
A Novel Algorithm for Nonlinear Dynamical System
Filtering

MCGILL UNIVERSITY, MONTREAL

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Author:

Jiangning Luo

Supervisor:

Prof. Hannah Michalska

A thesis submitted to McGill University in partial fulfillment of the

requirements of the degree of MSc Electrical Engineering

c©2020 Robin Jiangning Luo

December 15, 2020

Abstract

A novel algorithm for estimating nonlinear dynamical systems’ true output from noisy

measurements is presented in this thesis. The thesis begins with a presentation of an al-

gorithm to estimate the output of linear dynamical systems that outperform the linear

Kalman filter [15]. Then presented the development of a Kalman like filter for nonlin-

ear dynamical systems which is embedding the measurements into reproducing kernel

Hilbert space (RKHS) [35]. Our novel algorithm is inspired by the Kalman like filter for

nonlinear dynamical systems (KKF-CEO), which is adapting the algorithm that outper-

forms the linear Kalman filter for nonlinear dynamical systems by embedding the mea-

surements into RKHS. Our novel algorithm is then applied to estimate the true outputs

of a linear system and several nonlinear systems. Our algorithm is shown to be more

accurate than KKF-CEO in most of the experiments, and our algorithm runs much faster

than KKF-CEO. Additionally, in contrast to KKF-CEO, our novel algorithm does not need

parameter tuning to achieve better performance.

1

Abrégé

Un nouvel algorithme pour estimer la sortie réelle de systèmes dynamiques non linéaires

à partir de mesures bruyantes est présenté dans cette thèse. La thèse commence par un

algorithme qui estime la vraie sortie de systèmes dynamiques linéaires et surpasse le

filtre de Kalman linéaire. Puis passe à l’introduction d’un algorithme qui adapte le fil-

tre de Kalman linéaire pour les systèmes dynamiques non linéaires en incorporant les

mesures dans l’espace de Hilbert du noyau de reproduction (RKHS). Le nouvel algo-

rithme est inspiré du filtre de Kalman pour les systèmes dynamiques non linéaires (KKF-

CEO), qui adapte l’algorithme qui surpasse le filtre de Kalman linéaire pour les systèmes

dynamiques non linéaires en intégrant les mesures dans RKHS. Ensuite, notre nouvel

algorithme est appliqué pour estimer les véritables sorties d’un système linéaire et de

plusieurs systèmes non linéaires. Notre algorithme a une meilleure précision que KKF-

CEO dans la plupart des expériences et notre algorithme s’exécute beaucoup plus rapide-

ment que KKF-CEO. De plus, aucun paramètre ne doit être réglé dans notre algorithme

tandis que deux paramètres doivent être ajustés en fonction de la connaissance préalable

du bruit afin d’obtenir de bonnes performances dans KKF-CEO.

2

Acknowledgements

I am grateful to several individuals who helped me constantly throughout my two years

of academic life at McGill.

Firstly, thank my supervisor Hannah Michalska for the generous help, she guided me

patiently throughout my research and helped me with my thesis.

Secondly, thank my family for giving me support both financially and emotionally.

And finally, thank my friend Huiyuan Yang who encouraged me and given me a lot of

help during my research.

3

Preface

In chapter two, I introduced the classic Kalman filter and RKHS in detail, and then re-

viewed some popular algorithms used on nonlinear dynamical systems. In chapter three,

I summarized the master thesis by Anju John et al. In chapter four, I summarized the

paper by Zhu et al. Chapter five is the derivation of my novel algorithm. Chapter six

consists of the results of my experiments.

4

Contents

Abstract . 1

Abrégé . 2

Acknowledgements . 3

Acknowledgements . 4

List of Figures . 11

List of Tables . 12

1 Introduction 1

1.1 Thesis Objectives and Organization . 2

2 Background 4

2.1 Kalman Filter [10] [35] . 4

2.1.1 Problem Definition . 4

2.1.2 Optimality of the Kalman Filter . 6

2.1.3 Kalman Filter [19] . 7

2.2 Reproducing Kernel Hilbert Space (RKHS) [24] 12

2.3 Related Works . 15

2.3.1 Extended Kalman Filter . 15

2.3.2 Unscented Kalman Filter . 16

2.3.3 Other Generative Approaches . 17

3 Double Sided Kernel for Linear Systems [15] 19

5

3.1 Parameter Estimation Using Kernel Representation of Homogeneous SISO

LTI systems . 19

3.2 Derivation of Double Sided Kernel for Fourth Order System 21

3.3 Parameter and State Estimation Using Double Sided Kernel 41

4 Kalman Filter in RKHS 47

4.1 Hilbert Space Embeddings . 47

4.1.1 Embedding Distribution [24] . 48

4.1.2 Cross-Covariance Operator [35] . 50

4.1.3 Conditional Embedding Operator [35] [29] 51

4.2 Kalman Filter in RKHS [35] . 54

4.2.1 Derivation of Kalman Filter in RKHS 54

4.3 Reducing the Size of the Training Data [35] [28] [22] 61

5 Double Sided Kernel for Nonlinear Systems 65

5.1 Derivation of KDS for Nonlinear System . 65

5.2 State Estimation of Nonlinear Systems Using Double Sided Kernel 68

6 Experiments and Results 75

6.1 Performances on Linear Systems . 75

6.2 Performances on Nonlinear Systems . 81

6.2.1 Van Der Pol Equation . 81

6.2.2 Sedoglavic Equation . 89

6.2.3 IKEDA Chaotic Dynamical System [12] 96

7 Discussion and Conclusion 100

A Kalman Filter 102

B Proofs of Theorem 4.2.1 and Theorem 4.2.2 [35] 103

6

C Proof of Theorem 4.3.1 106

7

List of Figures

1.1 Observed time series model. 2

2.1 Block diagram representing a linear, discrete-time dynamical system. [10] . 5

6.1 Noisy, true and estimated 4th order linear system outputs by linear KDS

with AWGN of µ = 0, SNR=20dB and N=1500. 76

6.2 Noisy, true and estimated 4th order linear system outputs by linear KDS

with AWGN of µ = 0, SNR=10dB and N=2400. 77

6.3 Noisy, true and estimated 4th order linear system outputs by linear KDS

with AWGN of µ = 0, SNR=0dB and N=15000. 77

6.4 Noisy, true and estimated 4th order linear system outputs by KKF-CEO

with AWGN of µ = 0, SNR=20dB and N=600. 78

6.5 Noisy, true and estimated 4th order linear system outputs by KKF-CEO

with AWGN of µ = 0, SNR=10dB and N=600. 78

6.6 Noisy, true and estimated 4th order linear system outputs by KKF-CEO

with AWGN of µ = 0, SNR=0dB and N=600. 79

6.7 Noisy, true and estimated 4th order linear system outputs by NLKDS with

AWGN of µ = 0, SNR=20dB and N=6000. 79

6.8 Noisy, true and estimated 4th order linear system outputs by NLKDS with

AWGN of µ = 0, SNR=10dB and N=6000. 80

6.9 Noisy, true and estimated 4th order linear system outputs by NLKDS with

AWGN of µ = 0, SNR=0dB and N=6000. 80

8

6.10 Noisy, true and estimated Van Der Pol equation outputs by KKF-CEO with

AWGN of µ = 0, SNR=20dB. 83

6.11 Noisy, true and estimated Van Der Pol equation outputs by KKF-CEO with

AWGN of µ = 0, SNR=10dB. 83

6.12 Noisy, true and estimated Van Der Pol equation outputs by KKF-CEO with

AWGN of µ = 0, SNR=3dB. 84

6.13 Noisy, true and estimated Van Der Pol equation outputs by KKF-CEO with

AWGN of µ = 0, SNR=0dB. 84

6.14 Noisy, true and estimated Van Der Pol equation outputs by KKF-CEO with

AWGN of µ = 0, SNR=-3dB. 85

6.15 Noisy, true and estimated Van Der Pol equation outputs by KKF-CEO with

AWGN of µ = 0, SNR=-10dB. 85

6.16 Noisy, true and estimated Van Der Pol equation outputs by nonlinear KDS

with AWGN of µ = 0, SNR=20dB. 86

6.17 Noisy, true and estimated Van Der Pol equation outputs by nonlinear KDS

with AWGN of µ = 0, SNR=10dB. 86

6.18 Noisy, true and estimated Van Der Pol equation outputs by nonlinear KDS

with AWGN of µ = 0, SNR=3dB. 87

6.19 Noisy, true and estimated Van Der Pol equation outputs by nonlinear KDS

with AWGN of µ = 0, SNR=0dB. 87

6.20 Noisy, true and estimated Van Der Pol equation outputs by nonlinear KDS

with AWGN of µ = 0, SNR=-3dB. 88

6.21 Noisy, true and estimated Van Der Pol equation outputs by nonlinear KDS

with AWGN of µ = 0, SNR=-10dB. 88

6.22 Noisy, true and estimated Sedoglavic equation outputs by KKF-CEO with

AWGN of µ = 0, SNR=20dB. 90

6.23 Noisy, true and estimated Sedoglavic equation outputs by KKF-CEO with

AWGN of µ = 0, SNR=10dB. 90

9

6.24 Noisy, true and estimated Sedoglavic equation outputs by KKF-CEO with

AWGN of µ = 0, SNR=3dB. 91

6.25 Noisy, true and estimated Sedoglavic equation outputs by KKF-CEO with

AWGN of µ = 0, SNR=0dB. 91

6.26 Noisy, true and estimated Sedoglavic equation outputs by KKF-CEO with

AWGN of µ = 0, SNR=-3dB. 92

6.27 Noisy, true and estimated Sedoglavic equation outputs by KKF-CEO with

AWGN of µ = 0, SNR=-10dB. 92

6.28 Noisy, true and estimated Sedoglavic equation outputs by nonlinear KDS

with AWGN of µ = 0, SNR=20dB. 93

6.29 Noisy, true and estimated Sedoglavic equation outputs by nonlinear KDS

with AWGN of µ = 0, SNR=10dB. 93

6.30 Noisy, true and estimated Sedoglavic equation outputs by nonlinear KDS

with AWGN of µ = 0, SNR=3dB. 94

6.31 Noisy, true and estimated Sedoglavic equation outputs by nonlinear KDS

with AWGN of µ = 0, SNR=0dB. 94

6.32 Noisy, true and estimated Sedoglavic equation outputs by nonlinear KDS

with AWGN of µ = 0, SNR=-3dB. 95

6.33 Noisy, true and estimated Sedoglavic equation outputs by nonlinear KDS

with AWGN of µ = 0, SNR=-10dB. 95

6.34 Noisy, true and estimated IKEDA chaotic dynamical system outputs by

KKF-CEO with AWGN of µ = 0, SNR=3dB. 97

6.35 Noisy, true and estimated IKEDA chaotic dynamical system outputs by

KKF-CEO with AWGN of µ = 0, SNR=0dB. 97

6.36 Noisy, true and estimated IKEDA chaotic dynamical system outputs by

KKF-CEO with AWGN of µ = 0, SNR=-3dB. 98

6.37 Noisy, true and estimated IKEDA chaotic dynamical system outputs by

nonlinear KDS with AWGN of µ = 0, SNR=3dB. 98

10

6.38 Noisy, true and estimated IKEDA chaotic dynamical system outputs by

nonlinear KDS with AWGN of µ = 0, SNR=0dB. 99

6.39 Noisy, true and estimated IKEDA chaotic dynamical system outputs by

nonlinear KDS with AWGN of µ = 0, SNR=-3dB. 99

11

List of Tables

6.1 The performances of compared algorithms on linear system. 81

6.2 The performances of compared algorithms under different noise levels on

Van Der Pol equation. 82

6.3 The performances of compared algorithms under different noise levels on

Sedoglavic equation. 89

6.4 The performances of compared algorithms under different noise levels on

IKEDA chaotic dynamical system. 96

12

Chapter 1

Introduction

A nonlinear dynamical system is a system that does not obey the superposition princi-

ple (see Definition 1.0.1). Nonlinear dynamical systems proliferate as models in fields of

engineering, mathematics, physics, and biology. Nearly all of the real-world dynamical

systems are nonlinear dynamical systems. Nonlinear dynamical systems may appear un-

predictable and chaotic, making them harder to study and control than linear dynamical

systems.

Definition 1.0.1. Superposition Principle: [13] The superposition principle is defined by

the following two properties:

F (u1 + u2) = F (u1) + F (u2) (1.1)

F (αu1) = αF (u1) ∀u1, u2, ∀α ∈ R (1.2)

where u1, u2 are system inputs and F represents the system input-output mapping: y =

F (u). Also, α is any constant parameter.

In this thesis, we focus on the nonlinear dynamical systems. The model we are using in

this thesis can be described as Figure 1.1. Assume we are measuring the outputs gen-

erated by the nonlinear system in the time interval [a, b] sampled with time increment

∆t, xi ∈ Rn is the output generated by the system at time a + i∆t which is usually not

1

observable, yi is the measurement of xi and vi is the independent noise added to xi. Our

objective is to estimate the output sequence {xi} using the noisy measurements {yi}with-

out knowing the underlying model for the nonlinear system.

Figure 1.1: Observed time series model.

1.1 Thesis Objectives and Organization

This Master thesis’s main objective is to develop a new algorithm for output estimation

from noisy output data. To accomplish this, an algorithm developed as an improvement

of Kalman filter [8] and an algorithm based on the concept of Kalman filter [35] are stud-

ied. The bases of the second algorithm: the classical Kalman filter and reproducing kernel

Hilbert space (RKHS) are also studied.

Chapter 2 introduces the classical Kalman filter and RKHS in detail, then several popular

algorithms used on nonlinear dynamical systems are reviewed.

Chapter 3 focuses on the derivation and understanding of the double sided kernel (KDS)

for single input single output (SISO) linear systems.

Chapter 4 introduces the derivation and the procedures of a Kalman like filter for non-

linear dynamical system (KKF-CEO), which is embedding the measurements into repro-

ducing kernel Hilbert space (RKHS).

Chapter 5 presents our new algorithm’s derivation, which is adapting the double sided

kernel for nonlinear dynamical systems.

Chapter 6 compares the performances of KDS, KKF-CEO and our novel algorithm for lin-

2

ear systems, followed by the comparison between the performances of KKF-CEO and our

novel algorithm for nonlinear systems.

Chapter 7 concludes the thesis and discusses the future improvements of our novel algo-

rithm.

3

Chapter 2

Background

This chapter summarizes the principles underlying the classical Kalman filter and intro-

duces a special kind of Hilbert space: the Reproducing Kernel Hilbert space (RKHS). Both

are instrumental in the development of the novel adaptive Kalman filter algorithm pre-

sented here. Then, some popular algorithms used on nonlinear systems related to the

Kalman filter and RKHS are reviewed in Section 2.3.

2.1 Kalman Filter [10] [35]

Kalman filter is an algorithm proposed by R. E. Kalman [19], which is widely used for

state estimation in linear dynamical systems whose mathematical model is known. In a

Kalman filter, the system state is estimated recursively. It is computed by combining the

previous state estimate and the new observed measurement. Therefore only the previous

state estimate needs to be stored. Kalman filter is useful in various applications, and it is

computationally simple.

2.1.1 Problem Definition

As noted above, the Kalman filter serves as an estimator of the state of linear dynami-

cal systems described by Figure 2.1 [10]. The state vector xi is the state at time instance

4

i, which is describing the system’s dynamical behavior. State vectors {xi} are seldom

known or measured, hence is the need for its estimation from the output measurement

data. A set of measurements {yi} are used to estimate the unknown state vectors.

Figure 2.1: Block diagram representing a linear, discrete-time dynamical system. [10]

Mathematically, the block diagram in Figure 2.1 can be expressed by the following equa-

tions:

xi+1 = Fi+1,ixi + wi

yi = Hixi + vi
(2.1)

The first equation is called process equation, where Fi+1,i is called the transition matrix,

which takes the state xi from time instance i to time instance i+1. With reference to Figure

2.1, wi denotes the process noise, which is assumed to be white Gaussian with zero mean

and covariance matrix E[wnwT
i],

E[wnwT
i] =

Qi for n = i

0 for n 6= i

(2.2)

The second equation is called the measurement equation, where yi is the measurement at

time instance i, Hi is called the measurement matrix. The measurement noise vi is also

5

assumed to be white Gaussian with zero mean and covariance matrix E[vnvTi],

E[vnvTi] =

Ri for n = i

0 for n 6= i

(2.3)

It is also assumed that the measurement noise vi is independent of the process noise wi.

There are three types of Kalman algorithms: filtering, prediction and smoothing. The

Kalman filtering problem is defined as follows: [10]

Definition 2.1.1. Kalman filtering problem: [10] Use the entire measurements consist of

vectors y1, y2,..., yk, k ≥ 1 to find the minimum mean-square error estimate of the state xi.

When i = k, the problem is called filtering.

2.1.2 Optimality of the Kalman Filter

For simplicity, consider the following equation:

yi = xi + vi (2.4)

where xi is an unknown signal and vi is the additive noise. The estimate of unknown xi

given the measurements y1,y2, ...,yi is denoted as x̂i. To quantify the difference between

the estimate x̂i and the unknown xi, a loss function is needed. The loss function should

satisfy the following two requirements:

1. It must be non negative.

2. It must be a non decreasing function with respect to the estimation error x̃i which is

defined by

x̃i = xi − x̂i (2.5)

6

The mean square error satisfies these two requirements and is defined by

Ji = E(||xi − x̂i||2) = E(||x̃||2i) (2.6)

where E denotes the expectation operator.

The following two theorems taken from [19] and [30] are useful for calculating the optimal

value of the estimate x̂i:

Theorem 2.1.1. Conditional mean estimator: [19] If {xi} and {yi} are jointly Gaussian

stochastic processes, the conditional mean estimator is the optimal value of the estimate

x̂i which minimizes the mean-square error Ji:

x̂i = E[xi|y1,y2, ...,yi] (2.7)

Theorem 2.1.2. Principle of orthogonality: [30] Consider the stochastic processes {xi}

and {yi}with zero means, assume that

E[xi] = E[yi] = 0 for all k (2.8)

If the stochastic processes {xi} and {yi} are jointly Gaussian, or if we restrict the optimal

estimate x̂i to be a linear function of the measurements and the loss function is mean-

square error. Then the optimal estimate x̂i given the measurements y1,y2, ...,yi is the

orthogonal projection of xi on the space spanned by the measurements up to time instance

i.

The Kalman filter can be derived by using these two theorems.

2.1.3 Kalman Filter [19]

Consider the linear dynamical system described by (2.1). At time instance i, the infor-

mation in the new measurement yi is required to update the estimate of the unknown

7

state xi. The a priori estimate of the unknown state which is available at time instance i is

denoted as x̂−i . Because the a posteriori estimate x̂i is restricted to be a linear function of

the measurements up to time instance i, it can be expressed as a linear combination of a

priori estimate and the new measurement:

x̂i = G(1)
i x̂−i + Giyi (2.9)

The matrix factors G(1)
i and Gi need to be determined. To determine the two matrix

factors, Theorem 2.1.2 will be used. The state-error vector is:

x̃i = xi − x̂i (2.10)

By Theorem 2.1.2, we can get

E[x̃iyTi] = 0 for i = 1, 2, ..., k − 1 (2.11)

From (2.1), (2.9), (2.10) and (2.11), we can get

E[(xi −G(1)
i x̂−i −GiHixi −Giwi)yTi] = 0 for i = 1, 2, ..., k − 1 (2.12)

Because the process noise wi and the measurement yi are independent, we have

E[wiyTi] = 0 (2.13)

Then, (2.12) can be rewritten as

E[(I−GiHi −G(1)
i)xiyTi + G(1)

i (xi − x̂−i)yTi] = 0 (2.14)

8

Where I is identity matrix. From Theorem 2.1.2, we have

E[(xi − x̂−i)yTi] = 0 (2.15)

Then, (2.12) can be further simplified to

(I−GiHi −G(1)
i)E[xiyTi] = 0 for i = 1, 2, ..., k − 1 (2.16)

If (2.16) satisfies for arbitrary states xi and measurements yi, the matrix factors G(1)
i and

Gi need to satisfy the following relation:

I−GiHi −G(1)
i = 0 (2.17)

Hence, G(1)
i is defined as

G(1)
i = I−GiHi (2.18)

Substituting (2.18) into (2.9), the a posteriori estimate of the state xi at time instance i is

x̂i = x̂−i + Gi(yi −Hix̂
−
i) (2.19)

The matrix Gi is called the Kalman gain matrix.

