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A B ST R AC T

Heavy-ion collisions performed at facilities such as the Large Hadron Collider (LHC)

and the Relativistic Heavy Ion Collider (RHIC) produce the hottest matter in the universe

at ∼ 1012 K. This generates an energetic state of matter in which quarks and gluons

become deconőned, known as the Quark Gluon Plasma. This material only survives

for approximately 10−23 s, presenting many challenges for precise study. However, its

ŕeeting nature can, at times, be used as a powerful tool.

Atomic nuclei, as natural phenomena described by quantum őeld theory, are deőned

by their reliance on the wavefunction and its internal and external ŕuctuations. As

prescribed by quantum mechanics, these ŕuctuations are guided by underlying states

encoded in the wavefunction of a speciőc nucleus. Ascribing a physical feature to an

atomic nucleus demands that its overall wavefunction - the superposition of its intrinsic

quantum states - prescribe this feature. This means that, when trying to determine the

overall structural ‘shape’ of a nucleus, the wavefunction generally appears as spherically

symmetric, even though it may be composed of a superposition of quantum states which

individually have well-deőned shapes due to their angular momentum structures. For a

given nucleus, the typical time scale of ŕuctuations in angular (or rotational) degrees

of freedom is ∼ 10−21 s. Typical spectroscopic imaging methods offer resolutions on

much longer timescales, probing a superposition of a large number of these underlying

states, and therefore complicating the task of understanding the underlying states. More

energetic and targeted methods, such as electron-ion collisions, do provide sufficiently

short resolution scales, but the nature of these probes only allows for highly-localized

‘images’: building a composite out of a collection of these images over many events

simply leads to the same problem as with spectroscopic methods.
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Heavy-ion collisions provide us with the tools to solve the nuclear imaging problem.

Indeed, the nucleus-nucleus interaction happens fast enough as to resolve only a single

state ŕuctuation, and the high-energy nucleons participating in a collision give us

access to the superposition of the many-body nucleon distributions of the collision

system. In essence, they act as a camera with an exposure rapid enough to capture a

single constituent state of the nuclear wavefunction, essentially peering into the shape of

these ŕuctuations; these ŕuctuations then create anisotropic geometric conőgurations in

the initial state, which are detectable in experimental observables. That is, experimental

results gathered during collisions of deformed systems would be irreconcilable with a

theoretical picture excluding the shapes of these ŕuctuations.

In this study, we use a fully state-of-the-art hybrid model of heavy-ion collisions

consisting of the IP-Glasma initial state and pre-equilibrium evolution, 2+1 and 3+1D

MUSIC viscous hydrodynamics, iSS particlization and SMASH hadronic cascade. Our

end-to-end physical model allows us to generate nucleon conőgurations consistent with

low-energy estimates of nuclear structure, collide them at a given energy, evolve the

thermalized QGP and produce observables which are directly comparable to results

produced in experiments. This one-to-one comparison to experiment allows us to put

strong constraints on the shape of the ŕuctuations of the wavefunction and therefore on

the nuclear wavefunction itself, in turn informing low-energy physicists as to what the

most likely geometric properties of the wavefunction are.

We share results for 3 different systems, namely 238U, 197Au and 129Xe at RHIC and

LHC energies, which show that our cutting-edge, QCD-based framework can select

appropriate nuclear conőgurations based on direct comparisons to experimental results.
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R É S U M É

Les collisions d’ions lourds réalisées dans des installations telles que le Grand collision-

neur de hadrons (LHC) et le collisionneur d’ions lourds relativistes (RHIC) produisent

la matière la plus chaude de notre univers, donc la température s’approche de 1012 K.

Ces collisions génèrent un état extrêmement énergétique et éphémère dans lequel les

quarks et les gluons deviennent déconőnés, le Plasma de Quarks et de Gluons (QGP).

Cet état de déconőnement ne dure qu’environ 10−23 s, ce qui complique son analyse

précise. Sa brève nature peut toutefois aussi être utilisée comme puissant outil.

Les noyaux atomiques, en tant que phénomènes naturels décrits par la théorie quan-

tique des champs, sont déőnis par leur dépendance à l’égard de la fonction d’onde et

de ses ŕuctuations internes et externes. Comme le prescrit la mécanique quantique, ces

ŕuctuations sont guidées par des états sous-jacents encodés dans la fonction d’onde

d’un noyau donné. L’attribution d’une caractéristique physique à un noyau atomique

exige que sa fonction d’onde globale, c’est-à-dire la superposition de ses états quan-

tiques intrinsèques, prescrive cette caractéristique. Cela signiőe que, lorsqu’on essaie

de déterminer la ń forme » globale d’un noyau, la fonction d’onde apparaît générale-

ment comme étant à sphérique, même si elle peut être composée d’une superposition

d’états quantiques qui, individuellement, ont des formes bien déőnies en raison de

leurs structures de moment angulaire. Pour un noyau donné, l’échelle de temps typ-

ique sur laquelle les ŕuctuations des degrés de liberté angulaires (ou rotationnels) se

produisent est de ∼ 10−21 s. Les méthodes d’imagerie spectroscopique typiques offrent

des résolutions sur des échelles de temps beaucoup plus longues que celle-ci, sondant

une superposition d’un grand nombre d’états sous-jacents, ce qui complique la tâche

de compréhension desdits états. Des méthodes plus énergétiques et plus ciblées, telles

que les collisions électron-ion, permettent d’obtenir des échelles de résolution suffisam-

v



ment courtes, mais la nature de ces sondes ne permet d’obtenir que des ń images » très

localisées : la construction d’un composite à partir d’une collection de ces images sur

de nombreux événements conduit simplement au même problème qu’avec les méthodes

spectroscopiques.

Les collisions d’ions lourds nous fournissent les outils nécessaires pour résoudre le

problème de l’imagerie nucléaire. En effet, l’interaction entre les noyaux est suffisam-

ment rapide pour ne résoudre qu’une seule ŕuctuation d’état, et les nucléons participant

à une collision à haute énergie nous donnent accès à une superposition des distributions

de nucléons du système de collision. Ils agissent essentiellement comme une caméra

dont le temps d’exposition est suffisamment rapide pour capturer un seul état consti-

tutif de la fonction d’onde nucléaire, produisant une image de la forme d’une de ces

ŕuctuations. Ces ŕuctuations créent alors des conőgurations géométriques anisotropes

dans l’état initial, qui sont détectables dans les données expérimentales. Les résultats

expérimentaux recueillis lors de collisions de systèmes déformés seraient inconciliables

avec une image théorique excluant les formes de ces ŕuctuations.

Dans cette étude, nous utilisons un modèle hybride de collisions d’ions lourds com-

posé d’IP-Glasma comme état initial évolutif, de MUSIC pour la phase d’hydrodynamique

visqueuse en 2+1 et 3+1D, de la particulation d’iSS et de la cascade hadronique de

SMASH. Notre modèle physique nous permet de générer des conőgurations de nucléons

compatibles avec les estimations de la structure nucléaire à basse énergie, de les faire

entrer en collision à une énergie donnée, d’évoluer le QGP thermalisé et de produire des

données directement comparables aux résultats expérimentaux. Cette comparaison di-

recte aux résultats expérimentaux nous permet d’imposer des contraintes strictes sur la

forme des ŕuctuations de la fonction d’onde et donc sur la fonction d’onde nucléaire en

soi. Ces contraintes permettent ensuite aux physiciens des basses énergies de connaître

les propriétés géométriques les plus probables de la fonction d’onde.

Nous partageons les résultats obtenus pour trois systèmes différents, soit 238U, 197Au

et 129Xe aux énergies du RHIC et du LHC, qui montrent que nos méthodes de pointe,
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basé sur la chromodynamique quantique, peut sélectionner des conőgurations nucléaires

appropriées sur la base de comparaisons directes avec les résultats expérimentaux.
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C O N T R I B U T I O N T O O R I G I NA L

K N OW L E D G E

Chapters 1-4 Ð These chapters provide, in order, a general introduction to nuclear

physics, theoretical and experimental advancements in nuclear structure studies and

emulation, a complete review of the pre-equilibrium and hydrodynamics evolution

phases of heavy-ion collisions, and a thorough description of experimental observables

which are relevant to the current study. I have contributed signiőcantly to our nucleon

sampling procedure [1] and to the ensuring stability in the pre-equilibrium evolution.

Furthermore, I have made signiőcant advancements in automation procedures for run-

ning our codes on high performance computing infrastructure.

Chapter 5 Ð Introduces őrst-of-their-kind results stemming from fully physically-

motivated simulations of heavy-ion collisions across two beam energies and systems

(197Au and 238U), and four total nuclear parametrizations [1]. My results establish

the efficacy and sensitivity of our framework to fairly small changes to the nuclear

parametrizations and, therefore, initial state geometry. Through a single calibration

step, our framework reproduces all provided baseline observables, conőrming our ap-

proach’s reliability. In a őrst, I then use our appropriately calibrated model to discrimi-

nate between potential nuclear parametrizations, providing physics-backed insights as

to which parametrizations are better matches for the entirety of the experimental data.

This thorough reproduction and combined matching of experimental data are novel to

the őeld, and have been published in Ref. [1]. The calculations producing our results

were conducted on high performance computing infrastructure and totalized approxi-

mately 450 core-years of compute time.

Chapter 6 Ð We extend the boost-invariant framework to 3+1 dimension, providing

xxx
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theoretical motivation and some numerical details. Once again, similar advancements

to the computing procedures have been made in the 3+1D framework, allowing for a

more streamlined process, quicker computations and, therefore, better statistics.

Chapter 7 Ð Building on the novel work from Chapter 5, I conduct the őrst complete

analysis and synthesis of the nuclear structure of 129Xe using the entirety of available

experimental data simultaneously, seeking a parametrization which best reproduces all

the data. Furthermore, I provide the őrst thorough analysis of the sensitivity of longi-

tudinal observables to geometric ŕuctuations in the initial state, allowing for further

studies to build on our acquired knowledge. Finally, I use novel techniques to provide a

most-likely parametrization őt for 129Xe, constraining the wide collection of ‘accepted’

129Xe parametrizations down to a much narrower range of parametrization parameters.

These calculations were made using our physics-based model, and which required the

use of 700 core-years of compute time.



1
I N T RO D U C T I O N T O N U C L E A R P H YS I C S

When Ernest Rutherford arrived at McGill in 1898, he was already a renowned physicist

with years of contributions to the nascent őeld of radioactivity. His discovery and

subsequent naming of alpha and beta rays provided him with a view of the microscopic

world that few of his time had been able to formalize; a view which, through years of

experimental process and progress, would lead to his landmark ‘gold foil experiment,’

proving once and for all that atoms, the building blocks of all known matter at the

time, were made up predominantly of vacuum, harboring an extremely dense nucleus of

positive charge at their cores. His discovery of the true nature of atoms spurred the golden

age of nuclear physics, from the discovery of neutrons by James Chadwick [2] to the

initial description and characterization of nuclear fusion as stars’ secret to longevity and

energy by Eddington [3]. The contemporaneous discovery and description of quantum

mechanics őnally led to an event which is directly linked to the writing of this thesis

today: the initial positing by Hideki Yukawa [4] of the fundamental force required for

binding neutrons and protons inside an atomic nucleus. This new force, mediated by

a yet-to-be-discovered particle he named pi mesons, would come to be known as the

strong nuclear force.

Over the next 90 years, our understanding and deőnitions of the strong nuclear force

have evolved and complexiőed. Following the successful characterization of electro-

magnetism via quantum őeld theory, a similar program was introduced to attempt to

describe the strong force as a fundamental interaction fully. While, at őrst, the strong

force could not be fully described by quantum őeld theory given quarks, the theorized

fundamental building blocks of hadrons, had never been detected alone, deep inelastic

1



1.1 qcd crash course 2

Figure 1: Ernest Rutherford, the ‘father of nuclear physics’, shown in his laboratory at McGill.

His contributions to the őeld, most notably his descriptions of radiative processes and

atomic nuclei, spurred the contemporary era of nuclear physics.

scattering experiments led by James Bjorken [5] showed that quarks really did exist. The

subsequent proposal of a new quantum number - color - to explain how the existence

of Δ++ did not violate Pauli’s exclusion principle sealed the deal: the őeld of Quantum

Chromodynamics (QCD) was born.

1.1 qcd crash course

QCD is a Yang-Mills theory, a non-abelian group theory. Its non-abelian nature means

that its mediators - gluons - are themselves affected by the interaction, and can therefore

radiate more gluons. It also means that its coupling strength increases with distance,
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making QCD a theory characterized by asymptotic freedom. The QCD Lagrangian is

given by

LQCD =

∑︁
𝑓

𝜓 𝑓
(
𝑖 /𝐷 −𝑚 𝑓

)
𝜓 𝑓 −

1

4
𝐹𝑎𝜇𝜈𝐹

𝜇𝜈𝑎 (1.1)

with 𝑎 being the quark color index, which runs from 1 to 8, 𝑓 being the index that runs

over the quark ŕavor space and𝜓 𝑓 being the Dirac spinor of the quark őeld. Here, Dirac

slash notation - /𝐷 = 𝛾 𝜇𝐷𝜇 - was used for succinctness, where 𝛾 𝜇 are the Dirac matrices

and 𝐷𝜇 is the covariant derivative, deőned as

𝐷𝜇 = 𝜕𝜇 + 𝑖𝑔𝐴𝑎𝜇𝑡𝑎, (1.2)

where we have introduced the SU(3) generators 𝑡𝑎, commonly referred to as Gell-Mann

matrices [6], which are the source of the non-abelian nature of QCD since they do not

commute. Indeed,

[𝑡𝑎, 𝑡𝑏] = 𝑖 𝑓 𝑎𝑏𝑐𝑡𝑐 , (1.3)

with 𝑓 𝑎𝑏𝑐 , the SU(3) structure constant. These generators combined to the color gauge

őeld components𝐴𝑎𝜇 form the color gauge őelds (sometimes referred to as gluon őelds),

𝐴𝜇 = 𝐴
𝑎
𝜇𝑡𝑎. (1.4)

Equation (1.1) also sees the introduction of the QCD őeld strength tensor 𝐹𝑎𝜇𝜈 , which

can be understood as being very similar in form to its Quantum Electrodynamics

counterpart, with the addition of a non-vanishing commutator between the color gauge

őelds due to QCD being a non-abelian theory, i.e.,

𝐹𝜇𝜈 = 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇 + 𝑖𝑔
[
𝐴𝜇 ,𝐴𝜈

]
→𝐹𝑎𝜇𝜈𝑡𝑎 = 𝜕𝜇𝐴

𝑎
𝜈𝑡𝑎 − 𝜕𝜈𝐴𝑎𝜇𝑡𝑎 + 𝑖𝑔𝐴𝑎𝜇𝐴𝑏𝜈 [𝑡𝑎, 𝑡𝑏]

⇒𝐹𝑎𝜇𝜈𝑡𝑎 =
(
𝜕𝜇𝐴

𝑎
𝜈𝑡𝑎 − 𝜕𝜈𝐴𝑎𝜇𝑡𝑎 −𝑔𝑓𝑎𝑏𝑐𝐴𝑏𝜇𝐴𝑐𝜈

)
𝑡𝑎.

(1.5)

As in other theories, the strong coupling 𝑔 marks the strength of the interaction

between colored particles (quarks or gluons). As mentioned above, its value decreases
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with increasing energy, starkly contrasting to the electromagnetic coupling. This means

that particles which interact via the strong interaction can not, unless provided tremen-

dous amounts of energy, extirpate themselves from the grasp of its coupling, leading

to a phenomenon, hinted at earlier, called color conőnement. We can understand this

behavior theoretically by looking at the 𝛽-functions of both theories, a function which

quantiőes changes in a theory’s coupling strength at different energy scales. In QED,

we have

𝛽 (𝑒) = 𝜕𝑒

𝜕 log𝑄
=

𝑒3

12𝜋2
, (1.6)

where 𝑄 designates the energy scale and 𝑒 is the QED coupling. We see that the QED

𝛽-function is constant and positive, meaning that, with increasing energy, the QED

coupling increases. In QCD, on the other hand, we have

𝛽 (𝑔) = −
(
11

3
𝑁𝑐 −

2

3
𝑛 𝑓

)
𝑔3

16𝜋2
, (1.7)

where 𝑁𝑐 is the number of colors and 𝑛 𝑓 is the number of quark ŕavors. Therefore, for

𝑛 𝑓 <
11
2 𝑁𝑐 , the 𝛽-function is negative. There are 3 colors (𝑁𝑐 = 3) and, in perturbative

calculations, the number of allowed quark ŕavors depends on the energy scale 𝑄 .

Theoretically, 6 quark ŕavors are included in the Standard model; taking this value,

𝛽 (𝑔) remains negative. Therefore, QCD is an asymptotically free gauge theory.

Asymptotic freedom makes QCD a particularly hard theory to study. The usual pre-

scription of perturbation theory, which analyzes theories at low energies (and, therefore,

at small couplings), does not work for QCD, given that its coupling increases as en-

ergy is decreased. Indeed, looking at Fig. 2, we őnd that the strong coupling 𝛼𝑠 =
𝑔2

4𝜋

increases exponentially as we move towards low energies. As a result, non-perturbative

numerical techniques (such as lattice QCD) do great at high temperatures where the

degrees of freedom are quarks and gluons (i.e. in a state of deconőnement) [8]. Mov-

ing our attention to Fig. 3, current lattice QCD calculations probe the region at and

above the crossover temperature (which newer estimates set to 155 MeV, rather than

170 MeV [9]). However, they do not connect smoothly to the hadronic phase below the
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Figure 2: The running coupling 𝛼𝑠 as a function of energy 𝑄 . Figure taken from Ref. [7].

crossover temperature, let alone to highly complex states of many hadrons combining

to form nuclear matter.

This is where a good question emerges: All of our descriptions in this section seem to

be more applicable to high-energy studies and particle physics; we have given the QCD

Lagrangian, but it (obviously) only contained quarks (as opposed to entire nucleons); we

have described at length how matter interacting via QCD is asymptotically free, meaning

that studying free quarks inherently relies on us moving to a high-energy regime. High-

energy nuclear physics, the topic of this thesis, may therefore seem like somewhat of

a contradiction since nuclear physics has, for more than a century, been concerned

with descriptions of larger-scale systems at energies many orders of magnitude below

those at which the strong coupling allows us to peer into QCD’s structure. However,

since the inception of the őrst particle colliders, a new paradigm of nuclear physics

research is born. Indeed, while nuclear physics is interested in the mass, energy levels,

geometry and other general features of atomic nuclei, it has also become interested

in understanding how these complex features emerge from elementary descriptions of

quarks and gluons interacting via the strong force. As such, while nuclear physics is
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Figure 3: A schematic representation of the QCD phase diagram and where different experi-

mental probes sit. Figure taken from Ref. [10].

still very much interested in descriptions of pure nuclear matter (as found along the

Baryon Chemical Potential axis of Fig. 3, at 900 MeV), it is now also concerned with

reconciling the entirety of the QCD phase diagram with the properties of atomic nuclei

as we know and understand them in nature. Therefore, while particle accelerators are

often associated with particle physics, their use of heavy ions (i.e. medium- to large-

sized atomic nuclei) as collision systems display their use and relevance for nuclear

physics, helping tie the two őelds in their quest for a deeper understanding of QCD.

1.2 heavy-ion collisions and the quark-gluon plasma

In Fig. 3 are inscribed the names of famous experiments conducted over the past few

decades. Those include the Large Hadron Collider (LHC) and the Relativistic Heavy-Ion
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Figure 4: Blue curves show the ratio 𝜖/𝑇 4. The solid line shows low-temperature Hadron Res-

onance Gas (HRG) estimates, while the fuller curve shows the HotQCD prediction.

Figure taken from Ref. [11]

Collider (RHIC), the only two operating heavy-ion colliders, with the former providing

the largest beam energies of the two (as is evident from Fig. 3). These experiments cover

a relatively wide area of the QCD phase diagram, and they all originate from the same

general region, that of the Quark-Gluon Plasma, or QGP. The QGP designates a high-

temperature state of deconőned quarks and gluons, an exotic state of matter without

nucleonic degrees of freedom. Heavy-ion collisions provide the perfect conditions for

creating QGP, as they create states where large amounts of quark matter are packed into

extremely small spaces, i.e. extremely large densities and temperatures. The őrst particle

accelerators were concerned with smashing single protons into one another. However,

following initial results, it was understood that QGP, which was only hypothesized at

the time, could only be generated in yet more extreme and dense environments; the

need for atomic nuclei collisions became apparent, so heavy-ion collision programs

were undertaken. To understand where the idea of the QGP originates, one must turn

to lattice QCD.
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In statistical mechanics, the Stefan-Boltzmann law predicts that the ratio of the energy

density 𝜖 to the fourth power of the temperature 𝑇 - 𝜖/𝑇 4 - should be proportional to

the number of degrees of freedom in the system when 𝑇 ≫ 𝑚 (or we are considering

massless degrees of freedom). Understanding that these two quantities are related to one

another through the system’s equation of state, this quantity has a non-trivial dependence

on one’s precise and accurate understanding of the system’s evolution. When moving

from a system of hadrons - be they mesons or baryons - to a system made up of

deconőned quarks and gluons, one expects the release of a large number of degrees of

freedom. Indeed, while a gas of pions may only have 3 degrees of freedom in its phase

space, a gas made of the quarks and gluons composing these pions would quickly gain

more than 30 degrees of freedom, accounting for the spins of the quarks and gluons (2

each), the colors of both particles (3 and 8), the allowed quark ŕavors (2 for a gas of

pions) and a whether a given quark is itself or its antiquark.

This liberation of degrees of freedom shows itself in Fig. 4. There, we see that

the ratio steadily increases from ∼ 2 at temperatures below 155 MeV to ∼ 14 beyond

370 MeV - a considerable jump. This indicates that degrees of freedom are being

liberated continuously, leading us to conclude that the transition between a gas of

hadrons and a deconőned state of quark matter is smooth. This fact is represented in

Fig. 3; indeed, we see that at 0 baryon chemical potential, moving up the temperature axis

leads us to a crossover line which is not a őrst-order phase transition. The smoothness

exhibited by the 𝜖/𝑇 4 curve in Fig. 4 across the temperature range allows us to infer that

no discontinuity exists in its őrst derivative, conőrming that this transition is smooth

and not a őrst-order phase transition. Therefore, in heavy-ion collisions, one should

expect to create a state of deconőned quarks and gluons - the QGP - which, as it cools

and expands, smoothly transitions into a shower of hadrons - a hadron gas.

QGP, born out of conditions thought to have őrst occurred naturally at the onset of

our universe [13], is extremely short-lived. Indeed, because the conditions needed for its

existence are so extreme, heavy-ion collisions can only generate QGP for ∼ 10−23 s [14].

With its lifetime being so small, direct evidence of its existence can not be gathered
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Figure 5: Particle pair production as a function of Δ𝜙 , the azimuthal angle separation between

the particles, and Δ𝜂, the separation in rapidity space. As we move to more and more

peripheral collisions, the ‘ridge’ phenomenon becomes more apparent. Figure taken

from Ref. [12]

in the lab; one must infer that the products of a given collision event - the hadron gas

produced by the cooling QGP - have collective properties which are consistent with

their constituent quarks and gluons having existed in a ŕuid-like state moments prior to

their formation.

Figure 5 shows how particle pair production is correlated across centrality, azimuthal

angle spread and rapidity space spread; we will provide precise and complete deőnitions

of all of these quantities in due time, but for now, one must only understand the following:

• Centrality measures how much two colliding nuclei overlap, with 100% being a

collision where both nuclei just missed one another, and 0% (conversely) repre-

senting collisions of two perfectly-aligned nuclei (refer to Section 2.3).
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• Azimuthal angle 𝜙 is the emission angle of a given particle in the transverse

plane (𝑥 −𝑦 plane, perpendicular to the beam axis).

• Rapidity 𝜂 is the longitudinal variable of choice in heavy-ion collisions because

it expands with time, allowing us to describe the QGP in its entirety, whether it is

close to static in the longitudinal direction or moving close to the speed of light.

What Fig. 5 shows, then, is how correlated pairs of particles are across space. Starting

with the upper-left-most panel (marked 0-5%) - the most central collisions analyzed in

this experiment - we őnd a peak at Δ𝜂 ∼ Δ𝜙 ∼ 0. This peak is explained by quantum

őeld theory, which dictates that the probability of particle emission be enhanced when

two particles are collinear; one őnds this same peak, with more or less deőnition, in

all subsequent panels. Beyond this peak, the critical takeaway from this central panel

is the ŕatness of the Δ𝜂 distribution, which implies that particles detected at the two

opposite ends of the experimental apparatus have the same relative azimuthal angle

as particles detected within a much narrower rapidity spread. This entails that particle

emission follows global rules, exhibiting collectivity. This is a tell-tale sign that an

intermediary phase guided by hydrodynamics exists. It also means that the momentum

of each produced hadron is ‘chosen’ independently and at random.

Moving to different panels of Fig. 5, we őnd the same general features as the 0-5%

panel, with one striking difference emerging as we progress to more peripheral collisions.

While the 0-5% panel plateaus in the Δ𝜙 direction beyond Δ𝜙 = 2, the other panels

exhibit progressively clearer cos(2Δ𝜙) modulation; why should such a modulation

appears as we move to more and more peripheral collisions. As explained brieŕy above,

peripheral collisions are deőned by the two nuclei not overlapping perfectly. This leads

to an almond-shaped - or elliptical - overlap region in which the QGP will be generated.

This anisotropic overlap region breaks azimuthal symmetry at initial time, which leads

to differences in pressure gradients along the two major axes of the elliptic region.

Pressure gradients in turn lead to tangible differences in the momentum distribution
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of particles generated in the collision. This momentum anisotropy is measured by

extracting the Fourier coefficients of the azimuthal angle of the particle distribution, i.e.

𝑑𝑁

𝑝𝑇𝑑𝑝𝑇𝑑𝑦𝑑𝜙
=

𝑑𝑁

2𝜋𝑝𝑇𝑑𝑝𝑇𝑑𝑦

(
1 +

∞∑︁
𝑛=1

2𝑣𝑛 cos [𝑛 {𝜙 − Ψ𝑅}]
)

. (1.8)

Looking at the 𝑛 = 2 coefficient - called the elliptic ŕow coefficient - we őnd

cos (2 (𝜙 − Ψ𝑅)), which, ignoring the event-plane angle Ψ𝑅, reminds us of the cos(2Δ𝜙)
modulation we found in Fig. 5. As we will see in Chapter 4, Eq. (1.8) is not well-suited

to extract actual ŕow coefficients, mostly because Ψ𝑅, the event plane angle, can not be

determined experimentally. Nevertheless, Eq. (1.8) provides us with a basic intuition for

why a modulation is observed in Fig. 5: an elliptical anisotropy in the overlap between

the colliding nuclei will lead to measurable momentum anisotropies in the őnal state

thanks to an intermediary phase of collective motion, referred to as hydrodynamics.

1.3 nuclear structure and anisotropy

In relating proofs of the existence of QGP, we introduced the idea of initial state overlap

regions and the anisotropies they may exhibit. However, this discussion implicitly as-

sumed that we were colliding nuclei described by spherical density distributions. Indeed,

the idea that central collisions could not create elliptic ŕow implies that the overlap

shape generated in these collisions is circular. Since central collisions occur when nu-

clei are perfectly overlapping, we are forced to conclude that the nuclei themselves are

spherical, leading to a circular cross-section in the transverse plane.

However, as we will show in detail in Chapter 2, this picture of atomic nuclei

is inaccurate for most species. The complex inner workings of nuclei are described

by low-energy QCD interactions between their constituent quarks, interactions which

are, as we have established previously, extremely hard to study experimentally and

describe analytically. Nevertheless, the century-long quest to properly characterize and

model atomic nuclei is still very much active. Our current understanding of the nuclear

wavefunction and of the nucleons that constitute it is that, as a whole, they exhibit
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rotational invariance, implying that their wavefunction should be spherically symmetric.

However, this wavefunction is but a collection of underlying nucleonic states which, on

their own, can break rotational invariance, but collectively form a rotationally invariant

state. In other words, the Hamiltonian and its associated wavefunction are invariant,

but the physical underlying states are not; nucleon-nucleon correlations, which are now

known to be key parts of nuclear structure descriptions, inevitably lead to clustering

and complex, asymmetric physical states, steering the őeld away from the simplistic

view of spherical symmetry [15]. It should, therefore, be understood, as mentioned

above, that most nuclei feature some deformed states, with their total wavefunction

being comprised of ŕuctuations between all underlying states.

As we will explore in Chapter 2, low-energy experiments may have difficulty probing

the underlying state instead of the total wavefunction. This complicates the task of char-

acterizing the actual shape of a given nucleus, as low-energy experiments may only be

capable of resolving the total wavefunction. Conversely, heavy-ion collisions, with their

high energies, large longitudinal velocities, and, consequently, near-instantaneous inter-

action timescales, provide the perfect setting to probe these states, which spontaneously

break rotational symmetry. Indeed, it is understood that the dominant ŕuctuations in

nuclei exhibiting large deformation occur once every 10−21 s - timescales which are

so small that one may be excused for calling them instantaneous. Low-energy probes

are not suited for resolving rapidly shifting states; instead, they capture a coherent

superposition of physical states. As established previously, a collision between two

nuclei moving at relativistic speeds is comprised of different stages which, in all, last

around 10−23 s, making them 100× shorter-lived than the typical nuclear ŕuctuation

scales. This means that the colliding nuclei in heavy-ion collisions are not represented

by the superposition of their underlying states, but rather by a single one of the physi-

cal states comprising their total wavefunction. This fact has considerable ramiőcations

on the modelling of heavy-ion collisions, but also regarding what insights heavy-ion

collisions provide: while we have described collider programs as being concerned with
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Figure 6: Schematic representation of a central collision between two deformed nuclei and a

peripheral collision of spherically symmetric nuclei.

fundamental QCD, it turns out they can also serve as probes, helping us sharpen our

understanding of low-energy nuclear matter!

To understand why this is, recall Fig. 5 - where we described elliptic ŕow as caused

by spherically symmetric nuclei colliding off-center. Looking at Fig. 6, we őnd two

schematic representations of collision events. On the left, we have a central collision

of deformed nuclei, while, on the right, we have a peripheral collision of central nuclei.

Recall that the latter’s elliptic overlap region is the source of the cos(2Δ𝜙) modulation

found in Fig. 5’s panels showing results from more peripheral (> 15%) collisions; the

fact that this modulation was not found in the more central panels was explained by

a conversely circular overlap shape between the two colliding nuclei. Figure 6 tells

us that, in collisions of nuclei which present considerably deformed physical state

ŕuctuations, one should expect to őnd signals of elliptic ŕow - caused by an elliptic

overlap region - across all centralities. Furthermore, the scale of the elliptic ŕow in

collisions involving fully overlapping deformed nuclei informs us on the effective shape

of the underlying ŕuctuations, allowing us to infer the nuclear distributions that caused

the speciőc geometrical conditions needed to produce such ŕow. Therefore, heavy-ion

collisions and their extreme environments somewhat paradoxically provide unique tools
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to resolve nuclear structure at a fundamental level, a problem which had, for a long

time, been seen as belonging exclusively to low-energy nuclear physics.

1.4 thesis purpose and organization

While studies of nuclear structure through the lens of heavy-ion collision modelling

have been undertaken before, they were exclusively concerned with analyzing one

or two ‘observables’ - experimentally detectable particle distribution properties - at

a time. Without reproducing groups of observables simultaneously, these analyses

open themselves up to questions regarding their calibration and speciőc tuning and

whether or not their őndings should be considered őnal. Furthermore, the use of models

incorporating non-physically-motivated phases, especially before the hydrodynamic

description of the QGP, suggests that these inquiries are more focused on feasibility

than on fundamental physics at different scales.

This thesis, on the other hand, will show results produced using an end-to-end, state-

of-the-art, physically-motivated hybrid model. This model is composed of, in order, IP-

Glasma [16, 17], a model motivated by deep inelastic scattering experiments and their

constraints on gluon saturation, which evolves pure color gauge őelds using the Classical

Yang-Mills (CYM) equations; MUSIC [18], a relativistic viscous hydrodynamics code

developed at McGill, which has become the standard in our őeld; and, iSS [19, 20] and

SMASH [21], Cooper-Frye sampling code and particle cascading codes respectively,

which produce the observables which may then be compared to experimental results.

This comprehensive, physics-based approach will allow us to conődently infer which

nuclear parametrizations appropriately reŕect experimental results and, therefore, are

accurate representations of the physical states ŕuctuating within the overall nuclear

wavefunction. We will use our framework to analyze different systems at different

energies. We will start by analyzing 238U and 197Au collisions at 193 GeV and 200 GeV

respectively, comparing to experimental results gathered at RHIC. These results will

provide a basis for the reliability and resilience of our model across many observables,
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along with insights as to its sensitivity to initial state ŕuctuations caused by changes in

nuclear structure parametrizations. We will then apply our őndings to a new system and

energy, namely 129Xe at 5.44 TeV, with the speciőc inclusion of longitudinal observables

in our analysis. The inclusion of these new observables, along with the use of our physics-

based model, will mark a new shift in the őeld’s attempts to properly characterize

stable nuclear matter at low- and high-energies. Furthermore, 129Xe is deőned by the

uncertainty surrounding its appropriate nuclear parametrization, allowing us to conduct

an in-depth and wide-reaching study, which will őll a gap in the literature and allow for

more precise analyses using better-informed parametrizations shortly, further pushing

our knowledge and understanding of the various features of nuclear structure across

atomic species. By using our unique model, we will provide reliable insights which

may be used in future analyses.

This thesis is organized as follows: Chapter 2 introduces the theoretical underpinnings

of nuclear structure studies and of high-energy nuclear parametrizations, along with a

detailed description of the expected effects of structure features on speciőc observables.

Chapters 3 and 4 detail our model’s theoretical and numerical features in 2 dimensions,

going from the initial state to the őnal state observables. Throughout, thorough investi-

gations and explanations of the different features are provided. A detailed description

of relevant observables is provided at the end of Chapter 4. Chapter 5 provides the

combined results of 238U and 197Au and details how and what conclusions may be

extracted from a wide and comprehensive collection of results. Chapter 6 explains how

our model can be extended to include longitudinal dynamics in a way that preserves the

critically consistent physical features that deőne our 2D model. It also contributes deő-

nitions of longitudinal observables which will be used in our 129Xe analyses. Chapter 7

shows the results from our őrst-of-its-kind detailed analysis of 129Xe results, sharing

our insights and new constraints on the nuclear parametrization of this nucleus. The

őnal chapter will synthesize and discuss the őndings of our two studies, conclude, and

give an outlook perspective for future work.
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1.5 conventions

Throughout this thesis, natural units, where ℏ = 𝑐 = 𝑘𝐵 = 1 are assumed unless

explicitly noted otherwise. In SI units, these constants are the speed of light 𝑐 =

299 792 458 m s−1, the reduced Planck constant ℏ = 1.054 571 817 × 10−34 J s and the

Boltzmann constant 𝑘𝐵 = 1.380 649 × 10−23 J K−1. In practice, one uses multiples of

ℏ𝑐 = 0.1973 GeV fm = 1 to convert between distances and energies. This constant also

allows for the reinstatement of SI units in given results. The mostly negative Minkowski

metric 𝑔𝜇𝜈 = (+,−,−,−) will be used throughout.



2
N U C L E A R C O N F I G U R AT I O N S

Our description of heavy-ion collisions must begin with the components of nuclei:

nucleons. While in experiments nucleons are part of a larger nuclear wavefunction and

therefore have intricate properties, most simulations of heavy-ion collisions sample

nucleons according to simple rules. The ‘extent’ of the nucleon is determined by the

collision energy
√
𝑠NN which dictates the inelastic cross-section 𝜎NN. Their positions, on

the other hand, are sampled according to some density distribution 𝜌 (𝑟 ). This process

entails that the nuclei sampled in most simulated events are collections of independent

nucleons. This idea, of course, is a simpliőcation of the true nature of atomic nuclei

and their wavefunctions, where correlations between nucleons play an important role in

determining their shapes [22ś24]. However, this simple picture has proven remarkably

robust and fruitful, providing a simple and malleable framework that can incorporate

and emulate features as needed.

2.1 simple woods-saxon distribution

The density distribution 𝜌 (𝑟 ) of choice is the Woods-Saxon distribution, which itself is

taken from the two-parameter Fermi distribution,

𝜌 (𝑟 ) = 𝜌0

1 + exp
(
𝑟−𝑅0
𝑎

) . (2.1)

It was őrst employed in electron-nucleus scattering experiments, characterizing multiple

nuclear species across a wide range of atomic and mass numbers [25]. Because this is

a nuclear density distribution, it must integrate to 𝐴, the atomic number of the nucleus

17
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we are considering. Therefore, 𝜌0 is a normalization factor - the normal nuclear density,

and is ≈ 0.16 fm−3. 𝑅0 and 𝑎 are the nuclear radius and the diffusiveness, respectively.

The radius is, by construction, the distance from the center of the nucleus at which the

density 𝜌 (𝑟 ) = 𝜌0/2. The diffusiveness, on the other hand, controls the rate at which the

density falls once one approaches and passes 𝑟 = 𝑅0. One of the shortcomings of this

type of distribution comes with the fact that nuclei usually have a neutron skin, i.e. a

neutron-rich outer layer [26, 27]. This fact therefore demands that neutrons and protons

be sampled according to different distributions (mostly differing in diffusiveness 𝑎),

and its omission from the basic Woods-Saxon picture can lead to tangible differences

in certain observables, especially if experimental centrality classes rely on counting

undeŕected neutrons, like Zero Degree Calorimeters (ZDC) do [28].

Figure 7 shows 3 distinct but related Woods-Saxon distributions and their associated

2-dimensional projections which illustrate the impact of change 𝑎 and 𝑅0. Because the

Woods-Saxon distribution as presented in Eq. (2.1) is spherically symmetric, the 2D

projections have trivial (i.e. no) dependence on the polar angle 𝜃 . The distributions

shown in Fig. 7 illustrate the effects of modiőcations to the two deőning parameters,

𝑅0 and 𝑎. The initial unmodiőed parameters are 𝑅0 = 6.37 fm and 𝑎 = 0.535 fm, taken

from Ref. [25], and are plotted in green. The blue distributions exhibit the effect of

doubling the diffusiveness (𝑎 = 1.07 fm), while the red ones show that of increasing the

nuclear radius by 40%, to 𝑅0 = 8.92 fm. The latter’s effects are noticeable, while those

of the former appear more subtle; the increase in diffusiveness increases the likelihood

of nucleons being sampled further from the center, even if the nuclear radius itself is

unmodiőed. Indeed, the likelihood of őnding a nucleon beyond 𝑅0 essentially doubles,

from 6% to 12%. On the other hand, the increase of 𝑅0 creates a considerably larger

sampling area which, at constant mass number 𝐴, entails a much less dense (or more

diffuse) nucleus. However, it is essential to note that 𝑅0 ∼ 𝐴
1
3 and so, at őxed 𝐴, the

nuclear radius should not be increased by as large a margin as was used here. Therefore,

if one wants to decrease nucleon density (for a neutron-speciőc distribution), one usually

only modiőes the diffusiveness 𝑎. 𝑅0 and 𝑎 being the only two modiőable parameters
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Figure 7: The Woods-Saxon distribution of spherically symmetric 197Au shown in (top) one-

and (bottom) two-dimensions. The parameters for 197Au are taken from Ref. [25],

with modiőcations made sequentially to 𝑅0 and 𝑎 to show the impact of the nuclear

radius and diffusiveness.

of the simple Woods-Saxon distribution, along with the physical limits imposed by the

mass number on the nuclear radius, reveal its fundamentally limited nature.

2.2 nuclear deformation

We now move on to the subject which is at the core of this thesis, nuclear deformity.

We will őrst discuss direct experimental evidence of deformity, followed by the modiő-

cations to the Woods-Saxon distribution brought on by this deformity.
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2.2.1 Low-Energy Evidence of Deformation

While today it is understood that most (if not all) nuclei are not perfectly spherically

symmetric, determining the geometric shape of a nucleus experimentally remains im-

possible [29]. Indeed, nuclear deformation can only, at best, be deduced indirectly using

models. What does one mean, then, when one says that a nucleus is deformed? Fol-

lowing discussions presented in Ref. [30, 31], deformity will mainly imply quadrupole

deformation, which occurs when

𝛽2 ∼
〈
𝑌 0

2 (𝜃 ,𝜙)𝑟2
〉
∝

〈(
3 cos2(𝜃 ) − 1

)
𝑟 2

〉
≠ 0, (2.2)

i.e., when the nucleus’ quadrupole moment 𝛽2 does not vanish. This expression should

be understood in terms of the nuclear wavefunction, with the brackets denoting its

expectation value. Given this relationship to the wavefunction, we should be conscien-

tious that descriptions of deformed nuclei as football- or rugby-shaped do not reŕect

the true nature of nuclei at low-energies. Indeed, many nuclei present evidence of a non-

vanishing quadrupole moment alongside null total angular momentum 𝐽 , the latter being

indicative of rotational invariance. The rotational invariance measured in low-energy

experiments is consistent with the fact that typical spectroscopic measurements are

made on timescales which are much longer than the typical scale for ŕuctuations in the

rotational degree of freedoms of the wavefunction [32]. Therefore, measurements made

in such experiments capture a coherent superposition of wavefunctions in all orienta-

tions. By comparing data obtained in spectroscopic experiments to model calculations,

we can extract information about the underlying geometrical properties of the nuclear

wavefunction and, therefore, of the shape of nuclei themselves. With that in mind, model

calculations replace nuclear wavefunctions, which may look spherically symmetric on

timescales longer than those of typical rotational ŕuctuations, by rotational models.

These models describe nuclei as ellipsoidal density distributions randomly oriented in

space. Averaging over all directions preserves the rotational invariance of the system.
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This approach necessitates the assumption that once the actual nuclear wavefunction

collapses it follows the shape of one of these randomly oriented oblong conőgurations.

The quadrupole moment for even-even nuclei, introduced in Eq. (2.2), is related to

the transition probability from the ground state to 2+, referred to as 𝐵(𝐸2), by [33]

𝛽2 =
4𝜋

5𝑍𝑒𝑅2

√︁
𝐵(𝐸2), (2.3)

which comes from the general multipole moment 𝛽𝑙 deőnition, given below in Eq. (2.4),

based on ground state electric transition rates 𝐵(𝐸𝑙),

𝛽𝑙 =
4𝜋

(2𝑙 + 1)𝑍𝑒𝑅𝑙
√︁
𝐵(𝐸𝑙). (2.4)

Here, 𝑅 is the empirical nuclear radius (= 1.2𝐴
1
3 ), 𝑍 is the atomic number and 𝑒 is the

fundamental electric charge. Equations (2.3) and (2.4) are only applicable under strict

assumptions [34]. Furthermore, at őrst glance, this idea of 𝛽2 as a parameter for oblong

deformation may not seem obvious. However, it is well-deőned geometrically. Indeed,

taking a uniform ellipsoidal density 𝜌 (®𝑟 ) having the same quadrupole moment 𝛽2 and

same volume as a given nucleus, then [33ś35]

𝛽2 =
4𝜋

∫
®𝑟 𝑟

2𝜌 (®𝑟 )𝑌 0
2 (𝜃 ,𝜙) sin(𝜃 )𝑑𝑟𝑑𝜃𝑑𝜙

3𝑅2𝐴
, (2.5)

which itself is generalized for all 𝑙 as [36]

𝛽𝑙 =
4𝜋

∫
®𝑟 𝑟
𝑙𝜌 (®𝑟 )𝑌 0

𝑙
(𝜃 ,𝜙)𝑑3𝑟

3𝑅𝑙𝐴
, (2.6)

where 𝐴 is the mass number. Equation (2.6) is a strict geometric deőnition based on

the nuclear density function 𝜌 (®𝑟 ). The relationship between Eqs. (2.4) and (2.6) is not

immediately apparent. However, referring back to Eq. (2.2), we őnd that the moments

are deőned as expectation values of a multipole operator [33]. This multipole operator’s

matrix elements themselves are related to the transition rates 𝐵(𝐸𝑙), completing the link

between the two seemingly unrelated formulas.
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In any case, 𝛽2 is both related to the shape of the density distribution of the nucleus

and to transition probabilities. The geometric nature of Eq. (2.6) is a much more general

deőnition which itself applies to any nucleus, contrary to Eq. (2.4) [34]. A spherical

nucleus has 𝛽𝑙 = 0∀ 𝑙 , while a deformed one takes 𝛽𝑙 ≠ 0 for some 𝑙 . We have given gen-

eral expressions for 𝛽𝑙 , which may puzzle the reader given our focus on the quadrupole

moment 𝛽2. This focus is driven by the model we will introduce in Section 2.2.2, but

does not mean that 𝛽𝑙 for 𝑙 > 2 are irrelevant: their analysis in improving our under-

standing of nuclear structure is important. However, measurements of 𝐵(𝐸𝑙) for 𝑙 > 2

are mostly inexistent, even for considerably deformed nuclei. Therefore, the modelling

focus is generally set on 𝛽2.

One must keep in mind the previous discussions regarding the true nature of nuclei

as wavefunctions; imposing a deőnite value of 𝛽2 to a speciőc nucleus is only justiőed

within the conőnes of rotational models, and that certain species with more minor

(𝛽2 < 0.1) deformation may be subject to considerable ŕuctuations in their shape [37].

Nevertheless, these are the foundations on which non-trivial nuclear structure is ana-

lyzed.

2.2.2 Determining the Quadrupole Moment 𝛽2

Without precise measurements of the electric transition rate 𝐵(𝐸2), any modern theo-

retical calculation that wishes to shed light on fundamental nuclear structure will have

to start with the nuclear wavefunction. However, large numbers of nucleons make the

most fundamental version (i.e., solving the Schrödinger equation for the entire nuclear

wavefunction) of this problem practically insoluble. Since independent particles and

their wavefunctions have been studied in much detail, building a model where the

foundational assumption is that nucleons are independent particles has proven to be a

reasonable solution [38],
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𝐻 |Ψ⟩ = 𝐸 |Ψ⟩ →
∑︁
𝑖

ℎ𝑖 |Ψ𝑖⟩ =
∑︁
𝑖

𝐸𝑖 |Ψ𝑖⟩. (2.7)

This is called the mean-őeld method, attributed to Hartree-Fock, and it may at őrst

seem like an oversimpliőcation of the problem at hand, given that it averages nucleon-

nucleon interactions over all nucleons. However, nucleons are fermions, which means

that the Pauli exclusion principle naturally keeps them apart. Furthermore, nucleons are

fairly spread out at low energies within the nuclear volume [38]. Therefore, converting

nucleon-nucleon interactions into a mean-őeld is a fair őrst approximation at low

energies. These methods are now generally designated as Energy Density Functional

(EDF) theories and have been used at length to provide insights on nuclear wavefunctions

of all elements.

