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Abstract 
Surgical interventions carry substantial risks to patients and increased costs to health care 

systems. This risk is particularly true for brain tumor surgery, due to the fragile nature of the 

central nervous system. Given this issue, the demand for an objective demonstration of surgical 

competence from stakeholders ranging from patients’ rights groups, governmental organizations, 

insurance agencies and hospital administrations is increasing. Similarly, as residency programs 

continue to move towards a competency-based curriculum, there is an increasing need for 

assessment of resident technical skills. As such, the use of virtual reality surgical simulators has 

been explored as a means of providing objective assessments in surgery. These simulators can 

track all movements and forces of simulated instruments, generating enormous datasets in the 

process. Artificial intelligence/machine learning systems lend themselves well to the analysis of 

such large datasets and their application to evaluate performance on virtual reality simulators has 

led to an increase in the volume and complexity of publications which bridge the fields of 

computer science, medicine and education. However, there remains a paucity of evidence that 

operative rehearsal enhances surgical performance in oncological neurosurgery. 

The purpose of this dissertation is to address several unanswered questions about the role 

of simulation training in neurosurgery and to lay the groundwork for a future randomized 

controlled trial. As such, we outline the relevant background in the training of neurosurgeons, as 

well as the rise of simulation and artificial intelligence in medicine. We reviewed the literature 

on studies involving AI in surgical simulation and discovered that important communication 

gaps exist between medicine/education and computer-science/engineering. Consequently, we 

sought to bridge these gaps by introducing standardized reporting guidelines. These guidelines 

were applied as we sought to assess the feasibility of machine learning to assess surgical skills in 
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neurosurgical simulation and demonstrated that participants could be classified into 4 levels of 

expertise with 90% accuracy. Findings here may serve as a precursor to a machine learning 

powered experimental training arm in a future RCT. Furthermore, to understand the limitations 

surgical evaluation by supervision, we compared expert ratings with computer generated metrics 

on a simulated oncological neurosurgical procedure. Most notably, force exerted on tissues, an 

important aspect of neurosurgical technique, was less well captured by the expert evaluators. 

Finally, we outlined a framework whereby the primary outcome of the RCT could be evaluated, 

focusing on extent of resection of brain and tumor as assessed on MRI and visual inspection via 

tumor fluorescence, in addition to a further secondary outcome involving surgical movement 

capture. 

Computerized simulation technology and artificial intelligence systems represent the 

latest iteration in man’s quest to best understand and improve the world around him. Applied to 

neurosurgery, these innovations introduce significant technological and philosophical disruptions 

to an otherwise conservative and judicious field. Given its inherently high-stakes nature, 

neurosurgery represents a litmus test for medicine at large. Simply put, if these technologies can 

be successfully applied in the neurosurgical context, they can be applied to other domains in 

medicine as well. 

 It is my hope the innovations outlined in this thesis will have a positive impact on 

patients afflicted with neurosurgical conditions, as well as any patient undergoing an 

interventional procedure within the medical system.  
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Résumé  
Les interventions chirurgicales exposent les patients à des risques importants et imposent 

des coûts élevés aux systèmes de santé. C’est particulièrement le cas pour celles visant le 

traitement des tumeurs cérébrales, en raison de la fragilité du système nerveux central. Par 

conséquent, les parties prenantes, comme les groupes de défense des droits des patients, les 

organismes gouvernementaux, les assureurs et les administrations hospitalières, exigent de plus 

en plus une démonstration objective des compétences chirurgicales. De même, puisque les 

programmes de résidence continuent de mettre l’accent sur les compétences, l’évaluation des 

aptitudes techniques des résidents revêt une importance accrue. C’est pourquoi l’utilisation de 

simulateurs chirurgicaux de réalité virtuelle a été explorée afin de fournir des évaluations 

objectives en chirurgie. Ces simulateurs peuvent reproduire tous les mouvements ainsi que la 

force des instruments simulés, générant au passage de vastes ensembles de données. Les 

systèmes d’apprentissage automatique ou par l’intelligence artificielle se prêtent bien à l’analyse 

de ces grands ensembles de données. Leur utilisation dans l’évaluation de la performance des 

simulateurs de réalité virtuelle a entraîné une augmentation du volume et de la complexité des 

publications, qui combinent dorénavant l’informatique, la médecine et l’éducation. Malgré cela, 

il existe encore peu de données probantes de grande qualité (niveau 1) montrant l’incidence de la 

répétition opératoire sur la performance chirurgicale dans le domaine de la neurochirurgie 

oncologique. 

L’objectif général de ma thèse consiste à la fois à mieux comprendre le rôle de la 

simulation et de l’intelligence artificielle dans la formation des résidents en neurochirurgie et à 

préparer le terrain pour un futur essai contrôlé randomisé.  Le chapitre 1 décrit les aspects 

pertinents de la formation des neurochirurgiens ainsi que l’essor de la simulation et de 
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l’intelligence artificielle en médecine. Le chapitre 2 présente une revue de littérature afin 

d’établir une méthodologie cohérente et des lignes directrices en matière de rapports dans les 

études traitant d’intelligence artificielle et de simulation chirurgicale. Le chapitre 3 met les 

éléments précédents en application. Nous y démontrons qu’il est possible d’utiliser 

l’apprentissage automatique pour évaluer les compétences chirurgicales dans le cadre d’une 

simulation neurochirurgicale. Les résultats obtenus pourraient préparer à l’utilisation future d’un 

group expérimental optimisé par l’apprentissage automatique et destiné aux études cliniques 

randomisées (ÉCR). Au chapitre 4, nous avons cherché à établir une échelle d’évaluation 

visuelle fiable pouvant servir de critère d’évaluation secondaire dans une ÉCR. Enfin, le 

chapitre 5 décrit un cadre permettant d’étoffer le critère d’évaluation principal de l’ÉCR, 

notamment l’étendue de la résection du cerveau et de la tumeur évaluée par IRM et par 

l’inspection visuelle en fonction de la fluorescence de la tumeur, et l’ajout d’un critère 

secondaire relatif à la capture du mouvement chirurgical. 

La technologie de simulation informatisée et les systèmes d’intelligence artificielle 

constituent les plus récentes avancées dans la quête de l’être humain pour mieux comprendre et 

améliorer le monde qui l’entoure. Appliquées à la neurochirurgie, ces innovations entraînent des 

bouleversements technologiques et philosophiques importants dans un domaine par ailleurs 

conservateur et empreint de rationalisme. Compte tenu des risques élevés inhérents à la 

neurochirurgie, l’utilisation de ces technologies dans un tel contexte constitue un test décisif pour 

la médecine dans son ensemble. Autrement dit, si ces technologies peuvent être appliquées avec 

succès dans le contexte neurochirurgical, elles peuvent également l’être dans les autres 

disciplines médicales. 
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 J’espère que les innovations décrites dans la présente thèse auront une incidence positive 

sur les patients atteints de troubles neurologiques ainsi que sur tout patient du système de santé 

devant subir une intervention chirurgicale.  
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Contribution to Knowledge 
Chapters 2, 3, 4 and 5 constitute original scholarship and have been published in peer-

reviewed journals. This work has contributed to the advancement of surgical education within 

neurosurgery in the following ways: 

Chapter 2 outlines the development of the Machine Learning to Assess Surgical Expertise 

(MLASE) checklist, which researchers can utilize when producing and reviewing virtual reality 

manuscripts involving machine learning to assess surgical expertise. A standardized approach in 

the reporting of these publications will allow researchers from these fields to form a better shared 

understanding of the burgeoning field of machine learning assisted surgical education. To further 

clarify the need for such a checklist, all published literature utilizing artificial intelligence 

methodologies in the context of virtual reality surgical education was reviewed and interesting 

differences in the quality of reporting between medical education and computer science journals 

were described. As expected, the medical education journals proved stronger in discussion 

quality and weaker in areas related to study design. The opposite trends were observed in 

computer science journals. At the time of publication, given the paucity on guidelines on the 

subject of artificial intelligence applications in virtual reality surgical education, this study 

represented the first attempt to create an organized reporting and evaluation structure for this 

type of research. 

Chapter 3 is the first study to demonstrate the ability of machine learning algorithms to 

classify surgical expertise into four groups with high accuracy using fewer than ten performance 

measures. Of the 50 participants (comprising 250 simulated operations), only 5 were 

misclassified. Notwithstanding that the simulated task was a neurosurgical procedure performed 

on the NeuroVR, one of the most advanced surgical simulators available, the novel methodology 
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outlined has broad applicability in any circumstance in which technical performance is 

measured. 

Chapter 4 is the first study to concurrently compare participants’ ratings obtained from 

observation alone with their computationally measured performance and operative 

complications. This provides interesting insights on the strengths and limitations of visual rating 

scales in neurosurgery. As residency programs continue to move towards a competency-based 

curriculum, there is an increasing need for assessment of resident technical skills. Visual rating 

scales remain convenient tools for generating organized formative assessments. A theoretical 

limitation of visual rating scales is the risk of rater subjectivity in skills assessment. Furthermore, 

little information exists on the ability of rating scales to capture subtler aspects of performance, 

including force applied by instruments during a procedure.  Those metrics relating to instrument 

force and patient safety (brain volume removed, blood loss) were captured by the fewest number 

of visual rating scale components. The implications of these findings are that important aspects 

of technical performance, particularly those related to patient safety, are not well captured by 

simply observing the operation. These findings could only be possible by using the novel 

methodology described in the study.  

Chapter 5 outlines a comprehensive research framework which allows for the study of 

technical performance and operative outcomes in oncological neurosurgery. This platform relies 

on a cost-effective alginate-based artificial brain tumor incorporated into an ex vivo calf brain 

within a controlled operative environment. This represents the first instance where an artificial 

tumor has been created based on biomechanical properties of human specimens obtained at time 

of resection. Operative performance can be assessed both via recordings from the surgical 

microscope and ceiling mounted camera, and by movements generated from instrument-mounted 
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fiducials, while operative “success” can be assessed at time of surgery by presence of residual 

tumor, via ultraviolet fluorescence or ultrasound. Finally, MRI of residual tumor, as well as the 

location and volume of grey and white matter resected in 0.003 mm3 increments present an 

opportunity for a precise quantification of operative outcome. This framework can offer the 

clinician, learner, or researcher the ability to carry out operative rehearsal, teaching, or studies 

involving intraparenchymal brain tumor surgery in a controlled laboratory environment and 

represents a crucial step in the understanding and training of expertise in neurosurgery. 
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Chapter 1 - Introduction 
Adverse Events in Surgery 

Despite improvements in healthcare technology and delivery systems, medical errors 

continue to be a cause of significant morbidity and mortality (1). Medical errors cost a staggering 

17.1 billion dollars annually in the United States, with roughly one-third directly relating to 

surgery (2). Complications were once considered an unavoidable consequence of surgery, 

however increasingly the influence of surgeon technical skill on patient outcomes has come 

under scrutiny. Lack of technical competence or knowledge was identified as a contributing 

factor in 41% of 444 surgical malpractice claims from four insurers covering approximately 

21,000 physicians in the United States (3). In another prospectively conducted study involving 

9,830 patients undergoing surgical procedures over a 12-month period, 63.5% of the errors 

recorded were due to an “error of technique”, classified as a difficulty with the execution of a 

given procedure, rather than an inappropriate procedure itself (4). Finally, a systematic review on 

the subject concluded that superior technical skills in surgery had a positive impact on patient 

outcomes (5). 

 

Operating on the Nervous System 

Harvey Cushing outlined the adverse consequences of errors in the neurosurgical 

operating room at the turn of the previous century (6), and although technology has improved, 

neurosurgery remains one of the most technically challenging surgical specialties, with high 

potential for morbidity and mortality. Indeed, there are few surgeries in medicine which capture 

the attention of the medical community and lay public quite as effectively as operating on the 

organic seat of consciousness itself. Neurosurgeons are called to operate on the brain due to 
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various pathologies, including brain tumors, and are considered a core competency of any 

neurosurgical graduate (7, 8). Despite the relatively low incidence of 22 cases per 100,000 

people (with approximately half representing malignant primary tumors), the health care costs 

associated with patients burdened by brain tumors are high (9). Both extent of resection (10) and 

post-operative functional performance status (11) are strong predictors of overall survival in the 

setting of malignant primary brain tumors (glioblastoma) and are heavily influenced by intra-

operative factors. 

The subpial resection technique, while initially pioneered for epilepsy surgery, is 

recognized as an essential skill for the removal of primary brain tumors (12). To achieve this, the 

pia mater, an extremely delicate and thin layer of connective tissue adherent to the surface of the 

cortex, is preserved while the underlying cortex is removed with a suction device. Figure 1 

demonstrates this technique as seen in the NeuroVR neurosurgical simulation platform. This 

accomplishes two goals: (1) the surgeon can remain immediately adjacent to tumoral margins, 

staying within the relatively avascular surrounding tissue, maximizing brain-tumor interface 

identification, and (2) minimize damage to surrounding healthy anatomy, such as adjacent 

eloquent cortex and vascular structures. Given that technical errors constitute roughly one third 

of mistakes in neurosurgical practice (13-15), and may be an under-reported phenomenon (16), it 

is crucial that this technique is learnt and applied appropriately. 
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Figure 1.1 The subpial resection technique as seen in the NeuroVR platform 

 

 

The Training of Neurosurgical Residents 

Currently, learning the subpial resection technique occurs solely in the clinical context, 

exposing patients to increased risk of morbidity. This apprenticeship based model has been 

present for over a century, when Dr. Hallstead first introduced the concept of a surgical 

residency which included progressive graded clinical responsibility (17). Unfortunately, as 

residents learn a new skill (novice and advanced-beginner Dreyfus stages) they are liable to 

cause the most patient injury (18). A meta-analysis on the impact of resident involvement on 

neurosurgical patient outcomes demonstrated a slight increase in complications secondary to 

resident involvement (OR 1.14; CI 1.03-1.25, p = 0.02) (19). The propensity for errors during 

training should be theoretically offset by interventions on the part of the intraoperative surgical 

instructor, though this is not always the case. A lack of supervision was felt to be a contributing 

factor in 9.5% of neurosurgical resident errors according to surveyed program directors (20). In 

cases of adequate supervision, a prospectively gathered patient registry demonstrated no 
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significant differences in mortality and complications in intracranial tumor surgery when the 

surgical operator was a supervised trainee or a staff neurosurgeon (21). However, it should be 

noted that there were no trainees below their 4th year of training, and over 85% were in their final 

two years of training. Technical errors were reported as most common among neurosurgical 

trainees (20), and the most junior neurosurgical residents (years 1-3 in training) demonstrated 

higher force variability in their surgical instruments during live surgeries (seen as a marker of an 

inability to regulate force exerted on tissue), compared with staff neurosurgeons (22). Given the 

delicate nature and functional importance of the nervous tissue, excess force applied to neural 

structures causes damage, as has been demonstrated in animal models of central nervous system 

injury (23, 24). In the insurance malpractice study quoted in the first introductory paragraph, 

trainees, which included surgical interns, residents or fellows, had a contributing factor in 46% 

of the claims (3). 

Partially as a response to growing demand for public accountability in the training of 

physicians, the training of surgical residents is undergoing another revolution (17). The new 

framework, termed Competency Based Education in the United States (25) and Competency by 

Design in Canada (26) emphasizes the demonstration of competence in a given professional 

activity rather than simply a time-based advancement through residency training (where time-

spent was considered as a surrogate for competence). In this mastery-based model, a trainee’s 

progress is to some extent dependent on achieving a given standard or “cut-off”. For assessment, 

both systems take a criteria-referenced approach, whereby an individual is compared to a defined 

standard as opposed to peer performance (27). However, robust psychometric surgical 

performance and patient outcome data is a prerequisite to a sanguine discussion about what 

constitutes ‘adequate’ surgical performance in a competency-based training system.  
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Quantification of Technical Skills 

As it currently stands, neurosurgical resident’s technical abilities are evaluated by their 

surgical instructor within a clinical context. Because of their convenience, visual rating scales 

may be utilized to generate organized formative (i.e. feedback) assessments. Numerous rating 

scales have been studied, however among the most popular has been Objective Structured 

Assessment of Technical Skills (OSATS), originally developed in 1997 (28). Follow-up studies 

across numerous surgical specialties have demonstrated the OSATS to be reliable and valid 

across repeated settings (29).  

In the case of the Royal College of Physicians and Surgeons of Canada, the accepted 

visual rating scale is the O-SCORE (30). However, although the O-SCORE is considered 

psychometrically sound, in the sense that the rating scale was generalizable across the two 

surgical specialties involved in its conception (general and orthopedic surgery), this does not 

necessarily mean that it captures elements important for patient safety and operative success in a 

neurosurgical operation. Technical skills, while complementary between specialties, may be 

discrete in some cases, such as the bimanual microsurgical technique with operative microscope 

which is commonly used in neurosurgery. While the OSATS has been utilized within a 

neurosurgical clinical context (31), as we will see in chapter 4, visual rating scales may have 

important limitations in capturing elements of performance crucial to neurosurgery, notably force 

(32).  

Tissue-Based Models in Neurosurgery  

Unlike patient-based surgery, animal or human cadavers permit the evaluation of trainee 

psychomotor performance in an environment that poses no risk to patients. In a US based survey 
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involving 65% of neurosurgical training programs, over 90% used animal or cadaveric 

laboratory dissections in their resident curricula (33). Human cadavers have been a cornerstone 

of medicine for thousands of years, and these permit the study of human anatomy in its most 

authentic form. In neurosurgery, cadavers have routinely been used for spinal and cranial surgery 

(34). Through the innovative use of pump systems, traditional limitations such as lack of active 

bleeding states and cerebrospinal fluid flow can be overcome (35, 36). Furthermore, the 

unrealistically high stiffness of nervous tissues in formaldehyde treated cadavers can be 

circumvented with novel embalming methods (37). Despite these benefits, human cadaver 

procurement is often costly and highly regulated. As such, given their low cost and relative ease 

of access, ovine, porcine, and bovine models have been proposed as useful alternatives in the 

evaluation and training of neurosurgical residents (38, 39). Similarities in anatomy between 

humans, ovine (40, 41), porcine (42-45) , and bovine (46, 47) brain make these animals ideal 

candidates for cranial neurosurgical operations. Moreover, the speed of harvest of fresh animal 

cadavers may obviate the need for the use of any preservation technique, preventing 

biomechanical changes to nervous tissue. Ex vivo models may be used as such, without 

modification, to allow the trainee to develop a familiarity with tissue handling or to demonstrate 

a particular surgical approach, or may be modified through the addition of synthetic or organic 

compounds to re-create a pathological state, such as a ruptured aneurysm or tumor (48). While 

human cadavers and animal models remain useful adjuncts in neurosurgical resident education, 

these remain single use and may suffer from the same pitfalls in inferring psychomotor skills 

through observation as real surgery (49, 50).  

Virtual Reality Simulation 

Computer-based simulation technology remains an interesting alternative as it offers the 
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promise of integrating realism, pathology and active bleeding states while offering the possibility 

of the quantitation of psychomotor skills in an environment void of distractions with no risk to 

patients. The SARS-CoV-2 global pandemic with resulting reduction in the number of elective 

surgical cases has further increased the necessity for simulation systems to supplement training 

(51, 52). Broadly speaking, simulation systems can be thought to lie on a continuum between 

low and high-fidelity based on the degree to which the simulated task or object is captured in a 

realistic fashion (engineering fidelity) and whether the task captures the specific behaviours 

required in “real life” (psychological fidelity) (53) (though it should be noted that much 

controversy on the definition of these terms still exists) (54).  

A recent systematic review has identified ten different virtual reality simulation systems 

available for neurosurgery (55). Among these, the most popular, by volume of publications, is 

the NeuroTouch. This system was developed in 2009 by a team of 50 experts from the National 

Research Council of Canada in collaboration with an advisory network of neurosurgeons from 

23 Canadian teaching hospitals. In 2016 the distribution rights have been acquired by CAE 

Healthcare (Montreal, Quebec, Canada), and the system is now sold as the NeuroVR (Figure 

1.2).  
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Figure 1.2 The NeuroVR Neurosurgical Simulator 

 

The NeuroVR consists of a stereoscope through which a three-dimensional image is 

projected to the user. The user interacts with the simulation object through a bimanual haptic 

rendering system. Both hands are used together, mimicking the bimanual tasks faced in a live 

operating environment. A finite element rendering method generates the force felt by the user. 

The finite element method numerically models the structures in the scenario and applies a 

physics-based approach permitting mechanical characterization of the simulated structures. 

Although more computationally demanding (56), the finite element method allows for a more 

veridical representation of tissue deformation compared to voxel-based systems (57), although 

the latter has been incorporated successfully into spine-surgery simulation systems (58). As such, 

the attention to detail and resources utilized in the creation of the NeuroVR make it the most 

advanced high-fidelity simulator available for neurosurgery (59). 
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In essence, the system is designed to replicate an open neurosurgical procedure as viewed 

through an operative microscope. In the case of a brain tumor resection task, the individual holds 

a simulated ultrasonic aspirator and bipolar electrocautery in the dominant and non-dominant 

hand, respectively, and are activated by a foot pedal. Although endoscopic scenarios have been 

developed (endoscopic sinus surgery, and endoscopic third ventriculostomy), their applications 

are currently limited (60-62). Further limitations of the system are an inability to drastically 

change the operators’ perspective vis-à-vis the patient, though small angle changes are permitted. 

Additionally, simulating non-microscope based open surgery remains limited as three-

dimensional depth perception is lost when not looking through the stereoscope. 

