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) ABSTRACT 

1 
'" \ 

, Various fspects of the Tr?veling Salesrnan Problem (TSP) are studied. 

For' the EucJfl.de~n TSP an enurnerative algorithm is
l 

presented that yields \ 

the oPti~a}1 solution to problerns which ha~e a sma~l number of cities.' 

This algor.1thm is ut_ilized to obtain '~mpirical estimates of the expected 
1 ,1 r fi. • .. 

number of feasible solutions. Approximate solutions to the Eucliclean TSP 

are calfulated based on triangulations of points in the plane. 'When the 

proble~ is not necessarily Euclidean, but still symmetric, two heuristic 
, 

algQrfthms'are described that use graph~theoretic techniques ta reach .' 

sub10ptirnal solutions for lar.gé', problems. One of the two algorithms is 

mo?ifièd to work for the asymmetric case. Two topies related to the TSP 

a/~ also examined ip sorne detail: triangulations.and convex hulls. 
! 

Maximal triangulations are studied in ,connection with optimal drawings 

/ and Hamiltonian graphs. An efficient co~vex hu1! algorithrn is presented 

whose asympto~ic expected run-time ~s linearly proport~o~al to the size 

of the input for uniform distributions on the square. 
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Divers aspects' du problème d commis 'voyageur (PCV) sont 

, ' 0 ~E ' 

1 ~ 

~Pour le PCV Euclidien (PCV~). une ~thode d'énumération est pr~sentée 

qui ob~ent la solution exacte aux p\oblèmes où le nombre de villes es 

pet~t. Cette même, technique est exp;\itée ~pour calculer des es"tim~ 
empiriqu~s de 1 'espérance ma~hématiqu:,~u ~'Q.JIl~re de ~olutions possibles~, 
Des ,solutions approximatives au PCVE s~nt obtenues t partir de 

t d "ngulation!? de points dans le plan.' 'D\ns le cas de problèmes 
~ 1 \ 

1 ~' 
symétriques. mais pas nécessairement Euclidiens, deux algorithmes 

f \ 
\ 

heur~stiques sont décrits qui utilisent des Pfincipes de la théorie des 

graphes pour arriver ~ des ~solutions sous-opti\ales aux problèmes de 
\ ' 

grande dimension. L'un des deux algorithmes est\modifié et; apiJliqué aux 
\ 

Enfin deux sujets relf~s au PCV sont problèmes non-symétriqu~s, 

examinés en plus de~détail: les triangulations et i~env~eloppe convexe 
, ; ~ \ 

(EC). La relation entre les triangulations maximales\~t les dessins 

optimaux d'une part, et les graphes Hamiltoniens dé l' a~'tre est 
• f 

étudi~e. Un algorithme efficace est présenté pour llEC P9ur lequel 

" 11 espérarÎc~ mathématique dp temps 
\, '--

d'exécution varie linéaire~ent avec 

le nombre de po1nta donné pour des 
.. arre. 
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'''It appears Zikely that none of theBe 
ç 

equivaZent probZems aan be soZved in 

polll!!:0mial time. The evide"we fo1' 

this beZief stems fPOm oU!' inability 

to find PoZY1'}-omiàl-time algonthms 

fo1' these pI'ob lems despi te the 

sive effol'ts of many W01'ke1'8~ 

f1'om the theo1'etical 

polynomial time algonthm 

thesB p1'obZems lùouZd impZy 

poZynomial-timë aZgonthms for 

an unexpeatedZy wide aZass of aombin

atonal searah p1'obZems." 

R. Karp, Algorithms and Complexity, 

J. F. Traub, Ed., Academic Press, 

New York, 1976. 

/ 

"But just ap it wouZd have been 

unfai1' to ar>gue in the seventeenth ' 
- 1 

aentUI'y that to_plaae a mJanmade 

objeat into Earth ol'bit is impossible 

on the grounds that no one at that 

Ume had the sUghtest idea about now 
to aaaomplish it, BO it lùouZd be ' 

wrong to day to maJ<e i"!P0s sibi li ty 

arg1gJ1ents abq,1!.t 'what aomputeI's aan do 
enti1'eZy on the g1'ounds of oU!' 

/ 

proeBent ignorance." 

J. Weizenbaum, Computer Power and 

Human Reason, Free~an, San Francisco, 

1976.", 
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Chapter One 

Introduction 

The Traveling Salesman Problem (TSP) has been studied extensively by 

a wide variety oI researéhers. For over fort Y, year,s engineecrs, combin-
<" 

atorists, graph theoretists, oper~tions researchers, management scientists 

and many others have been interested in finding efficient techniques for 

solving.it. This is due ta the importance of the practical applications 

in which it arise~, as weIl as its theoretical appeal. Today, more 

than two hundred (English) publications on the TSP may be found in the 

Iiterature, 

°An allegorical way of stating the TSP, which gave it its name, goes 

as follows: 

liA number of cities are given along with the cost of 

traveling between each pair. Starting at one city a 

traveling salesman wishes to visit 

remaining cities and return ta his 

departure. What'itinerary should 

to minimize the co st of his' trip?" 

From a ma~hematical point of 

simple ta state and trivial ta solve. 

pure mathematicians) is: 

ch of the 

in order 

/ 

oblem is then an easy one: 

satisfactory solution (for 

.. 
"Enumerate aIl possible tours and choose the' cheapest 

one." 

In prac'tice, the difficulty with this appro ch (for applied mathematicians 

that is) is its unfeasability for solving 

number of cities. Ta see this, note that 

starts at any city and wishes to visit 

once, then the number of ways of doing this 

20, the ~~mber of different round trips is 

very fast digital computer capable of exami 

second would require more than 38 centu~~s 

and hence cho(bse the cheapest tour! 

oblems that involve a large 

r an n-city problem, if one 

the remaining cities just 

(n-l)! Wi~h n as small as 

21,645,100,40~,832,OOO; a . 
1 

'ng each tour 1n one micro-
\ 
t6 exhaust aIl possibilities 

\ 
Methods - other than of an enumerative nature - were sought and, 

.) 

for small values of n (n < 40), sorne algorithms have been quite success-

" 

l' 

, 
L 
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fuI in providing t~e optimal solution to the ~r~blem. For large values 

of n, however, space along wit;" time puts sev~, i~itations on the size 

of prob!ems that 'câ:~;be attacked by these me 0 s. ,For prob'lems 

involving a large numb~J of Cit'i~ ano,thOer appr~ ch is adopted; 'algorithms 

based on a variety of heuristic te~hniques can b~ used to obtain approx-. \ 
imate solutions that are satisfactory for practicàl'purposes. The 

importance ofothis approach has been put in perspe~~~~ by current 

rese\rch in complexity th~ary. Rec~nt work in thi~XfielJ has shown that 
... \ ( , 

the TSP ,i5 a member of a wide class of combinatori'al prqb ems for which 
- \ 

no effi~ent algorithm that guarantees ~n optimal s' lutio is likely to 

be discovered. 

This thesis provides an.analysis of various aspects of the TSP. 

When the cities. to be visited are in the plane', estimates of the d , 

number of feasib-1f solutions are obtained for sfPall values of n. A stat-
1 

\istical analysis 15 ~lso carried out on approxiration algorithms that yield 

very good' near-optimal solutions to the TSP'. ' 'Finally, a. set of or"her 

p~oblems, related to the TSP, is studied; this 1ncludes~ the convex h~ll 
\ ... 1 .~ , 

prô lem, the tria~,gulation problem and a ge~er-alizat~<f of Sylvester' s 

probl m. The mail!- contributions of this thesis àre 1@ted below. 

. ' 
1) Five algorithms - TSPI to TSP5 - for the" TSP that essentially use 

graph-theoretic techniques are described along with an appraisal of 

these algorithms ~s carried out bi ~xtensive Monte Carlo exPe~iments. 
1 

'The first two algorithms are for th~ planar TSP: when the number of 
" 1 1 

cities i5 sma~l. algorithm TSPI empi~~cally estimates the expected T~ 

v;lue of ~he number oP feasible tours in a random map; algorithm-TSP2 
<r\. ~ , 

uses a new t'ool - triànghlations of pClints in the plane. - ~o oDtain 

approximate sorutions to larger problems. The n~~è' two algo~ithms are 
1 ~ .. ~. ~ 

for the gener,,!.! (i. el· not nece5sarily planar) symmebric TSP',. 

AI&~rithm TSP3 is basically a reward-punishment method that yields 

near-optimal solutions; a bound on the quality of the solution is 

pr'oyided, as well\,a~. an 'empirica,l esti~ate a{ i.h~ e~pected 'run-time 5\f 

the algorithm. Aigorithm TS~4 is ~~ extr~mely efficient approximation 

a!gorithm tha t combines the' powers (while, trying to avoid the short:" 
\\ " 

com±~gs) of some of the presently best known heuristics that have been 

used to approaëh the TSP. The major advantagës of TSP4 are its 

1 -

\ 

--
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simplicity and speed as weIl as the quality of the approximat solution 

Jt provides, It is also' superior to the other approximation m thods in 

that it can be easily éxtended to attack the asymmetr~c TSP. 

TSP5 15 an extension, of TSP4 to the asymmetric case • 

. 
'.' 2) A study_ of maxiJllal triangulations in connection with optimal 

; l' f/' ~~.l 
ings and Hamilton'cycles is carried out. W~ give a method of plaei g 

, 
n points in thè p.lane and joining them 'by,straight-lin~ segments tha 

, .' 
yie~ds a triangulation with the maximum, 'pos.sible number of edges. 

Triangulaéions of this type are shown to be Hamiltonian and an 
; 

ion f9r the number of Hamilton cycles they.contain is derived .. We 

prove a theorem relating these t~iangulàtions and crossing-number

.optimal rectiJinear drawings of complete graphs. A new lower bound is 
, , \ 

also~resented for the maximum number of crossing-free Hamilton cycles 

in a~recti1inear drawing of a complete graphe 

3) An algorithm - CH - is presented for solving the convex hull 
, 

',p"toblem in two dimensions. We ,use geometrical probabili,ty theory to 

all'alyze the algor.ithm: It is shown that for a uniform distribution of 
.' 

the n da~a p'oinss on th~ unit squaré the asymptotic expectei1 run-time 

of CH is O(n). This is in contrast to aIl existing algorithms whos~ 
, l< 

expected run-time is at least O(n log n), Experîments with the 

algortithm confirm its i~tuitive aod theoretical merits. A second 

algorithm for the planar problem - CH2 - is also described. Ideas for 

,extending CHZ to h"igher dimensIons are suggested. 

J. 
In' the presen,t chapter we; introduè.e .the teiminolog~ adop.t;~d 

.. t~ 1 1 

,throughout the thesis and review the varidus approaches that have been 

used tp address 

1.1 Te~inology 

1.1.1 ~efinitions 

A graph d is a pair (V, E), where 
1 

. • 
.., .,.,... .... ,. .... ,..,,'1,. *' ~ 

~-- ~-~--'---

_ t~J ~. ;,-\ 

, 

1 
t 
j 
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• (1) V i~La Hnite non-empty set {VI' V2""~"'v..'} of points., and" 
1.\ j l'K..... 

(2) E is famlly of pairs of points of V c:illed Zirres. • 

A li~e (Vi' Vj ) is said to connect vi and v
j 

called a loop. r 

A graph is sa id to be simple if 

(1) it contains ?o .. 1oops, and 

(2) no more than one line connect,s two points. 

The compLete graph K has every pair of its n,points connected by ~line. 
n 

A graph may be either a di~ected or an undirected graphe In an 

undirected graph each line cau be represented by the unordered pair 

(v., v.) and,vertex vi ls said te bé adjacent ta v .. Line Cv., v
j

) is 
:1 J J :1 

s,aid ta be incident to its ends vi and v
j

' In" a directed graph each 

line has a definite orientation assigned to it and is represented by the 

opde~ed pair (Vi' vj ) 

A subgraph G' S G is defined by a subset' of the lin es of G where G' has 

the sam~ points as G. 

A graph in which ~ number, wij is associated with every line (Vi' vj ) 

in the graph'is call~d a weighted graph and the number wij is called the 

weight of line (Vi' vj ). 

r 

ln an undirected (directed) graph G.an elementary chain (elementary 

pathJ from ~oint vi ta v j i8 a subset of E con'sis ting of a sequence of 

undirected (directed) lines '(vi' vk) , (vk ' vm), ... ,(vs ' v
j

) , represented 

by Cv. v
k 

v ... 'v v.) , where points v., vk ' V , •.. ,v and v. are dis-
:1 m SJ :1 m s J 

tinct with the possible exceptions of, vi and v, . If v, ~ v. , then the 
J ). J 

elementary chain (elementary path) is callèd a cycle (circuit). 

A graph is said to be connected if it contains an elementary chain 

(elementary pàth) for each pair {Vi' vj } ~f distinct points. 

A HamiLton cycle (HC) is a cycle 'in wh~h every potnt of the graph 

appears once~and only once. The same definition holds for a Hamilton 

chain, path and circuit. A graph possessing a Hamilton cycle (circuit) 

is termed Hami~tonian. -When the lines are weighted, the s~orte$t 

Hamilton cycle- (SHC) is that HC ~ith the minimum sum of line-weights .. A· 

shortest HeorIiUon circuit, is defined similarly. ~. 

The number of lines of subgraph G'S: G incident at pain: vk is 

.~alled the deg~eè of point vk in G' and 1s represented by d(vk , G')·. 

In a dir.;ct,ed subgraph G" Si G" the number of lines from vI> ta the other 

" 
\ 

-' 

1, 

1 

-1 
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" points in G' is ca lIed the outdegree of point vk ' dO(vk , G' ) , and the 

number of lines from every point to v
k 

is called the indegree of point 

v
k 

' di(V
k 

,G') An EuZer cycle (EC) of an undirected graph (or an 

Euler circuit qf a directed graph) is a. cycle (circuit) s,uch that every 

line appears on it exactly once. An undirectep (directed) graph which 

has an Euler cycle (circuit) is termed Eulerian. An undirected 

connected graph possesses an Euler cycle if and only if aIl its points 

are Qf aven degree. ',' A dir'ected graph G whose underlying unidirected 

graph is connected possesses an Euler circuit if and only if for ~ll of 
ai' 

its points vk ' d (vk ' G) = d (vk ' G) . 

A tree is a connected graph which contains no cycles. Given an 

undirected connected graph G , a subgraph G 1 = G which is a tree (connect

ing together aIl nodes) 15 called a spanning tree (ST). A directed tree 

iS~fither rooted to a point or from.a point. A tree rooted from'point Vi 

is à tree in 'which the indegree df v. is zero and the indegree of each of / 
1 , 

thé other points~is at most one. A tree rooted to point v. is a tree in 
7.. 

which the outdegree of v1 is zero and the outdegree of. the ?ther poin~s 

1s at most one. A directed spanning tree (DST) 1s as 1ts name suggests. 

/ When the lines are we1ghted, a minimal spanning tree (MST) is that ST with 

the minimum sum of line-weights. The minimal directed spanning tree 

(MDST) is defined similarly. 

A matching (M) of G(V, E)' is a subset of E sucK that no two Hnes 

.meet at the same point. A perfect matchinq (PM) of G(V. E) i8 a matching 
" 

which covers aIl points of V . When the 1ines are weighted an op~imal 
/ 

pepfect matching (OPM) is that PM with the minimum sum of line-weights. 

1.1.2 Synonyms and Abb~eviations / 

The abbr~viations introduced in section 1.1.1 ar~ used throughout 

the thesis, Note that HG and' EC also stand1l for Hamilton cJrcuit ,an,d 
.. ~ .,. 

Euler circuit respectively when there 'is no place for ambiguity. We also 

point out that for our purposes, line, edge, link, branch, arc and segment 

are aIl "equivalent. This also applies to point, vertex and node. 

When we talk'about the tour of a traveling salesman, we mean an He 

/' 
.' / 

/ 

/ 
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(or circuit) in a graph,each node of'which represents a city. The words 
~ 

optimal, shortest and cheapest are used interchangeably. Sorne abbrev

iations - Iike SHC~ MST or OPM for exampl~ - not only denote the corres

ponding graphs but also their costs when the lines are weighted. By 

'the cost of traveling from a ta b' we ~ean 'the weight 'of line (a, b)' 

as weIl às 'the distance between ~§.!nd b ". 

1.1. 3 Computer Prog~ams 
'/ 

AlI computer programs mentioned in this thesis are writ~n in FORTRAN 

for the IBM 370/158 and aIl runnin~ times reported are for this machine 

(unless otherwise spe~ified). McGill' s time-sharing 'system MUSIC was 

used to xun aIl programs. The maximum run-time allowable for a job under 

that system is 60 CPU seconds. 

In analyzing algorithms and programs, ~e use the no~ation O(f(n) to 

denote a quantity no't greater than c*f (n) where c i5 a positive constant. 
·1 AlI logarithms mentioned in this thesis are base 2. 

1.2 Previous Work 
" 

Aigorithms for the TSP are usually classified into two categories; 

exact algori,thms, Le. those gua~anteeing an optimal solution and 

approximation algorithms that yield a near-optimal solution in a rélativ

el~ short amount of time. 

Among the various approaches used to devise exact algorithms we 

mention dynâmic programming [BeaI, Gan, Hel], the branéh-and-bound 

technique [Ag, As, '~a, Gar, LaI, Lit, Pan, Si, Stc], linear programming 

[Danl, Dan2, Mil, Ho, Mu, Rao], combfnatorial programmi~g [Ri, Ross], a 

generaring function method [Ko], and the aigorithm of [Gim] for a special 

form of the TSP. 

Approximation algorithms have be obtained by app,lying the 

1 principles of local-neighborhood search Boc, Chr3, Cr, Dac, 

Linl, Lin2, Lin3, Lin4, Rei, Stel" Ste2, Weil, the minimal spanning tree 

IChr2, Chr6, Dil, He3, Kar3, Kru, 0, Pri, 
• l 

RosI, Ros2], nearest-neighbors [Beol, Gav],~ tour-building [Jo, Ka, Net, 

Ray, RosI, Ros2, WebJ, enumeration [Robl, Ro 2, Se, 'Rot], statistics .. 
[Go], and man-machine interaction [Kro, Mie] 

'/ , /' 
'''\l' ' 

J 

1 
! 

'1 
J 
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connection with the TSP, has receiv~d 
" 

The shortest-path probiem~in 
- much attentiQn [Bof, 'Hav. Pi, Sak] ~nd several bounds on th~ optimal tour 
"-
have been derived [Be, Chr4, Ei. Fe, Ham, Hel_" Ma, Sm, V]. . , \ 

Surveys of the differént methods of solut~on and applications of the , 
TSP are given in [Acl, Ac2, Bea2, Beol, Beo2, Bre, IChrl, ChrS, Caf, Con, 

Ei, FI, Hen, I, La2, LeI, Le2, Iliu, Roy, Sas, Sa~3, Wa, WeI]. Finally, . 
the complex\ty of the TSP and it~ relation to ether combinatorial problems 

is studied in [Gael, GaeZ, Karl, Kar2, Kar~, Lew, Papa, Reg, Sah, Sav2, 

Sav3, Wed]. 
~ 

In the fol!owing, we briefly describe some algorithms examplifying 
, 

the various teuhniques used to "attack the TSP. Our description is based 
, . 

ori the excellent survey works in [Beol] and [Ei1. We denote by 

N :: {l, 2, . .. , n} the set of cities to be vistted by the salesman and 

" by c~ the cast ,of going from x to y '. 
f 

1.2.1 Exact Aigorithms 

1.2.1.1 Integer Linear ~~ogramming [Dan1] 

Let Sand S be a partition of N, such that 
... 

Sn s =' 0 and sUs:: N • 

The pptimal tour can be obtained by minimtzing 

subject to 

, n 

,L2 J= 

j-1 

i~l 

, xij = 0,1 
o 

and the ,loop constraints 

i EES EjES 

(j = 2,.~. ,n 

> 1 

i = 1, •.. , j-l) 

, 
':; 

for aIl non-empty partiti~l1s (S, Sr where / 
l' 

/. 

1 if the ,salesman proceeds from city i to 

= 0- othe~ise • 

• 

. ' 

The exponential number of constraints and the fact that intege 

linear programming algorithms ate not a,lways guaranteed ta converge 

rapidly, "Înake th,is approach the least attractive of the exact metho s. 

Only one large problem (n = 42) is known for having been solved us! g 

/ 

/ 

j 

" . 
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/ 
thi's method [BeaI]. 

1.2.1.2 Dynamic programming 
" 

"Let N' = N/il} 

= {2,3, ... ,n} 

We denote ~y C(S, x) , where Sc:::. N' a1}d x€S , the cost of the S,h01:t st 

chain with endpoints 1 and x that inc1udes aIl the e~em~nts of" S • 

quantity i5 determined from ( 

C(S, x) 

. 
The ..above equation can bel applied recursively for/ a11 subsets S 

1 

and'for all èities x , bèginning with 
/, 

C({x}', x) for a1'1 x 
" ,,' 

and terminating with the cost of the optimal 
l' 

tour given by 

1 
/ 

min 1 

[C (N' , x) + c/~] xe:N' IX 

/ 

This approach 1s primarily.handicappe'd by the exponenti"::iLamount of 1 

storage required when solving the recursive equations on a comp.uter. 
; 

Computational results are only availab1e for n < 13 [Beol, Ei]. 
l (') 

, / 
The Branch-and-Bopnd Method [Li~] 

) " 
1.2.1.3 

Branch-and-Bound ijlan efficient technique for solvin~ constrained 

optimization problems {~all •. As mentioned ear1ier,' several algorithms 
- l ' 

based on a branch-and~bound approach have Qeen proposed for solving the 
l , 

TSP. One of these/algorithms [Lit] is now described. 
, / 1 

" ' 

Let T be thé set of aIl feasible tpurs to an n-city traveling salesman 
1 

prob1em witl1;a' cost matrix [Cij J , in which a11 diagonal._ elements are 

set ta infill'î ty. It is possible to reduce the matrix [ci'] as f ol1ows: 
;' J 

subtract ,from every entJY of each rDW the smal1est element of that row 
, , ' 

and th,n subtract fro~ every entry of each column (of the resulting 

" matr~x) the smalle?t elemen~ of that column. Let the final matrix be 

[c ~'.] • The optimal tour under [c' ij] is the same as the optimal tour 
/ J 

pnder [cij ]. Every row and column of [c'ij) now contains at 4east one 

----~(-- -< _._-~~--~ - ~~ 

- , 
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" zero element. ~f J could f ind a tour ""long the zero s. 1 t w~uld _ be 

optimal and in ~~ of the original matrix the cost would be equal to 

. " 

1\ ' / 

the amoünt of the\r duct10n. Let ro be the reduct10n; Every tour in T 

"will cost at 1east\r We say that r 0 la a lower b~und on the touFs 

c?ntained \D T. Th~ set T i8 now part1t10ned into two mutually éxclusive 

subsets and,lower boJnds for each are computed. The subset with the 
, \ \ . 

/ smaller lower bound i~ then partitioned and ~wo more 'Jower bounds are 

computed. At each st~ge the subset wi~h the smallest lower bound, 

obtained so far is sel~cted and partitioned again. Â subset that con-
, \ . 

.tains \a single tour who,se cost equals the lower bound is eventually 
\ \ ' 

obtalne~: tqis is the ~ptimal tour. 

we~w describe the part1tioning process. For each zero element 

C'ij of t e reduced matrix, a minimum penalty that would have to be 

incurred i \ l~nk (i, j) is not sele~~,ed i5 computed from, 
\ 

\ Pij = min c:tk + min cR.j. 
k#j tii 

Néxt, that link whose pena,lty. is the largest is chogen. Let this link 

be (s, q) .' The total number of tours i9 hence divided into two sub

sets: those that inc1ude 1ink (s, q) and thos~ that do not. The lower 

bound of aIl tours not inc1uding (s, q) is thus r + p • To compute 
o sq 

the lower bound of aIl tours including (s, q) " row sand column q are 

crossed out and c' is set to infinity. If the deflated matrlx can be 
qs , 

reduced the reduction is denoted b~ rI ' else rI = O. Now, .the lower 

bound sought is ro + rI . 

This method is believed to be the most powerful of the ~xact " ~ . 

algorithms although the time and storage requirem~nts in~rease èxpon

entiallywith the size of the problems. Computational experience 1s 
é 

. reported for n ~ 40 [Ei) 

1.2.2 Approximation Algorithms 

1.2.2.1 Sub-optimal Topr Building 

/ 

Dynamic programming and the branch-and-bound method just described 

are known as exact tou~-building aLgo~ithms. ' There exist a1so app~ox

imation tour-building algoritro:~., Basically, one starts'with an 

arbitrary city, say i , builds a sequence (i, j, k,.~.)\ by successively 

" including other eities into the sequence and stops when a tour is 

1 

\ 

)" 
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1 • 

obtai ed. The simplest algorit~, ~çooses the nearest u~visited neighbor 

city s the next city to be inc~~~ in the sequence.When no more cities 

are 1 th~ last';~isited city i8 connected to the starting city thus 

a tour [Beol, Ros~, Ros2]... Since the tour reached a,t termination 
1 -

on the startl'I1,g. ;~ity, it is possible to produce manyl final tours 
" g different starting cities and th:n select ,the best,Jof th~se final 

tours [av]. (Note that this is a propercy which the majotity of approximation 
~ ,. ", 

algorit share). lt is obvious that the run time of this algorithm is 

O(mn~) w m is the number of different final~ours obtained. 

into 

the least 

added: 

while 

method [Ka, Rky, RosI, Ros2] inserts cities sequentially 

such that the cost of the resulting partial tour is 

Essentially, one ~~ies to minimize lik + ckj - c ij , 

inserted between c1ties i and j in the partial tour. 

until no inoré~iÙ,es are to be inserted. Methods 

criteria u8ed for choosing the next city to be 
2 

n time of thé algoritpms of [Ka, RosI, Ros2] i8 of O(n. )-

[Ray] is of"O(n3) • 

1.2.2.2 Minim Tree-based Methods 
~~ __ ~-L~~~ __ ~~~~~~~~ 

The basic a behipd aIl these'algorit~ i8 the fol1owing: first" 

the MST is obtaine _,;, then a sequence of transformations is applied to it 

finally yielding an approximate solution to the TSF. 

One method redu es the MST'into a chain, by means of additions and 

deletions of lines [e r2, 0]. In [Han, He2, He3] the relationshi~ 

between the TSP and the MST is explored to derive a very sharp lower 

bound on the cost of an ptimum tour. This method may be used in a 

branch-and-bound algorith for the exact sol~tion of a TSP. . 
l 'J 

A sequential tour-bui ding algorithm described-in [RosI, ~os2] 
1 

chooses nodes for i~c~usion n the partial tour in, the same order,in 

1 which they would have entered the MST. The algorithm has a run-time 'Of 

and the cost or the near optimal solution it obtains is guaranteed 
/ 

l ' 

1 0 (n
2

) 

ro be sma11er than twice the co t of the optimal solution. 

