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ABSTRACT 

Convergent evidence suggests that psychomotor stimulant drugs, such as amphetamine 

and cocaine, exert their rewarding and locomotor stimulant effects via increased 

dopamine (DA) transmission in the ventral striatum in rats. Additionally, recent evidence 

suggests that DA transmission importantly mediates the aversive effects of nicotine. The 

ventral striaturri is not, however, a homogenous structure. Rather, anatomical and 

behavioural evidence suggests the presence of several discrete subregions. The most 

prominent of these are the core and medial shell regions of the nucleus accumbens, and 

the medial olfactory tubercle (ûT). The objective ofthis thesis was therefore to examine 

the contribution ofDAergic transmission in core, medial shell, and medial OT, to 

psycho stimulant reward, locomotor stimulation and nicotine aversion. 

The first experimental chapter examined the effects of 6-hydroxydopamine lesions of 

core vs. medial shell on amphetamine-stimulated locomotion and conditioned place 

preference (CPP). Core, but not medial shelliesions attenuated locomotor stimulation. 

Conversely, medial shell but not core lesions reduced CPP magnitude. Medial shell 

lesions likely affected reward processing rather than memory, since similar lesions failed 

to reduce morphine CPP. Taken together, these findings suggested a segregation of 

reward and locomotor stimulation, but left open the possibility that conditioned and 

unconditioned effects of amphetamine were the critical factor. Accordingly, in Chapter 4, 

amphetamine-conditioned activity was abolished by core, but not medial shelliesions, 
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suggesting that locomotor stimulation and reward processing, rather than conditioned vs. 

unconditioned drug effects, are segregated within the accumbens. 

Chapters 5-7 examined whether the apparent separation of CPP and locomotor 

stimulation generalized to the psycho stimulants cocaine and methylphenidate, and to 

nicotine. Locomotion stimulated by cocaine or methylphenidate was reduced by core 

lesions. Lesion effects on CPP, however, were more complex. Medial shelliesions 

reduced both i.v. co caine and nicotine CPP, without affecting CPP for i.p. cocaine or 

methylphenidate. Lesions of the medial OT effectively reduced both i.v. co caine and 

methyphenidate CPP. Unexpectedly, core lesions increased i.v. nicotine CPP and tended 

to do the same to i.v. cocaine CPP. In the case of nicotine, this appeared to result from 

reduced nicotine aversion, since core lesions abolished nicotine-conditioned taste 

averSIOn. 

This work highlights the complex array of factors contributing to the behavioural 

sequelae of psychostimulant administration. Both the drug and route of administration 

appear to be important determinants of neurochemical and anatomical reward substrates. 

Such complexities must be considered in the se arch for more effective aids to reduce drug 

taking. 
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RÉSUMÉ 

Plusieurs recherches suggèrent que les effets récompensant et locomoteur des drogues 

psychostimulantes comme l'amphétamine et la cocaïne favorisent la transmission de 

dopamine au striatum ventral des rats. Nous savons également que cette transmission de 

dopamine gère les effets opposés de la nicotine (les effets de répulsion à la nicotine). 

Toutefois, le striatum ventral n'est pas une structure homogène. En effet, l'analyse 

biologique (anatomique) et behavioriste montre qu'il est composé de plusieurs sous

régions. Les plus connues sont les parties core et shell médiale du noyau accumbens, et la 

partie médiale de l' olfactory tuberc1e. Restait à savoir comment la transmission de 

dopamine à la partie core, à la partie shell et à l'olfactory tuberc1e médial influençait les 

effets récompensants, locomoteurs et répulsifs des drogues psychostimulantes, et 

comment aussi elle influençait l'aversion à la nicotine. C'étaient là les objectifs de cette 

thèse. 

Le premier étude est consacré aux lésions (employant 6-hydroxydopamine) des parties 

core et shell médiale du noyau accumbens. Comment ces lésions affectent-elles, chez le 

rat, les réponses locomotrices à l'amphétamine et la préférence d'un lieu (conditionnée 

par des drogues)? Des lésions de la partie core ont réduit l'effet locomoteur de 

l'amphétamine. Au contraire, des lésions de la partie shell médiale ont réduit la 

préférence. Il est peu probable que les lésions de la partie shell médiale aient affecté la 

mémoire parce que ces lésions n'ont pas réduit la préférence du lieu conditionnée par la 

morphine. 
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Ces résultats suggèrent un écart entre les effets récompensants et la stimulation 

locomotrice, mais laissent penser que les effets conditionnés et non conditionnés par 

l'amphétamine étaient un facteur primordial. Au quatrième chapître, les effets 

locomoteurs conditionnés par l'amphétamine étaient réduits par des lésions de la partie 

core, mais non par des lésions de la partie shell médiale. Nous en concluons que les 

stimulations locomotrices et les effets récompensants, plutôt que le conditionnement par 

les drogues, sont distincts au sein même de l' accumbens. 

Dans les chapitres 5, 6 et 7, on a voulu savoir si l'écart entre la préférence de lieu 

conditionnée et l'effet locomoteur étaient pouvait être généralisée aux drogues 

stimulantes, telles la cocaïne, la méthylphenidate et la nicotine. L'effet locomoteur de la 

cocaïne ou de la méthylphénidate était réduit par les lésions de la partie core. Cependant, 

les effets des lésions sur la préférence de lieu conditionnée étaient plus complexes. Des 

lésions de la partie shell médiale ont réduit la préférence de lieu conditionnée pour la 

cocaïne (i.v.) et la nicotine, mais étaient sans effet pour la préférence de lieu conditionnée 

par la cocaïne (i.p.) ou la méthylphénidate. Des lésions de l' olfactory tubercle médiale 

ont réduit la préférence de lieu conditionnée par la cocaine (i.v.) et par la 

méthylphénidate. Contre toute attente, les lésions de la partie core ont augmenté la 

préférence de lieu conditionnée par la nicotine. Le même phénomène s'observe dans le 

cas de la préférence de lieu conditionnée par la cocaïne (i.v.). Quant à la nicotine, il 

semble que cela est dû à la réduction des effets répulsifs à la nicotine, car des lésions de 

la partie core rendent nulle la répulsion au goût conditionné par la nicotine. 
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Ces expériences mettent en lumière l'ensemble des facteurs qui influencent le 

comportement d'un corps sous l'effet de drogues psychostimulantes. Il apparaît que la 

drogue et le moyen d'administration sont deux facteurs importants quant aux substrats 

neurochimique et anatomique. Il faut tenir compte de tout cela dans l'élaboration de 

thérapies plus efficaces dans le traitement de la dépendance. 

Ces expériences mettent en évidence les éléments complexes qui contribuent aux effets 

comportementaux occasionnés par l'administration de drouges stimulantes. Il apparaît 

que la drogue et le moyen d'administration sont deux facteurs importants quant aux 

contributions aux substrates neurochemique et anatomique. Il faut tenir compte de ces 

tout cela dans l'élaboration de thérapies plus efficaces dans le traitement de la 

dépendence. 
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CHAPTER 1: Introduction and Comprehensive Literature Summary 

Laurie H. L. Sellings 
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1.1 Drug use and addiction 

Nearly aIl people experiment with potentially addictive substances, yet such use does not 

always lead to addiction. Addiction is characterized by compulsive drug-seeking and 

drug-taking at the expense of normallife activities (Robinson and Berridge, 2003). For 

example, a majority of people in Canada (80%) consume alcohol; however, only 10% of 

drinkers reported that alcohol consumption was having adverse effects on relationships, 

well-being and health (Canadian Executive Council on Addictions, 2004). Even after 

protracted drug abstinence, exposure to conditioned environmental cues, stress or the 

drug itself can re-instate compulsive drug-seeking and drug-taking behaviour. 

Few pharmacotherapeutic options exist to treat drug addiction. Of those that are 

available, most either serve to replace the drug in the system or reduce drug taking by 

unknown mechanisms. Classic examples inc1ude methadone maintenance in opiate 

addiction, nicotine replacement therapy in smoking cessation, and treatment of 

a1coholism with the Il-opioid receptor antagonist naltrexone (Gottschalk et al., 1999; 

Kreek et al., 2002). A summary of common pharmacotherapies for addiction is given in 

Table 1. Drug-conditioned environmental cues are thought important in reinstating drug

seeking and drug taking (e.g. Robinson and Berridge, 2003; Hyman et al., 2006). 

Therefore, .a better understanding of how the brain encodes the association between such 

environmental cues and the drug experience would likely facilitate development of more 

efficacious drugs in the treatment of addiction to several substances. 
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Table 1. Main pharmacotherapeutic interventions available in the treatment of drug 

addiction, broken down by drug. 

Drug Intervention Efficacy References 
Nicotine Nicotine replacement 22% abstinent at 6 (Fiore et al., 1994) 

therapy months (vs. 9% 
placebo) 

Buproprion One year quit (Hurt et al., 1997) 
blocker of DAT, NET and rates: (Jorenby,2002) 
SERT 12.4% placebo vs. 

-20% 
Opiates (e.g. Methadone or LAAM Efficacy of >50% (Kreek et al., 2002; 
heroin) maintenance in reduction of Hubbard et al., 

f-l opioid receptor agonists heroin intake 2003) 
Buprenorphine Efficacy sirnilar to (Kreek et al., 2002) 
partial f-l receptor agonist methadone 
and K receptor antagonist maintenance 
Buprenorphine/naloxone 
f-l receptor antagonist 

Ethanol Nalmefene or naltrexone Of moderate (Kreek et al., 2002; 
f-l receptor antagonists efficacy (20-50% Anton et al., 2006) 

quit rates) 
Acamprosate Dependent on trial: (Kreek et al., 2002) 
NMDA receptor antagonist sorne show 

efficacy. Others do 
not 

Cocaine, No approved interventions (Kreek et al., 2002; 
amphetamine Vocci et al., 2005) 
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1.2 Animal models of drug use 

For ethical reasons, the scope of human studies examining drug-seeking and drug-taking 

is limited. Many human studies use neuroimaging methods to visualize drug-induced 

changes in the brain, and have proven useful in the identification of putative molecular 

and anatomical substrates of drug-taking in humans. However, such studies typically 

examine polydrug users with heterogeneous drug histories, and are by nature 

correlational (Gatley et al., 2005). Because of these constraints, animal models of the 

consequences of drug taking have been developed. These include behavioural activation, 

altered affective state, reinforcement of subsequent drug taking behaviour, behavioural 

sensitization, and exhibition of drug-conditioned behaviours upon exposure to drug 

environment cues, stress, or a drug prime. Such models are briefly described below. 

1.2.1 Behavioural activation 

Behavioural activation in animaIs can be measured in a relatively straightforward manner 

by examining changes in locomotor activity after administration of drugs, especially 

psychostimulants (Swerdlow et al., 1986). One caveat of locomotor activity measures is 

that at high drug doses, animaIs may exhibit stereotyped behaviour such as gnawing, 

sniffing and rearing; such behaviour may interfere with simple methods of locomotor 

activity quantification. Although studies examining behavioural activation have provided 

much insight into putative neural drug targets, how this measure represents more 

complicated drug-seeking and drug-taking behaviour is unclear. 

1.2.2 Affective state 
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Rats are thought to communicate affective state through ultrasonic vocalizations (USVs). 

Two types of vocalizations have been characterized in adult rats - 50 kHz and 22 kHz. 

The 22 kHz caU may represent a social alarm signal, and is thought to correspond to 

negative affect (Knutson et al., 2002). In contrast, 50 kHz caUs have been compared to 

laughter in humans, and are thought to represent positive affective state (Knutson et al., 

2002; Panksepp and Burgdorf, 2003). Rats emit 50 kHz caUs after systemic 

amphetamine administration (Knutson et al., 2002). However, USVs are not weU 

characterized in the context of psychoactive drugs. More specifically, it is unclear 

whether USV s are a pure measure of affective state, a form of social communication, or 

both (Knutson et al., 2002; Panksepp and Burgdorf, 2003). 

1.2.3 Reinforcement 

ln operant responding paradigms, the delivery of a potential reinforcer is contingent on a 

response, such as a lever press or a nose poke. Such paradigms can serve to measure if a 

drug is reinforcing (White, 1989). Three common operant response paradigms used to 

examine potential substrates of drug taking behaviour are intravenous self-administration 

(IVSA), intracranial self-administration (lCSA) and intracranial self-stimulation (ICSS). 

1.2.3.1 Intravenous self-administration and intracranial self-administration 

IVSA and ICSA can serve as useful tools to examine multiple aspects ~f reinforcement in 

animais. In the case of IVSA, there is face validity with human drug-taking,since 

systemic drug administration is used. On the other hand, ICSA is useful for inspection of 

putative brain regions important in the reinforcing effects of drugs. In both cases, the 
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use of one of several schedules of drug delivery allows examination of different aspects 

of drug-taking. Three of the most common schedules are continuous reinforcement or 

fixed-ratio, progressive ratio, and second-order. In a continuous reinforcement or a 

fixed-ratio schedule, a constant number of responses results in administration of drug. 

This examines how much drug animaIs self adrninister in a set period of time. In a 

progressive ratio schedule, escalating responses are required to receive a drug infusion. 

This procedure measures how motivated animaIs are to take drugs, as evinced by the 

"break point" - the maximal number of responses the animal will make to receive the 

drug. In a second-order schedule, the control that drug-conditioned stimuli have on drug 

seeking behaviour is exarnined; this serves as a measure of conditioned reinforcement. 

The procedure combines two schedules - the first is a presentation of a neutral stimulus 

(e.g. a light) after a given number of responses. The second is an infusion of drug after a 

given number of presentations of the neutral stimulus. As such, IVSA and ICSA can be 

used to examine several aspects of drug-taking and drug-seeking behaviours in animal 

models. 

However, there exist several drawbacks to the use of IVSA and ICSA. First, animaIs are 

not tested drug-free. As such, behavioural arousal may significantly affect operant 

responding. Second, effects of pharrnacological or neurological manipulations on 

extinguishing drug taking behaviour may be influenced by an increase in conditioned 

behavioural activation in the test chamber. Third, responding may be the result simply 

of a drug's activating effect rather than a drug's reinforcing effect (Ikemoto and Wise, 
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2004). This problem can be circumvented by using either a second control lever on 

which responding reflects arousal state, or a yoked procedure. 

1.2.3.2 Intracranial self-stimulation 

Since the first demonstration that rats will self-administer CUITent into specific parts of 

the brain (Olds and Milner, 1954), this technique has been exploited to pinpoint the brain 

loci supporting "rewarding" brain stimulation. As with drug self administration 

paradigms, JCSS can be made available on different schedules (Schaefer and Michael, 

1992). Although it is unc1ear if or how JCSS mimics natural or chemical rewards, brain 

nuc1ei and fibre tracts implicated in drug reward processes also support JCSS (Wise, 

1996). Additionally, drugs that are self-administered in animaIs, such as amphetamine, 

cocaine and nicotine, decrease the threshold of CUITent that is self-administered (Schaefer 

and Michael, 1992; Wise, 1987). This has been interpreted as a summation of the 

rewarding effects of the drug and of the brain stimulation; the "rewarding" effect of the 

drug decreases the threshold of "rewarding" CUITent required for self-administration. 

There are, however, several important limitations to JCSS. First, it lacks face validity -

people self-administer drugs, not electrical CUITent. Second, it is difficult to determine if 

the neurons activated by CUITent application are also activated by self-administered drugs. 

Finally, when the operant response is the measure used to determine changes in 'reward 

thresholds', this measuré could presumably be affected by changes in arousal state, or 

other non- 'reward' events, although this can be problem circumvented by examining rate

intensity functions. 
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1.2.4 Behavioural sensitization 

Drug effects may sensitize after repeated exposures. Locomotor activity after drug 

administration represents such a phenomenon (e.g. Li et al., 2004; Samaha et al., 2005). 

More specifically, rats treated repeatedly with a psychomotor stimulant drug exhibit 

increased locomotor activation when treated with the same drug after a period of 

protracted abstinence than do drug-naïve animaIs. This sensitization is accompanied by 

neuroadaptive changes, at molecular, cellular and systems levels (Robinson and Berridge, 

2003; Ferrario et al., 2005). Since behavioural sensitization is observed well after drug 

administration has ceased, it has been proposed to model drug craving in humans 

(Robinson and Berridge, 2003). 

1.2.5 Drug conditioned effects 

The control that conditioned environmental cues have over drug seeking and drug taking 

is well documented (Le Foll and Goldberg, 2005; Weiss, 2005). Drug-associated eues 

are one of the most potent precipitators of eraving and relapse in both animaIs and 

humans. Several drug effeets are eonditionable, including reward, loeomotor stimulation, 

reinforcement and aversion. Because examination of conditioned effects of psyehomotor 

stimulant drugs was the main foeus of this thesis, these paradigms are now deseribed in 

detail. 

1.2.5.1 Conditioned place preference (CPP) 

CPP is often used as an index of eonditioned drug reward. It is studied in a learning 

paradigm in whieh an animal is taught to associate an uneonditioned stimulus (US; e.g. 
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drug, food, sex) with a novel environment or cue (the conditioned stimulus, CS+). As a 

control, animaIs receive equal exposure to a second nove! environment (the CS-), but in 

the absence of the US. After several CS+/US pairings, the animal is allowed access to 

both the CS+ and the CS-, and the time spent in contact with (or the number of 

approaches made to) the CS+ are measured in the absence of the US. If an animal prefers 

the CS+, the US is presumed to be rewarding. Conversely, if an animal prefers the CS-, 

the US is presumed to be aversive. Semantically, CPP may be more appropriately called 

conditioned eue preference, as animaIs are learning about environmental cues. 

Furthermore, spatial or place learning requires hippocampal memory systems (Silva et 

al., 1998), whereas cue learning appears dependent on the nucleus accumbens and 

amygdala (McDonald and White, 1993; McDonald and White, 1995; White et al., 2005). 

There are several advantages of using CPP as a measure of drug reward. First, the CPP 

test is typically performed drug free (Bardo and Bevins, 2000). As such, state

independent associations made between the drug and the environmental cues are not 

responsible for the subsequently expressed CPP. Second, it is sensitive to both the 

rewarding and aversive effects of drugs (Bardo and Bevins, 2000). Third, as opposed to 

operant responding paradigms, drug dosing is controlled throughout the procedure (Bardo 

and Bevins, 2000). Finally, the procedure is sensitive to low doses of drug, and is often 

observed after one CS+/US pairing (Bardo et al., 1999; Bardo and Bevins, 2000; Spina et 

al.,2006). 
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CPP is not, however, without its pitfalls. A major disadvantage of CPP is the use of 

passive drug administration in training (Bardo and Bevins, 2000). This may be of 

concem, since gene transcription can differ after active vs. passive drug administration 

(Jacobs et al., 2002). Additionally, CPP has not been validated in human subjects (Bardo 

and Bevins, 2000). Importantly, it is difficult to design a paradigm in which both 

environments are equally preferred prior to pairing of one with the US (Bardo and 

Bevins, 2000). If one environment is inherently preferred, the CPP paradigm is said to be 

biased, which can le ad to interpretational difficulties. For instance, if the drug in 

question can act as an anxiolytic, drug pairing with the initially unpreferred side may 

represent decreased anxiety rather than conditioned reward. However, this is only a valid 

criticism if the preference is not absolute (Tzschentk:e, 1998). Additionally, pairing of the 

drug with the initially preferred side may increase the incidence of negative resuIts, since 

a ceiling effect could decrease the possibility of a statistically significant CPP from being 

observed (Bardo and Bevins, 2000). To avoid such challenges, an unbiased CPP 

paradigm was used in this thesis; details can be found in Chapter 2. 

1.2.5.2 Conditioned locomotor activity (CLMA) 

Locomotor stimulation is also a conditionable behaviour, as evinced by increased 

locomotor activity observed in drug-free animais in an environment where they had 

previously received repeated psychostimulant exposures (Beninger and Hahn, 1983; Gold 

et al., 1988; Brown and Fibiger, 1992). Like CPP, CLMA aiso measures a conditioned 

response to drug-associated stimuli. To examine CLMA, the drug (US) is paired 

repeatedIy with a novei environment (CS+). Typically, a second group of animaIs 
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receives an equivalent number of US pairings in the home cage, and vehic1e infusions in 

the CS+ environment. During the drug-free test, activity in the novel environment is 

compared to either baseline activity or to the group that received drug in the home cage. 

Increased activity in the group previously receiving novel environment drug pairings is 

interpreted as CLMA. The neural mechanisms underlying CLMA appear to differ at least 

in part from those of CPP. For example, the amygdala appears critical for cocaine CPP 

but not cocaine CLMA (Brown and Fibiger, 1993). Details of the CLMA paradigm used 

in this thesis can be found in Chapter 2. 

1.2.5.3 Conditioned taste aversion (CTA) 

In c1assical CTA leaming, rats learn to associate a novel taste with a negative gustatory 

stimulus. This serves to prevent the animal from ingesting substances that could have 

negative consequences (Welzl et al., 2001). A c1assic example is lithium chloride, which 

induces robust CTA (e.g. Fenu et al., 2001). However, several drugs that are self

administered or that induce CPP also cause a CTA (Hunt and Amit, 1987). Examples 

include amphetamine (e.g. Wise et al., 1976), morphine (e.g. LeBlanc and Cappell, 1975) 

and nicotine (e.g. Kumar et al., 1983). 

It is likely that different neural mechanisms underlie CT A for rewarding vs. malaise

inducing drugs (Hunt and Amit, 1987; Parker, 2003). First, emetic agents cause CTA 

either via stimulation of vagal afferents, or chemosensors in the area postrema (Hunt and 

Amit, 1987). Although the effect of vagal afferent manipulation on CT A for rewarding 

drugs has not been examined, the area postrema does not appear to critically mediate 
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such CTAs. For exampIe, area postrema Iesions do not affect CTA for apomorphine (van 

der Kooy et al., 1983) or high-dose amphetamine (Rabin et al., 1987 but see Carr and 

White, 1986), and actually enhance nicotine CTA (Ossenkopp and Giugno, 1990). 

Second, intracranial administration of reward-relevant drugs in extra-area postrema sites 

can produce CTA. Aithough this was not observed with amphetamine (Carr and White, 

1986), nicotine delivery in the NAcc (Shoaib and Stolerman, 1995) or VTA (Laviolette et 

al., 2002) produced robust CT A. Finally, central administration of nicotinic receptor 

antagonists can reduce a CTA for nicotine (Reavill et al., 1986; Stolerman, 1988). For 

these reasons, it appears that the centrally-mediated, rather than the peripheral aversive 

properties of rewarding drugs are being examined in the CT A paradigm, and that it 

differs mechanistically from malaise-inducing drug CT A. 

There exist sorne disadvantages to CT A as a measure of drug aversion. First, animaIs are 

in a state of water deprivation throughout conditioning and testing - it is unc1ear whether 

the aversive properties of drugs are altered as a resuit. Second, the procedure is 

commonly performed with solutions that are intrinsically preferred (e.g. saccharin 

solution) or avoided (e.g. NaCI solution), potentially complicating interpretation of 

changes in fluid consumption. Finally, at least one commentator has proposed that CT A 

for reward-relevant drugs provides a measure of drug reward rather than aversion (Di 

Chiara et al., 2004). This hypothesis posits that rats find the drug-paired flavour aversive 

as a result of comparison with a more rewarding stimulus (i.e. the drug). As such, 

increased CTA would indicate increased reward. This explanation, however, suffers 

from the following criticisms. First, animaIs can form conditioned taste preferences for 
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low doses of morphine (Mucha and Herz, 1986) or for intracerebroventricular ethanol 

(Crankshaw et al., 2003). Secondly, 6-hydroxydopamine (6-0HDA) lesions of the 

accumbens medial shell decreased nicotine CPP, but only minimally affected nicotine 

CTA (see Chapter 7). Finally, it is unclear why such a mechanism would be observed 

after conditioning to taste stimuli, but would not apply to conditioning in other modalities 

(tactile, odour or visual) as in CPP. 

1.3 Examining the contribution of discrete brain regions to drug-induced 

behaviours 

Convergent evidence using several experimental approaches has provided evidence that 

mesolimbic dopamine (DA) transmission, and more specifically within the nucleus 

accumbens (NAcc), is critical for psychostimulant reward and psychomotor activation. 

Most of the evidence derives from a few experimental approaches, which are discussed 

briefly below, with an emphasis on the 6-0HDA lesion since this was used extensively in 

this thesis. 

1.3.1 Drug microinjection 

One method of examining brain loci suspected to be involved in the behavioural 

consequences of drug taking is to infuse a small volume of the drug directly into the brain 

region of interest. This technique is advantageous in that the action of the drug in the 

periphery is not likely to contribute to the observed behaviour. There are, however, 

several concerns with this technique. These include drug diffusion away from the 

infusion site, difficulty in reliably infusing small volumes, lack of homogeneous drug 
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concentration at aIl sites of action, questionable relevance of drug concentrations (i.e. is it 

biologically relevant?), and anatomical selectivity (Ikemoto and Wise, 2004). 

Nevertheless, microinjection has provided valuable insight into the anatomical substrates 

of both conditioned and unconditioned drug effects. 

1.3.2 NeurotransmiUer measurement 

There are two main methods of in vivo neurotransmitter measurement. The first of these 

is microdialysis followed by quantification of extracellular neurotransmitter levels. In 

this technique, small tissue regions are sampled to determine the concentration of 

molecules of interest. In the case of brain tissue, microdialysis is commonly used to 

measure extracellular concentrations of neurotransmitters and their metabolites. In short, 

intracerebral microdialysis is performed by infusing artificial cerebrospinal fluid through 

a hollow microdialysis probe, which is inserted into the brain area of interest, and 

consists of a semi-permeable membrane at the end of a stainless steel or silicon probe 

(Westerink, 1995). The technique is sensitive to low extracellular concentrations of 

catecholamines (3-20 fmol; Westerink, 1995; Pillenz, 2005). There are, however, several 

drawbacks to microdialysis. Pirst, there is substantial blood brain barrier and neural 

tissue damage resulting from insertion of the 100-300 J.!m probe (Westerink, 1995; 

Fillenz, 2005). Second, it is insensitive to rapid changes in neurotransmitter 

concentrations (Westerink, 1995). Third, gliosis develops rapidly on the microdialysis 

probe, hence limiting the time of experiments to 3-4 days after implantation (Westerink, 

1995), although this problem can be circumvented with an insertable probe. Pinally, the 

34 



composition of the dialysate fluid can influence measured concentrations of 

neurotransmitter (Plock and Kloft, 2005). 

The second technique is in vivo electrochemical monitoring. Compared to microdialysis, 

it offers improved spatial and temporal resolution. Electrochemical methods examine 

changes in current after application of a known voltage, from which the extracellular 

concentration of DA can be determined. Advantages of the technique are as follows. 

First, the small size of the electrodes allows their placement in brain tissue, and the 

measurement of neurotransmitter levels with relatively little damage to surrounding tissue 

(Michael and Wightman, 1999). Second, the short time period between scans (typically 

repeated every 100 ms; Fillenz, 2005) allows temporal resolution superior to that of 

microdialysis (Michael and Wightman, 1999). Drawbacks include the impossibility in 

differentiating DA from norepinephrine (NE), difficulty of distinguishing DA from other 

oxidizable species such as ascorbate and 3,4-dihydroxyphenyacetic acid, and sensitivity 

of background current to changes in Ca2+ and H+ ion concentrations (Michael and 

Wightman, 1999). In summary, both microdialysis and electrochemistry suffer sorne 

drawbacks, but each is useful to de termine changes in DA concentrations. 

1.3.3 Lesions 

Although measures of neurotransmitter release in response to drugs and drug-related 

stimuli has added much to our knowledge of reward-relevant processing, it remains a 

correlative measure. More specifically, it is impossible to know whether 

neurotransmitter release is responsible for an observed behaviour, or whether it simply 
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accompanies the behaviour. As such, experiments examining su ch a parameter in vivo 

are, by necessity, correlational. However, if neurotransmission is disrupted at a site of 

interest, it can be said with sorne certainty that that region is mediating or enabling an 

aspect of the resultant behaviour. However, to determine whether a specific 

neurotransmitter or cell type is responsible, it is necessary to rule out non-selective lesion 

effects on behaviour. Physicallesion techniques, such as aspiration, radiofrequency and 

electrolysis, have been used frequently to destroy discrete brain nuclei. However, 

physicallesions are not cell-type selective, and damage both intrinsic neurons and fibres 

of passage. Additionally, they induce massive infiltration of reactive astrocytes to the 

lesion site, and typically cause extensive damage to adjacent structures (Willis and Smith, 

1986; Willis et al., 1987; Jarrard, 2002). As such, a lesion with cell-type selectivity, 

resulting in minimal non-specifie damage, would represent a significant improvement 

over such methods. 

Chemicallesions represent a significant advance over physicallesion methods. Such 

lesions are induced by neurotoxins, including excitotoxins (e.g. kainic acid, ibotenic acid, 

quisqualate, N-methyl d-aspartate (NMDA», and the catecholamine-selective neurotoxin 

6-hydroxydopamine (6-0HDA). Chemicallesions can be more selective than physieal 

lesions, both anatomically and neurochemicaIly, because the extent of damage is 

controlled by both the volume and the concentration of toxin infused. However, 

excitotoxins do not exhibit cell-type selectivity, and have been demonstrated to 

transiently demyelinate fibres of passage (Ogawa et al., 1989; Brace et al., 1997; 

Arvanitogiannis and Shizgal, 1999; Jamin et al., 2001; Jarrard, 2002). In contrast, 6-
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OHDA almost exclusively kills catecholaminergic cells. Since the interest of the present 

thesis was to examine the contribution of DA terminaIs in the ventral striatum to 

psychomotor stimulant-induced behaviours, the 6-0HDA les ion method was chosen. 

6-0HDA selectivity and neurotoxicity have been examined in vivo. Early studies 

demonstrated that intravenous 6-0HDA denervated peripheral adrenergic nerve terminaIs 

by "degenerative destruction" of sympathetic nerves (Malmfors and Sachs, 1968). Since 

blockade of the norepinephrine transporter (NET) using desipramine (DMI) prevented 

peripheral neurotoxicity, it appeared that neuronal uptake was essential for the neurotoxic 

effect to take place (Malmfors and Sachs, 1968). AdditionaIly, electron microscopic 

examination of peripheral adrenergic terminaIs demonstrated both degeneration and 

disappearence of NE terminaIs (Tranzer and Thoenen, 1968). 6-0HDA also substantially 

reduced whole-brain NE levels after intraventricular infusion (Uretsky and Iversen, 

1969). Furthermore, DA levels were also reduced after intraventricular 6-0HDA 

infusion, to a similar extent as brain NE (Evetts et al., 1970; Uretsky and Iversen, 1970). 

Once inside the catecholaminergic terminal, 6-0HDA can induce cell death via formation 

of free radicals and inhibition of complexes 1 and IV of the mitochondrial electron 

transport chain (Glinka et al., 1997). Taken together, this evidence suggests that 6-0HDA. 

induces degeneration of NE and DA terminaIs by several mechanisms in an uptake

dependent manner. 

Compared ta other les ion techniques, 6-0HDA induces relatively selective neurotoxic 

damage. Early studies employing intra-nigral infusion of 6-0HDA suggested that it was 
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fairly selective for DA neurons, excepting a region of necrosis immediately adjacent to 

the injection site (Sotelo et al., 1973). Additionally, after infusion into the substantia 

nigra (SN), DAergic cells degenerated whereas non-DAergic cells were spared (Maler et 

al., 1973). When directly compared to excitotoxic lesions, striatal infusion of 6-0HDA 

caused degeneration of catecholamine fibres while sparing intrinsic striatal cells. In 

contrast, the excitotoxin kainic acid caused degeneration of intrinsic neurons while 

sparing catecholaminergic fibers (Ogawa et al., 1989). As weIl, behaviourally equivalent 

radiofrequency vs. 6-0HDA lesions of the medial forebrain bundle revealed much greater 

non-specific damage after radiofrequency lesions (Willis and Smith, 1986; Willis et al., 

1987). In addition, intra-striataI6-0HDA infusions did notsignificantly affect tissue 

levels of choline acetyltransferase, glutamic acid decarboxylase, or phosphodiesterase 

activity (Kelly et al., 1977), suggesting that several non-DAergic neuronal markers are 

left intact after 6-0HDA infusion. 

6-0HDA can, however, induce changes in non-DA or NE ceIls. Such changes are seen 

both at the receptor signalling and morphologicallevels. At the level of signal 

transduction, 6-0HDA infusion induced Dl receptor supersensitivity, whichresulted 

from a switch to signalling through the MAP kinase ERK 1/2 (Gerfen et al., 2002). 

Postsynaptic remodelling of the predominantly y-aminobutyric acid (GABA)ergic 

medium spiny neuron population in the striatum has also been reported, including 

changes such as an increased number of GABAergic boutons (Nitsch and Riesenberg, 

1995), reduced spi ne density (Ingham et al., 1993), and a loss of asymmetric synapses 

(Ingham et al., 1998). In conclusion, 6-0HDA induces relatively selective lesions of 
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catecholaminergic neurons. However, neurons influenced by DAergic innervation may 

undergo neuroadaptations resulting from DAergic denervation. 

1.4 Dopamine as a critical mediator of the effects of psychomotor stimulant drugs 

Mesolimbic DA transmission has been implicated in several effects of drugs of abuse in 

animaIs. Evidence for this is discussed below. 

1.4.1 Dopaminergic mechanisms in locomotor activation 

Several investigations in the 1960s provided the first evidence that changes in 

catecholaminergic transmission accompanying psychostimulant administration were 

related to the locomotor stimulation. First, d-amphetamine administration dose

dependently changed brain amine content (Smith, 1965). Second, administration of 

reserpine, which transiently reduces DA and NE levels, dose-dependently reduced 

amphetamine-induced locomotor activation (Smith, 1963). Taken together, these results 

were suggestive of a central role for catecholaminergic transmission in the locomotor 

stimulant effect of amphetamine. 

In the 1970s, it became clear that the catecholamine responsible for locomotor 

stimulation was the neurotransmitter DA, for several reasons. First, amphetamine

induced activity was attenuated by administration of DA (but not NE) antagonist 

(Pijnenburg et al., 1975). Second, 6-0HDA infused into either the soma (ventral 

tegmental area [VTA]; Le Moal et aL, 1975; Koob et aL, 1981) or the NAcc (Iversen et 

al., 1975; Koob et al., 1981; Joyce et al., 1983) of the mesolimbic DA system attenuated 
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amphetamine-induced locomotor stimulation. Third, microinjection of DA into the NAcc 

after reserpine-induced DA depletion was sufficient to reinstate normallocomotor 

activity in rats (Jackson et al., 1975). Fourth, both direct and indirect DA agonists 

elicited changes in locomotor activity microinjection into the NAcc or olfactory tubercle 

(OT; e.g. Pijnenburg et al., 1976; Delfs et al., 1990; Van Hartesveldt et al., 1992), 

whereas NE agonists were ineffective (Pijnenburg et al., 1976). As a whole, these 

manipulations suggested that DA is more important than NE for locomotor stimulation, 

especially in the ventral striatum. 

The above studies examined unconditioned locomotion in response to drugs. Locomotor 

activity can also be conditioned by repeatedly pairing drug administration with a novel 

environment, and then examining an animal's drug-free activity lev el in that 

environment. DAergic mechanisms within the accumbens also appear to mediate 

conditioned locomotor activity. For example, 6-0HDA les ions of the accumbens either 

before or after conditioning with amphetamine attenuated subsequent conditioned activity 

measured in a drug-free test (Gold et al., 1988). It might be assumed that blunting the 

unconditioned locomotor response to drugs is sufficient to block the concomitant 

conditioned locomotor response. However, the literature is unclear on this point. For 

instance, a variety of manipulations that inhibit DA transmission reduce the 

unconditioned locomotor response, but do not reduce the conditioned locomotor response 

to amphetamine (Martin-Iverson and McManus, 1990; DiLullo and Martin-Iverson, 

1991; DiLullo and Martin-Iverson, 1992a; DiLullo and Martin-Iverson, 1992b). In 

contrast, other DAergic manipulations during conditioning did block the development of 
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amphetamine-induced conditioned activity (Beninger and Hahn. 1983; Mazurski and 

Beninger, 1991; DiLullo and Martin-Iverson, 1992b). The literature is also unclear on 

whether DA is important in the expression of conditioned locomotion. More specifically, 

the DA receptor antagonist pimozide given on test day failed to block conditioned 

locomotor activity (Beninger and Hahn, 1983), whereas either intra-NAcc infusions of 6-

OHDA (Gold et al., 1988) or a D3 receptor partial agonist (Aujla et al., 2002; Aujla and 

Beninger, 2004) blocked conditioned locomotor activity wh en administered before the 

CLMA test. Whereas several of these findings suggest a role for DA transmission in 

conditioned activity, it is unc1ear whether DA is critical for the development and/or 

expression of conditioned activity. 

1.4.2 The dopamine hypothesis of reward/reinforcement 

Psychomotor stimulant-induced locomotion and conditioned activity are not the only 

drug-induced behaviours influenced by changes in DA transmission. Indeed, both natural 

and chemical rewards are influenced by DAergic manipulations. The DA hypothesis of 

reward/reinforcement holds that DA transmission is critical for the rewarding and 

reinforcing effects of psychomotor stimulant drugs. 

1.4.2.1 Dopamine transmission and drug reinforcement 

Reinforcement refers to an increased probability that an animal will repeat an action if it 

results in reward receipt. As such, self-administration behaviour is a measure of 

reinforcement. As with locomotor activity, drug self-administration behaviour is 

dependent on DA transmission. For example, administration of DA, but not NE, receptor 
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antagonists caused an initial increase in responding for amphetamine followed by 

decreased responding in a manner consistent with extinction, indicating that the 

rewarding value of amphetamine was decreased (Yokel and Wise, 1975; Yokel and Wise, 

1976). Additionally, administration of direct DA receptor agonists decreased responding 

for amphetamine, and were self-administered when substituted for amphetamine, 

suggesting that activation of DA receptors is sufficient to maintain responding (Yokel 

and Wise, 1978). In the case of cocaine, self administration was blocked by the DA 

receptor antagonist pimozide, but not by the NE blockers phentolarnine or 

phenoxybenzamine (De Wit and Wise, 1977). The reinforcing properties of opiate drugs 

may also be dependent on DAergic transmission, as evinced by changes in responding for 

morphine after treatment with DA receptor agonists or antagonists (Glick and Cox, 

1975). One potential confounding variable in aIl of these DA receptor antagonist studies, 

however, is the possibility that the drugs exerted inhibitory influences on locomotor 

activity. Arguing against this, lesion studies suggested that the NAcc appeared to be an 

important locus where DA transmission encodes psychostimulant reinforcement, without 

non-specifie effects on the ability to respond. More specifically, 6-0HDA lesions of the 

accumbens were shown to reduce cocaine self-administration (Roberts et al., 1977; Pettit 

et al., 1984), without any major effects on responding for food (Roberts et al., 1977). 

Additionally, responding for heroin (Pettit et al., 1984) or morphine (Dworkin et al., 

1988) was not affected by the 6-0HDA lesion. Taken together, this early evidence 

suggested a central role for mesolimbic DA in the motivational aspects of 

psychostimulant drug administration. 
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Interestingly, DA transmission may also be important in encoding natural rewards. Not 

only did DA blockade attenuate lever pressing for food (Wise et al., 1978a; Wise et al., 

1978b), but also for water (Gerber et al., 1981). It is doubtful that antagonist effects on 

locomotor activity accounted for the reduction in responding, as pimozide-treated rats 

responded in an identical fashion to controls for food on the first test day (Wise et al., 

1978a). In summary, not only does the self-administration of drug and natural rewards 

appear critically dependent on DA transmission, but this effect appears to result from 

reduced motivation to respond, since antagonist-treated animaIs were able to respond, but 

chose not to do so. 

1.4.2.2 Dopamine transmission and drug reward 

A substance is said to be rewarding if it promotes approach behaviour (White, 1989). 

Conditioned place preference (CPP) serves as a measure of conditioned reward, and is an 

attractive way to examine drug reward since it is not vulnerable to the motor impairing 

effects of drugs to the same extent as is IVSA. Severallines of convergent evidence also 

implicate DAergic transmission in drug CPP. First, treatment with neuroleptic drugs 

attenuated the acquisition of CPP for amphetamine (Spyraki et al., 1982b; Mackey and 

van der Kooy, 1985) and i.v. cocaine (Spyraki et al., 1987), but not for morphine 

(Mackey and van der Kooy, 1985), heroin (McFarland and Ettenberg, 1999 but see 

Spyraki et al., 1983) or i.p. cocaine (Spyraki et al., 1982a; Spyraki et al., 1987). The 

NAcc appears to be a critical anatomicallocus for CPP, since 6-0HDA lesions of the 

accumbens reduced CPP for amphetamine (Spyraki et al., 1982b) and increased CPP for 

apormorphine (van der Kooy et al., 1983); in the latter case, this was presumably by 
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action on supersensitized postsynaptic DA receptors. Additionally, rats formed CPP after 

intra-accumbens infusion of amphetamine (Carr and White, 1983; Carr and White, 1986). 

Although CPP is a memory-dependent measure, antagonist and lesion effects appear to 

result from reward reduction rather than from general memory deficits (see Section 1.6.4 

and Chapters 3 and 5). Hence, as seen with intravenous self administration, 

psycho stimulant CPP also appeared to be critically dependent on DA transmission in the 

accumbens. However, route of administration, at least in the case of cocaine, may be an 

important variable. 

1.4.3 Mechanisms of dopamine release by psychomotor stimulants and nicotine 

Convergent evidence strongly implicated DA release in the rewarding and locomotor 

stimulant effects of psychostimulants and nicotine. All of these drugs act as indirect DA 

receptor agonists, by increasing extracellular DA levels. The mechanism by which these 

drugs increase DA levels, however, differs from drug to drug, and shall be outlined here. 

Amphetamine can promote DA release by several mechanisms, as recently reviewed by 

Sulzer and colleagues (2005). Methylphenidate, a structural analogue of amphetamine, 

releases DA in a manner similar to amphetamine. These drugs can bind both to plasma 

membrane DAT and vesicular monoamine transporters. Hence, these lipophilic 

molecules are first transported into the cell terminal, either through DAT or by diffusion 

through the plasma membrane, and subsequently into the synaptic vesicle where they 

become protonated. This causes drug to accumulate within synaptic vesicles, and to 

displace DA, which is reverse transported from the synaptic vesicle into the cytosol. DA 
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then leaves the cell terminal by reverse transport through DAT. Additional mechanisms 

may inc1ude mono amine oxidase inhibition and regulation of tyrosine hydroxylase 

activity. Importantly, amphetamine also has affinity for NET and SERT, and 

methylphenidate for NET. 

Cocaine is also an indirect DA receptor agonist, but increases extracellular mono amine 

levels in a different manner from amphetamine and methylphenidate. More specifically, 

cocaine increases extracellular DA, NE and serotonin (5-HT) levels by competitive 

blockade of plasma membrane DAT, NET and the 5-HT transporter (SERT) respectively 

(Greco and Garris, 2003). Hence, DA, NE and 5-HT accumulate in the extracellular 

milieu. In addition to its mono amine-releasing capabilities, it also has important local 

anesthetic properties derived from blocking voltage gated Na+ channels (Matthews and 

Collins, 1983). 

Nicotine is an agonist at nicotinic acetylcholine receptors. These receptors are located in 

most brain regions. Accordingly, nicotine can act through multiple mechanisms to 

promote or modulate mesolimbic DA release, as shall be outlined here. First, nicotinic 

acetylcholine receptors are located both on the soma of mesolimbic DA neurons 

(Champtiaux et al., 2003), and presynaptically on glutamate terminaIs originating from 

the prefrontal cortex and the pedunculopontine and laterodorsal tegmental nuc1ei 

(Mansvelder and McGehee, 2000; Jones and Wonnacott, 2004; Wonnacott et al., 2005). 

Hence, after acute nicotine administration, accumbal DA release may be increased either 
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directly by nicotine or indirectly by glutamate acting on mesolimbic DA soma. Second. 

DA terminaIs in the NAcc possess p2 subunit-containing nicotinic receptors (Zhou et al., 

2002). It is thought that activation of these receptors on mesolimbic terminaIs may 

enhance DA release from mesolimbic DA terminaIs (Zhou et al., 2002), and nicotine's 

action here couid modulate DA release in the NAcc. 

1.4.4 Dopamine receptor signalling 

A brief overview of DA receptor signalling shall be presented here. This is by no means 

an exhaustive list of all potentiai signalling transduction cascades that these receptors 

may engage; such a discussion is beyond the scope of this thesis. Rather, the signalling 

mechanisms that Iead to molecular neuroadaptations that are thought to influence drug 

reward mechanisms are the focus of this section. 

A growing list of molecular neuroadaptations has been observed after administration of 

rewarding drugs. These molecular changes can be influenced by DA receptor signalling. 

DA receptors are G-protein coupied receptors that faH into two classes - DI-like 

receptors, comprising DI and D5 receptors, and D2-like receptors, comprising the D2 

receptor, as well as D3 and D4 receptors (Missaie et al., 1998; Bonci and Hopf, 2005). 

These two receptor classes exert opposing influences on adenylyl cyclase activity; Dl

like receptors activate adenylyl cyclase by coupling to Gas or Gaolf proteins, whereas D2-

like receptors inhibit adenylyl cyclase through Gai/o (Bonci and Hopf, 2005). AdenyIyI 

cyclase catalyzes the formation of cAMP from ATP, which can then activate protein 

kinase A. Protein kinase A phosphorylates multiple enzymes, ion channels and other 
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targets, one of which is the transcription factor cAMP response element binding protein 

(CREB). In its phosphorylated form, CREB can dimerize and bind to cAMP response 

elements, where it can influence the transcription of several genes including fos-related 

antigens (e.g. L\FosB) and dynorphin (Nestier, 2004; Carlezon, Jr. et al., 2005). 

Manipulations of accumbal CREB are sufficient to exert effects on motivated behaviours. 

More specifically, infusions of viral vectors encoding CREB, or a mutant form of CREB 

that cannot be phosphorylated, into the accumbens shell have been shown to produce 

effects on cocaine CPP, sexual activity, anxiety, and several other behaviours in the rat 

(Carlezon, Jr. et al., 1998; Nestier, 2001; Barrot et al., 2002; Carlezon, Jr. et al., 2005; 

Barrot et al., 2005). Drug-induced increases in CREB phosphorylation result in higher 

expression of the endogenous K opioid receptor agonist dynorphin (Carlezon, Jr. et al., 

1998), and increased protein levels of the stable fos-related antigen L\FosB (Nestier, 

2001; Nestier, 2004). Whereas dynorphin decreases the rewarding properties of cocaine, 

higher levels of L\FosB that accumulate with repeated drug administration make animaIs 

more sensitive to the rewarding effects of several drugs, including cocaine and morphine 

(Kelz et al., 1999; Nestier, 2001). 

1.5 Anatomy of the ventral striatum 

A rich literature has examined the contribution of ventral striatal subregions to several 

aspects of motivated responding for drug and natural rewards, as well as locomotor 

activation. Before a critical discussion of such studies is possible, a brief description of 

the anatomy of the ventral striatum is fitting. 
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The mesotelencephalic DA system in the rat can be broadly divided into three different 

pathways. The first of these is the mesostriatal DA system, which consists of a projection 

from the substantia nigra pars compacta (SNc) to the caudate-putamen, with small 

numbers of fibers projecting to mesocortical and mesolimbic terminal fields. The second 

of these, the mesocortical DA system, projects from the ventral tegmental area (VTA) to 

several cortical regions including the medial prefrontral, anterior cingulate and 

suprarhinal cortices. The third of these pathways is the mesolimbic DA system (Gardner 

and Ashby, Jr., 2000). This pathway consists of a projection from the VTA and medial 

SNc to several forebrain terminal areas, including the amygdala, bed nucleus of stria 

terminalis, lateral septal area, lateral hypothalamus, olfactory tubercle and nucleus 

accumbens (Gardner and Ashby, Jr., 2000). A simplified diagram of the three 

mesotelencephalic DA systems is shown in Figure 1. 

The extended striatum can be viewed as an anatomical and functional continuum, with 

medioventral portions subserving more limbic functions, and dorsolateral portions 

supporting locomotor activity (Voom et al., 2004). The dorsal striatum is important in 

normallocomotor activity, and substantial depletions in DA levels here are believed to be 

responsible for the motor deficits observed in Parkinson's disease. In contrast, the 

ventral striatum, comprising the NAcc and striatal portions of the OT, appears more 

important in drug-induced locomotor activation, reward and reinforcement. The 

contribution of subregions of the ventral striatum to conditioned reward, aversion, and 

both unconditioned and conditioned locomotion was the focus of this thesis. The 
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Figure 1. Schematic of the three mesotelencephalic dopamine systems. The first ofthese 

is the mesostriatal (nigrostriatal) DA system, consisting of a projection arising 

predominantly from the substantia nigra pars compacta, and terminating in the caudate

putamen. The second is the mesocortical projection. This arises predominantly from the 

VTA, and terminates in various regions of the frontal cortex. The final pathway is the 

mesolimbic projection, which arises predominantly in VTA, and terminates inseveral 

regions, including the nucleus accumbens. See Section 1.5 for details. Abbreviations: 

, Amyg, amygdala; NAcc, nUcleusaccumbens; OT, olfactory tubercle; PfCx, prefrontal 

cortex; SN, substantia uigra; CP, caudate putamen; VTA, ventral tegmental area. 
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accumbens was long viewed as a specialized portion of the striatum, as it sent projections 

to not only basal ganglia structures such as the globus pallidus, entopeduncular nucleus, 

and motor thalamus, but also to limbic structures such as the extended amygdala and the 

lateral hypothalamus (Zahm and Brog, 1992). The accumbens is divisible into at least 

two prominent structures in both rodent and primate brain, namely a dorsolateral core and 

a ventromedial shell region, on the basis of differential histochemical staining and 

anatomical projection patterns (Zaborszky et al., 1985; Zahm and Brog, 1992; Jongen

Relo et al., 1994; Pennartz et al., 1994). The anatomy of the rat ventral striatum will be 

the focus of this section. 

It is noteworthy that, within the accumbens, there exist potential subregions other than 

core and shell. In the rat, for example, as many as five sub-subregions of the shell have 

been proposed on the basis of differential tyrosine hydroxylase immunoreactivity after 

repeated cocaine treatment (Todtenkopf and Stellar, 2000). Two of the better 

characterized are the septal pole or cone region, and the rostral pole. The septal pole 

represents the caudalmost portion of the shell. One of the more striking attributes of this 

region is the presence of dopamine P hydroxylase, the synthetic enzyme for NE synthesis 

(Berridge et al., 1997). The rostral pole comprises the rostral third of the accumbens, and 

represents a region of the accumbens where it is difficult to discern core from shell 

(Zahm and Heimer, 1993; Tan et al., 1995). Within the rostral pole region, medial 

regions have "shell-like" projection patterns and histochemical marker distributions, 

whereas lateral portions of the rostral pole more closely resemble the core (Zahm and 

Heimer, 1993). The olfactory tubercle has not been as well characterized as the NAcc; 
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however, recent behavioural evidence suggests that discrete functional subunits also exist 

within the OT. More specifically, medial but not lateral OT sites support robust self

administration of amphetamine and cocaine in the rat (Ikemoto, 2003; Ikemoto et al., 

2005). 

1.5.1 Afferent and efferent projections of the ventral striatum 

Generally speaking, the core and shell are innervated by and send afferent projections to 

similar brain nuc1ei. For exarnple, both receive major DAergic input from the VTA, and 

project to the ventral pallidum, the VTA, and to prefrontal cortex (e.g. Zahm, 1999). 

However, core and shell receive and send projections to distinct subregions of such brain 

nuc1ei (Zahm, 1999). The OT shares several characteristics with the accumbens in terms 

of afferent and efferent projections, and receives an additional input from the olfactory 

bulb (Alheid et al., 1990). Although differences between efferent and afferent 

projections of the core and shell have been extensively examined, comparative studies 

examining accumbens and OT subregion projection patterns are lacking. 