Although two recent literature reviews have failed to conclude that high-fidelity 

simulators confer significant educational benefit over their low fidelity counterparts, it is often 

the case that high-fidelity systems are computerized, and thus by their nature capture a greater 

number of performance data points (63, 64). This means that these systems, and the potential 

educational benefit conferred, will be preferentially favoured by advances in data-sciences.  

 

Quantifying Performance using Metrics 

Metrics are best considered as standards of measurement by which the safety, quality, 

efficiency, and progress of the procedure can be quantitatively assessed. These metrics should 

also encompass the essential psychomotor and cognitive aspects underlying performance. Raw 

data from the NeuroVR involving instrument movement, force applied to tissues, change in 

tissue volume and blood loss can be transformed into performance metrics.  

The first major foray into metric development for the NeuroVR system was by Alotaibi et 

al, enabling the evaluator to quantify an individual’s performance on the simulator (65). For a 
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brain tumor resection task, these included: blood loss, brain and tumor removed, distance 

travelled by the dominant and non-dominant instrument tips, dominant and non-dominant 

instrument overall and maximum force applied, efficiency index (time spent interacting with 

tumor over total operative time), path length index (ultrasonic aspirator tip path length in tumor 

over total ultrasonic aspirator tip path length), coordination index (time both instruments are in 

use, over time suction instrument in use alone), and bimanual forces ratio (average force of 

ultrasonic aspirator when used with suction over average force of ultrasonic aspirator used 

without suction). These metrics permitted the comparison of performance of individuals along 

the continuum of surgical practice between medical-student, resident, fellow and consultant 

physician. Although grouping individuals by year of training remains a somewhat poor surrogate 

for the underlying construct of surgical ability, significant differences in metrics were found 

between consultant neurosurgeons, senior residents (years 4-6 after medical school graduation) 

and junior residents (years 1-3 after medical school graduation) on a spherical brain tumor 

resection task (66). Interestingly, even though considerable variability in performance was 

observed between individuals, within-person performance variability in the consultant group was 

very low for identical tumors, and may indicate attainment of the autonomous stage of learning 

(described as the final stage of motor learning) as proposed by Fitts and Posner (67).  Finally, in 

a brain tumor resection scenario, medical-student applicants to a neurosurgical residency 

program could be segregated into three performance groupings (68).  

 A further application of metrics is in technical skills training. The aforementioned metrics 

can be organized into Tiers, structured as simple outcome metrics (Tier 1: blood loss, quantity of 

brain and tumor removed), information related to each independent hand (Tier 2: distance 

travelled by either instrument, forces applied, activation of instruments), or high order 
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computations relating to the use of both hands in concert and overall operative efficiency 

(Advanced Tier 2: instrument tip separation, bimanual forces ratio, efficiency, coordination and 

path index). Alternatively, they can be structured into clinically relevant categories such as 

Safety, Quality, Efficiency, Bimanual and Cognitive Interactive Skills (65). Insights gained from 

metric performance were incorporated into schema to best understand psychomotor performance 

in virtual reality (VR) brain tumor resections (69) and early applications involved the 

aggregation of staff performance metrics to create benchmarks for learners (70). Most 

importantly, metrics can be used to identify and address specific, individual weaknesses in 

performance, and underlies the concept of “Technical Abilities Customized Training” (TACT) 

(68) which may prove particularly useful in cases of struggling trainees. However, a significant 

limitation of this method was the inability to account for the inter-related nature of the metrics 

while giving feedback tailored to an individual’s performance. It is in such instances where more 

advanced data analytic techniques, such as artificial intelligence, have the potential to be useful. 

 

Artificial Intelligence 

Artificial intelligence (AI) refers to computer-based systems exhibiting human-like 

intelligent behavior and was first coined in 1956 during a summer research seminar at Dartmouth 

University. The field emerged following the growth of electronic computerized systems 

following World War 2 and represented an eclectic mix of ideas and theories from mathematics, 

biology, psychology, linguistics and philosophy (71). Early applications included work on simple 

board-games, such as Checkers, as a means for understanding human decision making and 

intelligence. However, gradually these advances made their way into the medical field. Initial 

efforts were aimed at supporting clinical decision making, as typified by the MYCIN system. 
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MYCIN was one of the first clinical decision computer programs developed in the 1970’s to 

guide antibiotic therapy for hospitalized patients (72). Such knowledge-driven AI systems relied 

on expert opinions and accepted medical literature.  However, the increasing processing power 

coupled with ease of data storage at the end of the 20th century ushered a shift towards data-

driven analytic techniques, including machine learning (73). This “bottom-up” approach relies 

instead on the data itself to generate novel hypotheses and address clinical problems.  

Machine learning (ML), a subset of AI, includes supervised and unsupervised algorithms 

aimed at self-improving data processing. Supervised algorithms utilize labeled data with known 

outcomes, while unsupervised algorithms operate on unsorted, unlabeled data. Supervised 

algorithms can be sub-divided into algorithms who sort data using continuous (regression 

subtype) data or categorical (classification subtype). Examples of Regression algorithms include 

Linear, Multiple and Polynomial Regression which aim to find a line, plane or curve, 

respectively, to best fit data points. Examples of classification algorithms include: Support 

Vector Machines, whereby data is parsed by hyperplanes and Discriminant Analysis works by 

projecting data points into a new plane where data categorization is maximised. Naïve Bayes 

assigns data using a probabilistic approach. Nearest Neighbor algorithms group data by assuming 

that points that cluster close together are related. Decision Tree algorithms are made of decision 

and leaf nodes, which serve to recursively split a data set until all datapoints are accounted for. 

Because K-Nearest Neighbor and Decision Tree algorithms can utilize categorical and 

continuous data, they can be classified as either Regression or Classification algorithms. 

Importantly, for the supervised algorithm to effectively “learn”, it must be “trained” on a dataset 

where the outcome of interest is known. The algorithm will thus go through numerous iterations 

of training until the data is parsed in a (programmer-defined) satisfactory manner. One advantage 
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of this method is the trained algorithm integrates datapoints and their relationships in ways which 

may not be obvious to researchers and clinicians. For example, a trained supervised algorithm 

may utilize clinical information to categorize patients into pre-defined diagnostic categories, as 

in the case where researchers utilized over 6,000 genes to categorize 77 patients into cured 

versus fatal/refractory lymphoma (74).  

By contrast, unsupervised algorithms cluster data with no reliance on a priori definitions, 

and in doing so may group the data in a manner which highlights the existence of previously 

unknown clinical entities or patterns. Unsupervised clustering algorithms group unlabelled data 

by relying on a specified number of pre-specified groups, such as K-Means Clustering, or by 

probabilistic means, as in Hidden Markov Models, to name a few. A recent example of this was 

the stratification of type 2 diabetes into five discrete clusters in terms of disease progression and 

risk of complications with K-means clustering using six clinical variables on close to 9,000 

patients with a new diagnosis of adult-onset diabetes (75).  

Artificial Neural Networks (ANN) represent another subset of Machine Learning and can 

be supervised or unsupervised (76).  ANNs take their inspiration from how information is 

propagated by neurons in the brain. Fundamentally, ANNs are made up of a minimum three 

layers: an input, a hidden and an output layer. Each layer contains nodes with their own linear 

regression model. This node receives a weighted input from the previous layer and when a 

threshold is reached, the node “turns on” and serves as the input for nodes of a subsequent layer. 

The algorithm optimizes itself by adjusting the relative weights between the nodes in the system. 

Although definitions vary, by convention the term Deep Learning is used when there are more 

than three hidden layers. 
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The choice of which algorithm to use ultimately depends on its desired usage. The 

assumption among traditional medical education researchers that these technologies focus too 

narrowly on solving practical problems as opposed to generating new educational theory itself is 

unfortunately misguided (77). The use of Supervised Machine Learning algorithms, including 

ANNs with a single intervening hidden layer, allow for an understanding of the relationship 

between input and output variables, and may generate novel insights into surgical expertise itself; 

advancing conceptual frameworks of psychomotor skills acquisition (69).  Such systems have 

seen applications in a VR spine simulation involving an anterior cervical discectomy and fusion 

(ACDF). This common neurosurgical procedure involves removing an intervertebral disc 

through an anterior approach and has been adequately simulated within the Sim-Ortho Platform 

(78). ANNs were able to classify surgeons participating on a VR ACDF scenario into 3 groups 

with a testing accuracy of at least 80% using between 9 and 16 metrics across domains of safety, 

motion and efficiency (79, 80). While ANNs with numerous hidden layers present a challenge in 

interpretation and represents the “black box” problem of Machine Learning (81), they can be 

useful tools for monitoring performance in real time. Such systems may provide “on demand” 

live feedback and may even serve in surgical error detection and prevention (82). 

 

The SARS-CoV-2 Pandemic and the need for Intelligent Tutoring Systems 

The large datasets generated by computer-based simulation performance has proved a 

boon for ML applications in surgical education applications and research. For example, 

performance metric data can be used to train algorithms to sort individuals according to pre-

defined categories of expertise. These can be used in formative (i.e. feedback-generating) 

settings or summative (i.e. high-stakes exam) contexts. The information as to how a particular 
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individual was sorted into a group remains unique for that given performance, and can thus 

provide a pre-defined, yet individually tailored instructional design for self-improvement on a 

given surgical task (83).  

The SARS-CoV-2 pandemic has significantly impacted resident training (84) and has 

sparked a renewed interest in the role of simulation technology to address the training gap in 

neurosurgery (85-87). Hospital response to the crisis has caused a decline by as much as 70% in 

neurosurgery resident reported operative volume (88, 89). Surgical exposure has been limited by 

the cancellation of cases outright, by staff surgeons performing the cases themselves to maximize 

operative time, or by redeployment of residents to COVID-units (90, 91). Although knowledge-

based aspects of neurosurgical training, such as didactic teaching and conferences, can be well 

adapted to online learning platforms (92), surgical skills, which rely on active participation in the 

operative theatre, cannot.  

Importantly, intelligent tutoring systems for Virtual-Reality Simulation systems in 

neurosurgery have already been developed (83). Such systems serve as a closed loop, feeding 

performance information back to a trainee with the goal of increasing the chances that they will 

be categorized in a more skilled group. Feedback can be given concurrently or post-hoc; which 

may subserve different educational goals. When feedback is given at the conclusion of a task, the 

participant develops a wholistic understanding of the consequences of their operative decisions, 

as has been demonstrated in a virtual ACDF scenario (83). This post-hoc feedback may facilitate 

residents progression towards the autonomous stage of motor learning (93), an emblematic 

psychomotor feature of staff performance (67). By contrast, continuous systems track and 

provide real-time feedback as a task is being completed, and have been shown to categorize 

participant neurosurgical VR performance with a high degree of accuracy (94). Continuous 
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feedback may be best suited for error prevention (93), and may have interesting future 

application as real-time error prediction tools as well.  

A randomized controlled trial has demonstrated that virtual feedback use can be superior 

to instructor based feedback (95). Reproducing a trained algorithm to tutor a trainee on another 

machine can be done quickly and at relatively lower cost, in contrast to the years it may take for 

a single skilled instructor to develop the competencies at a given task. The use of such a system 

may serve to mitigate the added time constraint faced by staff surgeons during the pandemic, and 

the time constraints of a busy academic practice (96).  

Surgical Skill Transfer in Neurosurgery  

Despite the aforementioned advances in data-sciences and the growing number of 

simulation systems available for neurosurgery (97, 98), the evidence that such systems confer 

any advantage in the neurosurgical operating theatre can only be inferred by findings in other 

surgical specialties (99, 100). Though there is a willingness to incorporate simulation technology 

in the training of neurosurgical trainees (101), few studies relate practice on a simulator directly 

to operative outcomes in neurosurgery (102). 

One study examined the effects simulation rehearsal in cannulation of the ventricle by 

use of an external ventricular drain (EVD). Though this does not constitute an “open” 

neurosurgical procedure, such procedures are often conducted by residents at the patient’s bed 

side, and thus provide a means of associating outcome (catheter placement) with a single user’s 

intervention. Sixteen neurosurgical residents participated in an interventional, cohort trial to 

examine the effect of simulated EVD practice on both simulated and real insertion attempts. 

Twelve individuals self-reported (though cross-validated with chart and imaging review) EVD 

attempts before and after simulated intervention were recorded. Interestingly,  practice was 
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associated with increased likelihood of successful ventricle cannulation on the first attempt (82% 

vs 94% OR,  4.74;95% CI, 1.10-20.4;P= 0.04), though curiously cannulation of the ipsilateral 

lateral ventricle (the ideal target for such a procedure) decreased post intervention (103). Another 

study randomized 25 patients undergoing neurosurgical aneurysm clipping to pre-operative clip 

placement rehearsal on a simulated system, or standard of care. All surgeries were performed by 

the same two staff surgeons. Though the authors state limitations in sample size, there was a 

significant decrease in time per clip used in patients in the intervention group (104). 

Furthermore, Oliveira et al. conducted a study examining whether practice on a placental 

aneurysm simulation improved intra-operative errors in neurosurgical trainees. Eight trainees 

with at least 6 months of microsurgical (but no neuro-vascular) experience were assigned to 

either undergo 20 hours of practice on placental brain aneurysm model or standard residency 

training. Video-recordings of their performance on two live aneurysm clippings were evaluated 

by two blinded raters. Through the sample size was small, the placental practice group 

demonstrated a significant decrease in intra-operative errors compared to the group undergoing 

standard training (105).  

 A high-quality randomized controlled trial (RCT) on whether practice on a simulator 

improves performance in open oncological neurosurgery would serve to address the lack of level 

1 evidence of surgical skill transfer in neurosurgery, while also investigating for the first time the 

benefit of simulation in “real-life” oncological neurosurgery. In such a trial, trainees would be 

randomized to either receive standard residency training versus standard training in addition to 

simulated operative rehearsal on the NeuroVR platform. Ideally, rates of operative complications 

and extent of tumor resection could then be compared between the groups, before and after 

randomization. 
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Solutions and Limitations of a Randomized Controlled Trial 

An RCT involving surgical skill transfer from the simulator to open intracranial 

oncological neurosurgery would suffer from practical constraints related to surgeon, patient, and 

environmental factors. In addition to posing limitations in the implementation of an RCT, the 

aforementioned factors have the potential to increase variability in the trial data. 

Canadian neurosurgical residents undergo training in one of twelve academic centers, 

spanning over 5,000 kilometers of territory, with each accepting between one and five residents 

per year. This poses a problem for any RCT design as sufficient sample size can only be 

achieved by recruiting from multiple centers. Not all centers have access to a NeuroVR, limiting 

“on-site” simulated operative rehearsal.  

Within the province of Quebec there are four neurosurgical training programs, with one 

further program in neighboring Ottawa. McGill University, home to the development of the 

NeuroVR and site of the Neurosurgical Simulation and Artificial Intelligence Learning Center, is 

also the largest program in the region with approximately 12-15 residents in total, while the 

others may have between 2 and 5 residents. All are within a three-hour driving commute. Thus, a 

realistic option is to train and test at McGill University. The type, frequency, timing, and even 

motivational properties of human-based feedback may influence participant learning and 

introduce training variability within the VR training intervention group (106), and would be 

expected to occur even if based on highly accurate metrics. Furthermore, it may be impossible to 

design a priori coaching protocols which provide a standardized feedback script given the sheer 

number of possible combinations of performance metrics. For these reasons, it is advantageous 

to utilize a computer-based coaching system, which can account for metric complexity while 
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standardizing coaching. Artificial intelligence-based feedback systems may be helpful in this 

regard and are discussed in further detail in Chapter 3. 

To test whether the simulation intervention was effective in the clinical environment, the 

trainees must perform the operations themselves. As it stands, trainees in the first few years of 

residency benefit the most from simulation training, while being those who would be the most 

likely to cause patient harm if allowed to operate independently (20). Furthermore, in a teaching 

hospital environment, a surgical instructor may rightly take over portions of the operation in 

cases where there is concern for patient harm, thus obfuscating the relative contributions of the 

trainee in the outcome of the case. Both of these realities mean that junior trainee’s contributions 

may not be adequately captured in an RCT based in a traditional OR environment. Furthermore, 

patients suffering from intracranial brain tumors are an extremely heterogenous group, both in 

terms of tumor pathology, location, as well as underlying functional status and comorbidities 

(21). As such, surgical outcomes may be heavily influenced by patient, rather than operator 

factors. Finally, variability in a live OR environment may degrade trainee performance via 

distraction (107). Conducting the surgeries in a standardized environment with a brain tumor 

model keeping tumoral factors constant would address these limitations. All participants would 

conduct the surgical procedures in the same operative environment, void of distractions. The use 

of an animal model obviates patient safety concerns due to inexperienced operators, allows for a 

standardized surgical procedure between participants, and creates a 1-to-1 association of surgeon 

to outcome. Outcome measurements can be obtained by observing process in which the surgery 

is conducted, as well as the surgical end-product. Process can be evaluated by various means, 

including standardized visual feedback ratings and movement-tracking of instruments. Chapter 4 

outlines the development of a visual rating system, while Chapter 5 outlines in greater detail the 
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rationale for, and development of, the animal brain tumor model, including operative outcome 

measurements. 

 

Overall Goal and Thesis Research Objectives 

The overall goals of this Thesis are to lay the groundwork for an RCT for surgical skill 

transfer in open oncological neurosurgery, specifically: 

1. Review the literature for virtual reality and machine learning and develop a framework to 

guide future research in the field (Chapter 2) 

2. Use machine learning to identify factors to accurately classify participants by level of 

expertise in virtual reality neurosurgery (Chapter 3) 

3. Assess the utility of a visual rating scale in capturing surgical performance as compared 

to simulated metrics (Chapter 4) 

4. To develop a “sandbox” operative environment whereby surgical movements and 

operative outcome can be captured (Chapter 5) 
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Chapter 2 – Artificial Intelligence in Medical 
Education: Best Practices Using Machine 
Learning to Assess Surgical Expertise in 
Virtual Reality Simulation 
Preface 

In Chapter 1 we outlined the potential utility in training and assessment of AI technology 

in high-fidelity simulation. The use of AI in this context bridges the fields of medicine, 

education, computer science and data-sciences. Important epistemological beliefs underlie each 

discipline, and while there is overlap when it comes to the acceptance of the scientific method, 

important knowledge gaps must be crossed to create a shared understanding and language for 

robust critique and fruitful collaboration. The manuscript presented in this chapter both outlines 

the existing knowledge gap between computer-science and health education and proposes an 

evidence-based framework for best practices in the conduct and reporting of AI in VR simulation 

across these disciplines. This is an important precursor to a study examining the utility of AI in 

the evaluation and training of neurosurgical residents. The manuscript was published as: 

Winkler-Schwartz A, Bissonnette V, Mirchi N, Ponnudurai N, Yilmaz R, Ledwos N, Siyar S, 

Azarnoush H, Karlik B, Del Maestro RF. Artificial Intelligence in Medical Education: Best 

Practices Using Machine Learning to Assess Surgical Expertise in Virtual Reality Simulation. J 

Surg Educ. 2019 Nov-Dec;76(6):1681-1690. doi: 10.1016/j.jsurg.2019.05.015. Epub 2019 Jun 

13. PMID: 31202633. 
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ABSTRACT 

Objective: Virtual reality simulators track all movements and forces of simulated 

instruments, generating enormous datasets which can be further analyzed with machine learning 

algorithms. These advancements may increase the understanding, assessment and training of 

psychomotor performance. Consequently, the application of machine learning techniques to 

evaluate performance on virtual reality simulators has led to an increase in the volume and 

complexity of publications which bridge the fields of computer science, medicine, and education. 

Although all disciplines stand to gain from research in this field, important differences in 

reporting exist, limiting interdisciplinary communication and knowledge transfer. Thus, our 

objective was to develop a checklist to provide a general framework when reporting or analyzing 

studies involving virtual reality surgical simulation and machine learning algorithms. By 

including a total score as well as clear subsections of the checklist, authors and reviewers can 

both easily assess the overall quality and specific deficiencies of a manuscript. 

Design: The Machine Learning to Assess Surgical Expertise (MLASE) checklist was 

developed to help computer science, medicine, and education researchers ensure quality when 

producing and reviewing virtual reality manuscripts involving machine learning to assess 

surgical expertise. 

Setting: This study was carried out at the McGill Neurosurgical Simulation and Artificial 

Intelligence Learning Centre. 

Participants: The authors applied the checklist to 12 articles using machine learning to 

assess surgical expertise in virtual reality simulation, obtained through a systematic literature 

review. 
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Results: Important differences in reporting were found between medical and computer 

science journals. The medical journals proved stronger in discussion quality and weaker in areas 

related to study design. The opposite trends were observed in computer science journals. 

Conclusions: This checklist will aid in narrowing the knowledge divide between 

computer science, medicine, and education: helping facilitate the burgeoning field of machine 

learning assisted surgical education. 
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INTRODUCTION 

The assessment and training of the complex psychomotor skills necessary to perform 

surgical procedures is critical to safe patient outcomes. As such, virtual reality simulators are 

being utilized to understand, evaluate, and train these skills.(1) Simulation platforms allow for 

the quantification of multiple aspects of surgical performance in safe environments. The 

combination of virtual reality simulators and machine learning has the potential to significantly 

augment current methods of surgical training. 

In computer science, machine learning is a subset of artificial intelligence utilizing 

algorithms (such as classifiers) which give computers the capacity to “learn” patterns when 

provided with data. Broadly speaking, classifiers can be either supervised or unsupervised. 