We will note here that this speciőc method cannot be used to extract 𝛽𝑙 for 𝑙 > 2,

given the speciőc assumptions of the model [15]. In the context of constraining the

quadrupole moment 𝛽2, EDF is generally used as follows:

1. Pick a value of 𝛽2 that is sensible.

2. Find the ground state of the system |Ψ0⟩ at given value of 𝛽2 using variational meth-

ods (i.e. minimize 𝛿 (⟨Ψ0 | (𝐻 − 𝜇𝛽2) |Ψ0⟩) = 0 where 𝜇 is a Lagrange multiplier

which forces the returned ground state to have quadrupole moment 𝛽2).

3. Repeat for values of 𝛽2 within a given range.

4. Build a curve of ground state energies E as functions of 𝛽2.

5. Find where the minimum ground state energy lies.

The value of 𝛽2 providing the smallest ground state energy is attributed to that

nucleus. Luckily, given the persistent relevance of nuclear structure research, these

types of calculations have already been made for practically all nuclei in Ref. [39],

with the added speciőcity that their mean-őeld wavefunctions were expanded in the
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Figure 8: Potential energy surfaces as a function of 𝛽2 (shown as 𝛽), calculated using Hartree-

Fock-Bogoliubov framework, taken from Ref. [15]. The solid lines are the ground

state energies, while the dashed lines present rotational energy corrections for spins

𝐼 = 8, 16 & 24.

quantum harmonic oscillator basis, which allows their solutions to break spherical

symmetry while preserving axial symmetry, i.e. providing exclusively oblong shapes.

Fig. 8 shows the mean-őeld method applied in the context of determining the

quadrupole moment of four isotopes, some of which will be important parts of this

thesis’ main results, namely 238U, 197Au and 129Xe. This collection of isotopes spans

all geometric subtypes of nuclear distributions allowed by the mean-őeld calculation

as undertaken in Ref. [15]: 208Pb is undeformed, and 238U is heavily deformed and

prolate. We will note the great concordance between this relatively simple model and

experimental data. Indeed, 238U is an isotope that subscribes to the strict assumptions

guiding Eqs. (2.3) and (2.4) [40]; using 𝐵(𝐸2) = (12.19± 0.62) e2fm4 [41], one obtains
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𝛽2,𝑈 = (0.287 ± 0.007), which is consistent with the minimum found in the upper left

panel of Fig. 8.

129Xe and 197Au, on the other hand, provide an unclear picture. They have neighboring

minima on both sides of 𝛽2 = 0, which indicates that these nuclei do not, according

to the mean-őeld method, have a well-deőned shape. These two isotopes embody the

fundamental limitations of the EDF approach and of trying to attribute a deőnite shape

to wavefunctions. While both 129Xe and 197Au present the same level of uncertainty

concerning their true minima, the qualitative features of their respective potential curves

provide discerning information: the broadness of the 129Xe curve implies that the shape

of its distribution is subject to even more ŕuctuations than that of 197Au.

This uncertainty (or ‘fuzziness’) regarding the shape of these nuclei is precisely why

using results from heavy-ion collisions to extract signals of deformity is important

to the future of nuclear structure research. As mentioned at the onset of this section,

low-energy experiments’ temporal resolution are much longer than that of the usual

rotational ŕuctuations of a nuclear wavefunction, leading to ‘images’ of nuclei actually

representing rotational averages. Heavy-ion collisions, on the other hand, provide much

shorter ‘exposure times’ than low-energy scatterings. Indeed, the initial impact lasts ∼
10000 times less than the rotational ŕuctuation time scales of nuclear wavefunctions [32].

In the right conditions, as we will show in Section 2.3.2, we gain access to an overlap

region whose shape directly mirrors those of the colliding nuclei. Therefore, tensions

in nuclear structure theories, if they exist, may only be resolved through combining low-

and high-energy data into a coherent picture of atomic geometry. The most general and

permissive of approximations are, however, clear: nuclear deformation exists and is a

deőning characteristic of some (if not most) nuclei.
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2.2.3 Deformed Woods-Saxon

Now that we have reviewed evidence of nuclear deformity, we can modify Eq. (2.1) to

produce deformed nuclei that break spherical symmetry in different ways. To do so, we

add angular dependencies to the nuclear radius 𝑅0,

𝑅0 → 𝑅(𝜃 ,𝜙) = 𝑅0

(
1 +

𝑙𝑚𝑎𝑥∑︁
𝑙=2

𝑙∑︁
𝑚=−𝑙

𝛽𝑚𝑙 𝑌
𝑚
𝑙 (𝜃 ,𝜙)

)
. (2.8)

Here, the 𝛽𝑚
𝑙

are real-valued coefficients of deformation which, if non-zero, induce

dependency upon the polar and azimuthal angles via the spherical harmonics 𝑌𝑚
𝑙

.

By deőnition, the spherical harmonic 𝑌𝑚
𝑙

is dependent on the Legendre Polynomial

𝑃𝑚
𝑙
(cos(𝜃 )),

𝑌𝑚𝑙 (𝜃 ,𝜙) =
√︄

(2𝑙 + 1)
4𝜋

(𝑙 −𝑚)!
(𝑙 +𝑚)!𝑃

𝑚
𝑙 (cos(𝜃 ))𝑒𝑖𝑚𝜙 , (2.9)

which itself has the following property relating 𝑃𝑚
𝑙

to 𝑃−𝑚
𝑙

,

𝑃−𝑚𝑙 (𝑥) = (−1)𝑚 (𝑙 −𝑚)!
(𝑙 +𝑚)!𝑃

𝑚
𝑙 (𝑥). (2.10)

Therefore, Eqs. (2.9) and (2.10) imply that

𝑌−𝑚
𝑙 (𝜃 ,𝜙) = (−1)𝑚 (𝑌𝑚𝑙 (𝜃 ,𝜙))∗, (2.11)

which in turn leads to the conclusion that 𝑌𝑚
𝑙
+𝑌−𝑚

𝑙
is real for even-𝑚 and imaginary

for odd-𝑚. 𝑅(𝜃 ,𝜙) being, by deőnition, a real-valued function, means that odd-valued

𝑚 are not permitted and that coefficients obey 𝛽𝑚
𝑙
= 𝛽−𝑚

𝑙
.

Before going any further, it is important to underline that the deformation parameter

𝛽𝑙 deőned in Eqs. (2.4) and (2.6) is related, but not equal to any of the 𝛽𝑚
𝑙

deőned above.

Indeed, the former are related to expectation values of operators over the entire nuclear
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volume, while the latter describe the deformation of the nuclear surface [36]. Deőnite

expressions linking the two quantities exist, but are tedious to extract [42]. Here is one

such expression, generated by taking a combined power series of 𝛽𝑚
𝑙

and 𝑎
𝑅0

, in the limit

of a sharp nuclear proőle (i.e. 𝑎 → 0) [36]:

𝛽2 =
𝑅2

0

𝑅2

(
𝛽0

2 +
√︂

20

49𝜋
(𝛽0

2)2 + 12

7
√
𝜋
𝛽0

2𝛽
0
4

)
, (2.12)

where 𝑅0 is the nuclear radius of the Woods-Saxon distribution and 𝑅 is the empirical

nuclear radius. This small contrast between the two groups of quantities heightens

the tension (and, at times, confusion) between low- and high-energy conceptions of

deformity. Equation (2.12) indeed shows that in the presence of a small hexadecapole

Woods-Saxon parameter 𝛽0
4 , the gap between the nuclear quadrupole moment and the

Woods-Saxon quadrupole deformation parameter can become relatively large. Other

non-zero Woods-Saxon deformation parameters 𝛽𝑚
𝑙

can contribute to furthering this

difference between the two quantities.

The radius function described in Eq. (2.8) is inserted in lieu of 𝑅0 in the unmodiőed

Woods-Saxon distribution Eq. (2.1),

𝜌 (𝑟 ,𝜃 ,𝜙) = 𝜌0

1 + exp
(
𝑟−𝑅(𝜃 ,𝜙)

𝑎

) (2.13)

This is the distribution that is used to sample nucleons within deformed nuclei.

Figure 9 shows the effects of inserting 𝑅(𝜃 ,𝜙) into the unmodiőed Woods-Saxon dis-

tribution. When deformed Woods-Saxon parametrizations only have 𝑚 = 0 non-zero

components, they do not depend on the azimuthal angle 𝜙 . Therefore, building their

3-dimensional surfaces from the 2D cross-sections (like those shown in the bottom

of Fig. 9) simply requires revolving the cross-sections through 𝜙 . However, when

parametrizations involve non-zero 𝛽𝑚
𝑙

with 𝑚 ≠ 0, Eq. (2.9) dictates that the result-

ing radius function depends on 𝜙 . Therefore, the cross-section of 197Au shown in the

bottom-middle panel of Fig. 9 is evaluated at 𝜙 =
𝜋
2 . Changing the value of 𝜙 , as is
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Figure 9: The Woods-Saxon distribution of deformed 238U, 197Au and 129Xe shown in (top)

one- and (bottom) two-dimensions. The parameters for 238U and 197Au are taken

from Ref. [36], while 129Xe parameters are taken from Ref. [43]. 238U and 129Xe are

represented by 2 curves each, one taken at 𝜃 = 0 and the other at 𝜃 =
𝜋
2 . 197Au, on the

other hand, requires 3 curves, as it also depends on the azimuthal angle 𝜙 thanks to its

non-zero 𝛽2
2 , 𝛽2

4 and 𝛽4
4 parameters. The details of the parametrizations can be found

in Table 1.

apparent in the collection of blue curves in the top panel of Fig. 9, changes the density

function appreciably; at 𝜙 = 0, the deformity of the nucleus is barely apparent, with the

radius function only varying by approximately 2% across 0 ≤ 𝜃 ≤ 𝜋
2 . Comparatively,

at 𝜙 =
𝜋
2 , the radius varies by 20% within the same 𝜃 range.

Beyond these secondary parameters, the hexadecapole parameter 𝛽0
4’s sign has a

signiőcant effect on the qualitative shape of the cross-sections. Indeed, referring to

Table 1, one notices that both 197Au and 129Xe have negative 𝛽0
4 , while 238U’s is positive.
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𝑅0 (fm) 𝑎 (fm) 𝛽0
2 𝛽2

2 𝛽0
4 𝛽2

4 𝛽4
4

238U 7.068 0.538 0.247 0 0.081 0 0

197Au 6.62 0.519 0.098 0.076 −0.025 −0.018 −0.018

129Xe 5.36 0.559 0.161 0 −0.003 0 0

Table 1: Woods-Saxon parameters used for 238U, 197Au and 129Xe nuclei in Fig. 9. The param-

eters are from Ref. [36] for 238U and197Au and Ref. [43] for 129Xe.

Referring back to Fig. 9, one can see that 238U’s cross-section is more ‘diamond-shaped’,

while the two others are more ‘pill-shaped’. While these are interesting qualitative

features, results presented in later parts of this thesis will show that discerning between

the two shapes through heavy-ion collision observables is, at least for now, difficult to

achieve.

It is also interesting to recall the discussion regarding 197Au and 129Xe’s ambiguous

status with regards to mean-őeld calculations. Indeed, in Section 2.2.2, we showed

that these isotopes have subtle deformations which probably manifest themselves as

ŕuctuations in their shapes. While their respective Woods-Saxon distributions are static

in nature, their relatively faint deformations allow for ŕuctuations to play a major role

in their őnal ‘perceived’ shape, especially in the context of heavy-ion collisions. Indeed,

looking at 197Au, the dependency of its Woods-Saxon distribution 𝜌 on 𝜙 brings about

unique ŕuctuations in its cross-sectional shapes. Then, looking at 129Xe, its more subtle

quadrupole deformation along with its relatively small number of nucleons means

that the nuclei generated through sampling its Woods-Saxon distribution will exhibit

greater ŕuctuations on a nucleus-to-nucleus basis. Indeed, statistical ŕuctuations in

nucleon samplings are proportional to 1√
𝐴

, where 𝐴 is the atomic mass number.

Up to this point, our discussions have focused solely on single-nucleus distributions.

However, heavy-ion collisions involve collisions of two nuclei. How, then, can single-

nucleus density distributions be extracted from collision events between two nuclei?
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2.3 overlap shapes

When two nuclei’s paths intersect in a collider experiment, their alignment has a major

impact on the results of a given collision event. By alignment, one usually thinks

of how off-center the projectile nucleus ‘appears’ to the target nucleus. However, in

experiments, it is impossible to determine the geometric alignment of two colliding

nuclei. Therefore, experimentalists must resort to looking at the amount of particles

generated in a given event (called that event’s ‘charged particle multiplicity’, 𝑁CH) to

determine which collisions were ‘head-on’ (or central) and what others were more

peripheral. Other methods are available to experimentalists, but are more limited in

scope. Zero Degree Calorimeters (ZDC), mentioned previously, constitute one such

method. However, its scope can be quite limited and can lead to erroneous conclusions

about a given event. Indeed, given ZDCs only detect neutrons, and that neutrons have

a tendency of being found further away from the nuclear core than protons, ZDCs can

have a difficult time differentiating between types of peripheral events. Therefore, most

experiments determine centrality via multiplicity. The centrality 𝑐 of an event with

charged particle multiplicity 𝑁CH is given by

𝑐 = 1 −
∫ 𝑁CH

0
𝑃 (𝑁 )𝑑𝑁 (2.14)

i.e. the cumulative distribution of 𝑁CH. Figure 10 shows 𝑃 (𝑁CH), the multiplicity proba-

bility density function. It also provides schematic representations of the general collision

types represented on the different regions of the curve. We őnd that moving from central

(0 − 5%) to more peripheral (30 + %) centralities implies looking at collisions where

the overlap between the colliding nuclei gets smaller. This overlap is controlled by

the impact parameter. As theorists and modelers, we have access to and control over

information about the pre-collision phase that experimentalists do not. For instance, nu-

cleon distribution of a colliding nucleus, obtained through sampling the Woods-Saxon

distribution. For another, the exact impact parameter used in a given collisions.
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Figure 10: Relative frequency histogram of charged particle multiplicities𝑁CH recorded in simu-

lations of minimum-bias collisions of 129Xe. Schematic representations of collisions

of 129Xe associated to each region of the histogram are provided.

2.3.1 Impact Parameter

The impact parameter 𝑏 is the distance separating the centers of the colliding nuclei.

The larger the 𝑏, the more peripheral the event; 𝑏 = 0 fm is a head-on collision. In our

simulations, 𝑏 is sampled at initialization according to

2𝑏𝑑𝑏

𝑏2
max −𝑏2

min

(2.15)

where 𝑏min/max designate the minimal and maximal desired impact parameter; 𝑏min

is usually 0 fm, while 𝑏max must be determined based on needs and on system size.

For our 238U and 197Au runs presented in Chapter 5, 𝑏max was set at 8 fm since our

interest in those cases was directed towards ultra-central collisions, while for our 129Xe
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Figure 11: Average number of binary collision per event ⟨Nbin⟩ as a function of impact param-

eter 𝑏, for 129Xe collisions. As we progress towards larger 𝑏, we őnd fewer binary

collisions, until practically no binary collisions are found beyond 𝑏 = 15 fm.

runs, it was set to 15 fm. The larger impact parameters were chosen to produce so-

called ‘minimum-bias’ sets of events: a set of events comprised of every possible

general overlap conőguration, from fully head-on collisions (𝑏 = 0 fm) to full misses

(𝑏 ∼ 15 fm for 129Xe). This allows for direct reproduction of the entire multiplicity

spectrum, which leads to a more accurate and complete reproduction of reality, at the

cost of more computation. To determine the upper limit for our 129Xe runs, we generated

10000 sample nuclei pairs along with randomly sampled 𝑏 and calculated the number of

binary collisions for each sampling, using 𝜎NN = 79 mb = 7.9 fm2, which is consistent

with a beam-energy of 5.44 TeV. Figure 11 shows the results of our impact parameter

range analysis, which led us to select 𝑏max = 15 fm.

Beyond being an excellent measure of collision centrality, the impact parameter is

directly related to the shape of the overlap between the two colliding nuclei, or what we

usually call ‘initial state anisotropies’.
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Figure 12: Transverse plane view of (left) a single undeformed nucleus via its sampled nucleons;

(middle) the resulting collision between two undeformed nuclei sampled from the

same distribution; and (right) the interaction region produced by participating nu-

cleons. In the left and middle panels, the Woods-Saxon 𝑅0 is represented by a black

line. In the right panel, the interaction region is surrounded by an ellipse to represent

the general shape of the interaction region, with arrows schematically representing

the resulting ŕow. The impact parameter 𝑏 was set to 5 fm.

2.3.2 Initial State Anisotropies

When two spherically symmetric nuclei collide with one another, their overlap produces

a shape which has a substantial effect on the subsequent evolution of the interaction

region (to be discussed in more detail in Chapter 4. As we will see, isotropic inter-

action regions in the initial stage expand symmetrically in the hydrodynamics stage.

Anisotropic (usually elliptically-so) overlaps, on the other hand, tend to have build-ups

of momentum which are roughly proportional to 1/𝑅, with 𝑅 being the transverse size

of the interaction region [44]. Therefore, elliptical interaction regions will lead to larger

ŕow buildups along their short axes when compared to ŕow along their long axes.

This anisotropy in the ŕow velocitiy is directly translated into anisotropies in őnal-state

particle momentum distributions. Indeed, anisotropic initial states and their resulting

momentum anisotropies mean that the energy of the medium is distributed asymmetri-

cally, leading to particles hadronizing more in certain directions than others, leading in

turn to measurable anisotropies in the distributions of their azimuthal angles 𝜙 in the



2.3 overlap shapes 34

transverse plane. This fact and its corresponding observables will be discussed in detail

in Section 4.3.

Figure 12 shows a semi-peripheral collision of two spherically-symmetric versions

of 238U (i.e. setting all 𝛽𝑚
𝑙
= 0). As we can see, an elliptic overlap region is formed and

would lead, following our previous explanations, to more ŕow along the ellipse’s short

axis. Figure 12’s right panel also provides a further qualitative assessment of the density

of nucleons along the beam axis. Indeed, given the transparency of the nucleon markers,

darker pockets of participants are meant to convey a relatively large nucleonic density

in said pocket. This will be an important idea which we will revisit in section Chapter 3.

As should be clear by now, spherically symmetric nuclei are predictable when it comes

to the overlap shapes they produce. Figure 13 clariőes this idea further. Indeed, we őnd

3 collision events stemming from identical nucleon samplings simply shifted along the

𝑥 direction by various values of the impact parameter𝑏. We see that, in central collisions

(𝑏 = 0 fm), the overlap region is more or less circular: very small amounts of anisotropy

in the initial state means we do not expect any meaningful anisotropy in the őnal state.

In mid-central collisions (𝑏 = 3 fm), we őnd a small but noticeable anisotropy. This

would lead to a detectable (even if slight) signal in the produced particles. Finally, in

peripheral collisions (𝑏 = 10 fm), we őnd a small interaction region presenting clear

ellipsoidal anisotropy, which would lead to an unmistakable signal in the produced

particles.

At this point, it is important to keep in mind that while anisotropy increases with im-

pact parameter 𝑏, multiplicity progresses the opposite way: less overlap (and, therefore,

binary collisions) usually means smaller numbers of generated particles in the őnal

state. This means that types of collisions are fairly well-deőned for spherical systems:

one has high multiplicity, low anisotropy collisions at one end of the spectrum, and

low multiplicity and high anisotropy at the other. This also means that these high initial

anisotropy events are subject to higher levels of event-to-event ŕuctuations than events

at the other end of the spectrum. Indeed, given the reduced size of the interaction region
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Figure 13: Transverse plane view of 2 nuclei colliding at (left) 𝑏 = 0 fm; (middle) ; 𝑏 = 3 fm;

and (right) 𝑏 = 10 fm. As we move to larger impact parameters, collisions produce

more and more elliptic overlap regions.

and the reduced number of interacting nucleons, each nucleon and its position has a

greater effect on the őnal state than interacting nucleons in central collisions do.

What makes deformed nuclei such interesting systems in heavy-ion collisions is

the simple fact that non-trivial anisotropies can be generated at practically all impact

parameters 𝑏. Indeed, deformed nuclei can overlap in eccentric shapes at even the

smallest 𝑏. Figure 14 makes this strikingly clear. The top panels of Fig. 14 show a

collision event where the long axes of both nuclei are aligned with the beam axis. These

events are usually designated ‘tip-tip’. The bottom panels, on the other hand, show a

‘body-body’ event: both nuclei’s short axes are aligned with the beam axis, and their

long axes are aligned with one another. The differences in their resulting anisotropies (or

lack thereof) is marked. Indeed, body-body collisions present large amounts of elliptic

anisotropies, while tip-tip collisions are isotropic in the transverse plane. However, given

they result from setting 𝑏 = 0 fm, both collisions will produce large enough amounts of

particles in their őnal states to belong to the upper few percents of collisions in terms of

centrality. There will, however, be noticeable differences between the two events given

the orientations of the colliding nuclei.

As we had done for Fig. 12, the participating nucleon markers of the right panels of

Fig. 14 are purposefully transparent to provide a qualitative idea of nucleon density. We
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Figure 14: Commonly named (top) Tip-Tip and (bottom) Body-Body collision events of de-

formed 238U presented 3 ways. (left) ‘Overhead’ view of the pre-collision conőgu-

ration, with the beam axis (𝑧) replacing the usual 𝑥-axis; (middle) tranverse plane

view of the collision event; and (right) the interaction region produced by partici-

pating nucleons. In the left and middle panels, the Woods-Saxon 𝑅0 is represented

by a black line. In the right panel, the interaction region is surrounded by an ellipse

to represent the general shape of the interaction region, with arrows schematically

representing the resulting ŕow.

őnd that tip-tip collisions have extremely dense interaction regions, especially at their

cores. Body-body collisions, comparatively, do not present any pockets which are as

dense as the central pocket of the tip-tip collision. Therefore, when colliding 2 largely

deformed nuclei (like 238U), there will be clear signals of their deformity in the most

central centrality classes. However, with more subtle deformities (such as those of 197Au

and 129Xe), those signals themselves become more subtle. The point remains, however,

that non-spherically symmetric collisions present increased variance in overlap shapes
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in central and mid-central collisions, as their asymmetric distribution of geometries

provides extra degrees of freedom from which anisotropies can originate.

A őnal important observation to make here is that of the speciőc size and shape of the

interaction region of fully-aligned (i.e. body-body and tip-tip) collisions of spherical

and deformed nuclei. Figures 13 and 14 show that in collisions at 𝑏 = 0 fm, the overlap

region clearly reŕects the value of 𝑅0 (for spherical nuclei) or 𝑅(𝜃 ,𝜙) (for deformed

nuclei) in the transverse plane. Therefore, linking the exact shape of the nuclear density

distributions from initial to őnal state is actually possible, with őnal-state observable

effects in central collisions being directly proportional to the Woods-Saxon radius.



3
P R E - E Q U I L I B R I U M E VO LU T I O N

As mentioned before, QGP is a nearly perfect ŕuid, allowing us to model it using rel-

ativistic viscous hydrodynamics. However, for hydrodynamics to apply, the system in

question must be at (or close to) thermal equilibrium. In heavy-ion collisions, directly

after the collision event, the interaction region is highly excited and far from equilib-

rium. Therefore, one must include some form of a thermalization phase to bridge the

gap between the collision event and the time where hydrodynamics becomes applicable,

which is ∼ O(1 fm). Historically, some purely phenomenological pre-equilibrium mod-

els, such as MC-Glauber [45] and TRENTo [46], have been used to produce surfaces

which were in thermal equilibrium and ready to be evolved hydrodynamically. MC-

Glauber is a wounded nucleon model, meaning that the initial energy deposit is directly

proportional to some combination of the number of participants and the number of

binary collisions. TRENTo is in some ways a generalization of MC-Glauber; it provides

means through which the initial energy deposit can be modulated so that it isn’t just a

linear combination of the number of participants and the number of binary collisions,

and so the energy deposit function’s form is itself a parameter of the model. TRENTo ,

contrarily to MC-Glauber, includes some simple pre-equilibrium ŕow [16]. However,

while both models have been successful in their own rights, neither is fully grounded

in őrst-principles thinking. Furthermore, avoiding treating this phase with a őrm QCD-

based model somewhat undermines the stated goal of studying heavy-ion collisions

theoretically, i.e. to build a physically representative model of QCD which can explain

the different phases of hadronic matter in extreme conditions. While simple initial

conditions models like MC-Glauber have found success in describing event-averaged

38
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quantities like integrated elliptic ŕow 𝑣2, they are unable to produce differential distri-

butions of these quantities that are consistent with experimental data [47]; these models

are generally exclusively geometric in nature and lack, as stated above, any realistic

approach to pre-equilibrium dynamics and evolution. That is why IP-Glasma [16, 17],

a physically-motivated initial state model, has had success in describing a wide range

of differential observables [47, 48] and of observables involving higher order correla-

tions [1, 17]. While IP-Glasma integrates the simple geometrical features that made

MC-Glauber successful in some respects, it goes far beyond counting binary collisions.

In the following sections, we will introduce the theoretical underpinnings of the

boost-invariant (or 2D) formulation of IP-Glasma. We will őrst discuss Color Glass

Condensate (CGC) theory, and how it applies to heavy-ion collisions. We will then use

the theoretical prescription of the CGC to introduce the concept of gluon saturation

at low momentum fraction and how it relates to the initial color charge distributions.

These distribution, which will need to be sampled according to a speciőc ŕuctuation

scale, will act as sources for the color gauge őelds 𝐴𝜇 , which happen to be the intrinsic

degrees of freedom of the pre-equilibrium phase. We will then show how the Classi-

cal Yang-Mills equations apply to the color gauge őelds, and we will provide detailed

evolution equations for all degrees of freedom. Throughout, we will relate these con-

tinuum theories and properties to their equivalents on a discrete lattice: because we are

ultimately running simulations, numerical methods are as important to IP-Glasma as its

underlying theories in the continuum limit. For now, let us introduce the fundamental

concept from which all of IP-Glasma is sourced: the Color Glass Condensate.

3.1 color glass condensate

The Color Glass Condensate (CGC) provides an effective description of a single, fast-

moving nucleus composed of valence and sea quarks, as well as gluons. CGC, as we

will show, maintains that at low momentum fraction, or ‘small-𝑥’, hadronic matter is

almost entirely gluonic. This fact births an effective őeld theory, which allows us to
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only take into account the degrees of freedom - here, gluons - which are relevant to

our system. This discussion will be condensed and to the point; for a more detailed

treatment of the assumptions, results and consequences of using the CGC theory, one

should consult Refs. [49ś53].

CGC separates partons based on their momentum fraction 𝑥 ,

𝑥 =
𝑝part

𝑃N
, (3.1)

i.e., the fraction of the nucleonic momentum 𝑃N that they carry. A priori, these partons

can be quarks or gluons. To separate between hard (large-𝑥) and soft (small-𝑥) partons,

one must őrst introduce light-cone coordinates,

𝑥± =
𝑡 ± 𝑧√

2
(3.2)

𝑝± =
𝐸 ± 𝑝𝑧√

2
. (3.3)

We see that both 𝑥+ and 𝑥− involve longitudinal and temporal degrees of freedom.

The two transverse coordinates, 𝑥 and 𝑦, are left unchanged in this coordinate system.

The light-cone coordinate metric is

𝑔𝜇𝜈 =

©­­­­­­­­­
«

0 1 0 0

1 0 0 0

0 0 −1 0

0 0 0 −1

ª®®®®®®®®®
¬

(3.4)

which allows us to deőne the four-vectors and their invariant dot product as [54, 55]

𝑥 𝜇 =
(
𝑥+,𝑥−,𝑥 ,𝑦

)
(3.5)

𝑝𝜇 =
(
𝑝+,𝑝−,𝑝𝑥 ,𝑝𝑦

)
(3.6)

𝑝 · 𝑥 = 𝑝−𝑥+ + 𝑝+𝑥− − 𝑝𝑥𝑥 − 𝑝𝑦𝑦. (3.7)

If we deőne 𝑥+ as our light-cone ‘time’ variable and 𝑥− as our ‘longitudinal coordinate’,

then, looking at Eq. (3.7), we őnd that 𝑝+, the conjugate to 𝑥−, will be our longitudinal
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momentum variable, while 𝑝−, the conjugate to 𝑥+, will be our energy. The parton

momentum fraction 𝑥 in terms of our new coordinate system is given by

𝑥 =
𝑝+

𝑃+
, (3.8)

where 𝑝+ is the longitudinal momentum of the parton we are interested in and 𝑃+ is the

total momentum of the hadron it is a part of.

Let us now consider a hadron moving with a very large longitudinal momentum

and how different partons may ‘perceive’ others based on their momentum fraction 𝑥 .

Recalling that the position-momentum uncertainty principle provides insights as to how

localized certain partons can be, we őnd that

Δ𝑥− ≈ 1

Δ𝑝+
=

1

𝑥Δ𝑃+
∼ 1

𝑥𝑃+
, (3.9)

where 𝑥− and 𝑝+ are used here, given that they form a conjugate pair. Equation (3.9)

provides a powerful basis for comparing the localization of different partons. Being

quantum őelds, all partons are delocalized according to the uncertainty principle. How-

ever, if we consider a large-𝑥 parton (𝑥 > 0.1) and compare it to a small-𝑥 parton

(𝑥 < 10−3), we will őnd that the large-𝑥 parton is much more localized than the small-𝑥

parton. Therefore, the small-𝑥 parton will ‘perceive’ the large-𝑥 parton as being highly

localized on the light cone. We can do the same exercise for the 𝑥+ and 𝑝− pair, which

yields

Δ𝑥+ ≈ 1

Δ𝑝−
. (3.10)

However, since 𝑥 was deőned in terms of 𝑝+, we cannot make the same substitution as

we did in Eq. (3.9).

Therefore, at őrst glance, Eq. (3.10) may provide little added insight. However,

multiplying 𝑝+ by 𝑝−, we őnd

𝑝+𝑝− =

(
𝐸 + 𝑝𝑧√

2

) (
𝐸 − 𝑝𝑧√

2

)
=
𝐸2 − 𝑝2

𝑧

2
. (3.11)

Recalling that 𝐸2 = 𝑝2
𝑥 + 𝑝2

𝑦 + 𝑝2
𝑧 +𝑚2, we obtain

𝑝+𝑝− =
𝑝2
𝑥 + 𝑝2

𝑦 +𝑚2

2
=
𝑝2
⊥ +𝑚2

2
. (3.12)
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Inserting Eq. (3.12) into Eq. (3.10), we have

Δ𝑥+ ≈ 2𝑝+

𝑝2
⊥

≈ 2𝑥𝑃+

𝑝2
⊥

, (3.13)

where we have utilized the fact that we are in the high-energy limit which allows us to

neglect mass, i.e. 𝑝⊥ ≫𝑚.

Following the same logic as we laid out for the localization of the partonic quantum

őelds, Eq. (3.13) provides further grounds for discriminating between different partons.

Indeed, since 𝑥+ serves as our time variable for a hadron propagating along the positive

𝑧 direction, Eq. (3.13) tells us that large-𝑥 partons will suffer from large amounts of

time dilation relative to small-𝑥 partons, making them appear frozen. Therefore, within

the time scales relevant to heavy-ion collisions, partons that carry most of the nucleonic

momentum are essentially static. This fact allows for the use of the following effective

action for CGC,

𝑆𝐶𝐺𝐶 =

∫
𝑑4𝑥

(
−1

4
𝐹𝑎𝜇𝜈𝐹

𝜇𝜈𝑎 + 𝐽 𝜇𝑎𝐴𝑎𝜇
)

, (3.14)

where 𝐹𝑎𝜇𝜈 is deőned in Eq. (1.5) and the second term 𝐽 𝜇𝑎𝐴𝑎𝜇 is a source term. This

source term is directly related to the ideas developed in this section. Indeed, according

to this action, 𝐽 𝜇𝑎 is a current that sources color gauge őelds 𝐴𝑎𝜇 , i.e. gluons. 𝐽 𝜇𝑎 is

therefore constructed using the large-𝑥 partons which are static throughout the relevant

interaction. In principle, the color current 𝐽 𝜇𝑎 could generate quark-antiquark pairs.

However, as we will argue below, these contributions are subdominant.

Figure 15 shows the parton distribution function (PDF) of a proton probed at 𝑄2 =

10 GeV; it shows 𝑥 𝑓 , for 𝑓 = 𝑢𝑣 (valence up quarks), 𝑑𝑣 (valence down quarks), 𝑔

(gluons) and 𝑆 = 𝑢 + 𝑑 (sea quarks). Since this is for a single proton, integrating all

of the components of the PDF over momentum fraction 𝑥 and summing all of their

contributions must equal one. We őnd that, at very small 𝑥 , the PDF is dominated

by gluons. Therefore, at small momentum fractions, it is clear that an effective őeld

theory may ignore other contributions and focus solely on gluons. However, in heavy-

ion collisions, how can we be sure what momentum fraction 𝑥 we are probing? Let



3.1 color glass condensate 43

Figure 15: Parton distribution function (PDF) for 𝑄2 = 10 GeV, from Ref. [56]. Note that for

clarity’s sake, the gluon and sea quark distributions 𝑥𝑔 and 𝑥𝑆 were divided by 20.

us consider a parton at very small momentum fraction, such that 𝑝+ =

√︃
𝑝2
⊥ +𝑚2/

√
2.

Inserting this into our deőnition for the momentum fraction 𝑥 , we őnd

𝑥 =

√︃
𝑝2
⊥ +𝑚2

√
2𝑃+

. (3.15)

In a collision, one right-moving (𝑃𝑅) and one left-moving (𝑃𝐿) hadron collide. They

both have a longitudinal momentum of magnitude |𝑝𝑧 |. The right-moving hadron’s

four-momentum is

𝑃
𝜇

𝑅
=

(
𝑃+𝑅 , 𝑃−𝑅 , 𝑃𝑥𝑅 , 𝑃𝑦

𝑅

)
≈

(√
2𝑝𝑧 ,

𝑀2

2𝑃+
𝑅

, 0, 0

)
, (3.16)

where we have assumed the momentum in the 𝑧-direction is very large, such that

𝑝𝑧 ≫ 𝑀 , the hadron’s mass. The left-moving hadron’s four-momentum is

𝑃
𝜇

𝐿
=

(
𝑃+𝐿 , 𝑃−𝐿 , 𝑃𝑥𝐿 , 𝑃𝑦

𝐿

)
≈

(
𝑀2

2𝑃+
𝑅

,
√

2𝑝𝑧 , 0, 0

)
. (3.17)
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The invariant energy is then

𝑠 = (𝑃𝑅 + 𝑃𝐿)2
= 2𝑃𝑅 · 𝑃𝐿 ≈ 2𝑃+𝑅𝑃

−
𝐿 ≈ 4𝑝2

𝑧

⇒
√
𝑠 = 2𝑝𝑧 =

√
2𝑃+𝑅 . (3.18)

Inserting Eq. (3.18) into Eq. (3.15), and substituting 𝑃+𝑅 by 𝑃+, we obtain

𝑥 =

√︃
𝑝2
⊥ +𝑚2

√
𝑠

. (3.19)

Therefore, using Eq. (3.19) with estimates of ⟨𝑝𝑇 ⟩, the mean transverse momentum, at
√
𝑠 = 5.44 TeV obtained through experimental őts [57], as well as the proton mass in

lieu of𝑚, we őnd

𝑥 ∼ 1 GeV

5440 GeV
≈ 10−4. (3.20)

Equation (3.20) makes it clear that the momentum fraction we are probing at beam

energies we are concerned with is mostly gluonic.

The CGC effective őeld theory is therefore an appropriate approximation for the the

interaction region of heavy-ion collisions, and provides a physical framework under

which the pre-equilibrium phase can be developed and evolved.

3.2 gluon saturation

Figure 15 supplied clear evidence that the small-𝑥 partons are almost exclusively gluons.

It did not, however, provide us with an explanation for why that is. Through perturbative

QCD, we know that high-energy partons evolve and radiate through bremsstrahlung,

which favors the emission of soft gluons. Indeed, the differential probability for emitting

gluons with 𝑥 ≪ 1 is [50]

𝑑𝑃brem ∝ 𝑑𝑥

𝑥
(3.21)

i.e., when 𝑥 → 0, the probability of bremsstrahlung emission diverges. This fact, taken

on its own, entails that gluons should be all-encompassing at small-𝑥 beyond simply
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Figure 16: (Left) Elementary radiation and (right) high-energy scattering, evolution and recom-

bination of gluons via bremsstrahlung. Figure taken from Ref. [50].

dominating. However, gluons can not only radiate other gluons, but can also recombine

(i.e. 𝑔𝑔 → 𝑔), a fact which we illustrate in Fig. 16. Therefore, as more and more gluons

are radiated via bremsstrahlung, both the phase space and the physical space become

more and more densely packed with gluons, leading to more and more recombination.

Eventually, when the number of gluons radiated rivals the amount of recombination

that occurs in a given time lapse, the system is said to have reached saturation.

The typical gluon recombination cross-section 𝜎𝑔𝑔 at a given energy scale𝑄2 is equal

to 𝛼𝑠/𝑄2 [58], where 𝛼𝑠 is the strong coupling. We can then deőne the packing factor 𝜅,

𝜅 = 𝜌 · 𝜎𝑔𝑔, (3.22)

which relies on the transverse gluon density 𝜌 and the cross-section 𝜎𝑔𝑔 we just deőned.

Deőning 𝑥𝑔(𝑥 ,𝑄2), the number of gluons with momentum fraction 𝑥 and scale 𝑄 , and

considering the transverse projection of a given hadron to be a circle of radius 𝑅, we

can rewrite the packing factor 𝜅,

𝜅 ≈ 𝑥𝑔(𝑥 ,𝑄2)
𝜋𝑅2

· 𝛼𝑠
𝑄2

. (3.23)

The energy scale at which the packing factor becomes O(1) is the saturation scale 𝑄𝑠 ,

i.e.,

𝜅 ≈ 1 ⇐⇒ 𝑄2
𝑠 ≈

𝑥𝑔(𝑥 ,𝑄2
𝑠 )𝛼𝑠

𝜋𝑅2
. (3.24)



3.2 gluon saturation 46

𝑄𝑠 is of great importance to the initialization of the color gauge őelds 𝐴𝜇 , as it controls

the scale of color charge ŕuctuations in the source partons contained in the current

term 𝐽 𝜇𝑎 introduced earlier. These ŕuctuations will, in turn, control how and how much

energy is deposited in the transverse plane at the time of the collision, 𝜏 = 0+.

3.2.1 Determining 𝑄𝑠

At őrst glance, Eq. (3.24) seems to suggest that the saturation scale𝑄𝑠 is fairly constant

across relatively large portions of hadronic matter. However, given its dependence on

𝑥𝑔(𝑥 ,𝑄2), it can actually vary considerably depending on local ŕuctuations in gluon

densities. The deőnition provided in Eq. (3.24) can help provide general estimates of the

saturation scale in large systems. For example, at the LHC, estimates of the saturation

scale generally hover around 2− 3 GeV [59]. However, in IP-Glasma, local ŕuctuations

in the saturation scale𝑄𝑠 are taken into account, and it is made to vary from one lattice

site to another. Using the Impact Parameter Dipole Saturation Model, or IP-SAT [60],

𝑄𝑠 is calculated at each point in the transverse lattice based on a multitude of local

physical properties, including the local nuclear density.

We begin by determining the nuclear thickness function 𝑇𝐴( ®𝑥⊥),

𝑇 ( ®𝑥⊥) =
𝑒−®𝑥

2/2𝐵𝐺

2𝜋𝐵𝐺
, (3.25)

𝑇𝐴( ®𝑥⊥) =
𝐴∑︁
𝑖=1

𝑇 ( ®𝑥⊥ − ®𝑥⊥𝑖
), (3.26)

where the ®𝑥⊥𝑖
represent the positions of the nucleons (sampled via Woods-Saxon dis-

tribution), 𝐴 is the mass number of the nucleus we are considering (we do this for

both nuclei individually), and 𝐵𝐺 , which controls the ‘extent’ of nucleons, is set to

𝐵𝐺 = 4.0 GeV−2 based on őts to DIS data [61]. If we are evaluating 𝑇𝐴( ®𝑥⊥) close to

the boundaries of the transverse plane, most (if not all) nucleons will be far away and

𝑇 ( ®𝑥⊥ − ®𝑥⊥𝑖
) ∼ 0∀ 𝑖, meaning that 𝑇𝐴( ®𝑥⊥) → 0 as | ®𝑥⊥ | → ∞. Alternatively, when we
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are in a region of the transverse plane where many nucleons intersect, 𝑇𝐴( ®𝑥⊥) ∝ 1
2𝜋𝐵𝐺

,

i.e., we have denser hadronic matter.

The thickness function is then inserted into the Glauber-Mueller dipole cross-section [62],

𝑑𝜎𝑞𝑞

𝑑2𝑏
= 2

(
1 − exp

(
−𝜋

2

2
𝑁𝑐𝑇𝐴( ®𝑥⊥)𝑟 2𝑥𝑔(𝑥 , 𝜇2(𝑟 2))𝛼𝑠 (𝜇2(𝑟2))

))
, (3.27)

where 𝑏 is the impact parameter of the interaction, 𝑥𝑔(𝑥 , 𝜇2(𝑟2)) is the local gluon

density (not to be confused with 𝑥𝐺 deőned previously, which is the integrated gluon

distribution function), 𝑟 2 is the dipole size and 𝑁𝑐 = 3 is the number of colors; 𝜎𝑞𝑞

is the total cross section for a small 𝑞𝑞 dipole to pass through a gluon cloud [63]. It

provides a simple measure of the probability of interaction between a quark-antiquark

dipole and a dense target. If the gluon density 𝑥𝑔 and thickness function𝑇𝐴 are large, so

is the cross-section and, therefore, the interaction probability. However, it is clear from

Eq. (3.27) that the differential cross-section does not grow indeőnitely; as the argument

of the exponential grows, the exponential itself (because of the minus sign preceding

its argument) goes to 0.

How does this relate to the saturation scale 𝑄𝑠? The form of Eq. (3.27) suggests

that the control over whether or not the dipole interacts lies with the exponential term.

Therefore, we deőne the saturation radius 𝑟𝑠 as the dipole size at which the proton

consists of one interaction length, where the interaction probability is given by the

second term squared, i.e.

𝑒−1
= exp

(
−𝜋

2

𝑁𝑐
𝑇𝐴( ®𝑥⊥)𝑟 2

𝑠 𝑥𝑔(𝑥 , 𝜇2(𝑟 2
𝑠 ))𝛼𝑠 (𝜇2(𝑟2

𝑠 ))
)

⇒ 1 =
𝜋2

𝑁𝑐
𝑇𝐴( ®𝑥⊥)𝑟2

𝑠 𝑥𝑔(𝑥 , 𝜇2(𝑟2
𝑠 ))𝛼𝑠 (𝜇2(𝑟 2

𝑠 ))

⇒ 2

𝑟2
𝑠

=
2𝜋2

𝑁𝑐
𝑇𝐴( ®𝑥⊥)𝑥𝑔(𝑥 , 𝜇2(𝑟2

𝑠 ))𝛼𝑠 (𝜇2(𝑟 2
𝑠 )), (3.28)

where both sides in Eq. (3.28) have been multiplied by 2 as a matter of convention. The

RHS of Eq. (3.28) is called the density proőle𝐷 , and the saturation scale𝑄𝑠 is the value

of 𝐷 at 𝑟 = 𝑟𝑠 . Therefore,

𝑄2
𝑠 =

2

𝑟2
𝑠

. (3.29)



3.2 gluon saturation 48

Now that we have an implicit equation to solve, we must deőne its various components

precisely. The gluon density 𝑥𝑔(𝑥 , 𝜇2) is initialized as

𝑥𝑔(𝑥 , 𝜇2
0) = 𝐴𝑔𝑥𝜆𝑔 (1 − 𝑥)5.6, (3.30)

with 𝐴𝑔 = 2.308, 𝜆𝑔 = 0.058 and 𝜇2
0 = 1.51 GeV2 [61]. This gluon density is then

evolved to all other values of 𝜇2 relevant to our analysis through the leading-order

DGLAP equation [50, 64ś66], assuming a purely gluonic state. The energy scale 𝜇

itself is related to the saturation dipole size 𝑟𝑠 (and, therefore, saturation scale 𝑄𝑠)

through

𝜇2
=

4

𝑟2
𝑠

+ 𝜇2
0 = 2𝑄2

𝑠 + 𝜇2
0. (3.31)

The leading-order QCD running coupling constant, which relies on the inherent

energy scale 𝜇2, is given by

𝛼𝑠 (𝜇2) = 12𝜋(
33 − 2𝑁 𝑓

)
ln

(
𝜇2

Λ
2
QCD

) , (3.32)

with 𝑁 𝑓 , the number of allowed quark ŕavors, set to 4 and ΛQCD = 156 MeV.

The interdependence of Eqs. (3.28) and (3.30) to (3.32) and, more fundamentally,

of the variables (𝑥 , 𝑟𝑠 , 𝜇) means that solving for the saturation length 𝑟𝑠 must be done

iteratively. Concretely, a table with values of 𝑥 and 𝜇2, as well as the value of 𝑥𝑔(𝑥 , 𝜇2),
the gluon density, associated with the 𝑥 and 𝜇2 pair is generated. Given the relationships

between all variables, we can progress through this value table until we approach the

correct set of values. We can then interpolate between neighboring parameter sets to

őnd an appropriate and unique value for 𝑟𝑠 . As mentioned above, this is done at every

point in the transverse plane.

Once the saturation scale has been determined everywhere, it can be used to generate a

random color charge distribution in the transverse plane, which, as mentioned previously,

will source the color gauge őelds 𝐴𝜇 . Indeed, assuming the following relationship

between the saturation scale and the scale of color charge ŕuctuations 𝜇𝐴,

𝐶𝑔2𝜇𝐴 = 𝑄𝑠 , (3.33)
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where𝐶 ≈ 0.5− 0.75 in 2D and ≈ 1.2− 1.5 in 3D is a proportionality constant that must

be calibrated using charged particle yields (since it controls the energy normalization

of the system), we have

⟨𝜌𝑎𝐴( ®𝑥⊥)𝜌𝑏𝐴( ®𝑦⊥)⟩ = 𝑔2𝜇2
𝐴( ®𝑥⊥)𝛿𝑎𝑏𝛿2( ®𝑥⊥ − ®𝑦⊥). (3.34)

It is important to note here that 𝜇𝐴 ≠ 𝜇; 𝜇 is the intrinsic energy scale considered

in our calculation of 𝑟𝑠 , while 𝜇𝐴 is a measure of the color charge ŕuctuations and is

deőned entirely in terms of the saturation scale 𝑄𝑠 . Once the color charge distributions

of both colliding nuclei are sampled via Eq. (3.34), they can be used as sources for the

color gauge őelds 𝐴𝑎𝜇 , and the pre-equilibrium evolution can commence.

