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Abstract

3D genome structure is a very complex organization inside the nucleus. Genomic interac-

tions that play an important role in cell development are organized through 3D genome

structure and chromosomal folding. Transcription factors have an important impact on

such interactions. To understand and predict how they locate in the genome structure,

many methods have been already offered. However, none of them are comprehensive

and the exact interpretation of transcription factors in 3D DNA structure is not fully un-

derstood. The understanding of the probability models should be useful to model the 3D

genome organization and genomic interactions. This thesis covers some aspects of the

computational inference of transcription factors binding sites from experimental data.

This thesis aims to study deterministic and probabilistic methods used for transcription

factors binding site prediction and suggest a probability model to analyze and predict the

transcription factor binding sites and their interactions.
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Abrégé

La structure du génome 3D est une organisation très complexe à l’intérieur du noyau.

Les interactions génomiques qui jouent un rôle important dans le développement cel-

lulaire sont organisées à travers la structure du génome 3D et le repliement chromo-

somique. Les facteurs de transcription ont un impact important sur ces interactions.

Pour comprendre et prédire comment ils se localisent dans la structure du génome, de

nombreuses méthodes ont déjà été proposées. Cependant, aucun d’entre eux n’est com-

plet et l’interprétation exacte des facteurs de transcription dans la structure de l’ADN 3D

n’est pas entièrement comprise. La compréhension des modèles de probabilité devrait

être utile pour modéliser l’organisation du génome en 3D et les interactions génomiques.

Cette thèse couvre certains aspects de l’inférence informatique des sites de liaison des

facteurs de transcription à partir de données expérimentales. Cette thèse vise à étudier

les déterministes et des méthodes probabilistes utilisées pour la prédiction des sites de

liaison des facteurs de transcription et suggèrent un modèle de probabilité pour analyser

et prédire les sites de liaison des facteurs de transcription et leurs interactions.
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Chapter 1

Literature Review

1.1 Introduction

The emergence of studying a three-dimensional genome organization (3D) has occurred

in the last two decades after its importance in genome activity was revealed. For instance,

some researches have shown that transcription, replication, and chromosome transloca-

tion are impossible without chromosomal folding [8], [31]. Although much work has

already been done on the 3D genome organization, its structure details are not fully un-

derstood yet [51], [13], [53].

A multi-layer structure model for the genome is offered by several recent research by

imaging and computational methods in biochemistry [8], [31], [51]. The genome orga-

nization changes dynamically, like other cellular events. In recent years, research shows

that in a small region of the genome, chromatin pattern often changes while the construc-

tion of chromatin in the global view remains unchanged [8], [31], [51], [13], [53]. This

behavior gives the possibility of dynamic variations and interactions between different

small sections of chromatin as long as its global structure has a stable formation [8].

Several kinds of genomic biochemical activities, such as transcription factor (TF) bind-

ing, chromatin accessibility, and transcription and histone modification, can be measured

through sequencing-based genomic assays. Genomic datasets’ availability from cellular
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conditions such as varying tissues, individuals, disease states, and drug perturbations is

essential to develop the integrative analysis algorithms and utilize them [35], [42].

Regulatory factors such as Transcription Factors (TFs) find their genome locations based

in part on the other TFs’ sites, called co-localization. TFs interactions regulate the most

genomic activities, like gene expression, the genome’s physical structure, etc. It is im-

portant to recognize genomic co-localization of the TFs interactions for understanding

genome regulation and the function of regulatory factors [8], [48].

In [60], a robust approach is suggested for the exact global localization of TF binding sites

(TFBS) by combining chromatin immunoprecipitation (ChIP) with the paired-end ditag

(PET) sequencing to map p53 targets in the human genome.

Spatial and temporal forms of gene expression are regulated by thousands of regulatory

DNA sequence elements encoded from the human genome [42]. The procedure that reg-

ulatory elements like enhancers act on the target genes is maintained through chromo-

somal looping. This looping brings the distal enhancer closer to the target genes. This

long-range regulatory interaction has a substantial impact on gene expression and deter-

mines regulatory variation. There have been many methods suggested to detect these

interactions. However, it is unclear by which principles these regulatory factors act on

their target genes. Therefore integrative approaches are required to utilize multiple regu-

latory genomic data sets [48], [49].

Most real world systems in nature are considered a network of dynamic vertices inter-

acting with each other in [39] and [52]. In other words, wherever some information is

exchanged there is a network. The Internet, World Wide Web (WWW), social interactions

between people, biological systems and neural networks are only a few examples of such

networks [7], [41]. In fact, we live in a world of networks. Research, which has been done

in the recent years on different fields, shows that in most of these networks there are sev-

eral common characteristics. These networks are not in the general random networks or

deterministic networks. Because of the complicated structure of such networks, they are
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called complex networks.

1.2 Biological aspects and importance of 3D genome orga-

nization

Several factors may impact chromatin structure within a cell, such as the radial position

of chromatin within the nucleus, the cell cycle stage, transcriptional activity, long-range

chromatin interaction, etc., or a combination of all of these factors [31].

It gets more obvious by recent results that the global chromatin structure is more compli-

cated than what was expected before [8], [31], [51], [13]. Consequently, in this structure,

only through high-depth sequencing or new techniques, important factors like enhancer-

promoter interactions, subdomain organizations, etc., can be extracted reliably. DNA

structure with high resolution is still unclear, despite the fact that the nucleosome struc-

ture model dates back to four decades ago [31]. Thus research on chromatin organization

has been done very well by applying different methods that are not comprehensive by

themselves.

One of the most potent methods which can give beneficial information about relative po-

sitioning of the genomic regions at the single-cell level is the microscopy-based approach.

Recently, light microscopy and electron microscopy methods increased our understand-

ing of chromatin’s three-dimensional organization within the nuclear space and its rela-

tionship with transcriptional regulation [31] but their results are only available in a few

areas of interest (i.e. it is restricted to a small numbers of genetic loci and does not permit

a comprehensive analysis of the whole genome). This is why the structure and dynamics

in the interphase nucleus in vivo and how this structure is related to transcriptional reg-

ulation is not clear. Compared with that, chromosome conformation capture (3C)-based

methods are about genome-wide, but their output most likely does not show the individ-

ual genome’s stable structure (i.e. may show a superimposition structure).The 3C exper-
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iment identifies interactions between a pair of genomic loci. For instance, it can be used

to validate a candidate for promoter-enhancer interaction [24]. Therefore, this technique

should be used when there is a prior information about the interacting regions. Since 3C

methods cannot give information about dynamics, it is not fully understood how the in-

teraction within a single-cell changes during time. Also, 3C-methods cannot explain the

interaction frequency and how they are related to cell cycles and differentiation. All kind

of 3C methods start with the same experimental steps which is explained in next sections.

It is still unclear whether transcription regulation is a cause or consequence of these fac-

tors. Sequencing-based methods cannot directly localize genomic regions but provide

information to obtain a spatial relationship between genomic regions and spatial prox-

imities, which is very useful for improving the in silico modeling of the 3D genome. By

generalizing these methods for different applications, it is clear that combination of them

can give more robust approaches to access the 3D chromatin structure.

The hierarchical folding of DNA at different layers is a more accepted model for 3D than

other models. The layers are nucleosomes, chromatin fibers, Topological Associated Do-

mains (TADs), whole chromosomes, and whole-genome (see figure 1.1). Other patterns,

such as loops and meta-TADs, also exist along with the genome folding. It has been

proved that while TADs are consistent between cell types and species, chromatin loops

and compartmentalization are cell type-specific [8]. Proteins such as mediators, cohesins,

and CTCF also have high impacts on genome organizations’ architecture, specifically on

loops formation, but how they work together and the details of their effects are still un-

clear.
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Figure 1.1: Different types of chromatin loop that can locate within a domain (en-

hancer–promoter loop, Polycomb-mediated loop, gene loop or architectural loop). On

the left is an example of an architectural loop as seen in high-resolution Hi-C data (re-

gions participating in loop formation are separated with dotted lines) [8].

Nucleosome is the smallest scale of chromatin structure. Although it was thought to

arrange arrays with solenoid or zigzag shapes since long time ago, recently it was re-

vealed that it is more flexible and are shaped in heterogeneous groups called clutches [8].

In order to eliminate the effect of long distance between some regulatory elements through

linear genome, chromatin loops are formed in 3D structure. The interactions through the

loops are not restricted to enhancer -promoter ones. In a type of chromatin loops which is

called gene loops, there are interactions between transcription site of a gene and its own

promoter. Recently it is revealed through high resolution Hi-C that there is a correlation

between chromatin loops and transcription [8].

Chromosomes are mostly divided spatially into smaller domains such as Topologically

associating domains (TADs). TAD is known as a contiguous square domain (sub-megabase

pair scale) along the Hi-C maps (introduced in section 1.4) . Regions inside a same TAD

interact with each other more often than than the regions in different TADs.

