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Abstract 

Accurate cost estimation is crucial in effective decision-making and evaluation in 

underground mining projects. Machine learning techniques have shown enormous potential in 

enhancing the accuracy of cost estimation in various industries. This study harnesses artificial 

neural networks (ANN) and Support Vector Machines (SVM) to estimate operating costs in 

underground mining. Special emphasis is placed on cost estimation from a contractor’s 

perspective.  

Mining contractors are sensitive to deviations from the estimated costs because slight 

deviations may result in losing a contract bid or economic loss in an awarded project. The proposed 

approach can help contractors make more informed decisions and improve project management. 

Comprehensive data containing various parameters that impact the cost of underground mining 

projects, such as equipment type utilization, rock type, and cross-sectional area, were collected. 

This dataset was used to train and evaluate ANN and SVR models that can significantly improve 

the accuracy of cost estimation in underground mining. The best model achieved a mean average 

percentage error (MAPE) of 5.31% for the ANN model and 3.05% for the SVR one, outperforming 

traditional cost estimation methods. This study demonstrates the potential of machine learning in 

enhancing the efficiency and accuracy of cost estimation in underground mining projects. 
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Abstrait 

L'estimation précise des coûts est cruciale dans la prise de décision et l'évaluation efficace 

des projets miniers souterrains. Les techniques d'apprentissage automatique ont montré un énorme 

potentiel pour améliorer la précision de l'estimation des coûts dans diverses industries. Cette étude 

exploite les réseaux neuronaux artificiels (RNA) et les machines à vecteurs de support (MVS) pour 

estimer les coûts d'exploitation dans les mines souterraines. Un accent particulier est mis sur 

l'estimation des coûts du point de vue d'un entrepreneur. 

Les entrepreneurs miniers sont sensibles aux écarts par rapport aux coûts estimés, car de 

légères variantes peuvent entraîner la perte d'une soumission de contrat ou des pertes financières 

dans un projet attribué. L'approche proposée peut aider les entrepreneurs à prendre des décisions 

plus éclairées et à améliorer la gestion de projet. Des données complètes contenant divers 

paramètres ayant un impact sur le coût des projets miniers souterrains, tels que l'utilisation du type 

d'équipement, le type de roche et la section transversale, ont été collectés. Ce jeu de données a été 

utilisé pour former et évaluer les modèles de RNA et de MVS qui peuvent améliorer 

considérablement la précision de l'estimation des coûts dans les mines souterraines. Le meilleur 

modèle a atteint un pourcentage d'erreur absolu moye (MAPE) de 5,31 % pour le modèle de RNA 

et 3,05 % pour celui de MVS, surpassant les méthodes traditionnelles d'estimation des coûts. Cette 

étude nous démontre le plein potentiel de l'apprentissage automatique afin d’améliorer l'efficacité 

et la précision de l'estimation des coûts dans les projets miniers souterrains. 
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1 Introduction 

1.1 Objectives 

Cost estimation is a specific challenge for mining contractors. Mining contractors are 

highly sensitive to cost estimation accuracy because they are relatively small-scale corporations 

that provide services to big mining operators. Emerging machine learning techniques have a 

significant potential to improve cost estimation accuracy in mining projects. This thesis will 

demonstrate the applicability of artificial neural networks (ANN) and support vector regression 

(SVM) for cost estimation for underground mines. The primary motivation for this research is that 

the relationship between exploratory and response variables is usually complex and non-linear. 

Also, no current technique estimates costs accurately. The use of machine learning models for the 

cost estimation of mining projects is still relatively new, and there is a limited amount of research 

that has been done in this area. 

 

1.2 Originality 

The originality of this work lies in demonstrating the potential of machine learning models, 

namely, ANN and SVM, to improve the accuracy of cost estimation for mining projects and in 

showing the feasibility of using these models in a practical setting through case studies. From a 

contractor perspective, developing more accurate cost estimation models is vital in reducing the 

risk of cost overruns and improving profitability. Therefore, demonstrating the potential of 

machine learning models to improve cost estimation accuracy in mining projects can be a valuable 

contribution to the industry. Underground mining projects will be a particular focus of this 

research.  
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1.3 Thesis outline 

Chapter 1 defines the problem, objectives, and originality of the thesis. 

Chapter 2 conducts a comprehensive literature review. It encompasses an exploration of 

contractor roles, contract methodologies relevant to mining operations, cost estimation taxonomy, 

various cost estimation techniques, the structure of bid prices, and an introductory discussion on 

key machine learning concepts, along with notable applications identified within the existing 

literature. 

Chapter 3 elucidates the methodology employed, delving into crucial aspects of ANN and 

SVR, such as activation functions, backpropagation, and kernel trick. Also, the selection of 

hyperparameters and the evaluation metrics are discussed in detail.  

Chapter 4, a comprehensive case study involving a mine in The Americas, thoroughly 

examines, highlighting the application of ANN and SVR. Also, a critical analysis, benchmark, and 

comparison are provided. 

Chapter 5 provides the conclusions drawn from the study and offers recommendations for 

future research horizon within the scope of this thesis. 
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2 Literature review

Underground mining is a complex and multi-step process that involves the extraction of 

valuable minerals or ores from deep below the earth's surface. Underground mining activities 

include development and production. The development activities refer to creating underground 

openings or excavations that provide access to mineral deposits. Production activities include 

drilling, blasting, mucking, and haulage activities. In general, these activities are implemented 

concurrently in large mines and build on the foundation for the entire mining operation. Depending 

on deposit depth, dip, orientation, and strike, and mining method, an access network is developed. 

This network includes shafts, declines, ramps, drifts, cross-cuts, and levels. Also, ventilation, water 

management, compressor air, surface buildings, and power infrastructure should be installed. This 

thesis focuses on the development activities, which include a range of unit processes, such as 

horizontal and vertical access excavations, supporting, caving, and maintenance. 

 

2.1 Contractors 

A common business model in the mining industry is to work with contractors. In this 

model, some elements of mining operations are contracted to third parties called contractors. This 

thesis focuses on the cases where development activities are given to contractors specifically. The 

most common services offered in the development of an underground mine are lateral 

advancement, shaft sinking, raise boring, ramp development, inclines, cross-cuts, and 

rehabilitation works. These services encompass the essential aspects of mine development, such 

as creating openings and pathways for access, rehabilitating existing structures, constructing ramps 
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for entry points, developing inclined roadways for lower-level access, excavating horizontal 

roadways, and carrying out mass excavation activities. 

Contracting underground mine development activities to a third party has several benefits: 

a. Mine owners may not have sufficient equipment, experience, and critical human 

accumulation to conduct mine development. Contractors with specialization and 

equipment fleet for development can provide a business advantage to the mining 

operator.  

b. They can also provide high flexibility to mining operations, allowing companies to 

adjust their development schedules as needed to meet changing production demands. 

Also, as mentioned before, underground mining is highly complex and includes many 

activities. Working with contractors can ensure better control and monitor operations. 

Thus, the project planning and control will be easier. 

c. Contracting is a risk diversification strategy. Some technical risks associated with 

deviations from production targets and contingencies are transferred to the contractor. 

When selecting a contractor for underground mine development, it is important to consider 

their past safety record. Underground mining is a hazardous activity, and contractors must have a 

strong safety culture and coincide with the required safety protocols to ensure their workers' safety. 

It is also essential to consider a contractor's experience and track record in underground mine 

development, as well as their equipment and resources. 

Working with a contractor takes several steps, including tendering, bidding, contract 

negotiation, and performance. Tendering is the initial phase of the procedure. The mining company 

Requests for Proposal (RFP) from prospective contractors, inviting them to submit bids to 

develop/operate the mine. Details about the project's scope, the expected length of the contract, 
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and the performance criteria that the contractor must satisfy are included in RFPs. After reviewing 

the RFP and creating a bid that contains a thorough plan for how they will carry out the work, the 

contractors who are interested in developing/operating the mine submit their bids. In addition to 

the contractor's proposed schedule and budget, the bid will typically include information about the 

tools and labour they plan to use. The mining company will evaluate the bids and select a qualified 

contractor to conduct the tasks described in the tendering process. Typically, the selection 

procedure entails technical and financial evaluation, with the contractor's previous project 

performance, technical expertise, reputation, tender price submitted, etc. The contractor selection 

criteria may have differences from industry to industry (Khoso & Yusof, 2020; Olanrewaju et al., 

2022; Watt et al., 2010). Contract negotiations follow the selection of a contractor. This step 

requires the mining company and contractor to come to an agreement on the contract's terms, such 

as the work's parameters, its cost, and the contractor's expected level of performance. The contract 

will also detail the terms of payment, the length of the agreement, and penalties for non-

performance. The contractor will start performing its duties after the agreement has been signed. 

All tasks necessary for the mine's operation, such as mine development, production, and 

maintenance, will fall under the purview of the contractor. Drilling, blasting, supporting, 

ventilation, scaling, mucking, haulage, and other unit processes are typical duties. 

Depending on the specific needs of mine, different equipment and labor will be needed to 

conduct activities. As an example, a contractor running an underground mine might need 

specialized equipment (e.g., jumbos, rock drills, bolters, and loaders) and skilled labor (e.g., 

miners, engineers, technicians, and mechanics). Contracting out offers the advantage of allowing 

contractor to deliver equipment flexibility as one of its benefits (Awuah-Offei et al., 2003). 
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Additional support services, such as catering, transportation, and security, might also be required 

from the contractor. 

The contractor shall maintain the performance standards set forth in the contract throughout 

the term of the contract. These performance requirements will typically include criteria like 

production goals, safety requirements, and environmental compliance. Penalties or contract 

termination may be a consequence of failing to adhere to these standards. 

In major mining countries, contractors play a significant role. Thanks to their expertise, 

mining operations are conducted in a more profitable, economical, safer, and timely manner. Also, 

they provide flexibility to mining corporations. The contractors offer a wide range of services, 

including exploration, development, operation, mineral processing, and materials handling. 

 

2.2 Contract approaches 

The most common contract approaches are cost-reimbursable, lump-sum, and unit-price 

(Burnett & Wampler, 1998; Ibbs et al., 2003; Picornell et al., 2017).  

In a cost-reimbursable contract, the contractor is reimbursed by the owner for all legitimate 

actual costs incurred, along with a profit addition. In this case, the owner assumes more risks, as 

they are responsible for paying all the contractor's actual costs (Picornell et al., 2017). 

Consequently, the owner needs to actively manage and control these costs in line with their planned 

budget. For the contractor, profit is guaranteed, and it is usually proportional to the costs, fixed, or 

a combination of both, making it easy to calculate for the contractor.  

In lump-sum or fixed-price contracts, the contractor is paid a predetermined price by the 

owner regardless of the actual expenses incurred. Here, the contractor assumes more risks, and 
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places specific attention on planning and controlling the project effectively. The total project price 

is fixed and does not deviate from the contractual budget unless modifications are made to the 

contract (Ibbs et al., 2003). Consequently, the contractor strives to plan the costs as accurately as 

possible and closely monitor the deviation between planned costs and actual costs. Any additional 

cost overruns reduce the profitability of the contractor since the contractual price is fixed.  

