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Abstract 

Most modern computer games provide a virtual environment as a context for player inter­

action. Recently, many multi-player online games have adopted the persistent-state gaming 

model, which provides a central virtual environment with essentially infinite lifetime. How­

ever, a displeasing part of these long-lasting environments is that, like their predecessors, they 

are still assumed to be static, unchanging even in the long-term. In response to this fact, we 

introduce the adaptive virtual environment which automatically adapts based on activity occur­

ring within the environment. In computer games, adaptive virtual environments are systems 

that correspond to real-world physical or social systems. These systems are computationally 

formalized by adhering to a generic adaptation model containing abstract components and pro­

cedures. Herein, as a proof of concept, we design and analyze the behavior of two adaptive 

versions of such systems commonly found in persistent-state games. To achieve this, we build 

an implementation of an abstract interactive simulator that applies the adaptation pro cess to 

our example systems. Each system is internally represented as a plug-in module containing 

system-specifie implementations of the model's abstractly-defined procedures. Performance of 

the adaptation pro cess is then evaluated using simulation data. Finally, improvements such 

as optimizations and better movement models for agent simulation are investigated, and the 

general usefulness and applicability of the concepts is discussed. 



Résumé 

La plupart des jeux informatiques modernes offrent aux joueurs un environnement virtuel 

qui leur permet d'interagir entre eux. Récemment, plusieurs jeux multi-joueurs en-ligne ont 

adopté un modèle de jeu avec état persistant qui fournit un environnement virtuel central et 

dont le temps de vie est quasi-infini. Ces nouveaux environnements ont tout de même hérité du 

même problème que leurs prédécesseurs: on les considère comme étant statiques c'est-à-dire 

qu'ils ne changent pas avec le temps, même à long terme. Considérant ce fait, nous présentons 

l'environnement virtuel adaptable qui s'ajuste automatiquement en fonction des événements qui 

se déroulant dans l'environnement. Pour les jeux vidéo, les environnements virtuels adaptables 

sont des reproductions de notre monde physique ou social. Ces systèmes sont formalizés en res­

pectant un modèle d'adaptation générique qui contient des des procédures et modules abstraits. 

Afin de démontrer cette formalisation, nous avons élaboré et analysé le comportement de deux 

versions adaptables de systèmes couramment retrouvés dans des jeux à état persistant. Pour y 

parvenir, nous avons construit un simulateur interactif abstrait qui qui met en application le 

processus d'adaptation dans chacun de nos deux systèmes témoins. Chaque système analysé par 

notre simulateur est réprésenté par un module d'ajout (plug-in) qui contient le comportement 

des méthodes abstraites spécifiques à ce système. La performance du processus d'adaptation 

est alors évaluée avec des données de simulation. Finalement, des améliorations, telles que des 

optimisations et des modèles de mouvement perfectionnés pour la simulation d'agents sont 

étudiées. L'utilité de ce concept et ses débouchés sont également discutées. 
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Chapter 1 

Introduction and Contributions 

Not very long ago, developing a computer game was largely considered a 1-person project. 

Many components were involved of course such as different types of programming (graphies, 

physics, game logic, sound, user interface) as weIl as designing a believable and somewhat 

interesting storyline, designing challenging levels, drawing impressive image scenes, creating 

captivating sound files, and so on. However, it was still the case that these components were 

small and simple enough so that it was feasible for the same person to be responsible for aIl of 

them and their integration into the final game product. 

Modern computer games are large, complex software projects that require many more than 

one single person to produce. In fact, it is not uncommon to have 100 people working on a 

modern computer game during the beta-testing phase [Com03]. Computer games have become 

so vast that now they include a large amount of complex components. Due to the commercial 

aspect of the industry such as demand from consumers, game development companies do not 

have the time nor resources to spend analyzing these projects academically or to experiment 

with potential features. 

Many modern computer games support online gameplay: that is, networked multi-player 

gameplay over the Internet. Usually a service is offered by the same companies that sell the 

game which allows players to meet other players to play an instance of the online game over 

the Internet. With a suit able design infrastructure such games can become quite large in terms 

of numbers of players. Large scale networked games are referred to as Massively Multi-player 

Online Games (MMOGs). 

A specifie type of MMOG, infiuenced in part by role-playing games, is one that doesn't 

recreate a new game instance every time players join the game; that is, only one instance exists 

and the game setting is never-ending. New players are admitted to the game at its current 

state and produce the history of the virtual "world" by playing. The game world state exists 
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regardless of whether players are playing inside it. These persistent-state computer games have 

become popular, have been commercially-explored in the online gaming industry, and now form 

an important subfield of modern online gaming [Com04]. In this thesis, we propose and analyze 

a potential new feature specifically intended for persistent-state computer games. 

Traditional and modern Artificial Intelligence (AI) researchers who focus on agent-based 

techniques separate a virlual environment into 2 major components: the static environment, and 

the dynamic agents [RN02]. Since new environment instances are continually being constructed 

with each new game instance, the lifetimes of the environments are relatively short. Therefore, 

it is fair to assume that the environment is approximately unchanging, since real-world physical 

environments are not static but change only slowly and over the long-term. Typically the role 

of the environment is a constant entity that restricts the dynamics of the agents' behavior. 

This approximation becomes noticeable in a persistent-state online game where the life of the 

environment is effectively infinite. Our motivation then is to describe a generic system for 

environmental adaptation within these contexts. 

A basic problem encountered by vendors of large scale, persistent-state gaming environments 

is how to continuously improve and change the virtual environment so as to maintain player 

interest, and also reflect the activities of players in the virtual world. In a more generic sense this 

falls under content creation [Me103], altering or adding new virtual content to the game. Manual 

approaches are typically used due to the creative requirements of general content creation and 

the complexity of determining realistic adaptation results, but impose extra game maintenance 

costs and administration requirements. Automatic approaches that sensibly alter and tune the 

game world with minimal human intervention are thus desirable. 

We present a generic model for adaptation in computer games that allows the virtual world 

to change automatically, with reasonable efficiency. We demonstrate the utility of our technique 

through two different forms of dynamic common game content: 1) an environrnent-based basic 

weather cycle that adapts wind, rain and water accumulation to variations and changes in a 

large-scale terrain, and 2) a simple agent-based reputation system that allows agents in the 

virtual world to respond appropriately to a player's actual behavior in agame. 

Furthermore, we design and conduct a game-playing experiment to collect data from actual 

players for analysis. The purpose of the experiment is to improve the movement model used 

in the agent simulation for agent-based adaptation. We propose heuristics for agents' decisions 

which are functions of the game state at given times in the game experiment. The heuristic 

calculations are then used as input to sorne classifiers that learn which heuristics are good for 

determining the actions to take under the specific conditions. 

Finally, the implementation of the simulator used to represent the adaptation of the systems 
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1.1. Contributions 

designed using the framework is explained in detail. An architecture for integration of the 

adaptation simulator into modern game projects is proposed. Performance analyses are do ne 

on the simulations and specific optimizations are measured. 

1.1 Contributions 

Specific contributions of this work include: 

• Design of a general adaptation framework suit able for modeling fiow-based properties 

in game simulations. Our approach is based on cellular automata, ensuring only local 

information is required at each computation; this allows for reasonable scalability in 

distributed environments. 

• Design and experimental verification of systems for two forms of popular, dynamic game 

content. We describe a simple, aesthetically and logicaIly consistent adaptive weather 

model for game worlds, and agame reputation system that can dynamicaIly respond to 

changing patterns of information dispersal and player behavior. 

• Implementation of a simple multi-player computer game and organization of a game­

playing experiment to obtain real data from game players. Using collected data, we 

analyze the value of certain proposed heuristic strategies for de ci ding how to move based 

on the state of the game. Several movement models for agents in game simulation are 

analyzed; among them a dynamic model based on decision-tree learning is proposed. 

• Design and analysis of an implementation of the entire framework in Java. The pur­

pose of the implementation is threefold: to see how weIl the concept fits into an object­

oriented programming model, to analyze the behavior of the ex ample adaptation systems 

described, and to assess performance feasibility and optimizations. 

1.2 Raad map 

In the following chapter we describe other research work that is related to our endeavors. We 

then explain the fundamental notions and basic, underlying concepts used in our approach 

in Chapter 3. Following this, Chapter 4 describes in detail example applications built upon 

the basic model. Chapter 5 contains a study on improving player movement in persistent­

state MMOGs. Lastly, Chapter 6 fits the adaptation scheme into MMOGs and describes an 

implementation of a simulator used to simulate example adaptive systems. 

3 



Chapter 2 

Related Work 

In this chapter, we give a brief survey of the related previously-studied areas that have 

aIl in sorne way influenced this work. We first present the study of computational adaptation 

because it is by far the most relevant. Then, we will look at the work that has been do ne on 

the two core computational concepts used in the work: Cellular Automata, and Fuzzy Logic. 

We also discuss previous research done in and influence of systems for which we chose to apply 

adaptation: weather modeling (including terrain generation), and reputation schemes. We 

mention the difficulties involved in massive Multi-player Game Design, the constraints of the 

context, and how it relates to the adaptation tasks. 

2.1 Adaptation 

Adaptation is a traditional part of Artificial Intelligence (AI) research. It is related to the the 

problem of Machine Learning (ML), which is concerned with the question of how to construct 

computer programs that automatically improve with experience. The most common type of 

learning is supervised learning in which there is a collection (sample) of input data and output 

data for each input; the goal is to find a function (classifier) that represents the data weIl enough 

so that it can predict the output for future input sets [Mit97]. Adaptation is a process which 

automatically modifies values of parameters in a system so that the behavior of the system 

changes over time in correspondence with certain circumstances. In this particular context, 

we will assume that adaptation differs from learning in that the circumstances in a system 

potentially never stop changing. As such, adaptation describes changes that are on-line and 

which are usually long-term; ie. evolutionary changes. 

In the context of computer games, adaptation has been investigated [SSKP03], though 

like most other applications of AI it has been primarily directed at adapting agents (NP Cs, 
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2.2. Cellular Automata 

game opponents) [CM98] rather than the environment. For example, [DdOC03] presents a 

scheme for online adaptation of agent behavior in action games. Similarly, [Pon04] describes 

genetic learning algorithms that improve game AI in real-time strategy games. Most generic 

AI architectures focus on agent behaviors, such as in [NC01]. Even non-constant, fluctuating 

environments are usually viewed as the pro cess to react to, rather than the target of adaptation 

[HW95]. Our motivations more closely resemble building an artificial model as in done in 

ALife [Ste94] and co-evolving that model based on user input as in [DdOC03]; we, however, 

focus on constructing an adaptive environment irrespect ive of adaptivity of the agents. 

2.2 Cellular Automata 

The approach here is based on 2-dimensional Cellular Automata (CA). The theoretical basis 

for the cellular automaton formalism was inspired by John von Neumann's studies in self­

reproducing automata [vNB66]. The aim then was not to create a new computational formalism 

in itself, but instead to investigate the algorithmic analogue to the natural concept of evolution. 

Only a few years after von Neumann's original work had been published, Martin Gardner 

studied Jon Conway's Game of Life [Gar70]. He found that using the CA formalism very 

complex patterns could be generated from an iterative update process with relatively simple 

update rules. In fact, under certain conditions chaotic behavior is observed, which leads to 

visually-pleasing fractal patterns [WP85]. The evolution of CAs was interesting enough that it 

formed the core of a well-known classic computer game: SimCity [Sta96]. 

The Cellular Automaton has become a rather popular computational formalism in many 

fields of Computer Science. It seems to have become a classic formalism in the field of Model­

ing and Simulation, particularly in association with discrete event systems. A comprehensive 

general relationship between CA and DEVS is outlined in [VVOO] while timed Cell-DEVS and 

remote execution are examined in [WG01] and [WC03], respectively. CAs have been used for 

weather and ecological modeling, and are amenable to simple parallelization. 

2.3 Fuzzy Logic and Fuzzy Set Theory 

Fuzzy logic was first presented in 1965 as a mathematical means for dealing with complex ill­

defined systems [Zad65]. It has become popular as a control device in the domain of electronic 

systems, influenced in part by [Mam74]. Fuzzy Logic is also used a lot in conjunction with 

models and algorithms traditionally found in AI such as neural networks (neuro-fuzzy systems), 
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2.4. Reputation Systems 

adaptation (Robo-Cup Soccer [AW04]), and machine learning. A comprehensive introduction 

to how fuzzy control systems work is given in [HD03]. 

An interesting and particularly relevant formalism is the Fuzzy Cellular Automaton (FCA) 

[Ada94]. In this book, the problem of identification (or classification) of cellular automata 

is addressed. A gradient descent learning algorithm is designed for FCAs in [RGTOO], where 

it is shown that real-valued functions can be well approximated by using a clever encoding 

representation for function values. 

It is currently unknown whether Fuzzy Logic is used in any existing modern computer 

games, but a proposed usage is found in [McCOO]. This article motivated the construction of 

the fuzzy system used in the adaptation framework presented in Chapter 3. 

2.4 Reputation Systems 

Automated reputation systems (or trust systems) have become quite popular in recent years as 

an efficient method to measure trust between users. 

Around the same time trust was first formalized as a computational concept [Mar94], the 

first widely used reputation system was introduced by the Ebay auction site (www.ebay.com). 

Ebay introduced a point-based system which allowed users to rate each other manually. The 

winner of an auction( buyers) on Ebay are allowed to rate the starter of the auction( sellers) once 

the merchandise is received. Buyers are allowed to submit positive points, negative points, and 

comments about the seller. These points form the seller's reputation. The seller is not allowed 

to modify his/her own reputation: it is strictly formed by the buyers in the auctions held. 

Other buyers are allowed to view the sellers' reputation before they place a bid. Therefore, the 

relative amount of positive feedback (reputation level) you have directly corresponds to how 

satisfied others have been with your auctions. In turn, this encourages sellers to ensure prompt 

delivery and accurate description of the state of the merchandise. 

The Ebay system was studied by the community and was soon labeled a binary reputation 

system [DelOl]. It was around the same time that people started presenting mathematical 

frameworks for computing trust in online trading communities [De103] [YSOO]. The problem 

with such a system is that it is not automatic: it requires each user to faithfully (and honestly) 

provide feedback. 

Recently, a large amount of research work has been put into automated trust-measuring 

algorithms in distributed, especially peer-to-peer, trading environments [DGGZ03]. The Eigen­

Rep system computes the a global trust value for a peer based on local trust values computed 

by all peers [KSGM03]. Appleseed [ZL04] uses the Semantic "Web of Trust" infrastructure for 
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2.5. Multi-player Game Design 

trust propagation. This kind of trust propagation has also been seen in the context of open 

rating systems [Guh04] which were used on web sites Slashdot. org and epinions. corn. These 

rating systems described methods for ranking users' posts based on the feedback given to the 

system by other users who read the posts. Although again, the systems require considerable 

amount of user input to work. 

In modern computer games, very little research has been done on automated reputation 

systems. While [Jak03] outlines the importance of a character's reputation in the game Ev­

erQuest, it is unfortunately completely user-based and subject to interpretation. EverQuest 

was the first MMORPG to introduce jactions. Factions are basically reputation groups: collec­

tions of players that have different relationships with each other. A player or group can raise 

or lower his/her faction value with that reputation group by performing certain actions. The 

faction value (positive or negative) represents how the members of that faction react to the 

character. 

There have been sorne commercial attempts at incorporating locality in faction-based repu­

tation systems, but results have been disappointing [Bro03]. Our approach was inspired by the 

Dungeons €3 Dragons reputation system [CDNR04], which assumes a global reputation value 

per character. We'll see later that this can be easily extended to groups of characters. This 

system states that as a player progresses his or her reputation will rise by performing "heroic 

deeds." Symmetrically, of course there should also be the inverse property, to degrade reputa­

tion by performing negative actions. We extend this base system by capturing locality via the 

fiow of information dispersal throughout the virtual environment. 

2.5 Multi-player Game Design 

Before the growth of world-wide networking, computer games did not support multiple players 

unless the players were both physically using the same computer. As the Internet emerged 

for wide public use, games began supporting multi-player options. At first games were only 

playable one-on-one by modem, or multi-player over a local area network (LAN). In these times 

and settings the games were still relatively simple; network bandwidths and latency as weIl as 

efficient and consistent data transfers were minimal concerns. 

Today, for large-scale Massively Multi-player (MMP) games the teams grow to 100 people 

or more and could cost anywhere from under 5 million to 30 million dollars to develop [Com03]. 

For groups of such large sizes, clever software engineering techniques such as good project 

coordination are required to ensure efficient work fiow [Ruc02]. 

Multi-player games are faced with the problem of sending data over networks. This simple 
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fact adds a burden to the game designers in several different ways [SKH02]. First and foremost, 

the game designers are faced with constructing a consistent protocol which must be implemented 

as a communication mechanism between the hosts. This is usually a simple task in itself. 

However, since sending data by network is comparatively slow and much more prone to error 

it is fairly important that the proto col and network architecture remain simple and efficient 

[RRER03]. Another notable problem with multi-player game design that has been arising lately 

particularly in online games is cheating and security [YC02]. This is particularly bothersome 

in larger sc ale games where the problem is a lot harder to control [BLOl]. 

Massively multi-player games add more issues to these problems. The main issue in mas­

sively multi-player games is scalability. In fact, this is such a problem in large-scale games 

that game designers have had to look into entirely new network topologies [Fun96] and archi­

tectures [CFKJ02] to deal with such large numbers of players. Of particular interest is the 

divergence from the typical client/server model to new distributed models [Qua03]. In fact, 

the use of Multicast UDP in [DG99] influenced the network design of the multi-player game­

playing experiment described in Chapter 5. We will talk more about choices for network design 

in computer games in Chapter 6. 

2.6 Terrain Generation 

Terrain generation is an interesting problem faced by virtual world creators. The problem is 

how to automatically generate terrain for a virtual world that satisfies a set of criteria. Typical 

criteria for computer games are realistic, smooth, and randomized. 

A fundamental structure in terrain modeling is the height field [EMP+98] , here after denoted 

the altitude map. A common way to pro duce random altitude maps is via general stochastic 

subdivision [Lew87]. A more intriguing way of generating realistic terrain which is related to 

the adaptation concept is to take existing real elevation data and apply water flow erosion to 

sculpt the surface details [KMN88]. 

According to [O'NOl], the Perlin Noise algorithm is a procedural method which acts as 

a base algorithm for techniques used in computer games. Fractal landscapes [HM95] have 

also become popular due to their straight forward recursive implementation. We will soon see 

that the method for scaling bitmaps in [Mar99] is quite similar to the techniques used in our 

adaptation model. 
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Chapter 3 

A General Madel for Adaptive Environments 

The Adaptive Virtual Environment (AVE) concept splits itself naturally into two major 

components: generic adaptation concepts and system-specifie adaptation concepts. A specific 

system is a particular AVE that is well-defined and exhibits behavior particular to a given phys­

ical or social system; it can be thought of as an instance of more generically-defined adaptation 

model. The particular A VEs both adhere to the generic model and define the semantics of the 

data representation present within the model. 

In this chapter, we describe in detail the generic model that example systems implement. 

For clarity, we will refer to example AVE systems as applications of the model. Sorne specific 

applications of the model will be examined in greater detail in Chapter 4. 

The chapter is divided into two sections: the first section presents the computational notions 

that are required to present the core formalisms used in the model. The second section presents 

the core procedural and data abstractions which are used to manipulate the AVE undergoing 

the adaptation process. 

3.1 Background 

In this section we present an overview of the fundamental background knowledge needed to 

construct the adaptation framework. The ideas described herein are by no means exhaustive; 

they are merely presented as reminders of the basic notions and to present conventions for 

notation. Where applicable, references will be given to more comprehensive sources. 

3.1.1 Cellular Automata 

One of the attractive features of CAs is their unique and inherent ability to capture the influence 

of local properties. This main fact is what inspired the use of CAs as a central notion in the 
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3.1. Background 

Source: [WoI83] 

Figure 3.1: Evolution (Ct vs. t) for a simple CA example. 

adaptation framework. 

Classical One-Dimensional CA 

A classical one-dimensional cellular automaton is a 4-tuple (C, Q, T,l), where C = ("" C3, C-2, 

C-I, Co, Cl, C2, ... ) is a bi-infinite lattice of discrete cells, Q is a set of cell states, T : C -+ cn is a 

neighborhood function, and f : cn -+ Q is a transition function [WoI83]. The index or position 

of a cell is an integer representing the cell's position in the integer range. Co E Chas position ° 
and is labeled the midpoint cell. Paired with the formalism itself is usually a discretized notion 

of time via time steps (to, tl, ... ) where to is the initial time step. 

The configuration of a cellular automaton Ck, is the lattice of ce Ils in their corresponding 

cell states at time tk where Co is the initial configuration. In general, the configuration of the 

cellular automaton C at time t is denoted Ct. Ct is obtained by the simultaneous application 

of the transition function on the cells' neighborhood in Ct- l . That is, if qt(c) is the value of 

cell C at time t, then VCk E Ct, c~ E Ct-l, qt(Ck) = f(T(C~)). The evolution of the CA is a term 

meaning how the states change over time. Unless otherwise noted, it is commonly assumed that 

the default state set is Q = {O, 1} and the initial configuration is Co = 0 = {- .. , 0, 0, 0, ... }. 

Here is a simple example of taken from [WoI83]. The initial configuration is a simple seed: 

Co = {co = 1, Cn = ° for (n =1- O)}. The neighborhood is only the direct neighbors of each cell: 

T(Cn) = {Cn-l, Cn+1}' The transition function is f(T(Cn)) = q(Cn-l) + q(cn+d (mod 2). 

Such a simple function leads to an interesting evolution. If we look at the Ct vs. t graph, 

assuming that time increases down the axis and we represent graphically a black dot for ls and 

a white dot for Os, we get the picture se en in Figure 3.1. 

An extensive examination of general cellular automata can be found in [WoI86]. 
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3.1. Background 

Source: http://www . bi tstorm. org/ gameoflife/ 

Figure 3.2: The effects of one iteration in Game of Life. 

Two-Dimensional CA 

Two-dimensional cellular automata are more complex structures than their one-dimensional 

predecessors. First, the bi-infinite lattice is extended to a two-dimensional rectangular grid of 

cells. As in the first case, we assume sorne form of connectedness between cells and that each 

cell is discrete. For the sake of simplicity, assume that this grid is bounded (equivalently: there 

exist no straight paths of infinite length) with finite dimension. We'll see in Section 4.1.1 that 

there exists more than just a single way of defining connected, unbounded grids. 

Secondly, the neighborhood function becomes two-dimensional in the sense that a cell can 

have neighbors in more than just 2 directions (left, right AND up, down). We will also see later 

that even the notion of a neighborhood can be awkward to define using the rectangular grid. 

Finally, the states are often more generally simple scalar values instead of bits (0 or 1). 

The first popular use of two-dimensional CAs were described in the Jon Conway's Game of 

Life [Gar70]. An example transition in the game is found in Figure 3.2. 

A list of analyses, results, and facts about two-dimensional CAs can be found in [WP85]. 

3.1.2 Fuzzy Control 

Fuzzy control is a method which uses fuzzy set theory and fuzzy logic to regulate the behavior 

of systems. The fuzzy control mechanism consists of three general concepts: fuzzification, fuzzy 

rule evaluation, and defuzzification. We will describe how these concepts work together after 

we describe sorne of the basics. 
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1 

01---------------------~----_+----------------~ x 
o 65 84 

Figure 3.3: The graph of the membership function, f-LTALL(X), vs x for the fuzzy set "x is TALL". 

Fuzzy Sets 

A fuzzy set is a generalized extension of a classic crisp set. A fuzzy set intentionally quantifies 

vague linguistic terms such as "HOT" and "TALL". A fuzzy set is defined entirely by its 

characteristic function, f-L(x) : D -t [0,1], where D is some arbitrary domain outlined by the 

task at hand. We follow with an example. 

In the classic set theory, the membership operator( E) is a Boolean function that takes as 

arguments an element and a set and whose value represents whether the element is contained 

in the set. That is, crisp sets are sets where the membership is a discrete binary property. For 

example, 3 E S = {1, 2, 3, 4} is clearly true whereas 5 E S is clearly false. However, the truth 

value of the linguistic interpretation of "x is TALL" depends on how "TALL" is defined which 

in turn depends on who is interpreting the claim. That is, the expression "x is TALL" is vague 

unless we quantify "TALL". One way to do that is describe "TALL" as the fuzzy set: 

{ 
° if x < 65; 

J-lTALL(X) = x1;5 if 65 ~ x < 84; 

1 if x 2: 84. 

This is a set with full and partial(fractional) membership. The membership function is 

graphically illustrated in Figure 3.3. 

Fuzzy logic 

Fuzzy Logic is based upon fuzzy set theory. In fuzzy logic, a logical term has a fuzzy truth value 

which is a value in the interval [0, 1]. A value of 1 represents "absolutely true" while a value of 

° represents "absolutely false". Values in between are interpreted with confidence proportional 
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to how far the value is from the absolute values: 0.2 could mean "hardly true" ("very false"), 

where 0.85 could mean "very true" ("hardly false"). 

The value of a membership function J-ls(x) represents the truth value of "x is in S". In other 

words, it represents x's degree of membership in S. From the previous example, a person whose 

height is 71 inches would have a 1
6
9 = 0.316 degree of tallness, whereas a person whose height 

is 78 inches would have a degree of 0.684 degree of tallness. 

Conjunction and disjunction of fuzzy logical terms have been defined in sever al ways. The 

most common definition is that the truth value of "x is X and y is Y" is min(J-lx(x), J-ly(y), 

with a similar function for disjunction using max. The value of an inverse of a logical term, ie. 

"x is not in X", is given by 1 - J-lx(x). 

We now have the components we need to construct a fuzzy rule base. A rule base is an 

intuitive way to describe the behavior of a system. A rule base consists of a collection of 

rules. Rules have liguistic terms of the form "if A then B". The antecedent, A, is a general 

logical term while the consequent, B, is a simple logical term which is usually in the form of 

an imperative action (ie. a co mm and) such as "eat a muffin". 

A 3-step Guide for Fuzzy Control 

We assume that we have a control system where we are given several options that change 

the state of the system in different ways, we would like to control the system by making 

decisions such that the state of the system approaches sorne appropriate target state or long­

term behavior. 

Before we present a common usage via the 3 main steps, we must first define the problem 

at hand. Take for a simple example a task faced by many students every morning on their way 

to school. Their options are to go directly to school, stop for coffee first, and/or grab breakfast 

first. We assume for simplicity that the coffee shops do not sell breakfasts and the coffee sold 

by the breakfast restaurant contains a substance to which the student is violently allergic. The 

option taken depends on the time the student arrives at school, and how hungry and tired 

he/she is. 

Step 1: Fuzzification. We define the following fuzzy membership functions. In an cases, 

if the value is lower than 0 it is set to 0 or if the value is higher than 1 it is set to 1. 

1. J-lT 1 RED (x) = 12-;;lep
t, where x slept is the number of hours of sleep the student got the 

night before. 

2. J-lHUNGRY(X) = x2'4e, where Xate is the number ofhours it has been since the student's last 

me al. 
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3.1. Background 

3. f.1LATE(X) = ~, where Xarrival is the number of minutes the student arrives after the 

class has started. 

4. A = {EAT, GOFFEE, GLASS} is the set of commands, each describing an action to be 

taken by the student. 

We also define command sets such as { EAT, COFFEE, CLASS }. Elements of these sets 

are actions; memberships are the degree to which these actions are desired. 

Step 2: Query the Rule-base. We define the rule base. Here, y E A is a rule's suggested 

consequential action: 

1. IF ((x is HUNGRY) AND (x is not LATE)) then (y is EAT) 

2. IF ((x is TIRED) AND (x is not LATE)) then (y is COFFEE) 

3. IF (x is LATE) then (y is CLASS) 

So if the student only had 5 hours of sleep and ate supper at 19:00 the night before, class is 

at 8:00 and we arrive at school at 8:12, then f.1TIRED = 0.58, f.1HUNGRY = 0.54, and f.1LATE = 0.4. 

The values of the consequences are the sum of all antecedents that yield the given consequence. 

In this case, eating would score min(0.54, 0.6) = 0.54 (ie. the student is more hungry than 

early), getting coffee would score min(0.58, 0.6) = 0.58, and going directly to class would score 

0.4. 

Step 3: Defuzzification. In the example ab ove , it is clear which option is more desirable: 

you simply choose the maximum membership over each action set to determine which action 

to take. In particular, the student would choose to get a coffee before going to class. However, 

while this method of defuzzification is the simplest and most obvious in this case choosing is 

not always so straight forward. 

Here, we assumed that the actions are completely independent: the student either eats, 

gets coffee, or goes to class but cannot pick more than one action. By construction, there 

is no overlap in the fuzzy sets defined by the actions. In general, however, the consequence 

of these rules define new fuzzy sets whose membership functions may overlap in their graph 

representations. In these cases it is less clear which action to choose, so we must resort to a more 

distinguishable method for defuzzifying the collection of fuzzy values into one crisp decision. 

One common method used is the center-of-gravity calculation. A bounded region is con­

structed by taking the union of all regions under the membership functions for which the top 

of the region is bounded by the membership value of the linguistic variables, the bottom is 

bounded by the x-axis, the sides by the boundaries of the membership values of the fuzzy sets. 
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speed speed 
1 

theresult final output of speed 

(a) (b) 

Source: http://www.doc.ic.ac.uk/ nd/surprise_96/journal/vo12/sbaa/article2.html 

Figure 3.4: (a) The region produced by center-of-gravity defuzzification in a fuzzy controller with 

an action set containing 3 overlapping fuzzy actions, and (b) The center of gravit y, and the chosen 

(red/middle) action. 

The center of gravit y of this region is found. The chosen action is the highest membership 

value of aIl fuzzy membership functions at the center of gravity. An example of such a region 

is displayed in Figure 3.4. 

As a consequence, fuzzy controllers permit the fiexibility of making decisions even in cases 

when the action to choose is ambiguous due to nature of the system. It is often harder to choose 

between an ambiguous action set than it is to describe a variable by an defining an arbitrary 

membership function. Thus, essentiaIly, fuzzy controllers calculate the best action to choose 

given the descriptions of the variables. The model can then later be re-used; it just needs the 

membership functions and rules describing how to act. 

A thorough reference on fuzzy sets, fuzzy logic, and fuzzy control is [Wan96]. 

3.2 Basics of the Adaptation Model 

Our model is based on a finite continuous 2-dimensional space, the virtual terrain, R. The 

virtual terrain is partitioned into a discrete mapping or grid, G. In the examples below we 

use the familiar situation of a subset of R c ~2 and a square grid G, though we believe that 

the techniques we use apply equally weIl to any metric space [BBI01]. This is partially shown 

by applying the same adaptation techniques used in a rectangular gr id to a hexagonal grid in 
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Figure 3.5: The virtual terrain. 

Section 4.1.1. 

We define the metric space (G, gd), and a surjective mapping 1 : G ---+ R. For convenience 

and clarity, we will calI the points in our metric space grid sections or cells, and the metric space 

itself the grid, without loss of generality. G is a discrete grid approximation of its continuous 

counterpart R with the association that any grid section in R is representative of a continuous, 

bounded region in R (via 1). For simplicity we also assume that 1 describes a complete partition 

of R; that is, UgEG I(g) = Rand ngEG I(g) = 0. The easiest way to think of this grid is as an 

overlay covering the continuous Cartesian plane with grid lines defined by the set of lines that 

cross the axes at integer coordinates. The idea is illustrated in Figure 3.5. 

An important requirement for locality that is supplied by the metric space is the notion of 

a neighborhood. In "nice" metric spaces such as hexagonal grids, the neighborhood of a point 

is defined as all points which are distance 1 away. However, sometimes, the neighborhood is 

not so intuitively defined. Such is the case in our rectangular gr id approximation, where there 

are 2 commonly used definitions of neighborhood: the 4-neighborhood and the 8-neighborhood 

[DHSOO]. The 4-neighborhood of a grid section consists of the sections found directly north, 

south, east, and west of the section whereas the 8-neighborhood also includes the diagonal 

points on the surrounding box: sections immediately to the northeast, northwest, southeast, 

southwest. In general however, any neighborhood function can be used. The notion of a cell 

neighborhood allows us to describe the locality of a grid section on the grid. Local sections are 

sections which are close by; where closeness is objectified further by the value of the distance 

function between the two cells. 

The grid contains abstractly-defined properties. Properties are similar to local variables: 
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they are given the ability to ho Id values and change in time. Each grid section has a different 

instance of the property variable so that the value of a property on a grid section is completely 

independent of the value of the same property on a different grid section. To contrast, the 

procedure which changes the values is defined on neighborhood cells, making them locally­

dependent. The idea is to use this generic model and then describe your properties depending 

on the context of the system in which the model is used. For instance, imagine that we have a 

mountainous virtual environment. We define the altitude property to be the value of the height 

of the surface with respect to the lowest point in the environment. Then, the altitude property 

would have a high value in high-mountain region but low value in the flat regions. Altitude is 

only one example property; in general, a virtual environment is made up of sever al different 

properties. We will denote the value of a given property gij [property name], where i and j are 

coordinates in some two-dimensional discrete partition described by f. The collection of gr id 

sections and values of all properties on all grid sections is defined as the current state. The list 

of these properties and the semantics tied to them form a major component of a virtual system. 

These systems can be se en as instances, applications, or implementations of the generic model. 

We will discuss the construction of such systems in much greater detail in Chapter 4. 

Coupled with the notion of state is a procedural pro cess which describes how the state 

changes in time. Since the systems we are typically interested in modeling are self-reproducing 

[vNB66], we do not describe these state changes as independent of each other and solely de­

pendent on time itself. Instead as is done in the CA formalism, we discretize time into a series 

of timesteps T = (to, tl, t 2 , ... ) called the timeline and describe the state of the system as a 

function of the previous state. In other words, the state of the system at t i is entirely and only 

dependent on the state of the system at ti-l. Here,we assume that the virtual environment 

begins its life at t o and that the timeline is evenly divided among timesteps so that the actual 

time spent between ti and t i+1 is constant for all i. In doing so, the timeline T simply becomes 

an approximation of the continuous concept of time. The accuracy of the approximation de­

pends on the actual time taken to get from t i to t i +1' We will denote the value of a property p 

on grid section gij at time t as g;j [Pl. 

The pro cess is formulated as an iterative update algorithm. This algorithm is just a list of 

functions that modify the state of the grid. The system begins in sorne initial state and this 

algorithm just applies these functions independently and simultaneously based on the current 

state of the system to give the next state of the system. Note that given this description of the 

model at any given time, ti, the state of any future configuration, t j , is obtained by applying 

the iterative algorithm (j - i) times. As a result, the evolution of the system without any 

external influence is completely deterministic. The following pseudocode summarizes the core 
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(a) (b) 

Figure 3.6: The effects of one iteration of blurring on a letter image, A letter is displayed doseup (a) 

before and (b) after the blurring of the image. 

of the process: 

(3.1) 

where gp is the value of property p on grid section g, fp is the transition function for property 

p, and T(g) describes the neighborhood of g. 