The remaining problem is to derive the Kalman gain matrix Gi. From Theorem 2.1.2, we

have

E[(xi − x̂i)yTi] = 0 (2.20)

hence also

E[(xi − x̂i)ŷTi] = 0 (2.21)

Here ŷTi denotes the estimation of yi given the previous measurements y1,y2, ...,yi−1. The

innovation process is defined by

ỹi = yi − ŷi (2.22)

9

The innovation process is a measure of how much new information contains in yi. It can

also be expressed as

ỹi = yi −Hix̂
−
i

= Hixi + vi −Hix̂
−
i

= Hix̃−i + vi

(2.23)

From (2.20), (2.21) and (2.22), we have

E[(xi − x̂i)ỹTi] = 0 (2.24)

From (2.1) and (2.19), the state-error vector xi − x̂i can be expressed as

xi − x̂i = x̃−i −Gi(Hix̃−i + vi)

= (I−GiHi)x̃−i −Givi
(2.25)

Bring (2.23) and (2.25) into (2.24), we have

E[{(I−GiHi)x̃−i −Givi}(Hix̃−i + vi)] = 0 (2.26)

The measurement noise vi is independent of the state xi and therefore independent of the

error x̃−i , (2.26) can be reduced to

(I−GiHi)E[x̃−i x̃T−i]HT
i −GiE[vivTi] = 0 (2.27)

The a priori covariance matrix P−i is defined as

P−i = E[(xi − x̂−i)(xi − x̂−i)T]

= E[x̃−i x̃T−i]
(2.28)

10

Invoking (2.3) and (2.28), (2.27) can be rewritten as

(I−GiHi)P−i HT
i −GiRi = 0 (2.29)

Finally, we have the formula of the Kalman gain matrix Gi

Gi = P−i HT
i [HiP−i HT

i + Ri]
−1 (2.30)

where [·]−1 denotes the matrix inverse.

Next, consider the recursive process of updating the covariance matrix of the estimation

error, which is called error covariance propagation. Covariance propagation involves two

steps of computation: [10]

1. (2.28) defines the a priori covariance matrix P−i at time instance i. Given the a priori

covariance matrix P−i , compute the a posteriori covariance matrix Pi at time instance

i, which is defined by

Pi = E[x̃ix̃Ti] = E[(xi − x̂i)(xi − x̂i)T] (2.31)

2. Given the a posteriori covariance matrix Pi−1 at time i − 1, compute the updated a

priori covariance matrix P−i at time instance i.

In stage 1, substitute (2.25) into (2.31). Note that the measurement noise vi is independent

to the a priori estimate error x̃−i . Then we have

Pi = (I−GiHi)E[x̃−i x̃T−i](I−GiHi)
T + GiE[vivTi]GT

i

= (I−GiHi)P−i (I−GiHi)
T + GiRiGT

i

(2.32)

Expand (2.32) and bring (2.29) into it, (2.32) can be simplified to

Pi = (I−GiHi)P−i − (I−GiHi)P−i HT
i GT

i + GiRiGT
i (2.33)

11

= (I−GiHi)P−i −GiRiGT
i + GiRiGT

i (2.34)

= (I−GiHi)P−i (2.35)

In the second step, firstly consider the formula of a priori estimate of state x̂−i at time

instance i in terms of the a posteriori estimate x̂i−1 at time i− 1:

x̂−i = Fi,i−1x̂i−1 (2.36)

Then, substitute (2.1) and (2.36) into the a priori estimate error equation, we have

x̃−i = xi − x̂−i

= (Fi,i−1xi−1 + wi−1)− (Fi,i−1x̂i−1)

= Fi,i−1(xi−1 − x̂i−1) + wi−1

= Fi,i−1x̃i−1 + wi−1

(2.37)

Substitute (2.37) into (2.28). Note that the process noise wi is independent of x̃i−1, we

have

P−i = Fi,i−1E[x̃i−1x̃Ti−1]F
T
i,i−1 + E[wi−1wT

i−1]

= Fi,i−1Pi−1FTi,i−1 + Qi−1

(2.38)

Which is the updated a priori covariance matrix P−i in terms of the the a posteriori covari-

ance matrix Pi−1 at time i− 1.

The recursive steps of the Kalman filter are summarized in Appendix.

2.2 Reproducing Kernel Hilbert Space (RKHS) [24]

Suppose we have a feature space X , many classical learning algorithms such as percep-

tron [26], support vector machine (SVM) [4] and principal component analysis (PCA) [25]

12

employ feature vectors x, x′ ∈ X only through an inner product 〈x, x′〉, which is basically

a similarity measure between x and x′. However, the class of linear functions induced by

this inner product may be too restrictive for many real-world problems. Therefore, we

have kernel methods that aim to build more flexible and powerful learning algorithms by

replacing 〈x, x′〉with some other possibly non-linear similarity measures.

The most natural extention of 〈x, x′〉 is to explicitly apply a non-linear transformation ϕ:

ϕ : X → F

x→ ϕ(x) (2.39)

into a high-dimensional feature space F and subsequently evaluate the inner product in

F , i.e.:

k(x, x′) := 〈ϕ(x), ϕ(x′)〉F (2.40)

where 〈·, ·〉F denotes the inner product in F . We refer to ϕ and k as feature map and

kernel function respectively. Likewise, we can interpret k(x, x′) as a non-linear similarity

measure between x and x′. The algorithms that depend on the data sets only through

the inner product 〈x, x′〉 can be extended to non-linear by simply substituting 〈x, x′〉 with

〈ϕ(x), ϕ(x′)〉F . Note that the learning algorithm remains the same, we only changes the

space in which these algorithm operate. As (2.39) is non-linear, a linear algorithm in F

corresponds to the non-linear counterpart in the original space X .

Evaluating k(x, x′) as above requires two steps: i) Construct the feature maps ϕ(x) and

ϕ(x)′ explicitly, ii) Evaluate k(x, x′) := 〈ϕ(x), ϕ(x′)〉F . These two steps can be computa-

tionally expensive if ϕ(x) lives in a high-dimensional space. However, 〈ϕ(x), ϕ(x′)〉F can

be evaluated by an alternative way without resorting to constructing ϕ(x) explicitly if all

we need is an inner product 〈ϕ(x), ϕ(x′)〉F . That is evaluating k(x, x′) directly. This is an

essential aspect of kernel methods, which often referred to as the kernel trick in machine

learning.

When the kernel k is positive definite, there always exists ϕ : X → F for which k(x, x′) =

13

〈ϕ(x), ϕ(x′)〉F , then the kernel trick will be possible [24]. The definition of positive definite

kernel is:

Definition 2.2.1. Positive definite kernel: [24] A function k : X × X → R is a positive

definite kernel if it is symmetric, i.e., k(x,y) = k(y, x), and the Gram matrix is positive

definite:

cTKc =
n∑

i,j=1

cicjk(xi, xj) ≥ 0 (2.41)

for any n ∈ N, any choice of x1, ..., xn ∈ X and any c1, ..., cn ∈ R. It is said to be strictly

positive definite if the equality in (2.41) implies c1 = c2... = cn = 0.

A positive definite kernel defines a space of functions from X to R called reproducing

kernel Hilbert space (RKHS) and denoted byH. Hence the kernel k is also called a repro-

ducing kernel. Whenever we use the kernel k, the feature space F is essentially the RKHS

H associated with the kernel k and we often think of a canonical feature map

k : X → H ⊂ RX

x→ k(x, ·) (2.42)

where RX denotes the vector space of functions fromX to R. All RKHS satisfy the Moore-

Aronszajn Theorem:

Theorem 2.2.1. Moore-Aronszajn Theorem [2]:

Any non-negative definite kernel function k(x, y), uniquely defines a corresponding Hilbert

spaceHwhich consists of all functions f defined on a common domain X ⊂ R which sat-

isfy the following properties

1. ∀x ∈ X , the function k(x, ·) : y→ k(x,y) is an element ofH

2. ∀x ∈ X , ∀f ∈ H, f(x) = 〈f, k(x, ·)〉H

where 〈·, ·〉H denotes the inner product in H. The second property mentioned above is

also known as the reproducing property of kernel k.

14

For convenience, k(x, ·) above can be denoted as kx. Similarly, k(y, ·) can be denoted as ky.

Then, by reproducing property, we have

k(x,y) = ky(x)

= 〈kx, ky〉H

= 〈ϕ(x), ϕ(y)〉H (2.43)

Therefore, the feature map ϕ(x) can be viewed as k(x, ·) alternatively. Then we have

∀x ∈ X ,∀f ∈ H, f(x) = 〈f, ϕ(x)〉H (2.44)

2.3 Related Works

2.3.1 Extended Kalman Filter

Extended Kalman filter (EKF) is an adapted version of Kalman filter that is used on non-

linear state-space systems. The basic idea of EKF is to linearize the nonlinear state-space

model

xi+1 = fi(xi,ui) + ni

yi = hi(xi.ui) + vi (2.45)

around the most recent state estimation, either x̂i or x̂−i . The linearized state-transaction

matrices are

Fi =
∂f(x)

∂x
|x=x̂i−1

Hi =
∂h(x)

∂x
|x=x̂−i

15

Once the linearization is done, the standard Kalman filter can be applied to the linearized

system. The noise in state-space model is assumed to be Gaussian. The details of EKF can

be found in [1, 14, 23, 31, 34].

However, a problem of EKF is that the nonlinear state-space equation is linearized based

on the estimated values x̂i and x̂−i , therefore the linearization leads to the propagation

of Gaussian noise, which makes the performance degrade. To deal with this problem,

unscented Kalman filter (UKF) is proposed.

2.3.2 Unscented Kalman Filter

Unscented Kalman filter (UKF) [18] is proposed by S. J. Julier and J. K. Uhlmann in 1997.

The algorithm is applying unscented transformation to the Kalman filter. Unscented

transformation is an algorithm which calculate the statistics of random variables gen-

erated from nonlinear transformation. Consider a random variable x with nx dimensions

which is propagated through a nonlinear function y = f(x). Assume that the prior density

Π(x) is symmetric, the mean is (x̄) and the covariance is Px, Gaussian is a special case of

the assumption. The statics of y is calculated by forming a set called sigma vectors and

weights with (2L+ 1) sample points {Xn, ω(m)
n , ω

(c)
n }2Ln=0 according to:

X0 = x̄

Xn = x̄ +

(√
(L+ λ)Px

)
n

, n = 1, ..., L

Xn = x̄−
(√

(L+ λ)Px

)
n

, n = L+ 1, ..., 2L (2.46)

ω
(m)
0 =

λ

L+ λ

ω
(c)
0 =

λ

L+ λ
+ 1− α2 + β

ω(m)
n = ω(c)

n =
1

2(L+ λ)
, n = L+ 1, ..., 2L (2.47)

16

where L is set to nx and the scaling parameter is λ = α2(L + k) − L. The spread of the

sigma points around x̄ is determined by the constant α, and the constant α is usually a

small and positive value (0 ≤ α ≤ 10−4). The second scaling parameter k is usually set to

3− L. The prior knowledge of the distribution of x is incorporated by β, which is set to 2

in Gaussian distributions. The ith column of matrix square root is
(√

(L+ λ)Px

)
n

.

The sigma points and the sigma weights have the following conditions:

x̄ =
2L∑
n=0

ω(m)
n Xn

Px =
2L∑
n=0

ω(c)
n (Xn − x̄)T (2.48)

The sigma vectors are propagated through the nonlinear function

Yn = f(Xn), n = 0, ..., 2L (2.49)

The mean of y is approximated as

ȳ ≈
2L∑
n=0

ω(m)
n Yn (2.50)

The covariance of y can be approximated as

Py ≈
2L∑
n=0

ω(c)
n (Yn − ȳ)(Yn − ȳ)T (2.51)

Using the sigma vectors above, the cross covariance can be estimated and used to imple-

ment the Kalman filter. The further details of UKF are introduced in [16–18, 32, 33].

2.3.3 Other Generative Approaches

Recently, there have been some other generative approaches that produce probability

models over all variables in systems and then manipulate the models to compute the

17

classification and regression functions.

Dynamical System Model with a Conditional Embedding (DSMCE) operator [29] and ker-

nel Bayes’ rule (KBR) algorithms [7] are two recent generative approaches. Both of them

are based on the concept of conditional embedding in RKHS, and both of them treat the

true output {xi} or the mappings of them in the RKHS feature space as the hidden states.

The algorithms estimate the hidden states dynamics using the assumed state-space sys-

tem model or the given training set consisting of hidden states. For most of the existing

generative approaches for nonlinear systems, including DSMCE and KBR, the accurate

state-space system model or a clean training set consists of hidden states that are neces-

sary. However, in most nonlinear filtering problems, both accurate state-space models

and clean training sets are unavailable. To solve this problem, Zhu et al. proposed an

algorithm, which will be introduced in detail in Chapter 4. The time complexity of Zhu’s

algorithm is O(n3), which makes it hard to do the filtering when the size of data is large.

Besides, the Kalman filter can be improved using double sided kernel introduced in Chap-

ter 3. Therefore, we developed a novel algorithm that reducing the time complexity and

improving the accuracy of the filtering problem, which will be introduced in Chapter 5.

18

Chapter 3

Double Sided Kernel for Linear

Systems [15]

Double sided kernel was initially presented in [8]. The algorithm is developed as an

improvement of the classical Kalman filter, the object is solving both parameter estimation

and state estimation problem of single input single output (SISO) linear time invariant

(LTI) system. Double sided kernel employs forward integration, backward integration

and Cauchy formula for multiple integrals, and convert a high order differential equation

into an integral form with no singularities at the boundaries of the observation window.

3.1 Parameter Estimation Using Kernel Representation of

Homogeneous SISO LTI systems

The estimation problem in [8] is solving a SISO LTI system with the following structure:

ẋ = Ax

y = Cx (3.1)

19

where the matrix A is in canonical form:

A =

0 1 0 · · · 0

0 0 1 · · · 0

...
...

...

0 0 0 · · · 1

−a0 −a1 −a2 · · · −an−1

(3.2)

and matrix C is:

C =
[
1 0 0 · · ·

]
(3.3)

Therefore, the characteristic equation of the system is:

y(n)(t) + an−1y
(n−1)(t) + · · ·+ a1y

(1)(t) + a0y(t) = 0 (3.4)

The parameters ai, i = 0, ..., n− 1 are estimated by noisy measurements z(τ).

We can treat the parameter estimation of a homogeneous system as the identification of

an unchanged differential invariant I (I ≡ 0).

I(t, y(t), y(1)(t), · · · , y(n)(t)) = y(n)(t) + an−1y
(n−1)(t) + · · ·+ a0y(t), t ≤ 0 (3.5)

There is a problem of singularity at t = 0. However, the problem is solved in [8] using

a two-sided integration which leads to an integral representation of (3.5) in RKHS. Such

representation is described by the following theorem, which has been stated and proved

in [8]:

Theorem 3.1.1. There exist Hilbert-Schmidt kernels KDS and Ki
DS , i = 1, ..., n − 1, such

that y in (3.5) is reproduced in accordance with the action of the evaluation function

y(t) =

b∫
a

KDS(t, τ)y(τ)dτ, ∀t ∈ [a, b] (3.6)

20

The derivatives of y can be computed by output integration recursively, for i = 1, ..., n− 1

and ∀t ∈ [a, b]:

y(i)(t) =
i−1∑
k=0

bk(t)y
(k)(t) +

b∫
a

Ki
DS(t, τ)y(τ)dτ (3.7)

where y(0) ≡ y and bk(·) are rational functions of t. Hilbert-Schmidt kernels are square

integrable functions on L2[a, b]× L2[a, b].

3.2 Derivation of Double Sided Kernel for Fourth Order

System

John’s thesis [15] developed the kernel representation of the double sided kernel for

fourth order system, the characteristic equation of fourth order system can be written

as:

y(4)(t) + a3y
(3)(t) + a2y

(2)(t) + a1y
(1)(t) + a0t(t) = 0 (3.8)

the time interval is [a, b].

Multiply (3.8) by (ε− a)4 and (b− ζ)4, we have (3.9) and (3.10) respectively:

(ε−a)4y(4)(t)+a3(ε−a)4y(3)(t)+a2(ε−a)4y(2)(t)+a1(ε−a)4y(1)(t)+a0(ε−a)4y(t) = 0 (3.9)

(b−ζ)4y(4)(t)+a3(b−ζ)4y(3)(t)+a2(b−ζ)4y(2)(t)+a1(b−ζ)4y(1)(t)+a0(b−ζ)4y(t) = 0 (3.10)

Then, (3.9) and (3.10) will be integrated on interval [a, a + τ] and [b − ζ, b] for four times.

Which means that (3.8) is integrated in forward direction on interval [a, a + τ] and in

backward direction on interval [b, b− ζ].