Unit-price contracts involve the owner periodically paying the contractor based on preset 

unit rates applied to the actual measured quantities. These unit rates include estimated costs, 

overhead, and profit (Picornell et al., 2017). Unit-price contracts represent a hybrid payment 

approach that combines features of lump-sum and cost-reimbursable contracts. Risks in unit-price 

contracts are more balanced between both parties. While quantities may vary during the contract's 

development based on the actual work, the unit price rates are fixed from the beginning. Both the 

contractor and the owner bear some risks, which incentivizes both parties to implement effective 

planning and control procedures. From the owner's perspective, the contractual budget is 

determined through the contractor's bid and is distributed in periodic payments throughout the 

project's duration (Burnett & Wampler, 1998). However, unlike a fixed-price agreement, the 

budget in a unit-price contract can vary based on the measurement of actual quantities. 

This thesis is poised to make a substantial contribution to the realm of unit price contracts. 

The significance of this contribution lies in its potential to enhance the accuracy and reliability of 

unit price estimations, thereby optimizing cost assessments in various project scenarios. 

 

2.3 Methodologies for cost estimation 

The Project Management Body of Knowledge (PMBOK) is a crucial point of reference 

across various project domains. It encompasses an array of methodologies geared towards the 



 

8 

 

discipline of cost estimation and control. It is important to highlight the inherent uniqueness of 

each project, necessitating bespoke approaches. Different corporate entities adopt their own 

distinct cost estimating policies, procedures, or guidelines. PMBOK defines cost estimation as the 

systematic process of approximating the fiscal outlay required to complete project undertakings. 

The precision of these estimates typically refines as the project matures. In the preliminary phases, 

rough order of magnitude estimates exhibits a broad accuracy range, ranging from -25% to +75%, 

which gradually narrows to a range of -5% to -10% as project-specific information attains a higher 

degree of granularity. Costs encompass a multifarious spectrum of resources, spanning labor, 

materials, equipment, services, facilities, and contingencies, among other pertinent elements. Cost 

estimates can be methodically presented either at the granular activity level or in a more concise, 

aggregated format. 

 

 

Figure 1 Tools and techniques to estimate costs adapted from (PMI, 2017) 
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Within the annals of PMBOK, a multitude of methodologies are elucidated in order to 

calculate the cost estimates as well as their necessary inputs and the outputs provided for their 

intends, as shown in Figure 1. A project management plan, the organizational process assets, and 

the project documents, should be given as inputs for the utilization of the techniques. These 

techniques include: 

- Expert Judgment: An approach that calls upon individuals endowed with extensive 

expertise, informed by experience, specialized education, and a profound understanding of 

analogous projects and pertinent cost estimation methodologies. 

- Analogous Estimating: A method predicated on the empirical analysis of historical data 

emanating from comparable activities or projects, serving as a benchmark for current 

estimation exercises. 

- Parametric Estimating: A quantitative technique underpinned by algorithms and statistical 

relationships, employing historical data and project-specific parameters as inputs to 

ascertain cost estimates. 

- Bottom-up Estimating: A detailed estimation methodology that meticulously assesses the 

cost implications of individual work packages or activities, subsequently consolidating 

these assessments for higher-level reporting and monitoring purposes, often hinging on the 

Work Breakdown Structure (WBS). 

- Three-point Estimating: A technique that endeavors to enhance the accuracy of single-point 

cost estimations by considering the spectrum of estimation uncertainty and risk, relying on 

three distinct estimates to define a comprehensive range for the projected cost of a given 

activity. This triumvirate of estimates encompasses the most likely, optimistic, and 

pessimistic scenarios. 
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- Data Analysis: This encompasses various analytical techniques, notably alternatives 

analysis and reserve analysis, which are leveraged to assess multiple options and factors 

such as cost uncertainties. 

- Cost of Quality: This dimension extends to considering the implications of quality-related 

expenditures versus non-conformance costs, encompassing both short-term cost reductions 

and the potential long-term ramifications during the product life cycle. 

- Project Management Information System (PMIS): A repository of software tools that 

expedite cost estimation and analysis, streamlining the application of cost-estimation 

techniques and facilitating the expeditious evaluation of cost estimate alternatives. 

- Decision Making: Within the sphere of decision-making, the most frequently employed 

technique is voting, which involves the evaluation of multiple alternatives, with expected 

outcomes manifesting in the form of future actions. These methodologies play a pivotal 

role in harnessing team input to augment the accuracy of estimates and enhance team 

commitment. 

 

2.4 Types of estimates 

Cost estimation involves a meticulous evaluation of all the costs associated with the various 

elements of a project or effort, all defined within an agreed-upon scope. This financial assessment 

is essential for effective project planning and execution. The American National Standards 

Institute (ANSI) has delineated three specific types of cost estimation, categorized based on the 

degree of definition within the process industry: 

- Order-of-magnitude estimates: This category of estimates is characterized by an 

expected accuracy range of between +50% and -30%. Typically, order-of-
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magnitude estimates are grounded in cost-capacity curves and cost-capacity ratios. 

What sets them apart is their independence from preliminary design work. These 

estimates provide an initial understanding of the financial landscape of a project, 

serving as a valuable starting point. 

- Budget estimates: In contrast, budget estimates delve deeper into the intricacies of 

project costs. They draw from tangible data such as flowsheets, layouts, preliminary 

equipment descriptions, and specifications. The expected accuracy of budget 

estimates falls within a range of +30% to -15%. To perform accurate budget 

estimates, it is typically necessary for the project design to have progressed to a 5% 

to 20% completion stage. This level of detail is vital for more advanced financial 

planning and decision-making. 

- Definitive estimates: Definitive estimates represent the highest degree of precision 

in cost estimation. They necessitate the acquisition and integration of meticulously 

defined engineering data, including site-specific information, detailed 

specifications, basic drawings, intricate sketches, and accurate equipment 

quotations. These estimates are typically prepared when the project design has 

reached a level of completeness ranging from 20% to a full 100%. The hallmark of 

definitive estimates is the rigorous accuracy, falling within the range of +15% to -

5%. They provide a rock-solid foundation for advanced financial planning and 

informed decision-making, especially in complex projects. 

The field of cost estimation has evolved to adapt to the intricacies of modern projects. 

Association for the Advancement of Cost Engineering (AACE), a prominent authority in cost 

engineering, has proposed an extension of ANSI's estimate classifications, introducing five distinct 
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types. Each type aligns with the level of project definition at the time of estimation and comes with 

an expected accuracy level. 

Accuracy in each estimate class depends on factors such as the technological complexity 

of the project, the availability of relevant reference information, and the inclusion of appropriate 

contingency provisions. It is worth noting that, in exceptional circumstances, accuracy levels may 

deviate from the conventional ranges associated with each estimate class. 

In addition to their work on estimating classifications, AACE International has developed 

a suite of Recommended Practices (RPs) tailored to diverse industries. Notably, within the Mining 

and Mineral Processing sector, AACE International has formulated RP 47R-11. This resource 

offers detailed descriptions of the five estimate classes: 

- Class 5 estimate: Typically rely on inferred resources, established through 

preliminary drilling exploration and metallurgical analysis, along with insights 

gained from related projects to meet disclosure standards like NI 43-101. These 

estimates encompass a basic geological model, mineralization grade estimates, and 

an initial mine plan. This plan includes essential details such as mining methods 

(e.g., open pit or underground), gross production schedules, nominal plant capacity, 

assumed block flow diagrams, process rates, and a conceptual infrastructure 

outline. While there may be minimal metallurgical test work and auxiliary studies 

available, no detailed design drawings or equipment specifications are typically 

prepared, beyond preliminary notes and sketches by the project engineer, which 

may include little more than the proposed plant type, capacity, and location. 

- Class 4 estimate: Is usually based on indicated or measured resources confirmed 

through detailed drilling. These estimates necessitate the development of a 
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preliminary geological model and a comprehensive mine plan, encompassing 

elements such as pit optimization, geotechnical assessments, hydro-geological 

studies, and more. Metallurgical test work aims to determine the probable process 

flow sheet, approximate material balance, and the identification of major 

equipment. Engineering efforts comprise, at a minimum, the creation of general 

arrangement drawings, equipment lists for major components, specifications for 

nominal plant capacity, block schematics, and process flow diagrams for the main 

process systems. 

- Class 3 estimate: Is prepared using probable or proven ore reserves, adhering to 

defined confidence limits as specified by securities codes. A detailed mine plan is 

a prerequisite, with the potential for pre-stripping activities to commence upon 

project approval. Metallurgical test work reaches a level of detail that allows for 

expansion in equipment lists and specifications. Engineering is expected to provide 

general arrangement drawings, preliminary piping and instrument diagrams, single-

line electrical drawings, and more refined plot plans and layout drawings. 

- Class 2 estimate: Is based on a detailed mine design and production schedule, 

leveraging proven ore reserves. These estimates encompass all information 

included in Class 4 and Class 3 estimates concerning process details. Furthermore, 

as the project progresses toward the execution phase, Class 2 estimates include 

additional engineering data, such as a comprehensive project execution plan, 

detailed schedules, precise topographic maps, on-site surveys to ascertain plant site 

parameters, and foundational data. 
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- Class 1 estimate: Class 1 estimates represent the highest level of detail in estimation 

and are typically prepared for discrete project segments, rather than the entire 

project. These estimates rely on proven reserves, often with civil and pre-stripping 

activities already underway. Class 1 estimates provide extensive detail and may 

serve as references for subcontractor bidding or for various assessments and 

decisions made by project owners. 

Table 1 provides a detailed description of these estimate classifications.  

 

Table 1 Cost Estimate Classification Matrix for Mining and Mineral Processing Industries taken from (AACE, 2020) 

 Primary 
Characteristic 

Secondary Characteristic 

ESTIMATE 
CLASS 

MATURITY LEVEL OF 
PROJECT DEFINITION 

DELIVERABLES 
Expressed as % of 

complete definition 

END USAGE 
 Typical purpose of 

estimate 

METHODOLOGY 
 Typical estimating method 

EXPECTED ACCURACY 
RANGE  

Typical variation in low and 
high ranges at an 80% 

confidence interval 

Class 5 0% to 2% 
Conceptual 

planning 

Capacity factored, 
parametric models, 

judgement, or analogy 

L:    -20% to -50% 
H:    +30% to +100% 

Class 4 1% to 15% 
Screening 

options 
Equipment factored or 

parametric models 
L:     -15% to -30% 
H:    +20% to +50% 

Class 3 10% to 40% 
Funding 

authorization 

Semi-detailed unit costs 
with assembly level line 

items 

L:     -10% to -20% 
H:    +10% to +30% 

Class 2 30% to 75% Project control 
Detailed unit cost with 
forced detailed take-off 

L:     -5% to -15% 
H:    +5% to +20% 

Class 1 65% to 100% 
Fixed price bid 
check estimate 

Detailed unit cost with 
detailed take-off 

L:     -3% to -10% 
H:    +3% to +15% 

 

Must be highlighted that the maturity level of definition is the sole determining (i.e., 

primary) characteristic of class. In the Table 2, the maturity level of the project definition 

deliverables can be defined, considering that a list of the documents and its status for each class of 
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estimate, is provided. So, can be observed for example that the Mine Operations Layout it is in its 

preliminary status for a class 4 or class 3 estimation, but for a class 2 estimation should be defined. 

The maturity level is defined as an approximation of the completion status of the respective 

deliverables. The completion status is indicated by the following letters (AACE, 2020). 

• None (Blank): Development of the deliverable has not begun. 

• Started (S): Work on the deliverable has begun. Development is typically limited to sketches, 

rough outlines, or similar levels of early completion. 

