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ABSTRACT

Heavy-ion collisions performed at facilities such as the Large Hadron Collider (LHC)
and the Relativistic Heavy Ion Collider (RHIC) produce the hottest matter in the universe
at ~ 10'? K. This generates an energetic state of matter in which quarks and gluons
become deconfined, known as the Quark Gluon Plasma. This material only survives
for approximately 10723 s, presenting many challenges for precise study. However, its
fleeting nature can, at times, be used as a powerful tool.

Atomic nuclei, as natural phenomena described by quantum field theory, are defined
by their reliance on the wavefunction and its internal and external fluctuations. As
prescribed by quantum mechanics, these fluctuations are guided by underlying states
encoded in the wavefunction of a specific nucleus. Ascribing a physical feature to an
atomic nucleus demands that its overall wavefunction - the superposition of its intrinsic
quantum states - prescribe this feature. This means that, when trying to determine the
overall structural ‘shape’ of a nucleus, the wavefunction generally appears as spherically
symmetric, even though it may be composed of a superposition of quantum states which
individually have well-defined shapes due to their angular momentum structures. For a
given nucleus, the typical time scale of fluctuations in angular (or rotational) degrees
of freedom is ~ 1072! s. Typical spectroscopic imaging methods offer resolutions on
much longer timescales, probing a superposition of a large number of these underlying
states, and therefore complicating the task of understanding the underlying states. More
energetic and targeted methods, such as electron-ion collisions, do provide sufficiently
short resolution scales, but the nature of these probes only allows for highly-localized
‘images’: building a composite out of a collection of these images over many events

simply leads to the same problem as with spectroscopic methods.
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Heavy-ion collisions provide us with the tools to solve the nuclear imaging problem.
Indeed, the nucleus-nucleus interaction happens fast enough as to resolve only a single
state fluctuation, and the high-energy nucleons participating in a collision give us
access to the superposition of the many-body nucleon distributions of the collision
system. In essence, they act as a camera with an exposure rapid enough to capture a
single constituent state of the nuclear wavefunction, essentially peering into the shape of
these fluctuations; these fluctuations then create anisotropic geometric configurations in
the initial state, which are detectable in experimental observables. That is, experimental
results gathered during collisions of deformed systems would be irreconcilable with a
theoretical picture excluding the shapes of these fluctuations.

In this study, we use a fully state-of-the-art hybrid model of heavy-ion collisions
consisting of the IP-Glasma initial state and pre-equilibrium evolution, 2+1 and 3+1D
MUSIC viscous hydrodynamics, 1SS particlization and SMASH hadronic cascade. Our
end-to-end physical model allows us to generate nucleon configurations consistent with
low-energy estimates of nuclear structure, collide them at a given energy, evolve the
thermalized QGP and produce observables which are directly comparable to results
produced in experiments. This one-to-one comparison to experiment allows us to put
strong constraints on the shape of the fluctuations of the wavefunction and therefore on
the nuclear wavefunction itself, in turn informing low-energy physicists as to what the
most likely geometric properties of the wavefunction are.

We share results for 3 different systems, namely 23U, 17 Au and '*°Xe at RHIC and
LHC energies, which show that our cutting-edge, QCD-based framework can select

appropriate nuclear configurations based on direct comparisons to experimental results.
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RESUME

Les collisions d’ions lourds réalisées dans des installations telles que le Grand collision-
neur de hadrons (LHC) et le collisionneur d’ions lourds relativistes (RHIC) produisent
la matiére la plus chaude de notre univers, donc la température s’approche de 1012 K.
Ces collisions génerent un état extrémement énergétique et éphémere dans lequel les
quarks et les gluons deviennent déconfinés, le Plasma de Quarks et de Gluons (QGP).
Cet état de déconfinement ne dure qu’environ 10723 s, ce qui complique son analyse
précise. Sa bréve nature peut toutefois aussi étre utilisée comme puissant outil.

Les noyaux atomiques, en tant que phénomenes naturels décrits par la théorie quan-
tique des champs, sont définis par leur dépendance a I’égard de la fonction d’onde et
de ses fluctuations internes et externes. Comme le prescrit la mécanique quantique, ces
fluctuations sont guidées par des états sous-jacents encodés dans la fonction d’onde
d’un noyau donné. L'attribution d’une caractéristique physique a un noyau atomique
exige que sa fonction d’onde globale, c’est-a-dire la superposition de ses états quan-
tiques intrinseéques, prescrive cette caractéristique. Cela signifie que, lorsqu’on essaie
de déterminer la « forme » globale d’un noyau, la fonction d’onde apparait générale-
ment comme étant a sphérique, méme si elle peut tre composée d’une superposition
d’états quantiques qui, individuellement, ont des formes bien définies en raison de
leurs structures de moment angulaire. Pour un noyau donné, I’échelle de temps typ-
ique sur laquelle les fluctuations des degrés de liberté angulaires (ou rotationnels) se
produisent est de ~ 1072 s. Les méthodes d’imagerie spectroscopique typiques offrent
des résolutions sur des échelles de temps beaucoup plus longues que celle-ci, sondant
une superposition d’un grand nombre d’états sous-jacents, ce qui complique la tache
de compréhension desdits €tats. Des méthodes plus énergétiques et plus ciblées, telles

que les collisions électron-ion, permettent d’obtenir des échelles de résolution suffisam-



ment courtes, mais la nature de ces sondes ne permet d’obtenir que des « images » tres
localisées : la construction d’un composite a partir d’une collection de ces images sur
de nombreux événements conduit simplement au méme probleme qu’avec les méthodes
spectroscopiques.

Les collisions d’ions lourds nous fournissent les outils nécessaires pour résoudre le
probleme de I’imagerie nucléaire. En effet, I’interaction entre les noyaux est suffisam-
ment rapide pour ne résoudre qu’une seule fluctuation d’état, et les nucléons participant
a une collision a haute énergie nous donnent acces a une superposition des distributions
de nucléons du systeme de collision. Ils agissent essentiellement comme une caméra
dont le temps d’exposition est suffisamment rapide pour capturer un seul état consti-
tutif de la fonction d’onde nucléaire, produisant une image de la forme d’une de ces
fluctuations. Ces fluctuations créent alors des configurations géométriques anisotropes
dans I’état initial, qui sont détectables dans les données expérimentales. Les résultats
expérimentaux recueillis lors de collisions de systemes déformés seraient inconciliables
avec une image théorique excluant les formes de ces fluctuations.

Dans cette étude, nous utilisons un modele hybride de collisions d’ions lourds com-
posé d’IP-Glasma comme état initial évolutif, de MUSIC pour la phase d’hydrodynamique
visqueuse en 2+1 et 3+1D, de la particulation d’iSS et de la cascade hadronique de
SMASH. Notre modele physique nous permet de générer des configurations de nucléons
compatibles avec les estimations de la structure nucléaire a basse énergie, de les faire
entrer en collision a une énergie donnée, d’évoluer le QGP thermalisé et de produire des
données directement comparables aux résultats expérimentaux. Cette comparaison di-
recte aux résultats expérimentaux nous permet d’imposer des contraintes strictes sur la
forme des fluctuations de la fonction d’onde et donc sur la fonction d’onde nucléaire en
soi. Ces contraintes permettent ensuite aux physiciens des basses énergies de connaitre
les propriétés géométriques les plus probables de la fonction d’onde.

Nous partageons les résultats obtenus pour trois systeémes différents, soit 28U, %7 Au

et 12Xe aux énergies du RHIC et du LHC, qui montrent que nos méthodes de pointe,
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basé sur lachromodynamique quantique, peut sélectionner des configurations nucléaires

appropriées sur la base de comparaisons directes avec les résultats expérimentaux.
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CONTRIBUTION TO ORIGINAL
KNOWLEDGE

Chapters 1-4 — These chapters provide, in order, a general introduction to nuclear
physics, theoretical and experimental advancements in nuclear structure studies and
emulation, a complete review of the pre-equilibrium and hydrodynamics evolution
phases of heavy-ion collisions, and a thorough description of experimental observables
which are relevant to the current study. I have contributed significantly to our nucleon
sampling procedure [1] and to the ensuring stability in the pre-equilibrium evolution.
Furthermore, I have made significant advancements in automation procedures for run-
ning our codes on high performance computing infrastructure.

Chapter 5 — Introduces first-of-their-kind results stemming from fully physically-
motivated simulations of heavy-ion collisions across two beam energies and systems
("7 Au and ?U), and four total nuclear parametrizations [1]. My results establish
the efficacy and sensitivity of our framework to fairly small changes to the nuclear
parametrizations and, therefore, initial state geometry. Through a single calibration
step, our framework reproduces all provided baseline observables, confirming our ap-
proach’s reliability. In a first, I then use our appropriately calibrated model to discrimi-
nate between potential nuclear parametrizations, providing physics-backed insights as
to which parametrizations are better matches for the entirety of the experimental data.
This thorough reproduction and combined matching of experimental data are novel to
the field, and have been published in Ref. [1]. The calculations producing our results
were conducted on high performance computing infrastructure and totalized approxi-
mately 450 core-years of compute time.

Chapter 6 — We extend the boost-invariant framework to 3+1 dimension, providing

XXX
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theoretical motivation and some numerical details. Once again, similar advancements
to the computing procedures have been made in the 3+1D framework, allowing for a
more streamlined process, quicker computations and, therefore, better statistics.

Chapter 7 — Building on the novel work from Chapter 5, I conduct the first complete
analysis and synthesis of the nuclear structure of '>Xe using the entirety of available
experimental data simultaneously, seeking a parametrization which best reproduces all
the data. Furthermore, I provide the first thorough analysis of the sensitivity of longi-
tudinal observables to geometric fluctuations in the initial state, allowing for further
studies to build on our acquired knowledge. Finally, I use novel techniques to provide a
most-likely parametrization fit for '>°Xe, constraining the wide collection of ‘accepted’
129Xe parametrizations down to a much narrower range of parametrization parameters.
These calculations were made using our physics-based model, and which required the

use of 700 core-years of compute time.
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INTRODUCTION TO NUCLEAR PHYSICS

When Ernest Rutherford arrived at McGill in 1898, he was already a renowned physicist
with years of contributions to the nascent field of radioactivity. His discovery and
subsequent naming of alpha and beta rays provided him with a view of the microscopic
world that few of his time had been able to formalize; a view which, through years of
experimental process and progress, would lead to his landmark ‘gold foil experiment,’
proving once and for all that atoms, the building blocks of all known matter at the
time, were made up predominantly of vacuum, harboring an extremely dense nucleus of
positive charge at their cores. His discovery of the true nature of atoms spurred the golden
age of nuclear physics, from the discovery of neutrons by James Chadwick [2] to the
initial description and characterization of nuclear fusion as stars’ secret to longevity and
energy by Eddington [3]. The contemporaneous discovery and description of quantum
mechanics finally led to an event which is directly linked to the writing of this thesis
today: the initial positing by Hideki Yukawa [4] of the fundamental force required for
binding neutrons and protons inside an atomic nucleus. This new force, mediated by
a yet-to-be-discovered particle he named pi mesons, would come to be known as the
strong nuclear force.

Over the next 90 years, our understanding and definitions of the strong nuclear force
have evolved and complexified. Following the successful characterization of electro-
magnetism via quantum field theory, a similar program was introduced to attempt to
describe the strong force as a fundamental interaction fully. While, at first, the strong
force could not be fully described by quantum field theory given quarks, the theorized

fundamental building blocks of hadrons, had never been detected alone, deep inelastic
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Figure 1: Ernest Rutherford, the ‘father of nuclear physics’, shown in his laboratory at McGill.
His contributions to the field, most notably his descriptions of radiative processes and

atomic nuclei, spurred the contemporary era of nuclear physics.

scattering experiments led by James Bjorken [5] showed that quarks really did exist. The
subsequent proposal of a new quantum number - color - to explain how the existence
of A** did not violate Pauli’s exclusion principle sealed the deal: the field of Quantum

Chromodynamics (QCD) was born.