Supervised classifiers use data which has been identified by the researchers’ a priori to generate 

predictive models to identify novel unlabeled data. In its simplest application in an educational 

context this implies identifying “expert” and “nonexpert” participant data, thus generating 

models capable of categorizing individuals into these groups and, ostensibly, assessing expertise. 

Supervised classifiers lend themselves well to circumstances where groups can be clearly 

defined. Unsupervised algorithms require no a priori data labeling. Please refer to Table 2.1 for 

the definitions of relevant terms. 

Increasingly, the application of artificial intelligence techniques to evaluate performance 

on virtual reality simulators has led to an increase in the volume and complexity of publications 

which bridge the fields of computer science, medicine, and education. Although all disciplines 

stand to gain from research in this field, important differences in reporting exist, limiting 

interdisciplinary communication and knowledge transfer. A standardized approach in the 

reporting of these publications will allow researchers from these fields to form a better shared 

understanding of the burgeoning field of machine learning assisted surgical education. As such, 
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our goal is to diminish this gap by producing a framework known as the Machine Learning to 

Assess Surgical Expertise (MLASE) checklist which researchers can utilize when producing and 

reviewing virtual reality manuscripts involving machine learning to assess surgical expertise. By 

including a total score as well as clear subsections of the checklist, authors and reviewers can 

both easily assess the overall quality and specific deficiencies of a manuscript. The framework 

complements existing guidelines for best practices in reporting experimental design in medical 

education.(2) To our knowledge, this is the first attempt to create a conceptual structure to ensure 

quality of virtual reality studies utilizing machine learning to assess surgical skills. 

In the manuscript we outline the MLASE checklist and apply it to publications obtained 

through a systematic literature review on the use of machine learning to assess surgical expertise 

in virtual reality simulation. 
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TABLE 2.1. Definitions in the Context of Artificial Intelligence and Machine Learning 

Keyword Definition 

Artificial intelligence Intelligence demonstrated by a machine able to make 
decisions in a manner similar to human intelligence. 

Machine learning A sub-branch of artificial intelligence where machines 
process data and learn on their own, without constant human 
supervision. 

Metric A measurement to quantitate performance. 

Feature Input data that is fed to the artificial intelligence algorithm. 

Label A determinant of the class to which a data point belongs to in 
the classification process. Usually applied to a dataset in the 
context of supervised learning. In the context of surgical 
simulation, an individual’s data could be labelled as “expert” 
or “novice”. 

Classifier A machine learning algorithm which sorts data into 
predefined categories. 

Accuracy 
 

 

∑𝑆𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒		∑𝑇𝑟𝑢𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒	
∑𝑇𝑜𝑡𝑎𝑙	𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛  

A measure of ability of machine learning to correctly classify 
new data. 

Sensitivity 
 

 

(∑𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒		)
/(∑𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
+ (∑𝐹𝑎𝑙𝑠𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒) 

A measure of how many positive condition predictions are 
actually true positives. 

Specificity 
 

 

(∑𝑆𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒			)
/(∑𝑇𝑟𝑢𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
+ ∑𝑇𝑜𝑡𝑎𝑙	𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛) 

A measure of how many negative condition predictions are 
true negatives. 
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METHODS 

MLASE Checklist 

Upon consultation with interdisciplinary groups of physicians, computer scientists, 

engineers, and specialists in artificial intelligence, we developed the “Machine Learning to 

Assess Surgical Expertise” (MLASE) checklist comprised of 20 essential key elements when 

reporting studies using machine learning algorithms to assess technical skills in virtual reality 

surgical simulators. The key elements were divided into 4 sections: Study Design, Data 

Structure, Supervised Machine Learning and Discussion Quality (Table 2.2). 

Study Design 

This section contains 5 elements: Literature Review, Sample Size, Expertise Definition, 

Simulator Description and Simulated Tasks Description. 
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TABLE 2.2. Machine Learning to Assess Surgical Expertise (MLASE) Checklist 
 
Section Element Yes 
Study design (5 points) 1. Is relevant literature on the use of artificial 

intelligence in simulation provided? 
2. Is the sample size clearly stated (including 
number of groups and number of participants in each 
group)? 
3. Is a definition of each group of expertise 
provided? 
4. Is the simulator described? 
5. Are the surgical tasks to be performed outlined? 

 

Data structure (6 points) 6. Is raw data acquisition described? 
7. Is feature extraction mentioned? 
8. Is an effort made to normalize the data? 
9. Is feature selection mentioned? 
10. Is the count of features used by the algorithm 
clearly stated? 
11. Are the final selected features clearly 
described? 

 

Supervised machine learning 
(5 points) 

12. Is the type of the classifier used mentioned and 
justified 
(either by comparing multiple classifiers or citing 
relevant literature)? 
13. Is the mechanism of the classifier explained or 
is a relevant source provided? 
14. Is an effort made to clearly describe the 
methods used to train and test the algorithm? 
15. Is the accuracy of the classifier mentioned? 
16. Is the sensitivity and specificity mentioned? 

 

Discussion quality (4 points) 17. Are efforts made to explain the educational 
rationale of the features used by the algorithm? 
18. Is the educational application of classifiers in 
the context of surgical simulation stated, specifically its 
use as a summative or formative assessment tool? 
19. Are methodological limitations discussed, 
including those pertaining to any above-points? 
20. Are the future directions discussed? 

 

Total Score =  /20   

The checklist contains 20 elements, separated into 4 sections. A point is awarded for every 

element completed in the article. The total score is calculated by adding the total number of 

elements checked. 
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Literature Review. A relevant literature review on the previous use of similar machine 

learning algorithms to evaluate skill level should be presented. An effort should be made to 

situate the current manuscript in the context of previous publications. 

Sample Size. The number of groups and participant numbers per group should be clearly 

stated. In virtual reality surgical education trials, it is often easier to recruit nonexpert (medical 

student and junior resident) rather than expert (physician consultant) members. As such, 

algorithms using a dataset obtained from such groups may be biased to incorrectly categorize a 

new expert participant. Furthermore, as with statistical tests, certain algorithms function poorly 

with little input data. Thus, the sample size must be appropriate for the algorithm used. Potential 

pitfall: Having unbalanced groups will skew the algorithms’ predictive ability towards the largest 

group, limiting its future predictive ability. Having a small sample size may be inappropriate for 

the algorithm used. 

Expertise Definition. When utilizing supervised algorithms, judgments concerning what 

constitutes “expert” performance create algorithms which recapitulate the human assumptions 

that underlie them. A clear definition of each group is critically important, specifically what 

constitutes an “expert” vs a “nonexpert”. For example, the algorithm accuracy may differ 

substantially if first year medical students are considered novices, compared to third year 

residents. Potential pitfall: The outcome of a supervised algorithm classifying process will vary 

according to the researchers’ definition of expertise. 

Simulator Description. A description of the simulator hardware and software tools used, 

type of data recorded, and the experimental environment setting should be elaborated. If 

available, previous publications outlining the aforementioned items can be cited instead. 
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Potential pitfall: Study reproducibility can only be achieved with a clear description of the 

simulator platform utilized. 

Simulated Tasks Description. Due to the variety of simulated scenarios on a given virtual 

reality system, an adequate description of surgical task should be provided. Potential pitfall: A 

lack of clear description of the simulated task may impact study reproducibility, applicability, 

and pedagogical insights. A broad overview of the following 3 sections can be found in Figure 

2.1. 

Data Structure 

The Data Structure section contains 6 elements: Raw Data Acquisition, Feature 

Extraction, Data Normalization, Feature Selection, Count, and Description of Final Features 

selected. 
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FIGURE 2.1. A broad overview of the application of machine learning technology in virtual 
reality surgical simulation according to the Machine Learning to Assess Surgical Expertise 
(MLASE). 
 

 
Raw data acquired from the simulator is transformed into a format which can be inputted into 

the machine learning algorithm via feature extraction and selection. Following this, an iterative 

process involving cross-validation is utilized in which the machine learning classifier is 

optimized. Once a final model is selected it is retrained on the entire study dataset. After this, 

educational applications of the model can be tested in novel populations. 
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Raw Data Acquisition. The process of raw data acquisition should be briefly outlined. 

The most important information to provide is the fundamental structure of the data yielded by the 

simulator during a simulated task. Notable examples include positional data every second, and 

applied force vectors in 3 dimensions. Potential pitfall: As in any statistical test, general 

description of the nature of the data acquired is essential to best understand the functioning of the 

algorithm and the potential educational benefits  

Feature Extraction. Raw data from virtual reality simulators is often very complex, 

repetitive, and with varying degrees of ‘signal to noise’ ratio. Feature extraction is a method that 

reduces the dimensionality of a dataset by manipulating raw data, however this can be 

accomplished by many ways.(3) One can automatically reduce the dimensionality of data by 

using statistical procedures such as principal component analysis. Alternatively, data can be 

combined by experienced individuals to generate features in which there may be an a priori 

hypothesis in distinguishing between experts and novices, such as force applied close to a 

structure felt to be critical in an operation.(4) Potential pitfall: Failure to provide relevant input 

will force the algorithm to find patterns in features which may be irrelevant to surgical 

competency. This may, in addition to limiting the educational use of the model, negatively 

impact the accuracy and efficiency of the machine learning algorithm. 

Data Normalization. Various features generated from feature extraction may be scaled 

differently, as such, feature normalization should be carried out before providing them as inputs 

into the algorithm. Potential pitfall: Failure to normalize data will result in diminished accuracy 

of the classification process. 

Feature Selection. Feature selection is a method that highlights the most relevant features 

and eliminates those that are causing noise. Statistical methods can select only those features 



 

 50 

showing significant differences between groups (2 sample t test, for example), and are thus most 

likely to aid the algorithm classifying process. Numerous other feature selection techniques exist, 

however these are beyond the scope of this article. (5) Potential pitfall: Improper feature 

selection will negatively impact an algorithm’s classification ability. 

Count of Final Features Selected. It is of critical importance to include the final count of 

features used by the algorithm. Including an abundance of features may reduce the algorithms’ 

predictive accuracy by adding noise (i.e., irrelevant information not helpful in the classification 

process) or by overfitting (a process in which an algorithm is able to detect small differences 

between groups on a study dataset at the expense of not capturing larger trends which are useful 

in classifying a novel dataset). Potential pitfall: If the number of final features is too large for a 

given sample size, the algorithm may appear to be extremely accurate using the study dataset, 

however its ability to make accurate predictions in a novel dataset may be compromised. 

Description of Final Features Selected. We recognize that it may be impractical for 

authors to describe every final feature in detail if many were included in the final algorithm. 

 However, efforts should be made to apply broad categories, such as features relating to force, 

movement, tissue removed, to name a few. Potential pitfall: Not including an adequate 

description of final features may miss interesting insights concerning surgical performance 

which may serve as the basis for trainee feedback. 

Supervised Machine Learning 

The Supervised Machine Learning section comprises 5 elements: Type of Classifier and 

Justification, Mechanism of the Classifier, Training and Testing Set, Accuracy, and 

Sensitivity/Specificity. 

Type of Classifier and Justification. Various supervised machine learning classifiers, such 

as hidden Markov models, support vector machines, and artificial neural networks have been 
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used to assess surgical expertise level in simulation studies.(4)  Authors should not only state the 

type of classifier employed, but should also provide the rationale for their choice. Such 

justification can be provided by citing a relevant study using a classifier in a similar context. 

Potential pitfall: It is important to consider the variability of classifier performance depending on 

the surgical task. For instance, a classifier can accurately predict the expertise level in a 

laparoscopic surgery task but perform poorly in a brain tumor resection task. Therefore, an 

alternative would be to compare the performance of multiple classifiers and select the most 

accurate for a given task. 

Mechanism of the Classifier. The manuscript should include a simple explanation with 

regards to how the machine learning algorithm works or refer the reader to a source that does so. 

Potential pitfall: Since artificial intelligence is a novel field in medicine, additional clarification 

may be necessary, thereby allowing the medical community to gain knowledge on this highly 

technical topic. 

Training and Testing Set. In cases of supervised machine learning, training datasets 

consist of participant data where groups of expertise have been defined by the researchers. The 

algorithms’ performance in a testing dataset will determine its ability to judge whether novel data 

will be classified as expert or nonexpert (or various gradations in between). Since this represents 

a crucial aspect of algorithm development, efforts should be made to clearly describe the process 

of training and testing. Two common methods are described.(6) If the sample size from each 

group of expertise is large enough, the sample can be divided in 2 subsamples where one is used 

for training and the other for testing. However, when the sample size is smaller, many different 

subsamples of training and testing sets can be used and aver aged to obtain the accuracy. This 

process is known as cross-validation. Many cross-validation methods exist and are beyond the 
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scope of this publication.(6) Potential pitfall: Failure to provide a clear explanation of the 

training and testing sets does not allow the reader to understand and evaluate the methodology of 

the study.  Ultimately, cross-validation is a technique used to estimate the accuracy of many 

models and select the one that is most likely to perform well on a new dataset. However, cross-

validation is not an exact measurement of a model’s accuracy in real-life application. Therefore, 

assumptions should not be made about the generalizability of a model that performs well in 

cross-validation. 

Accuracy. Accuracy can be defined as the number of correct predictions made by the 

machine learning algorithm on all the predictions made (see Table 2.1). Accuracy is a key 

element because it evaluates the overall ability of the classifier to predict expertise level with a 

given set of features. 

Sensitivity and Specificity. The engineering and medical literature differs based on their 

reporting of test success. Whereas the engineering community reports in terms of accuracy and 

equal error rates, these may be less intuitive to medical readers themselves familiar with 

sensitivity and specificity. For this reason, it is important to discuss sensitivity and specificity 

when reporting studies in medical journals. Potential pitfall: Authors should mention the 

percentage of experts and novices misclassified as it may assist readers in understanding whether 

the authors’ conclusions for the use of the algorithm are justified. For example, a highly sensitive 

but poorly specific algorithm, namely one which misclassifies many nonexperts as expert, would 

be incompatible with its application as a summative assessment tool. If study design allows, 

another option is to present a full confusion matrix, which is similar in structure to a 2-by-2 table 

commonly used in medicine.(7) 



 

 53 

Discussion Quality 
The Discussion Quality section contains 4 elements: Educational Application of Machine 

Learning, Educational Rationale of the Selected Features, Methodological Limitations and 

Future Directions. 

Educational Application of Machine Learning. Authors should clearly state the 

educational aim of their use of machine learning. Classifiers are designed to categorize data, thus 

lending themselves well as a summative assessment tool. As such, machine learning can be used 

as a summative assessment tool to evaluate a surgeon’s performance. Although more challenging 

to execute in practice, machine learning can also be involved in formative assessment by 

facilitating feedback to help surgeons improve their skills. Both types of assessment have 

different requirements.(8) Potential pitfall: Summative assessment can have a drastic impact on 

surgeons’ success, hence they require extremely high accuracy and reproducibility. On the other 

hand, formative assessment requires an understanding of the specific features used by the 

algorithm to help surgeons improve their technical skills. 

Educational Rationale of the Selected Features. Authors should clearly describe why the 

chosen features are important in an educational context. Potential pitfall: Overly abstract features 

(such as eye movement) may serve well as summative assessments, however if the intended use 

is for a formative assessment then the chosen features must be easily teachable. 

Methodological Limitations. Authors should always address the limitations of their study. 

Specifically, the shortcomings of the use of machine learning in surgical skill assessment should 

be outlined. 

Future Directions. Future directions should be mentioned. This benefits the medical 

education community as it provides the reader with a clear understanding of how the field may 

continue to evolve. 
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Literature Review 
In order to evaluate the current status of articles on the subject using our checklist, we 

performed a systematic review involving artificial intelligence or machine learning to distinguish 

experts and novices using virtual surgical simulators in the Medline, Embase, and Web of 

Science databases. Investigations were included if: (1) its purpose was to assess surgical skill, (2) 

employing a supervised machine learning algorithm, and (3) on tasks performed on a virtual 

reality simulator. 

Two authors (V.B., N.M.) individually reviewed and scored each article using the 

MLASE checklist. The article was awarded 1 point for each element of the checklist. If differing 

article scores were present, an attempt was made by the 2 reviewers to come to a consensus. If 

none was obtained, then consensus was achieved with the remaining authors. Scores were 

compiled in a table and analyzed using descriptive statistics. Inter-rater reliability between the 

reviewers was calculated with Cohen’s Kappa. 

RESULTS 

A total of 2642 articles were identified. Following review of abstracts and titles, 84 

articles involving simulation and artificial intelligence or machine learning were assessed. A 

total of 54 articles were excluded as they did not involve virtual reality surgical simulation. Of 

the remaining 30 articles, 21 were removed as they did not meet all the elements of the inclusion 

criteria. Three further articles were identified through manual searches of Google Scholar and 

Cochrane databases for a total of 12 articles. 
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TABLE 2.3. Articles Assessed on the Use of Artificial Intelligence to Classify Expertise in Virtual 
Reality Surgical Simulation 
 
Journal Category 
 

Year 
Published 

 
Classifier 

Authors 
 
 

Medical 2018 Naïve Bayes and support vector 
machines 

Ershad et al.(9) 

2012 Decision tree Kerwin et al.(10) 

2011 Hidden Markov models Rhienmora et al.(11) 

2010 Linear discriminant analysis and 
artificial neural network 

Richstone et al.(12) 

2010 Naïve Bayes, hidden Markov 
models and logistic regression 

Sewell et al.(13) 

2005 Fuzzy Huang et al.(14) 

Engineering 2011 Support vector machines and 
hidden Markov models 

Loukas et al.(15) 

2011 Hidden Markov models Liang et al.(16) 

2011 Support vector machines and 
decision tree 

Jog et al.(17) 

2007 Fuzzy Hajshirmohammadi 
et al.(18) 

2006 Hidden Markov models Megali et al.(19) 

2003 Hidden Markov models Murphy et al.(20) 

 

These 12 articles (9-20) utilizing machine learning to assess surgical expertise in 

simulation were reviewed using the MLASE checklist (Table 2.3). Inter-rater reliability between 

the 2 reviewers was calculated with an observed agreement of 80% (Cohen’s Kappa = 0.56). Six 

of the articles were published in medical and 6 in computer science or engineering journals. The 

results are summarized in Table 2.4 and Figure 2.2. The global average score for all articles was 

73%. This can be further divided into sections where Study Design, Data Structure, Supervised 

Machine Learning, and Discussion Quality scored 78, 71, 75, and 67%, respectively. 
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Figure 2.2 Machine Learning to Assess Surgical Expertise Element Number (1 to 20) 

 
The authors applied the Machine Learning to Assess Surgical Expertise (MLASE) checklist to 12 

articles on obtained from a systematic review involving artificial intelligence or machine 

learning to distinguish experts and novices using virtual reality surgical simulators  

 
 
TABLE 2.4. Results of Assessment of Articles Using the Machine Learning to Assess Surgical 
Expertise Checklist 
 

 All Journal Type 

All Medical 

Engineering 
 

MLASE section 
score 

Score/percentage mean  
(max — min) 

MLASE section 
score  

(max — min) 

Score/percentage 
mean  

max — min) 

Study design 3.92(5 — 2)/78(100 — 
40) 

3.83(5 — 2)/77(100 
— 40) 

4.00(5 — 2)/80(100 
— 40) 

Data structure 4.25(6 — 2)/71(100 — 
33) 

4.17(6 — 2)/69(100 
— 33) 

4.33(6 — 2)/72(100 
— 33) 

Supervised 
machine 
learning 

3.75(5  —  2)/75(100  —  
40) 

3.5(5  —  2)/70(100  
40) 

4.00(5  —  3)/80(100  
—  60) 

Discussion 2.67(4 — 1)/67(100 — 
25) 

3.17(4 — 2)/79(100 
— 50) 

2.17(4 — 1)/54(100 
— 25) 

Overall 14.58(18 — 11)/73(90 — 
55) 

14.67(18 — 
11)/73(90 — 55) 

14.50(17 — 
12)/73(85 — 60) 
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 The 3 lowest scoring elements were: explaining the educational rationale of the selected 

features (element 17, 5/12, 42% articles) explaining the methodological limitations (element 19, 

5/12, 42% articles), normalization of the data (element 9, 6/12, 50% articles), and mentioning the 

specificity and sensitivity of the algorithm (element 16, 6/12, 50% articles). 

We also analyzed articles based on their journal category. Articles from medical and 

engineering journals both scored 73% overall. Medical articles scored lowest in Data Structure 

(69%) and Supervised Machine Learning (70%) and highest in Discussion Quality (79%) 

whereas engineering articles scored lowest in Discussion Quality (54%) and highest in 

Supervised Machine Learning (80%) and Study Design (80%). 

DISCUSSION 

Our results indicate that a conceptual framework has the potential of improving the 

quality of future manuscripts. Though our checklist was tested on articles using machine learning 

assessing surgical expertise employing virtual reality simulation, we believe the MLASE 

checklist is also applicable to benchtop simulators, augmented reality, or any other studies which 

digitize physical surgical performance and use machine learning methods to assess surgical 

expertise. 

Although manuscripts published in medical and computer science journals received, on 

average, the same overall MLASE total score, important differences in the subsections were 

noted. We identified the Discussion Quality section of the MLASE checklist as one which will 

require the most attention from computer scientists wishing to publish in the field of medicine. In 

medical journals, more detail is required in the Data Structure and Supervised Machine Learning 

section. The MLASE checklist makes it possible for researchers from these differing 

communities to ensure their publications reach the widest possible audience. Furthermore, this 
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manuscript may serve as a guide for journal editors and reviewers to ensure that best practices in 

applying machine learning methodologies in a surgical-simulation context are adhered to. As 

such, improvements in reporting practices will ultimately facilitate interdisciplinary 

communication and knowledge transfer, helping to advance this field of research. 