Most accumbens afferents and efferents are arranged in a topographical manner. For 

example, it has long been known that the projections from the VTA and SNc to the NAcc 

are topographically arranged in both the mediolateral and anteroposterior axes, and that 

the senses are reversed in the dorsoventral plane (Fallon and Moore, 1978). This implies 

that the VTA projects to the medial NAcc, and the medial SNc to the lateral and ventral 

NAcc (Fallon and Moore, 1978). The reverse also appears to be true, as the medial shell 

rather than the core projects to the medial VTA , and the core more strongly innervates 
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the lateral VTA, SNe and SN pars reticulata (SNr; Brog et al., 1993; Kalivas et al., 1993). 

However, it remains unknown whether overlapping or distinct neuronal populations 

project to core vs. shell of the rat, although there is evidence in the primate that different 

populations of DA neurons innervate these areas (Haber and McFarland, 1999). A 

similar topographical arrangement is observed in the case of subicular projections to the 

NAcc. More specifically, the ventral subiculum projects to the shell and medial OT, and 

the dorsolateral subiculum projects to the core (Groenewegen et al., 1987). In the case of 

the raphe, bilateral projections from the dorsal raphe nucleus innervate medial shell, 

lateral shell and core, whereas median raphe projections innervate medial shell 

exclusively (Brog et al., 1993). Taken together, these connections suggest that the core 

and shell are poised to differentially influence, and to be differentially influenced by, 

several brain nuclei. 

There exist few feedback loops allowing communication between the core and the shell. 

The best defined of these in the rat is the relay through the mediodorsal thalamus, which 

may allow the shell to modulate responses in the core (Groenewegen et al., 1999; see 

Figure 2). The accumbens is a part of an intricate circuit including several thalamic 

nuclei, the VTA and SN, the ventral pallidum and cortical regions (Kalivas et al., 1999). 

Additionally, in the primate, the striato-nigro-striatal projection consists of a series of 

projections, in which efferent projections of the ventral striatum to the VT A/SN are more 

dorsal than are afferent projections. This allows ventral portions of the ventral striatum 

to communicate with more dorsal regions via "ascending spirals" through the VT A/SN 

(Haber et al., 2000). Whether this is also true for the rat has not been determined. 
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Figure 2. Schematic of corticothalamostriatal circuits through the core and the shen. The 

shen can indirectly influence the core subregion through the mediodorsal nucleus of the 

thalamus. References: Zahm and Heimer, 1990; Brog et al., 1993; Freedman and 

Cassen, 1994; Ding et al., 2001; Wang and Shyu, 2004; Vertes, 2004. 
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In the rat, it was recently demonstrated that ventral striatal subregions send reciprocal 

projections, hence anowing direct communication between core, shen and DT. For 

example, such projections are observed between the core and shen, rostral and caudal 

shen, rostral pole and core, rostral pole and shen, and medial shen and medial OT (van 

Dongen et al., 2005). Whereas core efferents largely avoid the medial OT, in general, its 

efferent projections are more robust than its afferent projections (van Dongen et al., 

2005). Hence, the core is poised to directly influence the shen, but not the medial OT, 

via a direct projection. Additionany, the shen may either directly influence both medial 

OT and core, in addition to indirectly modulating the core. 

Although most accumbal afferent and efferent targets are different subregions of the same 

nucleus, the medial shen subregion projects to and receives projections from severalloci 

that largely avoid the core. The two primary structures that send afferent and efferent 

projections to the medial shen but not the core are the lateral hypothalamus and several 

nuclei of the extended amygdala (Heimer et al., 1991; Brog et al., 1993). Several 

midbrain and brainstem nuclei, including the medial parabrachial nucleus, retrorubral 

field, periaqueductal grey, pedunculopontine nucleus and locus coerelus, also project 

predominantly to the medial shen (Brog et al., 1993). 

These differences in projection patterns to and from core and shen are suggestive of 

distinct functional roles for these subregions in motivated and drug-related behaviours. 

Several studies have examined potential functional differences, and these are discussed in 

the fonowing sections. 

54 



1.6 Reward-relevant processing and the ventral striatum 

DA transmission in the ventral striatum is an important mediator of drug reward and 

reinforcement (see Section 1.4). Considering the anatomical differences between core 

and shen, it is no surprise that functional investigations of the core vs. shen have revealed 

different functional roles for ventral striatal subregions in reward processing. 

1.6.1 The ventral striatum in drug self-administration 

Convergent evidence suggests that the portion of the medial ventral striatum is of 

importance in the primary reinforcing effects of abused drugs. For example, rats will 

self-administer cocaine or amphetamine directly into the medial shen and the medial OT, 

but not into the core (Rodd-Henricks et al., 2002; Chevrette et al., 2002; Ikemoto, 2003; 

Ikemoto et al., 2005). The self-administration of cocaine into the medial shen and medial 

OT was prevented by co-administration of the Dl receptor antagonist SCH 23390 and the 

D2 receptor antagonist sulpiride, suggesting that cocaine self-administration was 

dependent on DA receptor activation (Ikemoto, 2003). DA receptor stimulation in the 

medial shell appears sufficient to support ICSA, as both the DAT blocker nomifenisine 

(Carlezon, Jr. et al., 1995) and a mixture of Dl and D2 receptor agonists (Ikemoto et al., 

1997) were self-administered into the medial shell and medial OT, but not into the core. 

This was prevented by co-administration either SCH 23390 or sulpiride (Carlezon, Jr. and 

Wise, 1996b; Ikemoto et al., 1997). Taken together, these studies provide evidence for a 

direct effect of stimulation of DA receptors in the medial shell and medial OT, but not the 

core, in intracranial self-administration of psychomotor stimulants. 
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DA transmission in the medial shell not only supports intracranial self-administration of 

psychomotor stimulant drugs, but also underlies intravenous self-administration of 

several systemically-administered drugs. For example, intra-shell infusions of SCH 

23390 dose-dependently increased the rate of cocaine self-administration in a manner 

resembling extinction behaviour, but were without effect on responding for food (Bari 

and Pierce, 2005). In contrast, intra-core infusions of the same drug reduced responding 

for both cocaine and food, suggesting that the antagonist was affecting operant 

responding (Bari and Pierce, 2005). Taken together, this suggests that medial shell DA 

transmission shen is selective for drug reinforcement. Other evidence supporting a 

preferential role for medial shell DA transmission in intravenous self-administration is 

more indirect. For instance, indices of neuronal activation are increased selectively in the 

medial shen after drug self-administration. For example, c-fos immunoreactivity was 

significantly higher in the shell than the core of rats trained to self-administer nicotine 

(Pagliusi et al., 1996) or cocaine (Berlanga et al., 2003); indeed, c-fos expression in 

cholinergie interneurons of the shell correlated with the amount of self-administered 

cocaine (Berlanga et al., 2003). Additionally, cerebral glucose utilization was increased 

in the shell during ethanol consumption, but not in the accumbens core (Porrino et al., 

1998a; Porrino et al., 1998b). Taken together, these studies suggest a central role for the 

shen in the self-administration of systemically-administered drugs. 

Although DA transmission in the medial ventral striatum (medial shell and medial OT) 

appears critical for reinforcement mediated by direct and indirect DA agonists, the medial 
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shen also supports non-DA-dependent reinforcement. For instance, the NMDA receptor 

antagonists phencyc1idine and dizoc1ipine are self-administered into the accumbens 

medial shen, but not the core (Carlezon, Jr. and Wise, 1996b). Since this was not 

prevented by co-administration of sulpiride (Carlezon, Jr. and Wise, 1996b), NMDA 

receptor antagonists appear to be self-administered into the shen independently of D2 

receptor activation. Glutamatergic and DAergic mechanisms may interact in drug self

administration, as cocaine self-administration was significantly reduced by systemic 

dizocilpine administration, without affecting extracellular DA levels (Pierce et al., 1997). 

In summary, glutamatergic transmission in the medial shen can influence reinforcement 

independently of DA transmission. 

Taken together, these findings support a critical role for the accumbens shen in primary 

drug reinforcement, with contributions from both DAergic and glutamatergic 

transmission. However, since both intra-shen and intra-core administration of antisense 

directed against the transcription factor cAMP response element binding protein (CREB) 

reduced responding for intravenous cocaine (Choi et al., 2006), signal transduction in 

both subregions may be required to support operant responding for self-administered 

drugs. 

1.6.2 The ventral striatum in reinstatement of drug seeking 

A hallmark of addiction is relapse to drug taking, even after protracted abstinence. This 

aspect of addiction can be modelled in the rodent using a reinstatement procedure. In 

such procedures, the animal is trained to self-administer a drug. Once stable responding 
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for the drug is achieved, the drug is taken away, and the operant response behaviour is 

extinguished. At a later time point (days to months) after drug cessation, the drug

seeking behaviour can be "reinstated" by administration of a drug prime, a stressor, or a 

drug-associatedcue. Reinstatement of drug seeking behaviour can be affected by 

manipulation of either shen or core, depending on the stimulus triggering relapse and the 

transmitter system examined. One approach that has been used to examine the relative 

contribution of accumbal subregions to reinstatement of drug seeking is to temporarily 

inactivate neuronal activity in core or shen by co-infusing the GABAA and GABAB 

receptor agonists bac10fen and muscimol. This manipulation has implicated the shen in 

cue- (Fuchs et aL, 2004), both the shen and the core in stress- (McFarland et aL, 2004), 

and the core but not the shen in drug prime- (McFarland and Kalivas, 2001) induced 

reinstatement of cocaine seeking. 

In contrast, DAergic transmission in the shen, but not in the core, appears to influence 

reinstatement. In the case of drug prime-induced reinstatement, infusion of Dior D2 

receptor antagonists into the shen, but not the core, reduced drug seeking behaviour 

(Anderson et al., 2003; Anderson et al., 2005 but see Bachtell et al., 2005). Additionany, 

intra-shen infusions of D IID5 or D2 DA receptor agonists effectively reinstated cocaine 

seeking, whereas core infusions were ineffective (Schmidt et al., 2006). Taken together, 

these studies suggest that stimulation of DA receptors in the shen is sufficient to induce 

reinstatement. 
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Changes in glutamatergic signalling in the shell subregion have been shown to affect both 

cue- and stress-induced relapse of cocaine seeking. First, extinction training increased (X.

amino-5-hydroxy-3-methyl-4-isoxazole propionic acid (AMPA) receptor expression in 

the accumbens shell but not the core (Sutton et al., 2003). Second, infusion of viral 

vectors encoding the AMPA receptor subunits GluRI and GluR2 into the shell made rats 

more resistant to stress-induced reinstatement of cocaine seeking (Sutton et al., 2003). 

Third, antagonism of metabotropic glutamate receptors were found to reduce cue-induced 

relapse to heroin seeking preferentially after infusion into the shell (Caine et al., 1995; 

Bossert et al., 2005). Taken together, these results suggest that DAergic and 

glutamatergic transmission is important in the shell, but not in the core, in reinstatement 

of drug seeking. 

1.6.3 The ventral striatum in conditioned reinforcement 

Conditioned reinforcement occurs when a neutral stimulus becomes a secondary 

reinforcer after repeated pairing with a primary reinforcer. DA transmission in the 

nucleus accumbens appears important in the control that conditioned reinforcers exert 

over responding, as intra-accumbens infusions of amphetamine increased responding for 

a conditioned reinforcer, whereas accumbal6-0HDA lesions reversed this enhancement 

ofresponding (Taylor and Robbins, 1984; Taylor and Robbins, 1986). Interestingly, 

extracellular DA levels remained unchanged in both core and shell under control of a 

cocaine-associated cue (Ito et al., 2000), although this does not exclude a possible 

enabling role for accumbal DA transmission. Indeed, systemic administration of a 
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selective D3 receptor antagonist effectively reduced responding for a conditioned 

reinforcer associated with cocaine administration (Di Ciano et al., 2003). 

It is possible that glutamatergic mechanisms within the accumbens are more important in 

conditioned reinforcement. For example, infusion of the AMP A receptor antagonist L Y 

293558, but not the NMDA receptor antagonist AP-5, into the core subregion reduced 

responding for the cocaine-associated cue during the first interval of a second order 

schedule, suggesting that the core is important for conditioned reinforcement (Di Ciano 

and Everitt, 2001). These findings accord with neuronal inactivation studies, as both 

temporary (baclofen and muscimol infusion) and permanent (excitotoxic lesion) 

inactivation of the core, but not the shell, reduced responding for cocaine-associated cues 

(lto et al., 2004; Di Ciano and Everitt, 2004). Additionally, permanent inactivation of the 

core also reduced responding for the secondary reinforcer associated with food 

(Parkinson et al., 1999; Hutcheson et al., 2001). Taken together, these lines of evidence 

suggest that the core is a more important mediator or enabler of the control of drug

conditioned cues over drug seeking. However, whether DA transmission in either core or 

shell per se is important has not been examined. 

1.6.4 The ventral striatum in conditioned place preference 

Manipulations of DA transmission within the nucleus accumbens affect CPP for a wide 

array of drugs of abuse (Koob, 1999; Ikemoto and Wise, 2004). Surprisingly, few studies 

to date have directly compared the effects of manipulations of medial vs. lateral ventral 

striatum on CPP. Instead, most studies have examined the effects of manipulations of 
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only the shell on the establishment of CPP. For example, both intra-shell amphetamine 

(Schildein et al., 1998) and intra-anteromedial OT cocaïne (lkemoto, 2003) produce CPP, 

but the effects of intra-core infusions were not examined in these studies. Additionally, 

either NMDA or AMPA receptor blockade in the shell during CPP acquisition blocked 7-

hydroxy-N,N-di-n-propyl-2-aminotetralin (7-0H-DPAT) CPP (Biondo et al., 2005), but 

it is unclear if this was an effect on associative memory or drug reward. Similarly, 

although viral-mediated gene transfer of the glial glutamate transporter OLT -1 into the 

shell significantly reduced methamphetamine CPP (Fujio et al., 2005), the results of this 

study were equally consistent with a reduction in associative memory as with a reduction 

in drug reward. In one final study, infusions of a viral vector expressing the 5-HTlB 

receptor into the shell increased low-dose cocaïne CPP in a balanced paradigm, but 

abolished higher-dose cocaine CPP (Neumaier et al., 2002). Since low-dose cocaine CPP 

was enhanced by this manipulation, the alterations observed on CPP magnitude are 

unlikely to have resulted by affecting associative memory. Rather, the results are more 

consistent with a dose-response curve shift to the left, indicative of increased sensitivity 

to the rewarding effects of cocaine. In summary, since none of these manipulations in the 

shell were compared to identical manipulations in the core, a role for the core in CPP 

cannot be excIuded. Additionally, most of these studies have not convincingly ruled out 

the possibility that associative memory rather than reward mechanisms were affected. 

It is uncIear how DA transmission in the medial shell affects CPP induced by opiate 

drugs. More specifically, although systemic morphine administration increased DA 

release in the shell (Huang et al., 2003; Huang et al., 2004), neither intra-shell nor intra-
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core morphine infusions produced CPP (Olmstead and Franklin, 1997; Schildein et al., 

1998). However, CPP for systemic morphine was decreased by over-expression of 

CREB in the shell, and increased by over-expression of a dominant negative mutant form 

of CREB (Barrot et al., 2002), implying that gene transcription in the shell can influence 

morphine CPP. It is unlikely that this resulted from non-specific effects on associative 

memory, since CREB over-expression also eliminated the preference for sucrose in a 

simple preference test that was independent of associative memory (Barrot et al., 2002). 

It is possible that morphine acting on Jl or K opioid receptors differentially influences 

CPP. For example, endomorphin-1 infusions into the shell produce CPP, whereas intra

shell endomorphin-2 caused conditioned place aversion; the aversion, but not the 

preference, was prevented by microinjection of antisera against dynorphin, an 

endogenous K opioid receptor agonist (Terashvili et al., 2004). In other words, it is 

possible that microinjections of morphine into the shell did not produce CPP because 

morphine was acting on both Jl and K opioid receptors, resulting in a motivationally 

neutral state. In further support of a role for the shell in morphine CPP, both drug-prime 

and stress-primed reinstatement of morphine CPP were prevented by electrolytic lesions 

of the shell, but not of the core (Wang et al., 2002), suggesting that the shell can 

influence morphine CPP. 

In addition to mediolateral gradients, rostrocaudal gradients within the accumbens may 

be of importance in CPP. For example, infusion of the histamine Hl receptor blocker 

clorpheniramine into the caudal but not rostral accumbens induced CPP (Zimmermann et 
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a1.1 1999)1 and the reverse was observed for muscimol (Reynolds and Berridge1 2002). 

Whether such gradients are pertinent for CPP for rewarding drugs has not been examined. 

Of the few studies that have directly compared medial and lateral ventral striatum, 

manipulations of the medial shell more consistently affect CPP than do similar 

manipulations of the core. For instance, testosterone implants produced CPP when 

placed into accumbens shell, but not core (Frye et al., 2002). In the case of nicotine, CPP 

was prevented by intra-shell, but not intra core infusions of the Dl receptor antagonist 

SCH 39166, suggesting that transmission at Dl receptors in the shell is critical in 

mediating nicotine CPP (Spina et al., 2006). In summary, psychomotor stimulants, direct 

DA agonists and several other types of drugs appear to exert shell-dependent CPP. 

However, comparative studies of medial and lateral ventral striatum are lacking. 

1.6.5 The ventral striatum in natural rewards 

It is doubtful that the mesolimbic dopamine system developed to encode the motivational 

effects of psychoactive drugs. More likely, its intended role is to reinforce actions that 

lead to the consumption of natural rewards, such as food and sex. Accordingly, a rich 

literature has examined whether neurotransmission in NAcc core vs. shell may 

differentially influence such behaviours, especially in the case of feeding. 

1.6.5.1 The ventral striatum in feeding 

The contribution of several neurotransmitter systems in the accumbens to feeding has 

been extensively investigated. GABAergic signalling in the shell rather than in the core 
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appears to play a central role. For example, activation of either GABAA or GABAB 

receptors in the medial shell increased feeding behaviours (Stratford and Kelley, 1997; 

Basso and Kelley, 1999; Reynolds and Berridge, 2001; Reynolds and Berridge, 2002), 

whereas core infusions, and infusions in ventral or lateral shell, were ineffective 

(Stratford and Kelley, 1997; Basso and Kelley, 1999). This medial-shell dependent 

feeding response was blocked by GABAA and GABAB receptor antagonists, respectively, 

suggesting that GABA receptor activation was critical (Stratford and Kelley, 1997). 

GABAergic signalling appears to interact with other neurotransmitter systems to induce 

feeding, as feeding induced by GABAA receptor activation, but not by GABAB receptor 

activation, was antagonized by naltrexone (Znamensky et al., 2001). In addition, 

infusions of agonists for several other receptor types into the shell are sufficient to induce 

feeding. More specifically, intra-shell infusions of DA (Swanson et al., 1997), the Il 

receptor agoni st DAMGO (Ragnauth et al., 2000), the 0 receptor agoni st deltorphin 

(Ragnauth et al., 2000), the cannabinoid receptor 1 agonist 2-arachidonoyl glycerol 

(Kirkham et al., 2002), and NMDA (Echo et al., 2001) all effectively increased feeding 

behaviour. In contrast, AMPA receptor activation in the accumbens shell appears to 

reduce feeding. For example, AMPA infusions decreased (Stratford et al., 1998), 

whereas infusions of the AMPA antagonist DNQX into the rostral shell (but not in the 

core) induced feeding (Maldonado-Irizarry et al., 1995; Reynolds and Berridge, 2003). 

In summary, neurotransmission in the accumbens medial shell rather than in the core 

appears to importantly regulate feeding behaviour. 
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The connections between the medial shell and both the lateral hypothalamus and the 

central nucleus of the amygdala (CeA) appear to regulate feeding behaviour. In the case 

of the lateral hypothalamus, first, infusions of the NMDA receptor antagonist AP-5 into 

the lateral hypothalamus reduced feeding induced by intra-shell muscimol (Stratford and 

Kelley, 1999). Second, inhibition ofGABAA receptors in the lateral hypothalamus 

inhibited the feeding response elicited by intra-shell administration of the AMP A 

receptor antagonist DNQX (Maldonado-Irizarry et al., 1995). Third, administration of the 

orexigenic neuropeptide orexin A in the lateral hypothalamus both activated c-fos in the 

accumbens shell (Mullett et al., 2000), and induced feeding that was blocked by intra

shell naltrexone treatment (Sweet et al., 2004). Taken together, these studies suggest that 

the connection between the lateral hypothalamus and the medial shell is important in 

control of the feeding response. 

In the case of the CeA, first, infusion of the Jl opioid receptor agoni st DAMGO into the 

CeA increased both feeding and c-fos expression in the shell (Levine et al., 2004), 

suggesting that intrinsic medial shell neurons were activated by this manipulation. 

Second, feeding elicited by intra-accumbens DAMGO administration was blocked by 

intra-CeA infusion of naltrexone (Kim et al., 2004). Finally, intra-shell muscimol 

induced feeding was antagonized by intra-CeA administration of muscimol, suggesting 

that activation of GABAA receptors in the CeA inhibits feeding induced by activation of 

shell GABAA receptors (Baldo et al., 2005). Taken together, these observations suggest a 

functionallink between the shell and both the lateral hypothalamus and the CeA in the 

control of feeding behaviour. 
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In contrast to feeding behaviours, the core but not the shell appears critical in operant 

responding for food (Kelley, 1999). For example, learning of an operant task to obtain 

food was disrupted preferentially by infusion of AP-5 into the core rather than the shell 

(Kelley et al., 1997), and responding for sucrose was prevented by intra-core infusions of 

the muscarinic receptor antagonist scopolamine (Pratt and Kelley, 2004). In addition, 

infusions of either Dior D2 antagonists into the core were more effective than shell 

infusions at reducing lever presses to obtain a palatable food (Nowend et al., 2001). The 

core also appears to mediate the anticipation of food receipt in food restricted animaIs, as 

excitotoxic core (but not shell) lesions reduced anticipatory arousal prior to food receipt 

in rats (Mendoza et al., 2005). Since exposure to appetitive food stimuli increased DA 

release in the core (Bassareo and Di Chiara, 1999), whereas consumption of palatable 

food increased DA in shell (Bassareo and Di Chiara, 1997), it is possible that the core 

subregion controls anticipation, whereas the shell controls consummatory behaviour 

related to food. 

1.6.5.2 The ventral striatum in hedonic reactions to palatable food 

Both opioid and GABA receptor activation in the shell appear important for expression of 

positive hedonic reactions to palatable food. For example, either morphine or muscimol 

infusions into the shell increased positive hedonic reactions to sucrose (Pecina and 

Berridge, 2000). The effect of morphine into the shell was probably a result of !..l receptor 

activation in the rostral shell by morphine, since infusions of the !..l receptor agoni st 

DAMGO into the rostral shell increased positive hedonic reactions to the taste of sucrose 
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(Pecina and Berridge, 2005). A potential convergent molecular target of Jl and GABAA 

receptors may be CREB, as its over-expression in the shell decreased sucrose preference, 

whereas dominant negative CREB over-expression increased sucrose preference (Barrot 

et al., 2002). Since increased extracellular DA levels observed in the shell upon 

consumption of a palatable food were blocked by systemic opioid receptor antagonism 

(Tanda and Di Chiara, 1998), DA transmission in the shen may modulate or en able 

positive hedonic reactions. 

1.6.5.3. The ventral striatum in sex and mating behaviours 

There is sorne indirect evidence that the core and shell may participate differentially in 

mating behaviours. For example, sensitized c-fos expression was observed in the shen, 

but not the core of sexually experienced male rats after exposure to females in oestrous 

(Lopez and Ettenberg, 2002). In contrast, exposure to a previously neutral odour paired 

with copulation increased c-fos expression selectively in the core (Kippin et al., 2003), 

suggesting different parts of the accumbens may be activated by pheromones vs. odours 

conditioned to sexual activity. 

The core region appears to be important in promoting physical proximity between 

partners during sexual contact, whereas the shell may be important in monogamous 

partner formation. More specifically, excitotoxic lesions of the core, but not the shell, 

increased the probability that a female would withdraw after a mount from a male rat 

(Guarraci et al., 2002). In the case of partner formation, either blockade of D2 

transmission or activation of Dl receptors in the rostral shell of male prairie voles 
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prevented the expression of aggressive behaviours towards unfamiliar females indicative 

of monogamous pair formation (Aragona et al., 2006). These studies suggest that 

physical proximity and long-term partner formation are likely mediated by separate 

mechanisms. 

1.6.6 The ventral striatum in intracranial self-stimulation 

Many drugs that can cause addiction in humans also decrease ICSS thresholds in rats 

(Gardner, 2002). Drug-induced decreases in ICSS thresholds may engage accumbal 

mechanisms, since self-stimulation of the medial forebrain bundle induced c-fos 

expression both core and shell (Hunt and McGregor, 1998). The threshold ofresponding 

for lateral hypothalamic stimulation is decreased by several pharmacological 

manipulations, inc1uding NMDA receptor antagonism, DAT blockade, and J..l or 8 opioid 

receptor activation (Carlezon, Jr. and Wise, 1996a; Johnson et al., 1995). Although in the 

cases of NMDA receptor antagonist or the DAT blocker only medial shell infusions were 

examined (Carlezon, Jr. and Wise, 1996a), these manipulations were more effective after 

infusion into medial shell than into the core for the opioid receptor agonists (Johnson et 

al., 1995). This suggests that the shell is a more important mediator of drug-induced 

decrease in ICSS thresholds in the lateral hypothalamus than is the core. Whether this is 

also true for other sites that support ICSS remains to be determined. 

1.6.7 The ventral striatum in production of ultrasonic vocalizations 

Although the emission of 50 kHz USVs is thought to represent positive affective state, 

they have not been well characterized in the context of reward-relevant processing. 
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Nevertheless, intra-NAcc infusion of amphetamine dose-dependently produced 50 kHz 

USVs (Burgdorf et al., 2001). Additionally, intra-shell amphetamine infusions produced 

calls more efficiently than did intra-core infusions (Burgdorf et al., 2001; Thompson et 

al., 2006). This effect was blocked by co-infusion of DI or D2 receptor antagonists 

(Thompson et al., 2006). Although this result is suggestive of a role for DA transmission 

in the accumbens shell in the production of 50 kHz USV s, more studies are needed to 

characterize this as an index of drug reward. 

1.7 Responses to salient, non-reward stimuli and the ventral striatum 

It is widely accepted that administration of psychomotor stimulant drugs increases DA 

transmission in the ventral striatum (Schultz, 1998; Wise, 2004; Ikemoto and Wise, 2004; 

Di Chiara, 2005). However, DA release in the ventral striatum is also altered after 

exposure to salient and aversive stimuli (Horvitz, 2000). Accordingly, several 

investigations have examined how manipulations of core vs. shell affect behaviour in 

response to salient and aversive stimuli. 

1.7.1 The ventral striatum in stress 

As seen after exposure to rewarding stimuli, both extracellular DA levels and DA 

utilization are increased selectively in the shell vs. core after exposures to acute stressors 

such as footshock (Kalivas and Duffy, 1995; Wu et al., 1999) and restraint stress (Deutch 

and Cameron, 1992). Stress-induced DA release may be dependent on glucocorticoid 

action (Marinelli and Piazza, 2002). More specifically, these hormones selectively 

increased shell DA release in response to an acute mild stressor (injection stress; Barrot et 

69 



al., 2000). In contrast, both basal DA levels and drug-induced increases in extracellular 

DA in the shell are decreased after exposure to chronic, unavoidable stress. For example, 

basal DA levels in the shell were blunted up to 21 d after receipt of chronic footshock 

(Mangiavacchi et al., 2001), as was the cocaine-induced increase in extracellular DA in 

the shell (Gambarana et al., 1999). The blunted DA levels are accompanied by decreased 

DAT and increased DA Dl receptor binding sites (Scheggi et al., 2002). Taken together, 

these results suggest that changes in DA tone in the shell accompany acute and chronic 

stressful events. 

The core subregion may also play a role in exposure to certain types of stressful or 

aversive stimuli. For example, exposure to predator odour in mice increased fos-reactive 

antigen immunoreactivity in the shell, and decreased it in the core (Hebb et al., 2004). 

Additionally, exposure to either aversive taste stimuli or predator odour increased DA 

levels in the core more than in the shell (Bassareo et al., 2002). This suggests that DA 

responses or neuronal activation in the core subregion may also importantly mediate 

responses to a subset of aversive or stressful stimuli. 

1.7.2 The ventral striatum in pain and analgesia 

The NAcc may modulate the affective component of pain stimuli. Most rodent studies 

examining the effects of accumbal manipulations have used the formalin test as a model 

for tonie pain. In this test, infusion of amphetamine directly into the accumbens 

produced an analgesic effect (Altier and Stewart, 1993) that was reversed by DA receptor 

antagonism (Altier and Stewart, 1998). Additionally, 6-0HDA lesions of the accumbens 
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reduced amphetamine-induced analgesia (Clarke and Franklin, 1992). However, few 

studies to date have examined whether discrete ventral striatal compartments contribute 

differentially to nociception, and existing evidence is indirect. For instance, DA 

transmission in the shell subregion was decreased after an acute painful stimulus (tail 

pinch; Di Chiara et al., 1999), whereas injection of formalin into the multifidus muscle of 

the lower back induced significant elevations in c-fos expression in accumbens core 

(Ohtori et al., 2000). Whether different aspects of nociception may be handled 

differently by the core vs. shell of the accumbens remains to be determined. 

1.7.3 The ventral striatum in conditioned taste aversion 

CTA can be induced not only by agents that produce malaise such as LiCI, but also by 

drugs that are self-administered (e.g. amphetamine, morphine, nicotine). Learning of a 

taste aversion for the malaise-inducing drug LiCI appears to be at least partially mediated 

by DAergic mechanisms, since LiCI CTA was strengthened by systemic amphetamine 

given after consumption of the LiCI-paired fluid during the conditioning phase (Fenu and 

Di Chiara, 2003). An important site of action may be the NAcc, since decreased DA 

levels were observed during expression ofLiCI CTA (Mark et al., 1991). Furthermore, 

the shell appears to be the criticallocus of action, for the following two reasons. First, 

both the acquisition ofLiCI CTA (Fenu et al., 2001), and its potentiation by amphetamine 

(Fenu and Di Chiara, 2003) were prevented by intra-shell, but not intra-core, infusion of a 

DA Dl receptor antagonist. Second, leaming of a CTA for lithium is attenuated by intra

shell, but not intra-core infusions of the NMDA receptor antagonist APV, and the 

GABAA receptor agonist muscimol (Ramirez-Lugo et al., 2006). 
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In contrast, little is known about the contribution of the accumbens to CT A for reward

relevant drugs. The brain structures contributing to this type of CT Amay depend on the 

drug in question, as CTA was formed to intra-NAcc nicotine (Shoaib and Stolerman, 

1995), but not amphetamine (Carr and White, 1986). Nicotine CTA may be DA

dependent, in that systemic administration of DA receptor antagonists prevented 

acquisition of nicotine CTA (Di Chiara et al., 2004). No studies had, to the best ofmy 

knowledge, examined the contribution of DA transmission in different ventral striatal 

subregions to CTA for reward-relevant drugs prior to work presented in this thesis (see 

Chapter 7). 

1.7.4 The ventral striatum in conditioned place aversion (CPA) 

The NAcc, and especially its shell compartment, has an established role in the processing 

of conditioned reward (Di Chiara et al., 2004). This may also be true of conditioned 

aversion. Indeed, K opioid receptor agonists infused into the accumbens induce CP A 

(Bals-Kubik et al., 1993). CPA for K agonists appears to be DA-dependent, as intra

accumbens infusion of either 6-0HDA or a Dl receptor antagonist abolished K opioid 

receptor agonist-induced CPA (Shippenberg et al., 1993). Additionally, this may be 

dependent on the caudal shell, since CPA was induced by caudal shen infusions of the 

endogenous opioid ligand endomorphin-2 (Terashvili et al., 2004). However,other 

infusions sites were not examined in this study. Several other studies have also examined 

the effects of caudal shen drug infusions on induction of CPP. For example, CP A was 

produced by caudal shen infusions of the GABAA receptor agoni st muscimol (Reynolds 
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and Berridge, 2002) or the AMPAlkainite receptor antagonist DNQX (Reynolds and 

Berridge, 2003). Here, rostral shell muscimol infusions produced CPP (Reynolds and 

Berridge, 2002) and core infusions of DNQX had no effect (Reynolds and Berridge, 

2003), suggesting that CPA was dependent on the caudal shell. The transcription factor 

CREB may be critical in CP A acquisition, since CREB over-expression in the shell 

decreased CPA induced by the Il receptor antagonist naloxone (Barrot et al., 2002). 

Taken together, these results suggest that neurotransmission in the caudal shell mediates 

CPA. 

1.7.5 The ventral striatum in conditioned fear 

It is unclear whether the core or the shell plays a more prominent role in conditioned fear. 

Whereas exposure to contextual eues associated with footshock induced more c-fos 

expression in the accumbens shell than in either core or OT (Beek and Fibiger, 1995), 

animaIs sustaining excitotoxic in suit of the core but not the shell failed to exhibit a 

conditioned freezing response to presentation of a discrete tone stimulus previously 

paired with footshock (Levita et al., 2002; Cassaday et al., 2005). This apparent 

discrepancy may represent a difference between conditioning to discrete vs. contextual 

eues, since extracellular DA levels were increased in the core upon exposure to 

aversively-conditioned contextual eues, whereas extracellular DA levels in the shell are 

increased during exposure to aversively conditioned discrete eues (Pezze et al., 2001). In 

summary, although lesion evidence suggests that the core is important in mediating 

conditioned responses to discrete stimuli, this does not accord with me as ures of neuronal 

activation or increases in extracellular DA. More studies are required to determine if any 
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important core/shen differences exist, whether they are related to cue type, and how 

extracellular DA levels influence the acquisition and expression of conditioned fear. 

1.7.6 The ventral striatum in novelty 

Reactions to novel, salient stimuli appear intimately connected with other motivational 

responses. In addition to rewarding or stressful stimuli, changes in DA transmission in 

the shell also accompany exposure to novel stimuli. The evidence for this is as follows. 

First, DA levels measured by cyclic voltammetry are increased in the shell subregion 

upon first entry into a novel environment (Rebec et al., 1997a; Rebec et al., 1997b). 

Second, levels of the DA metabolites 3,4-dihydroxyphenylacetic acid and homovanillic 

acid were increased in shen and decreased in the core after exposure to a novel 

environment (Noguchi et al., 2001), suggesting increased DA turnover in the shell. 

Finally, exposure to a pair of novel, but not familiar, juvenile rats increased extracellular 

DA in the shell, but not the core (De Leonibus et al., 2006). The increase in DA may be 

motivationally significant, since 6-0HDA lesions of the ventral striatum reduced CPP for 

a novel environment (Pierce et al., 1990). 

Considered as a whole, the presented evidence suggests that DA transmission in the 

accumbens shel~ accompanies exposures to a wide range of novel stimuli. Taken with the 

evidence suggesting that shen DA transmission is also consistently changed after 

exposures to both rewarding and stressful stimuli, this suggests that tonie changes in 

extracellular DA in the shell may represent a general response to presentation of salient 

stimuli (see Chapter 8). 
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1.8 Ventral striatal mediation of behavioural sensitization 

Sensitization to the locomotor stimulant effects of psychomotor stimulant drugs is a weIl

characterized phenomenon that is observed subsequent to repeated drug challenge. The 

rewarding effects of psychomotor stimulants can also sensitize with repeated exposures; 

this has been observed in the CPP paradigm (e.g. Lett, 1989; Shippenberg and 

Heidbreder, 1995a). Although the phenomenon ofreward sensitization has not been weIl 

characterized, locomotor sensitization appears to depend on DA transmission in the 

nucleus accumbens, with contributions from both shell and core. 

1.8.1 The ventral striatum in locomotor sensitization 

Neurotransmission is altered in both the core and the shell during the development of 

locomotor sensitization. For example, repeated pre-treatment with nicotine or morphine 

sensitized DA release stimulated by these drugs in the core, but not the shell (Cadoni and 

Di Chiara, 1999; Cadoni and Di Chiara, 2000; Balfour, 2002). Interestingly, evidence 

suggests that increased extracellular DA release in the core may be behaviourally 

significant, since MDMA-induced locomotor sensitization was blocked by intra-core 

infusions of the Dl receptor antagonist SCH 23390 (Ramos et al., 2004). However, this 

study did not examine the effect of intra-shell antagonist infusions. DA is not the only 

neurotransmitter in the NAcc altered in response to sensitization. More specificaIly, 

glutamate levels were increased in the core but not the shell of animaIs sensitized to the 

locomotor stimulant effect of cocaine (Pierce et al., 1996a). Additionally, antagonism of 

non-NMDA glutamate receptors in the core blocked the augmented locomotor response 

75 



to cocaine (Pierce et al., 1996a). The glutamatergic input to the core from the dorsal 

prefrontal cortex may be of importance in cocaine sensitization, since ibotenic acid 

lesions of this area both blocked the augmented locomotor stimulation in response to 

cocaine, and reduced glutamate levels in the core (Pierce et al., 1998). Synaptic 

remodelling in the core also accompanies cocaine locomotor sensitization, as evinced by 

increased dendritic spine density on medium spiny neurons of the core, but not of the 

shell of cocaine-sensitized animaIs (Ferrario et al., 2005). Taken together, this evidence 

suggests that both sensitized neurotransmitter release and synaptic remodelling in the 

accumbens core accompany locomotor sensitization. 

Several manipulations of the shell subregion also appear to influence both the acquisition 

and the expression of locomotor sensitization. For example, locomotor sensitization was 

observed after intra-shell, but not intra-core infusions of either cocaine (Filip and 

Siwanowicz, 2001) or amphetamine (Pierce and Kalivas, 1995) in rats that previously 

received systemic cocaine injections, suggesting that DA trànsmission in the shell may 

underlie the expression of locomotor sensitization. Serotonergic transmission in the shell 

may also influence this expression. More specifically, intra-shell, but not intra-core 

infusions of a 5-HTl b receptor antagonist attenuated, whereas a 5-HTlb receptor agonist 

increased the expression of cocaine locomotor sensitization (Przegalinski et al., 2002a; 

Przegalinski et al., 2002b). The shell subregion may also be important in the acquisition 

of locomotor sensitization, as evinced by the following two studies. First, electrolytic 

lesions of the shell prior to sensitizing drug treatments prevented subsequent expression 

of locomotor sensitization two weeks after cessation of cocaine treatment (Brenhouse et 
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al., 2006). Second, since neither ibotenic nor volkensin lesions after repeated cocaine 

treatment reduced sensitization to the locomotor effects of cocaine (Todtenkopf et al., 

2002), the effect of electrolytic lesions on locomotor sensitization appears to result from 

disrupted acquisition of the behaviour. 

Taken together, this evidence suggests that both the core and shell subregions influence 

sensitization to the locomotor stimulant effect of reward-relevant drugs. The relative 

importance of each in the acquisition vs. expression of locomotor sensitization has yet to 

be c1arified. 

1.8.2 The ventral striatum in reward sensitization 

Locomotor stimulation is not the only behavioural consequence of rewarding drugs that 

sensitizes with repeated drug exposures. Indeed, conditioned reward has also been shown 

to sensitize. More specifically, repeated amphetamine, morphine or cocaine 

administration enhanced subsequent CPP for these drugs compared to untreated controls 

(Lett, 1989). The mechanisms oflocomotor and reward sensitization likely differ, since 

Il receptor knockout mice show reduced cocaine CPP, but enhanced cocaine locomotor 

sensitization (Hall et al., 2004). The phenomenon of reward sensitization appears 

critically dependent on opioid transmission, at least in the case of psychomotor 

stimulants. For example, administration of a K receptor agonist in conjunction with either 

cocaine or morphine during the induction of sensitization prevented the expression of 

enhanced cocaine, but not morphine CPP compared to non-pretreated controls 

(Shippenberg et al., 1996; Shippenberg et al., 1998). This appears to be centrally 
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mediated, since intracerebroventricular administration of the K agonist was also effective 

in preventing cocaine CPP sensitization (Shippenberg et al., 1996). Systemic 

administration of a 8 receptor antagonist prior to cocaine during pre-treatment also 

effectively prevented the development of sensitization to cocaine CPP (Shippenberg and 

Heidbreder, 1995b). 

A handful of anatomicallocalization studies haves suggested that mesolimbic DA 

transmission is important in reward sensitization. For example, one injection of cocaine 

sensitized both CPP for morphine, and CP A for K receptor agonists; these enhancements 

were blocked by intra-VTA infusions of the NMDA receptor antagonist MK-801 prior to 

the sensitizing cocaine treatments, suggesting that the VT A is important for the 

development of sensitization (Shippenberg and Heidbreder, 1995a). Additionally, the 

increased responding for conditioned reward observed after intra-NAcc amphetamine 

was potentiated in animaIs sensitized to cocaine (Taylor and Horger, 1999), suggesting 

that activation of ventral striatal DA receptors potentiated conditioned reward. However, 

since amphetamine infusion sites were divided evenly between shell and medial core, no 

conclusion can be drawn with respect to core vs. shell contributions. Studies 

determining the anatomical localization within the ventral striatum of reward 

sensitization are lacking. Additionally, it is unclear what role, if any, DA transmission 

plays in the establishment or expression of this behaviour. 

1.9 Ventral striatal mediation of locomotor activity 

1.9.1 The ventral striatum in basallocomotor activity 
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Although mesostriatal DA has been more clearly implicated in the control of locomotor 

activity than has mesolimbic DA, manipulations of the ventral striatum can affect 

locomotor activity. However, it is unclear whether manipulations of the core or shell 

subregion preferentially affect basal locomotion. For example, although infusion of 

either corticotrophin releasing factor (Holahan et al., 1997) or AP-5 (Pulvirenti et al., 

1994) into the shell, but not the core, increased locomotor activity, infusions of DA have 

been effective after either core or shell infusions. More specifically, in one study, 

infusion of DA into the accumbens revealed a "hotspot" of locomotor mediation in the 

dorsomedial core/ventromedial caudate-putamen (Campbell et al., 1997). In contrast, 

Swanson et al. (1997) reported that shell infusions of DA were more effective in eliciting 

locomotor stimulation. This apparent contradiction may be reconciled by considering 

that the shell infusion sites in the latter study were largely localized in the dorsomedial 

shell, suggesting that dorsomedial NAcc, rather than core or shell, may mediate this 

locomotor stimulant effect. In agreement with a role for dorsomedial accumbens in 

locomotion, intra-core infusions of the DA D2 receptor antagonist eticlopride were more 

effective at decreasing basallocomotor activity than were intra-shell infusions (Boye et 

al., 2001). In this study, core infusions were largely localized in the dorsal part ofthe 

structure, whereas medial shell infusions were largely aimed at the ventromedial shell 

(Boye et al., 2001). 

Lesion studies have also been inconclusive, with electrolytic or excitotoxic lesions of the 

shell (Weiner et al., 1996; Jongen-Relo et al., 2002) or excitotoxic lesions of the core 

(Parkinson et al., 1999) increasing baseline activity in a novel field. This apparent 
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contradiction - shen or core excitotoxic lesions increasing baseline activity - may result 

from different excitotoxins (NMDA vs. quinolinic acid respectively) or from different 

les ion extents. In contrast, 6-0HDA lesions of neither core nor shell appreciably affected 

basallocomotor activity (Boye et al., 2001), suggesting that DA transmission in the 

accumbens is not necessary for locomotor activity. Although these studies suggest that 

the ventral striatum can influence normallocomotor activity, this is not always the case. 

Additionally, a specifie subregion of the ventral striatum is not c1early implieated in basal 

locomotion. 

1.9.2 The ventral striatum in turning behaviour 

Unilateral infusions of drugs acting as direct or indirect DA receptor agonists into the 

shen, but not the core, elicit contralateral turning behaviour. Accordingly, intra-shen 

infusions of amphetamine (Schildein et al., 1998; Bernstein and Beninger, 2000), 

morphine (Schildein et al., 1998), and a combination of direct Dl and D2 receptor 

agonists (Koshikawa et al., 1996a; Koshikawa et al., 1996b) produced turning when 

infused into the shell, but not the core. In addition, turning was prevented by co-infusion 

of Dl or D2 receptor antagonists in conjunction with Dl and D2 receptor agonists into 

the shen (Koshikawa et al., 1996a; Koshikawa et a1., 1996b), suggesting that stimulation 

ofboth D1-like and D2-like receptors is necessary to produce DA-dependent turning 

behaviour. Further supporting a critical role of shen DA transmission, ipsilateral turning 

was induced by systemic amphetamine paired with intra-shell, but not intra-core, 

infusions of etic10pride (Bernstein and Beninger, 2000). Other transmitter systems may 

also influence DA agonist-induced turning. More specifically, DA agonist-induced 
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turning was prevented when co-infused with either the nicotinic antagonist 

mecamylamine (Moribe et al., 2005), the Jl opioid receptor antagonist CTOP (Matsuzaki 

et al., 2004), the AMPA receptor antagonist NBQX, or the NMDA receptor antagonist 

dizocilpine (Ikeda et al., 2003). Taken together, these studies suggest that transmission at 

several receptor types in the accumbens shen interact to influence DA agonist-induced 

turning behaviour. 

1.9.3 The ventral striatum in oral movements 

As with turning behaviour, oral movements also appear to be dependent on DA receptor 

stimulation in the shen. For instance, infusion of a mixture of the Dl receptor agonist 

SKF 82958 and the D21D3 receptor agoni st quinpirole (but not the D3 receptor agonist 

PD 128907; Koshikawa et al., 1996a) producedjaw movements only after infusion into 

the shell (Cools et al., 1995; Adachi et al., 1997). Such movements were prevented by 

co-administration of Dl and D2 receptor antagonists (Koshikawa et al., 1996a). Taken 

together, an of these studies suggest that sorne forms of motor activity may be dependent 

on DA transmission in the shen, but not the core. 

1.9.4 The ventral striatum in psychomotor stimulant-induced locomotion 

In contrast to turning and oral movements, the locomotor stimulant effect experienced 

after administration of psychomotor stimulant drugs appears dependent on transmission 

in core or shell, depending on the drug and the experimental method used. This is 

illustrated c1early for amphetamine. First, direct infusion of amphetamine into core, 

medial shell or medial tuberc1e elicited similar levels of locomotor activity and rearing 
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(Ikemoto,2002). It is unlikely that this was a result of drug diffusion, since a small 

infusion volume was used, a threshold dose of amphetamine was infused, and locomotor 

activation was examined at early time points after drug infusion. Second, rats sustaining 

excitotoxic les ions of the core exhibited hyperactivity (Parkinson et al., 1999), whereas 

electrolytic shelliesioned rats exhibited hyperactivity compared to sham-Iesioned 

controls after amphetamine administration (Weiner et al., 1996). However, excitotoxic 

core and electrolytic shelliesions also increased locomotor activity after saline 

administration corripared to sham-Iesioned animaIs, hence complicating the interpretation 

of lesion effects on locomotor stimulation. Third, 6-0HDA infusion into core more 

effectively reduced the locomotor stimulant effect of amphetamine than did intra-shell 

infusions (Boye et al., 2001). Taken together, these studies leave no clear picture as to 

which structure may be a more important mediator of amphetamine-induced locomotor 

stimulation. 

In the case of cocaine, both core and shell sites may contribute to the locomotor stimulant 

effect of the drug. Microinjection of cocaine elicited an increase in locomotor activity 

after infusion into medial shell (Filip and Siwanowicz, 2001; Ikemoto, 2002) or tubercle 

(Ikemoto, 2002), but not core (Filip and Siwanowicz, 2001; Ikemoto, 2002). Importantly, 

this may reflect the greater susceptibility of core neurons to local anaesthesia, as procaine 

infusions into the core but not the medial shell or medial OT reduced spontaneous 

locomotor activity (Ikemoto and Witkin, 2003). In support of a role for the core in 

cocaine-induced locomotor activity, c-fos expression in the core correlated positively 

with cocaine-induced locomotor stimulation (Szucs et al., 2005). Cocaine can exert 
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several pharrnacological actions, and it is unlikely that cocaïne acts solely through DA 

transmission to exert locomotor stimulation. More specifically, alteration of 

glutamatergic transmission in the core or serotonergic transmission in the shell can alter 

cocaine-induced locomotor activity. More specifically, intra-core infusion of the NMDA 

receptor antagonist AP-5 prevented cocaine-stimulated locomotion (Pulvirenti et al., 

1994). In addition, cocaine-stimulated locomotor activity was reduced by intra-shell 

infusions of a 5-HT4 receptor partial agoni st or a 5-HTzc receptor antagonist (McMahon 

and Cunningham, 1999; McMahon et al., 2001), and increased by a serotonin-selective 

reuptake inhibitor (Bubar et al., 2003). Taken together, these results suggest that action 

on 5-HT receptors in the shell, or NMDA receptors in the core, can influence cocaine

stimulated locomotion. What role accumbal DA transmission in the core or the shell 

plays in mediating the locomotor stimulant effects of cocaine remains unknown. 

It is unclear whether DA transmission in core, shell or olfactory tubercle is more effective 

in producing locomotor stimulation. Supporting a role for the medial shell, co-infusion 

of the Dl receptor agonist SKF 38393 al one (Pierce et al., 1996b; Swanson et al., 1997) 

elicited locomotor activation more effectively after intra-shell than intra-core infusions. 

In another study, co-infusion of SKF 38393 and quinpirole into the medial shell or medial 

tuberc1e, but not the core, elicited locomotor activity and rearing (Ikemoto, 2002). 

Supporting a role for core DA transmission, infusion of the DA receptor antagonist 

eticlopride into core but not medial shell reduced the locomotor stimulant effect of both 

nicotine and amphetamine (Boye et al., 2001). However, the antagonist alone reduced 

locomotor activity after saline administration. Additionally, infusion of the mixed D21D3 
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receptor agonist 7-0H-DPAT into the core elicited locomotor activity (Barik and de 

Beaurepaire, 2005), whereas shell infusions were without effect (Koshikawa et al., 

1996a). In summary, it is unclear whether DA transmission in one ventral striatal 

subregion is of primary importance in mediating locomotor activity. Critical factors may 

include the drug examined and the experimental methods employed. 

1.9.5 The ventral striatum in conditioned locomotor activity (CLMA) 

Conditioned locomotor activity is a well-documented phenomenon following treatment 

with psychostimulant drugs (Brown and Fibiger, 1992). As with CPP, conditioned 

increases in activity upon contact with drug-associated cues likely represent anticipation 

of drug receipt (Beninger and Hahn, 1983; Vezina and Stewart, 1987; Gold et al., 1988) 

that appears dependent on accumbens DA transmission (e.g. Beninger and Hahn, 1983; 

Gold et al., 1988; see Section 1.4.1 for more detailed discussion). However, studies 

examining the relative contribution of core and shell to CLMA are lacking. More 

specifically, no previous published studies had, to my knowledge, examined potential 

differential mediation of the conditioned activity by discrete ventral striatal subregions 

prior to the work presented in this thesis (see Chapter 4). 
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Statement of Purpose 

The general objective of this thesis was to examine the contributions of discrete ventral 

striatal subregions, namely the accumbens medial shell, the accumbens core, and the 

anteromedial olfactory tubercle, to several behavioural aspects of acute psychomotor 

stimulant administration. 

To this end, the first specifie objective examined the effects of core vs. medial shell DA 

denervation on amphetamine-induced locomotor stimulation and CPP. Although 

unilateral infusions of on amphetamine into the shell had been shown to produce CPP, no 

comparison had been made with the core (Chevrette et al., 2002). Additionally, 

differential mediation of behavioural effects of systemically-administered amphetamine 

by core vs. medial shell had been examined only for locomotor activity, with conflicting 

results (Weiner et al., 1996; Parkinson et al., 1999; Boye et al., 2001). We hypothesized 

that 6-0HDA infusion into the core would affect amphetamine's stimulant effect, while 

medial shell infusions woùld likely decrease amphetamine CPP. 

The second specifie objective arose out of an interest in identifying a potential 

anatomicallocus where DA transmission underlies conditioned drug effects. If such a 

region existed, it could represent a target to prevent cue-induced relapse. As such, the aim 

was to determine if the functional segregation observed in the first objective resulted 

from a difference between locomotion and reward, or conditioned and unconditioned 

drug effects. Hence, rats sustaining 6-0HDA lesions of the medial shell or the core were 

examined for amphetamine-conditioned and unconditioned activity. Since core DA 
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transmission can mediate certain conditioned associations (e.g. conditioned 

reinforcement), we hypothesized that our initial interpretation (i.e. segregation of 

locomotion vs. reward) was more plausible. 