1.1 QCD CRASH COURSE

QCD is a Yang-Mills theory, a non-abelian group theory. Its non-abelian nature means
that its mediators - gluons - are themselves affected by the interaction, and can therefore

radiate more gluons. It also means that its coupling strength increases with distance,
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making QCD a theory characterized by asymptotic freedom. The QCD Lagrangian is
given by

Locp = Z Iy (1B~ my) gy — gEGL "™ (L1)

with a being the quark color index, which runs from 1 to 8, f being the index that runs
over the quark flavor space and /¢ being the Dirac spinor of the quark field. Here, Dirac
slash notation - Ip = y#D, - was used for succinctness, where y* are the Dirac matrices

and D, is the covariant derivative, defined as
D, =d,+ igAZta, (1.2)

where we have introduced the SU(3) generators t,, commonly referred to as Gell-Mann
matrices [6], which are the source of the non-abelian nature of QCD since they do not

commute. Indeed,

[tatp] = if Pt (1.3)

with ¢, the SU(3) structure constant. These generators combined to the color gauge

field components A; form the color gauge fields (sometimes referred to as gluon fields),
Ay = AZta. (1.4)

Equation (1.1) also sees the introduction of the QCD field strength tensor F, uv’ which

can be understood as being very similar in form to its Quantum Electrodynamics
counterpart, with the addition of a non-vanishing commutator between the color gauge

fields due to QCD being a non-abelian theory, i.e.,
Fu = 9,A, — 0,A, +ig [Ay, A, ]
—Fl ta = 0,A%, — 3, A%ty + igALAY [ts, 1] (1.5)
=Flt, = (a,,A‘V’ta —9,A%,—g fabcAZA‘;) t,.

As in other theories, the strong coupling g marks the strength of the interaction

between colored particles (quarks or gluons). As mentioned above, its value decreases
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with increasing energy, starkly contrasting to the electromagnetic coupling. This means
that particles which interact via the strong interaction can not, unless provided tremen-
dous amounts of energy, extirpate themselves from the grasp of its coupling, leading
to a phenomenon, hinted at earlier, called color confinement. We can understand this
behavior theoretically by looking at the S-functions of both theories, a function which
quantifies changes in a theory’s coupling strength at different energy scales. In QED,

we have

Jde e
dlogQ 1272’

pe) = (1.6)

where Q designates the energy scale and e is the QED coupling. We see that the QED
B-function is constant and positive, meaning that, with increasing energy, the QED
coupling increases. In QCD, on the other hand, we have

(1. 2\ g
B(g) = - (?Nc - gnf) Ton2’ (L.7)

where N, is the number of colors and ny is the number of quark flavors. Therefore, for
ng < %Nc, the B-function is negative. There are 3 colors (N, = 3) and, in perturbative
calculations, the number of allowed quark flavors depends on the energy scale Q.
Theoretically, 6 quark flavors are included in the Standard model; taking this value,
f(g) remains negative. Therefore, QCD is an asymptotically free gauge theory.
Asymptotic freedom makes QCD a particularly hard theory to study. The usual pre-
scription of perturbation theory, which analyzes theories at low energies (and, therefore,
at small couplings), does not work for QCD, given that its coupling increases as en-
ergy is decreased. Indeed, looking at Fig. 2, we find that the strong coupling a; = %
increases exponentially as we move towards low energies. As a result, non-perturbative
numerical techniques (such as lattice QCD) do great at high temperatures where the
degrees of freedom are quarks and gluons (i.e. in a state of deconfinement) [8]. Mov-
ing our attention to Fig. 3, current lattice QCD calculations probe the region at and

above the crossover temperature (which newer estimates set to 155 MeV, rather than

170 MeV [9]). However, they do not connect smoothly to the hadronic phase below the
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Figure 2: The running coupling «; as a function of energy Q. Figure taken from Ref. [7].

crossover temperature, let alone to highly complex states of many hadrons combining
to form nuclear matter.

This is where a good question emerges: All of our descriptions in this section seem to
be more applicable to high-energy studies and particle physics; we have given the QCD
Lagrangian, but it (obviously) only contained quarks (as opposed to entire nucleons); we
have described at length how matter interacting via QCD is asymptotically free, meaning
that studying free quarks inherently relies on us moving to a high-energy regime. High-
energy nuclear physics, the topic of this thesis, may therefore seem like somewhat of
a contradiction since nuclear physics has, for more than a century, been concerned
with descriptions of larger-scale systems at energies many orders of magnitude below
those at which the strong coupling allows us to peer into QCD’s structure. However,
since the inception of the first particle colliders, a new paradigm of nuclear physics
research is born. Indeed, while nuclear physics is interested in the mass, energy levels,
geometry and other general features of atomic nuclei, it has also become interested
in understanding how these complex features emerge from elementary descriptions of

quarks and gluons interacting via the strong force. As such, while nuclear physics is

5
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Figure 3: A schematic representation of the QCD phase diagram and where different experi-

mental probes sit. Figure taken from Ref. [10].

still very much interested in descriptions of pure nuclear matter (as found along the
Baryon Chemical Potential axis of Fig. 3, at 900 MeV), it is now also concerned with
reconciling the entirety of the QCD phase diagram with the properties of atomic nuclei
as we know and understand them in nature. Therefore, while particle accelerators are
often associated with particle physics, their use of heavy ions (i.e. medium- to large-
sized atomic nuclei) as collision systems display their use and relevance for nuclear

physics, helping tie the two fields in their quest for a deeper understanding of QCD.

1.2 HEAVY-ION COLLISIONS AND THE QUARK-GLUON PLASMA

In Fig. 3 are inscribed the names of famous experiments conducted over the past few

decades. Those include the Large Hadron Collider (LHC) and the Relativistic Heavy-lon
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Figure 4: Blue curves show the ratio €/T*. The solid line shows low-temperature Hadron Res-
onance Gas (HRG) estimates, while the fuller curve shows the HotQCD prediction.

Figure taken from Ref. [11]

Collider (RHIC), the only two operating heavy-ion colliders, with the former providing
the largest beam energies of the two (as is evident from Fig. 3). These experiments cover
a relatively wide area of the QCD phase diagram, and they all originate from the same
general region, that of the Quark-Gluon Plasma, or QGP. The QGP designates a high-
temperature state of deconfined quarks and gluons, an exotic state of matter without
nucleonic degrees of freedom. Heavy-ion collisions provide the perfect conditions for
creating QGP, as they create states where large amounts of quark matter are packed into
extremely small spaces, i.e. extremely large densities and temperatures. The first particle
accelerators were concerned with smashing single protons into one another. However,
following initial results, it was understood that QGP, which was only hypothesized at
the time, could only be generated in yet more extreme and dense environments; the
need for atomic nuclei collisions became apparent, so heavy-ion collision programs
were undertaken. To understand where the idea of the QGP originates, one must turn

to lattice QCD.

7
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In statistical mechanics, the Stefan-Boltzmann law predicts that the ratio of the energy
density e to the fourth power of the temperature T - €/T* - should be proportional to
the number of degrees of freedom in the system when T > m (or we are considering
massless degrees of freedom). Understanding that these two quantities are related to one
another through the system’s equation of state, this quantity has a non-trivial dependence
on one’s precise and accurate understanding of the system’s evolution. When moving
from a system of hadrons - be they mesons or baryons - to a system made up of
deconfined quarks and gluons, one expects the release of a large number of degrees of
freedom. Indeed, while a gas of pions may only have 3 degrees of freedom in its phase
space, a gas made of the quarks and gluons composing these pions would quickly gain
more than 30 degrees of freedom, accounting for the spins of the quarks and gluons (2
each), the colors of both particles (3 and 8), the allowed quark flavors (2 for a gas of
pions) and a whether a given quark is itself or its antiquark.

This liberation of degrees of freedom shows itself in Fig. 4. There, we see that
the ratio steadily increases from ~ 2 at temperatures below 155 MeV to ~ 14 beyond
370MeV - a considerable jump. This indicates that degrees of freedom are being
liberated continuously, leading us to conclude that the transition between a gas of
hadrons and a deconfined state of quark matter is smooth. This fact is represented in
Fig. 3;indeed, we see that at 0 baryon chemical potential, moving up the temperature axis
leads us to a crossover line which is not a first-order phase transition. The smoothness
exhibited by the e/T* curve in Fig. 4 across the temperature range allows us to infer that
no discontinuity exists in its first derivative, confirming that this transition is smooth
and not a first-order phase transition. Therefore, in heavy-ion collisions, one should
expect to create a state of deconfined quarks and gluons - the QGP - which, as it cools
and expands, smoothly transitions into a shower of hadrons - a hadron gas.

QGP, born out of conditions thought to have first occurred naturally at the onset of
our universe [ 13], is extremely short-lived. Indeed, because the conditions needed for its
existence are so extreme, heavy-ion collisions can only generate QGP for ~ 10723 s [14].

With its lifetime being so small, direct evidence of its existence can not be gathered
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Figure 5: Particle pair production as a function of A¢, the azimuthal angle separation between
the particles, and An, the separation in rapidity space. As we move to more and more

peripheral collisions, the ‘ridge’ phenomenon becomes more apparent. Figure taken

from Ref. [12]

in the lab; one must infer that the products of a given collision event - the hadron gas
produced by the cooling QGP - have collective properties which are consistent with
their constituent quarks and gluons having existed in a fluid-like state moments prior to
their formation.

Figure 5 shows how particle pair production is correlated across centrality, azimuthal
angle spread and rapidity space spread; we will provide precise and complete definitions

of all of these quantities in due time, but for now, one must only understand the following:

* Centrality measures how much two colliding nuclei overlap, with 100% being a
collision where both nuclei just missed one another, and 0% (conversely) repre-

senting collisions of two perfectly-aligned nuclei (refer to Section 2.3).
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* Azimuthal angle ¢ is the emission angle of a given particle in the transverse

plane (x — y plane, perpendicular to the beam axis).

» Rapidity 7 is the longitudinal variable of choice in heavy-ion collisions because
it expands with time, allowing us to describe the QGP in its entirety, whether it is

close to static in the longitudinal direction or moving close to the speed of light.

What Fig. 5 shows, then, is how correlated pairs of particles are across space. Starting
with the upper-left-most panel (marked 0-5%) - the most central collisions analyzed in
this experiment - we find a peak at Ay ~ A¢ ~ 0. This peak is explained by quantum
field theory, which dictates that the probability of particle emission be enhanced when
two particles are collinear; one finds this same peak, with more or less definition, in
all subsequent panels. Beyond this peak, the critical takeaway from this central panel
is the flatness of the An distribution, which implies that particles detected at the two
opposite ends of the experimental apparatus have the same relative azimuthal angle
as particles detected within a much narrower rapidity spread. This entails that particle
emission follows global rules, exhibiting collectivity. This is a tell-tale sign that an
intermediary phase guided by hydrodynamics exists. It also means that the momentum
of each produced hadron is ‘chosen’ independently and at random.

Moving to different panels of Fig. 5, we find the same general features as the 0-5%

panel, with one striking difference emerging as we progress to more peripheral collisions.

While the 0-5% panel plateaus in the A¢ direction beyond A¢ = 2, the other panels
exhibit progressively clearer cos(2A¢) modulation; why should such a modulation
appears as we move to more and more peripheral collisions. As explained briefly above,

peripheral collisions are defined by the two nuclei not overlapping perfectly. This leads

to an almond-shaped - or elliptical - overlap region in which the QGP will be generated.