A simple example of an application of local property updates is blurring or spatial low­

pass/box filtering in the field of image processing [Bax94]. Each pixel Px,y (corresponds to a 

gr id section) in an image has a scalar intensity property, l(px,y), and a neighborhood of nearby 

pixels T(Px,y). To create a blurred image, a new intensity for each point is defined: 

1 _ l(px,y) + L:PEr(PX,y) l(p) 
Px,y - IT(Px,y)1 + 1 

and a simultaneous update rule is applied: '\Ix, y : Px,y b- P~,Y' A good demonstration of the 

locality of the effects of the blurring algorithm can be found in Figure 3.6. The larger-scale 

effects of blurring an image are shown in Figure 3.7. 

We extend this model to include a me ans for tweaking the state of the system externally. 

That is to say that the system can evolve in and of itself by the continuaI application of 

iterative updates as in the classical CA case, but we introduce an event-based interface for 

external entities to interact with the system at any given time. We do this mainly for the 

purpose of allowing player agents to provide input into the evolutionary growth of the virtual 

environment, but these external entities need not only be player agents. The external agents 

can also be autonomous, simulated expert systems, or sim ply completely random. The major 

point here is that we have a system that evolves on its own but can be perturbed by outside 

influences or events. 
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(a) (b) 

Source: http://www.geocities.com/danjnm_2000/dragons.htm 

Figure 3.7: The effects of one iteration of blurring on a dragon image. A dragon is displayed (a) 

before and (b) after the blurring of the image. 

As before, events are abstractly defined. An event is exactly what its name implies: it is 

something than can occur in the system. Events have an event type. Semantics for events only 

exist when the events are formally described in a meaningful context. For example, rain is one 

type of event that could occur in a weather simulation system. Instances of events are called 

occurrences. An occurrence is a 2-tuple (e, t) where e is the event type and t is the timestep. 

The occurrence set, 0 = {al, 02, ... } precisely describes the external causality of the virtual 

environment; the method for which 0 is formed is an abstract layer only functionaUy defined 

by the model. This layer acts as the interaction interface between the system and the model: the 

system is described by the implementor so that the rules that govern external interaction can 

be domain-specifie. External entities interacting within the virtual environment have control 

over the production of occurrences in the system. Transitively, they have limited control over 

the evolution of the state of the virtual environment. 

The adaptation pro cess aims to modify the values of the properties over time based on the 

impact of events that occur in the system. This is done by defining a functional specification 

for the changes that get applied in the iterative algorithm. By using this specification, the 

iterative state-update pro cess is uniform over aU functions. Since the pro cess is defined until 

the end of time, the adaptation pro cess will continue to change as a result of external influences 

to which it is subject, leaving a completely automatic self-adapting system. 

As a result of the abstractions, the model consists of an adaptation engine module which 

is completely generic and the adaptation system sub-modules which are specifie. These sub­

modules plug into the adaptation engine and use it to modify the state of the adaptation 

system. The implementor of the system modules is completely free to build a customized 

virtual environment which adheres to the adaptation model, and use the adaptation engine to 

perform the adaptive tasks required by the system. 
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( 1 l INCREMENT j 

ADAPTATION 
time 

ENGINE 

,.---

1: E user input 0 
OCCURRENCE SET 

.-----EVE-NT-SET----.~ A 
Figure 3.8: The causal block diagram representing the general adaptation process. 

The general idea is summarized by a causal block diagram [PdLV02] in Figure 3.8. 

3.2.1 Generic Adaptation Procedures 

Experimental evidence has shown that there are sorne generic adaptation concepts which are 

common to most systems and thus can be more generically formulated. Such algorithms further 

generalize the model and hence increase the overall usefulness of the framework. Most concepts 

listed below are sim ply intuitive constructions obtained by refiecting upon the adaptation pro-

cess. 

Simultaneous Cell-Update Masks 

As stated in the previous section, the value of the properties on each cell change in time 

as a function of the values on neighboring cells at the previous time step. It is natural for 

programmers to implement the effects of the updates to cell values (at a given time in the 

timeline) as a sequential iteration over all grid cells. This causes a bias problem, because for a 

given cell-update, the value of its neighbors could already have been modified due to the order 

of the iteration. The effect of the bias in an example of blurring is demonstrated in Figure 3.9a. 

The modifications made to the cells assume no intermediate representations between time 

steps: their values change simultaneously. The new value is strictly a function of current values. 

There can also be any number of properties on a grid cell. To implement this, we propose using 
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Figure 3.9: A region affected by modifications after 1 application of blurring using (a) sequential 

iterative (row by row, left to right) updates and (b) simultaneous update rules. The numbers are 

values of scalar properties values such as intensity or altitude. 

cell-update masks, or sim ply masks. 

Masks are temporary grids that hold only the modifications to be applied to the grid for 

each grid cell. The adaptation algorithms calculate the modifications, store the modifications 

temporarily in the corresponding section in the grid. When all the calculations are do ne for 

the iteration, the mask is then applied to the grid: all modifications in each grid section in the 

mask are applied to the corresponding grid section in the real grid. When a mask is applied, 

the values at each grid cell increments by the value found in the corresponding mask grid cell. 

Then, the mask is cleared for the next time step, and the pro cess repeats at each time step. 

Vector Averaging and Angular Propagation 

As in blurring, grid properties in cellular automata are commonly scalar properties. SimCity 

is an example of classic game that relies on cellular automata techniques [Sta96], associating 

scalar quantities with grid cells. In SimCity each grid cell may have scalar properties such as 

pollution levels, crime rates, land value, and so on. There is, however, no reason to restrict grid 

properties to scalar values. 

We define a discrete vector field as Ve : C -+ ~2, so that for each grid section 9 E C, 

there exists an associated vector. The vector at cell (3,2) will be denoted 93,2. Note that a 

2-dimensional vector can be thought of as a magnitude and angle; when we are interested in 

just one component of the vector we can reduce it to the scalar case; e.g., a simple angle value 

(h,2' 

Vector averaging is a technique analogous to image blurring, except on vector components 

rather than scalar components. We initially ignore the vector's magnitude and assume it does 

not change. Each 9i,j is then modified to have a new angle computed as a weighted average 
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Figure 3.10: Affect of an update on one grid section (assuming 'Y = 1), showing a) before the change 

b) before the update on the middle grid section c) after the change and update 

of its own state and neighboring angles. Suppose we have an average angle Bg for a grid 

section 9 and its neighborhood. We define a shift fram (9',9) for each neighbor g' as the 

difference B 9 - B g' . In the special case where g' = g', the shi ft represents the discrepancy 

between an angle and its relative neighborhood average. For simplicity, we assume that aIl 

angles have the smaIlest possible magnitude and signs respect the unit circle convention. That 

is, -7r ::; B ::; +7r, Bg = 0 points "east", Bg = -7r points "west", Bg = +~ points "north", and 

B 9 = - ~ points "south". Note that we assume this for aIl angles, so that shift from (i, -3) = - ~, 

not 3;. If the result of any mathematical calculations gives an angle outside these bounds, the 

angles are immediately cyclized (repetitive addition or subtraction of 27r) until they are within 

these bounds. An immediate consequence of this construction is that given any two vectors, 

shift from( v!, V2) = cyclize( B2 - Bd. 

As in blurring, the values approach their current relative neighborhood average. The total 

angular change for 9 is then sorne proportion of shift from g, for sorne constant 'Y, 6g = 'Y . 

shift from(g, fi). The update rule then becomes: 'l/g E G : Bg f- Bg + 6g, applied simultaneously 

(using masks) over aIl grid sections. 

To demonstrate the effects of vector averaging, con si der a single grid section surrounded by 

its 8-neighborhood, aIl of its vectors pointing eastward (B = 0) with arbitrary magnitude, as 

se en in Figure 3.10. Now, if we shift each surrounding vector by 900
, the average will shift by 

f:j.B = (8/9) * 900 = 800
, so the update will shift the middle vector's angle by 6 = "ff:j.B. Since 

the middle vector has shifted, upon the next application of the update (the next iteration) it 

will in turn cause a difference in average of aIl points for which it is a neighbor. This will cause 

those grid sections' vectors to update, and so on. As a result' a change in angle propagates 

through the grid via its neighboring ceIls, but loses influence each iteration. 

The long-term effects of a sudden change in angles over time is caIled angular propagation. 

The effects of the changes are transferred to the surrounding areas over time until the influence 

of the change is negligible. By adjusting weight parameters such as 'Y, local turbulence can be 

damped according to the needs of the system being modeled. A high value for 'Y may signify a 
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region particularly sensitive to change, whereas a lower value indicates a resistance to change. 

Angular propagation can be caused by occurrences of events. The propagation shown in this 

section was an example of a specific type of propagation applied to changes in angles of vectors. 

However, the propagation concept itself is more general. If after 3000 iterations of blurring a 

sudden block of black pixels were added, the event would cause an impact that would propagate 

the dark colors to spread around evenly over the image. The system is thus adapting to the 

occurrence by propagating effects of event occurrences to its surroundings. 

Flow-based Fuzzy Property Update Rules 

Non-constant scalar properties on grid sections can be modified differently than simple aver­

aging. When blurring, values are modified and set directly to the value of a given calculation 

involving local and neighboring values (the average). A flow instead describes the transfer of 

information between neighboring grid sections. When using flows, property values are treated 

as quantities that are displaced from one grid cell to a neighboring grid ce Il. The flow function 

for a given property or set of properties describes precisely how information is transferred from 

one grid cell to the next. 

Vectors on each grid section describe a strength and direction of flow. The flow function 

computes how much of a property is transferred from a grid cell to the cells in its neighborhood 

as a result of the value of the vector property. Therefore, a flow function takes a vector as a 

parameter and returns a set of displacement maps of the form (g, g' : g[P] +- g[P]-k·g[p], g'[P] +­

g'[P] + k· g[P]) where g' is a neighbor of g, k· g[P] is the amount of the property p to be displaced 

from 9 to g', and 0 :::; k :::; 1. The adaptation pro cess applies the flow changes described by the 

displacement maps for each grid section at each iteration of the computation. 

We use a fuzzy approach similar to fuzzy control to compute flow displacements for a more 

natural flow dispersal. The flow function can be formulated as a fuzzy controller. Formally, 

the flow function consists of n fuzzy components: Zl, Z2,' •• ,Zn' Here, Zj is an arbitrary fuzzy 

membership function Zx (fi) E [0, 1] which represents the raw influence of that component over 

a given property. The influences of the components are analogous to the values of the actions 

obtained by querying a fuzzy rule base. The displacements returned by the flow functions are 

analogous to the actions chosen by a fuzzy controller. Fuzzy control is still used to query a 

rule-base and the outcomes measure the influence of the displacement actions. The rule base 

is created by the designer of the example application system. 

In this case we allow simultaneous actions to be chosen and performed. The result of 

this difference is that several displacement maps are created, each with different values of the 

proportion parameter, k. To obtain k, the membership values are normalized so that they 
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represent the local influence in comparison to other influences: 

f (.... ) zx(fJi,j,Pi,j) 
x gi,j, Pi,j = "n Z (...... ..) 

wy=l y g~,J' P~,J 

To make this more clear, consider a scenario where the components are associated with the 

four major cardinal directions: ZN, ZE, ZS, Zw. The amount transfered in each direction is 

proportional to the corresponding flow influence value f dir' At each iteration, D.pw = kp * 
fw (gi,j, Pi,j) * Pi,j is the amount of Pi,j that is displaced westwards, where the proportion pa­

rameter 0 < kp <= 1 is the rate of transfer. The simultaneous update rules for this component 

would then be: RI : Pi-I,j +-- Pi-I,j + D.pw and R 2 : Pi, +-- Pi,j - D.pw. Components for other di­

rections are treated similarly. Note that it is also possible to define hybrid components, formed 

by the conjunction or disjunction of the fuzzy properties; e.g., ZNW = ZN AND Zw. Then the 

displacement of moisture would be listed as a rule set in a fuzzy controller system as is do ne 

in [McCOO]. 

The actual behavior of the flow depends on the membership functions used; if a system 

demands a smooth flow, then naturally the membership functions should reflect that. The 

role of the fuzzy membership functions are to shape the flow. If, for instance we use a "crisp" 

function, one with a sharply-defined peak such as: 

ZN = 
{ 

1 if 7r /2 - E <= e <= 7r /2 + E; 

o otherwise. 
(3.2) 

for small E, then the westward flow will move somewhat discretely. A smoother function like: 

(3.3) 

will lead to a smoother spreading. 

Several advantages are gained by formulating the flow function as a fuzzy controller. First, 

it allows the designers of an application system to describe variables for flow components. Then 

variables quantify vagueness by construction and as such can be easier to model when the exact 

information is not available. Secondly, the examples above use vectors for flow components, 

but this is not generally necessary. Flow components can also be scalar or other values, as long 

as a membership function can be defined from the arbitrary domain to a value in [0,1]. This 

fact allows designers to define complex arbitrary components that can still be made meaningful 

by way of a particular membership function. Thirdly, the ru le base is a widely familiar con­

struct and often easy to use as well as easy to modify. Rule bases give the application designer 

a natural modeling environment along with the flexibility of describing flows based on logical 

statements that can involve many factors. Lastly, fuzzy controllers can themselves be internally 
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adaptive [Wan96], allowing the flow functions to change based on given criteria. 

In this chapter, the core concepts of the generic adaptation model were introduced. The 

abstract model is sim ply a grid that is separated into grid cells paired with an adaptation 

pro cess that modifies the values of grid cell properties automatically over time. The properties 

are global but can have different local values on individu al grid sections. Adaptation is a 

pro cess that changes the local property values automatically over time. Local adaptation is 

adaptation which uses the values of neighboring cells to influence the modification of grid cell 

property values. External entities are allowed to interact with the adaptive system by causing 

occurrences of specified events. The adaptation pro cess reacts to these occurrences by applying 

abstract adaptation procedures at each iteration. Examples of external entities could be players, 

or artificially intelligent bots. 

The adaptation procedures are defined by the specifie application of the model. The pro­

cedures defined by the applications are algorithmic modifications of the generic properties. 

Semantics for abstractly defined properties and adaptation procedures are given by the de­

scription of the application system. The application systems are therefore thin instances of 

the generic model. Examples of such application systems will described and analyzed in the 

following chapter. 
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Chapter 4 

Applications of the Madel 

In this chapter, we show specific applications of the generic abstract model. The aim of these 

applications is to emulate real-world systems. For this reason, we also call these applications 

example systems. Since these systems are built in the adaptation model presented in Chapter 3, 

they are inherently locally-adaptive. The applications in fact define semantics of a context by 

giving meanings to property values and providing specific procedures that describe the evolution 

of the data values over time. Additionally, each application specifically describes the events 

that can occur in the system and the entities that can cause them. In the end, an example 

system describes an adaptive virtual environment (AVE) which game players can explore. 

In designing example virtual environments to systems which apply the adaptation model, 

we noticed that the systems we had created can be classified into 2 top-Ievel categories: 

environment-based applications, and agent-based applications. Both types of applications adapt 

based on a set of criteria; the difference is how the criteria are obtained. Environment-based 

applications are adaptation systems that adapt depending entirely on values in the environment 

itself. Agent-based applications adapt depending on the observations of agent behavior data 

as well as environmental factors. Agents here are simply entities that interact with the system 

(or with each other) in sorne way. 

Each section describes one or more applications of the model. Initially, the system is de­

scribed in general; and the criteria for adaptation in these systems are discussed. Then, the 

system is formalized conceptually by breaking it down into its major algorithmic components. 

Adaptation algorithms operate on meaningful data which are mapped to property values in 

the model. The components are then fit into adaptation procedures, each of which calculates 

the changes to values due to local adaptation. The adaptation pro cess applies these changes 

at each iteration of the overall pro cess. We also suggest events that may occur in each sys­

tem along with their effects on the system and analyze the behaviors of the systems using the 
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implementation described in Chapter 6. 

4.1 Environment-based Applications 

Environment-based applications are adaptive systems that change over time based on the values 

of the surrounding environmental properties. Examples of environmental properties will be 

given in the specific system being described. 

Typically in modern games, the only role played by the environment is to provide a virtual 

setting for the players. The setting has a certain effect on the immersion and the experience 

felt by the players, but is usually purely aesthetic rather than responsive. The only interaction 

players have is with other players or other agents (monsters, etc.). The players can discover 

the world in time, but they can never really change it, not even indirectly. The environment 

can change due to game progression, but just in a predefined way. 

Environment-based adaptation is an automatic means for the environment to change; for 

example, a tree growing around a physical barrier (power lines) instead of through it, the water 

level of the sea rising as a consequence of lunar positioning, natural selection. These are aIl 

examples of environment-based adaptation. 

These changes can of course be pre-programmed in advance. For instance, rules for be­

haviour with respect to input from the players could be hard-coded. Adaptation could be 

pre-programmed. However, the main contribution here is an automated adaptation pro cess 

which uses a generically defined adaptation model that emulates true adaptation in evolution­

ary systems. 

These examples aIl contain objects, entities, or things with which the players should be 

able to interact. By expanding the interactive capabilities of the entities and the environment, 

players could affect the state of the system more meaningfully than by sim ply gaining more levels 

and more equipment. In certain cases, allowing the players to interact with the environment, 

even in very simple ways, should in turn lead to sorne adaptive behavior, ie. a long-term 

reaction from the environment. For example, in a medieval fantasy setting, a powerful player 

sorcerer could cast a spell to remove the natural production of water in a given region. An 

environment-based application would react to this: after sorne time the ecosystem would die or 

deteriorate unless it found another source of water. 
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4.1.1 An Adaptive Weather System 

In computer games, weather simulation is commonly implemented to contribute to a pseudo­

realistic world. It is common because it is easy to implement as a randomized system and adds 

realism. A physical world without any weather would soon become unbelievable. The overall 

end result is that the players' game experience is improved, most players are satisfied with a 

random weather simulation system because to them it appears like a possible real system. When 

one cannot make the computerized system behave exactly like a real-world system, making parts 

of the world at least appear real is a general goal in computer games. 

The goals of this research are similar. In particular, we focus more on improving the 

appearance of the system rather than making it more realistic. That is, we search for an 

adaptation pro cess that emulates real-world adaptation. 

Weather simulation is typically considered a computationally intensive application, largely 

reserved for supercomputers. In the virtual worlds of computer games, however, physical accu­

racy is less critical, and much simpler approaches suffice to produce aesthetic, in-game climate 

effects. Note that by proposing to add adaptation to a non-adaptive simulation system we are 

proposing to make it more like the real system it is modeling. 

Weather System Description 

In its simple st form, a weather cycle displaces moisture: water from lakes and se as is carried by 

wind to cooler locations, where the reduced water capacity of cooler air causes condensation; 

rain water eventually runs downhill to refilliakes and oceans [Ent04]. There are several factors 

that can affect this process, including altitude and terrain structure, wind, temperature, and 

so on. Each of these can be quantified as a value-based property in our system. The value of 

the property indicates the significance of the factor in the AVE. 

We have modeled our weather system upon the following basic precepts: 

1. Wind gathers moisture from bodies of water, and loses water at higher altitudes. 

2. Water fiows downstream. 

3. Altitude affects wind patterns. 

These basic precepts will be transformed into adaptation procedures (update rules) following 

the pro cess outlined in Section 3.2. However, we must first properly define the data in the 

adaptive weather system. 
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Figure 4.1: Example gradient vector representation. Grid cells show local terrain altitudes. 

There are 2 basic scalar data values suggested by the basic precepts listed above: moisture 

and altitude. Moisture represents the density of water in the air. Swamps, bodies of water, 

humid regions have high moisture, whereas dry places like deserts have low moisture. Altitude 

is the height of the ground relative to sea level. High regions like hills or mountains have 

high altitude whereas lower regions like valleys and oceans have low altitude. The geographic 

location usually influences a region's climate because each physical location has a different 

configuration of the surrounding environmental properties. 

The scalar values were limited to being between two chosen extremes: glow = -5000 and 

ghigh = 5000. It can never be the case that a value is higher than the high extreme or lower 

than the low extreme. In this system, the physical correspondence is that there are saturation 

thresholds for moisture and dryness. A good example is that an ocean or sea cannot get any 

more moist: they are at ghigh. 

There is 1 basic vector value: the wind. The magnitude of the vector describes the strength 

of the wind and its direction describes the direction of the wind. There is one more vector 

property which is an induced property called the gradient vectoT. The gradient vector on a 

grid section points to the direction of descent, and its magnitude represents the steepness of 

the grade. Due to gravit y, moisture flows downstream in the direction of the gradient and is 

described as a a fuzzy flow controller (see Section 3.2.1). 

The gradient is a vector sum composed of vector components whose magnitudes are differ­

ences in altitude values of surrounding cells. The magnitudes of the vectors are determined 

by subtracting the terrain altitude from the altitude of a neighboring cell, with corners of the 

8-neighborhood having a weight factor or 1. The direction of each vector in the sum is given 

by the position of the neighbor relative to the center. Figure 4.1 shows an ex ample gradient 

induced from the altitude values of its surroundings. If we assume unit vectors for each of the 

cardinal directions and therefore the identities il = -8 and W = -Ê, then the calculation 

looks like: 
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50 30 50 " t / 30 50 30 ~ --;;.. 
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Figure 4.2: Example of degenerate cases where (a) Vgrad = 0 and (b) Vwind_avg = O. 

Vgrad 
~ 7r~ 7r~ 

(50 - 10)N + ((50 - 60)sin("2)N + (50 - 60)cos("2 )E) 
~ 7r~ 7r~ 

+(50 - 75)E + ((50 - 90)sin("2)S + (50 - 90)cos("2 )E) 
~ 7r~ 7r~ 

+(50 - 85)S + ((50 - 40)sin("2)S + (50 - 40)cos("2 )W) 
~ 7r~ 7r~ 

+(50 - 30)W + ((50 - 20)sin("2)N + (50 - 20)cos("2 )W) 

54.142N - 60.35534Ê - 56.21328 + 48.28427W 
~ ~ 

108.64W + 1l0.35N 

giving a vector with angle tan-1(1l0.35j108.64) = 45.45° north of west. 

The inverse gradient points in the direction of ascent, and is used to determine how wind 

direction is altered by the current terrain. If a gust of wind is pointing into a wall, it will 

instead blow around it. For wind to move around higher-altitude obstacles it must therefore 

be pushed away from the direction of the inverse gradient or, equivalently in 2D, towards the 

direction of the gradient. 

Another induced property is the current local average wind value. The average wind value 

is a vector whose magnitude is equal to the sum of all wind magnitudes in the 9-region divided 

by 9; the average direction is precisely the direction obtained by the sum of all the vectors. 

Comparing the current wind value with the current average gives a summary of how the current 

wind value on a cell differs from its immediate surroundings. 

Note that degenerate data representations are possible by construction, as shown in Fig­

ure 4.2. For instance, it is possible that the gradient has 0 magnitude even though not all of 

the neighbor values are equal to the current cell value. As well, the current average could have 

no direction at all when all the vectors sum to a vector whose component magnitudes are all 

0, or worse: numerical error could lead to an arbitrary angle. These are of course due to the 
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Figure 4.3: An exarnple of obtaining Vtarget given Vgrad, Vwind_avg, and ct = 0.8 

fact that what is described here are approximations. In practice, we should be aware of these 

limitations: if any degenerate cases occur, they should be treated as a special case and handled 

appropriately. For example, one solution for the rare case that the gradient has 0 magnitude 

would be to sim ply ignore adaptation pro cess for that particular region. 

Weather Adaptation Procedures 

There are 3 major adaptation procedures in the weather system: moisturewind, gradDev, and 

rain. The procedures are functional algorithms that perform the actions needed for adaptation 

such as checking the values of sorne criteria and modifying values as a consequence. In this 

subsection, we will thoroughly explain the steps in each procedure. 

The gradDev procedure represents the bending of the wind vectors over time due to the 

values of altitude. The procedure uses the vector averaging and angular propagation concept 

explained in Section 3.2.1. The current wind vector is shifted towards sorne target vector, 

denoted Vtarget. The shift is scaled by sorne damping parameter, 0 < 1 < 1, which roughly 

corresponds to the speed of the shift since one shift is applied per iteration of the adaptation 

process. For example, when 1 = 0.1 it would theoretically take 10 shifts before Vwind = Vtarget, 

as opposed to 100 shifts if 1 = 0.01, assuming of course no perturbation from other factors such 

as angular propagation. Note that the damping parameter 1 is similar to the weight parameter 

used in Reinforcernent Learning [SB98] update rules. The damping parameter is chosen by the 

modeler depending on the specific needs of the system. 

As previously mentioned, the most infiuential contributing factor to the wind shifting is the 

gradient vector. We also incorporate an inertial factor, to give a smoother fiow pattern; we 

designate Vtarget as sorne composition of the gradient vector and current average wind vector. 

The composition is such that ()target = ()wind_avg + Œ • shift from( Vwind_avg, Vgrad). An illustration 

of obtaining Vtarget is found in Figure 4.3. Again, Œ is a damping parameter which affects 
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Figure 4.4: An example weather system configuration after sever al hundred iterations showing wind 

and altitude values. Bright (red) areas are high (landjmountains), dark (black) areas are low (seas) , 

and the arrows show the direction of wind movement. 

the smoothness of the transitions versus the angular propagation due to influence from the 

surroundings. This parameter further increases the flexibility available to the users of the 

application. 

Moisture is displaced in two ways: by the rain procedure and by the moisturewind pro­

cedure. Both procedures use fuzzy flow-update rules to transfer scalar values between neigh­

bors. Similarly to the gradDev procedure, each flow-update rule has a damping parameter 

(kmoisturewind and k rain ) associated with them which sc ales the actual modification allowing the 

modeler to easily modify the influence of the moisture-altering procedures. 

In the moisturewind procedure, four independent components that comprise the wind are 

represented by the cardinal directions: VN, VE, Vs, vw. The value of each component is calculated 

by a fuzzy membership function. Any fuzzy membership function can be used, providing yet 

more flexibility to the user of the application. In most of our simulations, a semi-circular fuzzy 

membership was used (see Equation 3.3). The values are then normalized, and represent a 

proportion of the amount of moisture displaced to surrounding grid sections, again as per the 

method in Section 3.2.1. 

The rain procedure represents the downpour of water from higher regions. It uses the same 

vector component breakdown and same ide a as the moisturewind procedure except that the 

gradient is used instead of the current wind value. The rationale here is that the gradient points 
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(a) (b) 

Figure 4.5: An example weather system configuration after (a) 100 iterations and (b) 300 iterations 

showing moisture values and wind vectors. Bright (green) areas signify high moisture regions whereas 

darker (black) region correspond to dry regions. 

towards downwards slope, the corresponding physical meaning being that sorne of the moisture 

is carried down the slopes by gravit y instead of purely carried by the wind. 

A screenshot of the wind and altitude in weather system simulation is given in Figure 4.4. 

The image shows an eastern ridge (brighter red) of Pakistan next to a flatland (black) region. 

The system was given an initial configuration of \lg, g[~indl = 50i (aH wind vectors point 

eastwards). Figure 4.5 shows another 2 screenshots of the south-western part of the Pakistan 

map shows the moisture levels at 2 different times in the evolution of the moisture spread. 

Terrain Generation 

Automatic terrain generation is often desired for computer games. Since terrain influences 

weather and represents a crucial part of any real-world natural environment, it seems to fit 

intuitively into a system like the one described so far. 

Two methods were investigated for terrain (altitude) generation. The first method includes 

3 steps: a coarse random distribution, a smoothing pass, and rescaling. The first step was a 

simple iteration over every grid section that assigned sorne uniformly random value between 

gzow and ghigh to the altitude property on that grid section. The resulting altitude maps are 

too coarse to be realistic, so they are blurred a number of times to smooth the surface. The 

33 



4.1. Environment-based Applications 

smoothing also removes many of the sharper parts of the altitude map. To accommodate, the 

minimum and maximum values over the entire grid are found, and then for each grid section 

the value of altitude is scaled proportionally to [gzow, ghigh]. As a result, there is at least one 

value (the maximum value) that is equal to ghigh and at least one value (the minimum value) 

that is equal to gzow' The advantage of this first method is that it is easy to implement, simple 

to understand, and rather efficient. However, the disadvantage is that it provides a less realistic 

result which may have too much local variation. 

The second method used real-world physicallocation data obtained by the DIVA-GIS project 

[RHG03]. The DIVA-GIS information archive contained sufficiently accurate altitude maps of 

many locations across the world. The problem for this particular application was that the 

maps were actually too detailed to be easily represented during prototyping. Therefore, a re­

sampling pro cess was run to downscale the data: the points were organized into 2x2 square 

regions containing 4 points each, the values of the 4 altitude points are averaged and then 

considered 1 point in the new map. In the case of odd-number points on one of the axes, the 

last row or column of sections becomes 3x2, 2x3 or 3x3. This special case creates a loss-of­

information bias towards the outer points, but since the loss is minimal the bias is not a critical 

issue. Since the boundary of these maps is arbitrary, we could have also sim ply omitted the 

outermost points altogether. We chose to include them in ordr to encourage the least amount 

of information loss. The re-sampling is repeated until the map is sufficiently small enough to 

represent on a screen. Sorne larger samples were also kept for performance measurements to be 

taken (see Section 6.3). 

Boundary Conditions 

Carefully-designed boundary conditions are important for many systems to behave properly. 

One common mistake in system design is to sim ply omit dealing with boundary cases. Such 

errors often le ad to erratic observed behavior. 

Two different boundary schemes for grids were examined. The first scheme was strictly­

bounded: the gr id simply "ends" at the boundary points. In this scheme, the assumption is 

made that there is nothing beyond the last grid section on a grid. The east-most grid sections 

have no eastern neighbors, and similarly for all extreme sections and directions possible in the 

grid layout. Consequently, the extreme points had fewer neighbors which caused sorne bias in 

the calculations containing local property values. The effects of this bias on the random method 

of terrain generation can be seen in in Figure 4.7: as a result of generating a random terrain, 

the outer ridges have lower altitude than the rest of the grid. 

The other boundary scheme is to have no boundaries at all. The east neighbor of the 
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Figure 4.6: An example tornado. 

eastern-most point on the grid is the western-most point in the same row. Similarly for west­

ern neighbors of western extremities, and for the north/south axis as weIl. This boundary 

scheme corresponds to the torus mathematical topology. This scheme also removes the bias 

on the edges. By default unless otherwise mentioned, this boundary condition was used in aIl 

simulations. 

Weather Events 

Incorporating interesting weather events is also possible and likely desirable. Events can be 

anything that affects the properties in the system such as earthquakes, tornadoes, tsunamis, 

storms, etc .. 

We have modeled "tornadoes" as local, non-linear dynamical systems with a stable fixed 

point at the center. A 2-dimensional dynamical system [StrOl] represents the wind flow within 

a specified sub-grid such that the center point is fixed point in a stable spiral. Within this 

sub-grid, the wind vectors are no longer influenced at aIl by outward sources; they are only 

part of the tornado. The outer vectors are treated normally. As a result, the effect of the 

tornado's turbulence is spread with decreasing influence out to the surrounding grid sections 

via angular propagation. 

The tornado moves by slightly displacing the sub-grid (along with it, the fixed point) at 

each iteration and reassigning the values in the sub-grid dynamical system around it. The 

movement of the tornado is defined by sorne arbitrary function of timesteps and could be 
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Figure 4.7: An example hexagonal grid in the weather system. 

randomly generated in the same way that path models are generated for mobile agents (see 

Section 6.2). Figure 4.6 shows a screenshot of a tornado on a fiat terrain. We will measure the 

efficiency of the implementation of tornadoes in Section 6.3. 

Hexagonal Grid Representation 

As stated in Section 3.2, since the adaptation process is based entirely on neighbors in sorne 

metric space the theory extends to metric spaces other than a rectangular grid. A hexagonal 

grid is a "nice" metric space because notion of neighborhood is particularly intuitive. Two ce Ils 

are neighbors in a hexagonal grid if they share an edge, or equivalently, if the distance between 

them is 1. A neighborhood of a cell in the hexagonal gr id is its 6 immediate neighbors. 

The adaptation pro cess here remains unchanged. The neighboring cells are equally distant 

from a given ceIl, so the gradient calculation becomes even simpler because there are no special 

case "corner-neighbors". Six fuzzy actions instead of 4 need to be defined for the fiow controIlers 

in the moisture spread procedures, but otherwise fiow updates remain the same. 

A capture of the hexagonal grid weather system is displayed in Figure 4.7. 
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Analysis of Weather System 8ehavior 

AIl the major components of the weather system have now been described. The question still 

remains: how does this system behave? The answer to this question is presented in detail here. 

An important concern is the performance of the adaptive system; it must of course be at 

least efficient enough to be usable. We will defer performance analysis until we describe the 

implementation in more detail, in Chapter 6. Another important concern is how weIl it achieves 

its purpose: does it act in a stable, aesthetically appealing manner or does it produce completely 

random and/or meaningless weather effects. 

Moisture dispersal seems to happen as smoothly as expected. Areas of pure saturation 

develop in the flatter regions, bits of moisture are carried around the edges of these areas and 

in particularly windy areas. Playing with the values of the damping constants for the effect of 

wind vs. rain pro duces the expected resulting behavior, which is reassuring. 

As mentioned in the description of the gradDev procedure, there are several factors that 

affect the wind's change. A concern, then, is whether the combinat ion of these influences leads 

to the wind changing forever or does it instead approach convergence to a fixed state. Chaotic 

behaviour may be desired here; after aIl, some aspects of weather are truly chaotic. However, if 

the patterns are not controllable in a way that allows the representation to always be meaningful, 

then the model will not be sufficiently approximating a real-world system. Therefore, some level 

of stability and is desired. If the wind vector moves towards the gradient every iteration, it is 

certainly going to converge eventuaIly. However, the average wind vector might not necessarily 

remain the same and, in particular, might move away from the gradient. In cases where the 

average wind moves away from the gradient, Vtarget also moves away from the gradient. As a 

result, the direction of wind change will depend on which si de of Vtarget the wind vector is on, 

which depends on Œ. 

If Œ = 1, then Vtarget = Vgrad so no matter how deviant the wind average is, the wind vector 

will always approach Vgrad and so is certain to converge. In contrast, if Œ = 0, the wind will 

always approach the average. In our chosen starting state, this immediately converges as weIl 

since the average wind vector for every grid cell is 590i. What about convergence conditions 

when 0 < Œ < 1 ? A closed-form expression for convergence conditions would be useful. 