3.3 evolution

In the following sections, we will describe the pre-collision conditions and the post-

collision evolution of the color gauge őelds 𝐴𝑎𝜇 . Because IP-Glasma is a numerical

program, we will introduce relevant lattice quantities alongside the fundamental mathe-

matical and physical theories underpinning them. As we will show, moving to a discrete

lattice presents both advantages and challenges to solving the various equations that

describe pre-equilibrium QGP, or glasma.

3.3.1 Sampling 𝜌𝑎 and Generating Pre-Collision Fields

Equation (3.34) describes the properties of the color charge distribution and how it re-

lates to the saturation scale𝑄𝑠 . Numerically, we sample from the following distribution,

⟨𝜌𝑎𝑘 ( ®𝑥⊥)𝜌𝑏𝑙 ( ®𝑦⊥)⟩ = 𝛿𝑎𝑏𝛿𝑘𝑙𝛿2( ®𝑥⊥ − ®𝑦⊥)
𝑔2𝜇2

𝐴( ®𝑥⊥)
𝑁𝑦

, (3.35)

where the indices 𝑘 , 𝑙 label the discretized and sub-divided longitudinal coordinate,

and 𝑁𝑦 is the number of discrete points in the longitudinal direction. Our color charge

distribution therefore has ‘depth’, a feature which we will now motivate.
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Suppose we have the color charge distribution 𝜌𝐴 of the nucleus moving with velocity

∼ c in the positive 𝑧 direction. Referring back to Eq. (3.14), we know that the Classical

Yang-Mills equation related to such an action is [67, 68]

[
𝐷𝜇 , 𝐹

𝜇𝜈
]
= 𝐽𝜈 , (3.36)

where

𝐷𝜇 = 𝜕𝜇 + 𝑖𝑔𝐴𝜇 (3.37)

𝐹𝜇𝜈 = 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇 + 𝑖𝑔
[
𝐴𝜇 ,𝐴𝜈

]
(3.38)

𝐽𝜈 = 𝜌𝐴(𝑥−, ®𝑥⊥)𝛿𝜈+. (3.39)

The 𝛿 function in Eq. (3.39) signals that we are considering a right-moving source on the

light cone, and the dependency of 𝜌𝐴 upon 𝑥− signals that the color charge distribution

is delocalized, in line with the light-cone coordinate work we did in Section 3.1.

The fundamental degrees of freedom of these equations, the color gauge őelds 𝐴𝜇 ,

must be translated to lattice quantities for our simulations. On the lattice, the gauge

őelds become gauge linksź,

𝑈𝑖 ( ®𝑥⊥) = exp(𝑖𝑔𝑎𝑖𝐴𝑖 ( ®𝑥⊥)) (3.40)

where ®𝑥⊥ is the position of a given link, 𝑖 = {𝑥 ,𝑦,𝜂} indicates its direction, 𝑎𝑖 is the size

of the lattice spacing and 𝑔 is the strong coupling constant. One can reverse a link by

taking 𝑈 †
𝑖 ; ‘normal’ links go clockwise, while reversed links move counter-clockwise.

Therefore, the gauge őelds in our simulations are deőned strictly on the edges of our

discrete lattice, as Fig. 17 makes clear. The direction of a link will be a crucial feature

for building emergent quantities such as chromo-electric and -magnetic őelds later on.

Moving back to the continuum limit, the covariant continuity equation in the axial

gauge (𝐴− = 𝐴+ = 0) yields

[
𝐷𝜇 , 𝐽

𝜇
]
= 0

⇐⇒ 𝜕+𝜌 = 0, (3.41)

ź See Appendix A for further explanation of the motivation behind the use of this representation of the

gauge őelds.
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Figure 17: Schematic representation of gauge links and their relation to the lattice. The position

of a given link is determined by the starting point of the toe of the arrow of the

regular link𝑈𝑖 .

which entails that the charge distribution, in this gauge, is static (independent of 𝑥+).

Assuming a static solution 𝐴𝜇 yields trivial solutions for most őeld-strength tensor

components 𝐹𝜇𝜈 : 𝐹 𝜇+ = 0 because 𝐴+ = 0 by gauge choice and 𝐹 𝑖 𝑗 = 0 because of the

transverse equations

[
𝐷𝑖 , 𝐹

𝑖 𝑗
]
= 0, (3.42)

with the corollary that the transverse gauge őelds are pure gauge (i.e. do not generate

chromo-electric or -magnetic őelds). The only non-trivial (and non-vanishing) compo-

nents are therefore 𝐹𝑖− = −𝐹 𝑖+, which yield

[
𝐷𝑖 , 𝐹

𝑖+]
= −∇2

⊥𝐴
+
= 𝜌 (𝑥−, ®𝑥⊥)

⇒ ∇2
⊥𝐴

+𝑎
= ∇2

⊥𝐴
𝑎
− = −𝜌𝑎 (𝑥−, ®𝑥⊥). (3.43)
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Equation (3.43) represents 2D Poisson equations for each color index, which are solved

to determine the gauge őelds 𝐴+ in the axial gauge where, again, 𝐴− = 0. This gauge

is also called the covariant gauge because 𝜕𝜇𝐴𝜇 = 𝜕+𝐴+ = 0. We then transform to

light-cone gauge 𝐴+ = 𝐴− = 0 through the usual gauge transformation, i.e.,

𝐴𝜇 = − 𝑖
𝑔
𝑉 𝜕𝜇𝑉

† +𝑉A𝜇𝑉
†, (3.44)

where A𝜇 represents the desired őeld in the gauge we are transforming from. In our

case, then, A− is the solution to Eq. (3.43) with all other components vanishing. The

new gauge condition 𝐴− = 0 leads to

0 = − 𝑖
𝑔
𝑉 𝜕−𝑉

† +𝑉A−𝑉
† ⇐⇒

𝑉 †(𝑥−, ®𝑥⊥) = P exp

(
𝑖𝑔

∫ 𝑥−

−∞
𝑑𝑦−A−(𝑦−, ®𝑥⊥)

)
⇐⇒

𝑉 †(𝑥−, ®𝑥⊥) = P exp

(
−𝑖𝑔

∫ 𝑥−

−∞
𝑑𝑦−

𝜌 (𝑦−, ®𝑥⊥)
∇2
⊥

)
, (3.45)

where in the last line we have used the fact that A− is the gauge őeld in the axial

gauge which we know, thanks to Eq. (3.43), is entirely deőned by the static color charge

distribution 𝜌 . Equation (3.45) entails that the pre-collision gauge őelds in the light-cone

gauge are strictly transverse, since

𝐴+ = − 𝑖
𝑔
𝑉 𝜕+𝑉

† +𝑉A+𝑉
†
= 0 (3.46)

in the axial gauge. Equation (3.45) therefore dictates that 𝑉 † is independent of 𝑥+.

We can now refer back to Eq. (3.35) to make sense of its discrepancies concerning

Eq. (3.34). When implemented numerically, Eq. (3.45) becomes [69]

𝑉 ( ®𝑥⊥) =
𝑁𝑦∏
𝑘=1

exp

(
−𝑖𝑔

𝜌𝑎
𝑘
( ®𝑥⊥)𝑡𝑎

∇2 −𝑚2

)
, (3.47)

where 𝑡𝑎 are the Gell-Mann matrices [6] and 𝑚2 acts as a regulating mass, set to

200 MeV, and we have absorbed the differential element 𝑑𝑦 of the integral into 𝜌𝑎
𝑘
.

In the 𝑁𝑦 → ∞ limit, Eq. (3.47) recovers Eq. (3.45), the path-ordered Wilson line.

Therefore, our stochastic charge density 𝜌 requires some longitudinal extent, or ‘thick-

ness’, to generate the pre-collision gauge őelds; multiple samplings of the color charge
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distribution are undertaken and ‘stitched’ together, allowing for the construction of the

numerical Wilson line. The longitudinal dependence of the continuous color charge

distribution 𝜌𝐴(𝑥−,𝑥⊥) is also recovered through these consecutive samplings. That is

precisely why, in Eq. (3.35), the indices 𝑘 and 𝑙 were added: they mark the fact that a

speciőc sampling belongs to a speciőc slice in the longitudinal direction, slice which is

then used to construct Eq. (3.47). These slices are normalized so that

∑︁
𝑘 ,𝑙

⟨𝜌𝑎𝑘 ( ®𝑥⊥)𝜌𝑏𝑙 ( ®𝑦⊥)⟩ = 𝑔2𝜇2
𝐴( ®𝑥⊥)𝛿𝑎𝑏𝛿2( ®𝑥⊥ − ®𝑦⊥). (3.48)

In other words, the sum of the ŕuctuations of all of the sampled color charge distributions

must be equal to the ŕuctuations dictated initially by the saturation scale determined by

IP-SAT.

Once the Wilson line is constructed numerically, it must be put on the lattice through

the gauge links deőned in Eq. (3.40). To do so is simple: since the pre-collision gauge

őelds are strictly transverse, we know that

𝐴𝑖 = − 𝑖
𝑔
𝑉 𝜕𝑖𝑉

† (3.49)

given the fact that the transverse gauge őelds in the axial gauge were all evenly 0.

Inserting Eq. (3.49) into Eq. (3.40), we őnd

𝑈𝑖 ( ®𝑥⊥) = exp

(
𝑖𝑔𝑎

(
− 𝑖
𝑔
𝑉 ( ®𝑥⊥)𝜕𝑖𝑉 ( ®𝑥⊥)†

))

𝑈𝑖 ( ®𝑥⊥) ∼ 1 + 𝑎𝑖𝑉 ( ®𝑥⊥)𝜕𝑖𝑉 †( ®𝑥⊥)

𝑈𝑖 ( ®𝑥⊥) ∼ 1 + 𝑎𝑖𝑉 ( ®𝑥⊥)
(
𝑉 †( ®𝑥⊥ + ®𝑎𝑖) −𝑉 †( ®𝑥)

𝑎𝑖

)

𝑈𝑖 ( ®𝑥⊥) ∼ 1 +𝑉 ( ®𝑥⊥)𝑉 †( ®𝑥⊥ + ®𝑎𝑖) −𝑉 ( ®𝑥⊥)𝑉 †( ®𝑥⊥)

𝑈𝑖 ( ®𝑥⊥) ∼ 𝑉 ( ®𝑥⊥)𝑉 †( ®𝑥⊥ + ®𝑎𝑖), (3.50)

where we have used the fact that𝑉 ( ®𝑥⊥)𝑉 †( ®𝑥⊥) = 1 and where ®𝑎𝑖 represents a vector the

size of the lattice spacing 𝑎 pointing in the direction 𝑖. The pre-collision gauge őelds

are therefore constructed at all lattice edges through the sampling of the color charge

distribution and construction of the discretized path-ordered Wilson lines.
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Figure 18: 𝜏 − 𝜂 coordinates plotted in Minkowski space. Lines at equal proper time 𝜏 span

regions of spacetime delimited by a given 𝜂 range, in this case −0.5 ≤ 𝜂 ≤ 0.5

(mid-rapidity).

3.3.2 Post-Collision Gauge Fields

At the onset of this section, it is important to remind the reader that the evolution equa-

tions which will be described in this section apply to the boost-invariant (or 2D) formu-

lation of IP-Glasma. Later in this thesis, we will generalize these evolution equations

to a 3D description of the initial conditions, but only after showing results stemming

from boost-invariant simulations.
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Before combining pre-collision gauge őelds to build post-collision gauge őelds, we

introduce Milne, or 𝜏 − 𝜂, coordinates. Their deőnitions are as follow

𝜏 =
√︁
𝑡2 − 𝑧2 (3.51)

𝜂 =
1

2
ln

( 𝑡 + 𝑧
𝑡 − 𝑧

)
= tanh−1

(𝑧
𝑡

)
, (3.52)

and their metric is 𝑔𝜇𝜈 = diag(1,−1,−1,−𝜏2). This coordinate system is the best suited

for the conditions of heavy-ion collisions for a multitude of reasons:

1. The forward light-cone is delimited by the 𝜏 = 0 line.

2. Spacetime rapidity 𝜂 is ±∞ on the light-cone axes and does not have a meaningful

deőnition beyond them.

3. 𝜏 , the ‘proper’ time, is the time as measured in the local rest frame of any cell or

particle that was located at 𝑧 = 0 at 𝑡 = 0 and moved with constant longitudinal

velocity 𝑣𝑧 . For any cell with properties which do not align with this condition, it

holds as an approximation of its proper time.

4. The length element is 𝜏𝑑𝜂.

The őrst two items of the list point out that 𝜏 − 𝜂 coordinates are only deőned in the

relevant space when analyzing heavy-ion collisions, i.e., the forward light cone. On the

other hand, the őnal two points are crucial qualities of this coordinate system. Indeed,

given the highly relativistic nature of the partons involved in heavy-ion collisions,

time dilation effects must be taken into consideration when analyzing their evolution.

If we were to take the lab-frame time 𝑡 as our time variable, partons with different

longitudinal velocities would evolve at different rhythms, making it difficult to analyze

their temporal evolution. Instead, taking the ‘proper’ time 𝜏 , we track almost every

cell in their respective rest frames, relative to the time of collision. The fact that the

longitudinal length element is 𝜏𝑑𝜂 leads to an expansion of the coordinate system with

time, reconciling rapidly expanding QGP with a stable coordinate system. Figure 18

illustrates this idea: as proper time increases, the longitudinal extent of the region

encompassed by a static 𝜂 range also increases.



3.3 evolution 56

Finally, given our use of light-cone coordinates in the previous sections, convert-

ing between the two coordinate systems will prove important. To go from light-cone

coordinates to Milne coordinates, we do

𝜏 =
√

2𝑥+𝑥−, (3.53)

𝜂 =
1

2
ln

(
𝑥+

𝑥−
.

)
(3.54)

Now that we have properly deőned the coordinate system used in the glasma evolution

equations, we can construct them. The initial conditions described in Section 3.3.1 were

concerned with a single nucleus. We will now be interested in the őelds immediately

after the collision when the color gauge őelds of the two colliding nuclei are combined.

As a visual aid, we will refer to Fig. 19 as our convention for naming different spacetime

regions. The pure, pre-collision gauge őelds exist in 2 regions: the őelds sourced by

the nucleus propagating on 𝑥+ exist in regions 1 and 4, while those generated by the

nucleus propagating along 𝑥− exist in regions 1 and 2.

In the continuum limit, the transverse gauge őelds at light-cone axes (intersections

between regions 1, 2 and 4) are given by [70ś72]

𝐴𝑖 = 𝐴𝑖(𝐴) +𝐴𝑖(𝐵), (3.55)

where the (𝐴,𝐵) subscripts represent the 2 nuclei. The color charge currents are conőned

to the light-cone. Therefore, in region 1, the sourceless CYM equations are used,

[
𝐷𝜇 , 𝐹

𝜇𝜈
]
= 0. (3.56)

In the proper-time gauge 𝑥−𝐴+ + 𝑥+𝐴− = 0, the components of the gauge őelds, in

light-cone coordinates, look like

𝐴+
= 𝑥+𝛼 (𝑥+,𝑥−, ®𝑥⊥),

𝐴−
= −𝑥−𝛼 (𝑥+,𝑥−, ®𝑥⊥), (3.57)

𝐴𝑖 = 𝛼𝑖1(𝑥+,𝑥−, ®𝑥⊥),

where the 𝛼 are ansatz that are taken to be independent of spacetime rapidity 𝜂 and the

subscript 1 refers to the őeld in region 1. Using these ansatz to őnd the őeld strength
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Figure 19: Visual representation and identiőcation of the different spacetime regions. The colli-

sion occurs at the origin, and the post-collision őelds evolve in region 1.

tensor components, converting them to 𝜏 −𝜂 coordinates and inserting said components

into Eq. (3.56), we obtain [70]

1

𝜏

[
𝐷𝑖 , 𝜕𝜏𝛼

𝑖
1

]
+ 𝑖𝑔𝜏 [𝛼 , 𝜕𝜏𝛼] = 0,

1

𝜏
𝜕𝜏𝜏𝜕𝜏𝛼

𝑖
1 − 𝑖𝑔𝜏2

[
𝛼 ,

[
𝐷𝑖 ,𝛼

] ]
−

[
𝐷 𝑗 , 𝐹 𝑗𝑖

]
= 0, (3.58)

1

𝜏3
𝜕𝜏𝜏

3𝜕𝜏𝛼 −
[
𝐷𝑖 ,

[
𝐷𝑖 ,𝛼

] ]
= 0.

These equations are satisőed in all regions of interest and are continuous on the bound-

aries between these regions. Equation (3.55), however, also requires us to treat the two

pre-collision őelds distinctly at the time of the collision 𝜏 = 0+, i.e.,

𝛼𝑖1(𝜏 = 0+, ®𝑥⊥) = 𝛼𝑖4( ®𝑥⊥) + 𝛼𝑖2( ®𝑥⊥), (3.59)
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where, again, numerical subscripts refer to the regions the quantities exist in. Naturally,

we must redeőne our initial ansatz 𝛼 in terms of these static pre-collision gauge őelds

𝛼2,4 using the same sourced CYM equation as in Section 3.3.1, which yields

𝛼 (𝜏 = 0+, ®𝑥⊥) =
𝑖𝑔

2

[
𝛼𝑖4( ®𝑥⊥),𝛼𝑖2( ®𝑥⊥)

]
. (3.60)

Converting our initial ansatz Section 3.3.2 to 𝜏 − 𝜂 coordinates gives

𝐴𝜏 =
1

𝜏

(
𝑥−𝐴+ + 𝑥+𝐴−)

= 0,

𝐴𝜂 =
1

𝜏2

(
𝑥−𝐴+ − 𝑥+𝐴−) , (3.61)

where 𝐴𝜏 = 0 because of the gauge we have chosen. Using Eq. (3.60) to further deőne

𝐴+ and 𝐴−, Eq. (3.61) becomes

𝐴𝜂 (𝜏 = 0+) = 𝑖𝑔

2

[
𝛼𝑖4,𝛼𝑖2

]
. (3.62)

However, as seen in the previous section, we are interested in lower-indexed quantities

in our Wilson lines, so 𝐴𝜂 = −𝜏2𝐴𝜂 = 0 if 𝜏 = 0+. Therefore, in an expressly boost-

invariant (𝜂 independent) formulation of IP-Glasma, the 𝜂 component of the gauge őeld

is made to vanish at the time of the collision.

The post-collision situation has been entirely deőned in the continuum limit. However,

as we have established, we work on a discrete lattice. Equation (3.55) on the lattice is [73]

ℜ
[
Tr

(
𝑡𝑎

((
1 +𝑈 †

)
(𝑈𝐴 +𝑈𝐵)

))]
= 0, (3.63)

where𝑈𝐴,𝐵 represents pre-collision links associated to both nuclei and𝑈 is the resulting

‘total’ gauge link. This corresponds to 8 equations that must be solved numerically, since

we have 𝑁 2
𝑐 − 1 = 8 color indices and 𝑡𝑎 speciőes the color index of interest. Thankfully,

work done in Ref. [74] shows how to resolve this problem numerically. We begin by

deőning 𝐹𝑎, the quantity we want to be equal to 0, as

𝐹𝑎 = ℜ
[
Tr

(
𝑡𝑎

((
1 +𝑈 †

)
(𝑈𝐴 +𝑈𝐵)

))]
.
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We know that the solution to Eq. (3.63) is an element of 𝑆𝑈 (3), given the nature of

QCD. Based on this fact, we can take the following ansatz for the őnal solution,

𝑈 = exp(𝑖𝑥𝑏𝑡𝑏)𝑈0, (3.64)

with 𝑈0 being an initial guess for the gauge link (which we set to exp(−𝑖𝑔𝑎(𝐴𝑖 (𝐴) +
𝐴𝑖 (𝐵)))). With this in hand, we can Taylor expand 𝐹𝑎 about 𝑥𝑏 for each color index, i.e.,

𝐹𝑎 (𝛿𝑥𝑏) = 𝐹𝑎 +
8∑︁
𝑏=1

𝜕𝐹𝑎

𝜕𝑥𝑏
𝛿𝑥𝑏 , (3.65)

where we have kept only the őrst two terms of the expansion. Since we want 𝐹𝑎 = 0, we

state that small deviations about 𝐹𝑎 (𝑥𝑏 = 0) must also be 0 (i.e. 𝐹𝑎 (𝛿𝑥) = 0). This gives

us

𝐹𝑎 = −
8∑︁
𝑏=1

𝜕𝐹𝑎

𝜕𝑥𝑏
𝛿𝑥𝑏 . (3.66)

Taking the derivative of 𝐹𝑎, we őnd

𝜕

𝜕𝑥𝑏
ℜ

[
Tr

(
𝑡𝑎

((
1 +𝑈 †

)
(𝑈𝐴 +𝑈𝐵)

))]
𝛿𝑥𝑏 =

ℜ
[
Tr

(
𝑡𝑎

((
−𝑖𝑡𝑏𝑒−𝑖𝑥𝑏𝑡𝑏𝑈 †

0

)
(𝑈𝐴 +𝑈𝐵)

))]
𝛿𝑥𝑏 =

ℑ
[
Tr

(
𝑡𝑎𝑡𝑏

(
𝑈 †

0 (𝑈𝐴 +𝑈𝐵)
))]

𝛿𝑥𝑏 .

(3.67)

Combining this result with our initial deőnition of 𝐹𝑎, we őnd

ℜ
[
Tr

(
𝑡𝑎

((
1 +𝑈 †

)
(𝑈𝐴 +𝑈𝐵)

))]
= −ℑ

[
Tr

(
𝑡𝑎𝑡𝑏

(
𝑈 †

0 (𝑈𝐴 +𝑈𝐵)
))]

𝑥𝑏 , (3.68)

where we have replaced 𝛿𝑥𝑏 by 𝑥𝑏 since we initialize 𝑥𝑏 at 0. We update 𝑥𝑏 through

small incremental steps 𝑥new
𝑏

= 𝑥old
𝑏

+ 𝛿𝑥𝑏 until Eq. (3.68) converges; moving to the

lattice presents its fair share of difficulties.

In previous sections, we have mentioned the chromo-electric őeld in passing. When

we formally introduce the equations of motion in the following section, we will work

through the Hamiltonian to deduce the following form for the chromo-electric őeld,

𝐸𝜂 =
1

𝜏
𝜕𝜏𝐴𝜂 . (3.69)
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For now, it is only important to understand that Eq. (3.69) leads to

𝐸𝜂 = 2𝐴𝜂 = −𝑖𝑔
[
𝛼𝑖4,𝛼𝑖2

]
. (3.70)

We can then use Gauss’ law to determine 𝐸𝑖 , the transverse őelds,

[
𝐷𝑖 ,𝐸

𝑖
]
+

[
𝐷𝜂 ,𝐸

𝜂
]
= 0, (3.71)

⇒ 𝐸𝑖 = 0

where we have used the fact that 𝐸𝜂 is independent of 𝜂 to simplify Gauss’ law to[
𝐷𝑖 ,𝐸𝑖

]
= 0, which in turn is trivially solved by 𝐸𝑖 = 0. At 𝜏 = 0+, the transverse

chromo-electric őelds are therefore evenly 0.

The chromo-electric, given its deőnition in terms of the color gauge őelds, also exists

on the edges of our lattice. To obtain the 𝐸𝜂 at a lattice site ®𝑥⊥, one must imagine a

single cell on the lattice. This cell is a cube in 𝑥 ,𝑦 and 𝜂 coordinates. The value of the

chromo-electric őeld at the position of the center of the cell is taken to be the average of

the chromo-electric őelds that exist on the edges of the cell which point in the direction

of interest, i.e.,

𝐸𝜂 ( ®𝑥⊥) =
1

4

[
𝐸𝜂 ( ®𝑥⊥ − 𝑎

2
(1, 1)) + 𝐸𝜂 ( ®𝑥⊥ − 𝑎

2
(−1, 1))

+𝐸𝜂 ( ®𝑥⊥ − 𝑎
2
(1,−1)) + 𝐸𝜂 ( ®𝑥⊥ + 𝑎

2
(1, 1))

]
, (3.72)

where 𝑎 is the lattice spacing and ®𝑥⊥ is the position of the center of the cell of interest.

The chromo-electric őeld on the edges must still be deőned in the őrst place. Following

the work done in Ref. [73], we őnd that at a given edge at time 𝜏 = 0+,

𝐸𝜂 ( ®𝑥⊥) = − 𝑖

4𝑔𝑎2

2∑︁
𝑖=1

[
(𝑈𝑖 ( ®𝑥⊥) − 1)

(
𝑈 †
𝑖 (𝐴) ( ®𝑥⊥) −𝑈

†
𝑖 (𝐵) ( ®𝑥⊥)

)
+

(
𝑈 †
𝑖 ( ®𝑥⊥ − ®𝑎𝑖) − 1

) (
𝑈𝑖 (𝐴) ( ®𝑥⊥ − ®𝑎𝑖) −𝑈𝑖 (𝐵) ( ®𝑥⊥ − ®𝑎𝑖)

)
− h.c.

]
(3.73)

where h.c. indicates the hermitian conjugate of the two terms explicitly shown. By

expanding each term to őrst order, one can show that this form for 𝐸𝜂 on the lattice

respects Eq. (3.70).
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Figure 20: Energy density (𝜖) distributions of a (left) central and a (right) peripheral event

at initial time 𝜏 = 0.01 fm for Xe+Xe at 5.44 TeV. An overlay of the locations of

spectator nucleons and binary collision sites is also provided for reference.

Figure 20 shows the initial energy density proőles of two 129Xe events generated

using IP-Glasma. The energy density is obtained through the diagonalization of the

Yang-Mills stress-energy tensor, which we describe in Section 3.4. In short, the stress-

energy is calculated through the őeld strength tensor 𝐹 𝜇𝜈 which itself depends on

the color gauge őelds 𝐴𝜇 . The energy density shown is therefore, in some sense, a

composite view of the initial color gauge őelds. Figure 20 also provides an overlay of

binary collision sites and of spectator nucleon positions. Given the numerical nature of

our calculations and the factors of 1
𝜏

brought on by the 𝜏 −𝜂 metric, the simulations are

initialized at 𝜏 = 0.01 fm (as opposed to 𝜏 = 0 fm, which would lead to singularities at

initial time). This non-zero initial time is also motivated by the fact that, even though the

colliding nuclei are severely Lorentz contracted, they still preserve some longitudinal

extent. Indeed, for Xe-Xe collisions at
√
𝑠 = 5.44 TeV, the Lorentz factor 𝛾 is

𝛾 =

√
𝑠/2
𝑚N

=
2720 GeV

0.940 GeV
≈ 2900.
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Taking the initialization time to be the time at which the two nuclei have completely

passed through one another (and are not touching anymore), we have

𝜏0 =
2𝑅

𝛾
≈ 11 fm

2900
≈ 0.004 fm, (3.74)

which conőrms that the initialization time for the color gauge őelds should not be

𝜏0 = 0+.

Figure 20 makes it clear that the proőle ŕuctuates considerably from lattice site to

lattice site, a feature provided by the stochastic sampling of color charges. We can also

see that the central collision’s proőle is more spatially isotropic than the peripheral

proőle which, as we have established in Section 2.3.2, will lead to tangible differences

in the end-state observables we calculate. These extremely energetic proőles must still

be evolved temporally before being fed into our hydrodynamics phase, a transition

which occurs at ∼ 0.6 fm. The next sections will be concerned with developing and

understanding the equations of motion of the color gauge and chromo-electric őelds.

Before moving forward, it is important to quickly discuss the inherent link between

the 2D and 3D formulations of IP-Glasma. In the previous section, we have gone through

the derivation of the initial conditions for the 2D formulation of IP-Glasma speciőcally.

However, we have introduced, towards the end of said section, longitudinal color gauge

and chromo-electric őelds 𝐴𝜂 and 𝐸𝜂 . Of course, in the boost-invariant (or 2D) formu-

lation, no longitudinal dependencies are allowed. In the principal derivations of the

2D formulation of IP-Glasma [73], the degrees of freedom found in the Hamiltonian

(which we will derive in the next section) are the adjoint representation scalar of 𝐴𝜂

and its conjugate momentum (which is by deőnition 𝐸𝜂). They are usually represented

as 𝜙 (for 𝐴𝜂) and 𝜋 (for 𝐸𝜂) in order to avoid potential confusion as to the role of longi-

tudinal variables in their expressions. Given the fact that we will be extending the 2D

formulation to 3D, we have opted to skip this renaming procedure and have preserved

the longitudinal őeld names so that the adjustments made to them when moving to 3D

remain clear.
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With this matter dealt with, we shall now explain how to evolve these pre-equilibrium

őelds temporally until thermal equilibrium is reached. First, let us deőne further quan-

tities on the lattice.

3.3.3 Using the Lattice Practically

In Section 3.3.1, we introduced the lattice gauge links 𝑈𝑖 ( ®𝑥⊥) in order to allow us to

discuss how the initial color charge distributions would be őtted on the lattice. It is

now time for us to build more involved lattice quantities for use in the equations of

motion. Looking at the deőnition of our gauge links given in Eq. (3.40), we see that

two constant factors stick out: 𝑔, the strong coupling constant (not running, contrarily

to 𝛼𝑠 in IP-SAT (Eq. (3.32))) and 𝑎 is the size of the lattice spacing. To avoid having

to keep track of these factors throughout the numerical evolution, we rescale relevant

lattice őelds so that they contain all constants at the onset. Beginning with the color

gauge and chromo-electric őelds, we have

A𝑖 = 𝑔𝑎⊥𝐴𝑖 ,

A𝜂 = 𝑔𝐴𝜂 ,

E𝑖 = 𝑔𝑎⊥𝐸𝑖 ,

E𝜂 = 𝑔𝑎2
⊥𝐸

𝜂 ,

(3.75)

where we have speciőc 𝑎⊥, the transverse lattice spacing as it is a dimensionful quantity

(with units of fm) contrarily to the longitudinal lattice spacing 𝑎𝜂 , which does not have

units (since 𝜂 itself is dimensionless). Both our time variables and position variables

will also have to be rescaled in order to maintain consistency in our evolution equations.

We have

T =
𝜏

𝑎⊥
, (3.76)

𝓍
𝑖
=
𝑥𝑖

𝑎⊥
. (3.77)
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Figure 21: Schematic representation of the construction of a plaquette from gauge links which

form a lattice site. By multiplying all of the gauge links shown, we can construct the

plaquette𝑈𝑥𝑦 , a crucial lattice quantity.

As shown in Fig. 17, the gauge links connect neighboring vertices to one another.

Explicitly, we will have

𝑈𝑖 ( ®𝓍⊥,𝜂) = exp (𝑖A𝑖 ( ®𝓍⊥,𝜂)) , (3.78)

where 𝑖 = 𝑥 ,𝑦 and we have kept 𝜂 for speciőcity of the link in the grid. The longitudinal

gauge links will be

𝑈𝜂 ( ®𝓍⊥,𝜂) = exp
(
𝑖𝑎𝜂A𝜂 ( ®𝓍⊥,𝜂)

)
. (3.79)

In both Eqs. (3.78) and (3.79) we have speciőed the position in 3D space of the vertex

from which the link is sourced through ( ®𝓍⊥,𝜂). From here on out, we will only specify

the exact 3D positions if absolutely necessary based on context.

The őeld strength tensor 𝐹𝑖 𝑗 is found in Eq. (3.14), the CGC action, but has yet to

be deőned on the lattice. Contrarily to the color gauge őelds, which exist on the edges
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of our lattice, the őeld strength tensor itself exists within the lattice sites due to its

construction. Let us build a ‘plaquette’, a counter-clockwise loop around one lattice site

as shown in Fig. 21. We have

𝑈𝑥𝑦 (𝓍 + 0.5,𝓎 + 0.5) = 𝑈𝑥 (𝓍 + 0.5,𝓎)𝑈𝑦 (𝓍 + 1,𝓎 + 0.5)

𝑈 †
𝑥 (𝓍 + 0.5,𝓎 + 1)𝑈 †

𝑦 (𝓍,𝓎 + 0.5).
(3.80)

Expanding one of these links to quadratic order, we have

𝑈𝜇 ≈ 1 + 𝑖𝑔𝑎⊥𝐴𝑎𝜇𝑡𝑎 −
1

2
𝑔2𝑎2

⊥𝐴
𝑎
𝜇𝐴

𝑏
𝜇𝑡𝑎𝑡𝑏 , (3.81)

where we have reintegrated the color indices 𝑎, the Gell-Mann matrices and our lattice

constants 𝑔 and 𝑎⊥ to remind ourselves of the ‘squaring’ operation for our color gauge

őelds. Inserting Eq. (3.81) into Eq. (3.80), we őnd

𝑈𝑥𝑦 (𝓍 + 0.5,𝓎 + 0.5) ≈ 1 + 𝑖𝑔𝑎2
⊥

(
𝜕𝑥𝐴𝑦 − 𝜕𝑦𝐴𝑥

)
−𝑔2𝑎2

⊥
[
𝐴𝑥 ,𝐴𝑦

]
. (3.82)

Reminding ourselves that we have switched to the positive covariant derivative and,

therefore, the positive őeld strength tensor 𝐹𝜇𝜈 = 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇 + 𝑖𝑔
[
𝐴𝜇 ,𝐴𝜈

]
, we see that

𝑈𝑥𝑦 (𝓍 + 0.5,𝓎 + 0.5) = 1 + 𝑖𝑔𝑎2
⊥𝐹

𝑎
𝑥𝑦𝑡

𝑎 ∼ exp
(
𝑖𝑔𝑎2

⊥𝐹𝑥𝑦
)
= exp

(
𝑖F𝑥𝑦

)
, (3.83)

where the last equality implies that the scaled őeld strength tensor is

F𝑖 𝑗 = 𝑔𝑎2
⊥𝐹𝑖 𝑗 . (3.84)

We can therefore obtain the őeld strength tensor at each lattice site by moving around

the target site in a closed loop.

Our last bit of work before diving into the equations of motion themselves is in

deőning derivatives on the lattice with respect to the color gauge őelds. This is fairly

simple, but does require us to keep the Gell-Mann matrices in mind explicitly, which

we have generally hidden within the deőnition of the color gauge őelds. The transverse

derivative is

𝜕𝑈 𝑗 ( ®𝑥)
𝜕A𝑎

𝑖 ( ®𝑥)
=

𝜕

𝜕A𝑎
𝑖 ( ®𝑥)

exp
(
𝑖𝑡𝑎A𝑎

𝑗 ( ®𝑥)
)
= 𝑖𝑡𝑎𝛿𝑖 𝑗𝑈 𝑗 ( ®𝑥), (3.85)
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while in the 𝜂-direction it reads

𝜕𝑈𝜂 ( ®𝑥)
𝜕A𝑎

𝜂 ( ®𝑥)
= 𝑖𝑡𝑎𝑎𝜂𝑈𝜂 ( ®𝑥), (3.86)

where the difference between the two is in the preservation of a factor of the longitudinal

spacing 𝑎𝜂 . With this result in hand, we can now develop the equations of motion using

the CGC Hamiltonian.

3.3.4 Equations of Motion

Let us begin by identifying the Lagrangian L within Eq. (3.14) [75] and move it to

𝜏 − 𝜂 coordinates,

𝑆 = −1

2

∫
𝑑𝜏𝑑𝜂𝑑 ®𝑥⊥

√−𝑔𝜇𝜈 Tr
[
𝐹𝜇𝜈𝑔

𝜇𝛼𝑔𝜈𝛽𝐹𝛼𝛽 + 𝐽𝜇𝑔𝜇𝜈𝐴𝜈
]

,

𝑆 =

∫
𝑑𝜏𝑑𝜂𝑑 ®𝑥⊥

𝜏

2
Tr

[
𝐹 2
𝜏𝜂

𝜏2
+ 𝐹 2

𝜏𝑖 −
𝐹 2
𝜂𝑖

𝜏2
−
𝐹 2
𝑖 𝑗

2
+
𝐽𝜂𝐴𝜂

𝜏2

]
. (3.87)

The source term 𝐽𝜂𝐴𝜂 can be dropped here because, as we have established, the color

sources are conőned to the light-cone itself and exclusively contribute to the evolution

through their sourcing of the color gauge őelds 𝐴𝜇 in the initial conditions. Therefore,

identifying L with this in mind, we have

L =
𝜏

2
Tr

[
𝐹 2
𝜏𝜂

𝜏2
+ 𝐹 2

𝜏𝑖 −
𝐹 2
𝜂𝑖

𝜏2
−
𝐹 2
𝑖 𝑗

2

]
. (3.88)

As mentioned previously, the conjugate momenta of our fundamental degrees of free-

dom 𝐴𝜇 are the chromo-electric őelds 𝐸𝜇 in the proper time gauge 𝐴𝜏 = 0, i.e.

𝐸𝑖 =
𝜕L

𝜕 (𝜕𝜏𝐴𝑖)
= 𝜏𝜕𝜏𝐴𝑖 ,

𝐸𝜂 =
𝜕L

𝜕
(
𝜕𝜏𝐴𝜂

) =
1

𝜏
𝜕𝜏𝐴𝜂 ,

(3.89)

which can be inserted within the Hamiltonian density H ,

H =

∑︁
𝑖

¤𝑞𝑖
𝜕L
𝜕 ¤𝑞𝑖

− L, (3.90)
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where the 𝑞𝑖 are the fundamental degrees of freedom of the Lagrangian. Doing so yields

H = 𝐸𝑖 (𝜕𝜏𝐴𝑖) + 𝐸𝜂
(
𝜕𝜏𝐴𝜂

)
− L

H = Tr

[
(𝐸𝑖)2

𝜏
+
𝐹 2
𝜂𝑖

𝜏
+ 𝜏 (𝐸𝜂)2 + 𝜏𝐹 2

𝑥𝑦

]
.

(3.91)

In the usual boost-invariant formulation discussed at the end of Section 3.3.2, H would

become

H = Tr

[ (𝐸𝑖)2

𝜏
+ (𝐷𝑖Φ)2

𝜏
+ 𝜏 (𝜋)2 + 𝜏𝐹 2

𝑥𝑦

]
, (3.92)

where the longitudinal direction color gauge and chromo-electric őelds have simply

been replaced by an adjoint representation scalar Φ and its conjugate momentum 𝜋 .

Moving back to our lattice, we deőne 𝐷𝑈𝑖 and 𝐷𝑈𝑖 𝑗 ,

𝐷𝑈𝑖 = 𝑈𝑖 − 1,

𝐷𝑈𝑖 𝑗 = 𝑈𝑖 𝑗 − 1,
(3.93)

which are more convenient for the purpose of numerical implementation. In terms of

these ‘new’ quantities, we have

𝐷𝑈𝑖 𝑗
(
exp

(
𝑖F𝑖 𝑗

) )
− 1 ≈

(
1 + 𝑖F 𝑎

𝑖 𝑗 𝑡𝑎 −
1

2
F 𝑎
𝑖 𝑗F 𝑏

𝑖 𝑗 𝑡𝑎𝑡𝑏

)
− 1

⇒ 𝐷𝑈𝑖 𝑗 ≈ 𝑖F 𝑎
𝑖 𝑗 𝑡𝑎 −

1

2
F 𝑎
𝑖 𝑗F 𝑏

𝑖 𝑗 𝑡𝑎𝑡𝑏 .

(3.94)

Using Tr(𝑡𝑎𝑡𝑏) = 1
2𝛿𝑎𝑏 , the real part of the trace of 𝐷𝑈𝑖 𝑗 gives

ℜ
[
Tr

(
𝐷𝑈𝑖 𝑗

) ]
= −1

4
F 2
𝑖 𝑗 . (3.95)

With Eq. (3.95) in hand, we can őrst rewrite the lattice action S,

S =
1

2

∑︁ [(
TTr(E𝜂)2 + Tr(E⟩)2

T +
4ℜ

[
Tr

(
𝐷𝑈𝑖𝜂

) ]
𝑎2
𝜂T

+ 4Tℜ
[
Tr

(
𝐷𝑈𝑖 𝑗

) ] )]
,

(3.96)

where quantities indexed by 𝑖 assume a sum over 𝑖 = 𝑥 ,𝑦. The lattice Hamiltonian

density is then

H̃ =
1

2

[
Tr(E𝑖)2

T + TTr(E𝜂)2 +
4ℜ

[
Tr

(
𝐷𝑈𝑖𝜂

) ]
𝑎2
𝜂T

+ 4Tℜ
[
Tr

(
𝐷𝑈𝑖 𝑗

) ] ]
. (3.97)



3.3 evolution 68

To őnd equations of motion through the Hamiltonian (lattice or continuous), we

calculate

𝜕H
𝜕𝐸𝜇

=
𝜕𝐴𝜇

𝜕𝜏
𝜕H
𝜕𝐴𝜇

= −𝜕𝐸
𝜇

𝜕𝜏
.

(3.98)

The őrst two equations are trivial to obtain through, and simply mirror what we found

in Eq. (3.89), i.e.

𝜕𝜏𝐴𝑖 =
1

𝜏
𝐸𝑖 (3.99)

𝜕𝜏𝐴𝜂 = 𝜏𝐸
𝜂 . (3.100)

The other equations of motion are a bit harder to extract. Indeed, taking the typical

Hamiltonian formulation, we őnd

− 𝜕𝜏𝐸𝑖 =
𝜕H
𝜕𝐴𝑖

− 𝜕𝜏𝐸𝑖 =
1

2

𝜕

𝜕𝐴𝑖

[
𝐹 2
𝑖𝜂

𝜏
+ 𝜏𝐹 2

𝑖 𝑗

] (3.101)

and

− 𝜕𝜏𝐸𝜂 =
𝜕H
𝜕𝐴𝜂

− 𝜕𝜏𝐸𝜂 =
1

2

𝜕

𝜕𝐴𝜂

[
𝐹 2
𝑖𝜂

𝜏
+ 𝜏𝐹 2

𝑖 𝑗

]
.

(3.102)

Equations (3.101) and (3.102) are not easy to parse through. However, we can use

the non-Abelian Gauss law to obtain these equations and solve them more efficiently.

Indeed, remarking that, in our proper time gauge 𝐴𝜏 = 0, we have

𝐸𝜂 = 𝜏𝐹𝜂𝜏

𝐸𝑖 = 𝜏𝐹 𝑖𝜏 .
(3.103)

We can obtain 4 sets of equations through our Gauss Law. The őrst, Eq. (3.71), was

used previously. Following the general form

0 =
[
𝐷𝛼 ,𝜏𝐹𝛼𝛽

]
, (3.104)
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with the őrst being with 𝛽 = 𝜏 , we can create 3 more equations. We start with 𝛽 = 𝜂,

0 = [𝐷𝛼 ,𝜏𝐹𝛼𝜂]

0 = [𝐷𝜏 ,𝜏𝐹𝜏𝜂] +
[
𝐷𝑖 ,𝜏𝐹

𝑖𝜂
]

0 = −𝜕𝜏𝐸𝜂 +
1

𝜏

[
𝐷𝑖 , 𝐹𝑖𝜂

]
𝜕𝜏𝐸

𝜂
=

1

𝜏

[
𝐷𝑖 , 𝐹𝑖𝜂

]
,

(3.105)

where we have used 𝑔𝑖𝑖𝑔𝜂𝜂 =
1
𝜏2 to lower the indices in the second to last step. The

equations for the transverse components 𝛽 = 𝑖 give

0 =
[
𝐷𝛼 ,𝜏𝐹𝛼𝑖

]
0 =

[
𝐷𝜏 ,𝜏𝐹

𝜏𝑖
]
+

[
𝐷 𝑗 ,𝜏𝐹

𝑗𝑖
]
+

[
𝐷𝜂 ,𝜏𝐹

𝜂𝑖
]

0 = −𝜕𝜏𝐸𝑖 + 𝜏
[
𝐷 𝑗 , 𝐹

𝑗𝑖
]
+ 𝜏

[
𝐷𝜂 , 𝐹

𝜂𝑖
]

𝜕𝜏𝐸
𝑖
= 𝜏

[
𝐷 𝑗 , 𝐹 𝑗𝑖

]
+ 1

𝜏

[
𝐷𝜂 , 𝐹𝜂𝑖

]
,

(3.106)

which completes our set of continuous equations of motion. The fact we have used Gauss’

law here entails that the system of equations obtained from the Hamiltonian alone would

not have been enough to determine the gauge őelds. Therefore, the equations of motion

include Gauss’ law in the vacuum, such that they read

𝜕𝜏𝐸
𝑖
=

1

𝜏

[
𝐷𝜂 , 𝐹𝜂𝑖

]
+ 𝜏

[
𝐷 𝑗 , 𝐹 𝑗𝑖

]
𝜕𝜏𝐸

𝜂
=

1

𝜏

[
𝐷𝑖 , 𝐹𝑖𝜂

]
𝜕𝜏𝐴𝑖 =

1

𝜏
𝐸𝑖

𝜕𝜏𝐴𝜂 = 𝜏𝐸
𝜂

[
𝐷𝑖 ,𝐸

𝑖
]
+

[
𝐷𝜂 ,𝐸

𝜂
]
= 0.

(3.107)

We can now translate these onto the lattice. Starting from the understanding that

Eq. (3.97) constitutes a sum over all lattice sites, and given the fact that we will have to

differentiate with respect to the color gauge őeld𝐴𝜇 at a speciőc edge (i.e.,𝐴𝜇 ( ®𝑥⊥)), the
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elements of the Hamiltonian which will ‘survive’ differentiation by the gauge őeld will

come from two different plaquettes. For a given link in the 𝑥 direction, we will have

𝑈𝑥𝑦 (𝓍 + 0.5,𝓎 + 0.5) =

𝑈𝑥 (𝓍 + 0.5,𝓎)𝑈𝑦 (𝓍 + 1,𝓎 + 0.5)𝑈 †
𝑥 (𝓍 + 0.5,𝓎 + 1)𝑈 †

𝑦 (𝓍,𝓎 + 0.5),

𝑈𝑥𝑦 (𝓍 + 0.5,𝓎 − 0.5) =

𝑈𝑥 (𝓍 + 0.5,𝓎 − 1)𝑈𝑦 (𝓍 + 1,𝓎 − 0.5)𝑈 †
𝑥 (𝓍 + 0.5,𝓎)𝑈 †

𝑦 (𝓍,𝓎 − 0.5)
(3.108)

where the gauge links𝑈𝑥 (𝓍+ 0.5,𝓎) and𝑈 †
𝑥 (𝓍+ 0.5,𝓎) both depend on𝐴𝑥 (𝓍+ 0.5,𝓎).