TFs have an impact on cell function by interpreting DNA in the genome. TFs identify

DNA in a specific manner. According to the three-dimensional protein-DNA structure
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organization, the operation underlying this specificity is recognized for many TFs. There

are many concepts have already been understood how TFs identify their cognate DNA

binding sites in the genome to initiate gene regulatory function [8], [31], [51]. Since the

potential target regions are located in several parts of the genome, it is not fully under-

stood how TFs can recognize their binding locations in genomic regions. Although it is

already known that related proteins that attach binding sites to operate in vivo function,

the operation of how each TFs select their binding region is unclear. By several processes,

at different levels, TFs choose their target regions. Although some of these processes are

well understood, a valid model that can combine all of the factors impacting TF-DNA

specificity is yet unknown. The high complexity of interaction between various elements

of in vivo binding and variability and dependency on many unknowns results in the dif-

ficulty of designing such models [51].

Studies in two parallel fields that recently their research are combined, genomics and

structural biology, on DNA binding sites specificities results in current knowledge. Search-

ing for protein-DNA recognition code is first done by structural biology. After co-crystal

structures of protein-DNA complexes were solved in the 1980s, more than 1600 entries of

protein-DNA forms have been inserted in the Protein Data Bank. These structures have

revealed why many TFs prefer to attach a specific DNA sequence [51].

Physical interaction between amino acid side chains of protein and the accessible edge

of the base pairs that are attached results in the preference for a given protein at a spe-

cific position. This form of protein-DNA contact is called base readout (Figure 1.2A). The

structural features of DNA binding sites can be identified by TFs as well. Shape readout

is called the phenomena of identifying sequence-dependent DNA structure. The static

and dynamic properties of DNA structure shape is included in the DNA shape concept

(Figure 1.2B). For a given protein, historically, these two identification mechanisms of

protein-DNA, which is also called direct and indirect readout, are recognized as mutu-

ally exclusive forces for DNA recognition. However, recent studies show that in realistic

conditions, most of the proteins use both base and shape readout to identify their cog-
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nate binding sites. The combination and contribution of these two forces changes across

protein families. (Figure 1.2C)
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Figure 1.2: (A) Direct interactions between amino acids and functional groups of the

bases is described by base readout. Here the hydrogen bond acceptors (red) and donors

(blue), heterocyclic hydrogen atoms (white) and the hydrophobic methyl group (yellow)

is base pair specific is major groove.(B) Any kind of structural readout based on global

and local DNA shape features, is a shape readout. The IFN-β enhanceosome (top) is

various in minor groove shape. The human papilomavirus E2 protien (bottom) binds to a

binding site with intrinsic curvature(C) Most TFs change between base and shape-readout

frequently but the value of each mode is different for each TF. Shape readout contributes

mostly for the minor groove -binding HMG box protein (left). Base readout dominates

in DNA recognition by the bHLH protein Pho4 (right). Both readout have a about same

contribution in the DNA binding of a Hox-Exd heterodimer (center). [51]
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1.3 Computational TF binding site prediction

One of the modern genomic’s main problem is recognizing all functional elements in

genomes and identifying their regulatory impacts. Understanding regulatory sequences

is still challenging, although the annotation of human protein-coding sequences is very

comprehensive. It is necessary to have a correct map of the regulatory sites to under-

stand gene regulation. Besides, genetic variation in regulatory elements is one of the main

reason for diseases [42]. Predicting the operational effect of non-coding variants is chal-

lenging since there is little knowledge of which regions in the genome contribute to gene

regulation [35], [42]. At characteristic sequence motif, most TFs bind DNA preferentially

and provide the sequence specificity, which is essential to direct complex gene regulation

operation, and it is one of the primary functions of gene regulation. For individual TF, one

of the standard methods to discover its binding locations is Chromatin immunoprecipi-

tation with parallel sequencing (ChIP-seq). The main problem of ChIP is that it considers

only one TF in each experiment and underestimate the simultaneous effects of other TFs

across different conditions in one single experiment. Therefore it needs thousands num-

ber of experiments to consider the impacts of all TFs. Although several computational

methods alternatively have provided TF binding site prediction, TFs only are attached to

a small fraction of those matching motifs [42]. Even though there is an improvement in

the result if other information like experimental data is incorporated, the error rate still

is not low. Studies show recently that TF binding sites are correlated with genome-wide

assays such as chromatin accessibility measured by DNase I sensitivity, therefore it can

be used to analyze and predict TFBS. [35].

Most of the computational methods need a DNA motif sequence at the binding site be-

cause the generic assays information can be connected with specific TFs [42]. Most of the

approaches start by scanning the genome for all positions with a known sequence mo-

tif. Such an approach assumes that those regions occupied by TFs are different in several

aspects than the other regions. For instance, there is a considerably higher probability
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that those regions bound with TFs are more related to open chromatin or associated with

active histone marks and represent evolutionary sequence conservation. Then all of the

areas are divided into two categories: occupied or non-occupied. Finally, by calculating

the posterior probability for each region, it is assigned to one category. The likelihood of

experimental data at a single motif is

P (D|G) = P (D|Bound)P (Bound|G) + P (D|NotBound)P (NotBound|G)

where G refers to genomic information, and D is experimental cell-specific experimental

data [42].

Semi-automated genome annotation (SAGA) methods are a category of algorithms that

can get genome-wide datasets such as ChIP-seq, DNase-seq, and Repliseq data from a

specific cell-type and output an annotation of genomic activity such as active promoters

and repressed regions. By changing the non-automated part of the algorithm (which

is traditionally done by human) to the automated one (which is done by algorithm),

[35] suggested a new, fully automated strategy to measure each genomic region’s im-

portance. To solve the non-automated part’s problem, the interpretation step done by a

human in SAGA is performed by a machine learning classifier. This new measurement is

called conversation-associated activity score to perform integrative modeling of various

genomic datasets.

In [34] different machine learning methods to determine TF binding site, promoters and

enhancers that used extracted data from next-generation sequencing (NGS) data are stud-

ied. They reviewed the different sources of NGS data for machine learning methods. Then

they studied unsupervised learning techniques such as Bayesian mixture models, Hid-

den Markov Models (HMM) and Dynamic Bayesian Networks (DBN). After that they re-

view supervised learning approaches such as regularized linear models, Random Forests,

methods based on RNA transcripts and DNA sequence properties and multiple kernel

learning. At then end they studied briefly deep learning , recurrent neural networks and
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suggested some new approaches to be explored.

In [12] a theoretical model for 3d chromosome structure is suggested to predict active TF-

BSs. This model provides a probabilistic method to integrate different types of epigenetic

data. These data include some histone modifications, DNase I sensitivity applied in a

standard motif based model. More precisely they explained how they change epigenetic

data to prior probabilities in the first step and then they describe the procedure of motif

sequence combination with these priors to calculate posterior.

In [3] DeepBind technique as the first deep learning method is introduced to discover

specific sequences where regulatory factors such as TFs attach to. It applies a set of se-

quences and a binding score is corresponded to that for training. It calculates four step

function f(s) for each sequence s as follows:

f(s) = netW (pool(rectb(convM(S))))

Through sequences, motif detectors with parameters M are detected at the convolution

stage. Mk is a 4 × m matrix, similar to Position Weight Matrix (PWM) but it does not

need coefficients to be probabilities or log odds ratio. At the rectification step, by chang-

ing bk units the response of Mk and forcing all negative values to zero, position with a

good pattern are separated. Then the maximum and average of detector’s response cal-

culated at pooling stage for learning effect of longer motifs and cumulative shorter motifs

respectively. After that, output is plugged in nonlinear neural networks with weight W

to provide a score by combining the responses.

In [27] the chromatin modification states and some active promoters and enhancers are re-

vealed and predicted by a computation algorithm applying distinct chromatin signatures

which can predict regulatory elements in human genome. It used ChIP-chip analysis

to discover 30 Mb chromatin structure at 38-bp resolution along 44 human loci chosen by

ENCODE contribution. The patterns of core histone H3 and five histone modifications are

studied. To recognize active promoters RNA polymerase II (RNAPII) and TBP-associated
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factor 1 (TAF1) which are two components of the basal transcriptional machinery, are

tested. Conventional ChIP on RNAPII are performed and examined for 121 sites in the

ENCODE regions by applying quantitative real time PCR. Similarly transcriptional coac-

tivator p300 are tested to identify active enhancers.

In [57] different tools for regulatory elements prediction are reviewed and also a bench-

mark of data sets are introduced as future tools inputs. It made a data-sets including

known biding sites, and it is ran by thirteen different tools. Then the tools predictions

were compared with known biding sites by applying different statistics to evaluate cor-

rectness of predictions.