• Preliminary (P): Work on the deliverable is advanced. Interim, cross-functional reviews have 

usually been conducted. Development may be near completion except for final reviews and 

approvals. 

• Complete (C): The deliverable has been reviewed and approved as appropriate. 

 

Table 2 Maturity level of project definition deliverables taken from (AACE, 2020) 

 CLASS 5 CLASS 4 CLASS 3 CLASS 2 CLASS 1 

MATURITY LEVEL OF PROJECT DEFINITION 
DELIVERABLES 

0% to 
2% 

1% to 15% 
10% to 

40% 
30% to 

75% 
65% to 
100% 

General Project Data:   

Project Scope Description General Preliminary Defined Defined Defined 

Mine and Plant Production/Facility Capacity Assumed Preliminary Defined Defined Defined 

Plant Location General Approximate Specific Specific Specific 

Soils & Hydrology None Preliminary Defined Defined Defined 

Resource Determination Inferred Indicated Measured Measured Measured 

Reserve Determination Assumed Probable Proven Proven Proven 

Geology General Preliminary Defined Defined Defined 

Geotechnical and Rock Mechanics General Preliminary Defined Defined Defined 

Metallurgical Teste Work General Preliminary Defined Defined Defined 

Integrated Project Plan None Preliminary Defined Defined Defined 

Project Master Schedule Assumed Preliminary Defined Defined Defined 

Mine Life Plan/Schedule General Preliminary Preliminary Defined Defined 
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Initial Mine/Ore Access (Roads, Prestripping, 
Tunnels, Shafts, Water Management, Waste 
Management, etc.) 

General Preliminary Defined Defined Defined 

Mine Operations Layout (Pit Design, Dumps, 
Roads, Water Management, Waste 
Management, etc.) 

General Preliminary Preliminary Defined Defined 

Escalation Strategy None Preliminary Defined Defined Defined 

Work Breakdown Structure None Preliminary Defined Defined Defined 

Project Code of Accounts None Preliminary Defined Defined Defined 

Contracting Strategy Assumed Assumed Preliminary Defined Defined 

Mine (Production Equipment, Prestripping, etc.) Assumed Preliminary Defined Defined Defined 

Non-Process Facilities (Infrastructure, Ports, 
Pipeline, Power Transmission, etc.) 

Assumed Preliminary Defined Defined Defined 

Engineering Deliverables:   

Block Flow Diagrams S/P P/C C C C 

Plot Plans   S/P P C C 

Process Flow Diagrams (PFDs)   P C C C 

Utility Flow Diagrams (UFDs)   S/P C C C 

Piping & Instrument Diagrams (P&IDs)   S/P C C C 

Heat & Material Balances   S/P C C C 

Process Equipment List   S/P C C C 

Utility Equipment List   S/P C C C 

Electrical One-Line Drawings   S/P C C C 

Specifications & Datasheets   S P/C C C 

General Equipment Arrangement Drawings   S C C C 

Spare Parts Listings     P C C 

Mechanical Discipline Drawings     S/P P/C C 

Electrical Discipline Drawings     S/P P/C C 

Instrumentation/Control System Discipline 
Drawings 

    S/P P/C C 

Civil/Structural/Architectural Discipline 
Drawings 

    S/P P/C C 

 

 

During the unit price analysis, costs are estimated for each resource used, incorporating 

various methodologies summarized in Figure 2. 
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Figure 2 Cost estimation methodologies, adapted from (Caputo & Pelagagge, 2008; Layer et al., 2002) 

The literature provides a variety of methods for cost estimation, which can be classified 

into qualitative and quantitative approaches (Layer et al., 2002). While qualitative approaches 

relying on expert judgment consider expertise from a group or person with training, specialized 

education, knowledge, skill or experience in previous similar projects (PMI, 2017), quantitative 

approaches make use of mathematical models to predict costs. As seen in Figure 2, the quantitative 

methods can be classified into analytical, analogous, and statistical models (Caputo & Pelagagge, 

2008), each with pros and cons. However, the accuracy of these models is not always satisfactory, 

and there is a risk of financial losses for a contractor.  

Regards to the qualitative methods, expert judgment entails harnessing the wealth of 

knowledge and experience possessed by seasoned professionals in the field. This approach 

involves seeking insights and opinions from individuals with a deep understanding of the project 

or domain. While it provides valuable qualitative inputs, its subjective nature may introduce biases, 

and the reliability of the judgment is contingent upon the expertise of the individuals involved. 
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In contrast, heuristic rules offer a simplified decision-making framework based on past 

experiences and generalizations. These rules serve as practical, easy-to-follow guidelines that 

enable quick cost estimates without the need for complex calculations. Heuristic rules are 

particularly applicable in situations where historical data is reliable, although their reliance on 

simplifications may lead to inaccuracies, especially in complex scenarios. There are some rules of 

thumb well known in the mining field proposed by O’Hara in the 90s (T. Alan O'Hara, 1992), but 

as these rules were developed with information that have not been updated since then, is not 

recommended to use them. 

This thesis endeavors to contribute to the enhancement of statistical models commonly 

employed in cost estimation practices. While traditional approaches often rely on linear regression 

techniques, this study puts forth a pioneering exploration into the application of advanced 

methodologies, specifically ANN and SVM. The motivation behind this deviation from 

conventional practices stems from the recognition that the intricacies of cost estimation warrant a 

more nuanced and adaptive modeling approach. 

 

2.5 Bid price structure. 

Figure 3 provides a breakdown of the components of project cost from the contractor's 

perspective. The project cost encompasses both indirect and direct costs. 
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Figure 3 Typical bid price structure in projects adapted from (Sanaz Tayefeh et al., 2020) 

The direct cost of the project consists of expenses directly incurred in project and 

production activities. Typically include labor costs as drillers, helpers, and operators. Also include 

equipment, materials, and subcontractors who work on specific work packages under the general 

contractor’s purview. 

Indirect costs can be further classified into some categories: project overhead and general 

overhead (Sanaz Tayefeh et al., 2020). Project overhead costs are indirectly incurred expenses 

associated with the project that cannot be directly assigned to specific work packages. Examples 

include utilities, supervision, additional support such as planning, safety, human resources, and 

similar costs. On the other hand, general overhead costs are not attributable to individual projects 

but rather pertain to the overall expenses incurred by the contractor's organization. These costs 

typically encompass expenditures incurred at the head office, personnel costs, and other similar 

Bid Price

Total Project 
Cost

Production 
Costs

Direct Costs

Labor

Materials

Equipment

Indirect 
Costs

Risk contingency and

Other overhead costs

Profit
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expenses. General overhead costs are allocated proportionately to projects based on their 

respective contributions to the contractor's total costs. 

The contractor's bid price also includes the project's cost and the desired profit. The specific 

value of profit depends on numerous factors, such as business objectives, competition within the 

industry, and the contractor's determination to secure the project over its rivals. 

Risk contingency is an allocated amount intended to cover risks that may arise during 

project execution. It serves as an estimated reserve to oversee unforeseen circumstances. 

A contractor managing specific tasks will typically base their business strategy on several 

variables, including the contract price, labor costs, and mining performance. While achieving the 

performance standards outlined in the contract, the contractor will work to minimize costs and 

maximize profit. This could require putting into practice budget-friendly strategies like 

streamlining procedures, reducing costs through organization and management, and improving 

equipment utilization. 

Contractors operate mines more effectively and efficiently than mining companies that 

might not have the same level of expertise (Suglo, 2010). Additionally, contractors give mining 

operations a degree of adaptability by enabling businesses to change their development schedules 

to meet shifting production demands. Furthermore, contracting out a mining operation can aid 

mining companies in cost management and lower capital expenditures. 

This research aims to develop a mine development cost estimation model for mining 

contractors. Cost estimation is a critical part of any mining project, including the development and 

operation of underground mines. It involves estimating costs associated with the stages of the 

mining process, from exploration to production, and accounting for factors such as equipment, 

labor, materials, and transportation. 
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The cost estimation process typically begins with developing a mining plan, which outlines 

the key steps involved in the project and the resources required to carry them out. The plan is then 

used as the basis for estimating the costs associated with each step, and these costs are aggregated 

to produce an overall project cost estimate. 

 In a unit price contract, for example, when a contractor is responsible for mine 

development, the contract criteria typically are based on the advanced linear meter, a cubic meter 

of excavation, or tonnage moved. To perform the unit price analysis, as in any project, the more 

information available, the more accurate the estimation will be. One of the crucial elements during 

an assessment is to analyze a clear understanding of the project scope. With the project scope and 

key mine activities, important aspects are clarified, including the project duration, expected 

progress rates, the types of faces to be advanced, their dimensions, rock types, and support 

requirements, which are essential knowledge for this analysis. With this information, the contractor 

can determine the necessary resources for project execution, including the equipment, personnel, 

and materials to be used, and conduct an estimation process by face and rock types. 

When analyzing direct costs, it is important to categorize equipment, materials, and labor 

resources correctly. Once all the resources are identified, they need to be converted to cost per unit 

of sale. For example, a contractor is responsible for vertical development, where the advanced 

linear meter is typically the unit of sale. The resources needed for the lineal advance in an 

underground mine to calculate the direct cost are listed in Table 3. 
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Table 3 Resource description example to estimate direct costs. 

EQUIPMENT MATERIALS LABOR 

Description Description Role 

Major equipment Drilling steel Operations Supervisor 

Jumbo  Drill rod Jumbo operator 

Bolter Drill bits Jumbo operator helper 

Scoop  Reaming drill bit Scoop operator 

Telehandler Pilot adaptors Dumper operator 

Dumper Shank Adapter Drilling machine operator 

Minor equipment Coupling Drilling machine helper 

ANFO loader Services  Shotcrete operator 

Pneumatic pump Tools Shotcrete helper 

Jackleg driller Pipes HDP (water/air/pumping) Mixer operator 

Drill bit sharpener Pipe fittings Telehandler operator 

  Hanger Hook Mechanic 

  Ventilation ducts Electromechanic 

  Accessories for ventilation ducts Welder 

  Support Tire man 

  Rockbolt    

  Electro-welded mesh   

  Split set   

  Shotcrete   

 

For equipment, conducting a cycle analysis is crucial to obtain the expected performance 

of each piece of equipment per advanced meter. Additionally, the equipment's hourly cost must be 

considered, which will differ for the contractor depending on whether they own the equipment or 

rent it from a third party. Based on this information, the cost per meter for all equipment can be 

calculated.  

For materials, it is necessary to have the support and service standards for each face, as 

they will identify the materials to be used during the advance and calculate the required units per 

meter. The cost of each element is essential information. For drilling steels, it is vital to calculate 

how much steel will be used, i.e., how many meters will be drilled per advanced meter, and have 
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a reliable service life provided by the steel distributor. With this information, the calculation per 

meter for each element can be determined, resulting in a subtotal of the material cost. 

For labor costs, it is useful to have cycle analysis to determine the number of hours 

dedicated by role in each face and consider the number of faces where the same person will be 

employed during their shift, as it will significantly impact the labor cost calculation. Additionally, 

the costs associated with each position must be considered, as it includes wages, benefits, and cuts. 

Thus, the labor cost per meter can be calculated. 