 

Further Suggestions for Future Authors and Reviewers to Enhance the Quality of Manuscripts 
 

Following our article review, we identified new elements which may further enhance the 

quality of future manuscripts. Firstly, some studies18,19 attempt to increase their sample size by 

allowing the same surgeon to perform a procedure several times. When such methods are used, it 

is crucial to explain how each trial is used in the analysis. Often, explanations are vague and it is 

unclear if different trials from the same surgeon were part of both, the training and testing 

sample. This would lead to overfitting of the algorithm as performance measures extracted from 

different trials of the same surgeon are highly correlated. This may hinder an algorithm’s ability 

to accurately classify a new participant. Secondly, if sample size permits, having a third dataset 

excluded from the initial testing and training to run the chosen model may yield information 

regarding its generalizability. Thirdly, as an increasingly holistic understanding of expertise 

continues to be developed (i.e., one which is not based solely on the number of years of practices 

or on the number of procedures completed), supervised algorithms’ predictive abilities will 

continue to improve. Finally, there are potential educational benefits in describing the individuals 

that were misclassified by the algorithm, particularly if the same participant is misclassified by 

different algorithms. 
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Limitations 
The objective of the MLASE checklist is to provide a general framework when reporting 

or analyzing these studies in the future. However, we acknowledge that the checklist is not 

extensive and further elements can be added to enhance the quality of a study. The checklist only 

presents the 20 elements deemed essential to bridge the knowledge gaps in different 

communities studying the use of artificial intelligence in surgical education. The MLASE 

checklist was designed and evaluated using only supervised machine learning articles. The 

MLASE checklist can be applied to studies utilizing unsupervised learning algorithms, however 

these algorithms do not necessarily always require feature extraction and feature selection. 

Future Directions 

Artificial intelligence systems may be developed to not only classify participants 

according to surgical expertise but to coach trainees to a defined surgical standard. These 

systems will allow for the conduct of studies to further elaborate the proper approach in using 

this technology in the teaching of psychomotor skills. Regardless of what the future holds, a 

clear understanding of surgery, artificial intelligence methodologies, and educational best 

practices will be crucial to the ultimate success of these systems. 

CONCLUSIONS 

The MLASE checklist was developed to help computer science, medical, and education 

researchers ensure quality when producing and reviewing virtual reality manuscripts involving 

the use of machine learning to assess surgical expertise in virtual reality simulation. We believe 

our checklist will narrow the knowledge divide between computer science, medicine, and 

education helping facilitate the burgeoning field of machine learning assisted surgical education. 
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Chapter 3 - Machine Learning Identification 
of Surgical and Operative Factors Associated 
With Surgical Expertise in Virtual Reality 
Simulation 
Preface 

 Chapter 3 outlines a study evaluating the role of AI algorithms in evaluating 

neurosurgical performance on the NeuroVR simulation platform, and represents the precursor of 

an AI powered feedback system which may be used in the VR training experimental arm of the 

RCT. The study was designed as a proof-of-concept to test whether AI algorithms can 

distinguish participant level of training by simulated performance alone. At publication, this 

manuscript was the first to develop a highly accurate AI algorithm which could divide 

performance into more than three groupings in simulation. In addition, and in keeping with the 

spirit of the framework in Chapter 2, it utilizes the concept of ‘Explainable AI’ as a means of 

circumventing the “Black Box” AI problem. By utilizing methodologies to understand how 

participants were grouped into their respective categories, we retain the ability to understand 

what constitutes domain-specific expertise itself. Put another way, one can understand the 

specific psychomotor metrics which underlie staff versus resident neurosurgical operative 

performance. These insights may serve to further the development of conceptual frameworks of 

motor learning and mastery. This manuscript was published as:  

Winkler-Schwartz A*, Yilmaz R*, Mirchi N, Bissonnette V, Ledwos N, Siyar S, Azarnoush H, 

Karlik B, Del Maestro R. Machine Learning Identification of Surgical and Operative Factors 

Associated With Surgical Expertise in Virtual Reality Simulation. JAMA Netw Open. 2019 Aug 

2;2(8):e198363. doi: 10.1001/jamanetworkopen.2019.8363. PMID: 31373651. *co-first authors 
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ABSTRACT 

Importance: Despite advances in the assessment of technical skills in surgery, a clear 

understanding of the composites of technical expertise is lacking. Surgical simulation allows for 

the quantitation of psychomotor skills, generating data sets that can be analyzed using machine 

learning algorithms. 

Objective: To identify surgical and operative factors selected by a machine learning 

algorithm to accurately classify participants by level of expertise in a virtual reality surgical 

procedure. 

Design, setting and participants: Fifty participants from a single university were 

recruited between March 1, 2015, and May 31, 2016, to participate in a case series study at 

McGill University Neurosurgical Simulation and Artificial Intelligence Learning Centre. Data 

were collected at a single time point and no follow-up data were collected. Individuals were 

classified a priori as expert (neurosurgery staff), seniors (neurosurgical fellows and senior 

residents), juniors (neurosurgical junior residents), and medical students, all of whom 

participated in 250 simulated tumor resections. 

Exposures: All individuals participated in a virtual reality neurosurgical tumor resection 

scenario. Each scenario was repeated 5 times 

Main outcomes and measures: Through an iterative process, performance metrics 

associated with instrument movement and force, resection of tissues, and bleeding generated 

from the raw simulator data output were selected by K-nearest neighbor, naive Bayes, 

discriminant analysis, and support vector machine algorithms to most accurately determine group 

membership. 
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Results: A total of 50 individuals (9 women and 41 men; mean [SD] age, 33.6 [9.5] 

years; 14 neurosurgeons, 4 fellows, 10 senior residents, 10 junior residents, and 12 medical 

students) participated. Neurosurgeons were in practice between 1 and 25 years, with 9 (64%) 

involving a predominantly cranial practice. The K-nearest neighbor algorithm had an accuracy of 

90% (45 of 50), the naive Bayes algorithm had an accuracy of 84% (42 of 50), the discriminant 

analysis algorithm had an accuracy of 78% (39 of 50), and the support vector machine algorithm 

had an accuracy of 76% (38 of 50). The K-nearest neighbor algorithm used 6 performance 

metrics to classify participants, the naive Bayes algorithm used 9 performance metrics, the 

discriminant analysis algorithm used 8 performance metrics, and the support vector machine 

algorithm used 8 performance metrics. Two neurosurgeons, 1 fellow or senior resident, 1 junior 

resident, and 1 medical student were misclassified. 

Conclusions and Relevance: In a virtual reality neurosurgical tumor resection study, a 

machine learning algorithm successfully classified participants into 4 levels of expertise with 

90% accuracy. These findings suggest that algorithms may be capable of classifying surgical 

expertise with greater granularity and precision than has been previously demonstrated in 

surgery. 

 

Key Points 

Question: Can a machine learning algorithm differentiate participants according to their 

stage of practice in a complex simulated neurosurgical task? 

Findings: In this case series study, 50 individuals (14 neurosurgeons, 4 fellows, 10 senior 

residents, 10 junior residents, and 12 medical students) participated in 250 simulated tumor 

resections. An accuracy of 90% was achieved using 6 performance features by a K-nearest 
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neighbor algorithm and 2 neurosurgeons, 1 fellow or senior resident, 1 junior resident, and 1 

medical student were misclassified. 

Meaning: The findings suggest that machine learning algorithms may be capable of 

classifying surgical expertise with greater granularity and precision than has been previously 

demonstrated in surgery. 
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INTRODUCTION 

Despite technological advances in artificial intelligence and machine learning, delivery of 

health care is mediated largely by direct interaction between physician and patient. This scenario 

is particularly true for surgical interventions, which carry substantive patient risks and increased 

costs to health care systems.(1) As a consequence, the burgeoning field of surgical data science 

represents efforts to improve interventional health care through increased data collection, 

quantification, and analysis. (2) Similarly, the use of virtual reality simulators has been explored 

as a means of providing objective assessment of technical ability in medicine, with the added 

benefit of retaining realism, pathology, and active bleeding states in a controlled laboratory 

setting. These systems generate vast data sets that quickly challenge traditional statistical 

methods. Artificial intelligence and machine learning systems lend themselves well to the 

analysis of large data sets generated in surgical procedures in 2 important ways: first, by 

uncovering previously unrecognized patterns, they can expand the understanding of the 

composites of technical expertise and surgical error, and second, by grouping participants 

according to technical ability, they offer novel avenues for training and feedback in health care. 

We sought to study the operative factors selected by a series of machine learning 

algorithms to 

most accurately classify participants by level of expertise in a virtual reality surgery. Using an 

advanced high-fidelity neurosurgical simulator allows participants to conduct a complex open 

neurosurgical brain tumor resection task in a risk-free environment.(3, 4) Our group has 

extensive experience in virtual reality surgical simulation; several studies have demonstrated that 

performance measures obtained from simulation can differentiate technical skills both between 

and within groups of expertise.(5-9) Given the task complexity and the abundance of data 
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generated during the simulated operation, we hypothesized that machine learning algorithms 

could identify previously unrecognized performance measures, as well as differentiate 

participants according to their stage of medical practice. 
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METHODS 

Study Participants 

All neurosurgeons, neurosurgical fellows, and neurosurgical residents from a single 

Canadian university were invited between March 1, 2015, and May 31, 2016, to participate in the 

trial. Medical students rotating on a neurosurgical service or having expressed interest in being 

contacted for trials were invited. Data were collected at a single time point and no follow-up data 

were collected. 

Participants were classified a priori as expert (neurosurgery staff), seniors (neurosurgery 

fellows and residents in years 4-6), juniors (neurosurgery residents in years 1-3), and medical 

students. All participants signed an approved Montreal Neurological Institute and Hospital 

Research Ethics Board consent form before trial participation. All procedures followed were in 

accordance with the ethical standards of the responsible committee on human experimentation 

(institutional and national) and with the Declaration of Helsinki.(10) The study received local 

ethics board approval at the Montreal Neurological Institute and Hospital. This report is 

structured according to guidelines for best practices in reporting studies on machine learning to 

assess surgical expertise in virtual reality simulation.(11, 12) 

Study Design 
The Simulator 

The NeuroVR (CAE Healthcare) is a high-fidelity neurosurgical simulator designed to 

recreate the visual and haptic experience of resecting a human brain tumor through an operative 

microscope. The platform was developed in 2012 by a team from the National Research Council 

of Canada in collaboration with an advisory network of surgeons from 23 Canadian and 

international teaching hospitals. (4) Care was taken to provide the most realistic sensory 

feedback for the user by incorporating physical properties of human primary brain tumors.(4) As 
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such, the attention to detail and resources used in the creation of the NeuroVR make it one of the 

most advanced high-fidelity simulators available for neurosurgery.(3) 

The Virtual Reality Tumor Resection Task 

The trial was carried out at the McGill Neurosurgical Simulation and Artificial 

Intelligence Learning Centre in a controlled laboratory environment void of distractions. A 

human intrinsic subpial brain tumor resection task was designed by neurosurgeons with 

extensive experience in neuro-oncologic and epilepsy neurosurgery. The subpial technique is a 

challenging bimanual psychomotor skill acquired in neurosurgery and is primarily used in 

epilepsy and oncologic surgery, where preservation of adjacent eloquent structures is of 

paramount importance.(13) Participants were given written and verbal instructions that the goal 

of the scenario was removal of the cortical tumor using the ultrasonic aspirator without damaging 

adjacent normal brain tissue and vessels. A bipolar instrument could be used to lift and retract 

the pial membrane to gain access to the tumor and cauterize possible bleeding points. 

Participants performed the scenario 5 times; however, for the analysis these tasks were averaged 

and not treated separately. The duration of the resection procedure was limited to 3 minutes.(14) 

Video 1 is a sample video of the task and Video 2 is a 3-dimensional tumoral reconstruction. 

Statistical Analysis 

Raw Data Obtained From the Simulator 
After each trial, the NeuroVR provides a comma separated value (CSV) file containing, 

in 20-millisecond increments, the activation, force applied, tip position, and angle of each 

instrument; the volume of tumor and surrounding healthy tissues removed; blood loss; and 

whether a given instrument was in contact with the tumor, a blood vessel, or healthy tissue. 

MATLAB, release 2018a (The MathWorks Inc) was used to process the data into operative 

performance metrics that can be used by a machine learning algorithm. Interpolation was used to 
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render the data regular and fill occasional missing data points (due to slight fluctuations in 

computer processing). Figure 3.1 in the Supplement has further examples. 

Performance Metric Extraction 

To begin, raw data were transformed into performance metrics to be used by the 

algorithm, with the intention of generating operative measurements that would be easily 

interpretable by teachers and students of surgery. This process includes transforming instrument 

movement from the original x, y, and z coordinates into 3-dimensional representations of 

velocity (first derivative of position), acceleration (first derivative of velocity), and jerk (first 

derivative of acceleration), as well as the separation between instrument tips. The acceleration 

and tip distance variables were further refined to reflect the rate of change while the instruments 

were speeding up and slowing down as well as converging and diverging. The rate of change in 

volume of tumor and healthy tissue, as well as the rate of change of bleeding, and the number of 

attempts to stop bleeding were generated. Next, the aforementioned variables were extracted 

during 3 operative conditions: during the course of the whole scenario, during the tumor 

resection (ie, only when the ultrasonic aspirator was activated with decreasing tumor volume), 

and during blood suctioning (ie, when the ultrasonic aspirator was not active and while blood in 

the operative view was decreasing). Finally, the mean, median, and maximum values of all 

metrics in all conditions were obtained. Table 3.1 lists all 270 metrics generated. Examples 

among the total 270 possible metrics generated include mean aspirator force while resecting the 

tumor, maximum rate of bleeding during the course of the whole scenario, and median tip 

distance while suctioning blood. Performance measures of the 5 scenarios were averaged 

together for each participant. 
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Metric Reduction and Normalization 
Metrics failing to demonstrate a significant (P < .05) difference on a 2-sided t test 

between any 2 groups were excluded. No corrections for multiple tests were done, as the t tests 

were performed for data-reductive purposes. Subsequent inclusion of the metrics in the algorithm 

corrects for the probability of type I error at this stage. Metrics were normalized via z score 

transformation to ensure optimal algorithm functioning. 

Iterative Loop 

The following steps involve a repetitive process whereby algorithm optimization and 

final performance metric selection occur. The process is outlined in Figure 3.1. Forward (starting 

with 1 and increasing in number) metric selection was performed by randomly adding metrics 

and backward (starting with the maximum and decreasing in number) metric selection was 

performed by randomly removing metrics. Calculation of accuracy was accomplished by leave-

1-out cross-validation. Leave- 1-out validation involves training the machine learning algorithm 

on the entire participant data set except for 1 individual, whose group membership is then 

estimated. The process is repeated with different individuals excluded until all participants have 

been classified. The total number of correctly classified individuals represents the overall 

accuracy of a given algorithm. No external data set was used to obtain the algorithm accuracy. 
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Figure 3.1. The Process of Generating a Final Optimized Machine Learning Algorithm With a Set 
of Selected Metrics  

For algorithm optimization, each machine learning algorithm has a defined set of parameters by 

which it functions, the adjustment of which will modify its overall performance. An analogy for 

these parameters is the statistical methods that underlie P value adjustments (eg, Bonferroni and 

Benjamini-Hochberg). MATLAB, release 2018a (MathWorks Inc) was used to modify the 

intrinsic properties of 4 machine learning algorithms (K-nearest neighbor, naive Bayes, 

discriminant analysis, and support vector machine). 

 

Algorithms Used 

Four classifier algorithms were used: K-nearest neighbor, naive Bayes, discriminant 

analysis, and support vector machine. Parameter optimizations were carried out using functions 

included in MATLAB, release 2018a, as well as code written by us.(15-19) 

RESULTS 

Participant Characteristics 

A total of 50 individuals (14 neurosurgeons, 4 fellows, 10 senior residents, 10 junior 

residents, and 12 medical students) participated in 250 simulated tumor resections. Demographic 

information is presented in Table 3.2. Consultant neurosurgeon subspecialization covered a wide 

breadth of practice, with most (9 [64%]) primarily involved in cranial surgery. A total of 7 
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neurosurgeons (50%), 10 senior residents (69%), 6 junior residents (60%), and 3 medical 

students (25%) indicated that they had used a surgical simulator previously. 

Machine Learning Ability to Classify Participants 

The K-nearest neighbor algorithm had an accuracy of 90% (45 of 50), the naive Bayes 

algorithm had an accuracy of 84% (42 of 50), the discriminant analysis algorithm had an 

accuracy of 78% (39 of 50), and the support vector machine algorithm had an accuracy of 76% 

(38 of 50). Figure 3.2 presents details on individual misclassification. Although beyond the scope 

of the initial hypothesis, in response to misclassifications between medical students and 

neurosurgeons, the algorithm optimization process was repeated with an emphasis on preventing 

misclassification between neurosurgeons and medical students, with resulting accuracies ranging 

between 88% (44 of 50) and 72% (36 of 50). This was accomplished by allowing the algorithm 

optimization process to stop if no misclassifications between neurosurgeons and medical 

students occurred, in addition to attaining a desired accuracy. Figure 3.2 in the Supplement has 

further information regarding the individual misclassifications of these algorithms. 
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Figure 3.2. Individual Misclassifications by Machine Learning Algorithms 
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Table 3.1. Performance Metrics Generated From Raw Simulator Data 
Metric 
No. 

 
Measurement 

 
Instrument 

Performance Measure Associated With 
Movement, Force, Bleeding, or Tissue 

 
Operative Condition 

1 Maximum Aspirator Acceleration of instrument Over whole scenario 
2 Maximum Aspirator Force of instrument Over whole scenario 
3 Maximum Aspirator Change in force of instrument Over whole scenario 
4 Maximum Aspirator Jerk of instrument Over whole scenario 
5 Maximum Aspirator Rate of slowing down of instrument Over whole scenario 
6 Maximum Aspirator Rate of speeding up of instrument Over whole scenario 
7 Maximum Aspirator Velocity of instrument Over whole scenario 
8 Maximum Bipolar Acceleration of instrument Over whole scenario 
9a,b Maximum Bipolar Force of instrument Over whole scenario 
10 Maximum Bipolar Change in force of instrument Over whole scenario 
11 Maximum Bipolar Jerk of instrument Over whole scenario 
12 Maximum Bipolar Rate of slowing down of instrument Over whole scenario 
13 Maximum Bipolar Rate of speeding up of instrument Over whole scenario 
14 Maximum Bipolar Velocity of instrument Over whole scenario 
15 Maximum NA Bleeding speed Over whole scenario 
16 Maximum NA Change in bleeding speed Over whole scenario 
17 Maximum NA Blood in view Over whole scenario 
18 Maximum NA Change in blood in view Over whole scenario 
19 Maximum NA Increase in bleeding speed Over whole scenario 
20 Maximum NA Converging of instrument tips Over whole scenario 
21 Maximum NA Diverging of instrument tips Over whole scenario 
22 Maximum NA Increased blood in view Over whole scenario 
23 Maximum NA Decreasing bleeding rate Over whole scenario 
24 Maximum NA Decrease in blood in view Over whole scenario 
25 Maximum NA Tip distance of instruments Over whole scenario 
26 Maximum NA Change in tip distance of instruments Over whole scenario 
27 Maximum NA Change in volume of brain tissue Over whole scenario 
28 Maximum NA Total blood emitted Over whole scenario 
29 Maximum NA Change in total blood emitted Over whole scenario 
30 Maximum NA Change in volume of tumor Over whole scenario 
31 Mean Aspirator Acceleration of instrument Over whole scenario 
32 Mean Aspirator Force of instrument Over whole scenario 
33 Mean Aspirator Change in force of instrument Over whole scenario 
34a Mean Aspirator Jerk of instrument Over whole scenario 
35 Mean Aspirator Rate of slowing down of instrument Over whole scenario 
36 Mean Aspirator Rate of speeding up of instrument Over whole scenario 
37 Mean Aspirator Velocity of instrument Over whole scenario 
38 Mean Bipolar Acceleration of instrument Over whole scenario 
39a Mean Bipolar Force of instrument Over whole scenario 
40 Mean Bipolar Change in force of instrument Over whole scenario 
41 Mean Bipolar Jerk of instrument Over whole scenario 
42 Mean Bipolar Rate of slowing down of instrument Over whole scenario 
43 Mean Bipolar Rate of speeding up of instrument Over whole scenario 
44a Mean Bipolar Velocity of instrument Over whole scenario 
45b Mean NA Bleeding speed Over whole scenario 
46 Mean NA Change in bleeding speed Over whole scenario 
47 Mean NA Blood in view Over whole scenario 
48b Mean NA Change in blood in view Over whole scenario 
49 Mean NA Increase in bleeding speed Over whole scenario 
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Table 3.1. Performance Metrics Generated From Raw Simulator Data (continued) 
Metric 
No. 

