inside the
\S(k o & \ octagon they form. The remaining points are dis-

i
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& tributed among the eight extermal regions)thus
created, i
Step 2:  For every one of the eight external regions determined
by the two extremal pointe 1 and j we determ}ne
Eij as follews: ' b
@ E,= {10} '
(b) If every point in the region has been either
examined or deleted, stop;
/ ) (c) For every (2,m) € B 1

points are left in the triangle assoclated with

do the following: 1if any

(2,m) , find a point p such that Z is maximized,

pﬁen

i - Any point falling inside the triangle Lpm
is deleted, and

2-E 1s updated as-follows

N L Egy = By TG, (em D) - LG, m} ;
(d) Go to (b) ;

Step 3: The set/c of edges forming the CH is obtained by

merging the Eij s: C= E12 U E23 U.... U E81 .

5

8.2.2/1 Worst—Case Analysis

The computation 1s dominated by Step 2. 1In the worst—-case the number

of comparisons required to détermine each of the extreme points is n .
If there are n such points, the algorithm will have a complexity of
o(#?) [Avi].
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8.2.3 Generalization to d-dimensions - Algorithm CHd

Algorithm CH2'can be easily extended to the general d-dimensional

case. Let a point in d-space be given by (z;,zz,...,zd) . We note

that: . .

1) In Step 1l: (2d+2d) extremal points need to be determintd Yany
_point falling inside the polyhedron they form is
deleted f?om further consi%Fration),'
and Zd external regions are thus created.

2) 1In Step 2: a (d-1) hyperplane in d-space is given by d points
d

1 2 1 2
(zl > 2y ,...,zl) , (z2 » 2, ,...,zz),...,

1 2 d)
(23 » Hgre-vr2g

t

The function to be maximizedlis -

iy, 1
| . Z.= igl m, szAz |

| -

,...zi) is the new point .sought, and ' ,
i

2
>"p

where (z1
P

(z;—zi) pee (zg;zi) .o (zg-zil
i 11 3 3 d d
Az" = (z3—zl . (23—21) .ee (z3 21 ‘
. - . i#y . ,

(zi—zi)@... (zg-zi) ..._(zg-zg) /

[
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8.3 Some Convex Hull Expectations ' ‘ 4

In this section we consider the following two problems: .

Problem 1: lLet‘é be a convex domain of the plane. The problem °

- % associated with the name of Sylvester [Ke, Ki} is
to find the probability that four points taken at
random inside S form a convex quadrilateral. This
problem has been solved in [Del] for various EOnvex
ﬂomains. The generalization we propose to examine

statistically i1g the following: find the probability

convex n-gon when n 2 4 .

Problem 2: Let B be a set of points in the planen(d—space).

The convex hull of B is the smallest convex polygon
(ﬁolyhedron) containing all the points of the set.
Integral expressions were‘given in [Ef, Renj for the.
" expected number of vertices E(Vn) , area E(An) and

¢+ perimeter E(Pn) of the convex hull of n independent
and identically distributed random points in two and
three dimensions, for n infinite or fixed. We
provide a stochastlc evaluation of these expec%gxiﬂ\

for the 2—dimen51onal case. ( . -

! . "

The two problems are related in an obvious way: by determlnlng e

convex hull and counting the number of its vertices, the question of

whether the points form a convex 'n—-gon or not can readily be answerefé///

-
« 11 ~ '
v

v

A Monte Carlo Eiperiment

In this experident points were unifprmly'generated in a 10x10 square
ahd their convex hull igentified using algorithm CH . When all n points

were included in the cohvex hull this was counted as a success, thus

'(n) = numberggf’successes
P . number of trials
’ J

Also, the number of vertices, area and perimeter of the convex hull were

computed, averaged Qﬁér all trials and rounded to the higher 1nteger.
Tables 8.2, 8.3 an& 8.4 show the results obtalned the number of trials

being 10,000 for h <10, and 1000 for n > 10 . iy
L. ~ _ A
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n p'.(n) :
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hd