Integrate the first term of (3.9) for the first time:

a+τ∫
a

(ε− a)4y(4)(ε)dε

21

=τ 4y(3)(a+ τ)−

4(ε− a)3y(2)(ε)|a+τa −
a+τ∫
a

12(ε− a)2y(2)(ε)dε

=τ 4y(3)(a+ τ)− 4τ 3y(2)(a+ τ) + 12(ε− a)2y(ε)|a+τa −

a+τ∫
a

24(ε− a)y(ε)dε

=τ 4y(3)(a+ τ)− 4τ 3y(2)(a+ τ) + 12τ 2y(1)(a+ τ)

− 24(ε− a)y(ε)|a+τa +

a+τ∫
a

24(ε− a)y(ε)dε (3.11)

a+τ∫
a

(ε− a)4y(4)(ε)dε =τ 4y(3)(a+ τ)− 4τ 3y(2)(a+ τ) + 12τ 2y(1)(a+ τ)

− 24τy(a+ τ) +

a+τ∫
a

24y(ε)dε

(3.12)

The upper bound of the integral is a dummy value. For convenience, denote it as ε′ = a+τ

and therefore,

τ 4y(3)(a+ τ) = (ε′ − a)4y(3)(ε′)

τ 3y(2)(a+ τ) = (ε′ − a)3y(2)(ε′)

τ 2y(1)(a+ τ) = (ε′ − a)2y(1)(ε′)

τy(a+ τ) = (ε′ − a)y(ε′)

Integrate the first term of (3.9) for the second time and bring in the above denotations, we

have:

a+τ∫
a

ε′∫
a

(ε− a)4y(4)(ε)dεdε′

=

a+τ∫
a

(ε′ − a)4y(3)(ε′)dε′ − 4

a+ε∫
a

(ε′ − a)3y(2)(ε′)dε′

22

+ 12

a+ε∫
a

(ε′ − a)2y(1)(ε′)dε′ − 24

a+ε∫
a

(ε′ − a)y(ε′)dε

+ 24

a+ε∫
a

ε′∫
a

y(ε′)dεdε′

=(ε′ − a)4y(2)(ε′)|a+τa − 4

a+τ∫
a

(ε′ − a)3y(2)(ε′)dε′ − 4(ε′ − a)3y(ε′)|a+τa

+ 12

a+τ∫
a

(ε′ − a)2y(ε′)dε′ + 12(ε′ − a)2y(ε′)|a+τa

− 24

a+τ∫
a

(ε′ − a)y(ε′)dε′ + 24

a+ε∫
a

ε′∫
a

y(ε)dεdε′

− 24

a+τ∫
a

(ε′ − a)y(ε′)dε′

=τ 4y(2)(a+ τ)− 4(ε′ − a)3y(ε′)|a+τa + 12

a+τ∫
a

(ε′ − a)2y(ε′)dε′

− 4τ 3y(a+ τ) + 12(ε′ − a)2y(ε′)|a+τa − 24

a+τ∫
a

(ε′ − a)y(ε′)dε′

+ 12τ 2y(a+ τ) + 24

a+ε∫
a

ε′∫
a

y(ε)dεdε′ − 48

a+τ∫
a

(ε′ − a)y(ε′)dε′

=τ 4y(2)(a+ τ)− 4τ 3y(a+ τ) + 12(ε′ − a)2y(ε)|a+τa

− 24

a+τ∫
a

(ε′ − a)y(ε′)dε′ − 4τ 3y(a+ τ) + 24τ 2y(a+ τ)

+ 24

a+ε∫
a

ε′∫
a

y(ε)dεdε′ − 72

a+τ∫
a

(ε′ − a)y(ε′)dε′ (3.13)

23

And finally, we have

a+τ∫
a

ε′∫
a

(ε− a)4y(4)(ε)dεdε′ =τ 4y(2)(a+ τ)− 8τ 3y(a+ τ) + 36τ 2y(a+ τ)

− 96

a+τ∫
a

(ε′ − a)y(ε′)dε′ + 24

a+τ∫
a

ε′∫
a

y(ε)dεdε′

(3.14)

Integrate the first term for the third time. Again, we set a dummy value ε′′ = a + τ , we

have:

a+τ∫
a

ε′∫
a

ε′′∫
a

(ε− a)4y(4)(ε)dεdε′dε′′

=

a+τ∫
a

(ε′′ − a)4y(2)(ε′′)dε′′ − 8

a+τ∫
a

(ε′′ − a)3y′(ε′′)dε′′

+ 36

a+τ∫
a

(ε′′ − a)2y(ε′′)dε′′ − 96

a+τ∫
a

ε′′∫
a

(ε′ − a)y(ε)dε′dε′′

+ 24

a+τ∫
a

ε′∫
a

ε′′∫
a

y(ε)dεdε′dε′′

=τ 4y(1)(a+ τ)− 4(ε′′ − a)3y(ε′′)|a+τa + 12

a+τ∫
a

(ε′′ − a)2y(ε′′)dε′′

− 8τ 3y(a+ τ) + 60

a+τ∫
a

(ε′′ − a)2y(ε′′)dε′′

− 96

a+τ∫
a

ε′′∫
a

(ε′ − a)y(ε)dε′dε′′ + 24

a+τ∫
a

ε′∫
a

ε′′∫
a

y(ε)dεdε′dε′′ (3.15)

Finally, we have

a+τ∫
a

ε′∫
a

ε′′∫
a

(ε− a)4y(4)(ε)dεdε′dε′′

24

=τ 4y(a+ τ)− 12τ 3y(a+ τ) + 72

a+τ∫
a

(ε′′ − a)2y(ε′′)dε′′

− 96

a+τ∫
a

ε′′∫
a

(ε′ − a)y(ε′)dεdε′′

+ 24

a+τ∫
a

ε′∫
a

ε′′∫
a

y(ε)dεdε′dε′′ (3.16)

Integrate the first term for the fourth time, set a dummy value ε′′′ = a+ τ , we have:

a+τ∫
a

ε′′′∫
a

ε′′∫
a

ε′∫
a

(ε− a)4y(4)(ε)dεdε′dε′′dε′′′

=

a+τ∫
a

(ε′′′ − a)4y(1)(ε′′′)dε′′′ −
a+τ∫
a

12(ε′′′ − a)3y(ε′′′)dε′′′

+

a+τ∫
a

ε′′′∫
a

72(ε′′ − a)2y(ε′′)dε′′dε′′′

−
a+τ∫
a

ε′′′∫
a

ε′′∫
a

96(ε′ − a)y(ε′)dε′dε′′dε′′′

+

a+τ∫
a

ε′′′∫
a

ε′′∫
a

ε′∫
a

24y(ε)dεdε′dε′′dε′′′ (3.17)

And finally,

a+τ∫
a

ε′′′∫
a

ε′′∫
a

ε′∫
a

(ε− a)4y(4)(ε)dεdε′dε′′dε′′′

=τ 4y(a+ τ)−
a+τ∫
a

16(ε′′′ − a)3y(ε′′′)dε′′′

+

a+τ∫
a

ε′′′∫
a

72(ε′′ − a)2y(ε′′)dε′′dε′′′

25

−
a+τ∫
a

ε′′′∫
a

ε′′∫
a

96(ε′ − a)y(ε′)dε′dε′′dε′′′

+

a+τ∫
a

ε′′′∫
a

ε′′∫
a

ε′∫
a

24y(ε)dεdε′dε′′dε′′′ (3.18)

Then, integrate the second term of (3.9) for the first time:

a+τ∫
a

a3(ε− a)4y(3)(ε)dε

=a3(ε− a)4y(2)(ε)|a+τa −
a+τ∫
a

4a3(ε− a)3y(2)(ε)dε

=a3τ
4y(2)(a+ τ)−

4a3(ε− a)3y(1)(ε)|a+τa −
a+τ∫
a

12a3(ε− a)2y(1)(ε)dε

=a3τ

4y(2)(a+ τ)− 4a3τ
3y(1)(a+ τ) + 12a3τ

2y(a+ τ)−
a+τ∫
a

24a3(ε− a)y(ε)dε (3.19)

Similar to previous steps, introducing a dummy value ε′ = a+ τ and integrate the second

term for the second time:

a+τ∫
a

ε′∫
a

a3(ε− a)4y(3)(ε)dεdε′

=

a+τ∫
a

a3(ε
′ − a)4y(2)(ε′)dε′ −

a+τ∫
a

4a3(ε
′ − a)3y(1)(ε′)dε′

+

a+τ∫
a

12a3(ε
′ − a)2y(ε′)dε′ −

a+τ∫
a

ε′∫
a

24a3(ε− a)y(ε)dεdε′

=a3τ
4y(1)(a+ τ)− 8a3τ

3y(a+ τ) +

a+τ∫
a

36a3(ε
′ − a)2y(ε′)dε′

−
a+τ∫
a

ε′∫
a

24a3(ε− a)y(ε)dεdε′ (3.20)

26

Integrate the second term for the third time,

a+τ∫
a

ε′′∫
a

ε′∫
a

a3(ε− a)4y(3)(ε)dεdε′dε′′

=

a+τ∫
a

a3(ε
′′ − a)4y(1)(ε′′)dε′′ −

a+τ∫
a

8a3(ε
′′ − a)3y(ε′′)dε′′

+

a+τ∫
a

ε′′∫
a

36a3(ε
′ − a)2y(ε′)dε′dε′′

−
a+τ∫
a

ε′′∫
a

ε′∫
a

24a3(ε− a)y(ε)dεdε′dε′′

=a3τ
4y(a+ τ)−

a+τ∫
a

12a3(ε
′′ − a)3y(ε′′)dε′′

+

a+τ∫
a

ε′′∫
a

36a3(ε
′ − a)2y(ε′)dε′dε′′

−
a+τ∫
a

ε′′∫
a

ε′∫
a

24a3(ε− a)y(ε)dεdε′dε′′ (3.21)

Integrate the second term for the fourth time,

a+τ∫
a

ε′′′∫
a

ε′′∫
a

ε′∫
a

a3(ε− a)4y(3)(ε)dεdε′dε′′

=

a+τ∫
a

a3(ε
′′′ − a)4y(ε′′′)dε′′′ −

a−τ∫
a

ε′′′∫
a

12a3(ε
′′ − a)3y(ε′′)dε′′dε′′′

+

a+τ∫
a

ε′′′∫
a

ε′′∫
a

36a3(ε
′ − a)2y(ε′)dε′dε′′dε′′′

−
a+τ∫
a

ε′′′∫
a

ε′′∫
a

ε′∫
a

24a3(ε− a)y(ε)dεdε′dε′′dε′′′ (3.22)

27

Integrate the third term of (3.9) for the first time:

a+τ∫
a

a2(ε− a)4y(2)(ε)dε

=a2(ε− a)4y(1)(ε)|a+τa −
a+τ∫
a

4a2(ε− a)3y(1)(ε)dε

=a2τ
4y(1)(a+ τ)−

4a2(ε− a)3y(ε)|a+τa −
a+τ∫
a

12a2(ε− a)2y(ε)dε

=a2τ

4y(1)(a+ τ)− 4a2τ
3y(a+ τ) +

a+τ∫
a

12a2(ε− a)2y(ε)dε (3.23)

Integrate the third time for the second time,

a+τ∫
a

ε′∫
a

a2(ε− a)4y(2)(ε)dεdε′

=

a+τ∫
a

a2(ε
′ − a)4y(1)(ε′)dε′ −

a+τ∫
a

4a2(ε
′ − a)3y(ε′)dε′

+

a+τ∫
a

ε′∫
a

12a2(ε− a)2y(ε)dεdε′

=a2τ
4y(a+ τ)−

a+τ∫
a

8a2(ε
′ − a)3y(ε′)dε′ +

a+τ∫
a

ε′∫
a

12a2(ε− a)2y(ε)dεdε′ (3.24)

Integrating the third term for the third time,

a+τ∫
a

ε′′∫
a

ε′∫
a

a2(ε− a)4y(2)(ε)dεdε′dε′′

=

a+τ∫
a

a2(ε
′′ − a)4y(ε′′)dε′′ −

a+τ∫
a

ε′′∫
a

8a2(ε
′ − a)3y(ε′)dε′dε′′

28

+

a+τ∫
a

ε′′∫
a

ε′∫
a

12a2(ε− a)2y(ε)dεdε′dε′′ (3.25)

Integrate the third term for the fourth time:

a+τ∫
a

ε′′′∫
a

ε′′∫
a

ε′∫
a

a2(ε− a)4y(2)(ε)dεdε′dε′′dε′′′

=

a+τ∫
a

ε′′′∫
a

a2(ε
′′ − a)4y(ε′′)dε′′dε′′′

−
a+τ∫
a

ε′′′∫
a

ε′′∫
a

8a2(ε
′ − a)3y(ε′)dε′dε′′dε′′′

+

a+τ∫
a

ε′′′∫
a

ε′′∫
a

ε′∫
a

12a2(ε− a)2y(ε)dεdε′dε′′dε′′′ (3.26)

Integrate the fourth term of (3.9) for the first time,

a+τ∫
a

a1(ε− a)y(1)(ε)dε

=a1(ε− a)4y(ε)|a+τa −
a+τ∫
a

4a1(ε− a)3y(ε)dε

=a1τ
4y(a+ τ)−

a+τ∫
a

4a1(ε− a)3y(ε)dε (3.27)

Integrate the fourth term for the second time,

a+τ∫
a

ε′∫
a

a1(ε− a)4y(1)(ε)dεdε′

=

a+τ∫
a

a1(ε
′ − a)4y(ε′)dε′ −

a+τ∫
a

ε′∫
a

4a1(ε− a)3y(ε)dεdε′ (3.28)

29

Integrate the fourth term for the third time,

a+τ∫
a

ε′′∫
a

ε′∫
a

a1(ε− a)4y(1)(ε)dεdε′dε′′

=

a+τ∫
a

ε′′∫
a

a1(ε
′ − a)4y(ε′)dε′dε′′

−
a+τ∫
a

ε′′∫
a

ε′∫
a

4a1(ε− a)3y(ε)dεdε′dε′′ (3.29)

Integrate the fourth term for the fourth time,

a+τ∫
a

ε′′′∫
a

ε′′∫
a

ε′∫
a

a1(ε− a)4y(1)(ε)dεdε′dε′′dε′′′

=

a+τ∫
a

ε′′′∫
a

ε′′∫
a

a1(ε
′ − a)4y(ε′)dε′dε′′dε′′′

−
a+τ∫
a

ε′′′∫
a

ε′′∫
a

ε′∫
a

4a1(ε− a)3y(ε)dεdε′dε′′dε′′′ (3.30)

Integrate the last term of (3.9) for four times, we have:

a+τ∫
a

ε′′′∫
a

ε′′∫
a

ε′∫
a

a0(ε− a)4y(ε)dεdε′dε′′dε′′′ (3.31)

Combining all the terms being integrated four times, we have:

τ 4y(a+ τ) =

a+τ∫
a

[
16(ε′′′ − a)3 − a3(ε′′′ − a)4

]
y(ε′′′)dε′′′

+

a+τ∫
a

ε′′′∫
a

[
−72(ε′′ − a)2 + 12a3(ε

′′ − a)3 − a2(ε′′ − a)4
]
y(ε′′)dε′′dε′′′

30

+

a+τ∫
a

ε′′′∫
a

ε′′∫
a

[
96(ε′ − a)− 36a3(ε

′ − a)2

+ 8a2(ε
′ − a)3 − a1(ε′ − a)4

]
y(ε′)dε′dε′′dε′′′

+

a+τ∫
a

ε′′′∫
a

ε′′∫
a

ε′∫
a

[
− 24 + 24a3(ε− a)− 12a2(ε− a)2

+ 4a1(ε− a)3 − a0(ε− a)4
]
y(ε)dεdε′dε′′dε′′′ (3.32)

In order to simplify the above equation, Cauchy’s integration formula is used:

Theorem 3.2.1. Cauchy’s integration formula

Suppose f is a continuous function, the nth repeated integral of f start from a is:

f (−n)(x) =

x∫
a

ζ1∫
a

· · ·
ζn−1∫
a

f(ζn)dζn · · · dζ2dζ1 (3.33)

which is equivalent to

f (−n)(x) =
1

(n− 1)!

x∫
a

(x− t)n−1f(t)dt (3.34)

In (3.32), let a+ τ = t and apply Cauchy’s integration formula,

(t− a)4y(t) ,

t∫
a

KF,y(t, τ)y(τ) dτ (3.35)

Where KF,y(t, τ) is

KF,y(t, τ) =

[
16(τ − a)3 − a3(τ − a)4

]
+ (t− τ)

[
− 72(τ − a)2 + 12a3(τ − a)3 − a2(τ − a)4

]
+

(t− τ)2

2

[
96(τ − a)− 36a3(τ − a)2 + 8a2(τ − a)3 − a1(τ − a)4

]
31

+
(t− τ)3

6

[
− 24 + 24a3(τ − a)− 12a2(τ − a)2 + 4a1(τ − a)3 − a0(τ − a)4

]
(3.36)

Now consider (3.10), integrate the first term of it for the first time:

b∫
b−σ

(b− ζ)4y(4)(ζ)dζ

=(b− ζ)4y(3)ζ |bb−σ +

b∫
b−σ

4(b− ζ)3y(3)(ζ)dζ

=− ζ4y(3)(b− σ) +

[
4(b− ζ)3y(2)(ζ) |bb−σ +

b∫
b−σ

12(b− ζ)2y(2)(ζ)dζ

]

=− ζ4y(3)(b− σ)− 4ζ3y(2)(b− σ) +

[
12(b− ζ)2y(1)(ζ) |bb−σ +

b∫
b−σ

24(b− ζ)y(1)(ζ)dζ

]

=− ζ4y(3)(b− σ)− 4ζ3y(2)(b− σ)− 12ζ2y(1)(b− σ)

+

[
24(b− ζ)y(ζ) |bb−σ +

b∫
b−σ

24y(ζ)dζ

]

=− ζ4y(3)(b− σ)− 4ζ3y(2)(b− σ)− 12ζ2y(1)(b− σ)− 24ζy(b− σ) +

b∫
b−σ

24y(ζ)dζ (3.37)

Similar to forward integration, the upper bound of the integral in backward integration

is also replaced by a dummy value ζ ′ = b− ζ , we have

−σ4y(3)(b− σ) = −(b− ζ ′)4y(3)(ζ ′)

−4σ3y(2)(b− σ) = −4(b− ζ ′)3y(2)(ζ ′)

−12σ2y(1)(b− σ) = −12(b− ζ ′)2y(1)(ζ ′)

−24σy(b− σ) = −24(b− ζ ′)y(ζ ′)

32

Integrate the first term of (3.10) for the second time,

b∫
b−σ

b∫
ζ′

(b− ζ)4y(4)(ζ)dζ

=−
b∫

b−σ

(b− ζ)4y(3)(ζ ′)dζ ′ −
b∫

b−σ

4(b− ζ ′)3y(2)(ζ ′)dζ ′

−
b∫

b−σ

12(b− ζ ′)2y(1)(ζ ′)dζ ′ −
b∫

b−σ

24(b− ζ ′)y(ζ ′)dζ ′ +

b∫
b−σ

b∫
ζ′

24y(ζ)dζdζ ′

=ζ4y(2)(b− σ) + 8ζ3y(1)(b− σ) + 36ζ2y(b− σ)

−
b∫

b−σ

96(b− ζ ′)y(ζ ′)dζ ′ +

b∫
b−σ

b∫
ζ′

24y(ζ)dζdζ ′ (3.38)

Set dummy value to ζ ′′ = b− σ, integrate the first term for the third time,

b∫
b−σ

b∫
ζ′′

b∫
ζ′

(b− ζ)4y(4)(ζ)dζdζ ′dζ ′′

=

b∫
b−σ

(b− ζ ′′)4y(2)(ζ ′′)dζ ′′ +
b∫

b−σ

8(b− ζ ′′)3y(1)(ζ ′′)dζ ′′ +
b∫

b−σ

36(b− ζ ′′)2y(ζ ′′)dζ ′′

−
b∫

b−σ

b∫
ζ′′

96(b− ζ ′)y(ζ ′)dζ ′ +

b∫
b−σ

b∫
ζ′′

b∫
ζ′

24y(ζ)dζdζ ′dζ ′′

=− ζ4y(1)(b− σ)− 12ζ3y(b− σ) +

b∫
b−σ

72(b− ζ ′′)2y(ζ ′′)dζ ′′

−
b∫

b−σ

b∫
ζ′′

96(b− ζ ′)y(ζ ′)dζ ′dζ ′′ +

b∫
b−σ

b∫
ζ′′

b∫
ζ′

24y(ζ)dζdζ ′dζ ′′ (3.39)

Set the dummy value to ζ ′′′ = b− σ, then integrate the first term for the fourth time,

b∫
b−σ

b∫
ζ′′′

b∫
ζ′′

b∫
ζ′

(b− ζ)4y(4)(ζ)dζdζ ′dζ ′′dζ ′′′

33

=−
b∫

b−σ

(b− ζ ′′′)4y(1)(ζ ′′′)dζ ′′′ −
b∫

b−σ

12(b− ζ ′′′)3y(ζ ′′′)dζ ′′′

+

b∫
b−σ

b∫
ζ′′′

72(b− ζ ′′)2y(ζ ′′)dζ ′′ζ ′′′ −
b∫

b−σ

b∫
ζ′′′

b∫
ζ′′

96(b− ζ ′)y(ζ ′)dζ ′dζ ′′dζ ′′′

+

b∫
b−σ

b∫
ζ′′′

b∫
ζ′′

b∫
ζ′

24y(ζ)dζdζ ′dζ ′′dζ ′′′ (3.40)

Integrate the second term of (3.10) for the first time,

b∫
b−σ

a3(b− ζ)4y(3)(ζ)dζ

=a3(b− ζ)4y(2)(ζ) |bb−σ +

b∫
b−σ

4a3(b− ζ)2y(2)(ζ)dζ

=− a3σ4y(2)(b− σ) +

[
4a3(b− ζ)y(1)(ζ) |bb−σ +

b∫
b−σ

12a3(b− ζ)2y(1)(ζ)dζ

]

=− a3σ4y(2)(b− σ)− 4a3σ
3y(1)(b− σ)− 12a3σ

2y(b− σ)

+

b∫
b−σ

24a3(b− ζ)y(ζ)dζ (3.41)

