
ADAPTIVE VIRTUAL ENVIRONMENTS IN MODERN MULTI-PLAYER
COMPUTER CAMES

by

Marc Lanctot

School of Computer Science

McGill University, Montreal

February 2005

A THESIS SUBMITTED TO Mc GILL UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS OF THE DEGREE OF

MASTER OF SCIENCE

Copyright © 2005 by Marc Lanctot

1+1 Library and
Archives Canada

Bibliothèque et
Archives Canada

Published Heritage
Branch

Direction du
Patrimoine de l'édition

395 Wellington Street
Ottawa ON K1A ON4
Canada

395, rue Wellington
Ottawa ON K1A ON4
Canada

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell th es es
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

ln compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

• ••
Canada

AVIS:

Your file Votre référence
ISBN: 0-494-12480-6
Our file Notre référence
ISBN: 0-494-12480-6

L'auteur a accordé une licence non exclusive
permettant à la Bibliothèque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l'Internet, prêter,
distribuer et vendre des thèses partout dans
le monde, à des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protège cette thèse.
Ni la thèse ni des extraits substantiels de
celle-ci ne doivent être imprimés ou autrement
reproduits sans son autorisation.

Conformément à la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thèse.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Most modern computer games provide a virtual environment as a context for player inter­

action. Recently, many multi-player online games have adopted the persistent-state gaming

model, which provides a central virtual environment with essentially infinite lifetime. How­

ever, a displeasing part of these long-lasting environments is that, like their predecessors, they

are still assumed to be static, unchanging even in the long-term. In response to this fact, we

introduce the adaptive virtual environment which automatically adapts based on activity occur­

ring within the environment. In computer games, adaptive virtual environments are systems

that correspond to real-world physical or social systems. These systems are computationally

formalized by adhering to a generic adaptation model containing abstract components and pro­

cedures. Herein, as a proof of concept, we design and analyze the behavior of two adaptive

versions of such systems commonly found in persistent-state games. To achieve this, we build

an implementation of an abstract interactive simulator that applies the adaptation pro cess to

our example systems. Each system is internally represented as a plug-in module containing

system-specifie implementations of the model's abstractly-defined procedures. Performance of

the adaptation pro cess is then evaluated using simulation data. Finally, improvements such

as optimizations and better movement models for agent simulation are investigated, and the

general usefulness and applicability of the concepts is discussed.

Résumé

La plupart des jeux informatiques modernes offrent aux joueurs un environnement virtuel

qui leur permet d'interagir entre eux. Récemment, plusieurs jeux multi-joueurs en-ligne ont

adopté un modèle de jeu avec état persistant qui fournit un environnement virtuel central et

dont le temps de vie est quasi-infini. Ces nouveaux environnements ont tout de même hérité du

même problème que leurs prédécesseurs: on les considère comme étant statiques c'est-à-dire

qu'ils ne changent pas avec le temps, même à long terme. Considérant ce fait, nous présentons

l'environnement virtuel adaptable qui s'ajuste automatiquement en fonction des événements qui

se déroulant dans l'environnement. Pour les jeux vidéo, les environnements virtuels adaptables

sont des reproductions de notre monde physique ou social. Ces systèmes sont formalizés en res­

pectant un modèle d'adaptation générique qui contient des des procédures et modules abstraits.

Afin de démontrer cette formalisation, nous avons élaboré et analysé le comportement de deux

versions adaptables de systèmes couramment retrouvés dans des jeux à état persistant. Pour y

parvenir, nous avons construit un simulateur interactif abstrait qui qui met en application le

processus d'adaptation dans chacun de nos deux systèmes témoins. Chaque système analysé par

notre simulateur est réprésenté par un module d'ajout (plug-in) qui contient le comportement

des méthodes abstraites spécifiques à ce système. La performance du processus d'adaptation

est alors évaluée avec des données de simulation. Finalement, des améliorations, telles que des

optimisations et des modèles de mouvement perfectionnés pour la simulation d'agents sont

étudiées. L'utilité de ce concept et ses débouchés sont également discutées.

ii

Acknowledgments

1 would especially like to thank my thesis supervisor, Clark Verbrugge, for his patience,

support, encouragement and guidance. When 1 had lost hope while experimenting, his belief

in my research and persistence motivated me to continue. For everything he has given, he has

earned my utmost respect.

As weIl, l'd like to thank the professors in charge of the Sable research lab (Clark Verbrugge

and Laurie Hendren) for providing me with a research assistantship that not only paid for in

part the costs associated with this research, but also allowed me to develop basic system ad­

ministration skills. In addition, the Sable lab provided a great study environment and powerful

machines for performance and concurrency analysis.

1 would also like to thank the McGill School of Computer Science, in particular Alex Batko

who was very responsive and helpful in the organizing of the Conquero game-playing experi­

ment, the administration who have always been more than helpful, and aIl the faculty members

who put their painstaking effort into teaching for the sake of the advancement of academia; they

are true role models, and as such have aIl helped contribute in a small way. Thanks to everyone

who helped out with the translation of the abstract: Alexandre Denault, Marc Boscher, Eric­

Oliver Lamey, Olivier Abbe, Patrick Desnoyers, and Marc Gendron-Bellemare. Special thanks

goes to Alexandre Denault for inspiring Conquero providing the Minueto game framework along

with support for it. Of course, thanks goes to aIl the participants that made the experiment

possible. This includes but is not restricted to: Francis Perron, Julia Grav, Alexandre Denault,

Sokhom Pheng, Marc "mini-marc" Gendron-Bellemare, Kacper Wysocki, Olivier Hébert, De­

nis Lebel, Félix Martineau, Francois Poirier, Julien Vanier, Duc-Duy Nguyen, Jean-Sebastien

Légaré, Raphael Bouskila, David Moise Nataf, Ali "Rushie" Rushdan Tariq, Ivaylo Tzvetkov,

Mathieu Guay-Paquet, Zhentao Li, and Craig Hooker.

Finally l'd like to thank Nancy Forget, my parents and family, and the rest of my friends

who have by now been hearing the sentence "1 can't, 1 have to work on my thesis" for too long.

Their tolerance has been well-appreciated.

Thank you, everyone, for your help and understanding.

iii

Contents

Abstract

Résumé

Acknowledgments

Contents

List of Figures

List of Tables

1 Introduction and Contributions

1.1 Contributions

1.2 Road map .

2 Related Work

2.1 Adaptation

2.2 Cellular Automata

2.3 Fuzzy Logic and Fuzzy Set Theory

2.4 Reputation Systems. . . .

2.5 Multi-player Game Design

2.6 Terrain Generation

3 A General Model for Adaptive Environments

3.1 Background

3.1.1 Cellular Automata

3.1.2 Fuzzy Control ...

3.2 Basics of the Adaptation Model

3.2.1 Generic Adaptation Procedures

IV

i

Il

iii

iv

vi

viii

1

3

3

4

4

5

5

6

7

8

9

9

9

11

15

20

4 Applications of the Model

4.1 Environment-based Applications.

4.1.1 An Adaptive Weather System

4.2 Agent-based Applications

4.2.1 An Adaptive Reputation System

5 Movement Models for Mobile Agents

5.1 Conquero

5.2 Game-playing Experiment .

5.3 Building a Movement Model

5.3.1 Classification and Statistical Learning

5.3.2 Learning How to Move in a Dynamic Environment

5.4 Other Movement Models

5.5 Applying the Models to Agent-based Adaptation

6 An Implementation of the Adaptation Framework

6.1 Adaptation in Modern Persistent-state Games

6.2 Design and Implementation of the Adaptation Engine .

6.3 Performance Measurements

6.4 Optimizations

6.4.1 Caching . . .

6.4.2 Concurrency.

6.4.3 Buffering..

6.4.4 Aggregation

7 Conclusions and Future Work

7.1 Future Work.

Appendices

A Learned Decision Tree

Bibliography

v

26

27

28

40

41

50

51

53

54

57

62

65

65

69

69

71

79

85

85

86

89

90

92

94

97

113

List of Figures

3.1 Evolution (Ct vs. t) for a simple CA example. 10

3.2 The effects of one iteration in Game of Life. Il

3.3 The graph of the membership function, /-lTALL(X), vs x for the fuzzy set "x is TALL". 12

3.4 (a) The region produced by center-of-gravity defuzzification in a fuzzy controller with

an action set containing 3 overlapping fuzzy actions, and (b) The center of gravit y,

and the chosen (redjmiddle) action. 15

3.5 The virtual terrain. 16

3.6 The effects of one iteration of blurring on a let ter image, A letter is displayed doseup

(a) before and (b) after the blurring of the image. 18

3.7 The effects of one iteration of blurring on a dragon image. A dragon is displayed (a)

before and (b) after the blurring of the image. 19

3.8 The causal block diagram representing the general adaptation process. 20

3.9 A region affected by modifications after 1 application of blurring using (a) sequential

iterative (row by row, left to right) updates and (b) simultaneous update rules. The

numbers are values of scalar properties values such as intensity or altitude. 21

3.10 Affect of an update on one grid section (assuming'Y = 1), showing a) before the change

b) before the update on the middle grid section c) after the change and update . 22

4.1 Example gradient vector representation. Grid cells show local terrain altitudes. 29

4.2 Example of degenerate cases where (a) Vgrad = 0 and (b) Vwind_avg = O. 30

4.3 An example of obtaining Vtarget given Vgrad, Vwind_avg, and ct = 0.8 31

4.4 An example weather system configuration after several hundred iterations showing

wind and altitude values. Bright (red) areas are high (landjmountains), dark (black)

areas are low (seas), and the arrows show the direction of wind movement. 32

4.5 An example weather system configuration after (a) 100 iterations and (b) 300 iterations

showing moisture values and wind vectors. Bright (green) areas signify high moisture

regions whereas darker (black) region correspond to dry regions. 33

4.6 An example tornado. 35

VI

4.7

4.8

4.9

An example hexagonal grid in the weather system.

b.mask as a function of the timestep in a simulation run on the Pakistan terrain map.

Maximum timestep until convergence as a function of Ct after many simulation runs

on the Pakistan terrain map.

36

39

40

4.10 The aura of reputation flow vector influence created by one agent 43

4.11 The grid of (white) triangular agents, positive (blue) reputation points, arrows (grey)

communication terrain, and circular (orange) interest points. The snapshot in (b) is

was taken only a few iterations after (a) to show the spread of the reputation points

caused by a moving agent.

4.12 The grid of reputation values. Bright values mean good reputation, darker values mean

bad reputation.

47

48

5.1 Screenshot of Conquero 52

5.2 Screenshot of the Graph used in the Conquero Experiment 56

5.3 Decision tree for heuristic selection in M Mchooser learned by C4.5 61

5.4 Screenshots of the reputation field at iteration 1000 using (a) M Mrandom (b) M MSimple

(c) MMchooser (d) MMexperiment and (e) MMlearned

6.1 The generallayout of the adaptation architecture . .

6.2 The module dependency diagram of the implementation

6.3 An example conversion of a path model

6.4 Java code for thread synchronization in the concurrent weather simulation

vii

68

70

72

75

87

5.1

5.2

5.3

List of Tables

CoUected information for (a) trial game and (b) real game

Info about the Graph and Command Centers in the Conquero experiment

Statistics of coUected data .

5.4 Dissimilarity of reputation fields in simulations at iteration (a) 1000 (b) 2000 (c) 3000

and (d) 5000. Smaller values mean more similar while larger values mean more dis-

similar.

54

55

59

67

6.1 Descriptions of the machines used to measure performance. 79

6.2 Data obtained by running performance tests on the graphical interface 80

6.3 Results of the performance measurements on the weather simulations. AUlisted times

are in milliseconds (10-3 seconds), and maps used are pak_alt# 82

6.4 Results of the performance measurements on the reputation simulations. AU listed

times are in milliseconds (10-3 seconds), and repfiles used are testJep3-# . 83

6.5 Results of the performance measurements on the different movement models in the

reputation simulations. AU listed times are in milliseconds (10-3 seconds), and the

repfile used was testJep3. .. 84

6.6 Results of the concurrent weather simulation tests. AUlisted times are in milliseconds

(10-3 seconds), and the altitude maps used were pak_alt#. 88

viii

Chapter 1

Introduction and Contributions

Not very long ago, developing a computer game was largely considered a 1-person project.

Many components were involved of course such as different types of programming (graphies,

physics, game logic, sound, user interface) as weIl as designing a believable and somewhat

interesting storyline, designing challenging levels, drawing impressive image scenes, creating

captivating sound files, and so on. However, it was still the case that these components were

small and simple enough so that it was feasible for the same person to be responsible for aIl of

them and their integration into the final game product.

Modern computer games are large, complex software projects that require many more than

one single person to produce. In fact, it is not uncommon to have 100 people working on a

modern computer game during the beta-testing phase [Com03]. Computer games have become

so vast that now they include a large amount of complex components. Due to the commercial

aspect of the industry such as demand from consumers, game development companies do not

have the time nor resources to spend analyzing these projects academically or to experiment

with potential features.

Many modern computer games support online gameplay: that is, networked multi-player

gameplay over the Internet. Usually a service is offered by the same companies that sell the

game which allows players to meet other players to play an instance of the online game over

the Internet. With a suit able design infrastructure such games can become quite large in terms

of numbers of players. Large scale networked games are referred to as Massively Multi-player

Online Games (MMOGs).

A specifie type of MMOG, infiuenced in part by role-playing games, is one that doesn't

recreate a new game instance every time players join the game; that is, only one instance exists

and the game setting is never-ending. New players are admitted to the game at its current

state and produce the history of the virtual "world" by playing. The game world state exists

1

regardless of whether players are playing inside it. These persistent-state computer games have

become popular, have been commercially-explored in the online gaming industry, and now form

an important subfield of modern online gaming [Com04]. In this thesis, we propose and analyze

a potential new feature specifically intended for persistent-state computer games.

Traditional and modern Artificial Intelligence (AI) researchers who focus on agent-based

techniques separate a virlual environment into 2 major components: the static environment, and

the dynamic agents [RN02]. Since new environment instances are continually being constructed

with each new game instance, the lifetimes of the environments are relatively short. Therefore,

it is fair to assume that the environment is approximately unchanging, since real-world physical

environments are not static but change only slowly and over the long-term. Typically the role

of the environment is a constant entity that restricts the dynamics of the agents' behavior.

This approximation becomes noticeable in a persistent-state online game where the life of the

environment is effectively infinite. Our motivation then is to describe a generic system for

environmental adaptation within these contexts.

A basic problem encountered by vendors of large scale, persistent-state gaming environments

is how to continuously improve and change the virtual environment so as to maintain player

interest, and also reflect the activities of players in the virtual world. In a more generic sense this

falls under content creation [Me103], altering or adding new virtual content to the game. Manual

approaches are typically used due to the creative requirements of general content creation and

the complexity of determining realistic adaptation results, but impose extra game maintenance

costs and administration requirements. Automatic approaches that sensibly alter and tune the

game world with minimal human intervention are thus desirable.

We present a generic model for adaptation in computer games that allows the virtual world

to change automatically, with reasonable efficiency. We demonstrate the utility of our technique

through two different forms of dynamic common game content: 1) an environrnent-based basic

weather cycle that adapts wind, rain and water accumulation to variations and changes in a

large-scale terrain, and 2) a simple agent-based reputation system that allows agents in the

virtual world to respond appropriately to a player's actual behavior in agame.

Furthermore, we design and conduct a game-playing experiment to collect data from actual

players for analysis. The purpose of the experiment is to improve the movement model used

in the agent simulation for agent-based adaptation. We propose heuristics for agents' decisions

which are functions of the game state at given times in the game experiment. The heuristic

calculations are then used as input to sorne classifiers that learn which heuristics are good for

determining the actions to take under the specific conditions.

Finally, the implementation of the simulator used to represent the adaptation of the systems

2

1.1. Contributions

designed using the framework is explained in detail. An architecture for integration of the

adaptation simulator into modern game projects is proposed. Performance analyses are do ne

on the simulations and specific optimizations are measured.

1.1 Contributions

Specific contributions of this work include:

• Design of a general adaptation framework suit able for modeling fiow-based properties

in game simulations. Our approach is based on cellular automata, ensuring only local

information is required at each computation; this allows for reasonable scalability in

distributed environments.

• Design and experimental verification of systems for two forms of popular, dynamic game

content. We describe a simple, aesthetically and logicaIly consistent adaptive weather

model for game worlds, and agame reputation system that can dynamicaIly respond to

changing patterns of information dispersal and player behavior.

• Implementation of a simple multi-player computer game and organization of a game­

playing experiment to obtain real data from game players. Using collected data, we

analyze the value of certain proposed heuristic strategies for de ci ding how to move based

on the state of the game. Several movement models for agents in game simulation are

analyzed; among them a dynamic model based on decision-tree learning is proposed.

• Design and analysis of an implementation of the entire framework in Java. The pur­

pose of the implementation is threefold: to see how weIl the concept fits into an object­

oriented programming model, to analyze the behavior of the ex ample adaptation systems

described, and to assess performance feasibility and optimizations.

1.2 Raad map

In the following chapter we describe other research work that is related to our endeavors. We

then explain the fundamental notions and basic, underlying concepts used in our approach

in Chapter 3. Following this, Chapter 4 describes in detail example applications built upon

the basic model. Chapter 5 contains a study on improving player movement in persistent­

state MMOGs. Lastly, Chapter 6 fits the adaptation scheme into MMOGs and describes an

implementation of a simulator used to simulate example adaptive systems.

3

Chapter 2

Related Work

In this chapter, we give a brief survey of the related previously-studied areas that have

aIl in sorne way influenced this work. We first present the study of computational adaptation

because it is by far the most relevant. Then, we will look at the work that has been do ne on

the two core computational concepts used in the work: Cellular Automata, and Fuzzy Logic.

We also discuss previous research done in and influence of systems for which we chose to apply

adaptation: weather modeling (including terrain generation), and reputation schemes. We

mention the difficulties involved in massive Multi-player Game Design, the constraints of the

context, and how it relates to the adaptation tasks.

2.1 Adaptation

Adaptation is a traditional part of Artificial Intelligence (AI) research. It is related to the the

problem of Machine Learning (ML), which is concerned with the question of how to construct

computer programs that automatically improve with experience. The most common type of

learning is supervised learning in which there is a collection (sample) of input data and output

data for each input; the goal is to find a function (classifier) that represents the data weIl enough

so that it can predict the output for future input sets [Mit97]. Adaptation is a process which

automatically modifies values of parameters in a system so that the behavior of the system

changes over time in correspondence with certain circumstances. In this particular context,

we will assume that adaptation differs from learning in that the circumstances in a system

potentially never stop changing. As such, adaptation describes changes that are on-line and

which are usually long-term; ie. evolutionary changes.

In the context of computer games, adaptation has been investigated [SSKP03], though

like most other applications of AI it has been primarily directed at adapting agents (NP Cs,

4

2.2. Cellular Automata

game opponents) [CM98] rather than the environment. For example, [DdOC03] presents a

scheme for online adaptation of agent behavior in action games. Similarly, [Pon04] describes

genetic learning algorithms that improve game AI in real-time strategy games. Most generic

AI architectures focus on agent behaviors, such as in [NC01]. Even non-constant, fluctuating

environments are usually viewed as the pro cess to react to, rather than the target of adaptation

[HW95]. Our motivations more closely resemble building an artificial model as in done in

ALife [Ste94] and co-evolving that model based on user input as in [DdOC03]; we, however,

focus on constructing an adaptive environment irrespect ive of adaptivity of the agents.

2.2 Cellular Automata

The approach here is based on 2-dimensional Cellular Automata (CA). The theoretical basis

for the cellular automaton formalism was inspired by John von Neumann's studies in self­

reproducing automata [vNB66]. The aim then was not to create a new computational formalism

in itself, but instead to investigate the algorithmic analogue to the natural concept of evolution.

Only a few years after von Neumann's original work had been published, Martin Gardner

studied Jon Conway's Game of Life [Gar70]. He found that using the CA formalism very

complex patterns could be generated from an iterative update process with relatively simple

update rules. In fact, under certain conditions chaotic behavior is observed, which leads to

visually-pleasing fractal patterns [WP85]. The evolution of CAs was interesting enough that it

formed the core of a well-known classic computer game: SimCity [Sta96].

The Cellular Automaton has become a rather popular computational formalism in many

fields of Computer Science. It seems to have become a classic formalism in the field of Model­

ing and Simulation, particularly in association with discrete event systems. A comprehensive

general relationship between CA and DEVS is outlined in [VVOO] while timed Cell-DEVS and

remote execution are examined in [WG01] and [WC03], respectively. CAs have been used for

weather and ecological modeling, and are amenable to simple parallelization.

2.3 Fuzzy Logic and Fuzzy Set Theory

Fuzzy logic was first presented in 1965 as a mathematical means for dealing with complex ill­

defined systems [Zad65]. It has become popular as a control device in the domain of electronic

systems, influenced in part by [Mam74]. Fuzzy Logic is also used a lot in conjunction with

models and algorithms traditionally found in AI such as neural networks (neuro-fuzzy systems),

5

2.4. Reputation Systems

adaptation (Robo-Cup Soccer [AW04]), and machine learning. A comprehensive introduction

to how fuzzy control systems work is given in [HD03].

An interesting and particularly relevant formalism is the Fuzzy Cellular Automaton (FCA)

[Ada94]. In this book, the problem of identification (or classification) of cellular automata

is addressed. A gradient descent learning algorithm is designed for FCAs in [RGTOO], where

it is shown that real-valued functions can be well approximated by using a clever encoding

representation for function values.

It is currently unknown whether Fuzzy Logic is used in any existing modern computer

games, but a proposed usage is found in [McCOO]. This article motivated the construction of

the fuzzy system used in the adaptation framework presented in Chapter 3.

2.4 Reputation Systems

Automated reputation systems (or trust systems) have become quite popular in recent years as

an efficient method to measure trust between users.

Around the same time trust was first formalized as a computational concept [Mar94], the

first widely used reputation system was introduced by the Ebay auction site (www.ebay.com).

Ebay introduced a point-based system which allowed users to rate each other manually. The

winner of an auction(buyers) on Ebay are allowed to rate the starter of the auction(sellers) once

the merchandise is received. Buyers are allowed to submit positive points, negative points, and

comments about the seller. These points form the seller's reputation. The seller is not allowed

to modify his/her own reputation: it is strictly formed by the buyers in the auctions held.

Other buyers are allowed to view the sellers' reputation before they place a bid. Therefore, the

relative amount of positive feedback (reputation level) you have directly corresponds to how

satisfied others have been with your auctions. In turn, this encourages sellers to ensure prompt

delivery and accurate description of the state of the merchandise.

The Ebay system was studied by the community and was soon labeled a binary reputation

system [DelOl]. It was around the same time that people started presenting mathematical

frameworks for computing trust in online trading communities [De103] [YSOO]. The problem

with such a system is that it is not automatic: it requires each user to faithfully (and honestly)

provide feedback.

Recently, a large amount of research work has been put into automated trust-measuring

algorithms in distributed, especially peer-to-peer, trading environments [DGGZ03]. The Eigen­

Rep system computes the a global trust value for a peer based on local trust values computed

by all peers [KSGM03]. Appleseed [ZL04] uses the Semantic "Web of Trust" infrastructure for

6

2.5. Multi-player Game Design

trust propagation. This kind of trust propagation has also been seen in the context of open

rating systems [Guh04] which were used on web sites Slashdot. org and epinions. corn. These

rating systems described methods for ranking users' posts based on the feedback given to the

system by other users who read the posts. Although again, the systems require considerable

amount of user input to work.

In modern computer games, very little research has been done on automated reputation

systems. While [Jak03] outlines the importance of a character's reputation in the game Ev­

erQuest, it is unfortunately completely user-based and subject to interpretation. EverQuest

was the first MMORPG to introduce jactions. Factions are basically reputation groups: collec­

tions of players that have different relationships with each other. A player or group can raise

or lower his/her faction value with that reputation group by performing certain actions. The

faction value (positive or negative) represents how the members of that faction react to the

character.

There have been sorne commercial attempts at incorporating locality in faction-based repu­

tation systems, but results have been disappointing [Bro03]. Our approach was inspired by the

Dungeons €3 Dragons reputation system [CDNR04], which assumes a global reputation value

per character. We'll see later that this can be easily extended to groups of characters. This

system states that as a player progresses his or her reputation will rise by performing "heroic

deeds." Symmetrically, of course there should also be the inverse property, to degrade reputa­

tion by performing negative actions. We extend this base system by capturing locality via the

fiow of information dispersal throughout the virtual environment.

2.5 Multi-player Game Design

Before the growth of world-wide networking, computer games did not support multiple players

unless the players were both physically using the same computer. As the Internet emerged

for wide public use, games began supporting multi-player options. At first games were only

playable one-on-one by modem, or multi-player over a local area network (LAN). In these times

and settings the games were still relatively simple; network bandwidths and latency as weIl as

efficient and consistent data transfers were minimal concerns.

Today, for large-scale Massively Multi-player (MMP) games the teams grow to 100 people

or more and could cost anywhere from under 5 million to 30 million dollars to develop [Com03].

For groups of such large sizes, clever software engineering techniques such as good project

coordination are required to ensure efficient work fiow [Ruc02].

Multi-player games are faced with the problem of sending data over networks. This simple

7

2.6. Terrain Generation

fact adds a burden to the game designers in several different ways [SKH02]. First and foremost,

the game designers are faced with constructing a consistent protocol which must be implemented

as a communication mechanism between the hosts. This is usually a simple task in itself.

However, since sending data by network is comparatively slow and much more prone to error

it is fairly important that the proto col and network architecture remain simple and efficient

[RRER03]. Another notable problem with multi-player game design that has been arising lately

particularly in online games is cheating and security [YC02]. This is particularly bothersome

in larger sc ale games where the problem is a lot harder to control [BLOl].

Massively multi-player games add more issues to these problems. The main issue in mas­

sively multi-player games is scalability. In fact, this is such a problem in large-scale games

that game designers have had to look into entirely new network topologies [Fun96] and archi­

tectures [CFKJ02] to deal with such large numbers of players. Of particular interest is the

divergence from the typical client/server model to new distributed models [Qua03]. In fact,

the use of Multicast UDP in [DG99] influenced the network design of the multi-player game­

playing experiment described in Chapter 5. We will talk more about choices for network design

in computer games in Chapter 6.

2.6 Terrain Generation

Terrain generation is an interesting problem faced by virtual world creators. The problem is

how to automatically generate terrain for a virtual world that satisfies a set of criteria. Typical

criteria for computer games are realistic, smooth, and randomized.

A fundamental structure in terrain modeling is the height field [EMP+98] , here after denoted

the altitude map. A common way to pro duce random altitude maps is via general stochastic

subdivision [Lew87]. A more intriguing way of generating realistic terrain which is related to

the adaptation concept is to take existing real elevation data and apply water flow erosion to

sculpt the surface details [KMN88].

According to [O'NOl], the Perlin Noise algorithm is a procedural method which acts as

a base algorithm for techniques used in computer games. Fractal landscapes [HM95] have

also become popular due to their straight forward recursive implementation. We will soon see

that the method for scaling bitmaps in [Mar99] is quite similar to the techniques used in our

adaptation model.

8

Chapter 3

A General Madel for Adaptive Environments

The Adaptive Virtual Environment (AVE) concept splits itself naturally into two major

components: generic adaptation concepts and system-specifie adaptation concepts. A specific

system is a particular AVE that is well-defined and exhibits behavior particular to a given phys­

ical or social system; it can be thought of as an instance of more generically-defined adaptation

model. The particular A VEs both adhere to the generic model and define the semantics of the

data representation present within the model.

In this chapter, we describe in detail the generic model that example systems implement.

For clarity, we will refer to example AVE systems as applications of the model. Sorne specific

applications of the model will be examined in greater detail in Chapter 4.

The chapter is divided into two sections: the first section presents the computational notions

that are required to present the core formalisms used in the model. The second section presents

the core procedural and data abstractions which are used to manipulate the AVE undergoing

the adaptation process.

3.1 Background

In this section we present an overview of the fundamental background knowledge needed to

construct the adaptation framework. The ideas described herein are by no means exhaustive;

they are merely presented as reminders of the basic notions and to present conventions for

notation. Where applicable, references will be given to more comprehensive sources.

3.1.1 Cellular Automata

One of the attractive features of CAs is their unique and inherent ability to capture the influence

of local properties. This main fact is what inspired the use of CAs as a central notion in the

9

3.1. Background

Source: [WoI83]

Figure 3.1: Evolution (Ct vs. t) for a simple CA example.

adaptation framework.

Classical One-Dimensional CA

A classical one-dimensional cellular automaton is a 4-tuple (C, Q, T,l), where C = ("" C3, C-2,

C-I, Co, Cl, C2, ...) is a bi-infinite lattice of discrete cells, Q is a set of cell states, T : C -+ cn is a

neighborhood function, and f : cn -+ Q is a transition function [WoI83]. The index or position

of a cell is an integer representing the cell's position in the integer range. Co E Chas position °
and is labeled the midpoint cell. Paired with the formalism itself is usually a discretized notion

of time via time steps (to, tl, ...) where to is the initial time step.

The configuration of a cellular automaton Ck, is the lattice of ce Ils in their corresponding

cell states at time tk where Co is the initial configuration. In general, the configuration of the

cellular automaton C at time t is denoted Ct. Ct is obtained by the simultaneous application

of the transition function on the cells' neighborhood in Ct- l . That is, if qt(c) is the value of

cell C at time t, then VCk E Ct, c~ E Ct-l, qt(Ck) = f(T(C~)). The evolution of the CA is a term

meaning how the states change over time. Unless otherwise noted, it is commonly assumed that

the default state set is Q = {O, 1} and the initial configuration is Co = 0 = {- .. , 0, 0, 0, ... }.

Here is a simple example of taken from [WoI83]. The initial configuration is a simple seed:

Co = {co = 1, Cn = ° for (n =1- O)}. The neighborhood is only the direct neighbors of each cell:

T(Cn) = {Cn-l, Cn+1}' The transition function is f(T(Cn)) = q(Cn-l) + q(cn+d (mod 2).

Such a simple function leads to an interesting evolution. If we look at the Ct vs. t graph,

assuming that time increases down the axis and we represent graphically a black dot for ls and

a white dot for Os, we get the picture se en in Figure 3.1.

An extensive examination of general cellular automata can be found in [WoI86].

10

3.1. Background

Source: http://www . bi tstorm. org/ gameoflife/

Figure 3.2: The effects of one iteration in Game of Life.

Two-Dimensional CA

Two-dimensional cellular automata are more complex structures than their one-dimensional

predecessors. First, the bi-infinite lattice is extended to a two-dimensional rectangular grid of

cells. As in the first case, we assume sorne form of connectedness between cells and that each

cell is discrete. For the sake of simplicity, assume that this grid is bounded (equivalently: there

exist no straight paths of infinite length) with finite dimension. We'll see in Section 4.1.1 that

there exists more than just a single way of defining connected, unbounded grids.

Secondly, the neighborhood function becomes two-dimensional in the sense that a cell can

have neighbors in more than just 2 directions (left, right AND up, down). We will also see later

that even the notion of a neighborhood can be awkward to define using the rectangular grid.

Finally, the states are often more generally simple scalar values instead of bits (0 or 1).

The first popular use of two-dimensional CAs were described in the Jon Conway's Game of

Life [Gar70]. An example transition in the game is found in Figure 3.2.

A list of analyses, results, and facts about two-dimensional CAs can be found in [WP85].

3.1.2 Fuzzy Control

Fuzzy control is a method which uses fuzzy set theory and fuzzy logic to regulate the behavior

of systems. The fuzzy control mechanism consists of three general concepts: fuzzification, fuzzy

rule evaluation, and defuzzification. We will describe how these concepts work together after

we describe sorne of the basics.

11

3.1. Background

1

01---------------------~----_+----------------~ x
o 65 84

Figure 3.3: The graph of the membership function, f-LTALL(X), vs x for the fuzzy set "x is TALL".

Fuzzy Sets

A fuzzy set is a generalized extension of a classic crisp set. A fuzzy set intentionally quantifies

vague linguistic terms such as "HOT" and "TALL". A fuzzy set is defined entirely by its

characteristic function, f-L(x) : D -t [0,1], where D is some arbitrary domain outlined by the

task at hand. We follow with an example.

In the classic set theory, the membership operator(E) is a Boolean function that takes as

arguments an element and a set and whose value represents whether the element is contained

in the set. That is, crisp sets are sets where the membership is a discrete binary property. For

example, 3 E S = {1, 2, 3, 4} is clearly true whereas 5 E S is clearly false. However, the truth

value of the linguistic interpretation of "x is TALL" depends on how "TALL" is defined which

in turn depends on who is interpreting the claim. That is, the expression "x is TALL" is vague

unless we quantify "TALL". One way to do that is describe "TALL" as the fuzzy set:

{
° if x < 65;

J-lTALL(X) = x1;5 if 65 ~ x < 84;

1 if x 2: 84.

This is a set with full and partial(fractional) membership. The membership function is

graphically illustrated in Figure 3.3.

Fuzzy logic

Fuzzy Logic is based upon fuzzy set theory. In fuzzy logic, a logical term has a fuzzy truth value

which is a value in the interval [0, 1]. A value of 1 represents "absolutely true" while a value of

° represents "absolutely false". Values in between are interpreted with confidence proportional

12

3.1. Background

to how far the value is from the absolute values: 0.2 could mean "hardly true" ("very false"),

where 0.85 could mean "very true" ("hardly false").

The value of a membership function J-ls(x) represents the truth value of "x is in S". In other

words, it represents x's degree of membership in S. From the previous example, a person whose

height is 71 inches would have a 1
6
9 = 0.316 degree of tallness, whereas a person whose height

is 78 inches would have a degree of 0.684 degree of tallness.

Conjunction and disjunction of fuzzy logical terms have been defined in sever al ways. The

most common definition is that the truth value of "x is X and y is Y" is min(J-lx(x), J-ly(y),

with a similar function for disjunction using max. The value of an inverse of a logical term, ie.

"x is not in X", is given by 1 - J-lx(x).

We now have the components we need to construct a fuzzy rule base. A rule base is an

intuitive way to describe the behavior of a system. A rule base consists of a collection of

rules. Rules have liguistic terms of the form "if A then B". The antecedent, A, is a general

logical term while the consequent, B, is a simple logical term which is usually in the form of

an imperative action (ie. a co mm and) such as "eat a muffin".

A 3-step Guide for Fuzzy Control

We assume that we have a control system where we are given several options that change

the state of the system in different ways, we would like to control the system by making

decisions such that the state of the system approaches sorne appropriate target state or long­

term behavior.

Before we present a common usage via the 3 main steps, we must first define the problem

at hand. Take for a simple example a task faced by many students every morning on their way

to school. Their options are to go directly to school, stop for coffee first, and/or grab breakfast

first. We assume for simplicity that the coffee shops do not sell breakfasts and the coffee sold

by the breakfast restaurant contains a substance to which the student is violently allergic. The

option taken depends on the time the student arrives at school, and how hungry and tired

he/she is.

Step 1: Fuzzification. We define the following fuzzy membership functions. In an cases,

if the value is lower than 0 it is set to 0 or if the value is higher than 1 it is set to 1.

1. J-lT 1 RED (x) = 12-;;lep
t, where x slept is the number of hours of sleep the student got the

night before.

2. J-lHUNGRY(X) = x2'4e, where Xate is the number ofhours it has been since the student's last

me al.

13

3.1. Background

3. f.1LATE(X) = ~, where Xarrival is the number of minutes the student arrives after the

class has started.

4. A = {EAT, GOFFEE, GLASS} is the set of commands, each describing an action to be

taken by the student.

We also define command sets such as { EAT, COFFEE, CLASS }. Elements of these sets

are actions; memberships are the degree to which these actions are desired.

Step 2: Query the Rule-base. We define the rule base. Here, y E A is a rule's suggested

consequential action:

1. IF ((x is HUNGRY) AND (x is not LATE)) then (y is EAT)

2. IF ((x is TIRED) AND (x is not LATE)) then (y is COFFEE)

3. IF (x is LATE) then (y is CLASS)

So if the student only had 5 hours of sleep and ate supper at 19:00 the night before, class is

at 8:00 and we arrive at school at 8:12, then f.1TIRED = 0.58, f.1HUNGRY = 0.54, and f.1LATE = 0.4.

The values of the consequences are the sum of all antecedents that yield the given consequence.

In this case, eating would score min(0.54, 0.6) = 0.54 (ie. the student is more hungry than

early), getting coffee would score min(0.58, 0.6) = 0.58, and going directly to class would score

0.4.

Step 3: Defuzzification. In the example ab ove , it is clear which option is more desirable:

you simply choose the maximum membership over each action set to determine which action

to take. In particular, the student would choose to get a coffee before going to class. However,

while this method of defuzzification is the simplest and most obvious in this case choosing is

not always so straight forward.