With this in mind, we can take the derivative of our lattice Hamiltonian,

𝜕H̃
𝜕A𝑎

𝑥 ( ®𝓍⊥)
=

𝜕

𝜕A𝑎
𝑥 ( ®𝓍⊥)

(
−2Tℜ

[
Tr(𝑈𝑥𝑦)

]
− 2

𝑎2
𝜂T

ℜ
[
Tr(𝑈𝑥𝜂)

] )

= −2ℜ
(
𝑖Tr

[
𝑡𝑎

(
T

[
𝑈𝑥𝑦 ( ®𝓍⊥ + 𝑎𝑦

2 ) −𝑈−𝑦𝑥 ( ®𝓍⊥ + 𝑎𝑦
2 )

]
+ 𝑖

T𝑎2
⊥

[
𝑈𝑥𝜂 ( ®𝓍⊥ + 𝑎𝜂

2 ) −𝑈−𝜂𝑥 ( ®𝓍⊥ + 𝑎𝜂
2 )

] )] )

= 2ℑ
(
Tr

[
𝑡𝑎

(
T

[
𝑈𝑥𝑦 ( ®𝓍⊥ + 𝑎𝑦

2 ) −𝑈−𝑦𝑥 ( ®𝓍⊥ + 𝑎𝑦
2 )

]
+ 1

T𝑎2
⊥

[
𝑈𝑥𝜂 ( ®𝓍⊥ + 𝑎𝜂

2 ) −𝑈−𝜂𝑥 ( ®𝓍⊥ + 𝑎𝜂
2 )

] )] )
,

(3.109)

where we have used the fact that another two plaquettes, in the 𝑥 − 𝜂 plane this time,

also contain factors of 𝐴𝑥 (𝓍 + 0.5,𝓎), and have used the shorthand 𝑎𝑦 to mean the unit

lattice vector, in lattice units, in the 𝑦 direction. Using ℑ(𝑧) = − 𝑖
2 [𝑧 − 𝑧∗], we get

𝜕H̃
𝜕A𝑎

𝑥 ( ®𝓍⊥)
= −𝑖Tr

[
𝑡𝑎

(
T

[
𝑈𝑥𝑦 ( ®𝓍⊥ + 𝑎𝑦

2 ) −𝑈−𝑦𝑥 ( ®𝓍⊥ + 𝑎𝑦
2 ) −𝑈𝑦𝑥 ( ®𝓍⊥ + 𝑎𝑦

2 )

+𝑈𝑥−𝑦 ( ®𝓍⊥ + 𝑎𝑦
2 )

]
+ 1

T𝑎2
⊥

[
𝑈𝑥𝜂 ( ®𝓍⊥ + 𝑎𝜂

2 ) −𝑈−𝜂𝑥 ( ®𝓍⊥ + 𝑎𝜂
2 )

−𝑈𝜂𝑥 ( ®𝓍⊥ + 𝑎𝜂
2 ) +𝑈𝑥−𝜂 ( ®𝓍⊥ + 𝑎𝜂

2 )
] )]

.

(3.110)

And so, the lattice equation of motion for the chromo-electric őeld components in the

transverse direction is

𝜕TE𝑖 =
𝑖

2

[ (
T

[
𝑈𝑖 𝑗 ( ®𝓍⊥) −𝑈− 𝑗𝑖 ( ®𝓍⊥) −𝑈 𝑗𝑖 ( ®𝓍⊥) +𝑈𝑖− 𝑗 ( ®𝓍⊥)

]
+ 1

T𝑎2
⊥

[
𝑈𝑖𝜂 ( ®𝓍⊥) −𝑈−𝜂𝑖 ( ®𝓍⊥) −𝑈𝜂𝑖 ( ®𝓍⊥) +𝑈𝑖−𝜂 ( ®𝓍⊥)

] )
− trace

]
,

(3.111)
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where ‘−trace’ subtracts the part that is proportional to the trace taken in Eq. (3.110).

In the 𝜂 direction, because of the lattice spacing 𝑎𝜂 , things are a bit different,

𝜕TE𝜂 =
𝑖

2T𝑎𝜂
[
𝑈𝜂𝑥 ( ®𝓍⊥) −𝑈−𝑥𝜂 ( ®𝓍⊥) −𝑈𝑥𝜂 ( ®𝓍⊥) +𝑈𝜂−𝑥 ( ®𝓍⊥)

+𝑈𝜂𝑦 ( ®𝓍⊥) −𝑈−𝑦𝜂 ( ®𝓍⊥) −𝑈𝑦𝜂 ( ®𝓍⊥) +𝑈𝜂−𝑦 ( ®𝓍⊥) − trace
]

.

(3.112)

The equations of motion for the transverse gauge őelds are simpler to obtain,

𝜕TA𝑖 =
E𝑖
T

𝜕T𝑈𝑖 = 𝑖𝜕TA𝑖𝑈𝑖

⇒ 𝜕T𝑈𝑖 = 𝑖
E𝑖
T 𝑈𝑖 ,

(3.113)

while in the longitudinal direction, the same logic gives

𝜕T𝑈𝜂 = 𝑖𝑎𝜂TE𝜂𝑈𝜂 . (3.114)

We are now able to evolve the color gauge and chromo-electric őelds in time. To do so

numerically is not trivial, given the coupled nature of the equations of motion. To solve

this problem, a leap-frog algorithm is implemented. That is, the two groups of őelds𝐴𝜇

and 𝐸𝜇 are evolved sequentially: we evaluate the equations for the chromo-electric őelds

at time 𝜏 , and then evaluate the equations for the color gauge őelds at time 𝜏 + 𝑑𝜏/2.

We then have a coherent numerical framework from which our degrees of freedom can

be evolved. Once our pre-determined thermalization time 𝜏sw is reached, IP-Glasma

terminates and we move to the hydrodynamic description of the QGP proper. The

interface between the out-of-equilibrium glasma and the thermalized QGP is guided by

the stress-energy tensor 𝑇 𝜇𝜈 .

3.4 switching to hydrodynamics

One of the many advantages of IP-Glasma as an initial state model is its ability to build

a coherent and fully physically motivated stress-energy tensor 𝑇 𝜇𝜈 . Indeed, since the

hydrodynamics phase will be interested in ensemble averaged quantities such as energy,
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pressure, and ŕow,𝑇 𝜇𝜈 is the fundamental quantity that will be evolved. Classical Yang-

Mills theory provides an analytical formula for construction of the stress-energy via the

őeld strength tensor 𝐹𝜇𝜈 [75],

𝑇 𝜇𝜈 = −𝑔𝜇𝛼𝑔𝜈𝛽𝑔𝛾𝛿𝐹𝛼𝛾𝐹𝛽𝛿 +
1

4
𝑔𝜇𝜈𝑔𝛼𝛾𝑔𝛽𝛿𝐹𝛼𝛽𝐹𝛾𝛿 . (3.115)

This tensor is constructed everywhere on the lattice, and is fully symmetric and gauge

invariant. It can be diagonalized to obtain its eigenvalues and eigenvector, of which

the timelike pair (i.e., the pair with a positive eigenvalue and where the 4-norm of the

eigenvector is positive) is kept as the local energy density and glasma ŕow. Explicitly,

𝑇
𝜇
𝜈 𝑢

𝜈
= 𝜖𝑢𝜇 where 𝜖 > 0 & 𝑢𝜇𝑢

𝜇
> 0. (3.116)

Once this pair is identiőed, the ŕow velocity is normalized to 1, i.e., 𝑢𝜇𝑢𝜇 = 1.

The stress-energy tensor also contains information about the shear-stress tensor 𝜋 𝜇𝜈 ,

which itself is important as it informs us about the viscosity of the system. This viscosity

has been shown to be an important feature of QGP [76] which, if ignored, could lead

to mismatches between calculations and experimental results. The shear-stress tensor

is deőned as

𝜋
𝜇𝜈

IPG = 𝑇
𝜇𝜈

CYM −𝑇 𝜇𝜈ideal, (3.117)

where

𝑇
𝜇𝜈

ideal = (𝜖 + 𝑃)𝑢𝜇𝑢𝜈 − 𝑃𝑔𝜇𝜈 , (3.118)

where we are in the Landau frame, which indicates that the ŕow 𝑢𝜇 is that of the energy

density 𝜖. Classical Yang-Mills being a massless theory sets the pressure 𝑃 at each

lattice site to be

𝑃IPG =
𝜖

3
, (3.119)

allowing us to easily evaluate the ideal hydrodynamic stress-energy tensor 𝑇 𝜇𝜈ideal every-

where on the lattice. The construction of 𝜋 𝜇𝜈IPG is therefore simple given the theoretical
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features of IP-Glasma. The introduction of the conformal pressure in Eq. (3.119) raises

an important question: in hydrodynamics, an equation of state will dictate the pressure

of the system as a function of its energy density as well as other thermodynamic quanti-

ties. This equation of state aims to describe an equilibrated system of quarks and gluons,

which is very different from the purely gluonic state described by IP-Glasma. Its form

will therefore be much less trivial than that of the conformal pressure. How, then, do

we reconcile the system’s conformal pressure 𝑃IPG to the hydrodynamic pressure 𝑃hydro

at switching time 𝜏sw? There is no reason for the two values to be equal a priori, so

we must őnd a way to resolve potential tensions between the two pressure values at

transition. To do this, we initialize the hydrodynamic phase of the simulation with a

bulk pressure Π equal to the difference between the conformal pressure and the pressure

obtained through the equation of state, i.e.,

Π = 𝑃IPG − 𝑃hydro. (3.120)

We can therefore use all of the information from our initial state to coherently initialize

the hydrodynamic phase, a feature unique to IP-Glasma.

We are now ready to look at the remaining phases of heavy-ion collisions, and discuss

how they impact the observables which are relevant to our goal of constraining nuclear

shape.



4
Q G P : E VO LU T I O N , F R E E Z E - O U T A N D

O B S E RVA B L E S

The previous chapters have discussed where and how nuclear deformation occurs,

how it manifests itself in the highly energetic and paired (i.e. two ions) setting of

heavy-ion collisions, how pre-collision nuclear structure translates directly to color

charge ŕuctuations (and, therefore, ŕuctuations in the color gauge őelds 𝐴𝜇) and how

those purely gluonic őelds evolve in the pre-equilibrium phase. We have, consequently,

established that this pre-equilibrium phase is essential if we want to capture the entire

scope of initial ŕuctuations in heavy-ion collisions. It is now time to describe the QGP as

it only truly becomes a QGP once it is thermalized and offers itself to a hydrodynamical

description. We will introduce the ideal hydrodynamic conservation equations which

guide the evolution of QGP through its existence. We will then show how deviations from

this ideal hydrodynamics formulation, through the inclusion of the viscous components

introduced at the end of the last chapter, are integrated into the theory. Including viscosity

in the evolution equations will entail the incorporation of speciőc viscous parameters,

which will be appropriately motivated. Since we are interested in simulations, we will

introduce the numerical framework through which these equations are implemented

and evolved, namely MUSIC [18]. As established in the introduction, as QGP evolves

hydrodynamically, it expands and cools until quarks and gluons reconőne into hadrons.

We will describe how, through Cooper-Frye freeze-out and sampling [19, 20], a gas

of hadrons is generated from a spatiotemporal hypersurface generated by MUSIC

throughout its evolution. Once particlized, these hadrons will be evolved as a hadron gas,

with relevant scatterings and decays taken into account, until all end-state particles have

74
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reached the ‘detectors’, represented in our simulations by reaching a pre-determined

distance from the position of the beam-pipe in our simulations. This őnal phase of our

framework is performed using SMASH [21]. The őnal section of this chapter will be

dedicated to adequately deőning observables (in other words, the properties of collision

events belonging to similar centrality classes), their relevance to our stated goal of

constraining nuclear deformation, and their relation to the various phases of the entire

evolution, from initial state energy deposits to the evolution of the QGP itself.

4.1 hydrodynamics

In our description, we will preserve the natural ordering of the different phases of our

simulations by describing them in the order they appear, as was done in the previous

two chapters. Let us therefore start by looking at the initialization of the hydrodynamic

phase through the őnal time step of IP-Glasma.

4.1.1 From Glasma to Quark-Gluon Plasma

At the end of the previous chapter, we introduced the stress-energy and shear-stress

tensors 𝑇 𝜇𝜈 & 𝜋 𝜇𝜈 , as well as the bulk pressure Π. In IP-Glasma, 𝑇 𝜇𝜈 was calculated

using Eq. (3.115), meaning it inherently depended on the degrees of freedom of the

theory, the color gauge őelds 𝐴𝜇 . This dependence upon the color gauge őelds means

that qualitative features of the őelds should, in theory, translate directly to features of

the tensor. Figure 20 showed the energy deposit at initial time 𝜏 = 0.01 fm; while the

goal of Fig. 20 was to link the initialization phase (nucleon sampling, color charge

ŕuctuations) to the initial color gauge őelds 𝐴𝜇 , it did also provide a small window

into the ‘spikiness’ of initial conőgurations produced by IP-Glasma. Indeed, one can

see that 𝜖 varies considerably between neighboring lattice sites (the pixels in the 2D

slice). However, the sheer scale of the initial time energy deposits makes this a bit hard
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Figure 22: Energy density (𝜖) distributions of a (left) central and a (right) peripheral event at

switching time 𝜏 = 0.602 fm for Xe+Xe at 5.44 TeV. The maximum energy of the

scale given on the right is 100× smaller than the one provided in Fig. 20.

to appreciate, as most energetic cells are neighbored by other bright cells. Figure 22

provides the energy density conőgurations of the same two events as Fig. 20 taken

at the end of the IP-Glasma evolution, at 𝜏 = 0.602 fmź. In Fig. 22, the spikiness

mentioned above is a lot more apparent, with neighboring cells, at times, having > 50%

differences in energy density. As explained previously, this spikiness is due to the color

charge ŕuctuations being dependent on the saturation scale 𝑄𝑠 , which is calculated at

each lattice site. These large variations in the energy density tell us that the stress-energy

tensor𝑇 𝜇𝜈 varies greatly from site to site, which makes sense given that the glasma phase

is inherently out of equilibrium. Figure 23 shows the same transverse slice rotated in

3D space to provide a better view of the ŕuctuations exhibited by the IP-Glasma energy

deposits. We can see how the surface is far from smooth, and how, while peaks can

congregate, most peaks occur close to valleys.

As established in Section 3.4, the energy density is calculated through diagonalizing

𝑇 𝜇𝜈 and retaining the eigenvalue associated to the timelike eigenvector (i.e. satisfying

ź This time was chosen phenomenologically and following the Bayesian calibration conducted in Ref. [77].
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Figure 23: Energy density (𝜖) distributions of a (left) central and a (right) peripheral event

at switching time 𝜏 = 0.602 fm for Xe+Xe at 5.44 TeV. Slice is represented in

3 dimensions (with 𝑧-axis being 𝜖) to better show the large variations of energy

density.

𝑢𝜇𝑢
𝜇
> 0), which ends up being the glasma ŕow velocity. Given the signiőcant spatial

variations of the energy density and the inherent link between 𝜖 and 𝑢𝜇 , it is fair to

assume that the ŕow extracted from the CYM stress-energy tensor is prone to large

ŕuctuations. Figure 24 provides an overlayed view of the ŕow at switching time for the

central event shown in Figs. 20, 22 and 23. It is hard (in the left panel) to make sense

of the ŕow’s features when observing the entire interaction region. However, zooming

in on a region within the QGP that is 2 fm × 2 fm = 4 fm2, the features of the ŕow (or

lack thereof) at switching time become clearer. Indeed, we see that, while neighboring

ŕuid cells usually preserve some form of coherence in their collective ŕow, neighbors

sometimes have practically opposite ŕow vectors. Therefore, large local ŕuctuations in

energy density translate to large ŕuctuations in the ŕow. These large local discrepancies,

as explained previously, are mostly due to the nature of the initialization of the color

gauge őelds - the degrees of freedom of our initial state - which relied on sampling

color charges according to quantities which ŕuctuate from lattice site to lattice site.
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Figure 24: Energy density (𝜖) distribution of a central event at switching time 𝜏 = 0.602 fm for

Xe+Xe at 5.44 TeV. The ŕow velocity vectors are overlayed, and an inset is provided

to give a clearer picture of the features of the local ŕow.

Because these gauge őelds are evolved according to the CYM equations, these initial

time ŕuctuations in the energy density and ŕow have not yet had enough time to dissipate

and isotropize in the IP-Glasma phase. This spikiness at various levels is a characteristic

of IP-Glasma which, as we will now show, the hydrodynamics phase smoothes out by

deőnition.

4.1.2 Hydrodynamical Evolution

Hydrodynamics is, at its core, concerned with more macroscopic thermodynamic quan-

tities; as such, the stress-energy and shear-stress tensors will encode the fundamental

degrees of freedom of the theory themselves. We transition from the color gauge őelds

to thermodynamic quantities as our degrees of freedom because hydrodynamics is con-

cerned with long-wavelength modes: instead of attempting to track the particles (gluon
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őelds) in this phase, we turn to more spatially-coarse collective motion, which is better

described by thermodynamic quantities [78, 79].

As mentioned, we employ a viscous relativistic hydrodynamics numerical simulation

called MUSIC [18] to evolve the QGP. When describing hydrodynamics, it is usually

preferred to begin with an ideal description of hydrodynamics, followed by the introduc-

tion of deviations from ideal hydrodynamics (here, viscosity) further along. Concretely,

ideal hydrodynamics is fully described mathematically through conservation equations.

Ignoring other conserved currents (such as baryonic currents) as they make subdom-

inant contributions at the energies we are interested in [79, 80], the őrst set is given

by

𝜕𝜇𝑇
𝜇𝜈

= 0

𝜕𝜇 ((𝜖 + 𝑃)𝑢𝜇𝑢𝜈 − 𝑃𝑔𝜇𝜈) = 0, (4.1)

where we have used Eq. (3.118) to rewrite the energy-momentum conservation relation

into the guiding equation of ideal hydrodynamics. This refactoring makes it clear that

the ideal formulation provides őve őelds to evolve: the energy density 𝜖, the pressure

𝑃 and the ŕow velocity 𝑢𝜇 . One may notice that the őelds we named provide six

components. However, given the normalization condition on the ŕow velocity𝑢𝜇𝑢𝜇 = 1,

the number of independent őelds provided by the ŕow 4-vector 𝑢𝜇 decreases from 4

to 3. One should also note that, while the pressure 𝑃 is contained in this conservation

equation, given the use of an equation of state in this phase, it is fully determined by

the local energy density 𝜖, i.e. 𝑃 → 𝑃 (𝜖).
Our description would have ended here if we had used an ideal hydrodynamics

framework. However, research conducted as a response to the initialization of RHIC

showed that viscous corrections played an important role in producing observables

such as elliptic ŕow [81]. These corrections come in the form of expansions of the

stress-energy tensor 𝑇 𝜇𝜈 in terms of the order of the gradients of the fundamental

hydrodynamic quantities (𝜖, 𝑢𝜇 , 𝑃) found within a given part of 𝑇 𝜇𝜈 . In other words,

Eq. (3.118) (written as 𝑇 𝜇𝜈ideal in Section 3.4) would be the 0th order contribution, 𝑇 𝜇𝜈0 .
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Because of the possibility of acausal propagation of information via superluminal

ŕow [82], MUSIC must use second-order viscous hydrodynamics. The expansion of

the stress-energy tensor will therefore look like

𝑇 𝜇𝜈 = 𝑇
𝜇𝜈

0 +𝑇 𝜇𝜈1 +𝑇 𝜇𝜈2 . (4.2)

Following discussions presented in Ref. [83], let us deőne these deviations.

Using the Landau frame,š the frame in which the ŕow velocity 𝑢𝜇 is deőned as the

movement of the energy density 𝜖, we have

𝑢𝜇𝑇
𝜇𝜈

= 𝜖𝑢𝜈 . (4.3)

Using Eq. (4.3) with Eq. (3.118), we őnd that

𝑢𝜇
(
𝑇
𝜇𝜈

1 +𝑇 𝜇𝜈2

)
= 0, (4.4)

since the condition provided by Eq. (4.3) is already fully satisőed by the ideal stress-

energy tensor 𝑇 𝜇𝜈0 . Deőning the projection operator Δ𝜇𝜈 and co-moving derivative 𝐷𝜇

as

Δ
𝜇𝜈

= 𝑔𝜇𝜈 −𝑢𝜇𝑢𝜈

𝐷𝜇 = 𝜕𝜇 −𝑢𝜇𝑢𝛼𝜕𝛼

we have, for the őrst-order deviation,

𝑇
𝜇𝜈

1 = 𝜂

(
𝐷𝜇𝑢𝜈 +𝐷𝜈𝑢𝜇 − 2

3
Δ
𝜇𝜈𝜕𝛽𝑢

𝛽

)
+ 𝜁Δ𝜇𝜈𝜕𝛽𝑢𝛽 , (4.5)

where two new parameters have been added, namely 𝜂, the shear viscosity, and 𝜁 , the

bulk viscosity. If we separate the effective hydrodynamic corrections into a traceless and

a trace part, we can retrieve the shear-stress and bulk pressures introduced previously,

i.e.,

𝑇 𝜇𝜈 = 𝑇
𝜇𝜈

0 + 𝜋 𝜇𝜈 + Δ
𝜇𝜈
Π, (4.6)

š There exist other frames which use other quantities as their source for ŕow. The Eckart frame, for

example, uses the velocity of net baryon number ŕow. However, given we are not considering such

conserved currents in this work, the Eckart frame cannot be used here at all.
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where the shear-stress tensor 𝜋 𝜇𝜈 and the bulk pressure Π have now replaced our

őrst and second order corrections 𝑇 𝜇𝜈1 and 𝑇 𝜇𝜈2 . Therefore, moving away from ideal

hydrodynamics implies the addition of viscosity, and our corrections will manifest

themselves as further expansions of 𝜋 𝜇𝜈 and Π. Linking Eq. (4.6) to Eq. (4.5), we őnd

that, to őrst order,

𝜋 𝜇𝜈 = 𝜂

(
𝐷𝜇𝑢𝜈 +𝐷𝜈𝑢𝜇 − 2

3
Δ
𝜇𝜈𝜕𝛽𝑢

𝛽

)
= 2𝜂𝜎𝜇𝜈 ,

Π = 𝜁Δ𝜇𝜈𝜕𝛽𝑢
𝛽 ,

(4.7)

where we have deőned the velocity shear tensor 𝜎𝜇𝜈 and where the names for 𝜂 and 𝜁

now make sense. We now have deőnitions for the shear-stress tensor and bulk pressure

but no evolution equations. These equations are introduced by moving to second-order

and are relaxation-time equations őrst developed by Israel, Müeller and Stewart [80, 84],

and extended through kinetic theory by Denicol, Niemi, Molnar and Rischke (DNMR)

more recently [85]. They yield

¤𝜋 𝜇𝜈 = 1

𝜏𝜋

(
−𝜋 𝜇𝜈 + 2𝜂𝜎𝜇𝜈 − 4

3
𝜏𝜋𝜋

𝜇𝜈
Θ + 9

70𝑃
𝜋
⟨𝜇
𝛼 𝜋

𝜈⟩𝛼 − 10

7
𝜏𝜋𝜋

⟨𝜇
𝛼 𝜎

𝜈⟩𝛼 + 6

5
𝜏𝜋Π𝜎

𝜇𝜈

)
,

(4.8)

¤Π =
1

𝜏Π

(
−Π − 𝜁Θ − 2

3
𝜏ΠΠΘ + 8

5

(
1

3
− 𝑐2

𝑠

)
𝜏Π𝜋

𝜇𝜈𝜎𝜇𝜈

)
, (4.9)

where we have introduced the shorthand Θ = 𝜕𝜇𝑢
𝜇 for the expansion rate, 𝑐𝑠 is the speed

of sound, and where brackets ⟨ ⟩ refer to the traceless part of the symmetrized tensors.

Furthermore, the dots above Π and 𝜋 𝜇𝜈 refer to co-moving derivatives, i.e., ¤Π = 𝑢𝜇𝜕𝜇Π.

The relaxation times 𝜏𝜋 & 𝜏Π characterize the timescales across which the shear-stress

tensor and bulk pressure approach their őrst-order form, Eq. (4.7) [86]. They are set

to [85]

𝜏𝜋 =
5𝜂

𝜖 + 𝑃 ,

𝜏Π =
𝜁

(𝜖 + 𝑃) (14.55(1/3 − 𝑐2
𝑠 )2)

.

Like in IP-Glasma, these equations must be respected at every lattice site. The

parameters 𝜂 and 𝜁 , introduced above, depend on the site’s thermodynamic quantities.
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More speciőcally, they are usually dependent on the temperature 𝑇 , which is itself

determined through the equation of state, i.e. 𝑇 (𝜖). Following a detailed Bayesian

analysis of our workŕow conducted in Ref. [77, 87], 𝜂/𝑠, the speciőc shear viscosity,

is constant, while the speciőc bulk viscosity, 𝜁 /𝑠, is temperature-dependent. Their

respective forms are

𝜂

𝑠
= 0.136 (4.10)

𝜁

𝑠
(𝑇 ) = 𝑁 exp

(
−

(
𝑇 −𝑇𝑝

)2

𝐵2
(𝐿,𝐺)

)
, (4.11)

where 𝑠 is the entropy density. In Eq. (4.11), we őnd an asymmetrical gaussian distri-

bution, with 𝑁 = 0.13,𝑇𝑝 = 0.18 GeV, 𝐵𝐿 = 0.02 GeV and 𝐵𝐺 = 0.12 GeV. Whether 𝐵𝐿

or 𝐵𝐺 is found in the exponent’s denominator depends on the relationship between 𝑇

and 𝑇𝑝 : if 𝑇 < 𝑇𝑝 , we have 𝐵𝐿, while we use 𝐵𝐺 if 𝑇 > 𝑇𝑝 . Figure 25 shows Eq. (4.11)

compared to the posterior 90% conődence interval inferred in the Bayesian analysis

mentioned above [77, 87]. While its peak falls outside of the conődence interval, our

parametrization remains fully consistent with the analysis őndings. In Bayesian analysis,

a 90% conődence interval provides a general region of space where a particular param-

eter should lie while allowing some part of the parameter curve to lie outside. Given

that some of the beam energies considered in this work are much smaller than those

considered in Ref. [77, 87], some of our results are more sensitive to low-temperature

bulk features. The bulk viscosity we have used reŕects this sensitivity while preserving

consistency with the Bayesian analysis in Ref. [77, 87].

We have mentioned the equation of state (EoS) in passing a few times in this section.

As established, the EoS is necessary to close the systems of equations developed for use

in our hydrodynamics framework. As has been implicitly established, an EoS relates

the state variables (𝑃 , 𝑇 , 𝑠, 𝜖) under given conditions. The EoS must be consistent with

the properties of QCD matter at different stages of its evolution. It must match lattice

calculations when the QGP is extremely hot (i.e. when we move from IP-Glasma to

MUSIC) and tend towards conformality in the 𝑇 → ∞ limit [88]. It must also match

that of a hadron gas to be consistent with the transition from MUSIC (hydrodynamics)
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Figure 25: Speciőc bulk viscosity 𝜁 /𝑠 as a function of temperature. The red vertical line shows

the switching temperature 𝑇𝑠𝑤 = 155 MeV below which hydrodynamic cells are

frozen out.

to particlization. Therefore, the construction and selection of an appropriate EoS must

be taken seriously to preserve consistency across the various stages of our simulations.

In this work, we have used an EoS which connects the HotQCD calculation [88] from

high- to low-temperatures to a list of general stable resonances selected to reproduce

that of Ref. [89]. A more detailed discussion regarding careful EoS construction may

be found in Ref. [90].

We have concluded our description of the mathematical underpinnings of the hydro-

dynamical evolution. However, what does viscous relativistic hydrodynamics do to the

spiky initial state conőguration that we presented previously? First of all, through ŕuid

expansion across timescales much larger than that of our initial state (generally more

than 10× larger), the QGP cools. As we will see a bit further, this cooling is a crucial

feature of the hydrodynamics phase, as it brings our highly energetic system of decon-

őned quarks and gluons - the QGP - back down to energies where color conőnement
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applies and where the QGP must give way to a gas of hadrons, the őnal products of

the collision. Secondly, ŕuids described through hydrodynamics are driven by pressure-

gradient forces, which drive the expansion we just introduced. Indeed, if we look at the

Navier-Stokes equation for a non-relativistic medium which is not being acted on by

some external force (i.e. body acceleration is 0), we have

𝐷 ®𝑢
𝐷𝑡

=
𝜂

𝜌
∇2®𝑢 + ∇

(
∇ · ®𝑢

(
𝜁 + 2

3
𝜂

))
− ∇𝑃

𝜌
, (4.12)

where ®𝑢 is the ŕow velocity vector (as opposed to its 4-vector), 𝜌 is the ŕuid’s density

and 𝐷/𝐷𝑡 = 𝜕/𝜕𝑡 + ®𝑢 · ∇ is the material derivative. Even though this formula applies

to non-relativistic ŕuids, it gives us some insight as to how, generally, viscous ŕuids

behave. Without viscosity, the acceleration of the ŕuid at any given point is guided by

the gradient of the pressure, akin to the force. Looking at the signs of the Navier-Stokes

equation, we see that the shear and bulk viscosities 𝜂 and 𝜁 oppose the ŕow imposed

by the pressure gradient. The viscosity, therefore, serves, in part, as a regulator of the

ŕow of the QGP. This fact, combined with the fact that the relativistic hydrodynamics

equations of motion are conservation equations, means that the hydrodynamics phase

will regularize the large peaks and variations generated by our initial state fairly quickly

within its evolution. Figure 26 shows the 32 őrst time steps of the hydrodynamics phase.

We see that the ŕow and energy remain fairly disorganized for a few steps before cells

with large ŕow velocities dissipate and give way to more collective ŕow pockets. This is

due to the combination of the surrounding pressure gradients as well as the viscosity of

the QGP, which ‘penalizes’ unregulated and dissonant ŕow. We see that, at 𝜏 = 0.762 fm,

the ŕow is already well-organized and coherent, generally ŕowing from regions of high

energy to areas of low energy. Because of this, the energy has gone from extremely

spiky to much more evenly distributed: pockets with large ŕuctuations have isotropized

locally.

As mentioned at the onset of this chapter, the hydrodynamic evolution has a clear

exit condition: it evolves the QGP until every cell’s temperature has dipped below

the freeze-out temperature - a parameter of the model - which is set, in this study,

to 𝑇freeze = 155 MeV. Using our EoS, we can convert this switching temperature to a
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Figure 26: Energy density (𝜖) distribution and ŕow of a central event from switching time

𝜏 = 0.602 fm to 𝜏 = 0.762 fm - 32 hydrodynamic time steps, of which only 8 are

shown - for Xe+Xe at 5.44 TeV.

corresponding freeze-out energy density 𝜖freeze = 0.320 GeV/fm3. However, given that

cells reach this state at different times, a cell reaching freeze-out does not mean it stops

contributing to the overall evolution. Rather, once a cell reaches 𝑇freeze, its state (ŕow,

shear viscosity, bulk viscosity, position) and the time at which it reaches freeze-out

are saved to a őle. Once every cell in the transverse grid has reached freeze-out, the

evolution terminates, and MUSIC outputs a 4D isothermal hypersurface which serves

as input to the particlization stage. Given this exit condition, different events will take

different amounts of time to complete freeze-out; more energetic (or central) events

will take more time to cool appropriately, and vice-versa. Figure 27 show the entire

hydrodynamic evolutions of the central and peripheral events presented in Figs. 20, 22

and 23. As explained above, we can see that the peripheral event reaches freeze-out

more than 4 fm sooner than the central event, given its smaller initial total energy. It also

catches the eye that the initial state anisotropies, which we have spent time clarifying

in the previous two chapters, seem to have unravelled entirely due to the features of the

hydrodynamic evolution. This would entail that the differences in collision geometry
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Figure 27: Energy density (𝜖) distribution and ŕow of (top two) central and (bottom two)

peripheral events from switching time 𝜏 = 0.602 fm to complete freeze-out for

Xe+Xe at 5.44 TeV. For the top two panels, this represents 2,289 hydrodynamic time

steps, while for the bottom two panels, we have 1,469 hydrodynamic time steps.

could not be detected in őnal-state particle distributions. However, this is an illusion.

Earlier in this paragraph, we explained that freeze-out happens on a cell-by-cell basis

and that the freeze-out surface is not simply the thermodynamic conőguration of the

őnal slice of the hydrodynamic evolution; instead, it is a 4D hypersurface with points
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found at practically all times of the evolution. The qualitative shape of the őnal slice

of the evolution of the QGP does not inform us of the anisotropies contained in the

distributions of őnal-state particles.

Figure 28 is inspired by a őgure which was őrst shown in Ref. [30]. We show the

transverse positions and transverse ŕows of all points at freeze-out of the two events

- one central and one peripheral - we have been analyzing since Chapter 3. We see

that our central event (top panel of Fig. 28), which looked reasonably symmetric in

Fig. 22, preserves its symmetries at freeze-out: the spatial distribution of freeze-out

points is similar throughout time, and the transverse ŕow components behave similarly

across the entire evolution. Our peripheral event (bottom panel of Fig. 28), on the other

hand, shows how the anisotropic energy conőguration fed into MUSIC translates to a

freeze-out hypersurface which is, itself, quite anisotropic. Firstly, the spatial distribution

of freeze-out points reŕects the spatial anisotropy found in Fig. 22’s right panel, with

freeze-out points found in a broader range in the𝑦-direction than in the 𝑥-direction, and

this, at all times. Then, the distribution of cell ŕow velocities also presents a striking

asymmetry. Indeed, we see that𝑢𝑦 is generally less broad than𝑢𝑥 , and is skewed towards

negative ŕow velocities. Because of the smaller 𝑥-direction extent of the QGP at the

onset of hydrodynamics, the pressure gradients drive ŕow in that direction more than

in the broader 𝑦-direction, leading to greater ŕow in the 𝑥-direction at freeze-out. The

asymmetry in the 𝑦-direction ŕow is due to the energy density distribution’s energetic

bulge in its lower-left region at the hydrodynamic onset. This bulge directs ŕow in

the 𝑥- and 𝑦-directions simultaneously, leading to more signiőcant residual ŕow in the

negative 𝑦-direction in the freeze-out hypersurface.

We are now ready to transition to the next phase of our simulations, which we will

describe summarily (compared to the two previous phases): particlization and hadron

gas evolution.
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Figure 28: Projections of freeze-out time 𝜏 plotted against various components of the freeze-

out hypersurface ((upper-left) 𝑥 position; (lower-left) 𝑦 position; (upper-right)

𝑥-direction ŕow 𝑢𝑥 ; (lower-right) 𝑦-direction ŕow 𝑢𝑦) for (top four) central and

(bottom four) peripheral Xe+Xe events at 5.44 TeV.

4.2 particlization and hadron gas evolution

With the QGP frozen out, it is time to convert the deconőned state of quarks and gluons

to a hadron gas which will be ‘detected’ by our ‘detectors’; this hadron gas is sampled
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at the site of the QGP and has properties consistent with that of the freeze-out surface.

It must then be evolved kinematically until all of its constituent reach a pre-determined

distance - ∼ 1 m = 1015 fm - from the position of the beam (𝑥 = 𝑦 = 0), at which point

they are frozen and said to have been ‘detected’. This process is naturally divided into

two moments: we őrst sample particles from the freeze-out surface using Cooper-Frye

sampling [91], and, in the second phase, evolve those particles using kinetic theory.

This evolution includes scattering, particle interaction, decays and resonances [21]. Let

us describe these two phases in a bit more detail.

4.2.1 Particlization: iSS

As with our transition from IP-Glasma to MUSIC, we must be careful about preserving

consistency across the interfaces of our simulation. As before, the stress-energy tensor

will serve as our measure of coherence. We will condense the discussion outlined in

Ref. [83]. The condition

𝑇
𝜇𝜈

hydro = 𝑇
𝜇𝜈
gas (4.13)

must be respected at freeze-out. We have established the hydrodynamic stress-energy

tensor’s form, with second-order bulk and shear viscous corrections taken into account.

The stress-energy tensor for a gas of particles at freeze-out time is given by

𝑇
𝜇𝜈
gas(𝑥 𝜇) =

∑︁
𝑑𝑟

∫
𝑑4𝑝

(2𝜋)3
𝛿

(
𝑝𝜇𝑝

𝜇 −𝑚2
𝑟

)
2𝜃 (𝑝0)𝑝𝜇𝑝𝜈 𝑓𝑟 (𝑥 𝜇 , 𝑝𝜇), (4.14)

where 𝑑𝑟 is the degeneracy factor of particle 𝑟 and 𝑓𝑟 is the on-shell single particle

distribution function of particle 𝑟 . This single particle distribution represents the phase

space density of on-shell particles, i.e.

𝑓𝑟 ( ®𝑥 , ®𝑝) ∝ 𝑑𝑁𝑟

𝑑3𝑝𝑑3𝑥
. (4.15)

Cooper-Frye sampling proposes that the number of particles crossing the surface of

an isothermal hypersurface is given by

𝐸
𝑑𝑁𝑟

𝑑3𝑝
=

𝑑𝑟

(2𝜋)3

∫
Σ

𝑓𝑟 ( ®𝑥 , ®𝑝)𝑝𝜇𝑑3𝜎𝜇 (𝑥 𝜇), (4.16)



4.2 particlization and hadron gas evolution 90

where 𝐸 𝑑𝑁𝑟

𝑑3𝑝
is the momentum spectrum of particle species 𝑟 , Σ is the hypersurface - the

freeze-out surface generated by MUSIC - and 𝜎𝜇 (𝑥 𝜇) is a vector normal to the hyper-

surface at position ®𝑥 and time 𝑡 (i.e. at four-vector 𝑥 𝜇). The single particle distributions

include in- and out-of-equilibrium parts related to the ideal and viscous parts of the

hydrodynamical evolution. We can therefore separate it into an ideal part, and its shear

and bulk corrections,

𝑓𝑟 (𝑥 𝜇 , 𝑝𝜇) = 𝑓 0
𝑟 (𝑥 𝜇 ,𝑝𝜇) + 𝛿 𝑓 bulk

𝑟 ( ®𝑥 , ®𝑝) + 𝛿 𝑓 shear
𝑟 ( ®𝑥 , ®𝑝). (4.17)

The uncorrected single particle distribution is either a Bose-Einstein (-) or a Fermi (+)

distribution, depending on the species, i.e.,

𝑓 0
𝑟 = (exp (𝑝 ·𝑢/𝑇 ) ∓ 1)−1, (4.18)

where𝑢 is the local ŕow velocity of the ŕuid cell and𝑇 is its temperature (here, 155 MeV).

The corrections are parameters of the model and, given that the second-order viscous

expansions used in MUSIC were developed using the 14-moment approximation [92],

so are the corrections we use. Their combined form is given by

𝛿 𝑓𝑟 = 𝑓
0
𝑟 𝑓

0
𝑟

(
𝑐𝑇𝑚

2
𝑟 +𝑏𝑛

(
𝑐𝐵 (𝑢𝜇𝑝𝜇) + 𝑐 ⟨𝜇⟩𝑉

𝑝⟨𝜇⟩
)

+𝑐𝐸 (𝑢𝜇𝑝𝜇)2 + 𝑐 ⟨𝜇⟩
𝑄

(𝑢𝜇𝑝𝜇)𝑝⟨𝜇⟩ + 𝑐 ⟨𝜇𝜈⟩𝜋 𝑝⟨𝜇𝑝𝜈⟩
)

,
(4.19)

where 𝑓 0
𝑟 = 1 − 𝑔−1

𝑛 Θ𝑛 𝑓
0
𝑟 , with 𝑔𝑛 = 2𝑠𝑛 + 1, the spin degeneracy, and Θ𝑛 ∈ {−1, 1} to

account for the nature (boson or fermion) of the particles. All of the coefficients 𝑐 are

adjusted in order to ensure that the corrections to the single-particle distribution does

not contribute to the energy and reproduces the shear-stress tensor and bulk-viscous

pressure. Their exact forms are given in Ref. [93]. Concretely, these corrections have a

non-negligible effect on the particle yields. Integrating Eq. (4.16) to obtain total yields

per species would look like

𝑁𝑟 ( ®𝑥) =
∫

𝑑3𝑝

𝐸
𝐸
𝑑𝑁𝑟

𝑑3𝑝
( ®𝑥) = 𝑁 0

𝑟 +𝑁 bulk
𝑟 +𝑁 shear

𝑟 (4.20)

with the equilibrium distribution function 𝑓 0
𝑟 giving [94]

𝑁 0
𝑟 =

𝑑𝑟

2𝜋2
𝑑3𝜎𝜇𝑢

𝜇𝑚2
𝑟𝑇

∞∑︁
𝑛=1

(±1)𝑛−1

𝑛
𝐾2

(
𝑛
𝑚𝑟

𝑇

)
, (4.21)
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where 𝐾2 is the modiőed Bessel function of the second kind. In the end, when equiva-

lence with the hydrodynamic tensor is taken into account, the shear 𝛿 𝑓 corrections do

not contribute to the yield (i.e. 𝑁 shear
𝑟 = 0), while the bulk corrections do contribute to

the yields (i.e. 𝑁 bulk
𝑟 ≠ 0).

The Cooper-Frye procedure is included in our simulations through iSS [95, 96], an

open-source code [97]. Because of the ensemble average nature of the hydrodynamic

evolution and the freeze-out surface it generates, the hypersurface is oversampled 1000

times to ensure that the sampled particle lists converge to the hydrodynamic value

of all observables (multiplicity, momenta, ŕow). Concretely, this means that a single

IP-Glasma and MUSIC event, comprised of a unique collision, impact parameter and

nuclei conőguration, will generate 1000 iSS events, each consisting of its own particle

list containing speciőc species and momenta. These lists are then processed to provide

a statistical average of the various observables related to that event. As we will brieŕy

discuss later in this chapter, the moment at which this average is taken can have a real

impact on the end-state observables that are calculated.

Once the particle list is generated, the kinetic evolution of the hadron gas produced

by our event is initiated.

4.2.2 Hadronic Cascade: SMASH

The particles generated through the hypersurface must be kinematically evolved until

they reach the ‘detectors’. The inclusion of such a stage is important: effects borne out

of particle interactions, decays, scatterings and resonances can play a considerable role

in what the őnal-state observables look like. Heavy, unstable baryons, which may be

sampled by the Cooper-Frye procedure, would make it to the őnal-state list regularly

if it were not for this kinetic phase, where most of them decay fairly quickly. We have

opted for the transport code SMASH [21], version 1.8. All interactions and decays
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are computed using measured particle properties and channels via coupled Boltzmann

equations,

𝑝𝜇𝜕𝜇 𝑓𝑟 (𝑥 𝜇 , 𝑝𝜇) = 𝐶 [𝑓𝑟 ] . (4.22)

We see that the single-particle distribution functions 𝑓𝑟 come into play here too. This

dynamical stage allows for the decoupling of the QGP medium (which is strongly-

interacting) towards a hadron gas which itself goes from fairly dense at hydrodynamic

freeze-out to dilute as we progress through the kinetic evolution.

All of the default SMASH parameters were used in this work. For a detailed treatment

of the various assumptions of SMASH, one should refer to Ref. [21].

Our simulation is complete at this point, and we are ready to construct observables -

quantities that can be compared to experiments - from the őnal state particle lists. We

shall now deőne primary and secondary observables relevant to our analysis in order to

then proceed to large-scale simulation results.

4.3 observables

Comparing calculations to experimental data in heavy-ion phenomenology must go

through the proper deőnition of observable quantities, i.e. phenomena that can be mea-

sured experimentally; the QGP exists across such narrow timescales (O(10−23 s)) that

direct observations of it are impossible. On the other hand, the products of a collision -

hadrons propagating in all directions and occupying a large proportion of phase space -

are accessible to experimentalists through the calibration and use of detectors which sur-

round the collision areas. Therefore, observables are always exclusively concerned with

exposing the coherent trends contained within large collections of particles generated

in a collision event.

Before digging into the speciőcs of our selected observables, it is important to note

that observable quantities are usually shared as pertaining to a class of events (rather than

to a speciőc and singular event). There are many reasons why talking about single-event
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observables is (mostly) irrelevant, but the main reason is statistical in nature: because

collision events generate discreet lists of 𝑁 particles, any calculated quantity stemming

from the analysis of this list will carry an inherent statistical uncertainty with it that

would rival the speciőc and physically-relevant dynamical ŕuctuations contained in that

event. Indeed, the order of statistical ŕuctuations, via the calculation of the standard

error, would be O(𝑁 −1
2 ). Grouping events together based on a speciőc property allows

us to increase 𝑁 drastically and signiőcantly decrease inherent statistical uncertainty.

As mentioned in passing in Chapters 2 to 4, events are grouped through their charged

particle multiplicity 𝑁ch, the amount of charged particles detected within a speciőc

longitudinal range.

4.3.1 Multiplicity & Centrality

The charged particle multiplicity is the most elementary of observables. In this thesis,

when discussing multiplicity, we will talking about charged particle multiplicity per

unit rapidity, or 𝑑𝑁ch/𝑑𝜂, also known as the charged particle multiplicity density. This

speciőc observable is usually calculated by considering only particles detected within

a speciőc rapidity range, i.e.

𝑑𝑁ch

𝑑𝜂
=

∫
|𝜂 |<𝑋 𝑑𝜂𝑁ch(𝜂)
𝜂max − 𝜂min

, (4.23)

with𝑋 varying from experiment to experiment. In this thesis, depending on the speciőc

experiment we will be comparing to, 𝑋 ∈ {0.5, 0.8}. Therefore, Equation (4.23) counts

the number of particles generated in a given rapidity range and then divides it by the

its ‘length’, yielding a charged particle density. As the most elementary observable, the

multiplicity also serves as the sole calibration tool for the saturation scale to ŕuctuation

scale proportionality constant 𝐶 presented in Eq. (3.33), which dictates the amount of

energy deposited in the transverse plane at the initial time.

To compare to experimental data, we must segment our collection of events into the

same number of centrality classes as it has: if the experiment reports multiplicity at 5%
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increments, we must construct 20 centrality classes, all with equal number of events,

from the entirety of our dataset. However, as outlined in Chapter 2, certain events

generated by our simulations should be complete misses, i.e. events where the impact

parameter 𝑏 is such that the two nuclei do not interact hadronically. To construct our

centrality bins, we must reject non-collision events. Intuitively, one could look at the

number of binary collisions registered in a given IP-Glasma collision event and reject

all events which contain no binary collisions. However, because IP-Glasma does not

generate energy density proőles based on binary collisions per se, this method could

allow for the inclusion of events that do not generate meaningful amounts of particles

and, therefore, would be rejected in an experimental setting.

We employ a centrality binning method őrst outlined in Ref. [48] to remedy this

situation. We start by selecting two experimental centrality bins and their respective

multiplicities (i.e. 0 − 5% and 20 − 25%). We then calculate the ratio of these two

multiplicities, 𝑅targ. Using our simulation data, we construct a number of centrality bins

equal to that presented in the experimental data and extract the multiplicities from our

two selected centrality bins (0− 5% and 20− 25%) to construct a ratio once more, 𝑅sim.