Set the dummy value ζ ′ = b− σ, integrating the second term for the second time,

b∫
b−σ

b∫
ζ′

a3(b− ζ)4y3(ζ)dζdζ ′

=−
b∫

b−σ

a3(b− ζ ′)4y(2)(ζ ′)dζ ′ −
b∫

b−σ

4a3(b− ζ ′)3y(1)(ζ ′)dζ ′

−
b∫

b−σ

12a3(b− ζ ′)2y(ζ ′)dζ ′ +

b∫
b−σ

b∫
ζ′

24a3(b− ζ)y(ζ)dζdζ ′

34

=a3σ
4y(1)(b− σ) + 8a3σ

(3)y(b− σ)−
b∫

b−σ

36a3(b− ζ ′)2y(ζ ′)dζ ′

+

b∫
b−σ

b∫
ζ′

24a3(b− ζ)y(ζ)dζdζ ′ (3.42)

Integrating the second term for the third time,

b∫
b−σ

b∫
ζ′′

b∫
ζ′

a3(b− ζ)4y3(ζ)dζdζ ′dζ ′′

=

b∫
b−σ

a3(b− ζ ′′)4y(1)(ζ ′′)dζ ′′ +
b∫

b−σ

8a3(b− ζ ′′)3y(ζ ′′)dζ ′′

−
b∫

b−σ

b∫
ζ′′

36a3(b− ζ ′)2y(ζ ′)dζ ′dζ ′′ +

b∫
b−σ

b∫
ζ′′

b∫
ζ′

24a3(b− ζ)y(ζ)dζdζ ′dζ ′′

=− a3σ4y(b− σ) +

b∫
b−σ

12a3(b− ζ ′′)3y(ζ ′′)dζ ′′ −
b∫

b−σ

b∫
ζ′′

36a3(b− ζ ′)2y(ζ ′)dζ ′dζ ′′

+

b∫
b−σ

b∫
ζ′′

b∫
ζ′

24a3(b− ζ)y(ζ)dζdζ ′dζ ′′ (3.43)

Integrate the second term for the fourth time,

b∫
b−σ

b∫
ζ′′′

b∫
ζ′′

b∫
ζ′

a3(b− ζ)4y3(ζ)dζdζ ′dζ ′′dζ ′′′

=−
b∫

b−σ

a3(b− ζ ′′′)4y(ζ ′′′)dζ ′′′ +

b∫
b−σ

b∫
ζ′′′

12a3(b− ζ ′′)3y(ζ ′′)dζ ′′dζ ′′′

−
b∫

b−σ

b∫
ζ′′′

b∫
ζ′′

36a3(b− ζ ′)2y(ζ ′)dζ ′dζ ′′dζ ′′′

+

b∫
b−σ

b∫
ζ′′′

b∫
ζ′′

b∫
ζ′

24a3(b− ζ)y(ζ)dζdζ ′′dζ ′′dζ ′′′ (3.44)

35

Integrate the third term of (3.10) for the first time, we have

b∫
b−σ

a2(b− ζ)4y(2)(ζ)dζ

=a2(b− ζ)4y(1)(ζ) |bb−σ +

b∫
b−σ

4a2(b− ζ)3y(1)(ζ)dζ

=− a2σ4y(1)(b− σ) +

[
4a2(b− ζ)3y(ζ) |bb−σ +

b∫
b−σ

12a2(b− ζ)2y(ζ)dζ

]

=− a2σ4y(1)(b− σ)− 4a2σ
3y(b− σ) +

b∫
b−σ

12a2(b− ζ)2y(ζ)dζ (3.45)

Integrate the third term for the second time,

b∫
b−σ

b∫
ζ′

a2(b− ζ ′)4y(2)(ζ)dζdζ ′

=−
b∫

b−σ

a2(b− ζ ′)4y(1)(ζ ′)−
b∫

b−σ

4a2(b− ζ ′)3y(ζ ′)dζ ′ +

b∫
b−σ

b∫
ζ′

12a2(b− ζ ′)2y(ζ)dζdζ ′

= a2σ
4y(b− σ)−

b∫
b−σ

8a2(b− ζ ′)3y(ζ ′)dζ ′ +

b∫
b−σ

b∫
ζ′

12a2(b− ζ)2y(ζ)dζdζ ′ (3.46)

Integrate the third term for the third time,

b∫
b−σ

b∫
ζ′′

b∫
ζ′

a2(b− ζ)4y(2)(ζ)dζdζ ′dζ ′′

=

b∫
b−σ

a2(b− ζ ′′)(4)y(ζ ′′)dζ ′′ −
b∫

b−σ

b∫
ζ′′

8a2(b− ζ ′)3y(ζ ′)dζ ′dζ ′′

+

b∫
b−σ

b∫
ζ′′

b∫
ζ′

12a2(b− ζ)2y(ζ)dζdζ ′dζ ′′ (3.47)

36

Integrate the third term for the fourth time,

b∫
b−σ

b∫
ζ′′′

b∫
ζ′′

b∫
ζ′

a2(b− ζ)4y(2)(ζ)dζdζ ′dζ ′′dζ ′′′

=

b∫
b−σ

b∫
ζ′′′

a2(b− ζ ′′)4y(ζ ′′)dζ ′′dζ ′′′ −
b∫

b−σ

b∫
ζ′′′

b∫
ζ′′

8a2(b− ζ ′)3y(ζ ′)dζ ′dζ ′′dζ ′′′

+

b∫
b−σ

b∫
ζ′′′

b∫
ζ′′

b∫
ζ′

12a2(b− ζ)2y(ζ)dζdζ ′dζ ′′dζ ′′′ (3.48)

Integrate the fourth term for the first time,

b∫
b−σ

a1(b− ζ)4y(1)(ζ)dζ = a1(b− ζ)4y(ζ) |bb−σ +

b∫
b−σ

4a1(b− ζ)3y(ζ)dζ

= −a1σ4y(b− σ) +

b∫
b−σ

4a1(b− ζ)3y(ζ)dζ (3.49)

Integrate the fourth term for the second time,

b∫
b−σ

b∫
ζ′

a1(b− ζ)4y(1)(ζ)dζdζ ′

=−
b∫

b−σ

a1(b− ζ ′)4y(ζ ′)dζ ′ +

b∫
b−σ

b∫
ζ′

4a1(b− ζ)3y(ζ)dζdζ ′ (3.50)

Integrate the fourth term for the third time,

b∫
b−σ

b∫
ζ′′

b∫
ζ′

a1(b− ζ)4y(1)(ζ)dζdζ ′dζ ′′

=−
b∫

b−σ

b∫
ζ′′

a1(b− ζ ′)4y(ζ ′)dζ ′dζ ′′ +

b∫
b−σ

b∫
ζ′′

b∫
ζ′

4a1(b− ζ)3y(ζ)dζdζ ′dζ ′′ (3.51)

37

Integrate the fourth term for the last time,

b∫
b−σ

b∫
ζ′′′

b∫
ζ′′

b∫
ζ′

a1(b− ζ)4y(1)(ζ)dζdζ ′dζ ′′dζ ′′′

=−
b∫

b−σ

b∫
ζ′′′

b∫
ζ′′

a1(b− ζ ′)4y(ζ ′)dζ ′dζ ′′dζ ′′′ +

b∫
b−σ

b∫
ζ′′′

b∫
ζ′′

b∫
ζ′

4a1(b− ζ)3y(ζ)dζdζ ′dζ ′′dζ ′′′

(3.52)

Integrate the last term of (3.10) four times, we have

b∫
b−σ

b∫
ζ′′′

b∫
ζ′′

b∫
ζ′

a0(b− ζ)4y(ζ)dζdζ ′dζ ′′dζ ′′′ (3.53)

Combining all the integration of the five terms from (3.10) above, we have

σ4y(b− σ)

=

b∫
b−σ

[
16(b− ζ ′′′)3 + a3(b− ζ ′′′)4

]
y(ζ ′′′)dζ ′′′

+

b∫
b−σ

b∫
ζ′′′

[
− 72(b− ζ ′′)2 − 12a3(b− ζ ′′)3 − a2(b− ζ ′′)4

]
y(ζ ′′)ζ ′′ζ ′′′

+

b∫
b−σ

b∫
ζ′′

b∫
ζ′′

[
96(b− ζ ′) + 36a3(b− ζ ′)2 + 8a2(b− ζ ′)3 + a1(b− ζ ′)4

]
y(ζ ′)dζ ′dζ ′′dζ ′′′

+

b∫
b−σ

b∫
ζ′′′

b∫
ζ′′

b∫
ζ′

[
− 24− 24a3(b− ζ)− 12a2(b− ζ)2

− 4a1(b− ζ)3 − a0(b− ζ)4
]
y(ζ)dζdζ ′dζ ′′dζ ′′′ (3.54)

38

In order to apply Cauchy’s integration formula on (3.54), the integration intervals are

reversed, and the signs are changed, we have

σ4y(b− σ)

=

b−σ∫
b

[
− 16(b− ζ ′′′)3 − a3(b− ζ ′′′)4

]
y(ζ ′′′)dζ ′′′

+

b−σ∫
b

ζ′′′∫
b

[
− 72(b− ζ ′′)2 − 12a3(b− ζ ′′)3 − a2(b− ζ ′′)4

]
y(ζ ′′)ζ ′′ζ ′′′

+

b−σ∫
b

ζ′′∫
b

ζ′′∫
b

[
− 96(b− ζ ′)− 36a3(b− ζ ′)2 − 8a2(b− ζ ′)3 − a1(b− ζ ′)4

]
y(ζ ′)dζ ′dζ ′′dζ ′′′

+

b−σ∫
b

ζ′′′∫
b

ζ′′∫
b

ζ′∫
b

[
− 24− 24a3(b− ζ)− 12a2(b− ζ)2

− 4a1(b− ζ)3 − a0(b− ζ)4
]
y(ζ)dζdζ ′dζ ′′dζ ′′′ (3.55)

Substitute σ into b− t, then apply Cauchy’s integration formula (3.34) on (3.55), we have

(b− t)4y(t)

=

t∫
b

[
− 16(b− σ)3 − a3(b− σ)4

]
y(σ)dσ

+

t∫
b

(t− σ)

[
− 72(b− σ)2 − 12a3(b− σ)3 − a2(b− σ)4

]
y(σ)dσ

+

t∫
b

(t− σ)2

2

[
− 96(b− σ)− 36a3(b− σ)2 − 8a2(b− σ)3 − a1(b− σ)4

]
y(σ)dσ

+

t∫
b

(t− σ)3

6

[
− 24− 24a3(b− σ)− 12a2(b− σ)2

− 4a1(b− σ)3 − a0(b− σ)4
]
y(σ)dσ (3.56)

39

Reverse the integration intervals again, and change σ into τ for convenience, we have

(b− t)4y(t)

=

b∫
t

[
16(b− τ)3 + a3(b− τ)4

]
y(τ)dτ

+

b∫
t

(t− τ)

[
72(b− τ)2 + 12a3(b− τ)3 + a2(b− τ)4

]
y(τ)dτ

+

b∫
t

(t− τ)2

2

[
96(b− τ) + 36a3(b− τ)2 + 8a2(b− τ)3 + a1(b− τ)4

]
y(τ)dτ

+

b∫
t

(t− τ)3

6

[
24 + 24a3(b− τ) + 12a2(b− τ)2 + 4a1(b− τ)3 + a0(b− τ)4

]
y(τ)dτ

(3.57)

Then, we have

(b− t)4y(t) ,

b∫
t

KB,y(t, τ)y(τ) dτ (3.58)

where

KB,y(t, τ) =

[
16(b− τ)3 + a3(b− τ)4

]
+ (t− τ)

[
72(b− τ)2 + 12a3(b− τ)3 + a2(b− τ)4

]
+

(t− τ)2

2

[
96(b− τ) + 36a3(b− τ)2 + 8a2(b− τ)3 + a1(b− τ)4

]
+

(t− τ)3

6

[
24 + 24a3(b− τ) + 12a2(b− τ)2 + 4a1(b− τ)3 + a0(b− τ)4

]
(3.59)

Then, add (3.35) and (3.58) together, and divide both sides by [(t− a)4 + (b− t)4], we have

y(t) =

b∫
a

KDS,y(t, τ)y(τ)dτ (3.60)

40

where

KDS,y ,
1

[(t− a)4 + (b− t)4]

KF,y(t, τ) : τ ≤ t

KB,y(t, τ) : τ > t

(3.61)

KDS,y is called the double sided kernel, which can be treated as a feature map that is

mapping to a RKHS.

3.3 Parameter and State Estimation Using Double Sided

Kernel

Consider the general fourth order system in (3.8),

y(4)(t) + a3y
(3)(t) + a2y

(2)(t) + a1y
(1)(t) + a0y(t) = 0

The objective of parameter estimation is to estimate the parameter vector a , (a0, a1, a2, a3)

of the system above from the noisy measurements z(τ), the objective of state estimation

is to estimate y(t) from the noisy measurements z(τ)

Suppose in noisy measurements, there are finite number n of data, and each of them cor-

responds to a time instance ti, where i = 1, ..., n. One of the many ways to determine the

parameter a is to find the optimal solution of

min{J(a) :=
1

2n

n∑
i=1

(y(ti)− < y,KDS(ti, ·) >2)
2 |w.r.t. a ∈ R3}

= min{ 1

2n

n∑
i=1

[
y(ti)−

∫ b

a

KDS(ti, τ)y(τ)dτ

]2
|w.r.t. a ∈ R3} (3.62)

which is derived from (3.60), and the continuous version of (3.62) is

min{ 1

2T

∫ b

a

[
y(t)−

∫ b

a

KDS(t, τ)y(τ)dτ

]2
dt |w.r.t. a ∈ R3} (3.63)

41

where T := b − a. Because y(t) is unknown, we replace y(t) with its noisy measurement

z(t) in cost function (3.63) during the optimization:

min{ 1

2T

∫ b

a

[
z(t)−

∫ b

a

KDS(t, τ)z(τ)dτ

]2
dt |w.r.t. a ∈ R3} (3.64)

The double sided kernel can be expressed as a scalar product of parameter vector a and

some partial kernels:

KDS(t, τ) = Kv(t, τ)Ta+ kv5(t, τ)

which is equivalent to

KDS(t, τ) = aTKv(t, τ) + kv5(t, τ) (3.65)

where

Kv(t, τ)T := [kv1(t, τ), kv2(t, τ), kv3(t, τ), kv5(t, τ)]; a := [a0, a1, a2, a3]
T (3.66)

Rewrite the cost function, we have

J(a) :=
1

2T

∫ b

a

[
z(t)−

∫ b

a

KDS(t, τ) z(τ)dτ

]2
dt

=
1

T

∫ b

a

[
1

2
z(t)2 − z(t)

∫ b

a

KDS(t, τ) z(τ)dτ +
1

2

(∫ b

a

KDS(t, τ) z(τ)dτ

)2
]
dt

=
1

T

∫ b

a

[
1

2
z(t)2 − z(t)

∫ b

a

KDS(t, τ) z(τ)dτ

+
1

2

∫ b

a

KDS(t, τ) z(τ)dτ

∫ b

a

KDS(t, s) z(s)ds

]
dt

=
1

2T

∫ b

a

z(t)2dt− 1

T

∫ b

a

∫ b

a

KDS(t, τ) z(τ)z(t) dτ dt

+
1

2T

∫ b

a

∫ b

a

∫ b

a

KDS(t, τ)KDS(t, s) z(τ)z(s) dτ ds dt

42

Then substitute the double sided kernel KDS with (3.65), we have

J(a) =
1

2T

∫ b

a

z(t)2dt− 1

T

∫ b

a

∫ b

a

[Kv(t, τ)Ta+ kv5(t, τ)] z(τ)z(t) dτ dt

+
1

2T

∫ b

a

∫ b

a

∫ b

a

[aTKv(t, τ) + kv5(t, τ)][Kv(t, s)
Ta+ kv5(t, s)] z(τ)z(s) dτ ds dt

=
1

2T

∫ b

a

z(t)2dt− 1

T

∫ b

a

∫ b

a

Kv(t, τ)T z(τ)z(t) dτ dt a

− 1

T

∫ b

a

∫ b

a

kv5(t, τ) z(τ)z(t) dτ dt

+
1

2T
aT
∫ b

a

∫ b

a

[∫ b

a

Kv(t, τ)Kv(t, s)
T dt

]
z(τ)z(s) dτ ds a

+
1

2T

∫ b

a

∫ b

a

∫ b

a

kv5(t, τ)Kv(t, s)
T z(τ)z(s) dτ ds dt a

+ aT
1

2T

∫ b

a

∫ b

a

∫ b

a

Kv(t, τ)kv5(t, s) z(τ)z(s) dτ ds dt

+
1

2T

∫ b

a

∫ b

a

∫ b

a

kv5(t, τ)kv5(t, s)] z(τ)z(s) dτ ds dt

The cost function J(a) can be written as a standard quadratic

J(a) = d+ bTa+
1

2
aTCa (3.67)

where

d :=

{
1

2T

∫ b

a

y(t)2dt− 1

T

∫ b

a

∫ b

a

kv5(t, τ) z(τ)z(t) dτ dt

+
1

2T

∫ b

a

∫ b

a

∫ b

a

kv5(t, τ)kv5(t, s)] z(τ)z(s) dτ ds dt

}
bT :=

{
− 1

T

∫ b

a

∫ b

a

Kv(t, τ)T z(τ)z(t) dτ dt

+
1

2T

∫ b

a

∫ b

a

∫ b

a

[Kv(t, s)
Tkv5(t, τ) +Kv(t, τ)Tkv5(t, s)] z(τ)z(s) dτ ds dt

}
C :=

1

T

{∫ b

a

∫ b

a

[∫ b

a

Kv(t, τ)Kv(t, s)
T dt

]
z(τ)z(s) dτ ds

}

43

Therefore, the minimum of the cost function J(a) with respect to a is attained uniquely

and globally at

â = −C−1b (3.68)

And the minimum of the cost function is

J(â) = d− 1

2
bTC−1b (3.69)

Also, note that the triple integrals above can be written as alternative integral products

expressions, which are easier for us to handle numerically:

∫ b

a

∫ b

a

∫ b

a

kv5(t, τ)kv5(t, s) z(τ)z(s) dτ ds dt =

∫ b

a

(∫ b

a

kv5(t, τ) z(τ) dτ

)2

dt

∫ b

a

∫ b

a

∫ b

a

[Kv(t, s)
Tkv5(t, τ) +Kv(t, τ)Tkv5(t, s)] z(τ)z(s) dτ ds dt

=

∫ b

a

(∫ b

a

Kv(t, s)
T z(s) ds

)(∫ b

a

kv5(t, τ) z(τ) dτ

)
dt

+

∫ b

a

(∫ b

a

Kv(t, τ)T z(τ) dτ

)(∫ b

a

kv5(t, s) z(s) ds

)
dt

∫ b

a

∫ b

a

[∫ b

a

Kv(t, τ)Kv(t, s)
T dt

]
z(τ)z(s) dτ ds

=

∫ b

a

[∫ b

a

Kv(t, τ) z(τ) dτ

] [∫ b

a

Kv(t, s) z(s) ds

]T
dt

The discrete form of the cost in (3.62) can also be computed in a similar way:

J(a) :=
1

2n

n∑
i=1

[
z(ti)−

∫ b

a

KDS(ti, τ) z(τ)dτ

]2
=

1

n

n∑
i=1

[
1

2
z(ti)

2 − z(ti)

∫ b

a

KDS(ti, τ) z(τ)dτ +
1

2

(∫ b

a

KDS(ti, τ) z(τ)dτ

)2
]

44

=
1

n

n∑
i=1

[
1

2
z(ti)

2 − z(ti)

∫ b

a

KDS(ti, τ) z(τ)dτ

+
1

2

∫ b

a

KDS(ti, τ) z(τ)dτ

∫ b

a

KDS(ti, s) z(s)ds

]
=

1

2n

n∑
i=1

z(ti)
2 − 1

n

n∑
i=1

z(ti)

∫ b

a

KDS(ti, τ) z(τ) dτ

+
1

2n

n∑
i=1

∫ b

a

∫ b

a

KDS(ti, τ)KDS(ti, s) z(τ)z(s) dτ ds

Substitute double sided kernel KDS with (3.65) yields

J(a) =
1

2n

n∑
i=1

z(ti)
2 − 1

n

n∑
i=1

∫ b

a

[Kv(ti, τ)a+ kv5(ti, τ)] z(τ)z(ti) dτ

+
1

2n

n∑
i=1

∫ b

a

∫ b

a

[aTKv(ti, τ) + kv5(ti, τ)][Kv(ti, s)
Ta+ kv5(ti, s)] z(τ)z(s) dτ ds

=
1

2n

n∑
i=1

z(ti)
2dt− 1

n

n∑
i=1

∫ b

a

Kv(ti, τ)T z(τ)z(ti) dτ a

− 1

n

n∑
i=1

∫ b

a

kv5(ti, τ) z(τ)z(ti) dτ

+
1

2n
aT

n∑
i=1

∫ b

a

∫ b

a

Kv(ti, τ)Kv(ti, s)
T z(τ)z(s) dτ ds a

+
1

2n

n∑
i=1

∫ b

a

∫ b

a

kv5(ti, τ)Kv(ti, s)
T z(τ)z(s) dτ ds a

+ aT
1

2n

n∑
i=1

∫ b

a

∫ b

a

Kv(ti, τ)kv5(ti, s) z(τ)z(s) dτ ds

+
1

2n

n∑
i=1

∫ b

a

∫ b

a

kv5(ti, τ)kv5(ti, s)] z(τ)z(s) dτ ds

Rewrite cost function J(a) as a standard quadratic,

J(a) = d+ bTa+
1

2
aTCa

45

where

d :=

{
1

2n

n∑
i=1

z(ti)
2 − 1

n

n∑
i=1

∫ b

a

kv5(ti, τ) z(τ)z(ti) dτ

+
1

2n

n∑
i=1

∫ b

a

∫ b

a

kv5(ti, τ)kv5(ti, s)] z(τ)z(s) dτ ds

}

bT :=

{
− 1

n

n∑
i=1

∫ b

a

Kv(ti, τ)T z(τ)z(ti) dτ

+
1

2n

n∑
i=1

∫ b

a

∫ b

a

[Kv(ti, s)
Tkv5(ti, τ) +Kv(ti, τ)Tkv5(ti, s)] z(τ)z(s) dτ ds

}

C :=

{
1

n

n∑
i=1

∫ b

a

∫ b

a

Kv(ti, τ)Kv(ti, s)
T z(τ)z(s) dτ ds

}

Finally, the minimum of discrete cost function J(a) is attained uniquely and globally at

â = −C−1b (3.70)

Then the system can be reconstructed by

ŷ =

b∫
a

K̂DS(ti, τ)z(τ)dτ (3.71)

where z(τ) is the noisy measurement.