Assuming we ignore magnitude, in general the wind vector, Vij,wind, on a given grid section 

gij will undergo the following update at each iteration: 

Bij,wind +- Bij,wind + '"Y • shift from( Vij,wind, Vij,target) 

Bij,wind + '"Y • cyclize( Bij,target - Bij,wind) 

Bij,wind + '"Y • cyclize( Bij,wind-.avg + Œ . cyclize( Bij,grad - Bij,wind-.avg) - Bij,wind) 
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At first, the update rule looks like it takes the form of a one-dimensional iterated map [Str01] 

Iterated maps are discrete-time dynamical systems in which a value Xi+1 = f(Xi) where i is an 

iteration number. Research has been done on these systems; well-known techniques exist for 

analyzing them. Unfortunately for us, not only do we actually have a set of these equations, 

the function f is dependent on many of the set's previous iteration values not just its own 

previous value. If it were only for the former, then we could simply treat the wind-bending as a 

collection of independent iterated maps and solve a general equation which would apply to aIl 

of maps. The set of iterated values is {Vi, JÎBij,wind} and Bij,wind-12vg is actually a function of the 

neighborhood property values T(gij[wind]). Therefore we have a (height . width)-dimensional 

iterated map with equations of the form Bij,wind = f(Bi- 1,j-1,wind, ... , Bi+1,j+1,wind). This is a 

complex system and hence it is difficult to solve analytically. It is also the case that components 

of an adaptation system may be arbitrarily complex, and so proving convergence in general will 

be difficult. Direct, practical techniques are more convincing. 

We chose a quantitative approach to measure the convergence and effects of the damping pa­

rameters on the system's behavior. In doing so, we define the overall change in wind-deviations 

from one timestep to the next as the sum of a change in angles over aIl grid section. Formally, 

this sum is: 

!J.mask = 2: IB;j,wind - Bf~!indl 
i,j 

At a fixed point, the wind vectors do not change at aIl so this sum will remain equal to O. Note 

that !J.mask is expressed in radians. 

An experiment was conducted to measure the values of !J.mask over time, assuming default 

values of a = 0.2 and 'Y = 0.1. The maps of Pakistan, North Korea, and a randomly generated 

terrain were used, each of which had both heights and widths of at least 50 grid cells. Every 

experiment converged to !J.mask < 1 in less than 3000 iterations and convergence graphs look 

similar. Figure 4.8 shows the precise values as a function of timestep using the Pakistan map. 

The experiment included dynamically adding altitude values at certain times, which will be 

explained below. 

In general, there are iterations where the !J.mask actually increases. Increases are usually 

sm aIl « 1) but not always negligible which implies that it is not necessarily only caused by 

numerical error. However, on aIl 3 tests, the !J.mask did indeed converge to essentially 0 (~ 10-13 ) 

after 7000-8000 iterations and remained at this value endlessly. In fact, the converged value 

never reached exactly 0 due to sorne minimum amount of numerical error. 

As mentioned ab ove , patches (random regional perturbations) of altitude were added to 
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Figure 4.8: D.mask as a function of the timestep in a simulation run on the Pakistan terrain map. 

the map dynamically during its evolution. The reason for this functionality is to see how the 

system reacts to sudden changes once it has stabilized. A small patch of approximately 10-15 

altitude values of ghigh were added at t ;:::j 1500 and a larger patch (20-30 altitudes of ghigh) at 

t ;:::j 3000. Both patches of altitude were added to completely fiat areas. The system reacted 

to these "sudden growths" by slowly bending the wind vectors around them, and returned to 

a stablejfixed state within at most 100-150 timesteps, as show in Figure 4.8. 

The tests above assume specific values of Œ and 1. We have shown convergence and stable 

behavior in a particular case. Ab ove , it was implied that convergence is somewhat dependent 

on the values of these damping parameters. Looking back at the equation for the update of 

()ij,wind we see that 1 is just a proportion of the shift towards Vtarget. 80 as long as 1 > 0 then 

convergence only depends on Œ. Therefore, simulations were run on the Pakistan map with 

1 = 1 and Œ = {O.O, 0.05, 0.1, 0.15, ... ,0.95, 1.0}. The results of the simulations are displayed 

in Figure 4.9. Note that not all values are present. Each simulation was stopped at 10000 

iterations if it had not yet converged. Many had not converged. One run was performed for 

each value of Œ for a total of 21 runs. 

The simulation runs for varying Œ values lead to a discovery of cyclic behavior in certain 

cases. The corresponding representation in the convergence graph is a long stretch of non­

continuous periodic values. In every case, the cycles started at sorne point before the 10000th 

timestep and continued well beyond that point. As well, the cycles only formed when llmask < 5, 

meaning the system had almost converged but entered a cycle instead of continuing. Re-running 

the tests using a graphical interface showed that in all cases, a cycle corresponded to 2-6 

neighboring wind vectors alternately "fiipping" from one orientation to the another and then 

back, while the rest of the map remained fixed. Detecting these cycles is non-trivial but not 

difficult, however it does add an extra consideration to remember when using the application. 
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Figure 4.9: Maximum timestep until convergence as a function of ct after many simulation runs on 

the Pakistan terrain map. 

Values between 0.1 and 0.6 do not converge, while ex > 0.7 seem to take longer to converge. 

This is not necessarily a critical issue sin ce the cycles only occur at low levels of L:lmask. One 

could sim ply stop adapting once a threshold point of L:lmask :S 1 is reached. The specifie cause 

of this strange behavior remains unknown. 

The last interesting addition to the system was control points. It is possible that one may 

want some of the wind vectors to be entirely immune to change; for instance, as a way of 

ensuring boundary conditions. This was enabled both statically and dynamically, and was 

tested on several maps. The results were as expected: the control points allow the modeler to 

force certain shapes of fiow by using control points. 

4.2 Agent-based Applications 

Agent-based applications differ fundamentally from environment-based applications in that 

agents contribute directly to the adaptation process. In environment-based adaptation, an ap­

plication designer could define agents in the AVE to interact with its surroundings and somehow 

allow them to modify an environmental value. However, the adaptation pro cess still only adapts 
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to the actual changes in the environment. In agent-based adaptation, properties of the actual 

agents themselves are used to influence the adaptation pro cess. That is, the adaptation pro cess 

observes the agents and their actions in addition to the rest of the environment. The focus of 

the pro cess is on the behavior of the agents, but uses environmental properties as weIl. Note 

that this model presumes only localized information propagation but global effects could be 

easily incorporated. 

As briefly mentioned earlier, agents are simply entities that can interact with the environ­

ment or other agents. This definition is generic enough to allow agents of aIl kinds, and indeed 

the flexibility is desired. Player agents are agents that are controlled by players of the game. 

Player agents are usually called characters. Non-player agents come in many forms: monsters 

("mobs"), player companions ("pets"), non-player characters ("NPCs") which can be guards, 

merchants, mercenaries, enemies, peasants, etc .. Agents need not be restricted to living crea­

tures but commonly are in MMOGs. In typical (static) virtual environments, the agents are 

the only dynamic aspects of the environment. Here, both the environment and the agents are 

dynamic and capable of influencing each other. 

4.2.1 An Adaptive Reputation System 

A player character's in-game reputation is often an important component of the game environ­

ment, particularly for persistent-state games in which the same character is re-used for long 

periods of time. Player actions that harm or help non-player agents should result in a logically 

consistent reaction to the player, giving a greater sense of reality to the game environment. 

This is necessarily a dynamic property: player reputations need to be constantly updated, and 

should also ameliorate over time and distance. 

In or der to allow reputation to disperse more realistically, a word-of-mouth model is em­

ployed to flow the impact of events caused by the agents. Agame character's reputation is 

built by the spread of hearsay amongst the populace; reputation fiow vectors modeling the 

communication patterns of the general populace in each grid section are used to describe the 

direction in which word of a positive or negative action will spread. 

For our example system we developed a virtual communication terrain which, as in the 

weather example, is represented as a discrete vector field. The difference is that the vectors on 

this vector field do not change with respect to a static value such as the gradient. These vectors 

are influenced solely by the agents' velocity vectors currently occupying the corresponding grid 

cell and sorne of its surroundings as weIl. The same wind model used in the weather system 

then traces out the flow of reputation information. 
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In our case we simulated route popularity by tracking movements of semi-randomized agents 

moving between cities following smooth curved paths, choosing destinations probabilistically 

based on distance and city size to discover trade routes. The basic movement model for sim­

ulations is described below. In Chapter 5, movement models for agents are examined in much 

greater detail. 

Reputation events are abstractly defined even in this application: they are events that aIl 

agents can cause that can potentially modify their reputation. They are only slightly analogous 

to the weather system events because in these cases, the players are free to generate occurrences 

as weIl as computer-controlled entities. Rescuing the princess, killing a commoner, stealing from 

tavern, etc.. These are aIl examples of reputation events. 

Positive and negative reputation points (RPs) are created on a grid section when a reputation 

event occurs at that location. The amount of RPs is proportional to the severity of the event. 

These points are displaced via the fiow, and also dissipate at a slow rate. For each point that 

dissipates on a grid section, the reputation of the player is altered at that location. This pro cess 

repeats until aIl the reputation points have dissipated, causing a local alteration in the player 

character's reputation. RP is one of the scalar grid properties. 

The player character's reputation value is another example of a scalar grid property. Whereas 

the reputation points dissipate over time, they slowly modify the reputation value. Positive 

reputation points will modify the reputation value to a higher value, representing an increase 

in good reputation. Negative reputation points lower the reputation values. 

Reputation Adaptation Procedures 

The adaptation pro cess in the weather system includes one cycle that iterates over aIl the grid 

sections performing update calculations. In contrast, the adaptation process for the reputation 

system is split into 2 parts: the agent update cycle, and the grid update cycle. The gr id update 

cycle is analogous to the weather system's update cycle in that it performs calculations as an 

iteration over aIl the grid sections. The agent cycle performs the agent-based update calculations 

and their movementjinteractivity simulation. Therefore, the reputation adaptation procedures 

are split into two categories based on the update cycle in which they are contained. 

There are 3 main adaptation procedures: repEvent and agentBend, which are part of the 

agents cycle and repwind, which is part of the grid cycle. The repEvent procedure generates 

reputation events probabilisticaIly depending on a few parameters. In the simulations, it is 

assumed that agents provoke reputation events and so the reputation events only occur at the 

current location of an agent. For each agent, that agent generates an event with a probability 

of Pevent. If an event is generated by an agent, it is a good event with probability P good or 
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Figure 4.10: The aura of reputation flow vector influence created by one agent 

negative otherwise. A generated event has a severity proportional to its reputation points, 

which is uniformly randomly generated between glow = -5000 and ghigh = +5000. When an 

event is generated by an agent, the reputation points are deposited on the grid section the agent 

is currently occupying. 

The agentBend procedure modifies the values of the reputation flow vectors given the orien­

tation of the agents. In essence, an "aura" of vector influence is created by each of the agents. 

The aura for a single agent is a small sub-grid surrounding the agent (centered on the agent) 

of vectors. Each of the vectors have the same direction of the agent 's velocity and have magni­

tude inversely proportional to the Manhattan distance (in grid sections) away from the center 

grid section, to a maximum of 3 gr id sections away from the center. The idea is illustrated in 

Figure 4.10. The resulting reputation flow vector for a grid section is the vector sum of all the 

vectors induced by all the agents' auras on that grid section. The reputation flow vectors for 

all grid sections describe the flow of communication via agents throughout the grid. 

The repEvent procedure spreads the reputation points using fuzzy flow-updates exactly 

like moisture was spread by the wind in the weather system. The vectors in this case are 

the reputation flow vectors. Here, however, reputation points are temporary. This procedure 

also converts a number of reputation points to reputation value. Since this procedure is exe­

cuted repetitively, the reputation points will either be carried by the reputation flow vectors to 

neighboring cells or converted to reputation values. When converted to reputation values, the 

converted values are added to the reputation value on the current grid section. 
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The reputation value on a grid section corresponds to the value of a given player character's 

reputation at that location. InitiaIly, the reputation is equal to gmid = 9low~9hi9h = 0, neutral. 

The reputation value added (or subtracted, in the case of negative reputation points) to the grid 

section converted from reputation points pertains to the player who caused the event. In our 

simulations, there is only one player and the events are generated at random locations decided 

by the paths of agents. The system is extended to groups of players in a foIlowing subsection. 

A Movement Model for Mobile Agents 

Despite the vastness of virtual environments in recent MMOGs, within them there seems to 

exist a finite set of interest points placed by the game designers for the players to discover 

and interact with. Examples of such interest points in existing games are: cities, settlements, 

borders, spawn points, cavern entrances, trade/merchant stations, meeting points, etc .. Non­

player agents often have reasons to visit these interest points as weIl as player agents. Over 

time, these interest points become basins of player activity in the VE. It is clear that throughout 

the course of game-playing, players do two things: 

1. travel to and from interest points 

2. remain at interest points for sorne period of time (presumably doing something interesting) 

Our simple movement model is composed of 4 major components: the graph which dictates 

which interest points are connected to (reachable by) which interest points, which interest point 

is chosen to be the next agent's destination, the shape of the path taken by the agent to reach 

its destination, and how long the agent remains at the interest points. The simple version that 

we present in this chapter is completely random based on a few common sense assumptions. 

More complex models for agent movement are investigated in Chapter 5. 

Each interest point has a coordinate position in the continuous space which the grid is 

approximating. The graph connecting sorne of the vertices is then a proximiiy graph [Tou91]: 

the length of the edges corresponds directly to distances between vertices (interest points). 

Agents can only travel to an interest point Sdest from Ssource if the edge (ssource, Sdest) is in the 

edge set of the graph. 

Interest points have a scalar significance, or size. The higher the value of the significance, 

the more interesting this point is to visit. It is assumed as weIl that agents generaIly prefer 

shorter distances than long ones, and this is a more important factor than how interesting a 

place is to visit. Therefore, when an agent chooses a new destination, each neighbor of the 

current interest point is assigned a weight value Wneighbor = size/ disiance
2

. The neighbor is 

then chosen at random with a probability proportional to its weight. 
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Agent paths are assumed to be slightly non-linear. A path model is derived from a contin­

uous function f(t) defined over t E [0,1] with the constraint that f(O) = f(l) = O. The values 

of this function at 0 ::; t ::; 1 are considered points on a 2D plane with Cartesian coordinates 

(t, f(t)) and are then transformed to the path's coordinates by using basic affine transforma­

tion methods [FvDFH95]. The transformation defines a parametric curve on the continuous 

space with f(O) representing the starting interest point and f(l) representing the end-point. 

The transformation is represented by Figure 6.3. Basic non-linear functions were used such as 

sinusoids, quadratics, cubics, quadrics, conics, and compositions of these as weIl. To generate 

a path, a random model was chosen along with random parameters (eg. amplitude) and the 

agent followed the path outlined by the curve f([O, 1]). 

FinaIly, the time between interest points was not explicitly modeled. At each iteration of 

the adaptation process, with a probability PagenLnewdest a random agent was chosen among 

the agents to choose a new destination. Once the agent reaches the destination, it "hovers" 

around the destination choosing random straight paths and turning to remain within a given 

radius of the interest point. When not following a path, the agents use a typical velocity-based 

Newtonian physical model for movement. Shifts in direction and velo city are probabilistically 

determined. 

Faction versus Reputation 

Faction is a system similar to reputation that is currently used in a number of modern persistent­

state games, notably EverQuest. Faction is a system that measures relationships between 

individu aIs and/or groups and is at times misunderstood to be the equivalent of reputation 

[Bro03]. The terminology used is as follows: "an individual's faction with another group is 

high" means that the other group has a good relationship with the individual. Factions are often 

symmetrical, but the system allows uni-directionallike/dislike relationships in general. The key 

point here is that faction systems measure the status of relationships between individuals and 

groups. Faction is used in games to decide on actions or general moods of NPC groups per 

individual. 

A player character's reputation is really how well-respected he is in general amongst others; 

it is about how others perceive him, not about how weIl they get along. Reputation is a more 

general concept. Ideally every player has a place in the world. The player character's reputation 

is a way to quantify that notion: a high value means a good reputation, a low value means a bad 

reputation. In this application, the value of reputation is not only quantified, it is localized and 

presented as part of an automatic adaptation pro cess in a dynamic environment. In general, a 

player character's reputation is a function of that player's actions while playing the character. 
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Adding locality to an existing faction system has been investigated in a commercial setting, 

as mentioned by the author of [Bro03]. The implementation details were difficult to deal 

with. On the other hand, the system presented here has locality pre-built into the adaptation 

model. The reputation system is sim ply an instance; locality is provided implicitly as a natural 

consequence of using the generic adaptation model described in Chapter 3. 

Reputation Groups 

The reputation simulator as described above manipulates the value of a single player character's 

reputation. The reputation value kept on the grid is the value of the single player character's 

reputation at that location. In general, if there are N player characters in the game and each 

had a reputation, this would require that each grid section have 2N integer variables (1 for 

reputation points of reputation events caused by a player character, 1 for reputation value of 

a player character). Typically, these games host hundreds of thousands of players [Com04]. 

Modeling reputation in EverQuest would require 430000· 2 . 4 bytes= 3.36 MB per grid section! 

This is clearly impractical. 

The proposed technique to fix the practicality issues of the implementation would be to 

conglomerate individual character's reputations into groups. Player characters by default would 

not be part of any group. Therefore, individual characters would only gain reputations when 

associated with a group. The reputation of the group on the whole is what is represented in 

the grid. Whenever a player character in the group causes a reputation event, the reputation 

value for the whole group would be altered. Therefore, the reputation would be shared with 

the group with which the player characters are associated. 

There are 2 ways to conquer the problem of a malicious player joining the group and 

immediately ruining the group's reputation. A membership value could be associated with each 

member. The impact of the reputation events would be weighed by these membership values. 

The reputation refiected upon the individual player character from the group could also be a 

function of the membership value. In addition, membership values allow any player's char acter 

to be part of multiple reputation groups. In this case, the player character's reputation could 

be the average of both groups, or sorne other function of both groups' reputation values, such 

as a weighted (by membership) average of the reputation values. 

The second method involves a screening pro cess for joining groups. Essentially, this would 

force sorne kind of initial requirements on the part of the player character before he/she could 

join the reputation group. This method could be used in conjunction with membership values. 

Players could decide which group to join and there could be a review pro cess involved with 

joining the group. The pro cess could be automatic or based on the decisions of the more 
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(a) (b) 

Figure 4.11: The grid of (white) triangular agents, positive (blue) reputation points, arrows (grey) 

communication terrain, and circular (orange) interest points. The snapshot in (b) is was taken only a 

few iterations after (a) to show the spread of the reputation points caused by a moving agent. 

important members of the group. 

Analysis of the Reputation System's 8ehavior 

As expected, in general the reputation system was more dynamic in comparison to the weather 

system. The agents movement was a very interesting part of the observations. In particular, 

the spreading of reputation points across the gr id was quite enjoyable to observe during the 

simulations. A screenshot of the agents movement and the reputation point spread is seen in 

Figure 4.1l. 

In the reputation simulations, the values of the parameters for probabilities were PagenLnewdest = 

0.01, Pevent = 0.001 and P good = 0.7. Agents, on average, choose a new destination every 100 it­

erations. Events were generated on average every few seconds. The terrain was either "cloudy" 

with spreading of reputation points via agents, or "spotty" for some time if the agents did not 

frequent the area containing reputation points. 

In practice, the dissipation rate of reputation points converting to reputation value seems 

to work quite weIl at the value of 1 per grid section per iteration. The impact of an event has 

the potential to spread out quite evenly if agents pass by to carry the reputation points but 

otherwise the resulting reputation value is too local to be noticed. 
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Figure 4.12: The grid of reputation values. Bright values mean good reputation, darker values mean 

bad reputation. 

The reputation value fields end up being smooth, with brighter peaks near the more signifi­

cant interest points. The reputation field is show in shown in Figure 4.12. Since the probability 

of a good event is greater than a bad event, we expect the picture to be lighter than darker. 

By construction of the movement model for these agents, most of the activity will be centered 

around the larger interest points. The smoothness around the "blotches" of reputation value 

are due to agents moving out of or into the corresponding interesting regions. 

The highly dynamic and non-deterministic nature of the reputation application makes it 

somewhat difficult to analyze the behavior of the system. The application would need to be 

tested in a real gaming environment. In the next chapter, we will partially apply the reputation 

in a real game environment and see how the reputation fields look when applied to different 

movement models for agents. 

The weather system and reputation system applications are example systems that use the 

model and fit into the adaptation process. The adaptation procedures used by each application, 

as well as other related concepts are introduced. The behavior of the systems was described 

by using data observations from the simulation runs. As well, the major difference between 

agent-based and purely environment-based applications is shown. 
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The systems presented here are 2 adaptive virtual environments that game designers could 

have built to use in their games; both adhere to the generic adaptation model presented in the 

previous chapter. This chapter demonstrated the design of these two systems by first describing 

the application, relating the system to its real-world counterpart, and then breaking down the 

system's components into data and procedures that act on that data. By using the generic 

adaptation model, locality is implicitly provided by construction. 

Finally, the existence of a simulator that implements the 2 systems shows that such systems 

are actually realizable. This proves that such systems could be functionally included in a 

persistent-state game setting. We will investigate the implementation of the simulator and 

discuss performance details in Chapter 6. 
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Chapter 5 

Movement Models for Mobile Agents 

In a previous chapter (specifically, Section 4.2.1), we proposed an artificial model for agent 

simulation between interest points for the purpose of generating input data. The model was 

based on several assumptions and designed to be simple, but not necessarily realistic. As a re­

suIt, the generated data may not be actually suit able to use because it may not be representative 

of true player movement in MMOGs. 

The purpose of this chapter is to describe a method for building good, intuitive movement 

models for agent simulation. We do so by analyzing real player movement data collected by 

me ans of a game-playing experiment. We discuss the important elements ofthe construction of 

an agent simulation model, describe the analyses performed on the collected data, discuss the 

results of the analyses, and conclude with sorne general remarks. 

Note that this particular chapter should be considered a case study on movement models 

in general. We will apply the results of this study back to the reputation system simulations 

in Section 5.5. But, the overall goal in this chapter is to analyze movement in a particular 

class of games (namely, persistent-state MMOGs) which possibly exclude adaptation concepts 

altogether. That is, we are searching here for a good movement model in persistent-state 

MMOGs within all kinds of virtual environments, not only adaptive virtual environments. 

As in Section 4.2.1, we assume that player agents in virtual worlds travel to and from interest 

points. There are three obvious questions one could ask about this travel: 

1. How do players choose which interest points to travel to? 

2. When do players decide to choose a new destination? 

3. How do the players get to the target interest point? 
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We are interested in finding answers to all such questions, but here we focus primarily on 

the first and second. Answering the third question involves finding a function that generally 

describes the path taken by agents in 2D space and justifying its correctness. 

This chapter will first describe the game used in the game-playing experiment. Second, 

the data gathering techniques that are applied are described. Then four movement models are 

constructed based on reasoning about the data. The models are compared and validated, partly 

by showing the effects when the models are used in agent-based adaptation simulations. 

5.1 Conquero 

Due to a lack of information data available from commercial persistent-state MMOGs, the 

immaturity of free/open MMOG implementations, and the logistic complexity of implementing 

data-collecting functionality in existing MMOG projects, we were unable to perform a large­

scale experiment. Here, we describe an experiment using a custom-made game to provide an 

approximation to the real data. 

The goals of the game-playing experiment are as follows: 

1. Design a simple game that is complex enough to encourage interesting movement. A 

simple game is easy for players to learn and is also easier to implement. We take a high­

level approach to analyzing movement in MMOGs, therefore including many game details 

adds unnecessary overhead to both the implementation and the experiment. 

2. Player movement must be clearly related to points of interest. This is our basic assumption 

about how players move in MMOGs, therefore it must be present in the game as well if 

the collected data is to reflect real MMOG data. 

3. Players must pause at interest points for sorne time. Again, this is to enforce our assump­

tions about player behavior in MMOGs. Often, the interest point will be a city, in which 

case the player will spend sorne time navigating through it to find a particular person or 

shop. In other cases, there will be monsters to fight, people to meet, or things to do. AlI 

these require staying in close proximity of the interest point for sorne time. 

4. Incorporate collaboration and conflict. If people were completely alone in a persistent­

state environment they would likely move differently than in an environment full of other 

players. For instance, players usually form groups and go visit interest points together. 

Conflict is required for 2 reasons. If there is no conflict, players will soon get bored since 

they would have no challenging objectives. Conflict in MMOGs also influence players' 
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Figure 5.1: Screenshot of Conquero 

movements. If a char acter dies from a fight or there is a rush to get a certain item, players 

will move from place to place differently than if this conflict was resolved. 

5. Ensure enjoyable gameplay. The game must be somewhat fun so that players play the 

game seriously and somewhat competitively. If the players do not enjoy playing, they will 

not play the game "correctly" (as would a real MMOG player), and hence would add a 

bias to the collected data from the experiment. 

To reach these goals, we implemented Canquera: a game of team capture. 

Conquero is a multi-player network game consisting of players who each get to control one 

agent in a continuous, rectangular 2D virtual terrain with no obstacles. The agents are free 

to move in this terrain and movement is simulated using a basic N ewtonian physical model 

similar to the one described in [Rey94]. The virtual terrain contains a number of randomly 

distributed command centers (interest points) which form the nodes of a graph. The edges of 

the graph are obtained by applying a relative neighbarhaad graph [Tou80] algorithm on the set 

of points in the planar terrain. The players are grouped by a pre-assigned team and allowed to 

communicate throughout the game. 

The goal of the game is to conquer all the command centers. To capture a command center, 

an agent must move near and remain near a command center for a fixed interval of time (a few 
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seconds) as long as no other agent is also near the same command center. When a command 

center is captured, it becomes owned by the team of the agent which captured it. A team 

can conquer a command center on 2 conditions: (a) if the te am currently does not control any 

command centers, a member can attempt to capture any center in the graph, otherwise (b) a 

team member can attempt to capture any command center which is directly connected to a 

command center already owned by that team. 

Each agent also has a level value which determines how strong it is. An agent gains levels 

when any member of its team gains control of a command center. The agents lose levels 

whenever their team loses control of command centers. Each command center has a size; the 

levels gained and lost are proportional to the size of the command centers. 

Agents are also allowed to engage in close-range combat. The agent's current level de­

termines how much damage it can endure before dying, how much damage it can cause to 

opponents, its resistance to damage, its weapon range, and its stamina. A swing is an action 

performed by the user which draws a line of a given length from the center of the agent 's 

avatar straight forward: if the line intersects an opponent, then a damage potential dice-roll is 

compared against the target opponent's "armor resistance" dice-roll to determine the damage 

from a hit. When an agent receives damage, its current life total ("hit points") decreases. Once 

the life total reaches 0 or below, the agent dies. Death causes a loss of 1 level and the agent 

respawns in a totally random location on the terrain. 

One might ask why we let the players continue playing after death. The point here is to 

make the game experience a continuaI never-ending struggle since the intent is to approximate 

real behavior of persistent-state MMOGs. As such, we set the consequences of character death 

in Conquero be similar to the case in real, persistent-state MMOGs. 

5.2 Game-playing Experiment 

The experiment consisted of 20 player subjects which were organized in 5 teams of 4 players each. 

Teams were assembled by groups of friends so as to encourage collaboration and communication 

between team members, mirroring the way people play real MMOGs. 

Two games were played: a trial game, and a real game. The trial game was meant to 

introduce the game to the players so they can get familiar with the movement, controls, captures, 

combat, sounds, and general gameplay. The trial game lasted 22 minutes and the real game 

lasted 68 minutes. Player movement updates were sent several times per second by the game 

clients and constituted by far the majority of the logged information. The event type statistics 

for each game are summarized by the tables 5.1a and 5.1b. 
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Event Type Instances Event Type Instances 

Update 658303 Update 2004607 

Capture 820 Capture 1347 

Hurt 553 Hurt 2196 

Kill 258 Kill 1143 

(a) (b) 

Table 5.1: CoUected information for (a) trial game and (b) real game 

A simple calculation shows that the average number of movement updates logged by the 

server per second was approximately 500 in both cases: in the trial game 658303/(22·60) = 

498.71 and the real game 2004607/(68·60) = 491.33. Clients were set to send updates 100 times 

per second. The experiments consisted of 20 clients, which means many ((2000 - 500)/2000 = 

75%) packets were being dropped by the network, most likely due to overload. Luckily, after 

using the simulator to replay the game based on the data collected, even at full speed the game 

seemed to run in slow motion. This implies that the positions of the players were being updated 

much more than required. Evidently, 100 updates per second per client led to an overfiow of 

information sent out over the network. This makes sense because even with such a high packet 

loss, the game applied movement updates quite smoothly during the experiment. This was 

confirmed by everyone who took part in the experiment. 

The virtual terrain had a width of 1200 pixels and height of 1000 pixels. Information about 

each command center and the graph is contained in Table 5.2. A screenshot of the graph is 

found in Figure 5.2. 

5.3 Building a Movement Model 

The main goal is to search for a probabilistic model whose parameter values are inspired by 

collected statistics on observed data. Let us consider the answer to our first question: how do 

players choose which interest points to travel to? We first have to find a way to formalize the 

problem at hand. In this section, we formally define the model we seek to build. Note that 

from this point on, we ignore the trial game because the data is biased by player. We deal only 

with the real data set. 

We define the movement model as a 5-tuple (A, S, T, PT, Pp) where A is the set of agents, S 

is the set of interest points, T is a discrete timeline, PT and Pp are families of independent and 

identically-distributed probability distributions. PT,a,t(Silsj) E PT is the probability that agent 
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Command Center x y Size Degree N eighbor Set 

1 1023 393 10 3 { 2, 3, 23 } 

2 1024 286 17 1 { 1 } 

3 1112 380 13 3 { 1, 4, 5 } 

4 1140 357 19 1 { 3 } 

5 1148 777 11 2 { 3, 24 } 

6 19 75 10 1 { 15 } 

7 222 517 12 2 { 11, 15 } 

8 232 130 22 3 { 10, 12, 15 } 

9 254 890 11 1 { 17 } 

10 332 56 25 2 { 8, 12} 

11 341 512 10 3 { 7, 13, 17 } 

12 346 81 13 3 { 8, 10, 16 } 

13 358 399 11 3 { 11, 14, 18 } 

14 426 333 25 3 { 6, 7,8 } 

15 43 234 11 3 { 11, 14, 18 } 

16 450 278 19 2 { 12, 14 } 

17 466 741 18 3 { 9, 11, 19 } 

18 489 465 10 4 { 13, 14, 19, 20 } 

19 618 557 11 3 { 17, 18,22 } 

20 629 354 10 3 { 18, 21, 23 } 

21 658 127 11 1 { 20 } 

22 839 859 12 2 { 19, 24 } 

23 886 362 10 2 { 1,20 } 

24 886 870 14 2 { 5, 22 } 

Table 5.2: Info about the Graph and Command Centers in the Conquero experiment 
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Figure 5.2: Screenshot of the Graph used in the Conquero Experiment 

a at time t will begin traveling to interest point Si given that it is now near S j. PP,a,t (Si 1 S j) E Pp 

generates a path taken by agent a from Si to S j' Here, near means within a small fixed distance 

away from the point. We are interested in finding general closed form expressions for Pp and 

PT· 

Before any research effort was spent on analyzing the movements of player agents, simula­

tions for the reputation system were based on a much simpler movement model, described in 

Section 4.2.1. First of aH, the graph was always a clique so that every point was a neighbor, and 

agents chose a neighbor probabilistically where each neighbor had a probability proportional 

to the value of sizej distance2
. We label this movement model M Mrandom' For the remainder of 

this chapter, we propose improvements of this basic model. 

Initially, we make the assumption that every agent's movement is independent of the other 

agents' movements. The reason to assume this is simplicity: we would like to see how agents 

move in general, not necessarily requiring other agents to be present. We also assume that the 

next interest point to which an agent travels is dependent only on the location of the current 

interest point, and not on the locations of previously visited interest points. Again, this as­

sumption might not necessarily be appropriate in this context: we are essentiaHy assuming that 

players are ahistorical. Our hope is that these assumptions are not so strong as to compromise 
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the value of the movement models built from this analysis. We expect the significance of any 

correlation to be small enough to ignore. Ideally, however, correlation caused by movements of 

other agents and previously visited destinations would be integrated into the model. 

We consider a player's entire movement as sequences of visits to and from interest points: 

Movement(aname ) = (SI, S2, ... , SnnamJ, where nname is the number of interest points visited by 

agent aname . Specifically, given the above assumptions, we define a dis crete data instance as 

simply a link in the chain: dname,i = (Si, SHI)' The list of aIl data instances forms the data set 

which use as input to a classification system. 

5.3.1 Classification and Statistical Learning 

Classification problems have the following form: there exists a collection of data instances, 

which is a known/sampled subset of a much larger set of real data Dreaz, of the form Xi = 

[Xi,l, Xi,2, ... , Xi,n] and a set of classes Y = {yly is a simple (non-set) element}. Each instance is 

accompanied by a class so that the data set can be seen as a matrix: 

Xl,1 Xl,2 

Dsampled = 
X2,1 X2,2 

Xm,1 Xm,2 Xm,n Ym 

Assuming that there is a classifier f that will satisfy f(x) = y for every possible instance 

xE Dreal, the goal is to use Dsampled to search for a good generic approximator (hypothesis), h, 

to f. 
The elements of the input vectors x are typically called features and the value of a given 

feature j of instance i is Xi,j. These features describe distinct qualities of a system. For example, 

weather features such as temperature, humidity, outlook (sunny, rainy, or overcast), whether 

or not it is windy, could describe conditions that affect the outcome of a certain decision. And, 

under a given set of weather conditions, it may or may not be desirable to play golf. This 

is a concern for golfers and the decision problem is a typical example used when introducing 

supervised learning techniques [Mit97]. The de ci sion to be made is whether or not to play golf 

on a given day. In this case, Y = {play, don't play}. Since IYI = 2, the golf example is a 

special case called a binary classification problem. Data was collected by observing the weather 

conditions and the outcome of the golf player's decision every day for two weeks. Then, machine 

learning techniques were applied to build a hypothesis for determining whether to play golf on 

a given day based on the weather conditions. 
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We build a program that analyses the data and uses classification to find a good approx­

imator for the true function Pp based on collected data. In particular, we would like to find 

a good feature or set of features that classifies the target interest point in a link, SH1, given 

the source Si. We propose intuitive heuristic functions for selecting the destination given the 

feature values of the state at the source. We are also interested in general statistics such as the 

proportion of destinations that are neighbors of the source and the proportions of classifications 

correctly identified by our heuristics. 

We define our 3 heuristics as follows: 

• h (s s) = size(sto) 
1 from, to dist(sf St ) rom, 0 

• h (s s) = size(sto)2 
2 from, to dist(sf St) rom, 0 

• h (s s) = size(sto) 
4 from, to dist(sf St )2 rom, 0 

where dist(Sl, S2) is the Euclidean distance between interest points Sl and S2. The decision 

algorithm for a given heuristic sim ply calculates the heuristic value over all possible destination 

points given the source point and chooses the one with the maximum. 