This anisotropic overlap region breaks azimuthal symmetry at initial time, which leads

to differences in pressure gradients along the two major axes of the elliptic region.

Pressure gradients in turn lead to tangible differences in the momentum distribution
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1.3 NUCLEAR STRUCTURE AND ANISOTROPY

of particles generated in the collision. This momentum anisotropy is measured by

extracting the Fourier coeflicients of the azimuthal angle of the particle distribution, i.e.

N  dN
prdprdyd¢  2mprdprdy

1+ > 20,cos [n{p - ¥r}]|. (1.8)
n=1

Looking at the n = 2 coefficient - called the elliptic flow coeflicient - we find
cos (2 (¢ — ¥r)), which, ignoring the event-plane angle ¥, reminds us of the cos(2A¢)
modulation we found in Fig. 5. As we will see in Chapter 4, Eq. (1.8) is not well-suited
to extract actual flow coefficients, mostly because ¥g, the event plane angle, can not be
determined experimentally. Nevertheless, Eq. (1.8) provides us with a basic intuition for
why a modulation is observed in Fig. 5: an elliptical anisotropy in the overlap between
the colliding nuclei will lead to measurable momentum anisotropies in the final state

thanks to an intermediary phase of collective motion, referred to as hydrodynamics.

1.3 NUCLEAR STRUCTURE AND ANISOTROPY

In relating proofs of the existence of QGP, we introduced the idea of initial state overlap
regions and the anisotropies they may exhibit. However, this discussion implicitly as-
sumed that we were colliding nuclei described by spherical density distributions. Indeed,
the idea that central collisions could not create elliptic flow implies that the overlap
shape generated in these collisions is circular. Since central collisions occur when nu-
clei are perfectly overlapping, we are forced to conclude that the nuclei themselves are
spherical, leading to a circular cross-section in the transverse plane.

However, as we will show in detail in Chapter 2, this picture of atomic nuclei
1s inaccurate for most species. The complex inner workings of nuclei are described
by low-energy QCD interactions between their constituent quarks, interactions which
are, as we have established previously, extremely hard to study experimentally and
describe analytically. Nevertheless, the century-long quest to properly characterize and
model atomic nuclei is still very much active. Our current understanding of the nuclear

wavefunction and of the nucleons that constitute it is that, as a whole, they exhibit
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1.3 NUCLEAR STRUCTURE AND ANISOTROPY

rotational invariance, implying that their wavefunction should be spherically symmetric.
However, this wavefunction is but a collection of underlying nucleonic states which, on
their own, can break rotational invariance, but collectively form a rotationally invariant
state. In other words, the Hamiltonian and its associated wavefunction are invariant,
but the physical underlying states are not; nucleon-nucleon correlations, which are now
known to be key parts of nuclear structure descriptions, inevitably lead to clustering
and complex, asymmetric physical states, steering the field away from the simplistic
view of spherical symmetry [15]. It should, therefore, be understood, as mentioned
above, that most nuclei feature some deformed states, with their total wavefunction
being comprised of fluctuations between all underlying states.

As we will explore in Chapter 2, low-energy experiments may have difficulty probing
the underlying state instead of the total wavefunction. This complicates the task of char-
acterizing the actual shape of a given nucleus, as low-energy experiments may only be
capable of resolving the total wavefunction. Conversely, heavy-ion collisions, with their
high energies, large longitudinal velocities, and, consequently, near-instantaneous inter-
action timescales, provide the perfect setting to probe these states, which spontaneously
break rotational symmetry. Indeed, it is understood that the dominant fluctuations in
nuclei exhibiting large deformation occur once every 1072!'s - timescales which are
so small that one may be excused for calling them instantaneous. Low-energy probes
are not suited for resolving rapidly shifting states; instead, they capture a coherent
superposition of physical states. As established previously, a collision between two
nuclei moving at relativistic speeds is comprised of different stages which, in all, last
around 10723 s, making them 100x shorter-lived than the typical nuclear fluctuation
scales. This means that the colliding nuclei in heavy-ion collisions are not represented
by the superposition of their underlying states, but rather by a single one of the physi-
cal states comprising their total wavefunction. This fact has considerable ramifications
on the modelling of heavy-ion collisions, but also regarding what insights heavy-ion

collisions provide: while we have described collider programs as being concerned with
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1.3 NUCLEAR STRUCTURE AND ANISOTROPY

Central Peripheral
Deformed Spherical

Figure 6: Schematic representation of a central collision between two deformed nuclei and a

peripheral collision of spherically symmetric nuclei.

fundamental QCD, it turns out they can also serve as probes, helping us sharpen our
understanding of low-energy nuclear matter!

To understand why this is, recall Fig. 5 - where we described elliptic flow as caused
by spherically symmetric nuclei colliding off-center. Looking at Fig. 6, we find two

schematic representations of collision events. On the left, we have a central collision

of deformed nuclei, while, on the right, we have a peripheral collision of central nuclei.

Recall that the latter’s elliptic overlap region is the source of the cos(2A¢) modulation
found in Fig. 5’s panels showing results from more peripheral (> 15%) collisions; the
fact that this modulation was not found in the more central panels was explained by
a conversely circular overlap shape between the two colliding nuclei. Figure 6 tells
us that, in collisions of nuclei which present considerably deformed physical state
fluctuations, one should expect to find signals of elliptic flow - caused by an elliptic
overlap region - across all centralities. Furthermore, the scale of the elliptic flow in
collisions involving fully overlapping deformed nuclei informs us on the effective shape
of the underlying fluctuations, allowing us to infer the nuclear distributions that caused
the specific geometrical conditions needed to produce such flow. Therefore, heavy-ion

collisions and their extreme environments somewhat paradoxically provide unique tools
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1.4 THESIS PURPOSE AND ORGANIZATION

to resolve nuclear structure at a fundamental level, a problem which had, for a long

time, been seen as belonging exclusively to low-energy nuclear physics.

1.4 THESIS PURPOSE AND ORGANIZATION

While studies of nuclear structure through the lens of heavy-ion collision modelling
have been undertaken before, they were exclusively concerned with analyzing one
or two ‘observables’ - experimentally detectable particle distribution properties - at
a time. Without reproducing groups of observables simultaneously, these analyses
open themselves up to questions regarding their calibration and specific tuning and
whether or not their findings should be considered final. Furthermore, the use of models
incorporating non-physically-motivated phases, especially before the hydrodynamic
description of the QGP, suggests that these inquiries are more focused on feasibility
than on fundamental physics at different scales.

This thesis, on the other hand, will show results produced using an end-to-end, state-
of-the-art, physically-motivated hybrid model. This model is composed of, in order, IP-
Glasma [16, 17], a model motivated by deep inelastic scattering experiments and their
constraints on gluon saturation, which evolves pure color gauge fields using the Classical
Yang-Mills (CYM) equations; MUSIC [18], a relativistic viscous hydrodynamics code
developed at McGill, which has become the standard in our field; and, 1SS [19, 20] and
SMASH [21], Cooper-Frye sampling code and particle cascading codes respectively,
which produce the observables which may then be compared to experimental results.

This comprehensive, physics-based approach will allow us to confidently infer which
nuclear parametrizations appropriately reflect experimental results and, therefore, are
accurate representations of the physical states fluctuating within the overall nuclear
wavefunction. We will use our framework to analyze different systems at different
energies. We will start by analyzing >3¥U and '°” Au collisions at 193 GeV and 200 GeV
respectively, comparing to experimental results gathered at RHIC. These results will

provide a basis for the reliability and resilience of our model across many observables,
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1.4 THESIS PURPOSE AND ORGANIZATION

along with insights as to its sensitivity to initial state fluctuations caused by changes in
nuclear structure parametrizations. We will then apply our findings to a new system and
energy, namely '2°Xe at 5.44 TeV, with the specific inclusion of longitudinal observables
in our analysis. The inclusion of these new observables, along with the use of our physics-
based model, will mark a new shift in the field’s attempts to properly characterize
stable nuclear matter at low- and high-energies. Furthermore, 12°Xe is defined by the
uncertainty surrounding its appropriate nuclear parametrization, allowing us to conduct
an in-depth and wide-reaching study, which will fill a gap in the literature and allow for
more precise analyses using better-informed parametrizations shortly, further pushing
our knowledge and understanding of the various features of nuclear structure across
atomic species. By using our unique model, we will provide reliable insights which
may be used in future analyses.

This thesis is organized as follows: Chapter 2 introduces the theoretical underpinnings
of nuclear structure studies and of high-energy nuclear parametrizations, along with a
detailed description of the expected effects of structure features on specific observables.
Chapters 3 and 4 detail our model’s theoretical and numerical features in 2 dimensions,
going from the initial state to the final state observables. Throughout, thorough investi-
gations and explanations of the different features are provided. A detailed description
of relevant observables is provided at the end of Chapter 4. Chapter 5 provides the
combined results of 238U and !°”Au and details how and what conclusions may be
extracted from a wide and comprehensive collection of results. Chapter 6 explains how
our model can be extended to include longitudinal dynamics in a way that preserves the
critically consistent physical features that define our 2D model. It also contributes defi-
nitions of longitudinal observables which will be used in our '?°Xe analyses. Chapter 7
shows the results from our first-of-its-kind detailed analysis of '>°Xe results, sharing
our insights and new constraints on the nuclear parametrization of this nucleus. The
final chapter will synthesize and discuss the findings of our two studies, conclude, and

give an outlook perspective for future work.
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1.5 CONVENTIONS

1.5 CONVENTIONS

Throughout this thesis, natural units, where # = ¢ = kg = 1 are assumed unless
explicitly noted otherwise. In SI units, these constants are the speed of light ¢ =
299792458 ms™!, the reduced Planck constant 7 = 1.054 571817 X 1073 Js and the
Boltzmann constant kg = 1.380649 x 1072* JK~!. In practice, one uses multiples of
hic = 0.1973 GeV fm = 1 to convert between distances and energies. This constant also
allows for the reinstatement of SI units in given results. The mostly negative Minkowski

metric g"" = (+, —, —, —) will be used throughout.
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NUCLEAR CONFIGURATIONS

Our description of heavy-ion collisions must begin with the components of nuclei:
nucleons. While in experiments nucleons are part of a larger nuclear wavefunction and
therefore have intricate properties, most simulations of heavy-ion collisions sample
nucleons according to simple rules. The ‘extent’ of the nucleon is determined by the
collision energy +/snn Which dictates the inelastic cross-section onn. Their positions, on
the other hand, are sampled according to some density distribution p(r). This process
entails that the nuclei sampled in most simulated events are collections of independent
nucleons. This idea, of course, is a simplification of the true nature of atomic nuclei
and their wavefunctions, where correlations between nucleons play an important role in
determining their shapes [22—-24]. However, this simple picture has proven remarkably
robust and fruitful, providing a simple and malleable framework that can incorporate

and emulate features as needed.

2.1 SIMPLE WOODS-SAXON DISTRIBUTION

The density distribution p(r) of choice is the Woods-Saxon distribution, which itself is
taken from the two-parameter Fermi distribution,

Po
—R )
1 +exp (rTO)

p(r) = 2.1)

It was first employed in electron-nucleus scattering experiments, characterizing multiple
nuclear species across a wide range of atomic and mass numbers [25]. Because this is

a nuclear density distribution, it must integrate to A, the atomic number of the nucleus
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2.1 SIMPLE WOODS-SAXON DISTRIBUTION

we are considering. Therefore, pg is a normalization factor - the normal nuclear density,

and is ~ 0.16 fm™>. Ry and a are the nuclear radius and the diffusiveness, respectively.