46

Chapter 4

Kalman Filter in RKHS

In [35], Zhu et al. proposed a new algorithm that can estimate the true output signal

produced by a dynamical system model such as that in (6.4). The problem is challeng-

ing because Zhu’s procedure must succeed without knowing anything about the actual

state-space model. Additionally, the measured system output is perturbed by additive

Gaussian noise. What is implied is that the model can be nonlinear. The approach of

Zhu et al. involves the use of an RKHS embedding of a noisy measurement time series

{yi} where yi = y(ti) with {ti} represents the corresponding sampling times of the sys-

tem output. In order to explain Zhu’s methodology in full detail, we first define Hilbert

space embeddings in Subsection 4.1. In Subsection 4.2, we introduce a Kalman filter in

the Hilbert space of embeddings which is an RKHS. Finally, in Subsection 4.3, we describe

how to reduce the size of the data set needed.

4.1 Hilbert Space Embeddings

The kernel functions mentioned in Chapter 2 can map the distribution of a random vari-

able into an RKHS. In other words, we can represent probability distributions by elements

in an RKHS with a Hilbert space embedding. In the following, assume we have probabil-

ity spaces (X ,A,PX) and (Y ,B,PY), we denote random variables by X and Y generating

47

samples from X and Y respectively. We endow spaces of events X and Y with corre-

sponding σ-algebras A and B generated by Borel subsets of X and Y , and denote the

spaces of all probability distributions (with respect to A and B) on X and Y by PX and

PY , respectively.

4.1.1 Embedding Distribution [24]

Firstly, we focus on a single random variable X on sample space X with probability dis-

tribution PX of random variable X . We can represent the probability distribution PX in

RKHSH defined by kernel k through the mapping

µ : PX → H, PX → µX

The mapping is called the kernel mean embedding mapping. The idea of kernel mean

embedding is to extend the feature map ϕ to the space of probability distributions. The

representation µX of the probability distribution is defined as:

µX := ϕ(PX) = EX [ϕ(X)] (4.1)

where EX [·] is the expectation operator with respect to probability distribution PX . Let

f(X) be a random variable which is a function of a random variable X , with f ∈ H. By

(2.44), we can express the expectation of f(X) as the following:

EX [f(X)] =

∫
f(x)PX(x)dx

=

∫
〈f, ϕ(x)〉FPX(x)dx

= 〈f,
∫
ϕ(x)PX(x)dx〉F

= 〈f, EX [ϕ(X)]〉F

= 〈f, µX〉F (4.2)

48

As long as EX [kF(X,X)] <∞, µX will also in RKHSH. The empirical estimate of µX is

µ̂X =
1

n

n∑
i=1

ϕ(xi) (4.3)

where {x1, ..., xn} is a sample which assumed to have been drawn i.i.d. from PX . The

embedding µX guarantees that distinct distributions can be mapped to distinct points in

a RKHS for the characteristic kernel class.

Definition 4.1.1. Characteristic Kernel [6] [24]: A kernel k is said to be characteristic if

the mapping µ : PX → H is injective, or equivalently, if ∀f ∈ H, EX [f(X)] = EY [f(Y)]

implies PX = PY .

There are several kinds of characteristic reproducing kernels which are popular in ma-

chine learning, in the paper by Zhu et. al [35], one of the radial based kernels: Gaussian

kernel is used, which is defined as:

k(x, y) = exp(−||x− y||
2

2σ2
) = exp(−%||x− y||2) (4.4)

where σ is variance of the Gaussian distribution and % is the kernel parameter. In page 11

of the slides by Lin [20], the expression of the feature map ϕ(x) is derived:

exp(%||x− y||2) = exp(−%x2 + 2%xy − %y2)

= exp(−%x2 − %y2)(1 +
2%xy

1!
+

(2%xy)2

2!
+ · · ·)

= exp(−%x2 − %y2)(1 · 1 +

√
2%

1!
x ·
√

2%

1!
y +

√
(2%)2

2!
x2 ·

√
(2%)2

2!
y2 + · · ·)

=ϕ(x)Tϕ(y) (4.5)

The expression of the feature map ϕ(x) is:

ϕ(x) = exp(−%x2)

[
1,

√
2%

1!
x,

√
(2%)2

2!
x2,

√
(2%)3

3!
x3, · · ·

]T
(4.6)

49

The dimension of the RKHSH associated with Gaussian kernel is infinite.

4.1.2 Cross-Covariance Operator [35]

In this part, consider two random variables X and Y with marginal probability distribu-

tions PX and PY respectively, and joint probability distribution PXY . Similar to ϕ(·) maps

the random variable X into the RKHS F , φ(·) maps the random variable Y into the RKHS

G associated with the kernel function kG . The mean map µY is with respect to PY . Like

the previous part, we can also express the expectation of f(X)g(Y) as an inner product in

RKHS:

EXY [f(X)g(Y)] = EXY [〈f, ϕ(X)〉F〈g, φ(Y)〉G]

= EXY [〈f ⊗ g, ϕ(X)⊗ φ(Y)〉F⊗G]

= 〈f ⊗ g, EXY [ϕ(X)⊗ φ(Y)]〉F⊗G (4.7)

F ⊗ G is also an RKHS, where ⊗ is the tensor product operator:

V ⊗W =

v1w1 v1w2 . . . v1wm

v2w1 v2w2 . . . v2wm
...

...

vnw1 vnw2 . . . vnwm

(4.8)

We define the uncentered cross-covariance operator CXY as:

CXY = EXY [ϕ(X)⊗ φ(Y)]

=

∫ ∫
ϕ(x)⊗ φ(y)PXY (x, y)dxdy ∈ F ⊗ G (4.9)

similarly, CXX is defined as:

CXX = E[ϕ(X)⊗ ϕ(X)]

50

=

∫
ϕ(x)⊗ ϕ(x)PX(x)dx ∈ F ⊗ F (4.10)

Then the expectation of f(X)g(Y) can be expressed as:

EXY [f(X)g(Y)] = 〈f ⊗ g, CXY 〉F⊗G

= 〈f, CXY g〉F (4.11)

The cross covariance operator CXY : G → F is a linear operator. Because the uncen-

tered cross covariance operator is only determined by the joint probability distribution

PXY (x, y) on X × Y when the kernel functions are given, it can be treated as joint distri-

bution embedding µXY in the tensor product RKHS F ⊗ G. [7]

The uncentered cross-covariance operator CXY can be estimated as:

ĈXY =
1

n

n∑
i=1

ϕ(xi)⊗ φ(yi)

=
1

n
ΥTΦ (4.12)

where {(x1, y1), · · · , (xn, yn)} is n pairs of training examples which are drawn i.i.d. from

PXY , Υ = [ϕ(x1), · · · , ϕ(xn)] and Φ = [φ(y1), · · · , φ(yn)] are the feature matrices.

4.1.3 Conditional Embedding Operator [35] [29]

The conditional embedding operator embeds the conditional distribution PY |X into a

RKHS, which is introduced in [29]. Assume that the conditional expectationEY |X [g(Y)|X =

·] ∈ F for all g ∈ G, Fukumizu’s paper [5] provided the following relation:

Theorem 4.1.1. If E[g(Y)|X = ·] ∈ F holds for g ∈ G, then

CXXEY |X [g(Y)|X = ·] = CXY g (4.13)

51

If CXX is injective, the above relation can be expressed as

EY |X [g(Y)|X = ·] = C−1XXCXY g (4.14)

The cross-covariance operators CXX and CXY map EY |X [g(Y)|X = ·] ∈ F and g ∈ G into

F respectively. From (4.2), reproducing property and Theorem 4.1.1, we can express the

conditional expectation of g(Y) with respect to X = x as an inner product:

EY |X [g(Y)|X = x] = 〈g, µY |x〉G

= 〈EY |X [g(Y)|X = ·], ϕ(x)〉F

= 〈C−1XXCXY g, ϕ(x)〉F

= 〈g, (C−1XXCXY)Tϕ(x)〉F

= 〈g, CY XC−1XXϕ(x)〉G (4.15)

where CXX is injective.

The term µY |x is the conditional embedding of random variable Y given X = x, which is

defined as:

µY |x := EY |X [φ(Y)|X = x] (4.16)

According to (4.15), the conditional embedding µY |x can be expressed as

µY |x = CY XC−1XXϕ(x) (4.17)

Note that the assumption of EY |X [g(Y)|X = ·] ∈ F always holds for finite domains with

characteristic kernels, does not hold necessarily for continuous domains. When it does

not hold, CY XC−1XXϕ(x) is an approximation of µY |x [29] [5].

By total expectation law in the RKHS, we have

µY = EX [µY |x]

52

= CY XC−1XXEX [ϕ(x)]

= CY XC−1XXµX (4.18)

The conditional embedding operator UY |X is defined as following:

Definition 4.1.2. [35] The conditional embedding operator UY |X is defined as

UY |X := CY XC−1XX (4.19)

The conditional embedding operator UY |X satisfies the following three properties:

1. µY |x := EY |x[φ(Y)|X = x] = UY |Xk(x, ·) = UY |Xϕ(x)

2. EY |x[g(Y)|X = x] = 〈g, µY |x〉G

3. µY = UY |XµX

The conditional embedding operator can be estimated as

ÛY |X = ĈY X(ĈXX + ςI)−1

=
1

n
ΦΥT

(
1

n
ΥΥT + ςI

)−1
= ΦΥT

(
ΥΥT + ςnI

)−1
(4.20)

Note that Tikhonov regularization, which alleviate the problem of near-singular matrix

ΥΥT for inversion by adding positive elements to the diagonals, is applied here. I is

an n × n identity matrix, and ς is the Tikhonov regularization term. By push-through

identity [11]:

(I + UV)−1U = U(I + V U)−1 (4.21)

the estimation of the conditional embedding operator can be rewritten as

ÛY |X = Φ(K + ςnI)−1ΥT (4.22)

53

where K = ΥTΥ. The reason of the transition from (4.20) to (4.22) is because firstly,

K = ΥTΥ can be computed by the kernel trick and secondly, when we calculate µY |x and

µY in (4.17) and (4.18), it is convenient to apply the estimated conditional embedding

operator.

4.2 Kalman Filter in RKHS [35]

In this subsection, the Kalman filter in RKHS for multiple input multiple output nonlin-

ear dynamical system is introduced. The estimated conditional embedding operator in

Section 4.1.3 is used as the state transition operator.

As the linear mathematical system model used by the classical Kalman Filter mentioned

in Section 2.1, the system in Figure 1.1 can be written as:

xi+1 = f(xi) + ni

yi = xi + vi
(4.23)

where xi is the state vector observed with an error, and the subscript i is the time instance,

{yi} is a measurement data set, f is an unknown smooth non-linear function, ni and vi are

white noises with zero mean. We are considering a simple additive noise measurement

model here.

4.2.1 Derivation of Kalman Filter in RKHS

Unlike the system models used in the classical Kalman filter or nonlinear Kalman filters,

the state transition function in (4.23) is unknown. Therefore, the classical Kalman filter

and nonlinear Kalman filters cannot work on the system described by (4.23). In addition,

in many signal processing cases, the hidden states {xi} are not available. Therefore we

cannot use DSMCE [29] and KBR [7] algorithms, where the hidden states training data

are necessary to construct the state transition operators.

54

To avoid the description of the hidden states dynamics which are not observable, we use

the estimated embedding of the measurements {yi} as the hidden state, instead of the

embedding of {xi}. Then, the state transition operator can be constructed only using the

noisy measurements. The state transition operator describe the dynamics of the measure-

ment embedding µi = E[ϕ(yi)] in RKHS.

Furthermore, because the measurement embedding µi is not a random variable, the es-

timated measurement embedding µ̂i, which is a random variable in RKHS is needed to

serve as the hidden state in order to develop a Kalman filter in RKHS. The expectation of

the random variable E[µ̂i] equals to µi.

Note that both ϕ(yi) and µ̂i are random variables in RKHS Hy. However, ϕ(yi) is the

RKHS mapping of the random variable yi, which is in the measurement space Rnd , while

for µ̂i there is no corresponding random variable in Rnd .

In the following sections, we denote the estimated conditional embedding operator Û as

Fi for convenience. And Fi is the state transition operator instead of a matrix now. As-

sume we have the training set D = {y0
1, ...,y

0
n+1}, which is a block of samples taken from

measurements {yi}. The data in the training set are mapped into RKHSHy. Then we can

express the estimated conditional embedding operator Fi as

Fi = Φ(K + ςnIn)−1ΥT (4.24)

where Υ = [ϕ(y0
1), ..., ϕ(y0

n)], Φ = [ϕ(y0
2), ..., ϕ(y0

n+1)] and K = ΥTΥ. The superscript ”0”

refers to the training data.

From (4.18), we know that the estimated measurement embedding in current step µ̂i can

be connected to the estimated measurement embedding in next step µ̂i+1 by

µ̂i+1 = Fiµ̂i (4.25)

Because the operator is estimated based on limited data and no noisy dynamics, we need

some noise ξi in RKHS added to the predicted next step embedding. The state model in

55

RKHS is

µ̂i+1 = Fiµ̂i + ξi (4.26)

When there is a new measurement yi, we have to build the measurement model in RKHS

in order to link the measurement yi and the estimated embedding µ̂i, which is the hidden

state. Then, the new measurement yi is mapped into RKHSHy as ϕ(yi). Because µ̂i is the

estimate of E[ϕ(yi)], the measurement model is

ϕ(yi) = µ̂i + νi (4.27)

where νi is the measurement noise in RKHS. Combining (4.26) and (4.27), we have the

dynamical state-space model of measurements in RKHS

µ̂i+1 = Fiµ̂i + ξi

ϕ(yi) = µ̂i + νi

(4.28)

Both ξi and νi are the noises in RKHS, which are the representations of the uncertainty

in the estimated state model in (4.26) and the measurement noise in (4.27) respectively.

The noises ξi and νi are treated as nk × 1 vectors in RKHS. For the Gaussian Kernel, nk

is infinite. Assume that each component of ξi and νi is independent zero-mean Gaussian

noise process with covariance

Qi = qI

Ri = rI
(4.29)

Then, the Kalman filter can be used to estimate the hidden state µ̂i in RKHS. Note that

with the assumptions in (4.29), the powers of the noises are infinite theoretically. The

assumptions assume that the components of the noise vectors are independent of each

other and have the same powers q and r. Therefore the whole powers of the noises are

infinite. However, during the implementation of the Kalman filter in RKHS, the noises

56

are projected to the space spanned by the mappings of the training data Φ used in (4.24).

Therefore, in practice, the whole powers of the noises are finite.

Although (4.29) cannot describe the covariances of the noises accurately, scalar param-

eters q and r can reflect the intensities of the noises. When the estimated conditional

embedding operator is more accurate, a smaller q is applied. Similarly, when the mea-

surement noise in (4.27) is larger, a larger r is applied. In addition, Zhu et. al. [35], (see pp

10-11) found that the ratio q/r is more important than the values of q and r.

Comparing the model in (2.1), which is used in classical Kalman filter with the model in

(4.28), we can see that Fi = Φ(K + ςnIn)−1ΥT , Hi = I, Qi = qI and Ri = rI. Therefore,

Similar to the classical Kalman filter, the recursion to estimate µi in RKHS starts with

µ̂0 = E[ϕ(y0)] and P0 = λI, then the following steps can be written as:

µ̂−i = Fi−1µ̂i−1 (4.30)

P−i = Fi−1Pi−1FTi−1 + Qi−1 (4.31)

Gi = P−i [P−i + Ri]
−1 (4.32)

µ̂i = µ̂−i + Gi(ϕ(yi)− µ̂
−
i) (4.33)

Pi = (I−Gi)P−i (4.34)

where µ̂−i represents the a priori estimate of the measurement embedding.