Within the analysis of indirect costs, the technical and administrative personnel in the 

project (e.g., management, operation supervision, planning and cost, safety, human resources, 

maintenance, etc.) are considered, as well as aspects such as system and communication 

equipment, support vehicles such as vans or buses, accommodation and associated services like 

cleaning, laundry, and meals. Infrastructure costs include constructing buildings where personnel 

will work within the project and operation is maintained. Safety implements such as personal 

protective equipment, signage, and fire extinguishers. It is also important to consider financial 

expenses such as surety bonds and liability insurance. 

 

2.6 Machine learning in cost estimation 

Accurate cost estimation is essential for effective decision-making, including determining 

the viability of a project and optimizing resource allocation (Gould, 2018). However, traditional 

cost estimation methods often lack accuracy due to their reliance on limited historical data (Meng 

and Whittle, 2020). Machine learning techniques are promising in enhancing the accuracy and 

efficiency of cost estimation in various industries, including mining. 
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Figure 4 Machine Learning categories  

 

 

Machine learning is a subfield of artificial intelligence that focuses on the development of 

algorithms and models that enable computers to learn from and make predictions or decisions 

based on data (Bishop & Nasrabadi, 2006). At its core, machine learning is about creating systems 

that can automatically improve their performance on a specific task through the process of learning 

from data, trying to imitate the way humans learn, improving accuracy gradually. The term 

“Machine learning” was first introduced by Arthur Samuel with his research where he investigated 

two machine learning procedures in the game of checkers, and it was the first time a computer 

playing a game won against a human ever (Samuel, 1959).  

There are some categories where we can divide the machine learning techniques, as is 

shown in Figure 4. The main categories are supervised and unsupervised learning. The main 

characteristic of supervised learning is the availability of labeled examples in the training data 

(Cunningham et al., 2008), so that in the test set the unlabeled examples can be identified with the 

highest possible accuracy. It is commonly used for classification and regression analysis. In the 

Machine Learning
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Decision Trees

Support Vector Machines

Neural Networks

Unsupervised Learning

Clustering

Principal Component 
Analysis

Self-organizing maps
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other hand, the unsupervised learning has not access to labeled examples, and is commonly used 

in clustering problems (Liu, 2011). 

There are another methods like the semi-supervised learning, where both labeled and 

unlabeled examples are used to generate the prediction (Nasteski, 2017), and the reinforcement 

learning, which deals with introducing foundational classes of algorithms for learning optimal 

behaviors, based on various definitions of optimality with respect to the goal of learning sequential 

decisions (Wiering & Van Otterlo, 2012).  

In the literature, there is a limited availability of articles discussing the application of 

machine learning to cost estimation in mining. A few examples found include the following:  

Hamidreza and Morteza (Hamidreza & Morteza, 2019), applied support vector regression 

(SVR) to determine the mining capital expenditure. The variables they recommended to estimate 

were annual mine production, stripping ratio, the annual production of the mill, reserve mean grade 

given in % Cu, and the mine life. They used the data from 52 open-pit copper mines and compared 

with the kernel ridge regression. Results showed that both methods had good results in the training 

stage, but the support vector regression was far better than the kernel ridge regression in the testing 

stage, showing an acceptable range of error.  

The other machine learning models were applied to predict mining capital cost, applying 

ANN approach (Hongquan et al., 2019). The authors used a dataset of 74 observations obtained 

from 74 open-pit copper mining projects, and the variables used to make the estimation were those 

proposed by Hamidreza and Morteza (2019). They trained some machine learning models, 

including ANN with three different architectures, random forest, SVM and classification and 

regression tree, and found that the technique that had better results was ANN in all its architectures, 

followed by the SVM model.  
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Machine learning has also been applied to cost estimation in other areas as construction, 

where the application of these algorithms has increased with time (Ran et al., 2022), showing a 

preference to apply ANN in these kinds of projects (Sanaz Tayefeh et al., 2020). Even with this 

increase in the application of machine learning algorithms, deep learning algorithms do not attract 

many researchers. Nevertheless, these studies have demonstrated the potential of machine learning 

in enhancing the accuracy and efficiency of cost estimation for construction projects. 

The mine cost estimating process lacks a widely accepted and rigorous approach, unlike 

the process employed in industries such as building construction. In mining, this process 

demonstrates noticeable variations from one evaluation to another, encompassing differences in 

both approach and scope (SME, 2011). Nonetheless, as mentioned in the previous chapters, there 

exist international codes and standards that outline the phases of a mining project, including 

specific types of studies. The internationally recommended practice established by the AACE 

(AACE, 2020) aims to establish a connection between these study types and the five standard 

estimate classes utilized in other industries. For instance, Class 5 represents projects with a project 

definition deliverable maturity ranging from 0% to 2%, while Class 1 corresponds to a maturity 

level between 65% and 100%. Accuracy expectations within the industry vary for each class, with 

the accuracy range increasing as the class and the amount of project information obtained expand. 

A typical accuracy range for a Class 1 estimate, which serves as the final estimate, falls between -

10% and 15%. The mining industry experiences considerable time gaps between these phases, 

which are utilized to gather more information and enhance estimation accuracy. However, for 

contractors, the situation differs as they are required to provide estimates within months and 

present a final estimate for tendering purposes. Consequently, it is crucial to focus on refining the 
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methodologies employed in cost estimation, reducing errors within industry-accepted ranges, and 

thereby avoiding both overestimation and underestimation to mitigate potential losses. 

It is difficult to say that a cost estimation approach is superior to the others. Each project 

has its dynamics that a specific approach makes favorable. These dynamics can be related to data 

availability, knowledge and experience accumulation, and project characteristics. Mining 

operations have distinct properties. Firstly, each mine is located in a different geological setting, 

with varying rock formations, ore deposits, and mineral grades. This uniqueness affects the mining 

process, equipment required, and, consequently, the cost of mining. Additionally, the regulatory 

and environmental requirements of each mine differ from one another, making each mine's cost 

estimation process unique. These factors combine to make each mine project unique, with varying 

risks and rewards. 

From a contractor's perspective, the unique nature of each mine poses a significant risk, as 

it requires specific equipment, processes, and expertise, which may not be readily available. 

Consequently, contractors may need to invest more time and money to understand the mine's 

unique characteristics and requirements, increasing the project's cost. Contractors are sensitive to 

cost, as higher costs can negatively impact their profits and competitiveness in the marketplace. 
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3 Methodology 

This chapter serves as the blueprint for the practical application of advanced techniques in 

cost estimation, specifically, ANN and SVR. As the foundation for this research, this section 

outlines the systematic approach we will follow to leverage the capabilities of ANN and SVR in 

addressing the complex and critical task of cost estimation within the mining industry. 

We will start by explaining how we get our data ready for analysis. Then, we will show you 

how we create and fine-tune the ANN and SVR models. Finally, we will discuss how we measure 

the models' accuracy and reliability. 

Additionally, the methodology will elucidate the evaluation criteria and techniques 

employed to gauge the accuracy and effectiveness of our models. This will involve the use of 

appropriate performance metrics and validation methods to assess the models' predictive 

capabilities and robustness. 

 

3.1 Artificial Neural Networks (ANN) 

ANN has shown tremendous growth in recent years and has been used to solve challenging 

problems such as object detection, semantic segmentation, person re-identification, image 

retrieval, anomaly detection, skin disease diagnosis, etc. To learn abstract features from data, 

diverse types of neural networks have been identified in deep learning, including Multilayer 

Perceptron, Convolutional Neural Networks, Recurrent Neural Networks, and Generative 

Adversarial Networks. Some key aspects of neural networks for their effective functioning include 

weight initialization, loss functions, different layers, overfitting, and optimization (Abu-Doush et 

al., 2023; Dubey et al., 2022). 
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ANN, in general, is a computational model inspired by the human brain's structure and 

function. Multilayer Perceptron (MLP) is a type of feedforward neural network (FNN) in which 

the data is transferred in one direction only, from the input layer to the output layer (Abu-Doush 

et al., 2023). They form the layers of interconnected nodes (also called neurons) that receive input 

signals, process them, and generate output signals (Christopher, 2006). As observed in Figure 6, 

the nodes in each layer are connected to nodes in the next layer, and a set of weights determines 

the strength of the connections between nodes. The neurons located in the hidden layers construct 

linear combinations (𝑧𝑗) of the input variables, and each one is transformed using a differentiable 

and non-linear activation function 𝑓(𝑧𝑗). 

 

𝑧𝑗 = ∑ 𝑥𝑖 . 𝑤𝑖,𝑗 + 𝑏

𝑛

𝑖=0

                                                                      (1) 

𝑎𝑗 =  𝑓(𝑧𝑗)                                                                                    (2) 

where 𝑥𝑖 is the 𝑖𝑡ℎ feature used as input in the network, 𝑤𝑖,𝑗 is the weight linked from the 𝑖𝑡ℎ input 

to the 𝑗𝑡ℎ hidden neuron, 𝑏 is the bias associated with the hidden neuron, 𝑧𝑗 is the linear 

combination done in each neuron, and 𝑎𝑗 is the activation function selected to add the non-linearity 

to the process. A scheme of how each neuron is working is shown in Figure 5. 
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Figure 5 Working scheme of a neuron. 

 

 

 

Figure 6 General architecture for ANN for estimating the cost per meter in this study. 

 



 

31 

 

3.1.1 Activation Functions 

Activation functions are essential in neural networks as they facilitate learning abstract 

features by applying non-linear transformations to the input data (Dubey et al., 2022). In 

implementing neural networks, multiple activation functions have been developed to reduce the 

loss in the training process. A recent study showed at least 25 activation functions that can be 

divided into seven families: ReLU, Sigmoid, Tanh, Softmax, GELU, Softsign, and Shrink (Singh 

et al., 2023). Sigmoid and hyperbolic tangent functions have been the most used activation 

functions in ANN for years (Apicella et al., 2021). Although these bounded functions usually have 

values between 0 and 1 or -1 and 1 as shown in Figure 7 and perform well in small neural network 

architectures, but they may suffer from the vanishing gradient problem, which is a problem 

generated during the training phase when the gradient is used to update the weights of the network. 

The network cannot learn effectively if the gradients are too small or zero, resulting in poor 

predictive performance. On the other hand, networks utilizing unbounded functions as the rectified 

family, such as ReLU, Leaky ReLU, etc., have shown to be universal approximators, effectively 

mitigating the vanishing gradient problem, because it is only saturated in one direction as can be 

observed in Figure 8 (Apicella et al., 2021). In Table 4, the most common activation functions are 

mentioned, with their derivatives and ranges. 
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Figure 7 Common activation functions 

 

 

Figure 8 Derivatives of the common activation functions 
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Table 4 Common activation functions and their derivatives 

Function Definition Derivative Range 

Sigmoid 
𝜎(𝑥) =

1

1 + exp (−𝑥)
 

1

1 + exp(−𝑧𝑗)
. (1 −

1

1 + exp(−𝑥)
)

=  𝑥(1 − 𝑥), 

[0, 1] 

Hyperbolic 

tangent 

𝑇𝑎𝑛𝐻(𝑥)

=
exp(𝑥) − exp(−𝑥)

exp(𝑥) + exp(−𝑥)
 

1 − 𝑇𝑎𝑛𝐻2(𝑥) [-1, 1] 

Rectified 

linear unit  

ReLU(x) = max (𝑥, 0) 1 𝑖𝑓 𝑥 ≥ 0 

0 𝑖𝑓 𝑥 < 0 

[0, ∞] 

Leaky 

ReLU 

max(𝛼 𝑥, 0) 1 𝑖𝑓 𝑥 ≥ 0 

𝛼 𝑖𝑓 𝑥 < 0 

[-∞, ∞] 

 

3.1.2 Backpropagation 

To train an ANN, a dataset is provided to the network with inputs and the corresponding 

desired outputs. The network processes the inputs and produces an output. The error between the 

output produced by the network and the desired output is then calculated (Yoosefzadeh Najafabadi 

et al., 2023). The weights of the connections between nodes are then adjusted to minimize the 

error, a process known as backpropagation, which backpropagates the error according to the chain 

rule (Tao et al., 2022).  