We define the neighborhood feature as N(sfrom, Sto) = 1 iff sfrom and Sto are directly con­

nected, a otherwise. Finally, we describe the classes Y = {a, l, ... , 7}. Y = a corresponds to 

the observed situation in which none of the hypotheses correctly chose the destination. y = 1 

corresponds to the observation that heuristic 1 correctly classified the instance (ie. correctly 

chose the destination). Similarly for classes y = 2 and y = 4 for heuristics 2 and 4. Cases 

y E {3, 5, 6, 7} represent bitwise OR combinat ions of the base cases. For instance, y = 6 means 

heuristic h4 and h2 chose the correct destination, but hl did not. Thus, the rows in our matrix 

D have the form [N, hl, h2 , h4, y]. 
Upon examining our empirical data, we noticed that self-Ioop links (Sto = sfrom) occur more 

often than initially expected. Upon refiection, this is due to the method used to detect links: 

if an agent suddenly goes out of the reach of an interest point- even by just a single pixel- and 

then cornes back in reach of the same interest point, a self-Ioop link is inserted in the movement 

chain. These are degenerate cases, so we exclude them altogether. 

In our experiment, the number of rows m = 4457. Table 5.3 summarizes the collected 

statistics on the whole data set. Immediately we notice that we never find the case where both 

h2 and h4 pre di ct correctly, which could be because each emphasize an opposing factor in the 

ratio. Note that from these calculations it appears that the agent explores (visits a target node 

that is not a direct neighbor) a little less than half of the time. On average, the heuristics 

choose the correct destination 23.5% of the time. The first two hl and h2 predict the correct 
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Statistic N= 1 y=1 y=2 y=3 y=4 y=5 y=6 y=7 y>O 

N umber of Total 2527 41 24 48 268 34 0 940 1355 

Proportion of Total 0.567 0.009 0.005 0.011 0.060 0.008 0 0.211 0.304 

Proportion of y > 0 0.91 0.030 0.018 0.035 0.198 0.025 0 0.694 1 

Proportion of y = 7 0.947 0 0 0 0 0 0 1 -

Table 5.3: Statistics of coUected data 

destination with approximately 22% while h4 chooses correctly 27% of the time, implying that 

h4 is somewhat better for determining the destination. An interesting observation is that 

both using at least one heuristic and using aIl heuristics choose the correct destination more 

than 90% of the time when the destination and source are neighbors. The simplest intuitive 

construction then is a model that chooses sim ply between exploring and not exploring. Basing 

the probabilities on these calculated statistics leads to the following proposed agent behavior: 

explore 45% of the time and choose a neighbour (via the heuristics) 55% of the time. These 

rules yield a decent, simple movement model we shall calI M MSimple' However, the accuracy of 

the heuristics for deciding the next destination gives us incentive to search for other, possibly 

better, models. 

We are also interested in the agents' rest times: the time spent near a given command 

center while the agent is not traveling between command centers. To measure this value, we 

subtracted the last time the agent left a command center to the first time it reached the same 

command center (effectively treating chains of self-loop links as just one link). The mean rest 

time was computed to be 17.079 seconds, with a standard deviation of 25.958 seconds. To 

model the rest times in our movement models, we sim ply observe the value of random variable 

y = Z~I-' where Z is normally-distributed random variable with mean 0 and standard deviation 

1, J1 = 19.079, and (J = 25.958. Y then becomes a normally-distributed random variable with 

the desired mean and standard deviation [WI896]. We consider negative values of Y to give a 

rest time of O. 

We now apply some learning techniques to see if a function can be learned to choose the 

correct outcome based on the values of the heuristic. It may seem futile to do this with the 

problem as we have stated it above. After aIl, the learned classifier will sim ply reiterate to us 

what we already know since the classes are defined entirely on the heuristics we chose ourselves. 

Therefore, the value of our function will simply determine which heuristics choose correctly 

given a source and destination. 80 why not formulate the problem so that the source interest 

point is one of the input values and the destination is the output value? The answer is twofold: 
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i) we are interested in the threshold values that decide which heuristic to use and ii) we are 

interested in the generic problem of movement between interest points on an arbitrary graph. 

Solving the learning problem for this data set might give a good movement model for agents 

in this particular graph layout, but will not be at aIl generic. However, we still investigate this 

alternative formulation in Section 5.3.2 to see what kind of agents it generates. 

We choose the C4.5 decision-tree learning software [Qui92] for several main reasons: it 

finds threshold points for continuous features and it is efficient. The C4.5 algorithm applies 

the information theory of entropy and information gain to measure the most representative 

features which reveals somewhat the relative importance of each criterion in the movement 

strategies used by the players; this finding allows us to compare players' decisions to intuitive 

movement strategies obtained only from analysis of the game rules. As weIl, decision trees 

make a natural choice for dictating NPC behavior. A typical implementation of modern AI for 

NPCs is 8cripting [Toz02]; scripts are simply a list of rules that are executed sequentially to 

evaluate the situation and decide how to react. Decision trees perform the same function with 

the added value that there exist efficient, well-known algorithms for optimizing behavior. 

After running the C4.5 algorithm on the data set, we obtain the decision tree se en in 

Figure 5.3. It is worth mentioning that the time taken to read aIl the data from file, compute 

the decision tree, and output the tree to standard output took a total time of 0.151 seconds on a 

PentiumIV 1. 7Ghz machine with 512megs of RAM. These results imply that assembling smaIl­

scale, simple classification problems and generating a decision tree from learning is feasible 

during actual game time. 

Once the decision tree is obtained, the procedure for deciding which interest point to target 

next is straight-forward and efficient. For each potential destination point: a) calculate the 

value of the 3 heuristics once and b) navigate the decision tree to get a solution and record it. 

Then, the probability of an action is the proportion of the number of repetitions of a solution 

versus total solutions. For example, let us say a given interest point 81 has 3 neighbors: 82, 83, 

and 84. Passing 82 through the tree requires calculating the values hk (8l, 82)' Let us say the 

decision tree outputs 7. Similarly, for the other neighbors it outputs 4 and 6. Then, hl was 

valid once, h2 twice, and h4 thrice. Therefore for this given situation, the heuristic chosen is 

hl with probability 1+;+3' h 2 with probability 1+;+3' or h3 with probability 1+~+3' Since both 

the heuristics and a single decision tree navigation is comput able in constant time (time taken 

~ log2N, where N is the number of tree nodes which is constant for a given tree), the time 

taken for the decision still remains linear in the number of potential destinations. We shall 

label this movement model M Mchooser because it chooses a neighbor heuristicaIly. 
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<1,17E-3 

hz >2.486 
~-=-. 

Figure 5.3: Decision tree for heuristic selection in M Mchooser learned by C4.5 
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5.3.2 learning How to Move in a Dynamic Environment 

The previous section explained the basics of classification and proposed a particular formulation 

for a classification problem. The resulting hypothesis function learned from the data chooses 

between which of the praposed heuristics to use when deciding between neighbors. The results 

of the analysis rely on one major assumption: that the heuristics {hl, h2 , h4} are the only ones 

that impact the de ci sion of the agent. 

In a dynamic environment such as Conquero, there are many factors other than the distance 

and size of the next command center. For example, the position and strength of the enemies 

are likely to affect how the agents move in such an environment. As such, while Conquero was 

built solely to provide an experimental context for gathering data, it introduces other dynamic 

factors to consider when analyzing player movement. These factors are particularly relevant in 

the context of computer games which require sorne level of dynamic stimulation. 

Our new classification problem consists of a data set M, where our class set Y = {1, 2, 3, ... , 24} 

represents the next command centers an agent could visit. The feature set is the vector x which 

somehow summarizes the current global state of the game at the time before the agent leaves 

the current navigating command center. These features are each a function of the state of the 

graph and state of aIl the agents at that given time. Note that we still assume that only the 

state at the given time affects the decision of the agent. 

Now we have to deal with a problem faced by many AI researchers: how to define the set of 

features. The problem is somewhat easier in a deterministic game such as Chess or Checkers 

where it is certain that the state does not change before the final decision on a move is made. 

That is not the case in our formulation: for instance, an agent may start heading for Command 

Center 4 (CC4 ) fram CCl but then another agent will beat arrive at CCl first, giving him reason 

to change his mind and head towards CC22 . In addition, we are dealing with a conceptually 

continuous environment, so the features described will be continuous geometric measures. 

Our motivation is to describe as many relevant features as possible and let the learning 

algorithm de ci de on the best ones to use. To do so we define 16 global features and 9 features for 

each command center. There are 24 command centers, which means Ixl = n = 16+24·9 = 232. 

The description of each feature follows. Note that the features described below are somewhat 

rudimentary; it is out of the scope of this research to search for higher quality continuous 

features, but one that would be interesting to measure in Conquero would be the dominant 

regions [TiHOO] of the agents. 

AlI global features are described fram the point-of-view of the currently traveling agent. 

Unless otherwise noted, the features are continuous and in ~+. The global features are: 
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• oidee E {1, 2, ... 24}: the sourcejcurrent command center the agent is at 

• mopx: the mean x position of the agent's opponents 

• mopy: the me an y position of the agent's opponents 

• mtpx: the mean x position of the agent 's teammates 

• mtpy: the mean y position of the agent's teammates 

• coo: command centers owned by agent's opponents 

• cto: command centers owned by agent's team 

• dco: distance to closest opponent 

• dct: distance to close st teammate 

• dcc: distance to close st command center 

• dcuc: distance to close st unowned command center 

• dcoc: distance to closes owned command center 

AH command center specific features are described with respect to that command center 

from the point-of-view of the currently traveling agent. The features associated to a particular 

command center, CCi are: 

• CCi[neighbor] E {O, 1}: the neighbor feature (1 if CCi is a neighbor of aldeC, Ootherwise) 

• CCi[own] E {O, 1, 2}: the ownership feature (0 if unowned, 1 if owned by agent's team, 2 

if owned by opponents) 

• CCdsize]: the size of the command center 

• CCddist]: the distance from the agent's location to the command center 

• CCdnop]: number of opponents close to the command center 

63 



5.3. Building a Movement Model 

• CCi [nte]: number of teammates close to the command center 

The data points were collected for each transition from command center to command center 

over the course of the game-playing experiment for each agent in the game, as in the previous 

classification task. The resulting decision tree has depth 52, and has 1809 nodes (904 decision 

nodes, 905 leaf nodes). The algorithm took 10.953 seconds to compute the decision tree on the 

same hardware used for the previous classification task. The tree is included in text form in 

Appendix A. 

To our surprise, the root decision node splits on feature CC4 [h4 ]. We expected that aldCC 

would be the most determining feature for choosing a new destination. U pon closer inspection, 

it seems that after splitting on CC4 [h4 ], the left subtree degenerates into cases specifically 

concerned with neighborhood values CC4 [neighborhood] and CC5 [neighbarhoad]. The result 

we expected starts on the second level, the top of the first right subtree, where aldCC is split 

by values. CCdnap] and CCi[nte] are often found near the top of the trees as weIl; they seem 

to make good determining features. 

The priority given to CC4 [h4] remains somewhat unsettling. Referring back to Table 5.2 

we recall that the degree of CC4 is 1, which is particularly bad in Conquero: if a team only 

owns a command center of degree 1 then you are forced to conquer its only neighbor which 

opponents can easily block by remaining near it. Still, why CC4 and not the other degree 1 

command centers? Looking back at Figure 5.2 we notice that CC4 is the degree 1 command 

center farthest from the higher-degree clusters. 

In fact, the split on the first node is due to the number of cases collected which had CC4 

as a target. It turns out that CC4 was the next target 13.8% of the time, 3 times larger than 

the expected fair average of 4.16% (= 2~)' This surplus in the data collected with CC4 as 

a target justifies using it as a first criterion for decision-making because it provides the most 

information. 

The precise reason that CC4 was chosen particularly more than the others is not entirely 

clear. CC4 is a bit larger than other leaf nodes, and it is very close to CC3 , which makes it easy 

to gain control over 2 command cent ers very quickly. As weIl, the 2 close command cent ers are 

in a relatively deserted area compared to the opposing side of the map and as such was rarely 

guarded if they were already conquered along with the surroundings. This last fact made these 

2 close points a vulnerable break-in region during raid attacks from teams who had suddenly 

lost aIl their command centers. 
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5.4 Other Movement Models 

In the previous section, we proposed two similar movement models, M Msimple and M Mchooser· 

The simple movement model just chooses randomly between exploring and visiting neighbors, 

but then chooses a neighbor at random. When visiting a neighbor, the chooser calculates 

the heuristic values for each neighbor, runs the decision tree to find the class associated with 

that neighbor, and then uses the class info to choose a heuristic to use to determine the next 

neighbor. We also presented M Mlearned which uses a global decision tree learned from the 

experiment to decide where to move. 

The first two movement models were designed by reasoning about the statistics of the 

observed data from the experiment. Up to now, the models that have been described are 

entirely independent of the game-playing experiment explained in Section 5.2. That is, once 

the data is processed and the model is built, the model no longer depends on the experiment 

data. We describe one last movement model that is dependent on the data, M Mexperiment: a 

movement model that sim ply replays the recorded game movements. In this model, agents do 

not choose between cities. Agents move exactly as they did in the game experiment. This 

movement model is of no direct value to us, but it will be interesting to compare against the 

other movement models. 

5.5 Applying the Models to Agent-based Adaptation 

We now recall our initial motivation for studying movement models: to provide slightly better 

than random models for mobile agents. In this chapter we have described, in total, 5 movement 

models: M Mrandom, M Msimple, M Mchoosen M Mexperiment, and M Mlearned, and how they were 

obtained, but we have not shown how these movement models fit into our adaptation scheme. 

Here, we show how well these movement models work in agent-based adaptation, specifically 

as applied to the reputation simulation. We construct a reputation test that includes the graph 

used in the game experiment (Figure 5.2) and the agents to be exactly those used in the 

game. We run 5 different simulations: one for each movement model. In each simulation, 

every agent uses the movement model specified by the simulation specifications. We run each 

simulation with the same random seed so that every simulation pro duces the same sequence 

of probabilistic choices; the differences in each simulation are therefore solely the cause of the 

agents' movements. Otherwise, we use the same constants that were described in the reputation 

simulations in Section 4.2.1; that is PagenLnewdest = 0.01, Pevent = 0.001 and P good = 0.7. 

Therefore, the agents will produce the exact same sequence of reputation occurrences in an 
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cases, and in particular an equal number of bad events and good events. 

We run the simulations for 5000 iterations each and we save the state (and take a screenshot) 

of the reputation field at iteration 500, 1000, 2000, and 5000. The saved state indudes aIl the 

reputation values for each grid section in the grid. We then measure the dissimilarity between 

saved states at each iteration for each simulation. The distance metric used is intuitive: the sum 

over aIl grid sections of the absolute value of the differences in reputation value. These values 

are listed in tables 5.4a-d. Screenshots of the reputation field at iteration 1000 are displayed in 

Figure 5.4. 

From the screenshots, it is apparent that none of the reputation fields are unambiguously 

similar. It was expected that the reputation fields for simulations involving the simple and 

chooser models would be noticeably similar because they are the most similar movement models. 

It was also expected that the experiment model and learned model would look somewhat similar. 

However, these are only qualitative hypotheses. 

Examination of the quantified dissimilarities also supports the general daim that the models 

produce radically different results. The expectations were to get dissimilarities dose to 0 which 

indicate perfectly similar. Instead, the dissimilarity is high. There were 3100 = 62 . 50 grid 

sections in the grid used implying a dissimilarity of at least 2 reputation value per grid section 

after 1000 iterations. The dissimilarity grows with time but using the same random seed for 

producing events which implies that the pathes of the agents must be quite different. Therefore, 

the quantitative results also reinforce the qualitative hypotheses mentioned above: that is, we 

cannot daim that any of these models pro duce similar results. We notice expected results as 

weIl, such as the consistent large dissimilarity between the random model and the learned and 

experiment models, especially in the longer term (after 5000 iterations). 

In the end, if we assume that the experiment model is the "correct values" then we see that 

surprisingly M MSimple has the lowest total dissimilarity in every case implying that it is the 

best approximation. This is encouraging because this model is efficient and easy to implement. 

It remains, however, somewhat difficult to make daims about the quality of the proposed 

movement models in a context outside of settings similar to Conquero. We believe that the 

movement information obtained from a real persistent-state game would differ significantly 

from the movement information we have collected for this experiment. As weIl, the online 

modification of agents' reputations would likely affect their movement, adding a feedback loop 

into the system. Of course, the validation used here is better than no validation whatsoever. 

More importantly, this study exposes the complexity of trying to find accurate, general and 

predictive models for agent movement in games. 
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MMrandom MMsimpZe MMchooser M Mexperiment MMzearned 

MMrandom 0 8882 9777 8464 11518 

MMsimpZe 8882 0 7401 6078 8318 

MMchooser 9777 7401 0 7055 10065 

M Mexperiment 8464 6078 7055 0 7882 

MMzearned 11518 8318 10065 7882 0 
(a) 

MMrandom MMsimpZe MMchooser M Mexperiment MMzearned 

MMrandom 0 18752 19729 17411 24366 

MMsimpZe 18752 0 17635 13843 19994 

MMchooser 19729 17635 0 16070 21687 

M Mexperiment 17411 13843 16070 0 17055 

MMzearned 24366 19994 21687 17055 0 
(b) 

MMrandom MMsimpZe MMchooser M Mexperiment MMzearned 

MMrandom 0 30075 32230 32408 39132 

MMsimpZe 30075 0 31823 31807 37293 

MMchooser 32230 31823 0 32608 35550 

M Mexperiment 32408 31807 32608 0 35246 

MMzearned 39132 37293 35550 35246 0 
(c) 

MMrandom MMsimpZe MMchooser M Mexperiment MMzearned 

MMrandom 0 57515 56635 86410 82102 

MMsimpZe 57515 0 54052 82475 79589 

MMchooser 56635 54052 0 84353 82713 

M Mexperiment 86410 82475 84353 0 98774 

MMzearned 82102 79589 82713 98774 0 
(d) 

Table 5.4: Dissimilarity ofreputation fields in simulations at iteration (a) 1000 (b) 2000 (c) 3000 and 
(d) 5000. Smaller values mean more similar while larger values mean more dissimilar. 
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(a) (b) 

(c) (d) 

(e) 

Figure 5.4: Screenshots of the reputation field at iteration 1000 using ( a) M Mrandom (b) M MsimpZe 

( c) M Mchooser (d) M Mexperiment and (e) M MZearned 
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Chapter 6 

An Implementation of the Adaptation Framework 

This chapter describes in technical detail the design and implementation of the adaptation 

simulator used in the experiments described in the previous chapters. We begin with a broad 

overview of how adaptation fits into modern games, foIlowed by an analytical breakdown of 

the actual adaptation engine. We then describe sorne tests to evaluate the performance of the 

implementation, describe a few optimizations, rerun the tests, and conclude on the quality of 

the optimizations. 

6.1 Adaptation in Modern Persistent-state Games 

The design and implementation of modern multi-player online persistent-state games are heavily 

infiuenced by both the efficiency of the network and efficiency of rendering graphics. Rendering 

graphics is for the most part a client-side issue; that is, it depends mostly on the performance 

of the computer running the game client. The efficiency of the network, however, is largely 

dependent on the infrastructure and the architecture of the game's network protocol. In these 

types of games in particular there is an abundance of information being passed over the network, 

and so optimal network performance is a high priority. 

By far the most popular architecture in general is the client/server architecture because it 

captures the nature of most network tasks and is widely-used. As weIl, the reliable connection­

oriented Transfer Control Proto col (TCP) fits quite weIl in the client/server architecture. Stud­

ies show however that the client/server architecture is inadequate for multi-player games because 

the large load endured by the server makes the network unscalable. As such, there are current 

research projects devoted to optimizing network performance in modern games. For the most 

part, these projects stem from the existing algorithms studied in distributed simulation now 
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Figure 6.1: The generallayout of the adaptation architecture 

evaluated in agame context. Of them, 2 generic alternative architectures have been proposed: 

the clustered-server architecture, and the distributed architecture. 

Clustered-server architectures try to keep the generallayout of the client/server architecture 

while trying to reduce the load on a single server. The ide a is that there still exists a central 

authority, but that central authority may be composed of many comput ers in a cluster which 

are themselves distributed. Example implementations include the mirrored-server architecture 

built on Quake in [CFK01], the proxied-server system in [MFW02] and the hierarchical server 

architecture found in [Fun96]. 

Distributed implementations attempt to spread sorne of the previously server-side processing 

computation across client machines. Note that this is fundamentally different than clustered­

server architectures because in this case we are allowing clients access to state information, 

which is potentially sensitive. This solves the scalability problem but introduces other problems 

such as state inconsistencies, cheating, and load-balancing. Examples include MIMAZE [DG99] 

and EternaZ [Qua03]. 

We would like to extend these architectures now to include the pro cess of adaptation in the 

virtual environment. We first introduce a critical concept: the state history server (SHS). The 

SHS acts as a global camera: it keeps track of the global state of the game by taking "snapshots". 

It is responsible for collecting state information from clients and/or servers periodically, possibly 

re-assembling separated parts of the state to form the global state, storing the history of the 

game state, and providing the history of the game state to the adaptation engine. The SHS is 

also responsible for sending state updates back to the clients and/or servers as a result of the 

adaptation. The general idea is illustrated in Figure 6.1. Note, in particular, that the proposed 

logical concept fits into every one of the major network architectures currently used in MMOGs. 
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In the next section, in fact in this entire chapter, we analyze in detail only the adaptation 

engine component of the general architecture. We do not assume that it is trivial to implement 

the SHS or the communication between the SHS and the clients and server, but it is outside of 

the scope of this research. We focus mainly on proving that the implementation of a modular 

and efficient adaptation engine is feasible. 

6.2 Design and Implementation of the Adaptation Engine 

The adaptation engine is written in Java. Sorne of the data-gathering and processing tasks where 

handled by Perl and shell scripts, but they are not required components. In both languages, 

prototyping is easy. Java inherently offers object-oriented principles and supports most popular 

design patterns while Perl is superior for lower-level tasks such as parsing data in a particular 

format and reporting analyses do ne on output data from program executions. 

Most design concepts mentioned in this section, unless otherwise noted, were taken from 

[LGOl]. First, l will list the major modules and show the module dependency diagram. Then, 

for each module a list of the major components is presented, as well as any non-trivial program­

matical challenges faced in the implementation, algorithms used, and design patterns used. 

The engine relies on 2 packages provided externally: hexIT [Lan03] and Minueto [Den04]. 

hexIT is a Java package that provides an API for using and drawing 2D hexagonal grids. 

Minueto is a reasonably efficient gaming and graphies framework for Java which is intuitive to 

use. 

The major modules are: 

• Abstract Simulator 

• Plug-in Adaptation Systems 

• Abstract Fuzzy Controller 

• Abstract Grid API 

• Movement Modeling 

• Core Utilities and Data Structures 

• Conquero 

• Game Data Analyzer 
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Figure 6.2: The module dependency diagram of the implementation 

The dependencies between each module and approximate relative sizejsignificance of each 

module are given in Figure 6.2. 

Abstract Simulator 

The abstract simulator module has two major components: the simulation engine, and the 

Graphical User Interface (GUI). This module is the largest, most significant part of the entire 

implementation. It is essentially the construction ofthe pseudo-code in Equation 3.1 with many 

abstract helper functions. 

The GUI component is solely responsible for graphical representation of and user interaction 

wi'th the behavior of the simulations. It is composed of 3 sub-components: the Control Panel, 

Grid Panel, and Button Panel. The Control Panel allows the user to control the state of 

the simulator. The button panel provides buttons that allow the user to dynamically enable 

or disable features in the simulation. The grid panel shows the state of the grid during the 

simulation and allows the user to inspect and modify the values on the gr id dynamically. 

The engine component has no subcomponents. It provides the tools which are independent 

of the specifie adaptation scheme used, such as vector propagation and fuzzy fiow-updates. 

The component specifies an abstract simloop 0 method which must be overridden by subclass 

plug-ins. The plugins are adaptation systems which have access to the grid and implement 

a particular adaptation scheme, as defined in Chapter 4. By keeping this base component 

separate from the plugin systems, we allow it to be independently optimized. 

One non-trivial challenge was finding the correct set of thread synchronization constraints 

between the engine and the GUI: writing code free of non-deterministic behavior while keeping 

a certain level of performance. It was also hard to decide what should be part of the abstraction 
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and what part of the plugins. 

Plugin Adaptation Systems 

This module consists of 2 major components: the adaptive weather system and the adap­

tive reputation system. There is also a minor component called the aggregate system. Each 

component has a separate simulation loop that modifies the grid as detailed in Chapter 4. 

The plugin systems have a relatively straight-forward implementation. They each override 

the simloop 0 method specified by the abstract simulator, contain specifie code logic particular 

to the adaptation system while using as many generic concepts (shared methods from the base 

c1ass) as possible to encourage code reuse. 

The weather plugin defines 3 main grid-altering methods: moisturewind, gradDev, and 

rain. The first displaces moisture between cells based on the current wind vectors. The second 

bends the wind vectors towards the gradient vectors. The third displaces moisture directly 

based on the gradients. There are 2 extra functions that c1ear and apply the calculated mask 

(separate grid containing grid cell differences, see Section 3.2.1) to the current virtual terrain: 

cMask and aMask. Recall from Section 3.2.1 that masks are used to emulate fair simultaneous 

updates. 

The reputation plugin also has 3 main grid-altering methods: repEvent, agentBend, and 

repwind. The first method generates reputation events. The second method shapes the rep­

utation vector field based on the orientations of the agents. The third method spreads the 

reputation points based on the values of the reputation vector field. This plugin has similar 

mask functions. 

The generic adaptation concepts were conceived during the implementation of these plu­

gin systems. The most challenging part of implementation of these components was code 

maintenance. Throughout the course of the implementation, these components were the most 

actively-modified. The volatility of the code made it somewhat difficult to keep track of the 

current functionality. 

Abstract Fuzzy Controller 

The abstract fuzzy controller module is composed of a set of minor components for representing 

arbitrary fuzzy sets and generic tools for operating on these abstractly-defined sets. 

To define a particular fuzzy set, the implementor must extend the FuzzySet c1ass and 

override the membershipCObject) method. The operations provided inc1ude those required to 
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resolve a decision in a fuzzy control problem: conjunction, disjunction, negation, and centroid­

of-gravit y calculation. Once these fuzzy sets are defined, the implementor creates an instance 

of a FuzzyController, adds the conditions and consequences, and polls it for a decision. 

Abstract Grid API 

The abstract grid API module provides an interface to a grid whose layout and connectivity 

is abstractly defined. That is, it is an API for accessing grid sections and neighborhoods, 

computing distances between sections while hi ding the actual grid being used. There are 3 

main methods in an abstract grid: 

1** Returns a set of aIl sections on the grid. *1 
public Set getGridSections() 

1** Returns the set of aIl neighbors (of distance d away from gs) *1 
public Set getGridNeighbors(GridSection gs, double d) 

There are 2 major components that extend the abstract API: the RectangularGrid, and the 

HexGrid. The former is used to represent the virtual terrain as it is represented in Figure 3.5. 

The latter is used as the hexagonal representation demonstrated in Figure 4.7. 

Movement Modeling 

The movement modeling module is composed of 2 major components that work together side­

by-side: the movement model API, and the path modeler. The movement model API consists 

of an abstract base class, MovementModel, and 5 subclasses: one for each movement model 

described in Chapter 5. The three important methods in the base class are as follows: 

1** Returns the next point to be visit. *1 
public abstract Point getNextP(RepAgent a); 

1** Generate a number of agents that will move in this model. *1 
public void generateAgents(int num) 

1** Move the agents, given the currently specified time. *1 
public void move_agents(long time) 

74 



6.2. Design and Implementation of the Adaptation Engine 

Figure 6.3: An example conversion of a path model 

The last 2 methods have a generic implementation that is only overridden by the implementation 

of M Mexperiment because it must move the agents directly. Otherwise, the movement models 

use the generic implementation which chooses a path to take via the path modeler. 

The path modeler component is used to design a precise path for the agents to follow when 

they are traveling between specifie locations in the virtual terrain. The path modeler is another 

abstract API which encourages extensibility: the abstract base class PathModel allows for 

the implementation of arbitrary two-dimensional parametric curves. It contains 3 important 

methods: 

1** Construct a path model with given source and destination coordinates. *1 
public PathModel(int startx, int starty, int endx, int endy) 

1** Get the next point on the path at time t, 0 <= t <= 1 *1 
public Point val (double t) 

1** An arbitrarily varying continuous function on the normal Cartesian 

plane where val_y(O) = 0 and val_y(l) = O. *1 
public abstract double val_y(double t); 

The value returned by val (double t) is a point on the virtual terrain at time t assuming the 

agent takes a path from its start position to its end position governed by the function vaLy () . 

To get this value, a simple change of coordinate systems calculation using affine transformations 

is do ne (see Section 4.2.1). An example of a transformation is given in Figure 6.3. 

To emphasize the applicability of the API, several types of path models are implemented: 

parabolic, cubic, sinusoidal, quadric, generic polynomial, and composite paths. A PathChooser 

object is constructed which generates specifie paths needed by the agents. The PathChooser 
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object follows the factory design pattern. 

Core Utilities and Data Structures 

This module exists mainly to act as a central resource for providing generally use fuI objects, 

methods, and algorithms. It provides 6 major components: the Utils class, the Debug class, 

the discrete probability distribution class, the agent classes, the proximity graph data structure, 

and the decision tree data structure. 

The Utils class is a collection of static helper methods and also provides the central random 

number generator used by aIl other classes. This allows us to reproduce the exact outcome of 

an experiment by simply reusing random seeds. 

The debug class allows control of debug information to be printed and/or logged. The 

scheme prints no debug information by default (debug level 0) and prints messages who se 

detail depend on the debug level set by the programmer. This was particularly helpful when 

searching for the cause of erroneous behavior in the implementation. 

The discrete probability distribution class provided a means for non-uniform sampling from 

a set of predefined objects. The class allows the programmer to add items, each with given 

weights attached to them. Then, when drawing from the set, the probability of drawing an 

item is equal to its weight divided by the total of aIl the weights. 

The agent classes follow the linguistic relationship: GameAgent is a RepAgent is a SimpleAgent 

is an Agent. The first and basic description of an agent is an entity that has a current position 

and current velo city, implemented by Agent. When agents were used in more than one system, 

SimpleAgent was constructed which contained an extra parameter to specify to which system 

the agent belonged. A RepAgent is an agent that contains specific information relevant to 

the reputation experiment (ie. its reputation value) and GameAgents contain Conquero-specific 

information such as hit points, stamina, and current level. 

The proximity graph data structure is an implementation of a regular graph with each vertex 

having (x, y) coordinates in a two-dimensional space (in our case, the virtual terrain). A point 

in the terrain is represented by the Point object. In the Conquero experiment, this object is 

extended to City to represent a command center which has an extra size parameter value, the 

Graph class is extended to DirectedGraph. Finally, the Graph object supports special graph 

constructions. From just a set of points Graph. RNGize 0 will construct the graph as its relative 

neighbourhood graph. Similarly for Graph. MSTize 0 and its minimum spanning tree. 

The decision tree data structure is an implementation of a binary decision tree. The factory 

pattern is used again here because decision trees are only imported via files: they are never 

actually constructed by the programmer. This decision tree data structure is created by parsing 
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the output generated by the C4.5 software [Qui92]. This became a tricky task when large trees 

were split into collections of subtrees, because the software used does not represent the textual 

output of the full tree. The output of large trees are decomposed into many smaller subtrees 

while using annotations to indicate small subtrees. Each subtree is then listed separately. 

The algorithm used to overcome this problem is as follows: 

1. Collect all the lines of textual data and name for each subtree. 

2. Parse each tree individually possibly marking some nodes as degenerate subtree reference 

nodes, marking the name of the subtrees to which they should attach in the node. Add 

the map (name, tree) to a global hash. 

3. Recursively, traverse the base tree depth-first. When a subtree reference node is encoun­

tered, read the name marked on the node and retrieve the corresponding subtree. "Tie" 

the subtree to the main tree by replacing the degenerate node by the root of the subtree. 

Conquero 

Conquero has 3 major components: Minueto, the game client, and the authority server. Minueto 

is an external package that was used for its efficient graphics rendering. The game itself is 

entirely network-based. It uses a mix of 2 commonly used network protocols: UDP for situations 

where efficiency is critical, and TCP for situations where reliability is most critical. 

The client first connects (over TCP) to an authority server to validate its requested player 

name and IP address. If the IP address is new and the name is already taken by another player 

then the connection is rejected. If the name is a duplicate but the IP addresses is the same 

one that asked for that name, then the server assumed this is a reconnect and the connection 

is accepted. After the server receives the number of players required, the games starts and the 

main window spawns. 

Critical information such as hits, kills, captures, etc. is passed through the server and 

validated by TCP. The server is responsible for ensuring fairness and consistency by imple­

menting locking mechanisms to avoid concurrency problems. Non-critical position updates are 

sent via multicast UDP. All clients subscribe to the same multicast IP address and all move 

update packets are sent to that address. The result is intended to be a good use of the network 

protocols given their advantages and disadvantages. 

The authority server does 2 more things other than respond to TCP events. Before starting, 

it opens a Java runtime environment and runs a shell script which checks the amount of space 

left on the disk partition which used for logging. This ensures that agame experiment will not 
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fail due lack of disk space for recording game data. Secondly, it also acts as a non-graphical 

client. That is, it subscribes to the same multicast address that the clients are connected to 

and just logs the packets it receives as well as the Tep packets. 

A non-trivial part ofthe implementation was including dead-reckoning [SZ99]. To implement 

dead-reckoning, two important things needed to be considered: a dynamic counter and accurate 

synchronized time-stamping. Luckily, the environment used by the game-playing experiment 

had synchronized clocks using NTP [MiI85] and hence we assumed an accurate global clock. 

The dynamic counter consistently remeasured the rate of updates by averaging the number of 

updates it processed in the last fixed interval of time. This provides a window of historical 

data suitable for a simple dead-reckoning algorithm: to apply dead-reckoning, the client simply 

applies, in one step, a number of updates to the agent which was equal to the update rate 

multiplied by the difference between the current time and the timestamp. The resulting position 

is the extrapolated position given the agent's velo city and timestamp. If further updates are 

received which contradict any predicted positions, the positions are immediately changed to 

refiect the values by the new update, to ensure maximum consistency. Note that applying 

immediate correction is the simple st way of dealing with the inconsistencies introduced by 

dead-reckoning; researchers have proposed other means, such as Time Warp [MauOO] and linear 

convergence [SKH02]. 