1.4 Computational 3D genomics for analysis of Hi-C data

Several sequencing-based methods have been suggested to model the 3D genome struc-

ture. They are mostly high throughput because they are based on parallel sequencing

technology. The chromosome conformation capture (3C) method recognizes physical

contact between different loci, gives information about relative distance in the nucleus

has shed light on the systematic analysis of the 3D organization of DNA [36], [48].

Joint with high throughput sequencing, genome-wide conformation capture assays

referred to as Hi-C [10]. Hi-C is one of the popular methods to study the 3D structure

of the whole genome. In a Hi-C experiment, those pairs of fragments that are close by

distance are recognized through sequencing. A matrix called contact map is then cre-

ated by the number of ligated fragments spanning two genomic regions and represent

loci proximity. To do this procedure, first, close chromatin segments are cross-linked with

formaldehyde, and then chromatin is digested with a restriction enzyme. Then because of

digestion, overhang segments are filled by biotinylated nucleotides. After that, chimeric

DNA fragments are ligated under specific conditions that cause the combining of con-

nected fragments. By cutting DNA and choosing fragments labeled with biotin, a Hi-C li-

brary is created. Finally, paired-end sequencing is conducted with the Hi-C library. These
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genomic positions are recognized by aligning the two ends of chimeric fragments to the

reference genome. The number of contacts is proportional to sequencing coverage, and a

high enough coverage cannot be achieved because of budget limitation. Some regions are

difficult to recognize through sequencing (like paralogs), and the Hi-C experiment does

not detect far separated regions. Therefore Hi-C matrix is very sparse, especially at the

highest resolution. To make the matrix less sparse, neighboring regions are grouped to a

fixed bin like 1 Mb (mega-base-pair) resolution. Hi-C has provided new insights to reveal

the concept of many biological processes such as gene regulation, DNA replication, so-

matic copy number alteration, and epigenetic change [10], [36], [48]. A basic question is

then how to rebuild the 3D structure of the genome from this map. Two general methods

have been suggested so far. (i) The consensus method provides a unique mean structure

of data at inferring (ii) The ensemble method, which provides a population of structures.

Consensus methods: When a Hi-C contact map is given, inferring a set of 3D coordinates

in such a way that the associated chromatin structure fits the contact map [58].

Multidimensional scaling (MDS) is the most popular approach for this method. In this

approach for loci pair (i, j) a Hi-C contact fi,j is converted to distance di,j by power-law

conversion where di,j = 1
fαi,j

. MDS is a classical method aiming at finding N-dimension

embeddings for a set of objects such that the given pairwise distances are preserved as

well as possible. In the chromatin reconstruction problem, N is set as 3. Since power-law

conversion is not defined at zero contact, researchers usually assign a predefined large

distance to genomic pairs with zero connection to make the MDS work. However, the

arbitrary assignment of these distances often makes the reconstruction weird.

Ensemble methods: For a given Hi-C, several probabilistic methods have been suggested

that are divided into two categories. First, those approaches provide a group of structures

that fit the contacts map almost equally well. Second, those approaches offer combina-

tions of forms that fit the contact map by considering the additive effect. The only differ-

ence in the first category with the consensus method is that instead of inferring a unique

solution, it provides multiple optimal solutions. It usually considers the objective func-
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tion in consensus structure from a probabilistic perspective and concludes the various

solutions through sampling [58]. In [58], a consensus 3D model of a genome from Hi-C

data is proposed. This approach applies a statistical model of contact counts, assuming

the counts between two loci follow a Poisson distribution. The arbitrary loss function

is minimized by a multidimensional scaling-based method by a likelihood function ob-

tained from a statistical model.

High throughput sequencing helps to identify particular regions such as binding sites

through experiments. These neighborhoods map to individual genes; we can apply gene

enrichment analysis approaches. A new technique called BEHST is presented in [36] to

leverage long-range chromatin interaction information from Hi-C datasets for genomic

enrichment analysis. These datasets contain chromatin loops that bring distal regions up

to a hundred kilobases away within spatial proximity. It uses chromatin loops to asso-

ciate genes to genomic regions accurately and provide a functional annotation list that

corresponds to those genes.

1.5 Joint analyses of TFBS and Hi-C

Understanding the genomic co-localization in TFs interaction networks is essential to an-

alyze and predict genome regulations and functions of regulatory factors in this network.

In [36] , a statistical approach is suggested to design a system based on the regulatory

factors’ interactions by considering their conditional dependence relationship. In the

conditional dependence network, there is an edge between two variables conditionally

dependent. Because DNA sequences contain transcription factor binding sites and bio-

logical experiments are costly to identify these regions, different computational methods

are proposed to handle this problem. KEGRU is a recurrent neural network model offered

in [48] to predict binding sites based on DNA sequence. It uses the word2vec mapping

function to map a part of the DNA sequence, computes features, and predicts binding
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sites through Bidirectional Gated Recurrent Unit (BiGRU).

In [44] TAD boundaries and protein attached to them were recognized and predicted by

DNA motifs in Drosophila melanogaster and compared with human genome case.

A main mechanism that enhancers as regulatory elements interact with a target gene is

through chromosomal looping. Chromosomal looping brings a distal enhancer close to

a target gene in three-dimensional space and makes a long-range interaction, which is

very important and necessary for tissue-specific expression and regulatory variation in-

terpretation [50]. Several methods such as Hi-C are suggested for detecting these inter-

actions and these methods are mainly different in their resolutions and genomic cover-

age of the region [46]. Several components of the transcription machinery, such as TFs,

make these interactions easier. However, the principles of these interactions which cause

tissue-specific expression are not fully understood. It is also unclear the relationship be-

tween long-range interaction and other one-dimensional regulatory signals, including

transcription factor occupancies or chromatin modification. Therefore, it is necessary to

utilize multiple regulatory genomic data sets to characterize enhancer-promoter interac-

tions. Methods that combine different regulatory genomic data sets are beneficial to rec-

ognize enhancers and rebuilding transcriptional regulatory networks, but several prob-

lems need to be solved to predict enhancer-promoter interactions in a cell line-specific

manner. The first problem is to find the most informative measurements to predict in-

teractions in another cell type. It is shown by experiments recently that interactions are

mostly cell-specific. Therefore, using one cell-type trained data for another cell-type data

causes a bias problem. To overcome this issue, one of the offered approaches is to use a

classifier trained on one cell type to predict in another cell type, but it is unclear which cell

line’s classifier needs to be measured in the new cell lines to predict interactions. The sec-

ond problem is that additional regulatory genomic data sets are useful rather than those

(like CTCF, DNase I, etc.) usually applied for enhancer-promoter interactions. The third

problem is that most methods find a unique classifier for all cell lines, while building a

specific classifier for each cell line is very important because a classifier can discriminate
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between different cell lines. For instance, interaction in one cell line can be inactive due to

the inactivity of the promoter or enhancer in that cell line, or they do not interact because

of the chromosomal domain [49], [46].

Recently identifying long-range interactions between transcription factors is made pos-

sible by improvements in high-throughput chromosome conformation capture such as

3C, 4C, and Hi-C and the availability of Genome-wide 3C datasets. In [49], a multi-task

clustering algorithm is presented to use Hi-C data to identify common aspects of genome

architecture. Given two or more Hi-C data from different tissues or cell types, it is not

clear how to simultaneously recognize clusters in all of them and compare those clusters

to identify common and context-specific patterns. By applying inferred clusters, a sys-

tematic comparative study of the extent conservation and divergence between matched

cell lines of different species and the same species’ cell lines is given. Long-range regula-

tory interaction plays an important role in gene expression. While detecting such inter-

actions helps predict gene expression behavior, a limited number of genome-wide data

sets makes this job challenging. A predictive modeling approach is suggested in [46] to

leverage limited datasets in cell line-specific to identify long-range regulatory interaction.

RIPPLE’s supervised machine learning-based method uses 5C experiments in a specific

cell type as a training data set. RIPPLE has three main steps. First, it learns a single

cell-specific classifier. Then it determines the minimal number of datasets to predict in-

teraction in different cell lines, and finally, it ensembles learning to predict interaction

in new cell lines. In [50], a deep neural network model called SPEID is presented to

predict enhancer-promoter interactions only based on sequence-based features when the

locations of these regulatory factors are given. However, this method does not consider

three-dimensional chromatin structure and higher-order chromatin interactions. SPEID,

similar to other deep learning models a sequence of feature representations. It consists

of three layers. The first convolution layer learns a massive array of kernels. The input

sequence is convoluted with short weighted patterns called kernels to compute that pat-

tern’s match at each position of the input. Then to learn predictive kernel features, the
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second layer called the recurrent layer re-weights each kernel match. At the final layer

named dense layer, linear classifier learned on top of the combinations of sequence fea-

tures output of the recurrent layer.