We then compare the two ratios to one another to inform us on next steps:

1. If 𝑅sim > 𝑅targ, we drop our lowest-multiplicity event from consideration and

recompute our centrality bins, then 𝑅sim. This action necessarily leads to a new

and smaller 𝑅sim. We repeat this procedure until 𝑅sim ∼ 𝑅targ, at which point the

centralities have been matched.

2. If𝑅sim < 𝑅targ, we could be dealing with one of two things: either𝐶, the proportion-

ality constant, leads to too much energy being deposited in the transverse plane

(and we should therefore adjust it considerably) or we are not truly conducting a

minimum-bias study (i.e. our most peripheral events are not complete misses, and

we therefore cannot match the entire experimental centrality spectrum). The őrst

issue’s solution is self-explanatory, while a resolution to the second issue will be

discussed further.
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Now, assume we have a collection of events that őts the őrst presented situation. After

having completed the procedure, we compare the nominal multiplicities of all bins to

those of the experiment. If the multiplicities themselves are considerably off (be they too

large or too small), a recalibration of the proportionality constant 𝐶 is undertaken, and

a new set of results is generated. If the multiplicities are within 5% of all experimental

multiplicities, the calibration is complete, and we can move on to calculating the

observables relevant to our analysis.

We must diagnose the issue if we őnd ourselves in the second situation. Suppose

our dataset contains events that have 𝑑𝑁ch/𝑑𝜂 < 1. In that case, we are conducting

a minimum-bias analysis and must, therefore, strongly recalibrate the proportionality

constant to apply the procedure. If, on the other hand, our dataset does not contain

events with 𝑑𝑁ch/𝑑𝜂 < 1, we are not conducting a minimum-bias study. Luckily, our

procedure contains provisions allowing for matching partial centrality ranges stemming

from biased impact parameter ranges. The procedure itself remains quasi-identical,

with the important modiőcation being that we are now concerned with őnding a proper

upper bound for our entire centrality range. In other words, we are now looking for

𝐻 such that our procedure works for a centrality range 0 −𝐻%. To őnd 𝐻 , one goes

through the same procedure outlined above, decreasing 𝐻 until a bound where the őrst

situation applies is found. From there,𝐶 can be calibrated based on how our calculated

multiplicities compare to the experiment up to our őnal upper bound. In the results we

will show in the following chapter, biased runs for Au and U were undertaken, calibrated

and binned using this technique. Xe results shown further in this thesis will have been

binned using the unmodiőed technique, as they stem from a minimum-bias set of runs.

Once all events are binned into their respective centrality classes, we can compute

the following observables on a class-by-class basis.
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4.3.2 Mean Transverse Momentum

This quantity is the second most elementary observable to compare to. It does not őgure

in the calibration of the model, but it is a good indicator of the overall calibration of

a simulation framework, as it is not only sensitive to the amount of energy deposited

at the initial time but also to some of the hydrodynamic parameters (such as shear and

bulk viscosity) presented earlier in this chapter. Its calculation is straightforward,

⟨𝑝𝑇 ⟩ =
1

𝑁ev

𝑁ev∑︁
𝑗=1

1

𝑁 𝑗

𝑁j∑︁
𝑖=1

𝑝𝑇𝑖 , (4.24)

where𝑁ev is the number of events in a given centrality class, and𝑁 𝑗 is the number of par-

ticles sampled in a given event. Mean transverse momentum encodes information about

the transverse size of the system. Indeed, at őxed total energy in the transverse plane,

a smaller interaction region will lead to larger outward pressure in the hydrodynamic

phase, in turn leading to a larger measured ⟨𝑝𝑇 ⟩.

4.3.3 Multi-particle 𝑝𝑇 correlator

Multi-particle transverse momentum correlators are measures of the dynamical ŕuctua-

tions contained within the particle distributions. The 2-particle 𝑝𝑇 correlator is deőned

as [98]

⟨𝛿𝑝𝛿𝑝⟩ =
〈∑

𝑖≠ 𝑗 (𝑝𝑖 − ⟨𝑝𝑇 ⟩)(𝑝 𝑗 − ⟨𝑝𝑇 ⟩)
𝑁ch(𝑁ch − 1)

〉
, (4.25)

where ⟨𝑝𝑇 ⟩ is the mean transverse momentum of the entire centrality class and ⟨·⟩
around the ratio symbolizes an average over the entire centrality class, i.e.

〈∑
𝑖≠ 𝑗 (𝑝𝑖 − ⟨𝑝𝑇 ⟩)(𝑝 𝑗 − ⟨𝑝𝑇 ⟩)

𝑁ch(𝑁ch − 1)

〉
=

1

𝑁ev

𝑁ev∑︁
𝑘=1

∑𝑁𝑘

𝑖≠ 𝑗 (𝑝𝑖 − ⟨𝑝𝑇 ⟩)(𝑝 𝑗 − ⟨𝑝𝑇 ⟩)
𝑁𝑘 (𝑁𝑘 − 1) . (4.26)

Equation (4.25) is reminiscent of the statistical variance of the centrality class’ momen-

tum distribution, but differs from it in a meaningful way: self-correlation (i.e. elements
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with 𝑖 = 𝑗) are removed. This correlator can, contrarily to the variance, therefore, be a

negative quantity.

Implementing Eq. (4.25) numerically as is presented would be extremely costly

computationally. Indeed, it would run in at least O(𝑁ev · 𝑁 2
ch), a strikingly taxing

process. Instead, we opt to implement a modiőed version of methods introduced by

Giacalone et al. [98]. To do this, we begin by deőning the modiőed moments of the 𝑝𝑇

distributions 𝑃𝑛,

𝑃𝑛 =

𝑁ch∑︁
𝑖=1

(𝑝𝑖 − ⟨𝑝𝑇 ⟩)𝑛 , (4.27)

where, as in Eq. (4.25), 𝑝𝑖 is the transverse momentum of the 𝑖 th particle of a given

event. Then,

∑︁
𝑖≠ 𝑗

(𝑝𝑖 − ⟨𝑝𝑇 ⟩)(𝑝 𝑗 − ⟨𝑝𝑇 ⟩) =

𝑁ch∑︁
𝑖=1

(𝑝𝑖 − ⟨𝑝𝑇 ⟩)
(
𝑁ch∑︁
𝑗≠𝑖

(𝑝 𝑗 − ⟨𝑝𝑇 ⟩)
)
=

𝑁ch∑︁
𝑖=1

(𝑝𝑖 − ⟨𝑝𝑇 ⟩)
𝑁ch∑︁
𝑗=1

(𝑝 𝑗 − ⟨𝑝𝑇 ⟩) −
𝑁ch∑︁
𝑖=1

(𝑝𝑖 − ⟨𝑝𝑇 ⟩)2,

where in the last step we have allowed for 𝑖 = 𝑗 terms in the multiplied sums by

subtracting them through the second term. We can then use Eq. (4.27) to rewrite the

last line as

𝑁ch∑︁
𝑖=1

(𝑝𝑖 − ⟨𝑝𝑇 ⟩)
𝑁ch∑︁
𝑗=1

(𝑝 𝑗 − ⟨𝑝𝑇 ⟩) −
𝑁ch∑︁
𝑖=1

(𝑝𝑖 − ⟨𝑝𝑇 ⟩)2
= (𝑃1)2 − 𝑃2, (4.28)

which in turn allows us to rewrite Eq. (4.25)

⟨𝛿𝑝𝛿𝑝⟩ =
〈 (𝑃1)2 − 𝑃2

𝑁ch(𝑁ch − 1)

〉
. (4.29)

The 3-particle 𝑝𝑇 correlator can be treated similarly to greatly reduce the computa-

tional stress required to extract it. Starting with

⟨𝛿𝑝𝛿𝑝𝛿𝑝⟩ =
〈∑

𝑖≠ 𝑗≠𝑘 (𝑝𝑖 − ⟨𝑝𝑇 ⟩)(𝑝 𝑗 − ⟨𝑝𝑇 ⟩)(𝑝𝑘 − ⟨𝑝𝑇 ⟩)
𝑁ch(𝑁ch − 1) (𝑁ch − 2)

〉
, (4.30)
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which requires O(𝑁ev · 𝑁 3
ch) operations, we can write

⟨𝛿𝑝𝛿𝑝𝛿𝑝⟩ =
〈 (𝑃1)3 − 3𝑃2𝑃1 + 2𝑃3

𝑁ch(𝑁ch − 1) (𝑁ch − 2)

〉
. (4.31)

Equations (4.29) and (4.31) are computable in linear time on an event-by-event

basis, which greatly reduces the computational stress required. Furthermore, since both

quantities have been reduced to a single term, the calculation of their respective errors

has also been greatly simpliőed. As a price to pay for simplicity, these expressions are

prone to cancellation errors. However, given our target precision of O(1%), these errors

are not of much concern. In Chapter 7, we will introduce a composite observable called

the ‘intensive skewness’ which combines the 2- and 3-particle 𝑝𝑇 correlators into a

single ratio.

4.3.4 Anisotropic Flow

Anisotropic ŕow 𝑣𝑛 is by now generally accepted as one of the primary evidence of

QGP undergoing ŕuid-like behavior in relativistic heavy-ion collisions [99]. We will

start by deőning the 𝑛th-order anisotropic ŕow as it will be calculated in this thesis

before explaining why it is of great importance to heavy-ion collision phenomenology

as a whole, but also speciőcally for the work carried out in this thesis.

We start by deőning the ŕow vector 𝑄𝑛 for each event [100, 101],

𝑄𝑛 =

𝑁ch∑︁
𝑗=1

𝑒𝑖𝑛𝜙 𝑗 , (4.32)

where, as before, 𝑁ch is the event’s multiplicity, 𝑗 runs over all particles registered in the

eventş and 𝜙 𝑗 is the azimuthal angle of the 𝑗 th particle. Then, the 2nd order anisotropic

ŕow coefficient (or azimuthal correlation) is given by

⟨2⟩𝑛 =
∑
𝑖≠ 𝑗 𝑒

𝑖𝑛(𝜙𝑖−𝜙 𝑗)
𝑁ch(𝑁ch − 1) =

|𝑄𝑛 |2 −𝑁ch

𝑁ch(𝑁ch − 1) . (4.33)

ş Different experiments have different transverse momentum acceptance windows for their calculations:

STAR (at RHIC) only accepts particles with 0.2 ≤ 𝑝𝑇 ≤ 2.0 GeV, while ALICE (at LHC) accepts

particles with 0.2 ≤ 𝑝𝑇 ≤ 3.0 GeV.
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Equation (4.33) is also called the 2-particle 𝑣𝑛, as it calculates anisotropic ŕow through

pair-wise combinations of event particles. The 4th order azimuthal correlation (or 4-

particle 𝑣𝑛) for a given event is given by

⟨4⟩𝑛 =
∑
𝑖≠ 𝑗≠𝑘≠𝑙 𝑒

𝑖𝑛(𝜙𝑖+𝜙 𝑗−𝜙𝑘−𝜙𝑙)
𝑁ch(𝑁ch − 1) (𝑁ch − 2) (𝑁ch − 3)

=
|𝑄𝑛 |4 + |𝑄2𝑛 |4 − 2 Re

[
𝑄2𝑛 ·𝑄∗

𝑛 ·𝑄∗
𝑛

]
𝑁ch(𝑁ch − 1) (𝑁ch − 2) (𝑁ch − 3) − 2

2(𝑁ch − 2) |𝑄𝑛 |2 −𝑁ch(𝑁ch − 3)
𝑁ch(𝑁ch − 1) (𝑁ch − 2) (𝑁ch − 3) ,

(4.34)

where 𝑄2𝑛 is the ŕow vector associated with the 2𝑛th harmonic (i.e. if 𝑛 = 2, then

𝑄2𝑛 = 𝑄4). Equations (4.33) and (4.34) are formulas for a single event. As with previous

observables, we will want to average this quantity over the entirety of events contained

in a given centrality class, i.e.

⟨⟨V⟩⟩𝑛 =
1

𝑁ev

𝑁ev∑︁
𝑖=1

⟨V⟩𝑛,𝑖 , (4.35)

where V ∈ {2, 4} in our analysis, and the subscript 𝑖 indicates the V-particle

anisotropic coefficient of the 𝑖 th event. From these centrality-class averaged quantities,

we can construct the quantities 𝑐𝑛{2} and 𝑐𝑛{4}, the 2- and 4-particle cumulants of the

azimuthal correlations,

𝑐𝑛{2} = ⟨⟨2⟩⟩, (4.36)

𝑐𝑛{4} = ⟨⟨4⟩⟩ − 2⟨⟨2⟩⟩2, (4.37)

which entails that, to obtain the true 4-particle cumulant of the azimuthal correlations,

one must subtract the underlying contributions stemming from 2-particle correlations.

We will remind the reader of this fact once we introduce results stemming from 2- and

4-particle cumulants.

The point of constructing these cumulants is to estimate the Fourier coefficients of

the azimuthal dependence of the particle yields [102]

𝐸
𝑑𝑁

𝑑3𝑝
=

1

2𝜋

𝑑𝑁

𝑝𝑇𝑑𝑝𝑇𝑑𝑦
=

(
1 +

∞∑︁
𝑛=1

2𝑣𝑛 cos (𝑛(𝜙 − Ψ𝑅))
)

, (4.38)
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where 𝑣𝑛 are the coefficients we are interested in and Ψ𝑅 is the reaction plane angle is 0 in

our simulations because the nuclei are always shifted along the 𝑥-axis; experimentally,

the reaction plane angle is not known, so estimates of these coefficients must be devised.

Furthermore, the previously underlined fact that experimental results come in the form

of discrete collections of particles furthers the need for estimates, as decomposing a

discrete distribution into Fourier components creates its own set of errors. Historically,

experimentalists have used Eq. (4.33) to estimate the coefficients present in the Fourier

decomposition. The issue with these estimates is that they contained so-called non-

ŕow contributions from the lack of information regarding the reaction plane Ψ𝑅, the

relatively small number of participating particles and other effects such as momentum

conservation, meaning they were really obtaining

⟨2⟩ = ⟨𝑣2
𝑛⟩ + 𝛿𝑛, (4.39)

where the 𝛿𝑛 are the non-ŕow contributions we just described, and 𝑣2
𝑛 is the square of

the Fourier coefficient we are looking to estimate. The idea to decompose the Fourier

coefficients into contributions from multi-particle correlations of different orders was

őrst introduced in Ref. [100]: by subtracting non-ŕow contributions from ŕow contri-

butions order-by-order, one could improve estimates of the true ŕow coefficients while

producing better-deőned observables. That is why, in Eq. (4.37), we subtract Eq. (4.33):

we are subtracting effects which are already taken into account in an anterior cumulant.

To move from Eqs. (4.36) and (4.37) to estimates for multi-particle correlation estimates

for 𝑣𝑛, we do

𝑣𝑛{2} =
√︁
𝑐𝑛{2} (4.40)

𝑣𝑛{4} = 4
√︁
−𝑐𝑚{4}. (4.41)

These are the 2- and 4-particle cumulants of the integrated 𝑣𝑛.

How does this observable tie into the ŕow generated in the hydrodynamics phase

which we described in Section 4.1.2? When cell ŕow (and, therefore, momentum) builds

up unevenly, particles sampled from the hypersurface will be distributed unevenly in
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space: more momentum in one direction means more available energy to sample (or

generate) particles in a given direction. Let us look at 3 ‘toy’ particle distributions made

up of 300 particles distributed around the beam axis, which are presented in Fig. 29. The

a) distribution is evenly and randomly distributed (reminiscent of the central event’s ŕow

distribution found in Fig. 28); the b) distribution has two dense pockets of particles

distributed on either side of the 𝑦-axis and separated by 2 dilute pockets of particle

emissions (reminiscent of the peripheral event’s ŕow distribution found in Fig. 28);

the c) distribution is similar to b), except it has three dense pockets distributed evenly

across the transverse plane. Measuring 𝑣2{2} for these distributions yields a)= 0.03;

b)= 0.422; c)= 0.01. These results make sense since 𝑣2 is usually called ‘elliptic’ ŕow.

If one imagines a histogram depicting the density of particles emitted in a certain

direction, the histogram produced by a) would be a circle, that of b) would look like an

ellipse and that of c) would resemble a triangle. The speciőc symmetries of a) and c)

lead to their 2-particle elliptic ŕow cumulants to be near-0, while that of the elliptically

distributed b) is orders of magnitude higher. In our results, the spread between isotropic

and anisotropic events will be much smaller, but this schematic representation illustrates

the mechanics of 𝑣2{2}. Following this logic, one should assume that a 𝑣3{2}, the 2-

particle cumulant of triangular ŕow, should be large for c) and small for the two others

- and one would be right! Experimentally, triangular ŕow is fairly insensitive to initial

state geometry as triangular geometries are not created through reproducible effects -

like an increase of the impact parameter 𝑏 - but rather through ŕuctuations in nucleon

positions and densities at impact. Because of the nature of our distributions, 𝑣2{4} is

practically equal to 𝑣2{2}, which does not provide much insight other than that our

made-up particle distributions have strong underlying correlations (which we baked in)

that stem from the ŕow. Nevertheless, the previous exercise illustrates the source of 𝑣𝑛

in particle distributions.
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Figure 29: Unit vectors representing 300 generated particles and their azimuthal angle dis-

tributed a) isotropically and b) & c) anisotropically across the transverse plane. The

anisotropic ŕow coefficients 𝑣𝑛 aim to measure spatial anisotropies in the particle

distributions.

At times, we will be interested in differential anisotropic ŕow 𝑣𝑛{2}(𝑝𝑇 ), which is

the anisotropic ŕow contributions of particles within a given narrow 𝑝𝑇 range. It is

calculated as [101]

𝑣𝑛{2}(𝑝𝑇 ) =
Re(⟨𝑄PI

𝑛 (𝑝𝑇 ) · (𝑄 ref
𝑛 )∗⟩)

⟨𝑁 PI
ch (𝑝𝑇 )𝑁 ref

ch ⟩𝑣 ref
𝑛 {2}

, (4.42)

where ‘PI’ denotes the particle species of interest (as this is sometimes used to look at

identiőed particle spectra) and the superscript ‘ref’ denotes the reference ŕow vector.

The idea here is to avoid self-correlations being represented in this observable. There-

fore, the ŕow vector of interest - 𝑄PI
𝑛 - is taken from a mid-rapidity window (generally

|𝜂 | < 0.5), while the reference ŕow vector is taken from a forward (or backward) rapid-

ity window, which is disjointed from that of our particle group of interest. The window

parameters will be given on a plot-by-plot basis, as they can change from experiment

to experiment.
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Figure 30: Schematic representation of the relationships between impact parameter 𝑏, interac-

tion region area 𝑆⊥, 𝑣2{2} and ⟨𝑝𝑇 ⟩ for collisions of spherically symmetric nuclei

belonging to the same centrality class.

4.3.5 Transverse-Momentum-Flow Correlations

Transverse-momentum-ŕow correlations combine two of the 4 observables we have pre-

sented to this point, namely the 2-particle cumulant of the anisotropic ŕow (𝑣𝑛{2}) and

the mean transverse momentum ⟨𝑝𝑇 ⟩. This correlator was őrst developed in Ref. [103]

and is given by

𝜌 (𝑣𝑛{2}2, ⟨𝑝𝑇 ⟩) =
cov(𝑣𝑛{2}2, ⟨𝑝𝑇 ⟩)√︃

var
(
𝑣2
𝑛

)
· ⟨𝛿𝑝𝛿𝑝⟩

, (4.43)

where

cov(𝑣𝑛{2}2, ⟨𝑝𝑇 ⟩) =
〈
|𝑄𝑛 |2 −𝑁ch

𝑁ch(𝑁ch − 1) ·
(∑𝑁ch

𝑖=1 𝑝𝑖

𝑁ch
− ⟨𝑝𝑇 ⟩

)〉
(4.44)

and

var
(
𝑣2
𝑛

)
= 𝑣𝑛{2}4 − 𝑣𝑛{4}4, (4.45)

while ⟨𝛿𝑝𝛿𝑝⟩ is the 2-particle correlator which we deőned in Eq. (4.29).
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The elliptic ŕow ŕavor of this observable is of particular relevance to collisions

of deformed nuclei, as we will show in the following chapter. In short, in central

and mid-central (∼ 0 − 40%) collisions of spherically symmetric nuclei, elliptic ŕow

𝑣2{2} and mean transverse momentum ⟨𝑝𝑇 ⟩ are positively correlated. To understand

why, we must őrst remind ourselves that this correlator, like all other observables,

is calculated within a given centrality class. Therefore, it aims to explore how the

two underlying observables, 𝑣2{2} and 𝑝𝑇 , are related to one another within a certain

centrality class. Because centrality is synonymous with charged particle multiplicity,

and because multiplicity stems primarily from total energy in the interaction region at

the moment of the collision, events within a given centrality class have approximately

the same amount of total energy deposited in the transverse plane. Therefore, if a

particular event within that class generates more elliptic ŕow, then it must be that the

impact parameter for the collision was a bit larger, making the interaction region’s area

a bit smaller, in turn generating bigger pressure gradients, outward ŕow and, őnally,

momentum. Therefore, larger elliptic ŕow, in collisions of spherically symmetric nuclei

and within a given centrality class, generally means larger mean transverse momentum.

In other words, these two quantities should be correlated. Figure 30 illustrates this

situation schematically. We see that for two events within the same centrality class to

differ signiőcantly in elliptic ŕow, they must also differ signiőcantly in overlap area and,

therefore, in mean transverse momentum.

Figure 31 shows a similar schematic representation as Fig. 30, but this time applied

to central collisions of deformed nuclei, namely one body-body and one tip-tip col-

lision (conőgurations we introduced in Chapter 2 and more speciőcally in Fig. 14).

If body-body collisions and tip-tip collisions őnd themselves in the same centrality

class (i.e. generate similar amounts of charged particles), then we should őnd an anti-

correlation between the elliptic ŕow 𝑣2{2} and the mean transverse momentum ⟨𝑝𝑇 ⟩.
Because central body-body collisions generate large amounts of elliptic anisotropy,

they will generate large amounts of elliptic ŕow. On the other hand, central tip-tip col-

lisions will not because they look relatively similar to central collisions of spherically
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Figure 31: Schematic representation of the relationships between impact parameter 𝑏, interac-

tion region area 𝑆⊥, 𝑣2{2} and ⟨𝑝𝑇 ⟩ for collisions of ellipsoidal (deformed) nuclei

belonging to the same central centrality class.

symmetric nuclei. Following the same arguments outlined above, we simultaneously

expect the tip-tip collisions to generate a greater mean transverse momentum given their

considerably smaller interaction area 𝑆⊥, and vice-versa for the body-body collisions.

Therefore, in central collisions of considerably deformed nuclei, we should observe an

anti-correlation between 𝑣2{2} and ⟨𝑝𝑇 ⟩, i.e. 𝜌 (𝑣𝑛{2}2, ⟨𝑝𝑇 ⟩) < 0. This observable is

therefore uniquely positioned to detect centrality classes where vastly different initial

state anisotropies (and isotropies) coexist, making it a great marker for deformity.

We are now ready to move on to the őrst results section of this thesis, where we will

show results from U+U and Au+Au simulations using two different nuclear parametriza-

tions each, to see if our model is sensitive to deformity across the collection of observ-

ables we have just deőned.



5
S E L E C T I N G A P P RO P R I AT E

PA R A M E T R I Z AT I O N S I N 2 D

With the knowledge presented in Chapters 2 to 4, we are ready to share and analyze

results stemming from boost-invariant simulations conducted using our framework. The

analysis, which was originally published in Ref. [1], is concerned with two systems,

namely 238U and 197Au, which were selected because of their proximity in mass num-

ber 𝐴 and the different degrees of deformation they exhibit. As explained in detail in

Chapter 2, 238U is a well-deformed, prolate nuclei: low- [25, 104] and high-energy [36,

94, 105] data and simulations have established this fact long ago. However, ambiguity

remains regarding the scale of the deformation and of its projection in Woods-Saxon pa-

rameter space (𝛽𝑚
𝑙

), with its quadrupole deformation being allowed to vary by more than

30% from one parametrization to another [36, 106]. On the other hand, 197Au provides

a much more subtle representation of nuclear deformation. Indeed, for some time, given

the uncertainty surrounding low-energy HFB calculations (explained in Section 2.2.2),

the nuance of deformation signals provided by available experimental data [105], along

with early elastic electron scattering experiments [25], the deformation of 197Au was

often overlooked in high-energy simulations [107]. However, low-energy calculations

have been conődent for some time [108, 109]: 197Au is somewhat deformed. We there-

fore set out to use our cutting-edge framework to tackle these questions simultaneously.

We ran simulations using 4 different nuclear parametrizations - 2 for each sys-

tem. Using multiplicity data collected at RHIC for U+U and Au+Au collisions at
√
𝑠NN = 193 GeV and

√
𝑠NN = 200 GeV, respectively [105, 110], we calibrated the

proportionality constant 𝐶 (see Eq. (3.33)) to properly reproduce the charged parti-

106
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cle yields. All available experimental observables were compared to our calculations

without further calibration or speciőc tuning. Thanks to this procedure, we simulta-

neously establish the unique capabilities of our framework to reproduce collections

of observables based on a simple calibration procedure and its ability to differentiate

clearly between different initial nuclear parametrizations. The latter ability provides

us with the opportunity to discriminate between different parametrizations, selecting

the Woods-Saxon parametrization for each system that best reproduces available ex-

perimental data. In the process, we will provide evidence supporting the use of our

framework for constraining other less studied nuclear parametrizations, such as 129Xe,

the other nucleus which we will discuss later in this thesis.

We will őrst formally introduce the analyzed parametrizations. We will then intro-

duce observables, from the more basic (multiplicity, ⟨𝑝𝑇 ⟩) to the more intricate (𝑝𝑇

correlators, anisotropic ŕow), making sure to describe the implications properly of

these observables vis-à-vis our őnal parametrization selections. We will also intro-

duce ratios of observables between our systems, as these ratios have been determined

experimentally and provide a further discriminating item for use in our procedure.

5.1 basics and calibration

5.1.1 Initial Parametrizations

We begin by setting the foundations for our analysis by providing projections of our

chosen parametrizations in Fig. 32. There are two collections of projections, differing

only in the choice of azimuthal angle - 𝜙 = 0 or 𝜋/2. All parametrizations except one

are unchanged by the choice of azimuthal angle, which makes sense given that only

one parametrization has non-zero triaxiality 𝛾 (i.e., non-zero 𝛽𝑚
𝑙

with𝑚 ≠ 0), namely

the Def Au parametrization deőned in Table 2. It is, however, essential to show these

two projections as basing our perception of the Def Au parametrization on only one of

these would lead to us forming an inaccurate picture.
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Figure 32: Two-dimensional Woods-Saxon projections taken at (left) 𝜙 = 0 and (right) 𝜙 = 𝜋/2
of the 4 parametrizations subject to our analysis. The details of these parametrizations

can be found in Table 2.

Figure 32 also makes it clear that 238U is considerably more deformed than 197Au.

We also őnd noticeable qualitative differences between the two 238U parametrizations,

as New U has a diamond shape and Prev U has a much more ‘simple’ pill shape. This

is entirely deőned by the large hexadecapole parameter 𝛽0
4 as well as the absence of

non-zero 𝛽2
4 & 𝛽4

4 of New U.

As a őnal observation, the discussion of Section 2.3.2 concerning tip-tip and body-

body collisions only seems to apply to our 238U parametrizations. Indeed, the differences

between the short and long axes of Def Au are small when compared to those of our

2 U parametrizations. Furthermore, this asymmetry is only perceivable in the 𝜙 = 𝜋/2
projection, making it much more difficult for the correct combination of conditions

- especially in terms of aligning the target and projectile along a speciőc axis - to

occur. Therefore, based on this qualitative assessment, we should not expect to őnd

discernable and signiőcant collections of tip-tip and body-body collisions in our Def
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𝑅0 (fm) 𝑎 (fm) 𝛽0
2 𝛽2

2 𝛽0
4 𝛽2

4 𝛽4
4

New 238U 7.068 0.538 0.247 0 0.081 0 0

Prev 238U 6.874 0.556 0.2802 0 −0.0035 0 0

Def 197Au 6.62 0.519 0.098 0.076 −0.025 −0.018 −0.018

Spher 197Au 6.37 0.535 0 0 0 0 0

Table 2: Deformed Woods-Saxon parameters used for sampling nuclei according to Eq. 2.13,

taken from [25] (Prev 238U and Spher Au) and [36] (New 238U and Def Au).

Au events. Furthermore, our Au events should not produce the anti-correlation described

in Section 4.3.5.

Let us examine our calibration via charged particle multiplicity 𝑑𝑁ch/𝑑𝜂.

5.1.2 Calibrating to Charged Particle Yields

Before we describe our calibration procedure, it is important to mention two points.

Firstly, the calibration was focused on a single system, namely 238U. We aimed to

reproduce the charged particle yields provided for this system speciőcally and kept

the same proportionality constant 𝐶 for our 197Au runs to ensure that the results are

comparable without any caveats regarding our choice of parameters. This means that our

197Au curves match their associated experimental yields slightly less well than the 238U

curves, as can be seen in Fig. 33. Secondly, no explicit charged particle multiplicity yield

results exist for U+U at
√
𝑠NN = 193 GeV. Indeed, even though identiőed particle yields

do exist, and charged particle yields probably exist on tape at the Brookhaven National

Laboratory, no published charged particle yields exist. We were therefore forced to use

a parametrization of the 𝑑𝑁ch/𝑑𝜂 vs. centrality curve, provided in Ref. [105], to conduct

our calibration. While this parametrization is used in that same paper to produce elliptic

ŕow vs. centrality curves (and, therefore, allowed us to reproduce their mapping exactly),

it does entail that the experimental charged particle multiplicity curves carry an inherent
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Figure 33: Charged hadron multiplicities in |𝜂 | < 0.5 as a function of centrality. Calculations

from our model are compared to parametrizations of charged multiplicity curves for

193 GeV U+U and 200 GeV Au+Au collisions at STAR [105].

uncertainty which is difficult to measure in the absence of the raw experimental data.

Nevertheless, this parametrization served as our only calibration tool. Furthermore,

the identiőed particle yields served as a validation of sorts, providing us with raw

experimental yields against which to check our calculations, albeit more limited in

scope than charged particle yields would have been.

Figure 33 shows the charged particle multiplicity as a function of centrality for our

two systems, U+U and Au+Au. Both systems show excellent agreement throughout, and

the chosen proportionality constant is 𝐶 = 0.505. The Au curve slightly overestimates

the yields provided by the experimental parametrization, which is explained by our

calibration’s focus on the U yields speciőcally. It is also interesting to see that nuclear

parametrizations - with all other parameters being equal - have a tangible effect on

charged particle yields, especially in central collisions. For U, we őnd that Prev U

generates, on average, more charged particles than New U in central (0 - 10%) collisions.

The larger yield is due to the slightly higher nucleonic density provided by Prev U’s

Woods-Saxon parametrization. Indeed, looking at Fig. 32 and Table 2, we see that the
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Woods-Saxon radius for Prev U is smaller than that of New U. This will then lead to

a smaller volume within which all 238 nucleons must be sampled, yielding in turn a

slightly larger nucleonic density. Indeed, taking

𝑉WS =

∫ 2𝜋

0

∫ 𝜋

0

∫ 𝑅(𝜃 ,𝜙)

0
𝑟2 sin(𝜃 )𝑑𝜙𝑑𝜃𝑑𝑟 and

𝑅(𝜃 ,𝜙) = 𝑅0(1 + 𝛽0
2𝑌

0
2 (𝜃 ,𝜙) + 𝛽0

4𝑌
0
4 (𝜃 ,𝜙)) (5.1)

gives 𝑉Prev U ∼ 1390 fm3, while 𝑉New U ∼ 1500 fm3, a ∼ 8% difference. Of course, this

is not a fully accurate representation of the nuclear volume of both parametrizations.

For one, this quick calculation did not take the diffusiveness 𝑎 into account: it is smaller

for New U than for Prev U, leading to a sharper Woods-Saxon proőle for the former

and, therefore, a smaller probability of őnding nucleons further than 𝑅0. For another,

the probabilistic nature of the Woods-Saxon distribution means that constraining the

nuclear volume for all nuclei generated using a single Woods-Saxon parametrization

is a rough approximation. However, to understand the discrepancies between curves of

the same system, the point is valid: the Prev U parametrization generally leads to denser

nucleonic matter, which, in turn, in central collisions, leads to more charged particles

being produced. The same idea holds for the two Au parametrizations. Indeed, we őnd

that Spher Au’s yields are larger than those of Def Au and, looking at Table 2, we also

őnd that the Woods-Saxon radius of Spher Au is smaller than that of Def Au. Conducting

the same quick integral, we őnd 𝑉Spher Au ∼ 1080 fm3 and 𝑉Def Au ∼ 1220 fm3, another

tangible difference of about 12%. One should not, however, give these discrepancies any

discriminating power since this step is purely for calibration’s sake: if we had wanted, we

could have calibrated the constant 𝐶 to reproduce the charged particle yields perfectly

on a system-by-system basis, but this would have made other observables, which have

shown sensitivity to this parameter, to become less comparable across systems [77, 87].

Finally, the rightmost points of the U curves dip slightly and break with the curve’s

trend. This is due to our centrality selection procedure, outlined in Section 4.3.1. For

these events, we restricted the impact parameter range from 0 to 8 fm to focus com-

putational resources on generating central events, where, as explained in Chapter 2,
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the effects of deformation would be concentrated. We therefore had to use our non-

minimum-bias centrality selection procedure to bin our events. While the bins we

selected were the ones that reduced the mean-squared-error between the experimental

parametrization and our results the most, they did, in the case of the U curves, bring

in this dipping artifact. When our procedure is used on non-minimum-bias events, and

the selected range is close to the maximal range allowed by the impact parameter range

itself, our procedure is bound to allow events which are ‘too’ peripheral to seep into

our most peripheral bins. This erroneous inclusion has a knock-on effect, most visible

in the following few peripheral bins until it dissipates. As is apparent from Fig. 33, the

Au curves do not share this artifact. This is due to the smaller size of the Au nuclei’s

Woods-Saxon parametrizations, which, when compared to the chosen impact parameter

range for our runs, meant that the maximal centrality allowed by the impact parameter

was considerably more extensive than that of our U runs. By limiting our scope to a com-

parable centrality range, we allowed fewer erroneously classiőed events into our őnal

bins at the cost of rejecting more events outright because of their peripherality. In other

words, the Au curves’ most peripheral centrality points and associated impact parameter

intervals are well within our impact parameter range, while those of our U events are

less well-enclosed. In the end, as we will see with all other observables, this artifact

does not affect the conclusions regarding appropriate Woods-Saxon parametrizations,

as it does not affect the central bins. Let us move onto observables our model was not

explicitly calibrated to match.

5.2 u+u and au+au observables

5.2.1 Basic Observables

Figure 34 shows identiőed particle yields as a function of centrality for our two systems.

We compared our calculations to results published by STAR [111] and PHENIX [112],

two experiments based at RHIC. These experiments differ in acceptance and yield
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Figure 34: Identiőed particle multiplicity in |𝑦 | < 0.5 as a function of centrality. Calculations

from our model for (top) two U conőgurations and (bottom) two Au conőgurations

are compared to results for 193 GeV U+U collisions at STAR [111] and 200 GeV

Au+Au collisions at PHENIX [112].

correction procedures. For example, to be consistent with STAR’s experimental proce-

dures, our pion yields were corrected for feed-downs (i.e., contributions to the yields

from particles not generated in the original collision event or subsequent inter-particle

interactions), while proton yields were not. Conversely, PHENIX’s experimental pro-

cedures do not correct for feed-downs at all. Clearly, then, we had to carefully analyze

which curves should or should not be corrected for such effects to ensure adequate

comparisons were being made.
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All species considered, our calculations show excellent agreement across the entire

centrality window for all conőgurations and collision systems. This, as mentioned above,

proves that our calibration was appropriate and that further results represent our model’s

current optimal parameter set for the energies at hand. However, the identiőed particle

yields do not show any practical (or potentially discriminatory) sensitivity to our choice

of nuclear parametrization. To be clear, there are differences (albeit small) in the yield

curves between our different parametrizations. However, all parametrizations fall within

the reasonably large error bars provided by the two experiments. It is őnally necessary to

note that our model does not include a baryon chemical potential 𝜇𝐵. At these collision

energies, 𝜇𝐵 is small but non-zero, which would affect particle-anti-particle yields.

Figure 35 shows identiőed particle yields scaled by the average number of participant

nucleon pairs in a given centrality class (⟨𝑁part⟩/2) as a function of the number of

participants ⟨𝑁part⟩. Of course, this observable is highly dependent on the results shown

in Fig. 34, as the number of participant nucleons, centrality and yields are all highly

correlated. However, this scaled observable identiőes how particle production varies

from one centrality to another. Because it increases with the number of participant

nucleons 𝑁part, particle production seems to be guided by a combination of soft and

hard processes that scale non-trivially with 𝑁part. This result speciőcally pushes against

optical models’ (see MC-Glauber) guiding wisdom that multiplicity in a collision is

solely determined by the number of binary collisions (and, therefore, the number of

participants). Here again, however, different parametrizations give similar results which

fall well within the experimental error bars, curtailing any attempt at using it to select

appropriate conőgurations.

Finally, Fig. 36 shows the average transverse momentum ⟨𝑝𝑇 ⟩ of identiőed particles

against centrality. Contrarily to Figs. 34 and 35, while different parametrizations do give

similar results, a more apparent separation emerges. This, like differences in multiplicity

found in Fig. 33, is mainly driven by the size differences between conőgurations. As

explained in Chapters 2 and 4, a smaller nucleus leads to a (generally) smaller overlap

area in the transverse plane at equal collision energy, which in turn leads to higher energy
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Figure 35: Identiőed particle multiplicity in |𝑦 | < 0.5 scaled by average number of participant

nucleon pairs in the centrality class ⟨𝑁part⟩/2 as a function of ⟨𝑁part⟩. Calculations

from our model for (top) two U conőgurations and (bottom) two Au conőgurations

are compared to results for 193 GeV U+U collisions at STAR [111] and 200 GeV

Au+Au collisions at PHENIX [112].

densities and larger average transverse momenta at őxed collision energy. Like earlier,

the size here does not exclusively refer to the unmodiőed Woods-Saxon radius 𝑅0, but

the combination of all Woods-Saxon parameters which contribute to producing speciőc

overlap shapes and sizes. Those overlaps are what is being probed here. The ordering

in average transverse momenta between different species is guided entirely by the

differences in their respective masses. As in Figs. 34 and 35, all species show signiőcant
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Figure 36: Identiőed particle mean transverse momentum ⟨𝑝𝑇 ⟩ in |𝑦 | < 0.5 as a function of cen-

trality. Calculations from our model for (top) two U conőgurations and (bottom) two

Au conőgurations are compared to results for 193 GeV U+U collisions at STAR [111]

and 200 GeV Au+Au collisions at PHENIX [112] respectively.

agreement with experimental data. Similarly, sizeable experimental error bars do not

allow us to extract any insights regarding which parametrizations are more appropriate,

but the marked differences between parametrizations do show that this observable could

potentially be used in a discriminating analysis given better-constrained experimental

data. Given our use of hydrodynamics, the average transverse momentum puts strong

constraints on the 𝑝𝑇 spectrum. This entails that good agreement with ⟨𝑝𝑇 ⟩ is a good

indicator of the reproduction of the entire spectrum [113]. Therefore, given our excellent
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agreement with experimental data, the shear and bulk viscosity parametrizations and

the switching temperature presented in Eqs. (4.10) and (4.11) (and more broadly in

Section 4.1.2) seem appropriate.

5.2.2 Elliptic and Triangular Flows

We are now ready to shift our attention to more sensitive observables, starting with

integrated elliptic (𝑣2) and triangular (𝑣3) ŕows. Figure 37 shows the two- and four-

particle cumulants of the elliptic ŕow 𝑣2{2} and 𝑣2{4} as functions of charged particle

multiplicity and centrality. In both cases, at least one of our parametrizations for both

systems matches experimental data well. Both U systems overestimate the elliptic ŕow

at smaller multiplicities or more peripheral collisions. This is a knock-on effect of the

artifact described previously, which affected our charged particle yields. Indeed, our

most peripheral centrality class contains more peripheral events which weren’t rejected

by our centrality selection procedure, which in turn leads to an overestimate of the

elliptic ŕow (which generally increases with centrality up to ∼ 40%). We also provide

a zoomed-in version of the central (0-10%) region of the elliptic ŕow as a function of

centrality in Fig. 38, providing a clearer idea of how parametrizations perform in this

critical region of the centrality spectrum.

As explained in Section 4.3.4, this observable served as the őrst actual signal of the

collective nature of particles produced in relativistic heavy-ion collisions. It stands to

reason that it should be sensitive to initial state anisotropies, as those are the features

carried on to the őnal state by the hydrodynamic phase. Looking at our U conőgurations,

we őnd a marked improvement going from Prev U to New U, improvement which is

made more evident in Fig. 38. The decrease in 𝛽0
2 going from Prev U to New U leads to

a decrease of the two-particle cumulant of the elliptic ŕow in central collisions. On the

other hand, the four-particle cumulant seems insensitive to changes in parametrizations.

This may not be entirely right, as, as explained previously (see Section 4.3.4), further

cumulants are meant to isolate pure ŕow 𝑣𝑛 from non-ŕow effects. However, by con-
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Figure 37: Two- and four-particle cumulants of elliptic ŕow (𝑣2{2} and 𝑣2{4}) as functions

of (left) charged particle multiplicity and (right) centrality. Calculations from our

model are compared to results for 193 GeV U+U and 200 GeV Au+Au collisions at

STAR [105, 114]. The shaded bands represent statistical errors.

struction, these further cumulants do remove contributions from previous cumulants.

Therefore, the sensitivity found in the two-particle cumulant will be at least in part sub-

tracted from the four-particle cumulant, which explains the apparent lack of sensitivity

(especially when compared to the two-particle cumulant itself).

The Au conőgurations, on the other hand, show a distinct split in central collisions,

which is once again driven by 𝛽0
2 - this time by its inclusion (Def Au) or exclusion (Spher

Au). In central collisions, Spher Au underestimates 𝑣2{2} by a wide margin, leading us

to conclude unequivocally that 197Au is deformed. Our deformed parametrization, while

it does mirror the experimental data well, still underestimates the experimental curve

throughout the entire centrality range. This underestimate, while small, does open the

door to future analyses using slightly larger values of 𝛽𝑚2 . Again, in both Figs. 37 and 38,

we őnd that the four-particle cumulant seems insensitive to the deformation, which at
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Figure 38: Two- and four-particle cumulants of elliptic ŕow (𝑣2{2} and 𝑣2{4}) as functions

centrality. Calculations from our model compared to results for 193 GeV U+U and

200 GeV Au+Au collisions at STAR [105, 114]. The shaded bands represent statistical

errors.

least in part conőrms our hypothesis that the contributions from the quadrupole defor-

mation 𝛽𝑚2 are primarily concentrated in the two-particle cumulant, and are subsequently

subtracted from this higher-order cumulant.

One may notice that our calculations do not stretch out as far in multiplicity as the

experimental data. Looking at Fig. 38 (or the right panels of Fig. 37), we see that

the points we do not reach are concentrated between 0 and 0.5% centrality - they

are ultra-ultra-central. Furthermore, most of these unmatched points are found within
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the top 0.05% centrality. Of course, our runs have events which register multiplicities

comparable to those events. However, their number is small and entails bad statistics;

we would have to generate many more events to provide a statistically signiőcant picture

of what happens within that extremely central, tight window of centrality. Nevertheless,

we go down to 0.5% centrality, which is central enough to extract conclusions from

the elliptic ŕow. One should also notice that some of the rightmost, most central

experimental points from Fig. 37 are missing in Fig. 38; indeed, we clearly do not see

the point comprising large experimental error bars in Fig. 38. This is due to our only

having access to a parametrization relating multiplicity to centrality, with these points

falling outside of the range mathematically allowed by the form of the parametrization.

The points we are unable to reach tell an interesting story. Indeed, looking at the top

panel of Fig. 38, we see that, while the Au elliptic ŕow does dip in the most central region

of the curve, it does not dip as severely as U’s elliptic ŕow. While across the peripheral

(10-30%) centrality region, both systems’ curves are qualitatively similar, they diverge

from one another considerably at about the 5% mark. This is due to the prevalence of

body-body and tip-tip events in the most central events of our U event collections. As

explained in Section 2.3.2, fully-aligned (𝑏 ∼ 0 fm) collisions of considerably deformed

nuclei (such as U) create body-body and tip-tip conőgurations (see Fig. 14). Body-body

collisions will generate slightly less charged particles due to their smaller nucleonic

densities and produce more elliptic ŕow (explaining the marked increase in elliptic ŕow

from 5 to 1% tip-tip collisions produce much less initial state anisotropies (because of

the symmetries exhibited by the colliding nuclei about their long axes) while producing

more charged particles, populating the most central (1 to 0%) portions of the curve with

events having less and less elliptic initial states. The lack of similar features in the Au

experimental curve reveals that while 197Au may be deformed, the scale of its deformity

must be small compared to that of 238U.

Figure 39 shows the ultra-central (and ultra-ultra-central) regions of the 𝑣2{2} curves

against scaled multiplicity. That is, instead of plotting the elliptic ŕow against multiplic-

ity directly (as was done in the left panels of Fig. 37), it scales the multiplicities by using
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Figure 39: Two-particle cumulant of elliptic ŕow (𝑣2{2}) as functions of scaled charged particle

multiplicity for (top) 0 − 0.125% and (bottom) 0 − 1% most cetral events. Calcula-

tions from our model are compared to results for 193 GeV U+U and 200 GeV Au+Au

collisions at STAR [105].

the average multiplicity in the target centrality ranges (0-1% and 0-0.125%). This re-

duces the effect of mismatches between our charged particle yields and the experiment’s.

However, the quoted centralities here are not the same as those presented in the other

őgures up to this point: these centralities were generated using Zero Degree Calorimeter

(ZDC) signals. A ZDC aims to calculate the number of spectator nucleons directly by

counting the number of neutrons which did not participate in a given collision. By plac-

ing a calorimeter at 0◦ from the beam direction, neutrons which have not interacted will
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continue their route into the calorimeter since the electromagnetic őelds responsible

for accelerating the ionic beams are ineffective on them. Experimentalists assess the

centrality of a collision by counting the number of detected neutrons: the more neutrons

were found, the higher the chance that the collision was peripheral. To emulate ZDCs

within our framework, we calculated the total number of participating nucleons from a

given collision event and subtracted it from the total number of nucleons available to

give us the number of spectator nucleons 𝑆 , i.e.