Game Data Analyzer 

The game data analyzer module is itself a single component. It is independent of most of 

the other logic used in the implementation. It has one general function: to pro cess the data 

collected during the game-playing experiment described in Section 5.2. 

The data analyzer has 3 important analyses of the data: tafra-stats, tafra-shapes, and tafra­

data. The tofro-stats analysis processes an entire game log and computes overall statistics 

above the game log such as the ones found in Table 5.1. This analysis also outputs the data 

for the first classification problem explained in Section 5.3.1. The tofro-shapes analysis shows, 

graphically, the paths taken by the agents between command centers. The tofro-data analysis 

simulates the entire game from the game log for each agent. At every transition of command 

centers it also measures the values of the features described in Section 5.3.2 and outputs the 

data set for the second classification problem. 
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Name HOME HUMAN TOFU MAGIC 

CPUs 1 1 2 4 

CPU model Pentium IV AMD Athlon AMD Athlon AMD Opteron 

CPU bus width (bits) 32 32 32 64 

CPU speed (MHz) 1716 1250 1667 1794 

CPU cache size (kB) 256 256 256 1024 

Total Memory (kB) 515484 516216 2069368 3613560 

Operating System Debian2 Linux Debian2 Linux Debian2 Linux Gentoo Linux 

Kernel Version 2.6.5 2.4.26 2.4.20 2.6.7 

Table 6.1: Descriptions of the machines used to measure performance. 

6.3 Performance Measurements 

In this section, we will describe the test environments used for experiments that were run to 

measure the performance of various parts of the implementation. The testing environment 

includes specifications of hardware used to perform the tests, specification and layout of any 

input data/files that were commonly-used, and any relevant miscellaneous information. Then, 

each performance test is described individualIy. 

We begin with a descriptions of the environments used to run each test, summarized in 

Table 6.l. We will refer to these machines throughout the rest of the chapter. 

Existing altitude maps of geographical regions were used as input data for the weather 

simulations. The data was obtained using the DIVA-GIS software and information archive 

[RHG03]. The number of points in the data set was enormous. This was a problem because 

the simulations would span several hundred screens and so was not graphically representable. 

The data was reduced by summarizing large portions of the actual data by the average of the 

altitude values in the area, as as described in Section 4.l.l. 

The first such altitude map to be used was prk_al t. dat, a 48x40 altitude map of North 

Korea. The other altitude map is pak_al t. dat, a 63x51 altitude map of Pakistan. Larger 

versions are pak_al t2. dat (127x102), pak_alt3. dat (255x204), and pak_alt4. dat (1022x817). 

The reputation simulations load settings from a configuration file called the repfile. Each 

repfile contains the number of agents, the graph, the probability of causing events, vertex sizes, 

etc. The probability that an event occurs on a given timestep is prEY. The probability that oc­

curred events are good is prEvGood, otherwise they are bad. AlI reputation simulations use prEY 

= 0.001 and prEvGood = 0.7. These numbers were chosen arbitrarily. The test_rep3 repfile 

2Debian Sarge on HOME and HUMAN, Debian Woody on TOFU. 
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Wtr+GUI Wtr+NOGUI Wtr GUI Rep+GUI Rep+NOGUI Rep GUI 

Overhead Overhead 

HOME 120.072 76.92 35.94% 40.17 9.92 75.3% 

HUMAN 71.88 45.23 37.1% 18.46 7.43 59.75% 

Averages 36.52 % 67.53 % 

Table 6.2: Data obtained by running performance tests on the graphical interface 

uses 20 agents, a random clique graph with 20 vertices of maximum size 12, and a virtual terrain 

of 700x700 pixels (50x50 grid celIs). test_rep3-2 doubles those values: ie. 40 agents, a random 

clique graph with 40 vertices of maximum size 24 and a virtual terrain of 1400x1400 (100x100). 

Similarly, test_rep3-3 doubles the values of test_rep3-2 and test_rep3-4 quadruples the 

values of test_rep3. 

AlI performance tests were done on code compiled by Sun's Java 1.5 compiler and run using 

Sun's Java 1.5 interpreter. AlI performance tests used the same random seed (= 290423987). 

GUI Overhead 

The purpose of this test is to measure the average overhead added by the GUI. TOFU and 

MAGIC are server machines only accessible via network, and were therefore not used for this 

test. This fact is important to know, especially since the machines presented below are more 

similar than the server machines. The GUI overhead presented here might be much larger 

than what would be observed on more powerful machines. The test runs for 10000 iterations 

in the weather simulator with altitude map pak_al t . dat and reputation simulator with repfile 

test_rep3. 

The results of the tests are listed in Table 6.2. Based on the observed overheads, it is clearly 

inappropriate to do server-side experimenting with the interface enabled. Thus, subsequent 

tests do not include the interface components. The interface remains a tool mainly intended 

for visually observing the effects of the adaptation pro cess. 

Weather Simulations 

The purpose of this test is to measure the general performance of the weather simulations. The 

weather simulation is run for 10000 iterations on all 4 machines, first on pak_al t. Tests on the 

larger maps pak_al t2, pak_al t3 are then run to get a sense of how well the algorithm seales. 

The results of the tests are listed in Table 6.3. 

Note that average times are calculated over only four and entirely different machines: this 
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is intentional. We would like to summarize the results as to express them in the most general 

context possible. That is, while the results per machine are still shown for the most part, we 

rely on the average to give a good generic estimate for the results independent of the hardware 

used. 

If we assume that the time taken per iteration per grid section is constant, then we expect 

that the total time taken in one iteration to be a linear function of the number of grid sections. 

That is f(G) = ki + k2 • IGI. Using 3 maps, we get 3 equations: 

43.244 = ki + (63 . 51)k2 (6.1) 

177.564 = ki + (127 . 102)k2 (6.2) 

692.77 = ki + (255· 204)k2 (6.3) 

Solving the system of linear equations 6.1 & 6.2 gives (kl , k2) = (-1.06,0.013789). Similarly, 

solving the system 6.2 & 6.3 gives (kl , k2) = (6.73,0.0131881). So, it seems that constant 

overhead is lost going from maps palcal t . dat to pak_al t whereas overhead is added in the case 

of going from maps pak_al t2 to pak_al t3. This could be due to thresholds of memory and cache 

being crossed in the second transition, but unfortunately we do not have any memory usage 

data to justify this. It is still reassuring that the constants k2 are approximately equal (error 

of approximately 6.01 x 10-4) reinforcing the belief that the performance of the computation 

grows linearly. 

Tornadoes 

The tornado effect is an optional effect included in the weather system. On HOME using 

pak_al t . dat after 10000 iterations the tornado calculations took on average 1.0389 ms. The 

tests were repeated on HUMAN, TOFU, and MAGIC and the results were, respectively: 1.268, 

1.188, and 1.185. This gives an average time of 1.17 msjiteration. If this co st was added to the 

current simulations, then it would take 43.2~4~1.17 = 2.6% of the current total time per iteration. 

It is interesting that complex weather effects such as simple tornado simulations do not add 

significantly to the overall cost. 

Reputation Simulations 

The purpose of this test is to measure the general performance of the reputation simulations. 

The weather simulation is run for 10000 simulations on a1l4 machines, first on repfile test_rep3. 
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Map Machine t/iter t[cMask] t[aMask] t[moisturewind] t[gradDev] t[rain] 

1 HOME 65.734 0.044 6.32 14.89 38.60 5.88 

1 HUMAN 45.226 0.046 4.89 9.72 27.75 2.82 

1 TOFU 30.137 0.017 3.35 5.48 19.63 1.66 

1 MAGIC 31.879 0.009 2.26 7.68 16.88 5.05 

1 (averages) 43.244 0.029 4.21 9.44 25.72 3.85 

1 (proportions) - 0.07% 9.7% 21.8% 59.5% 8.9% 

2 HOME 261.312 0.177 27.54 59.73 151.26 22.61 

2 HUMAN 182.775 0.275 20.45 38.82 112.07 11.16 

2 TOFU 138.446 0.116 14.35 28.88 84.28 10.82 

2 MAGIC 127.724 0.040 9.21 30.14 68.30 20.034 

2 (averages) 177.564 0.152 17.89 39.39 103.98 16.16 

2 (proportions) - 0.09% 10.1% 22.2% 58.6% 9.1% 

3 HOME 1021.33 0.81 93.81 237.30 599.04 90.37 

3 HUMAN 721.029 1.149 79.77 153.4 441.99 44.72 

3 TOFU 527.22 0.71 54.24 119.60 338.48 44.19 

3 MAGIC 501.498 0.238 36.82 119.30 267.28 77.86 

3 (averages) 692.77 0.727 66.16 157.4 411.7 64.3 

3 (proportions) - 0.1% 9.55% 22.72% 59.43% 9.28% 

Table 6.3: Results of the performance measurements on the weather simulations. Alllisted times are 

in milliseconds (10-3 seconds), and maps used are pak_alt# . 
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Map Machine t/iter t[cMask] t[aMask] t[MM] t[repwind] t[aBend] t[repEv] 

1 HOME 9.747 0.304 0.686 0.162 8.351 0.196 0.464 

1 HUMAN 7.433 0.405 0.883 0.116 5.872 0.139 0.18 

1 TOFU 4.677 0.181 0.916 0.1 3.386 0.82 0.012 

1 MAGIC 5.477 0.088 0.254 0.061 4.966 0.074 0.034 

1 (averages) 6.834 0.245 0.457 0.11 5.644 0.31 0.173 

1 (proportions) - 3.6% 6.68% 1.6% 82.6% 4.5% 2.5% 

2 HOME 43.864 2.241 2.592 0.315 37.985 0.636 0.093 

2 HUMAN 38.3 3.2 3.684 0.235 30.523 0.616 0.045 

2 TOFU 18.31 0.728 3.88 0.205 13.292 0.17 0.038 

2 MAGIC 23.23 0.335 2.05 0.138 20.492 0.149 0.061 

2 (averages) 30.93 1.626 3.05 0.223 25.6 0.393 0.06 

2 (proportions) - 5.26% 9.87% 0.7% 82.7% 1.27% 0.2% 

3 HOME 158.588 7.366 10.115 0.94 138.75 1.235 0.176 

3 HUMAN 134.06 10.184 14.695 0.737 107.271 1.077 0.96 

3 TOFU 75.857 3.088 15.59 0.567 56.12 0.416 0.076 

3 MAGIC 89.95 1.447 7.69 0.417 79.93 0.325 0.14 

3 (averages) 114.6 5.52 12.02 0.665 95.52 0.63 0.34 

3 (proportions) - 4.82% 10.5% 0.6% 83.35% 0.55% 0.3% 

4 TOFU 1705.474 164.59 246.366 32.767 1257.501 3.954 0.295 

4 MAGIC 1498.64 25.895 153.584 27.26 1289.595 1.751 0.554 

Table 6.4: Results of the performance measurements on the reputation simulations. AU listed times 

are in milliseconds (10-3 seconds), and repfiles used are test...rep3-# . 

Then the test is rerun on the larger field in test_rep3-2, test_rep3-3 and test_rep3-4. The 

movement model used in these simulations was M Mrandom' The results of the tests are listed 

in Table 6.4. 

Performing calculations analogous to the ones performed in the weather simulations, we ob­

serve values (k I , k2 ) = (27.7172,0.00032128) from repfile test_rep3. txt to test_rep3-2. txt 

and (k I , k2 ) = (3.04,0.002789) from repfile test_rep3-2 to test_rep3-3. This is rather unex­

pected for two reasons. Firstly, the overhead is less in the second case. Secondly, the constant 

k2 differs by an or der of magnitude, implying either irregularities in the observations or a non­

linear relationship. However, since the values are so small, it is likely that the inaccuracy of 

the observed readings are playing a role in the discrepancy. 
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Machine t[M Mrandom] t[M Msimple] t[ M Mchooser] t[M Mexperiment] t [M Mlearned] 

HOME 0.174 0.156 0.201 0.458 1.817 

HUMAN 0.122 0.102 0.154 0.444 1.765 

TOFU 0.122 0.094 0.13 0.228 1.111 

MAGIC 0.067 0.058 0.094 0.167 0.515 

(averages) 0.121 0.103 0.145 0.324 1.302 

(proportions3 ) 0.3% 1.12% 1.56% 3.41% 12.44% 

Table 6.5: Results of the performance measurements on the different movement models in the rep­

utation simulations. AlI listed times are in milliseconds (10-3 seconds), and the repfile used was 

testJep3. 

Movement Models 

The movement model is an optional effect included in the reputation system. The processing 

time taken up by the movement models was measured on each system listed and gave the 

following averages: 0.121ms for MMrandom, 0.103ms for MMsimple, 0.145ms for MMchoosen 

0.324ms for M Mexperiment, and 1.302ms for M Mlearned' Note that in M Mexperiment, the moves 

are drawn directly from large input files and not sim ply generated as the rest. 

The tests on repfile test_rep6. txt were run for 10000 iterations using M Mrandom' test_rep6. txt 

is a repfile recreation of the terrain and graph used in the Conquero game-playing experiment. 

This test was repeated on each machine but using different movement models. The results for 

the movement models are summarized by Table 6.5. 

As expected, the learned model takes the longest because it calculates the value of 232 

features based on the current state, pass these through a decision tree, and then make a decision. 

The random and simple models are low because they do not do any processing of the current 

state. The chooser model only slightly less efficient than the simple model, which is encouraging 

considering it is calculating the value of 3 heuristics and passing through a decision tree. The 

inefficiency of the experiment model is due to the fact that it is reading its moves from a large 

(83M) log file. 

3 0 f total average time taken per iteration taken from Table 6.4 
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6.4 Optimizations 

In this section, we will describe optimizations designed to improve the performance of the 

implementation. Each optimization will then be evaluated by re-running tests with the opti­

mization enabled and compared to the values obtained in the previous section. First, min or 

optimizations are suggested. Then the larger, more significant optimizations are described in 

their own subsections. 

One simple optimization is to use tabular look-up approximations for trigonometric functions 

sine and cosine. The optimization upon startup inserts the values of sine and co sine in a table 

for 1000 . 271" values (0.000 . 271" to 1.000 . 271"). In fact, only one table need be stored since 

cos(x) = sin (x + ~). Larger angles are mapped by repeatedly adding or subtracting 271" until 

the angle is in the desired interval. Then, the true values are linearly extrapolated between the 

two approximate values contained in the lookup tables. 

The first weather simulations we rerun using this optimization. An improvement was ex­

pected, especially since the weather simulations use trigonometric functions more than the 

other two systems. The observed average times per iteration are: 63.667 ms, 43.93 ms, 37.116 

ms, and 31.142. This gives an average of value of 43.964 ms, slightly (1.7%) higher than the 

unoptimized result. Therefore, it is clear that Java must be doing something efficient in their 

Math class to save on execution time. 

6.4.1 Caching 

Caching is a common optimization technique used throughout Computer Science. The general 

idea is to remember a value once it is calculated so that future calculations need only read the 

cached value rather than recompute the value repeatedly. Note that caching really just trades 

space (memory) for time (performance). It is usually the case that the trade-off is worth doing 

when the programmer expects a given calculation to be repeatedly calculated. 

There is one obvious application of caching in the weather system: gradient-caching. The 

gradient need not be re-calculated unless it changes. In fact, this is a general optimization 

technique that can be applied to an environment-based adaptation schemes since the influence 

of the adaptation is based on the environment which we expect to change little. However, this 

optimization does add a bit of programmatical complexity. This is because the programmer is 

forced to take care of the special case of when the gradient vectors change. 

To measure the value of this optimization, the first set of weather simulations were once 

again rerun. The average times per iteration observed is: 55.87, 36.53 ms, 25.86 ms, and 28.81 

ms. This gives an average of 36.77 ms per iteration, corresponding to a 15% improvement. This 
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is an encouraging, significant result. 

6.4.2 Concurrency 

A natural optimization for computations on discrete gr id cells is parallelization. In our case, we 

do not have access to powerful parallel machines, but we can emulate the idea of parallelization 

through software and hardware using concurrency and multiple processors. 

A multi-threaded version of the weather simulation loop is implemented. The multi-threaded 

version simply partitions the grid into independent portions, and assigns the responsibility of 

carrying out the calculations for that portion to each thread independently of the other threads. 

At every iteration, the threads perform the grid-base calculations concurrently and then wait 

while a central thread applies global duties such as clearing and applying the mask. 

The threads were synchronized by using a typical n-process barrier mechanism, where n E 

{1, 2, 3, 4}. The synchronization code is outlined in Figure 6.4. Two counting semaphores and 

2 boolean condition variables were used in the n worker threads and single main thread. The 

workers performed the adaptation procedures on the a section of the gr id while the main thread 

performed the global procedure and thread management. One important note is that Java's 

built-in concurrency features such as monitors and object locks were used. 

The purpose here is to find a partition of the terrain that is intuitive, easy to compute, and 

splits the region into subregions of equal area. If 2 (or 3) threads were invoked, then the terrain 

was split into 2 (or 3) rectangular regions by taking the longe st side and finding the midpoint 

(or the one third and two third points) and then using the perpendicular bisector of the edge 

at that point as a new boundary between split regions. The 4-thread version split the region 

into 4 quadrants similarly, but uses the midpoints of each si de inside of just the longest side. 

The weather tests were rerun on the multi-processor machines TOFU and MAGIC. In this 

case, all the tests were rerun so that the effect of larger maps on the concurrent implementation 

could be found. The results of the simulations are listed in Table 6.6. 

There are sorne comments to make on these observations. Firstly, it seems odd that dual­

processor (TOFU) performs better than quad-processor (MAGIC) when using 4 threads on 2 

out ofthe 3 maps. From Table 6.1, we notice that the speeds ofthe processors are approximately 

equal, and that MAGIC has twice the amount of memory that TOFU has. Therefore, it seems 

likely that the different major versions of the Linux kernel (2.6.x vs 2.4.x) could be the culprit. 

It would be interesting to investigate this further. 

4compared to the single-thread version. 
5the value of t.inglethread or sim ply proportion- 1 

trnultithread 
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Il parform vork ... 

synchronizad(WT.objl) { 

WT . countl ++ ; 

} 

if (Wl' .countl-·WT. threads) 

WT. obj 1. DotifyAllO; 

while OWT.flagl) 

try ( Wl'.objl.wait(); } 

catcb(Exception le) {} 

synchronizad(WT.obj2) { 

WT .count2++; 

} 

if (Wl' .count2-WT. threads) 

WT. obj2. ootifyAllO; 

vhile OWT.fla.g2) 

try ( Wl'.obj2.wait(); } 

catcb(Exception ie) {) 

Il loop back 

Worker Threads 

Il start iteration 

synchronized(WT.objl) { 
Il workers work. 

while(WT.countll-threads) 
try {WT.objl.wait(); } 

catch(Exception ie) {} 
} 

Il do post-work seq. camp 

synchronized(WT.obj2) { 

} 

synchronized(WT.objl) { 
WT. count 1 .. 0; 
WT.flagl ... true; 

WT.flag2 - false; 
WT.objl.notifyAll(); 

} 

while (WT.count21-threads) 
try { WT.obj2.Wait(); } 

catch(Exception ie) {} 

WT. count2 .. 0; 

WT.flagl - false; 
WT .flag2 .. true; 

WT .obj2.notifyAllO; 

/1 loop back 

Main Thread 

Figure 6.4: Java code for thread synchronization in the concurrent weather simulation 
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Map Machine # ofthreads t/iter Improvement4 Proportion4 Speed-up5 

1 TOFU 2 18.94 11.197 63% 1.59 

1 TOFU 3 14.76 15.377 49% 2.042 

1 TOFU 4 12.37 17.767 41% 2.4363 

1 MAGIC 2 19.964 11.92 63% 1.597 

1 MAGIC 3 17.462 14.417 55% 1.826 

1 MAGIC 4 16.9 14.979 53% 1.89 

2 TOFU 2 79.623 58.823 58% 1.74 

2 TOFU 3 62.706 75.74 45% 2.21 

2 TOFU 4 55.175 83.271 40% 2.51 

2 MAGIC 2 83.027 43.973 65% 1.54 

2 MAGIC 3 72.803 54.921 57% 1.7544 

2 MAGIC 4 66.53 61.194 52% 1.92 

3 TOFU 2 315.843 211.377 60% 1.67 

3 TOFU 3 316.693 210.527 60% 1.665 

3 TOFU 4 332.908 194.312 63% 1.584 

4 MAGIC 2 325.13 176.368 65% 1.54 

4 MAGIC 3 273.93 227.568 55% 1.83 

4 MAGIC 4 271.09 230.408 54% 1.85 

Table 6.6: Results of the concurrent weather simulation tests. AH listed times are in milliseconds 

(10-3 seconds), and the altitude maps used were pak_alt#. 
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Secondly, when running the weather simulation test on pak_al t3 . dat adding threads on 

TOFU seems to slow down the pro cess instead of speed it up, but this does not happen on 

MAGIC. This implies that TOFU has reached sorne kind of threshold: either concurrent mem­

ory access is slowed down due to the fact that there is a lot of information being stored in 

memory and the cache memory becomes filled too quickly, or the amount of memory is too 

much to ho Id in RAM so virtual memory is used in which case a lot of overhead is added for 

swapping information in and out from secondary memory. 

We now use these observed values to approximate how much of the weather simulation 

computation is due to sequential (single-threaded) computation versus parallel (multi-threaded) 

computation. As a tool to help us measure the influence of these two separate values, we use 

Amdahl's Law [Amd67]: 
1 

speedup = ( ) Tl 

1-p + ~ 
(6.4) 

where speedup is the best possible attained speedup, p is the proportion of time spent in the 

parallel part of the program, n is the number of processors, s is the proportion of time spent 

in the sequential part of the program, and s + p = 1. 

Using 2.51 as the best speedup attained on 2 processors, we get p = 1.2032. There are 

other instances for which TOFU beats its theoretical maximum: both when using more than 

2 threads on the first 2 maps. This means that on TOFU we are experiencing superlinear 

speedup [HM89]; it is sometimes when multiple CPUs are used and is typically due to the 

effects of processor caches. In these cases, so we cannot use these exceptional cases to find the 

values we are interested in. 

In the case of the third map, the max speedup obtained by TOFU is 1.67. In this case, we 

obtain (p, s) = (0.8,0.2). The same calculations are repeated for MAGIC in a1l3 cases and the 

values obtained are: p = 0.63, p = 0.64, and p = 0.613. This gives an average of j5 = 0.67 and 

s = 0.33. Therefore, roughly one third of the time in the concurrent implementation is spent 

doing sequential computation. 

6.4.3 Buffering 

The buffering technique proposed here is similar to the double-buffering [FvDFH95] technique 

that has been widely-applied in the domain of Computer Graphies. The core concept involves 

holding two objects (buffers) in memory: a scrap buffer and a display buffer. The application 

works on the scrap buffer while displaying the display buffer to the user. When the application 

has done the work it needs, the roles of the 2 buffers are interchanged. Typically, switching 

the roles of these 2 buffers is a very efficient pro cess , more efficient than working on the same 
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buffer that is being displayed. As a result, a performance improvement is generally observed. 

Here, a similar strategy is used. There are 2 buffers: one called the write buffer and the 

other called the read buffer. The write buffer is never displayed, only modified. The read buffer 

displayed and inspected by the main algorithms. Both buffers hold a single independent grid. 

InitiaIly, the two buffers are created and are identical. Each iteration, the algorithms inspect 

the read buffer and calculate aIl changed needed to be done, but instead apply the changes to 

the write buffer directly instead of temporarily storing the values in a mask and applying the 

mask later. Before the next iteration begins, the roles of the two buffers are switched so that 

the read buffer then contains the grid with recently-modified values. 

When the simulations enable buffering, the methods that modify the values of the state 

do so directly to the write buffer. Therefore, Buffering effectively aIlows the removal of the 

applyMask and clearMask functions and so should have an effect on the performance. 

The obtained results for average time per iteration on the weather simulations were 69.96ms, 

47.72ms, 33.32ms, 32.01ms, giving an average of 45.75 msjiteration. The time taken per iter­

ation including buffering takes 2.5ms longer. These results clearly conclude that the memory 

requirements added to help gain performance have slowed down the implementation enough to 

make the optimization not worth including. 

6.4.4 Aggregation 

Two major application systems have been implemented (weather and reputation) that are 

somewhat similar in that they are based on the the same iterative adaptation scheme and data 

representation (grid layout). The performance of each individu al system has been measured 

independently and in several different environments. As weIl, aIl optimizations have focused 

on improving performance of an individual system or part of a system. AlI performance com­

parisons have been done on the previous recorded results of the simulations runs using those 

systems. 

A simple optimization is proposed to combine the simulations to create an aggregate sim­

ulation which uses the same gr id and a merged simulation loop which uses algorithms from 

both systems separately but on a shared grid. Since the plugin-systems have a simple interface, 

integrating many of them in a single simulation engine is quite easy. The interface for each al­

gorithm in a plugin-system is just a method that takes the coordinate positions to be updated 

and performs the computation. AlI that is required by the aggregate simulator is to create 

an object of the plugin-system's type, and to include invocations of the required algorithms 

provided by the plugin-system on the plugin object. 
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Once again simulations were run and performance data collected from them. Map 1 was 

used for weather and test_rep3. txt for reputation. The average time per iteration on the 4 

different machines was: 72. 94ms, 53.18ms, 35.08ms, and 31. 17ms. The average value is 48.08 

msjiteration. The sum of the averages that were do ne independently is 43.244+6.834 = 50.078. 

This corresponds roughly to a 4% improvement. 

The improvement offered by aggregating the two systems is rather small, but not negligible. 

This might be due to the fact that we are only combining the iterative pro cess and the grid 

not the actual data nor the procedures themselves. Combining the data and procedures would 

be removing in part from the usefulness of the plug-in abstraction. In a commercial game, 

sharing a gr id between multiple systems is a must. This aggregate model proves that multiple 

adaptation schemes can easily be contained in the same virtual environment. 

We introduced this chapter with an explanation and demonstration of the integration of 

the general adaptation scheme into the context of modern persistent-state computer games. 

Adaptation of weather and reputation are examples of adaptation schemes that we might find 

in such games. The integration of adaptation in the software design sense gives a practical 

justification for the usefulness of these schemes. 

The basic structure of the plug-in systems and logical control fiow were described in Chap­

ter 4. Here, we extended these ideas by a thoroughly detailed breakdown of the actual im­

plementation of the simulator. Since the implementation is modular, creating new modules is 

straight-forward. 

Performance was measured by running the simulator and tracking the times spent in certain 

methods. The two major systems' performances were analyzed in detail on several different 

testing environments. The average was used to reduce and local error or bias cause by a 

particular testing environment. 

Several optimizations were proposed. The simulations were rerun with these optimization 

enabled so as to allow us to quantify the value of an optimization. Some of the optimizations 

failed (enabling the optimization lead to slower simulations) and some succeeded. In particular, 

concurrency and caching seemed to help out a lot (45% and 15% improvement repsectively) and 

system aggregation helps out a small amount (4%). Buffering and simple tabular trigonometric 

functions proved to be not worthwhile. 

The implementation here is generic enough that any plug-in system could literally be 

dropped in to the framework and used. To summarize, the adaptation framework used here is 

versatile, robust, and extendible. 
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Chapter 7 

Conclusions and Future Work 

In this thesis, we described a generic adaptation scheme for modeling and designing adaptive 

virtual environments in persistent-state computer games. Our adaptation model is composed of 

sever al familiar computational formalisms such as data flow and cellular automata. The model 

implicitly provides the notion of locality for large-scale environments. 

The model enforces a discrete timeline upon which the iterative update cycle is built. This 

update cycle defines a generic adaption pro cess because it contains a list of abstractly-defined 

adaptation procedures. This procedural abstraction allows for specifie functional adaptation al­

gorithms to be separately implemented and maintained. Specifie adaptive virtual environments 

are sim ply defined by the cellular properties and adaptation algorithms. The simulator can be 

used to test each adaptive virtual environment completely independently. Merging adaptive 

virtual environments in one aggregate adaptive virtual environment is as simple as including 

all the specifie procedures in the list to be run by the update cycle. 

The model described is generic and intuitive. It is meant to be used by game designers 

who are interested in building an adaptive virtual environment in their game. Two adaptation 

systems are explained in detail, which serve as stepping stones for a designer who would like to 

model his/her own different adaptive virtual environment. 

The two example systems use sorne generic adaptation concepts that would likely be re­

used in future systems as weIl. Local averaging helps distribute the impact of sharp changes 

to surrounding neighbors. Using flow as a means for quantified information dispersal is also 

a good way to spread the influence of events to surrounding neighbors. Both were used and 

demonstrated to work in the example systems. 

The entities inside of a virtual environment are really what makes the environment react 

since entities are allowed to interact in the system. The evolution of the adaptive virtual 

environment is then non-deterministic because the entities here will be mostly player characters. 
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The interaction with an adaptive environment adds a significant importance to the player 

characters' actions because they can cause an event that can change the environment forever. 

As such, this encourages a real history of the world to develop over time, and players to be part 

of a dynamic, realistic world. 

As an extension to agent-based adaptation, movement models for mobile agents in game 

environment simulations were investigated. The aim was to build a probabilistic model for 

agent movement behavior. SpecificaIly, a multi-player network computer game was designed 

for a game-playing experiment which collected data to analyze. 

The game, called Conquero, involved short range combat and team capture of command 

centers. Simple heuristics for movement information were proposed solely based on size of 

the next command center and distance from the next command center. The values of the 

heuristics were placed into a classification system to see if they were sufficient for deciding 

which command center to visit next. The heuristics were extended to include many other kinds 

of data prominent in Conquero, such as data that is dynamic, like properties of other agents. 

Dynamic agents were built by providing the agents with decision trees that were learned from 

the dynamic features. Since the computation of these dynamic features was very efficient, 

incorporating learning features based on decision-tree classification is likely feasible. In the 

context of Conquero, five movement models were described after analyses were performed. 

The movement models proposed were re-applied to the reputation system to see what kind of 

reputation fields they would give. Using the same seed for the central random number generator, 

the 5 models produced quite different results. This was a surprising result but nonetheless was 

confirmed the data in by Figure 5.4 and Table 5.4. 

The performance of the movement models was generally quite good. In particular, the 

decision-tree learning method seems to be computationally efficient and serves as a structure for 

agent decision-making quite weIl. However, domain-specifie heuristics are required to transform 

observed sensory data into something meaningful, implying that sorne form of knowledge will 

have to be pre-programmed even into learning agents. 

FinaIly, we have shown that the use of the adaptation scheme is feasible and suggested an 

architecture for applying the pro cess in modern computer game projects. We have showed that 

aIl the concepts given fit easily into the object-oriented paradigm, allowing for modular design, 

code reuse, and easy future modification. 

Both the efficiency and performance of the simulations are encouraging. Even in the worse 

case scenario, the iterations never took longer than 1 second in total. Considering that adap­

tation is a long-term effect, this level of performance is acceptable. We have further give 
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experimental evidence of the effect of sorne simple optimizations. In fact, sorne of the perfor­

mance improvements are impressive and encouraging. Other than the caching of the gradient, 

the optimizations were independent of the application system. 

After all is considered, it seems that adaptive virtual environments are interesting to study 

and would add an entertaining new element to a game-player's experience. It remains to be 

se en if players themselves would enjoy playing their character in such environments. We suspect 

this new feature would be enjoyable for the most part, since it has been proven in the game 

development industry that players enjoy new content. We are hoping, if not expecting, to see 

soon adaptive virtual environments in commercial persistent-state games. 

7.1 Future Work 

There is a good amount of potential for future work on adaptive virtual environments. We will 

list the most interesting here and describe each briefiy. 

Improved Adaptation Systems 

The two systems proposed in Chapter 4 are quite basic. For instance, the weather system is 

missing sorne key elements for it to be realistic, such as temperature, evaporation, growth of 

vegetation, atmospheric pressure and so on. Implementing sorne of the weather events suggested 

in the chapter on these applications, such as tsunamis, earthquakes, fioods, etc. would also be 

another way of improving the existing implementation. However, adding such features would 

also add complexity and cost. 

In the reputation system, it would be nice to implement support for the reputation groups 

and membership values. A movement model is needed better than the random one supplied. 

Ultimately, the movement model should correspond to real movements of players in persistent­

state games. 

Other Adaptation Applications 

We proposed and analyzed two adaptation applications that could be applied in modern games. 

There are, of course, many other possibilities for applying adaptation in computer games. 

One rather obvious application is an adaptive economy. An adaptive economy based on 

supply and demand could be implemented by fiowing information and resource availability 

through the grid. Values of items would adapt over time and location, which would change 
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the priees of items sold by vendors. Events in this system could be inflation, theft, or sudden 

lossl gain of resourees. For example, a forest fire causes a drop in wood supply. 

It would also be beneficial if social aspects of environments such as law, politics, etc. could 

be quantified. For example, one could envision an adaptive law enforeement system. Crime 

would be a measurable scalar property. The amount of law enforcement per region would also 

be a scalar property that would adapt to the crime rate of the region. As a result, in the long 

run more law enforeers would surround the areas with higher crime, causing the crime rate to 

go back down. 

Grid Partitioning 

ln large-scale environments, the virtual environment terrains might not be rectangular. Most 

of these games in fact are using the notion of "zones," arbitrary but strict partitions of sorne 

larger world. These often correspond to management by separate servers, and so there can 

be significant inter-zone communication costs. Arbitrary decomposition into zones can also of 

course produee an overall world shape that may not easily map to a regular grid. 

Zones, however, are still typically quite large and can contain up to 1000 characters. This 

may make it reasonable to adapt zones separately, perhaps with a relaxed consistency model 

between zone borders. 

Integration of Adaptation Architecture in a Large Persistent-state Computer Game 

ln Chapter 6, the implementation of the adaptation engine part of the entire adaptation archi­

tecture was shown in detail. The simulators show the adaptation engine running the adaptation 

proeess on the example systems. However, the state history server was not implemented and 

remains a future project. 

Ideally, an existing game project that is somewhat well-known could be modified so that 

it would sim ply dump information to the state history server and aceept modifications from 

the state history server. This server would be responsible for collecting data and storing it 

in an efficient way, communicating with the adaptation server, and assigning changes back to 

the game servers and/or clients. The important part of this future consideration is to have a 

sufficiently large player base for the game. 
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The Conquero Experiment, Revisited 

Due to resource constraints, Conquero was intended to be an approximate microscopie version 

of the events that happened over longer periods of time in a larger persistent-state multi­

player game. However, the game is small, simple and dynamie. As well, its overhead view 

allows players to see the entire state of the game at all times. It forces players to remain near 

command centers instead of accurately modeling behavior based on player interest. Movement 

models could also be improved. 

An interesting venture would be to recreate the Conquero experiment using an existing 

multi-player game, or even better an existing persistent state game. The benefits of this would 

be that the data would refiect the actual constraints of a more representative game interface. 