The radius is, by construction, the distance from the center of the nucleus at which the
density p(r) = po/2. The diffusiveness, on the other hand, controls the rate at which the
density falls once one approaches and passes r = Ry. One of the shortcomings of this
type of distribution comes with the fact that nuclei usually have a neutron skin, i.e. a
neutron-rich outer layer [26, 27]. This fact therefore demands that neutrons and protons
be sampled according to different distributions (mostly differing in diffusiveness a),
and its omission from the basic Woods-Saxon picture can lead to tangible differences
in certain observables, especially if experimental centrality classes rely on counting
undeflected neutrons, like Zero Degree Calorimeters (ZDC) do [28].

Figure 7 shows 3 distinct but related Woods-Saxon distributions and their associated
2-dimensional projections which illustrate the impact of change a and Ry. Because the
Woods-Saxon distribution as presented in Eq. (2.1) is spherically symmetric, the 2D
projections have trivial (i.e. no) dependence on the polar angle 6. The distributions
shown in Fig. 7 illustrate the effects of modifications to the two defining parameters,
Ry and a. The initial unmodified parameters are Ry = 6.37 fm and a = 0.535 fm, taken
from Ref. [25], and are plotted in green. The blue distributions exhibit the effect of
doubling the diffusiveness (a = 1.07 fm), while the red ones show that of increasing the
nuclear radius by 40%, to Ry = 8.92 fm. The latter’s effects are noticeable, while those
of the former appear more subtle; the increase in diffusiveness increases the likelihood
of nucleons being sampled further from the center, even if the nuclear radius itself is
unmodified. Indeed, the likelihood of finding a nucleon beyond Ry essentially doubles,
from 6% to 12%. On the other hand, the increase of Ry creates a considerably larger
sampling area which, at constant mass number A, entails a much less dense (or more
diffuse) nucleus. However, it is essential to note that Ry ~ A% and so, at fixed A, the
nuclear radius should not be increased by as large a margin as was used here. Therefore,
if one wants to decrease nucleon density (for a neutron-specific distribution), one usually

only modifies the diffusiveness a. Ry and a being the only two modifiable parameters
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Figure 7: The Woods-Saxon distribution of spherically symmetric '°’Au shown in (top) one-
and (bottom) two-dimensions. The parameters for 197 Au are taken from Ref. [25],
with modifications made sequentially to Ry and a to show the impact of the nuclear

radius and diffusiveness.

of the simple Woods-Saxon distribution, along with the physical limits imposed by the

mass number on the nuclear radius, reveal its fundamentally limited nature.

2.2 NUCLEAR DEFORMATION

We now move on to the subject which is at the core of this thesis, nuclear deformity.
We will first discuss direct experimental evidence of deformity, followed by the modifi-

cations to the Woods-Saxon distribution brought on by this deformity.



2.2 NUCLEAR DEFORMATION
2.2.1 Low-Energy Evidence of Deformation

While today it is understood that most (if not all) nuclei are not perfectly spherically
symmetric, determining the geometric shape of a nucleus experimentally remains im-
possible [29]. Indeed, nuclear deformation can only, at best, be deduced indirectly using
models. What does one mean, then, when one says that a nucleus is deformed? Fol-
lowing discussions presented in Ref. [30, 31], deformity will mainly imply quadrupole

deformation, which occurs when

Bo ~ (Y20, 4)r%) o <(3 cos2(6) — 1) r2> 0, 2.2)

i.e., when the nucleus’ quadrupole moment f, does not vanish. This expression should
be understood in terms of the nuclear wavefunction, with the brackets denoting its
expectation value. Given this relationship to the wavefunction, we should be conscien-
tious that descriptions of deformed nuclei as football- or rugby-shaped do not reflect
the true nature of nuclei at low-energies. Indeed, many nuclei present evidence of a non-
vanishing quadrupole moment alongside null total angular momentum J, the latter being
indicative of rotational invariance. The rotational invariance measured in low-energy
experiments is consistent with the fact that typical spectroscopic measurements are
made on timescales which are much longer than the typical scale for fluctuations in the
rotational degree of freedoms of the wavefunction [32]. Therefore, measurements made
in such experiments capture a coherent superposition of wavefunctions in all orienta-
tions. By comparing data obtained in spectroscopic experiments to model calculations,
we can extract information about the underlying geometrical properties of the nuclear
wavefunction and, therefore, of the shape of nuclei themselves. With that in mind, model
calculations replace nuclear wavefunctions, which may look spherically symmetric on
timescales longer than those of typical rotational fluctuations, by rotational models.
These models describe nuclei as ellipsoidal density distributions randomly oriented in

space. Averaging over all directions preserves the rotational invariance of the system.
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2.2 NUCLEAR DEFORMATION

This approach necessitates the assumption that once the actual nuclear wavefunction

collapses it follows the shape of one of these randomly oriented oblong configurations.

The quadrupole moment for even-even nuclei, introduced in Eq. (2.2), is related to

the transition probability from the ground state to 2%, referred to as B(E2), by [33]

Ji7) in VB(E2), (2.3)

= 5ZeR?

which comes from the general multipole moment f; definition, given below in Eq. (2.4),

based on ground state electric transition rates B(El),

4

= BT 1ZeR B(EI). (2.4)

B

Here, R is the empirical nuclear radius (= 1.2A%), Z 1is the atomic number and e is the
fundamental electric charge. Equations (2.3) and (2.4) are only applicable under strict
assumptions [34]. Furthermore, at first glance, this idea of f, as a parameter for oblong
deformation may not seem obvious. However, it is well-defined geometrically. Indeed,
taking a uniform ellipsoidal density p(7) having the same quadrupole moment 5, and

same volume as a given nucleus, then [33-35]

An Lr?p(PY;(6, ) sin(0)drdod¢

2.5
B2 A (2.5)
which itself is generalized for all [ as [36]
4 [rlp(F)Y2(0, ¢)dr
B = ) ’ : (2.6)

3RIA
where A is the mass number. Equation (2.6) is a strict geometric definition based on
the nuclear density function p(7). The relationship between Egs. (2.4) and (2.6) is not
immediately apparent. However, referring back to Eq. (2.2), we find that the moments
are defined as expectation values of a multipole operator [33]. This multipole operator’s
matrix elements themselves are related to the transition rates B(EIl), completing the link

between the two seemingly unrelated formulas.
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2.2 NUCLEAR DEFORMATION

In any case, f, is both related to the shape of the density distribution of the nucleus
and to transition probabilities. The geometric nature of Eq. (2.6) is a much more general
definition which itself applies to any nucleus, contrary to Eq. (2.4) [34]. A spherical
nucleus has f; = 0V [, while a deformed one takes f; # 0 for some /. We have given gen-
eral expressions for f;, which may puzzle the reader given our focus on the quadrupole
moment f,. This focus is driven by the model we will introduce in Section 2.2.2, but
does not mean that f; for [ > 2 are irrelevant: their analysis in improving our under-
standing of nuclear structure is important. However, measurements of B(EI) for [ > 2
are mostly inexistent, even for considerably deformed nuclei. Therefore, the modelling
focus is generally set on f.

One must keep in mind the previous discussions regarding the true nature of nuclei
as wavefunctions; imposing a definite value of f, to a specific nucleus is only justified
within the confines of rotational models, and that certain species with more minor
(B2 < 0.1) deformation may be subject to considerable fluctuations in their shape [37].
Nevertheless, these are the foundations on which non-trivial nuclear structure is ana-

lyzed.

2.2.2  Determining the Quadrupole Moment f,

Without precise measurements of the electric transition rate B(E2), any modern theo-
retical calculation that wishes to shed light on fundamental nuclear structure will have
to start with the nuclear wavefunction. However, large numbers of nucleons make the
most fundamental version (i.e., solving the Schrodinger equation for the entire nuclear
wavefunction) of this problem practically insoluble. Since independent particles and
their wavefunctions have been studied in much detail, building a model where the
foundational assumption is that nucleons are independent particles has proven to be a

reasonable solution [38],
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2.2 NUCLEAR DEFORMATION

HY) =E[¥)  — > %) =) E¥). 2.7)

This is called the mean-field method, attributed to Hartree-Fock, and it may at first
seem like an oversimplification of the problem at hand, given that it averages nucleon-
nucleon interactions over all nucleons. However, nucleons are fermions, which means
that the Pauli exclusion principle naturally keeps them apart. Furthermore, nucleons are
fairly spread out at low energies within the nuclear volume [38]. Therefore, converting
nucleon-nucleon interactions into a mean-field is a fair first approximation at low
energies. These methods are now generally designated as Energy Density Functional
(EDF) theories and have been used at length to provide insights on nuclear wavefunctions
of all elements.

We will note here that this specific method cannot be used to extract f; for [ > 2,
given the specific assumptions of the model [15]. In the context of constraining the

quadrupole moment f,, EDF is generally used as follows:

1. Pick a value of f3, that is sensible.

2. Find the ground state of the system | %) at given value of 8, using variational meth-
ods (i.e. minimize § ((¥y|(H — uB2)|¥)) = 0 where p is a Lagrange multiplier

which forces the returned ground state to have quadrupole moment /).
3. Repeat for values of f, within a given range.
4. Build a curve of ground state energies E as functions of .

5. Find where the minimum ground state energy lies.

The value of p, providing the smallest ground state energy is attributed to that
nucleus. Luckily, given the persistent relevance of nuclear structure research, these
types of calculations have already been made for practically all nuclei in Ref. [39],

with the added specificity that their mean-field wavefunctions were expanded in the
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Figure 8: Potential energy surfaces as a function of f, (shown as f), calculated using Hartree-
Fock-Bogoliubov framework, taken from Ref. [15]. The solid lines are the ground
state energies, while the dashed lines present rotational energy corrections for spins

I=8,16 & 24.

quantum harmonic oscillator basis, which allows their solutions to break spherical
symmetry while preserving axial symmetry, i.e. providing exclusively oblong shapes.
Fig. 8 shows the mean-field method applied in the context of determining the
quadrupole moment of four isotopes, some of which will be important parts of this
thesis’ main results, namely 2381y, 197 Au and '»*Xe. This collection of isotopes spans
all geometric subtypes of nuclear distributions allowed by the mean-field calculation
as undertaken in Ref. [15]: 298Pb is undeformed, and 238U is heavily deformed and
prolate. We will note the great concordance between this relatively simple model and
experimental data. Indeed, 23®U is an isotope that subscribes to the strict assumptions

guiding Eqgs. (2.3) and (2.4) [40]; using B(E2) = (12.19 +0.62) e2fm* [41], one obtains
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2.2 NUCLEAR DEFORMATION

Bo.v = (0.287 £ 0.007), which is consistent with the minimum found in the upper left
panel of Fig. 8.

129Xe and '°7 Au, on the other hand, provide an unclear picture. They have neighboring
minima on both sides of f, = 0, which indicates that these nuclei do not, according
to the mean-field method, have a well-defined shape. These two isotopes embody the
fundamental limitations of the EDF approach and of trying to attribute a definite shape
to wavefunctions. While both 12Xe and %’ Au present the same level of uncertainty
concerning their true minima, the qualitative features of their respective potential curves
provide discerning information: the broadness of the '2°Xe curve implies that the shape
of its distribution is subject to even more fluctuations than that of '°7 Au.