In [Chr61 a solutio~ is obt~ned by ad ding to the branches of the 
~ 

MST those of an OPM of, the odd-deg~eernodes: /the resulting graph Is 
, 3 l, 

used to yield a Hamilton cyc1~ whosè,cost iB no more than 2 times the 

6 1 

~. 
1 

1 
! 
1 
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cost of the optimal tour. The algorithm runs in 0(n3) time. 
~ 

, 
1.2.2.3 Local Neighborhood Search 

.f 
Local neighborhood search algorithms~ 

(1) sta,rt with an initial tour chosen either randomly or 

arbitrarily, ànd 

(2) attempt to improve upon it by searching its neighbor-

hood following some specific policy that yields a 
, 

c bett~r 'tour. (.,' 

< ~,' 

As soon as an improvement is found it is immediately adopted and the 

above procedure is now applied to the new tour thus ~btained. If nO 
o , . , 

further lmprOiVement is possible the tour on hand is ca-lled a local 
'1 1 

optimum. The, entire procedure can now be, repeated as many ti~es ~as / 

required each time using a different initial toùÏ". The cost of the!" 

various local optima is then chosen as the final approximate solution 

to the TSP. 

This idea was first explçited in [Ba]: starting with 'an arbitrary 
• r 

\' 

tour a series of ever shorter tours is obtained where the (m-l)st tour 

. has each of the n groups of m,consecutive edges constituting it form a 

path of mini~~m length. This tour is sâid to be "mini per set of nll 

When m=n-l, the "mini per set of n" tour is obtained and represents an 

approxim~te solution to the TSP. , 
A similar method is described in [Cr]: starting with an arbitrary 

tour, apply simple transformations (called inversions~/iteratively to 
.3'\ 

obtain a crossing-free tour. An inversion is th~ replàeement of two 

edges in a tour by two other edges to form a new tour. . ., 
Further developments It" the original -ideas of [Ba] and [Cr] Iwere 

provided in [Chr3, Lin1, Lin2, Lin3, Lin4, Rei,'Ste1, Ste2] ,yielding an 

optfmization criterion considered today as one of -the best approx~mation 
< 

algorithms for the TSP. The technique, known as "k-optimalityll, was first ' 

formally deScribed in [Linl]. A tour is saïd to be IIk-optimalll if it is 

"(k-l) -~optimalll and if, in addition; no better t6ur' can be obtained by 

replacing any k edges of the tour with k other edges. Experiments [Ei,

Lin3] hav,e demonstrated that 3-opÙmal' tours hav~ a high probabi1ity of 
~ 

being optimal. In general, the cost of a 3-optimal tour exceeds that of 

the optimal tour by a very small amount. Problems of up to 110 

cities have been ~t~-empted us:j.ng this method [Lin3.1. 

! , 
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IOn the EXEectl'ld Numbe", of F'easib1e Solutions to 

"," the 
") 

Euclidean TSP 
/ 

In the! statement of a classica1 TSP the on1y Jatâ p-rovided' are the 

costs of tsave1~ng between cities. For an n-city problem thase are 
~ 

usually represented by an n x n ma~ixl C - the Icost matrix. Thus, 

c
ij 

= ·cost /of traveling from i ta j for i :f j 

for i = j 

When the,entries of C are Euc1idean distances in two dimensions, 

the TSP is termed Euclidean (ETSP) and has special exploitable prop

erties. Sorne of these are obvious and they are stated belaw without 
1 

praof. 

è 

/ 

For an ETSP, 
" 

(i) the cost matrix is syrnmetric, 

i.e. o f aIl i d .. d J. cij = c}i" or GlU 

and the triangular inequality holds, 

Le. for aIl ~ ~ j ~ k ; 

(ii) every city is visited once and only once ~n the optimal tour; 

and 

(iii) the op~imal tour does not intersect itself [BeaI], under the 

assumption that no three cities are on a straight line. 

IFro~ 'Ci) and (:Ü) ft follows that the oumber of diffe.rent tours 
(li-l). f -

! is 2 or an n-city problem each being a HaD!~lto!1 cycle. 

i From (ifi) it follows that 01!Üy crossing-free Hamilton cycles (CFHC) 
i 1 

1 need be considered [BeaI)'. lt should be c1:ear that property (ii) is an l, ',\ , 
I/immediate result of the triangular inequality and is no~ necessarily t~~e 
1 • ' 
1 in a general TSP. This property qas 50 mych influenced the literature 
! 

that very often' it is stated as a condition of the problem, even for 

TSP's where the triangular inequality does not ho1d [Lin3]. 

In this' chapter ~e present an algorithm for empiricalfY 

/ 
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the expected number of feasible 'olutions, in a random TSP., Fo~ small 

values of n; a refinement of the! algorithm will serve in fin ding the 
t 

solution of an ETSP. This approach will be useful in the appraisal of 
1 -

various techniques examined in 1ater chapters. Finally, a related 

proble'm is invest,igated. 

2.1 An algorithm fbr estimating E(CFHC) " 

In »n kTSP, cities lie in the cartesian plane and the cost of 
'1." ' 1 

',traveling from one ,to the other is the length of the s traight Hne seg-

ment joifi'ing them. Usually, we are given a map of 1 the problem, each 

city being defined by a pair of cartesian coordinates (x, 'y). This map 

is a rectilinear drawing of K ,the complete undirected graph with n 
n 

nodes, defined by the cities (its ,podes) and the segments joining them 

Cits edges). Our program for estimating E(CFHC) is essentially composed 
• 

of two subroutines. In section 2.1.1 we describe procedure CROX for 
" . determining a11 crossings in a drawing of K ,: Procedure PERMy for 

. n ,y , 
generating CFRe' s' is presented in section 2.1. 2., In sec,tion 2~ 1. 3 the 

two procedures are used to estimate the expected rlumb;~ of CFRC's in a 

random drawing of K • n . 

2.1.1' Determining aIl the crdssings in a drawing of K 
, 1 ...,. n 

Krectilinear drawing of K in the plane i9' given. For every four 
n 

different vertices of K ,say i, j, k and t , it is required ta deter
n 

mine whether the straight-line segments ri, j] an'cl [k, J/,] intersect. 
1 

We assume tpat the vertices are given by their cartesian coordinates, 

'that no two of them coincide (Fig. 2.1.a), and that no three of them 

aie collinear (Fig. 2.l.b). rhe, four possible situations are shown in. 

Figure 2.1. c • ., 
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Two different implementations of_ procedure CROX 
v' 

Method l 

"For every pair of independent segments, find the poin t o~nter
section, if any; of the two straight lines determined ~y-:~se~nts 
and check. whether it lies on both segments. Il .__/' 

/-' 

------'-
This is done as follows-. - - _--- -_---:--, c-::==::::....-------

P:'1te:î:-neparamete;~'-~he~O straight lines, Firat 

al=Yi-Yj 

bl = xj , - ~i 

,cI = xiYj - xjYi 

and 

a 2 = Yk - Yi 

b2 :: xi - ~ 

,c2 = ~Yt - xtYk 

/' 

If d
2 

= 0 the seg-Then find dl:: c2b l - c l b 2 'and d2 =, al h2 - a 2b1 . 

ments do not intersect (they are parallel). 

Else x = d
l

/d
2 

' i8 the x-coordinate of the point of interse'ction. 

r • 

r 
1 

./ 
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----Now, if x-îies "between~' Xl ~d x
2 

on the one hand and "between" x
3 

and 

x4 o~ ,the other hand the bio segment~ intersect; this can be de~t~rmined 

" by at 'tnoat six comparisons as shawn in the partial flow-chart in Figure , 
2.2 

"1 i 

... ' 

/ 

, \ 

1 

·1 

l', 

segments . YES ~ 
lntersect 

Th~ total numbe 

then 24 as shawn 

t' 

Figure 2.2 

_ r 

,'. 
l '( 

>--_ •.• 

NO segments do @ ... 
intersect 

~.' 