Backpropagation is a popular algorithm used in ANN for supervised learning. The algorithm 

enables the network to learn from a given set of input-output pairs and adjust its parameters to 
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minimize the difference between the predicted and actual output values. The backpropagation 

process involves two stages: forward propagation and backward propagation.  

During the forward propagation stage, the input data are passed through the network, and 

the output of each layer is calculated using the weights of the connections between the neurons. 

The output of the final layer is then compared to the desired output, and the error is calculated 

using a chosen loss function.  

 

 

Figure 9 Working scheme of ANN with a single hidden layer. 

  

The output of the final layer is calculated as follows: 

𝑦̂ = ∑ 𝑎𝑗 . 𝑤𝑗,𝑜 + 𝑐

𝑚

𝑗=0

                                                           (3) 
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where 𝑦̂ is the predicted value, 𝑤𝑗,𝑜 is the weight linked from the 𝑗𝑡ℎ hidden neuron to the 

output, 𝑚 is the number of neurons and 𝑐 is the bias associated with the output. 

Therefore, the forward pass the ANN is feed by equations (1), (2), (3) and a Loss function 

choosen during the implementation process, the involves the target and predicted values 

comparisons.  

In the backward propagation stage, the error values are propagated back through the 

network, starting from the final layer, and moving backwards. The gradient of the error with regard 

to the weights of the network is calculated for each layer, using the chain rule of calculus (Tao et 

al., 2022). This involves calculating the partial derivatives of the output of each neuron with respect 

to the output of the previous layer and the partial derivatives of the error concerning the output of 

each neuron in the last layer. Therefore, using the chain rule, the partial derivative of the loss 

function according to the weights of the input given by the following expression is obtained: 

𝜕𝐿

𝜕𝑤𝑖,𝑗
= ∑

𝜕𝐿

𝜕𝑦̂

𝜕𝑦̂

𝜕𝑎𝑗

𝜕𝑎𝑗

𝜕𝑤𝑖,𝑗
                                                        (4) 

As can be observed in Figure 9, the activation function involves the 𝑧𝑗 function, and for the 

calculation of each 𝑧𝑗, all the weights 𝑤𝑖,𝑗, we sum over all of them, having as a result the following 

equation: 

𝜕𝐿

𝜕𝑤𝑖,𝑗
= ∑ ∑

𝜕𝐿

𝜕𝑦̂

𝜕𝑦̂

𝜕𝑎𝑗

𝜕𝑎𝑗

𝜕𝑧𝑗

𝜕𝑧𝑗

𝜕𝑤𝑖,𝑗
𝑜

  

𝑛

                                                (5) 

Let’s say in a process a sigmoid activation function is chosen and the mean square error as 

loss function, which means we have equations (1), (3) and 

𝑎𝑗 = 𝑓(𝑧𝑗) = 𝜎(𝑧𝑗) =
1

1 + exp (−𝑧𝑗)
                                             (6) 
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𝐿𝑀𝑆𝐸 =
1

𝑛
∑(𝑦 − 𝑦̂)2

𝑛

𝑖=1

                                                          (7) 

Calculating all these partial derivatives:  

𝜕𝑧𝑗

𝜕𝑤𝑖,𝑗
= 𝑥𝑖                                                                    (8) 

𝜕𝑎𝑗

𝜕𝑧𝑗
=

1

1 + exp(−𝑧𝑗)
. (1 −

1

1 + exp(−𝑧𝑗)
) =  𝑧𝑗(1 − 𝑧𝑗)                        (9) 

𝜕𝑦̂

𝜕𝑎𝑗
= 𝑤𝑗,𝑜                                                                 (10) 

𝜕𝐿

𝜕𝑦̂
= −2(𝑦 − 𝑦̂)                                                            (11) 

And replacing in (5), the expression in this case would be: 

𝜕𝐿

𝜕𝑤𝑖,𝑗
= ∑ ∑ −2(𝑦 − 𝑦̂)

𝑚𝑛

. 𝑤𝑗,𝑜 . 𝑧𝑗(1 − 𝑧𝑗). 𝑥𝑖                                (12) 

When the derivatives have been calculated, an optimization algorithm is used to update the 

weights in the direction of the steepest descent. The most common optimizers used in the literature 

are Gradient Descent, Stochastic Gradient Descent, Adam, Adadelta, etc., (Kingma & Ba, 2014; 

Kumari et al., 2023; Ruder, 2016; Zeiler, 2012). There are some other methods used in large-scale 

problems that use second-order derivative approximations (Bottou et al., 2018). However, the most 

common optimizer for non-complex cases is gradient descent given in Equation (5) because it is 

easy to implement, understand and compute. This involves adjusting the weights by subtracting a 

multiple of the gradient of the error concerning the weights. This multiple is known as the learning 

rate and controls the size of the update step in each iteration. 
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𝑤𝑖,𝑗
𝑚+1 = 𝑤𝑖,𝑗

𝑚 − 𝛼 (
𝜕𝐿

𝜕𝑤𝑖,𝑗
)

𝑖

                                                        (13)   

where 𝑤𝑖,𝑗
𝑚+1 is the new weight, 𝑤𝑖,𝑗

𝑚 is the weight in the last iteration 𝑚, 𝛼 is the learning 

rate and (
𝜕𝐿

𝜕𝑤𝑖,𝑗
) is the derivative of the Loss function w.r.t weight. 

This process is repeated until the error between the predicted and actual output values is 

minimized (Kevin P., 2022). The backpropagation algorithm is highly effective in optimizing the 

weights of an ANN to produce accurate output values and is widely used in various fields such as 

finance, healthcare, and image recognition (Saranya & Subhashini, 2023). 

 

3.2 Support Vector Machines (SVMs) 

SVMs are a class of supervised machine learning algorithms used for classification and 

regression tasks. It was initially designed to solve pattern recognition problems and Vapnik 

proposed the method for estimating regressions, constructing multidimensional splines and solving 

linear operator equations (Vapnik, 1995). The results of applying the support vectors to these 

problems can be found in (Vapnik et al., 1996). At their core, SVMs are about finding a hyperplane 

that best separates data into distinct classes. This hyperplane is defined by a linear equation. 

Consider a binary classification problem where two classes are given, often labeled as -1 

and +1. The goal of SVM is to find a hyperplane that maximizes the margin, the distance between 

the hyperplane and the nearest data points (support vectors) from each class (Raghavendra. N & 

Deka, 2014). 

The equation of a hyperplane in a feature space is given by: 

𝑥 ∙ 𝑤 + 𝑏 =  0                                                            (14)      
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Where: 

- 𝑥 represents the input features. 

- 𝑤 is the weight vector, perpendicular to the hyperplane. 

- 𝑏 is the bias term, which shifts the hyperplane away from the origin. 

The decision boundary is defined by this hyperplane. Data points are classified based on which 

side of the hyperplane they fall: if 𝑥 ∙ 𝑤 + 𝑏 >  0, the point belongs to one class, and if 𝑥 ∙ 𝑤 +

𝑏 <  0, it belongs to the other class. 

The effectiveness of SVMs depends on the linear separability of data. Linearly separable data 

means that you can draw a straight line (in 2D), a hyperplane (in higher dimensions),  that 

perfectly separates the two classes. Here is an example: 

 

 

Figure 10 Linear separable example 
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In Figure 10, three different planes are used to separate both classes, and can be observed 

that the one that better separate the datasets for class -1 and class +1 is the green one, can be 

observed that a single straight line can separate the two classes, making this data linearly separable. 

However, many real-world datasets are not linearly separable, as showed in Figure 11. In 

such cases, SVMs can still be applied by transforming the data into a higher-dimensional space 

using kernel functions. This allows for the creation of a hyperplane in the transformed space that 

can effectively separate non-linearly separable data. 

 

 

Figure 11 Linear Non-Separable example 

  

The main objective in training an SVM is to find the hyperplane that maximizes the margin 

while minimizing classification errors. This optimization problem can be formulated as follows: 



 

40 

 

max
𝑤

               
2

‖𝑤‖
 

subject to       𝑦𝑖(𝑥𝑖 ∙ 𝑤 + 𝑏) ≥ 1, ∀𝑖 

 

Here, 𝑦𝑖 is the class label (-1 or +1), 𝑥𝑖 is the data point, and 𝑥𝑖 ∙ 𝑤 + 𝑏 is the decision 

boundary. The condition 𝑦𝑖(𝑥𝑖 ∙ 𝑤 + 𝑏) ≥ 1 enforces that all data points are correctly classified 

with a margin of at least 1. 

 

 

Figure 12 Support vector interpretation 

 

The goal is to find the weight vector 𝑤 and the bias term 𝑏 that satisfy this condition while 

maximizing 
2

‖𝑤‖
 which is the same that minimizing ‖𝑤‖2 . The term 

2

‖𝑤‖
 represents the width of 
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the margin, and the optimization seeks to maximize this margin while minimizing classification 

errors. The data points selected whilst maximizing these margins are known as the support vectors, 

as is shown in Figure 12. 

This kind of optimization problem, where a maximization or minimization of some 

quadratic function should be done, subject to a number of linear conditions or constraints, is known 

as quadratic programming (Nocedal & Wright, 2006). This can be solved using techniques like the 

Lagrange multiplier method (Emami & Omar, 2013; Rockafellar & Wets, 1986), leading to the 

final SVM model with the optimal hyperplane. The primal formula will be: 

𝐿𝑝 =
1

2
‖𝑤‖2 − ∑ 𝛼𝑖[𝑦𝑖(𝑥𝑖 ∙ 𝑤 + 𝑏) − 1]

𝑙

𝑖=1

                                      (15) 

Where 𝛼 is the Lagrange multiplier. 

 

Here the 𝐿𝑝 should be minimized setting the gradient of the Lagrange primal to zero, to 

find a stationary point for 𝐿𝑝 over w and 𝛼. Then, the Lagrange partial derivatives are set to zero, 

𝜕𝐿𝑝

𝜕𝑤
= 0, 

𝜕𝐿𝑝

𝜕𝛼
= 0. 