The final goal was to investigate if the functional segregation observed for amphetamine 

generalized to other psychomotor stimulant drugs. The first drug examined was cocaine. 

It became clear, however, during the course of experimentation, that the anteromedial 

portion of the olfactory tubercle was also of potential importance in mediating cocaine 

ICSA and CPP (Ikemoto, 2003). Hence, initial experiments examined core vs. medial 

shell mediation of both i.p. and i.v. cocaine CPP and locomotor stimulation, whereas a 

further experiment directly compared medial shell and anteromedial olfactory tubercle in 

i. v. cocaine CPP. 

The second drug examined was methylphenidate (Ritalin TM), a stimulant structurally 

related to amphetamine used in the treatment of attention deficit hyperactivity disorder. 

First, it was determined that blockade of DA transmission prevented Lv. methylphenidate 

CPP and locomotor activity. This established that both conditioned Lv. methylphenidate 

reward and locomotor stimulation were dependent on DA transmission, and laid the 

foundation for subsequent lesion experiments. Second, the contributions of core vs. 

medial shell DA transmission to Lv. methylphenidate CPP and locomotor activity were 

examined. Finally, since neither subregion clearly mediated CPP, the hypothesis that the 

anteromedial OT may contribute to i.v. methylphenidate CPP was investigated. 
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The final drug examined was nicotine. The intravenous route of administration was 

chosen, since this more c10sely models the pharmacokinetics of cigarette smoking. Since 

the nicotine dose chosen did not elicit appreciable locomotor stimulation, only nicotine 

Cpp was examined. Unexpectedly, DA-depleting lesions of the accumbens core were 

found to increase nicotine CPP. Nicotine is known to produce aversive effects, 

suggesting core lesions may have reduced this component ofnicotine's action. 

Accordingly, lesion effects on nicotine aversion were directly examined in the CTA 

paradigm. 
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2.1 Conditioned place preference 

The CPP paradigm used in this thesis was unbiased. This was shown in an initial pilot 

study, in which animaIs conditioned with saline on both textures did not significantly 

prefer either texture. In addition, amphetamine was conditionable to either texture 

(Figure 1). Details of the CPP paradigm are illustrated in Figure 2A. 

In this CPP paradigm, the CS+ and CS- were represented only by tactile eues. Since aIl 

testing was done under far red wavelength (650 nm) light, the impact of the visual eues 

was negligible, although subtle olfactory differences between the two textures cannot be 

fully ruled out. CPP can measure both conditioned approach behaviour and conditioned 

reward. The first of these measures the motivation of the animal to approach the eues 

previously paired with drug. The latter measures the tendency of the animal to remain in 

contact with the drug-paired eues. Since no distal visual eues were available in the CPP 

paradigm used in the present thesis, conditioned approach behaviour is probably not 

responsible for the observed CPP. As such, this paradigm is likely measuring pure 

conditioned drug reward. 

2.2 Conditioned activity 

The CLMA paradigm used in the present thesis represents a modification from what is 

normally observed in the literature, in order to make the CLMA configuration more 

comparable to the CPP studies. Instead of one group of animaIs receiving drug injections 

in the novel environment, and a second group receiving home cage injections, aIl animaIs 

received amphetamine injections on one novel texture (CS+; bar or mesh), and saline 
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Figure 1. Rats express CPP for amphetamine in an unbiased paradigm. Rats were 

conditioned in one ofthree groups: those receiving saline on both textures (control, n=8), 

those receiving amphetamine on bar texture (CS+ bar, n=8), and those receiving 

amphetamine on mesh texture (CS+ mesh, n=8). Rats conditioned with saline on both 

textures did not significantly prefer either bar or mesh (p>O.05; one-sample t-test with 

Bonferroni correction). Rats expressed a preference for the drug-paired texture, 

regardless ofwhether drug was previously paired with bar or mesh (p<O.OOl for both; 

paired t-test with Bonferroni correction). 
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injections on a second novel texture (CS-; mesh or bar). The difference in locomotor 

activity observed drug-free on test day in each of these contexts was ca1culated, and 

represented conditioned locomotor activity. The paradigm used in this thesis is 

illustrated in Figure 2B. 

2.3 Conditioned taste aversion (CTA) 

The CT A paradigm used in this thesis represented a modification of a previously 

publishedprotocol (Laviolette et al., 2002). In this CT A paradigm, two novel 

unsweetened flavours (unsweetened cherry and grape Kool-aid™), neither of which was 

spontaneously preferred, served as conditioned taste stimuli (Figure 3). This allowed 

circumvention of a common problem in CTA - namely, the spontaneous preference or 

avoidance of one of the CS flavours. The details of the paradigm are described in Figure 

3. 

2.4 6-hydroxydopamine mini-lesion technique 

The approach used to examine the contributions of DA transmission in discrete ventral 

striatal subregions to psychomotor stimulant-induced behaviours was a 6-

hydroxydopamine mini-Iesion technique. This required selective lesioning of small, 

adjacent structures. In order to do this successfully, minimizing the diffusion of the toxin 

to subregions adjacent to the target site was essential. A commonly infused dose of 6-

OHDA used to lesion the accumbens is 8 Jlg of toxin infused in 2 JlI of infusate (e.g. 

Spyraki et al., 1982; Spyraki et al., 1983; Powell et al., 2003); most studies use similar 

116 



Figure 2. Illustration of the conditioned place preference (CPP) and conditioned activity 

(CLMA) paradigms used. A) CPP consisted ofthree phases (pre-exposure, conditioning 

and test) and took place over eight consecutive days. In the pre-exposure phase (day 1), 

which served to habituate animaIs to the testing procedure, rats received saline injection 

prior to placement into the CPP cage in the absence of tactile cues. The conditioning 

phase lasted six days (days 2-7). On altemate days, rats received three pairings between 

the CS+ texture and drug, and three pairings between the CS- texture and saline on 

altemate days. Experiments were as fully counterbalanced as possible, in that half of the 

animaIs received drug on bar, and half on mesh texture. Additionally, halfthe rats 

received drug on conditioning days 1, 3 and 5, and the other half on days 2, 4 and 6. 

Locomotor activity was also tracked during the conditioning phase. On the drug-free test 

day (day 8), rats were placed into the CPP cage, which contained one bar and one mesh 

tile. The amount of time rats spent on either texture was tracked by a commercial tracking 

system. B) CLMA testing also consisted ofthree phases (pre-exposure, conditioning and 

test). The pre-exposure phase (day 1) was identical to that described for CPP. The 

conditioning phase (days 2-11) consisted of five drug CS+ pairings, and five saline CS

pairings, on altemate days. As with CPP, all experiments were as fully counterbalanced 

as possible with respect to drug-texture pairing and the order of drug administration. The 

test phase (day 12) consisted oftwo separate sessions often minutes each. In one session, 

the bottom of the page was covered with bar tiles in the other session with mesh. 

Textures were presented in a counterbalanced order. The two test sessions were 

separated by two hours. 
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Figure 3. Illustration of the balanced conditioned taste aversion paradigm used. 

Conditioned taste aversion testing consisted of four phases: water restriction, 

conditioning, break and test, occurring on 16 consecutive days. During the water 

restriction phase (5 d), rats were permitted access to ad libitum water for 1 h/d. During 

conditioning (8 d), rats were exposed to one oftwo novel flavours (unsweetened cherry 

or grape Kool-Aid) for fifteen minutes, and received an intravenous injection of nicotine 

or saline immediately after. Both the Kool-Aid flavour paired with nicotine injection 

and the order of drug administration were fully counterbalanced. Two hours post

injection, rats were allowed 15 minutes access to water, to ensure adequate fluid 

consumption. During the break phase (l d), rats were allowed 1 h access to water (as in 

the water restriction phase). During the test phase (2 d), rats had 20 min access to both 

cherry and grape Kool-Aid in a two bottle choice paradigm. The position of the bottles 

was reversed on the second day, to account for any effect of cage side preference. The 

volume of each cherry and grape fluid consumed on both days was measured, and a mean 

over the two days was taken. AlI four phases were performed in the home cage. 
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Textures were presented in a counterbalanced order. The two test sessions were 

separated by two hours. Therefore, the amount of toxin commonly infused to lesion the 

NAcc, and the quantity used in the mini-lesions used in this thesis are approximately 

equivalent. 

Since a high concentration of 6-0HDA was infused, there is a possibility for non-specifie 

damage to occur that is greater in magnitude than after a conventional6-0HDA lesion. 

However, this seems not to be the case, for the following two reasons. First, Nissl 

staining revealed only slight non-selective damage in a subset of medial shell- and medial 

olfactory tuberc1e-Iesioned animaIs (see Chapters 3 and 5). Second, SERT 

autoradiography revealed only minimal changes in lesioned vs. control animaIs (see 

Chapters 3-7). When analyzed, none of these changes were statistically significant (see 

Chapter 5). 
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ABSTRACT 

Convergent evidence suggests that amphetamine (AMPH) exerts its rewarding and 

locomotor stimulating effects via release of dopamine in the nucleus accumhens. 

However, there is no consensus as to the relative contributions of core and medial shell 

subregions to these effects. Moreover, the literature is based primarily on intracranial 

administration, which cannot fully mimic the drug distribution achieved by systemic 

administration. In the present study, the effects of bilateral 6-hydroxydopamine lesions of 

the accumbens core or medial shell on rewarding and locomotor stimulating effects of 

systemically administeredamphetamine (0.75 mg/kg, i.p.) were examined in a 

conditioned place preference (CPP) procedure relying solely on tactile cues (floor 

texture). Residual dopamine innervation was quantified by e2sI]-RTI-55 binding to the 

dopamine transporter. When lesions were performed before the conditioning phase, 

AMPH-induced locomotor stimulation and CPP magnitude were positively correlated 

with residual dopamine transporter binding in core and medial shell, respectively. Medial 

shelliesions did not affect morphine CPP, arguing that a sensory or mnemonic deficit was 

not responsible for the lesion-induced reduction in AMPH CPP. Medial shelliesions 

performed between the conditioning phase and the test day reduced the expression of 

amphetamine CPP. These results suggest that after systemic amphetamine administration, 

rewarding and locomotor stimulating effects of the drug are anatomically dissociated 

within the nucleus accumbens: the medial shell contributes to rewarding effects~ whereas 

the core contributes to behavioral activation. 

Key words: nucleus accumbens core; nucleus accumbens medial shell; amphetamine; 6-

hydroxydopamine; locomotion; reward; conditioned place preference; morphine 

122 



INTRODUCTION 

Convergent evidence suggests that the rewarding and behavioral activating effects of 

psychomotor stimulant drugs are initiated by increased dopaminergic transmission in the 

nucleus accumbens (NAcc). Evidence is perhaps strongest for the prototypic psychomotor 

stimulant, amphetamine (AMPH). For example, the locomotor stimulant effect of 

systemic AMPH is mimicked by intra-accumbens infusion of AMPH or dopamine (DA) 

(Pijnenburg et al., 1976; Campbell et al., 1997) and is inhibited by intraaccumbens 

administration of DA antagonists (Pijnenburg et al., 1975; Roberts et al., 1975; Phillips et 

al., 1994) or 6-hydroxydopamine (6-0HDA) (Kelly et al., 1975; Joyce et al., 1983; Clarke 

et al., 1988). Similarly, the rewarding effects of AMPH are either mimicked or inhibited 

by the same types of manipulations (Y okel and Wise, 1976; Lyness et al., 1979; Spyraki 

et al., 1982; Carrand White, 1991; Phillips et al., 1994; Izzo et al., 2001). 

The NAcc is a heterogeneous structure, as evinced by immunohistochemical staining and 

neuronal projection patterns (Zahm and Brog, 1992). The major subdivisions are a 

medioventral shell and a dorsolateral core. These subregions are functionally distinct 

(Maldonado-Irizarryand Kelley, 1995; Weiner et al., 1996; Kelley et al., 1997; Parkinson 

et al., 1999; Boye et al., 2001; Ikemoto, 2002), but their precise roles in reward and 

locomotor activation are uncertain. For example, the locomotor stimulant effect of AMPH 

has been attributed to an action in the core (Weineret al., 1996; West et al., 1999; Boye et 

al., 2001) or inmedial shell (Heidbreder and Feldon, 1998; Parkinson et al., 1999) or in 

both structures (Pierce and Kalivas, 1995; Ikemoto, 2002). In contrast, certain 

dopaminergic drugs have been shown to maintain responding when infused into (medial) 
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shen but not core (Carlezon and Wise, 1996; lkemoto et al., 1997). lntra-shen self

administration of AMPH has also been reported(Hoebel et al., 1983; Chevrette et al., 

2002), but in these studies intra-core infusions were not examined. 

A feature of almost an the behavioral studies using AMPH was that the drug was given 

directly into the NAcc; after intracranial administration, drug distribution and local 

concentration differ markedly from that achieved after systemic administration. Recently, 

we combined systemic AMPH administration with 6-0HDA lesions and found that 

locomotor stimulation was blunted by dopaminergic denervation of core and not medial 

shen (Boye et al., 2001). 

The present study aimed to establish the relative involvement ofNAcc core and medial 

shen subregions in systemic AMPH-induced behavioral activation and reward. Rats that 

had sustained 6-0HDA lesions ofNAcc core or medial shen were assessed for AMPH

induced locomotor activation and conditioned place preference (CPP). To assess the 

possibility that decreased CPP indicated a deficit not in reward but in learning, memory, 

or sensory function, morphine CPP was also tested. 

MATERIALS AND METHODS 

Subjects 

Subjects were 142 male Long-Evans rats (Charles River, St. Constant, Quebec) weighing 

270-310 gm at time ofsurgery. Rats were housed in groups ofthree in clear Plexiglas 

cages in a temperature- and humidity-controned animal colony that was lit from 7 A.M. 

to 7 P.M. Food and water were available ad libitum except during behavioral testing. An 
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experiments were approved by the Mc Gill Faculty of Medicine Animal Care Committee 

in accordance with Canadian Council on Animal Care guidelines. 

Stereotaxie infusion of 6-0HDA 

Rats were anesthetized with ketamine HCI (90 mg/kg, i.p.) andxylazine HCI (16 mg/kg, 

i.p.) 15 min after pretreatment withatropine methyl nitrate (0.05 mg/kg, s.c.). The rat was 

placedin a stereotaxic apparatus (Kopf, Tujunga, CA) with the incisorbar set at -3.9 mm. 

Rats received bilateral infusions of either 6-0HDA or vehicle into either NAcc core or 

medial shen. Infusions were made via a 30 gauge stainless steel cannula attached by 

polyethylene tubing to a 1 0 ~l Hamilton syringe driven by a model 5000 Micro Injection 

Unit (Kop±). For greater accuracy, coordinates for both the core and the medial shen were 

derived from the mean of two coordinate systems. Thus, anterior-posterior coordinates 

were + 1 0.3 mm from interaural zero and + 1.3 mm from bregma for both core and shen. 

Lateral coordinates were ±0.6 mm (shen) and ±2.4 mm (core). Ventral coordinates for 

shen (three injections) were +2.0, +2.4, and +2.8 mm frominteraural zero and -8.0, -7.6, 

and -7.2 mm from bregma. Ventralcoordinates for core were +2.9 mm from interaural 

zero and -7.1 mm from bregma. An coordinates are based on the atlas of Paxinos and 

Watson (1997). 6-0HDA or vehicle was infusedon each side in a volume of 0.1 ~l (core) 

or as three infusions of 0.06 ~l each (shell) at a rate of 0.1 ~l/min. The concentration of 6-

OHDA used was 80 ~g/~l (core) or 48 ~g/~l (shen). The cannula remained at the final 

infusion site for 5 min. Dipyrone (100 mg/kg, s.c.) providedanalgesia after surgery. 

Animals were anowed 7-11 d recovery before conditioning (experiments 1 and 3) or 

testing (experiment2). Four animaIs died after surgery in experiment 3. 
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Conditioned place preference testing 

General procedure. The method was modified from that ofVezinaand Stewart (1987). 

Eight Cpp cages [58.1 cm (length) x 28.8 cm (width) x 53.0 cm (height)] were used, each 

comprising four outer walls made of white plastic-coated particle board (Melamine) and 

an open top. Cages sat on linoleum flooring covered with a thin layer of Beta Chip 

bedding. There was no wall dividing the cage into two compartments. Two removable 

square floortiles [28.5 cm (length) X 28.5 cm (width) x 5.5 cm (height)] were inserted 

into each cage; these served as tactile eues. Floor tiles were oftwo types: mesh and bar. 

These two textures were provided, respectively, by a stainless steel grid with squares of 1 

x 1 cm and by 12 stainless steel bars of 1.2 cm diameter separated by 1.5 cm edge to 

edge. Both floor types were mounted on square Melamine frames. AlI behavioral testing 

was performed in a room lit with a Kodak GBX-2 safelight filter (Vistek, Toronto, 

Ontario, Canada) providing far-red illumination (wavelength >650 rim) to minimize 

visual eues. The location and movements of rats during behavioral testing were monitored 

by a closed circuit television video camera (Panasonic) linked to a commercial tracking 

system (EthoVision v3.0, Noldus Information Technology, Leesburg, VA). 

Behavioral testing took place over 8 consecutive days and consisted of three phases: 

preexposure, conditioning, and testing. During aIl three phases, animaIs were habituated 

to the test room in home cages for 15 min before placement into test CPP cages. The 

preexposure phase served to habituate each animal to the CPP cage itself. This phase 

comprised a single 20 min session performed in the absence of floor tiles. The 

conditioning phase took place on days 2-7. It comprised six daily sessions of 45 min 

each: three sessions with drug and three sessions with saline administration. Drug and 
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saline were administered on altemating days. After injection, each rat was immediately 

placed in the middle of a CPP cage. During the conditioning trials, rats had access to the 

entire cage, which provided a single tactile floor cue (either two mesh tiles or two bar 

tiles). On the day immediately after the final conditioningtrial, a single 10 min test 

session was given. Here, the CPP cages contained one bar tile and one mesh tile. AnimaIs 

in adrug-free state were placed in the middle of the cage and givenfree choice between 

the half of their cage with the bar texture and that with the mesh texture. Before a new 

test or conditioning session was started, half of the soiled Beta Chip was removed and 

replaced with new bedding, and the cage walls and tiles were wiped with 40% ethanol 

and allowed to dry. Groups of animaIs were counterbalanced as fully as possible, not only 

with respect to the texture that was paired with drug but also with respect to the position 

of that texture within the test cage on test day and the order of drug versus saline 

administration during conditioning. 

On the test day, the time spent on each side of the apparatus was recorded. The location 

of a rat was defined as its center, as determined by the tracking system. During 

conditioning trials, locomotor activity was recorded as total horizontal distance moved. 

AlI testing was done between 8:30 A.M. and 5:30 P.M. A pilot study in which rats 

received saline paired with both floor textures showed that rats had no significant 

preference for either texture on test day (our unpublished observations). Thus the 

procedure can be considered unbiased. 

Experimental procedures. In experiment 1, rats received bilateral infusion of 6-0HDA or 

vehic1e into either core or medial she1l7-11 d before preexposure. Rats were then 
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conditioned with 0.75 mg/kg AMPH intraperitoneally. In experiment 2, ratsreceived 

bilateral 6-0HDA or vehicle infusions into medial shell. Half of the rats in each surgery 

group received 0.75 mg/kg AMPH intraperitoneally; the other half were conditioned with 

10 mg/kg morphine intraperitoneally. Experiment 3 is similarin design to experiment 1 

except that rats underwent stereotaxie infusion surgery after conditioning but before 

testing (Figure 1). 

Quantitative [125I]RTI -55 autoradiography 

The extent of the 6-0HDA lesion was quantified by autoradiographie labeling of the 

plasmalemmal DA transporter (DAT) using a nonsaturatingconcentration of rt25I]RTI-55 

(2200 Cilmmol; NEN-Mandel, Guelph, Ontario), because it has been shown previously 

that percentage loss of DAT accurately represents tissue DA loss (Joyce, 1991 a, 1991 b). 

rt25I]RTI-55 binds selectively to DAT provided the serotonin transporter (SERT) is 

inhibited (Boja et al., 1992; Coulteret al., 1995). Conversely, SERT can be selectively 

labeled via occlusion of DAT (Pradhan et al., 2002). The day after CPP testing, rats were 

anesthetized with sodium pentobarbital (65 mg/kg, i.p.) and decapitated. Brains were 

removed rapidly and frozen in 2-methylbutane at -50°C for 30 sec and stored at -40°C. 

Coronal sections (20 /Lm) were taken on a cryostat at four rostrocaudallevels through the 

nucleus accumbens: + Il.2, + 1 0.7, + 1 0.2, and + 9.7 mm anterior to interaural zero 

(Paxinos and Watson, 1997). At each level, five adjacent sections were collected: four for 

autoradiography and one for Nissl staining with cresyl violet. Sections were thaw 

mounted onto gelatin-subbed slides, air dried at room temperature for 20-30 min, and 

stored with desiccant at -40°C. 
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Sections were thawed at room temperature for 10 min and then placed in a staining dish 

containing an aqueous buffer solution of 120 mM NaCl, 0.1 M sucrose, 10 mM sodium 

phosphate buffer, and 10 pM eZ51]RTI-55. To assay for DAT binding, 50 nM citalopram 

hydrobromide was used to occlude SERT; nonspecific binding was determined by 

addition of 10 /lM GBR 12909. To measure SERT binding, 1 /lM GBR 12935·2HCI was 

added to occ1ude DAT; nonspecific binding was determined by addition of 50 nM 

citalopram HBr (Pradhan et al., 2002). Slides were incubated at room temperature for 2 hr 

and then washed three times in cold buffer solution (once for 1 min, twice for 20 min) 

and for 1 sec in distilled and deionizèd water. They were then blow dried and placed in an 

x-ray film cassette. Kodak BioMax MS film (Amersham Biosciences, Baie d'Urfé, 

Québec) was exposed to slides for 48 hr (DAT) or 120 hr (SERT) with [1251] 

autoradiographic standards (Amersham Biosciences). Films were then processed with 

Kodak D19 developer and Kodak GBXfixer (Amersham Biosciences). DAT and SERT 

binding were quantified using an MCID M4 imaging system (Imaging Research, St. 

Catherines, Ontario). 

Histological examination 

Tissue was stained with cresyl violet to assess nonspecific damage, as follows. Sections 

were thawed at room temperature for 10 min and then placed in 0.5% cresyl violet 

(Sigma-Aldrich,Oakville, Ontario) in distilled water for 20 min. They wererinsed in 95% 

ethanol twice for 2 min and then in 100% ethanol three times for 15 sec and were 

dehydrated in xylene three times for 5 min. Slides were coverslipped with Permount and 

examined under a light microscope (40-200 x magnification). 
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Drugs 

Drug sources were as follows: morphine sulfate (gift from Sabex 2002 Inc., Boucherville, 

Quebec); D-amphetamine sulfate (Bureau of Drug Research, Ottawa, Ontario); citalopram 

HBr (gift fromH. Lundbeck A/S); dipyrone (Vetoquinol, Quebec, Quebec); ketamine 

HCI (Vetalar, Vetrepharm, London, Ontario); xylazine HCI (Anased, Novopharm, 

Toronto, Ontario); atropine methyl nitrate, 6-0HDAHBr, GBR 12909, and GBR 

12935·2HCI (Sigma-Aldrich, Oakville, Ontario). AH other chemicals were obtained from 

Fisher Scientific (Montreal, Quebec). 

Morphine sulfate and D-amphetamine sulfate were dissolved in sterile 0.9% saline and 

injected at 1 ml/kg. 6-0HDA HBr was dissolved in sterile 0.9% saline containing 0.3 

mg/ml sodium metabisulfite (Sigma-Aldrich) as an antioxidant and protected from light. 

Both 6-0HDA and vehicIe solutions were made to pH 7.3 ± 0.1 with NaOH. Doses of an 

drugs except 6-0HDA HBr are expressed as the salt. 6-0HDA HBr doses are expressed 

as free base. 

Data analysis 

A commercial software pro gram (Systat vlO.2, SPSS Inc., Chicago, IL) was used for aH 

data analyses. Locomotor response to AMPH was calculated as the difference of 

locomotor counts between AMPH and saline conditioning sessions; baseline saline scores 

were calculated as the mean activity over an three conditioning sessions with saline on 

test day. CPP magnitude was calculated as the difference between time spent on the drug

paired and vehicle-paired sides. The relationship between locomotor and reward measures 

versus [125I]-RTI_55 labeling was analyzed by multiple linear regression (experiments 1 
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and 3) or Mann-Whitney Utest (experiment 2). Activity scores (experiment 1) were 

analyzed by ANOV A. A p value of <0.05 (two-tailed) was considered significant. 

RESULTS 

Histologieal and autoradiographie eharaeterization of les ions 

Minimal neuronalloss was evident at the site of injection in both vehic1e groups and in 

the core lesioned group in all three experiments. A representative coronal section of the 

medial shell vehic1e-infused group is shown in Figure 2A. In the medial shelliesioned 

group, tissue damage was more extensive but was nevertheless confined to 0.3 mm from 

the infusion site, sparing most of the structure (Figure 2B). 

[125I]RTI_55 autoradiographs ofDAT binding are shown in Figure 3 at four anterior

posterior levels. Sampling locations for DAT binding density are indicated in Figure 4. 

Absolute values for [125I]RTI_55 binding to DAT and SERT are given in Tables 1 and 2. 

In all experiments, core lesions were less anatomically selective than shelliesions (Figure 

5). Pooled across experiments, core 6-0HDA animaIs showed a mean decrease in DAT 

binding of68% in core, 29% in medial shell, 30% in ventral shell, 37% in ventral 

caudate-putamen, and 30% in olfactory tuberc1e (OT). In contrast, medial shell-infused 6-

OHDA reduced DAT bindingin medial shell by 62%, but only by 13, 7, 1, and 12% in 

core, ventral shell, ventral caudate-putamen, and OT, respectively. SERT binding was 

virtually unchanged (89-111 % of control) by the 6-0HDA lesions in all three 

experiments (Tables 1,2). 

NAee eore and medial shelliesions before eonditioning inhibited AMPH-mediated 

loeomotoraetivation and CPP, respectively 
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In experiment 1, lesions were performed before drug conditioning. Overall, the AMPH 

locomotor stimulant effect differed across successive conditioning sessions (SESSION: 

F(2,84) = 4.47,p < 0.02; mean ± SEM; AMPH-saline difference score 40 ± 5,63 ± 6, and 

53 ± 8 m). However, locomotor data were pooled across sessions, because an initial three

way ANOV A revealed no significant interactions between SESSION and either AREA or 

LESION (F(2,84) < 1.31,p >0.2). Saline session locomotor scores did not differ 

significantly between surgery groups (AREA: F(1,42) = 1.0 1, p > 0.25; LESION: F(1,42) = 

0.70, p > 0.25; AREA x LESION: F(1,42) = 0.95, P > 0.25) (Figure 6, legend). Because 

lesions were not anatomically specifie (Figure 4), multiple linear regression analysis was 

performed to assess contributions of core and shell DA innervation to the AMPH-induced 

locomotor response. Figure 6, A and B, shows the relationship between locomotor 

responses to AMPH during conditioning versus DAT binding in core andmedial shell. 

The locomotor stimulant response was significantly correlated with DAT binding in 

NAcc core (p < 0.01) butnot NAcc medial shell (p > 0.25) (Figure 6A, B). Conversely, 

the magnitude of AMPH CPP was significantly correlated with residual DAT in the 

medial shell (p < 0.0001) but not in the core (p > 0.5) (Figure 6C, D). 

NAcc medial shelllesions did not prevent acquisition of a CPP for morphine 

In experiment 2, the effects of preconditioning lesions of medial shell were tested in rats 

conditioned with either morphine (10 mglkg, i.p.) or AMPH (0.75 mglkg, i.p.). As in 

experiment 1, AMPH CPP magnitude was reduced or aboli shed by medial shell6-0HDA 

infusion (lesion vs sham: Mann-Whitney U = 90;p < 0.02) (Figure 7). In contrast, 

lesioned rats did acquire a morphine CPP, and this was of similar magnitude to that of 

sham controls (lesion vs sham: Mann-Whitney U = 63; p > 0.5) (Figure 7). 
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Expression of a conditioned place preference for AMPH was abolished by NAee 

medial shell, but not NAcc core, lesions 

In experiment 3, lesions were performed after conditioning butbefore testing. Figure 8, A 

and B, shows the relationship between DAT binding in NAcc core or medial shell and the 

CPP magnitude. Two extreme outliers, as defined by the Systat software, were exc1uded 

before data analysis. Multiple linear regression analysis showed that CPP magnitude 

correlated significantly with residual DAT binding in NAcc medial shell (p < 0.0005) but 

not in NAcc core (p > 0.25). 

DISCUSSION 

Methodologieal aspects 

Dopaminergie denervation in core or medial shell has rarely been aehieved with any 

anatomical seleetivity (Boye et al., 2001). The present study incorporated several 

methodologieal improvements. First, stereotaxie lesion coordinates were improved. 

Second, multiple infusion sites were used for medial shelllesions. Third, diffusion of 6-

OHDA from the infusion site was minimized by administering a high concentration in a 

small volume. Consequently, core and medial shell DAT binding werelargely 

independent (Pearson r = 0.30), which was not the case in our previous study (Pearson r = 

0.84) (Boye et al., 2001). In addition, nonspecific tissue damage was reduced by 

neutralizing the 6-0HDA solution before infusion. Thus, despite the unusually high 

concentration of 6-0HDA used, Nissl staining and SERT autoradiography revealed 

minimal nonspecific damage. 
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The present CPP procedure possesses several attractive features. Pirst, latent inhibition 

can be avoided during the initial preexposure phase by omitting the conditioned stimuli. 

Second, rats conditioned with saline on both textures showed no significant preference for 

either texture on test day (our unpublished observations). Hence, our procedure is 

balanced and avoids the interpretational difficulties inherent in "biased" procedures 

(Bardo and Bevins, 2000). The current study is the first to show an AMPH CPP using 

solely tactile eues. 

Mechanisms of amphetamine-induced locomotor activation 

The present findings suggest that after systemic AMPH administration, locomotor 

stimulation is dependent on transmission in NAcc core and not medial shell. To date, only 

three published studies have examined this question using systemic rather than 

intracranialAMPH (Weiner et al., 1996; Parkinson et al., 1999; Boye etaI., 2001). Two 

of these studies showed that core rather than shelliesions reduced AMPH -induced 

locomotor activation (Weineret al., 1996; Boye et al., 2001). In contrast, Parkinson etaI. 

(1999) reported that excitotoxic lesions of the NAcc core enhanced locomotor stimulant 

responses to systemic AMPH, whereas medial shelliesions had the opposite effect. On 

this basis, these authors attributed a critical role to the shell; however, in the latter study, 

shelliesions attenuated AMPH locomotion to only a modest extent, and core lesions 

increased baseline locomotion, complicating the interpretation of drug effects. On 

balance, therefore, the available evidence suggests that NAcc core plays an important role 

in the locomotor stimulant effect of systemically administered AMPH. 
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In the present study, medial shell DA innervation was not related to AMPH locomotor 

stimulation. In contrast, we previously observed a significant negative correlation (p < 

0.02), such that DA denervation in the medial shell was associated with greater locomotor 

responses (Boye et al., 2001). This discrepancy may reflect differences in lesions 

coordinates or functional gradients within each NAcc subregion (Essman et al., 1993; 

Campbell et al., 1997). 

Other striatal regions, notably ventromedial striatum (Dicksonet al., 1994), OT (Cools, 

1986; Ikemoto, 2002), and anteromedialcaudate (Fink and Smith, 1979, 1980), have also 

been implicated in AMPH-induced locomotion. It is doubtful that denervation of 

ventromedial striatum played a significant role in the present study, because lesions were 

restricted to the anterior portion, which appears not to contribute to AMPH locomotor 

activation (Dickson et al., 1994). On the basis of intracranial infusion studies (Cools, 

1986; Ikemoto, 2002), the OT has been proposed as a key structure mediating the 

locomotor stimulant effects of AMPH. In contrast, locomotor stimulation after systemic 

AMPH administration was unaffected by 6-0HDA lesions of OT, despite substantialloss 

of tissue DA (Clarke et al., 1988). The anteromedial caudate has been proposed to 

mediate AMPH-inducedlocomotion (Fink and Smith, 1979), but this area was probably 

spared by our lesions. The ventral shell subregion was partially depleted by our core 6-

OHDA infusions and, to our knowledge, has not been studied with respect to AMPH 

locomotion. 

Our 6-0HDA infusions almost certainly destroyed noradrenaline (NA) as weIl as DA 

terminaIs in the ventral striatum (Robbins et al., 1983). Disruption of noradrenergic 
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transmission tends to inhibit AMPH-induced locomotion (Ogren et al., 1983; Archer et 

al., 1986; Dickinson et al., 1988; Blanc et al., 1994; Darracq et al., 1998; Harro et al., 

2000; Drauin et al., 2002a,b; Auclair et al., 2002) [but see Ventura et al. (2003)], with the 

medial prefrontal cortex identified as a potential site of action (Blanc et al., 1994; Darracq 

et al., 1998). In contrast, noradrenergic transmission in the NAcc appears not to contribute 

directly to locomotor stimulation (Pijnenburget al., 1975; Roberts et al., 1975; Kelly and 

Iversen, 1976; Joyce et al., 1983). Thus, our 6-0HDA lesion effects on AMPH-induced 

locomotor activation probably reflect decreased DA rather than NA transmission. 

Mechanisms of AMPH-induced reward 

Considerable evidence suggests that AMPH exerts its rewarding effects via DA release in 

the NAcc (Di Chiara, 1995; Koob et al., 1998), with little if any contribution from NA in 

this structure (Yokel and Wise, 1975; Roberts et al., 1977). In the present study, medial 

shell DA denervation was associated with attenuated AMPH CPP.1t is unlikely that 

neighboring structures contributed to this effect, because they were only slightly 

denervated (Tables 1, 2). Moreover, substantial 6-0HDA lesions of OT did not alter a 

CPP for systemic AMPH (Clarke et al., 1990). Our findings therefore support a raIe for 

NAcc medial shell DA in the rewarding effect of AMPH. This conclusion accords with 

intracranial self-administration studies using other dopaminergic drugs (Carlezon and 

Wise, 1996; Ikemoto et al., 1997). 

The inhibition of AMPH CPP caused by preconditioning 6-0HDA lesions could reflect 

impaired acquisition or expression, or both. It is weIl established that acquisition and 

expression of CPP are mediated by different dopaminergic mechanisms (Hiroi and White, 
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1990, 1991a,b; Acquas and Di Chiara, 1994; Bardo et al., 1999). For example, DA 

antagonist studies show thatDA Dl and D2 receptors are required for acquisition, but 

onlyDA Dl receptors are required for expression (Hiroi and White, 1991a,1991b; 

Acquas and Di Chiara, 1994; Bardo et al., 1999). Because our 6-0HDA lesions 

presumably impaired transmission at both DA receptor types, both acquisition and 

expression are likely to be affected. 

In the present study, morphine served as a positive control. The finding that morphine 

CPP was unaffected by medial shelliesions (experiment 2) suggests that lesion-induced 

reduction of AMPH CPP did not result from impaired sens ory , motor, or mnemonic 

function. The present findings also accord with evidence that morphine CPP occurs via a 

DA-independent mechanism when drug exposure is minimized (Mackey and van der 

Kooy, 1985; Bechara and van der Kooy, 1992; Bechara et al., 1992; Nader and van der 

Kooy, 1997; Laviolette et al., 2002). In contrast, 6-0HDA les ions of the NAcc have been 

found to reduce opiate CPP in nondependent rats (Spyraki et al., 1983; Shippenberg et al., 

1993). Several factors could account for this discrepancy. First, these authors denervated 

the entire NAcc. It is possible that the NAcc medial shell subregion is neither necessary 

nor sufficient to mediate opiate reward. Second, although our lesions eliminated AMPH 

CPP, they may not have decreased DA transmission sufficiently to affect morphine CPP. 

Third, it is possible that different neural mechanisms underlie morphine CPP depending 

on whether multiple sensory cues or solely tactile cues are used. 

Dissociation of locomotion and reward 

The CUITent findings demonstrate a double dissociation in NAcc core versus shell with 
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regard to AMPH-induced locomotor activation and reward. They extend evidence from 

other behavioral paradigms that also suggest that locomotion and reward are dissociable 

(Burns et al., 1993; Robledo et al., 1993; Kelley et al., 1997; Ventura et al., 2003). Burns 

et al. (1993) performed lesions of the ventral subiculum or basolateral amygdala and 

demonstrated a double dissociation of the locomotor stimulation and conditioned 

reinforcement produced by intra-NAcc AMPH. However, it is not clear whether the 

les ion affected reward processes or produced a memory or sensory deficit. Robledo et al. 

(1993) showed that neurotensin administered into the NAcc core decreased the locomotor 

stimulant effect of cocaine but did not affect intravenous self-administration of the drug. 

In this study, cocaine was given intraperitoneally in the locomotor tests, making 

interpretation difficult. Kelley et al. (1997) found that administration of an NMDA 

receptor antagonist into NAcc core, but not shell, disrupted the acquisition of food

reinforcedresponding without affecting spontaneous locomotor activity. However, this 

study did not examine the effects of psychostimulants. Last, Ventura et al. (2003) 

demonstrated that in mice, NA-depleting lesions of the medial prefrontal cortex·blocked 

both AMPH-induced NAcc DA release and CPP while preserving the locomotor 

stimulant response. It would be interesting to determine whether core and medial shell 

DA release are differentially affected by these lesions and whether this result extends to 

rats. 

In conclusion, the present study provides the first clear anatomical dissociation between 

the rewarding and locomotor-activating effects of the prototypic psychostimulant drug 

AMPH in rats. These acute behavioral effects were mapped cnte NAcc medial shell and 

core, respectively. The experimental approach usedhere should help to further define 
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mechanisms underlying acute and chronic behavioral effects of other drugs of abuse. 

Finally, the present core/shell dissociation may be relevant to the role of DA in reward 

anticipation versus consumption (Wise, 2002), incentive salience (Berridge and 

Robinson, 1998), and other forms of learning (Redgrave et al., 1999; Schultz, 2002). 
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Figure 1. Experimental design of experiments 1,2 and 3. Vehicle or 6-0HDA infusions 

were given at the time indicated by the arrows. In experiments 1 and 3, rats received 

infusions into either core or medial shell, depending on group (filled arrows). In 

experiment 2, only medial shell was targeted (white arrow). During the conditioning 

phase, each rat received saline and a drug (AMPH or morphine, dose as indicated) on 

altemating days (see Materials and Methods). IP, Intraperitoneal. 

Pre-
exposure (1 d) Conditioning (6d) Test (1 d) 

-----------------, 
0.75 mg/kg AMPH IP (n=46) 

Experiment 1 

D
O.75 mg/kg AMPH IP (n=22) 
10 mg/kg morphine IP (rt=22) 

Experiment 2 

0.75 mg/kg AMPH IP (n=52) , 

Experiment 3 

Time 
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Figure 2. Histological changes associated with infusion ofvehicle (A) or 6-0HDA (B) 

into the medial shell region of the NAcc. Representative 20 /lm Nissl-stained sections are 

shown ",0.1 mm caudal to the site of injection (10.2 mm anterior to interaural zero). 6-

OHDA infusion resulted in disruption of normal tissue morphology local to the infusion 

site (B, black arrow). Much less disruption of normal tissue morphology occurred in rats 

infused with vehicle. Scale bars, 50 /lm. Anterior commissure is indicated by white 

arrows. 

A 

B 
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Figure 3. Autoradiographie images of e25I]RTI-55 binding to DAT in animaIs from 

core-Iesioned, medial shell-Iesioned, and sham-operated groups (experiment 3). Because 

binding was similar between groups that received vehicle in core and medial shell, the 

latter group has been omitted. Numbers designate distance anterior to interaural zero (in 

millimeters). Radioligand binding was obtained at a nonsaturating concentration of 

radioligand and is expressed as attomol per milligram oftissue. Arrows refer to the core 

subregion. Arrowheads (pointing upward) refer to the medial shell subregion. In most 

rats, core 6-0HDA lesions were less anatomically selective than shown here (see Fig. 5). 

Core Sham Medial Shell 

11.2 

10.7 

10.2 

9.7 
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Figure 4. Locations of sampled e25I]RTI-55 binding in nucleus accumbens ,core, medial 

shen, ventral shen, ventral caudate-putamen, and olfactory tubercle. Each rat was 

sampled at four anterior-posterior levels. Numbers are distances (in millimeters) anterior 

to interaural zero. Sampling areas were circles of 0.3 mm diameter. Three samples per 

side per structure were taken at each level, except for ventral shell, where one sample per 

side was taken at level 11.2 and two per side at an other levels. Adapted from Paxinos 

and Watson (1997). 
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Figure 5. Relationship of DAT labeling in nucleus accumbens core versus medial shell. 

Data are pooled from experiments 1 and 3 (n = 98 rats). DAT labeling was performed by 

[
125I]RTI_55 autoradiography and expressed as a percentage of the mean value of the 

core-vehicle group for core 6-0HDA animaIs, or the shell-vehicle group for the shell6-

OHDA group. Correlational analysis revealed a weak but significant relationshipbetween 

core and medial shell binding (r = 0.30; P < 0.005). CV, Core vehicle; CL, core lesioned; 

SV, medial shell vehicle; SL, medial shelliesion. 
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Figure 6. Effect ofbilateral6-0HDA infusion into either NAcc core or medial shell on 

AMPH-indueed locomotor response and CPP (experiment 1). Rats (n = 10-14 per group) 

were allowed 7-11 d reeovery after stereotaxie surgery before eonditioning with AMPH 

(0.75 mg/kg, Lp.). Locomotor responses are expressed for each rat as the difference 

between the mean distance moved (in meters) during conditioning sessions with AMPH 

versus with saline. CPP magnitude is the difference between time spent on the drug

paired and saline-paired textures during the 600 sec test. DAT labeling in core or medial 

shell is expressed as percentage DAT binding of sham-Iesioned groups. Saline locomotor 

scores, in meters, were 134 ± 7 in the core vehicle group, 152 ± Il in the core 6-0HDA 

group, 154 ± 10 in the shell vehicle group, and 153 ± Il in the shell 6-0HDA group. 

Loeomotor responses (AMPH-saline) correlated signifieantly with DAT binding in NAee 

core but not in NAee medial shell. Conversely, CPP magnitude eorrelated signifieantly 

with DAT binding in medial shell but not core. To visualize the association of eaeh drug 

response to core or medial shell [125I]RTI_55 labeling, the predicted contribution of the 

irrelevant brain structure was subtraeted from the y-axis variables using the calculated 

multiple linear regression equation. Significant linear associations (shown by p values) 

are evident inA and D. CV, Core vehicle; CL, eore lesioned; SV, medial shell vehicle; 

SL, medial shelliesion. 
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Figure 7. Effeet of 6-0HDA les ions ofNAee medial shell on morphine and AMPH CPP 

(experiment 2). Stereotaxie surgery was performed 7-11 d before the first conditioning 

day. CPP magnitudes (mean ± SEM) for morphine (10 mg/kg, i.p.) or AMPH (0.75 

mg/kg, Lp.) were ealeulated as the differenee between the time spent on the drug-paired 

and saline-paired sides (n = 10-12 rats per group). Beeause the data were not normally 

distributed, Mann-Whitney U tests were applied to predetermined eomparisons. NS, 

Nonsignificant; *p < 0.02 versus corresponding sham-lesioned group (unprotected tests). 
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Figure 8. Effect ofNAcc core and medial shell les ions on the expression of AMPH CPP 

(experiment3). Rats (n = 10-19 per group) received bilateral infusion of either 6-0HDA 

or vehicle into either NAcc core or medial shell after conditioning with AMPH and 

before CPP testing. Degree ofDAT depletion in core or medial shell is expressed as 

percentage DAT binding of control. To visualize the association of each drug response to 

core or medial shell e25I]RTI-55 labeling, the predicted contribution of the irrelevant 

brain structure was subtracted from the y-axis variables using the calculated multiple 

linear regression equation. CPP magnitude correlated significantly with DAT binding in 

NAcc medial shell (B) but not with DAT binding in NAcc core (A). CV, Core vehicle; 

CL, core lesioned; SV, medial shell vehicle; SL, medial shelliesion. 
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Table 1. Absolute values ofDAT and SERT binding in core, medial shell, ventral shell, 

ventral caudate-putamen (ventral CP), and olfactory tuberc1e (OT) in experiments 1 and 3 

Core Core Shell Shell 
(vehicle) (6-0HDA) (vehicle) (6-0HDA) 

Experiment 1 
n 10 12 10 14 
DAT 
Core 265±20 87±9 261±30 209±20 
Medial shen 183±7 128±13 178±18 70±20 
Ventral shell 170±8 129±17 158+15 166+16 
Ventral CP 152±9 95±11 129+11 137+7 
OT 259±16 177±18 282+24 243+16 
SERT 
Core 117±12 107±14 117±8 113+7 
Medial shen 145±14 149±14 143±6 137+10 
Ventral shell 151±17 167±16 136±14 147±15 
Ventral CP 152±17 165±16 141±17 143±12 
OT 219±9 230±11 242±13 232±9 
Experiment 3 
n 10 13 10 19 
DAT 
Core 927±43 288±60 941+32 816+61 
Medial shen 566±45 411±41 596±56 225+26 
Ventral shen 774±38 493±64 787±40 761±40 
Ventral CP 641±31 404±35 684±19 660±30 
OT 733±36 524±45 743±53 635±36 
SERT 
Core 297±1O 269±16 31O±16 318±14 
Medial shell 450±15 441±16 450±23 446±14 
Ventral shell 476±27 486±23 497±19 504±20 
Ventral CP 300+13 267+10 305+12 321+12 
OT 637+25 624±35 637+24 664+26 

Values are mean ±SEM rt25I]RTI-55 binding to DAT or SERT (expressed as attomol per 

rnilligram of tissue), obtained at a subsaturating concentration of radioligand. 
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Table 2. Absolute values ofDAT and SERT binding in core, medial shen, ventral shen, 

ventral caudate-putamen (ventral CP), and olfactory tubercle (OT) in experiment 2 

Morphine Amphetamine 

Shen Shen Shen Shen 
(vehicIe) (6-0HDA) (vehicIe) (6-0HDA) 

Experiment 2 
n 10 12 10 12 
DAT 
Core 755±22 715±20 755±22 715±20 
Medial shen 473±17 166±21 473±17 166±21 
Ventral shell 429±12 382±14 429±12 382±14 
Ventral CP 535±18 525±9 535±18 525±9 
OT 670±18 612±32 670±18 612±32 
SERT 
Core 414±14 408±14 414±14 408±14 
Medial shen 517±14 530±19 517±14 530±19 
Ventral shell 481±43 534±50 481±43 534±50 
Ventral CP 327±31 343±29 327±31 343±29 
OT 737±24 688±18 737±24 688±18 

Values are mean ± SEMe25I]RTI-55 binding to DAT or SERT (expressed as attomol per 

milligram of tissue), obtained at a subsaturating concentration of radioligand. 
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Intervening Section 1 

The previous chapter suggested that DA transmission in the core mediated the locomotor 

stimulant ofamphetamine, while medial shell DA innervation mediated amphetamine 

CPP. Lesion effects on CPP appear not to be result from a general memory deficit, since 

medial shelllesions did not disrupt morphine CPP. As such, the findings provided the 

first evidence for a dissociation between the effects of DA transmission in the accumbens 

core vs. medial shell in psychostimulant-induced locomotor activity and CPP. 

Since an unconditioned measure was used for locomotor activity, and a conditioned 

measure for reward, these results were equally consistent with a segregation between the 

unconditioned and conditioned effects of amphetamine. To examine this issue, we 

therefore examined the effects of core and medial shelliesions on amphetamine

conditioned locomotor activity. If medial shelliesions reduced conditioned locomotion, 

this would suggest that a segregation of conditioned vs. unconditioned drug reward 

would be a more appropriate interpretation of the data. The results supported out initial 

hypothesis, suggesting that locomotor stimulation and reward processing are indeed 

segregated within the nucleus accumbens. 
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CHAPTER 4: 6-hydroxydopamine lesions of nucleus accumbens core, but 

not medial shell, abolish amphetamine-induced conditioned activity 

Laurie H. L. Sellings and Paul B. S. Clarke 

Synapse, 59: 374-377 

158 



Abstract: Environmental cues associated with drug experiences appear to play a critical 

role in drug dependence. We have previously reported that dopamine-depleting lesions of 

the nucleus accumbens medial shen inhibit amphetamine-conditioned place preference. 

Here, we examined the effects of analogous lesions on amphetamine-conditioned 

locomotor activity. Bilateral core, but not medial shen, lesions attenuated unconditioned 

locomotion and abolished the conditioned locomotor response. Taken with our previous 

results, these findings confirm a role for accumbens core in amphetamine-induced 

locomotor activity and suggest that the role of medial shen dopamine transmission in 

conditioned place preference is related to reward processing rather than conditioning in 

general. 

Rats receiving repeated amphetamine (AMPH) administration in a distinct environment 

subsequently exhibit hyperlocomotion in that environment in the absence of drug (Gold 

et al., 1988; Mazurski and Beninger, 1991). The nucleus accumbens appears critical, as 

6-hydroxydopamine (6-0HDA) les ions prevented acquisition and expression of AMPH

induced conditioned locomotion (Gold et al., 1988). Recently, we provided 6-0HDA 

lesion evidence suggesting that conditioned place preference for AMPH was associated 

with medial shen dopamine (DA) transmission, and that unconditioned locomotor 

activity was associated with core DA transmission (Sellings and Clarke, 2003). However, 

reward was assessed using a conditioned measure, whereas the measure of locomotor 

activation was unconditioned. As such, it is unclear whether the functional segregation 

we observed represents dissociation between reward and locomotion, or between the 
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conditioned and unconditioned effects of AMPH. 

The aim of the current study was therefore to examine the effects of 6-0HDA lesions of 

medial sheU vs. core on conditioned locomotion. An association between medial sheU 

DA transmission and conditioned locomotion, if observed, would suggest that this 

subregion may play a general role in mediating conditioned drug effects. Core lesions 

were expected to reduce the unconditioned locomotor response to AMPH (Sellings and 

Clarke, 2003), but it was not clear whether this would also prevent the emergence of a 

conditioned locomotor response (see Discussion). Two experiments were performed. The 

first established the occurrence of conditioned locomotion in our conditioned place 

preference apparatus. The second experiment tested behavioural effects of intra

accumbens 6-0HDA. 

Subjects were 37 Long-Evans rats (Charles River, St-Constant, QC; 270-310 g at time of 

surgery). Food and water were available ad libitum except during training. AU 

experiments were approved by the McGill Faculty of Medicine Animal Care Committee 

in accordance with Canadian Council on Animal Care guidelines. 

The testing apparatus was as previously described for conditioned place preference 

(Sellings and Clarke, 2003). Briefly, test cages comprising four vertical walls forming a 

rectangle (58 cm L x 29 cm W x 53 cm H) were placed on linoleum flooring covered 

with a thin layer of sawdust. Two removable square floor tiles (mesh or bar) were 

inserted into each cage to provide tactile cues during conditioning sessions. Behavioural 

160 



experimentation took place over 12 days. After an initial pre-exposure to the test box 

without tactile eues (Day 1,20 min), each rat received five AMPH injections (0.75 mg/kg 

as sulphate salt) on either bar or mesh, and five vehicle injections on the other texture 

over ten consecutive days (Day 2-11,45 min/session). On test day, locomotor activity 

was examined (in a drug-free state) in two separate sessions, one on bar and one on mesh 

(Day 12, 10 min each). Locomotor activity during conditioning trials and the two test 

sessions was monitored by a commercial tracking system (EthoVision v3.0, Noldus IT). 

The order of drug presentation, drug-texture pairing, and order of eue presentation on test 

day (mesh vs. bar) were counterbalanced. To minimize visual eues, the testing room was 

lit with a Kodak GBX-2 filter. In Experiment 1, unoperated rats served as experimental 

subjects. In Experiment 2, rats received bilateral infusions of 6-0HDA or vehicle (0.9% 

saline plus 0.3 mg/ml sodium metabisulfite) 7-9 days prior to conditioning. This was 

given via a 30 gauge stainless steel cannula aimed at either core or medial shell, as 

previously described (Sellings and Clarke, 2003). The extent of the 6-0HDA lesion was 

quantified by autoradiographic labelling of the DA transporter (DAT) using the 

radioligand [125I]RTI_55 (2200 Cilmmol). To assess non-specific damage, serotonin 

transporter (SERT) autoradiography using [125I]RTI_55 with DAT occluded, as well as 

cresyl violet staining for Nissl substance (as previously described; Sellings and Clarke, 

2003) was used. 