0 segments do not,' . 
inter sect 

NO 

o segments do not 
~~~~intersect 

segmen ts do not 
>-...w.:~intersect 

' l' 

u1: 

~ 

operations re~ired by thls method ls 
\ 

2.1 • 

t 

~ 
- ~ 

, ' , 

, .. ,..1 
~ ...... ,,\ 

'1 • 

1 
\. 

?, 

:1 
1 
1 

- \ 
l 
f 
• 

, . , 

" 
:J) 

,J 

J 
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Operation Number . 

Subtractidn 8 

Comparison 7 . 
Multiplication 8 

Division 1 
, 

'-

TablE7 2.1 

Method 2 (Av 1] 'v 

"For every pair of independent se~e$ check whether the tw0 . ,~ 

extreme points of each segment lie On 'different sides of thè straight 

line dete~ned by the o-ther segmenttl • 

This can be done as foliows. 
il > 

First compute 
~-j 

al 
,: (Yi lk) (X-:

t -~) 

?l (y -
t Yk ) ex -

i ~~ "and compare (al ~ bl). 

"-
a2 (~j Yk)~x~ -'~) 

, ~ , 

b2 = (Yi -- ti~"~-:f'"~,:t.~)J'-.\lflAw!~Ç&,-l?,.f13::! (ae",~,(,Jal J,~':';"-"~jr;.Q'?,i:H(~ 
~ " 1),. • (J"""- ~~4 

If the outcomes of the first and second comparisons 'are different, 
L ,,' liit' 

- compute " 
a = 

3 
(y -k y i?' (x~ 

b
3 

= -(y j ,~i) (~ 
.' 

a = 4 (Yi 

- x.) 
1. 

Xi) 

x. ) 
l 

1 
and 

'" 

co~are (a
3 b<:1) 

b4, = (Y
j 

- Yi) (xR. - Xt) ,and compare (a4 : b4) • 

! ~ v 

If the outcomes of the third and fourth comparisons are'different, the 

two S~' ~nts intersect. il , () 
The n er of comparisons required 15 at most 4 as shown in the partial 

flow-chart in Figure 2.3 • 

/ 
'gO, 

... 

\ "-

,<, • 

i , 
! 
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NO 

NO 

NO 

NO 

segments do not 
intersect 

segments do not 
intersett 

, 

/' 

1'" '\ 

o 

~ lU n"i.'F) 

The total number of elementary operations required by' this method ls 

then 24 as shown in Table 2.2 • 

Operation Number 

Subtraction 12 . 
~ 

Comparison 4 

Multiplication - 8 

-
, Table 2.2 \ 

lb ,~ • 

() 

Although the two implementatiône~tequire,the same number pf 
f . 

elementary operations for eve~ ~~~~ of segment~, the second method is 
.. .... r .. \,..· 

" recoumended since it involves. no·'diVisions. 

The output of procedure CROX ls stored in a 4-dimens~al integer 
') 

array iCROX. 

If segments li', j ~ and Jk, .JI.] inter~ then eisht entries of ICROX will 

be se t to 1 f nawüy, 

.. 

'. 

!-' 

4 

\ 

J 
1 
1 
t 
j 
l r 

" t , 

f 
.J 
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ICROX (i. j, k, i) ...s , 
ICROX (k, i, i, j) 

t,.-
ICROX (j, i, k, R.) 

, '" ICROX (k. i, j , i) 

ICROX (i, j, î, k) 

ICROX (R. , k, i, j )/ 

t ICROX (j , i, R., k), 

ICROX (R. , l, j , i) 

1 
Else the eight entries are sèt ta 0 

1'.1.2 

. } 

Determin.ing all CFHC in a drawing of K 
n 

B ~" 

" 

\ 

\ 

).' 
J ~ 

Procedure PERMU upon being given'the ICROX artay will g~nerate aIl 

CFHC's as follows, 

"A"tour is <;l permutation of the cities. Starting with a city generate 

a cr~ssing-free p!;;r1J!U-tation by sequentially" add~ng those edge~ that 
. \ 

introduce new cities and do not inter.:,ect previous edges. ~f ,he tour 

ls complete genera te the next perrou tation. When aIl branching ~ossibil

Jties ~ave been exhausted.' St~p". 
'l'wo l-d:Lmensional .arrays &€ used in the implementatiori of the above 

idea: "\ .,. 
~E~ : Gontains the permu tation being formed. 

, } 
NEXT contains available cities. 'i 

The basic algorithm, along with tluee special procedures, are outlined 

below. AlI arrays and simple variables are common to all procedures. 

Pro cedure PERMU 

Step 1 i(_Initialization) 

For J = l to N set NEXT(J) = J + 1 , 

Set NExr(N+l) = 1 and l = 0 

S tep 2 (Add an edge) 

CalI procedure ADDELE 

Step 3 (Test lengt~) 

If l's 3 , go to Step 2 

Else continue. 
c 

Step 4 (Using array ICROX theck for intersections) 

o 

If 1post recently addéd e,dge (PERM(I-l), PE~(I» intersects 

'f> 

r 

A 

0 

.. ' 
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, 
with any previous edge, go to Step 8 

Else continue. 

SteE 5 (ls permutation compleJ:,e1) 

If l < N, go to Step 2 ; • 
Else continue. 

SteE 6 (Check for repeti tions) 
• 

If PERM'(2) ~ PERM(N) • go to Step 8 

Else con tinue. 

,1 

, 

SteE 7 : (Add last edge.th~n check for intersections) 

If last edge (PERM(N) , PERM(l» intersects with any 

previously introduced edge" go to Step 9 ; 

Else output cyclE!; and go to Step 9 • 

SteE 8 : (Done?) 

If PERM(2) ;;: N , exit"; 

Else continue. 

Step 9 : (Increment permutation) 

Call procedure INCPER ; 

Go to Step 3 • 
P""i -JO> 

Procedure ADDELE 
" 

SteE 1 : 'If NEXT(N+l) == N+l cafl procedure INCPElfand exit ; 

Else continue. 

SteE 2 Set l = l + 1 , PERM(I) '" NEXT(N+l) ,_NEXT' (N+I) 

, NEXr (PERM(I» and J, = 1 • 
, ' 

Step 3 If NEXT(J) = NEXT(N+I) , exit 

Else set NEXT(J) ,~ NEXT(N+l) , J ;;: J+l 

and repeat Step 3 • 

Procedure 

Step 

Step 

INCPE{-

1 : If NEXT(PERM(I» ='N+I , go 

Else continue. 

2 Set Q = PERM(I) . , 
• CalI procedute RESTORE ;" 

Set PERM(I) = NEXT(Q) • 

to Step 

Step 3 If NEXT{Q) = NEXT(PERM(I» exit 

4 

-

! 
Else set NEXT(Q) = NEXT(PERM(I» 

Step 3 

, Q = Q+l and repeat 

-, 

" ' ! 

/ 

'.;~ 

/ /j' J ,; 

f',~ 
,. 

1 . 
" 

J 
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Step 4 Cal1 procedure RESTO RE 

Set l = 1-1 and go to Step.) .. ,. 

Procedure RESTORE 

Step 1 Set J = PERM(1) - 1 

Step 2 If J=O , go to Step 3 

Step 3 

E1se i(,NEXT (J) < PERM(1) , exit 

E1seo set NEXT (J) = PERM(1) 

J=J-1 and repeat Step 2 • 

If NEXT(N+I) < PERM(1) , exit 

E1se set NEXT(N+1) , = PERM(r) and exit. 

2.1.3 Determinin~ ~(CFHC) 
i..!O..-

At th1s point it 1s not difficu1t to'see hbw procedures CROX and 
• 'f 

PERMU can be used to obta1n the number of CFHC' s in a given configur-

a tion of ci ties • 

In order to get E (CrnC) 'in a ràndom map a Monte Carlo experiment is 

performed. For each value of n fr6m 4 to 10, the following three steps 

were repeated 1000 times to get the average number of CFHC's as weIl as 

the standard deviation, rounded to the nearest integer. 

Step 1 Use a uniform random number generator to'generate 

coordinates {}f cities in the unit_, square. ,,-

Step 2 Use CROX to find al}. crgssings in the dr awitÎg 

'- , in Step 1. \, ;. 

Ste!! 3 Use PERMU to determine th~ number 

drawing generated in Step 1 • 

Table 2.3 shows the results obtained • 

of CFHC's in 

generated 

the 

/ 

/ / 

/' 
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/' 

nI 
n nl=(n~1)!/2 n

2
=E(CFHC) Standard deviation - x,lOO 

u n2 ' '1 
, 

4, 3 2 1 66.66 . 
5 12 3 ,2 25.00 

6 60 8 5 13.33 -

7 360 20, 14 5.55 

8 25,20 54 39 2.14 

9 20160 160 118 0.79 

10 181440 474 365 
~ 

0.26 
/ 

Table 2.3 " - . 
>-

An exhaustive algorithm for obtaining the oEtimal tour 

,The twa procedures 'described in the previous section can be used 
~ 

to obtain the shortest Hamilton cycle (SHC~, in a drawing of K by 
n 

exhaustive, enumeration'. Thii:).lgor'ithm is d'èscribed below. 

Step 1 

\ 

-'" SteE 2 

Step 3 
, 

Step 4 

Given the coordinates of the cities use the 

Euclidean metric to obtain the inter city 

distance;, l.:. form tlie1cost matrix. 

Use CROX tG find aIl trossings. 

Use PERMU to find aIl CFHC's along with 

their costs. 

Choose the SHC. 

". 

A1though the number of 'candidate tours ,is substantially decreased by 

this method from (n-l)!/~ , as shown in secti~n 2.1.3, pro'cedures CROX 

and PERMO , however, are still exponentia1 a~gorithms. 

" In section 2.2.1 we describe a refinèment whicq, when intrO~llced in 
~ 

the algorithm above, caUses a dramatic reduction inlthe number of cases 

investigated. The modified algorithm is llsed in section 2.2.2 ta obtai9 

a new estimate of the expected nOI\lber of feasib1e solutions in a random 

map. 

/' 

2.2.1 Kink-free cycles need only be'cons~dered 

A ru1e of thumb will now he described that we shall use to reduce 

., 

\ 

, 
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l', 

"" 
the number of ëycles considered 1n our exhaustive enumerliiori of feasible 
,'- ~ 

solutions. ,The idea - although remotely relatefi to the principles used 

in [Ba] and [Linl] - is entirely nove'l as far as che ETSP ia considered 

sinee it 18 solely based on a geometric conè1deration, and is applied 

during the sequenfial construction of a tour. 

Let a cros sing-f-ree chain' be compos ed of (r+2) edges where 

r =_ 1,2~ ••• , n-2. Further, let (a,b) and (e,d) be the first and last 

edges of the chain respectively., ru;; shawn in Figure 2.4 
1 

e 

Figure 2.4 .. :~ 

We 'say th~t this chain has an r-kink if c.ab + ced > cae + '~d • 

Now, obvj:~;iy, a tour which has an r-=-klnk ls not to be considered sinee 

edg';s (a,b) and (e,d) Carl be replaced by (a,e) and (b,d) yielding' a 

cheap~r tour. This idea is exploited in procedure PERMU • 

"In the process of building a tour, every time an e4ge As added to' ~ 

chain of length t-1 , which does not cross any previous edge, a test for 

an r-kink follows, for r=1,2, •.• ,t-2 If the new edge crea tes an r-k,ink 

it Is disregarded, eise it is kept and a new edge is fetciied." 

-" 
Listed be10w i8 procedure PERM01 the new version of FERMY • It 

shows the tests for r-kinks and how the shortest cycle i,s det'ermined. 

At exit from the p'rocedure, a one-d:Lmensional àrray SHC stores the 

,shortest _~yc1e. 

'. 
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Procedure PERMUl 

Step l': 

Step 2: 

-' Step 3: 

Step 4' : 

For J=l ta N'set NEXT(J) = J+l 

Set NEXT(N+l) = 1 and l = 0 ; 
~ 

Se t" SCOST .. al -

, CalI ADDELE 

If,I ~ 3 , go ta Step 2 

Else continue. 
.\ , 

1 
.;,' \ J.t new edge creates an in tersec tio,n J go to 9tep 8 
: .~ .Q -

Step ,5: 

SteB., 6: 

-"lJUse ;" 

if new edg~ ~reates an r-kink, go to Step 8 

Else continue. 

If l < N , go ta Step 2 

Else continue. 

If PERM(2) > PERM(N) , go ta Step 8 

Else continue. 

Step 7':' -
.. 

S't"ep 9: 

If last edge ,creates an intersection go ta Step 9 

Else 

If last edge creates an r-kink go ta ~tep 9 ; 

Else compute COST, the cast of ~he n~ cycle; 

If COST > SCOSIr. go to S tep 9 ; 

Else set SKOST 

Go to Step 9 

COST ,and store cycle in SHC ; 

= N , exit 

Eise contl. e. 

CalI prpcedure 

Go tQ. Step 3 

j, 
1 

1 
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The m~dified algorithm - referred to as TSPl,- solves a 12-c;ty prob1em. 

in less than 18 secs on the average. 

In later .chapters 'we shall ~e use of TSPI for purposes of comparison 

and,appraisal of various heuristic techniques for the TSP. 

2.2.2 A new estimate of, the number of feasib1e solutions 

.' The u\O'dified a1gorii:hm 18 now 'used - in.a manner simi1ar to that 

described in section 2.1.3 -'to obtain a new estimate of the number of 
; 

feasible solutions for an ETSP. By a feasib1e solution _it should be / 

understood that we mean a crossing-and-kink-free/Hamilton cycle (CKFHC). 

Table 2.4 shows the average nunber of C~C's as weIl as the standard 

. deviation rounded to the nearest integer, in a random map. 

u 

n E(CKFHG~ St. dev. 

4 1 / 0 
. 

5 1 \ , 0 

6 1 0 

7 l 1 

8 1 1 
, 

9 2 1 

10 
1 

2 l / 

11 2 1 1 

12 / 3 2 

Table 2.4 

Some typica1 distributions are shown in Tablé' 2'.'5 Where F denotes the . 

nu~èr of .CKFHC's and P(F) the probabi1ity cf r . 

/ .. ' 

,-

l , 

. , 

, .. 
~; 
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n F pfFJ~ 

l 0.853 

6 2 0.140 -
3 0.007 , 

, 

1 0.766 
, " 2 0.197 / 

7 
3 0.032 

4 0.005 

/ . 
l 0.647 

2 
~ 

0.271 

3 0.063 , 
8 4 0:613 / 

fi 
5 0.004 

6 - 0
0
.002 

Table 2.5 

2.3 Number of crossings and crossing-free Hamilton cycles , 

Sa far we have considered on1y random drawings of K " In [New] a 
~ n 

special clasfl of drawings of K is studied : the CFHC - optimal drawings. _ n 
These are (recti1inear·and non-rectilinear) draWings of K possessing 

n 
.the m~imum possible number of CFHC' s. In the rectilit1e~r' tase this 

number is ~en~ted'by ,(ni Table 2.6 (from [New]) shows the known 

values of tf> (n) . . 
~ 

, 

n ~.(n) 

3 
, 

1 

4 3 

5 8 

6 29 

7 92* 

8 
( 

339* . 

9 1228* 
*conJ~ctured . 

-Table 2.6 

. 
'-

..... \ ~ 
1 

1 
1 i . 
) 

! , 
..1 ~ __ 
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It W8S observed in [New] that for sma11 n, CFHC - optimal drawings of K 
n 

a~so crossing-nurnher-optimal. The latter are dra~ings possessing the 

minimum ,possible nurnher of crossings 1Er]. This leads us to ask the 
1 

following question: is there a_c~rrelatio~betwe~n the number of cross-

ings and the nurnher of CFHC's in a drawing of K 7, In other words, is 
n 

it true that the more the crossings the fewer the CFHC's and vice versa7 

Procedures CROX ana PERMU are used to ans~er these questions. It turns 

out that for the majority of cases, the above statement is tr.ue; however 

this propérty does not hold in general. The two drawings of K6 shown 

in Figure 2.5 illustrate a counter-example. (See Chapter 7 for the 

derivation of a 'lower bound on q(n» • 

(a) 8 crossings 
.12 CFHC's 

(b) 9 crossings 
13 CFHC's 

1 
1 

. 1 

Figure 2.5 

-, 

are 
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2.4 Conclusion 
1 

In this chapter we demonstrated how the set of candidate tours for 

the ETSP could significantly be reduced in size when some simple 1) 

heuristics are used. In fact, it was e,xperimentally shown how tismall the( 
J! - , 

subset of feasible solutions actually is. We therefore ask: Will mpre 

powerful techniques be developed in the future to search 'intelligently' 

the astronomièal set oE candidate tours looking for this subset.of fea~

ible solutions? Will these techniques have a running-time that grows'J 

polynomially with the size of the input? It is hoped that the above 1 
questions will some day be answered aff:lrmatively. 1 \ 

, !, 

A proof! that the ETSP is NP-complete [Abo] was g,iven in [Gae2, lapa].\ 

When a problem is shown to be a member of this class, the gen~ral /tend- > \ 

ency today is ta conclude that no efficient' algorithm is likely t6 b~ l 

\. 
No one, however, has been able' to prove this 1 \ 

statement. The present wri~er believes that we still lac~ the approp-

discovered for solving it. 

riate mathematical tools to tackle these problems. bnce (and if) these \ 

tools are discovered and the right representation for each problem 

chosen, we m~ be able to devise 89lution methods with the requlred 
1 
degree of efficiency. Without the invention of calculus,c it i8 hard to 

believe that man would have been able to walk on the moon! 

il 

/ ' 
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Chapter Three 
Approximate Triangulations and the EuclideaJ,). TSP 

The concept of the minimal spanning tree (MST) hâS been extensively 
",r 

used [Chr6, Han, He2, He3, Kar3, 0, RosI, Ros2] to obtain an approximate 

solution'to the TSP (See Chapters 4 and 5). It ~as been.shown [Sh2J 
/ . 

that for the ETSP an algorithm [RosI] with runnin~ time O(n log n), 
r , 

where n is the numb,er of cities, can be used ta get an approximate 

solution which is no worse than twice the optimal. 

Another concept which led to a theorem [BeaI] for ~he . 
~ ~ ..... 

Euclidean TSP-, t!:i, that of the canvex huÜ "",(CH) of a set of' points in the 
.,..;~; ..... 

plane, i.e. the sma~lest convex polrgon cantaining aIl the points. , This 
"-

theo em sta~es that t~e order in whiè,h the points fopning the vertices 

Jar, th 
l , 

CH appear in the shortest tour, is the sa~e as the arder in which, 

they a ear in the CH. The theorem follaws d~r,eè'f~ly f~om the obvi:ous 

geometri 'i.. 1 fact, that the shortest tour does, not intersect itself. 

"Sev~ral alg ~thms have been described for obtaining the CH [AkI, Gr, 

Ja, Pre, Sh2] and they aIl have an expected run-time of O(n 1ag,n). A 

',detailed treatment of the'jprob1em ia provided< in Chapter 8. 

It is not dIffièult ta show that the MST and the CH of a set of ;: , 

points ih two dimensional Euclidean spacè are re1ated to a (little bit 
" more involved) structure that we define shortly: the minimum-wêight 

triangula,tion (MW!'). 4, triangulation of n points in the plane is the' 

plane graph obtained by joining the points by non-intersecting straight 

1ine segments until no edge can be added'without creating an inter-
r 

''l'' section [Benn, Sku, Wh]. From this definition ft follows directly 

, 

{ 

.' 
, , , 

that: ,... 
1) The CH of the set of points is a 8ubset of every triangul-

àtion since - by definition - no edge of the CH intersects 

another edge of the complete graphe 

2) Every region of tire triangulation interior ta the CH i8 a ~< 

----~ ------------------------- -.------

Now, if each edge i5 assigned a-weight (the Euclidean di~~~e 

MW! is a triangulation its edges 
_--ii"--:;~=--- _ 

, , , 

l i6 the least possible. 
:~ 4~.~ 
,~ 

, , 

" 

1 
i 
1 
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!WO algorit~s have b~en published to obtain the )Du. Sh2] and 

they have both been prov~n incorre~t by counterexample in, [LI], where, 

it i~ al 50 conjectuted that the MW! problem is NP-complete •. 

. ~ 

N In this chapter we study approximate (minimum-weight) triangulations 

(AT) in ~onn~ction with the ETSP (Note that AT ~ MWT). In particular 

we show that the AT ls a sourc~of pot~ntial candidates for the edges.~_ 
. of an optimal. solution to the-ETSP. 

-3.1 Ap Alg~rithm for the Approximate triangulation 

In. this section we present an algorithm for obt'aining an approx:-
o \ 

imate triangulation (AT). The algorithm will also ali~ the MST to'he ~ " - ' derived. Our interest in the MST in this context i8 due to tHe follow-
" 

ing reasons: 

/ ~. 

.... , 

~) lt was demonstrated in [L}.] that" tlie-- MSr is not ne~essari1y '-... 

a suhset of the MWT~ Neverttieless, the MS! 1s a subset of 

the dual of a Vorono1 diag~am [ShI) as shown in [Sh2]. Tâfs 

lat;er was.believed for sometime to be the MWT; although it 

is not so in general, it turns out to be in most of the 
(.'~ 

cases - a very good AT. It follows that the MST is a subset 

of;o sorne AT. 
2) The MST provides a go?d approximation to the optimal tour 

in a TSP (see Chapter 5). 
r .JO' 

From (1) a~d (2) it is ohvious that we w~1l need the MST for comparison 

purposes whèn constructing an approximate-~01ution to the TSP based on 
, 

the 'AT. 
/ 

J "t' ~ . 
.... 3.:1:1; Al,.gorithm AT J 

\ ~ 

~ 
Step 1. Sort edges in ascend~ng order of we:l.ight. ~, Let 

E'=I{el~e2, ••• ,e~} be ~~e set of so~~ed edges 

where ei < e j if i ~ j a~d ~ = n(n-1)/4 ; 1~t 
MST = ~ ; set i = 1 , LIST = E'aod j =,0-. 

( 

/ 
'. 

! 
2. " If (f~d: o-l) or (e

i 
creates a cycle in MST) . 

go to Step 3; 

Ef.~e 1 set MST = MST V {ei } and j j+1 . 

l . 
) 

1 
1 

., 
( 
F' , 
" " !' 

.. r' 

... 
. 1 
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S~ 3. 
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Step'4. 

If e. ~ 
(1 

Else set 

and LIST 

Ifi = i 

Else set 
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LIST go ta Step 4,; 

AT = ATV{e
i

} 

= LIST!{e
k 

~ ek and ei intersect} 

" stop , " 

i '" i+l and go to Step 2. • < 

3.1.2 Remarks 

. , 

One should observe that 
, 

J), Algorithm AT (without the operations foi the MST) resembles 

an algorithm gescribed in [Du] which was believed to yield 

the MWT. 

2) The MST id ba~ical~y obtained in algorithm A~ bY ~he 'greedy' , 
-

method 9f [Krù]. (The name ~greedy' is actually used for a 

who~e class of algorithms [La2]). 

3) The complete graph of. n points has (n) edges; the Nf be,ing .2 
a plane graph,' the maximum number of edges it can have 15 

3n-6 , and this ~ppens ~he~.its CH i6 a triangle. (The 

minimum being 2n-3 and,this occurs when,the n points form a 

cpnvex n-go?). Thé running.·:time of AT can thus ber described 

aS'shown in Table 3.1 . 
?-

Step , Comple~i ty Maximum number 

of times executed 

O(n4. l0g n) 
-

l 
. .. 

l , 

2 1 O(n) 0(n
2

) 

" 3 "-
2 O(n' ) O(n) -

4 0(1) 0(0
2
) 

\ , , 
'\ 

.l'able 3.1 
-0 

If foilows that the computation ~s domina~ed by Step 3 and that,tl'" 

overall' èomp1exity of algorithm AT is O(n ). ~ ~ 

/~' 

3.1. 3 Detection of cycles 

lIn Step 2 of a1gorithm AT , when an edge becomes a candidate for 

the kST the question of .whethe~ or'not it creat~s a cycle with the 
" 

previous tree edges is posed. Here we show how this questiorl can b,e 

-~~>;..I ...... ~ Jo' '\""'f"- ii. ,,' ~,~ ......... -"-, 

- ...... _ ........ ~~----

1 

~ 
L ! 

: 



\ \ 
\ 

" 

( 

~ 

; 

~a) 

"-

(c) 

-31-

answered. We first note that in the procedure described above, the MST 

may be created by growing several subtrees that are ultimately merged 

to yield the final spanning tree. 

process. 

• 
• • 

l • • • 
• 

Given seven points inlo 

the plane. 

'" 

~ 
The next two shortest 
edges are introduced 
reducing the number 
of subtrees to two. 

1> • 

~ . 

" 

Figure 3.1 

Figure 3.1 shows an example of this 

(b) 

(d) 

/ . • .. 

1 .. .. 
/' 

The first three close~t 
pairs are connected and 
t;hree subtrees result. 

t/ 

'. 

When the lis t edge is 
inc1uded the two ,subtrees 
are merged to yield ~he 
MST. ) 

,. 

> 
~ 

~ 

tJ 

1 

:; 

, 
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In order to detect cycles, we attach two labels to each node i , LAB (i) 

and MV(i) , as follows: 

(1) aIl nodes belonging to the sarne su~ree have the sarne label 

LAB ; in!tially LAB(i) = i for al~ i ; and 

(2) if anode has not been entered intooany subtree its label 

MV is 0 else it is l ; initia11y MV{i) = 0 for aIl i . 

Now, when an edge connecting nodes i and j i8 conside1ed for- inclusion 

into the tree: 

If LAB(i) = LAB(j) the edge is rejected sinee nodes i and j be10ng to 

the same subtree (and hence the new edge would 

create a cycle). 
< ~ 

Otherwise the edge is accepted (si~e it ~bviously merges two subtrees 
"-

into one). 

When an edge merges two subtrees, the labels are updated as f01~ow&: 

a) If MV(i) = 0 and MV(j) = 0 , this 

is the case of two totally new 

vertices (see figure 3.2); we 

arbitrari1y set LAB(i) = j then 
, 

MV(i) = 1 and MV(j) = 1 
-----

b) If MV(i) = 0 and MV(j) = 1 , this is 

the case of a new vertex, i , that 

i8 be~ng connected to a~u~tree 

(see Figure 3.3); we set LAB(i) = , 
LAB(j) and MV(i) = 1 . 

c) If MV(i) ;= 1 and MV'(j) = l , this 

is the case ot two subtrees me~ed 

by the edge connecting i to j (see 

Figure 3.4); ~e arbitrarily set 

a11 rfodes k wi th (k) ;Y LAB (i) 

to !AB( 

.- - --. 
Figure 3.2 

.----<J 
Figure 3.3 

Figure 3.4 

(For a ~omplete analysis, of this probl~ see [Aho]). 
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( 3.1.4 E~ample: Figure 3.5 shows a set of points in the plane and AT 

o 

, 1 

'" /' <-

lA set o'points and AT. 
~ 

.J • 
.. ",:Jf.' 

Figure 3.5 

( /' 
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• 
, 3.2 Algorithms ~or -t-he ETSr 

7 

In this section we present three algorithms for the ETSP based on 

the AT • 

..lo 

3.2.1 Preliminaries 

We first relate' optimal Hamilton çhains tO:,.optimal Hamilton cycle&.> ,;; 
/, .~ 

in the Euc1idean plane. The following proposi~ions' are straightforward~ ~'< 
, / 

Propos ition 3.1 

Give~ the shortest Hamilton chain through a set of points, the 

shortest Hamilton cycle.is not necessarily obtained by adding an edge 

to the chain. 

Proof: 

B~'counterexample, as shown in Figure 3.6 • 

L.~ 
Shortest Hamilton Chain ~ Shortest Hamilton Cycle 

Figure 3.6 

Obviously: Shortest Hamilton',Chain + Cl~sing Edge # Short est Hamilton 

Cycle. 
~"~ 

Proposition 3.2 
.. • Q.E.D. 

Given the shortest Hamilton cycle through a set of points, two 
/' 

points Pi and Pj adjacent on the cycle are joined by the shortest 

Hamilton chain with end-point~ Pi and Pj • 

l'roof: 

Given the shortest Hamilton cycle, as shawn in. Figure 3.7, , 

Figure 3.7 

we want ta praye that Pi Pk Pt Pm Pj is the shortest Hamilton chain 

with end,points Pi and pj • ,Assume this i5 not the shortest Hami~ton 

, 
1 

1,' 

/ 

!I 
,1 

;i 
.~ 
) 
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chain with end-points Pi and Pj ; this means that thete exists a shorter 

chain, contradicting the optimality of the Hamiiton cycle. ~Hence, 

Shortest Hamilton Cycle - edge (Pi ~j) ~ Shortest Hamilton 

Chain with end-points Pi and Pj' • 

Q.E.b. 

Proposition 3.3 

Given the shortest Hamilton chain through a set of points; if its 

end points ar.e Pi ~n1 Pj and edge (Pi' Pj) .happens to'be in the shortest 
• l , 

Hamilton cycle, then 

Shortest Hamilton Chain + edge (Pi' Pj) Shortest Hamilton Cycle. 

Proof: 

Assume the resulting Hamilton cycle is not the shortest. 

Since edge (Pi' Pj) ~s in the shortest Hamilton cycle, ~ts removal 

from that cycle would yield a .Hamilton chain shorter than the iniSial 

one, hence a c.ontradiction. 

Q.E.D. 
) 

We now proceed to define and discuss a few concepts r&la'ting to a 

set of points in the plane,and on which the technique is based. 

3.2.2 Nearest-Neighbors Algorithms 

The "nearest-neighbors" principle was used with relative success 

to obtain an approximate solution to the TSP. One of the'simplest 

algorithms [Be~l] starts with ~ city, connect~ it to its nearest neigh

bor, then connects this last one to its nearestrneighbo; ~ot yet 

included and continues in this fast~ thus creating a Hamflton chain. 
/'? 

The first and last cities are then nnected yielding a tour. (This 
f . 

/ approach is a1so known as a 'greedy' heuristic [Goo]). An improve-
/ 

ment on the method is described in [.Gav] and bounds on its general 

p~rformance are given ;n [RosI, ~os2]. 

Another technique known as the "engineering approach" [Robl, Rob2] . ' 
enumerat'es aIl possible Hamilton cycles in which each npde branches 

, ~ 

only!o one of its m nearest nei~hbors, where m is arbitrary. 
~ 

1 

î' 

! 
l~ 
l~ 

1 

, 
1 

1 
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In the so-called""linear 2-opting"'method [Stel] an attempt is 

made t'o improve on the efficiency ~f the 2-opting procedure, [Linl] by 

only considering the closest neighbors of every city. 

The approach adopted in this chapt"er belongs to this 'family of 

algorithms. We calI two points "neighbors" if they are connected by a 

line segment in the AT . 

3.2.3 An Approximation Aigorithm for the ETSP 

Proposition 3.2 above ~uggests that the shortest Hamilton cycle can 

be obtained by finding the shortest Hamilton chain'- between every two 

points in the given set. 'However, this is far from being a reasonable 

approach to the problem, the number of~Hamilton chains being equal to' 
/' 

urtimes the number of Hamilton cycles; let alone the fact that getting 

the shortest chain is by no means easier than getting the shortest 

cycle. Nevertheless, we shall describé a heuristic'technique for 

obtaining an approxima,tion to the shortest Hamilton, cycle that uses a 

variant of the above fdea. Solutions obtained by this method were 
" ~ 1·' 

always optimal and led to an interesting, observation regarding the ETSP. 
/ 

We note that, although the procedure has a complexity which grows 

exponentially with n , it is presented for its theoretical interest. 

Algorithms based on, the'same principles, but with lower time require

ments, will be presented in section 3.2.4. 

, 
Algo{ithm TSP2 J.2.3.1 

,. Step 1 

Step 2 

Step 3 

f~'" , 
Step 4 

Find an AT 

Identify points on the CH • -',.. -
For every'point Pi on the CH do the following: 

a) Enumerate aIl Hamilton chains start;ng at Pi 

and composed on1y of edges of the AT 

b) Add to every chain found in (a) an edge 

connec Ding the first and last points, thus 

creating a Hamilton cycle. 
'\. 

, . 
Among a11 cycles found in Step 3 choose the 

shortest. 



/ 

,. \r. 

( 

" 

.... 

.; 

"1" 

--

( 

", \ 
-37-

:: 
.~ 

Figu~e 3.~ shows a set of 12 points in the plane, the correspoyding AT 

and the cycle, obtained by TSP2'. .We note that this cycle is the SHC • 

AT 

Cycle obtained by TSP2 

~ 
/ 

Figure 3.8 

'3.2.3.2 Analxsis of Algorithm TSP2 

'- Let d be 'a random variable denoti~g the degree (~. e. number of -

neighbors) of a node in the ·AT and taking the value di for node i . 

Alsa let t bé'the number of edges in the AT. Renee 

'1 '-

'/ 
/' 

lIr 

: 
t 
l 

1 • ! 

t 

,. 
,j , , 
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and E(d) 
.2t 

=-
,/ n 

Now, when node 1 1s connected to node j in the process of con

struct1ng a cycle, thenumber of branch1ng possibi1ities of node j 1s -

at 1east,- reduced by one s1nce j cannot branch back to 1 . 
, 

Thus, .an upper bound on the number of chains for every starting point 

1s given by 

,/ [E(d) - 1Jn- 1 

In the following theorem we develop an expression for t and show 

that .. • 
2n-3 ~ t .:: 3n 6 

Theorem 3.1' Given n points in the plane, the number of edges in a tri-

angu1ation of the points 1s given by 

t = (2n-3) + (n - h) , 

where h is the number of edges on the CH of the points. 

Proof: • 
The maximum-value that h can -take is n . In that case, the number 

of edges of the triangulation is given by: 

n edges on the convex hul1 

+ 
(n-3) edges connect1ng anode to its (n-3) non - (CH) 

neighbors • 
. ' 

This 1s i11ustrated in Figure 3.9 for n = 8 

Figure 3.9 , 

We have just pro~ed'that 2n-3 is the minimum value t tan take. 
/' 

/ 

, . 
"1 

, ' , 
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Since the minimum value of h 18 3 , the upper bound of 3n-6 follow8. 

This is' the maximum number of e,dges a plane graph can have. A. triangul

ation with t = 3n-6'is called maximal and~an be obtained by, for examplé, , 
placing the n points as ~/~ concentric triangles (see Chapter 7).' 

To prove that the formula' ls valid in gene~al, assume it i8 true for 

h-l ,i.e. 

t = (2n - 3) + (n-h+l) 
1 

If we now increase the number of nodes ,on t,he eo;wex hull by, one, by 
. / 

pulling an interjor point outwards, ~s shoWn in/Figure 3.10, the number 

of edges of the/Briangulation. is th~n reduced/by one, 

~ a\:/: a, .," , \'1 ," ,e 
l , 1 c .. l , 

1 lb ' 
1 

, 
1 

1 t l ' 1 1 , 
1 , , 1 1 , 

de - _ t t 1 1 l' 
-. - ... - , d e - __ ... , 

1 e - -ef 
.... _-

e -. f 
1 • 

·Figur 3.10 

Le. t -- (2n-3) + (n-

Q.E.D. 

'The expected values of t and d are given by 

E(t) = (3n-3) - (h) 

E(d) = 2E(t)/n = 6 _ (6 + 2E(h» 
n , 

where E(h) ls th expecte9 number of edges on the CH. It fol10ws that 
/' 

an upper bound on the expected running time of the algoritbm is given by 

E(h) • [E(d) 1]n-1. 

Table 3.2 sows the values of E(h) - as given in Chapter 8 for a uniforrn 

distribut on of the points in the unit squar~,- and the correspondin~ 

cornputed E(d) f~r various n We note that {E(h) • [E(d) _.l]n-I} . 
, (n-1)" 

althou h an upper bound, ls less than 2 for n ~ 10 . 
" / 

g / 

l' 

() 

0 

" 

, 

~. 
" 

f' , 
1 , 

,1 

;f 

, / 
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n E(h) E(d) 
~ .. 3 3 2.0 ... , . 

4 3 3.0 
-

5 4 3.2 
~ 

~ 

- , ... , 
6 4 

.,. 
3.6 --

7 5 3.7 

8 5 4.0 

9 5 4.2 

10 1 5 4.4 
"' /' 

20. 7 5.0 0 

11 

30 , 8 5.2 
. 40 9 5.4 

-
50 la' 5.4 

-60 la 5.5 

70 11 5.6 
-80 11 5.6 . 

90 li 5.6 . -. 
100 11 5.7 

Table 3.2 

To get more insight, we stochastically estimated by a Monte Carlo 

expefiment the actual expected number of Ha~ilton chains and cycles 
l , 

present in ~ random triangulation, for various values of n and a uniform 
, 

dis~ribution of the points in the unit square. These values are listed, 

in Table 3.3 

" 

'. 
" 

1 
,1 

" 

.It 1 
li '-, .. , 

l'~ 
1: 
l, 
r 

/' 
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n E(chains) E(cycles) 

4 2 2 

.5 3 2 

6 7 4 

'] 11' 
~' 6 .~ 

8 33 , 15 
, 

/ 

9 46 . 23 , 

10 104 45 

11 186 72 

12 .. 594 196 

_, .13 674 376 

14 830' 566 
~ 

Tab'le 3.3. 

For n;= 8 , e.g., a1gorithm ~SP2'wi11 have,to- search through 5 x,33 = 165 

cycles on 

a1gorithm 

the avera~e before yieldIng an answer. .-
(described in the next s~th~~) iead us 

~" ,.. . 
answer is almost a1wayè optima,l.· 

• l" 

{3.2.3.3 Experifuents with A1gorithm TSP2 

Experiments with the 

to conjucture that th~s 

t J( • Q 
The following exper~ment was conducted severa1 times for vario~s 

values of n: 

1. A set of points was p1aced in the unit square using a 

unifprm rando~number genera~or. 

'2~ A solution was sought using algorithm TSP2 . 

3. The optimai solution was obtaine~ by exhaustive search. 

The TSP2 solution was always optimal. 

, 
This result'-I::}ed.us tO,'ask th~ following question: "How good is a, 

1 

random solution com?osed on1y of edges of the.-AT as compared t~ a pur~ly 

random solution." 

~ 

For smaU values of ,n i.e. 4 ~ "n ~ 12 , the reference poin~ was _""'~' 
.. ~ -~" I,J. • ~!:<'~. 

the optimal tour obtained by exhaustive search. For 25 < n ~ 100 ~ the:t;,., 
various tours were compared to 1.102*MST , an approximation of the 

" 
opti~al to~r detived in Chapter 5. The results are shown in Tab~es 3.4 

1 
f 
1 

" ' 

j 
1 

,/ 

.. 
" 
1 

i. 

"1 
• 1 

1 

1 



( 

.e ( 
'-

1 

1 

", . 

\ 

and 3~ 5 ,'1 -- :;:. , 
'2~ ....... "i;"t~., 

.. ~~1' ~:"'t~_\ -, 
:" 

L ___ _ -42-

-

.~ "' n Random/Optima1 

4 
, 1. 056 1 

5 1.175 

6 1.386 
r 1 

.;7 
1.t

66 
." "" 8 .-J. ~ 

1. 36 
1 

" 9 ~,708 

10 1 ~ ---- -,---- 1.,862: 
' , , 

" 11 1.866 

12 G - 1.888 
, 
_/ 

l'. 'l'able 3.4 
\ 

n \, Random/l.l02*MST 

" 25 \ 3.642 

50 
\ 

4.949 \ - , 

\ 75 \ 6.035 
1 100 1 6.847 ' 

<fi 

Table 3.5 

Random from AT/OPtimal 

1.004 

1.043 

1.091 
0 

t 1: 1i4 

1.127 

1:141 , 

1.163 .. 
'1.1790 ; 

1.194 . 

, 

Random from AT/l.102*MS1 

1.365 

1. 422 , 
- 1.489 

f 

). .. 517 
.. 

Each entry in Tables 3.4 and 3.5 is an average over '100 t~ial graphs 

randomly generated for every value of n by generating uniformly and 

independently th'e two cartestan coo~dî~ates '. of n points in the unit 
~ . ' :-...... 

square. As the tab~es shaw a random cycle~chosen from the AT is definit-

'. ely superior ta a purely random one. 

At th:(:~r point '!"e believè that a question is legitimate: "What if' , 
the AT does'not contain/a,Hamilton cycle?" To answer this question we - , 
make three remarks: ' . 

1) Determining'a priori if. a graph contains a Hamilton 

cyc1~ is one of ,the mO,st difficult uns_olved problems in· 
" graph theory [Cae1]. We,shal1 not attempt to examine.this 

problem here even for th~ special case of the AT . .. 
2) Most authors [R9b1, Rob2, Se] assume tacitly that their 

graphs are dense enaugh (i.~. contain a sufficient1y 

o 

1 

1 
1 • 
!~ 
1 

r 
f 

, 
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1 
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1 
4, 1 \ 

,\ 
\ 

large number of ,edges) to possess ~t lekst One Hamilton \ 
\ 

, , 

,', cycle. We shall follow them in this assumption. 

3~ The algorithm does not look for Hamtlto~ cycles but, 
1 ~ 

rather, for'Hamilton chains - a less restricted'structure., 

The algorithm was teated on several hÙndreds o~ graphs. ln ~ach 

case the AT,contained numerous Hamilton cycles. (For a fu~ther discuss

ion of triangulations, see Chapter 7). 

~ 

3.2.4 Better Algorit~ for ~e ETSP based on the AT .' 1 , 
We sa~,that algorithm T6SP2 wa~ ~ot very efficient with 

1 • 
respect) tQ '. running time. Two variants are sugge..sted it;l. thi~'_' section that are con-

siderably faster. 

" 3:2.4.1 Algorithm TSP2.1 • , ' 

/' 'Step 1 Get, the AT. 

Step 2 Enumeratè a11 differÉme Hamilton cycles whose edges ' 
U , " ' 

belong to the AT. . 

Step 3 Choose the cheapest cycle: thi~is an approxima te 
• . 

solution to the TS~.,. . ~ 

, , 

This algorithm - which is, for' obviou~ :ç-easons, many times' faster 
• 1 

th.an ·TSP2 - suffers from -the' following', draw'b,acks: 

1) ,Rufining i~e is stillOhandicapped by the ex~austive nature 

of Step 2, 

2) The pq~sibility that an AT may not contain ~n HC ia now 

present.! 

Our expèrience with algorithm TSP2 gave us a very good c~~fidence in the 

,. quality of the answer it prpvided; in con~rast TSP2.1 fails to find the .., 

...... optimal solution to a 6-city problem as shown in Figure, 3.11 • 

" 

, ' 

, 

1 
la 
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Solution by TSP2.1 

,Figure '3,11 

Optimal tour 
'", 

We tnerefore consider another variant of TS~2 

3.2.4.2 Aigorithm TSP2.2 

Ste~ 1 

Step '2 

Ste~ 3 
( 

Ste~ 4 

'Get the AT " 

Get the CH , 

Use any heuristic technique ta obtain n good TSP tours. 

Within the tours found in Step 3, consider only the set 

S of edges joining a point on the CH to an interio~ 

pOint. Let TCS such that T = {t : t ~ AT} 1 . 

If T = 0 then T = S . Among the edges of T oose t~ 

'one ~ith tÀe highest frequency of occurrence: 

let it be (a,b) , 

Step 5 Enumerate at most n2 Hamilton chains with end 'po~nts , 

a and band whose edges belong to the AT ", 
1 • • 1'1 

Step 6 The shortest chain ~ou~d in Step 5, plus edge,(a,h) 
" 

is an approxima te-solution to the T~P • . 

') 

1 

" 

.. 
1- /' 

___ ~. __ ._ i 

, / 

4' 
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• The two examples of Figures 3.12 and 3.13 i11ustrate the algar1thm. 

In eaçh example a set of points and their A~ are shawn along with the . ' 

Hamilton cycle found by aigorithm TSP2.2 • J In Figure 3.12, the points 

were drawn at random from a uniform distribution over the unit square. 

~igure 3'.13 is from [LI]. Edge (a,b) .chosen by the alg'orithm in Step 4 

is also shown in each case. Note that in both examples the' cycle ob tain

ed by TSP2.2 is the SHC. 

Before corrcluding the description of TSP2.2, we rèmark that the 

a1gorithm used'in Ste. 34fshould allow~us to obtain n different good tours. 

The nearest-neighboy method [Beol] and the heuristic technique of [Ka] 

are both 0(n2) and have this property'of yielding different tours for 

differf7rlt starting dUes. At;\other algorithm which share's this property 

" " is the ~earest-insertion of [RosI] which gets an approximat~ solution to 

the ETS" in jJ(n log n). as shown in [Sh2]. A very good tour could' also, - ~~ be obtai~ed by the O(n log n) aigorithm of [Kar3]. 

3.2.4.3 Analysis af TSP2.~ 

From Table 3.6 it fallows that TSP2.2 is 0(n3) 

Ste 

l 

L 2 O(n log n) 

3 0(n3) 

4 0{n2) 

0(n3) 
o 1 

0(1) 
< 

, , 

Table 3.6 
~ 

:;-
,\ 

, 

",' .. "\ 

"""'i" 

" 

\ p 

" , 

\ . 
\ 
\~ 
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AT 

SHC 

- - - - - (atb) 

-':"::":'1 
l'''~ 

) / Figure 3.12 
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Figure 3.13 
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3.3 Conclusion 

The experiments described in this chapter provide an empirieal 

evidence that triangulations of point~ in the piane ean be u~ed to obtain 

good approximate solutions to the Euclidean Traveling Saiesman Problem. _ 
, " 

, Very little i8 known, however, about- the geometrie properties of triang-

ulations. Our experience leads us to b~lieve that triangulations could 

be ~ power fuI too! in solving comblnatoriai optimization problems in the 

plape. ,It ia hoped that the resutts obtained in this chapter will 

, ?'~~-8'~late an intereat in the study of the intr-insie properties of tri-
'/ i" an,ulations. 
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The Shortest amilton Cha~n of a Gra h and the TSP 

, ' 
In" Chapter 3 a solution to the ETSP was obtained via enumeration of 

a class of Hamilton chains. 'The same approach wHl be usèd here to 
,. . 

aètack th~ general (i. e. not necessarlly Euclide_an) sYIImle~ric TSP. 'In 

the Euclidean case the method relied pdmarily on a plan'ar structure, the 
1 -<' 

AT; in this chapter the tool used ia the MST. Basically, a ~equence of 

transformations i9 applied to tbe MST, ult1mately y1elding the shortest 

. Hamilton ch-liln and hence an appr,oximate solution to the TSP. A bound 

on the qualj.ty of the solution 18 pravided, as well as an empirical 

estimate of the expected ,run~t1me of the algorithm. 

4.1 An approximation algorithm for the TSP 
~r"( 

The propositions of section J; 2 lead to the following algorithm for 

gett~I!~ an approximate solution ta the TSP, given a weighted complete 

graph.,;pn n nodes. 
1 

Alsa ri thm TSP 3 

Step 1 Find the shortest Hamilton chain of the graphe 

Step 2 Connect the end points of the chain: the resulting 

Hamilton cycle 1s thus an ~pptoximate solution ta 

the TSP. 

Proposition 4.1 

When the cost matrix obeys the triangular inequal~ty, the solution 

obtained by algorithm TSP3 is at most 50% more expensive than the 

optimal solution. 

Praof: -
We want to show that 

Since, 1 
approximate solut10r 

cl exact solution 

- ' 1 

we,' prove that 
1 

app.roximate solutioo' < 1. 
exact solution - 2 

shortest Hamilton chain + last edge -= 
shortes t't-Hamil ton cycle 

= shortest Hamilton chain + last edgè 
SHC SH'C 

shortest' Hamilton chain 
snc 

,s 1 and la8t edge <:1 
_ '""é. SHC - 2 

l' 

i" , , 

/ 

, 

/' 

/' 
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1) Removal of an edge from the SRC yields a Hamilton charn which i5 at 

leas t equal to the shortes t Hamil ton chain; in other words 

(SRC ~·edge) ~ shortest Hamilton chain. 

'! Th us , SRC ~ shortes t Hamii ton chain. 

2) Let (x, y) be the longest edge in the graph. There are two possibil-

i ties: 
1 

a) (x, y) i6 in the S.RC 

Let Cl be the , length Qf the chain resulting from the exclusion 

of edge (x, y) from the SHC as shown in Figure 4.1 

.. 

,.. ..... 
/' , 

l ,a 

X~ .. ,I 
y 

SHC 

Figure 4.1 
• 

From the triangular inequality iL follows that xy < Cl and that 

2xy ~ Cl + xy. Renee, 

b) (x,y) is not in the SHC 

SHC 
2 

1 
Let Cl and S be th~ 1engths of the two chains with end points x 

and y and whose concaten~ion yields the SHC as shown in Figure 

4.2 

'" / 
Ci( 

.... ..... 

x _1 

'~\ -
- y-

., 

SRe 

Ff;ure 4.2 

, 
" B , ' 
~ 

[ . 
Again from the triangular inequality, xy :: Cl xy < Sand 

2xy ~ Cl + S. H,ence, 

J .. 

/ 

i· , , 
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o 

Q.E.D. 

The difficulty with algorithm TSP3 lies of course in the fact that 

finding the shortes t Hamil ton chain i8 a hard task in i ts own right. - In 

fact the complexity of that probl,em is o-f the same arder as that of the 

TSP. Nevertheless various 'techniques for obtaining the shortest Hamilton 

chain were-given in [Chr2, Chr5, He2, He3~·. We now describe a heuristic' 

technique called "the vertex penalty method", first given in [Chr2] and 

then developed in [Ch r5] • 

4.2 The Vertex Penalty Method 

The essence of the technique is ta force the MST of the set of points 
"'J.JP.. '. , ( 

to become a Hamilton chain by penalizing vertices wi~h degree other than 

2. Let di be the degr~e of vertex xi in the MST ,-
, " 

C
ij 

(= c(i,j» the cost of edge (i, j) 

and p(i) a penalty imposed on vertex x. 
1. 

Then, . 

Step 1 

Step 2 

Step 3 

>. 

Gèt the MST. 

If the MST is a Hamilton chain, stop." 

Else continue 

For every xi with di "f:. 2 , 

and 

, for âlÎ j . 

Go to Step :t with the new cost-matrix 
J 

, 
\ 

In [Chr2] it is shawn that the Hamilton chain obtained' in 1> 

I.the shortest Hamilton chain of the graph ànd in [Chr5] 
-

penalizing strategy is prescribed for use in Step 3 • 

1) When di > -2 
l ' 

~) Remove from the MST just one of the links/ (xi' x
r

) incident ât 

is r 
1 
! 

t 
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b) 
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Xi thus creating two subtrees Tl and T2 as shawn in Figure 4.3. 

- --

Figure 4.3 
, 

Find the least cost link joining these twa subtrees; i.e. find 
r r the link (x
j 

, ~) such that 

r r 
c(x

j , ~) = 

as shown in Figure 4.4 

Then, p(i) = tnin 

min 

xj E Tl 

~E T2 , 

X/)/'Xi 

, 
Figure '4.4 

i 

X. 
'J 

r r 
[c(x

j 
,~) 

(xi ,xr)E:MST 

,/ 

In other yards, pei) fs the minimum positive penal~y which when 

applied. ta xi alané causes di ta Qe reduced by one. 

2) When di = 1 
,/ 

a) Add a link (xi ' x
r

) to the tree as shown in Figure 4.5 • 

,/ 

\ 
1 
1 

! 
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1 
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; 
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\ ' 

x, 
~ 

Figure 4.5 

b) Let S i be the set of links1>in the path from x to Xi - exc1uding r . r 
~he last link· incident 1:1: Xi : if (xi , x ) is added to the 

r 
tree and any one of the links in Sri is removed, another 

tree ~esults in which di = 2 • 

'~hen, pCi) ~ min [c(xi x 
r 

In other words, pCi) is the maximum negative penalty which when applied 

to Xi alone èauses di to become 2 • 

We have used the heuristic technique and penalizing strategy just 

outlined in Step 1 of our approximation algori thm TSP3. Two minor 

modifications were however introduced that are describeJ below. 

1) In the case of di = 1 , pei) is, by definition, the maximum 

negativé penalty (i.e. least negative) which when applikd to 
.-, 

node Xi alone causes di to become 2 . It follows that 

We 

a) 

b} 

.p(i) ,A max [ max {c(xj ,~)} - c(xi,xr>] 
x (xj ,~)E:Sri 

, 
r \ 

note that the expression in sq-l:iare brackets: 

i8 always negative because cCx, ,x ) is larger than any edge 
1. r 

in the tree (or else it ·would replace an edge of the tree), 
, 0 

is maximized for every S . by choQsing the longest edge in 
~ rl. 

the pa;'h to be (xj ' ~) ; 
/' 

The expression ab ove , th~refote, agrees witÎl the 'defini tion and ls 

the correct negative peRalty for di = 1. To show the difference 

with~he expression 'given in [Chr5] we write 
./ 

'i 
f 
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= -

Note that the minus sign has been introdueed and max now replaces 

min inside the square brackets •. 

2) The penalt~es (positive or negative) that we use 're given by 
, -4 

(1 + e:) p (1) where E is very s'\D8~l (e: .. 10 , say). To 

illustrate this poin~ 'we take the ~ollowing example where n=4 , 

the MST 1s indicated by solid Unes and edge costs are as shawn 

in Figureo 4.6 • 
1 

c 

/' 

Figure 4.6 
/' 

a) Positive penalties 

Node b is to be pènalized. There are th:tee alternatives 

depicted in Figure 4.7 which show that p(b) = 1 . 

a • " , 
b ,~ 

c~ 
ad-ab = 5-1=4 

/' 

/' 

.-'e 

a 

cd-eb = 4-2=2 
\ 

Figure 4.7 

a 

1 

d e - - ... -,/- - - ed -4 
) , 

de-db = 4':"3=1 

~ 1 

, , 

,. 

,/, 
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. After adding this penalty to the edges incident st' b the new 
edge costa will be as in Figure 4.8 . 

'~, 

Figure ,4.8 .. 
One can see that edges (b, d) and, (c, d) are equal and the 
MST may very well be the saille as t!'le original one (see 
Figure 4.9) causing the procedure t~ never converge. 

c d 
J 

Figure 4.9 

If, however, the penalty is taken as' (1 + €) p(b) we get 
the new edge costs of Figure 4.10 • 

• '., 6,' '~'~ 
, f>4 " , }Jr~ ....... t.e , 

~, ....... ~ .-_ .... -_ ..... . 
4 

Figùre 4.10 

k 

The new MST shawn in F~gure 4.11 1s no'W as required. 

a' 

b 

c..-::;;...-----.... , d 

Figure 4.11 
t' ' 
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/' 

Negative penalties 
1 

Node c 18 to/Ée penaii~ed. 

in Figure 4.12 whi~ show 

There are two 'â1ternatives depicted 
~ 

that p (c) = -1 

a a 

c d 

cb-ca = 2 -6 =- -4 db - de = 3 -4 = -1 

'FigllTe 4.12 
•• '<,r , 

Adding this penalty to the edges inciden~ at c yie1ds the 

new edge eosts of Figure 4.13 .• 

. 

• 'I~ ~ \ 
5 , 11. ,5 
, l , , 1....... , ',."" 3......' 

." ... .. 
~ .. \- - - - -- -.. . 

3 

. Figure 4.13 
~ , 

Edges (b, d) and (e, d) have the same cast and the new MST 

eould very wèll be 

Figure 4.14 • 
/ 

e 

/' 

the same as it was, origina11y, 

a 

-
F,;tg'ure 4.1.4 

If, however~ the' penalty is taken as 

the new edge.costs of Figure 4.15 
. , .. .. 

8~e 

get 

'f 

.. 

.,' 

J~ 
l , 

t 
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a 'r • /.' , '5 , . , 
<-{ru, b' , ., , ..... .J, 

L. .... ~E:. --. , 

, , 

.... .\.- ... 
• -- - - - - _ .. _e d c 3-8 

Figure 4.15 
, 

and the new MST, oshown int Figure 4.16 i8 DOW 'as required, 

a 

Figure 4.16 

1 

When 'all penaÏties arè applied to a, b, c aBd d~ the MST and edge C08tS 

are as shown in Figore 4.17 . 
,/ 

a 
'Jir-}/; 

~ 

" "d . ?; t ~{/ b 
~ , 

/,,'2 

C 
, 

2-2E: \ d 

,/ , 
Figure 4 '117 

f r 
4.3 A Monte Car,lo 'Experiment 

, 

<\" ~rm1Y in the unit squar&. • In every ~aDdom points were gener~~ed 

case ~he approximate sol~tion. te 'the 
. . 

TSP was compared to the exact 801-. . 
ution obtained by ~xhaustiv€ enumeration. Tabre 4.1 8ummarizes our 

~ . / 

experience with the algerithm, It 'is we~th mentioning that terminatio? - . 
was observed in aIl cases consider~d. Furthermore the average number of 

iterations reqùired before convergence was roughly ~/~ (taking on1y'· 

lnto acëount cases where initial MST " Hamilton chain). 
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Average number of 
Iterations beforê convergénce . 

1 

1 
1 ;' 1 . 

\ /' 

1 . - 2 

2 

2 .A 
2 

,3 

Average over 100 
runs of TSP3/TSP1 

0 1.00@ 

... 1.005 

1.007 . 
1.010 -
1.014 

, 
1'..015 

1.026 

1.058 
0 

1.061 

Ratio of answer 1rovided by TSP3 to exact answer provided by TSPl 

Table 4.1 

, " 

4.4 An E~irica1 Estim~te of the Expected Run-Time of TSP3 
, ' '2 ' 

The è:ost of getting the MST is O(n ). Since k iterations are _0 
, , 2 

needed for convergence the overall-èomplexity is O(kn ) • As mentioged . -.. ~, 

before the observed k was 1n/41; this means that aigorithm TSP3 has ~n , L:.: :J , \ n 3 
(_mpirièally-estl~ted) expected run-time of O(~) and guarantees - whe~ 

thé triangular inequality holds - an approx~ate solution to the TSP 
3 , 

'which is no worse than 2 tim~s the optima~. 
.. 

• 
4.5 \Madification of TSP3 -

In a TSP, if an edge has ta very high probability of being in the 

optim~ .solution, then the fol1owi~g, algorit~ is sugge~t;d by proPo8~tion 

3.,3 ' -" 

Algorithm TSP3:l 

S.tep 1, 

Step 2 

Step '3 

Step 4 

Use ~ very, fast heut-istic technique to obta~n a' number of . 

good tours. • .. ; 

Withi~ the tpurs found/in St~p l, choose .the edge ~tp the 

highest frequency of occurrence. Let.this edge~be (a,b) • ~ 

9h the shortest Hamilton cha,in with endfin~s a and b"'~' 
The chain obkained in Step' 3 plus edge (a,b) 15 afl approx-

! • 

imate solutïon to I,tthe T~P. . ,. 
This· a1gor~thm which ls believed to yleld betrer answers in s~rter 
times :it; suggested .for future research. 

~ 

... ' \ 
\ 
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/' 4.6 Conclusion ( ~ , 
An algorithm, based on a Q modification of th~ IIrewaitl-p;~Shment" 

ri 
" method originally proposed in [C r2], hasAbeen'tested on the SP. 

1 

Theoretically, the algor;lthm prod "ces an answer no worse than l'! tipes ~ 

the optimal. A Monte Carlo'experi showed the tours obtained to be 

.# 
,very clos e- to the exact ::;olutions. An empirical estimate of t'l1e expected 

run-time of the algorit'hm is 0(n3/4) . It ~ould be .. nteresting to find . ft . 
out whether this method 1s applicable to other combinatorial optimization 

.,., 
'. problems. , 
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, 
Chapter Five 

E eriments with Efficient Al ithms or 'the TSP 

Various concepts from' graph theory have grêatly influenced ehe work 
f ' , 

on approximatipn algorithms for the TSP. These/include,~th~ minimal 

spanning tree (MST), the optimal perfect matchirg (OPM) , the Euler cycle 

CEC) and the Hamilton cycle (He). In particul~r, the contribution of the 

MST w~s twofold: it provided good estimates for the optim~l tour ~ 
, 

[Chr4, Ei] as weIl as efficient algorithms for an ,approximate solution' 

[Chr6, RosI]. ,. 

b 

In this chapter we analyze two algor\thms for ~he general TSP: the .. . , 

(first from [RosI] is a typical sequential tour-building technique (sec-

tion 5.1); the second is essent!ally based on the above-mentioned gra~h

theoretic concep~s (section 5.2) .. In section 5.3 a variant of the second ,., 
algo:r:,.i thm - 'that addresses the directed TSP - is irivestigated. 

5.1 Experiments with'a sequential tour-building approximation algùrithm 

ln dealing with, a class of combinatorial problems - like the TSP -

for which aIl known exact algorithms have a,running time that grows 

exponentially with the 'size of 'the input, it is often useful ta estimate 

th,e expected solution, or \P~t ~e bounds on it. 

bound) can serve several p~~tres: 

This esÙmate . (or 

1) 

2) 

In some distribution management problems it is sometimes necessary , 
to estimate the expècted distan~e that would'be inyolved in 

supplying cust?mers - when the exact locations of the customers 
Cl> 

are not known in advance - in order to decide, for-example, upon 
\ 

the ~umber'and locations of depots. 
< , 

The branch-and-bound approach ~ses lower bounds ta eliminate from 

further consideration w~le p~rts of the decisioJl.'tree that would 
, l ' 

otherwise have ta be investigated. 

3)" Finally. and mos t importan t f 6r our purpose, when' an approxima t~on 

algorithm is tested: a lower bound servel as~l/~ference point 

against which near-optimal sO,J.utioJls are comparE!'d. 

" , 
The present section is coo;cerned with this last application. In 

l , 
.. 

l,· 

l" 
! 

1 
, 1 
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section 5.1.1 estimates and bounds for an optimal TSP tour 

Experiments with a sequenti1l to~r-build1ng approximation 

describec;l in section 5~1.2 'r, In section 5.1.3 a p_os'sible 

the quality of the solution provided by this algorithm for 

ETSP ia invest1gated. ~ 

'\ 

\ 5~ 1.1 Estimates and bounds for an optimal TSP tour ~ 

• 

5.1.1.1 An as totie estimate of the e value of the 0 timal tour 
~~~~~~~~~~~~~~~~~~~~t~~~=-~~~~~~~~~~ 