 
Measurement 

 
Instrument 

Performance Measure Associated With 
Movement, Force, Bleeding, or Tissue 

 
Operative Condition 

50 Mean NA Converging of instrument tips Over whole scenario 
51a Mean NA Diverging of instrument tips Over whole scenario 
52 Mean NA Increased blood in view Over whole scenario 
53 Mean NA Decreasing bleeding rate Over whole scenario 
54 Mean NA Decrease in blood in view Over whole scenario 
55a,c Mean NA Tip distance of instruments Over whole scenario 
56 Mean NA Change in tip distance of instruments Over whole scenario 
57 Mean NA Change in volume of brain tissue Over whole scenario 
58 Mean NA Total blood emitted Over whole scenario 
59 Mean NA Change in total blood emitted Over whole scenario 
60a,b,d Mean NA Change in volume of tumor Over whole scenario 
61 Median Aspirator Acceleration of instrument Over whole scenario 
62 Median Aspirator Force of instrument Over whole scenario 
63c,d Median Aspirator Change in force of instrument Over whole scenario 
64 Median Aspirator Jerk of instrument Over whole scenario 
65 Median Aspirator Rate of slowing down of instrument Over whole scenario 
66 Median Aspirator Rate of speeding up of instrument Over whole scenario 
67c Median Aspirator Velocity of instrument Over whole scenario 
68 Median Bipolar Acceleration of instrument Over whole scenario 
69a Median Bipolar Force of instrument Over whole scenario 
70 Median Bipolar Change in force of instrument Over whole scenario 
71 Median Bipolar Jerk of instrument Over whole scenario 
72 Median Bipolar Rate of slowing down of instrument Over whole scenario 
73 Median Bipolar Rate of speeding up of instrument Over whole scenario 
74 Median Bipolar Velocity of instrument Over whole scenario 
75 Median NA Bleeding speed Over whole scenario 
76 Median NA Change in bleeding speed Over whole scenario 
77 Median NA Blood in view Over whole scenario 
78 Median NA Change in blood in view Over whole scenario 
79 Median NA Increase in bleeding speed Over whole scenario 
80 Median NA Converging of instrument tips Over whole scenario 
81 Median NA Diverging of instrument tips Over whole scenario 
82 Median NA Increased blood in view Over whole scenario 
83 Median NA Decreasing bleeding rate Over whole scenario 
84 Median NA Decrease in blood in view Over whole scenario 
85 Median NA Tip distance of instruments Over whole scenario 
86 Median NA Change in tip distance of instruments Over whole scenario 
87 Median NA Change in volume of brain tissue Over whole scenario 
88 Median NA Total blood emitted Over whole scenario 
89 Median NA Change in total blood emitted Over whole scenario 
90 Median NA Change in volume of tumor Over whole scenario 
91 Maximum Aspirator Acceleration of instrument While removing tumor 
92 Maximum Aspirator Force of instrument While removing tumor 
93 Maximum Aspirator Change in force of instrument While removing tumor 
94 Maximum Aspirator Jerk of instrument While removing tumor 
95 Maximum Aspirator Rate of slowing down of instrument While removing tumor 
96 Maximum Aspirator Rate of speeding up of instrument While removing tumor 
97 Maximum Aspirator Velocity of instrument While removing tumor 
98 Maximum Bipolar Acceleration of instrument While removing tumor 
99 Maximum Bipolar Force of instrument While removing tumor 
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Table 3.1. Performance Metrics Generated From Raw Simulator Data (continued) 
Metric 
No. 

 
Measurement 

 
Instrument 

Performance Measure Associated With 
Movement, Force, Bleeding, or Tissue 

 
Operative Condition 

100 Maximum Bipolar Change in force of instrument While removing tumor 
101 Maximum Bipolar Jerk of instrument While removing tumor 
102 Maximum Bipolar Rate of slowing down of instrument While removing tumor 
103 Maximum Bipolar Rate of speeding up of instrument While removing tumor 
104 Maximum Bipolar Velocity of instrument While removing tumor 
105 Maximum NA Bleeding speed While removing tumor 
106b Maximum NA Change in bleeding speed While removing tumor 
107 Maximum NA Blood in view While removing tumor 
108 Maximum NA Change in blood in view While removing tumor 
109 Maximum NA Increase in bleeding speed While removing tumor 
110 Maximum NA Converging of instrument tips While removing tumor 
111 Maximum NA Diverging of instrument tips While removing tumor 
112 Maximum NA Increased blood in view While removing tumor 
113 Maximum NA Decreasing bleeding rate While removing tumor 
114 Maximum NA Decrease in blood in view While removing tumor 
115 Maximum NA Tip distance of instruments While removing tumor 
116 Maximum NA Change in tip distance of instruments While removing tumor 
117 Maximum NA Change in volume of brain tissue While removing tumor 
118 Maximum NA Total blood emitted While removing tumor 
119 Maximum NA Change in total blood emitted While removing tumor 
120 Maximum NA Change in volume of tumor While removing tumor 
121 Mean Aspirator Acceleration of instrument While removing tumor 
122 Mean Aspirator Force of instrument While removing tumor 
123c Mean Aspirator Change in force of instrument While removing tumor 
124 Mean Aspirator Jerk of instrument While removing tumor 
125c Mean Aspirator Rate of slowing down of instrument While removing tumor 
126 Mean Aspirator Rate of speeding up of instrument While removing tumor 
127 Mean Aspirator Velocity of instrument While removing tumor 
128 Mean Bipolar Acceleration of instrument While removing tumor 
129a Mean Bipolar Force of instrument While removing tumor 
130 Mean Bipolar Change in force of instrument While removing tumor 
131 Mean Bipolar Jerk of instrument While removing tumor 
132 Mean Bipolar Rate of slowing down of instrument While removing tumor 
133 Mean Bipolar Rate of speeding up of instrument While removing tumor 
134 Mean Bipolar Velocity of instrument While removing tumor 
135 Mean NA Bleeding speed While removing tumor 
136 Mean NA Change in bleeding speed While removing tumor 
137 Mean NA Blood in view While removing tumor 
138 Mean NA Change in blood in view While removing tumor 
139 Mean NA Increase in bleeding speed While removing tumor 
140 Mean NA Converging of instrument tips While removing tumor 
141 Mean NA Diverging of instrument tips While removing tumor 
142 Mean NA Increased blood in view While removing tumor 
143 Mean NA Decreasing bleeding rate While removing tumor 
144 Mean NA Decrease in blood in view While removing tumor 
145 Mean NA Tip distance of instruments While removing tumor 
146 Mean NA Change in tip distance of instruments While removing tumor 
147 Mean NA Change in volume of brain tissue While removing tumor 
148 Mean NA Total blood emitted While removing tumor 
149 Mean NA Change in total blood emitted While removing tumor 
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Table 3.1. Performance Metrics Generated From Raw Simulator Data (continued) 
Metric 
No. 

 
Measurement 

 
Instrument 

Performance Measure Associated With Movement, 
Force, Bleeding, or Tissue 

 
Operative Condition 

150 Mean NA Change in volume of tumor While removing tumor 
151 Median Aspirator Acceleration of instrument While removing tumor 
152 Median Aspirator Force of instrument While removing tumor 
153 Median Aspirator Change in force of instrument While removing tumor 
154 Median Aspirator Jerk of instrument While removing tumor 
155 Median Aspirator Rate of slowing down of instrument While removing tumor 

156 Median Aspirator Rate of speeding up of instrument While removing tumor 

157c Median Aspirator Velocity of instrument While removing tumor 

158 Median Bipolar Acceleration of instrument While removing tumor 

159d Median Bipolar Force of instrument While removing tumor 

160 Median Bipolar Change in force of instrument While removing tumor 

161 Median Bipolar Jerk of instrument While removing tumor 

162 Median Bipolar Rate of slowing down of instrument While removing tumor 

163 Median Bipolar Rate of speeding up of instrument While removing tumor 

164 Median Bipolar Velocity of instrument While removing tumor 

165 Median NA Bleeding speed While removing tumor 

166 Median NA Change in bleeding speed While removing tumor 

167 Median NA Blood in view While removing tumor 

168b,d Median NA Change in blood in view While removing tumor 

169 Median NA Increase in bleeding speed While removing tumor 

170 Median NA Converging of instrument tips While removing tumor 

171 Median NA Diverging of instrument tips While removing tumor 

172 Median NA Increased blood in view While removing tumor 

173 Median NA Decreasing bleeding rate While removing tumor 

174 Median NA Decrease in blood in view While removing tumor 

175 Median NA Tip distance of instruments While removing tumor 

176b Median NA Change in tip distance of instruments While removing tumor 

177 Median NA Change in volume of brain tissue While removing tumor 

178 Median NA Total blood emitted While removing tumor 

179 Median NA Change in total blood emitted While removing tumor 

180 Median NA Change in volume of tumor While removing tumor 

181 Maximum Aspirator Acceleration of instrument While suctioning blood 

182 Maximum Aspirator Force of instrument While suctioning blood 

183 Maximum Aspirator Change in force of instrument While suctioning blood 

184 Maximum Aspirator Jerk of instrument While suctioning blood 

185 Maximum Aspirator Rate of slowing down of instrument While suctioning blood 

186 Maximum Aspirator Rate of speeding up of instrument While suctioning blood 

187 Maximum Aspirator Velocity of instrument While suctioning blood 

188 Maximum Bipolar Acceleration of instrument While suctioning blood 

189d Maximum Bipolar Force of instrument While suctioning blood 

190 Maximum Bipolar Change in force of instrument While suctioning blood 

191 Maximum Bipolar Jerk of instrument While suctioning blood 

192 Maximum Bipolar Rate of slowing down of instrument While suctioning blood 

193 Maximum Bipolar Rate of speeding up of instrument While suctioning blood 

194d Maximum Bipolar Velocity of instrument While suctioning blood 

195 Maximum NA Bleeding speed While suctioning blood 

196 Maximum NA Change in bleeding speed While suctioning blood 

197 Maximum NA Blood in view While suctioning blood 

198 Maximum NA Change in blood in view While suctioning blood 

199 Maximum NA Increase in bleeding speed While suctioning blood 
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Table 3.1. Performance Metrics Generated From Raw Simulator Data (continued) 
Metric 
No. 

 
Measurement 

 
Instrument 

Performance Measure Associated With 
Movement, Force, Bleeding, or Tissue 

 
Operative Condition 

200 Maximum NA Converging of instrument tips While suctioning blood 

201 Maximum NA Diverging of instrument tips While suctioning blood 

202 Maximum NA Increased blood in view While suctioning blood 

203 Maximum NA Decreasing bleeding rate While suctioning blood 

204 Maximum NA Decrease in blood in view While suctioning blood 

205 Maximum NA Tip distance of instruments While suctioning blood 
206 Maximum NA Change in tip distance of instruments While suctioning blood 
207 Maximum NA Change in volume of brain tissue While suctioning blood 
208 Maximum NA Total blood emitted While suctioning blood 
209 Maximum NA Change in total blood emitted While suctioning blood 
210 Maximum NA Change in volume of tumor While suctioning blood 
211 Mean Aspirator Acceleration of instrument While suctioning blood 
212 Mean Aspirator Force of instrument While suctioning blood 
213 Mean Aspirator Change in force of instrument While suctioning blood 
214 Mean Aspirator Jerk of instrument While suctioning blood 
215 Mean Aspirator Rate of slowing down of instrument While suctioning blood 
216 Mean Aspirator Rate of speeding up of instrument While suctioning blood 
217 Mean Aspirator Velocity of instrument While suctioning blood 
218 Mean Bipolar Acceleration of instrument While suctioning blood 
219 Mean Bipolar Force of instrument While suctioning blood 
220 Mean Bipolar Change in force of instrument While suctioning blood 
221 Mean Bipolar Jerk of instrument While suctioning blood 
222 Mean Bipolar Rate of slowing down of instrument While suctioning blood 
223 Mean Bipolar Rate of speeding up of instrument While suctioning blood 
224 Mean Bipolar Velocity of instrument While suctioning blood 
225 Mean NA Bleeding speed While suctioning blood 
226 Mean NA Change in bleeding speed While suctioning blood 
227 Mean NA Blood in view While suctioning blood 
228 Mean NA Change in blood in view While suctioning blood 
229 Mean NA Increase in bleeding speed While suctioning blood 
230 Mean NA Converging of instrument tips While suctioning blood 
231 Mean NA Diverging of instrument tips While suctioning blood 
232 Mean NA Increased blood in view While suctioning blood 
233 Mean NA Decreasing bleeding rate While suctioning blood 
234 Mean NA Decrease in blood in view While suctioning blood 
235d Mean NA Tip distance of instruments While suctioning blood 
236 Mean NA Change in tip distance of instruments While suctioning blood 
237 Mean NA Change in volume of brain tissue While suctioning blood 
238 Mean NA Total blood emitted While suctioning blood 
239 Mean NA Change in total blood emitted While suctioning blood 
240 Mean NA Change in volume of tumor While suctioning blood 
241 Median Aspirator Acceleration of instrument While suctioning blood 
242 Median Aspirator Force of instrument While suctioning blood 
243 Median Aspirator Change in force of instrument While suctioning blood 
244 Median Aspirator Jerk of instrument While suctioning blood 
245 Median Aspirator Rate of slowing down of instrument While suctioning blood 
246 Median Aspirator Rate of speeding up of instrument While suctioning blood 
247 Median Aspirator Velocity of instrument While suctioning blood 
248 Median Bipolar Acceleration of instrument While suctioning blood 
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Table 3.1. Performance Metrics Generated From Raw Simulator Data (continued) 
Metric 
No. 

 
Measurement 

 
Instrument 

Performance Measure Associated With 
Movement, Force, Bleeding, or Tissue 

 
Operative Condition 

249 Median Bipolar Force of instrument While suctioning blood 
250d Median Bipolar Change in force of instrument While suctioning blood 
251 Median Bipolar Jerk of instrument While suctioning blood 
252 Median Bipolar Rate of slowing down of instrument While suctioning blood 
253 Median Bipolar Rate of speeding up of instrument While suctioning blood 
254 Median Bipolar Velocity of instrument While suctioning blood 
255 Median NA Bleeding speed While suctioning blood 
256 Median NA Change in bleeding speed While suctioning blood 
257 Median NA Blood in view While suctioning blood 
258 Median NA Change in blood in view While suctioning blood 
259 Median NA Increase in bleeding speed While suctioning blood 
260 Median NA Converging of instrument tips While suctioning blood 
261 Median NA Diverging of instrument tips While suctioning blood 
262 Median NA Increased blood in view While suctioning blood 
263 Median NA Decreasing bleeding rate While suctioning blood 
264 Median NA Decrease in blood in view While suctioning blood 
265b Median NA Tip distance of instruments While suctioning blood 
266 Median NA Change in tip distance of instruments While suctioning blood 
267 Median NA Change in volume of brain tissue While suctioning blood 
268 Median NA Total blood emitted While suctioning blood 
269 Median NA Change in total blood emitted While suctioning blood 
270 Median NA Change in volume of tumor While suctioning blood 

Abbreviation: NA, not applicable. 

a Performance metric selected by naive Bayes algorithm. 

b Performance metric selected by support vector machine algorithm. 

c Performance metric selected by K-nearest neighbor algorithm. 

d Performance metric selected by discriminant analysis algorithm. 

 
Machine Learning Optimized Parameters 

The final K-nearest neighbor algorithm used included 2 neighbors with a cosine distance 

calculation. Novel data points were classified into the more skilled group in cases when 2 

neighbors were from differing groups. 

The best-performing naive Bayes algorithm used gaussian (normal) kernel smoothing 

with a width of 0.31408. The final discriminant analysis algorithm used a δ value of 0.00068926 

and a γ value of 0.99808 with a pseudo-linear discriminant type. The final support vector 
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machine algorithm used a gaussian kernel function with the formula G(xj, xk)= exp (−||xj − 

xk||χ2). Box constraint was 0.12958 and kernel scale was 3.1667 using the 1-vs-all coding 

method (in which 1 group is compared with all others). 

Performance Metrics Selected by Machine Learning Algorithm 

Of the 270 performance metrics generated from raw data, 122 were selected after 

reduction and normalization. The K-nearest neighbor algorithm used 6 performance metrics to 

classify participants (55, 63, 67, 123, 125, and 157), the naive Bayes algorithm used 9 

performance metrics (9, 34, 39, 44, 51, 55, 60, 69, and 129), the discriminant analysis algorithm 

used 8 performance metrics (60, 63, 159, 168, 189, 194, 235, and 250), and the support vector 

machine algorithm used 8 performance metrics (9, 45, 48, 60, 106, 168, 176, and 265) (Table 

3.1). Performance metrics selected by the algorithms spanned the following 4 principal domains: 

movement associated with a single instrument, both instruments used in concert, force applied by 

the instruments, and tissue removed or bleeding caused (Figure 3.3). 
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Figure 3.3. Number of Performance Metrics Selected for By 4 Different Machine Learning 
Algorithms  
 

 
Performance metrics are categorized as those involving movements of 1 or both instruments, 

force applied to the underlying structures and damage to underlying brain, blood loss, and 

quantity of tumor removed.  
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Table 3.2. Demographic Information of Participants 

Characteristic Staff 
Neurosurgeons 
(n = 14) 

Fellows or 
Senior Residents 
(n = 14) 

Junior Residents 
(n = 10) 

Medical 
Students (n = 
12) 

Age, median 
(range), y 

45 (33-59) 33 (29-35) 30 (27-38) 23 (23-26) 

Sex, No. (%)     
   Male 14 (100) 13 (93) 8 (80) 6 (50) 
   Female 0 1 (7) 2 (20) 6 (50) 
Total No. of years 
of practice, median 
(range) 

12.5 (1-25) NA NA NA 

Neurosurgical 
subspecialty, No. 
(%) 

    

   Spine 5 (36) NA NA NA 
   Oncology and  

   epilepsy 

4 (29) NA NA NA 

   Skull base 2 (14) NA NA NA 
   Pediatrics 2 (14) NA NA NA 
   Cerebrovascular 1 (7) NA NA NA 

Abbreviation: NA, not applicable.  

 

DISCUSSION 

In this prospective study using a high-fidelity virtual reality simulated neurosurgical brain 

tumor resection procedure, we sought to assess whether machine learning algorithms could select 

performance measures to classify participants according to their level of neurosurgical training. 

This study comes at a time of ever-increasing time pressure facing physician-educators to 

balance their commitment to patients and learners.(20) In parallel, in the United States the search 

continues for a reliable means of examining Part III of the Maintenance of Certification, namely, 

the assessment of knowledge, judgment, and skills unique to surgical and procedurally oriented 

medical specialties.(21, 22) Both require an objective, consistent, transparent, and defendable 

means of summative and formative assessments of psychomotor ability. 
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Simulators, while affording learners the opportunity to safely develop technical skills 

during the particularly dangerous and error-prone early phases of skill acquisition, do not obviate 

the need for learner feedback, which is often given by skilled instructors.(23) Furthermore, 

although simulation has been incorporated into the certification process of the American Board 

of Surgery and the American Board of Anesthesiology, the former relies on human evaluators 

while the latter is meant only to stimulate self-reflection.(22, 24) Simulation-based technical 

skills training informed by artificial intelligence feedback systems may offer a solution. 

As innovations in artificial intelligence continue, so do the efforts to maintain human 

understanding of the algorithm classification process. This field has been termed transparent or 

explainable artificial intelligence.(25) By understanding the performance data used by the 

algorithm to render its decision, it is possible to design systems to deliver on-demand 

assessments at the convenience of the examinee and with minimal input from skilled instructors. 

Such systems may be subject to continuous improvement as increasing participant data are 

collected and integrated into the algorithm. 

We found that the best-performing machine learning algorithm used as few as 6 performance 

metrics to successfully classify 45 of 50 participants into 1 of 4 groups of expertise. Although we 

chose to limit the performance measures to those that could be easily interpreted by a user, 

theoretically higher accuracies may be attained by including more abstruse metrics. 

Nevertheless, to our knowledge, no previous study using artificial intelligence to evaluate 

performance has demonstrated the ability to identify 4 groups in open surgery.(26-37) 

Limitations 

Insofar as technical skills measured on a simulator are reflective of operating skill in the 

real world, our findings outline a novel approach to understanding technical expertise in surgery. 

Although 4 different machine learning algorithms were used, there still exists the possibility that 
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all algorithms are overfitted to our data set, limiting their performance when faced with novel 

data.(38) As such, these algorithms must be tested on an independent data set before making 

final conclusions about their accuracy. Furthermore, in 3 of 4 algorithms a single medical student 

was categorized as a neurosurgeon. In response to this misclassification, we sought to limit 

misclassifications between these 2 groups in the algorithm optimization process as a proof of 

concept. Although this modification came at a cost of reduced overall accuracy, explicitly 

preventing misclassifications between certain groups may be desirable in high-stakes 

certification examinations. 

In addition, it is challenging to define populations of surgeons, fellows, and residents 

with equivalent skill to allow accurate classification. Neurosurgeon skill level was based on 

being a certified surgeon and resident skill level was based on their educational year, which does 

not adequately take into account subspecialization or other construct-validated objective 

assessments of skill sets. A more comprehensive evaluation of participants with an emphasis on 

demonstrated skills across assessment domains (eg, visual rating scales and training evaluations 

or assessment of visuospatial abilities) may result in improved algorithm performance. 