Solving, can be found that: 

𝜕𝐿𝑝

𝜕𝑤
= 𝑤 − ∑ 𝛼𝑖𝑦𝑖𝑥𝑖

𝑙

𝑖=1

= 0                                                   (16) 

So, 

𝑤 = ∑ 𝛼𝑖𝑦𝑖𝑥𝑖

𝑙

𝑖=1

                                                           (17) 
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And, 

𝜕𝐿𝑝

𝜕𝛼
= ∑ 𝛼𝑖𝑦𝑖

𝑙

𝑖=1

= 0                                                        (18) 

Replacing (17) in (15), we have: 

𝐿𝑝 =
1

2
(∑ 𝛼𝑖𝑦𝑖𝑥𝑖

𝑙

𝑖=1

∙ ∑ 𝛼𝑗𝑦𝑗𝑥𝑗

𝑙

𝑗=1

) − ∑ 𝛼𝑖𝑦𝑖 (𝑥𝑖 ∙ ∑ 𝛼𝑗𝑦𝑗𝑥𝑗

𝑙

𝑗=1

+ 𝑏) + ∑ 𝛼𝑖

𝑙

𝑖=1

𝑙

𝑖=1

 

𝐿𝑝 =
1

2
(∑ 𝛼𝑖𝑦𝑖𝑥𝑖

𝑙

𝑖=1

∙ ∑ 𝛼𝑗𝑦𝑗𝑥𝑗

𝑙

𝑗=1

) − (∑ 𝛼𝑖𝑦𝑖𝑥𝑖

𝑙

𝑖=1

∙ ∑ 𝛼𝑗𝑦𝑗𝑥𝑗

𝑙

𝑗=1

) − ∑ 𝛼𝑖𝑦𝑖

𝑙

𝑖=1

+ ∑ 𝛼𝑖

𝑙

𝑖=1

 

As we found that ∑ 𝛼𝑖𝑦𝑖
𝑙
𝑖=1 = 0, we obtain a dual optimization problem: 

𝐿𝑝 = ∑ 𝛼𝑖

𝑙

𝑖=1

−
1

2
∑ ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗(𝑥𝑖 ∙ 𝑥𝑗)

𝑙

𝑗=1

𝑙

𝑖=1

                                         (19) 

Subject to  

𝛼𝑖 ≥ 0  

∑ 𝛼𝑖𝑦𝑖

𝑙

𝑖=1

= 0 

 

3.2.1 Soft Margin 

The concept of “margin” introduced before is known as hard margin, where the goal is to 

find a hyperplane that perfectly separates the training data into two classes without any 

classification errors. However, this approach has limitations when dealing with noisy or 

overlapping data, as real-world data is rarely perfectly separable. 
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In practical scenarios, it's common for data points to have some degree of noise, outliers, 

or inherent overlap between classes. Relying on a hard margin approach could result in overfitting 

the model to the training data and poor generalization to unseen data. 

To address these challenges, the concept of a "soft margin" SVM was introduced. In a soft 

margin SVM, a small amount of classification error is allowed, and the model aims to find a 

hyperplane that minimizes the sum of the deviations, training errors and maximises the margin 

width (Cortes & Vapnik, 1995), while considering a user-defined parameter 𝐶, which is known as 

the regularization parameter. 

min
𝑤,𝐶,𝜉

               
1

2
‖𝑤‖2 + 𝐶 ∑ 𝜉𝑖

𝑙

𝑖=1

 

subject to      𝑦𝑖(𝑥𝑖 ∙ 𝑤 + 𝑏) ≥ 1 − 𝜉𝑖 and 𝜉𝑖 ≥ 0, ∀𝑖 

where: 

- 
1

2
‖𝑤‖2 represents the margin maximization term, like the hard-margin SVM. 

- 𝐶 ∑ 𝜉𝑖
𝑙
𝑖=1  is the classification error, where 𝜉𝑖 measures how much each data point is 

allowed to violate the margin. 𝐶 is a trade-off parameter that balances the importance of 

margin maximization and classification errors. 

 

The optimization problem is subject to constraints ensuring that the classification error, 

represented by 𝜉𝑖, is minimized while respecting the user-defined tolerance 𝐶. The trade-off in a 

soft-margin SVM lies in the choice of this parameter. 
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- A smaller 𝐶 places more emphasis on maximizing the margin. The model will tolerate 

more classification errors, allowing for a wider margin. This is suitable for scenarios 

where the data is relatively clean, and overfitting is a concern.  

- A larger 𝐶 gives more weight to minimizing classification errors, resulting in a narrower 

margin. The model is less tolerant of errors and will aim to classify training data points 

correctly. This is useful when dealing with noisy or overlapping data. 

The optimal 𝐶 value is often determined through cross-validation, as it depends on the specific 

dataset and problem at hand. 

 

 

3.2.2 Kernel Trick 

Linear SVMs are powerful tools for classification tasks when the data is linearly 

separable, meaning it can be divided into two classes using a straight line (in two dimensions), a 

hyperplane (in higher dimensions), or a linear decision boundary. However, they have limitations 

when dealing with non-linearly separable data. These limitations include: 

- Inability to Capture Complex Patterns: Linear SVMs struggle to capture complex 

and non-linear relationships between features and class labels in the data. 

- Reduced Classification Accuracy: When data is not linearly separable, using a 

linear SVM may lead to poor classification accuracy as it tries to fit a linear 

boundary to inherently non-linear patterns. 

 

The kernel trick is a technique used to overcome the limitations of linear SVMs when 

dealing with non-linearly separable data. It involves mapping the original feature space into a 
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higher-dimensional space where the data becomes linearly separable. This transformation is 

achieved by applying a kernel function to the data, which implicitly computes the dot product of 

data points in the higher-dimensional space without explicitly calculating the transformation. 

 

Generally, it is not commonly known which function transforms the original space into the 

expanded feature space. Mercer's theorem provides assurance for the existence of such a function, 

as it dictates certain conditions that must be met (Zhang et al., 2013). Mercer's theorem says: “To 

be a valid Support Vector Machine kernel, for any finite function 𝑔(𝑥) the following integration 

should always be non-negative for the given kernel function 𝐾(𝑥, 𝑦)” (Vapnik et al., 1996): 

∬ 𝐾(𝑥, 𝑦)𝑔(𝑥)𝑔(𝑦) ≥ 0 

Here, 𝐾(𝑥, 𝑦) computes the inner product in the featured space and is known as the Mercer 

kernel. Utilizing a positive definite kernel guarantees that the optimization problem will be convex 

nature and there will be an unique solution (Rakse & Shukla, 2010). 

 

There are several types of kernel functions that can be used in SVMs, each with its own 

characteristics and properties. These includes linear, polynomial, radial basis functions (RBF) and 

sigmoid (Raghavendra. N & Deka, 2014; Zhang et al., 2013) : 

- Linear Kernel: The linear kernel (or dot product) is the simplest and is used when 

the data is already linearly separable. It works well for linear problems and is 

computationally efficient. 
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- Polynomial Kernel: The polynomial kernel raises the dot product of two data points 

to a certain power, introducing non-linearity. It is effective in capturing moderately 

complex patterns but can be sensitive to the choice of the polynomial degree. 

- Radial Basis Function (RBF) Kernel: The RBF kernel, also known as the 

Gaussian kernel, is widely used for its ability to model complex non-linear patterns. 

It defines similarity between data points based on their Euclidean distance in the 

transformed space. The RBF kernel has a parameter (gamma) that controls the 

kernel's flexibility. 

- Sigmoid Kernel: The sigmoid kernel is another non-linear kernel that can capture 

non-linear patterns. It is based on the hyperbolic tangent function. 

These common kernels are shown are shown in Table 5 with their formulas. 

Table 5 Common kernel functions 

Kernel function Formula Annotations 

Linear 𝐾(𝑥𝑖, 𝑥𝑗) = 𝑥𝑖 ∙ 𝑥𝑗 𝑥𝑖 ∙ 𝑥𝑗 is the dot product of the 

input vectors 

Polynomial 𝐾(𝑥𝑖 , 𝑥𝑗) = (𝑥𝑖 ∙ 𝑥𝑗 + 𝑐)𝑑 𝑐 is the constant term and 𝑑 is 

the degree of the polynomial 

Radial Basis 

Function (RBF) 
𝐾(𝑥𝑖, 𝑥𝑗) = exp (−𝛾 ∙ ‖𝑥𝑖 − 𝑥𝑗‖

2
) 𝛾 is a parameter that controls the 

width of the Gaussian function 

and ‖𝑥𝑖 − 𝑥𝑗‖
2
 is the squared 

Euclidean distance between the 

input vectors 

Sigmoid 𝐾(𝑥𝑖 , 𝑥𝑗) = tanh (𝛾 ∙ (𝑥𝑖 ∙ 𝑥𝑗 + 𝑐)) 𝑐 is the constant term 

 

 

In the literature, some new kernels functions have been proposed, such as KMOD, UKF 

(Zhang & Wang, 2011), Cauchy (Rakse & Shukla, 2010), Wavelet (Zhang et al., 2013) and 

ASVMK (Pourbahrami et al., 2023). Also, have been presented kernels based on particle swarm 
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optimized vectors and Bayesian optimizers (Kouziokas, 2020), weighted kernel functions (Wang 

et al., 2016) and a wide range of families of orthogonal polynomial kernels as Laguerre, Hermite, 

Jacobi Legendre, Chebyshev and Gegenbauer (Padierna et al., 2018). Limited emphasis will be 

placed on this aspect as it lies outside the scope of this thesis. 

 

3.2.3 Support Vector Regression 

SVMs are employed for both binary and multi-class classification tasks. However, when 

the aim shifts from predicting discrete class labels to forecasting a continuous target variable, this 

constitutes a regression problem. In such cases, a specialized version of SVM comes into play. 

The concept of SVR was originally introduced by Drucker and Vapnik in their paper titled 

"Support Vector Regression Machines" as the ε-SVR model (Drucker et al., 1996). Here, a 

different type of loss function is proposed, called the ε-insensitive loss.  

𝐿𝜀(𝑦, 𝑦̂) = {
0                                             𝑖𝑓 |𝑦 − 𝑦̂| < 𝜀

|𝑦 − 𝑦̂| − 𝜀                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    
 

Where 𝑦 is the actual value, 𝑦̂ is the predicted value and 𝜀 is the width of the tube. 

This function defines a ε tube where if the predicted value is inside the tube, the computed 

loss is zero, but if the value is outside the tube, the loss is equal to the magnitude of the difference 

between the predicted value and the ε value given to the tube’s radius. 

The function is usually written in the following form: 

𝐽 =
1

2
‖𝑤‖2 + 𝐶 ∑ 𝐿𝜀(𝑦𝑖, 𝑦̂𝑖)

𝑙

𝑖=1

                                                    (20) 

Some slack variables are introduced to represent the degree to which value lies outside the 

ε tube. 
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𝑦̂𝑖 ≤ 𝑦𝑖 + 𝜀 − 𝜉𝑖
+                                                                (21) 

𝑦̂𝑖 ≥ 𝑦𝑖 + 𝜀 − 𝜉𝑖
−                                                                (22) 

Given this, the function can be rewritten as follows: 

𝐽 =
1

2
‖𝑤‖2 + 𝐶 ∑(𝜉𝑖

+ + 𝜉𝑖
−)

𝑙

𝑖=1

                                                 (23) 

Here, 𝜉𝑖
+ and 𝜉𝑖

− are zero if the value is located inside the 𝜀-tube. If the predicted value is 

above the tube, 𝜉𝑖
+ is the positive difference between the predicted value and 𝜀, and similarly if the 

predicted value is below the tube 𝜉𝑖
− will not be zero. An interpretation of these parameters is 

shown in Figure 13.  