The length of the SHC through n points iri a bounded plane region of 
1 l ~ 

area A is shown in [Be] ta be almost always asymptotically equal to 

KM, for large n where K, is a constant of proportionality. This con-. 
stant - which is independent on the shape of the region - was estimateq 

in [Ham)'as being equal ta 0.75. -, The 9kme theoretical and experimental 

results of [Be] and [Ham] are obtained in, [Ei]. 

5~l.l.2 Lower bounds on the optimal tour 

These are described in [Ei] and [Chr4). 

i) The sum of the shortest links 
\ !il 

In an HC each node has degree two. Let djl and dj2 be the 

shortest and next shortest edges~!onnected to node j in the 

complete graph. Thus a lower b'ound on the SHC is given by .. 
,f> 

.; 
ii) The minima~ s,panning' tree 

If the longest edge is removed fromlthe SHC we are left 

.with a spanning tree'which may or may not be the MST. 

Thus 1 
'"'1 

.JI SHC ~-longest edge in SHC!! MST • 

/ 

~. 

/ Let d. 2: denote the -disJi. nce separating nÇlde j from its 
J '"' ,-

second 'neighbor. Then, ~ 

'max' (d
j2

) ~ longest edge in SHC • 
. j 1. 

1 

It follows~that BZ = MST + m;x (dj2) 

on t.Qe; SHC. 

.~ 
18 a lower bound 

. . 

11 

1.- . 

1 
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1 

iii) The assignment problem 
, 

The assignment problem ~AP) la repreaented by the following 

linear program " .' f • ~ "... 

min w = i~l j~l cij xij 

subject to' E x = Ex": 1 for a11 i and j apd 
.i ij j ij 

If we let cii = ClO for aIl i , 'and add the condition that the solution 
y 

single HG, to t1Je must be a then the solution to the AP is a solution 

TSP. Noting that the AP (without ,the extra condition 

·a cycle) is much easier to solve than the TSP we get 

B3 = min w , 

another lower bound on the SHC. 

that the tour be 

We believe that the lower bounds BI' B2 and B3 are of better va;lue 

than 0.75 ~ for estimating the SHC when one is testing the perform~nce of 
1 

an approximation algorithm. This superiority is d~ to the followi~g 

reasons: \ 
1 

\ 
1) they are problem-dependent; in other words they provide a 

value of the expected ~ptimal tour which rtot only depends -

on the number of cities but alse on the structure of a 

given instance of the TSP; 

\ 
2) they are not asymptotic estlmates and,hence can be 

practically used fQr sma!l as weIl as for large values of n 
/ >-

J) they neither over - nar underestimate the optima! solution; 
1 'I \' -

4) they ar~ not restricted to the special case where the inter-
/ 

city distance is a ~etric. 
/ 

~ \ 
It 'should be pointed out that BI' B2 and B3 are listed in the order\ 

of increasing quality and computational difficult~. 'The easiest bound \\ 

to comp~te, BI ' relatively underestimates' t~e solutlon~ A better 

es~ima7e is provided bJ BZ and several ~fficient algorithms exist [Dil v \\ 

Di2, Kru, Pri]~to obtain the ~J of a complete graph very rapidly. The 

sharpe~t bound, B3 ' can 'also be comput,ed in polynomial time but requires 

, 
" J 

l 
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., 
a little bit more effort. Further improvements on B2 and B3 are desprib

ed in [Ei] and [Chr4] to obtain evert better bounds at the coat of addit

iona1 computation time.-

An estimate of the expected 801utio~ that ~ in our opinion - c0mbines 

simp1icity and qua1ity will now be derived-®or the case where the inter-

city distance i9 a metric. It has been shown [Gibl] that for a large 

number n of p'oints ,in a règion of area A , the expec ted length of the 

MST is approximate1y equal to 0.68 ~ It fol10ws that, ~or large,n , 

1 1 
1 

, 
SHC 0.75fi:,; = 1.10Z 

MST = 0 • 68 fi:,; 

An jstimate of the expected value of the sne is ,thus given by 

B4 = 1.102 * MST 
t 

Experiments with this estima..,showed 'ttat it is tighter than BI and B2 
further it is easier to compu~e than B3 • 

5.1.1.3 AJ upper bound on the optimal tour' 

In [rel it is shown that there always exist~ a Hamilton ch~in 
through n points in a unit square 'of length less, than 

l2n + 1. 75 

It follows that 
i 

SHC ~ Iï (1 + rn) + 1. 75 

" 5.1. 2 "ExpeIliments wi th NEARINs"ERT 

1 - NEARINS~RT-"is an app~oxim~,tion algorithm for the TSF describrd, in 

[RosI, RoS2].·· Whea the intercity distance ia a metric the S9lution 

obta1ned 1s always less than twice the optimal. 
/" 

5.1.2.1 NEARINSERT 

Step 1 Start with a 8ubgraph consisting of a single node, 

say node i( • 

Step 2 Find anode k such that C ik 18 ml~imal; add- this 

~ node to the subgraph and construct ~n He (for th~' 
1 , 

, 
1 

i' 

, 

. ~ 
~ -, 

~ , 
,) 

" " 1 , 
" 

\ 



.. 

.. 

~, f) , 
,J. 

r 
\ 
\ 
\ 

-( 

-64-

subgraph) consisting of two occurrences ofr the edge 

(i, k) • 

Step 3 Given an HC containing a subset of the nodes, find the 
" 

uncontained node k , closest to any contained node 
, ~ 

(i.e. find a minimal cmj , such that node m is in the 

cycle and j is not, and take k = j) . . . 
Step~4 G,iven k fitid an edge (i, j) in the He for' the sub-

-
graph such that cik + ckj -, cij ia minimal.. 

Step 5 Given k and the edge (i,. j) obtain a new HC by 

rep1acing edge (i, j) with edges (i, k) and (k, j) . 

Step 6 If there are any remaining nodes not" in the HC go ta 
< 

Step 3 ; 

Else stop. 

5.1.2.2 A bound on the approximate solution 

We now give a simple argumént to prove that the ,solution obtained 

by NEARINSERT is never greater than twice the optimal when the distance 

measure ls a' me tric: Firs t we 
! 

, 
note tha t the nodes ent,er the cycle in 

exactly • the same 1-0rder ~which they would have 

latter is obta:i.ned by the algorit~ of [Pri]./ 

Since' 

1. e. 

it follows that 

MST ~ SHC - longes~ edge 

MST < 'SRC -

if we can show 

NEARINSERT < 2 MST -
we would have imm~diately 

NEARINSERT ~ 2 SHC 

entered the/MSr when the 

... 

A simple inductiv4 argument 
-

~ 2MST • This i8 obviou81y ... 
ia now used to 

-( 

true for n = 3 

demonstrate that NEARINSERT 

; Figure 5.1 'shows that 

\\ 
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• z 

y 

NEARINSERT MST 

Figure 5.1 
/ 

NEARINSERT = C'+C +c <c'+c +c +c 
xy xz yz, - xy xz xy xz 

2 ( c + c ) = 2 MST '. xy xz 

Now" assufue this is true for a number of nodes m , 3 ~ .m < n , i.e. 
1. 

assume a partial He has been constructed-by NEARINSERT which is no more 

than twice longer than the corresponding MST (see Figure 5.2) • 

Partial HC 

,. 
Fi~ure 5'.2 

x 

Partial MST 

/ An Wlcontained node' z is ,now inserted adjacent ta x in the partial MST 

1: as shown in Figure 5.3 • 
i ~I' 
1 J "'tt...' 

/ 

New Partial HC New Partial MST 

Figure 5.3 
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/ 

The increase in total length will be c + c - c for the He, and 
xz zy xy 

c for the ,MST. sin ce xz 

c < c + c zy xy xz 

. it follows that 

e +e -e <2e xz zy ~ - Xz 

We have tacitly a8sumed that z vas insert~d between x and its neighbor 

y in the partial He. If this was not the case, but. instead, z was 

inserted between uand V' (say) then evidently 

c +, c - c < c + c - c uz zv uv - xz zy xy 

Renee, in g;ieral, 

/ ~ New partial Re < 2 N~w. partial MST . 
,/" 

This completes the proof. 

, 
5.1. 2.3 Exper:t)pen ts and results , 

.' 
Tables 5.1, 5.2 and 5.3 show the results obtained when applying tae 

, , 
algarithm ta randomly generated problems where distance 18 

a metric. Every entry i8 an average over 100 problems . 

.... 
. NEARIN~ERT lB 4 n 

·25 1. 287 

50 '" 1. 276 
( 

75 
'. 

1.274 - . 
. \.}I ..... l 

100 1.272 

Ratio of the answer prov~ded by NE~SERT to the estimated answer B4 for 

various values of n • 

Tablé 5.1 
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~ 

n NEARINSERT/TSPI 

"'" ... , 

4 
:r ( 

1.0000 

5 1.0113 
,/ 

6 1.0276 

7 ,1. 0439-

8 . 1.0468 

9 1. 0511 
~ 

/ 

10 1.0547 

11 - 1.0738 

12 1.0874 

/ 

Ratio of answer provided by NEARINSERT to the exact answer provided by 

TSPI for 4 ~ n ~ 12 . 

Table 5.2 

Average 
, n Running Time , , 

25 0.033 . 
50 0.130 

75 0.275 
/ -

100 
. 

0.485 

-
Solution time in seconds required by NEARINSERT for various values of n 

Table 5.3 

From Table 5.I,it is seen that the solution 

is about m ~ore expensive than the estimat~ B4 

problems are Euclidean in two dimensions and TSPI 

obtained by NEARINSERT 

In Table 5.2 , the 
... 

refers to the exact 

solution obtained by the a1gorithm of Chapter-2. Th~ run-time of the 

algorith; is approximately equal to (0.5 x 10-4 x n2) secs, on the 

average, see Table 5.3. Note that it was~ shawn in [Sh2] t!lat, for th,e -o. 

: ' 

". 

ETSP, NEARIN~ERT can be modified so that it has a run-time proportional 

5 
., 
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{ 
to n log n. Various probl,lem\:; that have appeared in th~ literature were 

1 \ 

tried using NEARINSERT ; the results are displayed in Table 5.4 • 

. 
" A 

Source Best known ~ NEARINSERT , % Run-time n 
deviation in seconds solution 

la [Ba) 378 399 '5.5 o:oo~ 
~ 6 

20 [Cr) 246 344 39.8 0.020 
J 

~063 25 [Hel] 1711 \ ,. 17.0 0/.030 

33 [Ka] 10861 12520 15.2 0.050 -

42 [Ka) 699 834 19.3 0.080 

48 [Hel] 11461 13157 14.7 0.110 
, 

57 [ Ka) 12955 14667 13.2 0,.160 

100 [Kro] 21282 25785 21.1 11).480 

'\ 

Table 5.4 

5.1.2.4 A modification for the ETSP 

~ As Tables-5.1 to 5.4 show, NEARINSERT is quite fast in obtaining a 

satisfactory solution to the TSP. In the case of~ ETSP the quality of 

the solution can even be improved, upon by modifying Step 6 of the 
1 

a1go~ithm as follows: 
, ---------------------

.... 
Step 6' If there' are any remaining nodes no't in the HC 

go to,Step 3 ., 

Else repéat the fol10wing as long as possible 

"Replace every intersecting pair of édges (a, b) 

/ and Ce, d) by the pair (a, e) and (h, d)." 