A Generic Model for Adaptive Agents 

The movement modellearning done in Chapter 5 could also be applied to agents online, during 

the game. The decision tree construction was computationally efficient, and so this makes it 

possible to implement a movement model where the decision tree is built and used incremen­

tally and dynamically. In fact, we need not restrict the learning agents to decisions based on 

movement. Agents could collect a set of data via predefined sensors, calculate the value of 

predefined heuristic functions, build a classification problem, solve it, and then use the solution 

to make a decision from a set of predefined actions. The adaptation pro cess here would be to 

simply recreate the decision tree every so often as to keep it up-to-date from new observations. 
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Appendix A 

learned Decision Tree 

The following is a text representation of the decision tree learned from the second classifi­

cation problem described in Chapter 5: 

C4h3 <= 4. 36315E-5 : 
oldCity = 1.0 : 14 (0.0) 
oldCity != 1.0 : 

oldCity = 2.0 : 14 (0.0) 
oldCity != 2.0 : 
1 oldCity = 3.0 : 14 (0.0) 
1 oldCity != 3.0 : 
1 1 oldCity = 4.0 : 14 (0.0) 

1 oldCity 1- 4.0 : 
1 oldCity = 6.0 : 14 (0.0) 
1 oldCity 1- 6.0 : 
1 oldCity = 19.0 : 14 (0.0) 
1 oldCity 1= 19.0 : 
1 oldCity = 20.0 : 14 (0.0) 
1 oldCity 1- 20.0 : 
1 oldCity - 21.0 : 14 (0.0) 
1 oldCity ! - 21. 0 : 
1 oldCity - 22.0 : 14 (0.0) 
1 oldCity !- 22.0 : 
1 1 oldCity - 23.0 : 14 (0.0) 
1 1 oldCity != 23.0 : 
1 1 oldCity = 24.0 : 14 (0.0) 
1 1 oldCity 1- 24.0 : 
1 1 oldCity - 6.0 : 
1 1 1 C18nop > 23.0 : 7 (3.0) 
1 1 1 C18nop !> 23.0 : 
1 1 1 1 Cllnte > 3.0 : 8 (3.0) 
1 1 1 1 Cllnte 1> 3.0 : 
1 1 1 1 1 Cl0nop > 23.0 : 8 (3.0) 

1 1 1 1 Cl0nop 1> 23.0 : 
1 1 1 1 C14nop <= 24.0 : 

1 1 1 1 C16nop > 0.0 : 8 (2.0) 
1 1 1 1 C16nop ! > 0.0 : 

1 1 1 1 mopx <- 699.231 : 
1 1 1 1 1 C13nop > 24.0 : 8 (2.0) 

1 1 1 1 C13nop !> 24.0 : 
1 1 1 1 vy <= -0.011 : 
1 1 1 1 1 mopx <= 668.923 : 8 (4.0) 
1 1 1 1 1 mopx !<= 668.923 : 16 (2.0) 
1 1 1 1 vy 1<- -0.011 : 
1 1 1 1 1 eto <- 7.0 : 16 (14.0) 
1IIIIetol<=7.0: 
1 1 1 1 1 1 C17dist <= 366.121 : 11 (2.0) 
1 1 1 1 1 1 C17dist !<= 365.121 : 15 (3.0) 
1 1 mopx !<- 699.231 : 
1 1 1 mopx <- 736.87 : 13 (2.0) 
1 1 1 mopx !<- 736.87 : 8 (2.0) 
1 14nop !<= 24.0 : 
1 1 mopx <= 668.923 : 10 (2.0) 
1 1 1 mopx 1<- 668.923 : 8 (2.0) 

oldCity 1- 6.0 : 
1 oldCity = 7.0 : 
1 C17nop <- 0.0 : 
1 C24nop > 21.0 : 6 (3.0) 
1 C24nop !> 21.0 : 
1 Cl0nop <- 24.0 : 

1 1 Cl~~!~; ~=3~~0;Oi~ (3.0) 
1 1 C8nte!> 3.0 : 
1 1 1 C15nte > 3.0 : 15 (2.0) 
1 1 1 C16nte !> 3.0 : 
1 1 1 1 C16nte > 6.0 : 13 (2.0) 
1 1 1 1 C16nte 1> 6.0 : 
1 1 1 1 1 mtpx <= 672.667 : 
1 1 1 1 1 1 C12nop > 0.0 : 8 (2.0) 
1 1 1 1 1 1 C12nop 1> 0.0 : 
1 1 1 1 1 1 1 C9nop > 24.0 : 8 (2.0) 
1 1 1 1 1 1 1 C9nop !> 24.0 : 
1 1 1 1 1 1 1 1 deo <= 5.0 : 8 (3.0) 
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1 1 1 deo 1<- 6.0 : 11 (65.0) 
mtpx ! <- 672.667 : 

1 1 C12dist <= 439.16 : 13 (3.0) 
1 1 1 1 1 C12dist 1<= 439.15 : 15 (2.0) 
Clldist 1<- 430.094 : 
1 mtpy <- 487.376 : 15 (11.0) 
1 mtpy !<- 487.376 : 
1 1 mopy <= 452.429 : 17 (4.0) 

1 1 1 mopy !<= 462.429 : 18 (2.0) 
1 Cl0nop 1<- 24.0 : 
1 1 mopx <= 636.083 : 9 (2.0) 
1 1 mopx !<= 636.083 : 11 (2.0) 

17nop !<- 0.0 : 
1 C17nto <- 3.0 : 18 (2.0) 
1 C17nto 1<- 3.0 : 
1 1 dee <= 13.4636 : 15 (2.0) 

1 1 1 dee !<= 13.4636 : 17 (3.0) 
oldCity != 7.0 : 

oldCity • 8.0 : 
Clnto > 0.0 : 1 (3.0) 
Clnto 1> 0.0 : 
1 C18nop <= 0.0 : 
1 C24nop > 0.0 : 20 (2.0) 
1 C24nop 1> 0.0 : 
1 C12nop <= 23.0 : 
1 1 C20nte > 0.0 : 9 (2.0) 
1 1 C20nte !> 0.0 : 
1 1 C4nte > 0.0 : 2 (2.0) 
1 1 C4nte!> 0.0 : 
1 1 1 C12nte <= 3.0 : 
1 1 1 1 C15nop <= 21.0 : 
1 1 1 1 1 C7nop > 23.0 : 7 (3.0) 
1IIIC7nop!>23.0: 
1 1 1 1 1 C60wn = 0.0 : 6 (2.0) 
1IIIIC6own!=0.0: 

1 1 1 1 1 C60wn = 2.0 : 15 (0.0) 
1 1 1 1 1 C60wn != 2.0 : 
1 1 1 1 C19nop > 0.0 : 6 (3.0) 
1 1 1 1 C19nop! > 0.0 : 
1 1 1 1 1 C16nop <= 24.0 : 
1 1 1 1 1 C8nop <= 24.0 : 
1 1 1 1 C14nte <- 3.0 : 
1 1 1 1 1 C4h3 > 3.0 : 7 (2.0) 
1 1 1 1 1 C4h3 !> 3.0 : 
1 1 1 1 oldCity <= 147.078 : 
1 1 1 1 C18nop <= 19.0 : 7 (2.0) 
1 1 1 C18nop !<= 19.0 : 16 (4.0) 
1 1 oldCity 1<- 147.078 : 

1 1 C11nte > 0.0 : 6 (2.0) 
1 Cllnte !> 0.0 : 

1 Cl0nop > 697.874 : 11 (3.0) 
1 Cl0nop 1> 697.874 : 
1 C14nop <= 0.0 : 
1 1 C16nop <= 528.348 : 16 (4.0) 
1 1 C16nop !<- 528.348 : 
1 1 1 mopx <- 234.344 : 
1 1 1 C13nop > 6.0 : 16 (3.0) 
1 1 1 C13nop!> 5.0 : 
1 1 1 1 C13nop > 0.0 : 6 (2.0) 
1 1 1 1 C13nop ! > 0.0 : 
1 1 1 1 vy > 519.667 : 12 (2.0) 
1 1 1 vy!> 619.667 : 

1 1 eto <- 853.366 : 
1 1 mopx > 17 .8885 : 10 (7.0) 
1 1 mopx !> 17.8885 : 
1 1 1 C17dist <= 432.0 : 10 (3.0) 
1 1 1 C17dist !<= 432.0 : 16 (4.0) 
1 eto !<- 863.366 : 
1 1 eto > 1083.21 : 10 (6.0) 
1 1 eto 1> 1083.21 : 
1 1 1 vy > 361.0 : 15 (6.0) 
1 1 1 vy ! > 361. 0 : 
1 1 1 1 C17nop <= 14.5602 : 6 (4.0) 
1 1 1 1 C17nop !<= 14.6602 : 12 (5.0) 

opx !<= 234.344 : 
1 C24nop <- 349.092 : 15 (3.0) 
1 C24nop !<= 349.092 : 16 (2.0) 

1 nop I<~ 0.0 : 
1 Cl0nop > 14.1421 : 10 (3.0) 
1 Cl0nop !> 14.1421 : 
1 1 mopx <= 20.2237 : 12 (2.0) 
1 1 mopx !<= 20.2237 : 17 (2.0) 

1 nte 1<- 3.0 : 
1 C4h3 <= 17.0 : 14 (4.0) 
1 C4h3 1<= 17.0 : 16 (3.0) 

8nop !<= 24.0 : 
1 C4h3 <- 657.423 : 10 (2.0) 

1 1 C4h3 !<= 667.423 : 7 (2.0) 
C16nop !<= 24.0 : 
1 mopy <= 511.958 : 7 (3.0) 

1 1 1 1 1 mopy !<- 511.958 : 16 (3.0) 
C16n p 1<= 21.0 : 

1 1 det <= 137.033 : 
1 1 1 mopx <= 608.038 : 6 (2.0) 
1 1 1 mopx !<= 608.038 : 16 (2.0) 
1 1 det 1<- 137.033 : 
1 1 1 ply <= 222.0 : 11 (2.0) 

1 1 1 \,1~1~<~}~~4~0:: 16 (6.0) 
1 1 1 1 ply !<= 234.0 : 11 (3.0) 
C12nte !<:II 3.0 : 
1 plx <- 338.0 : 15 (3.0) 

1 1 1 plx !<= 338.0 : 12 (3.0) 
C12n p 1<= 23.0 : 
1 C7dist <- 443.128 : 
1 1 pIx <- 338.0 : 15 (3.0) 
1 1 plx !<- 338.0 : 12 (2.0) 
1 C7dist 1 <= 443.128 : 
1 1 vy <= 0.023 : 10 (6.0) 

1 1 1 vy !<- 0.023 : 18 (2.0) 
C18nop !<a 0.0 : 
1 eto <- 3.0 : 
1 1 mopx <= 666.261 : 14 (2.0) 
1 1 mopx 1<- 566.261 : 12 (2.0) 
1 eto !<- 3.0 : 
1 1 C24dist <= 669.99 : 10 (2.0) 
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1 1 1 1 1 C24dist 1<- 659.99 : 15 (3.0) 
1 oldCity 1- 8.0 : 
1 1 oldCity - 9.0 : 
1 1 C9nop > 21.0 : 16 (2.0) 
1 1 C9nop 1> 21.0 : 
1 1 C14nt. > 3.0 : 11 (2.0) 
1 1 C14nt. 1> 3.0 : 

1 1 C130wn - 0.0 : 17 (2.0) 
1 1 C130wn 1- 0.0 : 
1 1 C130wn - 2.0 : 17 (0.0) 
1 1 C130wn!= 2.0 : 
1 1 C21nt. > 3.0 : 19 (2.0) 
1 1 C21nt. 1> 3.0 : 
1 1 1 C2nop > 0.0 : 5 (2.0) 
IIIC2nopl>0.0: 
1 1 1 1 C8nop > 23.0 : 11 (2.0) 
1IIIC8nop!>23.0: 
1 1 1 1 C11dist <= 13.4636 : 7 (2.0) 
1 1 1 1 C11dist !<= 13.4536 : 
1 1 1 1 C4nt. > 0.0 : 11 (2.0) 
1 1 1 1 C4nt.! > 0.0 : 
1 1 1 1 1 C17nop <- 21. 0 : 
1 1 1 1 1 C7nop > 23.0 : 19 (3.0) 
1 1 1 1 1 C7nop! > 23.0 : 
1 1 1 1 1 1 C19nop > 24.0 : 11 (2.0) 
1 1 1 1 1 1 C19nop ! > 24.0 : 
1 1 1 1 1 1 1 mopy > 526.386 : 7 (3.0) 
1 1 1 1 1 1 1 mopy 1> 625.385 : 
1 1 1 1 1 1 1 1 mtpy <= 671.667 : 17 (38.0) 
1 1 1 1 1 1 1 1 mtpy !<- 671.667 : 
1 1 1 1 1 1 1 1 1 C4h3 <= 445.01 : 17 (4.0) 
1 1 1 1 1 1 1 1 1 C4h3 ! <= 445.01 : 
1 1 1 1 1 1 1 1 1 1 oldCity <= 712.8 : 19 (3.0) 
1 1 1 1 1 1 1 1 1 1 oldCity 1<= 712.8 : 11 (3.0) 
1 1 1 1 1 17nop 1 <= 21. 0 : 
1 1 1 1 1 1 dco <= 168.862 : 17 (7.0) 
1 1 1 1 1 1 dco ! <= 158.862 : 
1 1 1 1 1 1 1 mopy <- 464.783 : 19 (2.0) 

1 1 1 1 1 1 1 mopy !<= 464.783 : 7 (2.0) 
oldCity .. 9.0 : 

oldCity ... 10.0 : 
1 C17nt. <= 0.0 : 
1 C14dist <- 606.981 : 
1 1 C18nt. > 3.0 : 11 (2.0) 
1 1 C18nt. !> 3.0 : 
1 1 1 C13nt. <- 0.0 : 
1 1 1 C11nt. > 6.0 : 14 (2.0) 
1 1 1 C11nt.!> 6.0 : 
1 1 1 C12nop <= 21.0 : 
1 1 1 C16nt. > 6.0 : 15 (3.0) 
1 1 1 C15nt. !> 6.0 : 
1 1 1 C8nte > 0.0 : 8 (5.0) 
Il IC8nt.I>0.0: 
1 1 1 C7nt. > 0.0 : 8 (2.0) 
1 1 1 C7nt.! > 0.0 : 

1 1 1 C14nop <= 23.0 : 
1 1 1 Cl0dist <= 13.1629 : 
1 1 1 1 coo <- 22.0 : 8 (2.0) 
1 1 1 1 coo !<= 22.0 : 15 (2.0) 
1 1 1 Cl0dist! <= 13.1629 : 
1 1 1 C6nop > 24.0 : 8 (2.0) 
1 1 1 C6nop 1> 24.0 : 
1 1 1 1 coo <= 19.0 : 
1 1 1 1 1 C4h3 <= 189.667 : 16 (2.0) 
1 1 1 1 1 C4h3 !<= 189.667 : 12 04.0) 
1 1 1 1 coo ! <- 19.0 : 
1 1 1 1 1 C4h3 > 3.0 : 12 (2.0) 
1 1 1 1 1 C4h3 1> 3.0 : 
1 1 1 1 1 1 oldCity > 14.4222 : 12 (7.0) 
1 1 1 1 1 1 oldCity 1> 14.4222 : 
1 1 1 1 1 1 1 C18nop <- 269.082 : 12 (6.0) 
1 1 1 1 1 1 1 C18nop 1<= 269.082 : 8 (7.0) 
1 1 1 1 nop 1<- 23.0 : 
1 1 1 1 C17dist <= 398.898 : 7 (3.0) 
1 1 1 1 C17dist 1<= 398.898 : 
1 1 1 1 1 C24dist <= 712.037 : 8 (3.0) 
1 1 1 1 1 1 C24dist !<= 712.037 : 12 (2.0) 
1 12nop !<= 21.0 : 
1 1 cto <= 1.0 : 11 (3.0) 
1 1 cto ! <= 1. 0 : 
1 1 1 mtpx <= 251.0 : 6 (2.0) 
1 1 1 mtpx 1<= 261.0 : 12 (6.0) 
1 13nte !<- 0.0 : 
1 1 plx <= 358.0 : 13 (2.0) 

1 1 \,l~t;;= <~5~â~.~67 : 6 (2.0) 
1 1 1 mtpy !<= 282.667 : 8 (2.0) 

C14dist ! <- 606.981 : 
1 C22nop <- 0.0 : 1 (3.0) 

1 1 C22nop !<- 0.0 : 9 (2.0) 
C17nte !<- 0.0 : 

1 1 mopy <- 495.385 : 3 (2.0) 
1 1 mopy !<= 495.385 : 17 (2.0) 
oldCity 1- 10.0 : 
1 oldCity • 11.0 : 
1 C16dist <- 689.636 
1 C23nop <= 24.0 : 
1 1 C18nop <- 21. 0 : 
1 1 C14nt. <- 0.0 : 
1 1 1 Clnt. <- 0.0 : 

1 1 cto <- 7.0 : 
1 1 1 C9nt. <- 0.0 : 
1 1 1 C16nop > 0.0 : 13 (6.0) 
1 1 1 C16nop 1> 0.0 : 

1 C8nop <- 0.0 : 

1 1 \,1~c~=<:3i2~3~93 : 18 (2.0) 
1 1 1 dco 1<- 12.3693 : 
1 1 1 1 vy <- 0.023 : 7 (14.0) 
1 1 1 1 vy !<= 0.023 : 15 (3.0) 

1 1 \,1~3!~: ~36:g : 13 (3.0) 
1 1 1 C3nte !> 0.0 : 
1 1 1 1 C20nop > 24.0 : 19 (3.0) 
1 1 1 1 C20nop !> 24.0 : 
1 1 1 1 1 C11nt. <= 0.0 : 
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1 C19nop <- 0.0 : 
1 1 C13nt. <= 0.0 : 
1 1 C4h3 > 617.667: 18 (7.0) 
1 1 C4h3!> 617.667 : 
1 1 1 oldCity <= 427.308 : 
1 1 1 1 C18nop <= 20.0 : 14 (2.0) 
1 1 1 1 C18nop !<= 20.0 : 7 (2.0) 
1 1 1 oldCity !<- 427.308 : 
1 1 1 1 C11nte <- 247.649 : 13 (3.0) 
1 1 1 1 C11nt. 1<= 247.649 : 
1 1 1 1 1 oldCity > 499.038 : 17 (6.0) 
1 1 1 1 1 oldCity !> 499.038 : 
1 1 1 1 1 1 Cl0nop > 648.684 : 13 (6.0) 
1 1 1 1 1 1 Cl0nop !> 648.684 : 
1 1 11111 C14nop <= 656.269: 14 (7.0) 
1 1 1 1 1 1 1 C14nop !<= 666.269 : 17 (4.0) 
1 1 13nt. !<- 0.0 : 
1 1 1 C4h3 > 180.413 : 14 (4.0) 
1 1 1 C4h3 1> 180.413 : 
1 1 1 1 oldCity <- 206.828 : 7 (6.0) 
1 1 1 1 oldCity 1<= 206.828 : 17 (2.0) 
1 C19nop !<= 0.0 : 
1 1 C4h3 <= 681.333 : 7 (4.0) 
1 1 C4h3 !<= 681.333 : 13 (2.0) 
1 llnte !(= 0.0 : 
1 1 C4h3 <= 386.374 : 4 (2.0) 
1 1 C4h3 1<= 386.374 : 
1 1 1 oldCity <= 19.0 : 13 (2.0) 
1 1 1 oldCity !<= 19.0 : 
1 1 1 1 C18nop <= -0.048 : 13 (2.0) 

1 1 1 1 1 1 C18nop !<= -0.048 : 7 (4.0) 
C8nop 1<= 0.0 : 

1 1 mopy <- 476.808 : 
1 1 1 mopx <= 541.286 : 8 (2.0) 
1 1 1 mopx 1<- 641.286 : 13 (2.0) 
1 1 mopy 1<= 476.808 : 
1 1 1 mopx <= 624.619 : 7 (2.0) 
1 1 1 mopx 1<= 624.619 : 18 (2.0) 

9nte 1<= 0.0 : 
1 C9nop > 24.0 : 7 (3.0) 
1 C9nop 1> 24.0 : 
1 1 mtpy <= 696.667 : 9 (2.0) 

1 1 1 mtpy 1<= 696.667 : 18 (2.0) 
eto !<- 7.0 : 

C11dist <- 12.2066 : 8 (2.0) 
C11dist 1 <= 12.2066 : 
1 C16nto > 3.0 : 17 (2.0) 
1 C16nto 1> 3.0 : 
1 C16nop <= 24.0 : 
1 1 C7nop > 21.0 : 18 (4.0) 
1 1 C7nop 1> 21.0 : 
1 1 C18dist <= 141.039 : 
1 1 1 C13nop <- 21.0 : 18 (2.0) 
1 1 1 C13nop 1<= 21.0 : 13 (3.0) 
1 1 C18dist 1<- 141.039 : 
1 1 1 C11nop > 24.0 : 16 (2.0) 
1 1 1 C11nop 1> 24.0 : 
1 1 1 1 C8nto > 0.0 : 7 (2.0) 
1 1 1 1 C8nto 1> 0.0 : 
1 1 1 1 1 vy > 0.113 : 7 (3.0) 
1 1 1 1 1 vy 1> 0.113 : 
1 1 1 1 1 1 C4h3 <= 423.001 : 13 (9.0) 
1 1 1 1 1 1 C4h3 1<= 423.001 : 
1 1 1 1 1 1 1 oldCity <= 122.674 : 17 (8.0) 
1 1 1 1 1 1 1 oldCity 1<- 122.674 : 13 (4.0) 
1 C15nop 1<- 24.0 : 
1 1 mtpy <- 418.6 : 18 (2.0) 

1 1 1 1 mtpy 1<= 418.6 : 10 (2.0) 
Clnt. 1<= 0.0 : 
1 mopy <= 606.962 : 17 (2.0) 
1 mopy 1<= 505.962 : 16 (2.0) 

14nte !<= 0.0 : 
1 deoe <= 13.6016 : 

1 mopx <- 661.76 : 2 (2.0) 
1 mopx 1<= 661.76 : 9 (2.0) 
de oc !<= 13.6016 : 
1 deue <= 14.5602 : 
1 1 C16dist <= 62.6973 : 7 (2.0) 
1 1 C16dist 1<= 62.6973 : 
1 1 1 det <= 133.462 : 13 (6.0) 
1 1 1 det 1<- 133.462 : 14 (4.0) 
1 deue 1<= 14.6602 : 
1 1 eto <- 4.0 : 14 (4.0) 
1 1 eto 1<- 4.0 : 18 (3.0) 

1 nop !< .. 21.0 : 
1 eto <- 3.0 : 19 (3.0) 
1 eto 1<= 3.0 : 18 (6.0) 

23nop 1<= 24.0 : 
1 deoe <= 14.2127 : 9 (2.0) 

1 1 deoe 1<- 14.2127 : 19 (3.0) 
C16dist 1 <- 689.636 : 
1 C6nop > 0.0 : 22 (3.0) 
1 C5nop 1> 0.0 : 
1 1 det <- 368.286 : 
1 1 1 mtpy > 741.0 : 13 (2.0) 
1 1 1 mtpy 1> 741.0 : 
1 1 1 1 dcc <- 13.3417 : 19 (4.0) 
1 1 1 1 dee 1<- 13.3417 : 24 (3.0) 
1 1 det 1<- 368.286 : 
1 1 1 mtpx <- 460.375 : 7 (2.0) 
1 1 1 mtpx 1<= 460.376 : 1 (2.0) 

IdCity 1= 11.0 : 
oldCity :II 12.0 : 

Cllnop > 21.0 : 4 (3.0) 
Cllnop !> 21.0 : 
1 dcuc <"" 993.413 : 
1 1 C22nop > 0.0 : 10 (2.0) 
1 1 C22nop 1> 0.0 : 
1 1 1 C12nop <- 0.0 : 
1 1 1 1 C6nto > 0.0 : 16 (3.0) 
1 1 1 1 C6nto 1> 0.0 : 
1 1 1 1 1 C16nop > 24.0 : 16 (3.0) 
1 1 1 1 1 C16nop 1> 24.0 : 
1 1 1 1 1 1 C13nop <= 0.0 : 
1 1 1 1 1 1 1 Cllnop > 0.0 : 8 (4.0) 
1 1 1 1 1 1 1 Cllnop 1> 0.0 : 
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C15nop > 23.0 : 16 (2.0) 
C15nop !> 23.0 : 

C14dist > 295.007 : 8 (8.0) 
C14dist !> 295.007 : 
1 dct > 300.832 : 16 (6.0) 
1 dct !> 300.832 : 
1 C14nop <= 23.0 : 
1 1 C16nte > 5.0 : 8 (2.0) 
1 1 C16nte !> 5.0 : 
1 1 1 C8nop <= 21.0 : 
1 1 1 1 C4h3 <- 292.333 : 13 (2.0) 
1 1 1 1 C4h3 1<= 292.333 : 
1 1 1 1 1 oldCity <- 17.0 : 16 (2.0) 
1 1 1 1 1 oldCity 1<= 17.0 : 10 (15.0) 
1 1 1 C8nop !<- 21.0 : 
1 1 1 1 C4h3 <- 954.713 : 8 (4.0) 
1 1 1 1 C4h3 !<- 954.713 : 10 (3.0) 
1 C14nop 1<= 23.0 : 
1 1 C23dist <= 450.948 : 15 (2.0) 

1 1 1 1 C23dist !<= 450.948 : 8 (3.0) 
C13nop !<= 0.0 : 
1 vy <- 0.021 : 8 (2.0) 

1 1 vy 1<- 0.021 : 16 (9.0) 
12nop !<= 0.0 : 

1 mopy <= 475.808 : 14 (2.0) 
1 1 1 mopy !<- 475.808 : 6 (2.0) 
delle 1 <- 993.413 : 
1 mopx <- 631.0 : 1 (2.0) 
1 mopx !<= 631.0 : 13 (2.0) 

oldCity !- 12.0 : 
1 oldCity = 13.0 : 
1 1 C9nop <- 21.0 : 
1 1 Clnop <- 21.0 : 
1 1 1 Cl0nte <= 0.0 : 
1 1 1 C15nop <- 21.0 : 

1 1 1 C14nop <- 24.0 
1 1 1 1 C22nop > 0.0 5 (2.0) 
1 1 1 1 C22nop !> 0.0 : 
1 1 1 1 1 C23nop > 21.0 : 19 (2.0) 

1 1 1 C23nop!> 21.0 : 
1 1 1 C18nop > 24.0 : 18 (4.0) 
1 1 1 C18nop !> 24.0 : 
1 1 1 C19nte <= 3.0 : 

1 C12nte <= 0.0 : 
1 C11nte > 3.0 : 11 (11.0) 
1 Cllnte !> 3.0 : 
1 vy <- 0.125 : 

C20nte > 6.0 : 17 (2.0) 
C20nte !> 6.0 : 

C17nop <= 23.0 : 
eto < .. 2.0 : 
1 C4h3 > 672.0 : 11 (5.0) 
1 C4h3 !> 672.0 : 
1 1 oldCity <= 591. 769 : 14 (5.0) 
1 1 oldCity 1<= 591.769 : 16 (4.0) 
eto !<"" 2.0 : 

C4h3 > 21.0 : 11 (4.0) 
C4h3 1> 21.0 : 

oldCity > 0.0 : 11 (2.0) 
oldCity !> 0.0 : 

C18nop <,. 5.0 : 
C11nte > 5.0 : 18 (3.0) 
Cllnte !> 5.0 : 

Cl0nop > 3.0 : 14 (2.0) 
Cl0nop !> 3.0 : 

C14nop > 24.0 : 11 (2.0) 
C14nop !> 24.0 : 
1 C16nop <= 12.53 : 18 (2.0) 
1 C16nop !<= 12.53 : 
1 C18nop <= 0.0 : 
1 1 mopx <= -0.056 : 14 (7.0) 
1 1 mopx !<= -0.066 : 
1 1 1 C13nop > 21.0 : 11 (3.0) 
1 1 1 C13nop !> 21.0 : 
1 1 1 1 vy > 6.0 : 11 (3.0) 
1 1 1 1 vy !> 6.0 : 
1 1 1 1 1 cto > 14.5602 : 14 (4.0) 
1 1 1 1 1 cto ! > 14.5602 : 
1 1 1 1 1 1 C17dist <- 17.4929 : 11 (6.0) 
1 1 1 1 1 1 C17dist !<= 17 .4929 : 
1 1 1 1 1 1 1 cto <- 13.6015 : 14 (6.0) 
1 1 1 1 1 1 1 cto !<= 13.6015 : 11 (4.0) 
1 C18nop !<= O.Q : 
1 1 C17nop <= 362.0 : 7 (2.0) 

1 1 1 1 C17nop !<= 362.0 : 14 (5.0) 
18nop !<= 5.0 : 

1 mopx <= 0.0040 : 11 (4.0) 
1 1 1 1 mopx !<= 0.0040 : 8 (2.0) 

17nop !<= 23.0 : 
1 C4h3 <= 702.769 : 14 (2.0) 

1 1 C4h3 !<= 702.769 : 18 (2.0) 
Y !<= 0.125 : 

1 coo <= 20.0 : 6 (2.0) 
1 coo 1<- 20.0 : 
1 1 C4h3 <- 574.0 : 11 (2.0) 

1 1 1 1 C4h3 !<= 574.0 : 5 (2.0) 
C12nte 1<'" 0.0 : 
1 mopy <= 435.154 : 8 (3.0) 
1 mopy !<- 435.154 : 
1 1 C15dist <= 342.584 : 14 (5.0) 
1 1 C15dist 1<- 342.584 : 18 (2.0) 

19nte !<= 3.0 : 
1 coo > 19.0 : 19 (2.0) 
1 coo !> 19.0 : 
1 1 dcc <- 13.4536 : 17 (2.0) 

1 1 1 dcc !<= 13.4536 : 11 (2.0) 
1 nop !<- 24.0 : 

1 dcc <- 12.2066 : 10 (3.0) 
1 dcc !<- 12.2066 : 14 (5.0) 

15nop !<= 21.0 : 
1 C22dist <= 1003.89 : 11 (3.0) 
1 C22dist 1<- 1003.89 : 
1 1 vx <- -0.017 : 7 (3.0) 

1 1 1 vx 1<= -0.017 : 15 (3.0) 
Cl0nte !<- 0.0 : 
1 coo <- 20.0 : 10 (2.0) 
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1 1 eoo I<K 20.0 : 14 (2.0) 
1 Clnop !<= 21.0 : 
1 1 Clnop <= 23.0 : 18 (3.0) 
1 1 Clnop 1<= 23.0 : 4 (2.0) 
C9nop 1<_ 21.0 : 
1 ply <= 891.0 : 12 (2.0) 

1 1 ply 1<- 891.0 : 3 (3.0) 
oldCity 1- 13.0 : 

oldCity _ 14.0 : 

\,l~1~:o~0~!'~1:0 : 
1 C17nto <= 3.0 : 
1 C23nop <= 0.0 : 
1 1 C16nto <- 0.0 : 
1 C7nop (a 23.0 : 
1 C12nop <- 23.0 : 

1 C14nop <= 24.0 : 
1 Cl1nte <= 0.0 : 
1 1 C19nop <= 23.0 
1 1 Clnop > 23.0 16 (3.0) 
1 1 Clnop 1> 23.0 : 
1 1 1 C19nto > 6.0 : 13 (2.0) 
1 1 1 C19nto 1> 6.0 : 
1 1 1 C2nop > 0.0 : 13 (2.0) 
1 1 1 C2nop 1> 0.0 : 
1 1 1 1 C4h3 > 23.0 : 17 (2.0) 
1 1 1 1 C4h3 1> 23.0 : 

1 1 1 1 oldCity <= 3.0 : 
1 1 1 C18nop <- 0.0 : 
1 1 1 1 C11nto > 21.0 : 16 (3.0) 
1 1 1 1 C11nto 1> 21.0 : 
1 1 1 1 1 Cl0nop <= 522.462 : 
1 1 1 1 1 oldCity <- 0.0 : 
1 1 1 1 1 C14nop > 0.0 : 16 (2.0) 
1 1 1 1 1 C14nop 1> 0.0 : 
1 1 1 1 1 1 C16nop > 0.0 : 16 (2.0) 
1 1 1 1 1 1 C16nop 1> 0.0 : 
1 1 1 1 1 1 1 mopx <- 0.0 : 
1 1 1 1 1 1 1 C13nop <= 3.0 : 
1 1 1 1 1 1 vy <- 13.6015 : 13 (4.0) 
1 1 1 1 1 vy 1 <= 13.6016 : 
1 1 1 1 1 1 eto <= 6.0 : 
1 1 1 1 1 1 1 C17dist > 347.96 : 13 (5.0) 
1 1 1 1 1 1 1 C17dist 1> 347.96 : 
1 1 1 1 1 1 1 1 C17nop <- 0.0010 : 16 (29.0) 

1 1 1 1 1 1 1 C17nop 1<- 0.0010 : 
1 1 1 1 1 1 1 C24nop <- 14.1421 : 13 (6.0) 
1 1 1 1 1 1 C24nop 1 <= 14.1421 : 
1 1 1 1 1 1 1 C11dist <= 9.0 : 16 (4.0) 
1 1 1 1 1 1 1 C11dist 1<= 9.0 : 13 (3.0) 
1 1 1 eto 1 <= 6.0 : 
1 1 1 1 C17nop > -0.017 : 13 (4.0) 

1 1 1 C17nop 1> -0.017 : 
1 1 1 1 Cl0nop <= 429.677 : 16 (2.0) 
1 1 1 1 Cl0nop 1<= 429.577 : 11 (2.0) 
C13nop 1<= 3.0 : 
1 C11dist <= 6.0 : 18 (3.0) 
1 Clldist !<= 6.0 : 
1 1 C17dist <= 33.2866 : 11 (2.0) 
1 1 C17dist 1<= 33.2866 : 16 (6.0) 

1 mopx !<= 0.0 : 
1 1 C8nto <= 473.25 : 13 (3.0) 

1 1 1 C8nto !<- 473.25 : 16 (4.0) 
oldCity !<"" 0.0 : 
1 C15nto <- 671.008 : 16 (3.0) 
1 C15nto 1<= 671.008 : 13 (3.0) 

10nop 1<- 622.462 : 
1 C17dist <= 117.209 : 18 (5.0) 
1 C17dist !<= 117.209 : 
1 1 C16nto <= 16.0 : 8 (2.0) 
1 1 C16nto !<= 16.0 : 13 (9.0) 

18nop !<= 0.0 : 
1 mtpx <= 655.739 : 18 (3.0) 