In [29] a model is purposed to reveal interactions between different part of chromatin and

predicts TADs boundaries based on cell type datasets which includes Hi-C interactions

and histone mark Chip-seq data.

1.6 Network Estimation

Network modeling assist in creating new methods in studying of interactions between

biological entities. Among these methods, a biological network, which is a graph of a

connected biological entities plays an important role. Nowadays, by extracting more ac-

curate datasets, these networks assist in understanding and predicting biological phe-

nomena. On the other hand, the urgent need to apply such models in bioinformatics

cannot be ignored, because making inference on them can give us deep insight on molec-

ular interactions involved in complex phenotypes such as cancer. The importance of this

subject has attracted more attention to biological networks and its behavioral modeling.

So much research has been done to improve and utilize such network effects. In this re-

search, we introduce a probability model in biological networks to predict TFSBs.

The results of studies show there are common structural characteristics in many complex

networks. For instance, we can point out the small world characteristic [59], scale free

[5] and high clustering index [40]. These characteristics have a large effect on network

dynamics [41].

Generally, researching for characteristics of a complex network is based on a collected

data set from that network. This data set includes information related to network vertices

(i.e. person in social networks) and interaction between them (i.e. friendship in social net-

works). On the other hand, studying this structure and behavior of an enormous network

(including around ten thousand vertices or more) and achieving a knowledge about the
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whole network is costly (time and storage space) [4], while most of the real world net-

works include large numbers of vertices and edges and have complicated structures. For

example, Facebook currently has more than 1.44 billion monthly active users.

A solution to this problem reduces network complexity by sampling and estimation of

characteristics of structure and behavior of that network from its incomplete data sets ob-

tained by sampling. Sampling from a network is extracting a subset of vertices and edges

of a large graph. Therefore, accuracy in results of the research in the field of complex

networks, is strongly dependent on a given estimation of these networks’ characteristics.

Generally, traditional statistical methods that independently sample only from vertices or

edges have inaccurate results since they ignore the fact that vertices and edges are corre-

lated factors [32]. In this section, we concentrate on sampling methods from a network

and estimating characteristics of network elements (vertices and edges) from an incom-

plete data set.

There are two different cases for networks with respect to availability of network graphs:

• The network graph is observable ( i.e. known network). In this case, it is assumed

that the whole graph is observable (known) and we have a general knowledge about

that such as vertices degree distribution, etc. The goal of sampling here is compress-

ing and scale reduction with extracting a subgraph of the network graph [33], [43].

The main challenge in this approach is the method of selection of vertices and edges

in such a way that the final subgraph has the same general characteristics as the

main network. This approach that is called coarse-graining in some literature is

popular in statistical physics.

• The network graph is hidden. In this case, it is assumed that the graph is unknown

to us and our knowledge about the network is local. Therefore, initially we do not

know about the situation of vertices and edges. Thus, sampling is being done based

on graph surveying.
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1.6.1 Network characteristics measurement process

Since vertices and edges are the main elements of a network, studies on the network

characteristics can be categorized in three groups:

• Research that is concentrated on network vertices (i.e. the people’s age in a social

network or the loads on a server in the network of servers )

• Research that is focused on network edges (i.e. friendship status in a social network

or information transmitted between two servers)

• Research that is concentrated on characteristics of both network elements (vertices

and edges).

The measurement process is shown in the figure 1.3.

Figure 1.3: The measurement process of network characteristics

This process contains two steps:

• Sampling: In this step, the dataset is collected by a sampling method. The sampling

method defines how to select network elements (vertices and edges) and the related

selection probabilities. A data set for example can include Logs of stored response

from HTTP request to an online social network website like Facebook. The raw col-

lected dataset in this step should be processed with an encapsulation function and

its output is an extracted sample.

Since our focus in this research is on hidden networks, the practical solution for

sampling design from such networks is applying adaptive sampling. Specifically by

starting from an initial vertex (or vertices), its neighbors will be recognized. After
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that, one or all of its neighbors will be assigned to a sample set of vertices. This pro-

cess continues until observing all vertices or achieving a preassigned fixed value for

the number of sample set elements. An assigned probability, which the neighbors of

a vertex are selected based on, determines the sampling probability of vertices and

edges in the network.

According to the neighbor selection step, these methods can be categorized into

two groups: random walk methods and Snowball methods. In random walk meth-

ods, only one of the neighbors is visited. visiting neighbors can be with or with-

out replacement. In contrast, in Snowball methods all of the neighbors are visited.

Breadth First Search (BFS) is one of the Snowball methods.

When an identifier can be assigned to each element of a network, Simple Random

Sampling methods can be applied. This method in statistical inference literature

is so called ego-centric. For instance, in Twitter’s network for each user a unique

32-bit identifier is specified. Therefore, by providing the 32-bit identifier randomly

and extracting the user’s information (corresponding to the identifier), we can ap-

ply sampling of network vertices but since identifiers space is sparse, many requests

will remain without response. Therefore, such scenarios are very expensive [45].

• Estimation: In this step, by applying an estimator, the characteristics of the main

network from the data sample is estimated. An Estimator is a function that uses

sampled data as input and gives out the estimation of the desired characteristic of

network as an output. We can consider two general approaches to estimate from

sampled data: 1) Design-based 2) Model-based.

In the Design-based approach, it is assumed that the characteristics of vertices and

edges are fixed and the sampling method is done only because of the bias existence

in observations. Therefore, the network characteristics extraction is only based on

the observed sample set. Some prominent works in the design-based approach in-

clude the network sampling methods [6], adaptive cluster sampling [55], [54] and

some methods in the Snowball sampling field [18], [19], [22]. The design-based ap-
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proach can be applied for estimating of network characteristics when the selection

probability of each network element can be calculated according to the sampling

method. In practice, this has so many challenges. This fact makes researchers study

more model-based techniques which include maximum likelihood [56], Bayes [11].

In the model-based approach, a model is considered for the network (i.e. Exponen-

tial Random Graph Model) where the collected data set plays as the observed val-

ues for that model. Thus our concentration on model parameter estimation designs

a mechanism to produce that data set. In practice the real world network modeling

is very difficult and complicated therefore it is the weakness of these methods com-

pared with design-based models. In the third chapter of [2] a complete review on the

different network models has been done. We should notice that there is generaliza-

tion for the design-based approach in which a model is applied to direct estimation

in the design-based approach [16], [47], [23]. This approach in fact is a combination

of two approaches: Design-based and model-based, which is explained in [56] in

detail.

It should be mentioned that statistical data, which is missed in the first step of the

network characteristics measurement process, can not be recovered in the next steps.

Specifically if the obtained sample from the sampling step does not contain suffi-

cient statistical information to have exact estimation, there is no estimator that can

compensate and give an exact estimation. Therefore, in addition to the importance

of the estimator, we should find a better encapsulation function or more efficient

sampling design. According to that, we can see in the table below different aspects

of network characteristics estimation using sampled data.

According to the measurement process which include sampling and estimation steps,

we can realize the common mistake in some previous research. For example the

characteristics of the suggested network in [33], [37] and [32] which are used as ref-

erences so many times in the complex networks field, all are characteristics of the

extracted sample network while they are not estimated characteristics of the main
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Table 1

Subject Variates
Network characteristic
Sampling design
Vertex selection
Estimation approach

Vertex, Edge, Vertex and Edge
Simple Random Sampling, Random Walk, Snowball
With replacement, Without replacement
Design-based, Model-based, Combination

Table 1.1: Different aspects of network characteristics estimation using sampled data

network graph. It means these papers authors assumed the collected sample is rep-

resentative of the whole network. Also in some studies, they tried to give an exact

estimate without mentioning that the extracted sample does not include sufficient

statistical information for an estimator. For instance, we can mention [15] which

tries to give an estimation of the flow size distribution in Internet.

Generally, based on the estimation approach (design-based or model-based) and

network characteristic (vertex, edge, both) research, which has already been done,

can be categorized into:

– Design-based/Vertex: The research focus here is on extraction related to the

network vertices with the design based approach for estimation. Ove Frank’s

work exists in this category [17]. In [9], [21] full reviews have been done on the

research in this category.

– Design-based/Edge:

In this category, the estimation is based on the design for network edge char-

acteristics from sampled data. Most research in this category also originated

from Ove Frank’s research [20]. [20] is one of the first that extracted the struc-

tural characteristics of the network edges based on an incomplete observation.

– Design-based/Vertex and Edge: There is little research about simultaneous es-

timation of vertices and edges characteristics. Recently, in [23] a method is sug-

gested for this purpose based on Random Walk. Specifically, a design-based
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strategy supported by a network model is offered to estimate the probability of

network elements (vertex and edge).