No~e th~t if (a, b) and (e, cl) intersect then, o~viously, 

t 

as it can be" seen from Figure 5.4 '. 

r 

,/ 

-' [~ 

1 .1', 

1 
1:, 
l,: 

1 
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'a 

b 

Figure 5.4 " 

, ' 

Wh~n the modified algorithm was tested, the resul~s were rather dis

couraging as seen in Table 5.5. Th~ improvement-on the tour is . 
extremely small, on the average, almost nanexistent in the majority of 

cases and does not compensate for the additional time spent looking for 
10-

intersections. 

n NEARINSERT/B4 
25 1. 273 

,0 ,. 
50 1. 268 

75 1.265 
, ' 

100 1.261 

oJ 

Average over 100 r~ndoIDly generated ETSP's,of the ratio of the anmfer .. :: ... 
~ Q 

'provided by NEARINSERT (~ith some intersections removed) to the .. 
estimate~ answer B4 for various valuès of n 

Table 5.5 

This leads us ta believe' that the tour abtained by NEARINSERT ls in fact 

very close ta optimal and that thel"'wo~st-case bourid of .. (2 *'optimal) is 

for the majority of caSes overly pessimi~tic. 
.. 

5.2 A new heuristic algorithm for the symmetric TSP 

In this section we desctibe and empirically analyze a new heuristïc 
, " . 

Irlgorithm for the TSP. The algorithm 'which has relati,;,ely limited ' 
if"' 

",. 

/' 

\ 

+, 

1 
" 

i' 
" 
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.J 
storage and time requirements - yields a very goad approximate solution 

to the prob1em. It combines the following ideas: _ k-optimality [Lin1, 
1 

Lin2, Lin3, Lin4] , perfect matchin~ [Chr6], the minima~ spanning tree 
". " 

[Chr6 ~O, RosI], Euler and Hamilton cycles [Chr6], the fir~t twco of which 

aretdiseussed in'section 5.2.1 .' A description'of the algorithm as well 
, 4 V 

as experimental results are the subject of section 5.2.2 . 

5.2'!,3i',opt;imal perfect matching 1,-

r ' ... " 
5" 2 . 1. 1 k-op timali ty 

-~ , 

A trav~ling salesman tour is said to be k-optimal if it is (k-l)-

optimal and ~o _~ ~,~.ge\.~~\:an be replaced by k other edges ta yield a, 

cheaper tour. !his""~~ncept' - ,used in the literature under one form or 

the other - was: fü:st formalized and gen~ralized in [Linl]. 

The question of the applicability of a heuristic_rule ta various 

eombinatorial problèms is posed in [Wei]. In partieular, the problem of 
• 

determining the versatility of "k-ot"timality" was given as an example. 

p 

b 

try to provide a very partial answer to this'question by 

k-optimal1ty to the matching problem. We de!1ne a 2-optimal 
, , ' 

t matching (TOPM) as a perfect ma~,~hing, no two edges,.f Whie cao 

aced by -two other _~dges to yield a cheaper. matchi~g: Efficient _,, 
algorithms exist'for obtaining the OPM for a graph of n nodes 

By using 2-optimality we propose to obtain a near-optimal 
2 

,match1ng in t1me prôportional on the average to n . The algorithm ta 

sear;i/algOrithm (see 

op,erations. 

be describeq ia a typical local neighborhood 
2 Chapter 6) and' each iteration requires O(n ) 

f 
" : .. 

"5.2.1.2 7iZOPtimai perfeet matching algorithm 

1 Given a comp~ete weighted graph with n nodesJ where n ls even. 

Algorithm TOPM 

,)tep 1 Start With an a-cbit,rary matching (ml' m2,··· ,mn' . 

where mi is a nod~_ and (mi' mi+1) ,- 1 'o'~d, 

represents 'an edge of the matching. , . 
Step.2 For:;L = 1,3,5, .. .,n-3 do . 

For j ." 1+2, 1+4', ., •• ,~ n-l do 
.. ~/I 

/ 

? 
• r 

" 

. ' 

• 

Il 
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If c + c < c ,+ c 

f"' 
mi mj mi +l mj +l mi mi +1 m

j mj +l 
1 

then interchange mi+l and m
j . ' 

l' 
If c + c < c + c 

~ 
mi -1Ilj+l mj mi +l mi mi +1 m

j mj +1 

then ~nterchange mi +! and mj +1 
, , 

Step 3·. If an interchan~e took place in Step 2, go to Step 2 ;. 

Else the matching on hand'is 2-optimal, 

Stop • 
• 

• 
- 5.7.1.3 Ana1ysis of TOPM 

. il . 

2 We observe that Step 2 takes time proportional ta n· In fact, 
n li... n/2 v 

si~ce ï is the number of~edges in the matching, there are ( 2 ) ways of 

choosing 2~edges out of 0/2 and each ,choi,~e gives two alternatives • 
. ' 'n TI 

Every"iteration of Step 2 therefore re~uires (2) * ('2 - 1) comparisons., 

A very easy and efficient way of appraising 'the aboye algorithm is 

now described. We are mainiy interested in ~valuating the'quality of 
J 

the solution ob~ained and the time spent to obtain it. 'Ta ~Chiere our 

first purpose we derive an upper \)ound for the optimal perfect màtching , 

Given the SUC define two perfect matchin~s Ml and M
2 

,such that, , 

Ml C ,SHC 1knd M2 C SHC ; 
, 

~" M2 
.= 0 

Ml V M2 = SHG 
~ 

Assume without 108s of generality that 
J 

Ml ~ ~ " -' 

1 

1 '. 
henee Ml ~ sac a ___ 

(" 2 ----------- 1 • " 

New Ml may or may not be the qpM it follows that 

OPM ~ ~ SHC 
/ 

o 

From the upper bound defined ih 5.1.1.3 , 
, . . 

, , 

l' 

l 

1 
) , 

1 

, 

1 , 
< 
:t -
: ~ 
L 
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SHC ~ 12 (1 + ln) + 1. 75 . ~ ,. 
OP~'~ t '[fi(l, + in) :.. 1. 75] , 

" 
~e ratio (TOPM/Upper bound) determifies the quality of the solùtion. 

, A measure of the runping time of 'the à1gorithm is the numb . .-, of 
1 j j 1"") 

ti1lJes Step 2 ia e:x;ecuted. t'l'able 5.6 shows the results of a Mont~ ·Carlo 

sJ.'fulation 

cJrtesian 

where points were g~nerated in the unit48q~are of the 

,. plane and the EtÎclidean dis 't aa se us ed to represen t the cos t • 
'1 ' r, 

i8 ~rag~ over 100 runs. 
1 

~lvery entry 
1 

J\ f 
~ ... , 

\ 

n \ TOPM/Bpper ~qund 1 Nuuber of txecutions of Step 2v -. - -

~ 
'""-

0.310 
" 

2 ~ . 
20 0.360. ~ , 

3 - . 
30 0.378 . 3 

~ 
'. 

40 0.389 
, , 3 

, 
/1' , 

5B 0.404 ~ 

\ " 
'60 .0.4()7 

, 
4 . . . : 

70 - 0.413 4-, . 
, 

80 0.420 4 , , . -
90 -0. 424 , 

4 . -. , 
~ 100 0.426 , 4 

( , " 0 < -, 
( 

1'. , 1 

~,'~ -~AS: it can be seenl..-from rablTeab5l.e6 5,.6';" ',-
. ~~~f , rOPM's are very goo~' approxlmàtipns' 

r· • : ' • t. ' otI 

o~_OPM's that can be obtained ~n a'very short -amopnt of ti~e, on the 

'average proportio~al to n
2 k-optimal~ty has thus been used success-

\ }ulIy f~r the matching proble:m t~ obt~r a near-optimal solu~~ at low 

. expense. 

-, 

0" ~ 
5.2.2 'Algorithm TSP4 

., , " . " 
.Given a c~mplet:e _~aph wi th n/nodes, the, fç>110wing al-gorithm ryields 

\ an approxi~te solution ~~ 1 the TSP: ,The ~ondit:ion imposed on the input. 
, , ' , J ... 0 ,. 

" 

HItS' w ,'" ( . ( c 

.. ; 

T 1 

- " 

"i 
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1-
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"''\. A \-' \1-

• '" ' "'-7.3-
, ,Q \ 

i8 that the cost matrix b~\ sYmmetric; th~ 
every city, be vfslted jus t \mce. , " 

Step 1. Find the MsT. \ 

o' 

\ .1 

Step 2. " For the complé~ subgraph 

~egree in the ~T. ~~~a TOP 

Step 3. Construct an Euler c~cle 
f ' 
fo~d by the edges of the ., 
TOPM. ~~~ 

Step 4. Starting with ,each of the . 
obtain ~ n~ Hamilton cycle. 

1 thu~ obtained'="is chose~ as 
. r.! ' ,u ", 

l-

l cf ( 
1 

'( 
If" 

" condition on the output :ta 

" 
med by·the n6de~.with odd 

the Eulerian graph • 

the eflges of 'the 
.' 

es appearing in the EC, 
) 1 

The ch&apest. of" the HC I,S 

he fin aJ. answer. Stop. 

~ \ 

'" 

i 

that 

Although the algorithm is quite strai htforward every 'step deserves 

a few words of, explanation • 
~ . 

Step 1 Any efficient algorfthm [Dil Di2, Pd] cao' be used 

Il ta get the MST. 

SteE '2 ~~e pr~cédure ~ribe~ serves to 

ft 
3
ff 

obtain, a TOPM. E ' 
That, the graph resulting the-union of the edg~s 

, 

Step 

4 

SteE 4 

of the MST and the TOPM is Eu er"'.ian follows from the 

fact that~eve~ n~de has even ~gree. A simple back-

tratking procedure will the Euler cycl~. 

The method of getting cycle from the Ee 

is as follows: 
'4 ., , , ~,..... 

where the n 1 s 
i As~~e the EC la (nI' n 2 

l' 
represent the.nodes of the gr ph and are not r 

If aia cbpies of the'EG are "4t ne~es:Barily d~st~nct. 

placed contiguously, 
\ 

\ 

\. ' i -\ olt oZ' 0 3 ,;"" o~ l' !lR,' nl'~2' °3,···,nR,_1' nt \ 

ooe ca,n build. ~ HC by:. fjt~r ing at anode, moviog \ 
r '-, 

dl\. 
if it appears ./for the first_ t . . , " . 

ta the righ t and ,iotroduciog t' oode in the HC ooly , 

• ,'2 /. 
The, run-time, complexity,,,~ Stepl:! 1 and 4 i8 (0). "The expectèd CP1D-1 

-plexity of Step 2 wâs emp1rically estimated sect~on 5.2.1.3 to ~e 

l" 

If -~~ ~f'J'+~.f .. ".f,.Ji"'·-~f·' 
-_ ..... IiI-. ............ _...;,......:d":...:::.-...!-;;~"::;:";·::·_=:<~.-.. ~. ,.. ,_:. ' '?:': .. ~~ ___ ~~ __ +t 

5 S r 
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Il 

2 
D(n ). Step 3 requires OCn) operations. ,Ther~fore, tl}.e overall 

.1 - 2 
expected complexity of ~P4 can be regarded aS,being aqual·to O(n ) 

2 ' 
The memory requiremrnt is a1so .. 0(n ) when the.cost matrix is stored in 

, 
II' , core. \. ...... lit> 

8 

.C 1. -.. 
5.2.~ Illustrative exru,nples -/ 

We illustrate the above algor! thm 'bi s~lOwing its per~armance on 
t 

small problems that appeared in the literature. ~n every.e~ample the 

low~r hé!jlf of ~h.er s~triG matrix ls shawn along with the bes·t known 
- , 

?,: 
, q 

.'~olution td the ?ob.lem. The step-by--step solutiot} pr,ovided by TSP4 /' 

1 follaws. Note thât in every case the answer agrees ~th the conjectured , , 
optimal one. 

Examp1e 5.1 (Dea'] .. 
For the cost ~trix in Table 5.7 the best known solution to the TSP . , 

is (l, 5. 2,11 6), /..;, 3 .. 1) , with a cast of 3"3 uni.ts • 
'. , 

2' 4 f'-

,~ 
3 

4 

5 

6 

10' 12 
18' j 8 
-* 

• 

, ': 

• , 
.... '. _""I ___ J" ...,~-'-

St-ep 1. 
9 

Step 2. 

Step '3. 

Step 4. 

'f 
'\ '. 

• • 
5 ./z.. 

, 
14 

6 
. 
16 J 10 ~, 6 

~4 5 1"-1, \2 
Tab~e 5'. 7 ~ _ ,,-

Get~the MST as st~ i~,~igur.e 5.5 . 
Get a TOPM •• 

. ~ 

Starting with th perfect matcMng 
t ~ 

{(1,2) • (t3,5)} get the TOPM • {(1,3)', (2,S)} 

An Euler 

graph formed by 
1'i-~ • 

(fiee Figure 5.6) 
, ,,' 1 

obtafned in the Eulerian 

ne edges of MST U TOP-M 

T'Pe EC is ~ 

(~, 2, 5, 2, '6", (.; 3, 1)" 

.. 
• 

. , 

\, 
Get 

" ~ 
the shortestl Hamilton cycle obtainab1e from the EC 

. 
'1 

, . 

• 
1 

... 
'l' <.'"''"'''~,,~ !t~ .. ; .... 

, '.' ,'. 1 
~~ >_c ___ r'O... _ ,~ ~_,_ "'--o.h.."---....o .......... _ L ..... ~ __ .-..........> __ ~"-_____ ~~~~ 

.. 

.. 

1 

,-
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'. 
f, 
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.. 
1 

J 
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(shown by asterisk in Table 5.8) 

HC Cost 

(1,2,5,6,4,3,1) , 42 

*(5,2,6,4,3,1,5) 33 

Table 5.8 

E~ample 5.2 [Danl] 

For the cost matrix, in Table 5.9 the èest known solution to the TSP 

~ is (1, 3, 2, 4, 5, 6, 1) , with a cost of 22 units. 

2 

3 

4 

5 

,6 

4 

3 

7 

7 

6 

1 

2 

5 

7 

7 

2 

5 

6 

6 

3 

Table'·S.9 

3 

5 

4 

3 

5 

Step l get the MST as shown in Figure 5.7 

Step 2 Get a TOPM : 

'the only choice i8 {(l, 6) } 

Step 3 From
o 
the ~.!H~ in Figure 5.8 get 

• < ,. 
art Euler ,èycle: 

1 • 

EC ... (1, 3 ~ 2, 4, 5. 6. 1) • 'il 

1 
Step 4 Get the shortest HC ob,tainable . 

1 from, the EC ; \, 

, , 

ther~ i8' only one choice: He '(1, 3, 2, 4, 5, 6, 1) 

Example 5.3 [Ray} 
1fI/fo ' 

For the cÇlSt matrix in Table 5.10 the best known s~lution to-, the 

TSP 18 (1, ,6, 2, 3, 5, 4, 7~ 1) , with a cost of 179 unit8. 
/" ., 

1 

>' 

i 
1 ( 
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• 2 1 30 , 
3 40 29 

4 55 68, 47 

~5 28 35 22 31 

6 i7 20 24 51 • 20 

7 33 56 ...... 46 27 25 36 

1 "2 3 4 5 . 6 

"- Table 5.10 

SteE 1 Get the MST (see Figure 5.9). 

Step 2 _ Get a TOPM : 

S tarting with PM" {(1,2), (3,4) , (5,6)} 
i 

we get the TOPM = {(1,6), (2,3) , (4,5)} )r 

Step 3 1!:.rom the. gr aph in Figure ~.10 get an -:t ,. 
~ Euler cycle: 

J 

"-

EC '" (1, 6~ 2, 3, 5, 4, 7, 5, 6, 1) . 
"-

, 
~tep 4 

i 
Get the s~ortest HC obtainab1e from the EC 

(shown by 85tedsk in Table 5.11) . 
'J 

HC Cqst .. 
r 

*(1,6,2,3,5,4,7,1) 179 

(2,3,5,4,7,6,1,2) "192 

(4,7,5,6,1,2,3,4) 195 
, t • 

-
Table 5.11 t ' 

~ . , 1 
.. 5~2,. 2. 2 Expe rilllen ta ' . 

• l, 

'l"In" order to e'la1uate the performance of TSP4 on 1arger probleIll.ll 

,varfous expe~imen~s are performed. First, the TSP' s of ~B:b1e 5,.4 are 

tried. The resu1ts are shàwn in Table 5.1~, • 

:. 

.. 

.' . 

\ 
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Figure 5.9 
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Source Cost of best Cost of solution %' • Solution Ume n known s6lution by TSP4 deviation in seéonds 
... 

Hi" [Ba] 378 387 2 0.01 
\ 

20 [Cr] 246 ·.280 13 0.04 

25 [Hel) 1711 1796 4 0.04 . 
33 [Ka] /10861 12078 11 0.11 

42 [Ka] 699 752 7 , 0.15 

48 - [Hel) 11461 1 8 14 0.23 

57 [Ka] 12955 14182 . 9 0.42 • 

100 [Kro] " 21282 23789 11 . 1.86 
( 

. ' 
Table 5.12 

Monte Carlo experiments are now descri~ed. Random points àre gènerated 

uniformly in the unit square of the' Cartesian plane and the ~raight-
1ine) Euc1idean distance. ia ,used to represent the cost of going from, one' 

city to the other. The problems are thus symmetric and - incidently -

the triangular inequa1ity ho1ds. Resulta are shawn in Tables 5.13 to 

5.15 where 

TSP4 

B4 
TSP1 

= 

= 

cost of a~proximate solution obtained by; T~P4 , 

1.102 ,* MS,T , 

cost~f exact solution obtained by TSPl 

RAND cost of a random solution obta!lled by a fast a1gorithm to 
t~_ , 

generate random permutat~ns [Mas] .' _ 

" ......... 
Every "en try in Tab l~s S .13 - 5.15 ia an aver age over 100 runs. 

n TSP4/B4 

25 'C' 1.231 

50 . 1.l~ 

j'5 \1.177 / , . 
- / lOO 1.171 . , 

Table 5.13 

,; 

, . 
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. 
. 

-~ --

n TSP4/TSPl 

4 1.000 
-

5 . 1.010 

6 1.025 

7 1.018 

8 ,. 1.037 
-

9 l.027 

10 1.027 

~ 
~O 

1.033 

: 

~, 

n 

25 

50 

75 

100 

Tab~·,s.14 

~7" 

1 

, 

-

, 

Table "5.15 
~ 

\ 

\ . 

TSP4/RAND 

0.338 

0.238 

0.195 

0.171 

.. 
, 

< 

-

. 
1 

, . 
f 

. 
) 

-. , 

• 
~ , 

, 1) , For n ~ 50 the,appro:Ximate solution is less than.20% m"re cost1y-

o 

than the lower. bound. 
,/ 

2) for n ~ 12 the ~pproximate solution is less than 4% more cost1y 
~ 

than the exact solution. 

3) For n ~ 50 a random solution i5 moré than ~ times as co&,t1y as .. ~ ' ...... 
the approXimate solut~~. 

The ruri-Ume of ~SP4 -, proportional to n 2 " was also experime~ta1t .. 
. verified as shown in Table 5.16 
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) 

. 
2 

n Ratio' Average solution time 
in seconds for TSP4 \ Ratio 

Solution Time 
n 

2 
n -

136 x 1O-~ 
< ü • 

25 625 
il 0.085 i 

\ 
\ -6 

139 x 10 
1 

1"'7 '\1" w-6 

to 4" 4.1 
50 

~ 
0.34~ . 

2.25 2.3 
75 56 5 .J 0.831 

146 x 10 6 1.77 1.7 
nn 

.lÙUUU . 1.462 .LVV 

. . . -. 
Table 5.16 

. 
1 

~. 

We observe the following 

1) Solution time ts eJqual lio kn
2

. where k4 14 ~,~O-5 • 
, 
expense 2) The data structure that achieves this speed -"at the 

storage - ls the adjacency matrix form used to store the 

of 

~ulerian graph. If onè uses instead the edge-list structure -

to save one .!3pace - an increase in co~utation time of 25% is 1 _ 

observed. 

3) - The run-time can still be improved UPO? if the Eulerian graph 

'ls stored in the (more coqtplex) form of', a doubly"'linked 

adjacency lis t,. 

, 
5.2.2.3 Comparison with other éflgorithms 

, 

• 

, 

4" 

In this section we briefly compare TSP4 with the three other algorithms 

that have appeared in fhe literature and use similar i4eas. The maiil 
- .... 

differences are summarized in Table 5.17 • The a1:gorithm of [Lin3}, , -, .. 
presently considered as the most efficient (publ~shed) heuristic -

Iregarding the quality of the approx~ate answer - deserves a few more 

words, in connection with 2-optimality used j.n TSP4. We note that: 

1) 
( 

Getting a 2-optimal tour would require much more c0mputat,ion - 1. e. 
2 

the constant Cl is high in cln 1- than getting a TOFM which require's. 
'(" 2 20 

c
2
m ,where ~ is the number of nodes wi th odd degreé'î.J.n MST .' 

(usually m «n) , and c
2 

ls' a 'Constant (c
2 

« m as shown in 

Table 5.6) 
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, 
r 

Average solution 
Algorithm 

~oncept:s tilne for a Quality of solution Complexity used 
lOO-city TSP 

------
. .. 

k:--'--
NEARESr Less than 0.5 < 2 . 1 

~r----L---;~ sec. for the IBM 
OPTIMAL 

0(02) 

2) 

3) 

. 370/158 Statis tically, 

NEARINSERT , 
.s 1.3 

B4 
. 

1 
,-

n2. 2(empiric-1 

3-4 minutes on Optimum obtained 
[Lin3] k-optimality GE 635 with above ~% 

al estimate 

" ': confide.nce. of (expected 

/' '\ run-time) . .' 

MST More than 100 Approx.Sol./Optimal 

[Chr6] OPM secs. (estimat- Sol. 1.5' . 0(n3) < 
1 

~ .. ed for the IBM . EC -
370/IS8) , . , , 

MST Less than 1.5 't"" Statis tically, 2 n (empiric-
- "-

TSP4 TOPM secs. for the T~P4 ~ '1. 2 al estimate . 
IBM 370/158. 

,. 
EC 4 of expected 

He \ run-time) 
'III. 

Table 5.17 
, 

The algorithm for gettin~ a' 2-optimal tour starts with a random tour 
• CL;fI 1 

which,may be quite far from optimal; several runs are thus needed fo 
" 

guarantee,.a high proba,.bility of getting a good tour,' T-s?4 starts 
.. 

with the ~T which is a very gaod approximation ta the final solut-

ion: in fact most of the edges of the MST are very likely ta bê in 

the optimal tour. (This point i~ studied in more detail i~ Chapter 6). 

For' la~ge n , it ist~ed out in [Lin1] that Ithe probability for a 

- 2-optimal tour t~ b he optimal solution 1s very low. 

~' 
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5.3 A pew heuristic algorithm for the directed TSP 

The majority of publ~shed algo~ithms for the TSP re1y primarily' on .. 
the symmetry of the cos~matrix. On the other hand, algorithme for 

generp 1 problems - which do not assume symmetry - behave very baday on 

. symmetric cases [Beo2, Chr4]. In tbis, section we describe an a1gorithm 
, 

especially designed for the directed {i. e. non-symmetric) TS,P."y. Tbe • 

algoritbm is intimately related to TSP4 and uses tbe same general con-

cepts. 

~ 
~ Before stating the a1gorithm and reporting on co~putational exper~ 

ience we give one deflnition. A minimal directed spanning graph (MDSG) 

i9 a sub~aph o~ the complete directed and ~eighted graph~on n nodes 

which has minimum weight and whose under1ying grapb ls connected a~d 

acyclic. Tbis,! i8 eq~iva1ent to say'i.ng that the ~nder1ying, undirec;ted 

'graph ls a MST in wh~ch edge (a, b) is such~~hat Oc b = min'(c b ' cb ) 
, JI a a a 

are edges of t~e comp~te graph. 
-

where (a, b) and (b, a) 
, ~ - \. 

that the MDSG ftiffers fto~_~he~~ST in that lt 
, • J '" , ' . . " .... 

"-._" 

It shou1d be noted 

1) is unrooted, ana 

2) bas no restrictions imposed-on the in or out-d~gre~ of-~t~ nodes. .. 
5.3.1 Algorithm TSP5 " 1 

" . 
Given a èomplete digraph with n nodes and its (non~symmetric) cost .. 

matrix, the following algorithm gets a nearly optimal solution to the 
1: ' ' " 

t' \ . TSP aefined on tbat digraph. 

Step. , 
,. Step-J2. 

Get the MDSG. , 
!.; 

Add ;2-optimal set bf arts fo the MDSG in order tô 

fuake the digraph thus obtained Eulerian. A \ 

? • 

Step 3. Find an Euler circuit in the digraph • .. 
Step 4. Among aIl Hamilton circuits ohtainab1e fro~ the Ee 

choose the one with minimum cost. Stop. 

Comments: , , 
~ . 

Step 1. If we ref1ace every cij by ~in (cij , cji) ~n 

matri~~ and apply an MST a1gorithm on 

we obviously get an MST with the same w' as the 

,""( 
l' 

.( , 1 /0" 

,. 
- / -

" 4 
, ." \ 
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/~.! 

MDSG.· lt is important ta store along WIth~every entry in . ,.. . the cast matrix the direction of the edge having that cbst. 

Step 2. 

1. e: i ~ j o,r j +- i 

By adding ta the MDSG arcs leaving nodes with Qut-degree 

deficlency and entering nodes with in-degr~e d~ficiency 

w~ get' a balanced graph .... which is also, connected and h,ence . 
Eulerian. This set of arcs- can epsily be made 2-optimal 

whi~e keeping the ar~ pirections. 

Step· "3~' Here 'ttle note the import~nce of ke~pi.fl~ the a,re .,9ir.ec tians' 
1 

is clear from as, described in Steps 1 an,p 2 above. This 

the exampl~n Figure 5.11. 
~ 

-l • 

J • / 
/ 

arcs 

.... 
Figure S.ll 1 

The Euler circuits resulting i~om th~/~~~~~PhS' i~ 
~ l' /. •• ~. 
Figur~ S.11 will be qui te differ nt! \. , 

} 

This step is straightforward (see the discussion on 

Step 4 of TSP4 in sectio .2.2). 
• 1 

Space and time requirements TSPS are similar ta those of TSP4 

as-it can be"easily observed. 
, 

" 0 r 

S.3.2 Illustrat.ive es 
(' 

J 
As we did for ys J 4, "!,e .illustrat~ the operati9n of TSP'S t by trying 

iCo-n small prob~s published in the TSP li terat~e. .Th~. (non- > 

,0 /., :..... ')" 

symmetri~ cgst-matrix is fir~t'given, along with the best-jnp~ tour. 