A commercial software pro gram (Systat vl0.2, SPSS Inc.) was used for data analyses. 

Unconditioned locomotion was calculated as the difference of locomotor counts between 

AMPH and saline conditioning sessions. Conditioned locomotion was calculated as the 
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difference between activity (distance moved in metres) on the AMPH and vehicle paired 

textures on test day. Group differences were examined by one-way ANOVA, followed by 

Dunnett's test. Multiple linear regression analysis was used to test for associations 

between DAT binding in core vs. medial shell and unconditioned or conditioned 

locomotion. The two sham lesioned groups (core and medial shen) were pooled, as initial 

examination revealed no significant differences between these two groups. A p value of 

<0.05 (two-tailed) was considered significant. 

In Experiment 1, rats (n=8) expressed significant conditioned locomotion (paired t-test 

with Bonferroni correction, p<O.OOS; Figure lA). The distance moved on the AMPH

paired texture was 36.7±2.8 m; on the saline-paired texture, it was 33.0±2.8 m. The 

magnitude of the conditioned locomotion was not dependent on the fIoor texture paired 

with drug (bar vs. mesh, Student's t-test, p>O.S). 

In Experiment 2, no significant group differences existed for saline activity 

(F(2,26)=1.6S, p>0.2; Figure lB) or unconditioned locomotor activation (F(2,26)=1.4S, 

p>0.2S; Figure le). However, multiple linear regression analysis revealed a significant 

association between core, but not medial shen, DAT binding and locomotor activation 

(core: p<O.OS, r=0.37; Figure ID; medial shen: p>0.25, r=0.06; Figure lE). For 

conditioned locomotion, only the core-Iesioned group differed significantly from sham 

animaIs (Dunnett's test, p<0.02; Figure IF). On test day, the distance moved on the 

AMPH-paired texture was 42.l±3.S m (sham), 36.5±2.0 m (core) and 37.7±2.9 m (medial 

shen); on the saline-paired texture, it was 34.2±3.4 m (sham), 36.8±3.6 m (core) and 
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32.4±2.5 m (medial shell). AdditionaIly, the magnitude of the conditioned locomotion 

associated positively with core and not medial shell DAT binding (core: p<0.05, r=0.57; 

medial shell: p>0.5, r=0.32; Figures 10 and H). Residual DAT binding, expressed as a 

percent of combined sham groups, is given in Table 1. Nissl staining revealed minimal 

nonspecific damage, and residual SERT binding was minimally affected by core and 

medial sheIllesions (92-107% of control). 

In the present study, DA-depleting lesions of the accumbens medial shell did not inhibit 

the conditioned locomotor response to AMPH. This finding contrasts with our previous 

observation that the same kind of lesion inhibited AMPH-conditioned place preference 

(Sellings and Clarke, 2003). It is important to note that the two studies were designed to 

be highly comparable. For example, the testing apparatus was identical and the dose of 

AMPH was the same. AdditionaIly, rt25I]RTI-55 binding in medial sheIllesioned animaIs 

was reduced to the same extent (62%) in both studies. Taken together, the two studies 

suggest that medial shell DA transmission plays a role in conditioned reward rather than 

a more general role in conditioning. 

Our findings confirm an association between DAT binding in accumbens core and the 

unconditioned locomotor stimulant effect of A-MPH (Sellings and Clarke, 2003). 

Although the 6-0HDA infusions quite possibly destroyed noradrenaline as weIl as DA 

terminaIs, the criticallesion site (core) receives little noradrenergic input (Berridge et al., 

1997; Delfs et al., 1998). As such, the observed effects of core 6-0HDA infusion are 

most likely attributable to disruption of DAergic transmission. 
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The conditioned locomotor response was aboli shed by core 6-0HDA lesions. This is not 

a trivial result, since several DAergic manipulations (i.e. several DA receptor antagonists, 

reserpine) have been reported to block the unconditioned locomotor response to AMPH 

while preserving the conditioned locomotor response in subsequent drug-free tests 

(Martin-Iverson and McManus, 1990; DiLullo and Martin-Iverson, 1991; DiLullo and 

Martin-Iverson, 1992a; DiLullo and Martin-Iverson, 1992b). In contrast, other DAergic 

manipulations given during conditioning have been found to prevent subsequent 

conditioned locomotion (Beninger and Hahn, 1983; Mazurski and Beninger, 1991; 

DiLullo and Martin-Iverson, 1992b). Our core lesions only partially inhibited 

unconditioned locomotion, but they blocked the conditioned response. This result 

suggests that core lesions affected the acquisition and/or expression of AMPH

conditioned locomotion. Consistent with a role in expression, 6-0HDA lesions of the 

entire accumbens blocked conditioned locomotion when given before or after 

conditioning (Gold et aL, 1988). 

The present results add to existing evidence suggesting that unconditioned and 

conditioned locomotion are controlled via different mechanisms (Beninger and Hahn, 

1983; Poncelet et al., 1987; Mazurski and Beninger, 1991; Sutton et al., 2000). They also 

imply that different AMPH conditioned behaviours may be mediated by DA transmission 

in separate ventral striatal subregions, with the medial shell underlying conditioned 

effects of reward, and the core subregion locomotor activation. The extent to which our 

findings would generalize to conditioning with discrete cues (Hotsenpiller et al., 2002) or 

natural rewards (Jones and Robbins, 1992) remains to be determined. 
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Figure 1 - Both conditioned and unconditioned locomotor activity are decreased by 

6-0HDA lesions of the core. In Experiment 1, rats (n=8) received multiple pairings of 

amphetamine with a distinct floor texture, and subsequently exhibited conditioned 

locomotion (**p<O.005, paired t-test, Figure lA). In Experiment 2, rats received 6-

OHDA or vehicle into accumbens medial shen or core (n=8-10 per group). They were 

then conditioned with amphetamine and tested drug-free. During conditioning, no 

significant group differences were observed in saline activity (Figure lB) or in the 

unconditioned locomotor response to amphetamine (Figure 1 C). However, the extent of 

the core depletion associated significantly with the unconditioned locomotor response 

(Figure ID); this was not the case for medial shelliesions (Figure lE). The conditioned 

locomotor response was blocked in core-Iesioned rats (*p<O.02, Dunnett's test, Figure 

IF). The magnitude of the conditioned locomotion was significantly associated with 

core, but not medial shen DAT binding (Figures 1 Gand H). The apparent, but highly 

non significant, association between medial shen DAT and the magnitude of the 

conditioned locomotion reflects covariance between core and medial shen DAT binding 

(r=O.57, p<O.OI).Shell refers to medial shen. CV, core vehicle; CL, core 6-0HDA; SV, 

medial shell vehicle; SL, medial shen6-0HDA. 
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Table 1. Reductions in DAT binding seen in core and medial shelllesioned groups. 

Group Core mSh vSh OT vCP 

Sham 100±4 100±6 100±5 100±5 100±3 

Core 18±1 49±4 40±5 45±2 48±5 

Medial shell 76±3 38±5 88±5 72±4 96±4 

Figures are mean ± SEM, and are calculated as a percent of sham-operated control. 

Abbreviations are as follows: mSh, medial shell; vSh, ventral shell; OT, olfactory tuberc1e; 

vCP, ventral caudate-putamen. 
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Intervening Section 2 

Taken together, the results of Chapters 3 and 4 suggested that core DA transmission 

mediated amphetamine-stimulated locomotor activity, and medial shell DA transmission 

was responsible for reward processing. We therefore set out to examine whether a 

similar segregation exists for other psychomotor stimulant drugs. 

The first drug examined was cocaine. Abuse of this drug has been reported by both the 

intranasal and intravenous routes. The results were suggestive of an important role for 

not only medial shell, but also the medial olfactory tubercle in i.v. cocaine CPP. 

Additionally, core DA transmission appeared to mediate cocaine-stimulated locomotor 

activity after both intravenous and intraperitoneal administration, at several doses of 

cocaine. Taken together, these results suggested that a segregation oflocomotor 

stimulation and reward processing, as seen for amphetamine, exists for intravenous but 

not intraperitoneal cocaine. 
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CHAPTER 5: Evidence for multiple sites within rat ventral striatum 

mediating cocaine conditioned place preference and locomotor activation 
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Abstract 

Considerable evidence suggests psychostimulants can exert rewarding and locomotor 

stimulating effects via increased dopamine transmission in the ventral striatum. However, 

the relative contributions of ventral striatal subregions to each of these effects have been 

little investigated. The present study examined the contribution of different ventral 

striatal sites to the rewarding and locomotor activating effects of cocaine. Initially, the 

effects of bilateral 6-hydroxydopamine lesions of the nucleus accumbens core or medial 

shell on cocaine-induced locomotor stimulation (0.5-1.5 mg/kg i.v. or 5-20 mg/kg i.p.) 

and conditioned place preference (0.5 mg/kg i.v. or 10 mg/kg i.p.) were examined. A 

subsequent study investigated the effects of olfactory tuberc1e vs. medial shelliesions on 

cocaine conditioned place preference and locomotor activity (0.5 mg/kg Lv.). 

Dopaminergic les ion extent was quantified by radio ligand binding to the dopamine 

transporter. Multiple linear regression was used to identify associations between 

behavioral effects and residual dopamine innervation in ventral striatal subregions. On 

this basis, the accumbens core was associated with locomotor stimulant effects ofi.v. and 

i.p. cocaine. In contrast, the medial shell was associated with the rewarding effect ofi.v. 

cocaine, but not of i.p. cocaine. Finally, the olfactory tuberc1e was identified as an 

additional site contributing to conditioned place preference produced by Lv. cocaine. 

Overall, these findings pro vide additional evidence that the locomotor stimulant and 

rewarding effects of systemically-administered psychomotor stimulant drugs are 

segregated within the ventral striatum. 
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Introduction 

The nucleus accumbens (NAcc) plays an important role in the rewarding and locomotor 

stimulant effects of systemically-administered amphetamine and cocaine (Koob et al., 

1998; Wise, 2004). It is anatomically and neurochemically heterogeneous, with a 

prominent medioventral shell and dorsolateral core (Zahm and Brog, 1992). Recent 

behavioral studies, largely relying on intracranial microinjections of dopaminergic 

agonists, have provided evidence for functional compartmentalization within this 

structure, although certain details are controversial. Thus, the medial shell subregion has 

been implicated in reward processes (Di Chiara et al., 2004 ; Ikemoto and Wise, 2004), 

whereas locomotor stimulation has been elicited from core and/or shell injection sites 

(Boye et al., 2001; Ikemoto, 2002; Sellings and Clarke, 2003 and references therein). 

The technique of intracranial drug microinjection, despite its obvious utility, is limited by 

the fact that local drug concentrations are usually unknown and may not be comparable 

with those obtained after systemic administration. Using an alternate approach, we 

recently evaluated the respective roles of accumbens core and shell in amphetamine

induced locomotion and conditioned place preference (CPP) by combining systemic 

amphetamine challenge with prior 6-hydroxydopamine (6-0HDA) lesions of either 

structure (Sellings and Clarke, 2003). In this study, DAergic depletion in core and medial 

shell reduced amphetamine-induced locomotor stimulation and CPP, respectively. 
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The present study sought to extend these findings to cocaine. Intra-NAcc infusion of 

cocaine pro duces both locomotor stimulation and rewarding effects (Ikemoto, 2002; 

Ikemoto, 2003; Ikemoto and Witkin, 2003; Rodd-Henricks et al., 2003). However, the 

interpretation of such findings is complicated by possible sympathomimetic and 

anesthetic actions within the target tissue (lkemoto, 2003; Ikemoto and Witkin, 2003). 

Even after systemic injection, the precise route of administration can be critical. In 

particular, cocaine is reported to produce DA (dopamine)-dependent or DA-independent 

rewarding effects, depending on whether it is delivered intravenously or intraperitoneally 

(Spyraki et al., 1987). In the present study, these two systemic routes of administration 

were compared. 

The less-studied olfactory tubercle (OT) may also play a role in psychomotor stimulant

mediated locomotor activation and reward. This is suggested by studies employing 

intracranial administration in rats. Thus, direct intra-OT infusions of DA agonists 

including amphetamine and cocaine produced a marked and prompt locomotor activation 

(Pijnenburg et al., 1976; Cools, 1986; Ikemoto, 2002), and both these drugs were avidly 

self-administered at OT sites (Ikemoto, 2003; Ikemoto ~t al., 2005). Interestingly, intra

OT drug infusions elicited stronger locomotor and reinforcing effects than intra-NAcc 

infusions (Cools, 1986; Ikemoto, 2003; Ikemoto et al., 2005). Despite these positive 

findings, we previously tested the impact of profound 6-0HDA lesions of OT on the 

locomotor stimulant and rewarding (CPP) effects of systemic amphetamine challenge, 

and concluded that DAergic transmission in the OT does not contribute significantly to 

either behavioral effect (Clarke et al., 1988; Clarke et al., 1990). Hence, at present, it is 
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an open question whether the OT contributes significantly to the locomotor stimulant and 

rewarding effects of any systemically-administered psychostimulant. 

The overall goal of the present study was therefore to localize the ventral striatal actions 

of systemically-administered cocaine. The first experiment investigated whether the 

locomotor stimulant effects of i.v. and i.p. cocaine are diminished by DA denervation in 

the accumbens core or medial shell. The next two experiments determined whether the 

stimulant and rewarding effects of cocaine could be dissociated by selective 6-0HDA 

lesions of either structure, as previously seen with amphetamine (Sellings and Clarke, 

2003). The final experiment tested for OT involvement in cocaine reward and locomotor 

activation, again after systemic drug challenge. 

Methods 

Experimental design. The design of all four experiments is summarized in Table 1. 

Subjects. Subjects were male Long-Evans rats (Charles River, St. Constant, Quebec) 

weighing 250-325 g at time of surgery. Rats were housed individually (Experiment 1) or 

in groups of three (Experiments 2 - 4) in clear Plexiglas cages in a temperature- and 

humidity-controlled animal colony, lit from 7 A.M. to 7 P.M. Food and water were 

available ad libitum except during behavioral testing. AlI experiments were approved by 

the McGill Faculty of Medicine Animal Care Committee in accordance with Canadian 

Council on Animal Care guidelines. 
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Stereotaxie infusion of6-0HDA. Surgery was performed 7-10 days prior to the start of 

behavioral testing. Rats were anesthetized with ketamine HCI (90 mg/kg, i.p.) and 

xylazine HCl (16 mg/kg, i.p.) prior to placement in a stereotaxie apparatus (Kopf, 

Tujunga, CA) with the incisor bar set at -3.9 mm. Depending on the experiment (see 

Table 1), rats received bilateral infusions of either 6-0HDA or vehicle into either NAcc 

core, medial shen, or anteromedial olfactory tubercle (arnOT). Infusions were made via a 

30 gauge stainless steel cannula attached by polyethylene tubing to a 1 0 ~l Harnilton 

syringe driven by a model5000 Micro Injection Unit (Kopi) (core or medial shen) or via 

two separate 10 ~l Hamilton syringes driven by a multi-channel syringe pump (arnOT; 

MD-100l, BioAnalytical Systems Inc., West Layette, IN). For greater accuracy, 

coordinates for an three target subregions were derived from the mean of two coordinate 

systems. Thus, anterior-posterior coordinates were + 10.3 mm from interaural zero and 

+ 1.3 mm from bregma for both core and shen, and + 10.7 mm from interaural zero and 

+ 1.7 mm from bregma for arnOT. Lateral coordinates were ±0.6 mm (shen), ±2.4 mm 

(core) and ±0.8 mm (arnOT). Ventral coordinates for shen (three injections) were +2.0, 

+2.4, and +2.8 mm from interaural zero and -8.0, -7.6, and -7.2 mm from bregma. 

Ventral coordinates for core were +2.7 mm from interaural zero and -7.3 mm from 

bregma. For amOT, ventral coordinates were + 1.1 mm and -8.9 mm respectively from 

interaural zero and bregma. An coordinates are based on the atlas ofPaxinos and Watson 

(1997). 6-0HDA or vehic1e was infused on each side in a volume of 0.1 ~l (core), as 

three infusions of 0.06 ~l (medial shen), or 0.2 ~l (arnOT) on each side. For core and 

medial shen, 6-0HDA was infused at a rate of 0.1 ~l /min; for arnOI, the rate of infusion 

was 0.1 ~1/10 min. The concentration of6-0HDA used was 80 ~g/~l (core) or 48 ~g/~l 
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(shell). For amOT, a volume of 0.2 III of either vehic1e or 6-0HDA (40 Ilg/1l1 free base) 

was infused bilaterally over 20 minutes. The different doses of 6-0HDA, infusion 

volumes and infusion times used at each lesion site were chosen based on pilot studies, 

and represented the best compromise between efficacy (DA depletion) and anatomical 

selectivity. For all three lesion sites, the cannula remained at the final infusion site for 5 

mm. 

Intravenous catheterization. During 6-0HDA lesion surgery, rats were implanted with 

chronic indwelling silastic catheters (0.51 mm LD. and 0.94 mm O.D., Fisher Scientific, 

Montreal, Quebec) in the left jugular vein. Tubing was secured to the vein by surgical 

silk sutures, led subcutaneously to the skull surface, and was then fitted onto a 22 gauge 

cannula attached to a plastic connector (Model number C313G-5UP, Plastics One, 

Roanoke, VA). The cannula/connector was fixed to the animal's skull with small 

stainless steel screws (Lomir, Notre-Dame-de-L'Ile Perrot, Quebec) and dental cement 

(Stoelting, Wood Dale, IL). To keep catheters patent, 0.1-0.15 ml heparinized 0.9% 

saline was administered at the end ofsurgery, on the first day ofbehavioral testing, and 

every 2-3 days thereafter. 

Locomotor activity testing (Experiment 1). Horizontallocomotor activity was tested in 

the CPP apparatus (see below for description). Rats were first given one pre-exposure 

session (20 minutes) in the absence of drug. Each rat then received eight tests on 

consecutive days with cocaine given i.v. (0,0.5, 1 or 1.5 mg/kg) or i.p. (0, 5, 10,20 
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mg/kg) in a randomized order. Each test session lasted 30 min, starting immediately after 

injection. Test cages contained one bar and one mesh tile (see below). 

Conditioned place preference and locomotor activity testing (Experiments 2, 3 and 

4). The apparatus and general procedure were as previously described (Sellings and 

Clarke, 2003). Briefly, the procedure consisted ofthree phases: pre-exposure (one day), 

conditioning (six days) and test (one day). AH phases were carried out in a one

compartment box (58 cm x 29 cm x 53 cm) with waHs made of white plastic-coated 

particle board. In the pre-exposure phase, Beta-Chip sawdust bedding covered the floor 

of the cage. In the conditioning phase, two square tactile tiles of either bar or mesh 

texture were placed in the bottom of the cage, on top of the bedding. During this phase, 

the video tracking software (EthoVision v 3.0, Noldus Information Technology, 

Leesburg, VA) measured locomotor activity, expressed as horizontal distance moved (in 

meters). During the test phase, one bar and one mesh tile were placed on the bottom of 

the cage. The time spent on bar or mesh texture was measured by Etho Vision software. 

AH three phases were carried out under darkroom lighting using a Kodak GBX-2 

safelight filter (Vistek, Toronto, Ontario, Canada), to minimize visual eues. AnimaIs do 

not spontaneously prefer either texture (unpublished observations), and aH experiments 

were as fuHy counterbalanced as possible with respect to drug-texture pairing and order 

of drug pairing (drug-saline or saline-drug) within each surgery group. For aH 

experiments, pre-exposure sessions lasted 20 minutes, and the test session 10 minutes. 

Conditioning trial duration for i.v. COC was 15 minutes; for i.p. COC, 25 minutes. 
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For i.v. infusion (Experiments 1,2 and 4), a fluid swivel was fixed above the center of 

each cage. Each swivel was connected to on one end a 1 ml syringe, and on the other end 

to a brass connector (Produits MSM, Laval, Quebec) and protective spring (Heiplex, 

Montreal) via Tygon tubing of 0.51 mm diameter. The cannula fixed to the skull of the 

rat was attached to the Tygon tubing, and the brass connector fastened to the plastic 

connector, to secure the tubing to the cannula, hence allowing administration of drug 

immediately after placement in the CPP cage. Drug was infused over 25-30 s. Cocaine 

administered i.p. was injected immediately prior to placement in the CPP cage. 

Tissue Preparation. Tissue was prepared for autoradiography and Nissl-staining (cresyl 

violet) as previously described (Sellings and Clarke, 2003). Briefly, rats were sacrificed 

3 to 5 hours following CPP testing, by decapitation under sodium pentobarbital (65 

mglkg, i.p.) anesthesia. Brains were removed, frozen in 2-methylbutane at -50°C for 30 

sec, and stored at -40°C. 

Coronal sections (20 /-lm) were taken on a cryostat at several rostrocaudallevels through 

the ventral striatum. In Experiments 1,2, and 3, sections were examined at 11.2, 10.7, 

10.2, and 9.7 mm anterior to interaural zero; 9.2 and 8.7 mm were also examined in 

Experiment 4 (Paxinos and Watson 1997). Four adjacent sections were collected for 

autoradiography and one for Nissl staining with cresyl violet. Sections were thaw 

mounted onto gelatin-subbed slides, air dried at room temperature for 20-30 min, and 

stored with desiccant at -40°C. 
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Quantitative autoradiography. The extent and chemical selectivity ofthe 6-0HDA 

lesion was quantified by autoradiographie labeling of the DA transporter (DAT) and the 

5-HT transporter (SERT) (Sellings and Clarke, 2003), using a nonsaturating 

concentration of 3P-( 4-iodophenyl)tropan-2-p-carboxylic acid methyl ester (e25I]-RTI-

55; 2200 Ci/mmol; NEN-Mandel, Guelph, Ontario). 

Sections were thawed at room temperature for 10 min and then placed in a staining dish 

containing an aqueous buffer solution of 120 mM NaCl, 0.1 M sucrose, 10 mM sodium 

phosphate buffer, and 10 pM e25I]-RTI-55, with the pH adjusted to 7.4. In the DAT 

autoradiographie assay, 50 nM citalopram hydrobromide was used to occlude SERT; 

nonspecific binding was determined by addition of 1 0 ~M 1-(2-[bis( 4-

flurorphenyl)methoxy]ethyl)-4-(3-phenylpropyl)piperazine dihydrochloride (GBR 

12909). For SERT autoradiography, 1 J.lM 1-[2-(diphenylmethoxy)ethyl]-4-(3-

phenylpropyl)piperazine dihydrochloride (GBR 12935) was added to occlude DAT; 

nonspecific binding was determined by addition of 50 nM citalopram HBr (Sellings and 

Clarke, 2003). Slides were incubated at room temperature for 2 hr and then washed three 

times in cold buffer solution (once for 1 min, twice for 20 min) and for 1-2 sec in distilled 

and deionized water. They were then blow dried and placed in X-ray film cassettes. 

Kodak BioMax MS film (Amersham Biosciences, Baie d'Urfé, Québec) was exposed to 

slides for 48 hr (DAT) or 120 hr (SERT) with [1251] autoradiographie standards 

(Amersham Biosciences). After development of film, DAT and SERT binding were 
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quantified using an MCID M4 imaging system (Imaging Research, St. Catherines, 

Ontario). 

Histological examination. Tissue was stained with cresyl violet to assess nonspecific 

damage, as previously described (Sellings and Clarke, 2003), and examined under a light 

microscope (40-200X magnification). 

Drugs. Drug sources were as follows: cocaine HCI (gift of National Institute on Drug 

Abuse, Bethesda, MD); citalopram HBr (gift from H. Lundbeck AIS); dipyrone 

(Vetoquinol, Quebec, Quebec); ketamine HCI (Vetalar, Vetrepharm, London, Ontario); 

xylazine HCI (Anased, Novopharm, Toronto, Ontario); GBR 12909 (NIMH Chemical 

Synthesis and Drug Supply Program), and GBR 1293S·2HCI (Sigma-Aldrich, Oakville, 

Ontario). Unless otherwise stated, aU other chemicals were obtained from Fisher 

Scientific (Montreal, Quebec). 

Cocaine HCI was dissolved in sterile 0.9% saline and injected at 1 ml/kg (i.v. or i.p.). 6-

OHDA HBr was dissolved in sterile 0.9% saline containing 0.3 mg/ml sodium 

metabisulfite (Sigma-Aldrich) as an antioxidant and protected from light. Vehicle 

solutions, as weIl as 6-0HDA to be infused into medial sheU or amOT, were neutralized 

to pH 7.3 ± 0.1 with NaOH (to reduce non-specific damage; see Results). Doses of aIl 

drugs except 6-0HDA HBr are expressed as the salt. 6-0HDA HBr doses are expressed 

as free base. 
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Data analysis. A commercial software program (Systat vI0.2, SPSS Inc., Chicago, IL) 

was used for aIl data analyses. In aIl experiments, locomotor responses to cocaine were 

calculated as the difference of locomotor counts between drug and saline conditioning 

sessions. In CPP experiments, saline locomotor scores were calculated as the mean 

activity over aIl three conditioning sessions with saline, and are expressed as mean ± 

SEM. After initial data inspection, sham groups were combined within each experiment. 

Group differences were analyzed by l-way ANOV A. CPP magnitude was calculated as 

the difference between time spent on the drug-paired and vehic1e-paired sides during the 

lü-minute test session. Experiments 2 and 4 were each carried out in different batches, 

due to space constraints in the animal facility; after initial data inspection, the results 

within each experiment were pooled. The existence of a significant CPP magnitude or 

locomotor stimulant effect was determined by one-sample Student's t-test with 

Bonferroni correction for multiple comparisons. The relationship between behavioral 

measures vs. e25I]-RTI-55 labeling was analyzed by multiple linear regression. A p 

value of less than 0.05 (two-tailed) was considered significant. Group data are expressed 

as mean ± SEM throughout. 

Results 

Neurochemical and anatomical selectivity. To assess nonspecific tissue damage, 

sections were Nissl-stained with cresyl violet. As previously reported (SeIlings and 

Clarke, 2003), only minimal ceIlloss was evident at the site of infusion for aIl vehic1e 

groups (Fig. lA) and for the group infused with 6-0HDA in the core subregion (not 
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shown). Among rats lesioned in medial she11 or amOT, most rats (-60%) also showed a 

minimal degree of ce11loss, -30% of rats possessed a sma11 region of decreased ce11 

densityat the infusion site (Fig. lB), and -10% of rats showed more pronounced non

selective damage (Fig. 1 C). This larger region of non-specifie damage did not extend 

more than 0.3 mm from the site of infusion and was almost always found at only one 

anterior-posterior level. 

Sampling locations for DAT and SERT binding density are indicated in Fig. 2. [1251]_ 

RTl-55 autoradiographs ofDAT binding are shown in Fig. 3. Residual DAT binding as a 

percent of combined sham groups is given in Tables 2 (Experiments 1-3) and 3 

(Experiment 4). Radioligand binding to SERT in tissue from lesioned animaIs was 

minima11y changed by a11lesion parameters in a11 experiments (Tables 2 and 3). 

ln a11 Experiments, rats were a110wed 7-10 days recovery post-surgery before the start of 

behavioral testing. 

The magnitude of core, but not medial shell, DA denervation predicted locomotor 

responses to i.p. and i.v. cocaine. The effects of 6-0HDA lesions of core vs. medial 

she11 on cocaine-induced locomotion were tested most extensively in Experiment 1. 

Locomotor responses to i.p. and i.v. cocaine are shown in Fig. 4A and 4B (absolute 

values) and Fig. 4C and 4D (saline-subtracted values). Saline test scores did not differ 

significantly between the three surgery groups (Fig. 4A and 4B). The locomotor stimulant 

effects of cocaine were blunted only in the core-Iesioned group. Multiple linear 
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regression analysis revealed significant positive associations between core DAT binding 

and the locomotor stimulant response for both administration routes used and at aIl doses 

except for 0.5 mg/kg i.v. (range p < 0.001 - p < 0.05). Significant negative associations 

were observed between medial shell DAT binding and the locomotor stimulant response 

at several cocaine doses (1 mg/kg Lv., 5 and 10 mg/kg Lp.; p < 0.05 - p < 0.005). 

The effects of core and medial she1l6-0HDA lesions on cocaine-induced locomotion 

were also tested in two CPP experiments (i.e. Experiments 2 and 3). Locomotor data 

were obtained from the three drug and saline conditioning sessions. Experiment 2 

examined the locomotor stimulant response to cocaine (0.5 mg/kg Lv.). Here, saline 

locomotor scores did not differ significantly between groups and were as follows: 52 ± 2 

m (sham), 54 ± 2 m (core 6-0HDA), and 55 ± 2 m (medial she1l6-0HDA). A significant 

locomotor stimulant effect was observed in sham-Iesioned and medial shell-Iesioned 

animaIs, but not in the core-Iesioned subjects (Fig. SA). Multiple linear regression 

analysis revealed a positive trend between the locomotor response and DAT binding in 

the core (p = 0.086, Fig. SB) but not medial shell (Fig. SC). 

The locomotor stimulant response to intraperitoneal cocaine (10 mg/kg) was also 

attenuated after core 6-0HDA lesions (Experiment 3, Fig. 6A). No significant group 

differences were seen for saline locomotor activity. Saline scores were 85 ± 6 (sham), 88 

± 5 (core 6-0HDA), and 87 ± 5 (medial she1l6-0HDA). Multiple linear regression 

analysis (Fig. 6B and 6C) revealed a positive association between the locomotor response 

and core DA innervation only (p < 0.05). 
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NAcc medial shelliesions inhibited CPP for i.v. cocaine. In Experiment 2, only the 

combined sham group and the core-Iesioned group exhibited significant CPP (Fig. 5D). 

Relationships between the CPP magnitude and core vs. medial shen DAT binding are 

shown in Figs. 5E and 5F respectively. The CPP magnitude produced by i.v. cocaine was 

positively related to medial shen DAT binding (p < 0.005, Fig. 5F) with a negative trend 

in the accumbens core (p = 0.062, Fig. 5E). 

Conditioned place preference for i.p. cocaine was unaffected by lesions of core or 

medial shell. In Experiment 3, a significant CPP to Lp. cocaine occurred in the sham

lesioned group, with a similar trend in the two lesion groups (Fig. 6D). No significant 

relationship was observed between the CPP magnitude and core or medial shen DA T 

binding. (Figs. 6E and 6F). 

CPP magnitude for i.v. cocaine was related to OT residual DAT binding.1t was 

recently reported that amOT more robustly supports intracranial self-infusion of cocaine 

than does medial shen (see Discussion). Therefore, we first re-examined the data from 

Experiment 2 (i.v. cocaine), to determine if amOT DAT binding may have contributed 

significantly to the CPP magnitude. However, amOT binding was reduced only slightly 

in this experiment (by 28 % in the core- and Il % in the shen-Iesioned group). We 

therefore addressed the question of amOT involvement by directly comparing the effects 

of 6-0HDA lesions of the medial shen vs. amOT on i.v. cocaine CPP (Experiment 4). 

184 



Infusions of 6-0HDA into either amOT or medial shell depleted DAT binding locally, 

and also tended to produce a smaller and variable depletion in the other structure (Fig. 7). 

Initial analysis revealed a high degree of co-linearity existing in DAT binding levels 

between different OT subregions. Accordingly, these values were averaged, and 

subsequent analyses were carried out using OT rather than amOT values. 

Only sham-Iesioned animaIs exhibited significant CPP (Fig. 8A). Multiple linear 

regression analysis was perforrned with CPP magnitude as the dependent variable, using 

residual DAT binding in core, medial shell, ventral shell, ventral caudate putamen and 

OT as simultaneous predictors. Only OT was retained as a significant predictor (p < 0.01, 

Fig. 8C). Linear regression analysis of CPP magnitude with medial shell as the sole 

predictor revealed a positive association that bordered on significance (p = 0.056). 

Linear regression analysis of the locomotor stimulant effect revealed that DAT binding in 

neither medial shell nor OT predicted the degree of locomotor stimulation (p > 0.5 for 

both, data not shown). 

Discussion 

Novel findings. To our knowledge, the present study is the first to examine the role of 

ventral striatal subregions in CPP induced by systemically administered cocaine. 

Cocaine-induced locomotion was related to core DA innervation at several doses of both 

i.v. and i.p. cocaine. CPP results, in contrast, were more complex. Intravenous cocaine 

CPP appeared dependent on DA innervation in both OT and medial shell, whereas i.p. 

cocaine CPP was unaffected by medial shelliesions. 
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Methodological considerations. The present series of experiments revealed associations 

between residual DA innervation in various ventral striatal structures and cocaine

induced locomotion or CPP. It is doubtful that these relationships represent segregation 

between conditioned and unconditioned drug effects rather than between reward and 

locomotion, as core but not medial shell 6-0HDA lesions abolished amphetamine

induced conditioned locomotion (Sellings and Clarke, 2006). 

In the present study, quantitative autoradiographie analysis was performed by taking a 

large number of samples within each structure (e.g. 24 each for medial shell and core). 

Within each targeted structure, the extent ofDAT depletion appeared rather uniform (see 

Fig. 3 and Sellings and Clarke, 2003), and visual inspection revealed no evidence for 

smaller sites of preferential depletion. Nevertheless, we cannot rule out the possibility 

that our behavioral effects resulted from damage to functionally important "hot spots" 

within the targeted structures. 

It is unlikely that non-specifie damage caused these lesion effects, since only minimal 

changes were observed in SERT binding levels, and Nissl staining revealed only slight 

non-specifie damage in a subset of medial shell and medial OT lesioned animaIs (Fig. 1). 

However, 6-0HDA infusion almost certainly depleted noradrenaline as well as DA. 

Preservation of noradrenergic terminaIs by using systemic desipramine proved 

impossible, since in pilot studies the routinely used dose of 25 mg/kg (Kelly and Iversen, 

1976) caused significant mortality (>25%). Nevertheless, for several reasons, it is 

unlikely that the observed lesion effects were due to loss of noradrenergic terminaIs. 
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First, neither noradrenergic agonists nor antagonists when injected into ventral striatum 

affected locomotion (Pijnenburg et al., 1975; Pijnenburg et al., 1976). Second, 

noradrenergic denervation of ventral striatum does not alter locomotor stimulant 

responses to cocaine and amphetamine (Roberts et al., 1975; Kelly and Iversen, 1976). 

Third, noradrenergic afferents to NAcc largely avoid the core (Delfs et al., 1998), where 

les ion effects on locomotor stimulation occurred. Fourth, stimulation of noradrenergic 

transmission did not produce CPP (Martin-Iverson et al, 1985; Subhan et al, 2000). Fifth, 

neither a nor P adrenergic receptor antagonists affected the rewarding effects of i.v. 

cocaine as reflected by self-administration behavior (Johan son and Fischman 1989). 

Sixth, the disruptive effects of 6-0HDA lesions on cocaine self-administration appear 

unrelated to noradrenaline depletion (Roberts et al, 1977; Roberts et al, 1980). Lastly, 

self-administration of cocaine directly into the amOT was blocked by co-infusion of a Dl 

or D2 DA receptor antagonist (lkemoto, 2003). On this basis, it seems reasonable to 

conc1ude that our 6-0HDA lesions produced their behavioral effects via local depletion 

of DA. 

The accumbens core and locomotor activation. There is currently no consensus on the 

role of core vs. shell in psychostimulant-induced locomotion (Boye et al., 2001; Ikemoto, 

2002 and references therein). In particular, studies employing intra-accumbens 

microinjection of direct or indirect DAergic agonists have implicated core, shell, or both 

structures, depending on the drug. For example, amphetamine acted with similar potency 

at either injection site, whereas cocaine stimulated locomotor activity most strongly after 

injection into medial OT and medial shell (Ikemoto, 2002). Importantly,locomotor 
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responses from accumbens core injections of cocaine may have been weakened by local 

anesthesia (Ikemoto and Witkin, 2003). 

The present experiments show that the locomotor stimulant effects of systemically 

administered cocaine are associated with DAergic neurotransmission in core rather than 

medial shell. This result generalized to several doses of the drug and to both i.p. and i.v. 

routes of administration. These findings accord with observations using systemic 

amphetamine (Boye et al., 2001; Sellings and Clarke, 2003 and references therein) and 

methylphenidate (Sellings et al., submitted). Taken together, they suggest a general 

mechanism by which systemically administered psychostimulants produce activating 

effects. Whether core DA transmission directly mediates the locomotor stimulant action 

of these drugs, or plays an indirect enabling role, remains a question for the future. 

Differences between i.p. and i.v. cocaine CPP. In the present study, i.v. cocaine 

produced CPP that appears dependent on DA transmission in both medial shell and OT. 

In contrast, i.p. cocaine CPP did not appear dependent on accumbens DA transmission. 

This finding is consistent with reports suggesting that i.v. cocaine produces DA

dependent CPP, and i.p. cocaine DA-independent CPP (Morency and Beninger 1986; 

Spyraki et al., 1987). Although neuroadaptation may account for the lack of lesion effect 

on i.p. cocaine CPP, this appears unlikely considering that similar medial shelliesions 

reduced CPP both for i.v. cocaine and for amphetamine (Sellings and Clarke 2003). Our 

results do not rule out other forms of accumbens involvement; indeed glutamatergic and 

serotoneq~ic manipulations within this structure affect i.p. cocaine CPP (Kaddis et al, 

1995; Harris et al, 2001). 
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Since cocaine produces CPP more potently after i.v. than i.p. administration (Spyraki et 

al., 1987; O'Dell et al., 1996), care was taken in the present study to select submaximal 

i.p. and i.v. doses of cocaine approximately matched in terms ofCPP magnitude. Hence, 

it is likely that the differential sensitivity to DA depletion reflected route of 

administration and not dose. 

The neurochemical basis of this differential susceptibility cannot readily be related to 

changes in extracellular DA. The i.v. dose used (0.5 mg/kg) has been reported to increase 

dialysate DA levels in the medial shell but not the core (Pontieri et al., 1995), whereas the 

i.p. dose (10 mg/kg) robustly increased DA levels in both subregions (Cadoni et al., 

2000). Another reported difference between i.v. and i.p. cocaine administration is that 

only the former caused significant increases in glucose metabolism in NAcc and OT 

(Porrino, 1993); in the latter study, the use of a wide range of doses suggests strongly that 

route of administration was the critical factor. The basis for route-dependent effects on 

cerebral glucose utilization, and the possible relation to cocaine reward, remain to be 

elucidated. 

Cocaine CPP: dependence on both medial shell and OT. Although there is a rich 

literature linking the NAcc to drug reward, possible OT involvement has been largely 

unexamined (Clarke et al., 1990; Kometsky et al., 1991; Ikemoto, 2003; Ikemoto, 2005; 
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Ikemoto and Donahue, 2005). The present results suggest both medial shen and OT play 

important roles in mediating i.v. cocaine reward. 

Self-administration of cocaine directly into the ventral striatum appears strongly site

dependent; responding was vigorous for infusions into amOT, marginal in medial shell, 

and negligible within accumbens core (Rodd-Henricks et al., 2002; Ikemoto, 2003). In 

addition, only cocaine infusion at amOT sites produced CPP at the doses tested (Ikemoto, 

2003). However, the behavioral effects of focal cocaine infusion into the NAcc (shen or 

core) may be masked by local anesthesia (Ikemoto and Witkin, 2003). Nevertheless, DA 

antagonist microinjection experiments suggest that it is medial shen rather than core that 

mediates the reinforcing effects of self-administered i.v. cocaine (Bari and Pierce, 2005). 

In Experiment 2, lesions of the medial shell reduced i.v. cocaine CPP independently of 

accumbens core; in this experiment, DA denervation in the OT was minimal. When 6-

OHDA infusions ofmedial shell and OT were directly compared (Experiment 4), only 

OT DA innervation significantly predicted i.v. cocaine CPP. These results may indicate 

that the OT is a stronger mediator of cocaine reward, as concluded from findings based 

on intracranial cocaine infusion (Ikemoto, 2003). It is unlikely that these lesion effects 

represent disruptions of memory or learning, as medial shelliesions did not affect CPP 

induced by morphine (Sellings and Clarke, 2003) or i.p. cocaine (present study), and 

extensive 6-0HDA lesions of OT did not disrupt amphetamine CPP (Clarke et al., 1990). 

190 



Several factors could determine the relative contributions of OT vs. medial shell to 

psychostimulant CPP. First, the nature ofthe CPP paradigm used may be a factor. Our 

CPP procedure is based on tactile eues; other types of stimuli may engage other ventral 

striatal subregions. Another factor of potential importance is the drug in question. Our 

results suggest that i.v. cocaine CPP engages OT mechanisms. This does not appear to be 

the case for i.p. amphetamine CPP (Clarke et al., 1990). 

Conclusions. The increase in locomotor activity observed after psychostimulant 

administration appears related to increased DA transmission in NAcc core. In contrast, 

CPP appears more complex, likely depending on drug and route of administration. The 

present study suggests that DA transmission in both medial shell and OT is important for 

i.v. cocaine CPP. Our findings build on recent evidence suggesting that distinct ventral 

striatal subregions participate in different aspects of drug reward (Sellings and Clarke, 

2003; Ikemoto, 2003; Ikemoto and Donahue, 2005; Pecina and Berridge, 2005). Whether 

these structures act in concert or independently remains a question for further study (van 

Dongen et al., 2005). 
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Figure 1. Representative photomicrographs ofNissl staining in sham-Iesioned (A) and 

amOT-Iesioned (B, C) animaIs adjacent to the infusion site. In sorne (30%) ofamOT 

lesioned rats, a small region of reduced cell density was observed compared to sham

lesioned rats (black arrow, Panel B). Larger regions of decreased cell density were seen 

in a subset (~ 10%) of lesioned animaIs (black arrow, Panel C). Scale bar 100 !-Lm. 

Abbreviations: ac, anterior commissure; Tu, medial olfactory tuberc1e. 
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Figure 2. (A) Locations of sampled [1251] RTl-55 binding in core, Medial shell, ventral 

shell, olfactory tuberc1e and ventral caudate putamen. Each rat was sampled at four 

anterior-posterior levels. Numbers are distances (in Millimetres) anterior to interaural 

zero. Sarnpling areas were circ1es of 0.3 mm diameter. (B) Sampling regions for olfactory 

tuberc1e subregions (anteromedial (arnOT), anterolateral (aIOT) and posterior (POT» in 

Experiment 4, and in post-hoc analyses of Experiment 2. At levels 11.2, 10.7 and 10.2, 

both arnOT and alOT were sarnpled. At levels 9.7,9.2 and 8.7, only pOT was sampled. 

Figures adapted from Paxinos and Watson (1997). 
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Figure 3. Representative autoradiographie images of [1251] RTl-55 binding to DAT in 

animaIs from medial shell-lesioned, anteromedial olfactory tubercle-lesioned and sham-

operated groups in Experiment 4. Since binding was similar between groups that received 

vehicle in medial shell and medial olfactory tubercle, the latter group has been omitted. 

Numbers designate distance anterior to interaural zero (in millimetres). Radioligand 

binding was obtained at a nonsaturating concentration of radio ligand. Arrows refer to the 

medial shell. Arrowheads (pointing upward) refer to the anteromedial olfactory tubercle. 
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Figure 4. Effect of 6-0HDA lesions ofNAcc medial shell or core on locomotor 

responses to a range ofLp. and i.v. cocaine doses (Experiment 3). Each rat (n = 5-10 per 

group) was tested with Lv. (0-1.5 mg/kg) and Lp. (0-20 mg/kg) cocaine in a repeated 

measures design. Absolute locomotor activity at all doses of i.p. and Lv. cocaine are 

shown in panels A and B respectively. The stimulant effect of cocaine (i.e. cocaine-saline 

difference score) is illustrated in panels C and D. Locomotor response correlated 

positivelyand significantly with DAT binding in core at all doses except 0.5 mg/kg i.v. 

Shell refers to medial shell. 
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Figure 5. Effeet ofbilateral6-0HDA infusion into either NAee eore or medial shell on 

locomotor response and CPP to i.v. cocaine (Experiment 2). Rats were allowed 7-10 d 

recovery after jugular catheter implantation and stereotaxie surgery prior to conditioning 

with i.v. cocaine (0.5 mg/kg). Locomotor responses (panels A-C) are expressed as the 

difference between the mean distance moved (m) during conditioning sessions with Lv. 

cocaine vs. saline. CPP magnitude (Panels D-F) is expressed as the difference between 

time spent on the drug-paired and saline-paired floor textures on test day (in s, 600 s test). 

DAT labeling in core or medial shell is expressed as a percent of combined sham

lesioned groups. Both sham and shell-Iesioned groups exhibit significant locomotor 

stimulation (Panel A). Locomotor response tended to correlate positively with DAT 

binding in core (Panel B). Both sham and core-Iesioned groups exhibit significant CPP 

(Panel D). CPP magnitude correlated positively and significantly with DAT binding in 

medial shell (Panel F), and tended to correlate negatively with DAT binding in core 

(Panel E). CV, Core vehic1e; CL, core lesioned; SV, medial shell vehic1e; SL, medial 

shelliesion. Shell refers to medial shell. 
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Figure 6. Effect of bilateral 6-0HDA infusion into either NAcc core or medial shell on 

locomotor response and CPP to intraperitoneal (i.p.) cocaine (Experiment 3). Rats were 

conditioned with i.p. cocaine (10 mg/kg). Data are presented as in Figure 5. AlI groups 

exhibit significant locomotor stimulation (Panel A), but that of core-Iesioned animaIs was 

smaller than that of the sham- and shell-Iesioned groups (p < 0.05). Only sham rats 

exhibited significant CPP, but core and shell-Iesioned animaIs aiso tended to exhibit CPP 

(Panel D). Locomotor response correlated positively and significantly with DAT binding 

in core (Panel B). No other behavioral responses correlated with DAT labeling in either 

structure (Panels C, E and F). CV, Core vehicle; CL, core lesioned; SV, medial shell 

vehicle; SL, medial shelliesion. Shell refers to medial shell. 
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Figure 7. Relationship ofDAT labeling in nucleus accumbens medial shell vs. olfactory 

tubercle in Experiment 4 (n=46 rats). [125I]RTI_55 autoradiography for DAT was used to 

assess residual DA innervation (see Materials and Methods), and expressed as a 

percentage of the mean value of the sum ofmedial shell-vehicle and olfactory tubercle-

vehicle groups. Correlational analysis revealed a significant relationship between medial 

shell and olfactory tubercle binding (r=0.39,p < 0.01). OTV, olfactory tubercle vehicle; 

OTL, olfactory tubercle lesioned; SV, medial shell vehicle; SL, medial shelliesion. 
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spent on the drug-paired and saline-paired sides. CPP magnitude eorrelated positively and 

signifieantly with DAT binding in olfaetory tubercle (Panel C), but not with DAT binding 
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Table 1. Experimental parameters for Experiments 1-4. Sham groups represent a 

combination of rats infused with vehicle in core and shell (Experiments 1-3) or shell and 

amOT (Experiment 4). 

Experiment Lesion sitea Dose Route Behavioro ne 

(mg/kg) 

1 Core or shell 0.5-1.5 i.v., 1.V" 1.p. LMA 11 
5-20 i.p. 

2 Core or shen 0.5 i.v. CPP,LMA 10-14 

3 Core or shell 10 i.p. CPP,LMA 12-14 

4 amOTor 0.5 1.V. CPP 15-16 
shen 

a Shell refers to medial shen. 

b CPP, conditioned place preference; LMA, locomotor acti vit y . 

C n is number of rats per surgery group (core, medial shell or anteromedial olfactory 

tubercle, and the combined sham-operated groups). 
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Table 2. Residual DAT and SERT binding in rats lesioned in core or medial shell in 

ventral striatal subregions (Experiments 1,2 and 3). mSh, medial shen; vSh, ventral shell; 

DT, olfactory tubercle; vCP, ventral caudate putamen. Values given are mean ± SEM as a 

percent of combined sham group. 

Experiment 1 2 3 

6-DHDA Sham Core mSh Sham Core mSh Sham Core mSh 
site 
DAT 
Core 100±4 40±8 85±5 100±3 25±1 86±5 lOO±7 20±3 95±5 
mSh lOO±l1 6O±9 31±7 lOO±5 47±3 42±3 lOO±8 48±4 36±6 
vSh lOO±5 63±12 76±4 lOO±7 45±3 92±7 lOO±6 35±6 98±8 
DT 100±4 74±11 80±5 100±5 47±5 76±6 lOO±12 46±4 80±4 
vCP 100±4 66±8 92±4 100±5 45±2 102±7 lOO±lO 50±7 107±6 
SERT 
Core 100±9 97±7 91±5 lOO±5 83±4 93±4 lOO±5 108±6 97±3 
mSh lOO±6 lOO±2 93±5 lOO±2 lOO±4 97±5 94±3 lO5±6 95±7 
vSh lOO±5 102±6 lOO±5 lOO±2 90±4 99±4 lOO±6 118±8 108±3 
DT 100±6 110±6 100±5 100±3 100±5 101±5 100±6 116±5 108±4 
vCP 100±9 99±6 98±5 100±4 90±5 107±3 100±3 88±3 93±3 
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Table 3. DAT and SERT binding in media! shell- or anteromedial olfactory tubercle 

(amOT)-lesioned rats in imaged ventral striatal subregions (Experiment 4). Values are 

expressed as mean ± SEM. mSh, medial shell; vSh, ventral shell; amOT, anteromedial 

olfactory tubercle; aIOT, anterolateral olfactory tubercle; pOT, posterior olfactory 

tubercle; vCP, ventral caudate putamen. 

6-0HDA site Sham Medial shell amOT 
DAT 
Core 100±5 87±6 89±5 
mSh 100±4 40±5 66±7 
vSh 100±5 77±7 75±3 
amOT 100+8 57±7 34±8 
alOT 100+9 70±6 55±6 
pOT 100±1O 85±6 51±6 
vCP 100±4 100±5 95±4 
SERT 
Core 100±14 1l0±4 97±9 
mSh 100±1l 100±4 90±8 
vSh 100+15 109+6 97±9 
amOT 100+13 101+5 92+10 
alOT 100+14 109+4 105+12 
pOT 100+13 108+6 95±12 
vCP 100+15 123±7 11O±1O 
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Intervening Section 3 

ln the case of co caine , it appears as if route of administration is a critical determinant of 

the neural substrates of drug reward. More specifically, intravenous cocaïne CPP was 

reduced by 6-0HDA lesions of the medial ventral striatum (either medial shell or medial 

OT), whereas intraperitoneal cocaïne CPP was unaffected by media,! shelliesions. 

ln the next chapter, 1 turned my attention to a third psychomotor stimulant, 

methylphenidate. Despite its wide-spread use, no causallink had been established 

between its rewarding effects and DA. In this study, it was first shown that both 

methylphenidate-stimulated locomotor activity and CPP were dose-dependently reduced 

by systemic administration of the dopanime receptor antagonist cis-flupenthixol. Hence, 

anatomicallocalization of these effects within the ventral striatum was examined. As 

with other drugs, locomotor stimulation appeared dependent on core DA transmission. In 

the case ofCPP, mOT but not medial shelliesions effectively reduced methylphenidate 

CPP. 

206 



CHAPTER 6: Characterization of rewarding and locomotor stimulant 

effects of intravenously-administered methylphenidate in rats 

Laurie H. L. Sellings, Lindsey E. McQuade and Paul B. S. Clarke 

Neuroscience (2006) 141: 1457-1468. 
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Abstract: In general, psycho stimulants are thought to exert rewarding and locomotor 

stimulating effects via increased dopamine transmission in the ventral striatum. 