– Model-based/Vertex: There is no serious research on model-based approach to

estimate vertex characteristics of a network. It can be justified in this way that if

network characteristics are independent of connective structures (edges), there

is no need to use the network methods (i.e. adaptive sampling methods). Oth-

erwise, simultaneous vertex and edge modeling (the last category) is required.

In practice, it is not clear if we can define a scientific application without con-

sidering the connective structure of the network.

– Model-based/Edge: Already there is little work that has been done for model-

based to estimate characteristics of the network. In [56], the first systematic

method is suggested. This method is generalized in [25] in the full class of

Exponential Random Graph Models(ERGM).

– Model-based/Vertex and Edge: This category is concentrated on vertex and

edge characteristics simultaneously. [1] and [38] are two outstanding works on

this subject. The suggested idea in both papers is based on the network con-

nective structures (edges) modeling with considering the contagion process in

network. In [28], a definite application of this kind of model (i.e. simultaneous

network and contagion parameters modeling) is discussed.

Our concentration in this research is on the second category. Some of such methods can

be generalized for the estimation of network edge characteristics. For future works, we

can pay more attention to the model-based approach to estimate the network vertex and

edge characteristics from the Snowball methods.

1.6.2 Subject importance and its application

Analysis of real world complex networks helps us to study the dynamics of different pro-

cesses (i.e. contagion a new idea or an infection ) in a network and its different outputs
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like purchasing a production or infection diffusion. However, studying these networks

with more than a thousand vertices is very expensive. The costs here means time T (n)

and necessary memory space S(n) to run those algorithms, which are applied to analyze

big data correspondent to such networks (n is the number of the vertices in networks).

In most of the real world complex networks, the order of edges are close to the order of

vertices ( O(n) or O(nlog(n))). Such networks are considered sparse. On the whole, most

of the real world networks contain so many vertices and have a complicated but sparse

structure.

The space complexity is the problem of storing data in proper space. The space com-

plexity to store sparse networks can be decreased by proper data structure definition (

i.e. linked list). Theoretically, those problems which can be solved by an algorithm with

polynomial complexity are considered easy problems. In practice when n is a large num-

ber, algorithms with a time complexity of O(n2) or more, can be very slow. Therefore,

when the time complexity is high, accessing even fast super computers does not help that

much.

However, the time complexity of most algorithms which are applied to analyze corre-

sponding big datasets are O(nc) that c ≥ 2 [30]. Therefore, in practice these algorithms

are unusable for enormous networks. To solve this problem, a strategy is to design algo-

rithms where c is as small as possible in algorithms. Most of the research, which follows

this approach, work on heuristic algorithms, which only offer estimation of desired pa-

rameters. The second strategy for decreasing complexity is to decrease n (i.e. decreasing

number of vertices) by sampling from a main network. A combination strategy that si-

multaneously intends to decrease n and c can also be considered. In this research, we

concentrate on the second strategy (i.e. decreasing n). On the other hand, the complete

dataset of a network mostly is not available for the following reasons:

• These datasets belong to the most valuable companies’ wealth and they are pro-

tected. Therefore, borrowing those datasets directly from the owners of those com-

panies is very difficult.
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• Collecting an enormous data that contains millions of vertices and edges for in-

stance friends list, profiles, images and videos in a social network, has so many

challenges. For example, overloads of data collection for testing social networks

(i.e. Facebook) connectivity is one of them. In Facebook, each user is coded with

a 4-byte code identifier. On average each Facebook user has 130 friends, thus for

friends list extraction we need to download an HTML page with 220 KB. Therefore,

to access only the Facebook friends connections, we need about 260 GB (500 millions

users* 130*4 bytes). More importantly, there are the overloads of data collection: in

order to collect 260 GB we need to download 110 TB of information (500 millions

users*220 KB) for HTML data.

• In most cases, we cannot access all vertices (or edges) of the networks. For instance,

in a social network like Facebook a user by upgrading his/her own privacy profile

would not let the other users access his/her information (i.e. his/her own informa-

tion and friends list).

In respect to application, network analysis is important in different fields like sociology,

biology and telecommunication. Besides social sciences fields, our studies have applica-

tions in sampling design of hidden networks. For instance, the hidden network in these

fields can be a network of drug addicted people or HIV infected persons. A question,

which research tries to answer in this field, can be: What percentage of society (i.e. a city)

is infected by HIV? The persons (network vertices) are mostly unknown in such networks

and they tend not to disclose their information or their friends’ information (i.e. neigh-

bor vertices). By different sampling methods, we can estimate the hidden population of

this network. Responses to such questions will be very effective to improve plans in the

future.
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Chapter 2

Transcription Factor Occupancy Analysis

in Topological Associated Domains

Most of research that has already been done about TFBS was related to the analysis and

prediction of their location based on other epigenetic information such as histone modifi-

cation data, DNase I information, etc.[12]. In this chapter we study a practical problem in

TFBS analysis and predict binding sites along chromosomes based only on HiC data and

TFBS information for other TFs. Due to our knowledge it is the first time that HiC data is

borrowed to predict TFBS.

Some important gene characteristics such as gene expression is related to complex dis-

eases like cancer. These characteristics are regulated by the regulatory factors such as

TFs. Therefore, how TFs interacts and initiate these function are crucial subjects. The

interaction of TFs are very dependant on their binding sites on the genome. That is ex-

actly why TFBS analysis is very essential to understand the initiation of the regulatory

functions in the genome. The TFs repeatedly attach and detach on binding sites along

chromosomes. Therefore, their positions are very dynamic. We can only get their bind-

ing sites information for one instance, Thus, this information cannot be used directly to

analyze and predict the regulatory functions initiated by TFs. The TFs preferences to be

located in specific sites are based on the location of other TFs nearby. Therefore the proba-
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bility of an existing TF in a particular area is dependant on other TFs in the chromosome.

It may be the first time that this probability is calculated based on the other TFBS. We can

formulate this concept here.

There are two sets of data available. One is training data which includes the binding

sites of a set of TFs. A HiC matrix related to that DNA sequence is also available which

shows the interactions between these regions. Another one is test data, which includes

the position of the same TFs except TFn along different chromosomes. A HiC matrix

related to interactions between these regions is also available. All of these data is ob-

tained through ChIP-sequencing. ChIP-seq experiments was done by ENCODE project

(https://www.encodeproject.org/). We used the human genome hg19 data and it is

explained how they generate the data in https://genome.ucsc.edu/cgi-bin/hgGateway.

The file includes the location of TFs along chromosomes. They include 161 different TFs

from 91 different cell types and 947 experiments. The Hi-C data which contains TADs

information is achieved by [14] through TopDom program for human embryonic stem

cell (hESC) lines. The goal is to calculate the probability that TFn attaches a set of binding

sites in test data.

Goal : estimate Pr[TFn(ls) = 1|HiC matrix & Training data &

Test data for TF1, ..., TFn−1] 0 < s < m
′
+ 1

For instance the following training data is given with the existing interactions between

locations. Binding sites of TFs in training data (i.e. bins in training data) are shown by l1,

l2,...,lm. Binding sites of TFs (i.e. bins in test data) in test data are shown by l
′
1, l′2,...,l

′
m

′ .

The test data for another cell is a similar table with existing interactions between locations

but unknown location of TFn.

The goal is to predict the locations of TFn in the second table.

As we explained in the previous chapter, we can estimate network parameters by network

sampling and estimation methods. In this problem, The TFs bound along chromosomes
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TFs /Locations l1 l2 . . . . lm
TF1 1 0 . . . . 0
TF2 0 1 . . . . 0
. . . . . . . .
. . . . . . . .
. . . . . . . .
TFn 0 0 . . . . 1

Table 2.1: The training data for TFs locations

TFs /Locations l
′
1 l

′
2 . . . . l

′

m′

TF1 1 0 . . . . 0
TF2 0 1 . . . . 0
. . . . . . . .
. . . . . . . .
. . . . . . . .
TFn−1 0 1 . . . . 1
TFn ? ? ? ? ? ? ?

Table 2.2: The test data for TFs locations

have interactions with each other. We can create a network model based on the training

data and HiC matrix including 161 vertices. Each vertex is the representative of a specific

TF. The weight of edges between the vertices is representative of interaction tendency be-

tween TFs. Since we do not have access to all interactions between TFs along the genome,

and from the available data we only sample part of that, to estimate the edge weight wi,j ,

between the vertices i and j, we have to sample from a hidden network. Besides, since

we sample from edges and estimate their weights, the method is design based approach

to estimate edge characteristic. After we estimated the characteristic of the network, we

can use this model to infer the test data. Let bTFi be a representation of TFi locations. It is

the set of all ls where TFi bounds i.e

bTFi = {ls : TFi bound to ls}
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Figure 2.1: An example of HiC interactions between three different bins l1, l3 and l7

when different TFs occupy them(up). The interactions between bins can be occurred ran-

domly. An example of whole interactions map between different bins that obtained by

HiC data.(bottom)

Also let Ils,lt(TFi, TFj) = 1 if TFi and TFj at bins ls and lt respectively (i.e. ls ⊆ bTFi&lt ⊆

bTFj ) and ls and lt have an interaction in 3D structure (based on HiC data) otherwise

Ils,lt(TFi, TFj) is set to zero. Let I(ls, lt) be one when there is an interaction between ls

and lt and also there is at least one TF in each ls and lt otherwise it is zero. Finally N(ls) is

defined as the number of TFs which exists in bin ls i.e N(ls) ≥ 0.