Here, we assumed that the actions are completely independent: the student either eats,

gets coffee, or goes to class but cannot pick more than one action. By construction, there

is no overlap in the fuzzy sets defined by the actions. In general, however, the consequence

of these rules define new fuzzy sets whose membership functions may overlap in their graph

representations. In these cases it is less clear which action to choose, so we must resort to a more

distinguishable method for defuzzifying the collection of fuzzy values into one crisp decision.

One common method used is the center-of-gravity calculation. A bounded region is con­

structed by taking the union of all regions under the membership functions for which the top

of the region is bounded by the membership value of the linguistic variables, the bottom is

bounded by the x-axis, the sides by the boundaries of the membership values of the fuzzy sets.

14

3.2. Basics of the Adaptation Model

speed speed
1

theresult final output of speed

(a) (b)

Source: http://www.doc.ic.ac.uk/ nd/surprise_96/journal/vo12/sbaa/article2.html

Figure 3.4: (a) The region produced by center-of-gravity defuzzification in a fuzzy controller with

an action set containing 3 overlapping fuzzy actions, and (b) The center of gravit y, and the chosen

(red/middle) action.

The center of gravit y of this region is found. The chosen action is the highest membership

value of aIl fuzzy membership functions at the center of gravity. An example of such a region

is displayed in Figure 3.4.

As a consequence, fuzzy controllers permit the fiexibility of making decisions even in cases

when the action to choose is ambiguous due to nature of the system. It is often harder to choose

between an ambiguous action set than it is to describe a variable by an defining an arbitrary

membership function. Thus, essentiaIly, fuzzy controllers calculate the best action to choose

given the descriptions of the variables. The model can then later be re-used; it just needs the

membership functions and rules describing how to act.

A thorough reference on fuzzy sets, fuzzy logic, and fuzzy control is [Wan96].

3.2 Basics of the Adaptation Model

Our model is based on a finite continuous 2-dimensional space, the virtual terrain, R. The

virtual terrain is partitioned into a discrete mapping or grid, G. In the examples below we

use the familiar situation of a subset of R c ~2 and a square grid G, though we believe that

the techniques we use apply equally weIl to any metric space [BBI01]. This is partially shown

by applying the same adaptation techniques used in a rectangular gr id to a hexagonal grid in

15

3.2. Basics of the Adaptation Model

g 00 gJO g20 g30 g40 ...

gal gll g21 g31

gO? g12 g22 g32

g03 g13

g04
gij

Figure 3.5: The virtual terrain.

Section 4.1.1.

We define the metric space (G, gd), and a surjective mapping 1 : G ---+ R. For convenience

and clarity, we will calI the points in our metric space grid sections or cells, and the metric space

itself the grid, without loss of generality. G is a discrete grid approximation of its continuous

counterpart R with the association that any grid section in R is representative of a continuous,

bounded region in R (via 1). For simplicity we also assume that 1 describes a complete partition

of R; that is, UgEG I(g) = Rand ngEG I(g) = 0. The easiest way to think of this grid is as an

overlay covering the continuous Cartesian plane with grid lines defined by the set of lines that

cross the axes at integer coordinates. The idea is illustrated in Figure 3.5.

An important requirement for locality that is supplied by the metric space is the notion of

a neighborhood. In "nice" metric spaces such as hexagonal grids, the neighborhood of a point

is defined as all points which are distance 1 away. However, sometimes, the neighborhood is

not so intuitively defined. Such is the case in our rectangular gr id approximation, where there

are 2 commonly used definitions of neighborhood: the 4-neighborhood and the 8-neighborhood

[DHSOO]. The 4-neighborhood of a grid section consists of the sections found directly north,

south, east, and west of the section whereas the 8-neighborhood also includes the diagonal

points on the surrounding box: sections immediately to the northeast, northwest, southeast,

southwest. In general however, any neighborhood function can be used. The notion of a cell

neighborhood allows us to describe the locality of a grid section on the grid. Local sections are

sections which are close by; where closeness is objectified further by the value of the distance

function between the two cells.

The grid contains abstractly-defined properties. Properties are similar to local variables:

16

3.2. Basics of the Adaptation Model

they are given the ability to ho Id values and change in time. Each grid section has a different

instance of the property variable so that the value of a property on a grid section is completely

independent of the value of the same property on a different grid section. To contrast, the

procedure which changes the values is defined on neighborhood cells, making them locally­

dependent. The idea is to use this generic model and then describe your properties depending

on the context of the system in which the model is used. For instance, imagine that we have a

mountainous virtual environment. We define the altitude property to be the value of the height

of the surface with respect to the lowest point in the environment. Then, the altitude property

would have a high value in high-mountain region but low value in the flat regions. Altitude is

only one example property; in general, a virtual environment is made up of sever al different

properties. We will denote the value of a given property gij [property name], where i and j are

coordinates in some two-dimensional discrete partition described by f. The collection of gr id

sections and values of all properties on all grid sections is defined as the current state. The list

of these properties and the semantics tied to them form a major component of a virtual system.

These systems can be se en as instances, applications, or implementations of the generic model.

We will discuss the construction of such systems in much greater detail in Chapter 4.

Coupled with the notion of state is a procedural pro cess which describes how the state

changes in time. Since the systems we are typically interested in modeling are self-reproducing

[vNB66], we do not describe these state changes as independent of each other and solely de­

pendent on time itself. Instead as is done in the CA formalism, we discretize time into a series

of timesteps T = (to, tl, t 2 , ...) called the timeline and describe the state of the system as a

function of the previous state. In other words, the state of the system at t i is entirely and only

dependent on the state of the system at ti-l. Here,we assume that the virtual environment

begins its life at t o and that the timeline is evenly divided among timesteps so that the actual

time spent between ti and t i+1 is constant for all i. In doing so, the timeline T simply becomes

an approximation of the continuous concept of time. The accuracy of the approximation de­

pends on the actual time taken to get from t i to t i +1' We will denote the value of a property p

on grid section gij at time t as g;j [Pl.

The pro cess is formulated as an iterative update algorithm. This algorithm is just a list of

functions that modify the state of the grid. The system begins in sorne initial state and this

algorithm just applies these functions independently and simultaneously based on the current

state of the system to give the next state of the system. Note that given this description of the

model at any given time, ti, the state of any future configuration, t j , is obtained by applying

the iterative algorithm (j - i) times. As a result, the evolution of the system without any

external influence is completely deterministic. The following pseudocode summarizes the core

17

3.2. Basics of the Adaptation Model

(a) (b)

Figure 3.6: The effects of one iteration of blurring on a letter image, A letter is displayed doseup (a)

before and (b) after the blurring of the image.

of the process:

(3.1)

where gp is the value of property p on grid section g, fp is the transition function for property

p, and T(g) describes the neighborhood of g.

A simple example of an application of local property updates is blurring or spatial low­

pass/box filtering in the field of image processing [Bax94]. Each pixel Px,y (corresponds to a

gr id section) in an image has a scalar intensity property, l(px,y), and a neighborhood of nearby

pixels T(Px,y). To create a blurred image, a new intensity for each point is defined:

1 _ l(px,y) + L:PEr(PX,y) l(p)
Px,y - IT(Px,y)1 + 1

and a simultaneous update rule is applied: '\Ix, y : Px,y b- P~,Y' A good demonstration of the

locality of the effects of the blurring algorithm can be found in Figure 3.6. The larger-scale

effects of blurring an image are shown in Figure 3.7.

We extend this model to include a me ans for tweaking the state of the system externally.

That is to say that the system can evolve in and of itself by the continuaI application of

iterative updates as in the classical CA case, but we introduce an event-based interface for

external entities to interact with the system at any given time. We do this mainly for the

purpose of allowing player agents to provide input into the evolutionary growth of the virtual

environment, but these external entities need not only be player agents. The external agents

can also be autonomous, simulated expert systems, or sim ply completely random. The major

point here is that we have a system that evolves on its own but can be perturbed by outside

influences or events.

18

3.2. Basics of the Adaptation Model

(a) (b)

Source: http://www.geocities.com/danjnm_2000/dragons.htm

Figure 3.7: The effects of one iteration of blurring on a dragon image. A dragon is displayed (a)

before and (b) after the blurring of the image.

As before, events are abstractly defined. An event is exactly what its name implies: it is

something than can occur in the system. Events have an event type. Semantics for events only

exist when the events are formally described in a meaningful context. For example, rain is one

type of event that could occur in a weather simulation system. Instances of events are called

occurrences. An occurrence is a 2-tuple (e, t) where e is the event type and t is the timestep.

The occurrence set, 0 = {al, 02, ... } precisely describes the external causality of the virtual

environment; the method for which 0 is formed is an abstract layer only functionaUy defined

by the model. This layer acts as the interaction interface between the system and the model: the

system is described by the implementor so that the rules that govern external interaction can

be domain-specifie. External entities interacting within the virtual environment have control

over the production of occurrences in the system. Transitively, they have limited control over

the evolution of the state of the virtual environment.

The adaptation pro cess aims to modify the values of the properties over time based on the

impact of events that occur in the system. This is done by defining a functional specification

for the changes that get applied in the iterative algorithm. By using this specification, the

iterative state-update pro cess is uniform over aU functions. Since the pro cess is defined until

the end of time, the adaptation pro cess will continue to change as a result of external influences

to which it is subject, leaving a completely automatic self-adapting system.

As a result of the abstractions, the model consists of an adaptation engine module which

is completely generic and the adaptation system sub-modules which are specifie. These sub­

modules plug into the adaptation engine and use it to modify the state of the adaptation

system. The implementor of the system modules is completely free to build a customized

virtual environment which adheres to the adaptation model, and use the adaptation engine to

perform the adaptive tasks required by the system.

19

3.2. Basics of the Adaptation Model

(1 l INCREMENT j

ADAPTATION
time

ENGINE

,.---

1: E user input 0
OCCURRENCE SET

.-----EVE-NT-SET----.~ A
Figure 3.8: The causal block diagram representing the general adaptation process.

The general idea is summarized by a causal block diagram [PdLV02] in Figure 3.8.

3.2.1 Generic Adaptation Procedures

Experimental evidence has shown that there are sorne generic adaptation concepts which are

common to most systems and thus can be more generically formulated. Such algorithms further

generalize the model and hence increase the overall usefulness of the framework. Most concepts

listed below are sim ply intuitive constructions obtained by refiecting upon the adaptation pro-

cess.

Simultaneous Cell-Update Masks

As stated in the previous section, the value of the properties on each cell change in time

as a function of the values on neighboring cells at the previous time step. It is natural for

programmers to implement the effects of the updates to cell values (at a given time in the

timeline) as a sequential iteration over all grid cells. This causes a bias problem, because for a

given cell-update, the value of its neighbors could already have been modified due to the order

of the iteration. The effect of the bias in an example of blurring is demonstrated in Figure 3.9a.

The modifications made to the cells assume no intermediate representations between time

steps: their values change simultaneously. The new value is strictly a function of current values.

There can also be any number of properties on a grid cell. To implement this, we propose using

20

3.2. Basics of the Adaptation Model

0 0 0 0 5 8 8 7 0 0 0 0 5 7 7 5

0 20 20 0 9 12 11 8 0 20 20 0 7 9 9 7

0 20 20 0 7 9 7 4 0 20 20 0 7 9 9 7

0 0 0 0 4 5 4 4 0 0 0 0 5 7 7 5

(a) (b)

Figure 3.9: A region affected by modifications after 1 application of blurring using (a) sequential

iterative (row by row, left to right) updates and (b) simultaneous update rules. The numbers are

values of scalar properties values such as intensity or altitude.

cell-update masks, or sim ply masks.

Masks are temporary grids that hold only the modifications to be applied to the grid for

each grid cell. The adaptation algorithms calculate the modifications, store the modifications

temporarily in the corresponding section in the grid. When all the calculations are do ne for

the iteration, the mask is then applied to the grid: all modifications in each grid section in the

mask are applied to the corresponding grid section in the real grid. When a mask is applied,

the values at each grid cell increments by the value found in the corresponding mask grid cell.

Then, the mask is cleared for the next time step, and the pro cess repeats at each time step.

Vector Averaging and Angular Propagation

As in blurring, grid properties in cellular automata are commonly scalar properties. SimCity

is an example of classic game that relies on cellular automata techniques [Sta96], associating

scalar quantities with grid cells. In SimCity each grid cell may have scalar properties such as

pollution levels, crime rates, land value, and so on. There is, however, no reason to restrict grid

properties to scalar values.

We define a discrete vector field as Ve : C -+ ~2, so that for each grid section 9 E C,

there exists an associated vector. The vector at cell (3,2) will be denoted 93,2. Note that a

2-dimensional vector can be thought of as a magnitude and angle; when we are interested in

just one component of the vector we can reduce it to the scalar case; e.g., a simple angle value

(h,2'

Vector averaging is a technique analogous to image blurring, except on vector components

rather than scalar components. We initially ignore the vector's magnitude and assume it does

not change. Each 9i,j is then modified to have a new angle computed as a weighted average

21

3.2. Basics of the Adaptation Model

BIi" - - - ,- ,
- - - ,t t

t t t
t 1 t
t t t

Figure 3.10: Affect of an update on one grid section (assuming 'Y = 1), showing a) before the change

b) before the update on the middle grid section c) after the change and update

of its own state and neighboring angles. Suppose we have an average angle Bg for a grid

section 9 and its neighborhood. We define a shift fram (9',9) for each neighbor g' as the

difference B 9 - B g' . In the special case where g' = g', the shi ft represents the discrepancy

between an angle and its relative neighborhood average. For simplicity, we assume that aIl

angles have the smaIlest possible magnitude and signs respect the unit circle convention. That

is, -7r ::; B ::; +7r, Bg = 0 points "east", Bg = -7r points "west", Bg = +~ points "north", and

B 9 = - ~ points "south". Note that we assume this for aIl angles, so that shift from (i, -3) = - ~,

not 3;. If the result of any mathematical calculations gives an angle outside these bounds, the

angles are immediately cyclized (repetitive addition or subtraction of 27r) until they are within

these bounds. An immediate consequence of this construction is that given any two vectors,

shift from(v!, V2) = cyclize(B2 - Bd.

As in blurring, the values approach their current relative neighborhood average. The total

angular change for 9 is then sorne proportion of shift from g, for sorne constant 'Y, 6g = 'Y .

shift from(g, fi). The update rule then becomes: 'l/g E G : Bg f- Bg + 6g, applied simultaneously

(using masks) over aIl grid sections.

To demonstrate the effects of vector averaging, con si der a single grid section surrounded by

its 8-neighborhood, aIl of its vectors pointing eastward (B = 0) with arbitrary magnitude, as

se en in Figure 3.10. Now, if we shift each surrounding vector by 900
, the average will shift by

f:j.B = (8/9) * 900 = 800
, so the update will shift the middle vector's angle by 6 = "ff:j.B. Since

the middle vector has shifted, upon the next application of the update (the next iteration) it

will in turn cause a difference in average of aIl points for which it is a neighbor. This will cause

those grid sections' vectors to update, and so on. As a result' a change in angle propagates

through the grid via its neighboring ceIls, but loses influence each iteration.

The long-term effects of a sudden change in angles over time is caIled angular propagation.

The effects of the changes are transferred to the surrounding areas over time until the influence

of the change is negligible. By adjusting weight parameters such as 'Y, local turbulence can be

damped according to the needs of the system being modeled. A high value for 'Y may signify a

22

3.2. Basics of the Adaptation Model

region particularly sensitive to change, whereas a lower value indicates a resistance to change.

Angular propagation can be caused by occurrences of events. The propagation shown in this

section was an example of a specific type of propagation applied to changes in angles of vectors.

However, the propagation concept itself is more general. If after 3000 iterations of blurring a

sudden block of black pixels were added, the event would cause an impact that would propagate

the dark colors to spread around evenly over the image. The system is thus adapting to the

occurrence by propagating effects of event occurrences to its surroundings.

Flow-based Fuzzy Property Update Rules

Non-constant scalar properties on grid sections can be modified differently than simple aver­

aging. When blurring, values are modified and set directly to the value of a given calculation

involving local and neighboring values (the average). A flow instead describes the transfer of

information between neighboring grid sections. When using flows, property values are treated

as quantities that are displaced from one grid cell to a neighboring grid ce Il. The flow function

for a given property or set of properties describes precisely how information is transferred from

one grid cell to the next.

Vectors on each grid section describe a strength and direction of flow. The flow function

computes how much of a property is transferred from a grid cell to the cells in its neighborhood

as a result of the value of the vector property. Therefore, a flow function takes a vector as a

parameter and returns a set of displacement maps of the form (g, g' : g[P] +- g[P]-k·g[p], g'[P] +­

g'[P] + k· g[P]) where g' is a neighbor of g, k· g[P] is the amount of the property p to be displaced

from 9 to g', and 0 :::; k :::; 1. The adaptation pro cess applies the flow changes described by the

displacement maps for each grid section at each iteration of the computation.

We use a fuzzy approach similar to fuzzy control to compute flow displacements for a more

natural flow dispersal. The flow function can be formulated as a fuzzy controller. Formally,

the flow function consists of n fuzzy components: Zl, Z2,' •• ,Zn' Here, Zj is an arbitrary fuzzy

membership function Zx (fi) E [0, 1] which represents the raw influence of that component over

a given property. The influences of the components are analogous to the values of the actions

obtained by querying a fuzzy rule base. The displacements returned by the flow functions are

analogous to the actions chosen by a fuzzy controller. Fuzzy control is still used to query a

rule-base and the outcomes measure the influence of the displacement actions. The rule base

is created by the designer of the example application system.

In this case we allow simultaneous actions to be chosen and performed. The result of

this difference is that several displacement maps are created, each with different values of the

proportion parameter, k. To obtain k, the membership values are normalized so that they

23

3.2. Basics of the Adaptation Model

represent the local influence in comparison to other influences:

f (....) zx(fJi,j,Pi,j)
x gi,j, Pi,j = "n Z (...... ..)

wy=l y g~,J' P~,J

To make this more clear, consider a scenario where the components are associated with the

four major cardinal directions: ZN, ZE, ZS, Zw. The amount transfered in each direction is

proportional to the corresponding flow influence value f dir' At each iteration, D.pw = kp *
fw (gi,j, Pi,j) * Pi,j is the amount of Pi,j that is displaced westwards, where the proportion pa­

rameter 0 < kp <= 1 is the rate of transfer. The simultaneous update rules for this component

would then be: RI : Pi-I,j +-- Pi-I,j + D.pw and R 2 : Pi, +-- Pi,j - D.pw. Components for other di­

rections are treated similarly. Note that it is also possible to define hybrid components, formed

by the conjunction or disjunction of the fuzzy properties; e.g., ZNW = ZN AND Zw. Then the

displacement of moisture would be listed as a rule set in a fuzzy controller system as is do ne

in [McCOO].

The actual behavior of the flow depends on the membership functions used; if a system

demands a smooth flow, then naturally the membership functions should reflect that. The

role of the fuzzy membership functions are to shape the flow. If, for instance we use a "crisp"

function, one with a sharply-defined peak such as:

ZN =
{

1 if 7r /2 - E <= e <= 7r /2 + E;

o otherwise.
(3.2)

for small E, then the westward flow will move somewhat discretely. A smoother function like:

(3.3)

will lead to a smoother spreading.

Several advantages are gained by formulating the flow function as a fuzzy controller. First,

it allows the designers of an application system to describe variables for flow components. Then

variables quantify vagueness by construction and as such can be easier to model when the exact

information is not available. Secondly, the examples above use vectors for flow components,

but this is not generally necessary. Flow components can also be scalar or other values, as long

as a membership function can be defined from the arbitrary domain to a value in [0,1]. This

fact allows designers to define complex arbitrary components that can still be made meaningful

by way of a particular membership function. Thirdly, the ru le base is a widely familiar con­

struct and often easy to use as well as easy to modify. Rule bases give the application designer

a natural modeling environment along with the flexibility of describing flows based on logical

statements that can involve many factors. Lastly, fuzzy controllers can themselves be internally

24

3.2. Basics of the Adaptation Model

adaptive [Wan96], allowing the flow functions to change based on given criteria.

In this chapter, the core concepts of the generic adaptation model were introduced. The

abstract model is sim ply a grid that is separated into grid cells paired with an adaptation

pro cess that modifies the values of grid cell properties automatically over time. The properties

are global but can have different local values on individu al grid sections. Adaptation is a

pro cess that changes the local property values automatically over time. Local adaptation is

adaptation which uses the values of neighboring cells to influence the modification of grid cell

property values. External entities are allowed to interact with the adaptive system by causing

occurrences of specified events. The adaptation pro cess reacts to these occurrences by applying

abstract adaptation procedures at each iteration. Examples of external entities could be players,

or artificially intelligent bots.

The adaptation procedures are defined by the specifie application of the model. The pro­

cedures defined by the applications are algorithmic modifications of the generic properties.

Semantics for abstractly defined properties and adaptation procedures are given by the de­

scription of the application system. The application systems are therefore thin instances of

the generic model. Examples of such application systems will described and analyzed in the

following chapter.

25

Chapter 4

Applications of the Madel

In this chapter, we show specific applications of the generic abstract model. The aim of these

applications is to emulate real-world systems. For this reason, we also call these applications

example systems. Since these systems are built in the adaptation model presented in Chapter 3,

they are inherently locally-adaptive. The applications in fact define semantics of a context by

giving meanings to property values and providing specific procedures that describe the evolution

of the data values over time. Additionally, each application specifically describes the events

that can occur in the system and the entities that can cause them. In the end, an example

system describes an adaptive virtual environment (AVE) which game players can explore.

In designing example virtual environments to systems which apply the adaptation model,

we noticed that the systems we had created can be classified into 2 top-Ievel categories:

environment-based applications, and agent-based applications. Both types of applications adapt

based on a set of criteria; the difference is how the criteria are obtained. Environment-based

applications are adaptation systems that adapt depending entirely on values in the environment

itself. Agent-based applications adapt depending on the observations of agent behavior data

as well as environmental factors. Agents here are simply entities that interact with the system

(or with each other) in sorne way.

Each section describes one or more applications of the model. Initially, the system is de­

scribed in general; and the criteria for adaptation in these systems are discussed. Then, the

system is formalized conceptually by breaking it down into its major algorithmic components.

Adaptation algorithms operate on meaningful data which are mapped to property values in

the model. The components are then fit into adaptation procedures, each of which calculates

the changes to values due to local adaptation. The adaptation pro cess applies these changes

at each iteration of the overall pro cess. We also suggest events that may occur in each sys­

tem along with their effects on the system and analyze the behaviors of the systems using the

26

4.1. Environment-based Applications

implementation described in Chapter 6.

4.1 Environment-based Applications

Environment-based applications are adaptive systems that change over time based on the values

of the surrounding environmental properties. Examples of environmental properties will be

given in the specific system being described.

Typically in modern games, the only role played by the environment is to provide a virtual

setting for the players. The setting has a certain effect on the immersion and the experience

felt by the players, but is usually purely aesthetic rather than responsive. The only interaction

players have is with other players or other agents (monsters, etc.). The players can discover

the world in time, but they can never really change it, not even indirectly. The environment

can change due to game progression, but just in a predefined way.

Environment-based adaptation is an automatic means for the environment to change; for

example, a tree growing around a physical barrier (power lines) instead of through it, the water

level of the sea rising as a consequence of lunar positioning, natural selection. These are aIl

examples of environment-based adaptation.

These changes can of course be pre-programmed in advance. For instance, rules for be­

haviour with respect to input from the players could be hard-coded. Adaptation could be

pre-programmed. However, the main contribution here is an automated adaptation pro cess

which uses a generically defined adaptation model that emulates true adaptation in evolution­

ary systems.

These examples aIl contain objects, entities, or things with which the players should be

able to interact. By expanding the interactive capabilities of the entities and the environment,

players could affect the state of the system more meaningfully than by sim ply gaining more levels

and more equipment. In certain cases, allowing the players to interact with the environment,

even in very simple ways, should in turn lead to sorne adaptive behavior, ie. a long-term

reaction from the environment. For example, in a medieval fantasy setting, a powerful player

sorcerer could cast a spell to remove the natural production of water in a given region. An

environment-based application would react to this: after sorne time the ecosystem would die or

deteriorate unless it found another source of water.

27

4.1. Environment-based Applications

4.1.1 An Adaptive Weather System

In computer games, weather simulation is commonly implemented to contribute to a pseudo­

realistic world. It is common because it is easy to implement as a randomized system and adds

realism. A physical world without any weather would soon become unbelievable. The overall

end result is that the players' game experience is improved, most players are satisfied with a

random weather simulation system because to them it appears like a possible real system. When

one cannot make the computerized system behave exactly like a real-world system, making parts

of the world at least appear real is a general goal in computer games.

The goals of this research are similar. In particular, we focus more on improving the

appearance of the system rather than making it more realistic. That is, we search for an

adaptation pro cess that emulates real-world adaptation.

Weather simulation is typically considered a computationally intensive application, largely

reserved for supercomputers. In the virtual worlds of computer games, however, physical accu­

racy is less critical, and much simpler approaches suffice to produce aesthetic, in-game climate

effects. Note that by proposing to add adaptation to a non-adaptive simulation system we are

proposing to make it more like the real system it is modeling.

Weather System Description

In its simple st form, a weather cycle displaces moisture: water from lakes and se as is carried by

wind to cooler locations, where the reduced water capacity of cooler air causes condensation;

rain water eventually runs downhill to refilliakes and oceans [Ent04]. There are several factors

that can affect this process, including altitude and terrain structure, wind, temperature, and

so on. Each of these can be quantified as a value-based property in our system. The value of

the property indicates the significance of the factor in the AVE.

We have modeled our weather system upon the following basic precepts:

1. Wind gathers moisture from bodies of water, and loses water at higher altitudes.

2. Water fiows downstream.

3. Altitude affects wind patterns.

These basic precepts will be transformed into adaptation procedures (update rules) following

the pro cess outlined in Section 3.2. However, we must first properly define the data in the

adaptive weather system.

28

4.1. Environment-based Applications

60

75

40 85 90

Figure 4.1: Example gradient vector representation. Grid cells show local terrain altitudes.

There are 2 basic scalar data values suggested by the basic precepts listed above: moisture

and altitude. Moisture represents the density of water in the air. Swamps, bodies of water,

humid regions have high moisture, whereas dry places like deserts have low moisture. Altitude

is the height of the ground relative to sea level. High regions like hills or mountains have

high altitude whereas lower regions like valleys and oceans have low altitude. The geographic

location usually influences a region's climate because each physical location has a different

configuration of the surrounding environmental properties.

The scalar values were limited to being between two chosen extremes: glow = -5000 and

ghigh = 5000. It can never be the case that a value is higher than the high extreme or lower

than the low extreme. In this system, the physical correspondence is that there are saturation

thresholds for moisture and dryness. A good example is that an ocean or sea cannot get any

more moist: they are at ghigh.

There is 1 basic vector value: the wind. The magnitude of the vector describes the strength

of the wind and its direction describes the direction of the wind. There is one more vector

property which is an induced property called the gradient vectoT. The gradient vector on a

grid section points to the direction of descent, and its magnitude represents the steepness of

the grade. Due to gravit y, moisture flows downstream in the direction of the gradient and is

described as a a fuzzy flow controller (see Section 3.2.1).

The gradient is a vector sum composed of vector components whose magnitudes are differ­

ences in altitude values of surrounding cells. The magnitudes of the vectors are determined

by subtracting the terrain altitude from the altitude of a neighboring cell, with corners of the

8-neighborhood having a weight factor or 1. The direction of each vector in the sum is given

by the position of the neighbor relative to the center. Figure 4.1 shows an ex ample gradient

induced from the altitude values of its surroundings. If we assume unit vectors for each of the

cardinal directions and therefore the identities il = -8 and W = -Ê, then the calculation

looks like:

29

4.1. Environment-based Applications

50 30 50 " t / 30 50 30 ~ --;;..

50 30 50 ;/ t ~
(a) (b)

Figure 4.2: Example of degenerate cases where (a) Vgrad = 0 and (b) Vwind_avg = O.

Vgrad
~ 7r~ 7r~

(50 - 10)N + ((50 - 60)sin("2)N + (50 - 60)cos("2)E)
~ 7r~ 7r~

+(50 - 75)E + ((50 - 90)sin("2)S + (50 - 90)cos("2)E)
~ 7r~ 7r~

+(50 - 85)S + ((50 - 40)sin("2)S + (50 - 40)cos("2)W)
~ 7r~ 7r~

+(50 - 30)W + ((50 - 20)sin("2)N + (50 - 20)cos("2)W)

54.142N - 60.35534Ê - 56.21328 + 48.28427W
~ ~

108.64W + 1l0.35N

giving a vector with angle tan-1(1l0.35j108.64) = 45.45° north of west.

The inverse gradient points in the direction of ascent, and is used to determine how wind

direction is altered by the current terrain. If a gust of wind is pointing into a wall, it will

instead blow around it. For wind to move around higher-altitude obstacles it must therefore

be pushed away from the direction of the inverse gradient or, equivalently in 2D, towards the

direction of the gradient.

Another induced property is the current local average wind value. The average wind value

is a vector whose magnitude is equal to the sum of all wind magnitudes in the 9-region divided

by 9; the average direction is precisely the direction obtained by the sum of all the vectors.

Comparing the current wind value with the current average gives a summary of how the current

wind value on a cell differs from its immediate surroundings.

Note that degenerate data representations are possible by construction, as shown in Fig­

ure 4.2. For instance, it is possible that the gradient has 0 magnitude even though not all of

the neighbor values are equal to the current cell value. As well, the current average could have

no direction at all when all the vectors sum to a vector whose component magnitudes are all

0, or worse: numerical error could lead to an arbitrary angle. These are of course due to the

30

4.1. Environment-based Applications

Figure 4.3: An exarnple of obtaining Vtarget given Vgrad, Vwind_avg, and ct = 0.8

fact that what is described here are approximations. In practice, we should be aware of these

limitations: if any degenerate cases occur, they should be treated as a special case and handled

appropriately. For example, one solution for the rare case that the gradient has 0 magnitude

would be to sim ply ignore adaptation pro cess for that particular region.

Weather Adaptation Procedures

There are 3 major adaptation procedures in the weather system: moisturewind, gradDev, and

rain. The procedures are functional algorithms that perform the actions needed for adaptation

such as checking the values of sorne criteria and modifying values as a consequence. In this

subsection, we will thoroughly explain the steps in each procedure.

The gradDev procedure represents the bending of the wind vectors over time due to the

values of altitude. The procedure uses the vector averaging and angular propagation concept

explained in Section 3.2.1. The current wind vector is shifted towards sorne target vector,

denoted Vtarget. The shift is scaled by sorne damping parameter, 0 < 1 < 1, which roughly

corresponds to the speed of the shift since one shift is applied per iteration of the adaptation

process. For example, when 1 = 0.1 it would theoretically take 10 shifts before Vwind = Vtarget,

as opposed to 100 shifts if 1 = 0.01, assuming of course no perturbation from other factors such

as angular propagation. Note that the damping parameter 1 is similar to the weight parameter

used in Reinforcernent Learning [SB98] update rules. The damping parameter is chosen by the

modeler depending on the specific needs of the system.

As previously mentioned, the most infiuential contributing factor to the wind shifting is the

gradient vector. We also incorporate an inertial factor, to give a smoother fiow pattern; we

designate Vtarget as sorne composition of the gradient vector and current average wind vector.

The composition is such that ()target = ()wind_avg + Œ • shift from(Vwind_avg, Vgrad). An illustration

of obtaining Vtarget is found in Figure 4.3. Again, Œ is a damping parameter which affects

31

4.1. Environment-based Applications

Figure 4.4: An example weather system configuration after sever al hundred iterations showing wind

and altitude values. Bright (red) areas are high (landjmountains), dark (black) areas are low (seas) ,

and the arrows show the direction of wind movement.

the smoothness of the transitions versus the angular propagation due to influence from the

surroundings. This parameter further increases the flexibility available to the users of the

application.

Moisture is displaced in two ways: by the rain procedure and by the moisturewind pro­

cedure. Both procedures use fuzzy flow-update rules to transfer scalar values between neigh­

bors. Similarly to the gradDev procedure, each flow-update rule has a damping parameter

(kmoisturewind and k rain) associated with them which sc ales the actual modification allowing the

modeler to easily modify the influence of the moisture-altering procedures.

In the moisturewind procedure, four independent components that comprise the wind are

represented by the cardinal directions: VN, VE, Vs, vw. The value of each component is calculated

by a fuzzy membership function. Any fuzzy membership function can be used, providing yet

more flexibility to the user of the application. In most of our simulations, a semi-circular fuzzy

membership was used (see Equation 3.3). The values are then normalized, and represent a

proportion of the amount of moisture displaced to surrounding grid sections, again as per the

method in Section 3.2.1.

The rain procedure represents the downpour of water from higher regions. It uses the same

vector component breakdown and same ide a as the moisturewind procedure except that the

gradient is used instead of the current wind value. The rationale here is that the gradient points

32

4.1. Environment-based Applications

(a) (b)

Figure 4.5: An example weather system configuration after (a) 100 iterations and (b) 300 iterations

showing moisture values and wind vectors. Bright (green) areas signify high moisture regions whereas

darker (black) region correspond to dry regions.

towards downwards slope, the corresponding physical meaning being that sorne of the moisture

is carried down the slopes by gravit y instead of purely carried by the wind.

A screenshot of the wind and altitude in weather system simulation is given in Figure 4.4.

The image shows an eastern ridge (brighter red) of Pakistan next to a flatland (black) region.

The system was given an initial configuration of \lg, g[~indl = 50i (aH wind vectors point

eastwards). Figure 4.5 shows another 2 screenshots of the south-western part of the Pakistan

map shows the moisture levels at 2 different times in the evolution of the moisture spread.

Terrain Generation

Automatic terrain generation is often desired for computer games. Since terrain influences

weather and represents a crucial part of any real-world natural environment, it seems to fit

intuitively into a system like the one described so far.

Two methods were investigated for terrain (altitude) generation. The first method includes

3 steps: a coarse random distribution, a smoothing pass, and rescaling. The first step was a

simple iteration over every grid section that assigned sorne uniformly random value between

gzow and ghigh to the altitude property on that grid section. The resulting altitude maps are

too coarse to be realistic, so they are blurred a number of times to smooth the surface. The

33

4.1. Environment-based Applications

smoothing also removes many of the sharper parts of the altitude map. To accommodate, the

minimum and maximum values over the entire grid are found, and then for each grid section

the value of altitude is scaled proportionally to [gzow, ghigh]. As a result, there is at least one

value (the maximum value) that is equal to ghigh and at least one value (the minimum value)

that is equal to gzow' The advantage of this first method is that it is easy to implement, simple

to understand, and rather efficient. However, the disadvantage is that it provides a less realistic

result which may have too much local variation.

The second method used real-world physicallocation data obtained by the DIVA-GIS project

[RHG03]. The DIVA-GIS information archive contained sufficiently accurate altitude maps of

many locations across the world. The problem for this particular application was that the

maps were actually too detailed to be easily represented during prototyping. Therefore, a re­

sampling pro cess was run to downscale the data: the points were organized into 2x2 square

regions containing 4 points each, the values of the 4 altitude points are averaged and then

considered 1 point in the new map. In the case of odd-number points on one of the axes, the

last row or column of sections becomes 3x2, 2x3 or 3x3. This special case creates a loss-of­

information bias towards the outer points, but since the loss is minimal the bias is not a critical

issue. Since the boundary of these maps is arbitrary, we could have also sim ply omitted the

outermost points altogether. We chose to include them in ordr to encourage the least amount

of information loss. The re-sampling is repeated until the map is sufficiently small enough to

represent on a screen. Sorne larger samples were also kept for performance measurements to be

taken (see Section 6.3).

Boundary Conditions

Carefully-designed boundary conditions are important for many systems to behave properly.

One common mistake in system design is to sim ply omit dealing with boundary cases. Such

errors often le ad to erratic observed behavior.

Two different boundary schemes for grids were examined. The first scheme was strictly­

bounded: the gr id simply "ends" at the boundary points. In this scheme, the assumption is

made that there is nothing beyond the last grid section on a grid. The east-most grid sections

have no eastern neighbors, and similarly for all extreme sections and directions possible in the

grid layout. Consequently, the extreme points had fewer neighbors which caused sorne bias in

the calculations containing local property values. The effects of this bias on the random method

of terrain generation can be seen in in Figure 4.7: as a result of generating a random terrain,

the outer ridges have lower altitude than the rest of the grid.

The other boundary scheme is to have no boundaries at all. The east neighbor of the

34

4.1. Environment-based Applications

Figure 4.6: An example tornado.

eastern-most point on the grid is the western-most point in the same row. Similarly for west­

ern neighbors of western extremities, and for the north/south axis as weIl. This boundary

scheme corresponds to the torus mathematical topology. This scheme also removes the bias

on the edges. By default unless otherwise mentioned, this boundary condition was used in aIl

simulations.