Both estimated embedding µ̂i and the mapped measurement ϕ(yi) lie in RKHS Hy with

possibly infinite dimension. Therefore, P−i , Pi and Gi are all operators in Hy ×Hy, which

can be treated as nk × nk matrices (nk equals to infinite for Gaussian kernel), we cannot

compute the recursive approach mentioned above by doing normal matrix calculations

directly. However, according to representer theorem in RKHS [27], the solution is always

in the space spanned by the training data, which is dimension n in our case. Then, the

problem becomes to find a way to rewrite the operators above such that∞×∞matrices

are avoided. Inspired by [21], we can still implement the recursion approach because of

the following theorems:

57

Theorem 4.2.1. [35] The operators P−i , Pi and Gi can be calculated as the following:

P−i = ΦP̃
−
i ΦT + qI (4.35)

Pi = ΦP̃iΦT +
qr

q + r
I (4.36)

Gi =
r

q + r
ΦG̃iΦ

T +
q

q + r
I (4.37)

where P̃
−
i , P̃i and G̃i are n × n matrices. And these three matrices can be calculated

recursively as the following:

P̃
−
1 = λ(K + ςnIn)−1ΥTΥ

[
(K + ςnIn)−1

]T (4.38)

G̃i =
[
(q + r)In + P̃

−
i ΦTΦ

]−1
P̃
−
i (4.39)

P̃i =
r

q + r
P̃
−
i −

r

q + r
G̃iΦ

TΦP̃
−
i −

qr

q + r
G̃i (4.40)

P̃
−
i+1 =

[
(K + ςnIn)−1ΥT

]
ΦP̃iΦ

T
[
(K + ςnIn)−1ΥT

]T
+

qr

q + r

[
(K + ςnIn)−1ΥT

] [
(K + ςnIn)−1ΥT

]T (4.41)

Theorem 4.2.2. [35] The predicted embedding µ̂−i and the estimated embedding µ̂i can

both be computed by the mapped measurements Φ = {ϕ(y0
i)}

n+1
i=2

µ̂−i = Φai (4.42)

µ̂i = Φbi +
q

q + r
ϕ(yi) (4.43)

where both ai = [ai, ..., an]T and bi = [b1, ..., bn]T are n × 1 real-valued vectors. They can

be computed as the following:

a1 = (K + ςnIn)−1ΥTµ0 (4.44)

bi =

[
r

q + r
I− r

q + r
G̃iΦ

TΦ

]
ai +

r

q + r
G̃iΦ

Tϕ(yi) (4.45)

ai = (K + ςnIn)−1ΥT

[
Φbi−1 +

q

q + r
ϕ(yi−1)

]
(4.46)

58

Proofs of Theorem 4.2.1 and Theorem 4.2.2 are provided in Appendix. By these theorems,

all of the operators can be expressed in terms of n×nmatrices and nk×n feature matrices

such as Φ and Υ. Therefore, the operators can be computed only involving normal ma-

trices calculations and inner products between feature matrices and vectors. To estimate

the predicted signal x̂i from the estimated embedding µ̂i, an approach similar to but more

efficient than Pre-Image problem [3] can be used. Firstly, we have

x̂i = E[xi] = E[xi + vi] = E[yi] (4.47)

where E[yi] can be expressed as

E[yi] =
[
E
[
y(1)
i

]
, ..., E

[
y(ny)
i

]]T
= [E[f1(yi)],, E[fny(yi)]]

T (4.48)

According to (4.2), we have

E[fj(yi)] = 〈fj, µi〉, 1 ≤ j ≤ ny (4.49)

Then, the estimated input signal xi is

x̂i = [〈f1, µ̂i〉, ..., 〈fny , µ̂i〉]T = fTI µ̂i = fTI ϕ̂(xi) (4.50)

where fI = [f1, ..., fny] is a vector consists of functions, function fj(y) = y(j)(j = 1, ..., ny),

y(j) is the jth component of vector y. Function fj(y) can be approximated from the train-

ing data even though it is not in RKHS. The estimated vector of functions fI(·) is

f̂I(·) = Φ(ΦTΦ)−1Y0T (4.51)

where Y0 = [y0
2, ...,y

0
n+1]. The estimated input signal can be approximated as

x̂i = bTi ΦTΦ(ΦTΦ)−1Y0T +
q

q + r
yi = Y0bi +

q

q + r
yi (4.52)

59

Note that the second term of (4.52) is computed from

Φ(ΦTΦ)−1Y0Tϕ(yi) = yi (4.53)

Now, we have the Kernel Kalman filtering based on estimated conditional embedding

operator (KKF-CEO), the whole algorithm is summarized in Algorithm 1.

Algorithm 1: Kernel Kalman filtering based on estimated conditional embedding
operator (KKF-CEO) [35]

Initialization: For i = 0, set

Υ = [ϕ(y0
1), ..., ϕ(y0

n)]

Φ = [ϕ(y0
2), ..., ϕ(y0

n+1)]

Y0 = [y0
2, ...,y

0
n+1]

K = ΥTΥ,M = ΦTΦ,T = ΥTΦ

L = (K + ςnI)−1

µ0 = ϕ(y0)

P0 = λI

a1 = LΥTµ0

P̃
−
1 = λLKLT

Filtering: For i = 1, ..., compute

G̃i = [(q + r)In + P̃
−
i M]−1P̃

−
i

P̃i =
r

q + r
P̃
−
i −

r

q + r
G̃iMP̃

−
i −

qr

q + r
G̃i

bi =

[
r

q + r
In −

r

q + r
G̃iM

]
ai +

r

q + r
G̃iΦ

Tϕ(yi)

x̂i = Y0bi +
q

q + r
yi

ai+1 = LΥTΦbi +
q

q + r
LΥTϕ(yi)

˜P−i+1 = LTP̃iTTLT +
qr

q + r
LKLT

60

4.3 Reducing the Size of the Training Data [35] [28] [22]

Similar to the classical Kalman filter, kernel Kalman filter is also implemented by up-

dating the covariance matrices P̃
−
i , P̃i and G̃i recursively. However, suppose we have

a training set with size n to estimate the state transition operator Fi, the size of the co-

variance matrices will be n × n. Then the time complexity will be O(n3), and the space

complexity will be O(n2). As the size of the training data increases, the time complexity

will increase cubically, which is a big problem. Therefore, when the size of the training

set is large, reducing the size is necessary.

Downsampling is a relatively simple and intuitive method to reduce the size of a data

set. Because we assume the conditional embedding operator in KKF-CEO is estimated

from i.i.d training data points, we can downsample the training data uniformly to reduce

the time and space complexity. After downsampling with the downsampling rate LS , the

size of the training data set will be reduced to k = bn/LSc, where ”b·c” is the floor opera-

tor. Then the time complexity will be reduced to O(k3) and the space complexity will be

reduced to O(k2).

Quantizing is also a method to reduce the size of a data set, but it is more complicated.

The authors of [35] quantize the training set by using the kernel K-means algorithm pro-

posed by Schölkopf et al. in [28]. The algorithm is an adapted version of the K-means

algorithm that can be implemented in RKHS. To understand the algorithm, we need to

introduce the K-means algorithm first.

Suppose there are n observations, the propose of K-means algorithm is to partition the

observations into K clusters, and each cluster has a center. Each observation belongs to

the cluster with the nearest cluster center, and the sum of the distances between the data

points and the cluster centers is minimum. The steps of the K-means algorithm are sum-

marized in Algorithm 3:

Traditional K-means algorithm is implemented in Euclidean space, while the kernel K-

means algorithm can be implemented in RKHS. The difference between traditional K-

61

Algorithm 2: K-means clustering algorithm [22]

Step 1: Specify the desired number of clusters K to be generated.

Step 2: Select K data points randomly, put each data point into a cluster, these K data
points are the initial cluster centers.

Step 3: Compute the squared Euclidean distances ||yi − cj||2 between the data points yi
and the cluster centres cj .

Step 4: Put each data point into the cluster with the nearest cluster center.

Step 5: Compute the new center of each cluster by computing the mean of all data points
in that cluster.

Step 6: Repeat Step 3 to 5 until the clusters are not changing.

means and kernel K-means is that the data points in kernel K-means are mapped into

RKHS, therefore the distance used in kernel K-means algorithm is the distance in kernel

space instead of Euclidean distance. The distance between ϕ(yi) and ϕ(yj) in kernel space

is

||ϕ(yi)− ϕ(yj)||
2 = (ϕ(yi)− ϕ(yj)) · (ϕ(yi)− ϕ(yj))

= ϕ(yi) · ϕ(yi) + ϕ(yj) · ϕ(yj)− 2ϕ(yi)ϕ(yj) (4.54)

The inner product of ϕ(yi) and ϕ(yj) can be computed using kernel trick k(yi,yj) =

ϕ(yi)ϕ(yj), we have

||ϕ(yi)− ϕ(yj)||
2 = k(yi,yi) + k(yj,yj)− 2k(yi,yj) (4.55)

The equation above can be computed more efficiently by introducing a Gram matrix K in

advance:

K =

k(y1, y1) k(y1, y2) · · · k(y1, yn)

...
...

k(yn, y1) k(yn, y2) · · · k(yn, yn)

 (4.56)

62

Then, Equation 4.55 becomes

||ϕ(yi)− ϕ(yj)||
2 = Kii + Kjj − 2Kij (4.57)

Note that in [35], the authors made a modification on the gram matrix K. The conditional

embedding operators in KKF-CEO is estimated based on two mapped measurements

Υ = [ϕ(y0
1), ..., ϕ(y0

n)] and Φ = [ϕ(y0
2), ..., ϕ(y0

n+1)], so they combined the mapped measure-

ments ϕ(y0
i) and ϕ(y0

i+1) to form a new vector v((y0
i ,y

0
i+1)) = (ϕ(y0

i)
T , ϕ(y0

i+1)
T) ∈ Hy⊕Hy,

where ⊕ is the direct sum operator. The inner product between new vectors can be com-

puted as

〈v((y0
i ,y

0
i+1)), v((y0

j ,y
0
j+1))〉Hy⊕Hy = 〈ϕ(y0

i), ϕ(y0
j)〉Hy + 〈ϕ(y0

i+1), ϕ(y0
j+1)〉Hy (4.58)

The gram matrix for the new vector v((y0
i ,y

0
i+1)) is denoted as K⊕, which can be computed

by

K⊕ = K1 + K2 (4.59)

where K1 is the gram matrix of ϕ(y0
i) and K2 is the gram matrix of ϕ(y0

i+1). The gram

matrix K⊕ is non-negative definite andHy ⊕Hy is an RKHS.

For convenience, denote y0
i+1 as z0

i . After the same procedure as K-means algorithm with

kernel space distance in (4.57) and modified gram matrix K, the m pairs of training exam-

ples DY Z = {(y0
1, z

0
1), ..., (y0

n, z
0
n)} are quantized to DQY Z = {(y0

1, z
0
1), ..., (y0

k, z
0
k)}. The con-

ditional embedding operator then can be estimated using quantized training examples

DQY Z , and the conditional embedding operator estimated by quantized training examples

is denoted by FQ.

Theorem 4.3.1. Suppose n pairs of training examples DY Z = {(y0
1, z

0
1), ..., (y0

n, z
0
n)} are

quantized to k pairs of training examples DQY Z = {(y0
1, z

0
1), ..., (y0

k, z
0
k)} using kernel K-

means algorithm, then the conditional embedding operator estimated by DQY Z is esti-

63

mated as

FQ = ΦQΛ(KQΛ + ςnIk)−1ΥT
Q (4.60)

where ΥQ = [ϕ(yq1), ..., ϕ(yqk)] and ΦQ = [ϕ(zq1), ..., ϕ(zqk)], KQ = ΥT
QΥT

Q, Λ = diag[λq1, ..., λ
1
k],

the entries λqj , 1 ≤ j ≤ k are the number of training examples in the jth cluster. The proof

of Theorem 4.3.1 is provided in Appendix.

Also, from Theorem 4.3.1, we can get that the matrix L in KKF-CEO is computed as

L = Λ(K + ςnI)−1 (4.61)

64

Chapter 5

Double Sided Kernel for Nonlinear

Systems

In this chapter, we are introducing a novel algorithm that is adapting the double sided

kernel (KDS) mentioned in Chapter 3 for SISO nonlinear systems such as the system in

(6.4). The novel algorithm estimates the true outputs {x(t)} from noisy measurements

{y(t)} within arbitrary interval of time t ∈ [a, b]. The double sided kernel for nonlinear

models also employs forward integration and backward integration.

5.1 Derivation of KDS for Nonlinear System

Inspired by KKF-CEO, we embed the true outputs {x(t)} and noisy measurements {y(t)}

into RKHS Hx and Hy respectively using the Gaussian feature map ϕ(·) from (4.6) in our

novel algorithm, then we use the embedding of noisy measurements to estimate the true

outputs {x(t)}. The embedding of true outputs {x(t)} and noisy measurements {y(t)} are

vectors with infinite dimensions which are denoted as

ϕx(t) = ϕ(x(t)) = exp(−%x(t)2)

[
1,

√
2%

1!
x(t),

√
(2%)2

2!
x(t)2,

√
(2%)3

3!
x(t)3, · · ·

]T
(5.1)

65

ϕy(t) = ϕ(y(t)) = exp(−%y(t)2)

[
1,

√
2%

1!
y(t),

√
(2%)2

2!
y(t)2,

√
(2%)3

3!
y(t)3, · · ·

]T
(5.2)

respectively [20]. On time interval t ∈ [a, b], we adopt the following local approxima-

tion of the true unknown nonlinear system model by infinitely dimensional model in the

transformed embedding ϕx(t)

ϕ(1)
x (t) + Aϕx(t) = 0 (5.3)

where A is an infinite matrix. Note that a higher order approximation use instead of (5.3)

can provide a fit for original nonlinear system trajectories.

The equation in (5.3) is in a similar form to the equation in (3.8) that is used in the linear

case, therefore, we can derive the double sided kernel for nonlinear systems using a sim-

ilar procedure to linear system case.

Multiply (5.3) by (ε− a) and (b− ζ), we have

(ε− a)ϕ(1)
x (t) + (ε− a)Aϕx(t) = 0 (5.4)

(b− ζ)ϕ(1)
x (t) + (b− ζ)Aϕx(t) = 0 (5.5)

Integrate the (5.4) in the forward direction on interval [a, a+ τ], we have

a+τ∫
a

(ε− a)ϕ(1)
x (ε)dε+

a+τ∫
a

(ε− a)Aϕx(ε)dε

= (ε− a)ϕx(ε)|a+τa +

a+τ∫
a

((ε− a)A− I)ϕx(ε)dε

= τϕx(a+ τ) +

a+τ∫
a

((ε− a)A− I)ϕx(ε)dε (5.6)

where I is the infinity identity matrix. Let a+ τ = t and apply Cauchy’s formula to (5.6),

(t− a)ϕx(t) ,

t∫
a

KF (t, τ)ϕx(τ)dτ (5.7)

66

in which KF (t, τ) is

KF (t, τ) = I− (τ − a)A (5.8)

Then, integrate (5.5) in the backward direction on interval [b− σ, b], we have

b∫
b−σ

(b− ζ)ϕ(1)
x (ζ)dζ +

b∫
b−σ

(b− ζ)Aϕx(ζ)dζ

= (b− ζ)ϕx(ζ)|bb−σ +

b∫
b−σ

((b− ζ)A− I)ϕx(ζ)dζ

= −σϕx(b− σ) +

b∫
b−σ

((b− ζ)A− I)ϕx(ζ)dζ (5.9)

Let b− σ = t and apply Cauchy’s formula, we have

(b− t)ϕx(t) ,

b∫
t

KB(t, τ)ϕx(τ)dτ (5.10)

in which KB(t, τ) is

KB(t, τ) = I + (b− τ)A (5.11)

Add (5.7) and (5.10) and divide both sides by b− a, we have

ϕx(t) =

b∫
a

KDS(t, τ)ϕx(τ)dτ (5.12)

where

KDS ,
1

b− a

I− (τ − a)A : τ ≤ t

I + (b− τ)A : τ > t

(5.13)

67

5.2 State Estimation of Nonlinear Systems Using Double

Sided Kernel

Considering the system in (5.3), we need first to estimate the infinite matrix A in order to

perform state estimation. Suppose there are finite number n of noisy observations {y(ti)}

correspond to time instances {ti}, where i = 1, ..., n. We need to determine the matrix A

by finding the optimal solution of cost function J(A) similar to (3.64):

min{J(A) :=
1

2n

n∑
i=1

∥∥∥∥ϕy(ti)−
∫ b

a

KDS(ti, τ)ϕy(τ)dτ

∥∥∥∥2 |w.r.t. A ∈ {A}} (5.14)

where {A} is the set of all infinite by infinite real matrices. Express the double sided

kernel as the sum of scalar product of matrix A and a partial kernel similar to (3.65):

KDS(t, τ) = Kv(t, τ)A +Kv2I (5.15)

where

Kv(t, τ) =
1

b− a

−(τ − a) : τ ≤ t

(b− τ) : τ > t

(5.16)

Kv2 =
1

b− a
(5.17)

We now rewrite the cost function in (5.20) as follows

J(A) :=
1

2n

n∑
i=1

∥∥∥∥ϕy(ti)−
∫ b

a

KDS(ti, τ) ϕy(τ)dτ

∥∥∥∥2
=

1

n

n∑
i=1

[
1

2

∥∥ϕy(ti)
∥∥2 − ϕy(ti)

T

∫ b

a

KDS(ti, τ) ϕy(τ)dτ +
1

2

∥∥∥∥∫ b

a

KDS(ti, τ) ϕy(τ)dτ

∥∥∥∥2
]

=
1

n

n∑
i=1

[
1

2

∥∥ϕy(ti)
2
∥∥− ϕy(ti)

T

∫ b

a

KDS(ti, τ) ϕy(τ)dτ

68

+
1

2

[∫ b

a

KDS(ti, τ) ϕy(τ)dτ

]T ∫ b

a

KDS(ti, s) ϕy(s)ds

]
=

1

2n

n∑
i=1

∥∥ϕy(ti)
∥∥2 − 1

n

n∑
i=1

ϕy(ti)
T

∫ b

a

KDS(ti, τ) ϕy(τ) dτ

+
1

2n

n∑
i=1

∫ b

a

∫ b

a

[
KDS(ti, τ)ϕy(τ)

]T
KDS(ti, s) ϕy(s) dτ ds

Then substitute double sided kernel with the right side of (5.15), obtaining (5.18)

J(A) =
1

2n

n∑
i=1

∥∥ϕy(ti)
∥∥2 − 1

n

n∑
i=1

ϕy(ti)
T

∫ b

a

[Kv(ti, τ)A +Kv2I] ϕy(τ) dτ

+
1

2n

n∑
i=1

∫ b

a

∫ b

a

ϕy(τ)T [Kv(ti, τ)A +Kv2I]T [Kv(ti, s)A +Kv2I] ϕy(s) dτ ds (5.18)

Replacing the integral in (5.18) with their finite sum approximation gives

J(A) =
1

2n

n∑
i=1

ϕy(ti)
Tϕy(ti)−

1

n

n∑
i=1

n∑
j=1

ϕy(ti)
T [Kv(ti, tj)A +Kv2I]ϕy(tj)∆t

+
1

2n

n∑
i=1

n∑
j=1

n∑
k=1

ϕy(tj)
T [Kv(ti, tj)A +Kv2I]

T [Kv(ti, tk)A +Kv2I]ϕy(tk)∆t
2

=
1

2n

n∑
i=1

ϕy(ti)
Tϕy(ti)−

1

n

n∑
i=1

n∑
j=1

ϕy(ti)
T
[
Kv(ti, tj)Aϕy(tj) +Kv2ϕy(tj)

]
∆t

+
1

2n

n∑
i=1

n∑
j=1

n∑
k=1

[
Kv(ti, tj)Aϕy(tj) +Kv2ϕy(tj)

]T [
Kv(ti, tk)Aϕy(tk) +Kv2ϕy(tk)

]
∆t2

(5.19)

where ∆t is the time step of noisy observations, ∆t = ti+1 − ti.

It is impossible to solve the entire infinite matrix A ∈ {A} such that J(A) is the minimum.

But if we only consider the set of infinite matrices {Ã} ⊂ {A} that have {ϕy(ti)} as their

eigenvectors and find the optimal solution of cost function J(Ã) instead:

min{J(Ã) :=
1

2n

n∑
i=1

∥∥∥∥ϕy(ti)−
∫ b

a

KDS(ti, τ)ϕy(τ)dτ

∥∥∥∥2 |w.r.t. Ã ∈ {Ã}} (5.20)

69

Then at each time instance, we have

Ãϕy(ti) = aiϕy(ti) (5.21)

where ai is the eigenvalue of matrix Ã corresponds to eigenvector ϕy(ti). By (5.21), we re-

place the infinite matrix Ã with eigenvalues {ai} of it correspond to eigenvectors {ϕy(ti)}.