From Table 2.1 we can calculate the probability of TFn existing at bin ls, 0 < s ≤ m
′ ,

in condition that there is an interaction between ls and lt and TFi bounds in bin lt. The

probability p(ls ⊆ lTFn|lt ⊆ lTFn , I(ls, lt) = 1) can be calculated in the following way. We

calculate the interaction coefficient Wi,j between two different TFs. We can define Wi,j in

two different version. The first version is more exact and needs more computation but the

second version is an approximation of the first version and is less accurate while requiring

less computation. Although we use the first version to solve the problem without any

29



computational issue, in cases calculating the first version cause computational problems,

the second version can be considered as an alternative.

• Version 1 :

Wi,j =
m∑
s=1

m∑
t=1,Ils,lt (.)=1

Ils,lt(TFi, TFj)∑n
k=1 Ils,lt(TFk, TFj)

The value of Wi,j in each chromosome is very dependent on the number of regions

bound by TFi and TFj in that chromosome. On the other hand the number of each

TFi in each chromosome is very different. If the number of TFi and TFj in a chro-

mosome is high, there is a greater chance to have a larger value of Wi,j in that chro-

mosome. To overcome on this issue and define a less dependent parameter on the

number of TFi in each chromosome, we can calculate the parameter wi,j which is a

normalized version of Wi,j . For each TFi in each chromosome, we add all tendency

factor Wi,j , then divide each Wi,j over this addition. Therefore, the value of wi,j is

always between zero and one i.e. 0 ≤ wi,j ≤ 1. Thus comparing wi,js in different

chromosomes gets more reasonable.

wi,j =
Wi,j∑n
h=1Wh,j

We can assume wi,j as the interaction tendency between two different TFs, does not

change from one chromosome to another chromosome. Based on this assumption,

we can calculate p(ls ⊆ bTFn|lt ⊆ bTFj , I(ls, lt) = 1) based on wn,j .

p(ls ⊆ bTFn|lt ⊆ bTFj , I(ls, lt) = 1, N(ls) = 1) = wn,j

We can generalize this idea for more than one transcription factor to calculate p(ls ⊆

bTFn|lt ⊆ bTFi , lt ⊆ bTFj , I(ls, lt) = 1). Let Ils,lt(TFi, TF(j1,j2)) = 1 if TFi, TFj1 and

TFj2 exist at bins ls, lt and lt respectively (i.e. ls ⊆ bTFi and lt ⊆ bTFj1
, lt ⊆ bTFj2

) and ls have an interaction with lt in 3D structure (based on HiC data) otherwise
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Ils,lt(TFi, TF(j1,j2)) is set to zero. Therefore,

p(ls ⊆ bTFn|lt ⊆ bTFj1
, lt ⊆ bTFj2

, I(ls, lt) = 1, N(ls) = 1) =
Wn,(j1,j2)∑n
k=1Wk,(j1,j2)

= wn,(j1,j2)

where

Wi,(j1,j2) =
m∑
s=1

m∑
t=1,I(ls,lt)=1

Ils,lt(TFi, TF(j1,j2))∑n
k=1 Ils,lt(TFk, TF(j1,j2))

If we can apply Bayes formula we have:

p(ls ⊆ bTFn|lt ⊆ bTFj1
, lt ⊆ bTFj2

, Ils,lt = 1, N(ls) = 1) =
A ∗B
C

where A = p(ls ⊆ bTFn|I(ls, lt) = 1, N(ls) = 1), B = p(lt ⊆ bTFj1
, lt ⊆ bTFj2

|ls ⊆

bTFn , I(ls, lt) = 1, N(ls) = 1), and C = p(lt ⊆ bTFj1
, lt ⊆ bTFj2

|I(ls, lt) = 1, N(ls) = 1).

If we calculate all of the terms A, B, and C based on the training set, the final result

will be very biased toward training set. The reason is that all of the data are plugged

in the formula are from same dataset, therefore the final answer is also very matched

with that set. To avoid being biased with the training set we can calculate p(lt ⊆

bTFj1
, lt ⊆ bTFj2

|I(ls, lt) = 1, N(ls) = 1) based on the test set.

• Version 2 :

wi,j =

∑m
s=1

∑m
t=1,Ils,lt (.)=1 Ils,lt(TFi, TFj)∑m

s=1

∑m
t=1 I(ls, lt)

The second version uses less computation to calculate wi,j . Because it assumes if

there is an interaction between two end of a TAD where each end include one of TFi

or TFj , the HiC interaction originates from these two transcription factors without

considering the impact of other TFs on this HiC interaction. This assumption sim-

plifies the computation of wi,j , but simultaneously is less accurate.
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In our experimental results, we only used the first version. We consider two different

cases. The first case is for ls = lt. In this case, for calculating the interaction tendency

between two TFs, we consider them only when they locate on the same site. The second

case is for ls 6= lt. In this case, for calculating the interaction tendency between two TFs,

we consider them only when they locate on different sites.

2.1 Data Filtering

We consider those TFs located in ±10000bp of the beginning or end of TAD’s boundaries.

Then we can create a frequency table for a pair of TFs situated at the two different bound-

aries of a TAD (i.e., one at the beginning and one at the end). Based on the number of

TADs in the chromosome and hypergeometric distribution, we calculate the probability

of randomly locating those TFs in the same TAD as explained in the following part.

A Hypergeometric distribution is a discrete probability distribution that models the prob-

ability of k successes in n randomly draws for objects with definite feature without re-

placement from a population N with K objects having that feature [26]. The hypergeo-

metric test applies this distribution to measure the statistical significance of extracting a

random sample with a constant number of k successes in n total draws from a popula-

tion of size N containing K successes. In a test for over-representation of successes in the

sample, the hypergeometric p-value is calculated as the probability of randomly drawing

k or more successes from the population in n total draws. In this experiment we count the

number of each possible pair of TFs located at the boundaries of TADs (each pair of TFs

located at the boundaries of a specific TAD) and call it k. For instance, suppose there are k

pairs of (TFi, TFj), with TFi located at the start boundary of the TADs and TFj located at

the end boundary of the TADs. Let the total number of the TADs beN . If the total number

of TFi located at the start of a TAD is n1 and the total number number of TFj located at

the end part of a TAD is n2, let K = min(n1, n2) that is the maximum possible pairs of

TFi, TFj in this structure (i.e. maximum successes) and n = n1 + n2 − k that is number of
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TADs occupied by TFi at the start boundary of TAD or TFj at the end boundary of a TAD

. Then we can calculate what is the probability that k pairs are selected randomly given

K, n and N . Then based on the hypergeometric over-representation test, we calculate the

probability that k as a number of these TFs pairs occurred randomly. Based on this test, if

the p-value is more than 0.05, we ignore their interaction for the next part (i.e. we assume

these number of pairs happened by accident) ; otherwise, we consider them. We also

prepared a heatmap (clustering of TFs) based on these interactions. In these calculations,

we distinguished between the start and the end of the TAD. The figure 2.2 show a part of

this probability table. Based on the table some of values which are more than .05 (lighter

color) are eliminated.

The heatmap figure (2.3) are shown on the next page. A heatmap (or heat map) is a

method to observe hierarchical clustering. Heatmaps are a way to analyze both clusters

of samples and features together. Hierarchical clustering is done for both the rows and

the columns of the data matrix. Then columns and rows of the data matrix are rearranged

based on the hierarchical clustering result, where similar observations get close to each

other. A color scheme is used to show the data matrix based on the high and low values

of data [61]. Therefore, in the figure (2.3) columns which are different parts of chromo-

somes and rows which are TFs are rearranged in such a way similar TFs in terms of their

binding sites get close to each other. As we see in figure (2.3) CTCFfirst and RAD21first

are beside each other in the corner. In next sections we see RAD21 between all TFs has the

most interactions with CTCF. We also see TFs with more frequencies have more brighter

colors in the map which shows the number of their binding sites in the different part of

chromosomes.
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Figure 2.2: Part of p-value table for a pair of TFs in TADs structure. The colorful value is

less than threshold value 0.05

Figure 2.3: The heatmap sample(up) and part of heatmap sample(bottom), The darker

square represents zero and brighter represents one which shows corresponding TF binds

to that part of chromosome.
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2.2 Experimental Results

The objective of the practical experiments is to apply and evaluate the theoretical formula

of the previous sections on the real dataset. We divide the whole data set into two parts:

The training set and the test set. The chromosome data alternatively correspond to the

training and test set. The data of Chromosome one, three, five,... up to chromosome X are

used as the training set and the data of chromosome two, four, six,.. ,twenty two , and Y

are used for the test set. Since the size of the chromosome is decreasing from chromosome

one to chromosome Y, this data partition is done to make close the number of total TFs in

the training and test set. Some TFs still do not appear in one of these sets. This fact affects

the prediction accuracy for such TFs and decreases the average prediction accuracy. We

assume there are only interactions between the start and end of each TADs along chro-

mosomes. We show the frequency of TFs in the training and test set in the figure 2.4.