Weather Events

Incorporating interesting weather events is also possible and likely desirable. Events can be

anything that affects the properties in the system such as earthquakes, tornadoes, tsunamis,

storms, etc ..

We have modeled "tornadoes" as local, non-linear dynamical systems with a stable fixed

point at the center. A 2-dimensional dynamical system [StrOl] represents the wind flow within

a specified sub-grid such that the center point is fixed point in a stable spiral. Within this

sub-grid, the wind vectors are no longer influenced at aIl by outward sources; they are only

part of the tornado. The outer vectors are treated normally. As a result, the effect of the

tornado's turbulence is spread with decreasing influence out to the surrounding grid sections

via angular propagation.

The tornado moves by slightly displacing the sub-grid (along with it, the fixed point) at

each iteration and reassigning the values in the sub-grid dynamical system around it. The

movement of the tornado is defined by sorne arbitrary function of timesteps and could be

35

4.1. Environment-based Applications

Figure 4.7: An example hexagonal grid in the weather system.

randomly generated in the same way that path models are generated for mobile agents (see

Section 6.2). Figure 4.6 shows a screenshot of a tornado on a fiat terrain. We will measure the

efficiency of the implementation of tornadoes in Section 6.3.

Hexagonal Grid Representation

As stated in Section 3.2, since the adaptation process is based entirely on neighbors in sorne

metric space the theory extends to metric spaces other than a rectangular grid. A hexagonal

grid is a "nice" metric space because notion of neighborhood is particularly intuitive. Two ce Ils

are neighbors in a hexagonal grid if they share an edge, or equivalently, if the distance between

them is 1. A neighborhood of a cell in the hexagonal gr id is its 6 immediate neighbors.

The adaptation pro cess here remains unchanged. The neighboring cells are equally distant

from a given ceIl, so the gradient calculation becomes even simpler because there are no special

case "corner-neighbors". Six fuzzy actions instead of 4 need to be defined for the fiow controIlers

in the moisture spread procedures, but otherwise fiow updates remain the same.

A capture of the hexagonal grid weather system is displayed in Figure 4.7.

36

4.1. Environment-based Applications

Analysis of Weather System 8ehavior

AIl the major components of the weather system have now been described. The question still

remains: how does this system behave? The answer to this question is presented in detail here.

An important concern is the performance of the adaptive system; it must of course be at

least efficient enough to be usable. We will defer performance analysis until we describe the

implementation in more detail, in Chapter 6. Another important concern is how weIl it achieves

its purpose: does it act in a stable, aesthetically appealing manner or does it produce completely

random and/or meaningless weather effects.

Moisture dispersal seems to happen as smoothly as expected. Areas of pure saturation

develop in the flatter regions, bits of moisture are carried around the edges of these areas and

in particularly windy areas. Playing with the values of the damping constants for the effect of

wind vs. rain pro duces the expected resulting behavior, which is reassuring.

As mentioned in the description of the gradDev procedure, there are several factors that

affect the wind's change. A concern, then, is whether the combinat ion of these influences leads

to the wind changing forever or does it instead approach convergence to a fixed state. Chaotic

behaviour may be desired here; after aIl, some aspects of weather are truly chaotic. However, if

the patterns are not controllable in a way that allows the representation to always be meaningful,

then the model will not be sufficiently approximating a real-world system. Therefore, some level

of stability and is desired. If the wind vector moves towards the gradient every iteration, it is

certainly going to converge eventuaIly. However, the average wind vector might not necessarily

remain the same and, in particular, might move away from the gradient. In cases where the

average wind moves away from the gradient, Vtarget also moves away from the gradient. As a

result, the direction of wind change will depend on which si de of Vtarget the wind vector is on,

which depends on Œ.

If Œ = 1, then Vtarget = Vgrad so no matter how deviant the wind average is, the wind vector

will always approach Vgrad and so is certain to converge. In contrast, if Œ = 0, the wind will

always approach the average. In our chosen starting state, this immediately converges as weIl

since the average wind vector for every grid cell is 590i. What about convergence conditions

when 0 < Œ < 1 ? A closed-form expression for convergence conditions would be useful.

Assuming we ignore magnitude, in general the wind vector, Vij,wind, on a given grid section

gij will undergo the following update at each iteration:

Bij,wind +- Bij,wind + '"Y • shift from(Vij,wind, Vij,target)

Bij,wind + '"Y • cyclize(Bij,target - Bij,wind)

Bij,wind + '"Y • cyclize(Bij,wind-.avg + Œ . cyclize(Bij,grad - Bij,wind-.avg) - Bij,wind)

37

4.1. Environment-based Applications

At first, the update rule looks like it takes the form of a one-dimensional iterated map [Str01]

Iterated maps are discrete-time dynamical systems in which a value Xi+1 = f(Xi) where i is an

iteration number. Research has been done on these systems; well-known techniques exist for

analyzing them. Unfortunately for us, not only do we actually have a set of these equations,

the function f is dependent on many of the set's previous iteration values not just its own

previous value. If it were only for the former, then we could simply treat the wind-bending as a

collection of independent iterated maps and solve a general equation which would apply to aIl

of maps. The set of iterated values is {Vi, JÎBij,wind} and Bij,wind-12vg is actually a function of the

neighborhood property values T(gij[wind]). Therefore we have a (height . width)-dimensional

iterated map with equations of the form Bij,wind = f(Bi- 1,j-1,wind, ... , Bi+1,j+1,wind). This is a

complex system and hence it is difficult to solve analytically. It is also the case that components

of an adaptation system may be arbitrarily complex, and so proving convergence in general will

be difficult. Direct, practical techniques are more convincing.

We chose a quantitative approach to measure the convergence and effects of the damping pa­

rameters on the system's behavior. In doing so, we define the overall change in wind-deviations

from one timestep to the next as the sum of a change in angles over aIl grid section. Formally,

this sum is:

!J.mask = 2: IB;j,wind - Bf~!indl
i,j

At a fixed point, the wind vectors do not change at aIl so this sum will remain equal to O. Note

that !J.mask is expressed in radians.

An experiment was conducted to measure the values of !J.mask over time, assuming default

values of a = 0.2 and 'Y = 0.1. The maps of Pakistan, North Korea, and a randomly generated

terrain were used, each of which had both heights and widths of at least 50 grid cells. Every

experiment converged to !J.mask < 1 in less than 3000 iterations and convergence graphs look

similar. Figure 4.8 shows the precise values as a function of timestep using the Pakistan map.

The experiment included dynamically adding altitude values at certain times, which will be

explained below.

In general, there are iterations where the !J.mask actually increases. Increases are usually

sm aIl « 1) but not always negligible which implies that it is not necessarily only caused by

numerical error. However, on aIl 3 tests, the !J.mask did indeed converge to essentially 0 (~ 10-13)

after 7000-8000 iterations and remained at this value endlessly. In fact, the converged value

never reached exactly 0 due to sorne minimum amount of numerical error.

As mentioned ab ove , patches (random regional perturbations) of altitude were added to

38

4.1. Environment-based Applications

~~r-------------------~~~~~--~

30 l

25
20
15
10

5
O~--~~~~~--~~--~~

Figure 4.8: D.mask as a function of the timestep in a simulation run on the Pakistan terrain map.

the map dynamically during its evolution. The reason for this functionality is to see how the

system reacts to sudden changes once it has stabilized. A small patch of approximately 10-15

altitude values of ghigh were added at t ;:::j 1500 and a larger patch (20-30 altitudes of ghigh) at

t ;:::j 3000. Both patches of altitude were added to completely fiat areas. The system reacted

to these "sudden growths" by slowly bending the wind vectors around them, and returned to

a stablejfixed state within at most 100-150 timesteps, as show in Figure 4.8.

The tests above assume specific values of Œ and 1. We have shown convergence and stable

behavior in a particular case. Ab ove , it was implied that convergence is somewhat dependent

on the values of these damping parameters. Looking back at the equation for the update of

()ij,wind we see that 1 is just a proportion of the shift towards Vtarget. 80 as long as 1 > 0 then

convergence only depends on Œ. Therefore, simulations were run on the Pakistan map with

1 = 1 and Œ = {O.O, 0.05, 0.1, 0.15, ... ,0.95, 1.0}. The results of the simulations are displayed

in Figure 4.9. Note that not all values are present. Each simulation was stopped at 10000

iterations if it had not yet converged. Many had not converged. One run was performed for

each value of Œ for a total of 21 runs.

The simulation runs for varying Œ values lead to a discovery of cyclic behavior in certain

cases. The corresponding representation in the convergence graph is a long stretch of non­

continuous periodic values. In every case, the cycles started at sorne point before the 10000th

timestep and continued well beyond that point. As well, the cycles only formed when llmask < 5,

meaning the system had almost converged but entered a cycle instead of continuing. Re-running

the tests using a graphical interface showed that in all cases, a cycle corresponded to 2-6

neighboring wind vectors alternately "fiipping" from one orientation to the another and then

back, while the rest of the map remained fixed. Detecting these cycles is non-trivial but not

difficult, however it does add an extra consideration to remember when using the application.

39

4.2. Agent-based Applications

1 1

8000 "tesCg·âat" +

5000 +

+

+ +
2000 ~ + +

1000

o L-______ ~ ______ -L ______ ~~ ______ ~ ______ ~.

o 0.2 0.4 0.6 0.8

Figure 4.9: Maximum timestep until convergence as a function of ct after many simulation runs on

the Pakistan terrain map.

Values between 0.1 and 0.6 do not converge, while ex > 0.7 seem to take longer to converge.

This is not necessarily a critical issue sin ce the cycles only occur at low levels of L:lmask. One

could sim ply stop adapting once a threshold point of L:lmask :S 1 is reached. The specifie cause

of this strange behavior remains unknown.

The last interesting addition to the system was control points. It is possible that one may

want some of the wind vectors to be entirely immune to change; for instance, as a way of

ensuring boundary conditions. This was enabled both statically and dynamically, and was

tested on several maps. The results were as expected: the control points allow the modeler to

force certain shapes of fiow by using control points.

4.2 Agent-based Applications

Agent-based applications differ fundamentally from environment-based applications in that

agents contribute directly to the adaptation process. In environment-based adaptation, an ap­

plication designer could define agents in the AVE to interact with its surroundings and somehow

allow them to modify an environmental value. However, the adaptation pro cess still only adapts

40

4.2. Agent-based Applications

to the actual changes in the environment. In agent-based adaptation, properties of the actual

agents themselves are used to influence the adaptation pro cess. That is, the adaptation pro cess

observes the agents and their actions in addition to the rest of the environment. The focus of

the pro cess is on the behavior of the agents, but uses environmental properties as weIl. Note

that this model presumes only localized information propagation but global effects could be

easily incorporated.

As briefly mentioned earlier, agents are simply entities that can interact with the environ­

ment or other agents. This definition is generic enough to allow agents of aIl kinds, and indeed

the flexibility is desired. Player agents are agents that are controlled by players of the game.

Player agents are usually called characters. Non-player agents come in many forms: monsters

("mobs"), player companions ("pets"), non-player characters ("NPCs") which can be guards,

merchants, mercenaries, enemies, peasants, etc .. Agents need not be restricted to living crea­

tures but commonly are in MMOGs. In typical (static) virtual environments, the agents are

the only dynamic aspects of the environment. Here, both the environment and the agents are

dynamic and capable of influencing each other.

4.2.1 An Adaptive Reputation System

A player character's in-game reputation is often an important component of the game environ­

ment, particularly for persistent-state games in which the same character is re-used for long

periods of time. Player actions that harm or help non-player agents should result in a logically

consistent reaction to the player, giving a greater sense of reality to the game environment.

This is necessarily a dynamic property: player reputations need to be constantly updated, and

should also ameliorate over time and distance.

In or der to allow reputation to disperse more realistically, a word-of-mouth model is em­

ployed to flow the impact of events caused by the agents. Agame character's reputation is

built by the spread of hearsay amongst the populace; reputation fiow vectors modeling the

communication patterns of the general populace in each grid section are used to describe the

direction in which word of a positive or negative action will spread.

For our example system we developed a virtual communication terrain which, as in the

weather example, is represented as a discrete vector field. The difference is that the vectors on

this vector field do not change with respect to a static value such as the gradient. These vectors

are influenced solely by the agents' velocity vectors currently occupying the corresponding grid

cell and sorne of its surroundings as weIl. The same wind model used in the weather system

then traces out the flow of reputation information.

41

4.2. Agent-based Applications

In our case we simulated route popularity by tracking movements of semi-randomized agents

moving between cities following smooth curved paths, choosing destinations probabilistically

based on distance and city size to discover trade routes. The basic movement model for sim­

ulations is described below. In Chapter 5, movement models for agents are examined in much

greater detail.

Reputation events are abstractly defined even in this application: they are events that aIl

agents can cause that can potentially modify their reputation. They are only slightly analogous

to the weather system events because in these cases, the players are free to generate occurrences

as weIl as computer-controlled entities. Rescuing the princess, killing a commoner, stealing from

tavern, etc.. These are aIl examples of reputation events.

Positive and negative reputation points (RPs) are created on a grid section when a reputation

event occurs at that location. The amount of RPs is proportional to the severity of the event.

These points are displaced via the fiow, and also dissipate at a slow rate. For each point that

dissipates on a grid section, the reputation of the player is altered at that location. This pro cess

repeats until aIl the reputation points have dissipated, causing a local alteration in the player

character's reputation. RP is one of the scalar grid properties.

The player character's reputation value is another example of a scalar grid property. Whereas

the reputation points dissipate over time, they slowly modify the reputation value. Positive

reputation points will modify the reputation value to a higher value, representing an increase

in good reputation. Negative reputation points lower the reputation values.

Reputation Adaptation Procedures

The adaptation pro cess in the weather system includes one cycle that iterates over aIl the grid

sections performing update calculations. In contrast, the adaptation process for the reputation

system is split into 2 parts: the agent update cycle, and the grid update cycle. The gr id update

cycle is analogous to the weather system's update cycle in that it performs calculations as an

iteration over aIl the grid sections. The agent cycle performs the agent-based update calculations

and their movementjinteractivity simulation. Therefore, the reputation adaptation procedures

are split into two categories based on the update cycle in which they are contained.

There are 3 main adaptation procedures: repEvent and agentBend, which are part of the

agents cycle and repwind, which is part of the grid cycle. The repEvent procedure generates

reputation events probabilisticaIly depending on a few parameters. In the simulations, it is

assumed that agents provoke reputation events and so the reputation events only occur at the

current location of an agent. For each agent, that agent generates an event with a probability

of Pevent. If an event is generated by an agent, it is a good event with probability P good or

42

4.2. Agent-based Applications

-
- ---1---

- --:-....----~ f-r_

""" ---~ ---- --:-....---V
t?"" ___

- ---:...----~ f--'--_

- ---f-"_

--

Figure 4.10: The aura of reputation flow vector influence created by one agent

negative otherwise. A generated event has a severity proportional to its reputation points,

which is uniformly randomly generated between glow = -5000 and ghigh = +5000. When an

event is generated by an agent, the reputation points are deposited on the grid section the agent

is currently occupying.

The agentBend procedure modifies the values of the reputation flow vectors given the orien­

tation of the agents. In essence, an "aura" of vector influence is created by each of the agents.

The aura for a single agent is a small sub-grid surrounding the agent (centered on the agent)

of vectors. Each of the vectors have the same direction of the agent 's velocity and have magni­

tude inversely proportional to the Manhattan distance (in grid sections) away from the center

grid section, to a maximum of 3 gr id sections away from the center. The idea is illustrated in

Figure 4.10. The resulting reputation flow vector for a grid section is the vector sum of all the

vectors induced by all the agents' auras on that grid section. The reputation flow vectors for

all grid sections describe the flow of communication via agents throughout the grid.

The repEvent procedure spreads the reputation points using fuzzy flow-updates exactly

like moisture was spread by the wind in the weather system. The vectors in this case are

the reputation flow vectors. Here, however, reputation points are temporary. This procedure

also converts a number of reputation points to reputation value. Since this procedure is exe­

cuted repetitively, the reputation points will either be carried by the reputation flow vectors to

neighboring cells or converted to reputation values. When converted to reputation values, the

converted values are added to the reputation value on the current grid section.

43

4.2. Agent-based Applications

The reputation value on a grid section corresponds to the value of a given player character's

reputation at that location. InitiaIly, the reputation is equal to gmid = 9low~9hi9h = 0, neutral.

The reputation value added (or subtracted, in the case of negative reputation points) to the grid

section converted from reputation points pertains to the player who caused the event. In our

simulations, there is only one player and the events are generated at random locations decided

by the paths of agents. The system is extended to groups of players in a foIlowing subsection.

A Movement Model for Mobile Agents

Despite the vastness of virtual environments in recent MMOGs, within them there seems to

exist a finite set of interest points placed by the game designers for the players to discover

and interact with. Examples of such interest points in existing games are: cities, settlements,

borders, spawn points, cavern entrances, trade/merchant stations, meeting points, etc .. Non­

player agents often have reasons to visit these interest points as weIl as player agents. Over

time, these interest points become basins of player activity in the VE. It is clear that throughout

the course of game-playing, players do two things:

1. travel to and from interest points

2. remain at interest points for sorne period of time (presumably doing something interesting)

Our simple movement model is composed of 4 major components: the graph which dictates

which interest points are connected to (reachable by) which interest points, which interest point

is chosen to be the next agent's destination, the shape of the path taken by the agent to reach

its destination, and how long the agent remains at the interest points. The simple version that

we present in this chapter is completely random based on a few common sense assumptions.

More complex models for agent movement are investigated in Chapter 5.

Each interest point has a coordinate position in the continuous space which the grid is

approximating. The graph connecting sorne of the vertices is then a proximiiy graph [Tou91]:

the length of the edges corresponds directly to distances between vertices (interest points).

Agents can only travel to an interest point Sdest from Ssource if the edge (ssource, Sdest) is in the

edge set of the graph.

Interest points have a scalar significance, or size. The higher the value of the significance,

the more interesting this point is to visit. It is assumed as weIl that agents generaIly prefer

shorter distances than long ones, and this is a more important factor than how interesting a

place is to visit. Therefore, when an agent chooses a new destination, each neighbor of the

current interest point is assigned a weight value Wneighbor = size/ disiance
2

. The neighbor is

then chosen at random with a probability proportional to its weight.

44

4.2. Agent-based Applications

Agent paths are assumed to be slightly non-linear. A path model is derived from a contin­

uous function f(t) defined over t E [0,1] with the constraint that f(O) = f(l) = O. The values

of this function at 0 ::; t ::; 1 are considered points on a 2D plane with Cartesian coordinates

(t, f(t)) and are then transformed to the path's coordinates by using basic affine transforma­

tion methods [FvDFH95]. The transformation defines a parametric curve on the continuous

space with f(O) representing the starting interest point and f(l) representing the end-point.

The transformation is represented by Figure 6.3. Basic non-linear functions were used such as

sinusoids, quadratics, cubics, quadrics, conics, and compositions of these as weIl. To generate

a path, a random model was chosen along with random parameters (eg. amplitude) and the

agent followed the path outlined by the curve f([O, 1]).

FinaIly, the time between interest points was not explicitly modeled. At each iteration of

the adaptation process, with a probability PagenLnewdest a random agent was chosen among

the agents to choose a new destination. Once the agent reaches the destination, it "hovers"

around the destination choosing random straight paths and turning to remain within a given

radius of the interest point. When not following a path, the agents use a typical velocity-based

Newtonian physical model for movement. Shifts in direction and velo city are probabilistically

determined.

Faction versus Reputation

Faction is a system similar to reputation that is currently used in a number of modern persistent­

state games, notably EverQuest. Faction is a system that measures relationships between

individu aIs and/or groups and is at times misunderstood to be the equivalent of reputation

[Bro03]. The terminology used is as follows: "an individual's faction with another group is

high" means that the other group has a good relationship with the individual. Factions are often

symmetrical, but the system allows uni-directionallike/dislike relationships in general. The key

point here is that faction systems measure the status of relationships between individuals and

groups. Faction is used in games to decide on actions or general moods of NPC groups per

individual.

A player character's reputation is really how well-respected he is in general amongst others;

it is about how others perceive him, not about how weIl they get along. Reputation is a more

general concept. Ideally every player has a place in the world. The player character's reputation

is a way to quantify that notion: a high value means a good reputation, a low value means a bad

reputation. In this application, the value of reputation is not only quantified, it is localized and

presented as part of an automatic adaptation pro cess in a dynamic environment. In general, a

player character's reputation is a function of that player's actions while playing the character.

45

4.2. Agent-based Applications

Adding locality to an existing faction system has been investigated in a commercial setting,

as mentioned by the author of [Bro03]. The implementation details were difficult to deal

with. On the other hand, the system presented here has locality pre-built into the adaptation

model. The reputation system is sim ply an instance; locality is provided implicitly as a natural

consequence of using the generic adaptation model described in Chapter 3.

Reputation Groups

The reputation simulator as described above manipulates the value of a single player character's

reputation. The reputation value kept on the grid is the value of the single player character's

reputation at that location. In general, if there are N player characters in the game and each

had a reputation, this would require that each grid section have 2N integer variables (1 for

reputation points of reputation events caused by a player character, 1 for reputation value of

a player character). Typically, these games host hundreds of thousands of players [Com04].

Modeling reputation in EverQuest would require 430000· 2 . 4 bytes= 3.36 MB per grid section!

This is clearly impractical.

The proposed technique to fix the practicality issues of the implementation would be to

conglomerate individual character's reputations into groups. Player characters by default would

not be part of any group. Therefore, individual characters would only gain reputations when

associated with a group. The reputation of the group on the whole is what is represented in

the grid. Whenever a player character in the group causes a reputation event, the reputation

value for the whole group would be altered. Therefore, the reputation would be shared with

the group with which the player characters are associated.

There are 2 ways to conquer the problem of a malicious player joining the group and

immediately ruining the group's reputation. A membership value could be associated with each

member. The impact of the reputation events would be weighed by these membership values.

The reputation refiected upon the individual player character from the group could also be a

function of the membership value. In addition, membership values allow any player's char acter

to be part of multiple reputation groups. In this case, the player character's reputation could

be the average of both groups, or sorne other function of both groups' reputation values, such

as a weighted (by membership) average of the reputation values.

The second method involves a screening pro cess for joining groups. Essentially, this would

force sorne kind of initial requirements on the part of the player character before he/she could

join the reputation group. This method could be used in conjunction with membership values.

Players could decide which group to join and there could be a review pro cess involved with

joining the group. The pro cess could be automatic or based on the decisions of the more

46

4.2. Agent-based Applications

(a) (b)

Figure 4.11: The grid of (white) triangular agents, positive (blue) reputation points, arrows (grey)

communication terrain, and circular (orange) interest points. The snapshot in (b) is was taken only a

few iterations after (a) to show the spread of the reputation points caused by a moving agent.

important members of the group.

Analysis of the Reputation System's 8ehavior

As expected, in general the reputation system was more dynamic in comparison to the weather

system. The agents movement was a very interesting part of the observations. In particular,

the spreading of reputation points across the gr id was quite enjoyable to observe during the

simulations. A screenshot of the agents movement and the reputation point spread is seen in

Figure 4.1l.

In the reputation simulations, the values of the parameters for probabilities were PagenLnewdest =

0.01, Pevent = 0.001 and P good = 0.7. Agents, on average, choose a new destination every 100 it­

erations. Events were generated on average every few seconds. The terrain was either "cloudy"

with spreading of reputation points via agents, or "spotty" for some time if the agents did not

frequent the area containing reputation points.

In practice, the dissipation rate of reputation points converting to reputation value seems

to work quite weIl at the value of 1 per grid section per iteration. The impact of an event has

the potential to spread out quite evenly if agents pass by to carry the reputation points but

otherwise the resulting reputation value is too local to be noticed.

47

4.2. Agent-based Applications

Figure 4.12: The grid of reputation values. Bright values mean good reputation, darker values mean

bad reputation.

The reputation value fields end up being smooth, with brighter peaks near the more signifi­

cant interest points. The reputation field is show in shown in Figure 4.12. Since the probability

of a good event is greater than a bad event, we expect the picture to be lighter than darker.

By construction of the movement model for these agents, most of the activity will be centered

around the larger interest points. The smoothness around the "blotches" of reputation value

are due to agents moving out of or into the corresponding interesting regions.

The highly dynamic and non-deterministic nature of the reputation application makes it

somewhat difficult to analyze the behavior of the system. The application would need to be

tested in a real gaming environment. In the next chapter, we will partially apply the reputation

in a real game environment and see how the reputation fields look when applied to different

movement models for agents.

The weather system and reputation system applications are example systems that use the

model and fit into the adaptation process. The adaptation procedures used by each application,

as well as other related concepts are introduced. The behavior of the systems was described

by using data observations from the simulation runs. As well, the major difference between

agent-based and purely environment-based applications is shown.

48

4.2. Agent-based Applications

The systems presented here are 2 adaptive virtual environments that game designers could

have built to use in their games; both adhere to the generic adaptation model presented in the

previous chapter. This chapter demonstrated the design of these two systems by first describing

the application, relating the system to its real-world counterpart, and then breaking down the

system's components into data and procedures that act on that data. By using the generic

adaptation model, locality is implicitly provided by construction.

Finally, the existence of a simulator that implements the 2 systems shows that such systems

are actually realizable. This proves that such systems could be functionally included in a

persistent-state game setting. We will investigate the implementation of the simulator and

discuss performance details in Chapter 6.

49

Chapter 5

Movement Models for Mobile Agents

In a previous chapter (specifically, Section 4.2.1), we proposed an artificial model for agent

simulation between interest points for the purpose of generating input data. The model was

based on several assumptions and designed to be simple, but not necessarily realistic. As a re­

suIt, the generated data may not be actually suit able to use because it may not be representative

of true player movement in MMOGs.

The purpose of this chapter is to describe a method for building good, intuitive movement

models for agent simulation. We do so by analyzing real player movement data collected by

me ans of a game-playing experiment. We discuss the important elements ofthe construction of

an agent simulation model, describe the analyses performed on the collected data, discuss the

results of the analyses, and conclude with sorne general remarks.

Note that this particular chapter should be considered a case study on movement models

in general. We will apply the results of this study back to the reputation system simulations

in Section 5.5. But, the overall goal in this chapter is to analyze movement in a particular

class of games (namely, persistent-state MMOGs) which possibly exclude adaptation concepts

altogether. That is, we are searching here for a good movement model in persistent-state

MMOGs within all kinds of virtual environments, not only adaptive virtual environments.

As in Section 4.2.1, we assume that player agents in virtual worlds travel to and from interest

points. There are three obvious questions one could ask about this travel:

1. How do players choose which interest points to travel to?

2. When do players decide to choose a new destination?

3. How do the players get to the target interest point?

50

5.1. Conquero

We are interested in finding answers to all such questions, but here we focus primarily on

the first and second. Answering the third question involves finding a function that generally

describes the path taken by agents in 2D space and justifying its correctness.

This chapter will first describe the game used in the game-playing experiment. Second,

the data gathering techniques that are applied are described. Then four movement models are

constructed based on reasoning about the data. The models are compared and validated, partly

by showing the effects when the models are used in agent-based adaptation simulations.

5.1 Conquero

Due to a lack of information data available from commercial persistent-state MMOGs, the

immaturity of free/open MMOG implementations, and the logistic complexity of implementing

data-collecting functionality in existing MMOG projects, we were unable to perform a large­

scale experiment. Here, we describe an experiment using a custom-made game to provide an

approximation to the real data.

The goals of the game-playing experiment are as follows:

1. Design a simple game that is complex enough to encourage interesting movement. A

simple game is easy for players to learn and is also easier to implement. We take a high­

level approach to analyzing movement in MMOGs, therefore including many game details

adds unnecessary overhead to both the implementation and the experiment.

2. Player movement must be clearly related to points of interest. This is our basic assumption

about how players move in MMOGs, therefore it must be present in the game as well if

the collected data is to reflect real MMOG data.

3. Players must pause at interest points for sorne time. Again, this is to enforce our assump­

tions about player behavior in MMOGs. Often, the interest point will be a city, in which

case the player will spend sorne time navigating through it to find a particular person or

shop. In other cases, there will be monsters to fight, people to meet, or things to do. AlI

these require staying in close proximity of the interest point for sorne time.

4. Incorporate collaboration and conflict. If people were completely alone in a persistent­

state environment they would likely move differently than in an environment full of other

players. For instance, players usually form groups and go visit interest points together.

Conflict is required for 2 reasons. If there is no conflict, players will soon get bored since

they would have no challenging objectives. Conflict in MMOGs also influence players'

51

5.1. Conquero

Figure 5.1: Screenshot of Conquero

movements. If a char acter dies from a fight or there is a rush to get a certain item, players

will move from place to place differently than if this conflict was resolved.

5. Ensure enjoyable gameplay. The game must be somewhat fun so that players play the

game seriously and somewhat competitively. If the players do not enjoy playing, they will

not play the game "correctly" (as would a real MMOG player), and hence would add a

bias to the collected data from the experiment.

To reach these goals, we implemented Canquera: a game of team capture.

Conquero is a multi-player network game consisting of players who each get to control one

agent in a continuous, rectangular 2D virtual terrain with no obstacles. The agents are free

to move in this terrain and movement is simulated using a basic N ewtonian physical model

similar to the one described in [Rey94]. The virtual terrain contains a number of randomly

distributed command centers (interest points) which form the nodes of a graph. The edges of

the graph are obtained by applying a relative neighbarhaad graph [Tou80] algorithm on the set

of points in the planar terrain. The players are grouped by a pre-assigned team and allowed to

communicate throughout the game.

The goal of the game is to conquer all the command centers. To capture a command center,

an agent must move near and remain near a command center for a fixed interval of time (a few

52

5.2. Game-playing Experiment

seconds) as long as no other agent is also near the same command center. When a command

center is captured, it becomes owned by the team of the agent which captured it. A team

can conquer a command center on 2 conditions: (a) if the te am currently does not control any

command centers, a member can attempt to capture any center in the graph, otherwise (b) a

team member can attempt to capture any command center which is directly connected to a

command center already owned by that team.

Each agent also has a level value which determines how strong it is. An agent gains levels

when any member of its team gains control of a command center. The agents lose levels

whenever their team loses control of command centers. Each command center has a size; the

levels gained and lost are proportional to the size of the command centers.

Agents are also allowed to engage in close-range combat. The agent's current level de­

termines how much damage it can endure before dying, how much damage it can cause to

opponents, its resistance to damage, its weapon range, and its stamina. A swing is an action

performed by the user which draws a line of a given length from the center of the agent 's

avatar straight forward: if the line intersects an opponent, then a damage potential dice-roll is

compared against the target opponent's "armor resistance" dice-roll to determine the damage

from a hit. When an agent receives damage, its current life total ("hit points") decreases. Once

the life total reaches 0 or below, the agent dies. Death causes a loss of 1 level and the agent

respawns in a totally random location on the terrain.

One might ask why we let the players continue playing after death. The point here is to

make the game experience a continuaI never-ending struggle since the intent is to approximate

real behavior of persistent-state MMOGs. As such, we set the consequences of character death

in Conquero be similar to the case in real, persistent-state MMOGs.

5.2 Game-playing Experiment

The experiment consisted of 20 player subjects which were organized in 5 teams of 4 players each.

Teams were assembled by groups of friends so as to encourage collaboration and communication

between team members, mirroring the way people play real MMOGs.

Two games were played: a trial game, and a real game. The trial game was meant to

introduce the game to the players so they can get familiar with the movement, controls, captures,

combat, sounds, and general gameplay. The trial game lasted 22 minutes and the real game

lasted 68 minutes. Player movement updates were sent several times per second by the game

clients and constituted by far the majority of the logged information. The event type statistics

for each game are summarized by the tables 5.1a and 5.1b.

53

5.3. Building a Movement Model

Event Type Instances Event Type Instances

Update 658303 Update 2004607

Capture 820 Capture 1347

Hurt 553 Hurt 2196

Kill 258 Kill 1143

(a) (b)

Table 5.1: CoUected information for (a) trial game and (b) real game

A simple calculation shows that the average number of movement updates logged by the

server per second was approximately 500 in both cases: in the trial game 658303/(22·60) =

498.71 and the real game 2004607/(68·60) = 491.33. Clients were set to send updates 100 times

per second. The experiments consisted of 20 clients, which means many ((2000 - 500)/2000 =

75%) packets were being dropped by the network, most likely due to overload. Luckily, after

using the simulator to replay the game based on the data collected, even at full speed the game

seemed to run in slow motion. This implies that the positions of the players were being updated

much more than required. Evidently, 100 updates per second per client led to an overfiow of

information sent out over the network. This makes sense because even with such a high packet

loss, the game applied movement updates quite smoothly during the experiment. This was

confirmed by everyone who took part in the experiment.

The virtual terrain had a width of 1200 pixels and height of 1000 pixels. Information about

each command center and the graph is contained in Table 5.2. A screenshot of the graph is

found in Figure 5.2.

5.3 Building a Movement Model

The main goal is to search for a probabilistic model whose parameter values are inspired by

collected statistics on observed data. Let us consider the answer to our first question: how do

players choose which interest points to travel to? We first have to find a way to formalize the

problem at hand. In this section, we formally define the model we seek to build. Note that

from this point on, we ignore the trial game because the data is biased by player. We deal only

with the real data set.

We define the movement model as a 5-tuple (A, S, T, PT, Pp) where A is the set of agents, S

is the set of interest points, T is a discrete timeline, PT and Pp are families of independent and

identically-distributed probability distributions. PT,a,t(Silsj) E PT is the probability that agent

54

5.3. Building a Movement Model

Command Center x y Size Degree N eighbor Set

1 1023 393 10 3 { 2, 3, 23 }

2 1024 286 17 1 { 1 }

3 1112 380 13 3 { 1, 4, 5 }

4 1140 357 19 1 { 3 }

5 1148 777 11 2 { 3, 24 }

6 19 75 10 1 { 15 }

7 222 517 12 2 { 11, 15 }

8 232 130 22 3 { 10, 12, 15 }

9 254 890 11 1 { 17 }

10 332 56 25 2 { 8, 12}

11 341 512 10 3 { 7, 13, 17 }

12 346 81 13 3 { 8, 10, 16 }

13 358 399 11 3 { 11, 14, 18 }

14 426 333 25 3 { 6, 7,8 }

15 43 234 11 3 { 11, 14, 18 }

16 450 278 19 2 { 12, 14 }

17 466 741 18 3 { 9, 11, 19 }

18 489 465 10 4 { 13, 14, 19, 20 }

19 618 557 11 3 { 17, 18,22 }

20 629 354 10 3 { 18, 21, 23 }

21 658 127 11 1 { 20 }

22 839 859 12 2 { 19, 24 }

23 886 362 10 2 { 1,20 }

24 886 870 14 2 { 5, 22 }

Table 5.2: Info about the Graph and Command Centers in the Conquero experiment

55

5.3. Building a Movement Model

Figure 5.2: Screenshot of the Graph used in the Conquero Experiment

a at time t will begin traveling to interest point Si given that it is now near S j. PP,a,t (Si 1 S j) E Pp

generates a path taken by agent a from Si to S j' Here, near means within a small fixed distance

away from the point. We are interested in finding general closed form expressions for Pp and

PT·

Before any research effort was spent on analyzing the movements of player agents, simula­

tions for the reputation system were based on a much simpler movement model, described in

Section 4.2.1. First of aH, the graph was always a clique so that every point was a neighbor, and

agents chose a neighbor probabilistically where each neighbor had a probability proportional

to the value of sizej distance2
. We label this movement model M Mrandom' For the remainder of

this chapter, we propose improvements of this basic model.

Initially, we make the assumption that every agent's movement is independent of the other

agents' movements. The reason to assume this is simplicity: we would like to see how agents

move in general, not necessarily requiring other agents to be present. We also assume that the

next interest point to which an agent travels is dependent only on the location of the current

interest point, and not on the locations of previously visited interest points. Again, this as­

sumption might not necessarily be appropriate in this context: we are essentiaHy assuming that

players are ahistorical. Our hope is that these assumptions are not so strong as to compromise

56

5.3. Building a Movement Model

the value of the movement models built from this analysis. We expect the significance of any

correlation to be small enough to ignore. Ideally, however, correlation caused by movements of

other agents and previously visited destinations would be integrated into the model.

We consider a player's entire movement as sequences of visits to and from interest points:

Movement(aname) = (SI, S2, ... , SnnamJ, where nname is the number of interest points visited by

agent aname . Specifically, given the above assumptions, we define a dis crete data instance as

simply a link in the chain: dname,i = (Si, SHI)' The list of aIl data instances forms the data set

which use as input to a classification system.