This uncertainty (or ‘fuzziness’) regarding the shape of these nuclei is precisely why
using results from heavy-ion collisions to extract signals of deformity is important
to the future of nuclear structure research. As mentioned at the onset of this section,
low-energy experiments’ temporal resolution are much longer than that of the usual
rotational fluctuations of a nuclear wavefunction, leading to ‘images’ of nuclei actually
representing rotational averages. Heavy-ion collisions, on the other hand, provide much
shorter ‘exposure times’ than low-energy scatterings. Indeed, the initial impact lasts ~
10000 times less than the rotational fluctuation time scales of nuclear wavefunctions [32].
In the right conditions, as we will show in Section 2.3.2, we gain access to an overlap
region whose shape directly mirrors those of the colliding nuclei. Therefore, tensions
in nuclear structure theories, if they exist, may only be resolved through combining low-
and high-energy data into a coherent picture of atomic geometry. The most general and
permissive of approximations are, however, clear: nuclear deformation exists and is a

defining characteristic of some (if not most) nuclei.
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2.2 NUCLEAR DEFORMATION
2.2.3 Deformed Woods-Saxon

Now that we have reviewed evidence of nuclear deformity, we can modify Eq. (2.1) to
produce deformed nuclei that break spherical symmetry in different ways. To do so, we

add angular dependencies to the nuclear radius Ry,

lm ax

I
Ro — R(6,4) = Ry 1+Z Z Bry(0,9) | . (2.8)

=2 m=-1

Here, the ﬁ~l’” are real-valued coeflicients of deformation which, if non-zero, induce

dependency upon the polar and azimuthal angles via the spherical harmonics Y.

By definition, the spherical harmonic Y;" is dependent on the Legendre Polynomial

P (cos(6),

Y"(0.¢) = \/ (214; D x R ::; :P,m(cos(e))eimd’, (2.9)

which itself has the following property relating P/" to P, ™,

(I-m)!
(I+m)!

P (x) = (=1)" P"(x). (2.10)

Therefore, Egs. (2.9) and (2.10) imply that

Y7"(0,¢) = (=1)"(Y"(0.9))", (2.11)

which in turn leads to the conclusion that Y" + Y™ is real for even-m and imaginary
for odd-m. R(0, ¢) being, by definition, a real-valued function, means that odd-valued
m are not permitted and that coeflicients obey ﬁ;“ = /;l_m

Before going any further, it is important to underline that the deformation parameter

pi defined in Eqgs. (2.4) and (2.6) is related, but not equal to any of the ,B~lm defined above.

Indeed, the former are related to expectation values of operators over the entire nuclear
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2.2 NUCLEAR DEFORMATION

volume, while the latter describe the deformation of the nuclear surface [36]. Definite
expressions linking the two quantities exist, but are tedious to extract [42]. Here is one
such expression, generated by taking a combined power series of ,Bl and g-, in the limit

of a sharp nuclear profile (i.e. a — 0) [36]:

RS [ 70 ),
/32=ﬁ ﬁz"' (ﬁz) 7\/— 2ﬂ4 ’ (2.12)

where Ry is the nuclear radius of the Woods-Saxon distribution and R is the empirical
nuclear radius. This small contrast between the two groups of quantities heightens
the tension (and, at times, confusion) between low- and high-energy conceptions of
deformity. Equation (2.12) indeed shows that in the presence of a small hexadecapole
Woods-Saxon parameter ﬁg, the gap between the nuclear quadrupole moment and the
Woods-Saxon quadrupole deformation parameter can become relatively large. Other
non-zero Woods-Saxon deformation parameters /)71’” can contribute to furthering this
difference between the two quantities.

The radius function described in Eq. (2.8) is inserted in lieu of Ry in the unmodified

Woods-Saxon distribution Eq. (2.1),

Po
r—R(6, ¢>)

p(r,0,¢) = (2.13)

1+exp(

This is the distribution that is used to sample nucleons within deformed nuclei.
Figure 9 shows the effects of inserting R(0, ¢) into the unmodified Woods-Saxon dis-
tribution. When deformed Woods-Saxon parametrizations only have m = 0 non-zero
components, they do not depend on the azimuthal angle ¢. Therefore, building their
3-dimensional surfaces from the 2D cross-sections (like those shown in the bottom
of Fig. 9) simply requires revolving the cross-sections through ¢. However, when
parametrizations involve non-zero ﬁl’” with m # 0, Eq. (2.9) dictates that the result-
ing radius function depends on ¢. Therefore, the cross-section of %7 Au shown in the

bottom-middle panel of Fig. 9 is evaluated at ¢ = 7. Changing the value of ¢, as is
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Figure 9: The Woods-Saxon distribution of deformed 23%U, %7 Au and '>Xe shown in (top)
one- and (bottom) two-dimensions. The parameters for 28U and '°’Au are taken
from Ref. [36], while 2Xe parameters are taken from Ref. [43]. 238U and '®Xe are
represented by 2 curves each, one taken at 6 = 0 and the other at 6 = Z. %7 Au, on the
other hand, requires 3 curves, as it also depends on the azimuthal angle ¢ thanks to its
non-zero ,[3%, ,6’2 and ﬁi parameters. The details of the parametrizations can be found

in Table 1.

apparent in the collection of blue curves in the top panel of Fig. 9, changes the density

function appreciably; at ¢ = 0, the deformity of the nucleus is barely apparent, with the

radius function only varying by approximately 2% across 0 < 6 < 7. Comparatively,

at ¢ = 7, the radius varies by 20% within the same 0 range.

Beyond these secondary parameters, the hexadecapole parameter 54’5 sign has a

significant effect on the qualitative shape of the cross-sections. Indeed, referring to

Table 1, one notices that both 1°7 Au and > Xe have negative ﬁ:?, while 238U’s is positive.
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2.2 NUCLEAR DEFORMATION

Ry (fm) a(fm) B p? I Iin B
238y 7.068 0.538 0.247 0 0.081 0 0

Y7Au| 6.62 0519 0.098 0.076 -0.025 -0.018 -0.018

129%e | 536  0.559 0.161 0 -0.003 0 0

Table 1: Woods-Saxon parameters used for 28U, %7 Au and '?°Xe nuclei in Fig. 9. The param-

eters are from Ref. [36] for 223U and'®” Au and Ref. [43] for ¥ Xe.

Referring back to Fig. 9, one can see that 238U’s cross-section is more ‘diamond-shaped’,
while the two others are more ‘pill-shaped’. While these are interesting qualitative
features, results presented in later parts of this thesis will show that discerning between
the two shapes through heavy-ion collision observables is, at least for now, difficult to
achieve.

It is also interesting to recall the discussion regarding '’ Au and '?°Xe’s ambiguous
status with regards to mean-field calculations. Indeed, in Section 2.2.2, we showed
that these isotopes have subtle deformations which probably manifest themselves as
fluctuations in their shapes. While their respective Woods-Saxon distributions are static
in nature, their relatively faint deformations allow for fluctuations to play a major role
in their final ‘perceived’ shape, especially in the context of heavy-ion collisions. Indeed,
looking at 7 Au, the dependency of its Woods-Saxon distribution p on ¢ brings about
unique fluctuations in its cross-sectional shapes. Then, looking at '**Xe, its more subtle
quadrupole deformation along with its relatively small number of nucleons means
that the nuclei generated through sampling its Woods-Saxon distribution will exhibit

greater fluctuations on a nucleus-to-nucleus basis. Indeed, statistical fluctuations in

L
\/X 9
Up to this point, our discussions have focused solely on single-nucleus distributions.

nucleon samplings are proportional to where A 1s the atomic mass number.

However, heavy-ion collisions involve collisions of two nuclei. How, then, can single-

nucleus density distributions be extracted from collision events between two nuclei?
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2.3 OVERLAP SHAPES

When two nuclei’s paths intersect in a collider experiment, their alignment has a major
impact on the results of a given collision event. By alignment, one usually thinks
of how off-center the projectile nucleus ‘appears’ to the target nucleus. However, in
experiments, it is impossible to determine the geometric alignment of two colliding
nuclei. Therefore, experimentalists must resort to looking at the amount of particles
generated in a given event (called that event’s ‘charged particle multiplicity’, Ncy) to
determine which collisions were ‘head-on’ (or central) and what others were more
peripheral. Other methods are available to experimentalists, but are more limited in
scope. Zero Degree Calorimeters (ZDC), mentioned previously, constitute one such
method. However, its scope can be quite limited and can lead to erroneous conclusions
about a given event. Indeed, given ZDCs only detect neutrons, and that neutrons have
a tendency of being found further away from the nuclear core than protons, ZDCs can
have a difficult time differentiating between types of peripheral events. Therefore, most
experiments determine centrality via multiplicity. The centrality ¢ of an event with

charged particle multiplicity Ncy is given by
Ncu
c=1 —/ P(N)dN (2.14)
0

i.e. the cumulative distribution of Ncy. Figure 10 shows P(Ncp), the multiplicity proba-
bility density function. It also provides schematic representations of the general collision
types represented on the different regions of the curve. We find that moving from central
(0 — 5%) to more peripheral (30 + %) centralities implies looking at collisions where
the overlap between the colliding nuclei gets smaller. This overlap is controlled by
the impact parameter. As theorists and modelers, we have access to and control over
information about the pre-collision phase that experimentalists do not. For instance, nu-
cleon distribution of a colliding nucleus, obtained through sampling the Woods-Saxon

distribution. For another, the exact impact parameter used in a given collisions.
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Figure 10: Relative frequency histogram of charged particle multiplicities Ncy recorded in simu-
lations of minimum-bias collisions of '**Xe. Schematic representations of collisions

of 12%Xe associated to each region of the histogram are provided.

2.3.1 Impact Parameter

The impact parameter b is the distance separating the centers of the colliding nuclei.
The larger the b, the more peripheral the event; b = 0 fm is a head-on collision. In our

simulations, b is sampled at initialization according to

2bdb
5 (2.15)
bmax - bmin
where bpin/max designate the minimal and maximal desired impact parameter; bmin
is usually O fm, while bp.x must be determined based on needs and on system size.

For our 238U and ' Au runs presented in Chapter 5, by,x was set at 8 fm since our

interest in those cases was directed towards ultra-central collisions, while for our 122Xe
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Figure 11: Average number of binary collision per event (Ny;,) as a function of impact param-
eter b, for 12°Xe collisions. As we progress towards larger b, we find fewer binary

collisions, until practically no binary collisions are found beyond b = 15 fm.

runs, it was set to 15 fm. The larger impact parameters were chosen to produce so-
called ‘minimum-bias’ sets of events: a set of events comprised of every possible
general overlap configuration, from fully head-on collisions (b = 0fm) to full misses
(b ~ 15fm for '>Xe). This allows for direct reproduction of the entire multiplicity
spectrum, which leads to a more accurate and complete reproduction of reality, at the
cost of more computation. To determine the upper limit for our '2°Xe runs, we generated
10000 sample nuclei pairs along with randomly sampled b and calculated the number of
binary collisions for each sampling, using oxy = 79 mb = 7.9 fm?, which is consistent
with a beam-energy of 5.44 TeV. Figure 11 shows the results of our impact parameter
range analysis, which led us to select by,x = 15 fm.

Beyond being an excellent measure of collision centrality, the impact parameter is
directly related to the shape of the overlap between the two colliding nuclei, or what we

usually call ‘initial state anisotropies’.
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Figure 12: Transverse plane view of (left) a single undeformed nucleus via its sampled nucleons;
(middle) the resulting collision between two undeformed nuclei sampled from the
same distribution; and (right) the interaction region produced by participating nu-
cleons. In the left and middle panels, the Woods-Saxon Ry is represented by a black
line. In the right panel, the interaction region is surrounded by an ellipse to represent
the general shape of the interaction region, with arrows schematically representing

the resulting flow. The impact parameter b was set to 5 fm.

2.3.2 Initial State Anisotropies

When two spherically symmetric nuclei collide with one another, their overlap produces
a shape which has a substantial effect on the subsequent evolution of the interaction
region (to be discussed in more detail in Chapter 4. As we will see, isotropic inter-
action regions in the initial stage expand symmetrically in the hydrodynamics stage.
Anisotropic (usually elliptically-so) overlaps, on the other hand, tend to have build-ups
of momentum which are roughly proportional to 1/R, with R being the transverse size
of the interaction region [44]. Therefore, elliptical interaction regions will lead to larger
flow buildups along their short axes when compared to flow along their long axes.
This anisotropy in the flow velocitiy is directly translated into anisotropies in final-state
particle momentum distributions. Indeed, anisotropic initial states and their resulting
momentum anisotropies mean that the energy of the medium is distributed asymmetri-
cally, leading to particles hadronizing more in certain directions than others, leading in

turn to measurable anisotropies in the distributions of their azimuthal angles ¢ in the
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transverse plane. This fact and its corresponding observables will be discussed in detail
in Section 4.3.