Hence we only need to find the eigenvalues {ai} that can minimize cost function J(Ã)

instead of the entire infinite matrix Ã. Bring (5.21) into (5.19), we have

J(Ã) =
1

2n

n∑
i=1

ϕy(ti)
Tϕy(ti)−

1

n

n∑
i=1

n∑
j=1

ϕy(ti)
T
[
Kv(ti, tj)ajϕy(tj) +Kv2ϕy(tj)

]
∆t

+
1

2n

n∑
i=1

n∑
j=1

n∑
k=1

[
Kv(ti, tj)ajϕy(tj) +Kv2ϕy(tj)

]T [
Kv(ti, tk)akϕy(tk) +Kv2ϕy(tk)

]
∆t2

=
1

2n

n∑
i=1

ϕy(ti)
Tϕy(ti)−

1

n

n∑
i=1

n∑
j=1

[
Kv(ti, tj)ajϕy(ti)

Tϕy(tj) +Kv2ϕy(ti)
Tϕy(tj)

]
∆t

+
1

2n

n∑
i=1

n∑
j=1

n∑
k=1

[
ajakKv(ti, tj)Kv(ti, tk)ϕy(tj)

Tϕy(tk) + ajKv(ti, tj)Kv2ϕy(tj)
Tϕy(tk)

+ akKv(ti, tk)Kv2ϕy(tj)
Tϕy(tk) +K2

v2ϕy(tj)
Tϕy(tk)

]
∆t2 (5.22)

By kernel trick (4.4), we have

ϕy(ti)
Tϕy(tj) = KG(yi, yj) = exp(−%||y(ti)− y(tj)||2) (5.23)

Here we denote y(ti) as yi for convenience. Then we have

J(Ã) =
1

2n

n∑
i=1

KG(yi, yi)−
1

n

n∑
i=1

n∑
j=1

[Kv(ti, tj)ajKG(yi, yj) +Kv2KG(yi, yj)] ∆t

+
1

2n

n∑
i=1

n∑
j=1

n∑
k=1

[
ajakKv(ti, tj)Kv(ti, tk)KG(yj, yk)

+ ajKv(ti, tj)Kv2KG(yj, yk) + akKv(ti, tk)Kv2KG(yj, yk)

+K2
v2KG(yj, yk)

]
∆t2

70

=
1

2n

n∑
i=1

[
KG(yi, yi)−

n∑
j=1

2Kv2KG(yi, yj)∆t+
n∑
j=1

n∑
k=1

K2
v2KG(yj, yk)∆t

2

]

+
1

n

n∑
i=1

n∑
j=1

[
−Kv(ti, tj)KG(yi, yj)∆t+

n∑
k=1

Kv(ti, tj)Kv2KG(yj, yk)∆t
2

]
aj

+
1

2n

n∑
i=1

n∑
j=1

n∑
k=1

[
ajakKv(ti, tj)Kv(ti, tk)KG(yj, yk)

]
∆t2 (5.24)

The equation above can be expressed as standard quadratic form,

J(a) = d+ bTa +
1

2
aTCa (5.25)

where d is a constant:

d =
1

2n

n∑
i=1

[
KG(yi, yi)

−
n∑
j=1

2Kv2KG(yi, yj)∆t+
n∑
j=1

n∑
k=1

K2
v2KG(yj, yk)∆t

2

]
(5.26)

b is a vector with n entries:

b =
∆t2Kv2

n

∑n

i=1Kv(ti, t1)
∑n

k=1KG(yk, y1))

...∑n
i=1Kv(ti, tn)

∑n
k=1KG(yk, yn)

− ∆t

n

∑n

i=1Kv(ti, t1)KG(yi, y1)

...∑n
i=1Kv(ti, tn)KG(yi, yn)

 (5.27)

C is a n× n matrix:

C =
1

n

∑n

i=1Kv(ti, t1)Kv(ti, t1)KG(y1, y1) · · ·
∑n

i=1Kv(ti, t1)Kv(ti, tn)KG(y1, yn)

...∑n
i=1Kv(ti, tn)Kv(ti, t1)KG(yn, y1) · · ·

∑n
i=1Kv(ti, tn)Kv(ti, tn)KG(yn, yn)

(5.28)

71

And a is a vector consists of eigenvalues of Â:

a =
[
a1 a2 · · · an

]T
(5.29)

And min{J(a)|a ∈ Rn} can be attained globally and uniquely at

â = C−1b (5.30)

The reconstruction step in nonlinear double sided kernel is similar to (3.71) in linear case,

while the noisy measures in linear case are changed into the embedded noisy measure-

ments, and the estimate of the outputs in linear case are changed into the estimates of the

embedded outputs here. The estimate of the embedded output at time ti is

ϕ̂x(ti) =

b∫
a

KDS(ti, τ)ϕy(τ)dτ (5.31)

Discretize the integral above, we have

ϕ̂x(ti) =
n∑
i=1

KDS(ti, tj)ϕy(tj)∆t

=
∆t

b− a

∑n

i=1 ϕy(tj)− (tj − a)Âϕy(tj) : tj ≤ ti∑n
i=1 ϕy(tj) + (b− tj)Âϕy(tj) : tj > ti

=
∆t

b− a

∑n

i=1 ϕy(tj)− (tj − a)âjϕy(tj) : tj ≤ ti∑n
i=1 ϕy(tj) + (b− tj)âjϕy(tj) : tj > ti

(5.32)

By (4.50) which is used by Zhu et. al [35], we can get the estimated outputs {x̂(ti)}:

x̂(ti) = fTI ϕ̂x(ti) = Φ(ΦTΦ)−1Y0T ϕ̂x(ti) (5.33)

72

Multiply both sides of (5.32) by fTI , we have

x̂(ti) =
∆t

b− a

∑n

i=1 Φ(ΦTΦ)−1Y0Tϕy(tj)− (tj − a)ajΦ(ΦTΦ)−1Y0Tϕy(tj) : tj ≤ ti∑n
i=1 Φ(ΦTΦ)−1Y0Tϕy(tj) + (b− tj)ajΦ(ΦTΦ)−1Y0Tϕy(tj) : tj > ti

=
∆t

b− a

∑n

i=1 y(tj)− (tj − a)ajy(tj) : tj ≤ ti∑n
i=1 y(tj) + (b− tj)ajy(tj) : tj > ti

(5.34)

Our novel algorithm is summarized in Algorithm 3:

Algorithm 3: Adapted double sided kernel for nonlinear systems (NLKDS)

Step 1: Compute matrices M and G, where

Mi,j =
1

b− a

{
−(tj − a) : tj ≤ ti

(b− tj) : tj > ti
,Gi,j = exp(−%||y(ti)− y(tj)||2)

Step 2: Compute vector b,

b =
∆t2Kv2

n

∑n

i=1 Mi,1

∑n
k=1 Gk,1

...∑n
i=1 Mi,n

∑n
k=1 Gk,n

− ∆t

n

∑n

i=1 Mi,1Gi,1
...∑n

i=1 Mi,nGi,n

Step 3: Compute matrix C,

C =
1

n

∑n

i=1 Mi,1Mi,1G1,1 · · ·
∑n

i=1 Mi,1Mi,nG1,n
...∑n

i=1 Mi,nMi,1Gn,1 · · ·
∑n

i=1 Mi,nMi,nGn,n

Step 4: Estimate a,

â = C−1b

Step 5: The estimated true output time series {x̂(ti)} is

x̂(ti) =
∆t

b− a

{∑n
i=1 y(tj)− (tj − a)âjy(tj) : tj ≤ ti∑n
i=1 y(tj) + (b− tj)âjy(tj) : tj > ti

73

Note that the time complexity of computing
∑n

i=1 Mi,jMi,k during computing C is O(n),

Therefore, the time complexity of the whole algorithm is O(n3). However, matrix M is in

the following format:

M =

b1 a2 a3 a4 · · · an−1 an

b1 b2 a3 a4 · · · an−1 an

b1 b2 b3 a4 · · · an−1 an

b1 b2 b3 b4 · · · an−1 an
...

...
...

...
...

b1 b2 b3 b4 · · · bn−1 an

(5.35)

Which means we can simplify the computation of
∑n

i=1 Mi,jMi,k to

n∑
i=1

Mi,jMi,k = (s− 1)M1,jM1,k + (l − s)Ms,jMs,k + (n− l + 1)Ml,jMl,k

s = min(j, k), l = max(j, k)

(5.36)

The time complexity of computing
∑n

i=1 Mi,jMi,k is reduced to O(1), hence the time com-

plexity of the whole algorithm is reduced to O(n2).

74

Chapter 6

Experiments and Results

In this chapter, we first compare the performances of the linear double sided kernel (linear

KDS), the kernel Kalman filter (KKF-CEO) and our novel nonlinear double sided kernel

(NLKDS) for fourth order linear system under several noise levels. Then we compare

the performances of the KKF-CEO and our NLKDS for Van Der Pol equation, Sedoglavic

equation and IKEDA chaotic dynamical system under various noise levels. We are com-

paring the performances of algorithms based on accuracy and running time. Both mean

squares error (MSE) and signal to noise ratio (SNR) of estimated outputs are used to mea-

sure the accuracy of algorithms, where MSE is calculated by

MSE =
1

ndata

ndata∑
i=1

||xi − x̂i||2 (6.1)

and SNR is calculated by

SNR = 10log10(
Psignal
Pnoise

) (6.2)

6.1 Performances on Linear Systems

First, we consider a fourth order linear system with the following characteristic equation

x(4)(t) + 10x(2)(t) + 10x(1)(t) + x(t) = 0 (6.3)

75

The initial condition [x(3)(0) x(2)(0) x(1)(0) x(0)] is [1 1 1 1]. The system is an unstable system,

which is difficult to estimate. The noisy measurements {y(ti)} are generated by adding

white Gaussian noise (AWGN) with mean µ = 0 and SNR = {0, 10, 20}dB to the true out-

puts {x(ti)}. The time interval [a, b] of estimation in this section is [0, 6] while the number

of sample points is different in each algorithm. The variance of the Gaussian distribution

σ in KKF-CEO and nonlinear KDS is set to the median of the pairwise distance of noisy

measurements, the values of q are tuned to 1 and the values of r are tuned to {0.5, 1.5, 6}

corresponding to SNR = {20, 10, 0}dB, ζ and λ are set to 10−3 and 10−4 in KKF-CEO

Figure 6.1-6.9 are the plots of the noisy measurements, the true outputs and the outputs

estimated by the compared algorithms under different noise levels. Table 6.1 shows the

performances of compared algorithms under different noise levels. From the results, we

can see that for linear dynamical systems, our novel algorithm is more accurate than

Zhu’s algorithm, while linear KDS is more accurate than our novel algorithm. However,

the runtime of our algorithm is much shorter than the other two algorithms.

Figure 6.1: Noisy, true and estimated 4th order linear system outputs by linear KDS with

AWGN of µ = 0, SNR=20dB and N=1500.

76

Figure 6.2: Noisy, true and estimated 4th order linear system outputs by linear KDS with

AWGN of µ = 0, SNR=10dB and N=2400.

Figure 6.3: Noisy, true and estimated 4th order linear system outputs by linear KDS with

AWGN of µ = 0, SNR=0dB and N=15000.

77

Figure 6.4: Noisy, true and estimated 4th order linear system outputs by KKF-CEO with

AWGN of µ = 0, SNR=20dB and N=600.

Figure 6.5: Noisy, true and estimated 4th order linear system outputs by KKF-CEO with

AWGN of µ = 0, SNR=10dB and N=600.

78

Figure 6.6: Noisy, true and estimated 4th order linear system outputs by KKF-CEO with

AWGN of µ = 0, SNR=0dB and N=600.

Figure 6.7: Noisy, true and estimated 4th order linear system outputs by NLKDS with

AWGN of µ = 0, SNR=20dB and N=6000.

79

Figure 6.8: Noisy, true and estimated 4th order linear system outputs by NLKDS with

AWGN of µ = 0, SNR=10dB and N=6000.

Figure 6.9: Noisy, true and estimated 4th order linear system outputs by NLKDS with

AWGN of µ = 0, SNR=0dB and N=6000.

80

Linear KDS KKF-CEO NLKDS

20dB
MSE 0.0029 0.0150 0.0041
SNR 30.2343dB 23.0537dB 27.2926dB
Runtime 76.6128s 36.9109s 10.1574s

10dB
MSE 0.0334 0.1055 0.0443
SNR 19.5740dB 14.5829dB 16.9348dB
Runtime 122.5762s 36.8121s 10.3588s

0dB
MSE 0.0981 0.6929 0.3701
SNR 14.8994dB 6.4088dB 7.7712dB
Runtime 790.3135s 36.3670s 10.5786s

Table 6.1: The performances of compared algorithms on linear system.

6.2 Performances on Nonlinear Systems

Because the linear KDS algorithm can only estimate the true outputs {x(ti)} of linear dy-

namical systems, we only compare our algorithm’s performances with KKF-CEO. We es-

timate the true outputs of Van Der Pol equation, Sedoglavic equation and IKEDA chaotic

dynamical system under different noise levels in our experiments.

6.2.1 Van Der Pol Equation

Firstly, we perform the estimation on Van Der Pol equation, the governing equation of the

system is:

x(2)(t) = µ(1− x2)x(1)(t) + x(t)

y(t) = x(t) + ν(t) (6.4)

The value of the parameter µ is 0.5, the initial condition [x(1)(0) x(0)] is [1 1]. The noisy

measurements {y(ti)} are generated by adding white Gaussian noise with mean µ = 0

and SNR = {−10,−3, 0, 3, 10, 20}dB to the true outputs {x(ti)}. The time interval is

[0, 10], the number of sample pointsN is 2000. The size of measurements is reduced to 400

81

in KKF-CEO, while our novel algorithm do not need to reduce the size of measurements.

The variance of the Gaussian distribution σ is set to the median of pairwise distance of

noisy measurements in both algorithms. The values of q are tuned to 1 and the values of

r are tuned to {3, 2, 1.5, 1.25, 1, 0.5} corresponding to SNR = {20, 10, 3, 0,−3,−10}dB, ζ

and λ are set to 10−3 and 10−4 in KKF-CEO.

Figure 6.10-6.15 are the plots of the noisy measurements, the true outputs and the outputs

estimated by KKF-CEO, and Figure 6.16-6.21 are the plots of noisy measurements, the true

outputs and the outputs estimated by our algorithm. Table 6.2 shows the performances

of compared algorithms under different noise levels.

From the results, we can see that for the Van Der Pol equation, both the accuracy and

runtime of our novel algorithm outperforms KKF-CEO. For accuracy, our novel algorithm

gains around 8dB of SNR from the noisy measurements while KKF-CEO gains around

4.5dB of SNR from the noisy measurements. Our algorithm gains around 3.5dB more

SNR than KKF-CEO. For time complexity, the runtime of our algorithm is around 20

times faster than KKF-CEO, even if the size of data points we used during the estimation

is five times as big as the size of the data used by KKF-CEO. Our process of reducing time

complexity has a massive effect here.

MSE SNR Runtime
KKF-CEO NLKDS KKF-CEO NLKDS KKF-CEO NLKDS

20dB 0.0072 0.0024 23.6558dB 28.4090dB 18.5640s 1.2762s
10dB 0.0590 0.0228 14.5067dB 18.6203dB 18.5069s 0.8549s
3dB 0.2945 0.1377 7.5275dB 10.8178dB 18.9370s 0.9470s
0dB 0.6155 0.2720 4.3262dB 7.8616dB 19.4463s 1.0821s
-3dB 1.4129 0.4894 1.6384dB 5.3707dB 21.9863s 0.9696s
-10dB 8.9494 2.1147 -7.2994dB -1.0453dB 19.0911s 1.0818s

Table 6.2: The performances of compared algorithms under different noise levels on Van

Der Pol equation.

82

Figure 6.10: Noisy, true and estimated Van Der Pol equation outputs by KKF-CEO with

AWGN of µ = 0, SNR=20dB.

Figure 6.11: Noisy, true and estimated Van Der Pol equation outputs by KKF-CEO with

AWGN of µ = 0, SNR=10dB.

83

Figure 6.12: Noisy, true and estimated Van Der Pol equation outputs by KKF-CEO with

AWGN of µ = 0, SNR=3dB.

Figure 6.13: Noisy, true and estimated Van Der Pol equation outputs by KKF-CEO with

AWGN of µ = 0, SNR=0dB.

84

Figure 6.14: Noisy, true and estimated Van Der Pol equation outputs by KKF-CEO with

AWGN of µ = 0, SNR=-3dB.

Figure 6.15: Noisy, true and estimated Van Der Pol equation outputs by KKF-CEO with

AWGN of µ = 0, SNR=-10dB.

85

Figure 6.16: Noisy, true and estimated Van Der Pol equation outputs by nonlinear KDS

with AWGN of µ = 0, SNR=20dB.

Figure 6.17: Noisy, true and estimated Van Der Pol equation outputs by nonlinear KDS

with AWGN of µ = 0, SNR=10dB.

86

Figure 6.18: Noisy, true and estimated Van Der Pol equation outputs by nonlinear KDS

with AWGN of µ = 0, SNR=3dB.

Figure 6.19: Noisy, true and estimated Van Der Pol equation outputs by nonlinear KDS

with AWGN of µ = 0, SNR=0dB.

87

Figure 6.20: Noisy, true and estimated Van Der Pol equation outputs by nonlinear KDS

with AWGN of µ = 0, SNR=-3dB.

Figure 6.21: Noisy, true and estimated Van Der Pol equation outputs by nonlinear KDS

with AWGN of µ = 0, SNR=-10dB.

88

6.2.2 Sedoglavic Equation

In this section, we perform the estimation on Sedoglavic equation, the governing equation

of the system is:

ẋ1(t) =
x2(t)

x1(t)

ẋ2(t) =
x3(t)

x2(t)

ẋ3(t) = θx1(t) (6.5)

The value of the parameter θ is 0.5, the initial condition [x3(0) x2(0) x1(0)] is [1 1 1]. The noisy

measurements {y(ti)} are generated by adding white Gaussian noise with mean µ = 0

and SNR = {−10,−3, 0, 3, 10, 20}dB to the true outputs {x(ti)} = {x1(ti)}. The time in-

terval is [0, 10], the number of sample points N is 2000. The data size reducing process

and the values of the parameters are same as the experiment on Van Der Pol equation.

Figure 6.22-6.33 are the plots of noisy measurements, the true outputs and the outputs

estimated by compared algorithms. Table 6.3 shows the performances of compared al-

gorithms under different noise levels. For Sedoglavic equation, the accuracy of our al-

gorithm also outperforms KKF-CEO, especially under the noisy measurements with low

SNR. Our algorithm gains around 5dB more SNR under -10dB noisy measurement. And

our algorithm also runs 20 times faster than KKF-CEO using four times more data.

MSE SNR Runtime
KKF-CEO NLKDS KKF-CEO NLKDS KKF-CEO NLKDS

20dB 0.1843 0.1486 24.3391dB 25.1526dB 18.4695s 1.0026s
10dB 2.1667 1.4520 13.6365dB 15.2538dB 20.3651s 1.0200s
3dB 8.2623 4.9173 7.8236dB 9.9121dB 17.0213s 0.8980s
0dB 13.4219 8.7062 5.7165dB 7.4750dB 15.5402s 0.9383s
-3dB 35.2860 15.0315 1.5186dB 5.1033dB 17.9967s 0.9583s
-10dB 239.0310 75.0232 -6.7899dB -1.8787dB 18.6236s 0.9263s

Table 6.3: The performances of compared algorithms under different noise levels on Se-

doglavic equation.

89

Figure 6.22: Noisy, true and estimated Sedoglavic equation outputs by KKF-CEO with

AWGN of µ = 0, SNR=20dB.

Figure 6.23: Noisy, true and estimated Sedoglavic equation outputs by KKF-CEO with

AWGN of µ = 0, SNR=10dB.

90

Figure 6.24: Noisy, true and estimated Sedoglavic equation outputs by KKF-CEO with

AWGN of µ = 0, SNR=3dB.

Figure 6.25: Noisy, true and estimated Sedoglavic equation outputs by KKF-CEO with

AWGN of µ = 0, SNR=0dB.