5.3.1 Classification and Statistical Learning

Classification problems have the following form: there exists a collection of data instances,

which is a known/sampled subset of a much larger set of real data Dreaz, of the form Xi =

[Xi,l, Xi,2, ... , Xi,n] and a set of classes Y = {yly is a simple (non-set) element}. Each instance is

accompanied by a class so that the data set can be seen as a matrix:

Xl,1 Xl,2

Dsampled =
X2,1 X2,2

Xm,1 Xm,2 Xm,n Ym

Assuming that there is a classifier f that will satisfy f(x) = y for every possible instance

xE Dreal, the goal is to use Dsampled to search for a good generic approximator (hypothesis), h,

to f.
The elements of the input vectors x are typically called features and the value of a given

feature j of instance i is Xi,j. These features describe distinct qualities of a system. For example,

weather features such as temperature, humidity, outlook (sunny, rainy, or overcast), whether

or not it is windy, could describe conditions that affect the outcome of a certain decision. And,

under a given set of weather conditions, it may or may not be desirable to play golf. This

is a concern for golfers and the decision problem is a typical example used when introducing

supervised learning techniques [Mit97]. The de ci sion to be made is whether or not to play golf

on a given day. In this case, Y = {play, don't play}. Since IYI = 2, the golf example is a

special case called a binary classification problem. Data was collected by observing the weather

conditions and the outcome of the golf player's decision every day for two weeks. Then, machine

learning techniques were applied to build a hypothesis for determining whether to play golf on

a given day based on the weather conditions.

57

5.3. Building a Movement Model

We build a program that analyses the data and uses classification to find a good approx­

imator for the true function Pp based on collected data. In particular, we would like to find

a good feature or set of features that classifies the target interest point in a link, SH1, given

the source Si. We propose intuitive heuristic functions for selecting the destination given the

feature values of the state at the source. We are also interested in general statistics such as the

proportion of destinations that are neighbors of the source and the proportions of classifications

correctly identified by our heuristics.

We define our 3 heuristics as follows:

• h (s s) = size(sto)
1 from, to dist(sf St) rom, 0

• h (s s) = size(sto)2
2 from, to dist(sf St) rom, 0

• h (s s) = size(sto)
4 from, to dist(sf St)2 rom, 0

where dist(Sl, S2) is the Euclidean distance between interest points Sl and S2. The decision

algorithm for a given heuristic sim ply calculates the heuristic value over all possible destination

points given the source point and chooses the one with the maximum.

We define the neighborhood feature as N(sfrom, Sto) = 1 iff sfrom and Sto are directly con­

nected, a otherwise. Finally, we describe the classes Y = {a, l, ... , 7}. Y = a corresponds to

the observed situation in which none of the hypotheses correctly chose the destination. y = 1

corresponds to the observation that heuristic 1 correctly classified the instance (ie. correctly

chose the destination). Similarly for classes y = 2 and y = 4 for heuristics 2 and 4. Cases

y E {3, 5, 6, 7} represent bitwise OR combinat ions of the base cases. For instance, y = 6 means

heuristic h4 and h2 chose the correct destination, but hl did not. Thus, the rows in our matrix

D have the form [N, hl, h2 , h4, y].
Upon examining our empirical data, we noticed that self-Ioop links (Sto = sfrom) occur more

often than initially expected. Upon refiection, this is due to the method used to detect links:

if an agent suddenly goes out of the reach of an interest point- even by just a single pixel- and

then cornes back in reach of the same interest point, a self-Ioop link is inserted in the movement

chain. These are degenerate cases, so we exclude them altogether.

In our experiment, the number of rows m = 4457. Table 5.3 summarizes the collected

statistics on the whole data set. Immediately we notice that we never find the case where both

h2 and h4 pre di ct correctly, which could be because each emphasize an opposing factor in the

ratio. Note that from these calculations it appears that the agent explores (visits a target node

that is not a direct neighbor) a little less than half of the time. On average, the heuristics

choose the correct destination 23.5% of the time. The first two hl and h2 predict the correct

58

5.3. Building a Movement Model

Statistic N= 1 y=1 y=2 y=3 y=4 y=5 y=6 y=7 y>O

N umber of Total 2527 41 24 48 268 34 0 940 1355

Proportion of Total 0.567 0.009 0.005 0.011 0.060 0.008 0 0.211 0.304

Proportion of y > 0 0.91 0.030 0.018 0.035 0.198 0.025 0 0.694 1

Proportion of y = 7 0.947 0 0 0 0 0 0 1 -

Table 5.3: Statistics of coUected data

destination with approximately 22% while h4 chooses correctly 27% of the time, implying that

h4 is somewhat better for determining the destination. An interesting observation is that

both using at least one heuristic and using aIl heuristics choose the correct destination more

than 90% of the time when the destination and source are neighbors. The simplest intuitive

construction then is a model that chooses sim ply between exploring and not exploring. Basing

the probabilities on these calculated statistics leads to the following proposed agent behavior:

explore 45% of the time and choose a neighbour (via the heuristics) 55% of the time. These

rules yield a decent, simple movement model we shall calI M MSimple' However, the accuracy of

the heuristics for deciding the next destination gives us incentive to search for other, possibly

better, models.

We are also interested in the agents' rest times: the time spent near a given command

center while the agent is not traveling between command centers. To measure this value, we

subtracted the last time the agent left a command center to the first time it reached the same

command center (effectively treating chains of self-loop links as just one link). The mean rest

time was computed to be 17.079 seconds, with a standard deviation of 25.958 seconds. To

model the rest times in our movement models, we sim ply observe the value of random variable

y = Z~I-' where Z is normally-distributed random variable with mean 0 and standard deviation

1, J1 = 19.079, and (J = 25.958. Y then becomes a normally-distributed random variable with

the desired mean and standard deviation [WI896]. We consider negative values of Y to give a

rest time of O.

We now apply some learning techniques to see if a function can be learned to choose the

correct outcome based on the values of the heuristic. It may seem futile to do this with the

problem as we have stated it above. After aIl, the learned classifier will sim ply reiterate to us

what we already know since the classes are defined entirely on the heuristics we chose ourselves.

Therefore, the value of our function will simply determine which heuristics choose correctly

given a source and destination. 80 why not formulate the problem so that the source interest

point is one of the input values and the destination is the output value? The answer is twofold:

59

5.3. Building a Movement Model

i) we are interested in the threshold values that decide which heuristic to use and ii) we are

interested in the generic problem of movement between interest points on an arbitrary graph.

Solving the learning problem for this data set might give a good movement model for agents

in this particular graph layout, but will not be at aIl generic. However, we still investigate this

alternative formulation in Section 5.3.2 to see what kind of agents it generates.

We choose the C4.5 decision-tree learning software [Qui92] for several main reasons: it

finds threshold points for continuous features and it is efficient. The C4.5 algorithm applies

the information theory of entropy and information gain to measure the most representative

features which reveals somewhat the relative importance of each criterion in the movement

strategies used by the players; this finding allows us to compare players' decisions to intuitive

movement strategies obtained only from analysis of the game rules. As weIl, decision trees

make a natural choice for dictating NPC behavior. A typical implementation of modern AI for

NPCs is 8cripting [Toz02]; scripts are simply a list of rules that are executed sequentially to

evaluate the situation and decide how to react. Decision trees perform the same function with

the added value that there exist efficient, well-known algorithms for optimizing behavior.

After running the C4.5 algorithm on the data set, we obtain the decision tree se en in

Figure 5.3. It is worth mentioning that the time taken to read aIl the data from file, compute

the decision tree, and output the tree to standard output took a total time of 0.151 seconds on a

PentiumIV 1. 7Ghz machine with 512megs of RAM. These results imply that assembling smaIl­

scale, simple classification problems and generating a decision tree from learning is feasible

during actual game time.

Once the decision tree is obtained, the procedure for deciding which interest point to target

next is straight-forward and efficient. For each potential destination point: a) calculate the

value of the 3 heuristics once and b) navigate the decision tree to get a solution and record it.

Then, the probability of an action is the proportion of the number of repetitions of a solution

versus total solutions. For example, let us say a given interest point 81 has 3 neighbors: 82, 83,

and 84. Passing 82 through the tree requires calculating the values hk (8l, 82)' Let us say the

decision tree outputs 7. Similarly, for the other neighbors it outputs 4 and 6. Then, hl was

valid once, h2 twice, and h4 thrice. Therefore for this given situation, the heuristic chosen is

hl with probability 1+;+3' h 2 with probability 1+;+3' or h3 with probability 1+~+3' Since both

the heuristics and a single decision tree navigation is comput able in constant time (time taken

~ log2N, where N is the number of tree nodes which is constant for a given tree), the time

taken for the decision still remains linear in the number of potential destinations. We shall

label this movement model M Mchooser because it chooses a neighbor heuristicaIly.

60

5.3. Building a Movement Model

<1,17E-3

hz >2.486
~-=-.

Figure 5.3: Decision tree for heuristic selection in M Mchooser learned by C4.5

61

5.3. Building a Movement Model

5.3.2 learning How to Move in a Dynamic Environment

The previous section explained the basics of classification and proposed a particular formulation

for a classification problem. The resulting hypothesis function learned from the data chooses

between which of the praposed heuristics to use when deciding between neighbors. The results

of the analysis rely on one major assumption: that the heuristics {hl, h2 , h4} are the only ones

that impact the de ci sion of the agent.

In a dynamic environment such as Conquero, there are many factors other than the distance

and size of the next command center. For example, the position and strength of the enemies

are likely to affect how the agents move in such an environment. As such, while Conquero was

built solely to provide an experimental context for gathering data, it introduces other dynamic

factors to consider when analyzing player movement. These factors are particularly relevant in

the context of computer games which require sorne level of dynamic stimulation.

Our new classification problem consists of a data set M, where our class set Y = {1, 2, 3, ... , 24}

represents the next command centers an agent could visit. The feature set is the vector x which

somehow summarizes the current global state of the game at the time before the agent leaves

the current navigating command center. These features are each a function of the state of the

graph and state of aIl the agents at that given time. Note that we still assume that only the

state at the given time affects the decision of the agent.

Now we have to deal with a problem faced by many AI researchers: how to define the set of

features. The problem is somewhat easier in a deterministic game such as Chess or Checkers

where it is certain that the state does not change before the final decision on a move is made.

That is not the case in our formulation: for instance, an agent may start heading for Command

Center 4 (CC4) fram CCl but then another agent will beat arrive at CCl first, giving him reason

to change his mind and head towards CC22 . In addition, we are dealing with a conceptually

continuous environment, so the features described will be continuous geometric measures.

Our motivation is to describe as many relevant features as possible and let the learning

algorithm de ci de on the best ones to use. To do so we define 16 global features and 9 features for

each command center. There are 24 command centers, which means Ixl = n = 16+24·9 = 232.

The description of each feature follows. Note that the features described below are somewhat

rudimentary; it is out of the scope of this research to search for higher quality continuous

features, but one that would be interesting to measure in Conquero would be the dominant

regions [TiHOO] of the agents.

AlI global features are described fram the point-of-view of the currently traveling agent.

Unless otherwise noted, the features are continuous and in ~+. The global features are:

62

5.3. Building a Movement Model

• oidee E {1, 2, ... 24}: the sourcejcurrent command center the agent is at

• mopx: the mean x position of the agent's opponents

• mopy: the me an y position of the agent's opponents

• mtpx: the mean x position of the agent 's teammates

• mtpy: the mean y position of the agent's teammates

• coo: command centers owned by agent's opponents

• cto: command centers owned by agent's team

• dco: distance to closest opponent

• dct: distance to close st teammate

• dcc: distance to close st command center

• dcuc: distance to close st unowned command center

• dcoc: distance to closes owned command center

AH command center specific features are described with respect to that command center

from the point-of-view of the currently traveling agent. The features associated to a particular

command center, CCi are:

• CCi[neighbor] E {O, 1}: the neighbor feature (1 if CCi is a neighbor of aldeC, Ootherwise)

• CCi[own] E {O, 1, 2}: the ownership feature (0 if unowned, 1 if owned by agent's team, 2

if owned by opponents)

• CCdsize]: the size of the command center

• CCddist]: the distance from the agent's location to the command center

• CCdnop]: number of opponents close to the command center

63

5.3. Building a Movement Model

• CCi [nte]: number of teammates close to the command center

The data points were collected for each transition from command center to command center

over the course of the game-playing experiment for each agent in the game, as in the previous

classification task. The resulting decision tree has depth 52, and has 1809 nodes (904 decision

nodes, 905 leaf nodes). The algorithm took 10.953 seconds to compute the decision tree on the

same hardware used for the previous classification task. The tree is included in text form in

Appendix A.

To our surprise, the root decision node splits on feature CC4 [h4]. We expected that aldCC

would be the most determining feature for choosing a new destination. U pon closer inspection,

it seems that after splitting on CC4 [h4], the left subtree degenerates into cases specifically

concerned with neighborhood values CC4 [neighborhood] and CC5 [neighbarhoad]. The result

we expected starts on the second level, the top of the first right subtree, where aldCC is split

by values. CCdnap] and CCi[nte] are often found near the top of the trees as weIl; they seem

to make good determining features.

The priority given to CC4 [h4] remains somewhat unsettling. Referring back to Table 5.2

we recall that the degree of CC4 is 1, which is particularly bad in Conquero: if a team only

owns a command center of degree 1 then you are forced to conquer its only neighbor which

opponents can easily block by remaining near it. Still, why CC4 and not the other degree 1

command centers? Looking back at Figure 5.2 we notice that CC4 is the degree 1 command

center farthest from the higher-degree clusters.

In fact, the split on the first node is due to the number of cases collected which had CC4

as a target. It turns out that CC4 was the next target 13.8% of the time, 3 times larger than

the expected fair average of 4.16% (= 2~)' This surplus in the data collected with CC4 as

a target justifies using it as a first criterion for decision-making because it provides the most

information.

The precise reason that CC4 was chosen particularly more than the others is not entirely

clear. CC4 is a bit larger than other leaf nodes, and it is very close to CC3 , which makes it easy

to gain control over 2 command cent ers very quickly. As weIl, the 2 close command cent ers are

in a relatively deserted area compared to the opposing side of the map and as such was rarely

guarded if they were already conquered along with the surroundings. This last fact made these

2 close points a vulnerable break-in region during raid attacks from teams who had suddenly

lost aIl their command centers.

64

5.4. Other Movement Models

5.4 Other Movement Models

In the previous section, we proposed two similar movement models, M Msimple and M Mchooser·

The simple movement model just chooses randomly between exploring and visiting neighbors,

but then chooses a neighbor at random. When visiting a neighbor, the chooser calculates

the heuristic values for each neighbor, runs the decision tree to find the class associated with

that neighbor, and then uses the class info to choose a heuristic to use to determine the next

neighbor. We also presented M Mlearned which uses a global decision tree learned from the

experiment to decide where to move.

The first two movement models were designed by reasoning about the statistics of the

observed data from the experiment. Up to now, the models that have been described are

entirely independent of the game-playing experiment explained in Section 5.2. That is, once

the data is processed and the model is built, the model no longer depends on the experiment

data. We describe one last movement model that is dependent on the data, M Mexperiment: a

movement model that sim ply replays the recorded game movements. In this model, agents do

not choose between cities. Agents move exactly as they did in the game experiment. This

movement model is of no direct value to us, but it will be interesting to compare against the

other movement models.

5.5 Applying the Models to Agent-based Adaptation

We now recall our initial motivation for studying movement models: to provide slightly better

than random models for mobile agents. In this chapter we have described, in total, 5 movement

models: M Mrandom, M Msimple, M Mchoosen M Mexperiment, and M Mlearned, and how they were

obtained, but we have not shown how these movement models fit into our adaptation scheme.

Here, we show how well these movement models work in agent-based adaptation, specifically

as applied to the reputation simulation. We construct a reputation test that includes the graph

used in the game experiment (Figure 5.2) and the agents to be exactly those used in the

game. We run 5 different simulations: one for each movement model. In each simulation,

every agent uses the movement model specified by the simulation specifications. We run each

simulation with the same random seed so that every simulation pro duces the same sequence

of probabilistic choices; the differences in each simulation are therefore solely the cause of the

agents' movements. Otherwise, we use the same constants that were described in the reputation

simulations in Section 4.2.1; that is PagenLnewdest = 0.01, Pevent = 0.001 and P good = 0.7.

Therefore, the agents will produce the exact same sequence of reputation occurrences in an

65

5.5. Applying the Models to Agent-based Adaptation

cases, and in particular an equal number of bad events and good events.

We run the simulations for 5000 iterations each and we save the state (and take a screenshot)

of the reputation field at iteration 500, 1000, 2000, and 5000. The saved state indudes aIl the

reputation values for each grid section in the grid. We then measure the dissimilarity between

saved states at each iteration for each simulation. The distance metric used is intuitive: the sum

over aIl grid sections of the absolute value of the differences in reputation value. These values

are listed in tables 5.4a-d. Screenshots of the reputation field at iteration 1000 are displayed in

Figure 5.4.

From the screenshots, it is apparent that none of the reputation fields are unambiguously

similar. It was expected that the reputation fields for simulations involving the simple and

chooser models would be noticeably similar because they are the most similar movement models.

It was also expected that the experiment model and learned model would look somewhat similar.

However, these are only qualitative hypotheses.

Examination of the quantified dissimilarities also supports the general daim that the models

produce radically different results. The expectations were to get dissimilarities dose to 0 which

indicate perfectly similar. Instead, the dissimilarity is high. There were 3100 = 62 . 50 grid

sections in the grid used implying a dissimilarity of at least 2 reputation value per grid section

after 1000 iterations. The dissimilarity grows with time but using the same random seed for

producing events which implies that the pathes of the agents must be quite different. Therefore,

the quantitative results also reinforce the qualitative hypotheses mentioned above: that is, we

cannot daim that any of these models pro duce similar results. We notice expected results as

weIl, such as the consistent large dissimilarity between the random model and the learned and

experiment models, especially in the longer term (after 5000 iterations).

In the end, if we assume that the experiment model is the "correct values" then we see that

surprisingly M MSimple has the lowest total dissimilarity in every case implying that it is the

best approximation. This is encouraging because this model is efficient and easy to implement.

It remains, however, somewhat difficult to make daims about the quality of the proposed

movement models in a context outside of settings similar to Conquero. We believe that the

movement information obtained from a real persistent-state game would differ significantly

from the movement information we have collected for this experiment. As weIl, the online

modification of agents' reputations would likely affect their movement, adding a feedback loop

into the system. Of course, the validation used here is better than no validation whatsoever.

More importantly, this study exposes the complexity of trying to find accurate, general and

predictive models for agent movement in games.

66

5.5. Applying the Models to Agent-based Adaptation

MMrandom MMsimpZe MMchooser M Mexperiment MMzearned

MMrandom 0 8882 9777 8464 11518

MMsimpZe 8882 0 7401 6078 8318

MMchooser 9777 7401 0 7055 10065

M Mexperiment 8464 6078 7055 0 7882

MMzearned 11518 8318 10065 7882 0
(a)

MMrandom MMsimpZe MMchooser M Mexperiment MMzearned

MMrandom 0 18752 19729 17411 24366

MMsimpZe 18752 0 17635 13843 19994

MMchooser 19729 17635 0 16070 21687

M Mexperiment 17411 13843 16070 0 17055

MMzearned 24366 19994 21687 17055 0
(b)

MMrandom MMsimpZe MMchooser M Mexperiment MMzearned

MMrandom 0 30075 32230 32408 39132

MMsimpZe 30075 0 31823 31807 37293

MMchooser 32230 31823 0 32608 35550

M Mexperiment 32408 31807 32608 0 35246

MMzearned 39132 37293 35550 35246 0
(c)

MMrandom MMsimpZe MMchooser M Mexperiment MMzearned

MMrandom 0 57515 56635 86410 82102

MMsimpZe 57515 0 54052 82475 79589

MMchooser 56635 54052 0 84353 82713

M Mexperiment 86410 82475 84353 0 98774

MMzearned 82102 79589 82713 98774 0
(d)

Table 5.4: Dissimilarity ofreputation fields in simulations at iteration (a) 1000 (b) 2000 (c) 3000 and
(d) 5000. Smaller values mean more similar while larger values mean more dissimilar.

67

5.5. Applying the Models to Agent-based Adaptation

(a) (b)

(c) (d)

(e)

Figure 5.4: Screenshots of the reputation field at iteration 1000 using (a) M Mrandom (b) M MsimpZe

(c) M Mchooser (d) M Mexperiment and (e) M MZearned

68

Chapter 6

An Implementation of the Adaptation Framework

This chapter describes in technical detail the design and implementation of the adaptation

simulator used in the experiments described in the previous chapters. We begin with a broad

overview of how adaptation fits into modern games, foIlowed by an analytical breakdown of

the actual adaptation engine. We then describe sorne tests to evaluate the performance of the

implementation, describe a few optimizations, rerun the tests, and conclude on the quality of

the optimizations.

6.1 Adaptation in Modern Persistent-state Games

The design and implementation of modern multi-player online persistent-state games are heavily

infiuenced by both the efficiency of the network and efficiency of rendering graphics. Rendering

graphics is for the most part a client-side issue; that is, it depends mostly on the performance

of the computer running the game client. The efficiency of the network, however, is largely

dependent on the infrastructure and the architecture of the game's network protocol. In these

types of games in particular there is an abundance of information being passed over the network,

and so optimal network performance is a high priority.

By far the most popular architecture in general is the client/server architecture because it

captures the nature of most network tasks and is widely-used. As weIl, the reliable connection­

oriented Transfer Control Proto col (TCP) fits quite weIl in the client/server architecture. Stud­

ies show however that the client/server architecture is inadequate for multi-player games because

the large load endured by the server makes the network unscalable. As such, there are current

research projects devoted to optimizing network performance in modern games. For the most

part, these projects stem from the existing algorithms studied in distributed simulation now

69

6.1. Adaptation in Modern Persistent-state Games

Clustered
Servers

Clustered-Server
Architecture

Adaptation
Engine

History
Server

Distributed
Architecture

Figure 6.1: The generallayout of the adaptation architecture

evaluated in agame context. Of them, 2 generic alternative architectures have been proposed:

the clustered-server architecture, and the distributed architecture.

Clustered-server architectures try to keep the generallayout of the client/server architecture

while trying to reduce the load on a single server. The ide a is that there still exists a central

authority, but that central authority may be composed of many comput ers in a cluster which

are themselves distributed. Example implementations include the mirrored-server architecture

built on Quake in [CFK01], the proxied-server system in [MFW02] and the hierarchical server

architecture found in [Fun96].

Distributed implementations attempt to spread sorne of the previously server-side processing

computation across client machines. Note that this is fundamentally different than clustered­

server architectures because in this case we are allowing clients access to state information,

which is potentially sensitive. This solves the scalability problem but introduces other problems

such as state inconsistencies, cheating, and load-balancing. Examples include MIMAZE [DG99]

and EternaZ [Qua03].

We would like to extend these architectures now to include the pro cess of adaptation in the

virtual environment. We first introduce a critical concept: the state history server (SHS). The

SHS acts as a global camera: it keeps track of the global state of the game by taking "snapshots".

It is responsible for collecting state information from clients and/or servers periodically, possibly

re-assembling separated parts of the state to form the global state, storing the history of the

game state, and providing the history of the game state to the adaptation engine. The SHS is

also responsible for sending state updates back to the clients and/or servers as a result of the

adaptation. The general idea is illustrated in Figure 6.1. Note, in particular, that the proposed

logical concept fits into every one of the major network architectures currently used in MMOGs.

70

6.2. Design and Implementation of the Adaptation Engine

In the next section, in fact in this entire chapter, we analyze in detail only the adaptation

engine component of the general architecture. We do not assume that it is trivial to implement

the SHS or the communication between the SHS and the clients and server, but it is outside of

the scope of this research. We focus mainly on proving that the implementation of a modular

and efficient adaptation engine is feasible.

6.2 Design and Implementation of the Adaptation Engine

The adaptation engine is written in Java. Sorne of the data-gathering and processing tasks where

handled by Perl and shell scripts, but they are not required components. In both languages,

prototyping is easy. Java inherently offers object-oriented principles and supports most popular

design patterns while Perl is superior for lower-level tasks such as parsing data in a particular

format and reporting analyses do ne on output data from program executions.

Most design concepts mentioned in this section, unless otherwise noted, were taken from

[LGOl]. First, l will list the major modules and show the module dependency diagram. Then,

for each module a list of the major components is presented, as well as any non-trivial program­

matical challenges faced in the implementation, algorithms used, and design patterns used.

The engine relies on 2 packages provided externally: hexIT [Lan03] and Minueto [Den04].

hexIT is a Java package that provides an API for using and drawing 2D hexagonal grids.

Minueto is a reasonably efficient gaming and graphies framework for Java which is intuitive to

use.

The major modules are:

• Abstract Simulator

• Plug-in Adaptation Systems

• Abstract Fuzzy Controller

• Abstract Grid API

• Movement Modeling

• Core Utilities and Data Structures

• Conquero

• Game Data Analyzer

71

6.2. Design and Implementation of the Adaptation Engine

--t Core Utilities and Data Structures 1 - Abstract
Simulator

Conquero
-

1
t

Movement
Modelling Game

Plugin API Data

Adaptation Analyzer il Abstract

Il
Abstract

1

Systems Fuzzy Grid

Controller API

Figure 6.2: The module dependency diagram of the implementation

The dependencies between each module and approximate relative sizejsignificance of each

module are given in Figure 6.2.

Abstract Simulator

The abstract simulator module has two major components: the simulation engine, and the

Graphical User Interface (GUI). This module is the largest, most significant part of the entire

implementation. It is essentially the construction ofthe pseudo-code in Equation 3.1 with many

abstract helper functions.

The GUI component is solely responsible for graphical representation of and user interaction

wi'th the behavior of the simulations. It is composed of 3 sub-components: the Control Panel,

Grid Panel, and Button Panel. The Control Panel allows the user to control the state of

the simulator. The button panel provides buttons that allow the user to dynamically enable

or disable features in the simulation. The grid panel shows the state of the grid during the

simulation and allows the user to inspect and modify the values on the gr id dynamically.

The engine component has no subcomponents. It provides the tools which are independent

of the specifie adaptation scheme used, such as vector propagation and fuzzy fiow-updates.

The component specifies an abstract simloop 0 method which must be overridden by subclass

plug-ins. The plugins are adaptation systems which have access to the grid and implement

a particular adaptation scheme, as defined in Chapter 4. By keeping this base component

separate from the plugin systems, we allow it to be independently optimized.

One non-trivial challenge was finding the correct set of thread synchronization constraints

between the engine and the GUI: writing code free of non-deterministic behavior while keeping

a certain level of performance. It was also hard to decide what should be part of the abstraction

72

6.2. Design and Implementation of the Adaptation Engine

and what part of the plugins.

Plugin Adaptation Systems

This module consists of 2 major components: the adaptive weather system and the adap­

tive reputation system. There is also a minor component called the aggregate system. Each

component has a separate simulation loop that modifies the grid as detailed in Chapter 4.

The plugin systems have a relatively straight-forward implementation. They each override

the simloop 0 method specified by the abstract simulator, contain specifie code logic particular

to the adaptation system while using as many generic concepts (shared methods from the base

c1ass) as possible to encourage code reuse.

The weather plugin defines 3 main grid-altering methods: moisturewind, gradDev, and

rain. The first displaces moisture between cells based on the current wind vectors. The second

bends the wind vectors towards the gradient vectors. The third displaces moisture directly

based on the gradients. There are 2 extra functions that c1ear and apply the calculated mask

(separate grid containing grid cell differences, see Section 3.2.1) to the current virtual terrain:

cMask and aMask. Recall from Section 3.2.1 that masks are used to emulate fair simultaneous

updates.

The reputation plugin also has 3 main grid-altering methods: repEvent, agentBend, and

repwind. The first method generates reputation events. The second method shapes the rep­

utation vector field based on the orientations of the agents. The third method spreads the

reputation points based on the values of the reputation vector field. This plugin has similar

mask functions.

The generic adaptation concepts were conceived during the implementation of these plu­

gin systems. The most challenging part of implementation of these components was code

maintenance. Throughout the course of the implementation, these components were the most

actively-modified. The volatility of the code made it somewhat difficult to keep track of the

current functionality.

Abstract Fuzzy Controller

The abstract fuzzy controller module is composed of a set of minor components for representing

arbitrary fuzzy sets and generic tools for operating on these abstractly-defined sets.

To define a particular fuzzy set, the implementor must extend the FuzzySet c1ass and

override the membershipCObject) method. The operations provided inc1ude those required to

73

6.2. Design and Implementation of the Adaptation Engine

resolve a decision in a fuzzy control problem: conjunction, disjunction, negation, and centroid­

of-gravit y calculation. Once these fuzzy sets are defined, the implementor creates an instance

of a FuzzyController, adds the conditions and consequences, and polls it for a decision.

Abstract Grid API

The abstract grid API module provides an interface to a grid whose layout and connectivity

is abstractly defined. That is, it is an API for accessing grid sections and neighborhoods,

computing distances between sections while hi ding the actual grid being used. There are 3

main methods in an abstract grid:

1** Returns a set of aIl sections on the grid. *1
public Set getGridSections()

1** Returns the set of aIl neighbors (of distance d away from gs) *1
public Set getGridNeighbors(GridSection gs, double d)

There are 2 major components that extend the abstract API: the RectangularGrid, and the

HexGrid. The former is used to represent the virtual terrain as it is represented in Figure 3.5.

The latter is used as the hexagonal representation demonstrated in Figure 4.7.

Movement Modeling

The movement modeling module is composed of 2 major components that work together side­

by-side: the movement model API, and the path modeler. The movement model API consists

of an abstract base class, MovementModel, and 5 subclasses: one for each movement model

described in Chapter 5. The three important methods in the base class are as follows:

1** Returns the next point to be visit. *1
public abstract Point getNextP(RepAgent a);

1** Generate a number of agents that will move in this model. *1
public void generateAgents(int num)

1** Move the agents, given the currently specified time. *1
public void move_agents(long time)

74

6.2. Design and Implementation of the Adaptation Engine

Figure 6.3: An example conversion of a path model

The last 2 methods have a generic implementation that is only overridden by the implementation

of M Mexperiment because it must move the agents directly. Otherwise, the movement models

use the generic implementation which chooses a path to take via the path modeler.

The path modeler component is used to design a precise path for the agents to follow when

they are traveling between specifie locations in the virtual terrain. The path modeler is another

abstract API which encourages extensibility: the abstract base class PathModel allows for

the implementation of arbitrary two-dimensional parametric curves. It contains 3 important

methods:

1** Construct a path model with given source and destination coordinates. *1
public PathModel(int startx, int starty, int endx, int endy)

1** Get the next point on the path at time t, 0 <= t <= 1 *1
public Point val (double t)

1** An arbitrarily varying continuous function on the normal Cartesian

plane where val_y(O) = 0 and val_y(l) = O. *1
public abstract double val_y(double t);

The value returned by val (double t) is a point on the virtual terrain at time t assuming the

agent takes a path from its start position to its end position governed by the function vaLy () .

To get this value, a simple change of coordinate systems calculation using affine transformations

is do ne (see Section 4.2.1). An example of a transformation is given in Figure 6.3.

To emphasize the applicability of the API, several types of path models are implemented:

parabolic, cubic, sinusoidal, quadric, generic polynomial, and composite paths. A PathChooser

object is constructed which generates specifie paths needed by the agents. The PathChooser

75

6.2. Design and Implementation of the Adaptation Engine

object follows the factory design pattern.

Core Utilities and Data Structures

This module exists mainly to act as a central resource for providing generally use fuI objects,

methods, and algorithms. It provides 6 major components: the Utils class, the Debug class,

the discrete probability distribution class, the agent classes, the proximity graph data structure,

and the decision tree data structure.

The Utils class is a collection of static helper methods and also provides the central random

number generator used by aIl other classes. This allows us to reproduce the exact outcome of

an experiment by simply reusing random seeds.

The debug class allows control of debug information to be printed and/or logged. The

scheme prints no debug information by default (debug level 0) and prints messages who se

detail depend on the debug level set by the programmer. This was particularly helpful when

searching for the cause of erroneous behavior in the implementation.

The discrete probability distribution class provided a means for non-uniform sampling from

a set of predefined objects. The class allows the programmer to add items, each with given

weights attached to them. Then, when drawing from the set, the probability of drawing an

item is equal to its weight divided by the total of aIl the weights.

The agent classes follow the linguistic relationship: GameAgent is a RepAgent is a SimpleAgent

is an Agent. The first and basic description of an agent is an entity that has a current position

and current velo city, implemented by Agent. When agents were used in more than one system,

SimpleAgent was constructed which contained an extra parameter to specify to which system

the agent belonged. A RepAgent is an agent that contains specific information relevant to

the reputation experiment (ie. its reputation value) and GameAgents contain Conquero-specific

information such as hit points, stamina, and current level.

The proximity graph data structure is an implementation of a regular graph with each vertex

having (x, y) coordinates in a two-dimensional space (in our case, the virtual terrain). A point

in the terrain is represented by the Point object. In the Conquero experiment, this object is

extended to City to represent a command center which has an extra size parameter value, the

Graph class is extended to DirectedGraph. Finally, the Graph object supports special graph

constructions. From just a set of points Graph. RNGize 0 will construct the graph as its relative

neighbourhood graph. Similarly for Graph. MSTize 0 and its minimum spanning tree.

The decision tree data structure is an implementation of a binary decision tree. The factory

pattern is used again here because decision trees are only imported via files: they are never

actually constructed by the programmer. This decision tree data structure is created by parsing

76

6.2. Design and Implementation of the Adaptation Engine

the output generated by the C4.5 software [Qui92]. This became a tricky task when large trees

were split into collections of subtrees, because the software used does not represent the textual

output of the full tree. The output of large trees are decomposed into many smaller subtrees

while using annotations to indicate small subtrees. Each subtree is then listed separately.

The algorithm used to overcome this problem is as follows:

1. Collect all the lines of textual data and name for each subtree.

2. Parse each tree individually possibly marking some nodes as degenerate subtree reference

nodes, marking the name of the subtrees to which they should attach in the node. Add

the map (name, tree) to a global hash.

3. Recursively, traverse the base tree depth-first. When a subtree reference node is encoun­

tered, read the name marked on the node and retrieve the corresponding subtree. "Tie"

the subtree to the main tree by replacing the degenerate node by the root of the subtree.

Conquero

Conquero has 3 major components: Minueto, the game client, and the authority server. Minueto

is an external package that was used for its efficient graphics rendering. The game itself is

entirely network-based. It uses a mix of 2 commonly used network protocols: UDP for situations

where efficiency is critical, and TCP for situations where reliability is most critical.

The client first connects (over TCP) to an authority server to validate its requested player

name and IP address. If the IP address is new and the name is already taken by another player

then the connection is rejected. If the name is a duplicate but the IP addresses is the same

one that asked for that name, then the server assumed this is a reconnect and the connection

is accepted. After the server receives the number of players required, the games starts and the

main window spawns.

Critical information such as hits, kills, captures, etc. is passed through the server and

validated by TCP. The server is responsible for ensuring fairness and consistency by imple­

menting locking mechanisms to avoid concurrency problems. Non-critical position updates are

sent via multicast UDP. All clients subscribe to the same multicast IP address and all move

update packets are sent to that address. The result is intended to be a good use of the network

protocols given their advantages and disadvantages.

The authority server does 2 more things other than respond to TCP events. Before starting,

it opens a Java runtime environment and runs a shell script which checks the amount of space

left on the disk partition which used for logging. This ensures that agame experiment will not

77

6.2. Design and Implementation of the Adaptation Engine

fail due lack of disk space for recording game data. Secondly, it also acts as a non-graphical

client. That is, it subscribes to the same multicast address that the clients are connected to

and just logs the packets it receives as well as the Tep packets.

A non-trivial part ofthe implementation was including dead-reckoning [SZ99]. To implement

dead-reckoning, two important things needed to be considered: a dynamic counter and accurate

synchronized time-stamping. Luckily, the environment used by the game-playing experiment

had synchronized clocks using NTP [MiI85] and hence we assumed an accurate global clock.

The dynamic counter consistently remeasured the rate of updates by averaging the number of

updates it processed in the last fixed interval of time. This provides a window of historical

data suitable for a simple dead-reckoning algorithm: to apply dead-reckoning, the client simply

applies, in one step, a number of updates to the agent which was equal to the update rate

multiplied by the difference between the current time and the timestamp. The resulting position

is the extrapolated position given the agent's velo city and timestamp. If further updates are

received which contradict any predicted positions, the positions are immediately changed to

refiect the values by the new update, to ensure maximum consistency. Note that applying

immediate correction is the simple st way of dealing with the inconsistencies introduced by

dead-reckoning; researchers have proposed other means, such as Time Warp [MauOO] and linear

convergence [SKH02].

Game Data Analyzer

The game data analyzer module is itself a single component. It is independent of most of

the other logic used in the implementation. It has one general function: to pro cess the data

collected during the game-playing experiment described in Section 5.2.