'l'he stet:i ~-step solution of" TSPS f)ollows.
q 

-:; 
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'<' 

1 ( 
Examp1e 5.4 [Lit] ~ 

r 

For the ops t-ma trix in Table 5.18 the best kno~ (direçted) TSP tour 
, Is (l, 4, 3, 5, 6, 2, 1) with cost 63 units. 

/ -0( 

~ 

1 CD '27 43 16 30 26 
0, 2 7 <0 16 1 ~O 25 y' ,1 

3 20 13 00 3'5 5 0 
1 

• 
~ 21 16 25 ""~ 18 18 

5 12 46 27 048 IX) .5 / 

6" 23 5 !> 9 5 CXJ 1 
1 2 3 4 5 6 '-.»j 

'" ; 
1 , 

/ 
Table 5.18 / v \ >. 

SteE l. Get the MDSG as shawn in Figure~ 5: 12 ' 1 
1 

SteE 2. Get a 2-optimal set of additioqa1 

, --arcs. 

Nodes with out-degree deficiency == Ü,4,6} 

) / , 
Nodes with in-degree defici~ncy = {2,3,5} 

We start with { (1,2) , (4.3) (6,5) } and improve by 

exchanges 1:0 get the 7-optima1 set { (1,2) , (4,5) (6,3)} 
~ 

'. SteE 3. Get an Euler cir.cuit in the Eulerian ., ./ 

graph of Figure 5,J,'p ; 

1 .# 
Ee =' (1~2,4,5,6,3,6,2,1) 

1 ~ 

[ 
y .. 

SteE 4. Get the shortest Hamilton circuit obtainab1e 
.a.. :. • '1 

4 from the EC (marked with/asterisk/*n,Tab1e 5.195. 

1 1 J' ,,, 

HC Cost' 

(1,2,4,5,6,3,1) .76 / .. 
*(4,5,6,3,2,1,4) 64 . , 

(3,6,2,1,4,5,3) 73 ,1' / 

C· " 
l''{.;ï -" 

Table 5.19 1 1 
1 

" 

" 
! • 
. 

" 

, 1 

'.- "-<;t.. 

no ~, \ t> 
1 ç 
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Figure 5.12 

Figure 5.13 
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l' 
~ ExamE1e S.s. [B:02] 

,l, 
For the cast matrix of Tabie 5.20 the best known (directed) TSP tour 

i8 (1.2.4.5.6,3.1)( , with cost 94 l,Ilits"'" 

1 al) 
1 ./ 
p 

/ 7 65 68 34 Br 
It" 2 19 ... 22 27 59 29' 

3 14 43 "" . 62 il 65 

4 76 53 64 CD , 6 51 
J 

5 39 58 38 27 <X> 13 
If 

p 

6 46 67 27 11 38 ... . 
" 

0 
/ 1 2 3 4 5 6 .. 1 

f 
Table 5.20 ' ,~ 

~ f 
~ 

p 
"). \, 

0 i 
J 

S'tee 1 Get the MDSG (s~e -Figure 5.14) . 
f ". Stee 2 Get a 2-optimal set of additional arcs. 

Starting with {(S. 3) (4.6)} we get the 2-optimal set 

{(S,6) , (4,3)} . 
.. Stee 3 Get an Euler 'tircuit from the graph i~ 

/ 1 

, Figure 5.15 ; , Il 

EC == (1.2,4.5,6,4,3,1) 

. / 

Stee 4 Get the shortest HC obtainable from the EC 

(marked by asterisk in Table '5.21) . 
HG . Gost 

-*(1,2,4,5,6,3,1) 94 
~ 

(5,6.4,3,1,2.5) 168 
/ 

Table 5.21 
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Figure 5.14 
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Figure 5.15 
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j' , , 

5.3.3 /Ex~riments ~ 

!~ry i~ ~symmetric cost-matrices for the TSP appear in the 

1itetature, and even these arè for trivial values of n [Ac2, Beo2, Con, < 

La~' Lit, S Wà]. In contrast with the symmetric case it i8 quite 

co~p1icated derive, an estimate for-the sJ1utions, or put some bounds 
# 

o~ i t, fo A variety of lower, bounds èan b~ 

~btained oy solvi~g the corresponding asslgn~ent'prob1em [Beo2, Chr4]. 

/These usually irivo1ve non-trivial compu~ations. Therefore we consider 

Ir only asymmetric cost-matrices wherethe triangu1ar inequa1ity ho1ds 

',l . (every city visited once) and take the MDSG as our lower bound. We 
l' , describe two ways of getting a random asymmetri~cost matrix where the 

" . " 
,triangu~ar inequali ty no1ds. 

1) Every entry in the cost-matrix is generated randomly using the 

appropriate distribution; then à large numbe~,K (larg~r than any 

cost) ~s added to every entry. <' 

2} 

It is obvjous that, 
, . 

if a + b < C then (a+K) + (b+K) > (c-tR) • 
• r 

x-and y coordinates of n points are generatèd randomly. 
1 

Then. 

entry c:tj of thé cost-matrix is taken as the Euc·1idean di~t'ance 

between points -i and j . ' Entry eji, i5 now obtaiJed from , 

c ji = cij :t cS 
( 

where cS is an arbitrary smal1 number. This method .,is i11ustrated 

,in Figure ,5.'18 note that if in the cost matrix of Fi~ure 5.18(a), ' 
g 

j 

i j k J. 

i a+cS b-cS 

j a 00 • c+ô b .. 
i 
~ 

k 

• b c 00 k 
b-ô 

, i 

(a) Cost - matrix (b) Complete directed grapl) 

Figure 5.18 
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> c ~ a+c > band b+c > _a hold, then the six inequalities in the 

digraph of Figure 5.l8(b) also hbld . 

Table 5.23 summarizes the results of Monte Çarlo experiments where: 

TSP5 = cost of approximate solution provided by TSP5, ' and 

MDSG cost of the MDSG. 

Every entry 1s an _average of 100 prob1ems 'li(ith asymmetri.c matrices and 

the triangular inequality holdin? 

n TSP5 MDSG 1 Run-time in seconds 

25 1.50 0.1 ~ 

1.48 0.7 
, 1 50 1 

J 

' .. 
, , 

... 
" 

75 1.45 - 1.7 
fi 

100 1.45 3.2 

Table 5.23 
... 

We notice that the computation time is - on the average equal to 

{32 .. l()-S x n2) d i 1 A secon s approx mate y. 9 

Final1y we point out that the qua1ity of the'answer can be high1y 
1 

improved - at the cost of an increase 
. 

in ,the run-time - by getting an . . 
optimal oipa!tite matching in Step'2, 

<le 3 
usjng the O(n ) algorithm for, the 

asS'ignment problem' [Bou] . 
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5.4 Conclusion / 1 • 

1 

1 

/ 
1 

The main results Qf this chap te! can be s~nnnarized as fo,llows: 
j -, 1 

l)r,~Various - apparently unrelated - methods were.combined to yield 
~ .' 

efficient approx~tion, algôritijms for the TSP. / 
, 1 

2) Near-optimal solut:f.bns, to the minimum-weight perfect'\matching 
l , " ~, 

problem, have be~n obt,ained', by, applying the concept o~ k-optimality. 

3) The minimal directed spanning graph ~ a generalization of the 

minimal spanning tr~~ for dire~.~e( graphe - was used to address 

the •• ~ TSP. 1 
,- 1 
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1 

Chapter Six 
./ 1 

On Local Neighborhood Search and the ~SP 

A very efficient technique for obtaining approxi~ate 90lutiQn9 to 
, 

combinatorial optimization problems i9 known a~ local! neighbQrhood search 

\ 
(LNS) . LNS i9 defined as follows [Cof]:' 

. / 
"Let S be the set of feasible so!utions to a combinatorial optimization , ; 

problem, then 1 

4 

1) A neighborhood Neis defined for th~ problem if for eyery SES we 

define 

N(s) c:::: S as the neighborhood of s • _ 

2) An initial solution sI E S is chosen by a technique T 

3) If C(si) ls the cost of solution si ' then a policy P is used 

to seareh N(s) and choose si+]. E N(si) such that 

whenever this is possible. 

If-such an improvement does not exist we say that si is loeally 

optimal with respect to N • Il 
o 

T~us LNS algorithms start with an initial solution an~ attempt to 

improve upon'it by 

rule that yields a better solution. 

following some specifie 

provements'are adopted as saon as 

they are.found ~nd the above procedur is applied tO'the new solution 

th~s created. When no fu~ther impr vement can b'e made the solut:ton on 
./ 

hand i9 called a local optimum represents an approximate solution 

to the problem. The process may b 

starting from a different initial s 

local optima ls then selected as the 

several times each time 

The best ~f the various 

&Olution. , 

c; 

Algorithms of this/type have proved excellent at obtaining near-

optimal solutions. A very good example of a successful application ot 

this technique is the principle of k-optimality (see Chap,ter 5) and its 
, ' 

variants deseribed in [Ad, Ba, Chr3, Cr, ~inl, Lin2, Lin3, Lin4, Rei, 

Stel, Ste2] for the TSP. Various analyses of LNS algorithms can be found 

in [Cof, Pap, Savl, Sav2]. 

/ • 

. ' 

1 

! 
r 

j 
l, 



\ 

'. 

.. 

. ' 

-96-

'1 

As in [Caf], let us denote this category of algorithms by LNS (T,P,N) 

where 

1) T i8 the technique by whi~h an i~itial solution i8 chosen; 

2) P is the policy by which the neighborhood is searched for improve-

ments; and 

~ N is the neighborhood searched. 

Obviously T, P and N are, in general, problem-dependent. However, the 

initial solution provided by T falls natura~ly under one of the classes 

1 Random solutions 

2 Constructed solutions 

3 A combination of (1) and (2). 

Now, although P is independent of T, ~the local optima arrived at in N 

~ill heavily rely on the initial startitlg points. 
~ 

A very important issue in qesigning an LNS ~T,P,N) algorithm is 

hence to decide on whether it is preferable to commence witn a biased 

solution or a purely randOm one. Again the final decision will inevitably 
t ~ ~. 

be problem-dependent. It is general~y believed that for the TSP purely 

random starting tours work best [Cof]. Given a neighborhood N and a search 

policy ~ , for the TSP, the theme of this chapter is an pttempt to 

answer the above question about T. 
• J 

We essentially show that our exper~ence 
• > 

with a new heuristic algorithm that uses LNS contradicts the above 

assertion about random starting tours. In section 6.1 we describe how 

biased starting solutions are constructed and used to obtain local 

optima. Solutions of 'clas~ical' TSP's, obtained by both random and 

biased starts are compared in section 6.2. Our conclusions, supported 

by extensive Monte Carlo runs, are presented in section 6.3 . 

, 
6.1 An LNS algorithm for the TSP using biased starts 

Algori thm TSP6 1 

St~p 1. Get the MST. 

Step 2. Get a TOPM of the odd-degree nodes. 

Step 3. Get an EC~i.n the grap'h composed of the edges of the 

( MST and those of the TOPM. , 

fi 1 



\ 

( 

Stt!.p 4. 

Step 5. 
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from the EC choose the one 

get a 2-optimal ~olution. 

Among aIl HC's obtainable 

with minimum cost. ~ 
Starting with that c cIe 

~ ~ 

We observe that l" 
1) LNS exÜjts in two p~aces in the above a1gorithm: < .in Step 2 ~hère 

a TOPM i8 obtained and in Step 5 wh~re a 2-optimal~C i8 us:d as/ 

the final approximate solution to the TSP. the TOPM Is 
concwed we always start ~ith and make 

it 2-optitnal by the usual proeedure. fact 

that we do 'not know of any efficient way of 

the starting solution when the distribution of the weights is 

not known [Av2]. Hence, Step 2.will not be discussed, further. 

In obtaining the 2-optimal He, however, we start with the best , , , 
circuit obtainable from the EG (Step 4): this is hence a "biased" 

starting solution. 

2) Steps 1 to 4 are precisely algorith~ TSP4. One cou Id therefore 

phrase the above algorithm sim6ly as follows: . 
1 "Get a 2-optimal 

TSJ4". 

to?~.startini wi~h the Re provided by algoritbm , 

1 We propose to compare the approximate solution thus obtained, to a 

local optimum arrived at starting'with a purely random to~r. 

6.2 .Testing TSP6 on 'classical' problems 

T,able 6.1 shows: 

1) 

2) 

the results obtained when applying the new algorithm to the set 

of famous TSP~s of Table 5.4,1 the cost of the final tour in 

each case being denoted by TS~6; and 
",1 "" 

the corresponding figures obt~ned when starting with a random 

solution'and making it 2-optimal, the costs of the final tours 

being denotedvby.RRNDl 
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J , \ , 
\ 

- Cost of best Run- Ruo-. 
Source . TSP6 ti_me RAND 1 time n k;nown 80 utioo in -secs. in S-eC8. 

10 [Ba] 0 378 381 0.01 378 0.01, 
, 

20 • [Cr] 246 
. 

271 0.05 292 Q:12 

1711 
, 

25 [Hel] , 1711 0.05 1711 , Q.04 . 
33 [Ka] 10861 10861 0.13 11317 0.06 , - " 

42 [Ka] 699 )24 0.29 788 0.12 
, 48 [Hel] , 11461 12585 0.35 11828 0.20 

0.165 . 
, 

57 [Ka] " 1~95S 13747 14221 0.31 -
100 [Kr$] 21282 22994 2.16 2362,6 1.-73 

, Table 6.1 

Here we should.note that TSP6 as~it stands leads to ,one solution 

Cin Step 4) whlch 18 made 2-optima '(in Step 5); we. the~fore used one 

starting random solution ta obtai' the resultslexhibited~in Table 6.~ 
, / 

HowevEj,r', in order to apply the co cept of LNS in its full P9Wer, one 

should start wi~veral -either iased or random - fea'sib1e solutions 

and choose the best local optimum hat these lead tor. For the purpose 

of compari80n we achieve this by ID difrlng our ~Igorlthm as follows: 

Alg0r1~ TSP6.1 

Steps l - 3 

Step -4' 

Step S' 

(as before) 

Obtain a11 d obtainable from the EC. 

Make every 0 e of these cycles 2~optimal and choose 

the cheapést esulting cycle. 
, / 

Before proceeding, we show that a empirlcal estlmate of the expected 
, , 3 

run-time of TSP6.1 is/O(n ) .• F st note that the~MST has.n-l edges .. 

Also, the number of~dd degree no es in the MSr being at most n , the 
"/ . 

maximum nomber c{f edges the rOPM can possibly have \18 n/2. It fo'1lows 

that the Eulerian .graph, re~ult~n from tMST U TOP~), has at most 

lf - 1 edges. Now, if every node n the EC leads to a different He, 
• D ,\ 3n" 

then ,the maximum possible number of (~C' s 'is '"2 - 1. It was experi-
3n\ • 

menta1ly observed that each of the :ï - 1 HC's requ1res on the average 

0{n2) steps t~ be made 2-optimal. It followa that the overal1 run-time 

\. 

1 , ' 

} 

J 
:! 
'le ., 

----------~---------------~ 
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of a1go~ithm ~SP6.1 ia'proportional to ~3 

• Table' 6.2 exhibits the , 
1) Usüig TSP6.1 to ob tain 

" 

resu1t~tained;by: 

an appr~te solution, the "cost of which 

we denote by TSP 6 ~ • 
4 , "t 

2) Starting with 2n random solutions ,--making each one of them 2-op~ima1 

and -choos}.ng the best solution thus ,obtained,' the cost of ,which we 

denote by RANDN • 
o 

Note that: 

1) 
4 3 .. ' 

The obseryed run-time-for TSP6.1 1:s approximately 10- n seconds, 

on the average. 

2) The number (2n) was chosen sinee it i5 considerably larger than tbe 

possib~e n~ber of different HC's obtainable from the EC. 
, 

~ . 
Source 

Best known 
TSP6.~ 

Run-
RANDN 

Run-
n " time time 

solution in l3ees. in secs. 
" , 

10 [Ba] 378 378 c 0.10 378 0.12 
0 

20 [.cr] 246 246 0.80 259 2.25 

25, [Hel] 1711 171,1 ~1.~3 1711 2.84 
/-

t
r 

3.70 33 [Ka] 10861 10861 10861 7.36 
, - "-

42 [Ka} 699 699 7.80 713 22.05 -

48 [Hel] " 11461 11574 
~ 

11.30 11769 22.90 

57 [KaJ 12955 13300 19.50 13169 51. 79 -
100 [Kro] 2128'2 22112 110.20 21593 ' 190.62 

" 

Table 6.2 

Discussion • 'C> \ . 
Looking_8t the figures in Tables 6.1 and 6.~, it appears at fifst 

l 
~ some-glance that in some cases random starts l~ad to very good rèsu1ts: 

è 

times better than the biased starts, ~ometimes even ~ptimal. This - . - -. ... 

observation, .however; 1s misiead1ng. ' To exp1ain why 'one shou1d nôt ovel;'-

estimate the relatively good results obtained by starting w±th random 
IJ ,# 

initial. solutions ye give the fo11owing two reasons: 
o • 

1) ~-optimality can be tested in O(m). eomparisons,where 

1 

,,1 

~ , 
1 

,~ 

,) 
l >( 
l'; 

, 
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tn "'; (~) (k-l)!. 2
k

- 1 as shown in [Chr3J. This is the complexity of 

each Iteration. We noticed that a large number of starting solutions 

is needed in generaI to obtairt a good final solution among al~ local 

optima. It follaws that if this number is of O(nt' then the -

2) 

. theoretical '- complexity of the algorithm for 2~optimal solutions 
'i 

J~PS r m n to n . ~ 2 3, 

In ~o t ases a random solu,t=\on i8 further from a l,oeal optimum than 

a biased 9ne; and one particular random solution may require 

several (n
2
) iterations before it becomes 2-optimal. This point 

is important for a qorrèct Interpretation of the results: 

in r expèriments. when it was noticed that a random solution 
4: 

will require a prohibitive computat'ion time the program was stoRped; 

this ~appened quite often. Only 2-optimal tours obtained-from 

random ones in less t~n one minut~ of CPU rime are reported upon 

in this 'chapter. 

'the two points mad~ ab€lve ~~ad us to ask the following question: 

how many cyel~s would have at worst to·be considered bya LNS algorithm
§ 

looKing for a 2-optimal solution starting from a random one - before the 

answer ls obtained? 
\ 

wè know that aIl ~ermutations of'n.oblects cau be obtained by p~ir-, , 

wise exchanges [Sd]. A tour Qeing a permutation of the ~ities,_ it is 
. ~ , 

.. therefore easy to deduce that one can obtai~ aIl· (n-l)! /2 different 

tours of a travellhg.salesman by starting with a random tour and then 

exchanging two edges at a time as il1ustrated in Figure 6.1 for'n = 5 

Ea~h ,?f the i2 tours t eXcep~ the tirst, d:l,Hers from the preceedihg one 

'by exa'ctly two eÎiges. 

, . 

. , 

, '., ... 

1 
! 

l 
,.i· 

1 

1 

~ , ~ 
\ 

! 

1 
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1 • 

1;-
Figure 6.1 

) , 
-' , 

Figure 6.2 [AvI] sho~s a complete weighted graph pn 5 nodes for 

which an LNS algorithm, starting with the random t-our (135241), has to 

/ consider '7 other " tours before ~he 2-optima1 tour (123451) is found. 

.\ 

7 

Figure 6.2 

:/ 

/ 

.. 

.' . 
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~ 
The sequence examined i8: (135241), (132541) J (125431')~, (125341)1' 

(143251) , (142351) , (l243~1) : (123451) '. 

For n = 6 ,9n LNS a1gorithm that works on the graph of 

100king for a 2-optima1 tour, may have to consider 
, 

with the random tour (1325641) te final1y t~rminate with 

shown in Table 6.3 This is an increase by a faètor of 

gure 6.3 

it starts 

that 

the complete graph of Figure 6.3 is obtainedofrem the one in Figure 6.2~ 
,/ 

by adding one node, we conjecture an exponentia1 growth of the comput-
'" . 

ation time, as n increases, for the worst case behavior of this LNS 

a1gorithm. 

Figure 6.3 

/ 

--
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Tour Order -in which examined 

1325641 J, 1 
~/ 

1325461 
. "- ) \ 

2 

( 

'-

1352461 3 
\ -

1246531 

" 
4 

~ 

1324651 5 

1326451 6 , , . 
1462351 . 7 

/ 1453261 8 • 
/ • . 

1452361 j 9 

1254361 10 , 

1245361 Il 

1542361 /' 12 
0 

1362451 13 
, 

1426351 14 -
< 1263541 

~ 15 , 

1263451 
" 

16 g 
/ 

Table 6.3 

J 

/ 

./ 

./' 

/ 
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6.4 -Conclusion 

We cé}n conclude from our experiend! \ tpat: in order to get a good 
\ 

b ' . } \ a1ance - on the long run - between QualifY of solution and.amount of 

comp~tation it is preferable, in solving the TSP by LNS, to use biased 
i 

starting solutions rather th an random ones. Table 6.4 confirms this 

conclusion. The results shown are average,d over the 'same 100 problems 

obtained bY.gene~a~ unifo~ly n ran~om points in the un~t square. 
I"r-" .. 

- Run-time) RANDl/1.102*MST 
.. 

'n n TSP6/1.l02*MST , Run-time , 

25· 
, 

-1.158 0.12 / 1.161 0.67 
1 1 

/ 
50 1.130 0.50/ 1.170 3.18 

75 1.119 JÀ\ 1.179 9.34 

100 1.114 2\0.>-___ f-"/ ""1.186 19.41 
" \ 

0 

)/ , 
1 ~ _/ 

,Comparison between quality of solutions'~SP~ ~d RAND1 ana corresponding 
( "'" 7 ... -..... tI , 

,-j run-time in seconds. 

" 

, -

1 

" 

," 

" , \ 
~ 

" 
l, 

'1 
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Chapt~r Seven 
1 

On Maximal Triangulations, Optimal 
1 

and Hamilton Cycles / 
This chapter and the foll~ing one inves tigate a few problems -.. / 

related to the ETSP, and may be considered as a sequel to Chapters 2 and 

3. in Chapter 3 we ~ed triangulations to obtain an approximate solution 

to the ETSP. Other applications in which triangulati~ns arise are the 

finite element method [B, Br2] and the numerfcal interpolation of f1.mctions 
Ç) , 1 

of two variables '[Dav], Very lit.tle is known, however, about the geoIl1e't-

rical prôperties of triangulati'ons and .their relation ,to other structures. 
'l. 

1 

In this cha~ter we st~dy a special type of triangulations. In 

particular, we give,a method of placing n pointsoin the plane and joining 
! 

them by straigh,t-line segments th'at yields.a tr;1.angulation with the maxi-

mum po~sible number of edges" Triangulations of this type; are showJl to 

~e Hamiltonian and an expression for the number of Hamilton' cycles they 

contain is derived. We als6 conjecture a relation between these triang-., 

u1ations and crossing-nu~~r-oPtima1 recti1inear .d~awings of CO~lete graphs 

[Er]. Finally, ~ 1awer bound ~s preserited for the maximum number of 

crossing-free Hamilton cycles in a recti1inear drawing of a complete 

graph. This bound is an improvement over the one that appears in [New]. 
, 

,/ / a 

/ 
/ 

/ 

/ 

" 

! 
/' 

/ 
/ , 

7.1 MaxilIlal Trlangulations , 
It i9 kn~ that the maximum number ~f edges a plane graph can .. 

possibly hale' (i. e. no edge could be, ad;ed without cr~ating a crossing) 
/ ' 

is 3n-6 : lin tht;l.t case~ the plane graph is said to ,be maximal [Harl]_ 
, / , 

Also, tpe 3n-6 uppêr bound is achiev~ané graph if every one of 
/ 

its fftces is a triangle {HarI]. It follaw5 that'a triangulation i5 
./ 

m~~mal only if its convex hull is a triangle. 

/ ~ 

/ Theorem 7.1 

A triangulation of n po~nts placed in the plane as concentric 

triangles is maximal. 

Proof 

The theorem i6 a co~sequence of the last sentence in the previous 

paragraph. A counJ?-ing argument is give.n below that '!llustrates the 

cons"truc'tion. When the n poin'ts are placed in lnlU concentric triangles" 
/ 
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t" 

, there will be 0 , 1 or 2 interior points according to whether n~n , 1 or 2 

(mod 3) !espectively. We examine every case separately. 

a)" 

b) 

n=O ~mod3) 
/ .,. 

The triangula t'ion w:t1l contain 

n edges = contributed by the n/3 concentric ù~iangles 

(= !!. * 3) , 
" ,,3 

• ?" ~) 

+2n-6 edg~s = 6bttained by connecting every triangle -

"-

except the innermost - ta the next interior 

~ne by 6 non-cross,fng edges 

(= n-J * 6) 
3 

n=l (mod 3) 

The triangulation will contain 

n-1 
n-l edges as before ~,= y * 3) 

n-4 +2n-8 edges = as before, (= -3- * 6) 

+ 3 edges = connecting the innermost t;-iangle to the 

interior point. 

1 c) nï:2 (mod 3) 

The triangulation will contain ' 

n-2 
n-2 edges = as before (= -3- * 3) 

n-5 ::; as before (= -3- * 6) <" H"; 
l , 

+2n-1O edges 

+ 5 edges connecting the inpermôSt triangle to the 

two interior points. 

+ , 1 edge = connecting the'two ~erior points. 

Hence a total of 3n-6 edges in eve~ case. 

'; 

Q.E.D . . 
Let us denote by Tn ' the maximal triangu~ation of n points obtained by 

~ / , 
the c9nstruction of ~heorem 7.1 Figures 7.1, 7.2 and 7.3 show the 

various Tn's for 3 ~'n ~ 9 

1 

./ 
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It. should' re notea that for n Z 7 , the construction described 
.. ~ , , 

7 .. 1 18, not tne
d

on1y way of obtaining a maximal tri:mgu1ation. 

shows three mriimal triangulations of 8 points., . 

, , , 

'fI 

, , 0 

;'. 
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... ' 

Figure 7.1 

, ; 

1 Figure 7.2 (cont' d.) 
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~n Theorem 

Figure 7.4 
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7.2 Maximal ~riangu1ations and Opti~~ Drawings 

A crossing-number-optima1 rectilinear drawing (CNORD) of Kn "7Qe 

~complete graph with n nodes, is a rectilinear drawing of K that has the 
n \ 

minimum 'possible ~umber of crossings [Har2]. In spite of the conside~able-

attention optimal drawing~ have recently been given {Eg, Er, GuI, GU2~ar3, 
Je] CNORD~s of K are on1y known for n 5 9. Figure 7.5 shows th 

n 

, 

CNORD of K6 • 

, 1 

Figure 7.5 

Theorem 7.2 

For 3 .s n .s 9 a CNORD of K can be obtained froIl} li T • n n 

" A drawing of K can be obtained by adding the missing edges, if any, . 
n 

to a T 
n 

: ,For 3' ~ n ~ 9 , comparison 'of the resul ting' drawings with the 

known CNORD' S 0 f K 
n 

[Har3, Je], shows them to be isomor.phi c [GuI]. 

Q.E.D. 