Figure 12 shows a semi-peripheral collision of two spherically-symmetric versions
of 23U (i.e. setting all ,gl’" = (). As we can see, an elliptic overlap region is formed and
would lead, following our previous explanations, to more flow along the ellipse’s short
axis. Figure 12’s right panel also provides a further qualitative assessment of the density
of nucleons along the beam axis. Indeed, given the transparency of the nucleon markers,
darker pockets of participants are meant to convey a relatively large nucleonic density
in said pocket. This will be an important idea which we will revisit in section Chapter 3.
As should be clear by now, spherically symmetric nuclei are predictable when it comes
to the overlap shapes they produce. Figure 13 clarifies this idea further. Indeed, we find
3 collision events stemming from identical nucleon samplings simply shifted along the
x direction by various values of the impact parameter b. We see that, in central collisions
(b = 0fm), the overlap region is more or less circular: very small amounts of anisotropy
in the initial state means we do not expect any meaningful anisotropy in the final state.
In mid-central collisions (b = 3 fm), we find a small but noticeable anisotropy. This
would lead to a detectable (even if slight) signal in the produced particles. Finally, in
peripheral collisions (b = 10fm), we find a small interaction region presenting clear
ellipsoidal anisotropy, which would lead to an unmistakable signal in the produced
particles.

At this point, it is important to keep in mind that while anisotropy increases with im-
pact parameter b, multiplicity progresses the opposite way: less overlap (and, therefore,
binary collisions) usually means smaller numbers of generated particles in the final
state. This means that types of collisions are fairly well-defined for spherical systems:
one has high multiplicity, low anisotropy collisions at one end of the spectrum, and
low multiplicity and high anisotropy at the other. This also means that these high initial
anisotropy events are subject to higher levels of event-to-event fluctuations than events

at the other end of the spectrum. Indeed, given the reduced size of the interaction region
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Figure 13: Transverse plane view of 2 nuclei colliding at (left) b = 0 fm; (middle) ; b = 3 fm;
and (right) b = 10 fm. As we move to larger impact parameters, collisions produce

more and more elliptic overlap regions.

and the reduced number of interacting nucleons, each nucleon and its position has a
greater effect on the final state than interacting nucleons in central collisions do.

What makes deformed nuclei such interesting systems in heavy-ion collisions is
the simple fact that non-trivial anisotropies can be generated at practically all impact
parameters b. Indeed, deformed nuclei can overlap in eccentric shapes at even the
smallest b. Figure 14 makes this strikingly clear. The top panels of Fig. 14 show a
collision event where the long axes of both nuclei are aligned with the beam axis. These
events are usually designated ‘tip-tip’. The bottom panels, on the other hand, show a
‘body-body’ event: both nuclei’s short axes are aligned with the beam axis, and their
long axes are aligned with one another. The differences in their resulting anisotropies (or
lack thereof) is marked. Indeed, body-body collisions present large amounts of elliptic
anisotropies, while tip-tip collisions are isotropic in the transverse plane. However, given
they result from setting b = 0 fm, both collisions will produce large enough amounts of
particles in their final states to belong to the upper few percents of collisions in terms of
centrality. There will, however, be noticeable differences between the two events given
the orientations of the colliding nuclei.

As we had done for Fig. 12, the participating nucleon markers of the right panels of

Fig. 14 are purposefully transparent to provide a qualitative idea of nucleon density. We
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Figure 14: Commonly named (top) Tip-Tip and (bottom) Body-Body collision events of de-

formed 38U presented 3 ways. (left) ‘Overhead’ view of the pre-collision configu-
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ration, with the beam axis (z) replacing the usual x-axis; (middle) tranverse plane

view of the collision event; and (right) the interaction region produced by partici-

pating nucleons. In the left and middle panels, the Woods-Saxon Ry is represented

by a black line. In the right panel, the interaction region is surrounded by an ellipse

to represent the general shape of the interaction region, with arrows schematically

representing the resulting flow.

find that tip-tip collisions have extremely dense interaction regions, especially at their

cores. Body-body collisions, comparatively, do not present any pockets which are as

dense as the central pocket of the tip-tip collision. Therefore, when colliding 2 largely

deformed nuclei (like 233U), there will be clear signals of their deformity in the most

central centrality classes. However, with more subtle deformities (such as those of 1’ Au

and '?°Xe), those signals themselves become more subtle. The point remains, however,

that non-spherically symmetric collisions present increased variance in overlap shapes
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in central and mid-central collisions, as their asymmetric distribution of geometries
provides extra degrees of freedom from which anisotropies can originate.

A final important observation to make here is that of the specific size and shape of the
interaction region of fully-aligned (i.e. body-body and tip-tip) collisions of spherical
and deformed nuclei. Figures 13 and 14 show that in collisions at b = 0 fm, the overlap
region clearly reflects the value of Ry (for spherical nuclei) or R(6, ¢) (for deformed
nuclei) in the transverse plane. Therefore, linking the exact shape of the nuclear density
distributions from initial to final state is actually possible, with final-state observable

effects in central collisions being directly proportional to the Woods-Saxon radius.
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PRE-EQUILIBRIUM EVOLUTION

As mentioned before, QGP is a nearly perfect fluid, allowing us to model it using rel-
ativistic viscous hydrodynamics. However, for hydrodynamics to apply, the system in
question must be at (or close to) thermal equilibrium. In heavy-ion collisions, directly
after the collision event, the interaction region is highly excited and far from equilib-
rium. Therefore, one must include some form of a thermalization phase to bridge the
gap between the collision event and the time where hydrodynamics becomes applicable,
which is ~ O(1 fm). Historically, some purely phenomenological pre-equilibrium mod-
els, such as MC-Glauber [45] and TRENTo [46], have been used to produce surfaces
which were in thermal equilibrium and ready to be evolved hydrodynamically. MC-
Glauber is a wounded nucleon model, meaning that the initial energy deposit is directly
proportional to some combination of the number of participants and the number of
binary collisions. TRENTo is in some ways a generalization of MC-Glauber; it provides
means through which the initial energy deposit can be modulated so that it isn’t just a
linear combination of the number of participants and the number of binary collisions,
and so the energy deposit function’s form is itself a parameter of the model. TRENTo ,
contrarily to MC-Glauber, includes some simple pre-equilibrium flow [16]. However,
while both models have been successful in their own rights, neither is fully grounded
in first-principles thinking. Furthermore, avoiding treating this phase with a firm QCD-
based model somewhat undermines the stated goal of studying heavy-ion collisions
theoretically, i.e. to build a physically representative model of QCD which can explain
the different phases of hadronic matter in extreme conditions. While simple initial

conditions models like MC-Glauber have found success in describing event-averaged
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quantities like integrated elliptic flow v, they are unable to produce differential distri-
butions of these quantities that are consistent with experimental data [47]; these models
are generally exclusively geometric in nature and lack, as stated above, any realistic
approach to pre-equilibrium dynamics and evolution. That is why IP-Glasma [16, 17],
a physically-motivated initial state model, has had success in describing a wide range
of differential observables [47, 48] and of observables involving higher order correla-
tions [1, 17]. While IP-Glasma integrates the simple geometrical features that made
MC-Glauber successful in some respects, it goes far beyond counting binary collisions.

In the following sections, we will introduce the theoretical underpinnings of the
boost-invariant (or 2D) formulation of IP-Glasma. We will first discuss Color Glass
Condensate (CGC) theory, and how it applies to heavy-ion collisions. We will then use
the theoretical prescription of the CGC to introduce the concept of gluon saturation
at low momentum fraction and how it relates to the initial color charge distributions.
These distribution, which will need to be sampled according to a specific fluctuation
scale, will act as sources for the color gauge fields A, which happen to be the intrinsic
degrees of freedom of the pre-equilibrium phase. We will then show how the Classi-
cal Yang-Mills equations apply to the color gauge fields, and we will provide detailed
evolution equations for all degrees of freedom. Throughout, we will relate these con-
tinuum theories and properties to their equivalents on a discrete lattice: because we are
ultimately running simulations, numerical methods are as important to IP-Glasma as its
underlying theories in the continuum limit. For now, let us introduce the fundamental

concept from which all of IP-Glasma is sourced: the Color Glass Condensate.

3.1 COLOR GLASS CONDENSATE

The Color Glass Condensate (CGC) provides an effective description of a single, fast-
moving nucleus composed of valence and sea quarks, as well as gluons. CGC, as we
will show, maintains that at low momentum fraction, or ‘small-x’, hadronic matter is

almost entirely gluonic. This fact births an effective field theory, which allows us to
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only take into account the degrees of freedom - here, gluons - which are relevant to
our system. This discussion will be condensed and to the point; for a more detailed
treatment of the assumptions, results and consequences of using the CGC theory, one
should consult Refs. [49-53].

CGC separates partons based on their momentum fraction x,

Ppart
X = ,
Py

3.1

1.e., the fraction of the nucleonic momentum Py that they carry. A priori, these partons
can be quarks or gluons. To separate between hard (large-x) and soft (small-x) partons,

one must first introduce light-cone coordinates,

x* = (3.2)

pt = . (3.3)

We see that both x™ and x~ involve longitudinal and temporal degrees of freedom.
The two transverse coordinates, x and y, are left unchanged in this coordinate system.

The light-cone coordinate metric is

01 0 O
1 0 0 O
v = (3.4)
00 -1 0
00 0 -1

which allows us to define the four-vectors and their invariant dot product as [54, 55]

X = (x*,x7, x,y) (3.5)
p'=(p"p". 0" p") (3.6)
p-x=p xt+ptxT —ptx - pYy. (3.7)

If we define x™* as our light-cone ‘time’ variable and x~ as our ‘longitudinal coordinate’,

then, looking at Eq. (3.7), we find that p*, the conjugate to x~, will be our longitudinal
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momentum variable, while p~, the conjugate to x*, will be our energy. The parton

momentum fraction x in terms of our new coordinate system is given by
(3.8)

where p* is the longitudinal momentum of the parton we are interested in and P is the
total momentum of the hadron it is a part of.

Let us now consider a hadron moving with a very large longitudinal momentum
and how different partons may ‘perceive’ others based on their momentum fraction x.
Recalling that the position-momentum uncertainty principle provides insights as to how

localized certain partons can be, we find that

1 1 1
~ (3.9)

Ax™ = = ;
Apt  xAP*  xP*

where x~ and p* are used here, given that they form a conjugate pair. Equation (3.9)
provides a powerful basis for comparing the localization of different partons. Being
quantum fields, all partons are delocalized according to the uncertainty principle. How-
ever, if we consider a large-x parton (x > 0.1) and compare it to a small-x parton
(x < 1073), we will find that the large-x parton is much more localized than the small-x
parton. Therefore, the small-x parton will ‘perceive’ the large-x parton as being highly
localized on the light cone. We can do the same exercise for the x™ and p~ pair, which
yields

1

Axt ~ —.
Ap~

(3.10)

However, since x was defined in terms of p*, we cannot make the same substitution as
we did in Eq. (3.9).
Therefore, at first glance, Eq. (3.10) may provide little added insight. However,

multiplying p* by p~, we find

_ E+pz)(E—pz) E* - p;
+ z
= = , (3.11)
rr = AN
Recalling that E? = p2 + pg + p2 + m?, we obtain
24p2em? P2 ym?
P ke RS (3.12)

2 2
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Inserting Eq. (3.12) into Eq. (3.10), we have

_2pt  2xP*

2 2

Ax* 5
ot pi

(3.13)

where we have utilized the fact that we are in the high-energy limit which allows us to
neglect mass, i.e. p; > m.