The data analyzer has 3 important analyses of the data: tafra-stats, tafra-shapes, and tafra­

data. The tofro-stats analysis processes an entire game log and computes overall statistics

above the game log such as the ones found in Table 5.1. This analysis also outputs the data

for the first classification problem explained in Section 5.3.1. The tofro-shapes analysis shows,

graphically, the paths taken by the agents between command centers. The tofro-data analysis

simulates the entire game from the game log for each agent. At every transition of command

centers it also measures the values of the features described in Section 5.3.2 and outputs the

data set for the second classification problem.

78

6.3. Performance Measurements

Name HOME HUMAN TOFU MAGIC

CPUs 1 1 2 4

CPU model Pentium IV AMD Athlon AMD Athlon AMD Opteron

CPU bus width (bits) 32 32 32 64

CPU speed (MHz) 1716 1250 1667 1794

CPU cache size (kB) 256 256 256 1024

Total Memory (kB) 515484 516216 2069368 3613560

Operating System Debian2 Linux Debian2 Linux Debian2 Linux Gentoo Linux

Kernel Version 2.6.5 2.4.26 2.4.20 2.6.7

Table 6.1: Descriptions of the machines used to measure performance.

6.3 Performance Measurements

In this section, we will describe the test environments used for experiments that were run to

measure the performance of various parts of the implementation. The testing environment

includes specifications of hardware used to perform the tests, specification and layout of any

input data/files that were commonly-used, and any relevant miscellaneous information. Then,

each performance test is described individualIy.

We begin with a descriptions of the environments used to run each test, summarized in

Table 6.l. We will refer to these machines throughout the rest of the chapter.

Existing altitude maps of geographical regions were used as input data for the weather

simulations. The data was obtained using the DIVA-GIS software and information archive

[RHG03]. The number of points in the data set was enormous. This was a problem because

the simulations would span several hundred screens and so was not graphically representable.

The data was reduced by summarizing large portions of the actual data by the average of the

altitude values in the area, as as described in Section 4.l.l.

The first such altitude map to be used was prk_al t. dat, a 48x40 altitude map of North

Korea. The other altitude map is pak_al t. dat, a 63x51 altitude map of Pakistan. Larger

versions are pak_al t2. dat (127x102), pak_alt3. dat (255x204), and pak_alt4. dat (1022x817).

The reputation simulations load settings from a configuration file called the repfile. Each

repfile contains the number of agents, the graph, the probability of causing events, vertex sizes,

etc. The probability that an event occurs on a given timestep is prEY. The probability that oc­

curred events are good is prEvGood, otherwise they are bad. AlI reputation simulations use prEY

= 0.001 and prEvGood = 0.7. These numbers were chosen arbitrarily. The test_rep3 repfile

2Debian Sarge on HOME and HUMAN, Debian Woody on TOFU.

79

6.3. Performance Measurements

Wtr+GUI Wtr+NOGUI Wtr GUI Rep+GUI Rep+NOGUI Rep GUI

Overhead Overhead

HOME 120.072 76.92 35.94% 40.17 9.92 75.3%

HUMAN 71.88 45.23 37.1% 18.46 7.43 59.75%

Averages 36.52 % 67.53 %

Table 6.2: Data obtained by running performance tests on the graphical interface

uses 20 agents, a random clique graph with 20 vertices of maximum size 12, and a virtual terrain

of 700x700 pixels (50x50 grid celIs). test_rep3-2 doubles those values: ie. 40 agents, a random

clique graph with 40 vertices of maximum size 24 and a virtual terrain of 1400x1400 (100x100).

Similarly, test_rep3-3 doubles the values of test_rep3-2 and test_rep3-4 quadruples the

values of test_rep3.

AlI performance tests were done on code compiled by Sun's Java 1.5 compiler and run using

Sun's Java 1.5 interpreter. AlI performance tests used the same random seed (= 290423987).

GUI Overhead

The purpose of this test is to measure the average overhead added by the GUI. TOFU and

MAGIC are server machines only accessible via network, and were therefore not used for this

test. This fact is important to know, especially since the machines presented below are more

similar than the server machines. The GUI overhead presented here might be much larger

than what would be observed on more powerful machines. The test runs for 10000 iterations

in the weather simulator with altitude map pak_al t . dat and reputation simulator with repfile

test_rep3.

The results of the tests are listed in Table 6.2. Based on the observed overheads, it is clearly

inappropriate to do server-side experimenting with the interface enabled. Thus, subsequent

tests do not include the interface components. The interface remains a tool mainly intended

for visually observing the effects of the adaptation pro cess.

Weather Simulations

The purpose of this test is to measure the general performance of the weather simulations. The

weather simulation is run for 10000 iterations on all 4 machines, first on pak_al t. Tests on the

larger maps pak_al t2, pak_al t3 are then run to get a sense of how well the algorithm seales.

The results of the tests are listed in Table 6.3.

Note that average times are calculated over only four and entirely different machines: this

80

6.3. Performance Measurements

is intentional. We would like to summarize the results as to express them in the most general

context possible. That is, while the results per machine are still shown for the most part, we

rely on the average to give a good generic estimate for the results independent of the hardware

used.

If we assume that the time taken per iteration per grid section is constant, then we expect

that the total time taken in one iteration to be a linear function of the number of grid sections.

That is f(G) = ki + k2 • IGI. Using 3 maps, we get 3 equations:

43.244 = ki + (63 . 51)k2 (6.1)

177.564 = ki + (127 . 102)k2 (6.2)

692.77 = ki + (255· 204)k2 (6.3)

Solving the system of linear equations 6.1 & 6.2 gives (kl , k2) = (-1.06,0.013789). Similarly,

solving the system 6.2 & 6.3 gives (kl , k2) = (6.73,0.0131881). So, it seems that constant

overhead is lost going from maps palcal t . dat to pak_al t whereas overhead is added in the case

of going from maps pak_al t2 to pak_al t3. This could be due to thresholds of memory and cache

being crossed in the second transition, but unfortunately we do not have any memory usage

data to justify this. It is still reassuring that the constants k2 are approximately equal (error

of approximately 6.01 x 10-4) reinforcing the belief that the performance of the computation

grows linearly.

Tornadoes

The tornado effect is an optional effect included in the weather system. On HOME using

pak_al t . dat after 10000 iterations the tornado calculations took on average 1.0389 ms. The

tests were repeated on HUMAN, TOFU, and MAGIC and the results were, respectively: 1.268,

1.188, and 1.185. This gives an average time of 1.17 msjiteration. If this co st was added to the

current simulations, then it would take 43.2~4~1.17 = 2.6% of the current total time per iteration.

It is interesting that complex weather effects such as simple tornado simulations do not add

significantly to the overall cost.

Reputation Simulations

The purpose of this test is to measure the general performance of the reputation simulations.

The weather simulation is run for 10000 simulations on a1l4 machines, first on repfile test_rep3.

81

6.3. Performance Measurements

Map Machine t/iter t[cMask] t[aMask] t[moisturewind] t[gradDev] t[rain]

1 HOME 65.734 0.044 6.32 14.89 38.60 5.88

1 HUMAN 45.226 0.046 4.89 9.72 27.75 2.82

1 TOFU 30.137 0.017 3.35 5.48 19.63 1.66

1 MAGIC 31.879 0.009 2.26 7.68 16.88 5.05

1 (averages) 43.244 0.029 4.21 9.44 25.72 3.85

1 (proportions) - 0.07% 9.7% 21.8% 59.5% 8.9%

2 HOME 261.312 0.177 27.54 59.73 151.26 22.61

2 HUMAN 182.775 0.275 20.45 38.82 112.07 11.16

2 TOFU 138.446 0.116 14.35 28.88 84.28 10.82

2 MAGIC 127.724 0.040 9.21 30.14 68.30 20.034

2 (averages) 177.564 0.152 17.89 39.39 103.98 16.16

2 (proportions) - 0.09% 10.1% 22.2% 58.6% 9.1%

3 HOME 1021.33 0.81 93.81 237.30 599.04 90.37

3 HUMAN 721.029 1.149 79.77 153.4 441.99 44.72

3 TOFU 527.22 0.71 54.24 119.60 338.48 44.19

3 MAGIC 501.498 0.238 36.82 119.30 267.28 77.86

3 (averages) 692.77 0.727 66.16 157.4 411.7 64.3

3 (proportions) - 0.1% 9.55% 22.72% 59.43% 9.28%

Table 6.3: Results of the performance measurements on the weather simulations. Alllisted times are

in milliseconds (10-3 seconds), and maps used are pak_alt# .

82

6.3. Performance Measurements

Map Machine t/iter t[cMask] t[aMask] t[MM] t[repwind] t[aBend] t[repEv]

1 HOME 9.747 0.304 0.686 0.162 8.351 0.196 0.464

1 HUMAN 7.433 0.405 0.883 0.116 5.872 0.139 0.18

1 TOFU 4.677 0.181 0.916 0.1 3.386 0.82 0.012

1 MAGIC 5.477 0.088 0.254 0.061 4.966 0.074 0.034

1 (averages) 6.834 0.245 0.457 0.11 5.644 0.31 0.173

1 (proportions) - 3.6% 6.68% 1.6% 82.6% 4.5% 2.5%

2 HOME 43.864 2.241 2.592 0.315 37.985 0.636 0.093

2 HUMAN 38.3 3.2 3.684 0.235 30.523 0.616 0.045

2 TOFU 18.31 0.728 3.88 0.205 13.292 0.17 0.038

2 MAGIC 23.23 0.335 2.05 0.138 20.492 0.149 0.061

2 (averages) 30.93 1.626 3.05 0.223 25.6 0.393 0.06

2 (proportions) - 5.26% 9.87% 0.7% 82.7% 1.27% 0.2%

3 HOME 158.588 7.366 10.115 0.94 138.75 1.235 0.176

3 HUMAN 134.06 10.184 14.695 0.737 107.271 1.077 0.96

3 TOFU 75.857 3.088 15.59 0.567 56.12 0.416 0.076

3 MAGIC 89.95 1.447 7.69 0.417 79.93 0.325 0.14

3 (averages) 114.6 5.52 12.02 0.665 95.52 0.63 0.34

3 (proportions) - 4.82% 10.5% 0.6% 83.35% 0.55% 0.3%

4 TOFU 1705.474 164.59 246.366 32.767 1257.501 3.954 0.295

4 MAGIC 1498.64 25.895 153.584 27.26 1289.595 1.751 0.554

Table 6.4: Results of the performance measurements on the reputation simulations. AU listed times

are in milliseconds (10-3 seconds), and repfiles used are test...rep3-# .

Then the test is rerun on the larger field in test_rep3-2, test_rep3-3 and test_rep3-4. The

movement model used in these simulations was M Mrandom' The results of the tests are listed

in Table 6.4.

Performing calculations analogous to the ones performed in the weather simulations, we ob­

serve values (k I , k2) = (27.7172,0.00032128) from repfile test_rep3. txt to test_rep3-2. txt

and (k I , k2) = (3.04,0.002789) from repfile test_rep3-2 to test_rep3-3. This is rather unex­

pected for two reasons. Firstly, the overhead is less in the second case. Secondly, the constant

k2 differs by an or der of magnitude, implying either irregularities in the observations or a non­

linear relationship. However, since the values are so small, it is likely that the inaccuracy of

the observed readings are playing a role in the discrepancy.

83

6.3. Performance Measurements

Machine t[M Mrandom] t[M Msimple] t[M Mchooser] t[M Mexperiment] t [M Mlearned]

HOME 0.174 0.156 0.201 0.458 1.817

HUMAN 0.122 0.102 0.154 0.444 1.765

TOFU 0.122 0.094 0.13 0.228 1.111

MAGIC 0.067 0.058 0.094 0.167 0.515

(averages) 0.121 0.103 0.145 0.324 1.302

(proportions3) 0.3% 1.12% 1.56% 3.41% 12.44%

Table 6.5: Results of the performance measurements on the different movement models in the rep­

utation simulations. AlI listed times are in milliseconds (10-3 seconds), and the repfile used was

testJep3.

Movement Models

The movement model is an optional effect included in the reputation system. The processing

time taken up by the movement models was measured on each system listed and gave the

following averages: 0.121ms for MMrandom, 0.103ms for MMsimple, 0.145ms for MMchoosen

0.324ms for M Mexperiment, and 1.302ms for M Mlearned' Note that in M Mexperiment, the moves

are drawn directly from large input files and not sim ply generated as the rest.

The tests on repfile test_rep6. txt were run for 10000 iterations using M Mrandom' test_rep6. txt

is a repfile recreation of the terrain and graph used in the Conquero game-playing experiment.

This test was repeated on each machine but using different movement models. The results for

the movement models are summarized by Table 6.5.

As expected, the learned model takes the longest because it calculates the value of 232

features based on the current state, pass these through a decision tree, and then make a decision.

The random and simple models are low because they do not do any processing of the current

state. The chooser model only slightly less efficient than the simple model, which is encouraging

considering it is calculating the value of 3 heuristics and passing through a decision tree. The

inefficiency of the experiment model is due to the fact that it is reading its moves from a large

(83M) log file.

3 0 f total average time taken per iteration taken from Table 6.4

84

6.4. Optimizations

6.4 Optimizations

In this section, we will describe optimizations designed to improve the performance of the

implementation. Each optimization will then be evaluated by re-running tests with the opti­

mization enabled and compared to the values obtained in the previous section. First, min or

optimizations are suggested. Then the larger, more significant optimizations are described in

their own subsections.

One simple optimization is to use tabular look-up approximations for trigonometric functions

sine and cosine. The optimization upon startup inserts the values of sine and co sine in a table

for 1000 . 271" values (0.000 . 271" to 1.000 . 271"). In fact, only one table need be stored since

cos(x) = sin (x + ~). Larger angles are mapped by repeatedly adding or subtracting 271" until

the angle is in the desired interval. Then, the true values are linearly extrapolated between the

two approximate values contained in the lookup tables.

The first weather simulations we rerun using this optimization. An improvement was ex­

pected, especially since the weather simulations use trigonometric functions more than the

other two systems. The observed average times per iteration are: 63.667 ms, 43.93 ms, 37.116

ms, and 31.142. This gives an average of value of 43.964 ms, slightly (1.7%) higher than the

unoptimized result. Therefore, it is clear that Java must be doing something efficient in their

Math class to save on execution time.

6.4.1 Caching

Caching is a common optimization technique used throughout Computer Science. The general

idea is to remember a value once it is calculated so that future calculations need only read the

cached value rather than recompute the value repeatedly. Note that caching really just trades

space (memory) for time (performance). It is usually the case that the trade-off is worth doing

when the programmer expects a given calculation to be repeatedly calculated.

There is one obvious application of caching in the weather system: gradient-caching. The

gradient need not be re-calculated unless it changes. In fact, this is a general optimization

technique that can be applied to an environment-based adaptation schemes since the influence

of the adaptation is based on the environment which we expect to change little. However, this

optimization does add a bit of programmatical complexity. This is because the programmer is

forced to take care of the special case of when the gradient vectors change.

To measure the value of this optimization, the first set of weather simulations were once

again rerun. The average times per iteration observed is: 55.87, 36.53 ms, 25.86 ms, and 28.81

ms. This gives an average of 36.77 ms per iteration, corresponding to a 15% improvement. This

85

6.4. Optimizations

is an encouraging, significant result.

6.4.2 Concurrency

A natural optimization for computations on discrete gr id cells is parallelization. In our case, we

do not have access to powerful parallel machines, but we can emulate the idea of parallelization

through software and hardware using concurrency and multiple processors.

A multi-threaded version of the weather simulation loop is implemented. The multi-threaded

version simply partitions the grid into independent portions, and assigns the responsibility of

carrying out the calculations for that portion to each thread independently of the other threads.

At every iteration, the threads perform the grid-base calculations concurrently and then wait

while a central thread applies global duties such as clearing and applying the mask.

The threads were synchronized by using a typical n-process barrier mechanism, where n E

{1, 2, 3, 4}. The synchronization code is outlined in Figure 6.4. Two counting semaphores and

2 boolean condition variables were used in the n worker threads and single main thread. The

workers performed the adaptation procedures on the a section of the gr id while the main thread

performed the global procedure and thread management. One important note is that Java's

built-in concurrency features such as monitors and object locks were used.

The purpose here is to find a partition of the terrain that is intuitive, easy to compute, and

splits the region into subregions of equal area. If 2 (or 3) threads were invoked, then the terrain

was split into 2 (or 3) rectangular regions by taking the longe st side and finding the midpoint

(or the one third and two third points) and then using the perpendicular bisector of the edge

at that point as a new boundary between split regions. The 4-thread version split the region

into 4 quadrants similarly, but uses the midpoints of each si de inside of just the longest side.

The weather tests were rerun on the multi-processor machines TOFU and MAGIC. In this

case, all the tests were rerun so that the effect of larger maps on the concurrent implementation

could be found. The results of the simulations are listed in Table 6.6.

There are sorne comments to make on these observations. Firstly, it seems odd that dual­

processor (TOFU) performs better than quad-processor (MAGIC) when using 4 threads on 2

out ofthe 3 maps. From Table 6.1, we notice that the speeds ofthe processors are approximately

equal, and that MAGIC has twice the amount of memory that TOFU has. Therefore, it seems

likely that the different major versions of the Linux kernel (2.6.x vs 2.4.x) could be the culprit.

It would be interesting to investigate this further.

4compared to the single-thread version.
5the value of t.inglethread or sim ply proportion- 1

trnultithread

86

6.4. Optimizations

Il parform vork ...

synchronizad(WT.objl) {

WT . countl ++ ;

}

if (Wl' .countl-·WT. threads)

WT. obj 1. DotifyAllO;

while OWT.flagl)

try (Wl'.objl.wait(); }

catcb(Exception le) {}

synchronizad(WT.obj2) {

WT .count2++;

}

if (Wl' .count2-WT. threads)

WT. obj2. ootifyAllO;

vhile OWT.fla.g2)

try (Wl'.obj2.wait(); }

catcb(Exception ie) {)

Il loop back

Worker Threads

Il start iteration

synchronized(WT.objl) {
Il workers work.

while(WT.countll-threads)
try {WT.objl.wait(); }

catch(Exception ie) {}
}

Il do post-work seq. camp

synchronized(WT.obj2) {

}

synchronized(WT.objl) {
WT. count 1 .. 0;
WT.flagl ... true;

WT.flag2 - false;
WT.objl.notifyAll();

}

while (WT.count21-threads)
try { WT.obj2.Wait(); }

catch(Exception ie) {}

WT. count2 .. 0;

WT.flagl - false;
WT .flag2 .. true;

WT .obj2.notifyAllO;

/1 loop back

Main Thread

Figure 6.4: Java code for thread synchronization in the concurrent weather simulation

87

6.4. Optimizations

Map Machine # ofthreads t/iter Improvement4 Proportion4 Speed-up5

1 TOFU 2 18.94 11.197 63% 1.59

1 TOFU 3 14.76 15.377 49% 2.042

1 TOFU 4 12.37 17.767 41% 2.4363

1 MAGIC 2 19.964 11.92 63% 1.597

1 MAGIC 3 17.462 14.417 55% 1.826

1 MAGIC 4 16.9 14.979 53% 1.89

2 TOFU 2 79.623 58.823 58% 1.74

2 TOFU 3 62.706 75.74 45% 2.21

2 TOFU 4 55.175 83.271 40% 2.51

2 MAGIC 2 83.027 43.973 65% 1.54

2 MAGIC 3 72.803 54.921 57% 1.7544

2 MAGIC 4 66.53 61.194 52% 1.92

3 TOFU 2 315.843 211.377 60% 1.67

3 TOFU 3 316.693 210.527 60% 1.665

3 TOFU 4 332.908 194.312 63% 1.584

4 MAGIC 2 325.13 176.368 65% 1.54

4 MAGIC 3 273.93 227.568 55% 1.83

4 MAGIC 4 271.09 230.408 54% 1.85

Table 6.6: Results of the concurrent weather simulation tests. AH listed times are in milliseconds

(10-3 seconds), and the altitude maps used were pak_alt#.

88

6.4. Optimizations

Secondly, when running the weather simulation test on pak_al t3 . dat adding threads on

TOFU seems to slow down the pro cess instead of speed it up, but this does not happen on

MAGIC. This implies that TOFU has reached sorne kind of threshold: either concurrent mem­

ory access is slowed down due to the fact that there is a lot of information being stored in

memory and the cache memory becomes filled too quickly, or the amount of memory is too

much to ho Id in RAM so virtual memory is used in which case a lot of overhead is added for

swapping information in and out from secondary memory.

We now use these observed values to approximate how much of the weather simulation

computation is due to sequential (single-threaded) computation versus parallel (multi-threaded)

computation. As a tool to help us measure the influence of these two separate values, we use

Amdahl's Law [Amd67]:
1

speedup = () Tl

1-p + ~
(6.4)

where speedup is the best possible attained speedup, p is the proportion of time spent in the

parallel part of the program, n is the number of processors, s is the proportion of time spent

in the sequential part of the program, and s + p = 1.

Using 2.51 as the best speedup attained on 2 processors, we get p = 1.2032. There are

other instances for which TOFU beats its theoretical maximum: both when using more than

2 threads on the first 2 maps. This means that on TOFU we are experiencing superlinear

speedup [HM89]; it is sometimes when multiple CPUs are used and is typically due to the

effects of processor caches. In these cases, so we cannot use these exceptional cases to find the

values we are interested in.

In the case of the third map, the max speedup obtained by TOFU is 1.67. In this case, we

obtain (p, s) = (0.8,0.2). The same calculations are repeated for MAGIC in a1l3 cases and the

values obtained are: p = 0.63, p = 0.64, and p = 0.613. This gives an average of j5 = 0.67 and

s = 0.33. Therefore, roughly one third of the time in the concurrent implementation is spent

doing sequential computation.

6.4.3 Buffering

The buffering technique proposed here is similar to the double-buffering [FvDFH95] technique

that has been widely-applied in the domain of Computer Graphies. The core concept involves

holding two objects (buffers) in memory: a scrap buffer and a display buffer. The application

works on the scrap buffer while displaying the display buffer to the user. When the application

has done the work it needs, the roles of the 2 buffers are interchanged. Typically, switching

the roles of these 2 buffers is a very efficient pro cess , more efficient than working on the same

89

6.4. Optimizations

buffer that is being displayed. As a result, a performance improvement is generally observed.

Here, a similar strategy is used. There are 2 buffers: one called the write buffer and the

other called the read buffer. The write buffer is never displayed, only modified. The read buffer

displayed and inspected by the main algorithms. Both buffers hold a single independent grid.

InitiaIly, the two buffers are created and are identical. Each iteration, the algorithms inspect

the read buffer and calculate aIl changed needed to be done, but instead apply the changes to

the write buffer directly instead of temporarily storing the values in a mask and applying the

mask later. Before the next iteration begins, the roles of the two buffers are switched so that

the read buffer then contains the grid with recently-modified values.

When the simulations enable buffering, the methods that modify the values of the state

do so directly to the write buffer. Therefore, Buffering effectively aIlows the removal of the

applyMask and clearMask functions and so should have an effect on the performance.

The obtained results for average time per iteration on the weather simulations were 69.96ms,

47.72ms, 33.32ms, 32.01ms, giving an average of 45.75 msjiteration. The time taken per iter­

ation including buffering takes 2.5ms longer. These results clearly conclude that the memory

requirements added to help gain performance have slowed down the implementation enough to

make the optimization not worth including.

6.4.4 Aggregation

Two major application systems have been implemented (weather and reputation) that are

somewhat similar in that they are based on the the same iterative adaptation scheme and data

representation (grid layout). The performance of each individu al system has been measured

independently and in several different environments. As weIl, aIl optimizations have focused

on improving performance of an individual system or part of a system. AlI performance com­

parisons have been done on the previous recorded results of the simulations runs using those

systems.

A simple optimization is proposed to combine the simulations to create an aggregate sim­

ulation which uses the same gr id and a merged simulation loop which uses algorithms from

both systems separately but on a shared grid. Since the plugin-systems have a simple interface,

integrating many of them in a single simulation engine is quite easy. The interface for each al­

gorithm in a plugin-system is just a method that takes the coordinate positions to be updated

and performs the computation. AlI that is required by the aggregate simulator is to create

an object of the plugin-system's type, and to include invocations of the required algorithms

provided by the plugin-system on the plugin object.

90

6.4. Optimizations

Once again simulations were run and performance data collected from them. Map 1 was

used for weather and test_rep3. txt for reputation. The average time per iteration on the 4

different machines was: 72. 94ms, 53.18ms, 35.08ms, and 31. 17ms. The average value is 48.08

msjiteration. The sum of the averages that were do ne independently is 43.244+6.834 = 50.078.

This corresponds roughly to a 4% improvement.

The improvement offered by aggregating the two systems is rather small, but not negligible.

This might be due to the fact that we are only combining the iterative pro cess and the grid

not the actual data nor the procedures themselves. Combining the data and procedures would

be removing in part from the usefulness of the plug-in abstraction. In a commercial game,

sharing a gr id between multiple systems is a must. This aggregate model proves that multiple

adaptation schemes can easily be contained in the same virtual environment.

We introduced this chapter with an explanation and demonstration of the integration of

the general adaptation scheme into the context of modern persistent-state computer games.

Adaptation of weather and reputation are examples of adaptation schemes that we might find

in such games. The integration of adaptation in the software design sense gives a practical

justification for the usefulness of these schemes.

The basic structure of the plug-in systems and logical control fiow were described in Chap­

ter 4. Here, we extended these ideas by a thoroughly detailed breakdown of the actual im­

plementation of the simulator. Since the implementation is modular, creating new modules is

straight-forward.

Performance was measured by running the simulator and tracking the times spent in certain

methods. The two major systems' performances were analyzed in detail on several different

testing environments. The average was used to reduce and local error or bias cause by a

particular testing environment.

Several optimizations were proposed. The simulations were rerun with these optimization

enabled so as to allow us to quantify the value of an optimization. Some of the optimizations

failed (enabling the optimization lead to slower simulations) and some succeeded. In particular,

concurrency and caching seemed to help out a lot (45% and 15% improvement repsectively) and

system aggregation helps out a small amount (4%). Buffering and simple tabular trigonometric

functions proved to be not worthwhile.

The implementation here is generic enough that any plug-in system could literally be

dropped in to the framework and used. To summarize, the adaptation framework used here is

versatile, robust, and extendible.

91

Chapter 7

Conclusions and Future Work

In this thesis, we described a generic adaptation scheme for modeling and designing adaptive

virtual environments in persistent-state computer games. Our adaptation model is composed of

sever al familiar computational formalisms such as data flow and cellular automata. The model

implicitly provides the notion of locality for large-scale environments.

The model enforces a discrete timeline upon which the iterative update cycle is built. This

update cycle defines a generic adaption pro cess because it contains a list of abstractly-defined

adaptation procedures. This procedural abstraction allows for specifie functional adaptation al­

gorithms to be separately implemented and maintained. Specifie adaptive virtual environments

are sim ply defined by the cellular properties and adaptation algorithms. The simulator can be

used to test each adaptive virtual environment completely independently. Merging adaptive

virtual environments in one aggregate adaptive virtual environment is as simple as including

all the specifie procedures in the list to be run by the update cycle.

The model described is generic and intuitive. It is meant to be used by game designers

who are interested in building an adaptive virtual environment in their game. Two adaptation

systems are explained in detail, which serve as stepping stones for a designer who would like to

model his/her own different adaptive virtual environment.

The two example systems use sorne generic adaptation concepts that would likely be re­

used in future systems as weIl. Local averaging helps distribute the impact of sharp changes

to surrounding neighbors. Using flow as a means for quantified information dispersal is also

a good way to spread the influence of events to surrounding neighbors. Both were used and

demonstrated to work in the example systems.

The entities inside of a virtual environment are really what makes the environment react

since entities are allowed to interact in the system. The evolution of the adaptive virtual

environment is then non-deterministic because the entities here will be mostly player characters.

92

The interaction with an adaptive environment adds a significant importance to the player

characters' actions because they can cause an event that can change the environment forever.

As such, this encourages a real history of the world to develop over time, and players to be part

of a dynamic, realistic world.

As an extension to agent-based adaptation, movement models for mobile agents in game

environment simulations were investigated. The aim was to build a probabilistic model for

agent movement behavior. SpecificaIly, a multi-player network computer game was designed

for a game-playing experiment which collected data to analyze.

The game, called Conquero, involved short range combat and team capture of command

centers. Simple heuristics for movement information were proposed solely based on size of

the next command center and distance from the next command center. The values of the

heuristics were placed into a classification system to see if they were sufficient for deciding

which command center to visit next. The heuristics were extended to include many other kinds

of data prominent in Conquero, such as data that is dynamic, like properties of other agents.

Dynamic agents were built by providing the agents with decision trees that were learned from

the dynamic features. Since the computation of these dynamic features was very efficient,

incorporating learning features based on decision-tree classification is likely feasible. In the

context of Conquero, five movement models were described after analyses were performed.

The movement models proposed were re-applied to the reputation system to see what kind of

reputation fields they would give. Using the same seed for the central random number generator,

the 5 models produced quite different results. This was a surprising result but nonetheless was

confirmed the data in by Figure 5.4 and Table 5.4.

The performance of the movement models was generally quite good. In particular, the

decision-tree learning method seems to be computationally efficient and serves as a structure for

agent decision-making quite weIl. However, domain-specifie heuristics are required to transform

observed sensory data into something meaningful, implying that sorne form of knowledge will

have to be pre-programmed even into learning agents.

FinaIly, we have shown that the use of the adaptation scheme is feasible and suggested an

architecture for applying the pro cess in modern computer game projects. We have showed that

aIl the concepts given fit easily into the object-oriented paradigm, allowing for modular design,

code reuse, and easy future modification.

Both the efficiency and performance of the simulations are encouraging. Even in the worse

case scenario, the iterations never took longer than 1 second in total. Considering that adap­

tation is a long-term effect, this level of performance is acceptable. We have further give

93

7.1. Future Work

experimental evidence of the effect of sorne simple optimizations. In fact, sorne of the perfor­

mance improvements are impressive and encouraging. Other than the caching of the gradient,

the optimizations were independent of the application system.

After all is considered, it seems that adaptive virtual environments are interesting to study

and would add an entertaining new element to a game-player's experience. It remains to be

se en if players themselves would enjoy playing their character in such environments. We suspect

this new feature would be enjoyable for the most part, since it has been proven in the game

development industry that players enjoy new content. We are hoping, if not expecting, to see

soon adaptive virtual environments in commercial persistent-state games.

7.1 Future Work

There is a good amount of potential for future work on adaptive virtual environments. We will

list the most interesting here and describe each briefiy.

Improved Adaptation Systems

The two systems proposed in Chapter 4 are quite basic. For instance, the weather system is

missing sorne key elements for it to be realistic, such as temperature, evaporation, growth of

vegetation, atmospheric pressure and so on. Implementing sorne of the weather events suggested

in the chapter on these applications, such as tsunamis, earthquakes, fioods, etc. would also be

another way of improving the existing implementation. However, adding such features would

also add complexity and cost.

In the reputation system, it would be nice to implement support for the reputation groups

and membership values. A movement model is needed better than the random one supplied.

Ultimately, the movement model should correspond to real movements of players in persistent­

state games.

Other Adaptation Applications

We proposed and analyzed two adaptation applications that could be applied in modern games.

There are, of course, many other possibilities for applying adaptation in computer games.

One rather obvious application is an adaptive economy. An adaptive economy based on

supply and demand could be implemented by fiowing information and resource availability

through the grid. Values of items would adapt over time and location, which would change

94

7.1. Future Work

the priees of items sold by vendors. Events in this system could be inflation, theft, or sudden

lossl gain of resourees. For example, a forest fire causes a drop in wood supply.

It would also be beneficial if social aspects of environments such as law, politics, etc. could

be quantified. For example, one could envision an adaptive law enforeement system. Crime

would be a measurable scalar property. The amount of law enforcement per region would also

be a scalar property that would adapt to the crime rate of the region. As a result, in the long

run more law enforeers would surround the areas with higher crime, causing the crime rate to

go back down.

Grid Partitioning

ln large-scale environments, the virtual environment terrains might not be rectangular. Most

of these games in fact are using the notion of "zones," arbitrary but strict partitions of sorne

larger world. These often correspond to management by separate servers, and so there can

be significant inter-zone communication costs. Arbitrary decomposition into zones can also of

course produee an overall world shape that may not easily map to a regular grid.

Zones, however, are still typically quite large and can contain up to 1000 characters. This

may make it reasonable to adapt zones separately, perhaps with a relaxed consistency model

between zone borders.

Integration of Adaptation Architecture in a Large Persistent-state Computer Game

ln Chapter 6, the implementation of the adaptation engine part of the entire adaptation archi­

tecture was shown in detail. The simulators show the adaptation engine running the adaptation

proeess on the example systems. However, the state history server was not implemented and

remains a future project.

Ideally, an existing game project that is somewhat well-known could be modified so that

it would sim ply dump information to the state history server and aceept modifications from

the state history server. This server would be responsible for collecting data and storing it

in an efficient way, communicating with the adaptation server, and assigning changes back to

the game servers and/or clients. The important part of this future consideration is to have a

sufficiently large player base for the game.

95

7.1. Future Work

The Conquero Experiment, Revisited

Due to resource constraints, Conquero was intended to be an approximate microscopie version

of the events that happened over longer periods of time in a larger persistent-state multi­

player game. However, the game is small, simple and dynamie. As well, its overhead view

allows players to see the entire state of the game at all times. It forces players to remain near

command centers instead of accurately modeling behavior based on player interest. Movement

models could also be improved.

An interesting venture would be to recreate the Conquero experiment using an existing

multi-player game, or even better an existing persistent state game. The benefits of this would

be that the data would refiect the actual constraints of a more representative game interface.

A Generic Model for Adaptive Agents

The movement modellearning done in Chapter 5 could also be applied to agents online, during

the game. The decision tree construction was computationally efficient, and so this makes it

possible to implement a movement model where the decision tree is built and used incremen­

tally and dynamically. In fact, we need not restrict the learning agents to decisions based on

movement. Agents could collect a set of data via predefined sensors, calculate the value of

predefined heuristic functions, build a classification problem, solve it, and then use the solution

to make a decision from a set of predefined actions. The adaptation pro cess here would be to

simply recreate the decision tree every so often as to keep it up-to-date from new observations.