91

Figure 6.26: Noisy, true and estimated Sedoglavic equation outputs by KKF-CEO with

AWGN of µ = 0, SNR=-3dB.

Figure 6.27: Noisy, true and estimated Sedoglavic equation outputs by KKF-CEO with

AWGN of µ = 0, SNR=-10dB.

92

Figure 6.28: Noisy, true and estimated Sedoglavic equation outputs by nonlinear KDS

with AWGN of µ = 0, SNR=20dB.

Figure 6.29: Noisy, true and estimated Sedoglavic equation outputs by nonlinear KDS

with AWGN of µ = 0, SNR=10dB.

93

Figure 6.30: Noisy, true and estimated Sedoglavic equation outputs by nonlinear KDS

with AWGN of µ = 0, SNR=3dB.

Figure 6.31: Noisy, true and estimated Sedoglavic equation outputs by nonlinear KDS

with AWGN of µ = 0, SNR=0dB.

94

Figure 6.32: Noisy, true and estimated Sedoglavic equation outputs by nonlinear KDS

with AWGN of µ = 0, SNR=-3dB.

Figure 6.33: Noisy, true and estimated Sedoglavic equation outputs by nonlinear KDS

with AWGN of µ = 0, SNR=-10dB.

95

6.2.3 IKEDA Chaotic Dynamical System [12]

Here, we perform the estimation on IKEDA chaotic dynamical system, which is more

complicated, the governing equation of the system is:

w(t) = c1 − c3

1+x1(t)2+x2(t)2

x1(t+ 1) = c4 + c2(x1(t)cos(w(t))− x2(t)sin(w(t)))

x2(t+ 1) = c2(x1(t)sin(w(t)) + x2(t)cos(w(t)))

(6.6)

The parameters c1, c2, c3 and c4 are set to c1 = 0.4, c2 = 0.84, c3 = 6.0, c4 = 1.0, the initial

condition [x1(0) x2(0)] is [1 0]T . The noisy measurements {y(ti)} are generated by adding

white Gaussian noise with mean µ = 0 and SNR = {−3, 0, 3}dB to the true outputs

{x(ti)} = {x1(ti)}. The time interval is [0, 200], the number of sample points N is 200. The

data size reducing process is not needed in this section.

Figure 6.34-6.36 are the plots of noisy measurements, the true outputs and the outputs es-

timated by KKF-CEO, and Figure 6.37-6.39 are the plots of noisy measurements, the true

outputs and the outputs estimated by our novel algorithm. Table 6.4 shows the perfor-

mances of compared algorithms under different noise levels.

From the results, we can see that for systems as complicated as IKEDA chaotic dynamical

system, the accuracy of our algorithm cannot outperform KKF-CEO. Our algorithm gains

around 3dB less SNR than KKF-CEO. However, the runtime of our algorithm is 100 times

shorter than KKF-CEO using the same size of data points as KKF-CEO.

MSE SNR Runtime
KKF-CEO NLKDS KKF-CEO NLKDS KKF-CEO NLKDS

3dB 0.1001 0.2350 7.8589dB 4.1901dB 3.8878s 0.0331s
0dB 0.1685 0.2467 5.5962dB 3.9784dB 4.1499s 0.0378s
-3dB 0.1946 0.3539 4.9707dB 2.4107dB 6.6530s 0.0346s

Table 6.4: The performances of compared algorithms under different noise levels on

IKEDA chaotic dynamical system.

96

Figure 6.34: Noisy, true and estimated IKEDA chaotic dynamical system outputs by KKF-

CEO with AWGN of µ = 0, SNR=3dB.

Figure 6.35: Noisy, true and estimated IKEDA chaotic dynamical system outputs by KKF-

CEO with AWGN of µ = 0, SNR=0dB.

97

Figure 6.36: Noisy, true and estimated IKEDA chaotic dynamical system outputs by KKF-

CEO with AWGN of µ = 0, SNR=-3dB.

Figure 6.37: Noisy, true and estimated IKEDA chaotic dynamical system outputs by non-

linear KDS with AWGN of µ = 0, SNR=3dB.

98

Figure 6.38: Noisy, true and estimated IKEDA chaotic dynamical system outputs by non-

linear KDS with AWGN of µ = 0, SNR=0dB.

Figure 6.39: Noisy, true and estimated IKEDA chaotic dynamical system outputs by non-

linear KDS with AWGN of µ = 0, SNR=-3dB.

99

Chapter 7

Discussion and Conclusion

In this thesis, a novel algorithm which is adapting KDS introduced in Chapter 3 for non-

linear dynamical systems inspired by KKF-CEO introduced in Chapter 4 is proposed by

us.

In this thesis, the problem we focused on is to estimate the output of a nonlinear dynami-

cal system using noisy measurements without knowing the underlying system. However,

most of the existing algorithms for nonlinear dynamical systems such as the EKF, UKF,

DMSCE and KBR require the knowledge of the underlying system or a clean training set.

While in real life, both the knowledge of the underlying system and the clean training

set are unavailable. KKF-CEO proposed by Zhu et al. [35] which is based on classical

Kalman filter can deal with the proposed estimation problem, while KDS proposed by

John et al. [15] outperforms the Kalman filter. Therefore, our novel algorithm adapts KDS

for nonlinear systems using a similar method to Zhu et al.

Firstly our novel algorithm is applied to estimate the outputs of fourth order linear sys-

tem. The performances under different noise levels are compared with linear KDS and

KKF-CEO. From the numerical results in Table 6.1, we can find that the linear KDS has

the best accuracy, while our novel algorithm has the second-best accuracy. However, the

runtime of our novel algorithm is the shortest. In addition, our novel algorithm can be

applied to both linear and nonlinear systems, while linear KDS can only be applied to

100

linear systems.

Our novel algorithm is then applied to estimate the outputs of nonlinear systems, three

nonlinear systems: Van Der Pol equation, Sedoglavic equation and IKEDA chaotic dy-

namical system are implemented. From the numerical results in Table 6.2 and Table 6.3,

we can find that both accuracy and runtime performances of our novel algorithm outper-

form KKF-CEO on Van Der Pol equation and Sedoglavic equation. However, from Table

6.4, we find that the accuracy performance of our novel algorithm on IKEDA chaotic dy-

namical system is worse than KKF-CEO.

The reason our new algorithm performs worse than KKF-CEO on IKEDA chaotic dy-

namical system is IKEDA chaotic dynamical system is more complicated than Van Der

Pol equation and Sedoglavic equation. A higher order approximation use instead of (5.3)

may provide a better result.

The reason that the time complexity of our new algorithm outperforms the other two al-

gorithms is the simplification of summation implemented by us in (5.36), which reduces

the time complexity of our algorithm form O(n3) to O(n2). In contrast, the time complex-

ity of KKF-CEO is O(n3). When the size of the data set is large, a downsampling process

needs to be implemented in KKF-CEO, while our novel algorithm does not require the

downsampling process. In addition, the total time complexity of the downsampling and

estimation process in KKF-CEO isO(k3)+O(n2)+O(nk), the time complexity of our novel

algorithm still outperforms KKF-CEO with downsampling.

Another advantage of our novel algorithm compared to KKF-CEO is no parameter is

needed to be tuned in our novel algorithm, while parameters q and r need to be tuned

based on the prior knowledge of the noise to achieve good performances in KKF-CEO.

In the future, a similar algorithm based on a higher order approximation instead of (5.3)

can be developed to get better results. In addition, We can adapt our algorithm for multi-

ple input multiple output nonlinear dynamical systems.

101

Appendix A

Kalman Filter

Algorithm 4: Kalman Filter [19]
Initialization: For i = 0, set
x̂0 = E[x0]
P0 = E[(x0 − E[x0)(x0 − E[x0)

T]

Computation: For i = 1, ..., compute
State estimate propagation:
x̂−i = Fi−1x̂i−1
Measurement prediction:
ŷi = Hix̂

−
i

Error covariance propagation:
P−i = Fi−1Pi−1FTi−1 + Qi−1
Kalman gain matrix:
Gi = P−i HT

i [HiP−i HT
i + Ri]

−1

State estimate update:
x̂i = x̂−i + Gi(yi −Hix̂

−
i)

Error covariance update:
Pi = (I−GiHi)P−i

102

Appendix B

Proofs of Theorem 4.2.1 and Theorem

4.2.2 [35]

Because Theorem 4.2.1 and 4.2.2 are closely related, they are proved together here.

Proof: Given Fi = Φ(K + ζnIn)−1ΥT , Hi = I, Qi = qI and Ri = rI. Start with µ0 = ϕ(y0),

P0 = λI, substitute them into (4.30) to (4.34), we have the first iteration:

µ−1 is predicted as

µ−1 = F0µ0 = Φ(K + ζnIn)−1ΥTµ0 = Φa1 (B.1)

Then, P−1 can be expressed as

P−1 = F0P0FT0 + qI

= λΦ(K + ζnIn)−1ΥTΥ[(K + ζnIn)−1]TΦT + qI

= ΦP̃
−
1 ΦT + qI (B.2)

Kalman gain G1 is

G1 =P−1 HT
1 [H1P−1 HT

1 + R1]
−1

=P−1 [P−1 + rI]−1

103

=(ΦP̃
−
1 ΦT + qI)[ΦP̃

−
1 ΦT + (q + r)I]−1

=

[
q

q + r
[ΦP̃

−
1 ΦT + (q + r)I] +

r

q + r
ΦP̃
−
1 ΦT

]
× [ΦP̃

−
1 ΦT + (q + r)I]−1

=
r

q + r
ΦP̃
−
1 ΦT [ΦP̃

−
1 ΦT + (q + r)I]−1 +

q

q + r
I (B.3)

Then, from matrix inversion lemma [9],

G1 =
r

q + r
Φ[(q + r)Im + P̃

−
1 ΦTΦ]−1P̃

−
1 ΦT +

q

q + r
I

=
r

q + r
ΦG̃1Φ

T +
q

q + r
I (B.4)

Then, update the covariance matrix P1,

P1 =(I−G1)P−1

=Φ

[
r

q + r
P̃
−
1 −

r

q + r
G̃1Φ

TΦP̃
−
1 −

qr

q + r
G̃1

]
ΦT

+

(
q − q2

q + r

)
I

=ΦP̃1Φ +
qr

q + r
I (B.5)

Finally, update µ1

µ1 =µ−1 + G1(φ(y1)− µ
−
1)

=Φa1 +

(
r

q + r
ΦG̃1Φ

T +
q

q + r
I
)

(ϕ(y1)− Φa1)

=Φ

[(
r

q + r
I− r

q + r
G̃1Φ

TΦ

)
a1 +

r

q + r
G̃1Φ

Tϕ(y1)

]
+

q

q + r
ϕ(y1)

=Φb1 +
q

q + r
ϕ(y1) (B.6)

104

Here, we finished proving Theorem 4.2.1 and 4.2.2 for the first iteration, then we need to

prove them for iteration i > 1. Suppose at iteration i− 1, Theorem 4.2.1 and 4.2.2 are both

satisfied, then at ith iteration, we have

µ−i =Fi−1µi−1

=Φ(K + ζmIm)−1ΥT

[
Φbi−1 +

q

q + r
ϕ(yi−1)

]
=Φai (B.7)

and

P−i =Fi−1Pi−1FTi−1 + qI

=Fi−1

[
ΦP̃i−1ΦT +

qr

q + r
I
]

FTi−1 + qI

=ΦP̃
−
i ΦT + qI (B.8)

The other equations for iteration i > 1 can be computed using (B.2) to (B.6).

105

Appendix C

Proof of Theorem 4.3.1

Proof: Suppose ej = [0, 0, ..., 1, ..., 0]T (1 ≤ j ≤ k) is a canonical basis with k dimensions.

And suppose (y0
i , z

0
i) is quantized to (yqj , z

q
j), ϕ(y0

i) and ϕ(z0
i) are quantized to ΥQej and

ΦQej . We define c[i] = j for convenience. The feature matrices Υ and Φ are quantized to

ΥQE and PhiQE, where E = [ec[1], ..., ec[m]]. Then bring Υ and Φ into (4.24), we have

FQ = ΦQE(ETKQE + ζmI)−1ETΥT
Q (C.1)

Then by matrix inversion lemma [9], we have

FQ =ΦQEET (KQEET + ζmI)−1ΥT
Q

=ΦQΛ(KQΛ + ζmI)−1ΥT
Q (C.2)

where Λ = EET is a diagonal matrix, the jth diagonal component λqj is the number of

samples in jth bin from the kernel K-means algorithm.

106

Bibliography

[1] ANDERSON, B., AND MOORE, J. Optimal Filtering. Prentice-Hall, 1979.

[2] ARONSZAJN, N. Theory of reproducing kernels. Trans. Amer. Math. Soc. 68 (1950),

337–404.

[3] BAKIR, G. H., WESTON, J., AND SCHÖLKOPF, B. Learning of find pre-images. Ad-

vances in Neural Information Processing Systems 16 (2004), 449–456.

[4] CORTES, C., AND VAPNIK, V. Support-vector networks. In Machine Learning (1995),

pp. 273–297.

[5] FUKUMIZU, K., BACH, F. R., AND JORDAN, M. I. Dimensionality reduction for

supervised learning with reproducing kernel hilbert spaces. JMLR 5 (2004), 73–99.

[6] FUKUMIZU, K., GRETTOU, A., SUN, X., AND SCHÖLKOPF, B. Kernel measures of

conditional dependence. Adv. Neural Inf. Process. Sys., 20 (2008), 489–496.

[7] FUKUMIZU, K., SONG, L., AND GRETTON, A. Kernel bayes’ rule. Adv. Neural Inf.

Process. Syst. (2011).

[8] GHOSHAL, D. P., GOPALAKRISHNAN, K., AND MICHALSKA, H. Algebraic param-

eter estimation using kernel representation of linear systems. IFAC World Congress,

2017. 20th World Congress (2017).

[9] H, H., AND SEARLE, S. On deriving the inverse of a sum of matrices. SIAM Rev 23,

1 (1981), 53–60.

107

[10] HAYKIN, S. Kalman Filtering and Networks. Wiley, New York, NY, USA, 2001.

[11] HENDERSON, H., AND SEARLE, S. On deriving the inverse of a sum of matrices.

SLAM Rev. 23, 1 (1981), 53–60.

[12] IKEDA, K. Multiple-valued stationary state and its instability of the transmitted light

by a ring cavity system. Opt. Commun, 30 (1979), 257–261.

[13] ILLINGWORTH, V. The Penguin dictionary of physics. London: Penguin Books, 1991.

[14] JAZWINSKI, A. Stochastic Process and Filtering Theory. New York: Academic Press,

1970.

[15] JOHN, A. Estimation for siso lti systems using differential invariance. Master’s

thesis, McGill University, 2017.

[16] JULIER, S. J., AND UHLMANN, J. K. A new approach for filtering nonlinear systems.

Proceedings of the American Control Conference (1995), 1628–1632.

[17] JULIER, S. J., AND UHLMANN, J. K. A general method for approximating nonlinear

transformations of probability distributions. Technical Report, RRG, Department of

Engineering Science, University of Oxford (1996).

[18] JULIER, S. J., AND UHLMANN, J. K. A new extension of the kalman filter to non-

linear systems. Proc. of AeroSense: The 11th Int. Symp. on Aerospace/Defence Sensing,

Simulation and Controls (1997).

[19] KALMAN, R. E. A new approach to linear filtering and prediction problem. Transac-

tions of the ASME, Ser. D, Journal of Basic Engineering 82 (1960), 34–45.

[20] LIN, C. Support vector machines and kernel methods: Status and challenges.

https://www.csie.ntu.edu.tw/˜cjlin/talks/kuleuven_svm.pdf, 2013.

[21] LIU, W., PRINCIPE, J. C., AND HAYKIN, S. Kernel Adaptive Filtering: A Comprehensive

Introduction. Wiley, 2010.

108

https://www.csie.ntu.edu.tw/~cjlin/talks/kuleuven_svm.pdf

[22] MACQUEEN, J. Some methods for classification and analysis of multivariate ob-

servations. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and

Probability 1 (1967), 281–297.

[23] MAYBECK, P. Stochastic Models, Estimation and Control, vol. 1. New York: Academic

Press, 1979.

[24] MUANDET, K., FUKUMIZU, K., SRIPERUMBUDUR, B., AND SCHÖLKOPF, B. Kernel

mean embedding of distributions: A review and beyond. Foundations and Trends in

Machine Learning 10, 1-2 (2017), 1–141.

[25] PEARSON, K. On lines and planes of closest fit to systems of points in space. The

London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 2, 11 (1901),

559–572.

[26] ROSENBLATT, F. The perceptron: a probabilistic model for information storage and

organization in the brain. Psychological Review (1958), 65–386.

[27] SCHÖLKOPF, B., HERBRICH, R., AND SMOLA, A. J. A generalized representer the-

orem. In Proceedings of the 14th Annual Conference on Computer Learning Theory (Lon-

don, U.K., 2001), pp. 416–426.

[28] SCHÖLKOPF, B., SMOLA, A., AND MÜLLER, K. Nonlinear component analysis as a

kernel eigenvalue problem. Neural Comput 10, 5 (1998), 1299–1319.

[29] SONG, L., HUANG, J., SMOLA, A., AND FUKUMINZU, K. Hilbert space embeddings

of conditional distributions with applications to dynamical systems. Proc. 26th Int.

Conf. Mach. Learn. (2009), 961–968.

[30] TREES, H. V. Detection, Estimation, and Modulation Theory, Part I. Wiley, 1968.

[31] UHLMAN, J. K. Algorithms for multiple target tracking. American Scientist 80(2)

(1992), 128–141.

109

[32] WAN, E. A., AND MERWE, R. V. The unscented kalman filter for nonlinear estima-

tion. Proc. of IEEE Symposium 2000 (AS-SPCC), Lake Louise, Alberta, Canada (2000).

[33] WAN, E. A., MERWE, R. V., AND NELSO, A. T. Dual estimation and the unscented

transformation. Advances in Neural Information Processing Systems 12 (2000), 666–672.

[34] WELCH, G., AND BISHOP, G. An introduction to the kalman filter. Technical report,

UNC-CH Computer Science Technical Report 95041 (1995).

[35] ZHU, P., CHEN, B., AND PRINCIPE, J. C. Learning nonlinear generative models of

time series with a kalman filter in rkhs, 2014.

110

	Abstract
	Abrégé
	Acknowledgements
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Thesis Objectives and Organization

	Background
	Kalman FilterKFPrincipe
	Problem Definition
	Optimality of the Kalman Filter
	Kalman Filter KForiginal

	Reproducing Kernel Hilbert Space (RKHS) KernelMeanEmbeddingofDistributions
	Related Works
	Extended Kalman Filter
	Unscented Kalman Filter
	Other Generative Approaches

	Double Sided Kernel for Linear Systems anju2018
	Parameter Estimation Using Kernel Representation of Homogeneous SISO LTI systems
	Derivation of Double Sided Kernel for Fourth Order System
	Parameter and State Estimation Using Double Sided Kernel

	Kalman Filter in RKHS
	Hilbert Space Embeddings
	Embedding Distribution KernelMeanEmbeddingofDistributions
	Cross-Covariance Operator Principe
	Conditional Embedding Operator PrincipeHSEmbedding

	Kalman Filter in RKHS Principe
	Derivation of Kalman Filter in RKHS

	Reducing the Size of the Training Data PrincipeKernelKmeansKmeans

	Double Sided Kernel for Nonlinear Systems
	Derivation of KDS for Nonlinear System
	State Estimation of Nonlinear Systems Using Double Sided Kernel

	Experiments and Results
	Performances on Linear Systems
	Performances on Nonlinear Systems
	Van Der Pol Equation
	Sedoglavic Equation
	IKEDA Chaotic Dynamical System IKEDA

	Discussion and Conclusion
	Kalman Filter
	Proofs of Theorem 4.2.1 and Theorem 4.2.2 Principe
	Proof of Theorem 4.3.1