0.6867
0.3415
0.1242,
0.0335
0.0077
1 0.0011
. 0.0006

.Table 8.2
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o Tt o3 4 5 "6 7 8 9 10 |Average | Standard deviation .
- N * = hd , : > . . a e ~ &
. Every entry represents . s e
o 4 3133 6867 the number of times - 3.686 | 0.463 P & N b
, . out of 10000 trials - | . '
i — 5 ~10¢1:§ 5566 3415 a graph with n nodes 4.23? . 0.62!. , . ) -
. 7 has a convex hull of - -
.6 _1 383 3648 4727 1242 vn vertices ) 4.682 ] 0.735 o ® .
e . - \ -
. 7 | 162 2248 4692 2563 3354 . 5.066 0.821 . M ..
; >, . . |
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) . ‘ ' Table 8.3(a) .
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nVn 3 4 5.6 7 8 .9 ‘10 11 12 13 14- 15 16 17 18 19 20 | Aver. |st.dev.
L3 . . - Y ‘;
20 4" 3. «34 136 260 294 165 83 24 1 Every entry represents | .%o |1 359
) B } the number of times -
. . 2 255 190 . 39 out of 1000 trials - a . )
30 | 6 31\ 148 228 255 190 . 91 10 3 b with o nodes hay | 8:863 | 1.519
40 2 14 65 187 214 248 159 77 26 g @& comvex hull of V 9.573 | 1.571
N\ i . . ~ vertices. .
50 2 10 53 102 \218 224 174 121 72 16 8- ‘2\ 10.105 | 1.750
o I /1 6 15 73 151 218.205 188 - 93 38 10 1 1 ¢ 10.704 | 1.714
. . ? ‘
70 7 22 47 112 235 210, 183 106 47 26 4 1 10.943 | 1.792
. \- ¢ .
4 80 6 32 95 189 183 210 140 87 38 18 2 11.506 | 1.838.
90 | N 7, - -8 -31 79 151 220 203 157 82 46 16 5 1 1 11.638 | 1.861
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, n E(An) * E(Pn) 4
. - 3 8 15
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* 5 ] 22, 21 ot
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‘ - 7 32 24
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‘ ‘ ~ " .9 40 26 '
10 ¥ 43 27 o
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‘ e
4 | 90 81 . 35 . R
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v, v . X Table 8.4 =
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¢ . v 0
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' ¢ 14 g 7. v [y
" Note .that it was®shovwn in [Dell’that p(4) = 25/36 when %‘he convex L
b
domain is a paral}elogram In our case the domain is a square of area N
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100. N E(A3) /
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( . 8.4 Conclusion g

An algorithm CH~WJ;*described for obtaining the convex hull o% a set
'3 ; - of points in the plane. :The a%gorithm has a worst-case complexity of
0(n 1log n). We proved {hat the asymptotic expected run-time of Cé is
linearly proportional to the size of the input when the data points are
uniformly distributed in the ﬁﬁit square., It 1s postible to show that the
/ . algorithm has this same asymptotic iexpected “run-time behavior in Gaussian

environments. N

' .
We also presented a second algorithm CH2 that does not require sort-

ing and is based on the idea of continually throwing away points A few

) { suggestions were made on how to generalize CH2 to solve the convex hull

ey e e
.

problem in d dimensions.
4

o -

YFinally, some expectations related to the convex h%gl of points

F

- vt E

A ) t
- uniformly distributed in the plane were stochastically estimated. :
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CONCLUSICONS

In the following we make some general. conclusions{ about «the contents

¥

of this thesis.

1) In Chapter 2,\it was empiricélly shown for the\first time how
small the set of feasible solutions fo the Euclidean Traveling Salesman

. |
Problem could be when one uses some simple geghetrical properties to
s

1] |
rule out. 'bad t09rs. . ;1 . 7
& i

-
2) Experiments with two new tools f@r obtaining approximate

*
‘solutions to the TSP were described in Chapters 3 and 4: triangulations

of points in the plane and a reward-punishment methed. It is hoped that

=

these techniques will still beﬁrefined to yield better answers to the

problem and that they will find applications”in other combinatorial
optimization problems. N “ N
? A < ‘ . R

]
N

3) Powerful heuristics récenfly proposed for the symmetric TSP
were combined in Chapter 5 to yield a very efficient approximation ]
algorithm. -The galgorithm is easy to program and yields a high quality
near optimal solution in a short,-agount of time. An édditiona} advant-

age of the algorithm is that it lends itself to be extended for the'

asymmetric case. i -
-
e .
-

4) ~ In Chapter 6, we concluded from our experience with an
algorithm fpr the TSP that uses local neighborhood search that starting
with biased tours is preferable to starting with random ones when

s

~computation time is of primary importance.

Y

? * v ~
-+ 5) Our study of maxlmal triangulatlons in Chapter 7 led to the s
derivation of a new lower bound on the maximum number of Crosslng—free

Hamilton cycles in a recg;llnear drawing of ‘a complete graph.
,

3
P

6) As stated earller all published convex.hull algorithms have -
an expected runnlng time bounded below by O(n log n) This is probably

becaugf most algorithmsg qqnsider all points as possible candidates for .

5
v
A
-

TR



-

corner points. We observe, however, that when humans are asked to find 1
the convex hull of a set of points they‘disregard from consideration,
presumably using éattern recognition ability, thése points falling in the
"center' of the set. Thus one might expect an 'intelligent' algorithm to
do the same. In Chapter 8 the heuristic ﬁsed for disgarding points in __
Steps 1 and 2 of élgopithm CH aﬁP}oximates this pattern recognition X

_— . s . o
ability of the humig/aﬂd*resglfs)ln an expected running time of 0O(n) .

>
B
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