96

Appendix A

learned Decision Tree

The following is a text representation of the decision tree learned from the second classifi­

cation problem described in Chapter 5:

C4h3 <= 4. 36315E-5 :
oldCity = 1.0 : 14 (0.0)
oldCity != 1.0 :

oldCity = 2.0 : 14 (0.0)
oldCity != 2.0 :
1 oldCity = 3.0 : 14 (0.0)
1 oldCity != 3.0 :
1 1 oldCity = 4.0 : 14 (0.0)

1 oldCity 1- 4.0 :
1 oldCity = 6.0 : 14 (0.0)
1 oldCity 1- 6.0 :
1 oldCity = 19.0 : 14 (0.0)
1 oldCity 1= 19.0 :
1 oldCity = 20.0 : 14 (0.0)
1 oldCity 1- 20.0 :
1 oldCity - 21.0 : 14 (0.0)
1 oldCity ! - 21. 0 :
1 oldCity - 22.0 : 14 (0.0)
1 oldCity !- 22.0 :
1 1 oldCity - 23.0 : 14 (0.0)
1 1 oldCity != 23.0 :
1 1 oldCity = 24.0 : 14 (0.0)
1 1 oldCity 1- 24.0 :
1 1 oldCity - 6.0 :
1 1 1 C18nop > 23.0 : 7 (3.0)
1 1 1 C18nop !> 23.0 :
1 1 1 1 Cllnte > 3.0 : 8 (3.0)
1 1 1 1 Cllnte 1> 3.0 :
1 1 1 1 1 Cl0nop > 23.0 : 8 (3.0)

1 1 1 1 Cl0nop 1> 23.0 :
1 1 1 1 C14nop <= 24.0 :

1 1 1 1 C16nop > 0.0 : 8 (2.0)
1 1 1 1 C16nop ! > 0.0 :

1 1 1 1 mopx <- 699.231 :
1 1 1 1 1 C13nop > 24.0 : 8 (2.0)

1 1 1 1 C13nop !> 24.0 :
1 1 1 1 vy <= -0.011 :
1 1 1 1 1 mopx <= 668.923 : 8 (4.0)
1 1 1 1 1 mopx !<= 668.923 : 16 (2.0)
1 1 1 1 vy 1<- -0.011 :
1 1 1 1 1 eto <- 7.0 : 16 (14.0)
1IIIIetol<=7.0:
1 1 1 1 1 1 C17dist <= 366.121 : 11 (2.0)
1 1 1 1 1 1 C17dist !<= 365.121 : 15 (3.0)
1 1 mopx !<- 699.231 :
1 1 1 mopx <- 736.87 : 13 (2.0)
1 1 1 mopx !<- 736.87 : 8 (2.0)
1 14nop !<= 24.0 :
1 1 mopx <= 668.923 : 10 (2.0)
1 1 1 mopx 1<- 668.923 : 8 (2.0)

oldCity 1- 6.0 :
1 oldCity = 7.0 :
1 C17nop <- 0.0 :
1 C24nop > 21.0 : 6 (3.0)
1 C24nop !> 21.0 :
1 Cl0nop <- 24.0 :

1 1 Cl~~!~; ~=3~~0;Oi~ (3.0)
1 1 C8nte!> 3.0 :
1 1 1 C15nte > 3.0 : 15 (2.0)
1 1 1 C16nte !> 3.0 :
1 1 1 1 C16nte > 6.0 : 13 (2.0)
1 1 1 1 C16nte 1> 6.0 :
1 1 1 1 1 mtpx <= 672.667 :
1 1 1 1 1 1 C12nop > 0.0 : 8 (2.0)
1 1 1 1 1 1 C12nop 1> 0.0 :
1 1 1 1 1 1 1 C9nop > 24.0 : 8 (2.0)
1 1 1 1 1 1 1 C9nop !> 24.0 :
1 1 1 1 1 1 1 1 deo <= 5.0 : 8 (3.0)

97

1 1 1 deo 1<- 6.0 : 11 (65.0)
mtpx ! <- 672.667 :

1 1 C12dist <= 439.16 : 13 (3.0)
1 1 1 1 1 C12dist 1<= 439.15 : 15 (2.0)
Clldist 1<- 430.094 :
1 mtpy <- 487.376 : 15 (11.0)
1 mtpy !<- 487.376 :
1 1 mopy <= 452.429 : 17 (4.0)

1 1 1 mopy !<= 462.429 : 18 (2.0)
1 Cl0nop 1<- 24.0 :
1 1 mopx <= 636.083 : 9 (2.0)
1 1 mopx !<= 636.083 : 11 (2.0)

17nop !<- 0.0 :
1 C17nto <- 3.0 : 18 (2.0)
1 C17nto 1<- 3.0 :
1 1 dee <= 13.4636 : 15 (2.0)

1 1 1 dee !<= 13.4636 : 17 (3.0)
oldCity != 7.0 :

oldCity • 8.0 :
Clnto > 0.0 : 1 (3.0)
Clnto 1> 0.0 :
1 C18nop <= 0.0 :
1 C24nop > 0.0 : 20 (2.0)
1 C24nop 1> 0.0 :
1 C12nop <= 23.0 :
1 1 C20nte > 0.0 : 9 (2.0)
1 1 C20nte !> 0.0 :
1 1 C4nte > 0.0 : 2 (2.0)
1 1 C4nte!> 0.0 :
1 1 1 C12nte <= 3.0 :
1 1 1 1 C15nop <= 21.0 :
1 1 1 1 1 C7nop > 23.0 : 7 (3.0)
1IIIC7nop!>23.0:
1 1 1 1 1 C60wn = 0.0 : 6 (2.0)
1IIIIC6own!=0.0:

1 1 1 1 1 C60wn = 2.0 : 15 (0.0)
1 1 1 1 1 C60wn != 2.0 :
1 1 1 1 C19nop > 0.0 : 6 (3.0)
1 1 1 1 C19nop! > 0.0 :
1 1 1 1 1 C16nop <= 24.0 :
1 1 1 1 1 C8nop <= 24.0 :
1 1 1 1 C14nte <- 3.0 :
1 1 1 1 1 C4h3 > 3.0 : 7 (2.0)
1 1 1 1 1 C4h3 !> 3.0 :
1 1 1 1 oldCity <= 147.078 :
1 1 1 1 C18nop <= 19.0 : 7 (2.0)
1 1 1 C18nop !<= 19.0 : 16 (4.0)
1 1 oldCity 1<- 147.078 :

1 1 C11nte > 0.0 : 6 (2.0)
1 Cllnte !> 0.0 :

1 Cl0nop > 697.874 : 11 (3.0)
1 Cl0nop 1> 697.874 :
1 C14nop <= 0.0 :
1 1 C16nop <= 528.348 : 16 (4.0)
1 1 C16nop !<- 528.348 :
1 1 1 mopx <- 234.344 :
1 1 1 C13nop > 6.0 : 16 (3.0)
1 1 1 C13nop!> 5.0 :
1 1 1 1 C13nop > 0.0 : 6 (2.0)
1 1 1 1 C13nop ! > 0.0 :
1 1 1 1 vy > 519.667 : 12 (2.0)
1 1 1 vy!> 619.667 :

1 1 eto <- 853.366 :
1 1 mopx > 17 .8885 : 10 (7.0)
1 1 mopx !> 17.8885 :
1 1 1 C17dist <= 432.0 : 10 (3.0)
1 1 1 C17dist !<= 432.0 : 16 (4.0)
1 eto !<- 863.366 :
1 1 eto > 1083.21 : 10 (6.0)
1 1 eto 1> 1083.21 :
1 1 1 vy > 361.0 : 15 (6.0)
1 1 1 vy ! > 361. 0 :
1 1 1 1 C17nop <= 14.5602 : 6 (4.0)
1 1 1 1 C17nop !<= 14.6602 : 12 (5.0)

opx !<= 234.344 :
1 C24nop <- 349.092 : 15 (3.0)
1 C24nop !<= 349.092 : 16 (2.0)

1 nop I<~ 0.0 :
1 Cl0nop > 14.1421 : 10 (3.0)
1 Cl0nop !> 14.1421 :
1 1 mopx <= 20.2237 : 12 (2.0)
1 1 mopx !<= 20.2237 : 17 (2.0)

1 nte 1<- 3.0 :
1 C4h3 <= 17.0 : 14 (4.0)
1 C4h3 1<= 17.0 : 16 (3.0)

8nop !<= 24.0 :
1 C4h3 <- 657.423 : 10 (2.0)

1 1 C4h3 !<= 667.423 : 7 (2.0)
C16nop !<= 24.0 :
1 mopy <= 511.958 : 7 (3.0)

1 1 1 1 1 mopy !<- 511.958 : 16 (3.0)
C16n p 1<= 21.0 :

1 1 det <= 137.033 :
1 1 1 mopx <= 608.038 : 6 (2.0)
1 1 1 mopx !<= 608.038 : 16 (2.0)
1 1 det 1<- 137.033 :
1 1 1 ply <= 222.0 : 11 (2.0)

1 1 1 \,1~1~<~}~~4~0:: 16 (6.0)
1 1 1 1 ply !<= 234.0 : 11 (3.0)
C12nte !<:II 3.0 :
1 plx <- 338.0 : 15 (3.0)

1 1 1 plx !<= 338.0 : 12 (3.0)
C12n p 1<= 23.0 :
1 C7dist <- 443.128 :
1 1 pIx <- 338.0 : 15 (3.0)
1 1 plx !<- 338.0 : 12 (2.0)
1 C7dist 1 <= 443.128 :
1 1 vy <= 0.023 : 10 (6.0)

1 1 1 vy !<- 0.023 : 18 (2.0)
C18nop !<a 0.0 :
1 eto <- 3.0 :
1 1 mopx <= 666.261 : 14 (2.0)
1 1 mopx 1<- 566.261 : 12 (2.0)
1 eto !<- 3.0 :
1 1 C24dist <= 669.99 : 10 (2.0)

98

1 1 1 1 1 C24dist 1<- 659.99 : 15 (3.0)
1 oldCity 1- 8.0 :
1 1 oldCity - 9.0 :
1 1 C9nop > 21.0 : 16 (2.0)
1 1 C9nop 1> 21.0 :
1 1 C14nt. > 3.0 : 11 (2.0)
1 1 C14nt. 1> 3.0 :

1 1 C130wn - 0.0 : 17 (2.0)
1 1 C130wn 1- 0.0 :
1 1 C130wn - 2.0 : 17 (0.0)
1 1 C130wn!= 2.0 :
1 1 C21nt. > 3.0 : 19 (2.0)
1 1 C21nt. 1> 3.0 :
1 1 1 C2nop > 0.0 : 5 (2.0)
IIIC2nopl>0.0:
1 1 1 1 C8nop > 23.0 : 11 (2.0)
1IIIC8nop!>23.0:
1 1 1 1 C11dist <= 13.4636 : 7 (2.0)
1 1 1 1 C11dist !<= 13.4536 :
1 1 1 1 C4nt. > 0.0 : 11 (2.0)
1 1 1 1 C4nt.! > 0.0 :
1 1 1 1 1 C17nop <- 21. 0 :
1 1 1 1 1 C7nop > 23.0 : 19 (3.0)
1 1 1 1 1 C7nop! > 23.0 :
1 1 1 1 1 1 C19nop > 24.0 : 11 (2.0)
1 1 1 1 1 1 C19nop ! > 24.0 :
1 1 1 1 1 1 1 mopy > 526.386 : 7 (3.0)
1 1 1 1 1 1 1 mopy 1> 625.385 :
1 1 1 1 1 1 1 1 mtpy <= 671.667 : 17 (38.0)
1 1 1 1 1 1 1 1 mtpy !<- 671.667 :
1 1 1 1 1 1 1 1 1 C4h3 <= 445.01 : 17 (4.0)
1 1 1 1 1 1 1 1 1 C4h3 ! <= 445.01 :
1 1 1 1 1 1 1 1 1 1 oldCity <= 712.8 : 19 (3.0)
1 1 1 1 1 1 1 1 1 1 oldCity 1<= 712.8 : 11 (3.0)
1 1 1 1 1 17nop 1 <= 21. 0 :
1 1 1 1 1 1 dco <= 168.862 : 17 (7.0)
1 1 1 1 1 1 dco ! <= 158.862 :
1 1 1 1 1 1 1 mopy <- 464.783 : 19 (2.0)

1 1 1 1 1 1 1 mopy !<= 464.783 : 7 (2.0)
oldCity .. 9.0 :

oldCity ... 10.0 :
1 C17nt. <= 0.0 :
1 C14dist <- 606.981 :
1 1 C18nt. > 3.0 : 11 (2.0)
1 1 C18nt. !> 3.0 :
1 1 1 C13nt. <- 0.0 :
1 1 1 C11nt. > 6.0 : 14 (2.0)
1 1 1 C11nt.!> 6.0 :
1 1 1 C12nop <= 21.0 :
1 1 1 C16nt. > 6.0 : 15 (3.0)
1 1 1 C15nt. !> 6.0 :
1 1 1 C8nte > 0.0 : 8 (5.0)
Il IC8nt.I>0.0:
1 1 1 C7nt. > 0.0 : 8 (2.0)
1 1 1 C7nt.! > 0.0 :

1 1 1 C14nop <= 23.0 :
1 1 1 Cl0dist <= 13.1629 :
1 1 1 1 coo <- 22.0 : 8 (2.0)
1 1 1 1 coo !<= 22.0 : 15 (2.0)
1 1 1 Cl0dist! <= 13.1629 :
1 1 1 C6nop > 24.0 : 8 (2.0)
1 1 1 C6nop 1> 24.0 :
1 1 1 1 coo <= 19.0 :
1 1 1 1 1 C4h3 <= 189.667 : 16 (2.0)
1 1 1 1 1 C4h3 !<= 189.667 : 12 04.0)
1 1 1 1 coo ! <- 19.0 :
1 1 1 1 1 C4h3 > 3.0 : 12 (2.0)
1 1 1 1 1 C4h3 1> 3.0 :
1 1 1 1 1 1 oldCity > 14.4222 : 12 (7.0)
1 1 1 1 1 1 oldCity 1> 14.4222 :
1 1 1 1 1 1 1 C18nop <- 269.082 : 12 (6.0)
1 1 1 1 1 1 1 C18nop 1<= 269.082 : 8 (7.0)
1 1 1 1 nop 1<- 23.0 :
1 1 1 1 C17dist <= 398.898 : 7 (3.0)
1 1 1 1 C17dist 1<= 398.898 :
1 1 1 1 1 C24dist <= 712.037 : 8 (3.0)
1 1 1 1 1 1 C24dist !<= 712.037 : 12 (2.0)
1 12nop !<= 21.0 :
1 1 cto <= 1.0 : 11 (3.0)
1 1 cto ! <= 1. 0 :
1 1 1 mtpx <= 251.0 : 6 (2.0)
1 1 1 mtpx 1<= 261.0 : 12 (6.0)
1 13nte !<- 0.0 :
1 1 plx <= 358.0 : 13 (2.0)

1 1 \,l~t;;= <~5~â~.~67 : 6 (2.0)
1 1 1 mtpy !<= 282.667 : 8 (2.0)

C14dist ! <- 606.981 :
1 C22nop <- 0.0 : 1 (3.0)

1 1 C22nop !<- 0.0 : 9 (2.0)
C17nte !<- 0.0 :

1 1 mopy <- 495.385 : 3 (2.0)
1 1 mopy !<= 495.385 : 17 (2.0)
oldCity 1- 10.0 :
1 oldCity • 11.0 :
1 C16dist <- 689.636
1 C23nop <= 24.0 :
1 1 C18nop <- 21. 0 :
1 1 C14nt. <- 0.0 :
1 1 1 Clnt. <- 0.0 :

1 1 cto <- 7.0 :
1 1 1 C9nt. <- 0.0 :
1 1 1 C16nop > 0.0 : 13 (6.0)
1 1 1 C16nop 1> 0.0 :

1 C8nop <- 0.0 :

1 1 \,1~c~=<:3i2~3~93 : 18 (2.0)
1 1 1 dco 1<- 12.3693 :
1 1 1 1 vy <- 0.023 : 7 (14.0)
1 1 1 1 vy !<= 0.023 : 15 (3.0)

1 1 \,1~3!~: ~36:g : 13 (3.0)
1 1 1 C3nte !> 0.0 :
1 1 1 1 C20nop > 24.0 : 19 (3.0)
1 1 1 1 C20nop !> 24.0 :
1 1 1 1 1 C11nt. <= 0.0 :

99

1 C19nop <- 0.0 :
1 1 C13nt. <= 0.0 :
1 1 C4h3 > 617.667: 18 (7.0)
1 1 C4h3!> 617.667 :
1 1 1 oldCity <= 427.308 :
1 1 1 1 C18nop <= 20.0 : 14 (2.0)
1 1 1 1 C18nop !<= 20.0 : 7 (2.0)
1 1 1 oldCity !<- 427.308 :
1 1 1 1 C11nte <- 247.649 : 13 (3.0)
1 1 1 1 C11nt. 1<= 247.649 :
1 1 1 1 1 oldCity > 499.038 : 17 (6.0)
1 1 1 1 1 oldCity !> 499.038 :
1 1 1 1 1 1 Cl0nop > 648.684 : 13 (6.0)
1 1 1 1 1 1 Cl0nop !> 648.684 :
1 1 11111 C14nop <= 656.269: 14 (7.0)
1 1 1 1 1 1 1 C14nop !<= 666.269 : 17 (4.0)
1 1 13nt. !<- 0.0 :
1 1 1 C4h3 > 180.413 : 14 (4.0)
1 1 1 C4h3 1> 180.413 :
1 1 1 1 oldCity <- 206.828 : 7 (6.0)
1 1 1 1 oldCity 1<= 206.828 : 17 (2.0)
1 C19nop !<= 0.0 :
1 1 C4h3 <= 681.333 : 7 (4.0)
1 1 C4h3 !<= 681.333 : 13 (2.0)
1 llnte !(= 0.0 :
1 1 C4h3 <= 386.374 : 4 (2.0)
1 1 C4h3 1<= 386.374 :
1 1 1 oldCity <= 19.0 : 13 (2.0)
1 1 1 oldCity !<= 19.0 :
1 1 1 1 C18nop <= -0.048 : 13 (2.0)

1 1 1 1 1 1 C18nop !<= -0.048 : 7 (4.0)
C8nop 1<= 0.0 :

1 1 mopy <- 476.808 :
1 1 1 mopx <= 541.286 : 8 (2.0)
1 1 1 mopx 1<- 641.286 : 13 (2.0)
1 1 mopy 1<= 476.808 :
1 1 1 mopx <= 624.619 : 7 (2.0)
1 1 1 mopx 1<= 624.619 : 18 (2.0)

9nte 1<= 0.0 :
1 C9nop > 24.0 : 7 (3.0)
1 C9nop 1> 24.0 :
1 1 mtpy <= 696.667 : 9 (2.0)

1 1 1 mtpy 1<= 696.667 : 18 (2.0)
eto !<- 7.0 :

C11dist <- 12.2066 : 8 (2.0)
C11dist 1 <= 12.2066 :
1 C16nto > 3.0 : 17 (2.0)
1 C16nto 1> 3.0 :
1 C16nop <= 24.0 :
1 1 C7nop > 21.0 : 18 (4.0)
1 1 C7nop 1> 21.0 :
1 1 C18dist <= 141.039 :
1 1 1 C13nop <- 21.0 : 18 (2.0)
1 1 1 C13nop 1<= 21.0 : 13 (3.0)
1 1 C18dist 1<- 141.039 :
1 1 1 C11nop > 24.0 : 16 (2.0)
1 1 1 C11nop 1> 24.0 :
1 1 1 1 C8nto > 0.0 : 7 (2.0)
1 1 1 1 C8nto 1> 0.0 :
1 1 1 1 1 vy > 0.113 : 7 (3.0)
1 1 1 1 1 vy 1> 0.113 :
1 1 1 1 1 1 C4h3 <= 423.001 : 13 (9.0)
1 1 1 1 1 1 C4h3 1<= 423.001 :
1 1 1 1 1 1 1 oldCity <= 122.674 : 17 (8.0)
1 1 1 1 1 1 1 oldCity 1<- 122.674 : 13 (4.0)
1 C15nop 1<- 24.0 :
1 1 mtpy <- 418.6 : 18 (2.0)

1 1 1 1 mtpy 1<= 418.6 : 10 (2.0)
Clnt. 1<= 0.0 :
1 mopy <= 606.962 : 17 (2.0)
1 mopy 1<= 505.962 : 16 (2.0)

14nte !<= 0.0 :
1 deoe <= 13.6016 :

1 mopx <- 661.76 : 2 (2.0)
1 mopx 1<= 661.76 : 9 (2.0)
de oc !<= 13.6016 :
1 deue <= 14.5602 :
1 1 C16dist <= 62.6973 : 7 (2.0)
1 1 C16dist 1<= 62.6973 :
1 1 1 det <= 133.462 : 13 (6.0)
1 1 1 det 1<- 133.462 : 14 (4.0)
1 deue 1<= 14.6602 :
1 1 eto <- 4.0 : 14 (4.0)
1 1 eto 1<- 4.0 : 18 (3.0)

1 nop !< .. 21.0 :
1 eto <- 3.0 : 19 (3.0)
1 eto 1<= 3.0 : 18 (6.0)

23nop 1<= 24.0 :
1 deoe <= 14.2127 : 9 (2.0)

1 1 deoe 1<- 14.2127 : 19 (3.0)
C16dist 1 <- 689.636 :
1 C6nop > 0.0 : 22 (3.0)
1 C5nop 1> 0.0 :
1 1 det <- 368.286 :
1 1 1 mtpy > 741.0 : 13 (2.0)
1 1 1 mtpy 1> 741.0 :
1 1 1 1 dcc <- 13.3417 : 19 (4.0)
1 1 1 1 dee 1<- 13.3417 : 24 (3.0)
1 1 det 1<- 368.286 :
1 1 1 mtpx <- 460.375 : 7 (2.0)
1 1 1 mtpx 1<= 460.376 : 1 (2.0)

IdCity 1= 11.0 :
oldCity :II 12.0 :

Cllnop > 21.0 : 4 (3.0)
Cllnop !> 21.0 :
1 dcuc <"" 993.413 :
1 1 C22nop > 0.0 : 10 (2.0)
1 1 C22nop 1> 0.0 :
1 1 1 C12nop <- 0.0 :
1 1 1 1 C6nto > 0.0 : 16 (3.0)
1 1 1 1 C6nto 1> 0.0 :
1 1 1 1 1 C16nop > 24.0 : 16 (3.0)
1 1 1 1 1 C16nop 1> 24.0 :
1 1 1 1 1 1 C13nop <= 0.0 :
1 1 1 1 1 1 1 Cllnop > 0.0 : 8 (4.0)
1 1 1 1 1 1 1 Cllnop 1> 0.0 :

100

C15nop > 23.0 : 16 (2.0)
C15nop !> 23.0 :

C14dist > 295.007 : 8 (8.0)
C14dist !> 295.007 :
1 dct > 300.832 : 16 (6.0)
1 dct !> 300.832 :
1 C14nop <= 23.0 :
1 1 C16nte > 5.0 : 8 (2.0)
1 1 C16nte !> 5.0 :
1 1 1 C8nop <= 21.0 :
1 1 1 1 C4h3 <- 292.333 : 13 (2.0)
1 1 1 1 C4h3 1<= 292.333 :
1 1 1 1 1 oldCity <- 17.0 : 16 (2.0)
1 1 1 1 1 oldCity 1<= 17.0 : 10 (15.0)
1 1 1 C8nop !<- 21.0 :
1 1 1 1 C4h3 <- 954.713 : 8 (4.0)
1 1 1 1 C4h3 !<- 954.713 : 10 (3.0)
1 C14nop 1<= 23.0 :
1 1 C23dist <= 450.948 : 15 (2.0)

1 1 1 1 C23dist !<= 450.948 : 8 (3.0)
C13nop !<= 0.0 :
1 vy <- 0.021 : 8 (2.0)

1 1 vy 1<- 0.021 : 16 (9.0)
12nop !<= 0.0 :

1 mopy <= 475.808 : 14 (2.0)
1 1 1 mopy !<- 475.808 : 6 (2.0)
delle 1 <- 993.413 :
1 mopx <- 631.0 : 1 (2.0)
1 mopx !<= 631.0 : 13 (2.0)

oldCity !- 12.0 :
1 oldCity = 13.0 :
1 1 C9nop <- 21.0 :
1 1 Clnop <- 21.0 :
1 1 1 Cl0nte <= 0.0 :
1 1 1 C15nop <- 21.0 :

1 1 1 C14nop <- 24.0
1 1 1 1 C22nop > 0.0 5 (2.0)
1 1 1 1 C22nop !> 0.0 :
1 1 1 1 1 C23nop > 21.0 : 19 (2.0)

1 1 1 C23nop!> 21.0 :
1 1 1 C18nop > 24.0 : 18 (4.0)
1 1 1 C18nop !> 24.0 :
1 1 1 C19nte <= 3.0 :

1 C12nte <= 0.0 :
1 C11nte > 3.0 : 11 (11.0)
1 Cllnte !> 3.0 :
1 vy <- 0.125 :

C20nte > 6.0 : 17 (2.0)
C20nte !> 6.0 :

C17nop <= 23.0 :
eto < .. 2.0 :
1 C4h3 > 672.0 : 11 (5.0)
1 C4h3 !> 672.0 :
1 1 oldCity <= 591. 769 : 14 (5.0)
1 1 oldCity 1<= 591.769 : 16 (4.0)
eto !<"" 2.0 :

C4h3 > 21.0 : 11 (4.0)
C4h3 1> 21.0 :

oldCity > 0.0 : 11 (2.0)
oldCity !> 0.0 :

C18nop <,. 5.0 :
C11nte > 5.0 : 18 (3.0)
Cllnte !> 5.0 :

Cl0nop > 3.0 : 14 (2.0)
Cl0nop !> 3.0 :

C14nop > 24.0 : 11 (2.0)
C14nop !> 24.0 :
1 C16nop <= 12.53 : 18 (2.0)
1 C16nop !<= 12.53 :
1 C18nop <= 0.0 :
1 1 mopx <= -0.056 : 14 (7.0)
1 1 mopx !<= -0.066 :
1 1 1 C13nop > 21.0 : 11 (3.0)
1 1 1 C13nop !> 21.0 :
1 1 1 1 vy > 6.0 : 11 (3.0)
1 1 1 1 vy !> 6.0 :
1 1 1 1 1 cto > 14.5602 : 14 (4.0)
1 1 1 1 1 cto ! > 14.5602 :
1 1 1 1 1 1 C17dist <- 17.4929 : 11 (6.0)
1 1 1 1 1 1 C17dist !<= 17 .4929 :
1 1 1 1 1 1 1 cto <- 13.6015 : 14 (6.0)
1 1 1 1 1 1 1 cto !<= 13.6015 : 11 (4.0)
1 C18nop !<= O.Q :
1 1 C17nop <= 362.0 : 7 (2.0)

1 1 1 1 C17nop !<= 362.0 : 14 (5.0)
18nop !<= 5.0 :

1 mopx <= 0.0040 : 11 (4.0)
1 1 1 1 mopx !<= 0.0040 : 8 (2.0)

17nop !<= 23.0 :
1 C4h3 <= 702.769 : 14 (2.0)

1 1 C4h3 !<= 702.769 : 18 (2.0)
Y !<= 0.125 :

1 coo <= 20.0 : 6 (2.0)
1 coo 1<- 20.0 :
1 1 C4h3 <- 574.0 : 11 (2.0)

1 1 1 1 C4h3 !<= 574.0 : 5 (2.0)
C12nte 1<'" 0.0 :
1 mopy <= 435.154 : 8 (3.0)
1 mopy !<- 435.154 :
1 1 C15dist <= 342.584 : 14 (5.0)
1 1 C15dist 1<- 342.584 : 18 (2.0)

19nte !<= 3.0 :
1 coo > 19.0 : 19 (2.0)
1 coo !> 19.0 :
1 1 dcc <- 13.4536 : 17 (2.0)

1 1 1 dcc !<= 13.4536 : 11 (2.0)
1 nop !<- 24.0 :

1 dcc <- 12.2066 : 10 (3.0)
1 dcc !<- 12.2066 : 14 (5.0)

15nop !<= 21.0 :
1 C22dist <= 1003.89 : 11 (3.0)
1 C22dist 1<- 1003.89 :
1 1 vx <- -0.017 : 7 (3.0)

1 1 1 vx 1<= -0.017 : 15 (3.0)
Cl0nte !<- 0.0 :
1 coo <- 20.0 : 10 (2.0)

101

1 1 eoo I<K 20.0 : 14 (2.0)
1 Clnop !<= 21.0 :
1 1 Clnop <= 23.0 : 18 (3.0)
1 1 Clnop 1<= 23.0 : 4 (2.0)
C9nop 1<_ 21.0 :
1 ply <= 891.0 : 12 (2.0)

1 1 ply 1<- 891.0 : 3 (3.0)
oldCity 1- 13.0 :

oldCity _ 14.0 :

\,l~1~:o~0~!'~1:0 :
1 C17nto <= 3.0 :
1 C23nop <= 0.0 :
1 1 C16nto <- 0.0 :
1 C7nop (a 23.0 :
1 C12nop <- 23.0 :

1 C14nop <= 24.0 :
1 Cl1nte <= 0.0 :
1 1 C19nop <= 23.0
1 1 Clnop > 23.0 16 (3.0)
1 1 Clnop 1> 23.0 :
1 1 1 C19nto > 6.0 : 13 (2.0)
1 1 1 C19nto 1> 6.0 :
1 1 1 C2nop > 0.0 : 13 (2.0)
1 1 1 C2nop 1> 0.0 :
1 1 1 1 C4h3 > 23.0 : 17 (2.0)
1 1 1 1 C4h3 1> 23.0 :

1 1 1 1 oldCity <= 3.0 :
1 1 1 C18nop <- 0.0 :
1 1 1 1 C11nto > 21.0 : 16 (3.0)
1 1 1 1 C11nto 1> 21.0 :
1 1 1 1 1 Cl0nop <= 522.462 :
1 1 1 1 1 oldCity <- 0.0 :
1 1 1 1 1 C14nop > 0.0 : 16 (2.0)
1 1 1 1 1 C14nop 1> 0.0 :
1 1 1 1 1 1 C16nop > 0.0 : 16 (2.0)
1 1 1 1 1 1 C16nop 1> 0.0 :
1 1 1 1 1 1 1 mopx <- 0.0 :
1 1 1 1 1 1 1 C13nop <= 3.0 :
1 1 1 1 1 1 vy <- 13.6015 : 13 (4.0)
1 1 1 1 1 vy 1 <= 13.6016 :
1 1 1 1 1 1 eto <= 6.0 :
1 1 1 1 1 1 1 C17dist > 347.96 : 13 (5.0)
1 1 1 1 1 1 1 C17dist 1> 347.96 :
1 1 1 1 1 1 1 1 C17nop <- 0.0010 : 16 (29.0)

1 1 1 1 1 1 1 C17nop 1<- 0.0010 :
1 1 1 1 1 1 1 C24nop <- 14.1421 : 13 (6.0)
1 1 1 1 1 1 C24nop 1 <= 14.1421 :
1 1 1 1 1 1 1 C11dist <= 9.0 : 16 (4.0)
1 1 1 1 1 1 1 C11dist 1<= 9.0 : 13 (3.0)
1 1 1 eto 1 <= 6.0 :
1 1 1 1 C17nop > -0.017 : 13 (4.0)

1 1 1 C17nop 1> -0.017 :
1 1 1 1 Cl0nop <= 429.677 : 16 (2.0)
1 1 1 1 Cl0nop 1<= 429.577 : 11 (2.0)
C13nop 1<= 3.0 :
1 C11dist <= 6.0 : 18 (3.0)
1 Clldist !<= 6.0 :
1 1 C17dist <= 33.2866 : 11 (2.0)
1 1 C17dist 1<= 33.2866 : 16 (6.0)

1 mopx !<= 0.0 :
1 1 C8nto <= 473.25 : 13 (3.0)

1 1 1 C8nto !<- 473.25 : 16 (4.0)
oldCity !<"" 0.0 :
1 C15nto <- 671.008 : 16 (3.0)
1 C15nto 1<= 671.008 : 13 (3.0)

10nop 1<- 622.462 :
1 C17dist <= 117.209 : 18 (5.0)
1 C17dist !<= 117.209 :
1 1 C16nto <= 16.0 : 8 (2.0)
1 1 C16nto !<= 16.0 : 13 (9.0)

18nop !<= 0.0 :
1 mtpx <= 655.739 : 18 (3.0)

1 1 mtpx !<= 656.739 : 13 (3.0)
oldCity 1<- 3.0 :
1 mtpx > 667.381 : 17 (2.0)
1 mtpx 1> 667.381 :
1 1 C12nop > 21.0 : 18 (3.0)
1 1 C12nop !> 21.0 :
1 1 1 mtpx <- 562.261 : 13 (2.0)

1 1 1 1 1 1 mtpx 1<= 562.261 : 18 (2.0)
19nop !<= 23.0 :

1 mopx <- 677.731: 8 (2.0)
1 1 mopx !<- 677.731 : 9 (2.0)
Cl1nte !<= 0.0 :
1 deue <- 14.2127 :
1 1 eto <= 6.0 : 9 (2.0)
1 1 eto !<= 6.0 : 11 (2.0)
1 delle !(= 14.2127 :
1 1 eto <- 2.0 : 11 (3.0)
1 1 cto 1<= 2.0 :
1 1 1 C11nop > 24.0 : 18 (4.0)
1 1 1 C11nop !> 24.0 :
1 1 1 1 dcc <= 14.4222 : 18 (4.0)

1 1 1 1 1 dcc 1<= 14.4222 : 16 (2.0)
C14nop !<- 24.0 :
1 cto <= 6.0 : 16 (2.0)
1 eto 1<- 6.0 :
1 1 mopx <= 708.038 : 7 (3.0)

1 1 1 mopx !<- 708.038 : 13 (3.0)
C12nop !<= 23.0 :
1 dcc <= 14.0357 : 8 (4.0)

1 1 dcc 1<= 14.0357 : 16 (2.0)
C7nop 1<- 23.0 :
1 mopx <- 639.6 : 7 (2.0)
1 mopx 1<- 639.5 : 15 (2.0)

C15nte !<= 0.0 :
1 dcc <= 12.2066 :
1 1 mtpy <- 341.6 : 16 (2.0)
1 1 mtpy !<= 341.6 : 8 (2.0)
1 dcc !<= 12.2066 :
1 1 mopx <- 643.269 : 11 (2.0)
1 1 mopx !<= 643.269 : 20 (2.0)

23nop 1<- 0.0 :
1 C20dist <= 256.947 : 20 (2.0)
1 C20dist 1<- 265.947 : 12 (3.0)

102

1 1 C17nte !<~ 3.0 :
1 1 1 C24dist <~ 438.926 : 18 (2.0)
1 1 1 C24dist !<~ 438.926 : 6 (3.0)
1 Cl0nop ! <= 21. 0 :
1 1 mopx <- 572.87 : 7 (2.0)
1 1 mopx !<= 572.87 : 17 (2.0)

1 \,1~6!~; !0~~Ô°,'3 (2.0)
1 1 C5nop 1> 0.0 :
1 1 1 C3nt. > 3.0 : 10 (3.0)
1 1 1 C3nt. 1> 3.0 :
1 1 1 1 coo <= 17.0 : 17 (2.0)
1 1 1 1 coo I<~ 17.0 : 1 (3.0)
oldCity != 14.0 :

oldCity = 16.0 :
1 elBnts < ... 3.0 :
1 C16nt. <= 0.0 :
1 1 C6nop <- 0.0 :
1 1 C11nop <= 21. 0 :
1 1 C17nop <= 24.0
1 1 1 dct <= 9.05539
1 1 1 1 C8nop <~ 0.0 : 11 (4.0)
1 1 1 1 C8nop !<~ 0.0 : 12 (3.0)
1 1 1 dct !<= 9.06539 :
1 1 1 C14nop <= 23.0 :
1 1 1 1 mopy <= 640.043 :
1 1 1 1 C2nop > 0.0 : 7 (2.0)
1 1 1 1 C2nop!> 0.0 :
1 1 1 1 1 C11nte > 3.0 : 8 (3.0)
1 1 1 1 1 Cllnt. !> 3.0 :
1 1 1 1 1 C13dist <= 13.4536 : 7 (6.0)
1 1 1 1 1 C13dist !<- 13.4536 :
1 1 1 1 1 1 mopx <= 659.333 :
1 1 1 1 1 1 1 C8nop > 21.0 : 7 (2.0)
1 1 1 1 1 1 C8nop 1> 21. 0 :
1 1 1 1 1 1 pIx <= 33.0 : 7 (2.0)

1 1 1 1 \,1~4~t<~3i~.~ : 7 (3.0)
1 1 1 C4h3 !<= 16.0 :
1 1 1 1 oldCity <= 302.652 : 7 (3.0)
1 1 1 1 oldCity !<= 302.562 :
1 1 1 1 1 C18nop <= 366.679 : 8 (19.0)
1 1 1 1 1 C18nop I<~ 366.679 :
1 1 1 1 1 1 C11nte <= 670.909 : 8 (7.0)
1 1 1 1 1 1 C11nte !<- 570.909 : 7 (5.0)
mopx 1<'" 659.333 :
1 dco <- 89.2749 :
1 1 C4h3 <~ 612.191 : 7 (3.0)
1 1 C4h3 !<= 612.191 : 8 (7.0)
1 dco !<= 89.2749 :
1 1 vx > 0.011 : 6 (6.0)
1 1 vx 1> 0.011 :
1 1 1 C4h3 <= 484.423 : 12 (4.0)
1 1 1 C4h3 !<= 484.423 :
1 1 1 1 oldCity <= 307.876 : 6 (2.0)

1 1 1 1 1 1 oldCity !<= 307.876 : 8 (2.0)
mopy 1 <= 640. 043 :
1 C12dist <= 393.406 :
1 1 dcc <= 14.0357 : 14 (3.0)
1 1 dcc 1<= 14.0357 :
1 1 1 mtpx <= 453.667 : 11 (2.0)
1 1 1 mtpx 1<= 453.667 : 8 (2.0)
1 C12dist 1 <= 393.406 :
1 1 vy <- 0.038 : 6 (3.0)
1 1 vy !<- 0.038 : 9 (2.0)

14nop !<= 23.0 :
1 C14nop <= 24.0 : 6 (3.0)
1 C14nop !<= 24.0 :
1 1 dcc <= 14.1421 : 12 (2.0)
1 1 dcc !<= 14.1421 : 7 (3.0)

1 nop 1<= 24.0 :
1 mtpx <= 417.0 : 13 (3.0)
1 mtpx 1<- 417.0 : 7 (2.0)

l1nop !<= 21.0 :
1 C11dist <= 12.7279 : 6 (2.0)
1 C11dist ! <= 12.7279 :
1 1 vx <= 0.021 : 13 (3.0)
1 1 vx 1<- 0.021 : 8 (2.0)

6nop !<= 0.0 :
1 C24dist <= 1173.69 : 8 (2.0)

1 1 C24dist I<~ 1173.69 : 6 (3.0)
C16nte !<= 0.0 :
1 mtpy <- 419.0 : 16 (3.0)
1 mtpy !<~ 419.0 :
1 1 mopy <- 601.677 : 8 (2.0)
1 1 mopy !<= 501.677 : 7 (2.0)

l8nte !<= 3.0 :
1 dco <= 62.3927 : 18 (3.0)