We have already collected TFs information at the start and end of each TAD. We only

Figure 2.4: The comparison between the number of regions bound by each TFs in the

training and test set

consider such TFs in our calculation. We calculate Wi,j and wi,j for any two TFi and TFj

for both training and test sets. We also calculate the number of each TF in each chromo-

some part. The interesting observation for this parameter is that although Wi,j is very

different between the training and test set, the normalized version wi,j are more similar in
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such a way that 90 percent of them are close with difference less than .01. The dissimilar-

ity between Wi,js was predictable since the number of each TF in the training and test set

are very different, and normalizing helps eliminate this factor and create new parameter

that can have approximately same value in the training and test set.

Figure 2.5: The values of wi,j in training(bottom) and test(up) set are very close.

The next step to figure out if there is any reasonable relationship between wi,j and the

probability of existing TFi and TFj in the same TAD. Based on the definition p(TFn ∈

ls/TFj ∈ lt, Ils,lt = 1&N(ls) = 1), to satisfy the conditions in this probability, we need

to consider only those TADs with at most one TF at the one end. The number of such

TADs is very low. In all of them, the value of wi,j is low. Based on the definition of prob-

ability, we need a high number of experiments to approximate the probability value (i.e.

greater than 100). Lack of this situation in this simulation and simultaneously existing

impacts on the experiments make it difficult to accurately obtain the probability. That’s

why we change our direction a little bit. Instead of finding the probability for each bin i.e.

36



{lt|1 ≤ t ≤ m
′}, we can assign a score. Then we can rank the bins based on these scores

which show the tendency of TFn to attach the bins.

The tendency of TFn to attach a bin is dependent on presence of other TFs nearby to

that bin. In this research we assume other TFs can interact with TFn only when they are

present in the same TAD. We can assume TFn select its binding sites to have interactions

with other TFs. In this work, we only consider TFs relative positions to each other as a fac-

tor to predict binding sites. Therefore, the bin’s score can be approximated by
∑k

ij=1wij ,n

where k is the number of TFs in that bin . We assume here wij ,n for each ij does not change

in the presence of other TFs. Consequently, we make a ranking between bins preferred

to be occupied by TFn in each chromosome. It is worth mentioning here that the whole

system is dynamic, and the bins of each TFs change continuously during the time, and

for one single TF, selecting a bin is done locally (selecting a bin between its close neigh-

borhood) rather than globally. Therefore for a fixed number of TFs along a chromosome,

there may be potential bins more than three times that fixed number.

Creating ranking can be applied to multiple factors one by one, and we investigate if the

overlap between the potential bins (bins with higher scores that is predicted to be occu-

pied by specific TF) and occupied ones is increasing. If it is not increasing, we can go back

and reformulate the factor. There are two main issues which we face in this problem.

1- The designed parameter for each factor in the training and test set are not close.

2- Designing a parameter that adequately describes the factor so that interfering with

this parameter in the bins ranking increases the overlap between the potential bins and

occupied ones.

To handle these two issues independently, we can try the experiment on both the test

and training set to distinguish the cases where the first issue occurs. Reasonably it seems

the second issue is more challenging than the first one, and if it is solved, the first issue

can be handled to some extent. Here we study experimental results in two different cases

and compare them with each other.
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2.2.1 1st case

As we explained before, in the 1st case we only consider the interactions between those

TFs that are located in the same bins. We calculate Wi,j only based on these interactions.

In the first case, it seems the interaction tendency between TFs is more robust than in

other cases. This fact originates from short distances between TFs in this case that makes

their interactions stronger. We obtain wj,i in both training and test sets. The values of wj,i

in both training and test set as we compared them in the figure 2.6.

Figure 2.6: The absolute difference of interaction tendencies |(wj,1 |Training set) −
(wj,1 |Test set)| between TF1 which is ZBTB33 and other TFs in training and test set(up).

Tendency factor wi,1 between ZBTB33 and other TFs in training and test data set (bottom).
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We started our experiments to calculate wij ,is as the first factor, and it can handle the

first issue. Ranking bins for each TFi is based on the sum of wij ,i of any TFij that poten-

tially can have an interaction with TFi,
∑k

j=1wij ,i where k is the number of TFs can have

an interaction with TFi (i.e. based on dataset they locate in other side of TAD that have

interaction with that bin). You can calculate the approximate likelihood by normalizing

this sum at each chromosome and multiplying with the number of TFi at that chromo-

some over the total number of possible bins in that chromosome. The number of each TFi

and possible bins is the same in a specific chromosome. Thus, we only need to calculate

the sum of wij ,is to rank the bins in the specific chromosome. To rank bins for each TFi

in the specific chromosome, we suppose that the TFi locations are unknown. Then we

rank the bins based on the position of the other TFs in that chromosome. To do that,

for each bin, we add wij ,is calculated in training data if TFij locates in that bin. We call

this summation as the score of that site for TFi. Based on this score, we can rank all the

bins inside the chromosome. After ranking, we calculate a range of possible areas for

TFi. This range is a number between the total number of TFi in the chromosome and the

total number of possible bins in the chromosome because the locations of TFi is dynamic.

We supposed the range R is (2*number of TFi in the chromosome + the total number of

bins in the chromosome)/3. This range is selected in such a way that in both cases that
the number of TFi in the chromosome

the total number of bins in the chromosome is small or large gives a reasonable value of range between

the number of TFi in the chromosome and the total number of bins in the chromosome.

Then we calculate what percentage of TFis exists in the range, and this number shows

the true prediction ratio of our model. This number is called the true prediction ratio of

the model. For the first case, the average of this number is about 70 percent, while if TFi

is distributed independently from the tendency weight, the average true prediction ratio

should be 34 percent that is far from 70 percent. We can see the comparison between the

true prediction ratio and the random prediction in the figure 2.7.
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Figure 2.7: The average true prediction ratio vs. range over the total bins R
T

which shows

the prediction of random ranks for bins. T is the total number of bins in the chromosome.

The factors that heavily impacts our prediction is the number of TFi in each chro-

mosome. As we showed in the theory section, the chance of TFi to attach each bin is

proportional to each TFi in the chromosome. We can show this fact in the figure 2.8. The

true prediction ratio average is the highest in the first chromosomes, where more number

of TFs exists on average.
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Figure 2.8: The average true prediction ratio vs. range over the total bin shows the pre-

diction of random ranks for bins.

Besides, in each chromosome, the true prediction ratio is much better for those TFs

with higher frequency in that chromosome. It is explained in the previous section to

have a better output from the probability model; we need more frequencies of TFs in the

training and test set. We can see this fact for the first and the second chromosome in the

figure 2.9.
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Figure 2.9: The scatter plot of true prediction ratio (y-axis) in terms of number of TFs in

the first and second chromosome (x-axis) shows increasing TFs results in a better predic-

tion.

Therefore, if we have more frequencies for each TFi, we have a more accurate predic-

tion for its interaction tendency with other TFs. Thus, to have a better comparison we can

multiple this factor to the interaction tendency wj,i. For CTCF, we can see this matter in

the next figure. Based on the figure 2.10, there is a TF which has the most interaction ten-

dency in both training and test set. This TF is RAD21. We can conclude RAD21 have the

most tendency to have interactions with CTCF. This conclusion is validated in ChIA-PET
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experiments as well [53]. Through the same approach, we can find more pair of TFs with

the most interaction tendency to initialize regulatory functions.

Figure 2.10: interaction tendency multiplied by the number of corresponding TFs for

CTCF in training set vs. test set (1st case) for different TFs. It is maximized for RAD21 in

both training and test sets.

Local Ranking

As we mentioned before, TFs most likely select their location locally rather than globally.

Therefore it may impacts the ranking procedure, which was done globally before. Local

ranking means to rank bins based on their scores which compete in the local range around

each bin (i.e. amount of the range is specified exactly in each ranking procedure). That

was why we also tried local ranking to compare the results with global ones. The local

ranking procedures can be performed in different ways. We start with a tournament style.