However, little is known about the mechanisms underlying the effects ofthe stimulant 

drug methylphenidate. The present study examined the putative role of dopaminergic 

transmission in intravenous methylphenidate reward as measured by conditioned place 

preference. Rats were shown to exhibit conditioned place preference for intravenous 

methylphenidate (5 mg/kg, not 2 mg/kg). Administration of the dopamine receptor 

antagonist cis-flupenthixol (0.1-0.8 mg/kg i.p.), either during conditioning or on test day, 

dose-dependently attenuated the magnitude of the conditioned place preference. Finally, 

we examined the effects of bilateral 6-hydroxydopamine lesions of nucleus accumbens 

core, medial shen or anteromedial olfactory tubercle on the rewarding and locomotor 

stimulant effects of methylphenidate. Residual dopamine innervation, as assessed by 

[125I]_RTI_55 binding to the dopamine transporter, revealed a significant association 

between core dopamine innervation and the locomotor stimulant effect of 

methylphenidate. However, neither core nor medial shen dopamine innervation was 

related to conditioned place preference magnitude. Instead, conditioned place preference 

magnitude was associated with dopamine innervation in the anteromedial olfactory 

tubercle. These results establish a role for dopaminergic transmission in both intravenous 

methylphenidate conditioned place preference and locomotor stimulation. As wen, they 

suggest that different ventral striatal subregions mediate the rewarding (anteromedial 

olfactory tubercle) and locomotor stimulant (accumbens core) effects ofmethylphenidate. 

Keywords: dopamine, nucleus accumbens core, nucleus accumbens medial shen, 
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olfactory tubercle, conditioned place preference, cis-flupenthixol 

Abbreviations: 6-0HDA, 6-hydroxydopamine; amOT, anteromedial olfactory tubercle; 

aIOT, anterolateral olfactory tubercle; CPP, conditioned place preference; DA, 

dopamine, DAergic, dopaminergic; DAT, dopamine transporter; ; i.p., intraperitoneal; 

i.v., intravenous; mSh, medial shell; NAcc, nucleus accumbens; OT, olfactory tubercle; 

pOT, posterior olfactory tubercle; s.c., subcutaneous; SERT, serotonin transporter; vCP, 

ventral caudate putamen; vSh, ventral shell 

Considerable evidence indicates that the rewarding and behavioural activating effects of 

cocaine and amphetamine occur via increased dopaminergic (DAergic) transmission in 

the ventral striatum (Koob et al., 1998; Everitt and Wolf, 2002; Wise, 2004). Much less 

is known in this regard about other psycho stimulant drugs such as methylphenidate. Like 

cocaine, methylphenidate blocks the dopamine transporter (DA T) and increases 

interstitial dopamine (DA) levels in the nucleus accumbens (NAcc) in rats (Gerasimov et 

al., 2000). In addition, PET studies employing [11C]raclopride binding have suggested 

that intravenous methylphenidate can also increase DA transmission in the human 

striatum (Volkow et al., 2004). Based on this evidence and by analogy with other 

psychostimulants, Volkow et al. (2004) have proposed that the euphoric and/or 

reinforcing effects of methylphenidate are dependent on striatal DA transmission. 

However, to our knowledge, no causallink between increased DA transmission and 

methylphenidate reward has been established. 

209 



Rewarding effects of methylphenidate occur not only in humans but have also been 

shown in animaIs; the drug is self-administered intravenously in several mammalian 

species including non-human primates as a replacement for other stimulant drugs 

(Bergman et al., 1989; Kollins et al., 2001), and it also induces conditioned place 

preference (CPP) in rats (Martin-Iverson et al., 1985; Mithani et al., 1986; Meririnne et 

al., 2001). The pharmacology of methylphenidate self-administration remains to be 

explored, but evidence to date suggests that methylphenidate CPP can occur 

independently ofbrain DA. In particular, CPP acquisition is inhibited only at very high 

doses of DA antagonists (Martin-Iverson et al., 1985; Mithani et al., 1986; Meririnne et 

al.,2001). 

In previously published CPP studies, methylphenidate was given by intraperitoneal 

injection. Studies with cocaine have shown that route of administration can critically 

determine abuse liability and can also determine whether CPP occurs via a DAergic or 

non-DAergic mechanism (Spyraki et al., 1982; Spyraki et al., 1987; Nomikos and 

Spyraki, 1988). Abuse liability of methylphenidate in humans is presumably also route 

dependent. Although oral methylphenidate exhibits minimal abuse liability (Swanson 

and Volkow, 2003), intranasal abuse is common (Barrett et al., 2005) and there are 

several reports ofintravenous use (Parran and Jasinski, 1991; Barrett et al., 2005). In 

light ofthis, the rewarding effects ofintravenous methylphenidate warrant separate 

examination. 
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Recent rodent studies using amphetamine and cocaine suggest that rewarding and 

locomotor stimulant drug effects can be anatomically dissociated within the ventral 

striatum. To date, reward processes have been most clearly linked to the medial portion 

of the NAcc shell (Di Chiara et al., 2004). For example, direct and indirect dopaminergic 

agonists are self-administered by rats directly into this subregion but not into NAcc core 

(Ikemoto and Wise, 2004). However, recent studies have implicated the (antero)medial 

olfactory tubercle as potentially more important than the medial shell in both cocaine and 

amphetamine reward (Ikemoto, 2003; Ikemoto et al., 2005; Sellings et al., 2006). In 

contrast, locomotor stimulation has been reported in rats after focal infusion into core 

and/or shell sites, depending not only on the study (see Boye et al., 2001; Sellings and 

Clarke, 2003) but also on the drug in question (Ikemoto, 2002). Using an altemate 

approach, we recently combined systemic amphetamine challenge with prior 6-0HDA 

lesions of NAcc core or medial shell (Sellings and Clarke, 2003). In this study, DAergic 

depletion in core and medial shell reduced amphetamine-induced locomotor stimulation 

and CPP, respectively. 

The aims of the present study were threefold. First, we set out to establish whether rats 

would form a CPP for intravenous methylphenidate. Second, we tested if systemic 

dopamine receptor blockade would affect either the acquisition or the expression of 

methylphenidate CPP. The final aim was to determine if the rewarding and locomotor 

stimulant effects of intravenous methylphenidate could be dissociated by anatomically

selective 6-0HDA lesions of ventral striatal subregions, including NAcc core, medial 
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shell, and medial olfactory tubercle as previously seen with cocaine (Sellings et al., 

2006). 

Experimental procedures 

Subjects 

Subjects were 111 male Long-Evans rats (Charles River, St. Constant, Quebec) weighing 

270-340 g at time of surgery. Rats were housed individually (Experiments 1 and 4) or in 

groups of three (Experiments 2, 3 and 5) in clear Plexiglas cages in a temperature- and 

humidity-controlled animal colony, lit from 7 A.M. to 7 P.M. Food and water were 

available ad libitum except during behavioural testing. All experiments were approved by 

the McGill Faculty of Medicine Animal Care Committee in accordance with Canadian 

Council on Animal Care guidelines. 

Intravenous catheterization 

Rats were implanted with chronic indwelling silastic catheters (0.51 mm I.D. and 0.94 

mm O.D., Fisher Scientific, Montreal, Quebec) in the leftjugular vein under ketamine 

(80 mg/kg) and xylazine (16 mg/kg) anaesthesia. Tubing was secured to the vein by 

surgi cal silk sutures, led subcutaneously to the skull surface, and was then fitted onto a 22 

gauge cannula attached to a plastic connector (Mo dei number C313G-5UP, Plastics One, 

Roanoke, VA). The cannula/connector was fixed to the animal's skull with small 

stainless steel screws (Lomir, Notre-Dame-de-L'Ile Perrot, Quebec) and dental cement 

(Stoelting, Wood Dale, IL). To keep catheters patent, 0.1-0.15 ml heparinized 0.9% 

saline was administered at the end ofsurgery, on the first day ofbehavioural testing, and 
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every 2-3 days thereafter. AnimaIs were allowed 7-10 days recovery from surgery before 

starting CPP testing. 

Stereotaxie infusion of 6-0HDA 

In Experiment 4, at the same time as intravenous catheterization surgery, rats were placed 

in a stereotaxic apparatus (Kopf, Tujunga, CA) with the incisor bar set at -3.9 mm. 

Bilateral infusions of either 6-0HDA (lesioned groups) or vehic1e (sham-Iesioned 

groups) were made into either NAcc core or medial shen, or anteromedial olfactory 

tuberc1e (amOT). Infusions into all three lesion sites were made via a 30 gauge stainless 

steel cannula attached by polyethylene tubing to a 10 J..tl Hamilton syringe. For core and 

medial shell' syringes were driven by a model 5000 Micro Injection Unit (Kopf). For 

amOT, syringes were driven by a syringe pump. For greater accuracy, coordinates for all 

three target subregions were derived from the mean of bregma and intraural coordinate 

. systems. Thus, anterior-posterior coordinates were + 10.2 mm from interaural zero and 

+ 1.2 mm from bregma for both core and shell; in amOT, they were + 10.7 mm and + 1.7 

mm from intenlural zero and bregma respectively. Lateral coordinates were ±0.6 mm 

(shell), ±2.4 mm (core) or ±0.8 mm (amOT). Ventral coordinates for shen (three 

injections) were +2.0, +2.4, and +2.8 mm from interaural zero and -8.0, -7.6, and -7.2 

mm from bregma. Ventral coordinates for core were +2.7 mm from interaural zero and-

7.3 mm from bregma; for amOT, they were +1.1 mm from interaural zero and -8.9 mm 

from bregma. An coordinates are based on the atlas of (Paxinos and Watson, 1997).6-

OHDA or vehic1e was infused on each side in a volume of 0.2 J..tl (amOT), 0.1 J..tl (core), 

or as three infusions of 0.05 J..tl (medial shen). The rate of infusion was 0.1 J..tllmin for 
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core and medial shell, and 0.1 ~.tl/1O min for amOT. The concentration of 6-0HDA used 

was 80 ~g/~l (core), 48 ~g/~l (medial shell) or 40 ~g/~l (amOT). The cannula remained 

at the final infusion site for 5 min. AnimaIs were allowed 7-10 d recovery prior to the 

start of conditioning. 

Conditioned place preference and locomotor activity testing 

The apparatus and general procedure were as previously described (Sellings and Clarke, 

2003). Briefly, the procedure consisted ofthree phases: pre-exposure (one day), 

conditioning (six days) and test (one day). All phases were carried out in a one

compartment box (58 cm x 29 cm x 53 cm) with walls made of white plastic-coated 

particle board. In the one-day pre-exposure phase, rats received intravenous saline 

infusions immediate prior to placement in the CPP cage. Beta-Chip sawdust bedding 

covered the floor of the cage. The conditioning phase lasted six consecutive days, with 

one session of 15 min occurring each day. In all, there were three sessions with drug and 

three sessions with saline administration, occurring on altemating days. Two square 

tactile tiles of either bar or mesh texture were placed in the bottom of the cage, and paired 

with drug or saline administration. During this phase, the video tracking software 

(EthoVision v 3.0, Noldus Information Technology, Leesburg, VA) measured locomotor 

activity, expressed as horizontal distance moved (in metres). During the test phase, one 

bar and one mesh tile were placed on the bottom of the cage. The time spent on bar or 

mesh texture was measured by Etho Vision software. AH three phases were carried out 

under darkroom lighting using a Kodak GBX-2 safelight filter (Vistek, Toronto, Ontario, 

Canada), to minimize visual cues. AnimaIs do not spontaneously prefer either texture 

(unpublished observations), and all experiments were as fully counterbalanced as 
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possible with respect to drug-texture pairing and order of drug pairing (drug-saline or 

saline-drug) within each surgery group. For aIl experiments, pre-exposure sessions lasted 

20 minutes, conditioning sessions for 15 minutes, and the test session 10 minutes. To 

facilitate intravenous infusion immediately after placement in the test cage, a fluid swivel 

was fixed above the centre of each cage. Each swivel was connected to on one end to a 1 

ml syringe, and on the other end to a brass connector (Produits MS M, Laval, Quebec) and 

protective spring (Heiplex, Montreal) via Tygon tubing of 0.51 mm diameter. The 

cannula fixed to the skull of the rat was attached to the Tygon tubing, and the brass 

connector fastened to the plastic connector, to secure the tubing to the cannula. Drug was 

infused over 25-30 s at a volume of 1 ml/kg. 

Experimental design 

Experiment 1. Rats (n= 17) were conditioned at one of two doses of intravenous 

methylphenidate (2 mg/kg, n=8 and 5 mg/kg, n=9) and subsequently tested for CPP. 

Experiment 2. Rats (n=25) were administered one of four doses of cis-flupenthixol (0 

mg/kg (n=5), 0.1 mg/kg (n=7), 0.3 mg/kg (n=8) or 0.8 mg/kg (n=5)) s.c., 30 minutes 

prior to each of the six conditioning sessions (drug: 5 mg/kg methylphenidate, i.v.), and 

subsequently tested for CPP. 

Experiment 3. Rats (n=28) were conditioned with 5 mg/kg i.v. methylphenidate. On 

test day, rats received one of four doses of cis-flupenthixol (0 mg/kg (n=6), 0.1 mg/kg 

(n=7), 0.3 mg/kg (n=8) or 0.8 mg/kg (n=7)) s.c., 30 minutes prior to placement in the 

cage. 
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Experiment 4. Rats (n=25) sustaining vehicle (sham-Iesioned; n=6) or 6-0HDA 

infusion into core (core-Iesioned; n=9) or medial shell (shell-Iesioned; n=lO) were 

subsequently conditioned with S mg/kg intravenous methylphenidate after recovering 

from surgery as described above. 

Experiment 5. Rats (n=17) sustaining anteromedial OT vehicle (sham; n=6) or 6-0HDA 

(lesion; n=l1) infusions were subsequently conditioned with S mg/kg intravenous 

methylphenidate after recovering from surgery. 

Tissue Preparation 

Tissue was prepared for autoradiography and Nissl-staining (cresyl violet) as previously 

described (Sellings and Clarke, 2003). Briefly, rats were sacrificed 3 to S"hours following 

CPP testing, by decapitation under sodium pentobarbital (20 mg/kg, i.v.) anaesthesia. 

Rats not anesthetized within 10 s of injection were excluded from statistical analysis. 

Brains were removed, frozen in 2-methylbutane at -SO°C for 30 sec, and stored at -40°C. 

Coronal sections (20 J..lm) were taken on a cryostat at four rostrocaudallevels (11.2, 10.7, 

10.2 and 9.7 mm anterior to interaural zero) through the ventral striatum. At each level, 

four adjacent sections were collected for autoradiography and one for Nissl staining with 

cresyl violet. Sections were thaw mounted onto gelatin-subbed slides, air dried at room 

temperature for 20-30 min, and stored with desÎCcant at -40°C. 

Quantitative [1251]_ RTl -55 autoradiography 

The extent of the 6-0HDA lesion was quantified by autoradiographic labelling ofDAT 

(Sellings and Clarke, 2003), using a nonsaturating concentration of e25I]RTI-SS (2200 
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Ci/mmol; NEN-Mandel, Guelph, Ontario). This radioligand allows visualization of either 

DAT or 5-HT transporter (SERT) binding. To visualize DAT binding, SERT was 

occ1uded using the serotonin selective reuptake inhibitor citalopram HBr (50 nM). 

Analogously, to visualize SERT binding, DAT was occ1uded using the DAT reuptake 

inhibitor GBR 12935·2HCI (1 /lM). Sections were thawed at room temperature for 10 

min and then placed in a staining dish containing an aqueous buffer solution of 120 mM 

NaCl, 0.1 M sucrose, 10 mM sodium phosphate buffer, and 10 pM [125I]RTI_55, with the 

pH adjusted to 7.4. Nonspecific binding was determined by addition of 10 /lM GBR 

12909 and 50 nM citalopram HBr in the DAT and SERT autoradiographic assays, 

respectively. Slides were incubated at room temperature for 2 hr and then washed three 

times in cold buffer solution (once for 1 min, twice for 20 min) and for 1-2 sec in distilled 

and deionised water. They were then blow dried and placed in X-ray film cassettes. 

Kodak BioMax MS film (Amersham Biosciences, Baie d'Urfé, Québec) was exposed to 

slides for 48 hr (DAT) or 120 hr (SERT) with [1251] autoradiographie standards 

(Amersham Bioscienees). After development of film, DAT and SERT binding was 

quantified using an MCID M4 imaging system (Imaging Research, St. Catherines, 

Ontario). The mean DA T binding was first ea1culated at eaeh anteroposterior level and 

these mean values were then averaged aeross levels. 

Histological examination 

Tissue was stained with cresyl violet to assess nonspeeifie damage, as previously 

described (Sellings and Clarke, 2003). 

Drugs 
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Drug sources were as foIlows: methylphenidate S04 (gift of National Institute on Drug 

Abuse, Bethesda, MD); cis-flupenthixol (Sigma-Aldrich, Oakville, Ontario); citalopram 

HBr (gift from H. Lundbeck AIS); ketamine HCI (Vetalar, Vetrepharm, London, 

Ontario); xylazine HCI (Anased, Novopharm, Toronto, Ontario); GBR 12909 (NIMH 

Chemical Synthesis and Drug Supply Program), and GBR 12935-2HCI (Sigma-Aldrich, 

Oakville, Ontario). Unless otherwise stated, aH other chemicals were obtained from 

Fisher Scientific (Montreal, Quebec). Both methylphenidate S04and cis-flupenthixol 

were dissolved in sterile 0.9% saline and injected at 1 ml/kg. Methylphenidate was 

administered intravenously immediately after placement in CPP boxes. Cis-flupenthixol 

was administered i.p. 30 minutes prior to all conditioning sessions (Experiment 2) or the 

CPP test (Experiment 3). 6-0HDA HBr was dissolved in sterile 0.9% saline containing 

0.3 mg/ml sodium metabisulfite (Sigma-Aldrich) as an antioxidant and protected from 

light. Vehicle solutions, as weIl as 6-0HDA to be infused into medial sheIl, were 

neutralized to pH 7.3 ± 0.1 with NaOH (to reduce non-specific damage; see Results). 

Doses of aIl drugs except 6-0HDA HBr are expressed as the salt. 6-0HDA HBr doses 

are expressed as the free base. 

Data analysis 

A commercial software pro gram (Systat vlO.2, SPSS Inc., Chicago, IL) was used for aH 

data analyses. CPP magnitude was calculated as the difference between times spent on 

the drug-paired and vehicle-paired sides during the 10-minute test session. Locomotor 

responses to methylphenidate were calculated as the difference of locomotor counts 

between drug and saline conditioning sessions. Saline scores were calculated as the mean 
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activity over an three conditioning sessions with saline. For Experiment 2, group 

differences for both CPP magnitude and locomotor stimulation were analysed by 

ANOVA followed by Dunnett's test. For Experiment 3, since data were not normally 

distributed, Kruskal-Wallis ANOV A followed by multiple Mann-Whitney U tests with 

Bonferroni correction were used to compare CPP magnitude after cis-flupenthixol 

treatment to the control (dose = 0) group. In addition, the existence of a significant CPP 

magnitude and locomotor stimulant effect was determined by the Wilcoxon test between 

times spent on the drug-paired vs. saline-paired texture, with Bonferroni correction for 

multiple comparisons. For Experiment 4, group differences were analysed by ANOV A. 

To determine whether rats experienced locomotor sensitization, three factors were used: 

LESION (i.e. 6-0HDA vs. vehicle infusion [sham]), AREA (i.e. core vs. medial shell) 

and SESSION (i.e. difference scores [methylphenidate-saline] over successive pairs of 

conditioning sessions). In Experiment 5, group differences were examined by Student's 

t-test. For both Experiments 4 and 5, the relationship between behavioural measures vs. 

[125I]_RTI_55 labelling was analyzed by multiple linear regression. Ap value ofless than 

0.05 (two-tailed) was considered significant. Group data are expressed as mean ± SEM 

throughout. Outliers, as defined by the statistical pro gram, were removed prior to 

statistical analysis. Additionally, in Experiment 4, CPP data from four rats were missing 

due to an equipment malfunction during testing. 

Results 

Experiment 1: Rats express a conditioned place preference for intravenous 

methylphenidate 
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The occurrence of intravenous methylphenidate CPP was initially established in 

Experiment 1. Here, rats were conditioned with either 2 mg/kg methylphenidate (n=8) or 

5 mg/kg methy.lphenidate (n=9). CPP magnitude was calculated as the difference 

between times spent on the drug-paired and vehic1e-paired sides during the lü-minute test 

session. Rats formed a significant preference for the floor texture paired with the higher 

dose only (p<0.005, Figure lA). Rats conditioned with 2 mg/kg spent 274 ± 18 s on the 

saline-paired texture and 326 ± 18 s on the methylphenidate-paired texture. For rats 

conditioned with 5 mg/kg, 195 ± 18 s were spent on the saline paired texture, and 405 ± 

18 s on the methylphenidate-paired texture. Additionally, rats formed CPP regardless of 

which texture was the conditioned stimulus; CPP magnitude did not differ significantly 

between rats conditioned with bar vs. those conditioned with mesh texture (calculated as 

the difference between times spent on the drug-paired and vehic1e-paired textures: p>0.5, 

Figure lB). Locomotor activity measured during the conditioning phase was 

significantly stimulated by both doses of methylphenidate (p<0.005 for both, Figure 1 C). 

Experiment 2: The acquisition of a conditioned place preference for intravenous 

methylphenidate is dose-dependently attenuated by cis-flupenthixol given during 

conditioning 

The effect of systemic dopamine receptor blockade on the acquisition of intravenous 

methylphenidate CPP was investigated in Experiment 2. Here, rats received 0, 0.1, 0.3 or 

0.8 mg/kg cis-flupenthixol i.p. 30 minutes prior to each conditioning session. Rats were 

conditioned with 5 mg/kg methylphenidate. Only rats receiving vehic1e or 0.1 mg/kg cis

flupenthixol exhibited significant conditioned place preference (p<O.Ol for both; one-

220 



sample t-test with Bonferroni correction, Figure 2A). Only the 0.3 mg/kg group differed 

significantly from control (Dunnett's test p<0.05; Figure 2A), with a similar trend in the 

0.8 mg/kg group (p=0.087; Figure 2A). Locomotor activity after saline administration 

was significantly inhibited by the 0.8 mglkg dose (Dunnett's test p<0.005, Figure 2B). In 

view of this, the locomotor stimulant effect of methylphenidate was not examined by a 

difference score (i.e. drug-saline). Activity in methylphenidate sessions was also reduced 

by the 0.8 mglkg dose (Dunnett's test: p<0.05, Figure 2B). 

Experiment 3: Conditioned place preference expression for intravenous 

methylphenidate is dose-dependently attenuated by cis-flupenthixol administration 

on test day 

The effect of systemic dopamine receptor blockade on the expression of intravenous 

methylphenidate CPP was investigated in Experiment 3. Here, rats were conditioned 

with 5 mg/kg methylphenidate and subsequently received 0,0.1,0.3 or 0.8 mg/kg cis

flupenthixol i.p. 30 minutes prior to CPP testing. Only rats receiving vehicle or 0.1 

mg/kg cis-flupenthixol exhibited significant conditioned place preference (p<0.05 for 

both; Wilcoxon test with Bonferroni correction; Figure 2C). Only the 0.3 mg/kg group 

differed significantly from control (Mann-Whitney U with Bonferroni correction p<0.05; 

Figure 2D). At the highest antagonist dose (0.8 mg/kg), CPP magnitude was highly 

variable and hard to interpret, since the animaIs were not only less active (p<0.05; Mann

Whitney with Bonferroni correction; Figure 2D), but also tended to "camp" in a small 

area of the test box; indeed, several rats spent the entire ten-minute test session on one 

side of the test box. 
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Neurochemical and anatomical selectivity after 6-0HDA les ion (Experiments 4 and 

5) 

To assess nonspecific tissue damage, sections were Nissl-stained with cresyl violet. As 

previously reported (Sellings et al., 2006), only minimal cellioss was evident at the site 

of infusion for aU sham-Iesioned groups and for the group infused with 6-0HDA in the 

core subregion. Tissue from rats infused with 6-0HDA in medial shell or mOT exhibited 

a region of decreased cell density compared to control. This region of nonspecific 

damage did not extend more than 0.3 mm from the site of infusion. Sampling locations 

for DAT and SERT binding density, RTl-55 autoradiographs ofDAT and SERT binding 

are shown in Figure 3. For brevity, only one hemisphere is shown; lesions were bilateral 

and imaging was performed on both hemispheres. Residual DAT and SERT binding as a 

percent of combined sham groups are given in Tables 1 and 2. Radioligand binding to 

SERT in tissue from lesioned animaIs was minimally changed in 6-0HDA vs. sham

lesioned rats. Radioligand binding is not changed after vehicle infusion (i.e. sham lesion) 

vs. intact tissue, as rats receiving unilateral vehicle infusions show no changes in DAT or 

SERT binding on the intact vs. sham lesioned side (unpublished observations). 

Experiment 4: Effects of 6-0HDA les ions of NAcc core vs. medial shell on 

intravenous methylphenidate conditioned place preference and locomotor activity 

Here, rats received intracerebral infusion of 6-0HDA aimed at either accumbens core or 

medial shell 7-10 days prior to the start of conditioning. 
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The locomotor response to intravenous methylphenidate was attenuated by core, but not 

medial shelliesions 

In Experiment 4, rats did not exhibit significant locomotor sensitization (SESSION: 

F(2,42)=3.50, p>O.05; Figure 4A). However, to avoid any potential confounding factor of 

lesion effects on locomotor sensitization, the locomotor difference score 

(methylphenidate-saline) from the first drug and saline conditioning session were used, so 

that locomotor scores were exarnined from only the first drug exposure. Saline test 

locomotor activity did not differ significantly between surgery groups (LESION x 

AREA: F(1,21)=O.03, p>0.50) and were as follows: 58 ± 7 (sham), 54 ± 5 (core 6-

OHDA) and 47 ± 1 (medial shell 6-0HDA). AlI groups exhibited significant locomotor 

stimulation (p<O.05 to p<O.005, one-sample t-test with Bonferroni correction; Figure 4B), 

but this response was smaller in the core-Iesioned group compared to the shams (p<O.05 

for core-Iesioned vs. sharn-Iesioned group, Dunnett's test; Figure 4B). A significant 

positive association was observed between the locomotor response to intravenous 

methylphenidate and core DAT binding (p<O.005, r=O.60, Figure 4C). No relationship 

was apparent for medial shell (Figure 4D). 

cpp magnitude for intravenous methylphenidate related significantly to neither core nor 

medial shell residual DAT binding 

In Experiment 4, both the sham- and medial shell-iesioned groups exhibited a significant 

CPP, with a sirnilar trend in the core-Iesioned group (p=O.06; Figure 4E). Multiple 

regression analysis revealed no significant relationships between CPP magnitude and 

DAT binding in core (Figure 4F) or medial shell (Figure 4G). In view of this negative 
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result, we used stepwise multiple linear regression analysis as a post hoc exploratory tool 

in order to assess a possible contribution of anteromedial olfactory tuberc1e. Three 

predictive variables were inc1uded in the model: DAT binding in core, medial shell, and 

anteromedial olfactory tuberc1e. The iterative mode1 showed that medial shell and 

anteromedial olfactory tuberc1e in combination significantly predicted CPP magnitude, 

but the contribution of neither structure on its own was significant (medial olfactory 

tuberc1e positive association, p=O.055, medial shell negative association, p=0.11). 

Experiment 5 - Effects of 6-0HDA lesions of anteromedial olfactory tubercle on 

intravenous methylphenidate conditioned place preference 

In light of recent results suggesting that the entirety of the medial ventral striatum is 

important in psycho stimulant induced reward (see Discussion), the effects of 6-0HDA 

lesions of the anteromedial olfactory tuberc1e on i.v. methylphenidate CPP were 

examined. In Experiment 5, only sham-Iesioned animaIs exhibited significant CPP 

(p<O.OOl; one-sample t-test with Bonferroni correction; Figure 5A). CPP magnitude 

differed significantly between sham- and anteromedial OT-Iesioned animaIs (p<O.005; 

Student's t-test; Figure 5A). Additionally, linear regression analysis showed a significant 

association between the degree ofDAT depletion in anteromedial OT and CPP 

magnitude (p<O.02; Figure 5B). Neither activity after saline administration nor 

methylphenidate-induced locomotor stimulation were significantly altered by the lesion 

(p>O.05 and p>O.50 respective1y). 

Discussion 
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Novel findings 

Previous reports have shown that methylphenidate can sustain intravenous self

administration in several species, including non-human primates, rats and dogs (Kollins 

et aL, 2001; Volkow and Swanson, 2003), and can also pro duce a CPP when given 

intraperitoneally (Martin-Iverson et aL, 1985; Mithani et aL, 1986; Meririnne et aL, 

2001). Here, we extend these findings to show that methylphenidate can also produce a 

CPP when given intravenously. Both acquisition and expression ofthis CPP were dose

dependently reduced by systemic administration of the D1/D2 receptor antagonist cis

flupenthixoL In contrast, CPP following methylphenidate appeared to be unaffected by 

DA denervation of either core or medial shell prior to conditioning. Instead, DA 

denervation in anteromedial olfactory tubercle significantly reduced Ï.v. methylphenidate 

CPP. The unconditioned locomotor stimulant effect of methylphenidate was dose

dependently reduced by cis-flupenthixol administration and was associated with DA 

innervation of accumbens core. These results suggest that both the locomotor stimulant 

and rewarding effects of intravenously administered methylphenidate are dopamine 

dependent, and that these effects are segregated within the ventral striatum. 

Methodological considerations 

Given the size, shape and proximity ofbrain r~gions lesioned in this study, substantial 

depletion of one structure was virtually impossible without affecting other nearby 

structures to some degree. The multiple linear regression analyses used in the CUITent 

study circumvented this problem in part by considering the degree to which a given 

structure (core or medial shell) was depleted in each individual animal. One drawback of 
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this method is that it does not allow for the possibility that lesions may have caused non

uniform DAT depletions; indeed, this was the case in a subset of lesioned animaIs. 

However, since there were no consistencies as to which portion of any target structure 

was spared (rostrocaudally, medioiaterally or dorsoventrally), the current method of 

sampling appears to faithfully represent DAT depletion in ventral striatal structures. This 

being said, we cannot rule out the possibility that our behavioral effects resulted from 

damage to functionally important "hot spots" within the targeted structures. 

The statistical approach adopted here is essentially correlational; however, when the 

present results are integrated with previous findings, causal inferences can be made with 

sorne confidence. To infer a causallink, it is important to first exclude the possibility that 

the lesion effects on behaviour may have resulted from non-specific damage. This 

appears unlikely for the following reasons. First, 6-0HDA tends to destroy 

catecholaminergic neurons quite selectively (Jons son, 1983) and accordingly, our lesions 

produced little if any change in 5-HT transporter binding levels. Second, Nissl staining 

revealed only slight non-specific damage in 6-0HDA lesioned animaIs compared to 

sham-operated controls; the area of non-specific damage was confined to a small region 

directly adjacent to the infusion site. 

Methylphenidate most likely increased noradrenergic as weIl as dopaminergic 

transmission in our experiments (Kuczenski and Segal, 1997), and our 6-0HDA 

infusions almost certainly destroyed noradrenergic as weIl as DA terminaIs. We 

specifically avoided using desipramine pretreatment to protect noradrenergic afferents 
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(e.g. Kelly and Iversen, 1976) since we have observed mortality rates of>25% resulting 

from the commonly used dose (25 mg/kg i.p.) in this strain ofrat (unpublished 

observations). However, loss ofnoradrenergic afferents is unlikely to account for our 

lesion effects on either behavioural measure, for the reasons given below. 

In terms of psychomotor stimulant-induced locomotion, pharmacological and lesion 

manipulations of ventral striatal noradrenaline appear to have little or no effect in rats 

(Pijnenburg et al., 1975; Roberts et al., 1975). Moreover, in the present study, changes in 

locomotion were associated with lesions in the accumbens core, a subregion which is 

largely devoid of noradrenergic afferents (Berridge et al., 1997; Delfs et al., 1998). 

Reward functions are more clearly associated with medial accumbens shell and 

anteromedial olfactory tubercle (see below). Although these subregions receive 

significant noradrenergic input (Versteeg et al., 1976; Berridge et al., 1997), several 

observations indicate that noradrenergic denervation probably did not significantly 

influence the magnitude ofmethylphenidate-induced CPP. First, stimulation of 

noradrenergic transmission does not appear to pro duce a CPP (Martin-Iverson et al., 

1985; Subhan et al., 2000). Second, neither a nor 13 adrenergic receptor antagonists affect 

the rewarding effects of intravenous co caine, as reflected by self-administration 

behaviour (Johanson and Fischman, 1989). Finally, the disruptive effects of ventral 

striatal 6-0HDA lesions on cocaine self-administration appear unrelated to noradrenaline 

depletion (Roberts et al., 1977; Roberts et al., 1980). 
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Ventral striatal dopamine and methylphenidate reward 

Previous DA antagonist studies focused on the acquisition of intraperitoneal 

methylphenidate CPP, and yielded only equivocal evidence for blockade (Martin-Iverson 

et al., 1985). In the present study, cis-flupenthixol was given either during conditioning, 

or on the test day, and in both cases intravenous methylphenidate CPP was blocked. At 

the lower effective dose (0.3 mg/kg), cis-flupenthixol would be expected to act 

principally on DA receptors, with only a weak antagonist effect at 5-HT2 receptors 

(Matsubara et al., 1993). The inhibition ofmethylphenidate CPP was probably not due to 

a disruption of memory recall, since high doses of DIor D2 antagonists did not inhibit 

expression of CPP for intraperitoneal cocaine (Cervo and Samanin, 1995). 

Dopaminergic transmission in the nucleus accumbens is considered pivotaI to 

psychomotor stimulant reward (Koob et al., 1998; Everitt and Wolf, 2002; Di Chiara et 

al., 2004; Wise, 2004), and we previously reported a strong association between DA 

innervation ofmedial shell and amphetamine CPP (Sellings and Clarke, 2003). 

However, in the present study, methylphenidate CPP was altered by focal catecholamine 

depletion in neither accumbens medial shell nor core. One potential explanation of these 

negative findings is that our lesions were not substantial enough to produce a detectable 

behavioural deficit, particularly since compensatory neuroadaptations may have occurred 

in the 7-10 day interval between 6-0HDA infusion and behavioural testing. However, 

this explanation is unlikely for two reasons. First, core lesions were behaviourally 

significant, insofar as core-Iesioned animaIs showed a reduced locomotor response to 

methylphenidate. Second, our medial shell depletions were of similar magnitude to those 
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in a previous study where significant reductions in CPP magnitude were observed after a 

similar delay between lesion and CPP training (64% vs. 62%; Sellings and Clarke, 2003). 

The main finding in the present study was the reduction in CPP magnitude observed after 

6-0HDA infusions into amOT. These infusions produced a DAergic depletion of 74% in 

the target area, with a smaller depletion (36%) in the adjacent anterolateral OT. 

Importantly, DAT binding in the medial shell was virtually unchanged. This finding 

suggests that i.v. methylphenidate CPP depends critically on DA transmission in OT, 

probably in its anteromedial portion. This accords with recent evidence suggesting that 

the anteromedial olfactory tuberc1e plays a role in psychostimulant reward, and most 

likely does not represent a memory deficit, as a 6-0HDA lesion of the OT did not impair 

amphetamine CPP (Clarke et al., 1990). In particular, both cocaine and amphetamine are 

avidly self administered into anteromedial OT (Ikemoto, 2003; Ikemoto et al., 2005), and 

6-0HDA lesions ofthe OT appear to reduce CPP for Lv. cocaine (Sellings et al., 2006). 

The nucleus accumbens core and locomotor activation 

There is currently no consensus on the role of core vs. shell in psychostimulant-induced 

locomotor activation (Boye et al., 2001; Ikemoto, 2002 and references therein). Studies 

employing intra-accumbens microinjection of direct or indirect DAergic agonists have 

implicated core, shell, or both structures. After focal administration, the relative 

importance of core vs. shell appears to depend on the drug in question. For example, in a 

recent study (Ikemoto, 2002), amphetamine acted with similar potency at either injection 

site, whereas cocaine stimulated locomotor activity more strongly after injection into 
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media! shell. In contrast to published findings based on intracranial infusion, the 

locomotor stimulant effect of systemically-administered amphetamine and cocaine 

appears dependent on DA transmission in accumbens core rather than shell (Weiner et 

al., 1996; Boye et al., 2001; Sellings and Clarke, 2003; Sellings et al., 2006). The present 

results extend this conclusion to methylphenidate, although a contribution from ventral 

caudate-putamen cannot be ruled out (Campbell et al., 1997). No previous studies have, 

to our knowledge, examined the relative contributions of medial shell and core to 

methylphenidate-induced locomotion. Whether core DA transmission directly mediates 

the locomotor stimulant action of psychomotor stimulants drugs, or instead plays an 

indirect enabling role, remains a question for the future. 

Conclusions 

The present study suggests that the rewarding properties of intravenous methylphenidate 

are dependent on dopamine transmission, as also suggested by human imaging studies. 

More specifically, the anatomical site appears to be the anteromedial olfactory tubercle, 

and not the medial shell. In contrast, a role for intravenous methylphenidate-induced 

locomotor activity was attributable to accumbens core. These results extend our previous 

findings with amphetamine and cocaine, and strengthen the hypothesis that psychomotor 

stimulants exert their stimulant and rewarding effects via increased DA release in 

functionally segregated territories within ventral striatum. The possibility that drug 

reward is mediated by small subregions within ventral striatum has several implications, 

not least for human PET studies where spatial resolution may be a limiting factor. 
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Figure 1 - Establishment of intravenous methylphenidate conditioned place 

preference in intact rats. Rats (n=8-9 per group) were tested in a conditioned place 

preference procedure after three vehic1e exposures and three intravenous methylphenidate 

exposures of either 2 mg/kg or 5 mg/kg. (A) Rats receiving three pairings with 5 mg/kg 

showed a significant place preference (**p<O.005, one-sample t-test with Bonferroni 

correction) whereas those receiving 2 mg/kg did not (p>0.30). (B) Rats conditioned to 

either texture; rats receiving 5 mglkg methylphenidate expressed a significant 

conditioned place preference regardless of whether the drug was paired with bar or mesh 

tiles. (C) Rats exhibit significant locomotor stimulation at both the 2 mg/kg and 5 mg/kg 

group (**p<O.005, ***p<O.0005, one-sample t-test with Bonferroni correction). 
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Figure 2 - Effect of cis-flupenthixol on the acquisition and expression of intravenous 

methylphenidate conditioned place preference. In aIl experiments, rats were trained in 

the conditioned place preference paradigm with 5 mg/kg methylphenidate. During 

conditioning (Figures 2A and 2B), or on test day (Figures 2C and 2D), rats received 

either 0,0.1,0.3 or 0.8 mg/kg cis-flupenthixol (n=5-8 per group). When given during 

conditioning, only rats receiving vehicle or 0.1 mg/kg cis-flupenthixol exhibited 

significant CPP (** p<O.OI, one-sample t-tests with Bonferroni correction, Figure 2A). 

Cis-flupenthixol dose-dependently reduced CPP acquisition for intravenous 

methylphenidate (tp<0.05, @ p=0.087, Dunnett's test, Figure 2A). Cis-flupenthixol 

treatment also reduced locomotor activity in saline sessions (ttt p<0.005, Dunnett's test, 

Figure 2B) and in methylphenidate sessions (tp<0.05, Dunnett's test, Figure 2B). When 

given on test day, only rats receiving 0 or 0.1 mg/kg cis-flupenthixol exhibited significant 

CPP (*p<0.05, one-sample t-test with Bonferroni correction, Figure 2C). Significant 

reduction ofCPP expression was observed after treatment with 0.3 mg/kg cis

flupenthixol (tp<0.05, Mann-Whitney U test with Bonferroni correction, Figure 2C). 

Qnly rats receiving the highest dose (0.8 mg/kg) exhibited significant hypoactivity on test 

day (* p<0.05, Mann-Whitney U test with Bonferroni correction, Figure 2D). 
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Figure 3 - Autoradiographs for DAT and SERT binding. Figure 3 shows DAT and 

SERT autoradiographs for sham, core, medial shell and anteromedial olfactory tubercle 

lesioned rats at four rostrocaudallevels. Excess co Id conditions for both DAT and SERT 

binding were negligible. Areas sampled to determine depletions are shown at right (i.e. 

nucleus accumbens core, medial shell, ventral shell, olfactory tubercle and ventral 

caudate-putamen). Depletions in DAT and SERT binding were calculated as a 

percentage of sham lesioned rats, by taking the mean of aIl sampled are as (shown at 

right) at a particular level for all four rostrocaudallevels, and ultimately taking a mean of 

these four numbers. Sampled areas for core, medial shell, ventral sheIl and ventral 

caudate putamen were identical for both Experiments 4 and 5, and are depicted both in 

cartoon form and superimposed onto DAT autoradiographie images from a sham

lesioned rat. Olfactory tubercle was analyzed as a homogenous structure for Experiment 

4 (as seen under "ventral striatal subregions"), but as three heterogeneous subregions in 

Experiment 5 (based on Ikemoto, 2003; OT subregions). These three subdivisions were 

anteromedial olfactory tubercle, anterolateral olfactory tubercle and posterior olfactory 

tubercle. The former two were examined at levels 11.2, 10.7 and 10.2. The latter 

(posterior olfactory tubercle) was examined at levels 9.7, 9.2 and 8.7 (only level 9.7 

shown, see Sellings et al., 2006 for details). 
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Figure 4 - Effect of 6-0HDA lesions of accumbens core or medial shell on 

intravenous methylphenidate-induced locomotion and CPP. Rats (n = 6-10 per 

group) received bilateral6-0HDA or vehicle infusions (i.e. sham-Iesion) into accumbens 

core or medial shell, and were subsequently conditioned with methylphenidate (5 mg/kg). 

Locomotor scores (methylphenidate-saline) for aU three conditioning pairs (i.e. three 

pairs of methylphenidate and saline exposures during the CPP conditioning phase; 

indicated as 1, 2 and 3) are shown in Panel A. Rats did not exhibit significant 

behavioural (locomotor) sensitization. However, all groups exhibited locomotor 

stimulation. Locomotor stimulation data for only the first conditioning pair (i.e. the 

difference between the first drug and saline exposures) was further examined. The 

stimulant response was smaller in the core lesioned group (t p<0.05; Dunnett's test; 

Panel B) but still significant. Locomotor response correlated positively and significantly 

with DAT binding in core (Panel C), but not in medial shell (Panel D). Sham and medial 

shell-Iesioned groups exhibited a significant CPP, with a similar trend in the core

lesioned group (@ p=0.06, *p<0.05, **p<0.005, one sample t-test with Bonferroni 

correction, Panel E). CPP magnitude did not correlate significantly with either core or 

medial shell DAT binding (Panels F and G). DAT binding is expressed as percent of 

sham-Iesioned rats of the target structure being examined. Abbreviations are as follows: 

CV, core vehicle (sham); CL, core lesion; SV, medial shell vehicle (sham); SL, medial 

shelliesion. Shell refers to medial shell. N per group: 9 (core lesion), 10 (medial shell 

lesion), 6 (combined sham groups). 
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Figure 5 - Effect of 6-0HDA lesions of anteromedial olfactory tubercle on 

intravenous methylphenidate-induced CPP. Rats (n = 6-11 per group) received 

bilateral 6-0HDA or vehic1e infusions (Le. sham lesion) into accumbens core or medial 

shell, and were subsequently conditioned with methylphenidate (5 mg/k:g). Only sham-

lesioned rats exhibited a significant CPP, which differed significantly from the CPP 

magnitude of anteromedial OT -lesioned rats (ttt p<O.OOO 1, one-sample t-test with 

Bonferroni correction; **p<O.005, Student's t-test; Panel A). CPP magnitude correlated 

significantly with anteromedial OT DAT binding (p<O.02; Panel B). DAT binding is 

expressed as percent of sham-Iesioned rats of the target structure being examined. 

Abbreviations are as follows: amOTV, anteromedial olfactory tubercle sham; amOTL, 

anteromedial olfactory tubercle lesion. 
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Table 1. Reductions in DAT and SERT binding seen in core and medial shelliesioned 

groups (Experiment 4) 

DAT SERT 

Group Sham Core mSh Sham Core mSh 

Core 100±7 20±3**** 95±5 100±5 108±6 97±3 

mSh 100±8 48±4TT 36±6*** 100±4 97±5 94±3 

vSh 100:;1:6 35±6TT 98±8 100±6 l18±8 108±3 

OT 100±12 46±4*** 80±4 100±6 l16±5 108±4 

vCp 100±1O 50±7** 107±6 100±3 88±3 93±3 

Figures presented are mean ± SEM, and are calculated as a percent of sham-operated 

control. Abbreviations are as follows: mSh, medial shell; vSh, ventral shell; OT, 

olfactory tuberc1e; vCP, ventral caudate-putamen. **p<0.005; ttp<O.OOl; ***p<0.0005; 

****p<0.00005 vs. sham-Iesioned control 
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Table 2. Reductions in DAT and SERT binding seen in anteromedial olfactory tuberc1e 

lesioned rats (Experiment 5). 

DAT SERT 

Group Sham amOT Sham amOT 

Core lOO±5 96±4 lOO±lO 97±7 

mSh lOO±5 95±6 lOO±9 98±10 

vSh lOO±7 85±4 lOO±8 97±12 

amOT lOO±17 26±5TT IOO±2 106±lO 

alOT lOO±lO 64±7 lOO±3 lO7±14 

pOT lOO±7 78±5 lOO±6 1 13±12 

vCP lOO±7 90±3 lOO±5 97±7 

Figures presented are mean ± SEM, and are calculated as a percent of sham-operated 

control. Abbreviations are as follows: mSh, medial shen; vSh, ventral shell; amOT, 

anteromedial olfactory tuberc1e; aIOT, anterolateral olfactory tuberc1e; pOT, posterior 

olfactory tuberc1e; vCP, ventral caudate-putamen. ttp<O.OOl vs. sham-Iesioned control. 
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Intervening Section 4 

The fourth and final drug examined was nicotine, the major psychoactive component of 

tobacco smoke. The effects of medial shell and core lesions on CPP were tirst examined. 

As previously observed for amphetamine and intravenous cocaine, medial shelllesions 

reduced CPP. Interestingly, core lesions increased nicotine CPP. This appeared to result 

from reduced nicotine aversion, since core, but not medial shelllesions abolished nicotine 

CTA. 
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Abstract 

Forebrain dopamine plays a critical role in motivated behavior. According to the classic 

view, mesolimbic dopamine selectively mediates behavior motivated by rewards. 

However, this has been challenged in favor of a wider role encompassing aversively 

motivated behavior. This controversy is particularly striking in the case of nicotine, with 

opposing claims that either the rewarding or avers ive effect of nicotine is critically 

dependent on mesolimbic dopamine transmission. In the present study, the effects of 6-

hydroxydopamine lesions of nucleus accumbens core vs. medial shell on intravenous 

nicotine conditioned place preference and conditioned taste aversion were examined in 

adult rats. Dopamine denervation in medial shell was associated with decreased nicotine 

conditioned place preference. Conversely, denervation in core was associated with an 

increase in conditioned place preference. In addition, core but not medial shell dopamine 

denervation aboli shed conditioned taste aversion for nicotine. We conclude that core and 

medial shell dopamine innervation exert segregated effects on rewarding and aversive 

effects of nicotine. More generally, our findings indicate that DA transmission may be 

enabling opposing motivational processes within functionally distinct domains of the 

accumbens. 
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A rich literature indicates that forebrain dopamine (DA) is intimately related to reward 

processes. For example, strong evidence suggests that cocaine and amphetamine produce 

their rewarding effects by increasing mesolimbic DA transmission (Di Chiara et al., 

2004; Wise, 2004). Severallines of evidence suggest that nicotine also exerts its 

rewarding effects by increasing dopaminergic (DAergic) transmission in the nucleus 

accumbens (Di Chiara et al., 2004; Lecca et al., 2006). Indeed, both nicotine conditioned 

place preference (CPP) (Spina et al., 2006) and intravenous self administration (Corrigall 

et al., 1992) are inhibited by disruption of ~esolimbic DAergic transmission (Di Chiara 

et al., 2004). In light of these findings, considerable effort has been expended in 

identifying the nicotinic receptor subtypes that modulate DAergic transmission (Picciotto 

et al., 1998; Champtiaux et al., 2003; Wonnacott et al., 2005) , partly in order to try to 

develop better smoking cessation aids. 

The psychobiological role of DA may not, however, be restricted to reward-relevant 

processes (Horvitz, 2000; Ungless, 2004). Not only do aversive events elicit mesolimbic 

DA release (Horvitz, 2000), but pharmacological studies have suggested that both drug

conditioned place preference and aversion can be DA-dependent (Acquas et al., 1989; 

Shippenberg et al., 1993). In addition, both direct and indirect DA agonists produce 

conditioned taste aversion (CTA) that is blocked by systemic DA antagonist treatment 

(Asin and Montana, 1989; Huang and Hsiao, 2002). Recently, the aversive effects of 

nicotine were attributed to mesolimbic DA transmission (Laviolette et al., 2002). In 

particular, systemic or intra-NAcc administration of the DA antagonist (a-flupenthixol) 

reduced the aversive rather than the rewarding effects of nicotine (Laviolette et al., 2002; 
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Laviolette and van der Kooy, 2003). On the basis of these results, it was concluded that 

mesolimbic dopamine transmission may encode the aversive effects of nicotine. 

Although rewarding and avers ive processes are to sorne extent anatomically dissociable 

within the nucleus accumbens (Reynolds and Berridge, 2002; Pecina and Berridge, 

2005), the idea that DA in distinct accumbal compartments may underlie reward vs. 

aversion has been little explored. In this respect, several reports suggest that medial rather 

than lateral accumbal sites are associated with reward processes. In particular, 

dopaminergic agonists were self-administered directly into the medial shell but not into 

the core (Ikemoto et al., 1997; Ikemoto et al., 2005), and injections of amphetamine into 

shell preferentially induced 50 kHz ultrasonic vocalizations (Thompson et al., 2006). 

Recently, we found that 6-0HDA lesions of the medial shell reduced CPP for 

amphetamine and i.v. cocaine (Sellings and Clarke, 2003; Sellings et al., 2006). In 

addition, the results obtained with i.v. cocaine were suggestive (p=0.06) of an inhibitory 

influence of core DA transmission on CPP (Sellings et al., 2006). 

Accordingly, the present study investigated the hypothesis that the acute rewarding and 

the acute avers ive effects of nicotine are both dependent on DA transmission, but in 

different accumbens subregions. To this end, we examined the effects of focal 6-

hydroxydopamine lesions on CPP for intravenous nicotine. As a more direct test of 

aversion, nicotine CT A was examined in the same way. 

Materials and Methods 
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Subjects. Subjects were Long-Evans rats, weighing 260-310 g at time ofsurgery 

(Experiments 1,2, and 4-8) or start ofbehavioral testing (Experiment 3). Rats were 

housed in groups of 2 or 3 in a temperature and humidity controlled environment, in a 

12h/12h light-dark cycle (lights on at 07h00). 

Surgery 

1 - Intravenous catheterization. Rats were implanted with chronic indwelling silastic 

catheters (0.51 mm LD. and 0.94 mm O.D., Fisher Scientific, Montreal, Quebec) in the 

left jugular vein under ketamine (80 mg/kg) and xylazine (16 mg/kg) anesthesia. Tubing 

was secured to the vein by surgical silk sutures, led subcutaneously to the skull surface, 

and was then fitted onto a 22 gauge cannula attached to a plastic connector (Model 

number C313G-5UP, Plastics One, Roanoke, VA). The cannula/connector was fixed to 

the animal's skull with small stainless steel screws (Lomir, Notre-Dame-de-L'Ile Perrot, 

Quebec) and dental cement (Stoelting, Wood Dale, IL). To keep catheters patent, 0.1-

0.15 ml heparinized 0.9% saline was administered at the end ofsurgery, on the first day 

ofbehavioral testing, and every 2-3 days thereafter. 

2 - 6-hydroxydopamine infusion. AH procedures are identical to those previously 

published (Sellings and Clarke, 2003) with two modifications. First, atropine methyl 

nitrate pretreatment (0.05 mg/kg s.e.) was omitted. Second, in Experiments 6 and 8 of 

the present work, DMI was added to the 6-hydroxydopamine vehicle (1mM), and given 

systemicaHy (15 mg/kg i.p.) 20 minutes prior to ketamine/xylazine anesthetic to aIl rats. 