1 1 dco 1<= 62.3927 : 19 (2.0)
oldCity I~ 16.0 :
1 oldCity - 16.0 :
1 Clnt. <= 0.0 :
1 C17nop > 23.0 : 6 (2.0)
1 C17nop!> 23.0 :
1 1 vx <= 0.164 :
1 1 C2nop > 0.0 : 12 (2.0)
1 1 C2nop!> 0.0 :
1 1 1 C6nop > 0.0 : 8 (2.0)
1 1 C6nop 1> 0.0 :
1 1 1 C12nop <- 21.0 :

1 1 C8nop <= 0.0 :
1 1 1 C7nt. <- 0.0 :

1 1 C12nt. > 3.0 : 14 (3.0)
1 1 C12nto!> 3.0 :
1 1 1 C16dist <= 12.3693 : 8 (2.0)
1 1 1 C16dist 1 <= 12.3693 :
1 1 1 1 C11nt. <= 6.0 :
1 1 1 1 1 Cl0nt. > 5.0 : 12 (2.0)
1 1 1 1 1 Cl0nt. 1> 5.0 :
1 1 1 1 1 1 C14nt. > 3.0 : 14 (9.0)
1 1 1 1 1 1 Cl4nt. !> 3.0 :
1 1 1 1 1 1 1 C4h3 > 0.0 : 13 (2.0)
1 1 1 1 1 1 1 C4h3 1> 0.0 :
1 1 1 1 1 1 1 1 oldCity <= 19.4165 : 13 (2.0)
1 1 1 1 1 1 1 1 oldCity !<= 19.4165 :
1 1 1 1 1 1 1 1 1 C18nop > 0.0 : 14 (6.0)

103

1 1 C18nop 1> 0.0 :
1 1 C11nt. <- 13.0 :
1 1 1 Cl0nop <= 197.709 : 11 (3.0)
1 1 1 Cl0nop !<= 197.709 : 1400.0)
1 1 C11nt. !<= 13.0 :
1 1 1 C14nop <- 0.0 :
1 1 1 1 C16nop > 18.0 : 14 (25.0)
1 1 1 1 C16nop 1> 18.0 :
1 1 1 1 1 C11nt. <= 14.2127 : 12 (7.0)
1 1 1 1 1 Clint. !<= 14.2127 :
1 1 1 1 1 1 mopx <= 628.304 : 12 (2.0)
1 1 1 1 1 1 mopx 1<- 628.304 : 14 (7.0)
1 1 1 C14nop !<= 0.0 :
1 1 1 1 C13nop > 369.333 : 13 (2.0)
1 1 1 1 C13nop 1> 369.333 :
1 1 1 1 1 vy <= 101.203 : 14 (9.0)
1 1 1 1 1 1 1 1 1 vy 1<- 101.203 : 12 (3.0)
1 Cl nt. !<= 5.0 :
1 1 mopx <- 526.231 : 14 (4.0)
1 1 1 mopx !<- 526.231 : 18 (2.0)
1 C7nte !<= 0.0 :
1 1 dee <- 14.1421 : 13 (3.0)
1 1 dee !<= 14.1421 : 14 (2.0)
C8nop 1<- 0.0 :

1 1 det > 208.082 : 12 (6.0)
1 1 det !> 208.082 :
1 1 1 C24dist <= 986.071 : 10 (2.0)
1 1 1 C24dist 1<- 986.071 : 8 (3.0)
C12nop ! <= 21. 0 :
1 C12nop <- 24.0 : 10 (2.0)

1 1 1 C12nop !<= 24.0 : 14 (4.0)
x !<= 0.154 :

1 mopx <= 664.333 : 18 (2.0)
1 1 mopx !<= 664.333 : 17 (2.0)

Clnte 1<= 0.0 :
1 mopy <- 445.609 : 1 (2.0)
1 mopy 1<= 445.609 : 14 (2.0)

oldCity !- 16.0 :
oldCity - 17.0 :

C15nte <= 0.0 :
1 C12nt. <= 0.0 :
1 Cante <= 3.0 :
1 1 deue <- 666.325 :
1 1 C17nop <= 23.0 :
1 1 1 C2nop > 0.0 : 2 (3.0)
1 1 1 C2nop 1> 0.0 :
1 1 1 C9nop <- 23.0 :
1 1 1 1 vy <- -0.148 :
1 1 1 1 1 C8dist <= 409.941 :

1 1 1 1 1 vy <- -0.153 : 19 (8.0)
1 1 1 1 1 vy !<- -0.153 : 18 (2.0)
1 1 1 1 C8dist !<= 409.941 :
1 1 1 1 1 mopx <- 574.417 : 14 (2.0)
1 1 1 1 1 mopx 1<- 674.417 : 7 (2.0)
1 1 1 vy 1<= -0.148 :
1 1 1 1 C14nop > 24.0 : 8 (3.0)
1 1 1 1 C14nop !> 24.0 :

1 1 1 1 1 \,lt5~:s~3~~ 0 8~8. 242 :
1 1 1 1 1 1 1 mopy <- 438.792 : 11 (2.0)
1 1 1 1 1 1 mopy !<= 438.792 : 20 (2.0)
1 1 1 1 1 C6dist !<- 858.242 :

1 1 1 1 1 deo <- 130.138 : 9 (3.0)
1 1 1 1 1 deo !<= 130.138 : 16 (2.0)

III \,1\~<~_3~~4~0::
II\' C7nop > 24.0 : 13 (2.0)
1 1 1 C7nop !> 24.0 :
1 1 1 1 C19nop <= 24.0 :
1 1 1 1 C4b3 > 3.0 : 9 (2.0)
1 1 1 1 C4h3!> 3.0 :
1 1 1 1 oldCity <= 11.7047 :

1 C18nop <= 586.609 : 11 (2.0)
1 C18nop 1<- 586.609 : 8 (2.0)
oldCity 1<- 11.7047 :

C11nt. <= 21.0 :
Cl0nop <= 21.0 :

Cl0nop > 0.0 : 9 (2.0)
CI0nop !> 0.0 :

C14nop > 6.0 : 9 (3.0)
C14nop !> 6.0 :
1 C16nop > 6.0 : 9 (2.0)
1 C16nop !> 6.0 :
1 mopx > 411.539 : 3 (2.0)
1 mopx!> 411.539 :
1 1 C13nop > 0.0 : 11 (2.0)
1 1 C13nop !> 0.0 :
1 1 1 vy > 0.0 : 11 (2.0)
1 1 1 vy !> 0.0 :
1 1 1 1 eto <= 14.0 : 11 (8.0)
1 1 1 1 eto ! <- 14.0 :
1 1 1 1 1 C17dist > 3.0 : 9 (3.0)
1 1 1 1 1 C17dist !> 3.0 :
1 1 1 1 1 1 C17nop > 6.0 : 19 (3.0)
1 1 1 1 1 1 C17nop 1> 6.0 :
1 1 1 1 1 1 1 C17nop > 6.0 : 9 (2.0)
1 1 1 1 1 1 1 C17nop ! > 6.0 :
1 1 1 1 1 1 1 1 C24nop <- 12.6491 : 9 (10.0)

1 1 1 1 1 1 1 1 1 C24nop !<= 12.6491 : 19 (27.0)
CI0nop !<= 21.0 :
1 C11dist <- 49.1935 : 19 (3.0)
1 C11dist ! <- 49.1935 :
1 1 C18nop <= 681.386 : 14 (2.0)
1 1 C18nop !<= 581.386 : 11 (2.0)

11nte !<- 21.0 :
1 C17dist > 5.0 : 8 (2.0)
1 C17dist !> 5.0 :
1 1 C8nt. > -0.06 : 11 (4.0)
1 1 C8nt. !> -0.06 :
1 1 1 C16nt. <- 470.696 : 19 (2.0)

1 1 1 1 1 C15nt. !<= 470.696 : 7 (2.0)
C19nop !<= 24.0 :

1 1 C4b3 <- 624.333 : 11 (2.0)
1 1 1 C4b3 1<- 624.333 : 9 (2.0)

\,l~o~<~= 8~tg : 1 (2.0)

104

1 1 1 1 1 1 coo 1 <- 18.0 :
1 1 1 1 1 1 1 vy <- 0.0010 : 22 (4.0)
1 1 1 1 1 1 1 vy 1<= 0.0010 : 19 (9.0)
1 C9nop 1<- 23.0 :
1 1 ply <= 884.0 : 9 (4.0)

1 1 ïl~0;~=<~8~5L25 : 11 (2.0)
1 1 1 1 mopx !<- 656.126 : 5 (2.0)
C17nop !<= 23.0 :
1 C17nop <- 24.0 : 11 (2.0)
1 C17nop 1<- 24.0 :
1 1 dct <- 71.0634 : 2 (2.0)
1 1 dct !<- 71.0634 : 13 (2.0)

eue !<- 666.325 :
C3dist <- 238.355 :
1 C23nop > 0.0 : 1 (2.0)
1 C23nop 1> 0.0 :
1 1 vx <= -0.103 : 4 (2.0)
1 1 vx !<= -0.103 : 23 (4.0)
C3dist !(= 238.356 :
1 C5nop > 0.0 : 11 (2.0)
1 C6nop 1> 0.0 :
1 1 dcc <- 12.7279 : 7 (2.0)
1 1 dcc !<= 12.7279 :
1 1 1 ply <- 233.0 : 10 (2.0)
1 1 1 ply 1<- 233.0 : 20 (2.0)

8nte !<= 3.0 :
1 cto <= 1.0 : 12 (3.0)
1 eto !<= 1.0 :
1 1 ply <= 133.0 : 11 (2.0)
1 1 ply 1<- 133.0 : 7 (3.0)

C12nte !<- 0.0 :
1 plx <= 344.0 : 8 (3.0)
1 plx !<= 344.0 : 3 (3.0)

15nte 1<= 0.0 :
1 mopx <- 618.609 : 11 (2.0)

1 1 mopx 1<= 618.609 : 15 (2.0)
oldCity !- 17.0 :

C3nte <= 0.0 :
Clnte <- 0.0 :
1 C16nte <= 0.0 :
1 C24nop <= 0.0 :
1 1 C18nop <= 23.0 :
1 1 Cl0nte <= 0.0 :
1 1 1 C19nop <- 0.0
1 1 C9nte > 3.0 : 19 (3.0)
1 1 C9nte !> 3.0 :
1 1 C13nop <= 23.0 :
1 1 C16nte <= 0.0 :
1 1 cto <= 1.0 :
1 1 1 cto <= 0.0 : 9 (3.0)
1 1 1 cto !<= 0.0 :
1 1 1 1 C11nop > 0.0 : 16 (2.0)
1 1 1 1 C11nop ! > 0.0 :
1 1 1 1 1 C4h3 <= 461.707 : 20 (6.0)
1 1 1 1 1 C4h3 !<= 461.707 : 7 (2.0)
1 1 cto !<= 1.0 :
1 1 C22nte > 6.0 : 19 (3.0)
1 1 C22nte !> 6.0 :
1 1 C17nop > 0.0 : 13 (3.0)
1 1 C17nop !> 0.0 :
1 1 C20nte <- 3.0 :
1 1 C4h3 > 21.0 : 16 (3.0)
1 1 C4h3 !> 21.0 :
1 1 1 oldCity <= 3.0 :
1 1 1 C18nop <- 0.131 :
1 1 1 1 C11nte > 3.0 : 14 (2.0)
1 1 1 1 C11nte ! > 3.0 :
1 1 1 1 Cl0nop > 23.0 : 8 (2.0)
1 1 1 1 Cl0nop!> 23.0 :
1 1 1 1 1 C14nop <- 6.0 :
1 1 1 1 1 C16nop > 3.0 : 13 (2.0)
1 1 1 1 1 C16nop 1> 3.0 :
1 1 1 1 mopx > 0.0 : 1 (2.0)
1 1 1 1 mopx !> 0.0 :
1 1 1 1 C13nop > 0.0 : 14 (3.0)
1 1 1 C13nop 1> 0.0 :

1 C18nop <- -0.0040 :
1 1 vy <= 269.833 : 16 (3.0)
1 1 vy 1<- 269.833 :
1 1 1 cto > 28.8444 : 14 (24.0)
1 1 1 cto !> 28.8444 :
1 1 1 1 C17dist <= 692.386 : 13 (2.0)
1 1 1 1 C17dist !<= 692.386 : 14 (2.0)
1 C18nop !<- -0.0040 :
1 1 C17nop > 3.0 : 13 (2.0)
1 1 C17nop !> 3.0 :
1 1 1 C24nop <= 374.0 :
1 1 1 1 C11dist <= 16.0 : 14 (5.0)
1 1 1 1 C11dist !<- 16.0 : 20 (7.0)
1 1 1 C24nop !<= 374.0 :
1 1 1 1 C8nte <- 664.378 : 11 (2.0)

1 1 1 1 1 1 1 C8nte 1<- 654.378 : 14 (3.0)
C14nop !<= 6.0 :

1 1 C15nte <- 618.0 : 11 (2.0)
1 1 1 C16nte !<= 618.0 : 14 (2.0)
Cl nop !<= 0.131 :
1 mopx > 0.0 : 13 (2.0)
1 mopx !> 0.0 :
1 1 C15nte <= 474.231 : 8 (2.0)
1 1 C15nte !<- 474.231 : 23 (2.0)

ldCity !<- 3.0 :
1 C16nte <- 13.6016 : 11 (2.0)
1 C16nte !<- 13.6015 : 19 (2.0)

20nte 1<= 3.0 :
1 C4h3 <- 886.6 : 19 (2.0)
1 C4h3 !<- 886.6 : 20 (2.0)

16nte !<- 0.0 :
1 plx <- 461.0 : 17 (2.0)
1 plx !<- 461.0 : 7 (3.0)

C13nop !<- 23.0 :
1 mopx <- 646.792 : 11 (2.0)

1 1 mopx !<- 646.792 : 13 (2.0)
C19nop 1<- 0.0 :
1 C21dist <= 424.924 :
1 1 mtpx <- 636.0 : 16 (2.0)

105

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1 62Tjr;t!~~=6~~4?9~42~ (2.0)
1 1 eoo <- 19.0 : 19 (6.0)
1 1 coo !<= 19.0 :
1 1 1 eto <= 2.0 : 3 (2.0)

1 1 1 1 eto !<= 2.0 : 14 (4.0)
Cl0nto !<= 0.0 :
1 Cl0nto <= 3.0 : 20 (2.0)
1 CI0nte !<= 3.0 :
1 1 vy <= 0.011 : 16 (3.0)
1 1 vy !<= 0.011 : 11 (2.0)

18nop !<- 23.0 :
1 C18nto <- 3.0 : 13 (4.0)

1 1 1 C18nto 1<= 3.0 : 11 (3.0)
1 C24nop !<= 0.0 :
1 1 vx <= -0.026 :
1 1 1 ply <- 870.0 : 24 (3.0)
1 1 1 ply !<= 870.0 : 7 (2.0)
1 1 vx 1<- -0.026 :
1 1 1 mopx <= 590.5 : 20 (2.0)

1 1 1 1 mopx 1<= 690.6 : 19 (4.0)
1 C15nto !<= 0.0 :
1 1 eto <= 3.0 : 7 (2.0)
1 1 eto !<= 3.0 :
1 1 1 eoo <- 13.0 : 10 (2.0)

1 1 1 1 eoo !<= 13.0 : 13 (3.0)
1 Cinto !<= 0.0 :
1 1 Cinto <= 3.0 : 1 (2.0)
1 1 Clnto 1<= 3.0 :
1 1 1 C21dist <- 465.439 : 20 (4.0)
1 1 1 C21dist 1<- 466.439 : 4 (3.0)
C3nte !<- 0.0 :

1 1 1 1 1 1 1 1 1 1
C4h3 1<= 4.36316E-6
1 C4N = 0.0 :

1 1 C3nop <= 23.0 : 3 (3.0)
1 1 C3nop !<= 23.0 : 5 (2.0)

1 1 C5N = 0.0 :
1 1 1 C4h3 <- 0.00102719
1 1 1 1 C19N = 0.0 :
1 1 1 1 oldCity = 1.0 : 1 (0.0)
1 1 1 1 oldCity!= 1.0 :
1 1 1 1 1 oldCity - 3.0 : 1 (0.0)
1 1 1 1 1 oldCity !- 3.0 :

1 1 1 1 oldCity • 4.0 : 1 (0.0)
1 1 1 1 oldCity 1= 4.0 :
1 1 1 1 oldCity = 6.0 : 1 (0.0)
1 1 1 1 oldCity 1= 6.0 :
1 1 1 1 1 oldCity = 7.0 : 1 (0.0)
1 1 1 1 1 oldCity != 7.0 :
1 1 1 1 1 1 oldCity = 8.0 : 1 (0.0)
1 1 1 1 1 1 oldCity !- 8.0 :
1 1 1 1 1 1 1 oldCity - 9.0 : 1 (0.0)
1 1 1 1 1 1 1 oldCi ty 1 = 9.0 :
1 1 1 1 1 1 1 1 oldCity = 10.0 : 1 (0.0)
1 1 1 1 1 1 1 1 oldCi ty ! - 10.0 :
1 1 1 1 1 1 1 1 1 oldCity = 11.0 : 1 (0.0)
1 1 1 1 1 1 1 1 1 oldCity != 11.0 :
1 1 1 1 1 1 1 1 oldCity = 12.0 : 1 (0.0)
1 1 1 1 1 1 1 1 oldCity! = 12.0 :
1 1 1 1 1 1 1 1 oldCity • 13.0 : 1 (0.0)

1 1 1 1 1 1 1 oldCity != 13.0 :
1 1 1 1 1 1 1 1 oldCity - 14.0 : 1 (0.0)
1 1 1 1 1 1 1 1 oldCity != 14.0 :
1 1 1 1 1 1 1 1 1 oldCity - 15.0 : 1 (0.0)
1 1 1 1 1 1 1 1 1 oldCity 1- 16.0 :
1 1 1 1 1 1 1 1 1 oldCity • 16.0 : 1 (0.0)

1 1 1 1 1 1 1 1 oldCity != 16.0 :
1 1 1 1 1 1 1 1 1 oldCity • 17.0 : 1 (0.0)
1 1 1 1 1 1 1 1 1 oldCity 1- 17.0 :
1 1 1 1 1 1 1 1 1 1 oldCity - 18.0 : 1 (0.0)
1 1 1 1 1 1 1 1 1 1 oldCity 1- 18.0 :
1 1 1 1 1 1 1 1 1 1 1 oldCity = 22.0 : 1 (0.0)
1 1 1 1 1 1 1 1 1 1 1 oldCi ty 1 = 22.0 :
1 1 1 1 1 1 1 1 1 1 1 1 oldCity = 24.0 : 1 (0.0)
1 1 1 1 1 1 1 1 1 1 1 1 oldCity != 24.0 :
1 1 1 1 1 1 1 1 1 1 1 1 1 oldCity = 2.0 :
1 1 1 1 1 1 1 1 1 1 1 1 1 1 C9dist <- 476.319 :
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 dee <= 14.0 : 20 (5.0)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 dee !<= 14.0 :
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 mopy <- 481.231 : 1 (3.0)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 mopy 1<- 481.231 : 18 (2.0)
1 1 1 1 1 1 1 1 1 1 1 1 1 C9dist !<= 476.319 :
1 1 1 1 1 1 1 1 1 1 1 1 1 1 C18nop <= 0.0 :
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 C22nto > 3.0 : 6 (3.0)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 C22nto ! > 3.0 :
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 C21nto > 0.0 : 1 (2.0)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 C21nto 1> 0.0 :
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 C24nop > 24.0 : 23 (3.0)

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 C24nop !> 24.0 :
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 C14nop > 0.0 : 23 (2.0)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 C14nop ! > 0.0 :
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 mtpy <= 695.8 :
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 eto > 7.0 : 3 (3.0)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 eto 1> 7.0 :
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 C3nop <= 0.0 :

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 C4h3 <- 206.247 : 23 (6.0)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 C4h3 1<- 206.247 :
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 oldCity > 0.0 : 23 (4.0)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 oldCity 1> 0.0 :
1 C18nop > 613.701 : 3 (5.0)
1 C18nop ! > 513.701 :
1 C11nto <- -0.039 : 3 (3.0)
1 Cl1nto !<= -0.039 : 1 (20.0)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 C3nop !<= 0.0 :
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 plx <= 1102.0 : 23 (3.0)

i i i i i i i i i i i i i i i i i \,l~4~;-<!1~~:~4l9 : 4 (3.0)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 C4h3 1<= 69.6419 : 1 (3.0)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 mtpy !<= 695.8 :
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 C23dist <= 346.217 : 3 (3.0)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 C23dist 1<= 346.217 : 13 (2.0)
1 1 1 1 1 1 1 1 1 1 C18nop! <= 0.0 :
1 1 1 1 1 1 1 1 1 1 1 1 C21dist <= 376.809 : 9 (2.0)
1 1 1 1 1 1 1 1 1 1 1 1 C21dist !<= 376.809 : 3 (3.0)
1 1 1 1 1 1 1 1 1 oldCity ! - 2.0 :
1 1 1 1 1 1 1 1 1 1 oldCity = 6.0 :

106

Cl0nop <- 21.0 :
1 C6nte <= 0.0 :
1 C3nop > 23.0 : 3 (6.0)
1 C3nop!> 23.0 :
1 1 mtpx <- 646.167 :
1 Il dco > 247.194: 7 (2.0)
1 Il dco !>247.194:
1 1 1 1 C17nte > 0.0 : 6 (2.0)
1 1 1 1 C17nte 1> 0.0 :
1 1 1 1 1 cto <- 3.0 : 11 (3.0)
1 1 1 1 1 cto !<= 3.0 : 24 (5.0)
1 1 tpx 1<- 645.167 :
1 1 C11nte > 0.0 : 14 (2.0)
1 1 C11nte 1> 0.0 :
1 1 1 C21nop > 0.0 : 4 (2.0)

1 1 C21nop !> 0.0 :
1 1 C13nte > 0.0 : 3 (3.0)
1 1 C13nte!> 0.0 :

1 1 C2nop > 0.0 : 3 (3.0)
1 1 C2nop !> 0.0 :
1 1 mtpy<-667.8:
1 1 1 C4h3 > 24.0 : 3 (2.0)
1 1 1 C4h3 1> 24.0 :
1 1 1 oldCity <= 702.375 :
1 1 1 1 C18nop <= 1.0 : 20 (2.0)
1 1 1 1 C18nop 1<- 1.0 :
1 1 1 1 1 C11nte <= 410.67 : 23 (2.0)
1 1 1 1 1 C11nte !<= 410.67 : 1 (3.0)
1 1 oldCity 1<= 702.376 :

1 Cl0nop > 0.0 : 1 (2.0)
1 CI0nop !> 0.0 :
1 C14nop <- 192.271 : 1 (3.0)
1 C14nop 1<= 192.271 :
1 1 C16nop <- 13.8924 :
1 1 1 mopx <- -0.037 : 1 (6.0)
1 1 1 mopx !<= -0.037 :
1 1 1 1 C13nop <= 419.609 : 24 (4.0)
1 1 1 1 C13nop !<= 419.609 : 19 (3.0)
1 1 C16nop !<= 13.8924 :
1 1 1 C18nop > 3.0 : 24 (21.0)
1 1 1 C18nop 1> 3.0 :
1 1 1 1 C16nop <- 192.762 : 2 (2.0)

1 1 1 1 1 C16nop 1<- 192.762 : 24 (2.0)
1 mtpy 1<- 667.8 :
1 1 dcc <= 14.2127 :
1 1 1 C4h3 > 0.0 : 1 (2.0)
1 1 1 C4h3 1> 0.0 :
1 1 1 1 oldCity > 1020.29 : 18 (3.0)
1 1 1 1 oldCity 1> 1020.29 :
1 1 1 1 1 C18nop <- 433.714 : 17 (2.0)
1 1 1 1 1 C18nop 1<= 433.714 : 24 (3.0)
1 1 dcc !<= 14.2127 :
1 1 1 C4h3 <= 487.111 : 4 (2.0)
1 1 1 C4h3 1<= 487.111 : 3 (3.0)

Snts !< 0.0 :
1 vy <= 0.012 : 22 (3.0)
1 vy 1<- 0.012 :
1 1 mtpx <= 861.667 : 18 (2.0)
1 1 mtpx !<= 861.667 : 3 (2.0)

10nop !<"'" 21.0 :
1 coo <- 22.0 : 6 (2.0)
1 coo !<= 22.0 : 4 (3.0)

oldCity != 6.0 :
1 oldCity = 19.0 :
1 C16nte <= 0.0 :
1 1 C13nte <= 0.0 :
1 1 C19nte <- 5.0 :
1 1 1 C5nte <= 0.0 :
1 1 1 coo <= 16.0 :
1 1 1 dco <= 12.083 :
1 1 1 1 C24dist <= 640.72 : 9 (3.0)
1 1 1 1 C24dist 1<- 640.72 : 3 (4.0)
1 1 1 dco 1<= 12.083 :
1 1 1 C3nte <= 3.0 :
1 1 1 C22nop > 0.0 : 1 (2.0)
1 1 1 C22nop !> 0.0 :
1 1 1 1 C13dist <= 110.164 : 11 (2.0)

1 1 1 C13dist 1 <= 110.164 :
1 1 1 1 C4h3 > 21.0 : 18 (3.0)
1 1 1 1 C4h3 1> 21. 0 :
1 1 1 1 1 oldCity <= -0.011 : 17 (6.0)
1 1 1 1 1 oldCity 1<- -0.011 :
1 1 1 1 1 1 C18nop > 21.0 : 1 (2.0)
1 1 1 1 1 1 C18nop ! > 21. 0 :
1 1 1 1 1 1 1 C11nte <= 463.282 : 18 (11.0)
1 1 1 1 1 1 1 C11nte !<= 463.282 : 1 (3.0)
1 1 3nte !<= 3.0 :
1 1 1 mtpy <- 483.6 : 18 (4.0)
1 1 1 mtpy !<= 483.5 : 23 (2.0)
1 1 oo! <= 16.0 :
1 1 C11nte <= 0.0 :
1 1 C2nop > 0.0 : 4 (2.0)
1 1 C2nop !> 0.0 :

1 1 C6dist <= 672.507 :
1 1 C3nop <= 24.0 :
1 1 1 C23nte <- 3.0 :
1 1 1 C19nop <= 0.0 :
1 Il C4h3>0.0:5(2.0)
1 1 1 C4h3 !> 0.0 :
1 1 1 1 oldCity <= 528.692 : 23 (4.0)
1 1 1 1 oldCity !<- 628.692 :
1 1 1 1 C18nop <- 694.6 :
1 1 1 1 1 C11nte > 2.0 : 11 (2.0)
1 1 1 1 1 C11nte 1> 2.0 :
1 1 1 1 1 1 Cl0nop <- 326.966 : 24 (2.0)
1 1 1 1 1 1 Cl0nop !<= 326.966 : 5 (4.0)
1 1 1 1 C18nop !<= 594.6 :
1 1 1 1 1 C14nop > 0.0 : 1 (4.0)
1 1 1 1 1 C14nop !> 0.0 :
1 1 1 1 1 1 C16nop <= 643.659 :
1 1 1 1 1 1 1 mopx <= 13.9284 : 17 (6.0)
1 1 1 1 1 1 1 mopx 1<= 13.9284 : 22 (6.0)
1 1 1 1 1 1 C16nop 1<- 543.669 :
1 1 1 1 1 1 1 C13nop <= 486.167 : 17 (4.0)
1 1 1 1 1 1 1 C13nop !<- 485.167 : 1 (4.0)
1 1 1 C19nop !<- 0.0 :

107

1 C4h3 <= 437.423: 3 (3.0)
1 C4h3 !<-437.423:
1 1 oldCity <= 637.376 : 17 (2.0)
1 1 oldCity !<= 637.376 :
1 1 1 C4h3 <= 490.622 : 18 (2.0)

1 1 1 1 C4h3 !<= 490.622 : 22 (2.0)
C23nte 1<- 3.0 :
1 C4h3 > 21.0 : 24 (3.0)
1 C4h3 1> 21.0 :
1 1 oldCity <= 474.308 : 17 (2.0)
1 1 oldCity !<= 474.308 : 2 (2.0)

3nop !<= 24.0 :
1 C4h3 <= 232.573 : 18 (3.0)
1 C4h3 !<= 232.673 2 (2.0)

6dist ! <=- 672.507 :
C19dist <= 224.849 :
1 coo <= 20.0 :
1 1 C4h3 > 223.652 : 17 (2.0)
1 1 C4h3 1> 223.662 :
1 1 1 oldCity <- 622.81 : 22 (2.0)
1 1 1 oldCity 1<- 622.81 : 20 (2.0)
1 coo !<- 20.0 :
1 1 C4h3 <= 21.0 : 18 (4.0)
1 1 C4h3 !<= 21.0 : 9 (2.0)
C19dist 1<- 224.849 :
1 C4h3 > 0.0 : 11 (2.0)
1 C4h3 !> 0.0 :
1 1 oldCity > 21.0 : 6 (3.0)
1 1 oldCity !> 21.0 :
1 1 1 C18nop <- 10.2956 : 6 (3.0)
1 1 1 C18nop !<= 10.2966 :
1 1 1 1 C11nte <- 499.385 :
1 1 1 1 1 Cl0nop > 191.638 : 17 (11.0)
1 1 1 1 1 Cl0nop !> 191.638 :
1 1 1 1 1 1 Cl0nop <= 13.6015 : 17 (3.0)
1 1 1 1 1 1 Cl0nop !<- 13.6015 : 11 (3.0)
1 1 1 1 C11nte 1<- 499.386 :
1 1 1 1 1 C14nop <= 451.367 : 7 (2.0)

1 1 1 1 1 1 C14nop 1<- 461.367 : 9 (6.0)
CUn e 1<= 0.0 :
1 C11nop <= 23.0 : 4 (2.0)
1 Cllnop !<= 23.0 :
1 1 C13dist > 114.726 : 24 (4.0)
1 1 C13dist ! > 114.726 :
1 1 1 vy <= 0.075 : 17 (2.0)
1 1 1 vy !<= 0.075 : 18 (3.0)

5 te 1<- 0.0 :
1 deoe > 340.852 : 20 (3.0)
1 deoe !> 340.862 :
1 1 pIx <= 1149.0 : 22 (9.0)

1 1 1 pIx !<= 1149.0 : 9 (2.0)
C19nte 1<= 6.0 :
1 mopy <= 396.624 : 13 (2.0)
1 mopy !<= 396.524 : 23 (2.0)

13nte 1<= 0.0 :
1 deue > 430.298 : 7 (2.0)
1 deue 1> 430.298 :
1 1 C5dist > 876.097 : 11 (5.0)
1 1 C5dist !> 876.097 :
1 1 1 mopx <= 668.13 : 11 (2.0)

1 1 1 1 mopx !<- 658.13 : 18 (4.0)
1 CiGnte !<= 0.0 :
1 1 C24dist <- 732.446 : 18 (3.0)
1 1 C24dist !<= 732.446 : 8 (2.0)
oldCity 1= 19.0 :

oldCity - 20.0 :
1 C19nte <= 0.0 :
1 C9dist <= 858.697
1 1 C22nte <= 0.0 :
1 1 C16nte <= 3.0 :

: : ïl~2~~i;;\~ ~35. 68
1 1 1 1 vy <= 0.048 :
1 1 1 1 1 Cl0nop > 0.0 : 8 (2.0)
1 1 1 1 1 Cl0nop !> 0.0 :
1 1 1 1 1 1 vy <= 0.036 : 16 (6.0)
1 1 1 1 1 1 vy !<= 0.036 : 18 (2.0)
1 1 1 1 vy !<= 0.048 :
1 1 1 1 1 mopx <= 684.6 : 1 (2.0)

1 1 1 mopx !<- 584.5 : 13 (2.0)
1 C20dist ! <= 435.58 :
1 1 C23dist <= 810.987 : 21 (3.0)
1 1 C23dist !<= 810.987 : 17 (2.0)

ïl~o~;-<~5~2~. ~87 :
1 1 C24nte > 3.0 : 18 (3.0)
1 1 C24nte 1> 3.0 :
1 1 C5dist <= 853.663 :

1 1 mopx <= 422.143 : 13 (3.0)
1 1 mopx !<= 422.143 :
1 1 1 mopy > 521.115 : 9 (3.0)
1 1 1 mopy 1> 621.115 :
1 1 1 1 C4h3 > 23.0 : 1 (2.0)
1 1 1 C4h3 !> 23.0 :
1 1 1 oldCity > 6.0 : 18 (2.0)
1 1 1 oldCity 1> 6.0 :

1 1 C18nop <= 249.0 : 18 (3.0)
1 1 C18nop !<- 249.0 :
1 1 C11nte > 23.0 : 21 (3.0)
1 1 C11nte 1> 23.0 :
1 1 1 C11nte <= 0.0 :
1 1 1 1 Cl0nop <= 151.212 : 3 (3.0)
1 1 1 1 Cl0nop 1 <- 161. 212 :
1 1 1 1 1 C14nop <- 458.0 : 21 (11.0)
1 1 1 1 1 C14nop 1<- 468.0 :
1 1 1 1 1 1 C16nop <= 0.069 : 23 (13.0)
1 1 1 1 1 1 C16nop !<= 0.069 : 21 (3.0)
1 1 1 C11nte !<- 0.0 :
1 1 1 1 mopx <- 14.0367 : 3 (2.0)
1 1 1 1 1 1 mopx 1<- 14.0367 : 23 (3.0)
C6dist ! <- 863.663 :

1 1 deoe <- 14.4222 : 14 (4.0)
1 1 1 deoe !<= 14.4222 : 18 (4.0)
mopy 1<= 528.087 :
1 deue <= 14.7648 : 8 (2.0)
1 deue !<= 14.7648 :

108

1 mopy <= 575. 638 :
1 1 deo <= 13.6016 : 13 (5.0)
1 1 deo 1<= 13.6015 : 18 (3.0)
1 mopy 1<= 575.538 :
1 1 C5dist <= 677.956 : 18 (4.0)

1 1 1 1 1 C5dist 1<= 677 .956 : 23 (4.0)
Ci50te 1<- 3.0 :

1 1 mopx <- 698.038 : 14 (2.0)
1 1 mopx 1<= 698.038 : 12 (2.0)
C22nte !<= 0.0 :

1 1 C24dist <= 60.6371 :
1 1 1 C23dist <= 502.694 : 23 (3.0)
1 1 1 C23dist 1<= 602.694 : 19 (2.0)
1 1 C24dist 1<- 60.5371 :
1 1 1 mtpy <- 610.25 : 24 (2.0)
1 1 1 mtpy 1<- 610.25 : 17 (2.0)
C9dist 1 <= 868. 597 :

coo <= 19.0 :
C6nte <= 0.0 :
1 deue <= 14.2127 :
1 1 Clnop > 21.0 : 17 (2.0)
1 1 Clnop 1> 21.0 :
1 1 1 det <= 232.034 : 19 (4.0)
1 1 1 det 1<- 232.034 : 23 (2.0)
1 deue 1<= 14.2127 :
1 1 dee <- 14.4222 : 3 (6.0)
1 1 dee 1<= 14.4222 : 2 (2.0)
C5nte !<= 0.0 :
1 mopy <= 476.154 : 1 (2.0)
1 mopy 1<- 476.154 : 23 (2.0)

00 l<:a 19.0 :
1 C6nte > 3.0 : 3 (2.0)
1 C5nte 1> 3.0 :
1 1 C21dist <- 463.039 : 2 (4.0)
1 1 C21dist 1<- 463.039 : 13 (3.0)

19nte 1<- 0.0 :
1 eto <= 3.0 :
1 1 mopx <- 606.667 : 2 (2.0)
1 1 mopx 1<= 606.667 : 17 (2.0)
1 eto !<"" 3.0 :
1 1 C23dist <= 321.204 : 24 (2.0)

1 1 1 C23dist 1<= 321.204 : 19 (3.0)
oldCity 1= 20.0 :

oldCity :II 21.0 :
C23nop > 24.0 : 6 (2.0)
C23nop !> 24.0 :

C8dist <- 386.374 : 12 (5.0)
C8dist 1 <= 386.374 :

CI7nte > 0.0 : 17 (3.0)
C17nte !> 0.0 :
1 C4nop > 0.0 : 3 (2.0)
1 C4nop 1> 0.0 :
1 1 C20dist > 565.836 : 11 (2.0)
1 1 C20dist 1> 666.836 :
1 1 1 vy <- -0.011 :
1 1 1 1 vx > 0.044 : 23 (3.0)
1 1 1 1 vx 1> 0.044 :
1 1 1 1 1 mopy <= 445.042 : 20 (3.0)
1 1 1 1 1 mopy 1<- 445.042 : 1 (2.0)
1 1 1 vy 1<= -0.011 :
1 1 1 1 C24dist <= 606.36 : 20 (17.0)

1 1 1 1 1 C24dist 1<= 606.36 : 18 (2.0)
oldC~ty !- 21.0 :

vx <= 0.192 :
mopx <= 620.0 :