The constrains are (21), (22), and epsilon positive, which means: 

𝜉𝑖
+, 𝜉𝑖

− ≥ 0, ∀𝑖 

The corresponding Lagrangian equation for the SVM in regression will be: 

𝐿𝑝(𝑤, 𝜉𝑖
+, 𝜉𝑖

−) =
1

2
‖𝑤‖2 + 𝐶 (∑ 𝜉𝑖

+

𝑙

𝑖=1

+ ∑ 𝜉𝑖
−

𝑙

𝑖=1

) − ∑(𝜇𝑖
+𝜉𝑖

+ + 𝜇𝑖
−𝜉𝑖

−)

𝑙

𝑖=1

− ∑ 𝛼𝑖
+[(𝑦̂ − 𝑦) − (𝜀 + 𝜉𝑖

+)] − ∑ 𝛼𝑖
−[(𝑦 − 𝑦̂) − (𝜀 + 𝜉𝑖

−)]

𝑙

𝑖=1

𝑙

𝑖=1

                         (24) 

Where 𝛼𝑖
−, 𝛼𝑖

+, 𝜇𝑖
− and 𝜇𝑖

+ are the Lagrange multipliers 

For more details in the final calculation refer to (Drucker et al., 1996). The final form for 

the prediction is: 

𝑦̂ = ∑(𝛼𝑖
− − 𝛼𝑖

+)𝐾(𝑥𝑖, 𝑥) + 𝑏

𝑙

𝑖=1

                                                 (25) 
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Therefore, the goal of ε-SVR is to estimate a function with a constraint that the estimation 

of each input data point has at most ε deviation from its actual response value, by forming an ε-

insensitive tube symmetrically around the estimated function. We can see that the essence of ε-

SVR is to perform a linear regression with an ε-insensitive loss function, penalizing predictions 

that are farther than ε from the desired output. The value of ε is a key factor affecting the flatness 

of the tube, where a small value leads to a narrow tube; thus, a low tolerance for prediction errors, 

and a large value leads to a broad tube, thus a high error tolerance. 

SVR extends SVMs to regression problems, making them suitable for tasks such as stock 

price prediction, time series forecasting, and cost estimation (Hamidreza & Morteza, 2019; 

Henrique et al., 2018; Xu et al., 2019) 

 

Figure 13 Parameters of SVR 
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3.3 Hyperparameter selection 

In the field of machine learning, the performance and effectiveness of models rely not only 

on the architecture and training algorithm but also on the careful selection of hyperparameters that 

are not learned from the data but rather set by the user before training the model. They determine 

the behavior and characteristics of the model, making their selection a critical aspect of the 

modelling process. In this regard, the choice of hyperparameters significantly influences the 

network's ability to learn complex patterns and generalize from the data. 

ANN comes with many hyperparameters that need to be properly configured. The 

hyperparameters of an ANN encompass various aspects, including the network architecture, 

learning rate, optimizer, regularization techniques, batch size, and number of training epochs, 

among others (Smith, 2018). Each of these hyperparameters plays a distinct role in shaping the 

behavior and performance of the network. 

The sheer number of hyperparameters and their interdependencies challenge selecting 

appropriate values. For instance, the choice of optimizer, such as Stochastic Gradient Descent 

Adam, or RMSprop, may introduce additional hyperparameters specific to that optimizer, such as 

learning rate schedules or momentum values (Sivaprasad et al., 2020). Similarly, regularization 

techniques like L1 or L2 regularization introduce hyperparameters like regularization strength (Yu 

& Zhu, 2020). The complexity of hyperparameter selection increases as we consider different 

combinations and their potential impact on model performance. 

Support Vector Regression (SVR) also entails the configuration of several critical 

hyperparameters to achieve optimal performance. Much like ANNs, SVR requires careful tuning 

of these hyperparameters to ensure that the regression model behaves as desired and provides 

accurate predictions. 
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SVR hyperparameters encompass various aspects of the model. These include the 

regularization parameter (often denoted as C), the insensitivity parameter 𝜀, the kernel type (e.g., 

linear, polynomial, radial basis function), and the associated kernel parameters. Each 

hyperparameter holds a unique role in shaping the SVR model's behavior and predictive power. 

The challenge in SVR, as with ANNs, lies in selecting the appropriate values for these 

hyperparameters. The choice of the regularization parameter C, for instance, determines the trade-

off between fitting the training data precisely and preventing overfitting. A smaller C encourages 

a wider margin and greater tolerance for errors, while a larger C enforces a narrower margin with 

fewer deviations from the regression line (Wang et al., 2023). 

The parameter ε regulates the width of the ε-insensitive zone, which is employed to 

accommodate the training data. The choice of ε has implications for the selection of support vectors 

utilized in building the regression function. When ε is set to a larger value, fewer support vectors 

are chosen, leading to regression estimates that are more "flat" and less intricate (Cherkassky & 

Ma, 2004). Consequently, both the values of C and ε influence the model's complexity, although 

they do so in distinct ways. 

Moreover, when dealing with non-linear relationships in the data, selecting the kernel type 

and its associated parameters becomes crucial. For instance, the radial basis function (RBF) kernel 

requires setting the kernel width (γ), which influences the flexibility of the SVR model. 

Improper selection of hyperparameters can lead to suboptimal model performance. 

Insufficient regularization may result in overfitting, where the model memorizes the training data 

but fails to generalize well to unseen data. On the other hand, excessive regularization might cause 

underfitting, where the model fails to capture important patterns in the data. In the case of ANN, 

the learning rate, if set too high or too low, can hinder the convergence of the model (Smith, 2018). 
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Thus, the careful selection of hyperparameters is essential for achieving the right balance and 

maximizing the model's generalization capabilities. 

Given the significance and complexity of hyperparameter selection, researchers and 

practitioners have developed various strategies to tackle this challenge. Methods range from 

manual tuning, where experts iteratively adjust hyperparameters based on intuition and 

experimentation, to automated techniques that leverage computational power and algorithms to 

search for optimal configurations. These automated methods include grid search, random search, 

Bayesian optimization, and more advanced techniques that utilize machine learning algorithms for 

hyperparameter tuning (Bergstra et al., 2011; Bergstra & Bengio, 2012; Claesen & De Moor, 2015; 

Smith, 2018). Grid search involves exhaustively evaluating the performance of the model for all 

possible combinations of hyperparameters, while random search involves randomly sampling 

combinations of hyperparameters. Bayesian optimization and automated hyperparameter tuning 

are more advanced techniques that use probabilistic models and algorithms to efficiently explore 

the hyperparameter space (Victoria & Maragatham, 2021). 

The choice of hyperparameters could be a specific problem due to the available 

computational resources. Hyperparameter tuning is an iterative process, and multiple trials may be 

necessary to identify the optimal configuration. Cross-validation can be employed to evaluate the 

performance of different hyperparameter settings (Tsamardinos et al., 2015).  

Overall, selecting the right hyperparameters is a crucial step in building an effective ANN 

model, and selecting an appropriate method for hyperparameter tuning can significantly impact 

the model's performance and generalization ability. 
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3.4 Evaluation metrics 

This study examines the effectiveness of ANN and SVR in estimating underground mining 

costs by utilizing commonly employed metrics in implementing machine learning models for 

regression (Michelucci & Venturini, 2023). They can be categorized into accuracy-base and error-

base metrics (Dessain, 2022), which include the coefficient of determination (R2) for the accuracy-

base metric, and mean square error (MSE), root mean square error (RMSE), mean absolute error 

(MAE), and mean average percentage error (MAPE) for error-base metrics—giving more 

importance to this last one, given that the main study is to reduce the percentage of deviation in 

the average of the cost predicted against the actual cost, which is precisely the definition of the 

MAPE. 
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Where 𝑦𝑖 is the actual value, 𝑦̂𝑖 is the predicted value, 𝑦̅𝑖 is the mean of all the 𝑦𝑖, and 𝑛 is the 

number of observations. 
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4 Case study 

The success of implementing any type of machine learning technique heavily depends on the 

quality and quantity of data provided. One of the most significant advantages of ANN and SVR is 

their ability to learn and make predictions based on patterns identified in large data sets. However, 

if the data used for training the network is inaccurate, incomplete, or biased, the resulting 

predictions may be unreliable or even useless. It is, therefore, crucial to ensure that the data used 

for the implementation of both algorithms is of high quality, represents the real-world problem 

being addressed, and is well-prepared for machine learning algorithms. This includes data 

cleaning, normalization, feature engineering, and data augmentation. In addition, the data must be 

comprehensive enough to capture all relevant variables and factors that can affect the predicted 

outcome. In summary, the success of implementing any machine learning technique depends 

largely on the quality, quantity, and relevance of the data provided.  

In this thesis, a case study is presented based on a mine in The Americas. The dataset utilized 

in this study encompasses a comprehensive summary of the mine's operations over a period of one 

year. The summary data was derived from ongoing mine activities and cost control measures 

implemented during this period. 

While specific details are safeguarded to ensure the confidentiality of proprietary information, 

the overall approach to data gathering and analysis adheres to industry standards and best practices. 

This ensures the integrity and relevance of the findings presented in the case study. 

 The database used included various variables such as Rock Type, Area (m2), Drillholes, 

Drillhole length (feet), Volume per blast (m3), Jumbo (MH), Scoop (MH) and Dumper (MH). The 

distribution of each of these variables is shown in Figure 14. 
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- “Rock type” was categorized from 1 to 5, with 1 being a competent rock and 5 

representing a very weak rock.  

- “Area” refers to the cross-sectional area given in square meters.  

- “Drillholes” refers to the number of drillholes in each working face. 

- “Drillhole length” was given in feet.  

- “Vol per blast” refers to the volume of a blast given in cubic meters.  

- The last three variables, Jumbo, Scoop, and Dumper, represent the machine hours 

of three main equipment used in the working faces for drilling, mucking, and 

haulage, respectively. 

 

Figure 14 Distributions of variables 
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As can be seen from the descriptive statistics presented in Table 6, the variables included 

in the database are of different natures, ranging from operational to rock quality and equipment 

variables. This wide range of variables allows for a more accurate study, as opposed to only 

considering variables of the same nature. 

Therefore, the data collected from the mine provides valuable insight into the operational 

performance and rock quality of the mine. Using this data in the machine learning models ensures 

a more reliable and accurate prediction of the mine's performance.  

 

Table 6 Main descriptive statistics of the features used in the research. 

  mean std min max 

Cost per meter (USD) 1,735.05 381.39 1,133.59 2,353.89 

Rock type 2.95 1.45 1.00 5.00 

Area (m2) 17.77 3.72 12.65 22.50 

Drillholes 48.16 9.52 31.00 65.00 

Drillhole length (feet) 12.37 0.54 11.00 13.00 

Vol per blast (m3) 56.23 14.10 30.83 82.16 

Jumbo (Machine hours) 0.93 0.16 0.68 1.30 

Scoop (Machine hours) 1.20 0.23 0.87 1.52 

Dumper (Machine hours) 2.01 0.48 0.50 2.62 

 

Measuring the strength of the relationship between random observations is critical in 

statistics. The correlation coefficient measures the strength of the relationship between variables 

and typically takes values in the range [-1,1] or [0,1]. The most widely used and well-known 

correlation coefficient is the Pearson coefficient. It is defined for random variables x and y with 

finite and positive variances, and it measures the linear relationship between the variables 

(Edelmann et al., 2021). 
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A correlation matrix can be used to understand the associations among variables better. 

This matrix provides a comprehensive summary of the correlation coefficients between all pairs 

of variables in the dataset. This thesis uses the Pearson correlation coefficient to analyze a 

correlation matrix presented in Figure 15. The matrix contains information about the correlation 

between various variables, including operational, rock quality, and equipment variables. By 

examining the matrix, researchers can gain insights into the relationships between these variables 

and how they impact the performance of the mine. Overall, using correlation coefficients and 

correlation matrices is a crucial tool in statistical analysis and can provide valuable insights into 

the underlying associations among variables. 