𝑆 = 2𝐴 −𝑁Participants (5.2)

where 𝐴 = 238 for a U+U collision. To obtain the number of neutrons out of the total

number of spectator nucleons, we sampled a binomial distribution

𝑃 (𝑁 ) =
(
𝑆

𝑁

) (
1 − 𝑍

𝐴

)𝑁 (
𝑍

𝐴

)𝑆−𝑁
(5.3)

where Z is the atomic number (92 for U) and we aim to sample 𝑁 , the number of

neutrons, as done in [107]. We average 20 samplings of this distribution per event

to reduce variability, giving us the number of spectator neutrons for each event. This

method does overlook some points, such as the fact that atomic nuclei have neutron

skins (an outer shell where only neutrons are found) [26, 27], which leads to higher

probabilities of having spectator neutrons than protons, which are not encapsulated

within our simple binomial distribution. These considerations, however, were outside

of the scope of this study.

ZDC centralities do carry their own set of inherent uncertainties. However, the

experimental data combined with our calculations do show many of the effects described

previously. Looking at the top panel of Fig. 39, we őnd large differences between our two

systems not only in the scale of the elliptic ŕow but also in how it evolves with increasing

scaled multiplicity. Indeed, the 197Au experimental curve is much ŕatter than that of 238U,

conveying the considerable differences between their deformities: ultra-ultra-central

197Au collisions present no signs of the body-body-tip-tip dichotomy which is clearly

exhibited by the 238U data (going from 𝑣2{2} ∼ 0.03 to 0.022 within the same extremely
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restrictive centrality class). We also őnd that our statistics could be better, as explained

previously. While we do recreate the scale of the elliptic ŕow in this centrality range,

our large error bars and point-to-point ŕuctuations imply that extracting meaningful

conclusions for our 238U parametrizations would be a stretch. However, looking at the

two 197Au conőgurations, the Spher Au parametrization (obviously) carries over its

considerable underestimation of the elliptic ŕow from our previous őndings. Looking

at the bottom panel, which presents a broader (but still ultra-central) centrality range,

our calculation’s statistics become more reasonable, and the clear separation between

parametrizations reemerges. New U and Def Au are the parametrizations that best match

the experimental results, reaffirming our previous őndings. It is also interesting to note

that the 197Au and 238U curves’ slopes are much more similar than in the ultra-ultra-

central range. This means the broader effects of deformity express themselves similarly

between the two systems in this range. It also encapsulates the general effect of the

impact parameter in generating elliptic ŕow.

Moving our attention to Fig. 40, we őnd two new curves for each parametrization

stemming from different event averaging techniques. The mixed event curve is gener-

ated by taking events from a given centrality class, taking every particle generated in

these events and reassigning them to a new event randomly, preserving only event-by-

event multiplicities in the process. This procedure aims to determine what underlying

correlations (if any) exist between events of a given centrality class. What this curve

tells us is that for peripheral events of both systems, mixing all events does not lead to

a considerable difference from the actual calculated curves, meaning that all peripheral

events essentially look the same. Ergo, mixing them up with one another does not change

much. When moving toward the central regime, however, the discrepancies between

the mixed event curves and our calculations become appreciably larger, conőrming that

little underlying relationship exists between these central events: the anisotropy we őnd

in the őnal state is due largely to event-by-event initial state anisotropies, which cannot

be recuperated when mixing all events.
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Figure 40: Two- and four-particle cumulants of elliptic ŕow (𝑣2{2} and 𝑣2{4}) as functions of

charged particle multiplicity. Calculations from our model are compared to results

for 193 GeV U+U and 200 GeV Au+Au collisions at STAR [105, 114]. The shaded

bands represent statistical errors. We emphasize the addition of Mixed Event and

SMASH sub-event average curves compared to Figs. 37 and 38. To differentiate

between the different averaging curves, SM stands for SMASH sub-event average

while Ov stands for oversampled average.

The other addition to Fig. 40 is the SMASH sub-event average curve (SM). As

mentioned in Chapter 4, the hydrodynamic hypersurface is oversampled 1000 times

to create a physically accurate picture of the ensemble-averaged state at the interface

between hydrodynamics and hadronic transport. However, a choice offers itself when



5.2 u+u and au+au observables 125

100 200 300 400 500 600 700 800

dNch/dη

0.010

0.015

0.020

0.025

0.030
v 3
{2
}

Prev U Ov

Prev U SM

New U Ov

New U SM

Spher Au Ov

Spher Au SM

Def Au Ov

Def Au SM

STAR U+U at 193 GeV

STAR Au+Au at 200 GeV

Figure 41: Two-particle cumulant of triangular ŕow (𝑣3{2}) as a function of charged particle

multiplicity. Calculations from our model are compared to results for 193 GeV U+U

and 200 GeV Au+Au collisions at STAR [110]. Here, SM stands for SMASH sub-

event average while Ov stands for oversampled average.

comes time to analyze the results from a given centrality class: we can either average

the oversampled events corresponding to a single hydrodynamic event to create a single

event per hydrodynamic evolution (what is usually done), or we can preserve all of the

oversampled events (with all of their statistical ŕuctuations intact), build our centrality

classes and then calculate the average of every single oversampled event belonging to

a given centrality class. This slight difference in procedure can considerably impact a

given observable, as we will see later in this chapter. Indeed, taking the average at the

end of the centrality binning expresses short-range correlations, usually drowned out by

taking hydrodynamic event-by-event averages. For elliptic ŕow speciőcally, however,

Fig. 40 reveals that both averaging techniques are equivalent, indicating that long-range

correlations encapsulate the entirety of this observable.
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Moving away from elliptic ŕow, we focus on the two-particle cumulant of triangular

ŕow 𝑣3{2}. Looking at Fig. 41, we őnd that the experimental curves practically overlap

across the entirety of the charged particle multiplicity range. This reveals the nature

of triangular ŕow as being ŕuctuation-driven (as opposed to driven by initial state

geometry). Our calculation underestimates the observable across both systems and all

parametrizations. Taking the SMASH sub-event average decreases the calculated value

of triangular ŕow, meaning that short-range correlations decrease overall triangular

ŕuctuations. Because this observable is driven by initial state ŕuctuations, a potential

solution to our underestimate would be to include sub-nucleonic degrees of freedom (i.e.

valence quark conőgurations) to our initial thickness function 𝑇𝐴( ®𝑥) (see Eq. (3.26)),

such as those described in Ref. [115]. Including these new sub-nucleonic hot spots

could lead to an overall increase in short-range correlations and ŕuctuations, leading to

an increase in the SMASH sub-event averaging results.

The őnal ŕow observables we will show are the 𝑝𝑇 -differential 𝑣𝑛{2} for charged

hadrons and identiőed particles. Figure 42 shows our model’s calculations across the

two systems, compared to existing experimental data. One notices that only one such

experimental curve exists, that of 197Au and published by PHENIX [116]. This implies

that our 238U curves are predictions of our model. One should also note that the PHENIX

procedure for calculating the 𝑝𝑇 -differential anisotropic ŕow differs from ours, as they

do not employ the scalar product (SP) method. Differences due to this discrepancy are,

however, minor.

Differential elliptic ŕow 𝑣2{2}(𝑝𝑇 ) is larger for 238U than for 197Au across all cen-

trality classes, irrespective of parametrization. As expected, the gap gets smaller as we

move towards more peripheral collisions. In the 0-10% window, the differences are

consistent with the deformation effects described previously: we expect the elliptic ŕow

to be enhanced in this region of the centrality spectrum because of the more marked

ellipsoidal shape of 238U. The two 197Au conőgurations overestimate 𝑣2{2}(𝑝𝑇 ) for

𝑝𝑇 ≥ 0.5 GeV. While the discrepancy may point to inadequacies in our hydrodynamic

modelling, it is crucial to remember that most produced particles have 𝑝𝑇 ≤ 1 GeV,
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Figure 42: Charged hadron differential anisotropic ŕow coefficients 𝑣2{2}, 𝑣3{2} and 𝑣4{2}
as functions of transverse momentum 𝑝𝑇 for various centrality classes. Calculations

from our model are predictions for 193 GeV U+U collisions, while they are compared

to experimental results from PHENIX [116] for 200 GeV Au+Au collisions.

implying that higher 𝑝𝑇 contributions to the integrated elliptic ŕow are small. In the

10-20 % and 20-30 % classes, the differences are minor and are themselves consis-
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tent with elliptic ŕow being noticeably larger for U+U collisions compared to Au+Au

throughout the collision spectrum, as evidenced in Fig. 37. The two conőgurations from

both systems overlap 𝑣2{2} lines, further conőrming that speciőc nuclear structures do

not play an essential role beyond central collisions.

Moving to differential triangular ŕow 𝑣3{2}(𝑝𝑇 ), we őnd that the curves for both

systems are very similar throughout. Recalling our analysis of Fig. 41, this is expected,

as triangular ŕow is mostly driven by local ŕuctuations, which are similar in both

systems and are unaffected by the Woods-Saxon parametrizations we have chosen.

As for 𝑣4{2}(𝑝𝑇 ), both collision systems underestimate this observable in peripheral

(10 − 30%) collisions. In central (0 − 10%) collisions, both collision systems overlap

with themselves and the experimental data. Therefore, our model predicts that 𝑣4{2} for

U+U collisions at 193 GeV should be similar (if not equal) to that of Au+Au collisions

at 200 GeV. This result implies that 𝑣4{2} is insensitive to our conőgurations’ speciőc

initial state anisotropies.

Figure 43 shows the differential elliptic ŕow for identiőed particles. As with Fig. 42,

in the absence of experimental results, the 238U curves stand as predictions of our

model, while the 197Au curves are compared to experimental results from STAR [117].

This őgure only includes 2 parametrizations (New U and Def Au) for clarity, given

that conclusions regarding the ordering of the different conőgurations can be extracted

from Fig. 42. Def Au reproduces the experimental data well across all four centrality

ranges. Predictably, our calculations yield a more signiőcant differential elliptic ŕow for

238U than for 197Au across all species. The effect is apparent in the ultra-central regions

(0− 5% & 5− 10%) and crosses hadronic lines. However, in the more peripheral regions

(10− 20% & 20− 30%), this difference becomes much smaller and varies considerably

from one hadron to another; our model’s predictions for anti-protons are similar to both

197Au experimental data and our model’s calculation. Higher-𝑝𝑇 differential ŕow seems

to converge consistently across all identiőed particles.
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Figure 43: Identiőed particle differential elliptic ŕow 𝑣2{2} as a function of of transverse mo-

mentum𝑝𝑇 for various centrality classes. Calculations from our model are predictions

for 193 GeV U+U collisions, while they are compared to experimental results from

STAR [117] for 200 GeV Au+Au collisions.

5.2.3 Correlators

Moving on, we will consider different correlators and how they can differentiate be-

tween parametrizations. We start with the 2- and 3-particle correlators described in

Section 4.3.3, which can be found in Fig. 44. When used with primary observables such

as elliptic ŕow, these correlators can help constrain a deformed nucleus’ Woods-Saxon

parameters thanks to their sensitivity [118, 119].

The top panels of Fig. 44 show the 2-particle 𝑝𝑇 correlator compared to experimental

data from STAR [118], with each collision system having its subplot for clarity. We have

included a mixed event curve, just like in Fig. 40, to ensure no underlying 𝑝𝑇 correlations

exist. Its position on the plot - 0 across the entire range - conőrms this. Contrary to

our őndings with elliptic ŕow, a sizeable difference exists between our oversampled
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Figure 44: (top) 2- and (bottom) 3-particle momentum correlators as functions of centrality,

with 0.2 GeV ≤ 𝑝𝑇 ≤ 3.0 GeV, for (left) U+U at 193 GeV and (right) Au+Au at

200 GeV. Calculations from our model are compared to experimental results from

STAR [118]. Here, SM stands for SMASH sub-event average while Ov stands for

oversampled average.

and SMASH sub-event averaged curves; they are indeed opposed with respect to the

origin. This reveals that including short-range correlations is a crucial determinant of

this observable’s behaviour across collision systems. Our SMASH sub-event averaged

curves match available experimental data well, with Prev U and Def Au as the best

matches.

It is also interesting to see how the strength of the correlations changes across collision

systems, an ordering dictated by the size and deformity of a given system. Indeed, a

hierarchy exists between our curves, going from least deformed (Spher Au) to most

deformed (Prev U). The ordering persists at more peripheral centralities, indicating a

further dependence on system size (𝐴 and 𝑅0). One should also notice that in ultra-

central 238U collisions, there is a marked uptick of the 2-particle 𝑝𝑇 correlator that
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does not appear in the experimental 197Au curve. This is, once again, due to the larger

deformity offered by 238U compared to 197Au: the number of pairs of particles with

𝑝𝑇 considerably deviating from the centrality class mean (⟨𝑝𝑇 ⟩) swells thanks to the

distinct groups (body-body and tip-tip) of collision geometries present in said centrality

classes. This effect is deconstructed in detail in Ref. [120].

The bottom panels of Fig. 44 show the 3-particle 𝑝𝑇 correlator. Again, we opted to

include a mixed event curve, reiterating the absence of underlying and all-encompassing

𝑝𝑇 correlations in all centrality classes. Contrarily to the 2-particle correlator, the two

averaging techniques generally give similar results, with the oversampled average curves

giving out slightly larger correlation values than the SMASH sub-event average. The

3-particle correlator is generally larger for 238U than for 197Au, especially in central

collisions. Interestingly, the SMASH sub-event and oversampled average curves diverge

as we move towards more peripheral collisions; the same occurs with the 2-particle

correlator, indicating that short-range correlations become increasingly crucial with

peripherality. Unfortunately, the lack of experimental data for the 3-particle correlator

makes it impossible to use in our constraining procedure. As a őnal note for this plot,

both observables would be sensitive to including sub-nucleonic degrees of freedom (an

idea introduced when discussing Fig. 41). Indeed, given their sensitivities to short-range

correlations, adding further correlated hot spots (i.e. the quarks) should increase the

values of both observables.

Figure 45 shows the transverse-momentum-ŕow correlation for both systems, an

observable which has garnered interest as a tell-tale sign of deformation [98]. This

őgure does not include the SMASH sub-event averaging technique or the mixed event

curves. The former does not lead to a tangible difference (given similar results for the

elliptic ŕow), while the latter is not deőned: looking at Eq. (4.43), one notices that

a division by ⟨𝛿𝑝𝑇𝛿𝑝𝑇 ⟩ is required, a quantity which is evenly 0 for our mixed event

treatment.

Triangular-ŕow-transverse-momentum (bottom panel) correlations are dominated by

ŕuctuations, with the only real clear trend being that the correlator remains positive
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Figure 45: (top) Elliptic and (bottom) triangular ŕow and ⟨𝑝𝑇 ⟩ correlations as functions of

centrality. Calculations from our model are compared to experimental results for

U+U at 193 GeV and Au+Au at 200 GeV from STAR [118].

throughout the centrality range and across both collision systems and parametrizations.

As with the 3-particle correlator, no experimental data was available for this observable.

Elliptic-ŕow-transverse-momentum correlations, on the other hand, show clear sen-

sitivity to collision systems. Our calculation agrees with experimental data across our

entire centrality range. Critically, when our results were őrst published, this observ-

able stood as a pure prediction of our model: like all other observables except charged

particle multiplicity, our model was not explicitly calibrated to match elliptic-ŕow-

transverse-momentum correlations. The experimental data was published afterwards

and showed that our model’s predictions were accurate. As explained in Section 4.3.5,

an anti-correlation is expected to emerge in central collisions of considerably deformed
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nuclei, which we őnd in our calculation and the experimental data. Importantly, when

(in the centrality spectrum) this anti-correlation emerges, as well as at what degree

of deformity, is still very much unknown. As is apparent in Fig. 45, 197Au presents

no such anti-correlation even though we have determined that deformity is a critical

part of reproducing its experimental elliptic ŕow curve. While their crossovers from

correlation to anti-correlation occur at the same centrality (∼ 7%), Prev U’s predicted

anti-correlation is larger than that presented by the experimental data. On the other hand,

New U follows the experimental curve across the entire range. Given the unique sensitiv-

ity this observable has concerning deformity, its preference for New U is more important

than that of the 2-particle correlator for Prev U, as the latter was only slightly sensitive

to deformity, and our lack of inclusion of sub-nucleonic degrees of freedom could have

had a considerable effect on this speciőc observable. For the 197Au conőgurations, both

őt the experimental data well, making it hard to extract any insight.

5.2.4 Insights from Ratios

We have hinted a few times that our hydrodynamic modelling could be causing dis-

crepancies. Indeed, even though our hydrodynamic parameters were carefully selected

using knowledge produced in an expansive and detailed Bayesian calibration [77, 87],

these parameters still have room for improvement. However, it is understood that taking

ratios of observables between collision systems can help ease tensions that could arise

from loosely constrained hydrodynamic parameters. These new composite observables

are mainly independent of the hydrodynamic phase, as they stem from the same hydro-

dynamic evolution using the same transport properties [118]. We therefore thought it

important to calculate ratios of critical observables to ensure that those also matched ex-

perimental results, further helping us constrain our choice of nuclear parametrizations

as those are fully encapsulated into the initial state. These ratios will be deőned as

rAu,U (𝑂) = 𝑂U

𝑂Au
, (5.4)
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Figure 46: Ratios of the mean squared elliptic ŕow 𝑣2{2}2 as functions of centrality. Calculations

from our model are compared to experimental results for 193 GeV U+U and 200 GeV

Au+Au collisions at STAR [118].

where𝑂 is a placeholder for the speciőc observable we are rehashing through the ratio.

Starting with elliptic ŕow, Fig. 46 shows the ratio of 𝑣2{2}2 between U+U at 193 GeV

and Au+Au at 200 GeV measured at STAR [118]. A clear separation can be seen between

ratios which use Def Au and those that use Spher Au. This is perfectly in line with our

őndings from Figs. 37 and 38, where the gap between the two 197Au parametrizations

was larger than that between the two 238U conőgurations. Furthermore, even our best

combination of parametrizations, New U / Def Au, overestimates the ratio. This is

unsurprising, considering our slight underestimate of the 197Au elliptic ŕow. We must

reiterate here that, considering a single calibration was undertaken for our two systems,

our model reproduces the elliptic ŕow fairly well. Our calculations between 0-1% and

3-4% follow the data qualitatively and quantitatively, ranges which are particularly

sensitive to initial geometry. This still points to the fact that a run with a slightly
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Figure 47: Ratios of the 2-particle 𝑝𝑇 correlator as functions of centrality. Calculations from our

model are compared to experimental results for 193 GeV U+U and 200 GeV Au+Au

collisions at STAR [118].

larger quadrupole deformation for 197Au might be interesting. It also tells us that

an individually calibrated 197Au run may provide the minor corrections required to

perfectly reproduce the ratio (and individual observable).

Moving to Fig. 47, we őnd the ratios of the 2-particle 𝑝𝑇 correlator between U+U at

193 GeV and Au+Au at 200 GeV measured at STAR [118]. Here, only the SMASH sub-

event curves from the top panels of Fig. 44 are included, as they were obvious matches

for their respective experimental curves. Once again, the best ratios are obtained using

Def Au in the denominator, with the ratio using New U being a slightly better match

than that using Prev U. This is in contrast to what we had observed in Fig. 44’s top-left

panel, where Prev U had been the better match when considered individually. This fact

exposes one of the caveats of using ratios as observables: this ‘new’ observable is two

independent observations wrapped into one, and two underestimates can turn into a
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Figure 48: Ratios of the covariances of 𝑣2{2} and 𝑝𝑇 as functions of centrality. Calculations

from our model are compared to experimental results for 193 GeV U+U and 200 GeV

Au+Au collisions at STAR [118].

ratio being spot-on. The ratio seems to suggest, however, that our calculations prefer

New U and Def Au as long as we isolate our results from our hydrodynamic modelling.

We end this őrst results chapter by looking at the ratios of the covariances of 𝑣2{2}
and 𝑝𝑇 between U+U at 193 GeV and Au+Au at 200 GeV measured at STAR [118],

Fig. 48. Here, the covariances (Eq. (4.44)) and not the entire correlation (Eq. (4.43))

were taken to align with available experimental results. All ratios perform well in

peripheral (> 10% centrality) collisions. In central collisions, ratios including Prev U

fall sharply lower than the experimental results. Both New U ratios perform well, with

a preference, in central collisions, for the New U and Def Au combination - in line

with all other ratios. This shows that while Fig. 45 could not meaningfully distinguish

our two 197Au parametrizations, the ratio tells us that Def Au is a more appropriate

parametrization, reiterating that 197Au must truly be deformed.
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Therefore, this chapter shows how, with a simple calibration, our model can reproduce

many qualitatively different observables simultaneously. Furthermore, it has shown an

evident sensitivity to early-stage anisotropies, allowing us to determine that the New

U parametrization was an exceptional match for the experimental data, implying it

is the best parametrization currently proposed by the literature. It has also allowed

us to show, beyond any doubt, that 197Au is a deformed nucleus. However, the scale

of this deformity is still up for debate, as our underestimation of the elliptic ŕow

suggests that a larger deformity could lead to a better match to experimental data. To

extract more deőnitive conclusions, an 197Au-speciőc calibration should be undertaken

to avoid any underlying biases that may affect end-state observables. All-in-all, our

model performed tremendously and has demonstrated how it can be used as a tool

to reconcile low-energy deformation estimates with high-energy results, provided that

relevant high-energy experimental data exists and allows us to make deductions (i.e. is

precise enough).

Throughout this section, the boost-invariant formulation of our model was used. In

the following chapter, we will formally extend our initial state and hydrodynamics

phase in the longitudinal direction, and will introduce potentially relevant longitudinal

observables that could further help us in our pursuit of putting őrm constraints on the

Woods-Saxon deformation parameters of speciőc nuclei. We will then use the tools

and knowledge acquired during the analysis presented in this chapter to constrain the

deformation parameters of 129Xe, an isotope which has had limited runs at the LHC and

is considered deformed but with much uncertainty surrounding its most appropriate

Woods-Saxon parametrization.



6
L O N G I T U D I NA L DY NA M I C S

After the success of the boost-invariant analysis presented in Chapter 5, we sought to

determine if including longitudinal dynamics (i.e. moving away from a purely boost-

invariant simulation) could provide new insights and discerning capabilities regarding

deformed systems, speciőcally 129Xe. Before answering this question, we must gener-

alize our framework to 3+1 dimensions; thankfully, the evolution equations derived in

Chapter 3 are entirely valid in this new regime. However, a few critical questions do

arise. Firstly, now that we are moving away from a system at mid-rapidity, how do the

CGC assumptions and the color charge sampling procedure, both relying on the small

momentum fraction of our system, hold up? How are different parts of the rapidity

space related to one another in a coherent evolution? Then, in our initial conditions,

shown in Section 3.3.2, our boost-invariant assumption led to the initial longitudinal

color gauge őelds being evenly 0 at 𝜏 = 0+. Does this presumption continue to be true

in a 3+1D initialization? And őnally, how does our hydrodynamic model accommodate

the new longitudinal extent and degree of freedom?

In this chapter, we will answer the above questions by following the work presented in

Refs. [17, 54, 55, 67, 121ś123]. We will őrst show how the momentum fraction probed

at a given rapidity can be found. We will then explain how the saturation scale and

the color charge distribution are translated in rapidity space via the JIMWLK (Jalilian-

Marian, Iancu, McLerran, Weigert, Leonidov, Kovner) equation. Leveraging this new

formalism, we will rederive our initial conditions in 3+1D. We will discuss how the

interface between the initial state and the hydrodynamics phase changes in a 3+1D

setting, and how the hydrodynamic evolution of different rapidity slices differ from

138
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one another. Finally, we will deőne new observables which leverage the longitudinal

dynamics to allow us to interpret our second set of results, which will be presented in

the next chapter, in the hopes of őnding new signals of nuclear deformity to be detected

in future experiments.

6.1 initial state in 3+1d

6.1.1 Momentum Fraction 𝑥

We begin our redeőnition of the initial state by analyzing one of the foundational

assumptions of the CGC, namely that heavy-ion collisions produce conditions where

the relevant degrees of freedom are purely gluonic and are so dense that classical őeld

theory can be used to describe them. Referring back to Fig. 15, we őnd that gluons

dominate for 𝑥 ≤ 0.01. Given that different values of spacetime rapidity 𝜂 will be

probed, it stands to reason that we will need to redeőne the momentum fraction in terms

of the value of 𝜂 of a given transverse region.

We begin by deőning kinematic rapidity 𝑦, an analog to spacetime rapidity 𝜂,

𝑦 =
1

2
ln

(
𝐸 + 𝑝𝑧
𝐸 − 𝑝𝑧

)
(6.1)

which, using the hyperbolic cosine function cosh, can be transformed into

𝑦 = cosh−1

(
𝐸

𝑚𝑇

)
, (6.2)

where 𝑚𝑇 is the transverse mass of the nucleon (𝑚𝑇 =

√︃
𝑚2
𝑁
+ 𝑝2

𝑇
) having energy 𝐸.

Using the fact that the energy in a given collision is given by
√
𝑠/2, we can use Eq. (6.2)

to obtain the kinematic rapidity of our heavy-ion beam,

𝑦beam = cosh−1

( √
𝑠

2𝑚𝑁

)
, (6.3)

where𝑚𝑇 =𝑚𝑁 here because the nucleon’s motion is purely in the 𝑧-direction.
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Rapidity is an additive quantity, meaning that to obtain the rapidity of an observer

in a frame 𝑆′ moving relative to a frame 𝑆 (in which our beam rapidity is deőned), one

simply takes [124]

𝑦 (in frame 𝑆′) = 𝑦 (in frame S) −𝑦 (𝑆′ relative to 𝑆). (6.4)

In other words, the measured rapidity of the particle in two different frames differs by

the rapidity of the boost between the two frames, making kinematic rapidity a useful

and powerful tool for describing relativistic particles.

In the boost-invariant case, the momentum fraction 𝑥 of a gluon cloud of saturation

scale 𝑄𝑠 at a given collision energy is [60]

𝑥 =
𝑄𝑠

𝐸beam
. (6.5)

Moving away from boost-invariance, one can look at the momentum fraction probed in

this new frame 𝑆′ by taking

𝑥 =
𝑄𝑠

𝑚𝑁 cosh (𝑦beam −𝑦𝑆→𝑆 ′)
. (6.6)

However, how does one move from kinematic rapidity 𝑦 to spacetime rapidity 𝜂?

After all, our coordinate system uses 𝜂 - which includes 𝑡 and 𝑧 coordinates - and

not 𝑦. It follows naturally that we would want to convert between rapidities for use in

our simulation framework. The conversion is rather simple, given our work on ultra-

relativistic systems. Indeed, recalling Eq. (3.52), we have

𝜂 =
1

2
ln

( 𝑡 + 𝑧
𝑡 − 𝑧

)
,

which is Eq. (6.1) with substitutions 𝐸 → 𝑡 and 𝑝𝑧 → 𝑧. Now, expanding 𝐸 and 𝑝𝑧 in

Eq. (6.1) gives

𝑦 =
1

2
ln

(
𝛾𝑚 +𝛾𝑚𝑣𝑧
𝛾𝑚 −𝛾𝑚𝑣𝑧

)
=

1

2
ln

(
1 + 𝑣𝑧
1 − 𝑣𝑧

)
.

Setting 𝑣𝑧 ∼ 𝑧/𝑡 , we obtain

𝑦 ∼ 1

2
ln

( 𝑡 + 𝑧
𝑡 − 𝑧

)
= 𝜂.
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Therefore, in the highly-relativistic limit, 𝜂 can be substituted with 𝑦 interchangeably.

This means that Eq. (6.6) can be modiőed to incorporate some 𝜂 dependence. Indeed,

considering we (the observers) are in the lab frame, any boost away from us will be

relative to the lab frame, and therefore, will be well-deőned in terms of spacetime

rapidity 𝜂 (since the lab frame is also at the origin). We will have

𝑥 =
𝑄𝑠

𝑚𝑁 cosh (𝑦beam − 𝜂) , (6.7)

which gives us a hint that now, given the known interdependence between the momentum

fraction 𝑥 and the saturation scale𝑄𝑠 , and the spacetime rapidity𝜂,𝑄𝑠 , in our simulation,

is now a function of both the transverse position ®𝑥 on the lattice and the rapidity 𝜂.

However, given this intricate interdependence, we can not, in the absence of a framework

to evolve the saturation scale to different values of spacetime rapidity, estimate the value

of 𝑥 probed at different rapidities. Before going any further, then, we must introduce

the JIMWLK [121] renormalization equation and how it őts into IP-Glasma.

6.1.2 CGC in 3+1D

At the onset of this chapter, we asked how the separation of scales, the underlying

assumption of the CGC formalism, would hold up to our inclusion of a longitudinal

direction. As a reminder, the argument was that hard partons remain undeŕected in a

collision event and keep moving on the light cone. Their extremely high velocity (∼ 𝑐)
would allow us to consider them as frozen-out sources for mid-rapidity gluons, which

dominate the Parton Distribution Function at small momentum fraction 𝑥 (as seen

in Fig. 15). Incorporating longitudinal structure in the initial state complicates things

from the start, as we are no longer concerned exclusively with mid-rapidity evolution,

which is inherently composed of matter at small momentum fraction 𝑥 . Indeed, we will

now have to consider matter which is moving longitudinally at velocities which are

much greater than those found at mid-rapidity, making its velocity relative to the high-𝑥

partons smaller and, therefore, stretching the assumption that these same high-𝑥 partons
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can be considered frozen-out temporally. To have a sense of how quickly longitudinal

velocities scale with rapidity, consider the following: when 𝑧 = 𝑡 , a parton is moving

at the speed of light and 𝜂 → ∞. Consider now a őnite value of 𝜂. Solving for 𝑧/𝑡 , we

have

𝑧

𝑡
=
𝑒2𝜂 − 1

𝑒2𝜂 + 1
= 1 − 2𝑒−2𝜂 + O

(
𝑒−4𝜂

)
(6.8)

The main takeaway of Eq. (6.8) should be how quickly this function converges to

1. Indeed, 𝜂 = 4 already yields a longitudinal velocity of 0.9993𝑐. How, then, can

we build an argument for the validity of the CGC in a fully 3+1D simulation? The

JIMWLK [121] renormalization equations provide a framework through which we

progressively integrate out modes at higher and higher rapidities. What this means

is that the separation of scales itself becomes rapidity dependent, leading to different

rapidity slices having different gluon densities (and, therefore, color charge ŕuctuations)

depending on their velocity with respect to the hard-𝑥 partons. The Lagrangian itself

remains essentially unchanged, with the only (crucial) difference being that the color

charge density 𝜌 now becomes rapidity dependent, ŕuctuating as we move along the

longitudinal direction, i.e. 𝜌 ( ®𝑥⊥) → 𝜌 ( ®𝑥⊥,𝜂). This also aligns with what we found in

the previous section regarding the saturation scale.

Before we show how this procedure works, let us quickly outline the logic behind

this renormalization procedure (a more detailed description can be found in Ref. [121]).

The effective Lagrangian utilized in the CGC framework as given in Eq. (3.14) is

concerned with momenta at scale 𝑝+ ≪ 𝑃+, where 𝑃+ is the scale of the momentum of

the nucleons travelling in the beam direction. We consider some new scale, 𝑞+, such that

𝑝+ ≤ 𝑞+ ≤ 𝑃+. Instead of integrating out all modes ≤ 𝑃+, we integrate out all modes

≤ 𝑞+, a scale closer to the scale of the őelds we are trying to describe. This Lagrangian

is self-similar to the ‘regular’ CGC Lagrangian, simply having more modes integrated

out (and, therefore, fewer quantum ŕuctuations from which to generate color charge).

In essence, the JIMWLK equations dictate how the squared color charge per unit area
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𝜇2 (not the scale of ŕuctuations 𝜇𝐴) evolves with rapidity 𝜂 and the transverse resolution

scale 𝑄2. The additional charge per unit area at each longitudinal iteration is

∼ 𝜇2(𝜂,𝑄2)𝑑𝜂 = 𝜇2(𝜂,𝑄2) ln

(
1

𝑥

)
𝑑𝑥 . (6.9)

By implementing an iterative procedure (which we will describe shortly), we can

treat the additional amounts of ŕuctuations perturbatively, allowing us to solve for

the color charge densities at different rapidities. Understanding that we go from the

most negligible squared color charge per unit area to the largest tells us that the initial

longitudinal evolution of both nuclei must be done separately. Indeed, since both nuclei

propagate in opposite directions, their respective cutoff scales progress opposite one

another as well. Therefore, the JIMWLK evolution is done to both nuclei individually

and separately, directly after IP-SAT has been run on each nucleus. Only after the

JIMWLK evolution is complete can we set the initial conditions on the lattice and begin

the 3+1D evolution. Explicitly, let us consider a nucleus propagating from −𝑧 to +𝑧.
We will start by sampling the colour charge density at our maximal value of 𝜂, close to

the rapidity of the hard parton sources. We would then iteratively bring in more color

charge ŕuctuations by progressively integrating out higher modes until we reach the

minimum 𝜂 bound of our evolution (where the smallest-𝑥 and largest color ŕuctuation

scales are found).

We will follow the procedure outlined in Ref. [17] to describe how the JIMWLK

evolution is implemented. After sampling the color charge distributions and generating

the initial gauge őelds following the boost-invariant procedure, the JIMWLK evolution

targets the Wilson lines 𝑉 via the Langevin step [122],

𝑉 ( ®𝑥⊥,𝑌 +𝑑𝑌 ) = exp

(
−𝑖

√
𝑑𝑌

𝜋

∫
®𝑢
®𝐾®𝑥−®𝑢 ·

(
𝑉®𝑢𝜁®𝑢𝑉

†
®𝑢

))

𝑉 ( ®𝑥⊥,𝑌 ) exp

(
𝑖

√
𝑑𝑌

𝜋

∫
®𝑣
®𝐾®𝑥−®𝑣 · 𝜁®𝑣

)
,

(6.10)

where 𝜁𝑧 =
{
𝜁 𝑎1 (®𝑧,𝑌 )𝑡𝑎, 𝜁 𝑎2 (®𝑧,𝑌 )𝑡𝑎

}
is a random variable and 𝑉®𝑧 = 𝑉 (®𝑧,𝑌 ). We have

opted to keep 𝑌 , the kinematic rapidity, instead of 𝜂 to align ourselves with the liter-
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ature. However, as established previously, these two can be used interchangeably. The

correlation between the random 𝜁 variables is given by

〈
𝜁 𝑎𝑖 ( ®𝑥⊥,𝑌1)𝜁𝑏𝑗 ( ®𝑥⊥,𝑌2)

〉
= 𝛿𝑎𝑏𝛿𝑖 𝑗𝛿𝑌1𝑌2

∫
𝑑2®𝑘
(2𝜋)2

exp
(
𝑖®𝑘 · ( ®𝑥 − ®𝑦)

)
𝛼𝑠 (®𝑘). (6.11)

These random variables are noise terms which represent the stochastic nature of gluon

emission, which serve as part of the quantum mechanical corrections to the color charge

that sources the classical őelds. ®𝐾®𝑥−®𝑧 , which is the modiőed kernel [125], has the form

®𝐾®𝑥−®𝑧 =𝑚 | ®𝑥 − ®𝑧 |𝐾1(𝑚 | ®𝑥 − ®𝑧 |) ( ®𝑥 − ®𝑧)
| ®𝑥 − ®𝑧 |2

, (6.12)

with 𝐾1(𝑥) being the Bessel function of the second kind and𝑚 = 0.4 GeV is an infrared

regulator [125].

The exponent in Eq. (6.10) is solved by Fourier transforming the kernel (Eq. (6.12))

and the noise term (Eq. (6.11)). The kernel becomes

®𝐾®𝑘 =
2𝜋𝑖®𝑘
®𝑘2 +𝑚2

. (6.13)

Given the form of the noise term, the move to Fourier space amounts to a convo-

lution [126]. In Eq. (6.11), we őnd a momentum-dependent running coupling 𝛼𝑠 (®𝑘),
which takes the form

𝛼𝑠 (®𝑘) =
4𝜋

(11 − 2𝑁 𝑓 /3) ln

[(
𝜇2

0

Λ
2
QCD

)1/𝑐
+

(
®𝑘2

Λ
2
QCD

)1/𝑐 ]𝑐 , (6.14)

where 𝑁 𝑓 = 3, ΛQCD = 200 MeV, 𝑐 = 0.2 and 𝜇0 = 400 MeV [122]. This differs from

Eq. (3.32) in the inclusion of a second term relating the momentum ®𝑘 of the mode in

Fourier space to the QCD scale Λ.

Incorporating a running coupling constant 𝛼𝑠 (®𝑘) has a few effects. First, it őlters out

higher energy modes fairly quickly, which links the scale of the running coupling to

that of radiated gluons. Second, the inclusion of a running coupling constant dampens

the effect of the JIMWLK evolution, leading to more correlation between neighboring

𝜂 slices when compared to a constant 𝛼𝑠 implementation.
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Figure 49: Two nuclei evolving longitudinally (in rapidity space) using the JIMWLK equations.

The two nuclei constitute the central event we have been studying (see Figs. 20, 27

and 28). Plotted is Tr(1−𝑉 )
𝑁𝑐

, a measure of gluon density. As explained, the JIMWLK

evolution of the projectile nucleus proceeds in the opposite direction of that of the

target nucleus.

Figure 49 shows how the gluon distribution of two nuclei involved in the central

event we have been examining (see Figs. 20, 27 and 28) evolve in rapidity space thanks

to the JIMWLK equations. Two things should be remarked regarding Fig. 49: őrst, the

JIMWLK evolution goes from high-𝑥 to small-𝑥 , as established previously; secondly,

the general structure of the nucleus is preserved across the rapidity spectrum, with

ŕuctuations occurring at smaller scales.

Now that the color charge densities have been established at all rapidities let us

quickly circle back to the the initialization procedure for our color gauge őelds 𝐴𝜇 in

this 3+1D formulation.
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6.1.3 𝐴𝜇 in 3+1D

The initial conditions introduced in Section 3.3.2 were speciőc to the boost-invariant

assumption. As a reminder, the transverse gauge őelds𝐴𝑖 of both nuclei were pure gauge,

and the resulting transverse gauge őeld post-collision was simply the sum of the two

pre-collision pure color gauge őelds. In the transverse direction, we had made the color

gauge őeld vanish (i.e.𝐴𝜂 = −𝜏2𝐴𝜂 = 0). The boost-invariant assumption motivated this

vanishing longitudinal component, since all longitudinal derivatives vanish. Now that

we are looking to build a fully 3+1D formulation of IP-Glasma, however, longitudinal

derivatives must be treated carefully. From Section 3.4, we know that the energy density

in a given region of space is proportional to the chromo-electric and -magnetic őelds

in a given region, which themselves are dependent upon the őeld strength tensor 𝐹𝜇𝜈

in that same region. Let us assume the initial conditions described in Section 3.3.2 are

appropriate in 3+1D. Calculating the őeld strength tensor for a single nucleus with this

initial condition, we would have

𝐹𝜇𝜈 = 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇 + 𝑖𝑔
[
𝐴𝜇 ,𝐴𝜈

]
,

𝐹𝑖 𝑗 = − 𝑖
𝑔
(𝜕𝑖𝑉 )

(
𝜕 𝑗𝑉

†
)
+ 𝑖
𝑔

(
𝜕 𝑗𝑉

) (
𝜕𝑖𝑉

†
)
− 𝑖

𝑔
𝑉

(
𝜕𝑖𝑉

†
)
𝑉

(
𝜕 𝑗𝑉

†
)
+ 𝑖
𝑔
𝑉 𝜕 𝑗𝑉

†𝑉 𝜕𝑖𝑉
†,

𝐹𝑖𝜂 = 𝜕𝑖𝐴𝜂 − 𝜕𝜂𝐴𝑖 + 𝑖𝑔
[
𝐴𝑖 ,𝐴𝜂

]
,

(6.15)

where in the 𝐹𝑖 𝑗 line we substituted 𝐴𝑖 = − 𝑖
𝑔
𝑉 𝜕𝑖𝑉

†, as established in Eq. (3.49). With

a bit of algebraic manipulation, and using the fact that 𝜕𝜇𝑉𝑉 † = −𝑉 𝜕𝜇𝑉 †, we arrive at

a vanishing transverse őeld strength tensor, i.e. 𝐹𝑖 𝑗 = 0, where the transverse őelds are

pure gauge. In the longitudinal direction, however, we are left with

𝐹𝑖𝜂 = −𝜕𝜂𝐴𝑖 ≠ 0. (6.16)

While the 𝐴𝜂 term and the commutator go to 0, the longitudinal derivative does not

vanish here, and we have a non-zero longitudinal component to the őeld strength tensor.

Given the dependence of the stress-energy tensor𝑇 𝜇𝜈 on 𝐹𝜇𝜈 , a non-vanishing component
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Figure 50: Energy density (in fm−4) deposited in the transverse plane at initial time 𝜏0 = 0.01 fm

at different values of 𝜂 for our central event. While ŕuctuations can be found from

slice to slice, the general geometric features of the overlap region persist across the

rapidity spectrum.

would mean energy deposition from our one nucleus initial condition - even without a

collision - which would obviously be an issue. Indeed, if a single nucleus is initialized

in 3+1D with pure gauge transverse color gauge őelds and vanishing longitudinal color

gauge őelds, that nucleus’ gauge őelds alone could lead to energy deposition, meaning

that energy deposits would occur everywhere around the nucleus, and not only where

it overlaps with another nucleus.

Let us clarify this last statement a bit: while the pre-collision gauge őelds of the

two nuclei in the boost-invariant formulation are pure gauge, their superposition post-

collision is not, which leads to energy deposition where they overlap (i.e. where the

resulting color gauge őelds are not pure gauge) and no energy deposition where they

don’t. However, allowing the őeld strength tensor to have non-vanishing components

due to a single nucleus would lead to energy deposits everywhere the color charge is

non-zero, i.e. surrounding both nuclei. Thankfully, a simple answer to this conundrum,

which we have already utilized in the boost-invariant formulation, exists: set the initial

longitudinal gauge őelds of both nuclei to be pure gauge, i.e.,

𝐴𝜂 = − 𝑖
𝑔
𝑉 𝜕𝜂𝑉

†. (6.17)

This solves the issue of non-vanishing őeld strength for a single nucleus while also

reducing the 2D limit in the case of vanishing 𝜂 derivatives. The ansatz for initializing
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the longitudinal color gauge őelds for both nuclei combined follows that of the transverse

őelds, i.e.,

𝐴𝜂 = 𝐴
𝐴
𝜂 +𝐴𝐵𝜂 , (6.18)

with the initial condition for the longitudinal electric őeld remaining the same as

Eq. (3.70).

Figure 50 shows the initial energy deposits for our central event at different values

of spacetime rapidity 𝜂. Once again, much like in Fig. 49, we őnd that the general

geometric features of our overlap region persist from slice to slice, with ŕuctuations

taking place locally. However, one of the caveats of the JIMWLK evolution has now

become clear: the total amount of energy deposited from rapidity slice to rapidity

slice does not vary much. While this can make sense for slices close to mid-rapidity

(|𝜂 | ≤ 2), we should expect less interaction energy moving at higher rapidities. Indeed,

as established in Eq. (6.8), at 𝜂 = 4, matter travels at > 99% the speed of light in a given

direction. We should, therefore, not expect interactions between our colliding nuclei to

persist with such intensity along the beam direction. However, looking at Fig. 50, we

see that while more energetic pockets may be absent at larger rapidities, the energy scale

remains consistent across the rapidity spectrum, meaning that the JIMWLK evolution

equations do not lead to signiőcant differences in interaction energy deposition across

the rapidity spectrum. This issue, as we will see in the next chapter, is critical, as we will

want to reproduce charged particle distributions longitudinally. Charged particle yields

generally peak between 𝜂 = −1 and 𝜂 = 1, with a considerable drop-off occurring

for |𝜂 | > 2. We must normalize the initial state energy density at high rapidities to

reproduce these yields. This normalization occurs at the interface between our initial

state model IP-Glasma and our hydrodynamic model MUSIC. Let us describe it quickly,

before moving on to our description of observables enabled by our 3+1D modeling.
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Figure 51: Experimental charged hadron multiplicity as a function of rapidity 𝜂 for 12 centrality

classes for Xe+Xe collisions at 5.44 TeV. Data gathered by ALICE and őgure taken

from Ref. [127]. As we move to larger absolute rapidities, the yields go down. Solid

curves represent Gaussian őts to the experimental data points.

6.2 hydrodynamic normalization

The detailed description of the hydrodynamic phase provided in Chapter 4 is not affected

by our move to 3+1D. None of the theoretical underpinnings of our prescription of

viscous relativistic hydrodynamics relied on boost-invariance, contrarily to our initial

description of the initial state. Therefore, adding a longitudinal component to the

evolution is as simple as providing 𝑇 𝜇𝜈 (𝜂) for all 𝜂 relevant to our evolution and going

through the same hydrodynamic evolution as the mid-rapidity slice does in a boost-

invariant simulation. However, as established in the previous subsection, while the

JIMWLK evolution does provide a physical framework through which the longitudinal

evolution of the initial state can proceed, it does not provide meaningful differences in

total energy deposition between rapidity slices at or close to mid-rapidity and those at

large rapidities.
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Figure 52: Rapidity-dependent envelope used for energy and shear-stress tensor normalization

between 3+1D IP-Glasma and MUSIC. The envelope, deőned in Eq. (6.19), plateaus

at mid-rapidity and falls off steeply at higher rapidities, ensuring charged particle

yields mirror experimental results.

Figure 51 shows the charged particle multiplicity as a function of 𝜂 for Xe+Xe

collisions at the LHC [127]. We see that while a meaningful amount of particles is

produced at high rapidities, for a given centrality class, the multiplicity can drop by

more than 20% beyond 𝜂 = 3 compared to the mid-rapidity yields. Because charged

particle multiplicity is a proxy for the total energy contained in a given rapidity slice,

Fig. 51 tells us that the energy should decrease signiőcantly when moving away from

mid-rapidity, something that is not observed in Fig. 50. Therefore, to correctly reproduce

the longitudinal structure of the charged particle yields, we must apply some form of

normalization to the energy density proőles generated by our initial state. Without

such a normalization, the yields predicted by our model would be far too high at large

rapidities, rendering any further comparison to experimental data difficult.
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As mentioned previously, the normalization procedure occurs at the interface between

3+1D IP-Glasma and MUSIC. When reading in the rapidity slices generated using

IP-Glasma, MUSIC builds the initial shear-stress tensor 𝜋 𝜇𝜈 and multiplies all of its

components and the energy density 𝜖 by a rapidity-dependent envelope function. This

envelope function has the form

env(𝜂,𝜂0,𝜎𝜂) = exp
©­
«
−1

2

[
|𝜂 | − 𝜂0

2

𝜎𝜂

]2

Θ

(
|𝜂 | − 𝜂0

2

𝜎𝜂

)ª®
¬

, (6.19)

where𝜂 is the rapidity,𝜂0 controls the width of the normalization plateau at mid-rapidity,

𝜎𝜂 controls the steepness of the fall-off in rapidity beyond this plateau, and Θ is the

heavyside function. The parameters used in the runs we will present in the next chapter

are 𝜂0 = 2.5 and 𝜎𝜂 = 1, which were selected to mirror the parameters used in a

previous 3+1D analysis at similar energies conducted with our model [17]. Figure 52

shows what Eq. (6.19) looks like with our chosen parameters. We őnd a plateau for

|𝜂 | ≤ 1.5, which falls steeply once we move away from mid-rapidity, hitting close to 0

further out. While the fall-off may seem steep, especially when comparing the shape of

the envelope to the distributions shown in Fig. 51, it is appropriate given the rapidity

range we will be matching to. Figure 53 shows our central event before and after the

application of our envelope function at the interface between IP-Glasma and MUSIC.