C3nop > 0.0 : 16 (2.0)
C3nop !> 0.0 :

Clnte > 0.0 : 19 (2.0)
Clots !> 0.0 :
1 CI9dist <= 239.708 :
1 1 vx <= 0.021 : 21 (4.0)
1 1 vx 1<= 0.021 : 14 (2.0)
1 CI9dist 1 <= 239.708 :
1 1 vy > 0.048 : 18 (3.0)
1 1 vy 1> 0.048 :
1 1 1 vy <= -0.036 : 17 (3.0)
1 1 1 vy 1<= -0.035 :
1 1 1 1 dee <- 14.1421 : 1 (2.0)
1 1 1 1 dee 1<- 14.1421 : 20 (3.0)

opx !<= 520.0 :
1 C8nop > 0.0 : 16 (2.0)
1 C8nop !> 0.0 :
1 1 C9nop > 24.0 : 20 (3.0)
1 1 C9nop 1> 24.0 :
1 1 C6nte > 3.0 : 2 (3.0)
1 1 C5nte 1> 3.0 :
1 1 C2dist <= 14.1421 : 3 (3.0)
1 1 C2dist 1 <= 14.1421 :
1 1 1 C3nop <= 24.0 :
1 1 1 CI9nte > 6.0 : 1 (3.0)
1 1 CI9nte 1> 6.0 :
1 1 vy <= -0.146 : 5 (3.0)
1 1 vy 1<= -0.146 :
1 1 1 C20nte <= 6.0 :
1 1 1 C4h3 <= 365.059 : 13 (2.0)
1 1 1 C4h3 1<- 365.059 :
1 1 1 1 oldCity <- 16.0 :
1 1 1 1 1 C18nop > 0.0 : 1 (2.0)
1 1 1 1 1 CI8nop 1> 0.0 :
1 1 1 1 1 1 C11nte > 22.6274 : 6 (6.0)
1 1 1 1 1 1 C11nte 1> 22.6274 :
1 1 1 1 1 1 1 CIOnop <- 607.0 : 19 (4.0)
1 1 1 1 1 1 1 CIOnop 1<- 507.0 : 20 (4.0)
1 1 1 oldCity 1<- 16.0 :
1 1 1 CI4nop > 3.0 : 20 (2.0)
1 1 1 CI4nop 1> 3.0 :
1 1 1 1 C16nop <= 0.0 :
1 1 1 1 1 oldCity > 21.0 : 20 (6.0)
1 1 1 1 1 oldCity 1> 21.0 :
1 1 1 1 1 1 mopx <- 8.06226 : 20 (3.0)
1 1 1 1 1 1 mopx 1<- 8.06226 : 1 (34.0)
1 1 1 1 CI6nop !<- 0.0 :
1 1 1 1 1 CI3nop <- 609.638 : 8 (2.0)
1 1 1 1 1 C13nop 1<- 509.638 : 1 (2.0)
1 20nte !<= 6.0 :
1 1 C4h3 <= 572.375 : 18 (2.0)

109

1
1
1
1
1
1
1
1

1 1 1 1 1 1
1 C19N !- 0.0 :
1 1 C23nte > 3.0 : 23 (3.0)
1 1 C23nte !> 3.0 :

1 1 C13nte > 0.0 : 3 (2.0)
1 1 C13nte !> 0.0 :
1 1 1 C20nte <- 0.0 :
1 1 1 1 Cl0nop > 0.0 : 12 (2.0)
1 1 1 1 Cl0nop ! > 0.0 :
1 1 1 1 1 C14nop <= 0.0 :
1 1 1 1 1 1 C11nop > 24.0 : 6 (2.0)
1 1 1 1 1 1 C11nop 1> 24.0 :
1 1 1 1 1 1 1 C6nop <- 23.0 :
1 1 1 1 1 1 1 1 C22nop > 24.0 : 11 (2.0)
1 1 1 1 1 1 1 C22nop !> 24.0 :
1 1 1 1 1 1 1 1 C15nte <~ 0.0 :
1 1 1 1 1 1 1 1 1 C5nop > 21.0 : 3 (2.0)
1 1 1 1 1 1 1 1 1 C6nop ! > 21.0 :
1 1 1 1 1 1 1 1 1 C4h3 > 0.0 : 5 (2.0)
1 1 1 1 1 1 1 1 1 C4h3 1> 0.0 :

1 1 1 1 1 1 C4h3 1<= 672.376 :
1 1 C3nop ,<= 24.0 :
1 1 1 plx <= 1106.0 : 1 (2.0)

1 1 1 1 1 1 1 1 plx ,<- 1106.0 : 3 (2.0)
1 vx !<- 0.192 :
1 1 coo <= 18.0 : 21 (2.0)
1 1 coo !<= 18.0 :
1 1 1 mopx <= 614.783 : 13 (2.0)
1 1 1 mopx !<- 614.783 : 16 (2.0)

1 1 1 1 1 1 1 1 1 1 oldCity > 24.0 : 17 (3.0)
1 1 1 1 1 1 1 1 1 1 oldCity !> 24.0 :
1 1 1 1 1 1 1 1 1 1 1 C18nop > 909.656 : 17 (6.0)
1 1 1 1 1 1 1 1 1 1 C18nop ! > 909.655 :
1 1 1 1 1 1 1 1 1 1 1 C11nte <~ 0.0 :
1 1 1 1 1 1 1 1 1 1 1 1 Cl0nop <= 14.0367 : 24 (8.0)
1 1 1 1 1 1 1 1 1 1 1 1 Cl0nop ! <= 14.0357 :
1 1 1 1 1 1 1 1 1 1 1 1 C14nop <= 6.0 :
1 1 1 1 1 1 1 1 1 1 1 1 1 C16nop <= -0.05 : 19 (13.0)
1 1 1 1 1 1 1 1 1 1 1 1 1 C16nop ! <= -0.06 :
1 1 1 1 1 1 1 1 1 1 1 1 Cl0nop <= 14.3178 : 19 (5.0)
1 1 1 1 1 1 1 1 1 1 1 1 Cl0nop !<= 14.3178 : 24 (37.0)
1 1 1 1 1 1 1 1 1 C14nop !<= 6.0 :
1 1 1 1 1 1 1 1 1 1 Cl0nop <- 418.862 : 24 (2.0)
1 1 1 1 1 1 1 1 1 1 Cl0nop !<= 418.862 : 19 (3.0)
1 1 1 1 1 1 1 C11nte ! <= 0.0 :
1 1 1 1 1 1 1 1 mopx > 5.0 : 11 (2.0)
1 1 1 1 1 1 1 1 mopx !> 6.0 :
1 1 1 1 1 1 1 1 C13nop <= 696.967 : 17 (2.0)
1 1 1 1 1 1 1 1 1 C13nop !<= 596.957 : 24 (4.0)
1 1 C16nte !<= 0.0 :
1 1 1 mtpy <= 669.333 : 15 (2.0)
1 1 1 1 mtpy !<- 669.333 : 19 (2.0)
1 1 6nop 1<= 23.0 :
1 1 1 C5nop <= 24.0 : 5 (2.0)
1 1 1 C5nop !<= 24.0 :
1 1 1 1 dco <= 272.391 : 1 (2.0)
1 1 1 1 1 1 dco !<= 272.391 : 24 (2.0)
1 1 C14nop !<- 0.0 :
1 1 1 mopx <= 645.308 : 18 (2.0)
1 1 1 mopx !<= 645.308 : 11 (2.0)
1 20nte !<= 0.0 :

1 1 \,l~t;; ~~55~1 ~6 : 24 (2.0)
1 1 1 mtpy 1<= 681.6 : 7 (2.0)

1 1 \,lt2!~~st5~~0 6~6.243 : 20 (3.0)
1 1 1 1 1 C24dist !<= 675.243 : 18 (2.0)
C4h3 !<= 0.00102719 :

oldCity ~ 2.0 : 3 (0.0)
oldCity != 2.0 :
1 oldCity = 3.0 : 3 (0.0)
1 oldCity != 3.0 :
1 1 oldCity - 6.0 : 3 (0.0)
1 1 oldCity 1- 5.0 :
1 1 1 oldCity = 6.0 : 3 (0.0)
1 1 1 oldCity != 6.0 :
1 1 1 oldCity = 7.0 : 3 (0.0)
1 1 oldCity 1- 7.0 :
1 1 1 oldCity = 8.0 : 3 (0.0)
1 1 1 oldCity != 8.0 :
1 1 1 1 oldCity = 9.0 : 3 (0.0)
1 1 1 1 oldCity !- 9.0 :
1 1 1 1 1 oldCity - 10.0 : 3 (0.0)
1 1 1 1 1 oldCity 1- 10.0 :
1 1 1 1 1 1 oldCity = 11.0 : 3 (0.0)

1 1 1 1 1 oldCity != 11.0 :
1 1 1 1 1 1 oldCity ~ 12.0 : 3 (0.0)
1 1 1 1 1 1 oldCity !- 12.0 :
1 1 1 1 1 oldCity = 13.0 : 3 (0.0)
1 1 1 1 1 oldCity != 13.0 :

1 1 1 1 oldCity - 14.0 : 3 (0.0)
1 1 1 1 oldCity != 14.0 :
1 1 1 1 1 oldCity - 16.0 : 3 (0.0)
1 1 1 1 1 oldCity != 15.0 :
1 1 1 1 1 1 oldCity - 16.0 : 3 (0.0)
1 1 1 1 1 oldCity != 16.0 :
1 1 1 1 1 1 oldCity = 17.0 : 3 (0.0)
1 1 1 1 1 1 oldCity !- 17.0 :
1 1 1 1 1 1 oldCity - 18.0 : 3 (0.0)
1 1 1 1 1 1 oldCity 1- 18.0 :

1 1 1 1 oldCity - 19.0 : 3 (0.0)
1 1 1 1 oldCity != 19.0 :
1 1 1 1 1 oldCity = 20.0 : 3 (0.0)
1 1 1 1 1 oldCity 1= 20.0 :
1 1 1 1 1 1 oldCity = 21.0 : 3 (0.0)

1 1 1 1 1 oldCity 1- 21.0 :
1 1 1 1 1 1 oldCity = 22.0 : 3 (0.0)
1 1 1 1 1 1 oldCity ! - 22.0 :
1 1 1 1 1 1 1 oldCity - 23.0 : 3 (0.0)
1 1 1 1 1 1 1 oldCity 1- 23.0 :
1 1 1 1 1 1 1 1 oldCity = 24.0 : 3 (0.0)
1 1 1 1 1 1 1 1 oldCity != 24.0 :
1 1 1 1 1 1 1 1 1 oldCity - 1. 0 :
1 1 1 1 1 1 1 1 1 1 C16nop > 0.0 : 17 (2.0)
1 1 1 1 1 1 1 1 1 1 C16nop ! > 0.0 :

1 1 1 1 Il 1 1 1 1 1 \,1~0~~<~7~O~0:: 6 (4.0)

110

20 (3.0)

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Il
C5N != 0.0 :

C19nop <= 23.0
C20nop <= 0,0 :
1 coo <= 22.0 :

1 1 Cl~~!~; ~= 6~~9;0~~ (2.0)
1 1 C4nte!> 6.0 :
1 C4nte > 0.0 : 6 (2.0)
1 C4nte !> 0.0 :
1 1 C17nte <= 0.0 :
1 1 1 C24nte <= 0.0 :
1 1 1 vy <= 0.029 :
1 1 1 1 coo > 20.0 : 22 (13.0)
1 1 1 1 coo 1> 20.0 :
1 1 1 1 1 mtpy > 701.8 : 6 (4.0)
1 Illmtpyl>701.8:
1 1 1 1 1 mopx > 666.0 : 6 (4.0)

1 1 coo !<= 20.0 :
1 1 1 mtpy <= 427.167 : 18 (2.0)

1 1 mtpy !<= 427.167 : 4 (2.0)

\,l~26~~p 2~~. gl: 0 :
1 1 cto <- 1.0 :
1 1 1 dcc > 14.2127 : 2 (3.0)
1 1 1 dcc !> 14.2127 :

1 1 1 dcc <= 11.4018 : 6 (2.0)
1 1 1 dcc !<- 11.4018 :
1 1 1 1 mtpx <= 690.0 : 19 (2.0)
1 1 1 1 mtpx !<= 690.0 : 3 (2.0)
1 etc !<= 1.0 :
1 1 C13nop <- 0.0 :
1 1 C19nte > 3.0 : 2 (2.0)
1 1 C19nte!> 3.0 :
1 1 1 de oc <= 397.664 :

1 1 C22nop <= 21.0 :
1 1 1 Clnop <= 21.0 :
1 1 1 1 dct <= 10.2966 :
1 1 1 1 1 C4h3 <= 683.762 : 23 (3.0)
1 1 1 1 1 C4h3 !<= 683.762 : 6 (2.0)
1 1 1 1 dct !<- 10.2956 :
1 1 1 1 mopx > 609.231 : 3 (22.0)
1 1 1 1 mopx!> 609.231 :
1 1 1 1 1 C4h3 <= 77.9295 : 2 (6.0)
1 1 1 1 1 C4h3 !<- 77.9296 :
1 1 1 1 1 oldCity <= 0.0 :
1 1 1 1 1 1 C18nop <= 382.167 :
1 1 1 1 1 1 1 C11nte > 23.0 : 3 (2.0)
1 1 1 1 1 1 1 C11nte ! > 23.0 :
1 1 1 1 1 1 1 1 C10nop <- 668.323 : 2 (6.0)
1 1 1 1 1 1 1 1 Cl0nop !<- 558.323 : 3 (6.0)
1 1 1 1 1 1 C18nop ! <= 382.167 :
1 1 1 1 1 1 1 C14nop > 613.696 : 2 (4.0)
1 1 1 1 1 1 1 C14nop !> 513.696 :
1 1 1 1 1 1 1 1 C16nop <= 49.6488 :
1 1 1 1 1 1 1 1 1 C4h3 > 134.213 : 23 (7.0)
1 1 1 1 1 1 1 1 1 C4h3 ! > 134.213 :
1 1 1 1 1 1 1 1 1 1 mopx <= 6.0 : 2 (7.0)
1 1 1 1 1 1 1 1 1 1 mopx 1<= 6.0 : 23 (3.0)
1 1 1 1 1 1 1 C16nop !<= 49.6488 :
1 1 1 1 1 1 1 C16nop <= 114.543 : 3 (5.0)
1 1 1 1 1 1 1 C16nop !<= 114.543 : 23 (8.0)

1 1 oldCity !<= 0.0 :
1 1 1 C13nop <= 520.827 : 23 (3.0)
1 1 1 C13nop !<= 520.827 : 3 (4.0)
Cl op 1<= 21.0 :
1 vx <= -0.048 : 4 (2.0)
1 vx 1<= -0.048 :
1 1 Clnop <= 24.0 :
1 1 1 C4h3 <= 14.3178 : 2 (2.0)
1 1 1 C4h3 1<- 14.3178 : 3 (2.0)
1 1 Clnop !<= 24.0 :
1 1 1 C4h3 <= 143.837 : 5 (3.0)
1 1 1 C4h3 1<= 143.837 : 3 (2.0)

22nop !<= 21.0 :
1 vx <= -0.048 : 6 (4.0)

1 1 vx !<= -0.048 : 23 (3.0)
dcoc 1 <= 397. 664 :
1 mtpy <= 495.76 : 18 (4.0)

1 1 mtpy 1<= 495.75 : 23 (6.0)
C13nop 1<- 0.0 :

1 1 ply <= 401.0 : 23 (3.0)
1 1 ply 1<- 401.0 : 2 (2.0)

20nop 1<- 21.0 :
1 mopx <- 633.6 : 23 (6.0)
1 mopx !<= 633.5 :
1 1 mopx > 676.962 : 2 (4.0)
1 1 mopx 1> 576.962 :
1 1 1 mopy <= 433.808 : 9 (2.0)

1 1 1 1 1 mopy 1<- 433.808 : 8 (2.0)
oldCity 1= 1.0 :
1 C16nte > 0.0 : 10 (2.0)
1 CiGnte 1> 0.0 :
1 1 dcc <= 4.47214 : 14 (2.0)
1 1 dcc !<= 4.47214 :
1 1 1 coo <= 13.0 : 1 (2.0)
1 1 1 coo 1 <= 13.0 :
1 1 1 1 C6nop <= 0.0 : 3 (84.0)
1 1 1 1 C6nop 1<= 0.0 :
1 1 1 1 1 ply <= 766.0 : 2 (3.0)
1 1 1 1 1 ply 1<= 765.0 : 3 (3.0)

1 1 1 1 1 mopx !> 665.0 :
1 1 1 1 1 1 C4h3 <= 0.0 : 22 (23.0)
1 1 1 1 1 1 C4h3 1<= 0.0 :
1 1 1 1 1 1 1 oldCity <- -0.0070 : 6 (4.0)
1 1 1 1 1 1 oldCity 1<- -0.0070 : 22 (4.0)
1 vy 1<- 0.029 :
1 1 vy > 0.099 : 22 (4.0)
1 Ivy!>0.099:
1 1 1 ply <= 466.0 : 21 (4.0)
1 1 1 1 ply 1<- 456.0 : 5 (6.0)
1 C24nte 1<= 0.0 :
1 1 ply <= 859.0 : 5 (2.0)
1 1 1 ply !<= 869.0 : 22 (6.0)
1 C17nte 1<= 0.0 :
1 1 dct <= 221.676 : 17 (3.0)
1 1 dct 1<= 221.576 : 22 (7.0)

111

1 C19dist !<= 569.088 :
Il mtpy <- 567.2: 4 (3.0)
1 1 mtpy 1<= 567.2 : 22 (3.0)
coo !<= 22.0 :
1 C17nt. > 3.0 : 16 (2.0)
1 C17nte !> 3.0 :
1 1 mopx <- 641.308 : 22 (7.0)

1 1 1 mopx !<- 641.308 : 7 (3.0)
C20nop 1<= 0.0 :

1 1 COQ <= 18.0 : 19 (3.0)
1 1 coo !<= 18.0 : 14 (3.0)
C19nop !<= 23.0 :
1 coo <= 20.0 : 1 (3.0)
1 coo !<= 20.0 : 7 (2.0)

C4N 1= 0.0 :
C11nop <= 0.0 :

C1Gnop <= 0.0 :
C24nop <- 24.0

cto <= 1.0 :
1 C5dist <= 673.933 :
1 1 C20nop > 0.0 : 4 (3.0)
1 1 C20nop !> 0.0 :
1 1 1 C2dist <= 128.6 : 2 (3.0)
1 1 1 C2dist !<= 128.6 : 5 (4.0)
1 C5dist !<= 673.933 :
1 1 mopy <- 615.538 : 17 (2.0)
1 1 mopy 1<= 616.638 : 1 (2.0)
eto !<.,. 1.0 :

C13nt. > 0.0 : 4 (2.0)
C13nte !> 0.0 :

C14nte <= 3.0 :
C19nt. <= 0.0 :

C8dist <- 391. 261 :
1 mtpy <= 495.75 : 5 (2.0)
1 mtpy 1<= 496.75 : 15 (2.0)
C8dist 1<- 391.261 :
1 C3nop <- 23.0 :
1 1 C1nop <- 24.0 :
1 1 1 C24nt. <= 0.0 :

1 1 dcoc <= 167.61 :
1 1 1 C20nte <= 3.0 :
1 1 1 1 C4h3 > 0.0 : 1 (2.0)
1 1 1 C4h3 !> 0.0 :
1 1 1 oldCity > 23.0 : 1 (4.0)

1 1 oldCity!> 23.0 :
1 1 C18nop > 3.0 : 4 (2.0)
1 1 C18nop !> 3.0 :
1 Cl1nte (c 3.0 :

1 C10nop <= 0.0 :
1 1 C14nop <- 113.071 :
1 1 1 C16nop > 23.0 : 4 (6.0)
1 1 1 C16nop !> 23.0 :
1 1 1 1 mopx <= 16.0 : 1 (2.0)
1 1 1 1 mopx 1 <= 16.0 :
1 1 1 1 1 C13nop <= 14.7648 : 4 (27.0)
1 1 1 1 1 C13nop !<= 14.7648 : 1 (2.0)
1 1 C14nop 1 <= 113.071 :
1 1 1 vy <= -0.197 : 4 (2.0)
1 1 1 vy !<= -0.197 : 1 (9.0)
1 C10nop !<= 0.0 :
1 1 cto <= 501.0 : 1 (2.0)
1 1 cto !<= 501.0 : 4 (2.0)
Cllnte 1<'" 3.0 :
1 C17dist <= 446.75 : 4 (2.0)
1 C17dist !<= 446.75 : 5 (2.0)

2 nte !<= 3.0 :
1 C4h3 <- 640.333 : 23 (2.0)
1 C4h3 !<- 640.333 :
1 1 oldCity <- 938.667 : 4 (4.0)
1 1 oldCity !<= 938.667 : 2 (2.0)

coc !<- 167.61 :
1 C5nop > 24.0 : 4 (2.0)
1 C5nop !> 24.0 :
1 1 dco <- 6.08276 :
1 1 1 C4h3 <= 490.609 : 2 (2.0)
1 1 1 C4h3 !<- 490.609 : 1 (2.0)
1 1 dco 1<= 6.08276 :
1 1 1 C4h3 <= 485.923 : 1 (14.0)
1 1 1 C4h3 !<= 485.923 : 5 (9.0)

C24nte !<= 0.0 :
1 mopx <= 579.886 : 2 (2.0)

1 1 mopx !<= 579.885 : 4 (2.0)
C1nop !<= 24.0 :

1 1 dcuc > 14.2127 : 1 (6.0)
1 1 dcuc !> 14.2127 :
1 1 1 coo <- 19.0 : 4 (3.0)
1 1 1 coo 1<- 19.0 : 1 (2.0)
C3nop !<= 23.0 :
1 C3nop <= 24.0 : 23 (2.0)
1 C3nop !<= 24.0 :
1 1 dco <= 11.0 : 5 (2.0)
1 1 dco 1<= 11.0 :
1 1 1 vx <= 0.087 : 1 (4.0)

1 1 1 1 vx !<= 0.087 : 2 (2.0)
Ct nte !<- 0.0 :
1 vx <- -0.051 : 24 (3.0)
1 vx 1<- -0.061 :
1 1 ply> 568.0 : 1 (3.0)

i i \,l~o~; ~~84~5:208 : 2 (2.0)
1 1 1 mopy 1<- 466.208 : 6 (2.0)

14nt. 1<= 3.0 :
1 mtpy <- 409.667 : 1 (2.0)

1 1 mtpy !<- 409.667 : 17 (2.0)
C2 n p !<= 24.0 :
1 coo <- 19.0 : 6 (3.0)
1 coo 1<- 19.0 : 22 (2.0)

16nop !<- 0.0 :
1 coo > 22.0 : 4 (2.0)
1 coo !> 22.0 :
1 1 mopx <- 609.833 : 14 (2.0)
1 1 mopx 1<- 609.833 : 15 (2.0)

Unop !<= 0.0 :
1 mopx <= 611.671 : 9 (2.0)
1 mopx !<= 611.571 : 17 (2.0)

112

[Ada94]

[Amd67]

[AW04]

[Bax94]

[BBIOl]

[BLOl]

[Bro03]

Bibliography

Andrew Adamatzky. Identification of Cellular Automata. Taylor and Francis Ltd,

1994.

G. M. Amdahl. Validity of the single-processor approach to achieving large scale

computing capabilities. In AFIPS Conference Proceedings, volume 30, pages 483-

485, Reston, Va., 1967. AFIPS Press.

Justin Ammerlaan and David Wright. Adaptive cooperative fuzzy logic controller.

In Proceedings of the 27th conference on A ustralasian computer science, volume 26,

pages 255-263, 2004.

Gregory A. Baxes. Digital Image Processing. John Wiley & Sons, 1994.

Dimitri Burago, Yuri Burago, and Sergei Ivanov. A Course in Metric Ceometry.

American Mathematical Society, 2001.

Nathaniel E. Baughman and Brian Neil Levine. Cheat-proof playout for centralized

and distributed online games. In INFOCOM, pages 104-113, 2001.

Mark Brockington. Building a reputation system: Hatred, forgiveness, and sur­

render in Neverwinter Nights. In Thor Alexander, editor, Massively Multiplayer

Came Development, pages 454-563. Charles River Media, 2003.

[CDNR04] Andy Collins, Jesse Decker, David Noonan, and Rich Redman. Unearthed Arcana.

[CFKOl]

Wizards of the Coast, 2004.

E. Cronin, B. Filstrup, and A. Kure. A distributed multiplayer game server system,

2001.

113

Bibliography

[CFKJ02] Eric Cronin, Burton Filstrup, Anthony R. Kruc, and Sugih Jamin. An efficient

synchronization mechanism for mirrored game architectures. In Proceedings of the

lst workshop on Network and system support for games, pages 67-73. ACM Press,

2002.

[CM98]

[Com03]

[Com04]

David Carmel and Shaul Markovitch. Model-based learning of interaction strate­

gies in multiagent systems. Journal of Experimental and Theoretical Artificial

Intelligence, 10(3):309-332, 1998.

IGDA Online Games Committee. Online games whitepaper. In Proceedings of

Game Developers Conference, 2003.

IGDA Online Games SIG Steering Committee. 2004 persistent worlds whitepaper,

2004.

URL: <http://www . igda. org/online>.

[DdOC03] P Demasi and A. J. de O. Cruz. Online coevolution for action games. IJIGS:

International Journal of Intelligent Games 8 Simulation, 2(2):80-88, 2003.

[DelOl] C. Dellarocas. Analyzing the economic efficiency of eBay-like online reputation

reporting mechanisms. In Proceedings of the A CM Conference on Electronic Com­

merce, Tampa, Florida, 2001.

[DelO3]

[Den04]

[DG99]

Chrysanthos Dellarocas. Building trust online: The design of robust reputation

reporting mechanisms in online trading communties, 2003.

URL: <http://ccs .mit. edu/dell/reputation.html>.

Alexandre Denault. Minueto, 2004.

URL: <http://minueto . cs. mcgill. cal>.

C. Diot and L. Gautier. A distributed architecture for multiplayer interactive

applications on the Internet, 1999.

URL: <citeseer. ist .psu. edu/diot99distributed.html>.

[DGGZ03] D. Dutta, A. Goel, R. Govindan, and H. Zhang. The design of a distributed rating

scheme for peer-to-peer systems, 2003.

[DHSOO]

URL: <ci teseer. ist. psu. edu/dutta03design. html>.

Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification.

Wiley-Interscience, 2nd edition, 2000.

114

Bibliography

[EMP+98] David S. Ebert, F. Kenton Musgrave, Darwyn Peachey, Ken Perlin, and Steven

Worley. Texturing and Modeling: A Procedural Approach. Morgan Kaufmann

Publishers, 2nd Bk&Cdr edition, September 1995.

[Ent04]

[Fun96]

NASA Earth Science Enterprise. GSFC earth science enterprise water and energy

cycle. http://gwec . gsfc. nasa. gOY, 2004.

T. Funkhouser. Network topologies for scalable multi-user virtual environments.

Proceedings of VRAIS'96, Santa Clara CA, pages 222-229, 1996.

[FvDFH95] James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes. Com­

puter Graphies: Principles and Practice in C. Addison-Wesley, 2nd edition, 1995.

[Gar70]

[Guh04]

[HD03]

[HMS9]

[HM95]

[HW95]

Martin Gardner. The fantastic combinations of John Conway's new solitaire game

'Life'. Scientific American, October 1970.

R. Guha. Open rating systems, 2004.

URL: <ci teseer. ist. psu. edu/694373. html>.

Gordon Hayward and Valerie Davidson. Fuzzy logic applications. Analyst,

12S: 1304-1306, 2003.

D. P. Helmbold and C. E. McDowell. Modeling speedup(n) greater than n. In

1989 International Conference on ParaUel Processing Proceedings, volume 3, pages

219-225, 19S9.

Bill Hirsti and Benoit Mandelbrot. Fractal Landscapes from the Real World. Cor­

nerhouse, December 1995.

Thomas D. Haynes and Roger L. Wainwright. A simulation of adaptive agents

in hostile environment. In K. M. George, Janice H. Carroll, Ed Deaton, Dave

Oppenheim, and Jim Hightower, editors, Proceedings of the 1995 ACM Symposium

on Applied Computing, pages 31S-323, Nashville, USA, 1995. ACM Press.

[Jak03] Mikael Jakobsson. The Sopranos meets Everquest: Social networking in massively

multiplayer online games, 2003.

URL: <http://hypertext .rmit. edu. au/dac/papers/ Jakobsson.pdf>.

[KMNSS] Alex D. Kelley, Michael C. Malin, and Gregory M. Nielson. Terrain simulation

using a model of stream erosion. In Proceedings of the 15th annual conference on

Computer graphies and interactive techniques, pages 163-26S, 19S5.

115

Bibliography

[KSGM03] Sepandar D. Kamvar, Mario T. Schlosser, and Hector Garcia-Molina. The Eigen­

Trust algorithm for reputation management in P2P networks. In Proceedings of

the Twelfth International World Wide Web Conference, 2003., 2003.

[Lan03]

[Lew87]

[LG01]

[Mam74]

[Mar94]

[Mar99]

[MauOO]

Marc Lanctot. hexIT: A Java API for using and drawing hexagonal grids, 2003.

URL: <http://www . sable .mcgill. carmlanct2/projects/hexIT-O. 61. tar. gz>.

J.P. Lewis. General stochastic subdivision. ACM Transactions on Graphies, July

1987.

Barbara Liskov and John Guttag. Program Development in Java: Abstraction,

Specification, and Object-Oriented Design. Addison-Wesley, 2001.

E.H. Mamdani. Applications of fuzzy algorithms for simple dynamic plant. In

Proceedings of IEE, volume 121, pages 1585-1588, 1974.

S. Marsh. Formalising trust as a computational concept, 1994.

URL: <ci teseer . ist . psu. edu/marsh94formalising. html>.

Kai Martin. Using bitmaps for automatic generation of large-scale terrain models.

Game Developer Magazine, October 1999.

Martin Mauve. How to keep a dead man from shooting. In Interactive Distributed

Multimedia Systems and Telecommunication Services, pages 199-204, 2000.

[McCOO] Mason McCuskey. Fuzzy logic for video games. In Mark DeLoura, editor, Game

Programming Gems, pages 319-329. Charles River Media, 2000.

[Me103] Lary Mellon. Research opportunities in game development. Tutorial at: PADS'03

Workshop on Parallel and Distributed Simulation, June 2003.

[MFW02] Martin Mauve, Stefan Fischer, and Jorg Widmer. A generic proxy system for

networked computer games. In NETGAMES '02: Proceedings of the Ist workshop

on Network and system support for games, pages 25-28. ACM Press, 2002.

[Mil85]

[Mit97]

D.L. Mills. Request for comments (rfc) 958, September 1985.

URL: <http://www . faqs. org/rfcs/rfc958. html>.

Tom Mitchell. Machine Learning. McGraw Hill, 1997.

116

Bibliography

[NC01]

[O'N01]

M. Namee and B. Cunningham. A proposaI for an agent architecture for proactive

persistent non player characters, 2001.

URL: < ci teseer . ist . psu. edu/macnameeOl propos al . html >.

Sean O'Neil. A real-time procedural universe, March 2001.

URL: <www.gamasutra.com> .

[PdLV02] Ernesto Posse, Juan de Lara, and Hans Vangheluwe. Processing causal block di­

agrams with graph-grammars in AToM3. European Joint Conference on Theory

and Practice of Software (ETAPS), Workshop on Applied Craph Transformation

(ACT), pages 23-34,2002.

[Pon04] Marc Ponsen. Improving adaptive game AI with evolutionary learning, July 2004.

URL: <http://www.kbs.twi.tudelft.nl/Publications/MSc/20 04-Ponsen-MSc.html>.

[Qua03] Quazal. Quazal Eterna 2.1 technical overview, November 2003.

URL: <http://www.quazal.com/> .

[Qui92] J. R. Quinlan. C4.5 release 8, 1992.

[Rey94]

[RGTOO]

URL: <http://www2.cs.uregina.ca;-hamil tonl courses/831/notes/mll

dtrees/c4.5/tutorial.html>.

Craig W. Reynolds. Competition, coevolution and the game of tag, 1994.

Bohdana Ratitch, Ricard Gavalda, and Denis Therien. Approximation of real­

valued functions with fuzzy cellular automata. Technical report, McGill University,

2000.

[RHG03] Edwin Rojas, Robert J. Hijmans, and Luigi Guarino. DIVA-GIS, 2003.

[RN02]

URL: <http://diva.riu. cip. cgiar. org/index.php>.

Stuart Russell and Peter Norvig. Artificial Intelligence. Prentice-Hall, 2nd edition,

2002.

[RRER03] V. Ramakrishna, Max Robinson, Kevin Eustice, and Peter Reiher. An active

self-optimizing multiplayer gaming architecture. Autonomie Computing Workshop

Fifth Annual International Workshop on Active Middleware Services (A MS '03),

June 2003.

[Ruc02] Rudy Rucker. Software Engineering and Computer Cames. Addison-Wesley,

November 2002.

117

Bi bliogra phy

[SB98] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.

MIT Press, March 1998.

[SKH02] Jouni Smed, Timo Kaukoranta, and Harri Hakonen. A review on networking and

multiplayer computer games. Technical Report 454, Turku Centre for Computer

Science, April 2002.

[SSKP03] Peter Spronk, Ida Sprinkkhuizen-Kuyper, and Eric Postma. Online adaptation of

game opponent AI in simulation and in practice. Game-On, 2003.

[Sta96]

[Ste94]

[StrOl]

[SZ99]

[TiHOO]

[Tou80]

[Tou91]

[Toz02]

[vNB66]

[VVOO]

[Wan96]

Mizuko Ito Stanford. Uses and subversions of SimCity 2000, October 1996.

URL: <http://citeseer . ist . psu. edu/524388. html>.

L. Steels. The artificiallife roots of artificial intelligence, 1994.

Steven H. Strogatz. Nonlinear Dynamics and Chaos: With Applications to Physics,

Biology, Chemistry and Engineering. Perseus Books Group, 2001.

Sandeep Singhal and Michael Zyda. Networked Virtual Environments: Design and

Implementation. Addison-Wesley Professional, September 1999.

Tsuyoshi Taki and Jun ichi Hasegawa. Visualization of dominant region in team

games and its application to teamwork analysis. In Computer Graphies Interna­

tional, pages 227-, 2000.

G. Toussaint. The relative neighbourhood graph of a finite planar set, 1980.

G. Toussaint. Sorne unsolved problems on proximity graphs, 1991.

URL: <ci teseer. ist. psu. edu/toussaint91some. html>.

P. Tozour. The perils of AI scripting. In S. Rabin, editor, AI Game Programming

Wisdom, pages 541-547. Charles River Media, 2002.

John von Neumann and A. W. Birks. Theory of Self-Reproducing Automata. Uni­

versity of Illinois Press, Urbana, Illinois, 1966.

Hans Vangheluwe and Ghislain C. Vansteenkiste. The cellular automata formalism

and its relationship to DEVS. 14th European Simulation Multi-conference (ESM) ,

pages 800-810, May 2000.

Li-Xin Wang. A course in Fuzzy Systems and Control. Prentice Hall PTR, 1st

edition, 1996.

118

Bibliography

[WC03]

[WG01]

[WIS96]

[Wo183]

[Wo186]

[WP85]

[YC02]

[YSOO]

[Zad65]

[ZL04]

Gabriel A. Wainer and Wenhong Chena. A framework for remote execution and

visualization of cell-DEVS models. Simulation, 79(11):626-647, 2003.

G. Wainer and N. Giambiasi. Timed cell-DEVS: modelling and simulation of cell

spaces, 2001.

URL: <citeseer. ist .psu. edu/wainer01timed.html>.

Dennis D. Wackerly, William Mendenhall III, and Richard L. Scheaffer. Mathe­

matical Statistics with Applications. Wadsworth Publishing Company, 1996.

Stephen Wolfram. Cellular automata. Los Alamos Science, 9:2-29, 1983.

S (Ed.) Wolfram. Theory and Applications of Cellular A utomata. World Scientific,

Singapore, 1986.

Stephen Wolfram and Norman H. Packard. Two-dimensional cellular automata.

Journal of Statistical Physics, 38:901-946, March 1985.

Jeff Yan and Hyun-Jin Choi. Security issues in online games. The Electronic

Library, 20(2), 2002.

Bin Yu and Munindar P. Singh. A social mechanism of reputation management in

electronic communities. In Cooperative Information Agents, pages 154-165, 2000.

L.A. Zadeh. Fuzzy sets. Information and Control, 8:338-353, 1965.

Cai-Nicolas Ziegler and Georg Lausen. Spreading activation models for trust prop­

agation. In Proceedings of the IEEE International Conference on e- Technology,

e-Commerce, and e-Service, Taipei, Taiwan, March 2004. IEEE Computer Society

Press.

119