1 1 mtpx !<= 656.739 : 13 (3.0) 
oldCity 1<- 3.0 : 
1 mtpx > 667.381 : 17 (2.0) 
1 mtpx 1> 667.381 : 
1 1 C12nop > 21.0 : 18 (3.0) 
1 1 C12nop !> 21.0 : 
1 1 1 mtpx <- 562.261 : 13 (2.0) 

1 1 1 1 1 1 mtpx 1<= 562.261 : 18 (2.0) 
19nop !<= 23.0 : 

1 mopx <- 677.731: 8 (2.0) 
1 1 mopx !<- 677.731 : 9 (2.0) 
Cl1nte !<= 0.0 : 
1 deue <- 14.2127 : 
1 1 eto <= 6.0 : 9 (2.0) 
1 1 eto !<= 6.0 : 11 (2.0) 
1 delle !(= 14.2127 : 
1 1 eto <- 2.0 : 11 (3.0) 
1 1 cto 1<= 2.0 : 
1 1 1 C11nop > 24.0 : 18 (4.0) 
1 1 1 C11nop !> 24.0 : 
1 1 1 1 dcc <= 14.4222 : 18 (4.0) 

1 1 1 1 1 dcc 1<= 14.4222 : 16 (2.0) 
C14nop !<- 24.0 : 
1 cto <= 6.0 : 16 (2.0) 
1 eto 1<- 6.0 : 
1 1 mopx <= 708.038 : 7 (3.0) 

1 1 1 mopx !<- 708.038 : 13 (3.0) 
C12nop !<= 23.0 : 
1 dcc <= 14.0357 : 8 (4.0) 

1 1 dcc 1<= 14.0357 : 16 (2.0) 
C7nop 1<- 23.0 : 
1 mopx <- 639.6 : 7 (2.0) 
1 mopx 1<- 639.5 : 15 (2.0) 

C15nte !<= 0.0 : 
1 dcc <= 12.2066 : 
1 1 mtpy <- 341.6 : 16 (2.0) 
1 1 mtpy !<= 341.6 : 8 (2.0) 
1 dcc !<= 12.2066 : 
1 1 mopx <- 643.269 : 11 (2.0) 
1 1 mopx !<= 643.269 : 20 (2.0) 

23nop 1<- 0.0 : 
1 C20dist <= 256.947 : 20 (2.0) 
1 C20dist 1<- 265.947 : 12 (3.0) 
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1 1 C17nte !<~ 3.0 : 
1 1 1 C24dist <~ 438.926 : 18 (2.0) 
1 1 1 C24dist !<~ 438.926 : 6 (3.0) 
1 Cl0nop ! <= 21. 0 : 
1 1 mopx <- 572.87 : 7 (2.0) 
1 1 mopx !<= 572.87 : 17 (2.0) 

1 \,1~6!~; !0~~Ô°,'3 (2.0) 
1 1 C5nop 1> 0.0 : 
1 1 1 C3nt. > 3.0 : 10 (3.0) 
1 1 1 C3nt. 1> 3.0 : 
1 1 1 1 coo <= 17.0 : 17 (2.0) 
1 1 1 1 coo I<~ 17.0 : 1 (3.0) 
oldCity != 14.0 : 

oldCity = 16.0 : 
1 elBnts < ... 3.0 : 
1 C16nt. <= 0.0 : 
1 1 C6nop <- 0.0 : 
1 1 C11nop <= 21. 0 : 
1 1 C17nop <= 24.0 
1 1 1 dct <= 9.05539 
1 1 1 1 C8nop <~ 0.0 : 11 (4.0) 
1 1 1 1 C8nop !<~ 0.0 : 12 (3.0) 
1 1 1 dct !<= 9.06539 : 
1 1 1 C14nop <= 23.0 : 
1 1 1 1 mopy <= 640.043 : 
1 1 1 1 C2nop > 0.0 : 7 (2.0) 
1 1 1 1 C2nop!> 0.0 : 
1 1 1 1 1 C11nte > 3.0 : 8 (3.0) 
1 1 1 1 1 Cllnt. !> 3.0 : 
1 1 1 1 1 C13dist <= 13.4536 : 7 (6.0) 
1 1 1 1 1 C13dist !<- 13.4536 : 
1 1 1 1 1 1 mopx <= 659.333 : 
1 1 1 1 1 1 1 C8nop > 21.0 : 7 (2.0) 
1 1 1 1 1 1 C8nop 1> 21. 0 : 
1 1 1 1 1 1 pIx <= 33.0 : 7 (2.0) 

1 1 1 1 \,1~4~t<~3i~.~ : 7 (3.0) 
1 1 1 C4h3 !<= 16.0 : 
1 1 1 1 oldCity <= 302.652 : 7 (3.0) 
1 1 1 1 oldCity !<= 302.562 : 
1 1 1 1 1 C18nop <= 366.679 : 8 (19.0) 
1 1 1 1 1 C18nop I<~ 366.679 : 
1 1 1 1 1 1 C11nte <= 670.909 : 8 (7.0) 
1 1 1 1 1 1 C11nte !<- 570.909 : 7 (5.0) 
mopx 1<'" 659.333 : 
1 dco <- 89.2749 : 
1 1 C4h3 <~ 612.191 : 7 (3.0) 
1 1 C4h3 !<= 612.191 : 8 (7.0) 
1 dco !<= 89.2749 : 
1 1 vx > 0.011 : 6 (6.0) 
1 1 vx 1> 0.011 : 
1 1 1 C4h3 <= 484.423 : 12 (4.0) 
1 1 1 C4h3 !<= 484.423 : 
1 1 1 1 oldCity <= 307.876 : 6 (2.0) 

1 1 1 1 1 1 oldCity !<= 307.876 : 8 (2.0) 
mopy 1 <= 640. 043 : 
1 C12dist <= 393.406 : 
1 1 dcc <= 14.0357 : 14 (3.0) 
1 1 dcc 1<= 14.0357 : 
1 1 1 mtpx <= 453.667 : 11 (2.0) 
1 1 1 mtpx 1<= 453.667 : 8 (2.0) 
1 C12dist 1 <= 393.406 : 
1 1 vy <- 0.038 : 6 (3.0) 
1 1 vy !<- 0.038 : 9 (2.0) 

14nop !<= 23.0 : 
1 C14nop <= 24.0 : 6 (3.0) 
1 C14nop !<= 24.0 : 
1 1 dcc <= 14.1421 : 12 (2.0) 
1 1 dcc !<= 14.1421 : 7 (3.0) 

1 nop 1<= 24.0 : 
1 mtpx <= 417.0 : 13 (3.0) 
1 mtpx 1<- 417.0 : 7 (2.0) 

l1nop !<= 21.0 : 
1 C11dist <= 12.7279 : 6 (2.0) 
1 C11dist ! <= 12.7279 : 
1 1 vx <= 0.021 : 13 (3.0) 
1 1 vx 1<- 0.021 : 8 (2.0) 

6nop !<= 0.0 : 
1 C24dist <= 1173.69 : 8 (2.0) 

1 1 C24dist I<~ 1173.69 : 6 (3.0) 
C16nte !<= 0.0 : 
1 mtpy <- 419.0 : 16 (3.0) 
1 mtpy !<~ 419.0 : 
1 1 mopy <- 601.677 : 8 (2.0) 
1 1 mopy !<= 501.677 : 7 (2.0) 

l8nte !<= 3.0 : 
1 dco <= 62.3927 : 18 (3.0) 

1 1 dco 1<= 62.3927 : 19 (2.0) 
oldCity I~ 16.0 : 
1 oldCity - 16.0 : 
1 Clnt. <= 0.0 : 
1 C17nop > 23.0 : 6 (2.0) 
1 C17nop!> 23.0 : 
1 1 vx <= 0.164 : 
1 1 C2nop > 0.0 : 12 (2.0) 
1 1 C2nop!> 0.0 : 
1 1 1 C6nop > 0.0 : 8 (2.0) 
1 1 C6nop 1> 0.0 : 
1 1 1 C12nop <- 21.0 : 

1 1 C8nop <= 0.0 : 
1 1 1 C7nt. <- 0.0 : 

1 1 C12nt. > 3.0 : 14 (3.0) 
1 1 C12nto!> 3.0 : 
1 1 1 C16dist <= 12.3693 : 8 (2.0) 
1 1 1 C16dist 1 <= 12.3693 : 
1 1 1 1 C11nt. <= 6.0 : 
1 1 1 1 1 Cl0nt. > 5.0 : 12 (2.0) 
1 1 1 1 1 Cl0nt. 1> 5.0 : 
1 1 1 1 1 1 C14nt. > 3.0 : 14 (9.0) 
1 1 1 1 1 1 Cl4nt. !> 3.0 : 
1 1 1 1 1 1 1 C4h3 > 0.0 : 13 (2.0) 
1 1 1 1 1 1 1 C4h3 1> 0.0 : 
1 1 1 1 1 1 1 1 oldCity <= 19.4165 : 13 (2.0) 
1 1 1 1 1 1 1 1 oldCity !<= 19.4165 : 
1 1 1 1 1 1 1 1 1 C18nop > 0.0 : 14 (6.0) 
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1 1 C18nop 1> 0.0 : 
1 1 C11nt. <- 13.0 : 
1 1 1 Cl0nop <= 197.709 : 11 (3.0) 
1 1 1 Cl0nop !<= 197.709 : 1400.0) 
1 1 C11nt. !<= 13.0 : 
1 1 1 C14nop <- 0.0 : 
1 1 1 1 C16nop > 18.0 : 14 (25.0) 
1 1 1 1 C16nop 1> 18.0 : 
1 1 1 1 1 C11nt. <= 14.2127 : 12 (7.0) 
1 1 1 1 1 Clint. !<= 14.2127 : 
1 1 1 1 1 1 mopx <= 628.304 : 12 (2.0) 
1 1 1 1 1 1 mopx 1<- 628.304 : 14 (7.0) 
1 1 1 C14nop !<= 0.0 : 
1 1 1 1 C13nop > 369.333 : 13 (2.0) 
1 1 1 1 C13nop 1> 369.333 : 
1 1 1 1 1 vy <= 101.203 : 14 (9.0) 
1 1 1 1 1 1 1 1 1 vy 1<- 101.203 : 12 (3.0) 
1 Cl nt. !<= 5.0 : 
1 1 mopx <- 526.231 : 14 (4.0) 
1 1 1 mopx !<- 526.231 : 18 (2.0) 
1 C7nte !<= 0.0 : 
1 1 dee <- 14.1421 : 13 (3.0) 
1 1 dee !<= 14.1421 : 14 (2.0) 
C8nop 1<- 0.0 : 

1 1 det > 208.082 : 12 (6.0) 
1 1 det !> 208.082 : 
1 1 1 C24dist <= 986.071 : 10 (2.0) 
1 1 1 C24dist 1<- 986.071 : 8 (3.0) 
C12nop ! <= 21. 0 : 
1 C12nop <- 24.0 : 10 (2.0) 

1 1 1 C12nop !<= 24.0 : 14 (4.0) 
x !<= 0.154 : 

1 mopx <= 664.333 : 18 (2.0) 
1 1 mopx !<= 664.333 : 17 (2.0) 

Clnte 1<= 0.0 : 
1 mopy <- 445.609 : 1 (2.0) 
1 mopy 1<= 445.609 : 14 (2.0) 

oldCity !- 16.0 : 
oldCity - 17.0 : 

C15nte <= 0.0 : 
1 C12nt. <= 0.0 : 
1 Cante <= 3.0 : 
1 1 deue <- 666.325 : 
1 1 C17nop <= 23.0 : 
1 1 1 C2nop > 0.0 : 2 (3.0) 
1 1 1 C2nop 1> 0.0 : 
1 1 1 C9nop <- 23.0 : 
1 1 1 1 vy <- -0.148 : 
1 1 1 1 1 C8dist <= 409.941 : 

1 1 1 1 1 vy <- -0.153 : 19 (8.0) 
1 1 1 1 1 vy !<- -0.153 : 18 (2.0) 
1 1 1 1 C8dist !<= 409.941 : 
1 1 1 1 1 mopx <- 574.417 : 14 (2.0) 
1 1 1 1 1 mopx 1<- 674.417 : 7 (2.0) 
1 1 1 vy 1<= -0.148 : 
1 1 1 1 C14nop > 24.0 : 8 (3.0) 
1 1 1 1 C14nop !> 24.0 : 

1 1 1 1 1 \,lt5~:s~3~~ 0 8~8. 242 : 
1 1 1 1 1 1 1 mopy <- 438.792 : 11 (2.0) 
1 1 1 1 1 1 mopy !<= 438.792 : 20 (2.0) 
1 1 1 1 1 C6dist !<- 858.242 : 

1 1 1 1 1 deo <- 130.138 : 9 (3.0) 
1 1 1 1 1 deo !<= 130.138 : 16 (2.0) 

III \,1\~<~_3~~4~0:: 
II\' C7nop > 24.0 : 13 (2.0) 
1 1 1 C7nop !> 24.0 : 
1 1 1 1 C19nop <= 24.0 : 
1 1 1 1 C4b3 > 3.0 : 9 (2.0) 
1 1 1 1 C4h3!> 3.0 : 
1 1 1 1 oldCity <= 11.7047 : 

1 C18nop <= 586.609 : 11 (2.0) 
1 C18nop 1<- 586.609 : 8 (2.0) 
oldCity 1<- 11.7047 : 

C11nt. <= 21.0 : 
Cl0nop <= 21.0 : 

Cl0nop > 0.0 : 9 (2.0) 
CI0nop !> 0.0 : 

C14nop > 6.0 : 9 (3.0) 
C14nop !> 6.0 : 
1 C16nop > 6.0 : 9 (2.0) 
1 C16nop !> 6.0 : 
1 mopx > 411.539 : 3 (2.0) 
1 mopx!> 411.539 : 
1 1 C13nop > 0.0 : 11 (2.0) 
1 1 C13nop !> 0.0 : 
1 1 1 vy > 0.0 : 11 (2.0) 
1 1 1 vy !> 0.0 : 
1 1 1 1 eto <= 14.0 : 11 (8.0) 
1 1 1 1 eto ! <- 14.0 : 
1 1 1 1 1 C17dist > 3.0 : 9 (3.0) 
1 1 1 1 1 C17dist !> 3.0 : 
1 1 1 1 1 1 C17nop > 6.0 : 19 (3.0) 
1 1 1 1 1 1 C17nop 1> 6.0 : 
1 1 1 1 1 1 1 C17nop > 6.0 : 9 (2.0) 
1 1 1 1 1 1 1 C17nop ! > 6.0 : 
1 1 1 1 1 1 1 1 C24nop <- 12.6491 : 9 (10.0) 

1 1 1 1 1 1 1 1 1 C24nop !<= 12.6491 : 19 (27.0) 
CI0nop !<= 21.0 : 
1 C11dist <- 49.1935 : 19 (3.0) 
1 C11dist ! <- 49.1935 : 
1 1 C18nop <= 681.386 : 14 (2.0) 
1 1 C18nop !<= 581.386 : 11 (2.0) 

11nte !<- 21.0 : 
1 C17dist > 5.0 : 8 (2.0) 
1 C17dist !> 5.0 : 
1 1 C8nt. > -0.06 : 11 (4.0) 
1 1 C8nt. !> -0.06 : 
1 1 1 C16nt. <- 470.696 : 19 (2.0) 

1 1 1 1 1 C15nt. !<= 470.696 : 7 (2.0) 
C19nop !<= 24.0 : 

1 1 C4b3 <- 624.333 : 11 (2.0) 
1 1 1 C4b3 1<- 624.333 : 9 (2.0) 

\,l~o~<~= 8~tg : 1 (2.0) 
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1 1 1 1 1 1 coo 1 <- 18.0 : 
1 1 1 1 1 1 1 vy <- 0.0010 : 22 (4.0) 
1 1 1 1 1 1 1 vy 1<= 0.0010 : 19 (9.0) 
1 C9nop 1<- 23.0 : 
1 1 ply <= 884.0 : 9 (4.0) 

1 1 ïl~0;~=<~8~5L25 : 11 (2.0) 
1 1 1 1 mopx !<- 656.126 : 5 (2.0) 
C17nop !<= 23.0 : 
1 C17nop <- 24.0 : 11 (2.0) 
1 C17nop 1<- 24.0 : 
1 1 dct <- 71.0634 : 2 (2.0) 
1 1 dct !<- 71.0634 : 13 (2.0) 

eue !<- 666.325 : 
C3dist <- 238.355 : 
1 C23nop > 0.0 : 1 (2.0) 
1 C23nop 1> 0.0 : 
1 1 vx <= -0.103 : 4 (2.0) 
1 1 vx !<= -0.103 : 23 (4.0) 
C3dist !(= 238.356 : 
1 C5nop > 0.0 : 11 (2.0) 
1 C6nop 1> 0.0 : 
1 1 dcc <- 12.7279 : 7 (2.0) 
1 1 dcc !<= 12.7279 : 
1 1 1 ply <- 233.0 : 10 (2.0) 
1 1 1 ply 1<- 233.0 : 20 (2.0) 

8nte !<= 3.0 : 
1 cto <= 1.0 : 12 (3.0) 
1 eto !<= 1.0 : 
1 1 ply <= 133.0 : 11 (2.0) 
1 1 ply 1<- 133.0 : 7 (3.0) 

C12nte !<- 0.0 : 
1 plx <= 344.0 : 8 (3.0) 
1 plx !<= 344.0 : 3 (3.0) 

15nte 1<= 0.0 : 
1 mopx <- 618.609 : 11 (2.0) 

1 1 mopx 1<= 618.609 : 15 (2.0) 
oldCity !- 17.0 : 

C3nte <= 0.0 : 
Clnte <- 0.0 : 
1 C16nte <= 0.0 : 
1 C24nop <= 0.0 : 
1 1 C18nop <= 23.0 : 
1 1 Cl0nte <= 0.0 : 
1 1 1 C19nop <- 0.0 
1 1 C9nte > 3.0 : 19 (3.0) 
1 1 C9nte !> 3.0 : 
1 1 C13nop <= 23.0 : 
1 1 C16nte <= 0.0 : 
1 1 cto <= 1.0 : 
1 1 1 cto <= 0.0 : 9 (3.0) 
1 1 1 cto !<= 0.0 : 
1 1 1 1 C11nop > 0.0 : 16 (2.0) 
1 1 1 1 C11nop ! > 0.0 : 
1 1 1 1 1 C4h3 <= 461.707 : 20 (6.0) 
1 1 1 1 1 C4h3 !<= 461.707 : 7 (2.0) 
1 1 cto !<= 1.0 : 
1 1 C22nte > 6.0 : 19 (3.0) 
1 1 C22nte !> 6.0 : 
1 1 C17nop > 0.0 : 13 (3.0) 
1 1 C17nop !> 0.0 : 
1 1 C20nte <- 3.0 : 
1 1 C4h3 > 21.0 : 16 (3.0) 
1 1 C4h3 !> 21.0 : 
1 1 1 oldCity <= 3.0 : 
1 1 1 C18nop <- 0.131 : 
1 1 1 1 C11nte > 3.0 : 14 (2.0) 
1 1 1 1 C11nte ! > 3.0 : 
1 1 1 1 Cl0nop > 23.0 : 8 (2.0) 
1 1 1 1 Cl0nop!> 23.0 : 
1 1 1 1 1 C14nop <- 6.0 : 
1 1 1 1 1 C16nop > 3.0 : 13 (2.0) 
1 1 1 1 1 C16nop 1> 3.0 : 
1 1 1 1 mopx > 0.0 : 1 (2.0) 
1 1 1 1 mopx !> 0.0 : 
1 1 1 1 C13nop > 0.0 : 14 (3.0) 
1 1 1 C13nop 1> 0.0 : 

1 C18nop <- -0.0040 : 
1 1 vy <= 269.833 : 16 (3.0) 
1 1 vy 1<- 269.833 : 
1 1 1 cto > 28.8444 : 14 (24.0) 
1 1 1 cto !> 28.8444 : 
1 1 1 1 C17dist <= 692.386 : 13 (2.0) 
1 1 1 1 C17dist !<= 692.386 : 14 (2.0) 
1 C18nop !<- -0.0040 : 
1 1 C17nop > 3.0 : 13 (2.0) 
1 1 C17nop !> 3.0 : 
1 1 1 C24nop <= 374.0 : 
1 1 1 1 C11dist <= 16.0 : 14 (5.0) 
1 1 1 1 C11dist !<- 16.0 : 20 (7.0) 
1 1 1 C24nop !<= 374.0 : 
1 1 1 1 C8nte <- 664.378 : 11 (2.0) 

1 1 1 1 1 1 1 C8nte 1<- 654.378 : 14 (3.0) 
C14nop !<= 6.0 : 

1 1 C15nte <- 618.0 : 11 (2.0) 
1 1 1 C16nte !<= 618.0 : 14 (2.0) 
Cl nop !<= 0.131 : 
1 mopx > 0.0 : 13 (2.0) 
1 mopx !> 0.0 : 
1 1 C15nte <= 474.231 : 8 (2.0) 
1 1 C15nte !<- 474.231 : 23 (2.0) 

ldCity !<- 3.0 : 
1 C16nte <- 13.6016 : 11 (2.0) 
1 C16nte !<- 13.6015 : 19 (2.0) 

20nte 1<= 3.0 : 
1 C4h3 <- 886.6 : 19 (2.0) 
1 C4h3 !<- 886.6 : 20 (2.0) 

16nte !<- 0.0 : 
1 plx <- 461.0 : 17 (2.0) 
1 plx !<- 461.0 : 7 (3.0) 

C13nop !<- 23.0 : 
1 mopx <- 646.792 : 11 (2.0) 

1 1 mopx !<- 646.792 : 13 (2.0) 
C19nop 1<- 0.0 : 
1 C21dist <= 424.924 : 
1 1 mtpx <- 636.0 : 16 (2.0) 
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1 62Tjr;t!~~=6~~4?9~42~ (2.0) 
1 1 eoo <- 19.0 : 19 (6.0) 
1 1 coo !<= 19.0 : 
1 1 1 eto <= 2.0 : 3 (2.0) 

1 1 1 1 eto !<= 2.0 : 14 (4.0) 
Cl0nto !<= 0.0 : 
1 Cl0nto <= 3.0 : 20 (2.0) 
1 CI0nte !<= 3.0 : 
1 1 vy <= 0.011 : 16 (3.0) 
1 1 vy !<= 0.011 : 11 (2.0) 

18nop !<- 23.0 : 
1 C18nto <- 3.0 : 13 (4.0) 

1 1 1 C18nto 1<= 3.0 : 11 (3.0) 
1 C24nop !<= 0.0 : 
1 1 vx <= -0.026 : 
1 1 1 ply <- 870.0 : 24 (3.0) 
1 1 1 ply !<= 870.0 : 7 (2.0) 
1 1 vx 1<- -0.026 : 
1 1 1 mopx <= 590.5 : 20 (2.0) 

1 1 1 1 mopx 1<= 690.6 : 19 (4.0) 
1 C15nto !<= 0.0 : 
1 1 eto <= 3.0 : 7 (2.0) 
1 1 eto !<= 3.0 : 
1 1 1 eoo <- 13.0 : 10 (2.0) 

1 1 1 1 eoo !<= 13.0 : 13 (3.0) 
1 Cinto !<= 0.0 : 
1 1 Cinto <= 3.0 : 1 (2.0) 
1 1 Clnto 1<= 3.0 : 
1 1 1 C21dist <- 465.439 : 20 (4.0) 
1 1 1 C21dist 1<- 466.439 : 4 (3.0) 
C3nte !<- 0.0 : 

1 1 1 1 1 1 1 1 1 1 
C4h3 1<= 4.36316E-6 
1 C4N = 0.0 : 

1 1 C3nop <= 23.0 : 3 (3.0) 
1 1 C3nop !<= 23.0 : 5 (2.0) 

1 1 C5N = 0.0 : 
1 1 1 C4h3 <- 0.00102719 
1 1 1 1 C19N = 0.0 : 
1 1 1 1 oldCity = 1.0 : 1 (0.0) 
1 1 1 1 oldCity!= 1.0 : 
1 1 1 1 1 oldCity - 3.0 : 1 (0.0) 
1 1 1 1 1 oldCity !- 3.0 : 

1 1 1 1 oldCity • 4.0 : 1 (0.0) 
1 1 1 1 oldCity 1= 4.0 : 
1 1 1 1 oldCity = 6.0 : 1 (0.0) 
1 1 1 1 oldCity 1= 6.0 : 
1 1 1 1 1 oldCity = 7.0 : 1 (0.0) 
1 1 1 1 1 oldCity != 7.0 : 
1 1 1 1 1 1 oldCity = 8.0 : 1 (0.0) 
1 1 1 1 1 1 oldCity !- 8.0 : 
1 1 1 1 1 1 1 oldCity - 9.0 : 1 (0.0) 
1 1 1 1 1 1 1 oldCi ty 1 = 9.0 : 
1 1 1 1 1 1 1 1 oldCity = 10.0 : 1 (0.0) 
1 1 1 1 1 1 1 1 oldCi ty ! - 10.0 : 
1 1 1 1 1 1 1 1 1 oldCity = 11.0 : 1 (0.0) 
1 1 1 1 1 1 1 1 1 oldCity != 11.0 : 
1 1 1 1 1 1 1 1 oldCity = 12.0 : 1 (0.0) 
1 1 1 1 1 1 1 1 oldCity! = 12.0 : 
1 1 1 1 1 1 1 1 oldCity • 13.0 : 1 (0.0) 

1 1 1 1 1 1 1 oldCity != 13.0 : 
1 1 1 1 1 1 1 1 oldCity - 14.0 : 1 (0.0) 
1 1 1 1 1 1 1 1 oldCity != 14.0 : 
1 1 1 1 1 1 1 1 1 oldCity - 15.0 : 1 (0.0) 
1 1 1 1 1 1 1 1 1 oldCity 1- 16.0 : 
1 1 1 1 1 1 1 1 1 oldCity • 16.0 : 1 (0.0) 

1 1 1 1 1 1 1 1 oldCity != 16.0 : 
1 1 1 1 1 1 1 1 1 oldCity • 17.0 : 1 (0.0) 
1 1 1 1 1 1 1 1 1 oldCity 1- 17.0 : 
1 1 1 1 1 1 1 1 1 1 oldCity - 18.0 : 1 (0.0) 
1 1 1 1 1 1 1 1 1 1 oldCity 1- 18.0 : 
1 1 1 1 1 1 1 1 1 1 1 oldCity = 22.0 : 1 (0.0) 
1 1 1 1 1 1 1 1 1 1 1 oldCi ty 1 = 22.0 : 
1 1 1 1 1 1 1 1 1 1 1 1 oldCity = 24.0 : 1 (0.0) 
1 1 1 1 1 1 1 1 1 1 1 1 oldCity != 24.0 : 
1 1 1 1 1 1 1 1 1 1 1 1 1 oldCity = 2.0 : 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 C9dist <- 476.319 : 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 dee <= 14.0 : 20 (5.0) 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 dee !<= 14.0 : 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 mopy <- 481.231 : 1 (3.0) 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 mopy 1<- 481.231 : 18 (2.0) 
1 1 1 1 1 1 1 1 1 1 1 1 1 C9dist !<= 476.319 : 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 C18nop <= 0.0 : 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 C22nto > 3.0 : 6 (3.0) 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 C22nto ! > 3.0 : 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 C21nto > 0.0 : 1 (2.0) 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 C21nto 1> 0.0 : 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 C24nop > 24.0 : 23 (3.0) 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 C24nop !> 24.0 : 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 C14nop > 0.0 : 23 (2.0) 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 C14nop ! > 0.0 : 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 mtpy <= 695.8 : 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 eto > 7.0 : 3 (3.0) 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 eto 1> 7.0 : 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 C3nop <= 0.0 : 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 C4h3 <- 206.247 : 23 (6.0) 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 C4h3 1<- 206.247 : 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 oldCity > 0.0 : 23 (4.0) 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 oldCity 1> 0.0 : 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 C18nop > 613.701 : 3 (5.0) 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 C18nop ! > 513.701 : 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 C11nto <- -0.039 : 3 (3.0) 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Cl1nto !<= -0.039 : 1 (20.0) 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 C3nop !<= 0.0 : 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 plx <= 1102.0 : 23 (3.0) 

i i i i i i i i i i i i i i i i i \,l~4~;-<!1~~:~4l9 : 4 (3.0) 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 C4h3 1<= 69.6419 : 1 (3.0) 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 mtpy !<= 695.8 : 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 C23dist <= 346.217 : 3 (3.0) 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 C23dist 1<= 346.217 : 13 (2.0) 
1 1 1 1 1 1 1 1 1 1 C18nop! <= 0.0 : 
1 1 1 1 1 1 1 1 1 1 1 1 C21dist <= 376.809 : 9 (2.0) 
1 1 1 1 1 1 1 1 1 1 1 1 C21dist !<= 376.809 : 3 (3.0) 
1 1 1 1 1 1 1 1 1 oldCity ! - 2.0 : 
1 1 1 1 1 1 1 1 1 1 oldCity = 6.0 : 
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Cl0nop <- 21.0 : 
1 C6nte <= 0.0 : 
1 C3nop > 23.0 : 3 (6.0) 
1 C3nop!> 23.0 : 
1 1 mtpx <- 646.167 : 
1 Il dco > 247.194: 7 (2.0) 
1 Il dco !>247.194: 
1 1 1 1 C17nte > 0.0 : 6 (2.0) 
1 1 1 1 C17nte 1> 0.0 : 
1 1 1 1 1 cto <- 3.0 : 11 (3.0) 
1 1 1 1 1 cto !<= 3.0 : 24 (5.0) 
1 1 tpx 1<- 645.167 : 
1 1 C11nte > 0.0 : 14 (2.0) 
1 1 C11nte 1> 0.0 : 
1 1 1 C21nop > 0.0 : 4 (2.0) 

1 1 C21nop !> 0.0 : 
1 1 C13nte > 0.0 : 3 (3.0) 
1 1 C13nte!> 0.0 : 

1 1 C2nop > 0.0 : 3 (3.0) 
1 1 C2nop !> 0.0 : 
1 1 mtpy<-667.8: 
1 1 1 C4h3 > 24.0 : 3 (2.0) 
1 1 1 C4h3 1> 24.0 : 
1 1 1 oldCity <= 702.375 : 
1 1 1 1 C18nop <= 1.0 : 20 (2.0) 
1 1 1 1 C18nop 1<- 1.0 : 
1 1 1 1 1 C11nte <= 410.67 : 23 (2.0) 
1 1 1 1 1 C11nte !<= 410.67 : 1 (3.0) 
1 1 oldCity 1<= 702.376 : 

1 Cl0nop > 0.0 : 1 (2.0) 
1 CI0nop !> 0.0 : 
1 C14nop <- 192.271 : 1 (3.0) 
1 C14nop 1<= 192.271 : 
1 1 C16nop <- 13.8924 : 
1 1 1 mopx <- -0.037 : 1 (6.0) 
1 1 1 mopx !<= -0.037 : 
1 1 1 1 C13nop <= 419.609 : 24 (4.0) 
1 1 1 1 C13nop !<= 419.609 : 19 (3.0) 
1 1 C16nop !<= 13.8924 : 
1 1 1 C18nop > 3.0 : 24 (21.0) 
1 1 1 C18nop 1> 3.0 : 
1 1 1 1 C16nop <- 192.762 : 2 (2.0) 

1 1 1 1 1 C16nop 1<- 192.762 : 24 (2.0) 
1 mtpy 1<- 667.8 : 
1 1 dcc <= 14.2127 : 
1 1 1 C4h3 > 0.0 : 1 (2.0) 
1 1 1 C4h3 1> 0.0 : 
1 1 1 1 oldCity > 1020.29 : 18 (3.0) 
1 1 1 1 oldCity 1> 1020.29 : 
1 1 1 1 1 C18nop <- 433.714 : 17 (2.0) 
1 1 1 1 1 C18nop 1<= 433.714 : 24 (3.0) 
1 1 dcc !<= 14.2127 : 
1 1 1 C4h3 <= 487.111 : 4 (2.0) 
1 1 1 C4h3 1<= 487.111 : 3 (3.0) 

Snts !< 0.0 : 
1 vy <= 0.012 : 22 (3.0) 
1 vy 1<- 0.012 : 
1 1 mtpx <= 861.667 : 18 (2.0) 
1 1 mtpx !<= 861.667 : 3 (2.0) 

10nop !<"'" 21.0 : 
1 coo <- 22.0 : 6 (2.0) 
1 coo !<= 22.0 : 4 (3.0) 

oldCity != 6.0 : 
1 oldCity = 19.0 : 
1 C16nte <= 0.0 : 
1 1 C13nte <= 0.0 : 
1 1 C19nte <- 5.0 : 
1 1 1 C5nte <= 0.0 : 
1 1 1 coo <= 16.0 : 
1 1 1 dco <= 12.083 : 
1 1 1 1 C24dist <= 640.72 : 9 (3.0) 
1 1 1 1 C24dist 1<- 640.72 : 3 (4.0) 
1 1 1 dco 1<= 12.083 : 
1 1 1 C3nte <= 3.0 : 
1 1 1 C22nop > 0.0 : 1 (2.0) 
1 1 1 C22nop !> 0.0 : 
1 1 1 1 C13dist <= 110.164 : 11 (2.0) 

1 1 1 C13dist 1 <= 110.164 : 
1 1 1 1 C4h3 > 21.0 : 18 (3.0) 
1 1 1 1 C4h3 1> 21. 0 : 
1 1 1 1 1 oldCity <= -0.011 : 17 (6.0) 
1 1 1 1 1 oldCity 1<- -0.011 : 
1 1 1 1 1 1 C18nop > 21.0 : 1 (2.0) 
1 1 1 1 1 1 C18nop ! > 21. 0 : 
1 1 1 1 1 1 1 C11nte <= 463.282 : 18 (11.0) 
1 1 1 1 1 1 1 C11nte !<= 463.282 : 1 (3.0) 
1 1 3nte !<= 3.0 : 
1 1 1 mtpy <- 483.6 : 18 (4.0) 
1 1 1 mtpy !<= 483.5 : 23 (2.0) 
1 1 oo! <= 16.0 : 
1 1 C11nte <= 0.0 : 
1 1 C2nop > 0.0 : 4 (2.0) 
1 1 C2nop !> 0.0 : 