This dual route approach (i.e. systemic plus intracerebral) was taken principaIly to avoid 
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the high (>25%) mortality rates observed after administration of the commonly used 

systemic dose of25 mg/kg i.p. to this particular strain ofrats (Long-Evans; supplier 

Charles River; our unpublished observations). In DMI-treated rats, surgic,al anesthesia 

was achieved at a much lower dose (50%) ofketamine and xylazine. 

Behavioral testing. AnimaIs were allowed 7-10 days recovery from surgery before 

starting CPP or CT A testing. 

Conditioned place preference. The apparatus and general procedure were as previously 

described (Sellings and Clarke, 2003). Briefly, the procedure consisted ofthree phases: 

pre-exposure (one day), conditioning (six days) and test (one day). All phases were 

carried out in a one-compartment box (58 cm x 29 cm x 53 cm) with walls made of white 

plastic-coated particle board, under darkroom lighting using a Kodak GBX-2 safelight 

filter (Vistek, Toronto, Ontario, Canada), to minimize visual cues. In the pre-exposure 

phase, Beta-Chip sawdust bedding covered the floor of the cage. In the conditioning 

phase, two square tactile tiles of either bar or mesh texture, each covering half the area of 

the bottom of the test cage, were placed on top of the bedding (tile dimensions: 28.5 cm x 

28.5 cm x 5.5 cm). During the test phase, one bar and one mesh tile were placed on the 

bottom of the cage, such that half the floor of the test cage had bar texture, and the other 

halfhad mesh texture. The time spent on bar or mesh texture was measured by Noldus 

Etho Vision software. AnimaIs do not spontaneously prefer either texture (LHLS and 

PBSC, unpublished observations), and as such our procedure can be considered to be 

"balanced". All experiments were as fully counterbalanced as possible with respect to 
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drug-texture pairing and order of drug pairing (drug-saline or saline-drug) within each 

surgery group. For aIl experiments, pre-exposure sessions lasted 20 minutes, the 

conditioning trial duration 15 minutes, and the test session 10 minutes. A fluid swivel 

was fixed above the center of each cage. Each swivel was connected to on one end a 1 ml 

syringe, and on the other end to a brass connector (Produits MS M, Laval, Quebec) and 

protective spring (Heiplex, Montreal) via Tygon tubing of 0.5 mm diameter. The cannula 

fixed to the skull of the rat was attached to the Tygon tubing, and the brass connector 

fastened to the plastic connector, to secure the tubing to the cannula, hence allowing 

administration of drug immediately after placement in the CPP cage. Drug was infused 

over 5s. 

Conditioned taste aversion. The present procedure is adapted from a previously 

published protocol (Laviolette et al., 2002). Testing took place over 16 consecutive days. 

The procedure consisted of four phases - initial water restriction, conditioning, secondary 

water restriction, and testing. During the initial water restriction phase (5d), rats were 

allowed one hour per day access to water. Body weight and the volume ofwater 

consumed by each animal were measured each day. During the conditioning phase (Days 

6-13), rats received four nicotine and four saline injections, on altemating days, in a 

counterbalanced fashion within groups. Rats had 15 minutes access to one of two novel 

flavors (unsweetened cherry or grape Kool-Aid). Immediately after access to the novel 

flavor was terminated, rats received an intravenous injection of either nicotine or saline, 

infused over 5 s. Two hours post Kool-Aid, rats had access to water for 15 minutes. 

Volume o'rKool-Aid and water consumed, as weIl as animal weights, were recorded. 
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Rats lost about 10% oftheir free feeding weight by the fourth water deprivation day. 

Then, they steadily gained weight. By the fifth conditioning day, body weights were not 

significantly different from the day before water restriction commenced. This pattern 

was unaffected by nicotine dose (day x dose interaction: F(45,435) =1.11, p>0.25). The 

conditioning phase was followed by water restriction (Day 14), in which rats had one 

hour access to water. No Kool-Aid was presented on this day. The final phase 

comprised two tests (Days 15 and 16), in which rats were water-deprived and given 20 

minutes of access to two bottles. One contained cherry, and the other grape, Kool-Aid. 

The volume of each flavor consumed was recorded. The side position of the flavors was 

changed between test days, to account for any side preference rats may have developed. 

Experimental Design 

Experiment 1. Rats were conditioned in the CPP paradigm at one of three doses of 

intravenous nicotine (5, 15 or 50 Ilglkg; n=4-6/group) and subsequently tested for CPP. 

Experiment 2. To confirm that rats expressed CPP at 15 Ilglkg nicotine, a new group of 

rats (n=6) was conditioned at this dose of nicotine and tested for CPP. 

Experiment 3. Rats were conditioned in the CPP paradigm at one of three doses of 

subcutaneous nicotine (100, 300 or 600 Ilglkg; n=8/group) and subsequently tested for 

CPP. 

Experiment 4. Rats were conditioned in the CT A paradigm at one of four doses of 

intravenous nicotine (0,5, 15 or 50 Ilg/kg; n=7-10/group), and subsequently tested in a 

two-bottle choice paradigm between the nicotine- and the saline-paired flavor. 
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Experiment 5. Rats sustaining vehic1e or 6-0HDA infusion into core or medial shell 

(n=5-6/group) were subsequently conditioned in the CPP paradigm with 15 J.lg/kg 

intravenous nicotine after recovering from surgery. 

Experiment 6. This was identical in design to Experiment 5, except that at surgery, all 

rats were treated with the noradrenergic transporter (NET) blocker desipramine both 

systemically (15 mg/kg i.p.), and co-infused in the 6-0HDA solution (1 mM). The 

number of subjects varied between 6 and 20 per group. 

Experiment 7. Rats sustaining vehic1e, or 6-0HDA infusion into core or medial shell 

(n=6-9/group) were subsequently conditioned in the CTA paradigm with 50 J.lg/kg 

intravenous nicotine after recovering from surgery as described above. 

Experiment 8. This was identical in design to Experiment 7, except that all rats were 

treated the NET blocker desipramine both systemically (15 mg/kg i.p.), and co-infused in 

the 6-0HDA solution (1 mM). The number ofsubjects varied between 10 and 12 per 

group. 

Quantitative autoradiography for the DA, NE and 5-HT transporters. Tissue 

preparation, DAT and SERT autoradiography, and quantification ofDAT and SERT 

binding are as previously described (Sellings and Clarke, 2003). The procedure for [1251] 

nisoxetine autoradiography to visualize norepinephrine transporters was as follows. 

Sections were thawed at room temperature for 10 min and then placed in a staining dish 

containing an aqueous buffer solution of 50 mM tris, 300 mM NaCI, 5 mM KCI, 50 nM 

citalopram, 100 nM GBR 12909, and 10 pM [125I]-nisox~tine (2200 Ci/mmol; gift of 

Mei-Ping Kung, University of Pennsylvania, nonsaturating concentration), with the pH 
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adjusted to 7.4. Nonspecific binding was determined by addition of 1 J-lM desipramine. 

Slides were incubated at 4°C for 2 hr and then washed three times for five minutes each 

in cold buffer solution, and finally for 1-2 sec in distilled and deionized water. They were 

then blow dried and placed in X-ray film cassettes. Kodak BioMax MS film (Amersham 

Biosciences, Baie d'Urfé, Québec) was exposed to slides for 14 days with e25I] 

autoradiographie standards (Amersham Biosciences). Radiolabeling ofDAT, SERT and 

NET was quantified using an MCID M4 imaging system (Imaging Research, St. 

Catherines, Ontario) . .. 

Histological examination. Tissue was stained with cresyl violet to assess nonspecific 

damage, as previously described (Sellings and Clarke, 2003), and examined under a light 

microscope. 

Drugs. (-)Nicotine bitartrate salt (Sigma) was dissolved in sterile physiological saline 

neutralized to pH=7.3±0.1, and administered 1 ml/kg body weight; doses represent free 

base. Desipramine HCI (Sigma-RBI) administered prior to surgery was also dissolved in 

sterile physiological saline administered at 2 ml/kg body weight (dose as salt). 

Statistical analysis. AlI analyses were performed using a commercially available 

pro gram (SYSTAT v. 10). Outliers, as defined by the statistical program, were exc1uded 

prior to analysis. CPP magnitude was calculated as the difference between times spent 

on nieotine-paired and saline-paired sides on test day. CTA magnitude was defined as the 

difference between saline- and nicotine- paired fluids consumed in test sessions. 
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Significance was set at p<O.05 (two-tailed) throughout. Group values are expressed as 

mean± SEM. 

In Experiments 1 and 2, the presence or absence of a significant CPP was determined by 

a Wilcoxon signed rank test (Le. time on nicotine- vs. saline-paired sides), since data 

were not normally distributed. In Experiment 3, multiple one-sample t-tests with 

Bonferroni correction were used for this purpose. In Experiment 4 (CTA), the amount of 

fluid drunk during conditioning sessions was initially analyzed by a repeated measures 

ANOVA, with three factors: DOSE (Le. conditioning dose of nicotine), DRUG (Le. 

saline or nicotine) and DA Y (i.e. conditioning day with either nicotine or saline). The 

effect of nicotine DOSE on CTA magnitude was analyzed by one-way ANOVA. For rats 

receiving saline paired with both fluids, to test if these control rats spontaneously 

preferred either flavor, a one-sample t-test was performed on the cherry vs. grape fluid 

consumed on test day. Dunnett's test was performed post-hoc, to determine which doses 

differed significantly from control. In Experiments 5 and 6, group differences in CPP 

magnitude were analyzed by one-way ANOV A and a post-hoc Tukey' s test. The 

presence of a CPP within individual groups of animaIs was tested by multiple one-sample 

Bonferroni t-tests. Multiple linear regression analysis was performed with CORE and 

MEDIAL SHELL DAT binding as factors, and CPP magnitude as the dependent variable. 

Pooled data from Experiments 5 + 6 were examined in the same fashion. In Experiments 

7 and 8, CT A magnitude data were clearly not normally distributed, and group 

differences were assessed by multiple Mann-Whitney tests with Bonferroni correction. 

The presence of a CT A within individual groups of animaIs was tested by multiple 

253 



Wilcoxon signed-rank tests with Bonferroni correction. Multiple linear regression 

analyses were performed on CORE vs. MEDIAL SHELL DAT binding as factors, and 

CT A magnitude as the dependent variable. Pooled data from Experiments 7 + 8 were 

analyzed in an analogous fashion. One rat that was recorded as being lesioned in core in 

Experiment 7, but exhibiting core DAT binding at 94% of sham-lesioned rats, was 

removed prior to analysis. 

Results 

Rats can express conditioned place preference for intravenous nicotine 

We first determined whether rats form a CPP for intravenous nicotine in a "balanced" 

CPP procedure. Rats were implanted with an intravenous jugular catheter and 

conditioned at one of three doses of intravenous nicotine: 5, 15 or 50 ""g/kg (Experiment 

1). Only the group of rats receiving 15 ""g/kg showed a significant CPP magnitude, 

defined as the difference between time spent on the nicotine-paired and saline-paired 

textures on test day (Wilcoxon test, uncorrected, p<0.05; Fig. la). To confirm this result, 

CPP testing was repeated at a dose of 15 ""g/kg with different rats (n=6 rats, Experiment 

2). As before, rats spent significantly more time on the nicotine-paired side than on the 

saline-paired si de (Wilcoxon test, p<0.05; Fig. lb). Hence, rats formed CPP to 15 ""g/kg 

nicotine (Lv.). 

Rats do not show conditioned place preference for subcutaneous nicotine in a balanced 

paradigm 
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The previous experiment provides the first evidence for nicotine CPP using a balanced 

design. We next examined whether subcutaneous nicotine doses would also be effective 

(Experiment 3). Rats (n=8/group) were first treated with 400 Ilg/kg nicotine s.c. for two 

days to render them tolerant to the drug's locomotor depressant effect. Two days later, 

they received one ofthree doses of nicotine: 100,300 or 600 Ilg/kg. None ofthese doses 

produced CPP (one-sample t-tests; t(7): 0.69-1.01; p>0.35 for aIl; Fig. 1c). Thus, the 

CPP observed with intravenous nicotine appears to be a function of route of 

administration. 

Non-lesioned rats exhibit conditioned taste aversion to intravenous nicotine 

The expression of a conditioned taste aversion to intravenous nicotine was established in 

Experiment 4. After a period ofwater restriction (5 d, 1 h/d access), rats (n=7-10/group) 

received one of four doses (0, 5, 15 or 50 Ilg/kg) of intravenous nicotine after 

presentation of one bottle containing a novel flavor. The amount of novel flavor 

consumed prior to nicotine vs. saline infusion during conditioning did not differ 

significantlyat any dose (DRUG x SESSION x DOSE interaction: F(9,84)=0.65, p>0.7, 

Fig. 2a). AdditionaIly, there was no overall effect of dose on the mean total fluid 

consumed during the two-bottle choice test (F(3,27)=0.89, p>0.45), and no single dose 

differed significantly from the 0 Ilg/kg group (Dunnett's test: p>0.5 for aIl; Fig. 2b). 

CT A magnitude was calculated as the mean of the difference between the volume of 

saline- and nicotine-paired flavors consumed on both test days. As expected, control rats 

receiving saline injections paired with both novel flavors (i.e. no nicotine infusions) did 
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not significantly prefer either nove! flavor (t(9)=0.71, p>0.5, one-sample t-test, Fig. 2c). 

CTA magnitude was significantly dose-dependent (One-way ANOVA; F(3,29)=4.40; 

p<0.02); only the 50 Jlg/kg group differed significantly from the 0 Jlg/kg group 

(Dunnett's test; p<0.005; Fig. 2c). 

Anatomical and neurochemical lesion selectivity 

In Experiments 5-8, the effects of core vs. medial shelliesions on intravenous nicotine 

Cpp and CTA was examined. Autoradiographic binding to the dopamine transporter 

(DAT) and serotonin transporter (SERT) for Experiments 5-8 are shown in Table 1. To 

determine the degree of preservation ofnorepinephrine (NE) terminaIs after DMI 

pretreatment, autoradiographie labeling of the noradrenergie transporter (NET) was 

performed in Experiments 6 and 8. NET binding in the core subregion was negligible 

(Table 1). NET binding was not significantly affected in lesioned rats receiving DMI 

pretreatment. This suggests that DMI pretreatment preserved NE, but not DA terminaIs 

(Table 1). Infusions of 6-0HDA did not significantly affect SERT binding in any 

sampled subregion (Table 1), and Nissl staining revealed minimal non-specific damage, 

as previously reported (Sellings et al., 2006). 

Conditioned place preference is reduced by medial shelllesions, and increased by core 

lesions 

The effect of 6-0HDA lesions of the nucleus accumbens core vs. medial shell on nicotine 

CPP were examined in Experiment 5. A significant CPP was observed in sham- and 

core-Iesioned rats (n=5-6 /group; p<0.05 [sham], p<0.05 [core]; one-sample t-test with 

256 



Bonferroni correction) but not in medial shell-Iesioned rats (Fig. 3a). Multiple linear 

regression analysis revealed a significant negative association between core DAT binding 

and the magnitude of the CPP (p<O.005; Fig. 3b). Conversely, a significant positive 

association was observed between medial shell DAT binding and CPP magnitude 

(p<O.05; Fig. 3c). 

Since intracerebral administration of 6-0HDA destroys both DA and NE innervation, the 

above experiment was repeated using desipramine pretreatment, designed to protect 

against NE toxicity (Experiment 6; n=6-20/group). Here, only core-Iesioned animaIs 

exhibited significant CPP (p<O.OI; one-sample t-test with Bonferroni correction; Fig. 3d) . 

. A significant group difference was observed between core- and medial shell-Iesioned rats 

(p<O.005; Tukey's test). As in the previous experiment, CPP magnitude was negatively 

associated with core DAT binding (p<O.05; Fig. 3e) and positively associated with 

medial shell DAT binding (p<O.05; Fig. 3f). 

After initial data inspection, the results of Experiments 5 and 6 were pooled for further 

analysis. Overall, only core-Iesioned animaIs exhibited significant CPP (p<O.02; one

sample t-test with Bonferroni correction; Fig. 3g). CPP magnitude in shell-Iesioned 

animaIs differed significantly from sham-operated and core-Iesioned (p<O.05 and 

p<O.005, respectively; Tukey's test; Fig. 3g) rats. A significant negative association was 

observed between core DAT binding and CPP magnitude (p<O.0005; Fig. 3h), and a 
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significant, positive association between medial shell DAT binding and CPP magnitude 

(p<O.Ol; Fig. 3i). 

Intravenous nicotine conditioned taste aversion is not observed in core lesioned animais 

In Experiment 7, rats (n=6-9/group) sustaining intra-core or intra-medial shell infusion of 

6-0HDA (or vehicle) were exarnined for acquisition of a conditioned taste aversion to 50 

f.lg/kg i.v. nicotine. Only core-Iesioned animais differed significantly from sham-Iesioned 

rats in the magnitude of the CT A (p<0.05; Mann-Whitney test with Bonferroni 

correction; Fig. 4a). Additionally, only sham-Iesioned animais displayed significant CTA 

(p<0.05; Wilcoxon test with Bonferroni correction; Fig. 4a). The magnitude of the CTA 

was significantly and negatively related to core DAT binding (p<O.OOOl; Fig. 4b), and to 

medial shell DAT binding (p<0.05; Fig. 4c). 

Experiment 8 differed from Experiment 7 in that rats were pretreated with DMI to protect 

NE terminais. As in the previous experiment, only sham-Iesioned animais exhibited 

significant CTA (n=1O-12/group; p<O.Ol; Wilcoxon test with Bonferroni correction; Fig. 

4d); significant group differences existed between core- and sharn-Iesioned animais 

(p<0.002; Mann-Whitney test with Bonferronicorrection; Fig. 4d). As before, multiple 

linear regression analysis revealed a significant negative association between core DAT 

binding and the magnitude of the taste aversion (p<0.05; Fig. 4e). However, in this 

experiment, no significant association was observed between medial shell DAT binding 

and CTA magnitude (p>0.7; Fig. 40. 
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When the data from Experiments 7 and 8 were pooled, both sham- and medial shell

lesioned rats expressed a significant CTA (p<0.0002 and p<0.02 respectively; Wilcoxon 

test with Bonferroni correction; Fig. 4g). CTA magnitude differed significantly between 

core- and medial shell-Iesioned animaIs, and between both lesion groups and sham

lesioned animaIs (p<O.OOOI [sham vs. core], p<0.05 [sham vs. medial shell, p<0.005 

[core vs. medial shell]; Mann-Whitney test with Bonferroni correction, Fig. 4g). Core, 

but not medial shell, DAT binding was significantly associated with CTA magnitude 

(Core: p<O.OOOOI; medial shell: p>0.25; Figs. 4h and 4i). 

Discussion 

The present study implicates accumbal DA transmission in both rewarding and aversive 

effects of nicotine, and demonstrates that these effects are anatomically dissociable. As 

discussed below, these findings may help to resolve conflicting evidence regarding the 

role of DA in nicotine reward vs. aversion (Corrigall et al., 1992; Rose and Corrigall, 

1997; Laviolette and van der Kooy, 2004) 

Methodological issues 

The present study represents the first published report of CPP following intravenous 

nicotine administration. This route of administration was chosen to more closely model 

the pharmacokinetics of nicotine after inhalation of tobacco smoke. The effective dose 
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(15 J,tg/kg) is at the low end of the range self-administered in animais (Rose and 

Corrigall, 1997) and represents the dose of nicotine typically self-administered by 

smokers after one cigarette (Benowitz and Jacob, 1984). Rowever, nicotine CPP was 

variable and not always statistically significant. Nevertheless, intravenous nicotine may 

be more effective than other systemic routes of administration, as evinced by our negative 

results with subcutaneous nicotine. The latter result is consistent with previous studies 

using subcutaneous nicotine in an "unbiased" test (Le FoU and Goldberg, 2005b). An 

additional factor that may account for the presence of i. v. nicotine CPP is the nature of 

our CPP paradigm. Since visual cues are absent throughout the procedure, conditioned 

approach behavior is unlikely to account for CPP. Renee, the paradigm appears to 

provide apurer measure of conditioned reward than other CPP procedures. 

Although 6-0RDA infusions do not discriminate between NE and DA, similar results 

were obtained both in the absence and presence of the NET blocker DMI. Rence, reduced 

DA transmission probably underlies lesion-induced behavioral alterations in nicotine 

CPP and CT A. As previously observed (Sellings and Clarke, 2003), core and medial 

shelllesions were not anatomieally specifie; this variability was exploited through the use 

of multiple linear regression. 

Nicotine reward and the nucleus accumbens medial shell 

Nicotine CPP was observed to be dependent on medial shell DA innervation. Although 

CPP magnitude depends in part on the leamed association between drug and sens ory 
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eues, it is unlikely that medial shelliesions impaired learning, since similar lesions do not 

reduce CPP produced by i.p. morphine or cocaine (Sellings and Clarke, 2003; Sellings et 

al., 2006). The finding that medial shelliesions reduce nicotine CPP accords with a 

recent report that intra-shell infusion of a Dl receptor antagonist dose-dependently 

reduced nicotine CPP (Spina et al., 2006). More generally, these findings mirror 

evidence that psycho stimulants produce CPP by increasing dopamine transmission in the 

medial shell (Di Chiara et al., 2004), although a role for the adjacent olfactory tubercle in 

nicotine CPP cannot be excluded (Ikemoto, 2003; Ikemoto et al., 2005; Sellings et al., 

2006). 

Nicotine CPP and the nucleus accumbens core 

In the present study, DA-depleting lesions of the core increased nicotine CPP magnitude. 

This is unlikely to have resulted from global memory improvement, since analogous core 

lesions did not increase CPP associated with amphetamine or i.p. cocaine in the same 

apparatus (Sellings and Clarke, 2003; Sellings et al., 2006). CPP magnitude is potentially 

sensitive to test day activity, in that rats on the test day will tend to locomote more on the 

drug paired side if they develop a conditioned locomotor response to the drug. This in 

turn could affect CPP magnitude. We have previously observed that core lesions 

decreased amphetamine-conditioned locomotion (Sellings and Clarke, 2006). However, 

core lesions did not affect amphetamine CPP (Sellings and Clarke, 2003), suggesting that 

any lesion effect on conditioned locomotion in the present study would not have 

appreciably affected nicotine CPP. Based on these considerations, our CPP findings 
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suggest that DA transmission in accumbens core may be signaling or enabling the acute 

aversive properties of intravenously-administered nicotine. 

Nicotine CT A and the nucleus accumbens core 

CTA provides a sensitive measure of the aversive effects of drugs, inc1uding nicotine 

(Shoaib and Stolerman, 1995; Di Chiara et al., 2004). Two recent reports suggest that 

nicotine CTA may be DA dependent. In the first, CTA following systemic nicotine 

administration was aboli shed by systemic DA receptor blockade (Di Chiara et al., 2004). 

In the second, CTA produced by intra-VTA nicotine was blocked by intra-NAcc u

flupenthixol (Laviolette et al., 2002). 

In the present study, DA transmission in the core and not the medial shell subregion was 

consistently associated with intravenous nicotine CTA. It is unlikely that the disruption of 

CT A by core lesions was due to an amnesic effect, as a role for accumbens shell but not 

core has been established in the leaming aspects of CTA (Fenu et al., 2001). However, a 

deficit in leaming may explain the slight decrease in CT A magnitude observed in medial 

shell-lesioned rats (Fig. 4). The present CTA results, taken with the above CPP findings, 

provide convergent evidence that DA transmission in accumbens core mediates nicotine 

aversion. 

Segregated motivational effects of nicotine 

262 



It is well established that nicotine exerts both rewarding and avers ive motivational 

effects. However, the aversive properties of nicotine appear more robust than with other 

abused drugs, as evinced by severallines of convergent evidence. First, animaIs will 

se1f-administer nicotine only under restricted conditions (Le Foll and Goldberg, 2005a). 

Second, intravenous nicotine is weakly se1f-administered unless drug delivery is paired 

with environmental cues (Donny et al., 2003; Le Foll and Goldberg, 2005a), and even 

when such cues are presented, rats reliably choose cocaine over nicotine infusions in a 

two-Iever choice paradigm (Manzardo et al., 2002). Third, studies in squirrel monkeys 

have shown that a given dose of intravenous nicotine may be se1f-administered or can 

serve as a punisher, depending on the experimental conditions (Spealman, 1983). Fourth, 

whereas cocaine and many other drugs of abuse produce a reliable CPP in rats, systemic 

nicotine has been reported to e1icit either a CPP (Fudala et al., 1985; Iwamoto, 1990; 

Shoaib et al., 1994; Le Foll and Goldberg, 2005b; Spina et al., 2006), a conditioned place 

aversion (Jorenby et al., 1990; Laviolette et al., 2002), or neither (Clarke and Fibiger, 

1987; Calcagnetti and Schechter, 1994). Finally, aversive effects of systemic or intra

accumbens nicotine are also evident in the conditioned taste aversion paradigm (Shoaib 

and Stolerman, 1995; Laviolette et al., 2002). Taken together, these findings suggest that 

the aversive effects of nicotine may frequently mask its rewarding effects. 

The findings of the present study suggest that accumbens DA mediates or enables two 

anatomically segregated effects of nicotine: a rewarding effect via the medial shell and an 

aversive effect via the core. The notion that DA can play an aversive role in the 

motivational effects of nicotine has been suggested by studies using the DA receptor 
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antagonist a-flupenthixol (Laviolette et al., 2002). However, a-flupenthixol also has 

significant affinity for 5-HT2 receptors (Matsubara et al., 1993). The current study used a 

5-HT sparing neurotoxin, suggesting that DA does play a critical role. Opposing roles of 

core and medial shell DA would go sorne way towards reconciling the controversy 

surrounding the role of DA in nicotine's motivational effects (Rose and Corrigall, 1997; 

Laviolette and van der Kooy, 2004). 

Anatomical division of dopamine functions 

A core/shell functional segregation is consistent with a recently proposed division of the 

ventral striatum based on a medial-Iateral or medioventral-dorsolateral organization 

(Voom et al., 2004; Ikemoto et al., 2005). Since our medial shell and core lesions reduced 

DA innervation over similar rostrocaudal extents, a rostrocaudal gradient of positive to 

negative motivated behaviour (Reynolds and Berridge, 2002; Pecina and Berridge, 2005) 

is unlikely to be responsible for our findings. 

The present observations appear relevant to the ongoing controversy surrounding the role 

of DA in signaling rewarding vs. aversive or salient events. Considerable evidence 

suggests that DA plays a role in reward processing or reward prediction (Berridge and 

Robinson, 2003; Wise, 2004; Schultz, 2005). DA also appears to subserve a general role 

in salience and attentional switching (Redgrave et al., 1999; Ungless, 2004). The 

relationship between DA and aversion is less clear. Several reports using single-cell 

recording suggest that DA cells do not fire in response to mildly aversive events 
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(Mirenowicz and Schultz, 1996), and that DA cell firing may be reduced in response to 

aversive stimuli (Ungless et al., 2004). In the accumbens, however, stressful stimuli (e.g. 

footshock, restraint) increase DA transmission preferentially in the shell (Deutch and 

Cameron, 1992; Kalivas and Duffy, 1995). It is unclear whether these powerful stressors 

accurately model the aversive effects of drugs such as nicotine; indeed, available 

evidence suggests that less obviously stressful stimuli (i.e. quinine and saturated saline 

solution) increase extracellular DA in the core but not the shell (Bassareo et al., 2002), 

suggesting that core DA release can be aversive. 

In response to the public health threat imposed by tobacco smoking, the brain 

mechanisms that underlie nicotine dependence have been widely investigated. However, 

no consensus mechanism has emerged (Laviolette and van der Kooy, 2004; Dani and 

Harris, 2005). The present findings implicate the core in the aversive effects of nicotine, 

and the medial shell in the rewarding effects of nicotine. More generaIly, the present 

findings indicate that DA transmission may enable multiple, opposing motivational 

processes within the nucleus accumbens. 
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Table 1. DAT, SERT and NET binding. Values are percent of sham-operated control, 

and are expressed as mean ± SEM. und, undetectable; nd, not determined. 

DAT SERT NET 

sham core mSh sham core mSh sham core mSh 

EXPERIMENT 5 

Core lOO±9 29±15 87±12 lOO±5 93±4 105±8 nd nd nd 

medial shen lOO±3 57±17 41±6 lOO±7 106±9 107±11 nd nd nd 

ventral shen lOO±15 50±24 107±14 lOO±4 107±9 101±1O nd nd nd 

OT 100±14 64±26 101±8 100±6 101±8 103±7 nd nd nd 

ventral CP lOO±lO 48±18 100±12 100±4 87±5 109±1O nd nd nd 

EXPERIMENT 6 

Core lOO±5 27±4 81±6 100±6 99±12 119±18 und und und 

medial shen 100±6 67±7 37±2 lOO±6 98±13 109±16 100±20 86±41 87±23 

ventral shen 100±6 55±8 81±1O 100±7 106±15 108±12 100±26 99±46 111±37 

OT 100±4 56±6 lOO±6 lOO±6 l00±l1 116±17 100±24 116±50 90±27 

ventral CP 100±7 64±8 93±10 lOO±7 106±17 107±11 100±32 73±64 58±47 

EXPERIMENT 7 

Core lOO±2 25±7 lOO±5 100±5 90±3 102±6 nd nd nd 

medial shell lOO±3 62±9 41±5 lOO±3 101±5 105±8 nd nd nd 

ventral shen 100±4 50±1O 86±6 lOO±5 94±4 112±11 nd nd nd 

OT 100±7 65±8 76±13 lOO±l1 92±9 96±6 nd nd nd 

ventral CP 100±1 47±5 107±5 lOO±4 96±5 103±7 nd nd nd 

EXPERIMENT 8 

Core lOO±4 14±3 81±5 100±2 100±5 92±3 und und und 

medial shen 100±4 54±4 42±6 lOO±3 110±5 94±4 100±29 126±33 161±44 

ventral shen lOO±4 47±8 60±5 lOO±3 107±5 91±2 100±26 94±31 130±32 

OT lOO±3 51±5 64±5 lOO±4 102±5 91±3 100±14 76±19 87±21 

ventral CP 100±4 47±8 89±4 lOO±2 101±4 96±3 100±15 82±24 115±24 
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Figure 1. Rats expressed conditioned place preference for intravenous but not 

subcutaneous nicotine. Rats appeared to express place preference for an intermediate 

dose ofintravenous nicotine (*p<O.05, uncorrected Wilcoxon test, panel a). A separate 

group of rats was subsequently tested at this dose, and expressed a significant CPP 

magnitude (*p<O.05, panel b). Rats did not express CPP for subcutaneous nicotine at any 

dose tested (panel c). 
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Figure 2. Rats expressed conditioned taste aversion for intravenous nicotine. The 

volume of novel flavor consumed did not differ significantly between nicotine and saline 

conditioning sessions at any nicotine dose given (panel a). Likewise, the total volume of 

fluid consumed (i.e. nicotine-conditioned plus saline-conditioned) on test day did not 

vary with dose of nicotine (panel b). CT A magnitude (panel c) was defined as the 

volume of saline-paired flavor consumed, minus the volume of nicotine-paired flavor 

consumed. Rats conditioned with 50 J.lglkg nicotine drank significantly less nicotine-

paired flavor than control rats receiving saline (**p<0.005, panel c). 
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Figure 3. Core lesions increased, and medial shelliesions decreased, conditioned place 

preference for intravenous nicotine. In animaIs not pretreated with DMI prior to surgery, 

both sham- and core-Iesioned animaIs exhibited significant cpp (tp<O.05, panel a). CPP 

magnitude differed significantly between core- and medial shell-Iesioned animaIs 

(*p<O.05, Tukey's test, panel A). A negative linear association was observed between 

core DAT binding and CPP magnitude (p<O.005, panel b), and a positive association 

between medial shell DAT binding and CPP magnitude (p<O.05, panel c). In rats 

receiving DMI prior to surgery, only core-Iesioned animaIs exhibited significant CPP 
1 

(tp<O.05, panel D). Additionally, core- and medial shell-Iesioned animaIs differed 

significantly in their CPP magnitude (*p<O.005, panel d). As with rats not receiving pre-

surgical DMI, a negative association was observed between core DAT binding and CPP 

magnitude, and a positive association between medial shell DAT binding and CPP 

magnitude (p<O.05 for both, panels e and f respectively). After combining data from both 

experiments, only core-Iesioned animaIs exhibited significant CPP (tp<O.05, panel g). 

Additionally, CPP magnitude differed significantly between medial shell- and both sham-

(*p<O.05) and core- (**p<O.005) lesioned rats. A significant, negative association was 

observed between core DAT binding and CPP magnitude (panel h), and a significant, 

positive association between medial shell DAT binding and CPP magnitude (panel i). To 

better visualize the association between core vs. medial shell and CPP magnitude in 

panels h and i, the contribution of the irrelevant structure (i.e. medial shell or core) as 

calculated from the multiple regression equation has been subtracted to obtain an adjusted 

score. 
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Figure 4. Core lesions abolished conditioned taste aversion for intravenous nicotine. 

CTA magnitude, shown on the y-axis, was calculated as in Fig. 2. In the absence ofDMI 

pretreatment before surgery (panels a-c), only sham-Iesioned animaIs exhibited 

significant conditioned taste aversion (tp<0.05, Wilcoxon test; panel a). Additionally, 

only core-lesioned animaIs differed from sham-Iesioned animaIs in the magnitude of the 

CTA (*p<0.05; panel a). Significant negative linear associations were observed between 

CTA magnitude and core DA innervation (p<0.00005, panel b) and media! shell DA 

innervation (p<0.05, panel c). In animaIs pretreated with DMI before surgery, again, 

only sham-Iesioned rats exhibited significant CTA (ttp<0.005, panel d). Core, but not 

media! shell DA innervation related significantIy to the magnitude of the CTA (p<0.05 

vs. p>0.50, panels e and t). When data from both experiments were combined, both 

sham- and medial shell-Iesioned rats exhibited significant CTA (ttp<0.005, 

tttp<0.0005, panel g). Both core- and medial shell-Iesioned rats differed significantly 

from sham-Iesioned rats in terms ofCTA magnitude (*p<0.05, *** p<0.0005, panel g). 

A significant association was observed between core DAT binding and CTA magnitude 

(panel h), but not between medial shell DAT binding and CTA magnitude (panel i). To 

better visualize the association between core vs. medial shell and CT A magnitude, in 

panels h and i, the contribution of the irrelevant structure (i.e. medial shell or core) as 

calculated from the multiple regression equation has been subtracted to obtain an adjusted 

score. 
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CHAPTER 8: General Discussion 

Laurie H. L. Sellings 
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8.1 Summary 

This thesis examined the effects of catecholamine-depleting lesions of discrete ventral 

striatal subregions on drug-induced behaviours relating to behavioural arousal and reward 

vs. aversive processing. Psychostimulant-induced locomotor activity was reduced by 6-

OHDA lesions of the accumbens core (Chapters 3-6). Effects on reward processing, 

however, were more complex (Table 1). The segregation of locomotor stimulation and 

conditioned place preference between core and medial ventral striatum (i.e. medial shell 

or medial olfactory tubercle) appears to reflect a segregation of reward and locomotion 

rather than conditioned and unconditioned drug effects, since core but not shelliesions 

aboli shed amphetamine-conditioned locomotor activity (Chapter 4). Finally, the core 

subregion may also underlie the aversive effects of nicotine, since lesions of the core 

abolished a CT A for nicotine (Chapter 7). 

Taken together, these results suggest that medial ventral striatum underlies the rewarding 

effects and the core subregion the stimulant effects, of psychomotor stimulants. 

Additionally, the core may subserve a role in the aversive effects of nicotine. 

8.2 Methodologicallimitations 

The 6-0HDA les ion model was chosen in this thesis, since 6-0HDA can selectively 

lesion catecholaminergic terminaIs (see Introduction and Chapter 2). One drawback of 

the 6-0HDA lesion technique is the occurrence of behaviourally relevant compensatory 

neuroadaptations. For example, rats exhibited a similar degree of hypomotility after low

dose apomorphine challenge as did sham-Iesioned controls at 24 weeks, but not at 4 
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Table 1. Effects of 6-0HDA lesions of discrete ventral striatal subregions on locomotor 

stimulation, conditioned place preference, conditioned actiyity and conditioned taste 

aversion. Significant positive association: +. Significant negative association: -. 

Symbols followed by a question mark indicate a non-significant statistical trend. 

Lesion site Core Medial Anteromedial 
Behaviour Drug shell olfactory tubercle 

Locomotor Amphetamine (i.p.) + stimulation 
Cocaine (i. v.) + 
Cocaine (Lp.) + 
Methylphenidate (i.v.) + 

Conditioned Amphetamine (i.p.) + place preference 
Cocaine (Lv.) -? + ++ . 
Cocaine (Lp.) 

Methylphenidate (i.v.) + 
Nicotine (i.v.) + -
Morphine (i.p.) 

Conditioned Amphetamine (i.p.) + activity 
Conditioned Nicotine (i.v.) + taste aversion 
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weeks following-6-0HDA infusion into the nucleus accumbens, (Vos et al., 1999). 

Additionally, the hypomotility observed one week after accumbal6-0HDA infusion 

disappeared 3-4 weeks after the lesion (Wolterink et al., 1990). The types and extent of 

functional recovery that occurs during behavioural testing in the studies performed in this 

thesis (i.e. 1-3 weeks post-Iesion) have not been characterized. However, since all three 

lesion sites were shown to be behaviourally effective in different behavioural tests, it is 

unlikely that neuroadaptations significantly rescued function within this time frame. 

Anatomical selectivity proved difficult to achieve, especially in the case of accumbens 

core lesions. Thus, the experiments presented in this thesis cannot rule out the possibility 

that observed behavioural effects required sorne DA denervation in structures adjacent to 

the target structure. Further refinement of the lesion technique will be required to 

investigate this possibility. Another potential problem lies in the possibility that 

depletion of NE innervation contributed significantly to the observed behavioural effects. 

This seems unlikely for many reasons, as discussed below. 

In the case of locomotor activation, although disruption of noradrenergic transmission 

can inhibit amphetamine-induced locomotion (Ogren et al., 1983; Archer et al., 1986; 

Dickinson et al., 1988; Darracq et al., 1998; Harro et al., 2000; Drouin et al., 2002a; 

Drouin et al., 2002b), the medial prefrontal cortex has been identified as the probable site 

of action (Blanc et al., 1994; Darracq et al., 1998). In contrast, noradrenergic 

transmission in the NAcc does not contribute directly to locomotor stimulation 

(Pijnenburg et al., 1975; Roberts et al., 1975; Kelly and Iversen, 1976; Joyce et al., 1983). 
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Additionally, NE afferents largely avoid the core (Berridge et al., 1997; Delfs et al., 

1998), which was the subregion most clearly associated with the locomotor stimulant 

effect of the psychomotor stimulants examined in this thesis. 

ln the case of reward processing, noradrenergic transmission appears unrelated to both 

CPP and IVSA, for the following reasons. First, stimulation of noradrenergic 

transmission does not produce a CPP (Martin-Iverson et al., 1985; Subhan et al., 2000). 

Second, neither a nor f3 adrenergic receptor antagonists affected i. v. cocaine self

administration behaviour (Johanson and Fischman, 1989). Third, the disruptive effects of 

6-0HDA lesions on cocaine self-administration persist even when NE terminaIs are 

protected with DMI (Roberts et al., 1980). Fourth, self-administration of cocaine directly 

into the amOT was blocked by co-infusion of a DIor D2 DA receptor antagonist 

(lkemoto,2003). Finally, in the case of nicotine, the effects of 6-0HDA les ions on 

noradrenergic transmission appear unrelated to lesion effects on CPP and CT A. More 

specifically, similar lesion effects were observed in rats pre-treated with DMI prior to 6-

OHDA infusion, and those not receiving DMI (Chapter 7). 

Transporter autoradiography was used to quantify DA, 5-HT or NE innervation. 

Although this measure provided an indirect measure of DA innervation, there is evidence 

suggesting that DAT binding density accurately reflects DA innervation after 6-0HDA 

lesion (Joyce, 1991a; Joyce, 1991b). Similarly, SERT binding can be used as a marker 

for 5-HT innervation, since 5-HT afferents to the accumbens express SERT, and >90% of 

accumbal SERT is expressed on 5-HTergic axons and axon terminaIs (Pickel and Chan, 
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1999). Although the distribution of NET in the accumbens has not been thoroughly 

characterized, noradrenergic afferents from the nucleus tractus solitarius, and to a lesser 

extent from the locus coeruleus, are known to innervate the medial accumbens (Gaspar et 

al., 1985; Delfs et al., 1998). Importantly, locus coeruleus noradrenergic neurons express 

both NET rnRNA and protein (Zhu et al., 2002), and nucleus tractus solitarius NE content 

is reduced by 6-0HDA infusion (ltoh et al., 1992), suggesting that these neurons also 

express NET. Since NET autoradiography revealed negligible binding in core, the region 

of ventral striatum virtuall y devoid of noradrenergic innervation (Berridge et al., 1997; 

Delfs et al., 1998), NET binding appears to represent an acceptable marker of ventral 

striatal NE innervation. 

An additional point of discussion is how the experiments presented represent addiction. 

Addiction in humans is characterized by compulsive drug seeking and drug taking 

behaviour that can relapse after protracted abstinence. Intense drug craving, and the 

reinstatement of drug seeking behaviour can be precipitated by exposure to drug-related 

environmental cues, stress, or a small dose of the drug (see Introduction). In this thesis, 

rats' affinity for drug-associated cues was examined extensively, by CPP, CLMA and 

CTA. As such, these experiments examined how the association of environmental cues 

with the drug experience may be encoded by NAcc DA transmission. However, these 

studies do not fully model addiction in the human sense, for two main reasons. Pirst, 

acute drug administration was used - rats received drug on between three and five 

occasions. Second, drug was experimenter delivered, as opposed to being self

administered. Although self-administration paradigms may come doser to modelling 

280 



addiction, drug access is still typically limited, and as such, it usually represents an acute 

model. 

Two recent reports have somewhat convincingly modelled "addictive" behaviours in a 

chronic cocaine self-administration paradigm in rats (Deroche-Gamonet et al., 2004; 

Vanderschuren and Everitt, 2004; Vanderschuren et al., 2005). In the first such study, it 

was demonstrated that the presence of an aversive CS did not prevent drug administration 

in rats self-administering cocaine on a prolonged schedule (Vanderschuren and Everitt, 

2004). In the second study (Deroche-Gamonet et al., 2004), rats were scored on three 

addiction-like criteria - namely persistence of drug seeking (measured by resistance to 

extinction in the absence of drug), resistance to punishment (self-administration despite 

drug being delivered with a punishing footshock) and motivation to self-administer 

(breaking point on a progressive ratio). Approximately 17% of rats were in the top third 

for aIl three addiction-like criteria examined in the study, a number that these authors 

point out corresponds with the percentage of human cocaine users who progress to 

cocaine addiction (Anthony et al., 2006). Unfortunately, no comparisons were made 

between the rat population exhibiting aIl three addiction-like behaviours and addiction 

resistant populations at the molecular, cellular, or systems level. Such differences 

certainly merit further investigation, as they may provide insight into determinants of 

whether an individual is a part of an addiction susceptible or non-susceptible population. 

8.3 Future directions - how do discrete 6-0HDA lesions of ventral striatal 

subregions affect behaviours that are altered in psychiatrie disorders? 
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Changes in DA transmission in the ventral striatum are by no means observed only after 

exposure to natural rewards and stressors, or in response to drug administration or 

exposure to drug-associated stimuli. Alteration of DA transmission has been observed in 

several psychiatric disorders in humans (Cropley et al., 2006). Additionally, several of 

these psychiatric disorders are co-morbid with substance abuse (Green, 2005), suggesting 

that a link between the two may exist. This link may be ventral striatal DA transmission. 

Animal evidence for mesolimbic DA transmission as a critical component of specifie 

behavioural deficits observed in several psychiatrie disorders is examined below, with 

special reference to core vs. shell contributions. 

8.3.1 Sensorimotor gating 

Deficits in sensorimotor gating as measured by the prepulse inhibition of the acoustic 

startle reflex (PPI) are observed in a number of psychiatrie disorders, including 

schizophrenia and obsessive-compulsive disorder (Swerdlow et al., 1993). PPI is the 

decreased startle observed after a loud and sudden acoustic tone if it is preceded by a 

weak auditory "prepulse". DA neurotransmission in the accumbens appears to be critical 

in sensorimotor gating, as evinced by the disruption in PPI observed after intra

accumbens infusion of exogenous DA (Swerdlow et al., 1990), and the restoration of PPI 

by 6-0HDA les ions of the ventral striatum in rats treated with systemic amphetarnine 

(Swerdlow et al., 1990). 

Taken as a whole, the core subregion appears to play a more significant role than the 

shell in mediating PPI, for the following reasons. First, inactivation of core but not shell 
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by infusion of the GABAA receptor agonist muscimol disrupted PPI (Pothuizen et al., 

2005a). Second, lesions of the core enhanced dizocilpine-induced PPI disruption 

(Pothuizen et al., 2006b). Third, NMDA infusion in core disrupted PPI (Reijmers et al., 

1995). Fourth, infusions of the DA D2/D3 receptor agonist quinpirole into the core more 

effectively disrupted PPI than did intra-shell infusions (Wan et al., 1994). Fifth, systemic 

haloperidol administration rescued PPI only after intra-core infusions (Wan and 

Swerdlow, 1996). In summary, although the core appears more functionally important 

than the shell, the precise role of dopamine in the core vs. shell warrants further 

investigation. The mini-Iesion approach developed in this thesis could be informative in 

this respect, to examine the effect of DA denervation in core vs. shell on PPI. 

8.3.2 Latent inhibition and attentional switching 

Latent inhibition refers to the delayed acquisition of a CS-US association resulting from 

prior presentation of the CS. Changes in the persistence of latent inhibition, which can be 

considered as deficits in attentional switching, are observed in schizophrenie patients 

(Weiner, 2003). Such deficits are reversed by neuroleptic treatment, suggesting they may 

be DA-dependent in humans (Weiner, 2003). This appears to be the case in rodents, as 

reducing DAergic transmission in the accumbens by pharmacologie al blockade or 6-

OHDA infusion made latent inhibition abnormally persistent, while intra-NAcc 

amphetamine in combination with systemic amphetamine attenuated latent inhibition 

(Gray et al., 1997). 
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The core and the shell seem to exert opposing effects on latent inhibition. More 

specifically, whereas electrolytic or excitotoxic lesions of the shell disrupted latent 

inhibition in a conditioned avoidance paradigm (Tai et al., 1995; Weiner et al., 1996; Gal 

et al., 2005), electrolytic lesions of the entire accumbens made latent inhibition 

abnormally persistent (Gal et al., 2005). This suggests that neurotransmission in the shell 

is important in learning that a potential CS has no motivational importance, and that the 

core underlies learning that a CS previously considered unimportant is in fact predictive 

of a motivationally relevant outcome. This may relate to DA release in core vs. shell, 

since pre-exposure to the CS+ prevented subsequent conditioned DA release in the shell, 

but not in the core (Murphy et al., 2000). Again, the mini-Iesion approach developed in 

this thesis has potential to be informative in this respect. 

8.3.3 Impulsive choice 

One aspect of impulsivity can be examined in animaIs by investigating responses to 

delays in reward receipt. For example, an animal that preferentially responds for a small, 

immediate reward rather than for a large, delayed reward has made an impulsive choice. 

Impulsive responding is one of the hallmarks of several human psychiatric disorders, 

including attention deficit hyperactivity disorder (King et al., 2003), personality 

disorders, bipolar disorder, and addiction (Moeller et al., 2001; Bomovalova et al., 2005). 

Impulsive responding for rewards is thought to be dependent on ventral striatal 

transmission, and is probably DA-dependent, for the following reasons. First, both 

systemic and intra-accumbens amphetamine increase impulsive responses in rats (Cole 
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and Robbins, 1987). Second, 6-0HDA lesions of the ventral striatum prevent systemic 

AMPH-induced increases in impulsive responding (Cole and Robbins, 1989). Third,6-

OHDA les ions of the NAcc reduced the impulsive responding resulting from systemic 

administration of the 5-HTIA receptor agoni st 8-0H-DPAT (Winstanley et al., 2005). 

The latter finding also indicates that 5-HT-DA interactions in the accumbens are critical 

in impulsive responding (Harrison et al., 1997; Koskinen and Sirvio, 2001). 

Manipulations of the NAcc core rather than the shell affect choice selection (Cardinal et 

al., 2004). For example, excitotoxic lesions of the core, but not of the shell, increased 

responding for small but immediate vs. large but delayed rewards (Cardinal et al., 2001; 

Pothuizen et al., 2005b). A similar deficit is also observed when choosing between 

intermittent and continuous reinforcement. More specifically, in rats sustaining 

excitotoxic core lesions, continuously reinforced rewards were consistently chosen, even 

when intermittent reinforcement provided substantially larger food reward (Cardinal and 

Howes, 2005). The input from the prefrontal cortex to the core appears to be essential in 

choice selection, as rats sustaining disconnection lesions of the core and prefrontal cortex 

exhibited impulsive responding (Christakou et al., 2004). Although these results c1early 

implicate neurotransmission in the core rather than the shell in choice selection, how 

DAergic transmission in either subregion may influence choice selection warrants further 

investigation, and again, the 6-0HDA mini-Iesions employed in this thesis may shed light 

on this question. 

8.4 Mesolimbic dopamine - reward signal or enabler of reward-related behaviour? 
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Changes in DA transmission are clearly associated with drug delivery and self

administration. Several influential hypotheses have proposed specific roles for DA 

signaIling in motivated behaviour (e.g. Wise, 1978; Wise, 1987; Wise and Rompre, 1989; 

Schultz, 1998; Wise, 2004; Ikemoto and Wise, 2004; Schultz, 2005). Indeed, much 

evidence supports a role for DA in reward and reinforcement (see Introduction). The 

term reward, however, signifies several separate psychological processes. In a recent 

review, Berridge and Robinson (2003) outlined different aspects of reward-related 

processing. Three major categories of reward processing were outlined - namely the 

learning of relationships between stimuli, the experience of hedonic consequences and 

the motivation to receive reward. These three categories of reward processing shaH be 

considered below. 

8.4.1 Reward-related learning 

The first category to be considered shan be the learning of relationships between 

environmental cues and the drug experience. Since several conditioned drug measures 

(i.e. CPP, CTA and CLMA) were examined in this thesis, this type of reward processing 

is of particular relevance in reference to the experiments presented here. In support of a 

role for DA cell firing specifically in reward learning, a series of elegant studies using 

singie-cell recording in the conscious monkey have suggested that DA cens fire in 

response to rewarding stimuli (Mirenowicz and Schultz, 1996; Schultz, 1998; Schultz, 

2005). More specificaIly, presumed DA cells fire in response to the initial reward 

presentation, but this response quickly habituates. Instead, cues predictive of future 

reward receipt elicit increased DA cell firing, and the omission of expected reward is 
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accompanied by a decrease in DA cell firing (Schultz, 1998; Schultz, 2005). Conversely, 

DA cell firing was not observed in response to a mildly aversive stimulus (Mirenowicz 

and Schultz, 1996), which was interpreted as support of a reward-selective function for 

DA cell firing. Taken together, the results of these studies led this group to propose that 

DA cell firing is important in reward prediction. Since extracellular DA levels in the rat 

nucleus accumbens have been observed to increase in response to conditioned stimuli 

predicting the receipt of food (Bassareo and Di Chiara, 1999), sucrose (Datla et al., 2002) 

or cocaine (Ito et al., 2000), increased DA cell firing associated with reward prediction 

may translate into increased extracellular DA levels. However, extracellular DA levels in 

the accumbens have also been observed to increase in response to salient or aversive 

stimuli (e.g. Young et al., 1998; Horvitz, 2000). 

Reward prediction can be examined in the CPP paradigm. Here, cues paired with the 

drug experience come to serve as predictors of reward receipt. Studies examining CPP in 

this thesis are consistent with a role for DA transmission in the ventral striatum in reward 

prediction, since 6-0HDA lesions of the medial shell or medial OT reduced CPP for 

several psychomotor stimulant drugs. However, investigations of nicotine CPP and CT A, 

in which 6-0HDA lesions of the core both increased CPP magnitude and aboli shed CT A, 

suggest that DA transmission encompasses a broader role thanjust reward prediction. 