Two neighbor bins (i.e., the start and end of a TAD) compete with each other, and the bin

with the higher score goes to the next step. In each step, the winners of previous steps

compete locally with each other, and half of them go to the next step until the final winner
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gets definite. Local competing means each bin competes with one of its two neighbors in

that stage located just before or after that bin. To start this procedure perfectly, we need

2n bins to begin. Since the number of bins in each chromosome is not exactly the power

of two, we need to add some artificial bins with an average score to balance the total

number of bins. After finishing the competition, we start ranking the bin from the last

stage (tournament final) to the first stage. In this procedure, we do not give any rank to

those artificial bins. We can calculate the local prediction ratio similar to the prediction

ratio in the global ranking. We can see the result of the tournament ranking in prediction

in the figure 2.12.

Figure 2.11: The general representation of tournament competition to rank competitors

when there are 16 competitors.
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Figure 2.12: The scatter plot of true prediction ratio in terms of number of TFs in the first

and second chromosome shows increasing TFs results in a better prediction.

We can change our algorithm by modifying the way we compare the score of bins.

For instance, the number of bins in each local competition can be changed from two to

a number greater than two. We did this modification to see the impact of that in results.

The results got worse a little bit. We can see them in the following figures. Another

modification in this algorithm can be done by group ranking instead of Tournament. In

group ranking, the fixed number of neighbor bins are located in one group. The score of

each group is equal to the maximum of the score of each group member. Then groups can

be ranked in a local ranking procedure like a tournament or a global ranking. In the end,

We can assign a rank to group members, first by comparing their group rank and if it is

equal (i.e. both are in the same group), the score of each group member. This procedure

originated from this assumption that TFs are more attracted not only to those bins with

high scores but also the close neighbors of high score bins have a very high chance to

attract them and it can happen when there is not enough space around the high score bin.
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2.2.2 2nd case

In the second case, we only consider the interactions between TFs located at the two dif-

ferent ends of a TAD. All the procedures and algorithms that have been done in the first

case are repeated in the second case as well. As we explained before, these interactions

are weaker than the first case interactions. Therefore, the prediction results based on that

are worse than the first case ones. In the second case, it seems the interaction tendency

values between TFs in the training and test set are not very close like the first cases. This

fact originates from long distances between TFs in this case that makes their interactions

weaker. It is shown in the figure 2.13. Like the first case, we started our simulation to cal-

Figure 2.13: Tendency factor wi,1 between TF1 which is ZBTB33 and other TFs in the

training and test data set for the second case.

culate wi,js as the first factor, and it can handle the first issue. Ranking bins for each TFi

is based on the sum of wj,i of any TFj that potentially can have an interaction with TFi,∑k
j=1,j 6=iwij ,i (i.e. based on dataset they locate in other side of TAD that have interaction

with that bin). The rest part will exactly the same as the first case.

For the second case, the average of true prediction ratio is about 50 percent, while if TFi

is distributed independently from the tendency weight, the average true prediction ratio

should be 34 percent. We can see the comparison between the true prediction ratio and

the random prediction in the figure 2.14 . The factors that heavily impacts our predic-
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Figure 2.14: The average true prediction ratio vs. range over the total number of bins

shows the prediction of random ranks for bins in the 2nd case.

tion is the number of TFi in each chromosome. As we showed in the theory section, the

chance of existing TFi in each bin is proportional to each TFi in the chromosome. We can

show this fact in the figure 2.15. The true prediction ratio average is more in the first chro-

mosomes, where more TFs on average. Besides, in each chromosome, the true prediction

ratio is much better for those TFs with higher frequency in that chromosome. We can see

this fact for the first and the second chromosome in the figure 2.16. We can compare the

interaction tendency between the training and test set. For CTCF, we can see this matter

in the figure 2.17. Based on the figure 2.17, there is a TF with have the most interaction

tendency in both training and test set. This TF is KDM5A . We can conclude KDM5A have

the most tendency to have the 2nd-case interactions with CTCF. This conclusion be more

investigated through HiC data and intra-TAD interactions. Through same approach, we

can find the TF pairs with the most 2nd case interaction tendencies.

For local ranking, we can have same approach as in the 1st case. We can see the result

of the tournament ranking prediction in the figure 2.18. We can see the local ranking
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Figure 2.15: The average true prediction ratio vs. range over the total bin shows the

prediction of random ranks for bins.

prediction is a little bit worse than global ranking like the first case.
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Figure 2.16: The scatter plot of true prediction ratio in terms of number of TFs in the first

and second chromosome shows increasing TFs results in a better prediction.
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Figure 2.17: Interaction tendency between CTCF and other TFs in training set vs. test set

(2nd case).

Figure 2.18: The average local ranking prediction ratio for different TFs in 2nd case.
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Chapter 3

Conclusion

In the last decade, it gets more obvious that studying 3D genome structure plays an essen-

tial role in analyzing regulatory functions in the genome after advancements in methods

for studying chromatin contacts at the genome level. As a part of this improvement, the

discovery of different domains such as TADs and accessing to Hi-C data increase our

knowledge about the impact of those genome domains and interactions inside them be-

tween regulatory factors such as TFs. The interactions between TFs are very dependant

on their co-localization (i.e., their situations relative to each other). TFs choose their target

sites by several different mechanisms. However, a model that can integrate all of these

mechanisms is not available because these mechanisms are complicated and depend on

many unknown factors. Many data integration strategies have been suggested to tackle

this problem. Different intelligent methods such as supervised and unsupervised ma-

chine learning, deep learning, etc., leverage next generation sequencing data to extract

novel patterns for predicting TF binding sites.

Recently genome sequences of an increasing number of organisms have been extracted,

but because our knowledge about transcription factor binding motif is limited, and the

ability of computational tools to provide high-resolution data is restricted, obtaining prac-

tical information from these data sequences still is a severe challenge.

This thesis presents a mechanism to predict the transcriptional regulatory element loca-
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tions independent of motif sequence features. Here we take advantage of probability

models for predicting TF binding sites based on the TADs and TFs locations along dif-

ferent chromosomes. In our model, the tendency of the TFs to be close to each other in

each TADs domain is the only feature used for their binding site prediction. In this anal-

ysis, two different cases for the interaction tendency are studied and compared with each

other. As shown in the results, the first case has the best prediction accuracy between all

of these cases. Because of the shortest distance between TFs in the first case compare with

the other case, the impacts of TFs on each other’s location increase.

Although there is no single agreed feature for predicting TFBS, we found in this frame-

work, we can test more features than the relative distance between TFs. Although our

model is straightforward and considers only one feature for TFBS prediction, it still sheds

light on the TFs co-localization fact and can be used as a guideline for interpreting other

vital features to have a more accurate prediction. As a future direction for this research,

other potential features can be tested through a similar strategy. To do so, we need to

consider two main steps. The first step is designing a proper parameter for each potential

feature. The second step is to modify that parameter so that their difference in the test and

training set is negligible. There are three main points that we can get from this strategy.

The first point is that our co-localization-based model provides a means to measure the

interaction tendency of TFs in respect of each other with a high degree of sensitivity. In

other words, although the prediction model was trained only from the human genome

data, the sensitivity of the model is strong enough to handle other independent data sets

as well. Even though generalizing our model to add cell types and other components

data is potentially possible, the results of two cases confirm the flexibility of our model to

predict the location of TFs in different chromosomes and cell types.

The second point is that important collaboration between pairs of TFs to initialize regu-

latory functions can be revealed through our predictive model. As we explained in the

section 1.6, we can find the important pair of TFs that collaborate with each other by

weight tendencies scatter plot. This finding is an extra advantage of this model which
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primarily is designed for TFBS prediction. We figured out the results of these plots is

very accurate and is not dependent of the true prediction rate for TFBS. The accuracy of

some of these results have been validated through ChIA-PET experiments. Other part of

results can be investigated by more experiments.

The third point is that our approach will also be valuable to explain the co-localization

process’s dynamics. Despite of considerable effort to date, this dynamic process remains

a beautiful and complicated challenge for researchers. In this study, we present a ten-

dency interaction parameter between TFs as a piece of primary evidence that leads us

to design a long term model for dynamic TFs co-localization. To our knowledge, our

model was the first one to borrow Hi-C interactions data between TFs in TADs to predict

TFBS. In the second case we consider HiC interactions between TFs located at two dif-

ferent sides of TADs. We observed these interaction are weaker than the the interactions

between TFs inside a same bin. Therefore the interactions between TFs inside a same

bin are more crucial to take in to account for TFBS prediction. Besides, we consider the

strong interactions between TFs located in close sites at TAD boundaries. Given these

two types of interactions, it may be useful in explaining the dynamic 3D structure of the

TADs, consequently, chromatin reorganization since the dynamic co-localization process

may be associated with the dynamic structure of the 3D genome structure. Revealing this

fact would advance our understanding of the mechanism of TADs formation.
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