CONCLUSIONS 

Our study demonstrates the ability of machine learning algorithms to classify surgical 

expertise with greater granularity and precision than has been previously demonstrated. Although 

the task involved a complex neurosurgical tumor resection task, the protocol outlined can be 

applied to any digitized platform to assess performance in a setting in which technical skill is 

paramount. 
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CHAPTER 3 – SUPPLEMENTARY FIGURES 

 
Supplementary Figure 3.1. Screen Capture of the Comma Separated Value File Representing the 

Output of the Simulator  

 
Column 1, 2, 3, 4 and 5 represent instrument type, force applied by instrument (in newton), 

instrument coordinates in the X, Y and Z planes, total blood emitted and blood in current frame 

and total tumor volume remaining, respectively. Examples of performance metrics include: 

ultrasonic aspirator force while resecting tumor (calculated by combining columns 1, 2 and 5) 

and tip distance while suctioning blood (calculated by combining columns 3 and 4).  
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Supplementary Figure 3.2. Individual Misclassifications of Machine Learning Algorithms Emphasizing 
no Misclassifications Between Neurosurgeons and Medical Students  

 
Overall accuracy of k-nearest neighbor, discriminant analysis and support vector machine 

algorithms are 88%, 74% and 72%, respectively. Naïve Bayes algorithm is omitted as there were 

no misclassifications between medical students and neurosurgeons noted initially.  
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Chapter 4 - A Comparison of Visual Rating 
Scales and Simulated Virtual Reality Metrics 
in Neurosurgical Training: A Generalizability 
Theory Study 
Preface 

 Chapter 3 outlined the utility of AI in determining technical expertise in neurosurgery. In 

this chapter, the development of a visual rating scale for neurosurgical performance was 

outlined. Such a scale can be used to evaluate surgical performance on the animal model, and 

serve as an outcome measure for the RCT. Furthermore, because claims of veridical 

measurement are often made by proponents of either computerized simulation systems or expert 

raters, it was considered useful to compare these measurements directly to one another using 

Generalizability Theory, a robust psychometric technique, to best understand their respective 

strengths and weaknesses in the measurement of surgical performance in neurosurgery. As such, 

this was the first study at the time of publication to compare simulation data to expert visual 

ratings of performance.  The manuscript was published as: 

Winkler-Schwartz A, Marwa I, Bajunaid K, Mullah M, Alotaibi FE, Bugdadi A, Sawaya R, 

Sabbagh AJ, Del Maestro R. A Comparison of Visual Rating Scales and Simulated Virtual 

Reality Metrics in Neurosurgical Training: A Generalizability Theory Study. World Neurosurg. 

2019 Jul;127:e230-e235. doi: 10.1016/j.wneu.2019.03.059. Epub 2019 Mar 15. PMID: 

30880209. 
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ABSTRACT 

Background: Adequate assessment and feedback remains a cornerstone of psychomotor 

skills acquisition, particularly within neurosurgery where the consequence of adverse operative 

events is significant. However, a critical appraisal of the reliability of visual rating scales in 

neurosurgery is lacking. Therefore, we sought to design a study to compare visual rating scales 

with simulated metrics in a neurosurgical virtual reality task. 

Methods: Neurosurgical faculty rated anonymized participant video recordings of the 

removal of simulated brain tumors using a visual rating scale made up of seven composite 

elements. Scale reliability was evaluated using generalizability theory, and scale subcomponents 

were compared with simulated metrics using Pearson correlation analysis. 

Results: Four staff neurosurgeons evaluated 16 medical student neurosurgery applicants. 

Overall scale reliability and internal consistency were 0.73 and 0.90, respectively. Reliability of 

0.71 was achieved with two raters. Individual participants, raters, and scale items accounted for 

27%, 11%, and 0.6% of the data variability. The hemostasis scale component related to the 

greatest number of simulated metrics, whereas respect for no-go zones and tissue was correlated 

with none. Metrics relating to instrument force and patient safety (brain volume removed and 

blood loss) were captured by the fewest number of rating scale components. 

Conclusions: To our knowledge, this is the first study comparing participant’s ratings 

with simulated performance. Given rating scales capture less well instrument force, quantity of 

brain volume removed, and blood loss, we suggest adopting a hybrid educational approach using 

visual rating scales in an operative environment, supplemented by simulated sessions to uncover 

potentially problematic surgical technique. 
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INTRODUCTION 

As residency programs continue to evolve toward a competency-based curriculum, there 

is an increasing need for assessment of resident technical skills. Adequate assessment and 

feedback remain a cornerstone of psychomotor skills acquisition, particularly within 

neurosurgery where the consequence of adverse operative events is great.(1) Visual rating scales 

remain convenient tools for generating organized formative assessments. Different rating scales 

for surgery have been developed, including the Objective Structured Assessment of Technical 

Skills (OSATS), which has been used previously in a neurosurgical context.(2-4) A theoretical 

limitation of visual rating scales is the risk of rater subjectivity in skills assessment. Furthermore, 

little information exists on the ability of rating scales to capture subtler aspects of performance, 

including instrument force applied during a procedure. This last point is particularly important 

because consistent evidence from the neurosurgical simulation literature suggests that applied 

force differentiates levels of expertise.(5-10) In addition, a recent study found that excess force 

applied during live neurosurgical operations is associated with increased intraoperative 

bleeding.(11) 

The objective of the project was to conduct a generalizability study to better understand 

the use of a visual rating scale of operative performance in neurosurgery and to compare it with 

computerized metrics generated during a virtual reality neurosurgical operative procedure. We 

hypothesize that both methods will measure the same underlying construct, namely, surgical 

performance. 

  



 

 94 

MATERIALS AND METHODS 

Subjects 

Medical student applicants to a single Canadian neurosurgery program in 2015 were 

recruited to participate in a trial involving a simulated brain tumor resection task.(8) Sixteen of 

the 17 applicants participated, comprising over 70% of the national neurosurgical applicant pool 

for that study year.(11) Data were collected at a single time point within the Neurosurgical 

Simulation and Artificial Intelligence Learning Centre in a controlled laboratory environment 

void of distracting noise. No follow-up data were collected. All students signed an approved 

university ethics board 

consent form before trial participation. All procedures followed were in accordance with the 

ethical standards of the responsible committee on human experimentation (institutional and 

national) and with the Helsinki Declaration of 1975, as revised in 2008. 

High Fidelity Simulator and Brain Tumor Resection Task 

Participant performance during an established virtual reality brain tumor resection task(5) 

was assessed using construct-validated metrics(10, 12) for the NeuroVR (CAE Healthcare, 

Montreal, Quebec, Canada) simulation platform providing real-time visual and haptic feedback. 

The results of this analysis are available in a previous publication.(8) Participants were instructed 

to remove sequentially 6 spherical tumors of identical stiffness and glioma-like color while 

minimizing damage to simulated normal tissue. Tumor stiffness (Young modulus = 9 kPa) was 

higher than that of the surrounding normal tissue (Young modulus = 3 kPa) to facilitate the 

ability of participants to differentiate the tumor-normal tissue interface. The task was completed 

with an ultrasonic aspirator and suction device held in the dominant and nondominant hand, 

respectively. See Figure 4.1 for example. 
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Figure 4.1. One of the authors performs a simulated brain tumor resection task on the NeuroVR 
neurosurgical simulation platform 

 
 

Performance Video Recording and Rating Scale 

Graphical representation of the virtual surgical environment is delivered via computer 

monitor via the NeuroVR graphic card port. Each eye is presented with an offset view of the 

operative field, therefore recreating the stereoscopy of a neurosurgical microscope. A high-

resolution recording of the virtual reality operation from the perspective of the user was obtained 

by directing the graphical output in parallel to a DVD recording device. To reduce potential bias, 

anonymized participant video recordings were shared with four neurosurgical faculty from two 

institutions and rated using a modified OSATS Global Rating Scale.(13) The scale is made up of 

seven composite elements (respect for tissue, economy of movement, instrument handling, 

overall flow, hemostasis, respect for normal brain, and overall score) measured on a 10-point 
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Likert scale. The scale was produced by the authors after collection of the simulated performance 

data. Neurosurgical faculty serving as evaluators were not privy to the scale components prior to 

its use as an evaluation tool in the study. 

 
Statistical Analysis 

We report descriptive statistics as counts and percentages for categorical variables. For 

continuous variables, means and standard deviations are used. Continuous variables include 

visual rating scale items (respect for tissues, economy of movement, instrument handling, flow, 

hemostasis, no-go zones, and overall score) and demographic information (number of 

neurosurgery elective weeks undertaken and number of surgical skin closures performed). 

Categorical variables include demographic information (previous exposure to simulators). 

Generalizability theory was used to evaluate scale reliability. G_String with urGENOVA 

(McMaster Education Research, Innovation & Theory Faculty of Health Sciences, McMaster 

University, Hamilton, Ontario, Canada) was used to generate variance components of 

participants, raters, and scale items, and their interactions. Because all raters evaluated every 

participant, the study design was considered fully crossed. Simulated metrics from a previous 

publication(8) were compared with the rating scale subcomponents using Pearson correlation 

coefficient analysis. For ease of analysis and to further compare the rating scale with simulated 

metrics, single composite scores for both were created. A rating scale total score was generated 

by adding individual subcomponents together (range, 7-70). The performance metrics of 

efficiency index, bimanual forces ratio, suction coordination index, and path length index were 

combined to create a total metric score (range 0-8). Scores of 0, 1 and 2 were assigned to a given 

performance metric if an individual achieved below the 25th percentile, between the 25th and 50th 

percentile, and above the 50th percentile, respectively, compared to their peers. These four 
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metrics were selected because these have shown to best differentiate performance between 

groups (6) and within groups.(8) Missing data, if present, were replaced with means. All 

statistical analyses were completed using STATA version 13.0 (StataCorp., LLC, College 

Station, Texas, USA). 

Table 4.1. Descriptive Statistics of Rating Scale Subcomponents 

 Rating Range 

Scale Item Mean ± Standard 
Deviation 

Minimum Maximum 

Respect for tissues 4.28 ± 1.80 1 8 

Economy of 
movement 

4.12 ± 1.82 1 8 

Instrument handling 3.90 ± 1.71 1 8 

Flow 4.10 ± 1.78 2 9 

Hemostasis 4.30 ± 2.22 1 9 

No-go zones 4.75 ± 2.10 1 9 

Overall 3.81 ± 1.59 1 9 

Four staff neurosurgeons used the rating scale in 64 observations in 16 medical student 

applicants to neurosurgery residency at McGill University. 

 

RESULTS 

Four staff neurosurgeons evaluated 16 medical students for a total of 64 observations. 

Table 4.1 includes a descriptive analysis, demonstrating use of the full range of the Likert scale. 

Demographic information is available in a previous publication(8) and can be summarized as 

follows: 7 out of 16 participants (43%) previously used a simulator, the mean number of 

neurosurgery elective weeks was 11.2 +/- 4.6 (range, 4-22), and the mean number of surgical 

skin closures was 10.9 +/- 6.3 (range, 1-25). Five observations across 3 participants were missing 

and were replaced with means. Additionally, one reviewer failed to complete the overall scale 
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subcomponent for all participants, representing 16 missing observations. As a result, the overall 

scale subcomponent was excluded from the generation of the composite rating scale score. 

Generalizability theory analysis demonstrated relative g coefficients corresponding to an 

overall reliability of 0.73 and internal consistency of 0.90. A decision study was conducted, 

demonstrating that scale reliability of 0.71 can be achieved with only 2 raters (relative error 

coefficient, and keeping item facet fixed). A single rater failed to complete the overall scale 

subcomponent of the visual rating scale; therefore, their scores were replaced with those for the 

group mean. 

Table 4.2. Sources of Variance in Scores 

 
Effect 

 
df 

T 
Score 

Sum of 
Squares 

Mean 
Squares 

Variance 
Component 

Variance 
(%) 

Participants 15 530.80 530.81 35.39 0.98 27.0 

Raters 3 156.21 156.21 52.07 0.39 10.9 

Items 6 36.453 36.45 6.08 0.02 0.6 

Interactions 

Participants × 

raters 

45 962.96 275.95 6.13 0.75 20.6 

Participants × 

items 

90 817.47 250.21 2.78 0.47 13.0 

Raters × items 18 241.94 49.280 2.74 0.11 3.2 

Participants × 

raters × items 

270 1541.06 242.15 0.90 0.90 24.7 

 

Table 4.2 displays the variance components associated with the score. Greatest and least 

sources of data variance were explained by individual participants and individual rating scale 

items, respectively. 



 

 99 

Table 4.3 represents comparison of the visual rating scale subcomponents with known 

individual simulated metrics using Pearson correlation analysis. The low variance in the scale 

items (0.6%) and significant interitem correlation among the scale subcomponents justified the 

creation of a summative total score for the scale. The scale components with no significant 

relation to any metrics were respect for no-go zones and respect for tissue (however it should be 

noted that, even though not significant, they are both negatively correlated with brain volume 

removed). 

The scale component which is significantly correlated with the greatest number of 

simulated metrics is hemostasis, in which positive correlation is seen for efficiency index, 

suction coordination index, path length index, tumor percentage removed, brain volume 

removed, sum of forces in the dominant hand, and maximum force dominant hand, and a 

significant negative correlation with blood loss. The other scale subcomponents have statistically 

significant correlation with efficiency index, coordination index, path length index, and sum of 

forces in dominant hand. The only two visual rating scale components that have a significant 

negative correlation with the bimanual force ratio are instrument handling and overall score. 

Those metrics relating to instrument force (sum of forces in nondominant hand, maximum force 

in dominant hand, and maximum force in nondominant hand) and patient safety (brain volume 

removed and blood loss) were captured by the fewest number of scale subcomponents. Finally, 

composite total of visual rating scale score and composite total simulated metric score 

demonstrated a significant positive correlation (Pearson correlation, 0.31; P = 0.01). (Figure 4.2). 

The mean total simulated metric score was 4 ± 2.1. 
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Figure 4.2. Comparison of composite total visual rating scale score versus composite simulated 

metric score  

 
Pearson correlation = 0.31, P = 0.01. Composite total of scale obtained by summing scale 

subcomponents (range, 6-60). Composite total of simulated metrics corresponded to below 25th 

percentile, between 25th and 50th percentile, and above 50th percentile performance on 

efficiency index, bimanual forces ratio, suction coordination index, and path length index (range, 

0-8). Note, overall score subcomponent not included in composite score. CI, confidence interval.  

 

DISCUSSION 

Based on studies of technical performance in neurosurgery, we have recently introduced 

a conceptual framework to understand surgical expertise in neurosurgery.(14) Although it is 

clear that many non-technical factors, such as clinical decision-making, contribute to expertise, 
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having a framework allows one to better structure research questions relating to the interaction of 

cognitive and motor domains and how these contribute to operative outcomes, particularly at a 

challenging juncture in the surgery. In keeping with this, this study aims to further clarify how 

one may adequately assess technical skills in neurosurgery and to better establish the role for, 

and limitations of, visual rating scales. There are a number of strengths related to the visual 

rating scale. The scale demonstrated overall reliability for as few as two raters. 

 

Table 4.3. Comparison of Scale Subcomponents with Known Simulated Metrics 

 Bimanual Cognitive  Quality  Safety 
                              Instrument Force 
             Dominant Non-

Dominant 
 

Efficiency 
Index 

Path 
Length 
Index 

Suction 
Coordination 

Index 

Bimanual 
Forces 
Ratio 

 
 

Tumor 
Percentage 
Removed 

 
 

Brain 
Volume 

Removed 

Blood 
Loss 

 
Sum 

of 
Forces 

Max 
Force 

 

Sum 
of 

Forces 

Max 
Force 

 

Hemostasis 0.53 0.41 0.47 
 

 
 

0.58  
 

0.39 -0.51 
 

0.45 0.35 
  

Overall 0.61 0.43 0.46 -0.29  
 

0.44  
    

0.52 
   

Instrument 0.41 0.33 0.33 -0.37  
  

 
    

0.31 
  

-0.29 

Economy 0.44 0.36 0.39 
 

 
 

0.29  
    

0.39 
   

Flow 0.65 0.50 0.61 
 

 
 

0.47  
    

0.52 
   

Respect 
    

 
  

 
        

Nogo 
    

 
  

 
        

 

 

The main effect for participant’s variance component accounts for the largest percentage 

(27%) of total variability, allowing for generalization of the findings to future potential 

participants. In assessment, it is desirable for a given scale to capture a large component of 

variability from participants.(15) Interestingly, these findings recapitulate variability observed in 
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a previous study in the same population, whereby participant performance segregated into three 

discrete groups: high, middle, and low performers.(8) 

The percentage of total subsection variability for participants by items interaction effect 

(13%) shows that the ratings of participants differ somewhat across scale items, averaged over 

raters, suggesting perhaps that each item of the scale measures a different aspect of performance. 

Another interpretation of these findings is that scale performance within an individual is not 

uniform (i.e., candidates may differ in their relative strengths and weaknesses). In our previous 

publication, we introduced the concept of Technical Abilities Customized Training in 

neurosurgery, whereby a custom psychomotor intervention tailored to the individual needs of a 

particular learner is carried out.(8) Given this, it may be interesting to repeat the current study 

with neurosurgical residents and faculty to evaluate whether performance, as judged by the 

visual rating scale, becomes more uniform with increasing experience. 

The scale item’s main effect variance component has a rate of 0.6% in total variance, 

indicating that participant’s ratings on subcomponents of the scale were similar. A low (3.2%) 

variance component for rater by item interaction effect shows that individual item scales were 

scored similarly by a given rater. 

Weaknesses associated with the scale include the high variance (20.6%) component for 

participant by rater interaction, suggesting that a given rater scores a given candidate more 

leniently or severely than other raters. This difference, however, may be accounted for by the 

fact that the four raters came from four different neurosurgical subspecialties (spine, oncology, 

epilepsy, and trauma), in addition to perhaps differing comfort with rating participants through 

video recordings of a simulated performance.  Further rater training and calibration may also 

reduce variability. (16) Additionally, the participant, item, and rater interaction plus further 
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unmeasured sources of variation were high, indicating that up to roughly one quarter of the 

variability is not explained by the factors measured in the study. 

Other observations include a moderate variance component for the rater main effect 

(10.9%), suggesting that some raters are more lenient than others in their scoring across all 

candidates (i.e., hawks vs. doves). Although not the first case of an OSATs inspired checklist’s 

use in neurosurgery, (2-4) this study provides interesting insights on the strengths and limitations 

of visual rating scales. Contrary to our initial hypothesis, aspects of the visual rating scale 

specifically included to capture adverse events (avoidance of no-go zone and respect for tissue) 

were not associated with damage to healthy simulated brain. Furthermore, the visual rating scale 

was not able to properly determine force characteristics exerted by the participants. This may be 

because of the 2-dimensional nature of the video recordings. Although arduous, this limitation 

could be overcome by providing the evaluators a means of viewing the surgical video in 

stereoscopy. Similar to the participants using the NeuroVR, evaluators of live surgery obtain a 

stereoscopic image of the surgical field through the operative microscope, and as such may be 

better suited to judge deformations in tissue caused by force exerted by a trainee. Interestingly, 

the positive correlation in the composite scores between the visual rating scale and simulated 

metrics suggests that both methods may broadly be measuring the same underlying construct, 

namely technical surgical performance. 

The NeuroVR platform allows measurement of force application by individual 

instruments in all simulated tumor areas, therefore providing a comprehensive 3-dimensional 

representation of force 

application during simulated tumor operations. Our group has exploited this information to 

develop the pyramid and surgical fingerprint concepts, which have contributed to our 
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understanding of the detrimental influence of force application in specific tumor regions.(17, 18) 

These results would suggest that force may be a crucial element to closely monitor during 

neurosurgical operations. In a recent study by Sugiyama et al.,(11) using force profiles measured 

by specialized bipolar instruments during neurosurgical operations was associated with increased 

odds of intraoperative bleeding. As such, this rating scale may be used to evaluate performance 

in an operative setting. However, as previously mentioned, if instructors and trainees would like 

to better understand force applied during a surgical procedure, simulation technology should be 

used as an adjunct. These findings come at an important time as resident training is not only 

being seen as a responsibility of accreditation bodies throughout the world but is increasingly 

coming under the guise of quality improvement.(19) Simply put, better methods of assessment 

and training can help reduce patient harm. 

Limitations 

There are several limitations to this study. First, having raters from various neurosurgical 

subspecialties may have contributed to differing ratings of individuals. It may not always be 

feasible to have raters from the same subspecialty available to rate participants. Therefore, this 

represents a real-world application of this rating scale. Future improvements may lie in selecting 

a homogeneous rater population more familiar with the evaluated procedure. 

Second, this study only includes medical students; however, our previous work with 

simulation suggests that medical students and junior residents share many similar psychomotor 

characteristics.(5)  

Third, by virtue of the study design, a performance during a real operation was not rated; 

however, this has been previously demonstrated by others to be feasible. (3) Finally, by design, 

no causal relationship can be inferred between the rating scale and simulated metrics; however, 

the appropriate correlation, as observed for example between the hemostasis subcomponent and 
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blood loss on the simulator, suggests that a similar underlying construct may be evaluated by 

both systems. 

CONCLUSIONS 

The visual rating scale can reliably be administered by as few as two raters and seems to 

reflect operative performance as measured on the simulator. However, force exerted during the 

neurosurgical operation and the quantity of brain volume removed and blood loss were less well 

captured by the visual rating scale. To our knowledge, this is the first study to be able to 

concurrently compare participant’s ratings with their computationally measured performance and 

operative complications. We suggest adopting a hybrid educational approach using visual rating 

scales in an operative environment, supplemented by simulated training sessions to uncover 

potentially problematic surgical technique. 