Following the same logic as we laid out for the localization of the partonic quantum
fields, Eq. (3.13) provides further grounds for discriminating between different partons.
Indeed, since x* serves as our time variable for a hadron propagating along the positive
z direction, Eq. (3.13) tells us that large-x partons will suffer from large amounts of
time dilation relative to small-x partons, making them appear frozen. Therefore, within
the time scales relevant to heavy-ion collisions, partons that carry most of the nucleonic
momentum are essentially static. This fact allows for the use of the following effective

action for CGC,
1
Scee = / d'x (_ZFﬁvoa +JMAL) (3.14)

where Fﬁv is defined in Eq. (1.5) and the second term ]”“AZ is a source term. This
source term is directly related to the ideas developed in this section. Indeed, according
to this action, J#¢ is a current that sources color gauge fields A%, i.e. gluons. JH¢ is
therefore constructed using the large-x partons which are static throughout the relevant
interaction. In principle, the color current J#¢ could generate quark-antiquark pairs.
However, as we will argue below, these contributions are subdominant.

Figure 15 shows the parton distribution function (PDF) of a proton probed at Q* =
10 GeV; it shows xf, for f = u, (valence up quarks), d, (valence down quarks), g
(gluons) and S = u +d (sea quarks). Since this is for a single proton, integrating all
of the components of the PDF over momentum fraction x and summing all of their
contributions must equal one. We find that, at very small x, the PDF is dominated
by gluons. Therefore, at small momentum fractions, it is clear that an effective field
theory may ignore other contributions and focus solely on gluons. However, in heavy-

1on collisions, how can we be sure what momentum fraction x we are probing? Let
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Figure 15: Parton distribution function (PDF) for Q2 = 10GeV, from Ref. [56]. Note that for

clarity’s sake, the gluon and sea quark distributions xg and xS were divided by 20.

us consider a parton at very small momentum fraction, such that p* = /p? +m?2/ V2.

Inserting this into our definition for the momentum fraction x, we find

\pi+m?

= 3.15
= (3.15)

In a collision, one right-moving (Pg) and one left-moving (Pr) hadron collide. They
both have a longitudinal momentum of magnitude |p,|. The right-moving hadron’s

four-momentum is

R M?
Py = (Pg. Pg. Pg. Pp) = (‘/fpz,z—%,O, 0), (3.16)

where we have assumed the momentum in the z-direction is very large, such that

pz > M, the hadron’s mass. The left-moving hadron’s four-momentum is

- M?
P/ = (P{, PP, P]) ~ (2_19;’ V2p,,0, 0) : (3.17)
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The invariant energy is then

s = (PR+PL)2 =2Pr- P ~ ZPEPE = 4p§

= s =2p, = V2P}. (3.18)

Inserting Eq. (3.18) into Eq. (3.15), and substituting P} by P*, we obtain

\PL+m?

x = G (3.19)
Therefore, using Eq. (3.19) with estimates of (pr), the mean transverse momentum, at
Vs = 5.44 TeV obtained through experimental fits [57], as well as the proton mass in
lieu of m, we find

1 GeV 10~

¥ 7 5440Gev

(3.20)

Equation (3.20) makes it clear that the momentum fraction we are probing at beam
energies we are concerned with is mostly gluonic.

The CGC effective field theory is therefore an appropriate approximation for the the
interaction region of heavy-ion collisions, and provides a physical framework under

which the pre-equilibrium phase can be developed and evolved.

3.2 GLUON SATURATION

Figure 15 supplied clear evidence that the small-x partons are almost exclusively gluons.

It did not, however, provide us with an explanation for why that is. Through perturbative
QCD, we know that high-energy partons evolve and radiate through bremsstrahlung,
which favors the emission of soft gluons. Indeed, the differential probability for emitting
gluons with x <« 11s [50]

d
dPorem o 7" 3.21)

i.e., when x — 0, the probability of bremsstrahlung emission diverges. This fact, taken

on its own, entails that gluons should be all-encompassing at small-x beyond simply
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Figure 16: (Left) Elementary radiation and (right) high-energy scattering, evolution and recom-

bination of gluons via bremsstrahlung. Figure taken from Ref. [50].

dominating. However, gluons can not only radiate other gluons, but can also recombine
(i.e. g9 — g), a fact which we illustrate in Fig. 16. Therefore, as more and more gluons
are radiated via bremsstrahlung, both the phase space and the physical space become
more and more densely packed with gluons, leading to more and more recombination.
Eventually, when the number of gluons radiated rivals the amount of recombination
that occurs in a given time lapse, the system is said to have reached saturation.

The typical gluon recombination cross-section oy, at a given energy scale Q? is equal

to as/Q? [58], where a is the strong coupling. We can then define the packing factor «,
K =p- 04 (3.22)

which relies on the transverse gluon density p and the cross-section oy, we just defined.
Defining xg(x, Q?), the number of gluons with momentum fraction x and scale Q, and
considering the transverse projection of a given hadron to be a circle of radius R, we
can rewrite the packing factor k,

2
o X907 o (3.23)
TR2 QZ
The energy scale at which the packing factor becomes O(1) is the saturation scale Qx,
1.e.,

xg(x, 02

~ 2
kr1l & Q] = s

(3.24)
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Qs 1s of great importance to the initialization of the color gauge fields A, as it controls
the scale of color charge fluctuations in the source partons contained in the current
term J#“ introduced earlier. These fluctuations will, in turn, control how and how much

energy is deposited in the transverse plane at the time of the collision, 7 = 0*.

3.2.1 Determining Qs

At first glance, Eq. (3.24) seems to suggest that the saturation scale Q; is fairly constant
across relatively large portions of hadronic matter. However, given its dependence on
xg(x, 0?), it can actually vary considerably depending on local fluctuations in gluon
densities. The definition provided in Eq. (3.24) can help provide general estimates of the
saturation scale in large systems. For example, at the LHC, estimates of the saturation
scale generally hover around 2 — 3 GeV [59]. However, in IP-Glasma, local fluctuations
in the saturation scale Q; are taken into account, and it is made to vary from one lattice
site to another. Using the Impact Parameter Dipole Saturation Model, or IP-SAT [60],
Qs 1s calculated at each point in the transverse lattice based on a multitude of local
physical properties, including the local nuclear density.

We begin by determining the nuclear thickness function T4 (X, ),

6—552/236
T(xy) = nB (3.25)
A
Ta(R) = ) TR -3.,), (3.26)
i=1

where the X, represent the positions of the nucleons (sampled via Woods-Saxon dis-
tribution), A is the mass number of the nucleus we are considering (we do this for
both nuclei individually), and Bg, which controls the ‘extent’ of nucleons, is set to
B; = 4.0GeV~2 based on fits to DIS data [61]. If we are evaluating T4 (X, ) close to
the boundaries of the transverse plane, most (if not all) nucleons will be far away and

T(xX, —X.,) ~ 0Vi, meaning that Ty(x,) — 0 as |X,| — oo. Alternatively, when we
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are in a region of the transverse plane where many nucleons intersect, Ta(X,) o ﬁ,
i.e., we have denser hadronic matter.
The thickness function is then inserted into the Glauber-Mueller dipole cross-section [62],
% =2 (1 —exp (—”;NCTA(@)erg(x, uz(ﬂ))as(uz(ﬂ)))) : (3.27)
where b is the impact parameter of the interaction, xg(x, u>(r?)) is the local gluon
density (not to be confused with xG defined previously, which is the integrated gluon
distribution function), r? is the dipole size and N, = 3 is the number of colors; ogyg
is the total cross section for a small gg dipole to pass through a gluon cloud [63]. It
provides a simple measure of the probability of interaction between a quark-antiquark
dipole and a dense target. If the gluon density xg and thickness function Ty are large, so
is the cross-section and, therefore, the interaction probability. However, it is clear from
Eq. (3.27) that the differential cross-section does not grow indefinitely; as the argument
of the exponential grows, the exponential itself (because of the minus sign preceding
its argument) goes to 0.
How does this relate to the saturation scale Qs? The form of Eq. (3.27) suggests
that the control over whether or not the dipole interacts lies with the exponential term.
Therefore, we define the saturation radius rs as the dipole size at which the proton

consists of one interaction length, where the interaction probability is given by the

second term squared, i.e.

2
_ T >
el = exp —FTA(xJ_)rszxg(X,llz(”sz))as(/lz(rsz))
Cc

2
= 1= Z—TA(fl)rfxg(x, P2 () as (12 (r2))
2 27
= == 1:; Ta(X1)xg (e, 12 (rd)) s (12 (1)), (3.28)
rg c

where both sides in Eq. (3.28) have been multiplied by 2 as a matter of convention. The
RHS of Eq. (3.28) 1s called the density profile D, and the saturation scale Q; is the value

of D at r = r,. Therefore,

02=2. (3.29)
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Now that we have an implicit equation to solve, we must define its various components

precisely. The gluon density xg(x, ;%) is initialized as
xg(x. pg) = Agx™ (1 - x)>°, (3.30)

with A; = 2.308, 4, = 0.058 and ,u(z) = 1.51 GeV? [61]. This gluon density is then
evolved to all other values of p? relevant to our analysis through the leading-order
DGLAP equation [50, 64—66], assuming a purely gluonic state. The energy scale p
itself is related to the saturation dipole size rg (and, therefore, saturation scale Q)

through

4
1= 5 + g = 2QF + 5. (3.31)
S

The leading-order QCD running coupling constant, which relies on the inherent
energy scale 2, is given by

127

(33— 2Ny) In ( & )

QCD

as(p”) = (3.32)

with N, the number of allowed quark flavors, set to 4 and Aqcp = 156 MeV.

The interdependence of Egs. (3.28) and (3.30) to (3.32) and, more fundamentally,
of the variables (x, rs, ) means that solving for the saturation length r; must be done
iteratively. Concretely, a table with values of x and ,uz, as well as the value of xg(x, ,uz),
the gluon density, associated with the x and p? pair is generated. Given the relationships
between all variables, we can progress through this value table until we approach the
correct set of values. We can then interpolate between neighboring parameter sets to
find an appropriate and unique value for r;. As mentioned above, this is done at every
point in the transverse plane.

Once the saturation scale has been determined everywhere, it can be used to generate a
random color charge distribution in the transverse plane, which, as mentioned previously,
will source the color gauge fields A,. Indeed, assuming the following relationship

between the saturation scale and the scale of color charge fluctuations 4,

ngﬂA — QS’ (3.33)
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where C = 0.5-0.751in 2D and ~ 1.2 — 1.5 in 3D is a proportionality constant that must
be calibrated using charged particle yields (since it controls the energy normalization

of the system), we have
<PZ(9?¢)PZ(gL)> = gzﬂi(ﬁ)(S“b(Sz(@ —4.). (3.34)

It is important to note here that p4 # p; p is the intrinsic energy scale considered
in our calculation of ry, while p4 is a measure of the color charge fluctuations and is
defined entirely in terms of the saturation scale Q. Once the color charge distributions
of both colliding nuclei are sampled via Eq. (3.34), they can be used as sources for the

color gauge fields A%, and the pre-equilibrium evolution can commence.

3.3 EVOLUTION

In the following sections, we will describe the pre-collision conditions and the post-
collision evolution of the color gauge fields A;. Because IP-Glasma is a numerical
program, we will introduce relevant lattice quantities alongside the fundamental mathe-
matical and physical theories underpinning them. As we will show, moving to a discrete
lattice presents both advantages and challenges to solving the various equations that

describe pre-equilibrium QGP, or glasma.