 

 

Figure 15 Pearson correlation matrix 

 

To analyze the how is the behavior of the correlation between all the given variables and 

the cost per meter, the pair plots among all of them are displayed in Figure 16. As can be observed, 

there are some patterns that can be classified in groups. A fast analysis shows that the variable 
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which is leading the grouping is Rock Type. So, it is decided to set this variable as class for 

displaying the pair plots.  

 

Figure 16 Pair plots among all the variables 

Figure 17 shows that the correlations between the cost per meter and most variables are 

nearly linear, except for the drillhole length variable. However, for all the other variables, it is not 

straightforward to establish a linear correlation, indicating non-linear characteristics of the input 
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variables. This non-linearity in the input variables makes it challenging for conventional methods 

to make accurate predictions as they are not equipped to manage such complexities. However, 

ANN models are well-suited for such scenarios as they can model non-linear relationships and 

significantly reduce prediction errors.  

 

 

Figure 17 Pair plots among all the variables given having Rock Type as a class. 

One of the primary challenges encountered during the implementation process of ANN and 

SVR is effectively tuning the hyperparameters. As previously discussed, a commonly employed 

approach called Grid Search entails exhaustively evaluating the model's performance across all 
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possible combinations of hyperparameters. However, it is crucial to define appropriate parameter 

ranges to avoid excessive computational resources while still exploring optimal parameter values. 

This study initially employed a manual tuning approach to establish sensible ranges for the 

algorithm. This step aimed to prevent the algorithm from searching within an overly broad range, 

which could consume considerable computational resources without necessarily identifying 

optimal parameter values. After the manual tuning stage, the parameter ranges presented in Table 

7 and Table 8 were selected for the subsequent Grid Search. 

Table 7 Parameters considered for ANN hyperparameter tuning with Grid Search 

Parameter Range 

Hidden layers [1, 2] 

Hidden neurons [1,5,10,15,20,25,30,35,40,45,50] 

Activation functions ['tanh', 'relu','identity', 'logistic'], 

Solver (Optimizer) ['sgd', 'adam'] 

Type of learning rate ['constant', 'adaptive'], 

Learning rate [0.1, 0.05, 0.01, 0.005, 0.001, 0.0001] 

Alpha [0.0001, 0.001, 0.01, 0.1] 

 

Table 8 Parameters considered for SVR hyperparameter tuning with Grid Search 

Parameter Range 

Kernel function ['linear', 'rbf', 'polynomial', 'sigmoid'] 

C [1, 1.5, 2, 2.5, 3, 4, 5] 

Gamma [1, 0.1, 0.01, 0.001] 

Epsilon [0.001, 0.01, 0.1, 0.5, 1, 2, 4] 

 

Subsequently, the Grid Search was performed using the predefined parameter ranges. The 

search systematically evaluated the model’s performance across the provided parameter 

combinations. The resulting parameter values, determined through the Grid Search, are presented 

in Table 9 and Table 10. 
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This systematic approach to hyperparameter tuning enables the identification of optimal 

parameter values for the ANN and SVR models, enhancing its performance and predictive 

accuracy. The combination of manual tuning and Grid Search offers a robust and efficient 

methodology for hyperparameter optimization in the context of the ANN and SVR 

implementation. 

 

Table 9 ANN hyperparameters selected by Grid Search 

Parameter Value 

Hidden layers 1 

Hidden neurons 15 

Activation functions relu 

Solver (Optimizer) adam 

Type of learning rate adaptative 

Learning rate 0.1 

Alpha 0.001 

 

Table 10 SVR hyperparameters selected by Grid Search 

Parameter Value 

Kernel function poly 

C 1 

Gamma 1 

Epsilon 0.01 

 

After determining the optimal hyperparameters, the algorithms are implemented to train 

the model. A predefined stopping criterion was established to ensure an appropriate stopping point 

for the training process of ANN. In this study, the criterion was set as a tolerance level of 0.0001 

in the R2 Score, requiring no significant improvement observed over ten consecutive iterations. 

This means that if, after ten continuous iterations, the algorithm does not exhibit an improvement 
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greater than 0.0001 in the R2 Score, the algorithm will consider the current Score and its 

corresponding loss value as the best and results for the implementation. 

During the training iterations for the ANN model, the algorithm calculates the loss value 

and the validation score. In this study, the obtained loss value was 0.003, indicating the magnitude 

of the errors between the predicted and actual values. Furthermore, the validation score, with a 

value of 0.94, assesses the model's performance in capturing the underlying patterns in the data. 

The behavior of the loss value and the validation score throughout the iterations is visually 

depicted in Figure 18 and Figure 19, respectively. These figures provide insights into the 

convergence and progress of the algorithm during the training process. 

By establishing a stopping criterion and closely monitoring the loss value and validation 

score, the algorithm can effectively determine the optimal point to conclude the training process. 
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This approach ensures that the model achieves satisfactory accuracy and performance before it is 

applied to make predictions or perform further analyses. 

  

Figure 18 Loss curve in ANN implementation 
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Figure 19 Validation scores curve in ANN implementation 

During the evaluation of the models on the test data, a comparison was made between the 

actual cost and the predicted cost generated by the model. This assessment allows us to gauge the 

accuracy of the model's predictions. The closeness between the predicted and actual costs is 

illustrated in Figure 20 and Figure 22, which visually depicts the proximity of the predicted values 

to the real values. 
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Figure 20 Real cost vs predicted cost with ANN. 

 

To further analyze the performance of the models, Figure 21 and Figure 23 provide a 

representation of the residual errors between the predicted and actual costs. The maximum 

deviation observed in the residual errors is 200.15 CAD, translating to an Absolute Percentage 

Error of 12.87% for the ANN model and 191.95, CAD corresponding to an Absolute Percentage 

Error of 12.29% for the SVR model. This metric quantifies the relative magnitude of the errors in 

relation to the actual costs. 
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Figure 21 Residual values in the predicted values with ANN 

 

For a comprehensive overview of the residual values and their corresponding Absolute 

Percentage Error for all predicted values, referring to Table 11 and Table 12. These tables offer a 

detailed interpretation of the errors and provide insight into the model's performance across 

multiple cost predictions. The Mean Absolute Percentage Error (MAPE) is calculated as 5.31% 

and 3.05% for ANN and SVR models, respectively, in this model implementation. This result 

signifies a better-than-expected level of accuracy, considering that the accepted "accuracy" 

threshold for cost estimation is typically set at less than 10% (AACE, 2020). 



 

68 

 

Table 11 Comparison between actual and predicted values ANN. 

Actual 

(USD) 

Predicted 

(USD) 

Difference 

(USD) 

Absolute percentage error 

(%) 

2024.19 1994.06 30.13 1.49 

1561.66 1726.52 -164.86 10.56 

1555.12 1354.97 200.15 12.87 

1375.59 1426.69 -51.1 3.71 

1432.23 1428.71 3.52 0.25 

2116.38 2076.23 40.15 1.9 

1278.54 1345.37 -66.83 5.23 

2026.97 1943.99 82.98 4.09 

2353.89 2409.44 -55.55 2.36 

1779.4 1628.52 150.88 8.48 

1787.24 1685.82 101.42 5.67 

 

The combination of Figure 20, Figure 21 and Table 11 offers a comprehensive evaluation 

of the ANN model's performance in predicting costs and the Figure 22, Figure 23 and Table 12 

combination shows the same for the SVR model's performance. These metrics and visual 

representations contribute to a thorough understanding of the model's accuracy and effectiveness 

in estimating costs within acceptable limits. 
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Figure 22 Real cost vs predicted cost with SVR. 

 

Figure 23 Residual values in the predicted values with SVR 
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Table 12 Comparison between actual and predicted values SVR. 

Actual 

(USD) 

Predicted 

(USD) 

Difference 

(USD) 

Absolute percentage error 

(%) 

1992.51 2024.19 31.68 1.56 

1753.61 1561.66 -191.95 12.29 

1555.8 1555.12 -0.68 0.04 

1468.21 1375.59 -92.62 6.73 

1483.47 1432.23 -51.24 3.58 

2119.28 2116.38 -2.9 0.14 

1288.19 1278.54 -9.65 0.75 

1873.31 2026.97 153.66 7.58 

2348.93 2353.89 4.96 0.21 

1746.84 1779.4 32.56 1.83 

1788.15 1787.24 -0.91 0.05 

 

Finally, the Table 13 shows the results with the metrics proposed for evaluation in this 

thesis. The mean average percentage error is the one we are giving more importance due to its 

literate definition which is what is used for cost estimation deviations or accuracy expectations 

and the focus of this study is to reduce the percentage of deviation in the average of the cost 

predicted against the actual cost. As can be observed, the MAPE obtained in both models fits into 

the expected values, which are less than 10%. 

 

Table 13 Evaluation metrics results for ANN and SVR 

Model 𝑅2 MSE RMSE MAE MAPE 

ANN 0.90 10897.09 104.39 86.14 5.31 

SVR 0.94 6713.56 81.94 52.07 3.05 
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5 Conclusions 

Cost estimation plays a crucial role for mining contractors in the bidding process for mining 

projects, as accurate estimations are essential to avoid detrimental under or overestimations. Based 

on the findings of this study, it can be concluded that both ANN and SVR serve as reliable 

techniques for cost estimation, utilizing past information. The achieved MAPE of 5.31% for ANN 

and 3.05% for SVR, falls within the expected accuracy range for the final stages of cost estimation, 

while the R2 score of 0.90 and 0.94, respectively, further validates the effectiveness of both 

machine learning algorithms. 

The selection of hyperparameters in ANN and SVR is of utmost importance, as they 

significantly influence the network's performance, effectiveness and the degree of error allowed. 

Properly chosen hyperparameters ensure optimal learning, regularization, and generalization. 

However, hyperparameter selection poses challenges due to the vast search space and 

interdependencies among parameters. While grid search was employed in this study, more 

complex problems may require approaches like Bayesian optimization, considering the availability 

of computational resources. 

Each mining problem should be treated individually, acknowledging the uniqueness of 

equipment, geometry, geology, and rock differences of mines. This thesis attempts to capture 

emerging trends in cost estimation, emphasizing the utilization of algorithms like ANN and SVR 

that not only reproduce the input-output relationship but also consider the interplay among input 

variables for enhanced prediction. 

The outcomes of machine learning techniques should be benchmarked with conventional 

methods. Experience and expert judgement are still valuable tools, and they can be combined with 
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the proposed techniques in this research. Thus, mining contractors can estimate their costs more 

accurately. 

Future research could greatly benefit from access to more high-quality data that has undergone 

meticulous cost control, as it serves as valuable input for accurate estimations. 

The minerals industry is behind some sectors, such as the construction industry in cost 

estimation. The cost estimation for underground mining can be more complicated. However, the 

construction industry has well-developed standards and practices. The minerals industry should 

investigate their practices to improve their business.  

It is proposed to compare ANN and SVR with other machine learning algorithms such as 

Decision Trees, Random Forest, and maybe different Ensemble methods. This comparison aims 

to evaluate model performance and assess the proximity of predictions. Furthermore, by exploring 

alternative algorithms, researchers can gain insights into their strengths and limitations, further 

advancing the field of mining cost estimation. Also, instead of the Pearson correlation coefficient, 

the approaches capturing non-linear relationships between variables can be considered (e.g., 

copulas). Thus, the performance of machine learning techniques can be furthered. 
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