 

  



 

 106 

REFERENCES 

1. Jensen RL, Alzhrani G, Kestle JR, Brockmeyer DL, Lamb SM, Couldwell WT. 
Neurosurgeon as educator: a review of principles of adult education and assessment applied to 
neurosurgery. Journal of Neurosurgery. 2017;127(4):949-57. 
2. Aldave G, Hansen D, Briceño V, Luerssen TG, Jea A. Assessing residents' operative 
skills for external ventricular drain placement and shunt surgery in pediatric neurosurgery. 
Journal of Neurosurgery: Pediatrics. 2017;19(4):377-83. 
3. Hadley C, Lam SK, Briceño V, Luerssen TG, Jea A. Use of a formal assessment 
instrument for evaluation of resident operative skills in pediatric neurosurgery. Journal of 
Neurosurgery: Pediatrics. 2015;16(5):497-504. 
4. Sarkiss CA, Philemond S, Lee J, Sobotka S, Holloway TD, Moore MM, et al. 
Neurosurgical skills assessment: measuring technical proficiency in neurosurgery residents 
through intraoperative video evaluations. World Neurosurgery. 2016;89:1-8. 
5. Bajunaid K, Mullah MAS, Winkler-Schwartz A, Alotaibi FE, Fares J, Baggiani M, et al. 
Impact of acute stress on psychomotor bimanual performance during a simulated tumor resection 
task. Journal of Neurosurgery. 2017;126(1):71-80. 
6. Alotaibi FE, AlZhrani GA, Sabbagh AJ, Azarnoush H, Winkler-Schwartz A, Del Maestro 
RF. Neurosurgical assessment of metrics including judgment and dexterity using the virtual 
reality simulator NeuroTouch (NAJD Metrics). Surgical Innovation. 2015;22(6):636-42. 
7. AlZhrani G, Alotaibi F, Azarnoush H, Winkler-Schwartz A, Sabbagh A, Bajunaid K, et 
al. Proficiency performance benchmarks for removal of simulated brain tumors using a virtual 
reality simulator NeuroTouch. Journal of Surgical Education. 2015;72(4):685-96. 
8. Winkler-Schwartz A, Bajunaid K, Mullah MA, Marwa I, Alotaibi FE, Fares J, et al. 
Bimanual psychomotor performance in neurosurgical resident applicants assessed using 
NeuroTouch, a virtual reality simulator. Journal of Surgical Education. 2016;73(6):942-53. 
9. Gélinas-Phaneuf N, Choudhury N, Al-Habib AR, Cabral A, Nadeau E, Mora V, et al. 
Assessing performance in brain tumor resection using a novel virtual reality simulator. 
International journal of computer assisted radiology and surgery. 2014;9(1):1-9. 
10. Alotaibi FE, AlZhrani GA, Mullah MA, Sabbagh AJ, Azarnoush H, Winkler-Schwartz A, 
et al. Assessing bimanual performance in brain tumor resection with NeuroTouch, a virtual 
reality simulator. Operative Neurosurgery. 2015;11(1):89-98. 
11. Sugiyama T, Lama S, Gan LS, Maddahi Y, Zareinia K, Sutherland GR. Forces of tool-
tissue interaction to assess surgical skill level. JAMA Surgery. 2018;153(3):234-42. 
12. Azarnoush H, Alzhrani G, Winkler-Schwartz A, Alotaibi F, Gelinas-Phaneuf N, Pazos V, 
et al. Neurosurgical virtual reality simulation metrics to assess psychomotor skills during brain 
tumor resection. International Journal of Computer Assisted Radiology and Surgery. 
2015;10(5):603-18. 
13. Aggarwal R, Grantcharov T, Moorthy K, Milland T, Darzi A. Toward feasible, valid, and 
reliable video-based assessments of technical surgical skills in the operating room. Annals of 
Surgery. 2008;247(2):372-9. 
14. Sawaya R, Alsideiri G, Bugdadi A, Winkler-Schwartz A, Azarnoush H, Bajunaid K, et al. 
Development of a performance model for virtual reality tumor resections. Journal of 
Neurosurgery. 2018;131(1):192-200. 
15. Streiner DL, Norman GR, Cairney J. Health Measurement Scales: A Practical Guide to 
Their Development and Use. Oxford, England, UK: Oxford University Press; 2015. 



 

 107 

16. Feldman M, Lazzara EH, Vanderbilt AA, DiazGranados D. Rater training to support 
high‐stakes simulation‐based assessments. Journal of Continuing Education in the Health 
Professions. 2012;32(4):279-86. 
17. Sawaya R, Bugdadi A, Azarnoush H, Winkler-Schwartz A, Alotaibi FE, Bajunaid K, et 
al. Virtual reality tumor resection: the force pyramid approach. Operative Neurosurgery. 
2018;14(6):686-96. 
18. Azarnoush H, Siar S, Sawaya R, Al Zhrani G, Winkler-Schwartz A, Alotaibi FE, et al. 
The force pyramid: a spatial analysis of force application during virtual reality brain tumor 
resection. Journal of Neurosurgery. 2016;127(1):171-81. 
19. Pang P, Raslan AM, Selden NR. Improving performance by improving education.  
Quality and Safety in Neurosurgery. Cambridge, Massachusetts: Elsevier, Academic Press; 2018. 
p. 213-24. 
 



 

 108 

Chapter 5 - Creating a Comprehensive 
Research Platform for Surgical Technique 
and Operative Outcome in Primary Brain 
Tumor Neurosurgery 
Preface 

 Chapter 4 elucidated the role of a visual rating scale in neurosurgery. However, applying 

such a scale, as well as directed educational interventions directly in a live-operative context may 

introduce unknown and unwanted risks to patients. As such, the current chapter outlines the 

development of a brain tumor model involving an ex vivo animal brain with incorporated tumour 

which may serve as a “middle-way” model; capturing the essence of live oncological 

neurosurgery, while still retaining the lab-based environmental control inherent to the simulated 

tasks outlined in previous chapters. At publication, it was the first model created using 

biomechanical reference data obtained from real patient brain tumors. The animal model would 

serve as the condition by which one could evaluate the value of VR simulation training in the 

context of the RCT. Furthermore, real time movements of surgical instruments captured via 

instrument mounted fiducials, as well as extent of resection measured “bedside” or by magnetic 

resonance image can serve as quantifiable outcomes measures in the RCT. The manuscript was 

published as:  

Winkler-Schwartz A, Yilmaz R, Tran DH, Gueziri HE, Ying B, Tuznik M, Fonov V, Collins L, 

Rudko DA, Li J, Debergue P, Pazos V, Del Maestro R. Creating a Comprehensive Research 

Platform for Surgical Technique and Operative Outcome in Primary Brain Tumor Neurosurgery. 

World Neurosurg. 2020 Dec;144:e62-e71. doi: 10.1016/j.wneu.2020.07.209. Epub 2020 Aug 3. 

PMID: 32758649. 
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ABSTRACT 

Background: The operative environment poses many challenges to studying the 

relationship between a surgical act and patient outcomes in intracranial oncological 

neurosurgery. The authors sought to develop a framework whereby neurosurgical performance 

and operative outcomes could be precisely quantified in a controlled setting. 

Methods: Stiffness of an alginate hydrogel-based tumor was modified with differing 

concentration of cross-linking agent calcium sulfate until similar biomechanical properties to 

human primary brain tumors measured at resection were achieved. Artificial tumor was 

subsequently incorporated into an ex vivo animal brain as a final model. MRI enhancement and 

ultraviolet (UV) fluorescence was achieved by incorporating gadolinium and fluorescein 

solution, respectively. Video from operative microscope, ceiling cameras, and recordings of 

instrument-mounted fiducials within a surgical suite environment captured operative 

performance. 

Results: Twenty-four rheometer measurements were conducted on alginate hydrogels 

containing 10, 11 and 12 millimolar concentrations of calcium sulfate. Sixty-eight stiffness 

measurements were conducted on 8 patient tumor samples. No differences were found between 

alginate and brain tumor stiffness values (Kruskal-Wallis χ2(4) = 9.187, p = 0.057). Tumor was 

identified on UV fluorescence and ultrasound. Volume and location of resected white and grey 

matter and residual tumor could be quantified in 0.003 mm3 increments using 7-Tesla MRI. 

Ultrasonic aspirator and bipolar movement data could be successfully transformed into 

performance metrics. 

Conclusion: This framework can offer clinicians, learners, and researchers the ability to 

carry out operative rehearsal, teaching, or studies involving brain tumor surgery in a controlled 
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laboratory environment and represents a crucial step in the understanding and training of 

expertise in neurosurgery. 
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INTRODUCTION 

The removal of brain tumors, a skill expected of neurosurgical graduates, confers 

significant risk to patients and remains among the most technically challenging procedures 

within medicine. There exist little more than anecdotal accounts of the most effective ways of 

teaching oncological neurosurgery. 

A research framework relating technical performance to operative outcomes in 

oncological neurosurgery is key to answer questions relating to the training of neurosurgeons and 

the examination of operative techniques and technologies. It must account for tumor variability, 

ensure an adequate means of capturing operative performance in real time, and have an accurate 

means of evaluating operative success. Unfortunately, such a platform does not yet exist. 

The influence of a single surgeon’s technical performance on operative outcomes can be 

best understood by creating a convincing operative mimic of a brain tumor surgery including 

controlling for tumor size, location, stiffness, bleeding, and environmental factors. Such a mimic 

in a standardized operating room represents an ideal setting to conduct interventional 

experiments while obviating patient safety concerns. 

Little effort has been made to recreate the known tactile and imaging properties of human 

brain tumors when creating artificial mimics. Various substances have served as artificial brain 

tumors, from fibrin glue(1), silicone(2, 3), polymer resins(4-6), food-grade gels(7-9), autologous 

animal organs(10) and polyvinyl alcohol(11-13). While authors have described imaging(11, 14, 

15) and biomechanical properties(16) of these artificial tumors, none have explicitly developed 

tumors using real human brain tumors as a reference standard. None offer a platform designed to 

recreate a human brain tumor operative experience while including a means of capturing and 

quantifying operative performance relative to post-operative outcome.  
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Alginate hydrogels are polymers derived from algae whose biomedical applications are 

expanding(17), including drug delivery(18), wound dressing and tissue engineering(19). These 

polymers, while initially liquid-like, can form solid hydrated materials which can be adjusted to 

required stiffness at room temperature by varying the concentration of ionic cross-linking agents. 

These polymers are biocompatible and ideal substances to inject into ex or in-vivo tissues, 

including brain. Compared to the fibrin glue and agarose gels, alginate hydrogels feature 

enhanced capacity to develop appropriate stiffness and mechanical toughness(17). Moreover, 

alginate hydrogels exhibit viscoelastic behavior as brain tissues(20). Furthermore, unlike the 

polyvinyl alcohol, desired stiffness can be accomplished in a mild condition without the need for 

freeze-thaw cycles.  

The authors sought to develop a framework whereby surgical performance and operative 

outcome could be precisely quantified. This was accomplished by creating an artificial brain 

tumor using an alginate hydrogel incorporated into an animal brain with similar biomechanical 

and imaging characteristics to human brain tumors. This allows for accurate pre- and post-

operative magnetic resonance and ultrasound-based imaging. Operative performance was 

captured via video-recordings from operative microscope, ceiling mounted cameras, and 

instrument-mounted fiducials within a surgical environment.  

METHODS 

Establishing Biomechanical Properties of Human Primary Brain Tumors 

Human tumor biomechanical characterization was carried out using a 2-mm diameter flat-punch 

portable indenter, designed and assembled at the National Research Council of Canada 

(Boucherville, QC, Canada). The device was attached to a fixed arm above an elevated plate onto 

which the surgical sample was placed. Following excision of brain tumor tissue, the specimens 

were placed in a saline solution just above 0o C to limit structural changes to the tissue. Although 
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biomechanical properties of human brain tissue do not change substantially within the first 6 

hours post resection(21), we transported specimens to the pathology lab within 5 minutes, with 

biomechanical measurements begun within 15 minutes from resection (Figure 5.1, upper panel). 

Specimens were divided into quadrants using pre-cut guides, and measurements were repeated 

twice (Figure 5.1, lower panel). Following the biomechanical characterization, samples were 

directed to the pathology department for clinical assessment. Histopathological diagnosis of each 

specimen was obtained via the clinical pathological report. Any specimen results that were not 

confirmed to contain tumor were removed from the analysis.  
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Figure 5.1. Primary human brain tumor specimens.  

 
A) Primary human brain tumor with reference suture immediately after resection. (B) Primary 

human brain tumor with superimposed grid. Stiffness was measured by guiding the flat punch 

through the precut circular hole in the grid. 
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Informed consent was obtained from each patient whose tumor was used. The local 

University Health Centre Research Ethics Board, Neurosciences-Psychiatry approved the studies 

to carry out the human tumor stiffness characterizations. 

Development of Artificial Tumor 

Biomechanical properties of the hydrogel were characterized using the Model HR-2 

Rheometer (TA Instruments, Delaware, United States). Each testing session represented a new 

tumor. No tumors were tested more than a single time. 

A 2% weight by volume (W/V) Algin I-1G Alginate (KIMICA Corporation, Tokyo, 

Japan) served as the basis for the artificial tumor. Deionized water at room temperature was 

mixed with the requisite powder of alginate (kept in standard refrigeration for preservation 

purposes) and was allowed to passively mix over a period of three days until full dissolution in 

standard residential-grade refrigeration at 4 degrees Celsius. We chose to carry out all 

biomechanical experiments within 1 week of alginate gel creation to avoid any potential 

degradation. Desired tumor stiffness was obtained by varying the input of calcium sulfate 

solution in the alginate-calcium sulfate mixture. To imitate the post-gadolinium hyper-intensity 

seen in many high-grade primary brain tumors, 10 times dilution of gadolinium solution, 

Gadobutrol (Bayer AG, Leverkusen, Germany) was added to the deionized water to reach a final 

concentration of 1 millimolar (mM) per litre in the hydrogel. Tumor fluorescence under 

ultraviolet light was achieved by adding to the deionized water a fluorescein solution extracted 

from an “invisible ink” marker (iPang UV light Pen, iPang Co.-Ltd, South Korea).  

The final composition of 1,100 microliters (μL) tumor consisted of 1,000 μL of 2% W/V 

alginate gel, 71 μL of deionized H2O with yellow and red coloring (Club House, McCormick & 

Company, Inc, MD, United States), 13 μL of 1 M concentration calcium sulfate, 11 μL of 100 
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μM gadolinium solution and 5 μL of fluorescein solution. This corresponded to a final calcium 

sulfate concentration of 12 mM within the hydrogel. 

 

Ex vivo Animal Brain 

Cranially extricated, fresh calf brains were obtained. These were chosen due to their 

abundant availability, cost, size (approximately 300 grams, small enough to fit in an animal 7 

Tesla MRI coil) and morphological similarity to human brain(22). Bovine simulation platforms 

have also been described for microsurgical training in neurosurgery(2, 23-25). 

Alginate hydrogels were injected at a 30-degree angle at a subcortical depth of 5-7 mm in 

the longest continuous frontal gyrus, typically the second frontal gyrus. To give a healthy margin 

for tumor solidification, 30 minutes was allowed to elapse prior to operation. The tumor was 

shaped by hydro-dissection at the time of injection.  

The ex vivo brain with injected tumor was placed into a 3D printed (Ultimaker S5, 

Ultimaker, Utrecht, Netherlands) form fitted holder underneath a plastic cranium with pre-cut 

window mimicking an off-midline craniotomy view squared off with towels and drapes (Figure 

5.2, upper panel). Micro scissors, bipolar electrocautery and an ultrasonic aspirator (Stryker, 

Kalamazoo, MI, USA) were available (Figure 5.2, lower panel). Incorporated fluorescein 

solution made for avid tumor fluorescence under ultraviolet black light (Figure 5.3). The 

operation was conducted in an animal operative suite equipped with an OPMI Pico surgical 

microscope (Carl Zeiss Co., Oberkochen, Germany). To record the operation, HDMI outputs 

from the microscope and a ceiling mounted camera were routed through an HDMI recording 

device (HDML-Cloner box turbo HCB-988BT, Cloner Alliance Inc.). A sample operation of a 

subpial resection technique can be viewed in Video 1 and key images can be seen in Figure 5.4. 
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Figure 5.2. Operative view of artificial brain tumor and ex vivo calf brain.  

 
(A) Operative view of draped surgical field for ex vivo calf brain containing an alginate 
hydrogel artificial tumor. Ink on the brain surface outlines the limits of surgical resection. Black 
spheres represent tips of fiducial markers in the brain used to merge the pre- and postoperative 
images. (Upper Left) A fixed reference arm with fiducial markers can be seen. (B) 
Microscissors, ultrasonic aspirator, and bayonetted bipolar electrocautery device with custom 3-
dimensional printed mounted fiducial markers to all for movement capture. Surgical tape was 
used to cover any reflective metal surfaces. 
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Figure 5.3. Photograph of an alginate tumor with incorporated florescent solution shown 
fluorescing under ultraviolet light. 

 
 The cortical surface had been unroofed to allow for direct tumor visualization. 
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Figure 5.4. Resection of an alginate tumor implanted in an ex vivo calf brain as viewed through 
an operative microscope. 

 
(A) Pial coagulation with bipolar device. (B) Pial cutting using bayonetted microscissors. (C) 
Subpial technique performed with ultrasonic aspirator and bipolar device. Tumor shown 
in yellow. (D) Postoperative view demonstrating complete resection of tumor and gyrus with 
adjacent sulcal banks seen on either side. White matter can be seen deep in the cavity. 
 

Surgical Movement Capture  
Fiducials (Northern Digital Inc., ON, Canada) were attached to the bipolar and ultrasonic 

aspirator via custom 3D printed polylactic acid mounts. An optical tracking camera (FusionTrack 

500, AtracsysLLC, Puidoux, Switzerland) captured movement of the bipolar and ultrasonic 

aspirator with reference to fixed fiducials mounted adjacent to the craniotomy window. 
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Imaging Characteristics of Artificial Tumor on MRI and Ultrasound 
MRI was performed using the 7 T Bruker Pharmascan (Bruker Biosciences, Billerica, 

MA) ultra-high field system. Brains were housed in a cylindrical container and immersed in an 

MR-invisible fluorinated solution, FC-40 (Sigma Aldrich, St. Louis, Missouri), to remove 

background MRI signal. For radiofrequency excitation and reception, a 6 cm inner diameter 

volume resonator was used.  The imaging protocol included a 3D steady-state free precession 

MRI sequence with an echo time (TE) of 5 milliseconds, repetition time (TR) of 10 milliseconds, 

a receiver bandwidth of 50 kHz and an excitation pulse flip angle of 30 degrees. The image 

acquisition matrix was selected to achieve an isotropic voxel resolution of 150 μm3. The Field of 

View size was adjusted according to the dimensions of the calf brain. However, the voxel 

resolution remained constant for all samples. Anti-aliasing was activated along the 2nd phase-

encode axis to prevent image aliasing. Twenty-four signal averages were collected leading to a 

total scan time of approximately 12 hours for the overnight histology-grade scan. To assist in 

alignment of pre- and post-operative images, plastic reference arrays were inserted into the brain 

at the margins of the craniotomy. Tumor enhancement was achieved by incorporating 

Gadobutrol (Bayer AG, Leverkusen, Germany) in the tumor. 

Ultrasonic images of the tumor were also acquired using an HDI 5000 ultrasound with a 

phased array probe P4-7 (Philips, Amsterdam, Netherlands). The probe spatial position in 

relation to a fixed reference tool was obtained using the IBIS neuro-navigation system(26) with 

an optical tracking camera (Polaris, Northern Digital Inc., ON, Canada).  

Statistical and Imaging Analysis 

We report descriptive statistics as counts and percentages for categorical variables. For 

normally distributed continuous variables, means and standard deviations are utilized. Data 

analysis and visualization were conducted using Stata (StataCorp. 2013. Stata Statistical 
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Software: Release 13. College Station, TX: StataCorp LP) and MATLAB (Statistics Toolbox 

Release 2017b, The MathWorks, Inc., Natick, Massachusetts, United States), respectively. 

Ultrasound and MRI image post processing were completed using an open-source software 

application framework, 3D Slicer(27) (Version 4.10.01). 

RESULTS 

Mechanical Properties of Human Primary Brain Tumors 
A total of 68 tumor stiffness measurements were conducted on eight patient samples. 

Biomechanical properties of these groups are outlined in Table 5.1. 

 

Table 5.1. Biomechanical Properties of Human Primary Brain Tumors 
 

Object Force in kilopascal 

 Mean (SD; min-max) Median (inter-quartile range) 
Human Brain Tumors   

DNET (n=1) 3.31 (1.35; 1.81-6.61) 2.86 (2.80-3.27) 
Oligodendroglioma (n=2) 6.74 (6.82; 1.14-23.07) 1.95 (1.52-12.51) 

Anaplastic Astrocytoma (n=1) 1.37 (0.67; 0.50-2.38) 1.34 (0.72-1.88) 
Glioblastoma (n=3) 4.14 (2.68; 0.44-9.85) 2.93 (2.36-5.98) 

n = number. Min = minimum. Max = maximum. SD= standard deviation. 
DNET = Dysembryoplastic Neuroepithelial Tumor 
 

Mechanical Properties of Artificial Tumor as Compared to Primary Human Brain Tumors 

Rheology was performed on pure alginate and calcium sulfate mixtures. Twenty-four 

rheometer testing sessions were conducted, each lasting one hour. Four sessions were excluded 

due to technical problems. Hydrogels reached a maximum stiffness in a mean of 81 seconds 

(range 36 – 130 seconds). For ease of analysis when comparing with hydrogel stiffness, brain 

tumors were grouped into two: glioblastoma and all other tumors. Table 5.2 outlines the 

biomechanical properties of the various hydrogel concentrations in relation to the primary brain 
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tumor groups outlined. Due to the skewed nature of the data, Kruskal-Wallis was performed to 

compare the stiffness of the tumor groups with the 10, 11- and 12-mM concentrations of alginate 

hydrogel. No significant differences were found between any groups (χ2(4) = 9.187, p = 0.057).  