Aberrant learning has been proposed to underlie addictive behaviours. Supporting this 

idea, processes important in learning such as long term potentiation and long term 

depression have been observed in the NAcc after repeated drug administration (reviewed 
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in Berke and Hyman, 2000; Hyman and Malenka, 2001; Hyman et al., 2006). One such 

proposaI posits that aberrant stimulus-response habit leaming may represent a stepping 

stone on the route to compulsive drug-taking behaviour (Berke and Hyman, 2000; Everitt 

and Robbins, 2005), and DA transmission in the dorsal striatum appears to support habit 

leaming. In particular, it was recently shown that infusion of the DA receptor antagonist 

cis-flupenthixol into the dorsal striatum dose-dependently reduced responding for a 

cocaine-associated cue, but only after habituaI responding had been established 

(Vanderschuren et al.; 2005). On the basis of such results, this group has hypothesized 

that responding for drug receipt becomes an aberrant stimulus-response habit - that is, 

drug seeking is no a longer goal-directed behaviour, but becomes an automated response 

(Everitt ànd Robbins, 2005). This is an attractive theory that can incorporate much of the 

experimental animalliterature examining drug-seeking behaviour. However, it is unclear 

if automated habit responding can fully incorporate the flexibility of responding required 

in human drug-seeking behaviour; more specifically, human drug-seeking requires 

flexible behaviour in order to obtain drug in a variety of situations, not just a simple 

operant response as in animal models (Robinson and Berridge, 2003). Whereas this 

concem does not rule out a role for aberrant leaming per se in the development of 

compulsive drug seeking behaviour, it does suggest that aberrantly strong stimulus

response leaming cannot fully account for addiction. 

8.4.2 Hedonic responses to reward presentation 

The second "reward" category is the hedonic or affective component, which has also 

been referred to as 'liking' the reward (e.g. Robinson and Berridge, 2003). One approach 
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that has been taken to study this phenomenon in the rat is taste reactivity. In this 

paradigm, the rat is examined after the consumption of a substance (e.g. sucrose, quinine 

solution) and the number of positive hedonic reactions (e.g. tongue protrusions, paw 

licking) vs. aversive reactions (e.g. he ad shakes, chin rubs) is scored. DAergic 

mechanisms within the accumbens shell do not appear necessary for the expression of 

positive 'liking' reactions to sucrose reward; such studies have implicated opioid 

transmission rather than DA transmission in the accumbens in the positive 'liking' 

reactions to sweet tastes (Pecina and Berridge, 2000; Wyvell and Berridge, 2000; Pecina 

and Berridge, 2005). However, it remains unknown if liking of drug reward is dependent 

on DAergic signalling. Additionally, the taste reactivity test is not useful for examination 

of primary drug reward. Indeed, examination of taste reactivity in response to tastes 

conditioned to reward-relevant drugs often leads to an avoidance of that flavour, as in 

conditioned taste aversion. 

One potential measure of affect that may be useful to examine drug liking is the 50 kHz 

ultrasonic vocalization (see Introduction). Although it is not universally accepted that 

such an index represents affect, it has been proposed that rats can communicate both 

'positive' and 'negative' affect by ultrasonic vocalization (Knutson et al., 2002). 

'Positive' hedonic state calls are produced by intra-shell amphetamine infusion, 

suggesting that positive affect induced by drugs may indeed be dependent on DA 

transmission (Thompson et al., 2006). This would accord with other studies suggestive 

of a role for shell DA transmission in several aspects of reward-related processing (Di 

Chiara et al., 2004). Further characterization of 50 kHz ultrasonic vocalizations as an 
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affective measure will be useful to resolve the question of DA involvement in affective 

state induced by drugs vs. natural rewards. 

8.4.3 Motivation for reward receipt 

The third and final category is the motivational aspect of reward. In contrast to the 

hedonic aspect of reward, which is an affective measure, motivation examines the desire 

or drive to obtain the reward. This is not a trivial distinction. Indeed, in a recent human 

study, liking and wanting of alcoholic beverages were shown to be dissociable (Hobbs et 

al.,2005). More specifically, administration of a priming alcoholic beverage increased 

the motivation to consume alcohol without affecting self-reports of liking, whereas 

addition of an unpleasant flavour to the alcohol reduced liking, but not consumption 

(Hobbs et al., 2005). Animal studies have suggested that NAcc DA may mediate the 

attribution of incentive salience - that is, the motivation or drive to obtain a reward 

(Robinson and Berridge, 2003). It is proposed that sensitized DA release after repeated 

drug use attributes excessive incentive salience to drug-associated cues, and would 

ultimately cause a state of "incentive sensitization", contributing to compulsive drug

seeking behaviour (Robinson and Berridge, 2003). The results observed in the present 

thesis are consistent with the notion that NAcc DA transmission is important in the 

association of drug-related cues with the drug experience. However, whether the 

persistence of such associations - that is, the ability of cues to precipitate drug-seeking 

and drug-taking behaviour after protracted abstinence - is dependent on DA release 

remains a question for the future. AlI things considered, it is c1ear that the DA hypothesis 
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must be refined to consider which aspects of reward (Berridge and Robinson, 2003) 

depend critically on NAcc DA transmission and which do not. 

8.4.4 Dopamine - beyond a reward-specific function? 

Although NAcc DA transmission is c1early associated with psychostimulant reward, 

hypotheses indicating that NAcc DA is reward-specific suffer two important criticisms. 

The first is that extracellular DA levels are altered in the ventral striatum in response to 

salient, stressful and aversive stimuli (Horvitz, 2000; Ungless, 2004). As such, a 

selective role for DA in reward processing is unlikely. It has been proposed that DA 

release accompanying such stimuli may simply represent an opponent process (Ungless, 

2004). Briefly, opponent process theory posits that a stimulus activates two, opposing 

responses. The first is of rapid onset and offset, and the second - the opponent process -

serves to counter the first. In the case of aversive stimuli, it has been proposed that the 

increase in extracellular DA levels represents an opponent process to an initial decrease 

in DA cell firing induced by the aversive stimulus (Ungless, 2004; Ungless et al., 2004). 

However, such an explanation does not exc1ude a role for DA in signalling aversive 

stimuli. It simply means that the role DA is playing in encoding aversive stimuli is 

different from that ofrewarding stimuli. Accordingly, Ikemoto and Panksepp (1999) 

proposed that NAcc DA transmission enables sensorimotor integration that facilitates 

flexible approach responses. Such a general role for NAcc DA in motivated behaviour 

would encompass both positive and negatively motivated behaviour, as weIl as 

behavioural activation. 
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A second criticism of the idea that DA transmission is reward-selective is that 

manipulations of NAcc DA transmission alter the locomotor stimulant effect of a wide 

array of psychoactive drugs, and it is unclear how this unconditioned response directly 

represents reward processing. Although it has been proposed that drug reward and 

reinforcement are critically dependent on behavioural activation, the two effects are 

indeed segregable (Robledo et al., 1993; Burns et al., 1993; Sellings and Clarke, 2003; 

Ventura et al., 2003; Sellings and Clarke, 2006; Sellings et al., 2006a; Sellings et al., 

2006b). 

8.5 Of mice and men? 

Although it is interesting to consider what DA transmission encodes in animaIs, it is 

important to consider how su ch theories may apply to the human case. 

8.5.1 Does the core-shell divide exist in humans? 

Compared to the rodent, little is known about potential subdivisions of the ventral 

striatum in the human. A limited number of studies have exarnined post mortem human 

brain tissue using histochemical markers that are differentially distributed between core 

and shell in the rat. A table of comparisons between known human markers and the 

equivalent in the rodent is shown in Table 2. In short, histochemical marker distributions 

typically support the existence of a dorsolateraVrnedioventral division in the human 

ventral striaturn that resembles the core/shell divide in the rat. However, it is not known 

if these compartments in the human are accompanied by hodological and functional 

differences. Unfortunately, the spatial resolution ofbrain imaging techniques 
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Table 2. Distribution of histochemical markers between rat core and shell, and human 

core-like and shell-like areas 

Species Rat Ruman 
Marker Structure 

Dopamine D3 receptor Core Low Low 
Shen High High 

Il opioid receptor Core Low Low 
Shen Intermediate-high Intermediate-high 

K opioid receptor Core Low-moderate Low 
Shen High High 

Calbindin D-28k Core High High 
Shen Low Low 

Calretinin Core Low Low 
Shell High, especiany caudal High 

shen 
Choline acetyltransferase Core Low Low-intermediate 

Shen High in caudal shell Low-intermediate 
Acety 1cholinesterase Core Low Low-intermediate 

Shen High Low-intermediate 
Substance P Core Low Low 

Shell Intermediate-high High 

References: Zaborszky et al., 1985; Tempel and Zukin, 1987; Meredith et al., 1989; 

Zahm and Brog, 1992; Levesque et al., 1992; Voom et al., 1994; Jongen-Relo et al., 

1994; Voom et al., 1996; Meredith et al., 1996; Bubser et al., 2000; Prensa et al., 2003. 
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is not such that differences in DA transmission between the core-like and shell-like areas 

of human ventral striatum can be determined. 

8.5.2 Does DA signalling encode drug eues and experiences in humans? 

8.5.2.1 DA and cue-induced craving 

DA transmission may play a role in selective attention; such a role could influence the 

attention attributed to drug-related stimuli (Franken et al., 2005). Indeed, 

pharmacological treatments that act on DA receptors have been shown to influence cue

induced craving in humans. For example, administration of the indirect DA agonist 

amphetamine increased cue-induced cigarette craving in both abstinent and non-abstinent 

smokers (Alsene et al., 2005). Although the DA receptor antagonist haloperidol did not 

attenuate cue-induced craving in abstinent smokers, this study had a relatively small 

sample size (Mahler and De Wit, 2005). Conversely, the atypical antipsychotic 

olanzepine successfully reduced cue-elicited craving in abstinent smokers in a double 

blind study (Hutchison et al., 2004), suggesting that DA may signal cue-elicited craving. 

Whether this extends to other drugs is unc1ear. More specifically, in the case of cocaine, 

risperidone reduced cue-induced cocaine craving in an open label study (Smelson et al., 

1997), but was ineffective in preventing cue-induced craving for cocaine in a double

blind, placebo-controlled study (Smelson et al., 2004). In further support of a role for 

DA transmission in cue-induced craving, feeding non-dependent cocaïne users a diet 

lacking amino acid precursors of DA synthesis successfully reduced cue-induced cocaine 

craving (Ley ton et al., 2005). It is possible that the properly controlled risperidone study 

lacked power due to a small sample size. In summary, it appears that DA transmission in 
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humans may be causally related to cue-induced drug craving. However, more properly 

controlled and large-scale studies are needed to define a role for DA signalling in such a 

process. 

The proposaI that DA may encode selective attention in humans (Franken et al., 2005) is 

consistent with rodent studies suggesting that DA release accompanies exposure to a 

wide array of salient stimuli (Horvitz, 2000). Additionally, the incentive sensitization 

theory (Robinson and Berridge, 2003) accords with the idea that excessive attention may 

be paid to drug-associated cues in humans, although evidence for drug sensitization in 

humans is lacking. 

8.5.2.2 DA and subjective drug measures 

Several PET imaging studies have shown an association between DA transmission and 

drug-liking or euphoria affect in humans. For example, a reduction in DA D2 receptor 

binding potential in the extended striatum (measured using the PET ligand [lle] 

raclopride), an indirect measure of DA release, was associated with subjective reports of 

drug liking for both methylphenidate (Volkow et al., 1999,2002) and nicotine (Barrett et 

al.,2004). Additionally, the euphoria experienced after intravenously-administered 

amphetamine correlated significantly with the same measure in ventral striatum (Drevets 

et al., 2001), with one study suggesting lateralization to the left ventral striatum (Oswald 

et al., 2005). However, studies examining the correlation between mood and raclopride 

binding potential after oral amphetamine administration failed to show such a 

relationship (Ley ton et al., 2002; Riccardi et al., 2006), despite a clear relationship 
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between DA release and drug wanting (Ley ton et al., 2002). In the case of oral 

amphetamine, administration of the DA receptor antagonist pimozide prior to drug 

receipt had no effect on drug liking (Brauer and De Wit, 1996; Brauer and De Wit, 1997). 

It is possible that subjective liking for intravenous, but not for oral amphetamine is 

mediated by DA transmission. Indeed, pre-c1inical studies in laboratory animaIs have 

demonstrated that route of administration is a critical determinant of whether or not 

cocaine CPP is DA-dependent (Spyraki et al., 1987; Sellings et al., 2006b). In other 

words, the route of administration may be a critical factor in determining whether a drug

induced effect is dependent on or independent of DA transmission. It is unc1ear if DA 

transmission mediates or merely accompanies the experience of positive affect associated 

with drug taking. Additionally, such a correlation between increased DA transmission 

and positive affect or euphoria has not been universally observed. Whether increased 

striatal DA transmission mediates, enables or merely accompanies drug-induced positive 

affect in humans remains a subject for further investigation. In summary, the above 

evidence linking striatal DA release and drug-induced affect in humans is at best 

correlative. 

8.6 Concluding statements 

The studies in this thesis examined the relative contribution of DA transmission in the 

core, medial shell and medial olfactory tuberc1e to behavioural attributes of 

amphetamine, cocaine, methylphenidate and nicotine. Although locomotor stimulation 

was associated with DA transmission in the core for aU drugs tested (Chapters 3-6), the 

pattern of results for reward was more complex (Chapters 3, 5-7; see Table 8-1). 
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Additionally, 6-0HDA lesions of the core appeared to reduce the aversive effects of 

intravenous nicotine (Chapter 7). Taken as a whole, these studies suggest that DA 

transmission in small, adjacent brain structures can encode different aspects of motivated 

behaviour. Such complexities must be considered in the development of more effective 

therapeutics in drug cessation. It is clear that in vitro screening assays commonly 

employed in pharmaceutical research cannot mimic such complexities, and su ch 

reduction.ist approaches to drug discovery may account in part for the lack of efficacious 

drugs in the battle against drug addiction. 
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Segregation of Amphetamine Reward and Locomotor 
Stimulation between Nucleus Accumbens Medial Shell and 
Core 

Laurie H. 1. SelIings and Paul B. S. Clarke 
Department ofPharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada H3G 1Y6 

Convergent evidence suggests that amphetamine (AMPH) exerts its rewarding and locomotor stimulating effects via release of dopamine 
in the nucleus accumbens. However, there is no consensus as to the relative contributions of core and medial shelI suhregions to these 
effects. Moreover, the literature is based primarily on intracranial administration, which cannot fully mimic the drug distribution 
achieved by systemic administration. In the present study, the effects ofbilateral6-hydroxydopamine lesions of the accumhens core or 
medial shelI on rewarding and locomotor stimulating effects of systemically administered am phetamine (0.75 mg/kg, i. p.) were examined 
in a conditioned place preference (CPP) procedure rdying soldy on tactile eues (floor texture). Residual dopamine innervation was 
quantified by [i25I)-RTl-55 binding to the dopamine transporter. When lesions were performed hefore the conditioning phase, AMPH
induced locomotor stimulation and CPP magnitude were positively correlated with residual dopamine transporter binding in core and 
medial shell, respectivcly. Medial shelliesions did not affect morphine CPP, arguing that a sensory or mnemonic deficit was not respon
sible for the lesion-induced reduction in AMPH CPP. Medial shelliesions performed between the conditioning phase and the test day 
reduced the expression of amphetamine CPP. These results suggest that after systemic amphetamine administration, rewarding and 
locomotor stimulating effects of the drug are anatomicalIy dissociated within the nucleus accumbens: the medial shell contributes to 
rewarding effects, whereas the core contributes to behavioral activation. 

Key words: nucleus accumbens corej nucleus accumbens medial shellj amphetaminej 6-hydroxydopaminej locomotionj rewardj condi
tioned place preferencej morphine 

Introduction 
Convergent evidence suggests that the rewarding and behavioral 
activating effects of psychomotor stimulant drugs are initiated by 
increased dopaminergic transmission in the nucleus accumbens 
(NAcc). Evidence is perhaps strongest for the prototypic psy
chomotor stimulant, amphetamine (AMPH). For example, the 
locomotor stimulant effect of systemic AMPH is mimicked by 
intra-accumbens infusion of AMPH or dopamine (DA) (Pijnen
burg et al., 1976; Campbell et al., 1997) and is inhibited by intra
accumbens administration of DA antagonists (Pijnenburg 
et al., 1975; Roberts et al., 1975; Phillips et al., 1994) or 
6-hydroxydopamine (6-0HDA) (Kelly et al., 1975; Joyce et al., 
1983; Clarke et al., 1988). Similarly, the rewarding effects of 
AMPH are either mimicked or inhibited by the same types of 
manipulations (Y okel and Wise, 1976; Lyness et al., 1979; Spyraki 
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et al., 1982; Carr and White, 1991; Phillips et al., 1994; Izzo et al., 
2001). 

The NAcc is a heterogeneous structure, as evinced by immu
nohistochemical staining and neuronal projection patterns 
(Zahm and Brog, 1992). The major subdivisions are a medioven
tral shell and a dorsolateral core. These subregions are function
ally distinct (Maldonado-lrizarry and Kelley, 1995; Weiner et al., 
1996; Kelley et al., 1997; Parkinson et al., 1999; Boye et al., 2001; 
Jkemoto, 2002), but their precise roles in reward and locomotor 
activation are uncertain. For example, the locomotor stimulant 
effect of AMPH has been attributed to an action in the core 
(Weiner et al., 1996; West et al., 1999; Boye et al., 2001) or in 
medial shell (Heidbreder and Feldon, 1998; Parkinson et al., 
1999) or in both structures (Pierce and Kalivas, 1995; Ikemoto, 
2002). In contrast, certain dopaminergic drugs have been shown 
to maintain responding when infused into (medial) shell but not 
core (Carlezon and Wise, 1996; Ikemoto et al., 1997). Intra-shell 
self-administration of Ai\1PH has also been reported (Hoebel et 
al., 1983; Chevrette et al., 2002), but in these studies intra-core 
infusions were not examined. 

A feature of almost ail the behavioral studies using AMPH was 
that the drug was given directly into the NAccj after intracranial 
administration, drug distribution and local concentration differ 
markedly from that achieved after systemic administration. Re
cently, we combined systemic AMPH administration with 
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6-0HDA lesions and found that locomotor stimulation was 
blunted by dopaminergic denervation of core and not medial 
shell (Boye et al., 2001). 

The present study aimed to establish the relative involvement 
of NAcc core and media! shell subregions in systemic AMPH
induced behaviora! activation and reward. Rats that had sus
tained 6-0HDA lesions of NAcc core or medial shell were as
sessed for AMPH -induced locomotor activation and conditioned 
place preference (CPP). To assess the possibility that decreased 
CPP indicated a detlcit not in reward but in learning, memory, or 
sensory function, morphine CPP was also tested. 

Materials and Methods 
Subjects 
Subjects were 142 male Long-Evans rats (Charles River, St. Constant, 
Quebec) weighing 270-310 gm at time of surgery. Rats were housed in 
groups of three in clear Plexiglas cages in a temperature- and humidity
controlled animal colony that was lit from 7 A.M. to 7 P.M. Food and 
water were available ad libitum except during behavioral testing. Ali ex
periments were approved bythe McGiIl Faculty of Medicine Animal Care 
Committee in accordance with Canadian Council on Animal Care 
guidelines. 

Stereotaxie infusion of 6-0HDA 
Rats were anesthetized with ketamine HCI (90 mg/kg, i.p.) and xylazine 
HCI (16 mg/kg, i.p.) 15 min after pretreatment with atropine methyl 
nitrate (0.05 mg/kg, s.c.). The rat was placed in a stereotaxie apparatus 
(Kopf, Tujunga, CA) with the incisor bar set at -3.9 mm. Rats received 
bilateral infusions of either 6-0HDA or vehicle into either NAcc core or 
medial shell. Infusions were made via a 30 gauge stainless steel cannula 
attached by polyethylene tubing to a 10 MI Hamilton syringe driven by a 
model5000 Micro Injection Unit (Kopf). For greater accuracy, coordi
nates for both the core and the medial shell were derived from the mean 
of two coordinate systems. Thus, anterior-posterior coordinates were 
+ 10.3 mm from interaural zero and + 1.3 mm from bregma for both 
core and shell. Lateral coordinates were ±0.6 mm (shell) and ±2.4 mm 
(core). Ventral coordinates for shell (three injections) were +2.0, +2.4, 
and +2.8 mmfrom interauralzero and -8.0, -7.6, and -7.2 mm from 
bregma. Ventral coordinates for corewere + 2.9 mm from interaural zero 
and -7.1 mm from bregma. AlI coordinates are based on the atlas of 
Paxinos and Watson (1997). 6-0HDA or vehicle was infused on each side 
in a volume of 0.1 Ml (core) or as three infusions of 0.06 pl each (shell) at 
a rate of 0.1 MI/min. The concentration of6-0HDA used was 80 Mg/MI 
(core) or 48 Mg/ MI (shell). The cannula remained at the final infusion site 
for 5 min. Dipyrone (100 mg/kg, s.c.) provided analgesia after surgery. 
Animais were aIIowed 7-11 d recovery before conditioning (experiments 
1 and 3) or testing (experiment 2). Four animals died after surgery in 
experiment 3. 

Conditioned place preference testing 
General procedure. The method was modified from that of Vezin a and 
Stewart (1987). Eight CPP cages [58.1 cm (length) X 28.8 cm (width) X 

53.0 cm (heightl] were used, each comprising four outer walls made of 
white plastic-coated parti cie board (Melamine) and an open top. Cages 
sat on linoleum flooring covered with a thin layer of Beta Chip bedding. 
There was no wall dividing the cage into two compartments. Two remov
able square floor tiles [28.5 cm (length) X 28.5 cm (width) X 5.5 cm 
(height)] were inserted into each cage; these served as tactile cues. Floor 
tiles were of two types: mesh and bar. These two textures were provided, 
respectively, bya stainless steel grid with squares of 1 X 1 cm and by 12 
stainless steel bars of 1.2 cm diameter separated by 1.5 cm edge to edge. 
Both floor types were mounted on square Melamine frames. Ail behav
ioral testing was performed in a room lit with a Kodak GBX-2 safelight 
filter (Vistek, Toronto, Ontario, Canada) providing far-red illumination 
(wavelength >650 nm) to minimize visual cues. The location and move
ments of rats during behavioral testing were monitored by a c10sed circuit 
television video camera (Panasonic) linked to a commercial tracking system 
(EthoVision v3.0, Noldus Information Technology, Leesburg, VA). 

Behavioral testing took place over 8 consecutive days and consisted of 

Sellings and Clarke. Raie of Core and Shell in Amphetamine Reward and Locomotion 

three phases: preexposure, conditioning, and testing. During all three 
phases, animais were habituated to the test room in home cages for 15 
min before placement into test CPP cages. The preexposure phase served 
to habituate each animal to the CPP cage itself. This phase comprised a 
single 20 min session performed in the absence offloor tiles. The condi
tioning phase took place on days 2-7. It comprised six daily sessions of 45 
min each: three sessions with drug and three sessions with saline admin
istration. Drug and saline were administered on alternating days. After 
injection, each rat was immediately placed in the middle of a CPP cage. 
During the conditioning trials, rats had access to the entire cage, which 
provided a single tactile floor cue (either two mesh tiles or two bar tiles). 
On the day immediately after the final conditioning trial, a single 10 min 
test session was given. Here, the CPP cages contained one bar tile and one 
mesh tile. Animals in a drug-free state were placed in the middle of the 
cage and given free choice between the half of their cage with the bar 
texture and that with the mesh texture. Before a new test or conditioning 
session was started, half of the soiled Beta Chip was removed and re
placed with new bedding, and the cage walls and tiles were wiped with 
40% ethanol and allowed to dry. Groups of animais were counterbal
anced as fully as possible, not only with respect to the texture that was 
paired with drug but also with respect to the position of that texture 
within the test cage on test day and the order of drug versus saline ad
ministration during conditioning. 

On the test day, the time spent on each side of the apparatus was 
recorded. The location of a rat was defined as its center, as determined by 
the tracking system. During conditioning trials, locomotor activity was 
recorded as total horizontal distance moved. Ali testing was done be
tween 8:30 A.M. and 5:30 P.M. A pilot study in which rats received saline 
paired with both floor textures showed that rats had no significant pref
erence for either texture on test day (our unpublished observations). 
Thus the procedure can be considered unbiased. 

Experimental procedures. In experiment 1, rats received bilateral infu
sion of6-0HDA orvehicle into either core or medial she1l7-11 d before 
preexposure. Rats were then conditioned with 0.75 mg/kg AMPH intra
peritoneally. In experiment 2, rats received bilateral6-0HDA or vehicle 
infusions into medial shell. Half of the rats in each surgery group received 
0.75 mg/kg AMPH intraperitoneally; the other half were conditioned 
with 10 mg/kg morphine intraperitoneally. Experiment 3 is similar in 
design to experiment 1 except that rats underwent stereotaxie infusion 
surgery after conditioning but before testing (Fig. 1). 

Quantitative [125I]RTI-55 autoradiography 
The extent of the 6-0HDA lesion was quantified by autoradiographie 
labeling of the plasmalemmal DA transporter (DAT) using a nonsaturat
ing concentration of [ 125I]RTI_55 (2200 Ci/mmol; NEN-Mandel, 
Guelph, Ontario), because it has bcen shown previously that percentage 
loss of DAT accurately represents tissue DA loss (Joyce, 1991a,b). 
[ 12SI]RTI-55 binds selectively to DAT provided the serotonin trans
porter (SERT) is inhibited (Boja et al., 1992; Coulter et al., 1995). Con
versely, SERT can be selectively labeled via occlusion ofDAT (Pradhan et 
al., 2002). The day after CPP testing, rats were anesthetÏzed with sodium 
pentobarbital (65 mg/kg, i.p.) and decapitated. Brains were removed 
rapidlyand frozen in 2-methylbutane at - 50°C for 30 sec and stored at 
-40°C, Coronal sections (20 Mm) were taken on a cryostat at four ros
trocaudallevels through the nucleus accumbens: + 11.2, + 1 0.7, + 10.2, 
and + 9.7 mm anterior to interaural zero (Paxinos and Watson, 1997). At 
each level, five adjacent sections were collected: four for autoradiography 
and one for Nissl staining with cresyl violet. Sections were thaw mounted 
onto gelatin-subbed slides, air dried at room temperature for 20-30 min, 
and stored with desÎccant at - 40°C. 

Sections were thawed at room temperature for 10 min and then placed 
in a staining dish containillg an aqueous buffer solution of 120 mM NaCI, 
0.1 M sucrose, 10 mM sodium phosphate buffer, and 10 pM [ 125I]RTI-55. 
1'0 assay for DAI' binding, 50 nM citalopram hydrobromide was used to 
occlude SERT; nonspecific binding was determined by addition of 10 MM 
GBR 12909. To measure SERT binding, 1 pM GBR 12935'2HCI was 
added to occlude DAT; nonspecific binding was determined byaddition 
of 50 nM citalopram HBr (Pradhan et al., 2002). Slides were incubated at 
room temperature for 2 hr and then washed three times in cold buffer 
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Pre-
exposure (1 d) Conditioning (6d) Test (1 d) 

~~----~~-----------~~~--------
, 0.75 mglkg AMPH IP (n=46) 

Experiment 1 

0.75 mglkg AMPH IP (n=22) 
Ü 10 mglkg motphine IP (n=22) 

Experiment 2 

0.75 mglkg AMPH IP (n=52) , 

Experiment 3 

Time 

Figure 1. Experimental design of experiments l, 2 and 3. Vehicle or 6-0HDA infusions were 
given at the time indicated by the arrows.ln experiments 1 and 3, rats received infusions into 
either core or medial shen, depending on group (fined arrows). In experiment 2, only medial 
shen was targeted (white arrow). During the conditioning phase, each rat received saline and a 
drug (AM PH or morphine, dose as indicated) on alternating days (see Materials and Methods). 
IP,lntraperitoneal. 

solution (once for 1 min, twice for 20 min) and for 1 sec in distilled and 
deionized water. They were then blow dried and plaeed in an x-ray film 
cassette. Kodak BioMax MS film (Amersham Biosciences, Baie d'Urfé, 
Québec) was exposed to slides for 48 hr (DAT) or 120 hr (SERT) with 
[

1251] autoradiographie standards (Amersham Biosciences). Films were 
then processed with Kodak D 19 developer and Kodak GBX fixer (Amer
sham Biosciences). DAT and SERT binding were quantified using an 
MCID M4 imaging system (Imaging Research, St. Catherines, Ontario). 

Iiistological examination 
Tissue was stained with cresyl violet to assess nonspecific damage, as 
follows. Sections were thawed at room temperature for 10 min and then 
placed in 0.5% cresyl violet (Sigma-Aldrich, Oakville, Ontario) in dis
tilled water for 20 min. Theywere rinsed in 95% ethanol twice for 2 min 
and then in 100% ethanol three times for 15 sec and were dehydrated in 
xylene three times for 5 min. Slides were coverslipped with Permount and 
examined under a light microscope (40-200X magnification). 

Drugs 
Drug sources were as follows: morphine sulfate (gift from Sabex 2002 
Ine., Boucherville, Quebec); D-amphetamine sulfate (Bureau of Drug 
Research, Ottawa, Ontario); citalopram HBr (gift from H. Lundheck 
AIS); dipyrone (Vetoquinol, Quebec, Quehec); ketamine HCI (Vetalar, 
Vetrepharm, London, Ontario); xylazine HCI (Anased, Novopharm, To
ronto, Ontario); atropine methylnitrate, 6-0HDA HBr, GER 12909, and 
GBR 12935'2HCI (Sigma-Aldrich, Oakville, Ontario). An other chemi
cals were ohtained from Fisher Scientific (Montreal, Quebec). 

Morphine sulfate and D-amphetamine sulfate were dissolved in sterile 
0.9% saline and injected at 1 ml/kg. 6-0HDA HBr was dissolved in sterile 
0.9% saline containing 0.3 mg/ml sodium metabisulfite (Sigma-Aldrich) 
as an antioxidant and proteeted from light. Both 6-0HDA and vehicle 
solutions were made to pH 7.3 ::<:: 0.1 with NaOH. Doses of all drugs 
except 6-0HDA HBr are expressed as the salt. 6-0HDA HBr doses are 
expressed as free base. 
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A 

B 

Figure 2. Histological changes aS50ciated with infusion ofvehicle (A) or 6-0HDA (B) into the 
medial shen region of the NAcc. Representative 20 /Lm Nissl-stained sections are shown -0.1 
mm caudal to the site of injection (10.2 mm anterior to interaural zero). 6-0HOA infusion 
resulted in disruption of normal tissue morphology local to the infusion site (B, black arrow). 
Much less disruption of normal tissue morphology occurred in rats infused with vehicle. Scale 
bars, 50 /Lm. Anterior commissure is indicated by white arrows. 

Data analysis 
A commercial software program (Systat vl0.2, SPSS Inc., Chicago, IL) 
was used for al! data analyses. Locomotor response to AMPH was calcu
lated as the difference of locomotcir counts between AMPH and saline 
conditioning sessions; haseline saline scores were calculated as the mean 
activity over all three conditioning sessions with saline on test day. CPP 
magnitude was calculated as the difference hetween time spent on the 
drug-paired and vehicle-paired sides. The relationship hetween locomo
tor and reward measures versus [ 125I]-RTI-55Iabeling was analyzed by 
multiple linear regression (experiments 1 and 3) or Mann-Whitney U 
test (experiment 2). Activity scores (experiment 1) were analyzed by 
ANOVA. A P value of <0.05 (two-tailed) was considered significant. 

Results 
Histological and autoradiographie characterization of lesions 
Minimal neuronalloss was evident at the site of injection in both 
vehicle groups and in the core lesioned group in ail three exper
iments. A representative coronal section of the medial shell 
vehicle-infused group is shown in Figure 2A. In the medial shell 
lesioned group, tissue damage was more extensive but was nev
ertheless confined to 0.3 mm from the infusion site, sparing most 
of the structure (Fig. 2B). 

[
125I]RTI_55 autoradiographs of DAT binding are shown in 

Figure 3 at four anterior-posterior levels. Sampling locations for 
DAT binding density are indicated in Figure 4. Absolute values 
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for [ 1251]RTI-55 binding to DAT and 
SERT are given in Tables 1 and 2. In ail 
experiments, core lesions were less ana
tomically selective than shelliesions (Fig. 
5). Pooled across experiments, core 
6-0HDA animais showed a mean decrease 
in DAI' binding of 68% in core, 29% in 
medial shell, 30% in ventral shell, 37% in 
ventral caudate-putamen, and 30% in 01-
factory tubercle (01'). In contrast, medial 
shell-infused 6-0HDA reduced DAI' 
binding in medial shell by 62%, but only 
by 13, 7, l, and 12% in core, ventral shell, 
ventral caudate-putamen, and 01', respec
tively. SERT binding was virtually un
changed (89-111% of control) by the 
6-0HDA lesions in all three experiments 
(Tables l, 2). 

Core 
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Sham Medial Shell 

11.2 

10.7 

10.2 

9.7 
NAcc core and medial shelliesions 
before conditioning inhibited AMPH
mediated locomotor activation and 
CPP, respectively 
In experiinent l, les ions were performed 
before drug conditioning. Overall, the 
AMPH locomotor stimulant effect dif
fered across successive conditioning ses
sions (SESSION: F(2.S4l = 4.47, P < 0.02; 
mean ± SEM; AMPH-saline difference 

Figure 3. Autoradiographie images of[ 12l1]RTI-55 binding to DAT in animais from core-Iesioned, medial shell-Ielioned, and 
sham-operated groups (experiment 3). Because binding was similar between groups that received vehicle in core and medial 
shell, the latter group has been omitted. Numbers designate distance anterior to interaural zero (in millimeters). Radioligand 
binding was obtained at a nonsaturating concentration of radioligand and is expressed as attomol per milligram oftissue. Arrows 
refer to the core subregion. Arrowheads (pointing upward) refer to the medial shell subregion.ln most rats, core 6-0HDA lesions 
were less anatomically selective than shown here (see Fig. 5). 

score 40 ± 5, 63 ± 6, and 53 ± 8 ml. However, locomotor data 
were pooled across sessions, because an initial three-way ANOVA 
revealed no significant interactions between SESSION and either 
AREA or LESION (F(2,841 < 1.31, p > 0.2). Saline session loco
motor scores did not differ significantly between surgery groups 
(AREA: FO,42) = 1.01,p > 0,25; LESION: FO,42) = O,70,p > 0.25; 
AREA X LESION: F(I,42l = 0.95, P > 0.25) (Fig. 6, legend). Be
cause lesions were not anatomically specifie (Fig. 4), multiple 
linear regression analysis was performed to assess contributions 
of core and shell DA innervation to the AMPH -induced locomo
tor response. Figure 6, A and B, shows the relationship between 
locomotor responses to AMPH during conditioning versus DAT 
binding in core and medial shell. The locomotor stimulant re
sponse was significantly correlated with DAT binding in NAcc 
core (p < 0.01) but not NAcc medial shell (p > 0.25) (Fig. 
6A,B). Conversely, the magnitude of AMPH CPP was signifi
cantly correlated with residual DAT in the medial shell (p < 
0.0001) but not in the core (p > 0.5) (Fig. 6C,D). 

NAcc media! shelliesions did not prevent acquisition of a 
CPP for morphine 
In experiment 2, the effeets of preeonditioning lesions of medial 
shell were tested in rats conditioned with either morphine (10 
mg/kg, i.p.) or AMPH (0.75 mg/kg, i.p.). As in experiment l, 
AMPH CPP magnitude was reduced or abolished by medial shell 
6-0HDA infusion (lesion vs sham: Mann-Whitney U = 90; P < 
0.02) (Fig. 7). In contrast, lesioned rats did acquire a morphine 
CPP, and this was of similar magnitude to that of sham controls 
(lesion vs sham: Mann-Whitney U = 63; P > 0.5) (Fig. 7). 

Expression of a conditioned place preference for AMPH was 
abolished by NAcc medial shell, but not NAcc core, lesions 
ln experiment 3, lesions were performed after conditioning but 
before testing. Figure 8, A and B, shows the relationship between 

Figure 4. locations of sampled [12SI]RTI_55 binding in nucleus accumbens core, medial 
shell, ventral shell, ventral caudate-putamen, and olfactory tuberde. Each rat was sam pied at 
four anterior-posterior levels. Numbers are distances (in millimeters) anteriorto interaural zero. 
Sampling areas were cirdel of 0.3 mm diameter. Three samples per side per structure were 
taken at each level, except for ventral shell, where one sam pie per side was taken at levelll.2 
and two per side at ail other levels. Adapted from Paxinos and Watson (1997). 

DAT binding in NAcc core or medial shell and the CPP magni
tude. Two extreme outliers, as defined by the Systat software, 
were excluded before data analysis. Multiple linear regression 
analysis showed that CPP magnitude eorrelated significantlywith 
residual DAT binding in NAcc medial shell (p < 0.0005) but not 
in NAcc core (p > 0.25). 

Discussion 
Methodological aspects 
Dopaminergic denervation in core or medial shell has rarely been 
achieved with any anatomical selectivity (Boye et al., 2001). The 
present study incorporated several methodological improve-
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Table 1. Absolute values of DAT and SERT binding in core, medial shen, ventral shen, ventral caudate-putamen (ventral Cp), and olfactory tubercle (On in experiments 1 
and3 

Core (vehide) Core (6-DHDA) Shell (vehide) Shell (6-DHDA) 

Experiment 1 
n 10 12 10 14 

DAT 
Core 265::: 20 87 ± 9 261 ± 30 209 ± 20 

Medial shell 183::: 7 128::: 13 178 ± 18 70 ± 20 

Ventral shell 170 :!: 8 129 ± 17 158 ± 15 166 ± 16 

Ventral CP 152::: 9 95 ± 11 129 ± 11 137 ± 7 

DT 259:+: 16 177::':: 18 282 ::':: 24 243::':: 16 

SERT 
Core 117 ::: 12 107::':: 14 117 ± 8 113 ± 7 

Medial shell 145 ± 14 149::':: 14 143 ± 6 137::':: 10 

Ventral shell 151::: 17 167::':: 16 136::: 14 147::: 15 

Ventral CP 152 ± 17 165::!: 16 141 ::!: 17 143 ::!: 12 
DT 219 ± 9 230 ± 11 242 ::!: 13 232::!: 9 

Experiment 3 
n 10 13 10 19 

DAT 
Core 927 ::!: 43 288 ::!: 60 941 ± 32 816::!: 61 
Medialshell 566 ::!: 45 411 ± 41 596 ± 56 225 ± 26 
Ventral shell 774::!: 38 493 ± 64 787::!: 40 761 ::!: 40 
Ventral CP 641 ::!: 31 404 ± 35 684 ± 19 660::!: 30 
DT 733 ± 36 524 ± 45 743 ::!: 53 635 ± 36 

SERT 
Core 297::':: 10 269::':: 16 310::':: 16 318::':: 14 
Medialshell 450 ± 15 441 ± 16 450 ± 23 446 ± 14 
Ventral shell 476 ::!: 27 486 ± 23 497::!: 19 504::':: 20 
Ventral CP 300 ± 13 267::':: 10 305 ± 12 321 ± 12 
DT 637 ::!: 25 624 ::!: 35 637 ± 24 664 ± 26 

Values are mean ::t SEM ["'I]RTI-55 binding to DAT or SERT (expressed as allomol per milligram oftissue), obtained at a subsaturating concentration of radioligand. 

Morphine Amphetamine 

Shell (vehide) Shell (6-0HDA) Shell (vehide) Shell (6-0HDA) 

Experiment 2 
n 10 12 10 12 
DAT 

Core 755 ± 22 715 ± 20 760::':: 25 674 ± 20 
Medial shell 473 ± 17 166::':: 21 407 ::!: 53 157::':: 17 
Ventral shell 429 ::!: 12 382 ± 14 437 ± 21 364::: 15 
Ventral CP 535::!: 18 525 ± 9 517 ± 21 SOl::!: 16 
DT 670::: 18 612 ± 32 695 ± 43 618 ± 34 

SERT 
Core 414:!: 14 408 :+: 14 385 ± 9 382 ,:!: 15 
Medialshell 517 ± 14 530::':: 19 510::':: 12 501 ::':: 23 
Ventral shell 481 ::: 43 534 ± 50 533 ± 55 474 ± 41 
Ventral CP 327::':: 31 343 ::':: 29 354 ::!: 40 322 ::':: 26 
DT 737 ± 24 688 ± 18 672 ::: 19 672 ::: 24 

Values are mean ± SEM [1l.I1]RTI-SS binding to DAT or SERT (expressed as attomol per milligram of tissue), obtained al a subS<!lurating (oncentration ofradioligand. 

ments. First, stereotaxie lesion coordinates were improved. Sec
ond, multiple infusion sites werc used for medial shelliesions. 
Third, diffusion of 6-0HDA from the infusion site was mini
mized by administering a high concentration in a small volume. 
Consequently, core and medial shell DAT binding were largely 
independent (Pearson r = 0.30), whieh was not the case in our 
previous study (Pearson r = 0.84) (Boye et al., 2001). In addition, 
nonspecific tissue damage was reduced by neutralizing the 
6-0HDA solution before infusion. Thus, despite the unusually 
high concentration of 6-0HDA used, Nissl staining and SERT 
autoradiography revealed minimal nonspecific damage. 

preexposure phase by omitting the conditioned stimuli. Second, 
rats conditioned with saline on both textures showed no signifi
cant preference for either texture on test day (our unpublished 
observations). Hence, our procedure is balanced and avoids the 
interpretational difficulties inherent in "biased" procedures 
(Bardo and Bevins, 2000). The current study is the first to show 
an AMPH CPP using solely tactile cues. 

The present CPP procedure possesses several attractive fea
tures. First, latent inhibition can be avoided during the initial 

Mechanisms of amphetamine-induced locomotor activation 
The present findings suggest that after systemic AMPH adminis
tration, locomotor stimulation is dependent ou transmission in 
NAcc core and not medial shell. To date, only three published 
studies have examined this question using systemic rather than 
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Core DAT binding 

Figure S. Relationship of DAT labeling in nucleus accumbens core versus medial shell. Data 
are pooled from experiments 1 and 31n = 98 rats). DATIabelingwas performed by [1l5I]RTI-55 
autoradiography and expressed as a percentage of the mean value of the core-vehicle group for 
core 6-0HDA animais, or the shell-vehicle group for the shell 6-0HDA group. Correlational 
analysis revealed a weak but significant relationship between core and medial shell binding 
(r = 0.30; p < 0.005). CV, Core vehide; CL, core lesioned; 5V, medial shell vehicle; SL, medial 
sheillesion. 

intracranial AMPH (Weiner et al., 1996; Parkinson et aL, 1999; 
Boye et al., 2001). Two of these studies showed that core rather 
than shelliesions reduced AMPH-induced locomotor activation 
(Weiner et aL, 1996; Baye et aL, 2001). In contras!, Parkinson et 
al. (1999) reported that excitotoxic lesions of the NAcc core en
hanced locomotor stimulant responses to systemic AMPH, 
whereas medial shelliesions had the opposite effect. On this basis, 
these authors attributed a critical role to the shell; however, in the 
latter study, shelliesions attenuated AMPH locomotion to onlya 
modest extent, and core lesions increased baseline locomotion, 
complicating the interpretation of drug effects. On balance, 
therefore, the available evidence suggests that NAcc core plays an 
important raie in the locomotor stimulant effect of systemically 
administered AMPH. 

In the present study, medial shell DA innervation was not 
related to AMPH locomotor stimulation. In contrast, we previ
ously observed a significant negative correlation ( p < 0.02), such 
that DA denervation in the medial shell was associated with 
greater locomotor responses (Boye et al., 2001). This discrepancy 
may reftect differences in lesions coordinates or functional gra
dients within each NAcc subregion (Essman et al., 1993; Camp
bell et al., 1997). 

Other striatal regions, notably ventromedial striatum (Dick
son et al., 1994),0'1' (Cools, 1986; Ikemoto, 2002), and antera
medial caudate (Fink and Smith, 1979, 1980), have also been 
implicated in AMPH-induced locomotion. It is doubtful that 
denervation of ventromedial striatum played a significant raie in 
the present study, because lesions were restricted to the anterior 
portion, which appears not to contribute to AMPH locomotor 
activation (Dickson et aL, 1994). On the basis of intracranial 
infusion studies (Cools, 1986; Ikemoto, 2002), the 0'1' has been 
proposed as a key structure mediating the locomotor stimulant 
effects of AMPH. In contrast, locomotor stimulation after sys-

Sellings and Clarke. Role of Core and Shell in Amphetamine Reward and Locomotion 

B 
125 p>O.2S cv 
100 • CL 

75 " SV 

D 

Co ... DAT binding 

300 p<o.OOO1 .' . , 
200 

100 

o 
-100 : . 
-zoo'. ,_m",""f'""''''''"'"''''"'1'"--~ 

o 50 100 150 

Snell DAT binding 

• SL 

Figure 6. Effect ofbilateral6-0HDA infusion into either NAcc core or medial shell on AMPH
induced locomotor response and CPP (experiment 1). Rats (n == 10-14 per group) were al
lowed 7-11 d recovery after stereotaxie surgery before conditioning with AM PH (0.75 mg/kg, 
i.p.). Locomotor responses are expressed for each rat as the difference between the mean 
distance moved (in meters) during conditioning sessions with AMPH versus with saline. CPP 
magnitude is the difference between lime spent on the drug-paired and saline-paired textures 
during the 600 sec test. DAT labeling in core or medial shell is expressed as percentage DAT 
binding of sham-Iesioned groups. Saline locomotor scores, in meters, were 134 ± 7 in the core 
vehicle group, 152 ± 11 in the core 6-0HDA group, 154 ± 10 in the shell vehicle group, and 
153 ± 11 in the she1l6-0HDA group.locomotor responses (AM PH-saline) correlated signifi
cantly with DAT binding in NAc( core but not in NAcc medial shell. Conversely, CPP magnitude 
correlated significantly with DAT binding in medial shell but not core. To visualize the associa
tion of each drug response to core or medial shell [ 12SI]RTI-55Iabeling, the predicted contribu
tion of the irrelevant brain structure was subtraded from the y-axis variables using the calcu
lated multiple linear regression equation. Significant linear associations (shown by p values) are 
evident in A and D. CV, Core vehicle; CL, core lesioned; SV, medial shell vehicle; SL, medial shell 
lesion. 

temic AMPli administration was unaffected by 6-0HDA Lesions 
ofOT, despite substantialloss of tissue DA (Clarke et al., 1988). 
The anteromedial caudate has been proposed to mediate AMPI-I
induced locomotion (Fink and Smith, 1979), but this area was 
probably spared by our lesions. The ventral shell subregion was 
partially depleted by our core 6-0HDA infusions and, to our 
knowledge, has not been studied with respect to AMPH 
locomotion. 

Our 6-0HDA infusions almost certainly destroyed noradren
aline (NA) as well as DA terminals in the ventral striatum (Rob
bins et al., 1983). Disruption of noradrenergic transmission tends 
to inhibit AMPH-induced locomotion (Ogren et al., 1983; Ar
cher et aL, 1986; Dickinson et aL, 1988; Blanc et al., 1994; Darracq 
et aL, 1998; Harro et al., 2000; Drouin et al., 2002a,b; Auclair et aL, 
2002) [but see Ventura et al. (2003)], with the medial prefrontal 
cortex identified as a potential site of action (Blanc et al., 1994; 
Darracq et aL, 1998). ln contrast, noradrenergic transmission in 
the NAcc appears not to contribute directly to locomotor stimu
lation (Pijnenburg et al., 1975; Roberts et al., 1975; Kelly and 
Iversen, 1976; Joyce et aL, 1983). Thus, our 6-0HDA lesion ef
fects on AMPH-induced locomotor activation probably reftect 
decreased DA rather than NA transmission. 

Mechanisms of AMPH-induced reward 
Considerable evidence suggests that AMPH exerts its rewarding 
effects via DA release in the NAcc (Di Chiara, 1995; Koob et al., 



Sellings and Clarke. Role of Core and Shell in Amphetamine Reward and locomotion 

250 * 

CI) 200 "C 
::::s 
~ 
c: 150 
CJ 
tU 

::E 
a.. 100 
a.. 
0 

50 

0 
E c:: E c:: 
(\1 0 (\1 0 
~ '00 ~ '00 
(J) ID (J) ID 

....J ....J 

Morphine Amphetamine 

Figure 7, Elfect of 6-0HDA lesions ofNAcc medial shell on morphine and AM PH CPP (exper
iment 2). Stereotaxie surgery was performed 7-11 d before the first conditioning day. CPP 
magnitudes (mean ± SEM) for morphine (10 mg/kg, Lp.) or AM PH (0.75 mg/kg, Lp.) were 
calculated as the dilference between the lime spent on the drug-paired and saline-paired sides 
(n = 10 -12 rats per group). Because the data were not normally distributed, Mann-Whitney 
U tests were applied to predetermined comparisons. NS, Nonsignificant; 'p < 0.02 versus 
corresponding sham-Iesioned group (unprotected tests). 

1998), with liule if any contribution from NA in this structure 
(Yokel and Wise, 1975; Roberts et aL, 1977). ln the present study, 
medial shell DA denervation was associated with attenuated 
AMPH cpp, It is unlikely that neighboring structures contrib
uted to this effect, because they were only slightly denervated 
(Tables 1,2). Moreover, substantial6-0HDA lesions ofOT did 
not alter a CPP for systemic AMPH (Clarke et aL, 1990), Our 
findings therefore support a role for NAcc medial shell DA in the 
rewarding effect of AMPH. This conclusiori accords with intra
cranial self-administration studies using other dopaminergic 
drugs (Carlezon and Wise, 1996; Ikemoto et al., 1997). 

The inhibition of AMPH CPP caused by preconditioning 
6-0HDA lesions could reBect impaired acquisition or expres
sion, or both. It is weil established that acquisition and expression 
ofCPP are mediated by different dopaminergic mechanisms (Hi
roi and White, 1990, 1991a,b; Acquas and Di Chiara, 1994; Bardo 
et al., 1999). For example, DA antagonist studies show that DA 
Dl and D2 receptors are required for acquisition, but only DA D 1 
receptors are required for expression (Hiroi and White, 1991a,b; 
Acquas and Di Chiara, 1994; Bardo et aL, 1999). Because our 
6-0HDA lesions presumably impaired transmission at both DA 
receptor types, both acquisition and expression are likely to be 
affected. 

In the present study, morphine served as a positive control. 
The finding that morphine CPP was unaffected by medial shell 
lesions (experiment 2) suggests thatlesion-induced reduction of 
AMPH CPP did Ilot result from impaired sens ory, motor, or 
mnemonic function. The present findings also accord with evi
dence that morphine CPP occurs via a DA-independent mecha
nism when drug exposure is minimized (Mackey and van der 
Kooy, 1985; Bechara and van der Kooy, 1992; Bechara et al., 1992; 
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Figure 8, Effect of NAcc core and medial sheillesions on the expression of AMPH CPP (ex
periment 3). Rats (n = 10 -19 pergroup) received bilateral infusion of either6-0HDA or vehicle 
into either NAcc core or medial shell alter conditioning wnh AMPH and before CPP testing. 
Degree of DAT depletion in core or medial shell i5 expressed as percentage DAT binding of 
control. To visualize the association of each drug response to core or medial shell [ 12SIIRTI-55 
labeling, the predicted contribution of the irrelevant brain struàure was subtracted tram the 
y-axis variables usingthe calculated multiple linear regression equation. CPP magnitude corre
lated significantly with DAT binding in NAcc medial shell (8) but not with DAT binding in NAcc 
(ore (A). CV, Core vehicle; Cl, core lesioned; SV, medial shell vehicle; Sl, medial sheillesion. 