1 1 C6dist <= 672.507 : 
1 1 C3nop <= 24.0 : 
1 1 1 C23nte <- 3.0 : 
1 1 1 C19nop <= 0.0 : 
1 Il C4h3>0.0:5(2.0) 
1 1 1 C4h3 !> 0.0 : 
1 1 1 1 oldCity <= 528.692 : 23 (4.0) 
1 1 1 1 oldCity !<- 628.692 : 
1 1 1 1 C18nop <- 694.6 : 
1 1 1 1 1 C11nte > 2.0 : 11 (2.0) 
1 1 1 1 1 C11nte 1> 2.0 : 
1 1 1 1 1 1 Cl0nop <- 326.966 : 24 (2.0) 
1 1 1 1 1 1 Cl0nop !<= 326.966 : 5 (4.0) 
1 1 1 1 C18nop !<= 594.6 : 
1 1 1 1 1 C14nop > 0.0 : 1 (4.0) 
1 1 1 1 1 C14nop !> 0.0 : 
1 1 1 1 1 1 C16nop <= 643.659 : 
1 1 1 1 1 1 1 mopx <= 13.9284 : 17 (6.0) 
1 1 1 1 1 1 1 mopx 1<= 13.9284 : 22 (6.0) 
1 1 1 1 1 1 C16nop 1<- 543.669 : 
1 1 1 1 1 1 1 C13nop <= 486.167 : 17 (4.0) 
1 1 1 1 1 1 1 C13nop !<- 485.167 : 1 (4.0) 
1 1 1 C19nop !<- 0.0 : 
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1 C4h3 <= 437.423: 3 (3.0) 
1 C4h3 !<-437.423: 
1 1 oldCity <= 637.376 : 17 (2.0) 
1 1 oldCity !<= 637.376 : 
1 1 1 C4h3 <= 490.622 : 18 (2.0) 

1 1 1 1 C4h3 !<= 490.622 : 22 (2.0) 
C23nte 1<- 3.0 : 
1 C4h3 > 21.0 : 24 (3.0) 
1 C4h3 1> 21.0 : 
1 1 oldCity <= 474.308 : 17 (2.0) 
1 1 oldCity !<= 474.308 : 2 (2.0) 

3nop !<= 24.0 : 
1 C4h3 <= 232.573 : 18 (3.0) 
1 C4h3 !<= 232.673 2 (2.0) 

6dist ! <=- 672.507 : 
C19dist <= 224.849 : 
1 coo <= 20.0 : 
1 1 C4h3 > 223.652 : 17 (2.0) 
1 1 C4h3 1> 223.662 : 
1 1 1 oldCity <- 622.81 : 22 (2.0) 
1 1 1 oldCity 1<- 622.81 : 20 (2.0) 
1 coo !<- 20.0 : 
1 1 C4h3 <= 21.0 : 18 (4.0) 
1 1 C4h3 !<= 21.0 : 9 (2.0) 
C19dist 1<- 224.849 : 
1 C4h3 > 0.0 : 11 (2.0) 
1 C4h3 !> 0.0 : 
1 1 oldCity > 21.0 : 6 (3.0) 
1 1 oldCity !> 21.0 : 
1 1 1 C18nop <- 10.2956 : 6 (3.0) 
1 1 1 C18nop !<= 10.2966 : 
1 1 1 1 C11nte <- 499.385 : 
1 1 1 1 1 Cl0nop > 191.638 : 17 (11.0) 
1 1 1 1 1 Cl0nop !> 191.638 : 
1 1 1 1 1 1 Cl0nop <= 13.6015 : 17 (3.0) 
1 1 1 1 1 1 Cl0nop !<- 13.6015 : 11 (3.0) 
1 1 1 1 C11nte 1<- 499.386 : 
1 1 1 1 1 C14nop <= 451.367 : 7 (2.0) 

1 1 1 1 1 1 C14nop 1<- 461.367 : 9 (6.0) 
CUn e 1<= 0.0 : 
1 C11nop <= 23.0 : 4 (2.0) 
1 Cllnop !<= 23.0 : 
1 1 C13dist > 114.726 : 24 (4.0) 
1 1 C13dist ! > 114.726 : 
1 1 1 vy <= 0.075 : 17 (2.0) 
1 1 1 vy !<= 0.075 : 18 (3.0) 

5 te 1<- 0.0 : 
1 deoe > 340.852 : 20 (3.0) 
1 deoe !> 340.862 : 
1 1 pIx <= 1149.0 : 22 (9.0) 

1 1 1 pIx !<= 1149.0 : 9 (2.0) 
C19nte 1<= 6.0 : 
1 mopy <= 396.624 : 13 (2.0) 
1 mopy !<= 396.524 : 23 (2.0) 

13nte 1<= 0.0 : 
1 deue > 430.298 : 7 (2.0) 
1 deue 1> 430.298 : 
1 1 C5dist > 876.097 : 11 (5.0) 
1 1 C5dist !> 876.097 : 
1 1 1 mopx <= 668.13 : 11 (2.0) 

1 1 1 1 mopx !<- 658.13 : 18 (4.0) 
1 CiGnte !<= 0.0 : 
1 1 C24dist <- 732.446 : 18 (3.0) 
1 1 C24dist !<= 732.446 : 8 (2.0) 
oldCity 1= 19.0 : 

oldCity - 20.0 : 
1 C19nte <= 0.0 : 
1 C9dist <= 858.697 
1 1 C22nte <= 0.0 : 
1 1 C16nte <= 3.0 : 

: : ïl~2~~i;;\~ ~35. 68 
1 1 1 1 vy <= 0.048 : 
1 1 1 1 1 Cl0nop > 0.0 : 8 (2.0) 
1 1 1 1 1 Cl0nop !> 0.0 : 
1 1 1 1 1 1 vy <= 0.036 : 16 (6.0) 
1 1 1 1 1 1 vy !<= 0.036 : 18 (2.0) 
1 1 1 1 vy !<= 0.048 : 
1 1 1 1 1 mopx <= 684.6 : 1 (2.0) 

1 1 1 mopx !<- 584.5 : 13 (2.0) 
1 C20dist ! <= 435.58 : 
1 1 C23dist <= 810.987 : 21 (3.0) 
1 1 C23dist !<= 810.987 : 17 (2.0) 

ïl~o~;-<~5~2~. ~87 : 
1 1 C24nte > 3.0 : 18 (3.0) 
1 1 C24nte 1> 3.0 : 
1 1 C5dist <= 853.663 : 

1 1 mopx <= 422.143 : 13 (3.0) 
1 1 mopx !<= 422.143 : 
1 1 1 mopy > 521.115 : 9 (3.0) 
1 1 1 mopy 1> 621.115 : 
1 1 1 1 C4h3 > 23.0 : 1 (2.0) 
1 1 1 C4h3 !> 23.0 : 
1 1 1 oldCity > 6.0 : 18 (2.0) 
1 1 1 oldCity 1> 6.0 : 

1 1 C18nop <= 249.0 : 18 (3.0) 
1 1 C18nop !<- 249.0 : 
1 1 C11nte > 23.0 : 21 (3.0) 
1 1 C11nte 1> 23.0 : 
1 1 1 C11nte <= 0.0 : 
1 1 1 1 Cl0nop <= 151.212 : 3 (3.0) 
1 1 1 1 Cl0nop 1 <- 161. 212 : 
1 1 1 1 1 C14nop <- 458.0 : 21 (11.0) 
1 1 1 1 1 C14nop 1<- 468.0 : 
1 1 1 1 1 1 C16nop <= 0.069 : 23 (13.0) 
1 1 1 1 1 1 C16nop !<= 0.069 : 21 (3.0) 
1 1 1 C11nte !<- 0.0 : 
1 1 1 1 mopx <- 14.0367 : 3 (2.0) 
1 1 1 1 1 1 mopx 1<- 14.0367 : 23 (3.0) 
C6dist ! <- 863.663 : 

1 1 deoe <- 14.4222 : 14 (4.0) 
1 1 1 deoe !<= 14.4222 : 18 (4.0) 
mopy 1<= 528.087 : 
1 deue <= 14.7648 : 8 (2.0) 
1 deue !<= 14.7648 : 
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1 mopy <= 575. 638 : 
1 1 deo <= 13.6016 : 13 (5.0) 
1 1 deo 1<= 13.6015 : 18 (3.0) 
1 mopy 1<= 575.538 : 
1 1 C5dist <= 677.956 : 18 (4.0) 

1 1 1 1 1 C5dist 1<= 677 .956 : 23 (4.0) 
Ci50te 1<- 3.0 : 

1 1 mopx <- 698.038 : 14 (2.0) 
1 1 mopx 1<= 698.038 : 12 (2.0) 
C22nte !<= 0.0 : 

1 1 C24dist <= 60.6371 : 
1 1 1 C23dist <= 502.694 : 23 (3.0) 
1 1 1 C23dist 1<= 602.694 : 19 (2.0) 
1 1 C24dist 1<- 60.5371 : 
1 1 1 mtpy <- 610.25 : 24 (2.0) 
1 1 1 mtpy 1<- 610.25 : 17 (2.0) 
C9dist 1 <= 868. 597 : 

coo <= 19.0 : 
C6nte <= 0.0 : 
1 deue <= 14.2127 : 
1 1 Clnop > 21.0 : 17 (2.0) 
1 1 Clnop 1> 21.0 : 
1 1 1 det <= 232.034 : 19 (4.0) 
1 1 1 det 1<- 232.034 : 23 (2.0) 
1 deue 1<= 14.2127 : 
1 1 dee <- 14.4222 : 3 (6.0) 
1 1 dee 1<= 14.4222 : 2 (2.0) 
C5nte !<= 0.0 : 
1 mopy <= 476.154 : 1 (2.0) 
1 mopy 1<- 476.154 : 23 (2.0) 

00 l<:a 19.0 : 
1 C6nte > 3.0 : 3 (2.0) 
1 C5nte 1> 3.0 : 
1 1 C21dist <- 463.039 : 2 (4.0) 
1 1 C21dist 1<- 463.039 : 13 (3.0) 

19nte 1<- 0.0 : 
1 eto <= 3.0 : 
1 1 mopx <- 606.667 : 2 (2.0) 
1 1 mopx 1<= 606.667 : 17 (2.0) 
1 eto !<"" 3.0 : 
1 1 C23dist <= 321.204 : 24 (2.0) 

1 1 1 C23dist 1<= 321.204 : 19 (3.0) 
oldCity 1= 20.0 : 

oldCity :II 21.0 : 
C23nop > 24.0 : 6 (2.0) 
C23nop !> 24.0 : 

C8dist <- 386.374 : 12 (5.0) 
C8dist 1 <= 386.374 : 

CI7nte > 0.0 : 17 (3.0) 
C17nte !> 0.0 : 
1 C4nop > 0.0 : 3 (2.0) 
1 C4nop 1> 0.0 : 
1 1 C20dist > 565.836 : 11 (2.0) 
1 1 C20dist 1> 666.836 : 
1 1 1 vy <- -0.011 : 
1 1 1 1 vx > 0.044 : 23 (3.0) 
1 1 1 1 vx 1> 0.044 : 
1 1 1 1 1 mopy <= 445.042 : 20 (3.0) 
1 1 1 1 1 mopy 1<- 445.042 : 1 (2.0) 
1 1 1 vy 1<= -0.011 : 
1 1 1 1 C24dist <= 606.36 : 20 (17.0) 

1 1 1 1 1 C24dist 1<= 606.36 : 18 (2.0) 
oldC~ty !- 21.0 : 

vx <= 0.192 : 
mopx <= 620.0 : 

C3nop > 0.0 : 16 (2.0) 
C3nop !> 0.0 : 

Clnte > 0.0 : 19 (2.0) 
Clots !> 0.0 : 
1 CI9dist <= 239.708 : 
1 1 vx <= 0.021 : 21 (4.0) 
1 1 vx 1<= 0.021 : 14 (2.0) 
1 CI9dist 1 <= 239.708 : 
1 1 vy > 0.048 : 18 (3.0) 
1 1 vy 1> 0.048 : 
1 1 1 vy <= -0.036 : 17 (3.0) 
1 1 1 vy 1<= -0.035 : 
1 1 1 1 dee <- 14.1421 : 1 (2.0) 
1 1 1 1 dee 1<- 14.1421 : 20 (3.0) 

opx !<= 520.0 : 
1 C8nop > 0.0 : 16 (2.0) 
1 C8nop !> 0.0 : 
1 1 C9nop > 24.0 : 20 (3.0) 
1 1 C9nop 1> 24.0 : 
1 1 C6nte > 3.0 : 2 (3.0) 
1 1 C5nte 1> 3.0 : 
1 1 C2dist <= 14.1421 : 3 (3.0) 
1 1 C2dist 1 <= 14.1421 : 
1 1 1 C3nop <= 24.0 : 
1 1 1 CI9nte > 6.0 : 1 (3.0) 
1 1 CI9nte 1> 6.0 : 
1 1 vy <= -0.146 : 5 (3.0) 
1 1 vy 1<= -0.146 : 
1 1 1 C20nte <= 6.0 : 
1 1 1 C4h3 <= 365.059 : 13 (2.0) 
1 1 1 C4h3 1<- 365.059 : 
1 1 1 1 oldCity <- 16.0 : 
1 1 1 1 1 C18nop > 0.0 : 1 (2.0) 
1 1 1 1 1 CI8nop 1> 0.0 : 
1 1 1 1 1 1 C11nte > 22.6274 : 6 (6.0) 
1 1 1 1 1 1 C11nte 1> 22.6274 : 
1 1 1 1 1 1 1 CIOnop <- 607.0 : 19 (4.0) 
1 1 1 1 1 1 1 CIOnop 1<- 507.0 : 20 (4.0) 
1 1 1 oldCity 1<- 16.0 : 
1 1 1 CI4nop > 3.0 : 20 (2.0) 
1 1 1 CI4nop 1> 3.0 : 
1 1 1 1 C16nop <= 0.0 : 
1 1 1 1 1 oldCity > 21.0 : 20 (6.0) 
1 1 1 1 1 oldCity 1> 21.0 : 
1 1 1 1 1 1 mopx <- 8.06226 : 20 (3.0) 
1 1 1 1 1 1 mopx 1<- 8.06226 : 1 (34.0) 
1 1 1 1 CI6nop !<- 0.0 : 
1 1 1 1 1 CI3nop <- 609.638 : 8 (2.0) 
1 1 1 1 1 C13nop 1<- 509.638 : 1 (2.0) 
1 20nte !<= 6.0 : 
1 1 C4h3 <= 572.375 : 18 (2.0) 
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1 
1 
1 
1 
1 
1 
1 
1 

1 1 1 1 1 1 
1 C19N !- 0.0 : 
1 1 C23nte > 3.0 : 23 (3.0) 
1 1 C23nte !> 3.0 : 

1 1 C13nte > 0.0 : 3 (2.0) 
1 1 C13nte !> 0.0 : 
1 1 1 C20nte <- 0.0 : 
1 1 1 1 Cl0nop > 0.0 : 12 (2.0) 
1 1 1 1 Cl0nop ! > 0.0 : 
1 1 1 1 1 C14nop <= 0.0 : 
1 1 1 1 1 1 C11nop > 24.0 : 6 (2.0) 
1 1 1 1 1 1 C11nop 1> 24.0 : 
1 1 1 1 1 1 1 C6nop <- 23.0 : 
1 1 1 1 1 1 1 1 C22nop > 24.0 : 11 (2.0) 
1 1 1 1 1 1 1 C22nop !> 24.0 : 
1 1 1 1 1 1 1 1 C15nte <~ 0.0 : 
1 1 1 1 1 1 1 1 1 C5nop > 21.0 : 3 (2.0) 
1 1 1 1 1 1 1 1 1 C6nop ! > 21.0 : 
1 1 1 1 1 1 1 1 1 C4h3 > 0.0 : 5 (2.0) 
1 1 1 1 1 1 1 1 1 C4h3 1> 0.0 : 

1 1 1 1 1 1 C4h3 1<= 672.376 : 
1 1 C3nop ,<= 24.0 : 
1 1 1 plx <= 1106.0 : 1 (2.0) 

1 1 1 1 1 1 1 1 plx ,<- 1106.0 : 3 (2.0) 
1 vx !<- 0.192 : 
1 1 coo <= 18.0 : 21 (2.0) 
1 1 coo !<= 18.0 : 
1 1 1 mopx <= 614.783 : 13 (2.0) 
1 1 1 mopx !<- 614.783 : 16 (2.0) 

1 1 1 1 1 1 1 1 1 1 oldCity > 24.0 : 17 (3.0) 
1 1 1 1 1 1 1 1 1 1 oldCity !> 24.0 : 
1 1 1 1 1 1 1 1 1 1 1 C18nop > 909.656 : 17 (6.0) 
1 1 1 1 1 1 1 1 1 1 C18nop ! > 909.655 : 
1 1 1 1 1 1 1 1 1 1 1 C11nte <~ 0.0 : 
1 1 1 1 1 1 1 1 1 1 1 1 Cl0nop <= 14.0367 : 24 (8.0) 
1 1 1 1 1 1 1 1 1 1 1 1 Cl0nop ! <= 14.0357 : 
1 1 1 1 1 1 1 1 1 1 1 1 C14nop <= 6.0 : 
1 1 1 1 1 1 1 1 1 1 1 1 1 C16nop <= -0.05 : 19 (13.0) 
1 1 1 1 1 1 1 1 1 1 1 1 1 C16nop ! <= -0.06 : 
1 1 1 1 1 1 1 1 1 1 1 1 Cl0nop <= 14.3178 : 19 (5.0) 
1 1 1 1 1 1 1 1 1 1 1 1 Cl0nop !<= 14.3178 : 24 (37.0) 
1 1 1 1 1 1 1 1 1 C14nop !<= 6.0 : 
1 1 1 1 1 1 1 1 1 1 Cl0nop <- 418.862 : 24 (2.0) 
1 1 1 1 1 1 1 1 1 1 Cl0nop !<= 418.862 : 19 (3.0) 
1 1 1 1 1 1 1 C11nte ! <= 0.0 : 
1 1 1 1 1 1 1 1 mopx > 5.0 : 11 (2.0) 
1 1 1 1 1 1 1 1 mopx !> 6.0 : 
1 1 1 1 1 1 1 1 C13nop <= 696.967 : 17 (2.0) 
1 1 1 1 1 1 1 1 1 C13nop !<= 596.957 : 24 (4.0) 
1 1 C16nte !<= 0.0 : 
1 1 1 mtpy <= 669.333 : 15 (2.0) 
1 1 1 1 mtpy !<- 669.333 : 19 (2.0) 
1 1 6nop 1<= 23.0 : 
1 1 1 C5nop <= 24.0 : 5 (2.0) 
1 1 1 C5nop !<= 24.0 : 
1 1 1 1 dco <= 272.391 : 1 (2.0) 
1 1 1 1 1 1 dco !<= 272.391 : 24 (2.0) 
1 1 C14nop !<- 0.0 : 
1 1 1 mopx <= 645.308 : 18 (2.0) 
1 1 1 mopx !<= 645.308 : 11 (2.0) 
1 20nte !<= 0.0 : 

1 1 \,l~t;; ~~55~1 ~6 : 24 (2.0) 
1 1 1 mtpy 1<= 681.6 : 7 (2.0) 

1 1 \,lt2!~~st5~~0 6~6.243 : 20 (3.0) 
1 1 1 1 1 C24dist !<= 675.243 : 18 (2.0) 
C4h3 !<= 0.00102719 : 

oldCity ~ 2.0 : 3 (0.0) 
oldCity != 2.0 : 
1 oldCity = 3.0 : 3 (0.0) 
1 oldCity != 3.0 : 
1 1 oldCity - 6.0 : 3 (0.0) 
1 1 oldCity 1- 5.0 : 
1 1 1 oldCity = 6.0 : 3 (0.0) 
1 1 1 oldCity != 6.0 : 
1 1 1 oldCity = 7.0 : 3 (0.0) 
1 1 oldCity 1- 7.0 : 
1 1 1 oldCity = 8.0 : 3 (0.0) 
1 1 1 oldCity != 8.0 : 
1 1 1 1 oldCity = 9.0 : 3 (0.0) 
1 1 1 1 oldCity !- 9.0 : 
1 1 1 1 1 oldCity - 10.0 : 3 (0.0) 
1 1 1 1 1 oldCity 1- 10.0 : 
1 1 1 1 1 1 oldCity = 11.0 : 3 (0.0) 

1 1 1 1 1 oldCity != 11.0 : 
1 1 1 1 1 1 oldCity ~ 12.0 : 3 (0.0) 
1 1 1 1 1 1 oldCity !- 12.0 : 
1 1 1 1 1 oldCity = 13.0 : 3 (0.0) 
1 1 1 1 1 oldCity != 13.0 : 

1 1 1 1 oldCity - 14.0 : 3 (0.0) 
1 1 1 1 oldCity != 14.0 : 
1 1 1 1 1 oldCity - 16.0 : 3 (0.0) 
1 1 1 1 1 oldCity != 15.0 : 
1 1 1 1 1 1 oldCity - 16.0 : 3 (0.0) 
1 1 1 1 1 oldCity != 16.0 : 
1 1 1 1 1 1 oldCity = 17.0 : 3 (0.0) 
1 1 1 1 1 1 oldCity !- 17.0 : 
1 1 1 1 1 1 oldCity - 18.0 : 3 (0.0) 
1 1 1 1 1 1 oldCity 1- 18.0 : 

1 1 1 1 oldCity - 19.0 : 3 (0.0) 
1 1 1 1 oldCity != 19.0 : 
1 1 1 1 1 oldCity = 20.0 : 3 (0.0) 
1 1 1 1 1 oldCity 1= 20.0 : 
1 1 1 1 1 1 oldCity = 21.0 : 3 (0.0) 

1 1 1 1 1 oldCity 1- 21.0 : 
1 1 1 1 1 1 oldCity = 22.0 : 3 (0.0) 
1 1 1 1 1 1 oldCity ! - 22.0 : 
1 1 1 1 1 1 1 oldCity - 23.0 : 3 (0.0) 
1 1 1 1 1 1 1 oldCity 1- 23.0 : 
1 1 1 1 1 1 1 1 oldCity = 24.0 : 3 (0.0) 
1 1 1 1 1 1 1 1 oldCity != 24.0 : 
1 1 1 1 1 1 1 1 1 oldCity - 1. 0 : 
1 1 1 1 1 1 1 1 1 1 C16nop > 0.0 : 17 (2.0) 
1 1 1 1 1 1 1 1 1 1 C16nop ! > 0.0 : 

1 1 1 1 Il 1 1 1 1 1 \,1~0~~<~7~O~0:: 6 (4.0) 
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1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

Il 
C5N != 0.0 : 

C19nop <= 23.0 
C20nop <= 0,0 : 
1 coo <= 22.0 : 

1 1 Cl~~!~; ~= 6~~9;0~~ (2.0) 
1 1 C4nte!> 6.0 : 
1 C4nte > 0.0 : 6 (2.0) 
1 C4nte !> 0.0 : 
1 1 C17nte <= 0.0 : 
1 1 1 C24nte <= 0.0 : 
1 1 1 vy <= 0.029 : 
1 1 1 1 coo > 20.0 : 22 (13.0) 
1 1 1 1 coo 1> 20.0 : 
1 1 1 1 1 mtpy > 701.8 : 6 (4.0) 
1 Illmtpyl>701.8: 
1 1 1 1 1 mopx > 666.0 : 6 (4.0) 

1 1 coo !<= 20.0 : 
1 1 1 mtpy <= 427.167 : 18 (2.0) 

1 1 mtpy !<= 427.167 : 4 (2.0) 

\,l~26~~p 2~~. gl: 0 : 
1 1 cto <- 1.0 : 
1 1 1 dcc > 14.2127 : 2 (3.0) 
1 1 1 dcc !> 14.2127 : 

1 1 1 dcc <= 11.4018 : 6 (2.0) 
1 1 1 dcc !<- 11.4018 : 
1 1 1 1 mtpx <= 690.0 : 19 (2.0) 
1 1 1 1 mtpx !<= 690.0 : 3 (2.0) 
1 etc !<= 1.0 : 
1 1 C13nop <- 0.0 : 
1 1 C19nte > 3.0 : 2 (2.0) 
1 1 C19nte!> 3.0 : 
1 1 1 de oc <= 397.664 : 

1 1 C22nop <= 21.0 : 
1 1 1 Clnop <= 21.0 : 
1 1 1 1 dct <= 10.2966 : 
1 1 1 1 1 C4h3 <= 683.762 : 23 (3.0) 
1 1 1 1 1 C4h3 !<= 683.762 : 6 (2.0) 
1 1 1 1 dct !<- 10.2956 : 
1 1 1 1 mopx > 609.231 : 3 (22.0) 
1 1 1 1 mopx!> 609.231 : 
1 1 1 1 1 C4h3 <= 77.9295 : 2 (6.0) 
1 1 1 1 1 C4h3 !<- 77.9296 : 
1 1 1 1 1 oldCity <= 0.0 : 
1 1 1 1 1 1 C18nop <= 382.167 : 
1 1 1 1 1 1 1 C11nte > 23.0 : 3 (2.0) 
1 1 1 1 1 1 1 C11nte ! > 23.0 : 
1 1 1 1 1 1 1 1 C10nop <- 668.323 : 2 (6.0) 
1 1 1 1 1 1 1 1 Cl0nop !<- 558.323 : 3 (6.0) 
1 1 1 1 1 1 C18nop ! <= 382.167 : 
1 1 1 1 1 1 1 C14nop > 613.696 : 2 (4.0) 
1 1 1 1 1 1 1 C14nop !> 513.696 : 
1 1 1 1 1 1 1 1 C16nop <= 49.6488 : 
1 1 1 1 1 1 1 1 1 C4h3 > 134.213 : 23 (7.0) 
1 1 1 1 1 1 1 1 1 C4h3 ! > 134.213 : 
1 1 1 1 1 1 1 1 1 1 mopx <= 6.0 : 2 (7.0) 
1 1 1 1 1 1 1 1 1 1 mopx 1<= 6.0 : 23 (3.0) 
1 1 1 1 1 1 1 C16nop !<= 49.6488 : 
1 1 1 1 1 1 1 C16nop <= 114.543 : 3 (5.0) 
1 1 1 1 1 1 1 C16nop !<= 114.543 : 23 (8.0) 

1 1 oldCity !<= 0.0 : 
1 1 1 C13nop <= 520.827 : 23 (3.0) 
1 1 1 C13nop !<= 520.827 : 3 (4.0) 
Cl op 1<= 21.0 : 
1 vx <= -0.048 : 4 (2.0) 
1 vx 1<= -0.048 : 
1 1 Clnop <= 24.0 : 
1 1 1 C4h3 <= 14.3178 : 2 (2.0) 
1 1 1 C4h3 1<- 14.3178 : 3 (2.0) 
1 1 Clnop !<= 24.0 : 
1 1 1 C4h3 <= 143.837 : 5 (3.0) 
1 1 1 C4h3 1<= 143.837 : 3 (2.0) 

22nop !<= 21.0 : 
1 vx <= -0.048 : 6 (4.0) 

1 1 vx !<= -0.048 : 23 (3.0) 
dcoc 1 <= 397. 664 : 
1 mtpy <= 495.76 : 18 (4.0) 

1 1 mtpy 1<= 495.75 : 23 (6.0) 
C13nop 1<- 0.0 : 

1 1 ply <= 401.0 : 23 (3.0) 
1 1 ply 1<- 401.0 : 2 (2.0) 

20nop 1<- 21.0 : 
1 mopx <- 633.6 : 23 (6.0) 
1 mopx !<= 633.5 : 
1 1 mopx > 676.962 : 2 (4.0) 
1 1 mopx 1> 576.962 : 
1 1 1 mopy <= 433.808 : 9 (2.0) 

1 1 1 1 1 mopy 1<- 433.808 : 8 (2.0) 
oldCity 1= 1.0 : 
1 C16nte > 0.0 : 10 (2.0) 
1 CiGnte 1> 0.0 : 
1 1 dcc <= 4.47214 : 14 (2.0) 
1 1 dcc !<= 4.47214 : 
1 1 1 coo <= 13.0 : 1 (2.0) 
1 1 1 coo 1 <= 13.0 : 
1 1 1 1 C6nop <= 0.0 : 3 (84.0) 
1 1 1 1 C6nop 1<= 0.0 : 
1 1 1 1 1 ply <= 766.0 : 2 (3.0) 
1 1 1 1 1 ply 1<= 765.0 : 3 (3.0) 

1 1 1 1 1 mopx !> 665.0 : 
1 1 1 1 1 1 C4h3 <= 0.0 : 22 (23.0) 
1 1 1 1 1 1 C4h3 1<= 0.0 : 
1 1 1 1 1 1 1 oldCity <- -0.0070 : 6 (4.0) 
1 1 1 1 1 1 oldCity 1<- -0.0070 : 22 (4.0) 
1 vy 1<- 0.029 : 
1 1 vy > 0.099 : 22 (4.0) 
1 Ivy!>0.099: 
1 1 1 ply <= 466.0 : 21 (4.0) 
1 1 1 1 ply 1<- 456.0 : 5 (6.0) 
1 C24nte 1<= 0.0 : 
1 1 ply <= 859.0 : 5 (2.0) 
1 1 1 ply !<= 869.0 : 22 (6.0) 
1 C17nte 1<= 0.0 : 
1 1 dct <= 221.676 : 17 (3.0) 
1 1 dct 1<= 221.576 : 22 (7.0) 
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1 C19dist !<= 569.088 : 
Il mtpy <- 567.2: 4 (3.0) 
1 1 mtpy 1<= 567.2 : 22 (3.0) 
coo !<= 22.0 : 
1 C17nt. > 3.0 : 16 (2.0) 
1 C17nte !> 3.0 : 
1 1 mopx <- 641.308 : 22 (7.0) 

1 1 1 mopx !<- 641.308 : 7 (3.0) 
C20nop 1<= 0.0 : 

1 1 COQ <= 18.0 : 19 (3.0) 
1 1 coo !<= 18.0 : 14 (3.0) 
C19nop !<= 23.0 : 
1 coo <= 20.0 : 1 (3.0) 
1 coo !<= 20.0 : 7 (2.0) 

C4N 1= 0.0 : 
C11nop <= 0.0 : 

C1Gnop <= 0.0 : 
C24nop <- 24.0 

cto <= 1.0 : 
1 C5dist <= 673.933 : 
1 1 C20nop > 0.0 : 4 (3.0) 
1 1 C20nop !> 0.0 : 
1 1 1 C2dist <= 128.6 : 2 (3.0) 
1 1 1 C2dist !<= 128.6 : 5 (4.0) 
1 C5dist !<= 673.933 : 
1 1 mopy <- 615.538 : 17 (2.0) 
1 1 mopy 1<= 616.638 : 1 (2.0) 
eto !<.,. 1.0 : 

C13nt. > 0.0 : 4 (2.0) 
C13nte !> 0.0 : 

C14nte <= 3.0 : 
C19nt. <= 0.0 : 

C8dist <- 391. 261 : 
1 mtpy <= 495.75 : 5 (2.0) 
1 mtpy 1<= 496.75 : 15 (2.0) 
C8dist 1<- 391.261 : 
1 C3nop <- 23.0 : 
1 1 C1nop <- 24.0 : 
1 1 1 C24nt. <= 0.0 : 

1 1 dcoc <= 167.61 : 
1 1 1 C20nte <= 3.0 : 
1 1 1 1 C4h3 > 0.0 : 1 (2.0) 
1 1 1 C4h3 !> 0.0 : 
1 1 1 oldCity > 23.0 : 1 (4.0) 

1 1 oldCity!> 23.0 : 
1 1 C18nop > 3.0 : 4 (2.0) 
1 1 C18nop !> 3.0 : 
1 Cl1nte (c 3.0 : 

1 C10nop <= 0.0 : 
1 1 C14nop <- 113.071 : 
1 1 1 C16nop > 23.0 : 4 (6.0) 
1 1 1 C16nop !> 23.0 : 
1 1 1 1 mopx <= 16.0 : 1 (2.0) 
1 1 1 1 mopx 1 <= 16.0 : 
1 1 1 1 1 C13nop <= 14.7648 : 4 (27.0) 
1 1 1 1 1 C13nop !<= 14.7648 : 1 (2.0) 
1 1 C14nop 1 <= 113.071 : 
1 1 1 vy <= -0.197 : 4 (2.0) 
1 1 1 vy !<= -0.197 : 1 (9.0) 
1 C10nop !<= 0.0 : 
1 1 cto <= 501.0 : 1 (2.0) 
1 1 cto !<= 501.0 : 4 (2.0) 
Cllnte 1<'" 3.0 : 
1 C17dist <= 446.75 : 4 (2.0) 
1 C17dist !<= 446.75 : 5 (2.0) 

2 nte !<= 3.0 : 
1 C4h3 <- 640.333 : 23 (2.0) 
1 C4h3 !<- 640.333 : 
1 1 oldCity <- 938.667 : 4 (4.0) 
1 1 oldCity !<= 938.667 : 2 (2.0) 

coc !<- 167.61 : 
1 C5nop > 24.0 : 4 (2.0) 
1 C5nop !> 24.0 : 
1 1 dco <- 6.08276 : 
1 1 1 C4h3 <= 490.609 : 2 (2.0) 
1 1 1 C4h3 !<- 490.609 : 1 (2.0) 
1 1 dco 1<= 6.08276 : 
1 1 1 C4h3 <= 485.923 : 1 (14.0) 
1 1 1 C4h3 !<= 485.923 : 5 (9.0) 

C24nte !<= 0.0 : 
1 mopx <= 579.886 : 2 (2.0) 

1 1 mopx !<= 579.885 : 4 (2.0) 
C1nop !<= 24.0 : 

1 1 dcuc > 14.2127 : 1 (6.0) 
1 1 dcuc !> 14.2127 : 
1 1 1 coo <- 19.0 : 4 (3.0) 
1 1 1 coo 1<- 19.0 : 1 (2.0) 
C3nop !<= 23.0 : 
1 C3nop <= 24.0 : 23 (2.0) 
1 C3nop !<= 24.0 : 
1 1 dco <= 11.0 : 5 (2.0) 
1 1 dco 1<= 11.0 : 
1 1 1 vx <= 0.087 : 1 (4.0) 

1 1 1 1 vx !<= 0.087 : 2 (2.0) 
Ct nte !<- 0.0 : 
1 vx <- -0.051 : 24 (3.0) 
1 vx 1<- -0.061 : 
1 1 ply> 568.0 : 1 (3.0) 

i i \,l~o~; ~~84~5:208 : 2 (2.0) 
1 1 1 mopy 1<- 466.208 : 6 (2.0) 

14nt. 1<= 3.0 : 
1 mtpy <- 409.667 : 1 (2.0) 

1 1 mtpy !<- 409.667 : 17 (2.0) 
C2 n p !<= 24.0 : 
1 coo <- 19.0 : 6 (3.0) 
1 coo 1<- 19.0 : 22 (2.0) 

16nop !<- 0.0 : 
1 coo > 22.0 : 4 (2.0) 
1 coo !> 22.0 : 
1 1 mopx <- 609.833 : 14 (2.0) 
1 1 mopx 1<- 609.833 : 15 (2.0) 

Unop !<= 0.0 : 
1 mopx <= 611.671 : 9 (2.0) 
1 mopx !<= 611.571 : 17 (2.0) 
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