 

Table 5.2. Biomechanical Properties of Alginate Hydrogels Compared to Primary Human Brain 
Tumors 
 

Object Force, kilopascal 
 Mean (SD; min-max) Median (inter-quartile range) 

Alginate Hydrogels   

Calcium 10 μL (n=7) 2.01 (0.75; 1.08-3.18) 2.22 (1.14-2.46) 

Calcium 11 μL (n=9) 2.85 (0.72; 1.80-3.90) 2.88 (2.43-3.27) 
Calcium 12 μL (n=4) 2.24 (0.64; 1.80-3.18) 1.98 (1.83-2.64) 

Human Brain Tumors   

Glioblastoma (n=3) 4.14 (2.68; 0.44-9.85) 2.93 (2.36-5.98) 

Other (n=4) 3.82 (4.80; 0.50-23.07) 1.89 (1.26-3.26) 

n = number. Min = minimum. Max = maximum. SD= standard deviation. 
 

Surgical Movement Capture  

 Movement data of the instruments could be successfully captured (Figure 5.5) and 

transformed into performance metrics using techniques previously described in neurosurgical 

virtual reality (VR) surgery(28-31). Mean aspirator and bipolar velocity were 16.8 

millimeter/second (mm/s) and 11.35 mm/s, respectively. Mean aspirator and bipolar acceleration 

were 7.81 mm/s 2 and 5.21 mm/s 2, respectively. Mean instrument tip distance was 9.95 

millimeters. 
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Figure 5.5. Surgical motion capture. 

 
Graph showing 3-dimensional reconstruction of motion of the ultrasonic aspirator (red) and 
bipolar device (blue) during artificial brain tumor resection. 
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Figure 5.6. Magnetic resonance image (7T) of alginate hydrogel tumor (red) in an ex vivo calf 
brain.  
 

 
Long blue arrows indicate white matter; medium green arrows indicate gray matter; and short 
orange arrows indicate sulci. 
 

Imaging Characteristics of Tumor 
The tumor and surrounding brain architecture were well identified on MRI (Figure 5.6).  

MRI and ultrasound image registration allowed for ease of identification of the tumor on MRI 

and ultrasound (Figure 5.7). Using 3D slicer with Otsu thresholding and segmentation, the hyper-

intense tumor, as well as grey and white matter could be quantified in 0.003 mm3 increments.  
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Figure 5.7. A comparison of magnetic resonance images and ultrasound images of the alginate 
hydrogel tumor in an ex vivo calf brain.  

 
Sagittal, axial, and coronal views of the hyperintense alginate hydrogel tumor in ex vivo calf 

brain on (A) 7T magnetic resonance images, (B) ultrasound images, and (C) both overlaid. 

Tumor hyperintensity was achieved by incorporating gadolinium solution into the hydrogel 

tumor. The red outline of the tumor was added via postprocessing in 3D Slicer and visualized 

using IBIS (intraoperative brain imaging system). 

 

DISCUSSION 

We have developed a comprehensive research framework which allows for the study of 

technical performance and operative outcomes in oncological neurosurgery. This platform relies 

on a cost-effective alginate-based artificial brain tumor incorporated into an ex vivo calf brain 
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within a controlled operative environment. This represents the first instance where an artificial 

tumor has been created based on biomechanical properties of human specimens obtained at time 

of resection. Operative “performance” can be assessed both via recordings from the surgical 

microscope and ceiling mounted camera, and by movements generated from instrument-mounted 

fiducials, while operative “success” can be assessed at time of surgery by presence of residual 

tumor, via ultraviolet fluorescence or ultrasound. Finally, MRI of residual tumor, as well as the 

location and volume of grey and white matter resected in 0.003 mm3 increments present an 

opportunity for a precise quantification of operative outcome. 

Extensive work has been done to create meaningful surgical performance measures from 

raw movement data VR neurosurgery ranging from simple, user generated metrics(28-31), three 

dimensional representations of movement and force(32, 33), to artificial-intelligence assisted 

methodologies(34-36). The promise of performing similar analyses on live surgical movement in 

an experimental or even clinical environment may allow for a better understanding of surgical 

nuance, technical expertise and complication avoidance. 

The development of simulation platforms such as the NeuroVR(37) (formerly 

NeuroTouch, CAE Healthcare, Montreal, Quebec, Canada) have made it possible to better 

understand the technical composites required to carry out intra-axial tumor resection. By 

allowing for the creation of complex tumor resection scenarios(38) and by integrating the 

physical properties of human brain tumors obtained at time of resection, the NeuroVR provides 

the most realistic computer-based recapitulation of an oncological neurosurgery to date.  

Face, content and construct validity (28-31) for the NeuroVR have been demonstrated,  

however, the question of concurrent validity, that is, whether practice on the simulator improves 

performance in the “real world” is best addressed by conducting a randomized controlled trial. 
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Unfortunately, significant variability due to pathology, patient factors, the unpredictability of the 

operating room environment, and multi-surgeon input confounds the relationship between a 

surgical act and patient outcome and serves to decrease statistical power. Although a reduction in 

power can be traditionally addressed by increasing the number of recruits, notwithstanding the 

extra resources this may require, the operative setting presents ethical concerns for patient safety 

when experimental interventions are involved. A research ethics board may question the 

existence of equipoise in a study comparing traditional residency training (control group) with 

traditional residency training in addition to virtual reality operative rehearsal (experimental 

group). Additionally, the residents which may most benefit from operative rehearsal may be at a 

stage in their training where they may not yet safely conduct oncological neurosurgery with 

minimal supervisor assistance. 

If successful, the proposed randomized controlled trial will be the first time simulated 

operative rehearsal has been demonstrated to influence surgical performance in an open 

neurosurgical procedure. Surgical “boot camps” involving simulators have already been 

developed for trainees early in a neurosurgical residency(39, 40). These residents, early in their 

learning curve, stand the most to benefit from the experiential training afforded by 

simulators(41) and one could envision that residency programs, hospital administrators and 

patient advocacy groups may make simulation training a mandatory precursor to participation in 

high risk operative cases early in training. Ultimately standardizing surgical education and 

training to expert, rather than competence level has the potential to reduce operative 

complications, leading to decreased patient morbidity and mortality and reduced medical care 

costs.  
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Limitations 
Unless the preparations are performed in sterile environments, bacterial contamination 

can occur which can lead to biomechanical inconsistency of the gel beyond 2 weeks. Approaches 

to sterilize the alginate such as sterile filtration have been well established in literature, but were 

not pursued in this work. Three days between alginate gel creation and use is required therefore 

some foresight is necessary to integrate its use in a clinical/educational context. No active 

bleeding state exists in the current model. Although we achieved intracranial blood flow by the 

use a porcine brain(42, 43) with cannulated carotid arteries as described in human cadaveric 

studies(44), this animal model had significant limitations. The thick skull and relatively small 

brain volume made surgical access time-consuming and inefficient(45). Furthermore, the large 

porcine head was not able to fit inside the 7T MRI and removing the brain to allow for accurate 

scanning risked damaging the tissue. 

The hydro-dissection caused by the tumor injection into brain prevents the creation of an 

indistinct brain-tumor border characteristic of primary brain tumors. In addition, the ex vivo 

nature of the model does not allow for the development of reactive gliosis (and the resulting 

subtle biomechanical changes) surrounding the tumor familiar to neurosurgeons. Ideally, tumors 

injected into live animals should be given time to develop a reactive gliosis, however the 

challenges and ethical concerns in maintaining animals during this period are substantial.  

Operative outcomes have been defined purely in imaging terms. While the ex vivo nature 

of the brain samples precludes a functional assessment, extent of subcortical white matter injury 

may provide a useful imaging correlate, as some have suggested (46). 
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CONCLUSIONS 

 A comprehensive research framework to study operative expertise in oncological 

intracranial neurosurgery has been developed. This framework can offer the clinician, learner, or 

researcher the ability to carry out operative rehearsal, teaching, or studies involving 

intraparenchymal brain tumor surgery in a controlled laboratory environment and represents a 

crucial step in the understanding and training of expertise in neurosurgery. 
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Chapter 6: Summary and conclusions 
General findings 

The overarching goal of my thesis is to better understand the role of simulation and 

artificial intelligence technology in the training of neurosurgical residents and to lay the 

groundwork for a future randomized controlled trial.   

In Chapter 2 we reviewed the literature to develop consistent methodology and reporting 

guidelines in studies involving AI in surgical simulation. Firstly, a common language reduces the 

silo effect and improves the flow of information between research in medicine, computer 

science, and education. Secondly, guidelines highlight for reviewers from both medicine and 

computer science the pearls and pitfalls in each respective domain, and therefore whether 

conclusions drawn by authors are founded in proper methodology. 

These guidelines were then applied in Chapter 3 where we demonstrated the feasibility of 

machine learning to assess surgical skills in neurosurgical simulation. At the time of publication, 

the methodology applied in this paper resulted in a greater degree of granularity in participant 

classification than had been reported in the literature until that point. In addition, improved 

categorization can be accomplished with only a handful of performance metrics, providing 

additional insight into expertise itself. Such technology may have direct implications for surgical 

education. Firstly, one can provide a participant with holistic feedback on a given performance, 

i.e. a senior year resident was categorized as a junior. Secondly, given such categorizations rely 

on a relatively small number of performance metrics, one can demonstrate to the trainee areas for 

targeted improvement, i.e. a participant was categorized as a junior because they exerted a high 

maximum force with their bipolar over the entire scenario. This concept underlies AI-powered 

feedback systems in VR neurosurgical simulation, such as the Virtual Operative Assistant and 
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Intelligent Continuous Expertise Monitoring System (83, 94). Such systems represent the 

experimental training arm in the RCT.  

In Chapter 4 we sought to establish a reliable rating scale which can be used by 

evaluators to assess performance by observation alone. In the RCT, this provides a useful 

alternative measurement of expertise other than static outcomes such as brain tumor or brain 

volume removed during a surgery. While this raises an interesting question of whether a ‘perfect 

outcome’ performed ‘imperfectly’ is considered acceptable or not, in cases where the research 

environment is not within a live operating room, one cannot foresee which ‘imperfect’ 

techniques may translate to adverse consequences to patients and thus it is best to cast the net as 

wide as possible.  

Finally, in chapter 5 we outlined a framework whereby the primary outcome of the RCT 

could be completed, notably the extent of resection of brain and tumor as assessed on 7-Tesla 

MRI. Further study has validated the 7-Tesla MRI as an accurate measurement tool in this 

context, with a near perfect correlation between predicted and actual weight of tissue resected 

(108). Furthermore, this study demonstrated the ability to capture movement during an artificial 

tumor resection task of real surgical instruments, and may allow for another means of evaluating 

participant improvement in the RCT.  

The highly publicized existence of “bad apple” surgeons, such as “Dr. Death”, the 

American neurosurgical spine surgeon imprisoned for misconduct (109), or two British pediatric 

cardiac surgeons suspended for an unacceptably high rate of complications (110), has done much 

to erode public trust in the ability of the medical profession to self-regulate and train its own. 

Indeed, surgical operative volume during residency may influence patient outcomes after 

residency (111), and as such, society has a stake in the adequate training of surgeons. Unlike 
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other psychomotor activities such as athletic or musical endeavours, surgery with its interplay 

between declarative knowledge, technical expertise, and highly variable patient factors, 

represents one of the greatest challenges for educational reformists. One may reasonably wonder 

as to whether technological advances in simulation and artificial intelligence can be leveraged to 

augment the apprenticeship-based model. However, extreme care should be taken in introducing 

reforms in a system which, by and large, has produced largely competent surgeons.  

Groups across multiple domains are liable to misapply these technologies. Clinicians may 

falsely assume that an algorithm that offers to discern residents by level of training may be 

appropriate to use to select medical student applicants to a residency program, while computer-

scientists may oversimplify the surgical task being simulated, and in doing so miss crucial details 

impacting patient care. Hospital administrators may demand that surgeons demonstrate 

proficiency in simulated performance with little bearing in real life. Given this, research is 

necessary to provide a clear understanding of the benefits and limitations of the application of 

these technologies within medical education. 

Health professions education has substantial roots in the social sciences, and thus asserts 

that inquiry be firmly grounded in “theory”. A theory is a conceptual framework meant to guide 

“health professions researchers and educators as they navigate the practical implications for 

teaching, learning, and research” (112). However, one challenge is that there are numerous 

theoretical frameworks applicable to a given context. In some cases, the underlying principles of 

these theories may be speculative or, if "evidence-based," may not be directly relevant to the 

context at hand (113). With a myriad of terms in use, clarifications are often necessary (114). 

This situation can potentially cause a disconnect between a study's design and conclusions from 

the clinical reality. 
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The introduction of data-centered science into health education has directly challenged 

the theory-first approach in health-sciences research. In the case of simulation research, data-sets 

may be analyzed without a priori assumptions. For example, in Chapter 3, the metrics used by 

the AI algorithm to group participants could not have been known to researchers. However, the 

metrics selected may provide a window into surgical expertise itself and may consequently 

advance theoretical frameworks on mastery. Additionally, as emphasized in Chapter 2, 

significant differences exist in how computer scientists and clinicians conduct and report AI-

related research. If this gap remains unaddressed, it could hinder progress in the field. 

Establishing transparent norms can foster high-quality, reproducible studies, furthering 

educational theory and encouraging interdisciplinary collaboration. 

 

Limitations 

 While the initial goal of the thesis was to both lay the foundation for, as well as conduct a 

randomized controlled trial, the COVID-19 pandemic represented an unforeseen limitation. The 

pandemic has significantly impacted the conduct of clinical research. The added constraints on 

the healthcare systems have diverted resources to more urgent clinical resources  (115). 

Furthermore, physical distancing measures enforced by governments and healthcare units make 

the conduct of studies which require close contact difficult. However, an advantage of VR based 

instruction in the context of medical education studies is that physical distancing measures can 

be respected. 
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Future directions, the Randomized Controlled Trial 

 If completed, the randomized controlled trial may help to answer the effect of VR 

rehearsal on neurosurgical performance among neurosurgical residents. I have included its 

outline below as a template for future research. 

 

Specific Aims and Hypothesis 

Specific Aim 1: To demonstrate improvement in volume of brain and tumor resected, 

disruption of brain/tumor boundary, blood loss, and time of surgery from the bovine task after 

VR intervention. Hypothesis: We hypothesize that VR intervention will lead to improvement in 

clinically relevant operative results on an in-vivo tumor resection task.  

Specific Aim 2: To demonstrate improvement in score obtained during the bovine tumor 

resection on the Global Rating Scale (GRS) of Operative Performance after VR intervention, as 

outlined in Chapter 4. Hypothesis: We hypothesize that VR intervention will lead to 

improvement in the GRS during an in-vivo tumor resection task. 

 

Methods 

Study Design: A single-blinded 2-armed randomized control trial will be conducted to 

assess the effect of VR training on the primary outcomes (volume of brain and tumor resected, 

disruption of brain/tumor boundary, blood loss, time of operation), and secondary outcome 

(Global Rating Scale of Operative Performance) during a bovine brain-tumor resection task.  

Study population: For the trial we will recruit 40 neurosurgical residents across 5 training sites, 

with 18 already located in the testing city. The remaining participants are within 3 hours driving 
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distance from the testing centre. Furthermore, participant involvement will not extend beyond a 

Saturday to Sunday period to further decrease inconvenience and improve enrollment.   

Study Protocol:  Randomization: Participants will undergo randomization within a rolling 

admission period to the experimental (VR training) or control (standard residency training) 

group.  

Control Group: The control group will undergo standard residency training, which 

includes formal face-to-face feedback sessions every 2 weeks.  Experimental Group: The 

experimental group will be trained through VR simulation rehearsal, the basis of which was 

outlined in Chapter 3.  

Animal Model: Both groups will perform a previously established tumor resection task 

(116) on a bovine animal model, outlined in Chapter 5, before and after the experimental 

intervention. Preoperative and postoperative magnetic resonance imaging will be conducted on 

the animal brains to assess residual brain tumor and resected brain volume. Identical surgical 

instruments as utilized in the VR training will be provided, namely bipolar electrocautery, 

ultrasonic aspirator and a suction device. The task will be considered complete when the resident 

indicates that they have safely removed all the tumor.  

Primary Outcome: Volume of brain and tumor resected will be determined by evaluation 

of the pre-and post-operative MRI, and aspiration content examination. Disruption of 

brain/tumor boundary will be completed by examining post-operative MRI. Secondary Outcome. 

Video-recordings obtained from the operative microscope of the tumor resection task will be 

rated by two blinded evaluators utilizing a modified Global Rating Scale (GRS) of Operative 

Performance.  
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Inclusion criteria: Neurosurgical residents at all years of training on full-time clinical 

service. 

Exclusion criteria: Residents enrolled in a non-neurosurgery rotation or having taken 

vacation within the study time.   

Endpoints and follow-up: Each resident will complete a total of 4 animal-tumor resection 

tasks (two pre- and two post-experimental condition).   

Statistical approach and sample size calculations: Descriptive statistics will be provided 

in means and standard deviation or median and inter-quartile range. Between group differences 

in continuous dependent variables will be compared using two-sample t-test or Mann-Whitney-

Wilcoxon rank-sum test depending on normality. Sample size: For the primary outcome, a delta 

of 0.9 can be detected between groups, assuming a total sample size of 40 (20 control, 20 

experimental) with 80% power, a two-sided alpha of 0.05 and a standard deviation of 1.  

 

Unresolved Considerations 

 An important consideration is whether to utilize concurrent or post-hoc feedback systems 

in the experimental arm. As mentioned in Chapter 1, these systems may serve different learning 

objectives and it is unclear which one would be superior in the context of the outlined RCT. 

Portions of the surgery where the consequences for errors are dramatic and immediately 

apparent, such as an aneurysm rupture, may benefit from a continuous monitoring system which 

may anticipate an error, as demonstrated by the Intelligent Continuous Expertise Monitoring 

System which utilizes a long-short term memory network to analyze data in 0.2 s intervals (94). 

This contrasts with aspects of the surgery where the consequences may be less dire, such as 
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opening skin or dura, which may be amenable to post-hoc assessments such as the Virtual 

Operative Assistant (83). 

Clearly, “real” feedback by an observant clinical instructor incorporates elements of both; 

while on the spot feedback is used to correct egregious errors or to ensure proper technique 

(“hold your needle driver like so”), there is also opportunity to allow the trainee to complete a 

task with minimal interference (“perform a craniotomy”). Interestingly, a recent RCT comparing 

instructor feedback to post-hoc AI-based feedback in a VR neurosurgery tumor resection task 

demonstrated better performance in the AI based feedback group (95).   

Future directions, the Intelligent Operative Theatre 

The insights gained on simulated operative performance may have applicability to the 

development of “smart” operative instruments. The metrics which can best differentiate groups 

of expertise may guide the development of instruments, with the explicit goal of measuring these 

factors in the operative environment.  For example, in Chapter 3, performance metrics selected 

by the algorithms spanned the following 4 principal domains: movement associated with a single 

instrument, both instruments used in concert, force applied by the instruments, and tissue 

removed, or bleeding caused. Four of the total 270 metrics were selected by at least two 

algorithms. Two of those four were related to force, and, as we recall, force was an element 

which was poorly captured by visual rating scales. Force is a particularly important factor in 

neurosurgery, given the delicate tissues of the nervous system. Studies using a force sensing 

bipolar in neurosurgery demonstrated increased complications with higher force variability (117, 

118). This implies that providing adequate feedback of force applied during live surgeries may 

benefit surgeons and especially trainees. AI-powered feedback systems could process force data 
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in real time and alert surgeons of an imminent error, as demonstrated with the Intelligent 

Continuous Expertise Monitoring System.  

Technological advances in operative instruments have already demonstrated favorable 

safety benefits. One example is the introduction of the “tissue select” mode in ultrasonic 

aspirator system in brain tumor surgery. Tissue select allows for the fragmentation of tumors 

while leaving surrounding structures intact (119). This safety feature has already translated to 

clinical benefits in brain tumor surgery  (120). Similarly, the introduction of intelligent operative 

instruments would be a powerful tool in the neurosurgeon’s armamentarium to deliver safe care 

to patients. 

 

Conclusions 

Computerized simulation technology and artificial intelligence systems represent the 

latest iteration in man’s quest to best understand and improve the world around him. These 

innovations introduce significant technological and philosophical disruptions to the otherwise 

conservative and judicious field of medicine.  

Ultimately, neurosurgery aims to treat individuals who unfortunately have encountered a 

life-changing diagnosis, and given its inherently high-stakes nature, represents a litmus test for 

medicine at large. By demonstrating the communication gap between engineering and medicine 

in AI simulation research, using an AI algorithm to distinguish groups of expertise in 

neurosurgical simulation, uncovering the limitations of a visual feedback system for 

neurosurgical performance, and developing an artificial brain tumor and instrument movement 

system, it is my hope the benefits and limitations of these technologies’ applications in the field 

of neurosurgical education were further elaborated.  
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