Theorem 7. ~ is ~illus trated in Figure 7.6 f9 r n~ 7 • 

1 

, 

J 

, J 

./ 
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-: ,;,$ 
,O.~ 

f' 

CN0RD df K7 wittl 9 crQs~ings 

Figure 

. 
We,believe that Theorem generalized for-aIl value~ of n 

Loosely speaking, we conjecture that the more the eages in a rtriangulation 

of n points, the fewer the crossings in,a rectilinear rawin~ and vice 

versa. 
~ _ Q M 

7.3 Maxitn~l Triangulations and H~ilton~es . -- '.' t,.-J 
~; '.\ 

A graph' is called Hamiltonian if ft contains a Hamilto~ ~~cle 
• • 1 

[J?~rg]. We know from [Mn] that"no't eve';y tria-qgulation i~ Hamiltonian. 

Figure 7.,7 shows a triangulat~on·that does-not contain a·Hâmilton çyc1e 

[Sku] • 

" 

• 

.' 

1 • 

" .. 

" 1 
~ 

t 
~ 
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~ 

\ ~. 
, () 

,-

g 

· · '. 

@ \ " 
. , .. 

1 

" 

, Figure 7.7 
~) 

~ 
, , 

On the other hand, 18 was in [Wh) that' a ~tiang~lati?n which 

a) is maximal ' l ~ 

and b) cantains no eycle of length 3 apart from the triangles bounding 

its faces, 

• ls guaranteed tOr,pass~ss a Hamilton cycle •. An example is shawn in 

Figure 7.8 • l' . . 
'. 

l . 
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'. 

Figure' 7.8 

Theorem 7.3 

IE,very Tn ia Hami-l--:tonian. 

Proof: 

1) 

By induction. 1 

Since the innermost triangle of any T has either 0 , l'or 2 \ . n 
interior points we ~tart by showing the theorem true for 

n=3 , 4 and 5 • 

In FiguFes 7.9,7.19 rnd 7.ll,the H~ilton cycle i5 indicated 

by directed arcs. 

., 

o 
<, 

.. ......, ....... - .'""'1"1 .... , ." ~~~ ~ • . ' . 
-' _ ~-__ .::'...L.......~ __ _ 

1 

A. , 
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Ji .r.I~ ______ ---.c 
-Figure 7.9 
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,1 

b b 

0 '\ 

, 
a c a c 

" 

Figure 7.l0 -"" Figure 7 .1'1 
" .. "-

\ ~ 'u ,[' ~:s> l~ J q~~ '0 

ff\~' , 

2) <W~ now assume that for n .:: .3 every T contains a Hamilton cycle. 
n 

Let the outermost triangle of a. T be given by the vertices a" '0 n .' b and c and assume edge (a,b) 18 pa,rt of the Hamilton cycle !. as 
~ ..,. 

shown in Fig~re 7.12,. 

'\ 

. '" 
\ 

/,\ 

(JO 

" a c 

Symbolic representation of a T 
n 

1 
/ " 

""-.- .., " 
p 

" ' Figure 7.12 Al 
.1 ,/ ( , 

J, 
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\ 

We complete. the praof by ~howing that the ·theorem ia true for 

n + 3 . 

'Folio~ing' the' constructiQn in fheorem 7.1, . ., 
(a) three vertices, say p • q and r 

of T-
n 

are added ta those 

and (b)' edges (p,q) , (q,r) , (r,p) , (p,a) , (p,c) , "(q,a)' , 

(q,b) ,(r,b) ànd (r,c) are drawn, yielding T
n
+

3 
as 

, shawn in Figure 7: 13 " 

q 

.~--------- r 

" 1 \ 

} Figur,: 7.13 

In order to obtain a Hamilton cycle in T
n

+3 we rep1~ce edge ,(a,b) in"the 
\ 

-Hamilton 'cycle of T by the path (a,p,r,q,b). 
n 

, . ~Q.E.D. 
/ 

}Ve conc1ude this section by counting the number of dirferent Hamilton 
" 

cycles in a T
n 

For T 4 ' T 5 and T 6 this number i8 3°, 6 and 16 respect-

i vely as shown in Figures,..7 .14 '- 7.15 and' 7.16. 
/ , 

i ' 
Let· tn deoote the numb,er of Hamilton cycles in a. T

n 
having i édges 

00 the convex~u1l of T
n 

1w p?-rt of E!ach cycle. FigureS' 7.14, 7. J.5 and 

7.16 show that the values of t! for,n;4; 5 and 6, and i~l or 2 are as 

follows: 
• o 

, u 

, 
J' 

1 

1 
! 

1 
') 

l, 
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1 
0 

2 
3 t

4 '7 t
4 

= 

1 
2 2 

4 t s /5 ~, 

t
1 

6 = 6 
2 

t 6 = 9 " 

Excluding the special t
3 

= 1 
0 

= 1 it is clear that two cases and ,~6 t 

3 0 3 
t = t = 0 , for a11 n so that the only types of HarDiI ton ,cycles 
n n 

possible are for i=2 or 1 as shown in Figure 7.17 . H'ence ~ gi ven a T , 
- '. n 

...... ', with n > 3 and the initial conditions in (7.1) , the number of Hamilton , 
cycles in Tn+

3 
will be, 

(, 

t l '+ 't2 
tn+3 = n+3 n+3 

/ 

where 
1 

2 t
2 

tn+3'= n (7.2) 
./ 

2' 
6 t

2 + 3 t
l 

t n+3 n n 
Jo 

" 

Eqt,tations (7.2) are illu!?tratèd in Figures 7.1~ 'aifd 7.19 . " 1 

./ 

" U 

7.'4" kt I!!I!!roved Lower °Bound For ~{n2 " 1 

In [New] the following I)rob1em 1s posed: 

"What is the value' of ~ (n) , ,the maximum nun:ber of cros s ing-f ree 

Hamilton cycles (CFHC) in a rectilinear drawing of K ?" 
n t 

1 :,. : . i 
l 

, 

A A 'A 
1 
f 

. 
*. ' ~ .. , 

Figure 7.14 
,1 

! 

'" 
J" 

~A Ail .b~: 
r 

p ! 
1 

'~ , 
~ ~ 

~ 

t 

Figure 7.15 
~' 
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F:Lgure 7 .. 17 ,t,. 

o 
• 

Remov?; of one edge'from the convex hull'of a Hamilton cycle in a T with i"'2 yields 6 

_.-
n 

• 

œ 

Hamilton cycles in ~n+3 with i=2 . 

ÂM 

~ 

'\. 

Remova! of the two edges from the convex hull of a Hamilton cycle tn a T with 1=2 yields 
n 

2 Hamilton cycles in T +3 vith 1=1 • 
n , . 

-;;:--

" 
.., 

1 
1-' 
1-' 

'f 

J 

, , 

1 
Figure 7,18 

~ 
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Removal of the only edge from the convex hull of a Hamilton cycle in a Tn 
with i=l yield,s 

3 Hamilton cycles in T +3 with i=2 
n 

.. 

-> 
~-----,':--~, ~~'-

' .. 

Figure 7.19 
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, and it i9 shown that 

~(n) 

for n > 6 • 
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n'l, 
~ 2~ (10) 3 

'i' 

(7.3) 

Using the technique described in the previous section for counting 

Hamilton cycles, we obtain a sharper lower bound on ~(n) • Essentially, 

we show that ~ rectilinear drawing of a subgraph'of K ,denoted by D , 
n n 

centains ~ore CFHC's'than-in (7.3). 
, . 

Draw Dn as follows: the n points are placed in Ln/~ concentric • 

triangles. The vertices of each triangle are' then connected'to 'those of 

the next interior one by aIl possible edges as shawn in Figure 7.20 

.1 

(a) n=O (mod 3) 

/ 

/ 

(b) n=1 (mod 3) (c) n=2 (mod 3) 

/ 

Figure, 7.20 

/ 
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i 
Let us denote by d the numbeli of CFHC' s" 

n 
the .convex hull of D as part of each. cycle n 
i=l or 2 we have 

dl = 0 d2 .• = 3 (as shawn ,in Fig 
4 4 

dl - 2 
= 3 }S z:: 5 (as shown ~n Fig 5 

dl = 12 d
2 

15 (as shown in Fig 
6 6 

a D heving i edg~s on 
n 

F?r D4 ' D5 and D6 ' and 

re 7.14) 

<1f 

res 7.15 'and 7.21) (7.4) 

u es 7.16 and 7.Ù) 

EFluding the two special cases d
3 = l 
3 

and dO = 2 6, , it is clear/that 
3' ~o .' d = = 0 , for a11 n , so that the only possible CFHC's in aD are n n 0 n , 

when i=2 or 1 as shown in Figure 7.23 . 
,Bach CFHC' tri Dn with i=2 1eads ta 10 and 4 CFHC's in Dn+3 with i=2 and 1 

respectively as 'shawn in Figures 7.18 and 7.24. Sim11arly e'ach CFRC in 

Dn with i=l leads to 5 CFHC in Dn+3 with i=2 as shawn/in Figures 7.19 

a:tld 7.25 • 
1 

in" (7.4) It' fol1ows that, for n>6 and the initial cond;l.tions , the number 
/ 

of CFHC in a D is given by 
n 

d = dl + d2 
n ,n n , . 

where 

dl 4 d
2 

n n-3 

d
2 

10 d!=3 + 5 dl 
: (7.5) 

= 
n n-3 

Solving the recurrence 

d =...L [x 
~, 215 1, 

n-3 
3 

equations 

~. 

3 1 

'!d 
= _1_ [(15+815) xl 3 

215 

(7.5) we get -

. " 

n-4 

3 ] 

n-5 

n=0(mod3) 

.. ' 

n=l'(mod3) 

3 " 
.] n=2 (mod3) 

1 

(7.6) . 
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" 
, . 

, n - ~. 

03 (' ) 3 ' That d .> -20 10 follows.'~irectly. 
n /. 

D' 

7.5 Conclusion ..~ 
We ,·have studied a special class' of maximal triangulttions. Evidence 

~as provi?ed that a relationship-exists between this class and rectilinear 

optimal drawings of complete grapps.- Triangulations belonging to this 
, 

class were shown to, al)ays contain a Hamilton cycle and a recurrence 

·~ormula f9r the number of such cycles was derived. We finally presented 

a lower bo~nd on the numbèr of crqssing free Hamilton cycles in a 

rectilinear drawing of a compl,Fte graph • 
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Chapter Eight 
0' 

pn Convex,Hul1s, 

Convex hul1s (CH) have~been extensively studieq in the past few years 

[Akl, AK2, Ap, Cha, Di2, Ed., ,Ef, Fr, 'G~bl, Gr, Ja, Ku, Pre, Ren, ~hl, Sh~;, 

SkI, T). The algorithms of ;Chapter 3 made use of this ,concept in co~n6ct-, 

ion with approxima~e triangulations. .Other applications include computer . 

graphies, desJgn automation, pattern recognition apd ope~ations research. 

In this chapter ~ efficient algorithm for obtaining the CH of a set . 
'of points in the plane is presented and theoretica]ly analyzed. For uniforrn 

-distributions on the square~ the algorithm has an expected run-time 
o 

of O(n) ." This is in' contra~t ta aIl other published alg~ri~hrns ~hose. 
expected running' time 1s bounded below'by O(n log n) . Experiments with\ 

the algorithm are des~ribed that confirru its intuiti~e ànd theoretical 

merits. A gener~lization to the d-dimensto?al case is ~lso ~uggested. 

Finally, empirica~ estimates of sorne convex hull expectations are 

obtained. 

" , 
8.1 An Aigorithm for the Convex Hull in 2-dimensions 

8.1.1 D,efini tions 
,d 

Let R be the d-dimensional real Euclidean space. A set 

Ke: Rd is convex if and oQ~y if fQr êaèh pai~ of distinct 
" , 

points a,b ~ K ~he )e~ent with end 'points ~ atld.~ is con-

tained in K~[GrU). If S'c:.,R
d 

then, the convex h~zi of S , 

denoted by aonv S , is"the intersection of"al1 tJe convex 

sets in Rd which contain S [Gru) .' , / 

The example of F~~U~l, shows,. for d = 2 , Sand conv p 

• 
.. • • • • 

• ". • 
• 
S conv S 

.. 
, . 

J' 

" 
i 

\ 
" 

' 1 

1f 
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'~ 
~ ,;1 



( 

\ o 

. ' 
,t 

- :... -;. 

The convex hull of 

slalla!=lt .-' convex polygon , 

~.1.2 previous Work 
l 

-127-
/ 
c 

~ set of points in the plane is, , 

including alI-the points. 

0" 

therefore, the 

~ 

., 
Several algoriEhms have been presepted for obtaining the convex hull 

ot a set 9f points. Some of them apply only ta the planar [Gr, Ja, 8h2, 
,p • f," 

Ed] or 3-dimensional [Ap, Di2] c'ase, while others are for the generai 
, . 

d-di~nsional convex hull problem [Cha, Pre]. ln the 2-dimensional case, 

the~lgorithms of [Gr, F~e] require sàrting, while the algorithm of 
• c' 

[~h2] is l?ased 'on fiilding the Voronoi d:!,agram [ShI] : each of these 

operations has a complexity of O(n log n), where n is the number of 
, ' 

points. 
II' 

~he al~orithms of [Ja, Ed] have a c011)plexit,y of O(mn), wherel m 
, , 

Is the number of ver~ices ofothe C~ ; this means· that their wors"t-case 

behaviour is 0(n2) . Also, it was shown. in [Ren] th~t"the expected value 

of m is 0(10g n) for a 

algoritbms of [Ja, Ed] 

" 

uniform distribution of the n points; the . , , 
have therefore an eXpected run-time of O(n log n). 

The compléxity of the tonvex hull problem has been astablished in 

[Pre, ShI] as being of O(n log n) for a set of n po'ints~ ~ . 

L" 1 

8.1.3 The Aigorithm- Z 
" , 8.1. 3.1 Basic Ideas' \ 

The newalgortthm is'based on-the follo?ing simple ideas: 
, ,/- , 

~l) Determini~g th€·four extrema~ points ,of ;_ge/se~, and discarding 

~11 points interior ta the cèmvex quadr~lateraJ_.they form. 

(2) Breaking . .ihe problem into four subprobl s -determined by the 
" ' 

extremal p6ints. 
( 

(3) Using the vector cross-produc~' to find the ~nvex path in 

, eaèh prob ~em. 0- \, _ 

These ideas are now ,explained in detaiL We ass~e throughout the' 

following discussion that points are given by ~heir~ca\tesian coordinates. 
~ '/ ~ '" t 

(1) Extremàl points': / Y~'-1' ~ ~ 
, - ''l~ , 

These are thè fo~nts with minimum and maximum X and Y - , 
, ---

coordina~s:. say XMIN, XMAX; YMIN, :YMAX,'respectively. From Figure 8.2, 

, . 
': 

_ .. ..r~'\......:.."',:., ,. .... "t_ _b _______ ~ ____ ~--'-'- ... ~~,----- ~ 
,- ~------ --~ ~-

/ 

.' 
.. 

1 
l 
~ 
i 



" ( 

,. . 

\ 

/ 

i ....... 

, . 

Yt-:t.IN 

Figure B. 2. 

)/ 

f 
1" 
l' 

1 

! 



( 

/' 

o 

-----1 

II' 

, ~ 

\ 

1 t 
J '" 

-129-

two facts are obvious, 

(a) The exttemal points must belong to the c~n~hull. 
• ..!.. r ' t 

(b) Any point interior to the convex qu~dri teral whos~ corners 

are the extremal points cannot belong to the ~onvex'hùll. 

It follows that by identifYJhg the extrem~l points one adds ~hese points' 

to the convex hull and discards aIl points fplling inside the quadri-
./ 

lateral they form; we'call this the "throw-away" principle. 

/ 

(2) Subproblerns: 

Once the four extremal points have been determined, and sorne points' 

eventually discarded, o~e can break the 

four regions, as shown in F\g~re ~.3 . 

a convex "path" from one extbal point 

rernaining s~t of points into 

'AlI that retpains now is to find 

to the other in the same region. 

(3) Vector cross-pro~uct: 

While exarninfng ~ points in one of the regions for inclusion in 

(or exclusion frorn) the convex hull, assume that we are advancing along 
, ", 

an edge of the quadrilateral such that the regi~n ls at our left, as . \ 

shown in Figure 8.3. Assume~further that we are looking at three 

consecutive points k, k+l, and k+2'. Obv~ously if point k+~ is as shown 

in Figure 8.4 (a) it is 'to be kept tempora~ily, while ft is to be dfscard

ed from further consideration if it is as in Figure 8.4(b) ~ 

If a, 
/ 

product of 

S = 

= 

'" 
• In Figur~ 

We thus h 

.-

" 
band 0 are as shown in figure 8.4(a) and (b) , then the cross-

the t\l10 vect-ors is given by 

a ben e .( . 
/' 

a b sin (al + ( 2) 

a-b [sin gl cos <l2 + cos ~al sin <l2 ] 

S 1s pos~tive and in Figure S:4(b) it i9 negatfv~ • 
lowing simple rule: 

, 

. , 
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YMAX 

1 

XMIN .XMAX 

YMIN 

(a) 4 regions 
; 

XMIN=YMAX XMAX=YMAX 
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. XMAX XMIN 

• L__ _ __ -.:.1 
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L ______ _ 
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,/ XMAX=YMJN XMIN=YMIN 

\) 
\ 

XMIN=YMAX 

1. 
1 

• • 

------, 

L ___ _ 

XM 
~ 

, . 

(b) 3 regions 

( 

1 
XMAX=YMAX 

r------
1 
1 
1 . 

1 

1 
. : • J 

~ .~ ___ ~_.J~ 
Xtv1IN=YMIN·. - . 
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keep point (k+l) 

delete point (k+l) 

/ 

Before presenting the algorithm we make the following two remarks: 

(1) In sorne cases two extremal points'may coincide a~ shown in Figure 

8.5-. The sole effect of these situations i8 that the number of 

sub-problems i5 reduced. 

(t) The "throw-away" principle can be applied further to each of the 
-

f04r regions of ,Figure 8.3 • 

2 as shawn in Figu~ 8.6 . 

We illustrate this idea for region 

/ 

YMAX 

XMAX 

Figure 8.6 

Let k be a point 'lnside regiop'2. It is obvious that any point inside 
1 

'> 
the triangle formed by points YMAX, k and XMAX cannot be a point of the 

convex hull and should, therefor~, be discarded. In order to maximize 

the number of points thrown away by this method, we choose point k 
1 ' 

according to the following heuristic: 

~among ~ll poin5s inside region 2 choose point (~'Yk) 

such that ~ + Yk is maximum" . 

8.1.3.2 Algorithm CH 

Given n points in-the plane by. their èartesian coordinates, find 

their convex hull. 

Step 1 Determine the four extremal points and remove from further 

consideration aIl points fall~ng inside thé quadrilateral 

thèy form. The remaining points are distributed among 

the four ex,ternal r\egions thus created. 

,,-

" 

," , 

t 
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/ 
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Step 2 For every one of the f@ur externa1 tegions, determined 

by the two extremai points i and j , find k , the 

poinb whose coordinates (~ , Y
k

) maximize the quantity 

where 

and 

m := +1 for' regions 2 and 3 
1 

= -1 for regions 1 and' 4 

m
2 

= +1 for regions J. and '2 

-1 for regions 3 and 4 

Remove from further consideration aIl points fal1ïng 

inside the ,triangle ijk .' f 
Step 3 For every one of tbe f~ur extern~l regions sort the 

remaining points on their x-~ôQrdinate: in ascending 
.J 

order if in region 1 or 2 and descend~ng order if in 

region 3 or 4', 

Step 4 For' every one of""the four external regions find tbe 

convex path from one extremal point'! ta the other j 

using the fo110wing rule: 

""""'-

Il (1) Starting with i dq,' (a) and Cb) below f,or 

every three consecutive points k, k+l and k+2 

until j is reached 

(a) S = (Yk+l Yk) (~+2 ~+1) + . 

(~ - ~+1) (Ylç+2 - Yk+1) 

(b)' If S ~ o move ·one point foniard; 

Else de1ete point (k+ 1) -and move one point 
lit, 

'. 
b~kward. 

(2) If (1) is ~ompleted without any·deletion, stop; 

else repeat (1)". 

\ -
Sipee at every iteration of Step 4(1) a finite number of points i8 

removed, termination of the,a1gorithm is guarantéed. Tbe remaining 

points fOTm the convex hull of th~ original set. 

/ 

! 
1 

.1 
1 
1 
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8.1. 4 ,Analysis 

~l~ithm CH has tne f~llowin~ advantages: 

(1) Conversion to polar coordinat es and computation of ~n,gles [Gr], 'as 

weIl as shifting of axes [Ja], aIl costly operations, are avoided. 

(2) The algorithm is conceptually very simple when compared to thoSe 

in [Ed, Pre, Sh2] Bnd thus has pedagogieal significanee. 

(3) The set of points ta be sorted is reduced to a very smaH subset 

by the "throw-a\Vayll princip le. 

'(4) The eonvex pa th in each region ls found by the very-easy-to--

lmplement cross-product rule. 

(5) Breaking the problem into subproblems makes it easier, and there

fore faster, ta solve. This i8 a good illustration of the 
" , 

. "divide-and-conquer" concept [Aho]. 

• (6) The \Vor,st-case beha'{ior of the algorithm ls O(n log n)'. This , .. 
happens when a~l the points lie on their~convex huI!. For example, 

if ,aIl the points If: on a circular arc (x1'Yl) , (x2 'Y2)"'" 

(X ,y ) such that (x
I

'Yl) is YMAX and (x' ,y ) i8 both )ÇMAX and k , 
n n, -', n n . 

then no points are thrown away in St~ps 1 and 2 and therefore 

the (n-2) points remaining are sorted', ~ 

" .We now present ~ theoretical analysis of CH, In order to do so we 

assume that the n points are:independent randpm variables uniformly 

distr;buted on thè'unit square. We use the following notation 

t' ~ 

Symbol nieaidng: 
,/ 

point with maximum x-XMAX coordinate 
1 

YMAX point with maximUlIl y- coordinitte 

XMIN point with minimum x- coordinate 

YMIN point wlth minimum y- c.oordinate 
, 

XYMAX point wi th maximUlIl (rl-y) value , 
YXMAX point with maximum (y-x) value 

XYMIN point with minimum (x+y) value 

YXMIN point with minimum (y-~) value '. 

l ' 

:1 

1 -

... 

j 

,1 

1 
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8.1.4.1. Analysis A1garithm . ~ ~-~ 

/ 

,Since algorithm CH itself i~ very difficult to analyze due to the 

'conditional nature of Step 2 we~ define an analysis algorithm which ,1s 

easier ta analyze than CH and which provides an upper bound On CR ; i.e. 

on ,every instance, algori thm CH will perform equally weIl or better than 

the ·'analysi$ aigorithm. 

AIgorithm CHA 

, . 
St~e2 
Step 3 

Dé,termine the eightJpoints XMAX, XMIN, YMAX, YMIN, XYMAX, 

XYMIN, YXMAX, YXMIN and throw-away any'point fal11ng 
1 ; 

inside the polygpn they form. 
, 

Same as Step 3 of CH . 

S~me as.Step 4 of CH,. 

Comments 

(1) 
i 

Note that in Step 1 of the analysis algorithm the 8 points need 
/' 

not he distinct. 

(2) The analySis algorithm is slower than CH for two reasons: 

(a) It requires at least 2nt~dditions and suhtractions in 

S tep 1 ta fina XYMAX, XYMIN. YXMAX and YXMIN; whereas 
/' 

~n Step 2 of CH the analogous points (point k in 
, . 

Figure 8.6) can be found by performing additions and 

suhtractions.on1y for points in the four sub-regions. 

(h) The number of points' thrown away in Step 1 of CHA ls 

smal1er than that in Step 1 and Step 2 of CH as 

il~ustrated in Figure 8.7 

-

Figure 8.7 

XMAX 
C 

o 

~ 1 

r • 
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In this situation the above a1gorithm will choose points 

'B and C for YMAX, XYMAX and XMAX, whereas CH , having 

chosen Band C as YMAX and XMAX, will then choose A às 
• 

XYMAX and thus throw-away the additiona1 points fal1ing 
• 

in the shaded triang~~. 

~ 

\ 

From the above comments, it fol1aws that an upper bound on the expected 

run~ing time of CHA will a1so serve as an upper bound on CH .-

/' 

- In ordeF ta àetermine an upper bo~nd on the expected runn}ng time 
1 

of aIgorithm CHA ~e need to know a 10wer bound on the expected number 
l " 

of points discarded in Step 1, which is proportional ta the expected' 
, 

areq of the po1~gon formed by the 8 extreme points. 

?1.4.2 'Area of po1~gon 

Let the 8 extreme points determined in Step 1 be denoted by 

Pl(x1 'Yl) , P2(x2 'Y2) , .•. , PS(xs'YS) The area of the polygon is 

gi'ven by: i 

where y ::: YS 
0", 

(8.1) 

and 

/Note ~hat'if two or more extreme points coincide (have the same coordin

ates)'tliis expression would give the area of tbe corresponding po1ygon. 
, ' ' 

The'expected value of (8.1) i8 giv~n by 

. 1 8 
E {A} = 2' E {I ih xi (y,Hl - Yi-1)1~ < (8.2) 1 

Since tbe abso1ut~ value function is concave, it fo1lows from Jensen's 

inequa1ity t?~t 
8 

E { ih xi (Yi+1'-Y1-1):11 
(8.3) 

8 
i~l E {Xi- Yi +1 } - E {Xi Y~-l}1 .. 

Now E{x
i 

'Yi+l} = E{x!} E{y i +1} + cov {Xi Yi +1} Since, as n ~ œ 

co~{xi Yi+l} + 0 faster tban 1/10g n + 0 [Ak2], we bave 

1 
j 
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and thus 

(8.4) 

Therefore, we can obtain a 10wer bound on the expected area if we know 
, 

'the expected values ,of the coordinates of the extreme points, ta which 

we now turn. 

Expected values of extreme points 

The extreme point~ fa11 into two categories: type 1 consisting of 

XMAX, XMIN, YMAX, YMIN, and type 2 made up of XYMAX~ XYMIN, YXMAX, 

YXMIN. 

ExpeC'ted values of t-ype, 1 poin,ts 
.0, , 

The prob1em is essentia1~y the ~ollowing: given n independent 

random variables Xl' 'X2 '.··, ~n dist:r::ibuted uniformly, on [0,1], what is 
1 1 

the ex~ected value of 

v = max (xl' *2"'" xn) 

Con~ider fjrst the c.d.f. of V 

PlV J:: a] = P [max (xl ,x
2

' ••• ,:Kn) < a] 

1 

\ 

_,J= P [xl ,x2'··· '~n < aJ \. ! (8.5)' . 

Sinee the li' sare iJependent and identie~l1y !distrib:ted 

P [V < a] = P [xl < a] P ['x2 < al ••. f [xn < a] 
1 

[ a'ln 1 
=P, x< 'i 

, 1 

(8.6) . 

where we q"rop the subscript for convènienee.! Sinee x i5 uniformly 

l' 

'--. 