Without the envelope, while differences can be found in the overall scale of the energy

deposit, those differences are fairly small, meaning that differences in total energy (and,

therefore, multiplicity) would themselves also be small, leading to a mismatch between

our rapidity-dependent yield curves and those of experiment. The scaling provided

by the envelope function ensures that our simulation can reproduce the relationship

observed experimentally.

We are now ready to describe the longitudinal observables, which will serve as our

basis for comparison with experiments.
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Figure 53: Energy density distribution at switching time (𝜏switch = 0.602 fm) in (top) IP-Glasma

and (bottom) MUSIC after applying the envelope function Eq. (6.19). The energy

density distribution at mid-rapidity is unaffected, while at higher rapidities, it is

brought down considerably.

6.3 longitudinal observables

6.3.1 Rapidity-dependent Multiplicity

We start by quickly and formally deőning the rapidity-dependent multiplicity. Simply

put, the charged hadron multiplicity described in Section 4.3.1 was in and of itself

rapidity-dependent; our boost-invariant description of observables set the rapidity range

for the multiplicity to |𝜂 | ≤ 0.5. With longitudinal structure included, particles will be

sampled in meaningful quantities across the rapidity spectrum. Therefore, the rapidity-

dependent multiplicity density is concerned with counting particles generated in a given

rapidity range, i.e.,

𝑑𝑁ch

𝑑𝜂
|𝜂0≤𝜂≤𝜂1 =

∫ 𝜂1

𝜂0
𝑑𝜂𝑁ch(𝜂)
𝜂1 − 𝜂0

, (6.20)

where𝜂0 and𝜂1 are, respectively, the lower and upper bounds of the rapidity range being

considered, and 𝑁ch(𝜂) is the number of charged particles detected having rapidity 𝜂.
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This is of course almost the same deőnition as Eq. (4.23), differing only in the fact

that the integration bounds are asymmetrical. By measuring multiplicities across the

rapidity spectrum, multiplicity densities can be turned into a function of 𝜂, generally

with őxed 𝜂 gaps Δ𝜂. We would therefore have

𝑑𝑁ch

𝑑𝜂
(𝜂) = 𝑑𝑁ch

𝑑𝜂
|𝜂−Δ𝜂/2≤𝜂≤𝜂+Δ𝜂/2. (6.21)

The same calibration procedure outlined in Section 4.3.1 still applies for 3+1D simula-

tions. We used the charged particle multiplicity measured at mid-rapidity, i.e. |𝜂 | ≤ 1,

as our calibration tool. It is interesting to note here that the boost-invariant assumption,

which may seem farfetched at őrst, actually holds up fairly well up to |𝜂 | = 2. Indeed,

looking at Fig. 51, we őnd that the charged-particle yields stay relatively ŕat up to that

rapidity, which includes matter moving at up to 96% of the speed of light. It is only

once we move past this relatively large 𝜂 gap that a sustained drop is observed. The

assumption of boost-invariance is therefore proven here to be rather fair.

6.3.2 Rapidity-dependent Anisotropic Flow

Much like the multiplicity, we will want to determine how the anisotropic ŕow evolves

with rapidity. Naively, given the considerable dependence on the geometrical features of

the initial state, one may assume that the elliptic ŕow should remain constant as we move

from mid-rapidity outwards to larger rapidities. However, that is not the case, as we

will show in the next chapter. For now, however, let us formally deőne the 𝜂-differential

2-particle cumulant of the anisotropic ŕow, i.e.,

𝑣𝑛{2}(𝜂) =
Re(⟨𝑄PI

𝑛 (𝜂) · (𝑄 ref
𝑛 (𝜂ref))∗⟩)

⟨𝑁 PI
ch (𝜂)𝑁 ref

ch ⟩𝑣 ref
𝑛 {2}

. (6.22)

One may notice similarities between the 𝑝𝑇 -differential (Eq. (4.42)) and 𝜂-differential

formulas because they are deőned in the same way, with only the differential element

changing. We, therefore, set a reference ŕow (mimicking that set by experimentalists)

and calculate the rapidity-dependent ŕow at different values of 𝜂 from there (those
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should be understood as 𝜂 ranges rather than speciőc values). The reference ŕow is

generally taken from a wide rapidity range, while the Particle of Interest (PI) ŕow is

taken from a much narrower range. The rapidity gap between the reference ŕow and the

ŕow of interest is important, as it ensures that we remove most non-ŕow effects from

the calculation. But if ŕow ŕuctuations occur in the longitudinal direction, we should

adequately investigate their scale and attempt to understand what causes longitudinal

decorrelations. That is where the decorrelation ratio 𝑟𝑛 |𝑛 comes in.

6.3.3 Decorrelation Ratio

To quantify the amount of decorrelation exhibited by a given anisotropic ŕow coefficient,

we compare the ŕow in two symmetrically opposed rapidity regions (relative to 𝜂 = 0) -

one in forward rapidity and the other in backward rapidity. The CMS collaboration was

the őrst to introduce a deőnitive and quantitative measure of decorrelation called the

factorization ratio, which is deőned as [128]

𝑟𝑛 |𝑛 (𝜂,𝜂ref) =
〈
𝑣𝑛 (−𝜂)𝑣∗𝑛 (𝜂ref) cos (𝑛 (Ψ𝑛 (−𝜂) − Ψ𝑛 (𝜂ref)))

〉
⟨𝑣𝑛 (𝜂)𝑣∗𝑛 (𝜂ref) cos (𝑛 (Ψ𝑛 (𝜂) − Ψ𝑛 (𝜂ref)))⟩

, (6.23)

where 𝑣𝑛 are the 𝜂-differential ŕow coefficients measured at different rapidity values,

𝜂ref is the reference 𝜂 range, and Ψ𝑛 are the 𝑛th order event plane angles at 𝜂. This decor-

relation (or factorization ratio) can be understood in two parts. First, the ŕow magnitude

part, guided by the inclusion of rapidity-dependent anisotropic ŕow coefficients 𝑣𝑛 (𝜂),
and then, the decorrelation arising from event plane angle ŕuctuations, given by the

cos of the difference in event plane angles at different rapidities. Differences in ŕow

magnitude will be made clear in plots of the 𝜂-dependent anisotropic ŕow. Fluctuations

in event plane angles, on the other hand, are more subtle. As is evident in Fig. 53, the

different energy density slices show only slight rotations about the beam axis, which

is what the event plane angle measures. While the event plane angle is not a quantity

which can be measured experimentally, it can be inferred on an event-by-event and

rapidity-by-rapidity basis by comparing anisotropic ŕow coefficients at different rapidi-
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ties: ŕuctuations in 𝑣𝑛 lead to non-zero differences in the inferred event plane angles.

This observable therefore measures two different types of ŕow ŕuctuations simultane-

ously, creating a picture of how particle ŕow progresses in rapidity space and how well

initial state structure is preserved at different rapidities.

Now that the relevant longitudinal observables have been described, we are ready to

show results from simulations of Xe+Xe collisions at 5.44 TeV using 5 considerably

different nuclear parametrizations in an attempt to use experimental data to properly

constrain 129Xe’s shape for future analyses.



7
C O N ST R A I N I N G PA R A M E T R I Z AT I O N S I N

3 D

We now turn to the őnal results section of this thesis, which summarizes the theory and

work presented so far. In 2017, the LHC announced that it had ran 129Xe nuclei through

its beam pipe at a center-of-mass energy of 5.44 TeV. Compared to the 208Pb runs that

had been conducted there previously, these runs would feature a much smaller (almost

half the mass number of lead) and, as far as low-energy experiments and models are

concerned [109], deformed nucleus. This short collision program has yielded results

which have been contrasted with those obtained in the much longer 208Pb program,

attempting to characterize how much system size and ŕuctuations affect end-state

observables at a given energy. However, modelling efforts have been pulling in many

different directions without proper constraints on 129Xe’s geometric properties and

their projections in Woods-Saxon space. Indeed, while there is some understanding

as to the general features of 129Xe, proposed quadrupole deformation parameters have

ranged from 𝛽0
2 = 0.139 [109] up to 𝛽0

2 = 0.207 [129], with some parametrizations

including triaxial deformation and hexadecapole deformation as well. It is therefore

obvious that there is considerable uncertainty regarding 129Xe’s appropriate Woods-

Saxon parametrization; comparing this gap to that of the 238U parametrizations utilized

in the analysis provided in Chapter 5, we őnd that the differences exhibited by currently

accepted 129Xe parametrizations are considerably larger. Therefore, the current large-

scale analysis will serve as the őrst of its kind for 129Xe, allowing future research to

integrate our őndings and further our understanding of the structure of mid-sized nuclei.

As mentioned in the previous chapter, it will determine if longitudinal observables

156
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obtained through more involved computations exhibit additional sensitivity to the initial

state ŕuctuations from nuclear deformity.

We will present results produced using őve different 129Xe parametrizations, 4 of

which are deformed and the last being undeformed and serving as a baseline for compar-

ison’s sake. Using charged particle multiplicity data from ALICE [127], we calibrated

the saturation scale to color charge ŕuctuation scale proportionality constant 𝐶. It is

important to note here that the value we found for this constant is considerably different

from that which we found for our 238U and 197Au analysis, as those runs were done in

2+1D; the additional non-trivial longitudinal component in the current analysis leads

to extra energy being deposited longitudinally, requiring that the proportionality con-

stant lead to less color charge ŕuctuations than in 2+1D. Once again, this was our only

calibration tool. Once the charged particle yields were reproduced accurately, the rest

of the observables were calculated and compared to experimental results, without any

additional intervention or parameter modulation.

This chapter’s structure will resemble that of Chapter 5. We will introduce the differ-

ent 129Xe parametrizations used in our analysis. We will then show basic observables,

from the calibration-speciőc multiplicity to average transverse momentum and identi-

őed particle observables. Following these introductory observables, we will analyze

anisotropic ŕow, both integrated and differential in 𝜂 and 𝑝𝑇 , as well as transverse-

momentum-ŕow observables, standardized skewness (which we will deőne in due

time) and the factorization ratios 𝑟𝑛 |𝑛. Finally, using our model’s calculations, we will

use previous research [118, 120] to formally constrain 129Xe’s quadrupole deformation

parameters.



7.1 basics and calibration 158

Figure 54: Two-dimensional Woods-Saxon projections taken at (left) 𝜙 = 0 and (right) 𝜙 = 𝜋/2
of the 4 deformed 129Xe parametrizations subject to our analysis. The details of

these parametrizations can be found in Table 3. We have excluded the undeformed

parametrization. ‘*’ mark parametrizations which include triaxial deformation.

7.1 basics and calibration

7.1.1 Initial Parametrizations

To equip ourselves with a more intuitive idea of the shapes of our chosen parametriza-

tions, we constructed Fig. 54, similarly to Fig. 32. The four deformed parametrizations

are shown side by side and viewed from different azimuthal angles 𝜙 ; parametrizations

exhibiting triaxial deformation are marked with an asterisk. As a reminder, triaxial de-

formation breaks the azimuthal symmetry of the Woods-Saxon distribution. Therefore,

the 2D projections of triaxial parametrizations change based on the azimuthal angle. It

is also important to note that the scale for these plots was changed compared to that
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of Fig. 32; while 129Xe nuclei may appear larger than 238U or 197Au based exclusively

on these plots, they are not. One should only use these plots to compare the provided

parametrizations between themselves. Finally, the names of the parametrizations them-

selves are related to their quadrupole deformity coefficient 𝛽0
2 , with the decimals being

those of the parameters themselves.

The scale of the triaxial deformations of Xe.185* (here, the ‘*’ mark means that

this parametrization incorporates triaxial deformation) leads to slight but perceptible

differences between its cross-sections. Xe.139*, on the other hand, exhibits much more

perceptible changes between its two cross-sections. For both, going from 𝜙 = 0 to

𝜙/2 leads to a more elliptical 2D projection. While this change may seem too subtle

to inŕuence large-scale results, triaxiality has been found to have a critical impact in

reproducing transverse-momentum-ŕow correlations in 129Xe collisions [129]. There

is, however, an intricate balance to strike between triaxiality and its effects on speciőc

observables and compromising the general elliptic shape of 129Xe, which is critical to

reproducing a more primary observable like the elliptic ŕow.

We also note that the sizes of the parametrizations are comparable across the board,

with only Xe.139* being perceivably smaller. Finally, the considerable quadrupole

deformation, while not as marked as that of 238U, could potentially generate the tell-tale

tip-tip and body-body collisions required to generate an anti-correlation in the transverse-

momentum-elliptic-ŕow correlator 𝜌 (𝑣2{2}, ⟨𝑝𝑇 ⟩). The chosen parametrizations form

a spectrum of prolate shapes, going from the least consistently prolate (Xe.139*) to the

most pill-shaped parametrization (Xe.207). Therefore, our calculation of 𝜌 (𝑣2{2}, ⟨𝑝𝑇 ⟩)
should lead to contrasting values between our different parametrizations, meaning

reproduction of the experimental values will be key.

7.1.2 Calibrating to Charged Particle Yields

Figure 55 shows the charged particle rapidity at mid-rapidity (|𝜂 | < 0.5) for Xe+Xe

collisions at 5.44 TeV. All of our parametrizations, including the undeformed Xe.0,
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𝑅0 (fm) a (fm) 𝛽0
2 𝛽2

2

Xe.0 5.601 0.492 0 0

Xe.162 5.42 0.57 0.162 0

Xe.139* 5.36 0.59 0.1394 0.081

Xe.185* 5.601 0.492 0.185 0.0469

Xe.207 5.601 0.492 0.207 0

Table 3: Deformed Woods-Saxon parameters used for sampling nuclei according to Eq. 2.13,

taken from Ref. [109] (Xe.162), Ref. [130] (Xe.139*), and Ref. [129] (Xe.185* and

Xe.207). The undeformed parametrization’s (Xe.0) radius and diffusiveness are based

off of Xe.185* and Xe.207.

accurately reproduce the yields. A calibrated value of𝐶 = 1.415 was used, almost three

times that which was used for our boost-invariant runs. Contrarily to the experimental

yield parametrizations used to calibrate the 238U runs, the results published by ALICE

and used here are actual experimental multiplicity measurements. Given that these runs

are minimally biased, our multiplicity calibration procedure does not lead to incorrect

centrality binning in peripheral collisions, such as were generated in the U curves of

Fig. 33. However, we őnd that the curves’ agreement with the experimental data and with

one another systematically weakens as we move beyond the 35% centrality mark. This, as

we have described in Chapter 5 and will come to redescribe here, is due to the nucleonic

density of the different parametrizations. Indeed, in peripheral collisions, a nucleus with

a smaller Woods-Saxon radius𝑅0 generally has a denser nucleonic conőguration, leading

the overlap region to contain more nucleons at a given peripheral impact parameter 𝑏.

This slight change in nuclear density is sufficient to drive a noticeable splitting between

the curves as we move towards more peripheral collisions; just like tip-tip collisions lead

to greater multiplicities in ultra-central collisions, the increase in nuclear density creates

differences between our different parametrizations in peripheral collisions. However,

this splitting does not provide any discriminatory power, as the calibration could be
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Figure 55: Charged hadron multiplicities in |𝜂 | < 0.5 as a function of centrality. Calculations

from our model compared to results for 5.44 TeV Xe+Xe collisions at ALICE [127].

tweaked to perfectly reproduce the yields for a given parametrization. Just like with

our results from Chapter 5, conducting multiple independent calibrations could affect

other observables which would be difficult to quantify, and would hinder our ability to

compare and contrast the results stemming from different Woods-Saxon conőgurations.

All-in-all, the yields are faithfully reproduced by our model across the entirety of the

centrality range, with the best agreement occurring in the central to semi-peripheral

regions, regions which are most important to the analysis we are conducting.

Once calibrated to the mid-rapidity multiplicity, our results were compared to the

rapidity-dependent charged particle multiplicity 𝑑𝑁ch/𝑑𝜂 (𝜂). Obviously, at and around

mid-rapidity, our results should agree with the experimental yields. However, away from

mid-rapidity, our results depend on the evolution of the gluon őelds and the envelope

function described in Chapter 6. Figure 56 shows our calculation against experimental

results gathered at ALICE [127]. Because this is a rapidity-dependent observable,

curves are separated based on their centrality: the top curve is the most central (0-



7.1 basics and calibration 162

−4 −3 −2 −1 0 1 2 3 4
η

0

200

400

600

800

1000

1200

1400

d
N

c
h
/d
η

ALICE Xe+Xe 0-10, 10-20, 20-30

Xe.162

Xe.139*

Xe.185*

ALICE Xe+Xe 30-40, 40-50, 50-60

Xe.207

Xe.0

Figure 56: Rapidity-dependent charged hadron multiplicities for |𝜂 | ≤ 3.5. Calculations from

our model compared to results for 5.44 TeV Xe+Xe collisions at ALICE [127].

10%) collection of events, while the lowest curve is the most peripheral centrality bin

relevant to our analysis (50-60%). As hypothesized above, the mid-rapidity calculations

agree with the experimental results well, with the splitting between parametrizations

appearing in the 30-40% slice. However, our calculation slightly overestimates the

yields away from mid-rapidity, with the worst overestimate coming in the most central

centrality bin. While our model produces results that fall close to the error bars for

1 ≤ |𝜂 | ≤ 2.5, the calculations overestimate the yields in central and semi-peripheral

collisions. While one could potentially look at the initial state to rectify the situation,

the envelope function presented in Section 6.2 should be regarded as the main culprit

for the mismatch between our calculation and experimental results. Indeed, given that

the envelope function serves as a longitudinal normalization tool, the parameters used

can be calibrated on a system-by-system basis; to save compute time, we had opted to

use the envelope function proposed in Ref. [17], which yielded great results for Pb+Pb

collisions at 2.76 TeV. However, the jump in beam energy and potentially even the
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change in system size and geometry had unforeseen effects on the longitudinal structure

of the energy density distributions. These effects led to the overestimation of the yields

around the shoulders of the distribution. Implementing a shorter plateau size and a less

steep fall-off could mend the gap between our calculation and the experimental data.

Nevertheless, the discrepancy remains small and fairly contained to central collisions

and a relatively narrow rapidity gap, making our distributions appropriate overall.

Now that the calibration of our model has been settled, let us move to observables

which were calculated only once the calibration had been completed.

7.2 xe+xe observables

7.2.1 Basic Observables

We begin by looking at Fig. 57, which shows the charged particle multiplicity scaled by

the average number of participants in a given centrality class, ⟨𝑁part⟩/2. All parametriza-

tions overlap across the entire centrality range without showing meaningful or sustained

ordering between themselves. Our calculation reproduces the experimental data fairly

well, even though all parametrizations underestimate the experimental values. It is,

however, important to note that the number of participants can not be calculated exper-

imentally. Therefore, experimental collaborations run Glauber simulations to produce

an expected centrality-dependent
〈
𝑁part

〉
spectrum from which they calculate this ob-

servable. Therefore, whatever nuclear parametrization was used experimentally biased

the results towards an assumption regarding the shape of 129Xe which is inherently

uncertain. Furthermore, the general shape and slope of the experimental curve in the

central to semi-peripheral regions is reproduced by all parametrizations, supporting the

conclusion that particle generation processes are emulated correctly by our model.

Proceeding to identiőed particle observables, starting with the yields. Figure 58 shows

our model’s calculations compared to experimental results gathered at ALICE [131].

Our model’s calculation is in excellent agreement with the experimental data across
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Figure 57: Charged particle multiplicity in |𝜂 | < 0.5 scaled by the average number of partici-

pant nucleon pairs in the centrality class ⟨𝑁part⟩/2 as a function of ⟨𝑁part⟩. Calcu-

lations from our model are compared to results for 5.44 TeV Xe+Xe collisions at

ALICE [127].

the entirety of the centrality range, with - once again - a splitting occurring between

all parametrizations in peripheral collisions. This splitting, much like that which we

observed in Figs. 55 and 56, is mostly driven by nucleonic density and should not be

treated as a discriminating element as not only is the nucleonic density expressly not

what we seek to constrain, but also peripheral collisions őnd themselves at the very

boundary of applicability of hydrodynamics and, therefore, carry with them some in-

herent uncertainties that are difficult to quantify. We reiterate that our model reproduces

the identiőed particle yields across a considerable centrality range.

Moving on to Fig. 59, we őnd the mean transverse momentum of identiőed particles

plotted against centrality. Once again, our model reproduces the experimental data

fairly well across the entire centrality range. While our calculated proton ⟨𝑝𝑇 ⟩ diverges
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Figure 58: Identiőed particle multiplicity in |𝑦 | < 0.5 as a function of centrality. Calcula-

tions from our model are compared to results for 5.44 TeV Xe+Xe collisions at

ALICE [131].

appreciably from the experimental data in more peripheral collisions, this is not, as with

previous underestimates, cause for concern. Indeed, the mean transverse momentum for

heavier particles - such as pions and protons - is sensitive to hydrodynamic quantities

such as the bulk viscosity and freeze-out temperature and the speciőcs of the Cooper-

Frye sampling procedure. In a hydrodynamic system, the bulk viscosity dampens the

radial ŕow velocity of the QGP signiőcantly, leading to smaller ⟨𝑝𝑇 ⟩ for heavier particles

when compared to expansion which is not hindered by viscosity. The bulk viscosity

is therefore of great importance to reproducing the average transverse momentum in

central collisions. However, as we move towards more peripheral centralities and that,

much like we described earlier, the hydrodynamic assumption begins to wear thin, the

inclusion of bulk viscosity actually leads to an underestimation of the mean transverse

momentum for heavier particles; this is yet another indication of the coexistence of
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Figure 59: Identiőed particle mean transverse momentum ⟨𝑝𝑇 ⟩ in |𝑦 | < 0.5 as a function of

centrality. Calculations from our model are compared to results for 5.44 TeV Xe+Xe

collisions at ALICE [131].

hydrodynamic and non-hydrodynamic modes of evolution in heavy-ion collisions, with

the transition between the two progressing with centrality.

It is also interesting to note how Xe.207 (the dashed curve), our parametrization with

the largest transverse cross-section, leads to noticeably smaller mean transverse momen-

tum across all species, with the effect being most obvious for pions. To a lesser extent,

this effect was also observed in Fig. 36. At constant collision energy, a larger overlap

area between the colliding nuclei will lead to less energetically dense QGP and particles

having less momentum. In other words, the ŕow of the QGP generated in Xe.207 colli-

sions is markedly smaller than that generated in collisions of our other systems, leading

to less momentum once particles are sampled. However, a valid question would be why

the undeformed system Xe.0 or the triaxially deformed Xe.185* do not show similar

dips in mean transverse momentum given they share 𝑅0 with Xe.207. Measuring the

transverse size of each parametrization gives us an answer. Indeed, much like we did in
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Figure 60: Charged particle mean transverse momentum ⟨𝑝𝑇 ⟩ in |𝜂 | < 0.8 as a function of

centrality. Calculations from our model are compared to results for 5.44 TeV Xe+Xe

collisions at ALICE [132].

Section 5.1.2, we can estimate the transverse extent of these conőgurations by taking

the following integral,

𝐴WS =

∫ 2𝜋

0

∫ 𝑅(𝜃 ,𝜙)

0
𝑟𝑑𝜃𝑑𝑟

𝑅(𝜃 ,𝜙) = 𝑅0(1 + 𝛽0
2𝑌

0
2 (𝜃 ,𝜙) + 𝛽0

4𝑌
0
4 (𝜃 ,𝜙)). (7.1)

Using this, we őnd that the transverse area of Xe.207 is the largest, at 106 fm2. Xe.185*

has two values, one taken at 𝜙 = 0, and the other at 𝜙 = 𝜋/2. The őrst yields a larger

transverse area, 109 fm2, while the second yields a smaller transverse area, 101 fm2. This

may seem like a contradiction to our argument. However, given that the orientations of

the colliding nuclei determine the size of the overlap, the smaller transverse size will be

more representative of the average shape of the overlap region across all centralities as

the smaller transverse area is fully contained in the larger one. Finally, the same integral

yields 99 fm2 for Xe.0, providing an intuitive understanding of the ordering in Fig. 59.
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We conclude this part of the results by providing results for charged particle mean

transverse momentum compared to the experiment. This observable was not available

in U+U and Au+Au runs. However, it gives us a more general picture of our systems’

dependencies and shortcomings. Looking at Fig. 60, we őnd that our model once

again reproduces the mean transverse momentum across most of the centrality range,

with, again, an underestimate in the most peripheral plotted region. Interestingly, the

ordering in Fig. 59 does not apply here. This is probably driven by particles not included

in our identiőed particle analysis and may contribute signiőcant amounts of momentum

to the averages, skewing the results away from the speciőc ordering we observed

previously. It could also be driven by changes in the kinematic cuts used in calculating

this observable, which differed considerably from those used in Fig. 59; Ref. [132] used

0 ≤ 𝑝𝑇 ≤ 10 GeV, while Ref. [131] restrained itself to 0 ≤ 𝑝𝑇 ≤ 7 GeV. The large

experimental error bars indicate that the underlying charged particle distribution must be

broad, supporting our theory. Nevertheless, our model does reproduce the experimental

results quantitatively, which is, once again, a conőrmation that our calibration was

adequate.

7.2.2 Elliptic and Triangular Flows

With our model calibrated and baseline observables reproduced, we can shift our atten-

tion to more sensitive and discriminating observables, starting with the elliptic ŕow 𝑣2.

Figure 61 shows the elliptic ŕow’s 2- and 4-particle cumulants, 𝑣2{2} and 𝑣2{4}, as func-

tions of centrality. Our model’s calculation is compared to data gathered at ALICE [133].

We see that, in both observables, our collection of parametrizations reproduces the ex-

perimental data faithfully. In central (0-10%) collisions, a clear separation driven by

the Woods-Saxon quadrupole deformation parameter 𝛽0
2 can be seen. Once we move

past that mark, however, differences in our model’s calculation become driven by the

Woods-Saxon radius 𝑅0 and diffusiveness 𝑎. Indeed, one őnds that the undeformed

parametrization Xe.0 jumps over two deformed parametrizations, namely Xe.162 and
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Figure 61: Two- and four-particle cumulants of elliptic ŕow (𝑣2{2} and 𝑣2{4}) as functions of

centrality, for 0.2 < 𝑝𝑇 < 3 GeV. Calculations from our model compared to results

for 5.44 TeV Xe+Xe collisions at ALICE [133].

Xe.139*, to join parametrizations which share its values of𝑅0 and𝑎 (which are tabulated

in Table 3). While the undeformed parametrization behaved as expected in the central

region, producing less elliptic ŕow than other parametrizations, it quickly converges

towards the Xe.185* and Xe.207 curves in more peripheral (25-60%) collisions. The

4-particle cumulant demonstrates similar qualitative features as the 2-particle cumulant.
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Figure 62: Two-particle cumulant of elliptic ŕow 𝑣2{2} as a function of centrality, for central

to semi-peripheral collisions (0-20%) and 0.2 < 𝑝𝑇 < 3 GeV. Calculations from our

model compared to results for 5.44 TeV Xe+Xe collisions at ALICE [133].

Given the large error bars, the parametrization ordering in ultra-central collisions is

hard to make out. However, the ordering in peripheral collisions mirrors that which

was found in the 2-particle cumulant. All-in-all, our model manages to recreate both

observables very well across a very wide centrality range.

Shifting our attention to Fig. 62, we őnd the same 2-particle cumulant of the elliptic

ŕow 𝑣2{2} as a function of centrality, but focused on central and semi-peripheral col-

lisions (0-20%). This enlarged plot features őner centrality bins for our model and the

experimental data. Figure 62 makes it clear that Xe.0, the undeformed parametrization,

is inappropriate for describing the experimental data in central collisions, results which

are most sensitive to the shape of the colliding nuclei. Furthermore, both Xe.162 and

Xe.139* fail to generate sufficient elliptic ŕow to match the experimental data. They

also fail to register the noticeable uptick in the trend of the elliptic ŕow in ultra-central

(0-2.5%) collisions. Xe.185* and Xe.207, stemming from similar parametrizations, are
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the best matches for the experimental elliptic ŕow data, with a slight preference for the

triaxial Xe.185*. Indeed, including triaxiality inhibits elliptic ŕow in central collisions

just enough to overlap perfectly with the experimental data. Xe.207 slightly overesti-

mates the elliptic ŕow toward semi-peripheral collisions, furthering the experimental

data’s preference for the Xe.185* parametrization.

Interestingly, looking at the experimental data’s most central point, we notice a slight

uptick of the elliptic ŕow in ultra-ultra-central collisions. This uptick was not observed

in Fig. 38, which suggests that this is due to the true triaxial nature of 129Xe. Indeed, if

a nucleus is sufficiently triaxially deformed, tip-tip collisions (refer to Figs. 14 and 31)

do not actually always generate a circular overlap region. Instead, they can generate

any of a wide range of overlap shapes, ranging from elliptical to circular. Therefore,

ultra-ultra-central collisions of considerably triaxially deformed nuclei should generate

non-negligible amounts of elliptic ŕow, in stark contrast with the 238U experimental

data seen in Fig. 38, which dives towards 0 elliptic ŕow in ultra-ultra-central collisions.

This slight uptick in ultra-ultra-central collisions is, therefore, a strong signal of 129Xe

exhibiting considerable triaxial deformity.

We now focus on the 2-particle cumulant of triangular ŕow 𝑣3{2}, shown in Fig. 63.

Much like what we found in Fig. 41, we underestimate the triangular ŕow in central

collisions across all parametrizations. Furthermore, the Xe+Xe triangular ŕow displays

the same ŕuctuation-driven behavior observed in U+U and Au+Au collisions. Indeed,

no real ordering between parametrizations emerges, with curves varying considerably

across the entirety of the centrality range. Interestingly, in peripheral collisions, the order-

ing found in Fig. 61 is partially reversed, with Xe.162 and Xe.139* őnding themselves

above Xe.0, Xe.185* and Xe.207. Because of their smaller system size, ŕuctuations in

nucleon positions play a comparatively larger role than the same ŕuctuations play in

the larger systems, driving a slight increase in triangular ŕow. Once again, for central

collisions, the inclusion of sub-nucleonic degrees of freedom should help enhance this

observable [115]. This observable, however, does not seem to hold any discriminatory

power in terms of the parameters we are looking to constrain.
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Figure 63: Two-particle cumulant of triangular ŕow 𝑣3{2} as a function of centrality, for 0.2 <

𝑝𝑇 < 3 GeV. Calculations from our model compared to results for 5.44 TeV Xe+Xe

collisions at ALICE [133].

Moving to differential observables, we begin with the 𝑝𝑇 -differential 2-particle cu-

mulant of elliptic ŕow 𝑣2{2}(𝑝𝑇 ), shown in Fig. 64. The conclusions here resemble

those of our analysis of U+U and Au+Au differential ŕow and those of Fig. 61. Indeed,

while the most central panel, 0-5%, provides some discriminating potential between our

parametrizations, the curves quickly converge as we move towards more peripheral bins.

Additionally, the behavior of the 5-10%, 10-20% and 20-30% slices is quasi-identical;

we őnd that our model underestimates the differential elliptic ŕow for 𝑝𝑇 < 0.5 GeV and

overestimates it at higher 𝑝𝑇 . Because our model only goes up to ∼ 𝑝𝑇 = 4 GeV, it seems

like it compensates for its truncated distribution by generating more elliptic ŕow at these

higher values. The underestimate at lower 𝑝𝑇 is less prominent than the overestimate at

high 𝑝𝑇 , in line with the fact that a much larger number of particles have 𝑝𝑇 < 1 GeV

than 𝑝𝑇 > 2 GeV, ensuring that the integrated ŕow presented in Figs. 61 and 62 remain

consistent with experimental results. Shifting our focus to the ultra-central slice 0-5%,
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Figure 64: Two-particle cumulant of 𝑝𝑇 -differential elliptic ŕow 𝑣2{2}(𝑝𝑇 ) as a function of

transverse momentum 𝑝𝑇 . Calculations from our model compared to results for

5.44 TeV Xe+Xe collisions at ALICE [133].

we őnd that the behavior of the different parametrizations unsurprisingly mirrors that

which we found in Fig. 62. The undeformed parametrization systematically underesti-

mates the differential elliptic ŕow across the entire range, providing added evidence

of 129Xe’s deformity. Moreover, Xe.162 and Xe.139* both considerably underestimate

the differential elliptic ŕow in the critical low-𝑝𝑇 region, while Xe.185* and Xe.207

coalesce much quicker towards the experimental data points. Figure 64 provides further

evidence of a preference emerging for the Xe.207 and Xe.185* parametrizations.

Proceeding to Fig. 65, we őnd our őrst rapidity-dependent observable, 𝑣2{2}(𝜂).
Because the results shown in Figs. 61 and 62 were taken at mid-rapidity, our calculation

at and around mid-rapidity is expected to mirror the results shown in those őgures.

Indeed, we őnd that the initial parametrization ordering and the progression as we

move to more and more peripheral collisions are similar to that seen in our integrated

ŕow őgures. However, it seems that our model is unable to reproduce the experimental
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Figure 65: Two-particle cumulant of 𝜂-differential elliptic ŕow 𝑣2{2}(𝜂) as a function of pseu-

dorapidity 𝜂, for 0.2 < 𝑝𝑇 < 5 GeV. Calculations from our model are compared to

results for 5.44 TeV Xe+Xe collisions at ALICE [134].

slope in elliptic ŕow in the 𝜂 direction. This is linked to our overestimating the charged

particle yields for |𝜂 | > 1 seen in Fig. 56. Indeed, overestimating the yields is equivalent

to overestimating the total energy contained in a given rapidity slice, spreading across

all components of the stress-energy tensor 𝑇 𝜇𝜈 . More energetic slices will take more

time to reach freeze-out, allowing for the development of more and more coherent

ŕow, in turn leading to an overestimate of the anisotropic ŕow away from mid-rapidity.

It is also certainly caused by our early-stage longitudinal evolution - the JIMWLK

evolution - generating too much correlation between different slices; it seems likely

that, in experiments, the longitudinal structure of the QGP generated in a collision

event exhibits some form of rotational decorrelation [135], in addition to the gluonic

őeld ŕuctuations included in the JIMWLK evolution. This decorrelation should lead

to less coherence in ŕow and, therefore, less elliptic ŕow at larger absolute rapidities.

Looking at Fig. 66, we őnd the 𝜂-dependent triangular ŕow. Once again, our results
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Figure 66: Two-particle cumulant of 𝜂-differential triangular ŕow 𝑣3{2}(𝜂) as a function of

pseudorapidity 𝜂, for 0.2 < 𝑝𝑇 < 5 GeV. Calculations from our model are compared

to results for 5.44 TeV Xe+Xe collisions at ALICE [134].

mirror those found in the integrated observable Fig. 63: no consistent ordering can

be determined, and ŕuctuations dominate the curves. While our model’s calculation’s

slope seems consistent across centrality slices, it is interesting to note how much the

experimental curves’ slopes vary from centrality class to centrality class. Indeed, while

our calculation matches up fairly well with the experimental data across the entire

rapidity range for 0-10% centrality, the experimental curves demonstrate much greater

triangular ŕow suppression as we move towards larger absolute rapidities in all the other

centrality slices. Much like the 𝜂-dependent elliptic ŕow, this is driven by our charged

yields overestimates, for much the same reason, with the added fact that triangular ŕow

is mainly driven by small ŕuctuations - be they geometric or energetic - whose signals

would get further suppressed if we had normalized the longitudinal energy content more

appropriately. This effect deserves an investigation, which could shed light on the exact
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Figure 67: Two-particle cumulant of 𝜂-differential (top) elliptic ŕow 𝑣2{2}(𝜂) and (bottom)

triangular ŕow 𝑣3{2}(𝜂) as a function of spacetime rapidity 𝜂, for ultra-central (0-

5%) and central (5-10%) collisions and 0.2 < 𝑝𝑇 < 5 GeV. Calculations from our

model compared to results for 5.44 TeV Xe+Xe collisions at ALICE [134].

dependency of color charge ŕuctuations on spacetime rapidity and on the longitudinal

suppression of ŕow.

Examining Fig. 67, we őnd the 0-10% centrality bins from Figs. 65 and 66 segmented

into ultra-central (0-5%) and central (5-10%) bins, allowing us to further differentiate

between our different parametrizations. It is interesting to note how quickly the different

𝑣2{2}(𝜂) curves converge onto one another beyond the ultra-central region. Of course,

the ordering observed in Fig. 62 is maintained, with Xe.0 being wholly inadequate in de-

scribing the ultra-central region of this observable. Interestingly, while this observable

still prefers Xe.207 and Xe.185*, both fall on either side of the ultra-central experimen-

tal data, providing the őrst signal that, potentially, neither of these parametrizations

delivers an accurate projection of the shape of the quantum ŕuctuations of 129Xe. Never-

theless, similar conclusions regarding our model’s capabilities and shortcomings can be
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Figure 68: (Top) Elliptic and (bottom) triangular ŕow decorrelation ratio 𝑟2|2 and 𝑟3|3 as func-

tions of spacetime rapidity 𝜂, for 0.2 < 𝑝𝑇 < 5 GeV. Calculations from our model

compared to results for 5.44 TeV Xe+Xe collisions at ATLAS [136].

extracted from Fig. 67, namely that we are able to reproduce central 𝑣3{2}(𝜂) faithfully,

and that elliptic ŕow decorrelations in the 𝜂 direction may be insufficient; the scale

of the elliptic ŕow is, however, well-reproduced in the mid-rapidity region across all

centralities.

To properly quantify the scale of decorrelations measured in experiment, we turn to

the decorrelation ratio 𝑟𝑛 |𝑛 described in Section 6.3.3. Obviously, given its deőnition,

this observable is intrinsically tied to the rapidity-dependent anisotropic ŕow 𝑣𝑛{2}(𝜂);
as mentioned above, one can see from the results presented in Figs. 65 to 67 that our

model’s calculation, especially in peripheral collisions, leads to a ŕatter slope in the 𝜂

direction than the experimental results. This ŕatter slope, interpreted under the lens of

correlations, indicates that our anisotropic ŕow away from mid-rapidity is too correlated

with that of mid-rapidity and the opposite rapidity. However, given the inclusion of a

speciőc reaction plane term in the experimental observable’s calculation, one can expect

some differences between the values inferred from Figs. 65 to 67 and those obtained

using Eq. (6.23). Therefore, comparing this observable remains relevant to our analysis

and understanding where our model may be improved. Looking at Fig. 68, we őnd

the elliptic and triangular ŕow decorrelations for 4 centrality slices. Calculations from

our model are compared to experimental results from ATLAS [136]. From the start,
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it is important to note that the move from one experiment (ALICE, in the case of all

previous őgures) to another is not trivial; different experiments use different kinematic

cuts, acceptance ranges and reference ŕow vectors which need to be considered. These

differences can (and should) lead to differences in the end-state observables - if they

did not, the speciőcities of each experiment would not be mentioned. Therefore, when

comparing the decorrelation ratios measured at ATLAS to the 𝜂-dependent anisotropic

ŕows shown in Figs. 65 to 67 should be done cautiously, as the calculations of 𝑟𝑛 |𝑛 made

at ATLAS use a different collection of events than that measured at ALICE, analyzed

using different cuts. Concretely, ALICE use particles with 0.2 ≤ 𝑝𝑇 ≤ 5 GeV for its

analysis, with pseudorapidity separation |Δ𝜂 | > 0.4 for mid-rapidity and |Δ𝜂 | > 2.2

for forward-rapidity reference ŕow particles (see Eq. (6.22)). ATLAS, on the other

hand, uses particles with 0.5 ≤ 𝑝𝑇 ≤ 3 GeV, with 4.0 < |𝜂ref | < 4.9 for 𝑟2|2 and

3.2 < |𝜂ref | < 4.9 for 𝑟3|3. When comparing to data from different experiments, we

must tailor our analysis to take these different kinematic cuts into account. In the

end, this means that trying to understand the decorrelation ratios presented in Fig. 68

through Figs. 65 to 67 is of no practical use as the 𝑣𝑛{2}(𝜂) curves generated by an

ATLAS analysis may look very different (potentially much ŕatter) than those of ALICE,

especially given ALICE uses a narrow mid-rapidity window for its reference ŕow vector

which generates a larger peak in that region. Our model can reproduce the decorrelation

trends of both the elliptic and the triangular ratios. However, it does present a noticeable

overestimation of both observables. This is to be expected when we consider how our

initial state determines different slices in rapidity; while the gluon őeld is sensible,

the shape of the interaction region, which is a primary marker of how ŕow builds

up in the QGP, is determined by the overlap of the nuclei thickness functions in the

transverse plane. From one rapidity to another, the overlap region’s features remain

unchanged. Gluonic őeld ŕuctuations affect how much energy is deposited and how

much ŕow builds up before the hydrodynamic phase. However, given similar total

energy and overlap shape, two rapidity slices at opposing sides of mid-rapidity will

generate very similar amounts of ŕow, especially elliptic ŕow (which is not mainly
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driven by ŕuctuations, contrarily to triangular ŕow). The ŕows, then, are correlated

with one another even though a considerable rapidity gap separates the two regions.

As shown in Fig. 68, this is an inadequate representation of reality: ŕow decorrelates

appreciably as we move to larger and larger gaps in rapidity.

There are simple and not-so-simple ways one could improve decorrelation calcula-

tions. For one, the use of our envelope function Eq. (6.19) produces decorrelations

on its own: by reducing all components of 𝑇 𝜇𝜈 by some multiplicative constant, one

reduces the total energetic content of a given rapidity slice of QGP and, in turn, reduces

the amount of time required for that rapidity slice to reach freeze-out. This diminishes

coherent ŕow build-up and, therefore, reduces the amount of anisotropic ŕow generated

in a given slice. Our overestimates of the rapidity-dependent yields are thus related

to underestimating the amount of decorrelation. Further calibrating our 𝜂 envelope

could help us close the gap between our calculation and the experimental results. One

could also use this envelope to introduce some rotational decorrelation to the hydrody-

namic evolution, partially rotating each rapidity slice in the transverse plane to generate

slice-to-slice anisotropies and, more generally, provide a numerical equivalent to the

event-plane angle Ψ𝑅 (𝜂) which is captured implicitly by these observables. Then, there

are more complex sources of decorrelations which are overlooked by our model in its

current state, such as the inclusion of mini-jets. Mini-jets are initial semi-hard scatter-

ings which have energy greater than the typical QGP temperature scale. Mini-jets can

potentially contribute to the total energy of the system. Including a mini-jets simulator

concurrently with the hydrodynamic evolution provided by MUSIC should provide

considerable decorrelations from one rapidity slice to another. This is, however, left as

future work.

In terms of the objectives of this analysis, the decorrelation ratio, as calculated by our

model in its current state, does not provide any discriminating potential between the

different parametrizations; the curves stemming from different parametrizations overlap

considerably across centralities and rapidities, providing no insights. It is therefore safe
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Figure 69: Standardized skewness 𝛾⟨𝑝𝑇 ⟩ as a function of the cubic root of charge particle multi-

plicity (𝑑𝑁ch/𝑑𝜂)1/3. Calculations from our model compared to results for 5.44 TeV

Xe+Xe collisions at ALICE [137].

to say that, in order for longitudinal observables to be used in a nuclear shape calibration

procedure, models will need to be improved.

Let us now move on to the different momentum and ŕow correlators which provided

us with valuable insights regarding the appropriateness of a given parametrization.

7.2.3 Correlators

We begin by introducing the standardized skewness 𝛾⟨𝑝𝑇 ⟩; it is a composite observable

made up of the 2- and 3-particle 𝑝𝑇 correlators introduced in Section 4.3.3. Formally,

it is deőned as

𝛾⟨𝑝𝑇 ⟩ =
⟨𝛿𝑝𝑇𝛿𝑝𝑇𝛿𝑝𝑇 ⟩
⟨𝛿𝑝𝑇𝛿𝑝𝑇 ⟩3/2 . (7.2)



7.2 xe+xe observables 181

While we may have preferred individual comparisons to the 2- and 3-particle 𝑝𝑇 cor-

relators based on our previous őndings, the experimental data was only given in terms

of the standardized skewness 𝛾⟨𝑝𝑇 ⟩. Figure 69 shows our model’s calculation against

the experimental data gathered at ALICE [137]. Across all parametrizations, our model

replicates the experimental data across the provided multiplicity range. The general

lack of experimental data however undermines our efforts at differentiating between

our parametrizations using central collisions. Indeed, each experimental data point rep-

resent a very wide centrality range, meaning that any sensitivity to speciőc initial state

anisotropies is averaged out. Our őnding from Chapter 5 seem to be repeated here as

well; indeed, the ordering exhibited by our most central (rightmost points) collisions

suggests that system size drives this observable. However, the lack of experimental

data at such multiplicities leaves us guessing whether such dependencies persist in an

experimental setting. Nevertheless, as mentioned previously, our model does generate

appropriate multi-particle 𝑝𝑇 correlations, although they do not seem to hold any dis-

criminatory power. In the end, our model holds slight preferences for Xe.162, Xe.139*

and Xe.185*, although the error bars overlap for all parametrizations across the entire

range.

Moving to transverse-momentum-ŕow correlators now, we turn our attention to

Fig. 70, which shows the transverse-momentum-elliptic-ŕow correlator 𝜌 (𝑣2{2}, ⟨𝑝𝑇 ⟩)
as a function of centrality. As a reminder, nuclei presenting large quadrupole defor-

mations should generate an anti-correlation between mean transverse momentum ⟨𝑝𝑇 ⟩
and elliptic ŕow 𝑣2{2}. However, based on Fig. 45, we could not determine how much

quadrupole deformity was minimally required to generate anti-correlation. We were

also unsure whether the transition between correlation and anti-correlation would be

smooth, moving linearly with increasing 𝛽0
2 .

Figure 70 shows 𝜌 (𝑣2{2}, ⟨𝑝𝑇 ⟩) for our 5 parametrizations compared to experimen-

tal data from ATLAS [138]. Given key differences in behavior, we include, for the

őrst time in our 129Xe results, curves stemming from the two averaging techniques

described in Chapter 5, namely the SMASH Sub-Event (SM) average and Oversampled
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Figure 70: Transverse-momentum-elliptic-ŕow correlator 𝜌 (𝑣2{2}, ⟨𝑝𝑇 ⟩) as a function of cen-

trality. The left panel shows calculations done with the SMASH Sub-Event (SM)

averaging method, while the right panel shows calculations made with the more

common Oversampled (Ov) averaging technique. Calculations from our model com-

pared to results for 5.44 TeV Xe+Xe collisions at ATLAS [138].