3.3.1 Sampling p* and Generating Pre-Collision Fields

Equation (3.34) describes the properties of the color charge distribution and how it re-
lates to the saturation scale Q;. Numerically, we sample from the following distribution,

LA (%))

(PLFPL(Fo)) = PS8 (R, — 1) TR (3.35)
y

where the indices k,[ label the discretized and sub-divided longitudinal coordinate,
and Ny is the number of discrete points in the longitudinal direction. Our color charge

distribution therefore has ‘depth’, a feature which we will now motivate.
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Suppose we have the color charge distribution p4 of the nucleus moving with velocity
~ ¢ in the positive z direction. Referring back to Eq. (3.14), we know that the Classical

Yang-Mills equation related to such an action is [67, 68]

Dy F'| =", (3.36)
where

D, = d,+igA, (3.37)

Fuv = 9,A, — A, +ig [Ay, A, ] (3.38)

J' = palx™, %) (3.39)

The § function in Eq. (3.39) signals that we are considering a right-moving source on the
light cone, and the dependency of p4 upon x~ signals that the color charge distribution
is delocalized, in line with the light-cone coordinate work we did in Section 3.1.

The fundamental degrees of freedom of these equations, the color gauge fields A,
must be translated to lattice quantities for our simulations. On the lattice, the gauge

fields become gauge links?,
Ui(X1) = exp(iga;Ai(¥1)) (3.40)

where X, is the position of a given link, i = {x, y, 5} indicates its direction, a; is the size

of the lattice spacing and g is the strong coupling constant. One can reverse a link by

taking Ul.T; ‘normal’ links go clockwise, while reversed links move counter-clockwise.

Therefore, the gauge fields in our simulations are defined strictly on the edges of our
discrete lattice, as Fig. 17 makes clear. The direction of a link will be a crucial feature
for building emergent quantities such as chromo-electric and -magnetic fields later on.

Moving back to the continuum limit, the covariant continuity equation in the axial

gauge (A™ = Ay = 0) yields

[Du’]u] =0
— 9,p=0, (3.41)

See Appendix A for further explanation of the motivation behind the use of this representation of the

gauge fields.
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Figure 17: Schematic representation of gauge links and their relation to the lattice. The position
of a given link is determined by the starting point of the toe of the arrow of the

regular link U;.

which entails that the charge distribution, in this gauge, is static (independent of x¥).
Assuming a static solution A¥ yields trivial solutions for most field-strength tensor
components F,,: F** = 0 because A, = 0 by gauge choice and F /' = 0 because of the

transverse equations
[Dl.,FiJ'] =0, (3.42)

with the corollary that the transverse gauge fields are pure gauge (i.e. do not generate
chromo-electric or -magnetic fields). The only non-trivial (and non-vanishing) compo-

nents are therefore F;_ = —F™", which yield

[Di, F*] = =V3A" = p(x7, %))

= VIAY = V2 A9 = —p(x7,%,). (3.43)
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Equation (3.43) represents 2D Poisson equations for each color index, which are solved
to determine the gauge fields A* in the axial gauge where, again, A~ = 0. This gauge
is also called the covariant gauge because 9,A* = 9,A™ = 0. We then transform to
light-cone gauge A* = A_ = 0 through the usual gauge transformation, i.e.,

A, ==V, VT + VAV, (3.44)
g

where A, represents the desired field in the gauge we are transforming from. In our
case, then, A_ is the solution to Eq. (3.43) with all other components vanishing. The

new gauge condition A_ = 0 leads to

0= —Vovi+ VAV e
g

Vix™,%.) =Pexp (ig/ dy_ﬂ_(y_,y?l)) =

—00

X

Vi(x™,%1) = Pexp (—ig/ dy‘—p(yv;xﬁ),
oo 2

(3.45)
where in the last line we have used the fact that A_ is the gauge field in the axial
gauge which we know, thanks to Eq. (3.43), is entirely defined by the static color charge
distribution p. Equation (3.45) entails that the pre-collision gauge fields in the light-cone

gauge are strictly transverse, since

A, =—‘vavi+va,vi=o0 (3.46)
g

in the axial gauge. Equation (3.45) therefore dictates that V7 is independent of x*.
We can now refer back to Eq. (3.35) to make sense of its discrepancies concerning

Eq. (3.34). When implemented numerically, Eq. (3.45) becomes [69]

. Ny ' Pz(fj_)ta
V(XJ_) = 1_[ eXp —lgﬁ s (347)
k=1 m

where t¢ are the Gell-Mann matrices [6] and m? acts as a regulating mass, set to
200MeV, and we have absorbed the differential element dy of the integral into p;.
In the N, — oo limit, Eq. (3.47) recovers Eq. (3.45), the path-ordered Wilson line.
Therefore, our stochastic charge density p requires some longitudinal extent, or ‘thick-

ness’, to generate the pre-collision gauge fields; multiple samplings of the color charge

52



3.3 EVOLUTION

distribution are undertaken and ‘stitched’ together, allowing for the construction of the
numerical Wilson line. The longitudinal dependence of the continuous color charge
distribution p4(x~, x, ) is also recovered through these consecutive samplings. That is
precisely why, in Eq. (3.35), the indices k and [ were added: they mark the fact that a
specific sampling belongs to a specific slice in the longitudinal direction, slice which is

then used to construct Eq. (3.47). These slices are normalized so that
D (PGP (1)) = PHa (RIS (FL — 1)) (3.48)
k.l

In other words, the sum of the fluctuations of all of the sampled color charge distributions
must be equal to the fluctuations dictated initially by the saturation scale determined by
IP-SAT.

Once the Wilson line is constructed numerically, it must be put on the lattice through
the gauge links defined in Eq. (3.40). To do so is simple: since the pre-collision gauge

fields are strictly transverse, we know that

A = —vavt (3.49)
g

given the fact that the transverse gauge fields in the axial gauge were all evenly 0.

Inserting Eq. (3.49) into Eq. (3.40), we find

Ui (%1) = exp (iga (—éV(a’c’l)aiV(ﬁ)T))

Ui(x.) ~ 1+ aiV(-;C)J_)aiVT(-;éJ_)
ViE +a) - VT(f))

a;

Ui(xX) ~ 1+a;V(XL) (

Ui(X,) ~ 1+ V(J_C)L)VJr (X, +a;) — V(;‘:L)VT(J?L)

Ui(%L) ~ VROVT(ZL +a), (3.50)

where we have used the fact that V(¥,)V7(¥,) = 1 and where g; represents a vector the
size of the lattice spacing a pointing in the direction i. The pre-collision gauge fields
are therefore constructed at all lattice edges through the sampling of the color charge

distribution and construction of the discretized path-ordered Wilson lines.
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Figure 18: 7 — n coordinates plotted in Minkowski space. Lines at equal proper time 7 span
regions of spacetime delimited by a given 7 range, in this case —0.5 < n < 0.5

(mid-rapidity).

3.3.2 Post-Collision Gauge Fields

At the onset of this section, it is important to remind the reader that the evolution equa-
tions which will be described in this section apply to the boost-invariant (or 2D) formu-
lation of IP-Glasma. Later in this thesis, we will generalize these evolution equations
to a 3D description of the initial conditions, but only after showing results stemming

from boost-invariant simulations.

54



3.3 EVOLUTION

Before combining pre-collision gauge fields to build post-collision gauge fields, we

introduce Milne, or 7 — 1, coordinates. Their definitions are as follow

r=Vi2 - 22 (3.51)
p= %m (;:) — tanh™! (;) (3.52)

and their metric is g,,, = diag(1, -1, -1, —1'2). This coordinate system is the best suited

for the conditions of heavy-ion collisions for a multitude of reasons:
1. The forward light-cone is delimited by the 7 = O line.

2. Spacetime rapidity 7 is oo on the light-cone axes and does not have a meaningful

definition beyond them.

3. 7, the ‘proper’ time, is the time as measured in the local rest frame of any cell or
particle that was located at z = 0 at t = 0 and moved with constant longitudinal
velocity v,. For any cell with properties which do not align with this condition, it

holds as an approximation of its proper time.

4. The length element is 7dn.

The first two items of the list point out that 7 — n coordinates are only defined in the
relevant space when analyzing heavy-ion collisions, i.e., the forward light cone. On the
other hand, the final two points are crucial qualities of this coordinate system. Indeed,

given the highly relativistic nature of the partons involved in heavy-ion collisions,

time dilation effects must be taken into consideration when analyzing their evolution.

If we were to take the lab-frame time ¢ as our time variable, partons with different
longitudinal velocities would evolve at different rhythms, making it difficult to analyze
their temporal evolution. Instead, taking the ‘proper’ time 7, we track almost every
cell in their respective rest frames, relative to the time of collision. The fact that the
longitudinal length element is 7dn leads to an expansion of the coordinate system with
time, reconciling rapidly expanding QGP with a stable coordinate system. Figure 18
illustrates this idea: as proper time increases, the longitudinal extent of the region

encompassed by a static n range also increases.
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Finally, given our use of light-cone coordinates in the previous sections, convert-
ing between the two coordinate systems will prove important. To go from light-cone

coordinates to Milne coordinates, we do

7= V2x*x, (3.53)
1 x*
n=7ln (x—_) (3.54)
Now that we have properly defined the coordinate system used in the glasma evolution
equations, we can construct them. The initial conditions described in Section 3.3.1 were
concerned with a single nucleus. We will now be interested in the fields immediately
after the collision when the color gauge fields of the rwo colliding nuclei are combined.
As a visual aid, we will refer to Fig. 19 as our convention for naming different spacetime
regions. The pure, pre-collision gauge fields exist in 2 regions: the fields sourced by
the nucleus propagating on x* exist in regions 1 and 4, while those generated by the
nucleus propagating along x~ exist in regions 1 and 2.

In the continuum limit, the transverse gauge fields at light-cone axes (intersections

between regions 1, 2 and 4) are given by [70-72]

+ Al

i_ gl
A=A (B)*

" (3.55)

where the (A, B) subscripts represent the 2 nuclei. The color charge currents are confined

to the light-cone. Therefore, in region 1, the sourceless CYM equations are used,
[D,, F*] = 0. (3.56)

In the proper-time gauge x~A* + x*A~ = 0, the components of the gauge fields, in
light-cone coordinates, look like
AY =xTa(xt,x7,X1),
A" = —x"a(x",x7,X.), (3.57)
Al = o (x*,x7,%L),
where the « are ansatz that are taken to be independent of spacetime rapidity 7 and the

subscript 1 refers to the field in region 1. Using these ansatz to find the field strength
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Figure 19: Visual representation and identification of the different spacetime regions. The colli-

sion occurs at the origin, and the post-collision fields evolve in region 1.

tensor components, converting them to 7 —  coordinates and inserting said components

into Eq. (3.56), we obtain [70]

D! a0 | + igr [a, d:a] =0,
1

ortoral —igr® [a, D' a]] - [DV, ] = 0, (3.58)

—_ ==

—38T1'38Ta - [Di, [Di,a]] =0.
T

These equations are satisfied in all regions of interest and are continuous on the bound-
aries between these regions. Equation (3.55), however, also requires us to treat the two

pre-collision fields distinctly at the time of the collision 7 = 07, i.e.,

0‘% (r=0"%) = Ofi(fl) + 05;(3_@_), (3.59)
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where, again, numerical subscripts refer to the regions the quantities exist in. Naturally,
we must redefine our initial ansatz « in terms of these static pre-collision gauge fields

a4 using the same sourced CYM equation as in Section 3.3.1, which yields
N iz
a(t=0",x,) = > [0(4(xJ_), az(xJ_)] . (3.60)

Converting our initial ansatz Section 3.3.2 to 7 — n coordinates gives

A" = 1 (x AT +xTA7) =0,
T
1, _ _
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