1 n " distributed on [0,1], it fol1ows that P [V <'â] = a By differentiation, , , 
the density f (a) of V is given by ;. 

f (a) n-l 
= na 

, '1 
E.{V} a f(a) Renee = la 

" . 

., 
da' = 

, , 
1 
ln 
i +1 • ln 

1 
1 

c-

By symmetry it fo11ows that. the expected v;alue of min (Xl ,x2, .•• ,x~) := 
., 

, . 
... , ___ ~ ~ .. ~_~ ___ ~ _____ ~~ ___ ~ __ ~_~_ •.. ~ __ _ _ ,. ~ ___ .. _J. __ " _, ____ ~ _. ___ ,~~ ___ ~...........o... _ •• __ L. __ •• :~ _____ • ___ ~ __ ~_ 
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Every one of~the four extreme points has a cOordinate that is not extrem-

ized and whose expected valu: 'is thus equal ~o 1/2 • ,It fo1lows that the 

expected values of the cdordinates of the four extreme points of type l 
, , 

are as shown in Figure 8. 8 .~ 

1 /0 , 

I 
<n+1 

G ',' 

1.) 
2 

.' 

", 

Figure 8.8 

Expected values ot type 2 poi~ts 

" 

<;1 I 
, '2) 

f 

!he probl~ reduces to the foilowing: Given n independent random 

v~riables Zl' 'Z2 ,···, Zn '~uéh that Zi~ Xi + Yi ' :f. := 1,2, .•. ,n , and 

,::Ci" Yi are i~depénderit random vari,~bles uniformly distributêd on, [0,1'] 
, 

what is the expected value of W = max (ZI'" Z2 , .. '., Zn)·' C.onsider first 

the c.d.f. ~f W ' 

... / , 

. 
,', 

\ 

. 
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" 

, '\ 

. ", 
= p, [max, (Z1' Z2'" .,Z ) < al 

ft I~' nt 

~ P [Z,l' 22 , ••• ,Z < a] , n, ' 

~. . 

P [Z < al 
, tl 

, ft 

• .J, 
where we drop the subscript for convenience. We therefor~ need the 

c.d'. f. ,of Z .: 'Sin,e Z· == x + y ,kit follows that Z has a tr'iangular 

density on [0,2] with corresponding c.d'.f. given by 

PIZ < al 

i '2 
2" a· 

~ , l 2 
1 - 2'(2-a) 

r', l 
i 

. 
" 

• . 
\' 

It follo'Ws that th~ c.d. f. of tW :ts given" by' 

1 2n · ' l' , 

= , 
1 2 n ~ 

(1,- - (1-a) ] ~ ,2 ~ 

l 

" 

when ,~, < 0 

wh en 0 < a < 

'J 
( , , 

.when 1 < a ~ 

, . 
whel?-. à > 2 

" 

when a- < 0 

"wh~n p ~ a < 

"\. 

, 
when 
!> 

1 ~ a :S 

, . 
when a > '2 

. ' . 
By diff~rentiatiI1;g ~.e ob tain. the de~~il~Y g'(a) ôf'W ,1 

\ 

" 

l, 

1 

2 

, 

1 

2 

" 

, , 
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2n 2n-l -a 
2n 

~.:':" g(a) 
1 2 n-l 

n [1 - 2" (2-a)] (2-a) 
~ 

/. 
ô 

/- ... 
t 

Hence the expected value of W is given by 

Substituting for g(a) we obtain 

, . 

,when a < 0 

when 0 ::: a < 1 

when 1 ~ a :: 2 

when 'a, > 2 

:: 

• ,'Ir., 

l, 

li ,(i~)!! 
(2n+1)! ! 

(8.7) 

,-

,/, 

J . 

1 

Let' (8.7) 'be denoted by w(n) By symme~ry theftexpecte~alue,of 

min (Z'l ' ~2""'Z ) = 2 - w(n) '. n 

1 

IConsider region 2. Let x and Ymax max 
denote the x and y coordinates of XYMAX • Then W';=: x, + y' and , " max max 
E {W} = E {x } + E {y }. 

max max 
Because x and y are max max iderttically 

distrihuted , 
l' 1 

E {xIlla~} = E {YmaX} = '2 E {loI} = 2 w(n) '(8.8) 

.> .if 
the coordin~tes It rollows, that the expected values of 

, "' . 
extreme points of type 2 arJ' as shown in,Figure 8.9 

;Il., 
,(.' 

, , 

of the ·four 

P, 
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(w(n) w{n» f 

2 ' 2' ( 

/ " 

~4"::--t-----~~~---_..J . (w (n) 1 _ w(Ù») 
, 2' 2 

(1 _ w{n). 
2 

1 _ w~n». 

Figure 8.9 

" Q~ expec~ed values of the four extreme points bf type '11 define a , 

quadri~ateral Q~ . . Simi1arly, the expected va1ue~ of the four extreme 

points of type 2 define four'i~entical triangles T. Hen~e (8.4) can be 

written ~s .. 
E {Al = E {Q} + 4 E {T~ (8.9) . -

.rt . L 

o 

, 
, ~ 
~ 
j 

f 
1 

l .\J 

Substituting in. (8.4) the coordinates of the 4 po!.nts in Figure 8.8 yiel~s ." 

1 .... 

/" ,1' 
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(8.10) 

Substituting in (8.4) the coordinates of potnts YMAX, XMAX and XYMAX in 

Figure 8.9 yields JI 

~~ 

E {T} > 1:. [w(n) ( n) w(n) (-E-)2 + 1.] (8.11) - 2 ;+1 - -2- - n+1 4 

By Ei,ubstituting (8.10) and (8.11) into (8.9) we obtain the des:f.red ~ower \ 

bound on E {A} 

E {A} ~ [w(n) -1] (~~i) 

Let n' be the e~pected number of points discarded in Step l of the 

~lgorithm. A 10wer bound on n' is thus givén by 
0- . n-2 

n' = n E{A '} > n[w(n-l)-l] (-) 
.- n 

-' 
where A' is computed over (n-1) points [Ak~]. 

Theorem 8.1 

For large n , n' ~ n . 

Proof: It suffices to show that w(n) -+ 2 as n -+ 00. From (8.7) 

lim w(n) 
n-+ oo 

2 1im { 1 } 
n -+ <Xl 2

n (2n+1) 
fi lim 

(2n) ! ! 
{(2n+1) ! !} , 

The first limit on the right hand side of (8.13) is equa1'to zero. 

Consider the second 1imit term. We have 
'" 

(2n) ! ! 2 4 ..... 6 ... 8 (2n) 
(2n+1) ! ! "" (2n+1) ,3 . 5 . 7 . 9 

1 

The denominator of (8.14) is given by 

n 1 
.lI

I
' (1 + -2') 

J= ] 
> 1'+ l -1- .! + l + 

246 

n 
- . III J= 

-1 1 1 
1 + '2 (1 + -1 + '3 + ... ) 

1+lH 
2 n 

, 0 

1 
l' 

~+2j 

(8.12) 

" 

(8.13) 

(8.14) 

'l 

, . 

1 
• 1 

/ 
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where H is the harmonie series. 
n Since H goes to infinity, the second 

n 
1iroit goes to zero and w(n) 7 2 . The remaining part of the proof is 

straightforward using this result in (8.12) . 
0' 

Q.E.D . 

Remarks 
. . 

This theorem imp1ies that for most practical situations the majority 

of points is disearded in Steps land 2 of CH . Furthermore, for large 

n and uniform1y distributfd points on the unit square. CH d~seards almost 

aIl points., This is because points such as YMAX in Figure 8.9 converge 
l 

ta (2 ' 1) and XYMAX ta (1 , 1) as n 7 ex> "~ 

~ 

8.1.4.3 Asymptoti<;-Expected Comp1exity 

Finding the extreme 'points and discarding points inside the polygQn 
i'I"r in Step 1 can alw~s be done in time proportional to n - [Bu] . If~* points 

are discarded in St~ 1 then n - n* points are sorted in Step 2. This 

can be done in time proportiona1 to (n-n*) log (n - n*). Step.,j can be 

. done in Ume proportional, to (n-n*) The comp1exity of this a1gorithm 

\ ean thus be written as 

C = k n + k . (n-n*) log (n-n*) . l 2 

where k1 and k2 are constants. The expected complexity 1s t~s 

E{C} 

!I., 

.Theorem 8. 2 
li 

• 
<kn+ 
- 1 

k
2 

(n-n' ) log n ..... \ 

k1n + k2 (n-n E {A'}) log n 

O(n) + k2 (1 - 'E fA 'n n log n' 

(8.15) 

(8.16) 

For uniform distributions on the square, the expected running t1~e 

of tpe algorithm is O(n). 

,Proof: It is rè~uired '1fto show that the first term in (8.16) dominates 

ea~ly' enough. Theorem 8.1 tells us .that (8.12) tends to ,1 ; we'uow 

demonstrate that this happeus sufficient1y fast: the convergence of eaeh 

/' 
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term in (8.12) to its limit is shown to be faster than the convergence of 
, . ' 

the logarithmic function. Cons!der w(n) first: 

w(n) = 2 1 _ fi (2n)!! 
. ~2n+1)!! 

> 2 _ ,. 2 _ 4V2 = '2 (1 _ 1+212-) 
log n log n lQg n 

since __ 1 __ = _-:-::-'1"'--__ < _2_ 

2n(2n+1) 2n+1(20+l) log n 

and 

.' 
(2n) ! ! 1 

~=~..;...,... < -----.-
(2n+l)!! 1+ l. H 

2 n 

2' 4 
<-<--

H log n 
n 

, n-1 
-- Now consider n+1 

n-l --= 
n+1 

2 
1- -- > n+1 

2 1----log n 

8.1.5 A Monte Carlo E~per1ment 

( 

Q.E.D. 

The expected number of points tQrown away in Steps 1 and 2 oi CH was 

estima~ed empirically by~a Monte Carlo 'experiment where n random points 

were generated uniformly, in the unit squflr~. The resu1ts are shown in 
o 

'table 8.1 for various values of n (every value of n' is an average over 

100 runs). 

1 ' 

1 Q 

v 1 
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'1 

~ 

n = tota~ n' = points 
n'In -number of points thrown a'Way, 

100 88.72 0.8872 
-

200 183.06 ~.9153 

300 278.97 0.9299..< 

400 376.58 0.9414 

500 - \ 472.36 0.9447 

600 1 571.44 0.9524 

700 - 668.58 0.9551 
" 1 

800 766.14 0.9576 

900 864.67 0.9607 

1000 963.60 0.9636 

Table 8.1 

The average run time in seconds of CH was 0.19 f~r n = 1000. The 

a1gorithm of [JaJ required over 4 seconds on the average ta perform the 

same task. Bath averages 'Were computed over Ida runs. 

8.2 An Algorithm for the Convex Hull in cl-dimensions 

8.2.1 Basic Idea 

Given a convex polyhedron in d-dimensional space. From the simplex 

method', of linear programming ''We kno'W that for each extreme point of the 

yolyhedron there is an obj,ective function,for which that point is an 

optimal solut:ton. In Figure 8.10, for examp1e, d = 2 ~ng only po:i.nt A 
• _ J 

maxim:Î.zes Z ;-

'0 '. 

, " 

/' 

/' 

/' 

l . . 

" ~ ., t 0[ 

J 
l, 
J 
1 
.( 
i 
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y , 1 
F , A , 

, , / 

B , 

C , , x 

Figure 8.10 

The new a1gorithm we propose in this section reliès on'the observation' 

that objective functions imply extreme points. 
, c;. 

8.2.2 Illustration of basi~ idea for d=2 

Let n points in the pl911e be given by their cartesian coerdinates. 

It is required to determine the set C of edges fo~ing their CH. 

observ~ that: 

(1) 

(2) 
1 

(3) 

(4) 

The points with maximum and minimum X and Y coordinates are 

points of the CH.~ 

The points with maximum and minimum (X+Y) and (Y-X) are . 
points of \ the CH. -

No point'inside the possibly octagonal polygon formed'by ~e 

~bove points is a point of the CH. 

A partial CH and up to eight externàl regions have Just been 

cre~ted: iQ each external'region determined by points i and 

j the polygonal Zine _ E:Lj c:. CH is no,w ,sought. 

The above observation~re illustratéd in 'Figure 8.11 . 
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r'egion 1, 

1 I~-,-

5 

regio,n 4 

Figure 8.11 
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Assume a partial CH ia known'and a set of unexamined points is still left 

(Figure 8.12) . 
Triangle assocfated with (!~m) 

, and unexamined 

~~~ ~ ;,r, 
points 

e/ _, 
m 

Figure 8.12 
i 

A new point can be added to the CH by considering the edge (l,m) and 
i ....... f ...... -' 

choosing one bf the unexamlned points 
• 1 

in the triangle associated ~ith 
4 

O.,m) . 
function 

Choa se the point p(x ,y ) who~~ coordinates maximize the p p 

Z = ml XpfYR,-Yml'+ m2 Yplxi-xml 
," , . 

where , , 

" ~: 

and 

ml = .+1 :;for regions 1 f 2, 3, 4 , ":, l 
~, 1'---- __ -'" , '~y rr reg-i.<m.~_~ 6, 7, B 

m
2
: /~~~or:' regi,!"s 1 ,V, '8 

• 1 

IF jî for regions 3, 4, 5, 6 
, . 

(8.17) 

\. 

In' other wo~d~. w~ .. · are choosing p the furthest point in a perpendicular 

d'ireétion from' (.t,m) •. We have 

'(1) p ia a point, of the CH. 

i (2) 
1 

edges (t~1». aJld (p,m) replace edge (i,m) in the partial CH. . , . 
'. : (3) any po~~t_inaide the triangle ~p~ need not be considered ~ny 

more and can thus he "thrown-awayl'l. 

Algorithm CH2 

Step' 1: Determine the eigbt extremal points and remove from 
-/ . ' 

further consideration aIl p~ints falling inside the 

octagon they ferm. The remaining points are dis-



,/ 

Step 2: 

,/ 

Step 3: 
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tributed among the eight e~terna1 regions thu9 

created. 

For every one of the eight external regions determined 

by ,the two- extremal points i and j we determine 

Eij as foll~ws: ~ 

(a) Eij'I:& {(i,j)} ; 

(~) If every point in the region has been either 

examined or deleted, stop; 

(c) For every (t,m) t,/Eij do the following: if any 

points are left in the triangle associated with 

(R., m) 

t'hen 

find a point p such that Z is m~ximized, 

1 
, 

1 - Any point falling inside the tri~ngle tpm 

is deleted, and 

2 - E
ij 

i8 updated as·follows 

, Eij = (~ij 11 {(t,p), (p,m)}).- {(t,m)} ; 

(d) Go to (h) 
\ 

The set,/C of edges 
/ . 

fOrming the CH i9 9btained ,by 

m~rging th~ Eij'S 

,/ 

_8.2.2:1 Worst-Case Analysis 

The computation ia dominated by Step 2. In the worst-case the-number 

of comparisons required to dètermine ~ach of the extreme points i8 n • 

If ~bere are n such p'oints, the, algorithm will have a compl~ity of 

0(;) [Avl]. 

" 
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8.2.3 Generaiization ta d-dimensions - A1garithm CHd 

A1gorithm CH2'can be easi1y extended ta the genera! d-dimensiona1 
- ! 2 d 

case. Let a pqint in d-sp~ce,pe given by (z .,z , ••• ,z) We note 

that: 

1) In Step 1: 
d . 

(2d+2 ) extrema! points need ta be determi~d ~~y 

. point falling inside the polyhedr'on they form' ia 

deleted f~om further con~i~ration), , 

and 2d externa1 regions are thus created. 

2) In Step 2: a (d-1) hype~p1ane in d-space i8 given by d points 
1 2 d 1 2 d 

(zl ' z 1 ," •. , z 1 ) ( z 2 ' z 2 , ...• z 2) , .•• , 

The function ta be maximized i'8 

1 2 d where (z ,z , ••• z ) is the new point $ought, and ppp 

.. 
1 1 (zt.:' zj ) d d 

(z2-z1) 2 1 (z2-z1~1 .. 
,., 

1 1 (z'j-zj) d d i llz = (z3-z1) ... (z3-z1) 3 1-

1 1 (zj-zj) d d 
(zd- z1h ... d l (zd-zl) 
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8.3 Some Convex Hull Expectations 4, 
~ 

I~ this section we consider the followihg two problems: 

Problem 1: Let' S be a convex domain of the plane. The problem ([, 

Problem 2: 

~ 

, aSf?ociated with the name of Sylvester" [~e, Ki] is 

ta find the probabi1ity that four points taken at 

random inside S form a convex quadri1~teral. This 

prob1em has been solved in [Dell for various convex 

domains. The generalization we propose ta examine 

statistica11y ls the following: find the probability 

pen) that fi points take~ at random inside S form a 

convex n-gon when n ~ 4 . 
It -

Let B be a set of points in the plane (d-s,pace). 

The convex hull of B is the smal1est convex polygon 

(polyhedron) containfng aIl the points of the set. 

Integral expressions were given in [Ef, Ren] for the, 
"' ',e){pect~d number of vertices E(V ) , area E(A ) and 

n n 
perimeter E(P ) of the convex hul1 of n independent 

n 
and identica11y distributed random points in two and 

three dimensions, for n infinite or fixed. We 

provide a stochastic eva1uation of these expect~~s 
~ ! 

for the 2-dimensiona1 case. , ' 
'~ 

1 • 

The t,wo problems are tel~ted in an obvious way: by d,eterminin~~ 
convex hull and counting the number of its ver~ices, the question of ) 

whether the points form a conveX'n-gon or not can readily be ~ns~ere~ 

;S A Monte Cârlo EXperiment 

In this experiment points were unifprmly' generated in a lOxlO square 

and their convex hull ,i~entified using algarithm CH When a1l n points 

were included in the co~vex hull this was counted as a success, thus 

number of successes 
p' (n) = , numb~r 'of trials 

f > 

Also, the number of vertices, area and perimeter of the convex hull were 

computed, averaged o~r 

Tables 8.2, 8.3 à~" 8.4 
1 

being 10,000 for b ~ 10 

aIl trials and rounded to the higher integer. 
Cl 

show the results abtained, the number of trials .. 
and 1000 for n > 10 . (' 

,l, 

1 
i 1 

• 

t
l

,' 

l'" )' , 
1 , " 
1 
1 • 
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, , 

, l 

n p '.(n) , 

.' . 
4 

. 
0.6867 

" , 5 0.3415 

6 0.1242 i-

7 O. 0335 
. 8 0.0077 

.1. 
. . 
9" 0.0011 

-ID 0.0006 

( 
~ Table 8.2 

Q 
d 

J 

'. 
, ' 

.\ 

, ( . 
.1-

"- . 
~ 

, \, ',~ 
. -, 

" . " . 
• " 4 J 

, 

lr 
~ -, 

/ D 
o 



...... -.r~..,!-..--~---....----.- - -- --- ._- "" -~---_-:-.. #-..:.-._- - - -
, 1 -. 

.' n ---..... 
~ ..... 0; .... 't 

.. 
~, 

.,f pc, 

a. 

III . 

IX 3 4 ~ -6 7 8 _ li • 10 Average Standa;d deVi.a;i~~ . l;-

" 
. " ; ... 

6867 Every .entr~ represents 3.686 0 463 c • 

4 3133 the number of times - • 0 

" 

,- I! .-

J'; 

. out of 10000 trials -
5 1~~ 5566 3415 a graph with n nodes 4.239 .. 0.62~ 

has a convex hu11 of . 
~ '6, 383 3(j48 4727 1242·· V vertices 4.682 0.735 .. 

n ' ~. 

... 

Q 

\ 

7 162 2-248 4692 2563 335- olt 5.066 0°.821 y 
--::-

i< , 

8 67 1'319 - 4103 3448 989 - 77 5.419 \ 0 .88~ " 

1 
~" 

4"-
V1 
.s:-

; 1 
I 

,1 9 18 902 3,397 3799· 1633 240' Il 5.689 -,' - 0.942 ... 
<> 

~ 10 7' 55,7 2684 3940 2219 545 42 6 5.964 . o. 991 ~ , 
, 

c ~ .. --. . 
~ 

<> 
#' 

{ Table 13.3 (a) 
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~\ -
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.. 

) 

",~ .. 

-': 

---... 
1 

.. 
~ 

i 

r-~ ""'-.. 
'" " 

.~ 3 4 '. 5 : 6 
~ , 

. 
• 

~ 20 -,. ----, . 3. ~34 136 

0 ~9 
0

6 '37 
~ . c 

40 
. 

2 14 

50 ' 2'" ·10 

,.. 
QO 1 6 

'/ 
70 7 . 

<! 80 

, 90 ~ of 
~ 

. 

" 100 1 , . 
• .,. 

. " 
'0 

" .) 

(' 
) 

" 

.... 

.. 

- ~~ ..... >...~.. y~.,. 

-""!"P'" 

v 

, ' 

7 8 ,9 

UiO 294 165 

148 728 255· 

" 
\ 65 -187 214 

53 ~02 \.21\8 

15 73 151 . 
22 47 112 

. 
6 32 9,5 

~ 

·8 • 31 '79 
. 

6 ---- 23 . 54 
, 

1-
" 

, 

.. ,. 

., 
~ 

i ~' 

. 
10 11 12 ).3 

. , 

83 24 1 
" 

190 , 91 32 10 . 
248 159 77 26 . 
224 174 121 72 . 
218, 205 .188 . 93 

235' 210' 183 106 
" 'r \. 

189 183 210 140 
-; 

151 220 203 157 

143 166 ~09 180 

" 

Table 8.3(b) 

" -- • 
- -'-" 

... 
~ 

• 

" 

-"-.... -
" ~ 

"'. 

14' 15 16 17 18 19 20 

'\. 
- ~ \ 

Every entry represents 
the number of times -
out of 1000 trials - a 

3 graph with n nodes has ~ 

a convex hu1l of V 8 n 
" 

vertices. 

~ -8 . ~ 16 

38 '10 1 1 t 

\ 
47 26 4 1 

87 38 18 2 

82 46" 16 5 1 1 
c 

0 

114 66 23. 11 2 1 1 . . 

... 

... . ..... :,..~"' ... ~ ~ 

,-. 

" 

'0 

Aver. St.dev. 

" 

7.761 1.352 

8.863 1.519 

9.573 1.571 . 
\ 

10.105 .1. 750 
ê 

10.704 1.714 

10.943 1. 792 

11.506 1. 838, 

11. 638 1. 8'61 
0 

12.038 ,1. 958 1 . 

\ . 
~ ... _----

, 

" 

, 

1 
f-' 
V1< • 
l.J1 
<1 

t 

<' 

" 

, 

J 
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. . 

IS( E(A ) 
n ~ ECP

n
) ~' '. 

3 8 15 
>-

4 15 19 

5 22 10 21 , . 
6 . n 23 .. 
7 32 24 

,. 8 37 25 i'! 
~. 

• 9 40 26 

10 M 43 27 

20 62 . 31 

30 72 ./ 32 

40 77 -33 • 
50 81 1- 34 

,J 
, , 

60 82 34 . . 
\ 

70 84 35 

80 Q 86 35 
l' 90 ' 87 • 35 - . 

100 ' 88 " 36 .. 
~ • . j 
't 

~ 
~ 

~ f 

Table 8.4, <'11 

Note.that it wasqsho~ in [Del]'that p(4) = 25/36 when .the convex 
/" ' ' \" , 

domain is a parallelogram. In our case the domain isr a square of 'area ; 

" 100.' Î 

Since p(4) l -

\ 4 ~. 
, 
E(A3) 

4--
1\ S ' 

~ 

the experimental.value in 

it f~l1ows. Fhat ~(~>r'= 8 ';h!Ch agtees with . 

Table 8.'!{ • 

:1' 

,\ 

• 1 .. 
..... ~ ... " .......... _, 14."' .... ~.-

- --- -- - ~- > _~~--'.o,,"---~_ 
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'/ 

8.4 Conclusion ~ 

An algorithm CH~a~ described for obtaining the convex hull of a set 

of points in the plane. • The algorithm has a worst-case complexity o,f , 
" O(n log n). We 

If 
proved that the asymptoti~ eJQlected run-time of CH ls 

linearly proportional to the size of the input when the ,data points are 

uniformly distribute4 in the unit square. It 1s pos~ble to show tha t the 

" algorithm has this same" asymptotic lexpected run-time bebavior in Gaussian 
, 

environments. 

• We a180 pre8ented a second algorithm CH2 that does not require sort-

ing and is based on the i,dea 0{ conanually throwing away points. A' few .. . / 

s~ggestions were made on how to generalize CH2 to solve the convex hull 

problem in d dimensions. 

~inally, some expectations related to the convex hu)l of points 
• uniformly distributed in the plane were stochastically estimated. 
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CONCLUSIONS 

In the following we make sorne general. conclusions 

of this thesis. 

contents 

1) In Chapter 2~~it was empirically shawn for irst tirne how 

small the set of feasible solutions rv the Euclidean Traveling Salesman 

Problem could be when one uses sorne sirnpl~\ ger;-metrical properties to 

----ru le out. '1)ad' tours. 

2) 
/ 

Experiments with two new too~s f'r obtaining approximate 
~ 

'solutions to the TSP were described in Chapt ers 3 a~d 4: triangulations 

of points in the plane and a reward-punishment method. It is hoped that 

these techniques will still be refined ta Yïld better answers to the 
~ /, 

problem ,and that they will find application ',in other combinatorial 

optimizàtiqn problems. 
,1 t 

'. 

3) Powerful heuristics rècenÙy proposed for the syrnmetric TSP-

were combined in Chapter 5 to yield a very efficient approximation • 

algorithm. 'Theealgorithm i~ easy to program and yields a high quality 

near optimal solution in a shor~.a,ount of timè. An additiona} advant

age of the algorithm Is that it lends itself to be extended for the 

asyrnmetric case. 
l~ 

4) In Chapter 6, we concluded fr~m our experience with an 
'" 

algorithm ftr the TSP that uses local nefghborhood search that starting 

with biased tours is preferable ta etarting with random ones when 

-computation time 18 of primary importance. 

'\ 
5) ~Our study, of maximal 

1 ... 
\ 

triangulations in Chapter ? led 'to the . 
derivation of a new lower bound on the rn~ximurn number of crossing-free 

Hamilton cycles in a rect~lineâr ~awing of a complete graph. , 

6) As stated earlier, aIl published convex~hul1 algor.ithms have 
t. " • ,ft , 

an expected running time bounded b~low by O(n log n). This is probaoly 

because m.ost algorithms c,opsider aIl points as possible ,candidates for 
~ " 

, 

/ 

( ,. 

, ,l 
1 

J 
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corner points. We observe, however, that when humans are asked to find 

the convex hull of a set of points they dis regard from consideration, 

presumably using pattern recognition ability, th6se p~ints falling in the 

'center' of the set. Thus one might expect an 'intelligent' algorithm to 

do the same. In chapter 8 the, heu-ris tic used for discarding points in_ 

Steps land '2 of algorithm CH aIifroxima tes this pa t tern recogni tion 
, - \ 

ability of the huma~~lts j'in an expected running time of 0 (n) 
t' ...... 

.. 
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