(Ov) average. While all parametrizations seem to overlap for more peripheral collisions,

a splitting occurs at around the 10% centrality mark; we őnd that Xe.162 and Xe.207 -

our two non-triaxially deformed parametrizations, dive down towards anti-correlation.

Xe.185* and, interestingly, Xe.0 - our undeformed parametrization - provide fair agree-

ment with experimental data, both qualitatively and quantitatively. Finally, Xe.139*

generates far too much correlation in central collisions. Interestingly, the SM curves

are much smoother than the Ov curves while preserving the same ordering throughout.

Also of note, while the SM curves overestimate the experimental data in peripheral

(>40%) collisions, the Ov averaging leads to an underestimate, which entails that the

simple dichotomy between the inclusion or exclusion of short-range correlations is in-

adequate in our quest to describe these correlations in the peripheral centrality region.

Furthermore, some non-trivial effects are clearly at play here, as in the central region,

the Ov curves lead to more extreme values when compared to the curve stemming from

the same parametrization but calculated using the SM average. This seems to indicate

that the short-range correlations and ŕuctuations inherently included in the SM average

work to ‘reign in’ long-range ŕuctuations and correlations which guide the Ov curves.
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Figure 71: Transverse-momentum-elliptic-ŕow correlator 𝜌 (𝑣2{2}, ⟨𝑝𝑇 ⟩) as a function of cen-

trality for central (0-20%) collisions. Calculations from our model stemming from

the SM averaging method compared to results for 5.44 TeV Xe+Xe collisions at AT-

LAS [138].

Because the central region is of utmost interest, we provide an enlarged plot of

said region using őner centrality bins provided by ATLAS [138]. Figure 71 shows our

SM average curves for central collisions. The ŕuctuations exhibited by our different

curves in the ultra-central (0-5%) region are driven by the use of őner centrality bins for

comparison’s sake. Once again, all parametrizations őt the experimental data well across

the entire range. However, in ultra-central collisions, the curves settle at different values.

Notably, we őnd that the Xe.139* curve, which in Fig. 70 appeared to overestimate the

correlator, dives back down towards the experimental curve in our most central bin.

Comparing the results from our two triaxially-deformed parametrizations, Xe.139* and

Xe.185*, to those of our two other deformed parametrizations Xe.162 and Xe.207, we

őnd that our model prefers triaxial parametrizations in reproducing the experimental

correlator. This őnding is in line with what was found with a simpler model [129] and
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hypothesized by the experimentalists [138]. The Xe.185* parameterization comes the

closest to reproducing the entire central range for this observable, following step with

the other observables shown to this point, which suggests that it is the most appropriate

parametrization we have used.

Regarding our question concerning the speciőc relationship between the scale of

deformity and an emerging anti-correlation in central collisions, our model suggests

that this transition is smooth and simply requires sufficient quadrupole deformation

to surface. Indeed, we őnd that both the Xe.207 and Xe.162 - both non-triaxially-

deformed parametrizations - show signs of anti-correlations in ultra-central collisions.

It is however interesting to note that these two parametrizations present considerably

different quadrupole deformations, and that Xe.162’s 𝛽0
2 is much smaller than that

of Xe.185*. Therefore, not only does triaxiality play a signiőcant role in how these

correlations develop, but it seems like system size could also play a signiőcant role.

Indeed, looking back at our 197Au curves, we see that, even though their parametrizations

differ signiőcantly, they both reproduce the experimental data well, hinting at non-trivial

interplay between the deformity of a nucleus, its size, and the correlator.

As a őnal observable, we move our attention to the transverse-momentum-triangular-

ŕow correlator 𝜌 (𝑣3{2}, ⟨𝑝𝑇 ⟩), shown in Fig. 72. As with Fig. 45’s bottom panel, we

őnd that 𝜌 (𝑣3{2}, ⟨𝑝𝑇 ⟩) is dominated by ŕuctuations. The correlator hovers just above 0

across the entire centrality range, with a slight uptick in central collisions which is caused

by small overlap area events (which lead to higher ⟨𝑝𝑇 ⟩) being more prone to geometric

ŕuctuations (which lead to triangular ŕow 𝑣3{2}). Notably, the differences between the

SM and Ov averaging techniques persist in this observable, with SM overestimating

the correlation in peripheral collisions and Ov underestimating it. As mentioned in the

previous statement, it is also interesting to note that both Ov and SM techniques produce

similar results in the central region while diverging in peripheral collisions. No real

ordering emerges in our parametrizations, conőrming that 𝜌 (𝑣3{2}, ⟨𝑝𝑇 ⟩) is insensitive

to initial state geometric features stemming from deformed nuclear parametrizations.
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Figure 72: Transverse-momentum-triangular-ŕow correlator 𝜌 (𝑣3{2}, ⟨𝑝𝑇 ⟩) as a function of cen-

trality. The left panel shows calculations done with the SMASH Sub-Event (SM) aver-

aging method, while the right panel shows calculations made with the more common

Oversampled (Ov) averaging technique. Calculations from our model stemming from

the SM averaging method compared to results for 5.44 TeV Xe+Xe collisions at AT-

LAS [138].

The results presented now constitute a complete overview of our model’s capabilities

vis-à-vis reproducing a wide catalogue of experimental observables while only explic-

itly calibrating to reproduce the charged particle multiplicity at mid-rapidity. Using

Bayesian-calibrated shear and bulk viscosities contributes to our model’s success in re-

producing these observables. Given the success of our physics-based approach and the

wide reach and depth of the current analysis, we may now use our model’s calculations

to attempt to constrain the quadrupole and triaxial deformation of 129Xe based entirely

on our model’s predictions.

7.3 quadrupole and triaxial constraints

Following work done in Ref. [119, 120], we now have basic foundations for under-

standing how initial state properties affect speciőc end-state observables, namely 𝑣2{2},
⟨𝛿𝑝𝑇𝛿𝑝𝑇 ⟩ and 𝜌 (𝑣2{2}, ⟨𝑝𝑇 ⟩). In essence, simple parametric dependencies have been
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discovered, which, in theory, should allow us to determine the most appropriate value

of 𝛽0
2 and 𝛽2

2 . These relationships are [120]

(𝑣2{2})2
= 𝑎1 +𝑏1(𝛽2)2,

⟨𝛿𝑝𝑇𝛿𝑝𝑇 ⟩ = 𝑎2 +𝑏2(𝛽2)2,

𝜌 (𝑣2{2}, ⟨𝑝𝑇 ⟩) = 𝑎3 +𝑏3 cos(3𝛾) (𝛽2)3,

⟨𝛿𝑝𝑇𝛿𝑝𝑇𝛿𝑝𝑇 ⟩ = 𝑎4 +𝑏4 cos(3𝛾) (𝛽2)3,

(7.3)

where parentheses have been added for clarity, 𝛽2 is the total quadrupole deformation

and 𝛾 is the triaxiality angle or parameter. Explicitly, it is deőned in terms of the

Woods-Saxon parameters described in Chapter 2 as

𝛽2 =

√︃
(𝛽0

2)2 + 4(𝛽2
2)2,

𝛾 = arctan

(
2𝛽2

2

𝛽0
2

)
.

(7.4)

Therefore, Xe.139* has 𝛾 = 49◦ and 𝛽2 = 0.213, while Xe.185* has 𝛾 = 27◦ and

𝛽2 = 0.207. This makes it obvious that the second of these parametrizations was

generated by adding triaxial deformation to Xe.207. Xe.139*, on the other hand, uses a

similar radius to Xe.162 but includes large triaxial deformation. Having őve statistically

signiőcant runs stemming from different parametrizations - including an undeformed

run - provides us with a unique opportunity to determine the various parameters of

Eq. (7.3) with respect to our model and extract most likely values of 𝛽2 and 𝛾 in the

process. However, given that the experimental data provided by ALICE [137] does

not contain the individual 2- and 3-particle 𝑝𝑇 correlators, and that the standardized

skewness 𝛾⟨𝑝𝑇 ⟩ is only provided for a wide centrality range (0-20%), we will need to

overlook this observable in our analysis, as considering it would lead to a breakdown

of many assumptions which are key to the extraction of Eq. (7.3).

As with the application of these linearizations shown in Ref. [118], we will use

averaged calculations and experimental data in the 0-5% centrality range. Because

Eq. (7.3)’s parameters measure the dependency of an observable on the geometry of

the Woods-Saxon parametrization for a speciőc model, our aim is to őt a single pair of
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parameters (𝑎𝑖 ,𝑏𝑖) such that it is representative of a speciőc observable’s dependencies

on our model’s parameters. The őrst parameter, 𝑎𝑖 , should be viewed as measuring our

model’s baseline value for an observable based mostly on collision energy and collision

system properties like nucleon number and size. The second parameter, 𝑏𝑖 , measures

how our model reacts to speciőc anisotropies in the initial state and, since we are

focusing on ultra-central collisions, on the deformity of the collision system itself. As

such, our undeformed run Xe.0 will serve as the very baseline for our model, allowing

us to extract 𝑎𝑖 instantly using its value for a given observable. Then, using both the

observable values and deformation parameters from our four deformed parametrizations,

we will be able to őt a value of𝑏𝑖 representative of our model’s properties. Finally, using

the ultra-central experimental data point, we will be able to extract values of 𝛽2 and 𝛾

predicted by our model given its speciőc dependencies on these deformation parameters

and on our explicit goal of reproducing the experimental data exactly.

We begin with the elliptic ŕow, which exclusively constrains 𝛽2. As mentioned

above, our undeformed parametrization will serve us greatly, allowing us to set 𝑎1

directly. Indeed, given that Xe.0 has 𝛽2 = 0, we will have 𝑣2{2}2
Xe.0 = 𝑎1. This leads to

𝑎1 = (9 ± 1) × 10−4.

We can then use this value of 𝑎1 to őnd a value of 𝑏1 for our model, providing us with

a path towards a őrst estimate. Taking into account our four deformed parametrizations,

we őnd

𝑏1 = 0.010 ± 0.002. (7.5)

The experimental data point in 0-5% is (𝑣2{2})2 = 0.00132± 0.00007. Using our őtted

values of 𝑎1 and 𝑏1, we őnd our model predicts

𝛽2 = 0.205 ± 0.029. (7.6)

As explained above, however, this value does not mean much without őnding a corre-

sponding value of 𝛾 , as the triaxiality parameter translates 𝛽2 into 𝛽0
2 and 𝛽2

2 . Therefore,

we need to pursue a similar őtting with the correlator 𝜌 (𝑣2{2}, ⟨𝑝𝑇 ⟩) to constrain 𝛾 .
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Once again, our undeformed parametrization will greatly facilitate the task at hand.

Much like above, we őnd, using Xe.0,

𝜌 (𝑣2{2}, ⟨𝑝𝑇 ⟩) = 𝑎3

⇒𝑎3 = 0.12 ± 0.04.
(7.7)

Following the same logic as before, we can őt 𝑏3 using this value of 𝑎3. Doing so yields

𝑏3 = −15 ± 12. (7.8)

Here, the error is much larger than the one we extracted for 𝑏1. This is driven by the

relatively large error bars held by our 𝜌 (𝑣2{2}, ⟨𝑝𝑇 ⟩) calculation. Using the value of 𝛽2

obtained through our őrst procedure, we őnd

cos(3𝛾) = −0.18 ± 0.27

⇒𝛾 = (34 ± 5)◦.
(7.9)

Therefore, our multiple runs suggest that 129Xe has 𝛽2 = 0.205 ± 0.029 and 𝛾 =

(34± 5)◦. These parameters are fairly close to those presented in Ref. [129], showing a

larger triaxiality coupled to a smaller quadrupole moment. Converting these estimates

to 𝛽0
2 and 𝛽2

2 using Eq. (7.4), we obtain

𝛽0
2 =

√︄
(𝛽2)2(

1 + tan2 (𝛾)
) = 0.170 ± 0.033,

𝛽2
2 =

𝛽0
2 tan (𝛾)

2
= 0.057 ± 0.010.

(7.10)

Comparing our őtted values to those of Table 3, we őnd that our őts include Xe.185*’s

parameters within their error bars. Given that this parametrization performed best

across the board, it makes sense that the őtted parameters would end up being close to

those. However, these őts provide further support to the low-energy HFB calculations

undertaken in Ref. [129] which suggested 129Xe be triaxially deformed. Given that

these HFB calculations incorporate many assumptions discussed in Chapter 2, we

know that their output values must be validated and improved upon. By utilizing high-

energy experimental data and our state-of-the-art framework, we were able to show that,
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while recent HFB calculations do provide good baseline parametrizations, high-energy

data suggests that these may be improved further, especially in the context of nucleon

sampling using a Woods-Saxon distribution.

These techniques can be applied to any system purporting sufficient experimental

data to extract proper bounds for two critical Woods-Saxon parameters. Using an un-

deformed parametrization is key to understanding what the different constant offsets 𝑎𝑖

should be, as they provide a direct representation of a speciőc observable’s dependency

on parameters unrelated to system geometry, such as collision energy and nucleonic

content. Furthermore, utilizing a group of parametrizations which provide speciőc mod-

ulations to the different quadrupole deformation parameters ensures that the entirety of

the observable spectrum is covered, providing simpler and more reliable őtting. Access

to the 2- and 3-particle correlators could help further constrain both parameters and sup-

port our analysis. However, given the available experimental data, our model provides

sensible and trustworthy bounds on deformation parameters which can be sharpened as

more data becomes available while reproducing all provided experimental observables

simultaneously. This shows clearly our framework’s potential to bridge the gap between

low-energy studies of nuclear wavefunctions and their ŕuctuations and high-energy

nuclear physics, allowing one to test multiple nuclear structure parametrizations against

one another in a self-consistent manner, providing valuable insights regarding the very

structure of atomic nuclei at all energy scales.



8
F I N D I N G S , I M P L I CAT I O N S A N D F I NA L

R E M A R K S

In this thesis, our state-of-the-art heavy-ion collision simulation framework was used

as a tool to infer accurate parametric representations of nuclear shape ŕuctuations for

multiple collision systems (238U, 197Au, and 129Xe) at three different collision energies

(193 GeV, 200 GeV, and 5.44 TeV). The recent advances in fully self-consistent and

physically motivated initial state and hydrodynamic models IP-Glasma [16, 17] and

MUSIC [Schenke:2010nt] coupled to a thorough Bayesian calibration of our entire

framework’s relevant parameter space [77, 87] made initial state anisotropies the next

frontier in properly describing the entirety of heavy-ion collisions theoretically and

computationally. As described in Chapter 2, the main sources of unconstrained ini-

tial state anisotropies are the geometrical properties of the colliding nuclei and their

wavefunctions. More speciőcally, ŕuctuations in these wavefunctions are captured by

the extremely short interaction timescale offered by heavy-ion collisions. These ŕuctua-

tions exhibit speciőc shapes which generate characteristic anisotropies in the interaction

region and the QGP. These anisotropies then generate observable signatures that can not

be explained through mere model calibration: these shapes, as deeply hidden inside the

nuclear wavefunction as they may be, have become necessary inclusions to theoretical

frameworks seeking to understand heavy-ion collisions completely. Furthermore, his-

toric tensions between low-energy pictures of nuclear structure and high-energy models

and inferences have only just begun to be disambiguated [1, 36, 118]. By building on

recent work using our fully-calibrated framework, we sought to help bridge the existing

190
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gap and assist future low- and high-energy experiments in, at őrst, understanding the

speciőcs of the underlying quantum states which make up the total nuclear wavefunc-

tion, and then providing properly constrained and veriőed nucleon density distributions

which can be used to improve modern simulation calculations’ agreement with experi-

mental data and, in turn, enhance our understanding of nuclear and quark matter.

After thoroughly describing the theoretical and numerical framework we would be

employing, we began our study by conducting a large-scale analysis of existing 238U

and 197Au data from RHIC to establish our model’s capabilities regarding simultaneous

reproduction of a wide variety of observables via a single calibration. We also set out

to determine how sensitive our model was to speciőc changes in nuclear parametriza-

tions. To do so, we selected four parametrizations (two each) listed in Table 2. Crit-

ically, we used two largely deformed 238U parametrizations which presented subtle

differences to one another and an undeformed and a deformed 197Au parametrization.

Then, following an initial calibration against experimental charged particle multiplicity

curves [105], we generated a statistically signiőcant set of central to semi-peripheral

events for our two systems. From there, we were able to reproduce available funda-

mental observables such as identiőed particle yields, mean transverse momentum, and

scaled multiplicity. We found that, while our model did lead to differences in calcu-

lated curves between parametrizations, large experimental error bars coupled to our

model’s thorough calibration meant that these more ‘basic’ observables could not shed

light on which parametrizations were more appropriate than others. With only the ba-

sic observables in hand, then, one could not use the experimental data to determine

whether an undeformed or a signiőcantly deformed 197Au parametrization was more

appropriate. The inclusion of more sensitive and involved observables changed that.

Indeed, elliptic ŕow calculations showed that deformity was a key feature of an appro-

priate 197Au parametrization. It also showed that our model was extremely sensitive to

initial state parametrizations, especially in central collisions; we found that the slightly

less deformed New U parametrization performed noticeably better than the Prev U

parametrization, overlapping the experimental results across the entirety of the relevant
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centrality range. The fact that this parametrization came from recent low-energy esti-

mates coupled to proper projection onto the nuclear density distributions sampled in

our simulations [36] supported the idea that our framework could be used as a tool for

determining credible ranges for various deformation parameters given its accuracy and

sensitivity.

Although the elliptic ŕow provided ample observable evidence of our model’s capa-

bilities, we moved on to yet more observables. We determined that the 2-particle 𝑝𝑇

correlator (Eq. (4.25)) could not be reproduced without modifying our event averaging

procedure. This entailed that short-range ŕuctuations and correlations dominated this

observable, the őrst observable which we had found to be meaningfully sensitive to the

inclusion or exclusion of such short-range ŕuctuations. We also established this observ-

able’s sensitivity to deformity; when comparing between our model’s 197Au and 238U

curves, we noted an increase in correlation in the ultra-central region of this observable,

coupled to a considerable underestimate of the experimental curve for the undeformed

197Au curve. These features were also linked to system size.

Providing further support to our process, we shared a true prediction of our model

for transverse-momentum-ŕow correlations (in Fig. 45), a prediction which ended up

being validated by experimental data published after the fact (for 𝜌 (𝑣2{2}, ⟨𝑝𝑇 ⟩)). We

noted the distinctions between the 197Au and 238U curves. While both Def Au and our

two 238U parametrizations were deformed, the latter present much larger quadrupole

deformation. This discrepancy, while responsible for more subtle differences in other

observables, leads to a complete divergence of the curves based on collision system. As

described in Section 4.3.5, 238U’s large prolate deformation leads to an anticorrelation

between elliptic ŕow and mean transverse momentum in collisions below the ∼ 7%

centrality mark. While both 238U parametrizations did reproduce the cross-over point,

New U provided better agreement beyond that mark.

To complete those initial results, we looked at experimentally available ratios of

previously analyzed observables. These ratios allowed us to compare our different

parametrizations in a pair-wise manner. These comparisons’ main contributions were
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in cementing the fact that not only did 197Au need to present some form of quadrupole

deformity, but that the deformity used in 197Au was insufficient, hinting at the fact that

further analyses should be conducted with a more deformed parametrization of 197Au.

Following the success of the boost-invariant formulation of our model in describing

all available experimental data accurately and in discriminating between different nu-

clear parametrizations, we moved on to results stemming from fully 3+1D runs of our

model. Aiming to determine whether or not new sensitivities to nuclear structure could

be extracted from longitudinal observables, we ran a much less studied system (129Xe)

at a much larger beam energy (5.44 TeV) to align ourselves with current experimental

programs.

All of these results were produced using a boost-invariant simulation. Considering

the sensitivities of most observables on nuclear conőgurations, we became interested

in determining if the inclusion of longitudinal observables - through the use of a fully

3+1D version of our framework - could provide additional insights regarding observable

dependencies on speciőc initial state anisotropies. Therefore, extending our successful

analysis to 3+1D, using a smaller and much less constrained system (129Xe) at a much

larger beam energy (5.44 TeV).

The lack of pre-established őrm constraints on 129Xe’s Woods-Saxon parameters

allowed us to probe a wide area of the quadrupole deformation space. Indeed, given

we focused on a single system and collisions energy, we were able to produce statisti-

cally signiőcant results for őve different parametrizations, listed in Table 3. Given the

relevance of the undeformed run in our 197Au runs, we opted to include a similarly

undeformed parametrization in our 129Xe runs. The other parametrizations stemmed

from low-energy experiments and calculations, aligned with our goal to probe as wide

a combined range of 𝛽0
2 and 𝛽2

2 as possible.

Following the same steps as our initial analysis, our model reproduced the charged

particle yields at mid-rapidity across all of our parametrizations and a centrality twice

as large as that of our previous analysis. The rapidity-dependent yields were also

reproduced, albeit with a noticeable and consistent overestimate of the yields in central
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(0-20%) collisions away from mid-rapidity (|𝜂 | > 1). This overestimate was attributed

to the envelope function used to normalize the longitudinal energy distributions at

the interface between IP-Glasma and MUSIC. The scaled charged particle multiplicity

was also plotted (Fig. 57), supporting the conclusions drawn in our őrst analysis that

nuclear structure did not meaningfully affect particle production mechanisms across

centralities.

Other basic observables were also reproduced, with a similar lack of conclusive power

as those of our 238U and 197Au runs. Interestingly, the Xe.207 showed a suppression

of identiőed particle momentum which we attributed to the size of the system being

collided. A more thorough investigation of this effect could be worthwhile. However,

even though the suppression was noticeable, all parametrizations still fell within the

experimental error bars, nullifying any potential constraining power.

More predictive observables, such as the elliptic ŕow, were also shown. 𝑣2{2} once

again allowed us to discriminate between our different parametrizations, determining

on the one hand that 129Xe, much like 197Au, had to be deformed given Xe.0’s -

the undeformed parametrization - disagreement with experimental data. Furthermore,

it suggested that Xe.185*, stemming from recent low-energy parametrizations, was

the best match amongst our chosen parametrizations. The differential elliptic ŕow

underlined the fact that, away from central collisions, the effects of nuclear structure

are washed out by more deőnite and consistent anisotropies due to the increase of

the impact parameter 𝑏. The rapidity-dependent anisotropic ŕows, on the other hand,

held little discriminating power. Indeed, while the scale of the ŕow was reproduced at

mid-rapidity, the evolution of the ŕow with rapidity was not captured accurately by our

model, especially away from central collisions. While this hints at model-improvement

opportunities, it also tells us that, in its current state, our model is unable to use the

rapidity-dependent anisotropic ŕow to differentiate between nuclear parametrizations.

Unsurprisingly, the decorrelation ratios 𝑟𝑛 |𝑛 were also unable to shed light on the

speciőc structure of 129Xe, with calculated curves ŕuctuating and congregating across

the entirety of the 𝜂 range.
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While our comparisons to multi-particle 𝑝𝑇 correlators had been promising in our

initial, boost-invariant analysis, the lack of experimental data for speciőc 𝑛-particle

correlators in 129Xe collisions forced us to overlook a potentially-predictive observable.

Instead, we compared to the standardized skewness 𝛾⟨𝑝𝑇 ⟩. The sparse experimental data

combined to our fairly large error bars inhibited the potential predictive power of this

observable. Nevertheless, it did seem like Xe.185* was once again preferred by our

model and the experimental data.

Using our őve distinct parametrizations, we were able to paint a better picture of how

transverse-momentum-elliptic-ŕow correlations are affected by differences in nuclear

parametrizations, and if the cross-over to anticorrelation in central collisions occurs

smoothly with increasing quadrupole deformation. Indeed, we were able to determine

that quadrupole deformation and triaxiality were insufficient to fully understand the

behavior of the correlator, and that considerations of system size and other structure

properties were also involved in the development of transverse-momentum-elliptic-ŕow

correlations. Nevertheless, it did, much like the 238U curves in our previous analysis,

provide great discriminating power between our parametrizations, clearly favoring the

Xe.185* parametrization in the central region.

Using this wealth of calculations, we were able to provide őrm constraints for 𝛽0
2

and 𝛽2
2 , the deformation parameters modulated during our analysis. Indeed, building on

work presented in Ref. [120], we showed that our model could be used to extract speciőc

values and errors for these parameters based on simulated results and comparisons to

experiment. We showed that the inclusion of an undeformed parametrization greatly

simpliőed the őtting procedure and improved constraints, providing a solid baseline

from which deformation effects could be seen as emerging. Our őtted parameters for

129Xe were 𝛽0
2 = 0.170 ± 0.033 and 𝛽2

2 = 0.057 ± 0.010, which are consistent with

Xe.185*’s parametrization. These constraints can be used to motivate and guide future

runs using parametrizations stemming from a much smaller parameter space, further

constraining 129Xe’s shape through similar methods.
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Our model, composed of IP-Glasma, MUSIC, iSS and SMASH, can therefore be used

to differentiate and constrain nuclear parametrizations. We have also shown that it is

simultaneously capable of reproducing critical observables which rely on physics which

are foundational to our understanding of QCD and of nuclear physics at large. Further-

more, the excellent agreement with experimental data demonstrated by our framework

across many systems and collision energies shows that our approach, while demanding

computationally, generates reliable phenomenological insights using entirely physically-

motivated simulations which are open to improvements with our understanding of fun-

damental physics. In this sense, our methodology truly bridges the existing gap between

low-energy and high-energy nuclear physics, as our constraints on the realms of quark

matter intrinsically rely on our deep understanding of low-energy nuclear structure;

furthering one inevitably leads to a better understanding of the other.

While the work presented in this thesis is complete, self-consistent and provides

signiőcant improvements on methods used previously, it does allow for both improve-

ments and extensions. First, our 197Au results; while we did prove that this nucleus

is deformed, the deformation parameters used in our analysis led to underestimates of

𝑣2{2}, the observable most sensitive to quadrupole deformation. Using the same process

as we developed for 129Xe, we could conduct a system-speciőc calibration and a set of

runs using parametrizations which span the credible deformation parameter space for

197Au, which would allow us to set strong constraints on its shape. The availability of

experimental data for both the 2- and 3-particle 𝑝𝑇 correlators would provide added

constraints to both 𝛽0
2 and 𝛽2

2 . Secondly, an independent re-calibration of the 𝜂 envelope

used in our 3+1D simulations could certainly help improve longitudinal observables. In-

deed, our calculations ended up consistently overestimating the yields in collisions away

from mid-rapidity (|𝜂 | > 1). While our curves fell within the experimental error bars,

the yield overestimates point to a more fundamental problem related to the envelope:

longitudinal slices away from mid-rapidity contain too much energy. This extra energy,

distributed throughout the stress-energy tensor 𝑇 𝜇𝜈 , has effects on other longitudinally-

dependent observables, such as 𝑣2{2}(𝜂). Indeed, more energetic longitudinal slices
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will spend comparatively more time in the hydrodynamic phase, allowing for ŕow to

develop more than if they had had less energy. Therefore, re-calibrating the 𝜂 envelope

to properly contain the sources of errors in our longitudinal observables would be an

important step in a future extension. Finally, related to this last point, an improvement

of our understanding of the sources of longitudinal decorrelations is paramount to de-

cidely ruling out 𝑟𝑛 |𝑛 and 𝑣𝑛{2}(𝜂) as observables sensitive to nuclear structure. Given

our model’s poor performance against these observables, it is impossible to determine

if when all sources of decorrelation are taken into account our model’s calculation will

behave similarly. Therefore, while our model’s current iteration suggests that longitu-

dinal observables do not offer added insights regarding early-stage properties, future

work will be required to modify our model so that it encompasses most primary sources

of longitudinal decorrelations appropriately.

This thesis signiőcantly advances the őeld of heavy-ion collision research. By im-

proving and pioneering novel methods in high-energy nuclear physics simulations, it

provides useful and accurate estimates of the fundamental geometric properties of

atomic nuclei. The simulation framework and large-scale data analysis and comparison

described in this thesis sets a new standard in bridging low-energy estimates of nuclear

properties and high-energy experimental data.

The production of strongly-interacting matter in terrestrial colliders is a remarkable

achievement, akin to recreating the conditions of the early universe. Inferring its proper-

ties along with those of stable nuclear matter is a complex task. This thesis contributes

signiőcantly to our understanding of the building blocks of matter, their different states

and how the rules guiding their interactions change through phase space. As research

continues and new physical insights emerge, our knowledge of hot QCD matter will

undoubtedly deepen. This thesis represents a milestone in this ongoing journey.
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A
GAU G E T H E O RY C L A R I F I CAT I O N S

a.1 motivating gauge links

When in Section 3.3.1 we introduced the following ansatz for the gauge links

𝑈 (𝑥) = exp
(
𝑖𝑔𝑎𝐴𝑎𝜇 (𝑥)𝑡𝑎

)
(A.1)

we did not provide many őrst-principles explanations for this speciőc choice. In that

same chapter, we established how this choice produces neat relationships which can

lead to the extraction of useful physical quantities, such as the őeld strength tensor 𝐹 𝜇𝜈 ,

through products of adjacent links. This choice is much more fundamental than our

lack of explicit explanation in the body of the thesis let on.

Let us deőne Ψ(𝑥), a complex Dirac őeld representing some particle. Gauge theories

require invariance under speciőc local transformations, such as

Ψ(𝑥) → exp(𝑖𝛼 (𝑥))Ψ(𝑥) (A.2)

where 𝛼 (𝑥) is some local phase space rotation. Ψ(𝑥)’s derivatives must also be invariant

under gauge transformations, complicating things. Indeed, given that the phase space

rotations 𝛼 (𝑥) may vary locally, deőning an invariant derivative is not trivial. Explicitly,

starting from a basic formulation of Ψ’s derivative at some point 𝑥 , we have

𝑛𝜇𝜕𝜇Ψ(𝑥) = lim
𝜖→0

Ψ(𝑥 + 𝜖𝑛) − Ψ(𝑥)
𝜖

(A.3)

where 𝑛𝜇 is some four-vector introducing a small change in every allowed direction.

Obviously, based on Eq. (A.2), Ψ(𝑥 + 𝜖𝑛) and Ψ(𝑥) can (and most probably will)
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have incurred different transformations. We, therefore, need to introduce terms to take

these different transformations into account. To do so, the gauge link 𝑈 is introduced.

Formally, it links to points in spacetime such that their transformations are connected,

ensuring that our őeld at different places is comparable. When transformed, the gauge

link becomes

𝑈 (𝑥 ,𝑦) → exp(𝑖𝛼 (𝑥))𝑈 (𝑥 ,𝑦) exp(−𝑖𝛼 (𝑦)). (A.4)

By deőnition,𝑈 (𝑥 ,𝑥) = 1. Using this link, we can make it so that Ψ(𝑥) and𝑈 (𝑥 ,𝑦)Ψ(𝑦)
transform in the same way under gauge transformations. Indeed, the exp(−𝑖𝛼 (𝑦)) term

will cancel the corresponding exp(𝑖𝛼 (𝑦)) rotation from Ψ(𝑦)’s transformation, leaving

only exp(𝑖𝛼 (𝑥)) as the rotation. Incorporating the gauge link, the previous simple

derivative can őnally be taken, i.e.

𝑛𝜇𝐷𝜇Ψ(𝑥) = lim
𝜖→0

Ψ(𝑥 + 𝜖𝑛) −𝑈 (𝑥 + 𝜖𝑛,𝑥)Ψ(𝑥)
𝜖

. (A.5)

Under gauge transformations, both Ψ(𝑥 + 𝜖𝑛) and 𝑈 (𝑥 + 𝜖𝑛,𝑥)Ψ(𝑥) transform in the

same way (i.e. they both gain an exp(𝑖𝛼 (𝑥 +𝜖𝑛)) term), allowing us to take the difference

between these two quantities in a meaningful and consistent way. In QCD, the gauge

link𝑈𝜇 (𝑥) is deőned as

𝑈𝜇 (𝑥) = P exp

(
𝑖𝑔

∫ 𝑥𝑖+1

𝑥𝑖

𝑑𝑥 𝜇𝐴𝑎𝜇 (𝑥)𝑡𝑎
)
≈ exp

(
𝑖𝑔𝐴𝑎𝜇 (𝑥)𝑡𝑎

)
(A.6)

which is the same form used in this thesis. In IP-Glasma, the only evolve őelds are the

color gauge őelds themselves, meaning that there are not any Dirac őelds to transform

from lattice site to lattice site, explaining why the gauge links themselves are the only

degrees of freedom in our theory and, őnally, resolve this tension.

a.2 numerical errors in ip-glasma

In simulations, numerical errors must be treated carefully to ensure results’ reliability.

This short section will list the most signiőcant error terms found in different expansions



A.2 numerical errors in ip-glasma 201

used in IP-Glasma. We begin with the gauge link itself. Expanding the exponential, we

have

𝑈𝜇 (𝑥) ≈ 1 + 𝑖𝑔𝑎𝐴𝑎𝜇 (𝑥)𝑡𝑎 −𝑔2𝑎2𝐴𝑎𝜇𝑡
𝑎𝐴𝑏𝜇𝑡

𝑏 + O(𝑎3) (A.7)

where we keep only terms up to quadratic order as those are relevant for the calculation

of the plaquettes (see Eq. (3.80) and Fig. 21). Therefore, in our simulations, the gauge

links themselves carry an inherent O(𝑎3) error, which leads to O(10−6 fm) given we

used 𝑎 = 0.05 fm in our runs. By extension, 𝐹 𝜇𝜈 will carry a similar error, while the

squared őeld strength tensor - a critical component of the stress-energy tensor 𝑇 𝜇𝜈 -

will carry a much smaller error, O(𝑎6) ≈ O(10−12 fm). Then, the choice of the lattice

spacing considerably affects the reliability of the results produced by IP-Glasma.

Related to these errors on the gauge links are so-called lattice effects, which come

from our use of a discrete space to approximate our continuous universe. These effects

are related to the resolution of the saturation scale 𝑄𝑠 in the transverse plane. Indeed,

it is understood that if the saturation scale in relevant interaction areas strays away

from a range set by the physical extent of the lattice, errors driven by our lattice’s poor

resolution outside of this 𝑄𝑠 range will matter. This range is

1

𝐿
≤ 𝑄𝑠 ≤

1

𝑎
(A.8)

where 𝑎 is the lattice spacing deőned previously, and 𝐿 is the linear extent of the lattice

in the transverse plane. These resolution considerations are critical in 3+1D, where the

JIMWLK evolution evolves the saturation scale across a wide rapidity range, leading

to a fairly wide range of probed saturation scales for any given event. The parameters

used in our simulations lead to

0.01 GeV ≤ 𝑄𝑠 ≤ 3.5 GeV. (A.9)

To ensure that the values of 𝑄𝑠 probed within our simulations remain well within this

range, we had to limit the rapidity range of our longitudinal evolution to |𝑦 | ≤ 4.0.

Therefore, lattice effects must be carefully considered when determining an appropriate

parameter set for IP-Glasma.
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Finally, derivatives taken in our derivations of the equations of motion on the lattice

introduce errors. As a numerical simulation, IP-Glasma approximates derivatives using

different techniques that depend on the differentiated functions’ properties. While the

code employs all best practices, unstable functions, such as those describing the gauge

őelds from site to site at early times (i.e. following the color charge density sampling)

can produce considerable errors that must be considered. These early-time errors, for

example, are dealt with by utilizing minimal time steps at early time to avoid large

temporal derivatives and improve stability.



B
D E TA I L S O F N U M E R I CA L S I M U L AT I O N S

b.1 converting spatial anisotropy into anisotropic flow

We have already discussed at length the direct dependence momentum anisotropies

have on initial state (or geometric) anisotropies. We have explained how asymmetric

interaction regions lead to uneven buildups of ŕow, which, in turn, generate ŕow

imbalances in the QGP, culminating in detectable anisotropies in the distributions of

particles which are generated in a given collision. While we have deőned momentum

anisotropy thoroughly, we have not yet discussed the spatial anisotropy 𝜀𝑛. It is given

by [139]

𝜀𝑛 =
𝑑2𝑥 𝑟𝑛𝜖 ( ®𝑥⊥)𝑒𝑖𝑛𝜙
𝑑2𝑥 𝑟𝑛𝜖 ( ®𝑥⊥)

, (B.1)

where 𝜖 is the energy density and 𝜙 is the azimuthal angle, the same angle used in

anisotropic ŕow calculations. The energy density’s role in this observable is a weighting

function: more energetic parcels of the glasma have more weight in the őnal calculated

value. Therefore, this calculation differs signiőcantly from simply extracting the general

shape of the overlap area (much like we did qualitatively in Chapter 2), determining that

it is anisotropic and positing that this anisotropy will have some effect on the őnal state.

The inclusion of the energy density as a weight function here takes into account that

energy imbalances are what drive anisotropic ŕow at a fundamental level; the shape of

the overlap region has a large impact if we assume that the energy anisotropies match

the pure spatial anisotropies exhibited by the overlap region, which is generally the case.

203
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Figure 73: Event-by-event elliptic ŕow 𝑣2 as a function of initial state ellipticity 𝜀2 for various

narrow centrality slices in Xe+Xe collisions. All 129Xe parametrizations used are

represented. All axes have the same scale to better demonstrate the correlation

between these quantities.

Eq. (B.1)’s quantitative measure of initial state anisotropy can help us further ce-

ment the direct relationship between the shape of atomic nuclei and the momentum

anisotropies presented by őnal-state particles. Figure 73 shows the 𝑛 = 2 component

of spatial anisotropy - the ellipticity - plotted against the event-by-event elliptic ŕow 𝑣2.

The four panels present four different narrow centrality slices. We őnd that, across all

centrality slices, the correlation is robust and fairly consistent, with a slight dip in our

most peripheral (50-55%) slice. In general, we write

𝑣𝑛 = 𝜅𝑛𝜀𝑛

to showcase the linear dependency of the observable anisotropic ŕow on the spatial

anisotropy of the initial state. We őnd 𝜅2 ∼ 0.23 in our three most central slices, while

our most peripheral slice yields 𝜅2 = 0.18. This smaller coefficient is explained as the
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sum of multiple effects. Firstly, as is evident in Fig. 73, the distributions of both 𝑣2

and 𝜀2 are much wider in peripheral events, weakening the correlation. Secondly, at a

more interesting level for our stated goals of characterizing exotic nuclear matter, this

dip in the coefficient is explained by the progressive breakdown of the applicability of

our hydrodynamic framework in peripheral collisions. Indeed, the 𝜅𝑛 coefficients are

highly dependent on the parameters of the hydrodynamic evolution, such as the bulk and

shear viscosities. This makes sense since, by deőnition, they measure how well initial

state anisotropies are transferred into őnal state anisotropies via the hydrodynamic

phase. Hydrodynamics therefore acts as a signal carrier, and both the shear and bulk

viscosities play an important role in determining how much information from the initial

state is encoded in the observed particle distributions. Therefore, as we move towards

events where the hydrodynamic phase becomes less and less long-lived and applicable,

we őnd that our events transform less and less initial state anisotropy into őnal state

anisotropy.

Figure 73 simultaneously conőrms that initial state ellipticity drives őnal-state elliptic

ŕow and that the hydrodynamic evolution is critical to converting these geometric initial

state properties into coherent őnal-state signals. One can (and should) wonder if and

how this 𝜅2 coefficient changes when we move from 3D to 2D. Turning our attention

to Fig. 74, we őnd the same striking correlation as before, with the New U and Def

Au distributions overlapping considerably. Quantitatively, we őnd 𝜅U
2 ∼ 0.175 and

𝜅Au
2 ∼ 0.185. This slight difference in the correlation coefficients is mainly driven

by the larger width of the 238U 𝜀2 distributions and by the slightly larger collision

energy used for the 197Au events (193 GeV for 238U vs. 200 GeV for 197Au). This larger

collision energy will inevitably lead to more energy being deposited in the transverse

plane, leading to a longer hydrodynamic evolution and a more coherent signal of the

initial state ellipticity in the őnal state. This difference in beam energy will also drive

most of the differences between the 𝜅2 extracted from our 2D and 3D simulations;

related to this, the fact that our proportionality constant 𝐶 (see Eq. (3.33)) is almost

three times greater for our 129Xe runs as it was for our 238U and 197Au runs most certainly
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Figure 74: Event-by-event elliptic ŕow 𝑣2 as a function of initial state ellipticity 𝜀2 for various

narrow centrality slices in U+U and Au+Au collisions. Only two parametrizations of

238U and 197Au are represented. All axes have the same scale to better demonstrate

the correlation between these quantities. Furthermore, the same scaling as Fig. 73 is

preserved to enable more relevant comparisons between the őgures.

plays a role, as it modiőes how efficiently the saturation scale 𝑄𝑠 is transformed into

color charge ŕuctuations, which greatly affects the properties of the initial state and of

its spatial anisotropy (because of our weighing by energy density 𝜖).

Even though we have found that triangular ŕow 𝑣3 does not provide much discrim-

inatory information for our nuclear shape extractions, it can be interesting to see how

initial state triangularity is distributed against triangular ŕow. Figure 75 shows triangu-

lar ŕow plotted against triangularity for Xe+Xe collisions. We őnd a strong correlation

between the spatial anisotropy and its corresponding anisotropic ŕow coefficient in

central collisions. Interestingly, the distribution of triangularities in central events is

fairly narrow. This is consistent with our underestimation of this observable across the

centrality spectrum and energy spectrum: because triangular ŕow is driven by ŕuctu-
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Figure 75: Event-by-event triangular ŕow 𝑣3 as a function of initial state triangularity 𝜀3 for vari-

ous narrow centrality slices in U+U and Au+Au collisions. All 129Xe parametrizations

used are represented. All axes have the same scale to better demonstrate the correla-

tion between these quantities.

ations, having too narrow of a triangularity distribution entails that we underestimate

ŕuctuations in triangularity. As mentioned previously, this could be mended by the

inclusion of sub-nucleonic degrees of freedom in the initial state. These quark hot

spots would create more ŕuctuations in the energy density distribution 𝜖 ( ®𝑥⊥), widening

our distribution and generating more triangular ŕow. In the more peripheral bins, our

triangularity distribution widens and, consequently, we generate much more triangular

ŕow. Referring back to Fig. 63, we see that our curves match the experimental curves

better as we move to more peripheral collisions, consistent with what we observe in

Fig. 75. Finally, 𝜅3 decreases much faster than 𝜅2 across the same centrality spectrum,

going from 𝜅3 ∼ 0.145 for 0-5% and 10-15% to 𝜅3 ∼ 0.1 and 0.06 for 30-35% and

50-55% respectively. This captures both the ŕuctuation-driven nature of this observable

and the role of the hydrodynamic evolution in allowing these signals to form: the faint
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nature of the triangularity as an initial state signal requires more time to form in the

hydrodynamics phase, meaning that it becomes less coherent quicker as we move to

more peripheral collisions.

b.2 longitudinal correlations in the initial state

When analyzing the longitudinal dependency of anisotropic ŕow in Chapter 7, we

determined that our model did not seem to incorporate enough sources of decorrelations,

leading to an overestimate of the anisotropic ŕow at large absolute rapidities. We

shared avenues for improvement, ranging from including mini-jets in the evolution to

including explicit rotational decorrelations before the hydrodynamic evolution. These

missing components make it hard to determine whether or not the JIMWLK evolution

introduces sufficient decorrelations into our model.

The JIMWLK evolution induces explicit decorrelations by including the noise terms

𝜁 𝑎𝑖 described in Eq. (6.11). These noise terms are random variables which serve as

corrections to the color charges sourcing the classical gluon őelds; they represent the

stochastic (or random) nature of gluon emission and absorption, ensuring that the

different color charge components are sufficiently decorrelated within a slice and from

slice to slice. Looking at Eq. (6.10), we also őnd that the exponentials on both sides

of 𝑉 ( ®𝑥⊥,𝑌 ) contain factors of
√︁

d𝑦, the longitudinal extent of our slices. This rapidity

step factor is intrinsically related to the correlators 𝜁 [122], and, actually, the scale of

the stochastic term in Eq. (6.10) is proportional to
√︁

d𝑦. Therefore, choosing the extent

of each rapidity slice in our simulations is no trivial matter, as it can directly affect

correlations between slices. The JIMWLK evolutions assume a small enough rapidity

step d𝑦 to allow for expansions of the stochastic terms up to second order. However, each

longitudinal slice is the equivalent of one 2D simulation; choosing a small longitudinal

step may be safe, but it inevitably leads to rapidly increasing computational costs which

complicate the types of large-scale analyses we are interested in.
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Figure 76: Distribution of the cell-to-cell difference in energy density between slices separated

by Δ𝜂 = 0.66, which is one longitudinal step using d𝜂 = 0.66 and two steps using

d𝜂 = 0.33.

At the onset of our 129Xe runs, we decided to conduct a quantitative test comparing

slice-to-slice correlations in the initial state energy density conőgurations of őxed-seed

events (i.e. events which collide the exact same nuclei) stemming from a ‘őne’𝑑𝜂 = 0.33

and a ‘coarse’ 𝑑𝜂 = 0.66 implementation of our longitudinal steps. Our thought process

was that if both distributions of cell-to-cell differences were similar from one setting to

the other, the coarser implementation would be appropriate for our needs.

Figure 76 shows the distribution of differences in energy density for slices separated

by Δ𝜂 = 0.66, constituting a single and a double step for our őner and coarser conőgura-

tions respectively. The differences are taken on a cell-to-cell basis: the energy density of

the cell at (𝑥 ,𝑦,𝜂0) is subtracted from that of the cell at (𝑥 ,𝑦,𝜂1), providing an idea of

how slice-to-slice differences are distributed. As is evident from Fig. 76, no meaningful

difference exists between the two IP-Glasma conőgurations; if anything, the smaller 𝜂
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Figure 77: Distribution of the cell-to-cell difference in energy density between slices separated

by Δ𝜂 = 4, which is six longitudinal steps using d𝜂 = 0.66 and twelve steps using

d𝜂 = 0.33.

steps seem to provide slightly larger correlations given the larger peak in the probability

density around 0. We analyzed differences stemming from larger 𝜂 gaps to ensure that

we were not overlooking larger-scale effects. Figure 77 shows the distribution of differ-

ences for both conőgurations stemming from slices separated by a large 𝜂 gap, namely

Δ𝜂 = 4. Once again, both distributions are remarkably similar given the analysis we

conducted: once again, the smaller 𝜂 step seems to provide slightly less decorrelations

given the the relationship between the two probability densities around 0. The negative

skew of these distributions is because we are subtracting slices at mid-rapidity from

slices at large 𝜂, which naturally have less energy density than those at mid-rapidity

given the nature of the JIMWLK evolution.
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Based on Figs. 76 and 77, we decided to use a coarser (d𝜂 = 0.66) longitudinal

conőguration for IP-Glasma, which greatly improved our computational efficiency on

an event-by-event basis.
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