Nader and van der Kooy, 1997; Laviolette et aL, 2002). ln con
trast, 6-0HDA lesions of the NAcc have been found to reduce 
opiate CPP in nondependent rats (Spyraki et al., 1983; Shippen
berg et aL, 1993). Several factors could account for this discrep
ancy. First, these authors denervated the entire NAcc. [t is possi
ble that the NAcc medial shell subregion is neither necessary nor 
sufficient to mediate opiate reward. Second, although our lesions 
eliminated AMPH CPP, they may not have decreased DA trans
mission sufficiently to affect morphine CPP. Third, it is possible 
that different neural mechanisms underlie morphine CPP de
pending on whether multiple sensory cues or solely tactile cu es 
are used. 
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Dissociation oflocomotion and reward 
The current findings demonstrate a double dissociation in NAcc 
core versus shell with regard to AMPH-induced locomotor acti
vation and reward. Theyextend evidence from other behavioral 
paradigms that also suggest that locomotion and reward are dis
sociable (Burns et al., 1993; Robledo et al., 1993; Kelley et al., 
1997; Ventura et al., 2003). Burns et al. (1993) performed lesions 
of the ventral subiculum or basolateral amygdala and demon
strated a double dissociation of the ]ocomotor stimulation and 
conditioned reinforcement produced by intra-NAcc AMPH. 
However, it is not clear whether the lesion affected reward pro
cesses or produced a memory or sensory deficit. Robledo et al. 
(1993) showed that neurotensin administered into the NAcc core 
decreased the locomotor stimulant effect of cocaine but did not 
affect intravenous self-administration of the drug. In this study, 
cocaine was given intraperitoneally in the locomotor tests, mak
ing interpretation difficult. Kelleyet al. (1997) found that admin
istration of an NMDA receptor antagonist into NAcc core, but 
not shell, disrupted the acquisition of food-reinforced respond
ing without affecting spontaneous locomotor activity. However, 
this study did not examine the effects of psychostimulants. Last, 
Ventura et al. (2003) demonstrated that in mice, NA-depleting 
lesions of the Medial prefrontal cortex blocked both AMPH
induced NAcc DA release and CPP while preserving the locomo
tor stimulant response. It would be interesting to determine 
whether core and medial shell DA release are differentially af
fected by these lesions and whether this result extends to rats. 

In conclusion, the present study provides the first clear ana
tomical dissociation between the rewarding and locomotor
activating effects of the prototypic psychostimulant drug AMPH 
in rats. These acute behavioral effects were mapped onto NAcc 
medial shell and core, respectively. The experimental approach 
used here should help to further define mechanisms underlying 
acute and chronie behavioral effects of other drugs of abuse. Fi
nally, the present core/shell dissociation May be relevant to the 
role of DA in reward anticipation versus consumption (Wise, 
2002), incentive salience (Berridge and Robinson, 1998), and 
other forms oflearning (Redgrave et al., 1999; Schultz, 2002). 
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ABSTRACT Environmental cues associated with drug experiences appear to play a 
critical role in drug dependence. We have previously reported that dopamine-depleting 
lesions of the nucleus accumbens medial shen inhibit amphetamine-conditioned place 
preference. Here, we examined the eftE~cts of analogous lesions on amphetamine-condi
tioned locomotor activity. Bilateral core, but not medial shen, lesions attenuated uncon
ditioned locomotion and abolished the conditioned locomotor response. Taken with our 
previous results, these findings confirm a role for accumbens core in amphetamine
induced locomotor activity and suggest that the role of medial shen DA transmission 
in conditioned place preference is related to reward processing rather than condition
ing in general. Synapse 59:374-377, 2006. ©2006 Wiley-Liss, Ine. 

Rats receiving repeated amphetamine (AMPH) ad
ministration in a distinct environment subsequently 
exhibit hyperlocomotion in that environment in the 
absence of drug (Gold et al., 1988; Mazurski and 
Beninger, 1991). The nucleus accumbens appears criti
cal, as 6-hydroxydopamine (6-0HDA) lesions pre
vented acquisition and expression of AMPH-induced 
conditioned locomotion (Gold et al., 1988). Recently, we 
provided 6-0HDA lesion evidence, suggesting that 
conditioned place preference for AMPH was associated 
with medial shell dopamine (DA) transmission, and 
that unconditioned locomotor activity was associated 
with core DA transmission (Sellings and Clarke, 2003). 
However, reward was assessed using a conditioned 
measure (conditioned place preference, Bardo and Bev
ins, 2000), whereas the measure oflocomotor activation 
was unconditioned. As such, it is unclear whether the 
functional segregation we observed represents a dissoci
ation between reward and locomotion, or between the 
conditioned and unconditioned effects of AMPH. 

The aim of the current study was, therefore, to 
examine the effects of 6-0HDA lesions of medial shell 
vs. core on conditioned locomotion. This measure was 
chosen because the underlying neural processes ap
pear distinct from those mediating CPP and uncondi-

©2006 WILEY-LISS, INC. 

tioned locomotor activity (Beninger and Hahn, 1983; 
Brown and Fibiger, 1993; Hemby et al., 1992; Mazurski 
and Beninger, 1991; Poncelet et al., 1987; Sutton et al., 
2000). An association between medial shen DA trans
mission and conditioned locomotion, if observed, would 
suggest that this subregion may play a general role in 
mediating conditioned drug effects. Core lesions were 
expected to reduce the unconditioned locomotor 
response to AMPH (Sellings and Clarke, 2003), but it 
was not clear whether this would also prevent the emer
gence of a conditioned locomotor response (see Discus
sion). Two experiments were performed. The first estab
lished the occurrence of conditioned locomotion in our 
conditioned place preference apparatus. The second ex
periment tested behavioral effects of intra-accumbens 
6-0HDA. 

Subjects were 37 Long-Evans rats (Charles River, 
St-Constant, QC; 270-310 g at time of surgery). Food 
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and water were available ad libitum except during 
training. AlI experiments were approved by the McGill 
Faculty of Medicine Animal Care Committee in accord
ance with Canadian Council on Animal Care guide
lines. 

The testing apparatus was as previously described 
for conditioned place preference (Sellings and Clarke, 
2003). Briefly, test cages comprising four vertical walls 
forming a rectangle (58 cm (L) x 29 cm (W) x 53 cm 
(H» were placed on linoleum fiooring covered with a 
thin layer of sawdust. Two removable square fioor tiles 
(mesh or bar) were inserted into each cage to provide 
tactile cues during conditioning sessions. Behavioral 
experimentation took place over 12 days. Mter an ini
tial pre-exposure to the test box without tactile eues 
(day l, 20 min), each rat received five AMPH injections 
(0.75 mg/kg as sulfate saIt) on either bar or mesh, and 
five vehicle injections on the other texture over 10 con
secutive days (day 2-11, 45 min/session). On test day, 
locomotor activity was examined (in a drug-free state) 
in two separate sessions, one on bar and one on mesh 
(day 12, 10 min each). The two test sessions were sepa
rated by 4 h. Locomotor activity during conditioning 
trials and the two test sessions was monitored by a 
commercial tracking system (EthoVision v3.0, Noldus 
1'1'). The order of drug presentation, drug-texture pair
ing, and order of cue presentation on test day (mesh 
vs. bar) were counterbalanced. As such, the condi
tioned stimulus (CS) was bar or mesh, depending on 
which texture was paired with the unconditioned con
ditioned stimulus (UCS) amphetamine. Th minimize 
visual eues, the testing room was lit with a Kodak 
GBX-2 fiIter. In experiment l, unoperated rats served 
as experimental subjects. In experiment 2, rats re
ceived bilateral infusions of 6-0HDA or vehicle (0.9% 
saline plus 0.3 mg/ml sodium metabisulfite) 7-9 days 
prior to conditioning. This was given via a stainless 
steel cannula of 0.30 mm o.d. (30 gauge) aimed at ei
ther core or medial shell, as previously described (Sell
ings and Clarke, 2003). The extent of the 6-0HDA 
lesion was quantified by autoradiographie labeling of the 
DA transporter (DAT) using the radioligand [125I]RTI_ 
55 (2200 Ci/mmol). Th assess nonspecific damage, serotonin 
transportèr (SERT) autoradiography using [125I]RTI-55 
with DAT occluded, as weIl as cresyl violet staining for 
Nissl substance (as previously described; Sellings and 
Clarke, 2003) was used. 

A commercial software program (Systat v10.2, SPSS 
Inc.) was used for data analyses. The unconditioned 
locomotor response was calculated as the difference of 
locomotor counts between AMPH and saline condition
ing sessions. The conditioned locomotor response was 
calculated as the difference between activity (distance 
moved in meters) on the AMPH and vehicle paired tex
tures on test day. Group differences were examined by 
one-way ANOVA, followed by Dunnett's test. Multiple 
linear regression analysis was used to test for associa-

tions between DAT binding in core vs. medial shell 
and unconditioned or conditioned locomotion. The two 
sham lesioned groups (core and medial shell) were 
pooled, as initial examination revealed no significant 
differences between these two groups. P < 0.05 (two
tailed) was considered significant. Within-group varia
bility is expressed as SEM throughout. 

In experiment l, rats (n = 8) expressed significant 
conditioned locomotion (paired t-test with Bonferroni 
correction, P < 0.005; Fig. lA). The distance moved on 
the AMPH-paired texture was 36.7 ± 2.8 m; on the 
saline-paired texture, it was 33.0 ± 2.8 m. The magni
tude of the conditionèd locomotion was not dependent 
on the fioor texture paired with drug (bar vs. mesh, 
Student's t-test, P > 0.5). 

In experiment 2, no significant group differences ex
isted for saline activity (F(2,26) = 1.65, P > 0.2; Fig. lB) 
or unconditioned locomotor activation (F(2,26) = 1.45, 
P > 0.25; Fig. 1C). The mean distance moved during 
conditioning trials (i.e., unconditioned locomotion) was 
as follows. During saline sessions (Fig. lB), it was 
148.6 :!: 8.5 m (sham), 166.6 :!: 12.2 m (core), and 141.7 ::+~ 

8.9 m (medial shell); during AMPH sessions, it was 
216.8 ± 14.6 m (sham), 209.3 ± 11.1 m (core), and 
216.5 j: 9.7 m (medial she11). However, multiple lillear 
regression analysis revealed a significant association 
between core, but not medial sheB, DAT binding and 
locomotor activation (core: P < 0.05, r = 0.37; Fig. ID; 
medial shell: P > 0.25, r = 0.06; Fig. lE). For condi
tioned locomotion, only the core-Iesioned group dif
fered significantly from sham animaIs (Dunnett's test, 
P < 0.02; Fig. IF). On test day, the distance moved on 
the AMPH-paired texture was 42.1 ± 3.5 m (sham), 
36.5 ± 2.0 m (core) and 37.7 ± 2.9 m (medial shell); on 
the saline-paired texture, it was 34.2 ± 3.4 m (sham), 
36.8 ± 3.6 m (core) and 32.4 ± 2.5 m (medial shell). 
Additionally, the magnitude of the conditioned locomo
tion associated positively with core and not medial shell 
DA'r binding (core: P < 0.05, r = 0.57; medial she11: P > 
0.5, r = 0.32; Figs. 1G and 1H). Residual DAT binding, 
expressed as a percent of combined sham !,'TOUpS, is 
given in Table 1. Nissl staining revealed minimal non
specific damage, and residual SERT bindillg was mini
malIy affected by core and medial shelIlesions (92-107% 
of control). 

In the present study, DA-depleting lesions of the 
accumbens medial shell did not inhibit the conditioned 
locomotor response to AMPH. This fin ding contrasts 
with our previous observation that the same kind of 
lesion inhibited AMPH-conditioned place preference 
(Sellings and Clarke, 2003). Although it cannot be 
ruled out that a larger medial shell lesion may have 
resulted in reduced AMPH conditioned locomotion, it 
is important to note that the two studies were de
signed to be highly comparable. For example, the test
ing apparatus was identical and the dose of AMPH was 
the same. Additionally, [125I]RTI_55 binding in medial 
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sheH lesioned animaIs was reduced to the same extent 
(62%) in both studies. Taken together, the two studies 
suggest that medial shell DA transmission plays a role 
in conditioned reward rather than a more general role 
in conditioning. 

Our findings confirm an association between DA'!' 
binding in accumbens core and the unconditioned loco
motor stimulant effect of AMPH (Sellings and Clarke, 
2003). Although the 6-0HDA infusions quite possibly 
destroyed noradrenaline as weIl as DA terminaIs, the 
critical lqsion site (core) receives little noradrenergic 
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TABLE 1. Reductions in DAT binding seen in core and 
medial .9helllesioned groups 

Core mSh vSh OT vCP 

100::':4 100::':6 100::':5 100::':5 100::':3 
18 ± 1 49 ± 4 40 ± 5 45:!: 2 48 ± 5 
76:t: 3 38:':: 5 88:+:.5 72:': 4 96:+: 4 

Values given are mean ..t.: SEM, and are calculated aB a percent of sham-oper
ated control. Abbreviations: mSh. medial shell; vSh. ventral shell; OT, olfactory 
tubarcle; vCP, ventral caudate-putamen. 

input (Berridge et al., 1997; Delfs et al., 1998). As 
such, the observed effects of core 6-0HDA infusion are 
most likely attributable to disruption ofDAergic trans
mission. 

The conditioned locomotor response was abolished 
by core 6-0HDA lesions. This is not a trivial result, 
since several DAergic manipulations (i.e., several DA 
receptor antagonists, reserpine) have been reported to 
block the unconditioned locomotor response to AMPH 
while preserving the conditioned locomotor response 
in subsequent drug-free tests (DiLullo and Martin
Iverson, 1991, 1992a,b; Martin-Iverson and McManus, 
1990). In contrast, other DAergic manipulations given 
during conditioning have been found to prevent subse
quent conditioned locomotion CBeninger and Hahn, 
1983; DiLullo and Martin-Iverson, 1992b; Mazurski 
and Beninger, 1991). Our core lesions only partially 
inhibited unconditioned locomotion, but they blocked 
the conditioned response. This result suggests that 
core lesions affected the acquisition and/or expression 
of AMPH-conditioned locomotion. Consistent with a 
role in expression, 6-0HDA lesions of the entire aCCUffi
bens blocked conditioned locomotion when given before 
or after conditioning (Gold et al., 1988). 

The present results add to existing evidence sug
gesting that unconditioned and conditioned locomotion 
are controlled via different mechanisms (Beninger and 
Hahn, 1983; Mazurski and Beninger, 1991; Poncelet 
et al., 1987; Sutton et al., 2000). They also imply that 
different AMPH conditioned behaviors may be medi
ated by DA transmission in separate ventral striatal 

l!'ig. 1. Both conditioned and unconditioned locomotor activity are 
decreased by 6-0RDA lesions of the core. In experiment 1, rats (n = 8) 
received multiple paÏlings ofamphetamine with a distinct floor texture, 
and subsequently exhibited conditioned locomotion (**P < 0.005. 
paired t-test; A). In experiment 2, rats received 6-0RDA or vehicle into 
accumbens medial shell or core (n = 8-10 pel' group). They were then 
conditioned with amphetamine and tested drug-free. During condition
ing, no significant group differences were observed in saline activity 
(D) or in the unconditioned locomotor response to amphetamine (C). 
Rowever, the extent of the core depletion associated significantly with 
the unconditioned locomotor response (D); this was not the case for 
medial shen lesions (E). The conditioned locomotor response was 
blocked in core-lesioned rats (*P < 0.02, Dunnett's test; F). The magni
tude of the conditioned locomotion was significantly associated with 
core, but not medial shen DAT binding (G, H). The apparent. but highly 
nonsignificant, association between medial shell DAT and the magni
tude of the conditioned locomotion rellects a positive correlation exist
ing between core and medial shen DAT binding (r = 0.57, P < 0.(1). 
Shen refers to medial shell. cv, core vehicle; CL, core 6-0RDA; Sv, 
medial sheH vehicle; SL, medial sheH 6-0RDA 
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subregions, with the medial shell underlying condi
tioned effects of reward, and the core subregion Ioco
motor activation. The extent to which our findings 
wauld generalize ta canditianing with discrete cues 
(Hotsenpiller et al., 2002) or natural rewards (.Jones 
and Rabbins, 1992) remains ta be determined. 
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ABSTRACT 
Considerable evidence suggests that psychostimulants can 
exert rewarding and locomotor-stimulating effects via in
creased dopamine transmission in the ventral striatum. How
ever, the relative contributions of ventral striatal subregions to 
each of these effects have been little investigated. In the 
present study, we examined the contribution of different ventral 
striatal sites to the rewarding and locomotor-activating effects 
of cocaine. Initially, the effects of bilateral 6-hydroxydopamine 
lesions of the nucleus accumbens core or medial shell on 
cocaine-induced locomotor stimulation (0.5-1.5 mg/kg i.v. or 
5-20 mg/kg î.p.) and conditioned place preference (0.5 mg/kg 
Lv. or 10 mg/kg Lp.) were examined. In a subsequent study, we 
investigated the effects of olfactory tubercle versus medial shell 
lesions on cocaine-conditioned place preference and locomo-

The nucleus accumbens (NAcc) plays an important role in 
the rewarding and locomotor stimulant effects of systemi
cany administered amphetamine and cocaine (Koob et aL, 
1998; Everitt and Wolf, 2002; Wise, 2004). It is anatomically 
and neurochemically heterogeneous, with a prominent me
dioventral shell and dorsolateral core (Zahm and Brog, 1992). 
Recent behavioral studies, largely relying on intracranial 
microinjections of dopaminergic agonists, have provided evi
dence for functional compartmentalization within this struc
ture, although certain details are controversia1. Thus, the 
medial shen subregion has been implicated in reward pro
cesses (Di Chiara et al., 2004; Ikemoto and Wise, 2004), 
whereas locomotor stimulation has been elicited from core 

This work was supported by grants from the Natural Sciences and Engi
neering Research Council of Canada (NSERC) and the Canadian Institutes of 
Health Research. L.H.L.S. holds an NSERC Canada Graduate Scholarship. 
Article, publication date, and citation information can be found at 
http://jpet.aspetjoumals.org. 

doi: 10. 1124fjpet. 105. 100339. 

---------_._---

tor activity (0.5 mg/kg Lv.). Dopaminergic lesion extent was 
quantified by radioligand binding to the dopamine transporter. 
Multiple linear regression was used to identify associations 
between behavioral effects and residual dopamine innervation 
in ventral striatal subregions. On this basis, the accumbens 
core was associated with the locomotor stimulant effects of Lv. 
and i.p. cocaine. In contrast, the medial shell was associated 
with the rewarding effect of Lv. cocaine, but not of Lp. cocaine. 
Finally, the olfactory tubercle was identified as an additional site 
contributing to conditioned place preference produced by Lv. 
cocaine. Overall, these findings provide additional evidence 
that the locomotor stimulant and rewarding effects of system
ically administered psychomotor stimulant drugs are segre
gated within the ventral striatum. 

and/or shell injection sites (Boye et al., 2001; Ikemoto, 2002; 
Sellings and Clarke, 2003, and references thel'ein). 

The technique of intracranial drug microinjection, des pite 
its obvious utility, is limited by the fact that local drug 
concentrations are usually unknown and may not be compa
rable with those obtained after systemic administration. 
Using an alternate approach, we recently evaluated the re
spective roles of accumbens core and sheH in amphetamine
induced locomotion and conditioned place preference (CPP) 
by combining a systemic amphetamine challenge with prior 
6-hydroxydopamine (6-0HDA) lesions of either structure 
CSellings and Clarke, 2003). In this study, DAergic depletion 
in core and medial shen reduced amphetamine-induced loco
motor stimulation and CPP, respectively. 

ln the present study, we sought to extend these findings to 
cocaine. Intra-NAcc infusion of cocaine produces both loco
motor stimulation and rewarding effects (Ikemoto, 2002, 
2003; Rodd-Henricks et al., 2002; Ikemoto and Witkin, 2003). 
Howevel', the interpretation of such findings is complicated 
by possible sympathomimetic and anesthetic actions within 

._--------._-----------_._--_._-_._--_._--_ ..... __ ... _--
ABBREVIATIONS: NAcc, nucleus accumbens; CPP, conditioned place preference; 6-0HDA, 6-hydroxydopamine; DAergic, dopaminergic; DA, 
dopamine; OT, olfactory tubercie: amOT, anteromedial olfactory tubercie; DAT, dopamine transporter; SERT, 5-hydroxytryptamine (serotonin) 
transporter; RTl-55, 313-(4-iodophenyl)tropan-2-I3-carboxylic acid met~yl ester; GBR 12909; 1-(2-[bis(4-fluorophenyl)methoxy]ethyl}-4-(3-phenyl
propyl)piperazine dihydrochloride; GBR 12935, 1-[2-(diphenylmethoxy)ethyl]-4-(3-phenylpropyl)piperazine dihydrochloride. 
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the target tissue (Ikemoto, 2003; Ikemoto and Witkin, 2003). 
Even after systemic injection, the precise route of adminis
tration can be critical. In particular, cocaine is reported to 
produce dopamine (DA)-dependent or DA-independent re
warding effects, depending on whether it is delivered i.v. or 
i.p. (Spyraki et al., 1987). In the present study, these two 
systemic routes of administration were compared. 

The less-studied olfactory tubercle (OT) may also play a 
role in psychomotor stimulant-mediated locomotor activation 
and reward. This is suggested by studies using intracranial 
administration in rats. Thus, direct intra-OT infusions of DA 
agonists including amphetamine and cocaine produced 
marked and prompt locomotor activation (Pijnenburg et al., 
1976; Cools, 1986; Ikemoto, 2002), and both these drugs were 
avidly self-administered at OT sites (Ikemoto, 2003; Ikemoto 
et al., 2005). Interestingly, intra-OT drug infusions elicited 
stronger locomotor and reinforcing effects than intra-NAcc 
infusions (Cools, 1986; Ikemoto, 2003; Ikemoto et al., 2005). 
Despite these positive findings, we previously tested the im
pact of profound 6-0HDA lesions of OT on the locomotor 
stimulant and rewarding (CPP) effects of systemic amphet
amine challenge and concluded that DAergic transmission in 
the OT does not contribute significantly to either behavioral 
effect (Clarke et al., 1988, 1990). Hence, at present, it is an 
open question whether the OT contributes significantly to 
the locomotor stimulant and rewarding effects of any system
ically administered psychostimulant. 

The overall goal of the present study was, therefore, to 
localize the ventral striatal actions of systemically adminis
tered cocaine. The first experiment investigated whether the 
locomotor stimulant effects ofi.v. and i.p. cocaine are dimin
ished by DA denervation in the accumbens core or medial 
shell. The next two experiments determined whether the 
stimulant and rewarding effects of cocaïne could be dissoci
ated by selective 6-0HDA lesions of either structure, as pre
viously seen with amphetamine (Sellings and Clarke, 2003). 
The final experiment tested for OT involvement in cocaine 
reward and locomotor activation, again after systemic drug 
challenge. 

Materials and Methods 
Experimental Design. The design of aIl four experiments is 

summarized in Table 1. 
Subjeets. Subjects were male Long-Evans rats (Charles River, St. 

Constant, QC, Canada) weighing 250 to 325 g at the time of surgery. 
Rats were housed individually (experiment 1) or in groups of three 
(experiments 2-4) in clear Plexiglas cages in a temperature- and 
humidity-eontrolled animal eolony, lit from 7:00 AM to 7:00 PM. 
Food and water were available ad libitum except during behavioral 
testing. AlI experiments' were approved by the MeGill Faeulty of 

TABLE 1 
Experimental parameters for experiments 1 to 4 
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Medicine Animal Care Committee in aecordance with Canadian 
Couneil on Animal Care guidelines. 

Stereotaxie Infusion of 6-0HDA. Surgery was performed 7 to 
10 days before the start ofbehavioral testing. Rats were anesthetized 
with ketamine HCI (90 mgJkg i.p.) and xylazine HCI (16 mglkg i.p.) 
before placement in a stereotaxie apparatus (David Kopf Instru
ments, Tujunga, CA) with the incisor bar set at -3.9 mm. Depending 
on the experiment (see Table 1), rats received bilateral infusions of 
either 6-0HDA or vehicle into either NAcc core, medial shell, or 
anteromedial olfaetory tubercle (amOT). Infusions were made via a 
30 gauge stainless steel cannula attached by polyethylene tubing to 
a 10-ILl Hamilton syringe driven by a model 5000 Micro Injection 
Unit (David Kopf Instruments) (core or medial shell) or via two 
separate 10-111 Hamilton syringes driven by a multichannel syringe 
pump (amOT; MD-1001, BAS Bioanalytical Systems Inc., West 
Lafayette, IN). For greater accuracy, coordinates for aU three target 
subregions were derived from the mean of two coordinate systems. 
Thus, anterior-posterior coordinates were + 10.3 mm from interaural 
zero and + 1.3 mm from bregma for both core and shell and + 10.7 
mm from interaural zero and +1.7 mm from bregma for amOT. 
Lateral coordinates were :!:0.6 mm (shell), :!:2.4 mm (core), and :!:0.8 
mm (amOT). Ventral coordinates for sheU (three injections) were 
+2.0, +2.4, and +2.8 mm from interaural zero and -8.0, -7.6, and 
-7.2 mm from bregma. Ventral coordinates for core were +2.7 mm 
from interaural zero and -7.3 mm from bregma. For amOT, ventral 
coordinates were +1.1 and -8.9 mm, respectively, from interaural 
zero and bregma. AlI coordinates are based on the atlas of Paxinos 
and Watson (1997). 6-0HDA or vehicle was infused on each side in a 
volume of 0.1 ILl (core), as three infusions of 0.06 ILl (medial she11) or 
0.2 ILl (amOT) on each side. For core and medial sheU, 6-0HDA was 
infused at a rate of 0.1 ILl/min; for amOT, the rate of infusion was 0.1 
1Ll/10 min. The concentration of6-0HDA used was 80 1Lg/1L1 (core) or 
48 ILg/1L1 (shell). For amOT, a volume of 0.2 ILl of either vehicle or 
6-0HDA (40 1Lg/ 111 free base) was infused bilateraUy over 20 min. The 
different doses of 6-0HDA, infusion volumes, and infusion times 
used at each lesion site were chosen based on pilot studies and 
represented the best compromise between efficacy (DA depletion) 
and anatomical selectivity. For aU three lesion sites, the cannula 
remained at the final infusion site for 5 min. 

Intravenous Catheterization. During 6-0HDA lesion surgery, 
rats were implanted with chronic indwelling Silastic catheters (0.51 
mm i.d. and 0.94 mm o.d., Fisher Scientific, Montreal, QC, Canada) 
in the left jugnlar vein. Tubing was secured to the vein by surgical 
silk sutures, was led s.c. to the skull surface, and was then fitted onto 
a 22-gauge cannula attached to a plastic connector (model number 
C313G-5UP; Plastics One, Roanoke, VA). The cannulalconnectorwas 
fixed to the animal's skull with smail stainless steel SCl'ews (Lomir, 
Notre-Dame-de-L'Ile Perrot, QC, Canada) and dental cement (Stoelt
ing, Wood Dale, IL). To keep catheters patent, 0.1- to 0.15-ml hepa
rinized 0.9% saline was administered at the end of surgery, on the 
first day of behavioral testing, and every 2 to 3 days thereafter. 

Loeomotor Activity Testing (Experiment 1). Horizontalloco
motor activity was tested in the CPP apparatus (see below for de
scription). Rats were first given one pre-exposure session (20 min) in 

Sham groups represent a combination (lf rats infused with vehicle in core and shell (experiments 1-3) or shell and amOT (experiment 4). 

Experiment Lesion Site" Dose Route Behavior n b 

mg/kg 

1 Core or she11 0.5-1.5 i.v., 5-20 i.p. i.v., i.p. LMA 11 
2 Core or sheU 0.5 Lv. CPP, LMA 10-14 
3 Core or she11 10 Lp. CPP, LMA 12-14 
4 amOT or sheU 0.5 i.v. CPP 15-16 

LMA, locomotor activity. 
" Shen refers to medial shell. 
b n ls number of rats pel' sUl'gery group (core, medial shell or anteromedial olfactory tubercle, and' the combined sham-operated groups). 
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the absence of drug. Each rat then received eight tests on consecutive 
days with cocaine given i.v. (0, 0.5,1, or 1.5 mglkg) or i.p. (0, 5, 10, or 
20 mg/kg) in a randomized order. Each test session lasted 30 min, 
starting immediately after injection. Test cages contained one bar 
and one mesh tile (see below). 

Conditioned Place Preference and Locomotor Activity 
Testing (Experiments 2, 3, and 4). The apparatus and general 
procedure were as described previously (Sellings and Clarke, 2003). 
In brief, the procedure consisted of three phases: pre-exposure (1 
day), conditioning (6 days), and test (1 day). Ali phases were carried 
out in a one-compartment box (58 cm x 29 cm x 53 cm) with walls 
made of white plastic-coated particle board. In the pre-exposure 
phase, Beta-Chip sawdust bedding covered the floor of the cage. In 
the conditioning phase, two square tactile tiles of either bar or mesh 
texture were placed in the bottom of the cage, on top of the bedding. 
During this phase, video tracking software (EthoVision version 3.0; 
Noldus Information Teclmology, Leesburg, VA) measured locomotor 
activity, expressed as horizontal distance moved (in meters). During 
the test phase, one bar and one mesh tile were placed on the bottom 
of the cage. The time spent on bar or mesh texture was measured by 
EthoVision software. Ali three phases were carried out under dark
room lighting using a Kodak GBX-2 safelight filter (Vistek, Toronto, 
ON, Canada), to minimize visual cues. Animals do not spontaneously 
prefer either texture (L. H. L. Sellings and P. B. S. Clarke, unpub
lished data), and a11 experiments were as fully counterbalanced as 
possible with respect to drug-texture pairing and order of drug pair
ing (drug-saline ot saline-drug) within each surgery group. For all 
experiments, pre-exposure sessions lasted 20 min, and the test ses
sion lasted 10 min. Conditioning trial duration for i.v. cocaine was 15 
min and for i.p. cocaine was 25 min. 

For i.v. infusion (experiments 1, 2, and 4), a fluid swivel was fixed 
above the center of each cage. Each swivel was connected on one end 
to a 1-ml syringe and on the other end to a brass connector (produits 
MSM, Laval, QC, Canada) and a protective spring (Heiplex, Mon
treal, QC, Canada) via Tygon tubing of 0.51-mm diameter. The 
cannula fixed to the sku11 of the rat was attached to the Tygon 
tubing, and the brass connector was fastened to the plastic connector 
to secure the tubing to the cannula, hence allowing administration of 
drug immediately after placement of the animal in the CPP cage. 
Drug was infused over 25 to 30 s. Cocaine administered i.p. was 
injected immediately before placement in the CPP cage. 

Tissue Preparation. Tissue was prepared for autoradiography 
and Nissl staining (Cresyl violet) as described previously (Sellings 
and Clarke, 2003). In brief, rats were sacrificed 3 to 5 h after CPP 
testing by decapitation under sodium pentobarbital (65 mg/kg i.p.) 
anesthesia. Brains were removed, frozen in 2-methylbutane at 
-50°C for 30 s, and stored at -40°C. 

Coronal sections (20 /.Lm) were taken on a cryostat at several 
rostrocaudallevels through the ventral striatum. In experiments 1, 
2, and 3, sections were examined at 11.2, 10.7, 10.2, and 9.7 mm 
anterior to interaural zero; 9.2 and 8.7 mm were also examined in 
experiment 4 (Paxinos and Watson, 1997). Four adjacent sections 
were co11ected for autoradiography and one for Nissl staining with 
Cresyl violet. Sections were thaw mounted onto gelatin-subbed 
slides, air-dried at room temperature for 20 to 30 min, and stored 
with desiccant at -40°C. 

Quantitative Autoradiography. The extent and chemical selec
tivity of the 6-0HDA lesion was quantified by autoradiographic 
labeling of the DA transporter (DAT) and the 5-hydroxytryptamine 
(serotonin) transporter (SERT) (Sellings and Clarke, 2003), using a 
nonsaturating concentration of [125I13(3-(4-iodophenyl)tropan-2-(3-
carboxylic acid methyl ester ([125I1RTI-55) (2200 Ci/mmol; NEN
Mandel, Guelph, ON, Canada). 

Sections were thawed at room temperature for 10 min and then 
placed in a staining dish containing an aqueous buffer solution of 120 
mM NaCl, 0.1 M sucrose, 10 mM sodium phosphate buffer, and 10 pM 
[125I]RTI_55, with the pH adjusted to 7.4. In the DAT autoradiographic 
assay, 50 nM citalopram hydrobromide was used to occlude SERT; 

nonspecific binding was determined by addition of 10 /.LM 1-{2-lbis(4-
fluorophenyl)methoxylethyI1-4-(3-phenylpropyl)piperazine dihydro
chloride (GBR 12909). For SERT autoradiography, 1 /LM 1-[2-
(diphenylmethoxy )ethyI1-4-(3-phenylpropyl)piperazine dihy
drochloride (GBR 12935) was added to occlude DAT; nonspecific 
binding was determined by addition of 50 nM citalopram HBr (Sel!
ings and Clarke, 2003). Slides were incubated at room temperature 
for 2 h and then washed three times in ice-cold buffer solution (once 
for 1 min and twice for 20 min) and for 1 to 2 s in distilled and 
deionized water. They were then blow-dried and placed in X-ray film 
cassettes. Kodak BioMax MS film (Amersham Biosciences, Baie 
d'Urfé, QC, Canada) was exposed to slides for 48 h (DAT) or 120 h 
(SERT) with 1251 autoradiographic standards (Amersham Bio
sciences). After development of film, DAT and SERT binding were 
quantified using an MCID M4 imaging system (Imaging Research, 
St. Catherines, ON, Canada). 

Histological Examination. Tissue was stained with cresyl violet 
to assess nonspecific damage, as described previously (Sellings and 
Clarke, 2003) and examined under a light microscope (40-200X 
magnification). 

Drugs. Drug sour!!es were as fol!ows: cocaine HCI (gift of National 
Institute on Drug Abuse, Bethesda, MD); citalopram HBr (gift t'rom 
H. Lundbeck A/S, Copenhagen, Denmark); dipyrone (Vétoquinol, 
Quebec, QC, Canada); ketamine HCl (Vetalar; Vetrepharm, London, 
ON, Canada); xylazine HCI (Anased; Novopharm, Toronto, ON, Can
ada); GBR 12909 (National Institute of Mental Health Chemical 
Synthesis and Drug Supply Program, Bethesda, MD), and GBR 
12935·2HCI (Sigma-Aldrich, Oakville, ON, Canada). Unless other
wise stated, a11 other chemicals were obtained from Fisher Scientific 
(Montreal, QC, Canada). 

Cocaine HCI was dissolved in sterile 0.9% saline and injected at 1 
ml/kg (i.v. or i.p.). 6-0HDA HBr was dissolved in sterile 0.9% saline 
containing 0.3 mg/ml sodium metabisulfite (Sigma-Aldrich) as an 
antioxidant and protected from light. Vehicle solutions as well as 
6-0HDA to be infused into the medial she11 or amOT were neutral
ized to pH 7.3 ::': 0.1 with NaOH (to reduce nonspecific damage; see 
Results). Doses of aIl drugs except 6-0HDA HBr are expressed as the 
salt. 6-0HDA HBr doses are expressed as free base. 

Data Analysis. A commercial software program (Systat v10.2; 
SPSS Inc., Chicago, IL) was used for aIl data analyses. In a11 exper
iments, locomotor responses to cocaine were calculated as the differ
ence of locomotor counts between drug and saline conditioning ses
sions. In CPP experiments, saline locomotor scores were calculated 
as the mean activity over aIl three conditioning sessions with saline 
and are expressed as means ::': S.E.M. After initial data inspection, 
sham groups were combined within each experiment. Group differ
ences were analyzed by one-way analysis of variance. CPP magni
tude was calculated as the diflerence between time spent on the 
drug-pail'ed and vehicle-paired sides during the 10-min test session. 
Experiments 2 and 4 were each carried out in different batches 
because of space constraints in the animal facility; after initial data 
inspection, the results within each experiment were pooled. The 
existence of a significant CPP magnitude or locomotor stimulant 
effect was determined by a one-sample Student's t test with the 
Bonferroni correction for multiple comparisons. The relationship 
between behavioral measures versus [125I1R'l'I-55 labeling was ana
lyzed by multiple linear regression. A p value of <0.05 (two-tailed) 
was considered significant. Group data are expressed as means ::': 
S.E.M. throughout. 

Results 

Neurochemical and Anatomical Selectivity. To assess 
nonspecific tissue damage, sections were Nissl-stained with 
Cresyl violet. As reported previously (Sellings and Clarke, 
2003), only minimal cellloss was evident at the site of infusion 
for aU vehicle groups (Fig. lA) and for the group infused with 



Fig. 1. Representative photomicrographs of Nissl staining in sham-Ie
sioned (A) and amOT-lesioned (B and C) animaIs adjacent to the infusion 
site. In sorne (30%) of amOT-lesioned rats, a smal! region of reduced cel! 
density was observed compared with sham-Iesioned rats CB, black arrow). 
Larger regions of decreased cell density were seen in a subset (--10%) of 
lesioned animaIs (C, black arrow). Scale bar, 100 f.Lm. ac, anterior com
missure; Tu, medial olfactory tubercle. 
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6-0HDA in the core subregion (not shown). Among rats lesioned 
in the medial shell or amOT, most (-60%) also showed a min
imal degree ofcellloss, -30% ofrats possessed a small region of 
decreased ceU density at the infusion site (Fig. lB), and -10% 
ofrats showed more pronounced nonselective damage (Fig. lC). 
This larger region of Ilonspecific damage did not extend more 
than 0.3 mm from the site of infusion and was almost always 
found at only one anterior-posterior level. 

Sampling locations for DAT and SERT binding density are 
indicated in Fig. 2. [12°I1RTI-55 autoradiographs of DAT 
binding are shown in Fig. 3. Residual DAT binding as a 
percentage of combined sham groups is given in 'l'ables 2 
(experiments 1-3) and 3 (experiment 4). Radioligand binding 
to SERT in tissue from lesioned animaIs was minimally 
changed by alllesion parameters in an experiments (Tables 
2 and 3). In all experiments, rats were allowed 7 to 10 days 
recovery postsurgery before the start of behavioral testing. 

The Magnitude of Core, but Not Medial Shell, DA De
nervation Predicted Locomotor Responses to Intraperi
toneal and Intravenous Cocaine. The effects of 6-0HDA 
lesions of core versus medial shell on cocaine-induced locomo
tion were tested most extensively in experiment 1. Locomotor 
responses to i.p. and i.v. cocaine are shown in Fig. 4, A and B 
(absolute values), and Fig. 4, C and D (saline-subtracted val
ues). Saline test scores did not differ significantly among the 
three surgery groups (Fig. 4, A and B). The locomotor stimulant 
effects of cocaine were blunted only in the core-Iesioned group. 
Multiple linear regression analysis revealed significant positive 
associations between core DAT binding and the locomotor stim
ulant response for both administration routes used and at an 
doses except for 0.5 mg/kg i.v. (range p < O.OOl-p < 0.05). 
Significant negative associations were observed between medial 
shell DAT binding and the locomotor stimulant response at 
several cocaine doses (1 mg/kgLv. and 5 and 10 mg/kgi.p.;p < 
O.05-p < 0.005). 

Fig. 2. A, locations of sampled [125I1RTI-55 binding in core, medial shell, 
ventral shell, olfactory tubercle, and ventral caudate putamen. Each rat was 
sampled at four anterior-posterior levels. Numbers are distances (in milli
meters) anterior to interaural zero. Sampling areas were circles of 0.3 mm 
diameter. B, sampling regions for olfactory tubercle subregions (amOT, 
anterolateral OT, and posterior OT) in experiment 4 and in post hoc analyses 
ofexperiment 2. At levels 11.2, 10.7, and 10.2, both amOT and antel'olateral 
OTwere sampled. At levels 9.7,9.2, and 8.7, only posterior OT was sampled. 
Figure adapted from Paxinos and Watson (1997). 
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Fig. 3. Representative autoradiographie images of [125l]RTI55 binding to 
DAT in animais from medial sheU-Iesioned (mSh), anteromedial olfactory 
tubercle-Iesioned (mOT), and sham-operated groups (sham) in experi
ment 4. Because binding was similar among groups that received vehicle 
in the medial sheU and medial olfactory tubercle, the latter group has 
been omitted. Numbers designate distance anterior to interaural zero (in 
millimeters). Radioligand binding was obtained at a nonsaturating con
centration of radioligand. Arrows refer to the medial sheU. Arrowheads 
(pointing upward) refer to the anteromedial olfactory tubercle. 

The effects of core and medial shen 6-0HDA lesions on 
cocaine-induced locomotion were also tested in two CPP ex
periments (i.e., experiments 2 and 3). Locomotor data were 
obtained from the three drug and saline conditioning ses
sions. Experiment 2 examined the locomotor stimulant re
sponse to cocaine (0.5 mglkg i.v.). Here, saline locomotor 
scores did n01<iiffer significantly among groups and were~s 
fonows: 52 ::':: 2 m (sham), 54 f 2 m (core 6-0HDA), and 55 ::':: 
2 m (medial shen 6-0HDA). A significant locomotor stimu
lant effect was observed in sham-Iesioned and mediai shen
lesioned animaIs, but not in the core-Iesioned subjects (Fig. 
5A). Multiple linear regression analysis reveaied a positive 
trend between the locomotor response and DAT binding in 
the core (p == 0.086; Fig. 5B) but not medial shen (Fig. 5C). 

The locomotor stimulant response to i.p. cocaine (10 mg/kg) 
was also attenuated after core 6-0HDA lesions (experiment 
3; Fig. 6A). No significant group differences were seen for 
saline locomotor activity. Saline scores were 85 ::':: 6 (sham), 
88 ::':: 5 (core 6-0HDA), and 87 ::':: 5 (medial shen 6-0HDA). 
Multiple linear regression analysis (Fig. 6, Band C) revealed 

TABLE 2 

TABLE 3 
DAT and SERT binding in medial sheU· or anteromedial olfactory 
tubercle (amOT)·lesioned rats in imaged ventral striatal subregions 
(experiment 4) 
Values are expressed as means :.~. S.E.M. 

6·0HDA Site Sham Medial Shell amOT 

DAT 
Core 100 :!: 5 87:!: 6 89:!: 5 
mSh 100:!: 4 40:t 5 66:t 7 
vSh 100 ± 5 77 ± 7 75 ± 3 
amOT 100 ± 8 57 ± 7 34 ± 8 
alOT 100 ± 9 70 ± 6 55 ± 6 
pOT 100::':: 10 85::':: 67 51::':: 6 
vCP 100:.': 4 100 :.':. 5 95:!: 4 

SERT 
Core 100 ± 14 110±4 97 ± 9 
mSh 100::':: 11 100::':: 4 90 ± 8 
vSh 100 ± 15 109 ± 6 97:!: 9 
amOT 100:!: 13 101 ± 5 92:!: 10 
alOT 100 ± 14 109 ± 4 105 :!: 12 
pOT 100 ± 13 108 ± 6 95 ± 12 
vCP 100 ± 15 123 ±. 7 110 ± 10 

mSh, medial shell; vSh, ventral shell; aIOT, anterolateral olfactory tubercle; pOT, 
posterior olfactory tubercle; vCP, ventral caudate putamen. 

a positive association between the locomotor response and 
core DA innervation only (p < 0.05). 

NAcc Medial Shell Lesions Inhibited CPP for Intra
venous Cocaine. In experiment 2, only the combined sham 
group and the core-Iesioned group exhibited significant CPP 
{Fig. 5D). Relationships between the CPP magnitude and 
core versus medial shen DAT binding are shown in Fig. 5, E 
and F, respectively. The CPP magnitude produced by i.v. 
cocaine ~ positively related to medial shell DAT binding 
(p < 0.0~5; Fi~~~) with a negative trend in the accumbens 
core (p- 0.062; Fig. 5E). 

Conditioned Place Preference for Intraperitoneal 
Cocaïne Was Unaffected by Lesions of Core or Medial 
Shell. In experiment 3, a significant CPP to i.p. cocaine 
occurred in the sham-Iesioned group, with a similar trend in 
the two lesion groups (Fig. 6D). No significant relationship 
was observed between the CPP magnitude and core or medial 
shen DAT binding (Fig. 6, E and F). 

CPP Magnitude for Intravenous Cocaine Was Related 
to OT Residual DAT Binding. It was recently reported that 
amOT more robustly supports intracranial self-infusion of co
caine than does medial shell (see Discussion). Therefore, we 
first re-examined the data from experiment 2 (i.v. cocaine) to 

Residual DAT and SERT binding in rats lesioned in core or medial sheU in ventral striatal subregions (experiments 1, 2, and 3) 
Values given are means :':: S.E.M. as a percentage of combined sham group. 

2 3 
6-0HDASite 

Sham Core mSh Sham Core mSh Sham Core mSh 

DAT 
Core 100:!: 4 40:!: 8 85:!: 5 100 ± 3 25 :!: 1 86 5 100:!: 7 20:!: 3 95:!: 5 
mSh 100:!: 11 60:!: 9 31 ± 7 100:!: 5 47 ± 3 42 3 100 ± 8 48 ± 4 86 ± 6 
vSh 100:!: 5 68:!: 12 76:!: 4 100:!: 7 45:!: 3 92 7 100:!: 6 35:!: 6 98 ± 8 
OT 100:!: 4 74:!: 11 80 ± 5 100 ± 5 47 ± 5 76 6 100 :!: 12 46 ± 4 80:!: 4 
vCP 100:!: 4 66:!: 8 92± 4 100 ± 5 45:!: 2 102 7 100 ± 10 50 ± 7 107 ± 6 

SERT 
Core 100 ± 9 97:!: 7 91 :!: 5 100±5 83:!: 4 93 4 100 :!: 5 108 ± 6 97 ± 3 
mSh 100 ± 6 105 ± 6 95:!: 7 100 ± 2 93 ± 5 90 4 100:!: 4 97 ± 5 94 ± 3 
vSh 100 ± 5 102 ± 6 100 ± 5 100:!: 2 90 ± 4 99 4 100 ± 6 118±8 108 :!: 3 
OT 100 ± 6 110±6 100:!: 5 100 ± 3 100 ± 5 101 5 100:!: 6 116:!:5 108 ± 4 
vCP 100 ± 9 99 ± 6 98:!: 5 100:!: 4 90:!: 5 107 3 100 ± 3 88:!: 3 93 ± 8 

mSh, media! shel!; vSh, ventral shel!; vCP, ventral caudate putamen. 
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respectively. The stimulant effect of cocaine (i.e., 
cocaine-saline difference score) is illustrated in C 
and D. Locomotor response correlated positively and 
significantly with DAT binding in the core at ail 
doses except 0.5 mglkg Lv. Shell refers to medial 
shell. 
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determine whether amOT DAT binding may have contributed 
significantly. t? the CPP magnitude. However, amO] binding 
was reducedjonly slightly in this experiment (by 28% in the 
core- and 11% in the shell-Iesioned group). We therefore ad
dressed the question of amOT involvement by directly compar
ing the effects of 6-0HDA lesions of the medial shell versus 
amOT on i.v. cocaine CPP (experiment 4). 

Infusions of 6-0HDA into either amOT or medial shell 
depleted DAT binding locally and also tended to produce a 
smaller and variable depletion in the other structure (Fig. 7). 
Initial analysis revealed a high degree of colinearity existing 
in DAT binding levels between different OT subregions. Ac
cordingly, these values were averaged, and subsequent anal
yses were carried out using OT rather than amOT values. 

OnJy sham-Iesioned animaIs exhibited significant CPP 
(Fig. 8A). Multiple linear regression analysis was performed 
with CPP magnitude as the dependent variable, using resid
ual DAT binding in core, medial shell, ventral shell, ventral 
caudate putamen, and OT as simultaneous predictors. Only 
OT was retained as a significant predictor Cp < 0.01) (Fig. 
8C). Linear regression analysis of C~B magnitude with me
dial shell as the sole predictor reveal a positive association 
that bordered on significance Cp = .056). Linear regression 
analysis of the locomotor stimulant effect revealed that DAT 
binding in neither medial shell nor OT predicted the degree 
of locomotor stimulation Cp > 0.5 for both, data not shown). 

Discussion 

Novel Findings. To our knowledge, the present study is the 
first to examine the l'ole of ventral striatal subregions in CPP 
induced by systemically administered cocaine. Cocaine-induced 
locomotion was related to core DA innervation at several doses 
ofboth i.v. and i.p. cocaïne. CPP results, in contrast, were more 
complex. Intravenous cocaine CPP appeared to be dependent on 
DA innervation in both OT and medial shell, whereas i.p. co
caine CPP was unaffected by medial shelliesions. 

Methodological Considerations. The present series of 
experiments revealed associations between residual DA in
nervation in various ventral striatal structures and cocaine
induced locomotion or CPP. It is doubtful that these relation
ships represent segregation between conditioned and 
uneonditioned drug effects rather than between reward and 
locomotion, as core but not medial shell 6-0HDA lesions 
abolished amphetamine-induced conditioned locomotion 
(Sellings and Clarke, 2006). 

In the present study, quantitative autoradiographic analysis 
was performed by taking a large number of samples within each 
structure (e.g., 24 each for medial shell and core). Within each 
targeted structure, the extent ofDAT depletion appeared rather 
uniform (see Fig. 3 and Sellings and Clarke, 2003), and visual 
inspection revealed no evidence for smaller sites ofpreferential 
depletion. Nevertheless, we cannot rule out the possibility that 
our behavioral effects resulted from damage to functionally 
important ''hot spots" within the targeted structures. 

It is unlikely that nonspecific damage eaused these lesion 
effects, since only minimal changes were observed in SERT 
binding levels, and Nissl staining revealed only slight non
specific damage in a subset of medial shell- and medial OT
lesioned animaIs (Fig. 1). However, 6-0HDA infusion almost 
certainly depleted noradrenaline as well as DA. Preservation 
of noradrenergic terminaIs by using systemic desipramine 
proved impossible, sinee in pilot studies the routinely used 
dose of25 mg/kg (Kelly and Iversen, 1976) caused significant 
mortality (>25%). Nevertheless, for several reasons, it is 
unlikely that the observed lesion effects were due to loss of 
noradrenergic terminaIs. First, neither noradrenergic ago
nists nor antagonists, when injected into ventral striatum, 
affected locomotion (Pijnenburg et al., 1975, 1976). Second, 
noradrenergic denervation of ventral striatum does not alter 
locomotor stimulant responses to cocaine and amphetamine 
(Roberts et al., 1975; Kelly and Iversen, 1976). Third, norad
renergic afferents to NAcc largely avoid the core (Delfs et al., 
1998), where lesion effects on locomotor stimulation oc-
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Fig. 5. Effect of bilateral 6-0RDA infusion into ei
ther NAcc core or medial sheU on locomotor re
sponse and CPP to Lv. cocaine (experiment 2). Rats 
were a110wed 7 to 10 days recovery alter .iugular 
catheter implantation and stereotaxie surgery he
fore conditioning with i.v. cocaine (0.5 mglkg). Loco
motol' responses (A-C) are expressed as the difler
ence between the mean distance moved (m) during 
conditioning sessions with i.v. cocaine versus saline. 
cpp magnitude (D-F') is expressed as the difference 
between time spent on the drug-paired and saline
paired floor textures on test day (in seconds, 600-s 
test). DAT labeling in core or medial sheU is ex
pressed as a percentage of combined sham-Iesioned 
groups. Both sham- and shell-Iesioned groups ex
hibit significant locomotor stimulation (A). Locomo
tor response tended to correlate positively with DAT 
binding in core (E). Both sham- and core-lesioned 
groups exhibit significant CPP (D). CPP magnitude 
correlated positively and significantly with DAT 
binding in medial sheU (F') and tended ta correlate 
negatively with DAT binding in core (E). CV, core 
vehicle; CL, core lesioned; SV, medial sheU vehicle; 
SL, medial shelllesion. SheU refers to medial she11. 
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curred. Fourth, stimulation of noradrenergic transmission 
did not produce CPP (Martin-Iverson et al., 1985; Subhan et 
al., 2000). Fifth, neither ex- nor f3-adrenergic receptor antag
onists affected the rewarding effects of i.v. cocaine as 
reflected by self-administration behavior (Johanson and 
Fischman, 1989). Sixth, the disruptive effects of 6-0HDA 
lesions on co caine self-administration appear to be unrelated 
to noradrenaline depletion (Roberts et al., 1975, 1977). 
Lastly, self-administration of cocaine directly into the amOT 
was blocked by coinfusion of a DIor D2 DA receptor antag-

onist (Ikemoto, 2003). On this basis, it seems reasonable to 
conclude that our 6-0HDA lesions produced their behavioral 
effects via local depletion of DA. 

The Accumbens Core and Locomotor Activation. 
There is currently no consensus on the role of core versus 
shell in psychostimulant-induced locomotion (Boye et al., 
2001; Ikemoto, 2002, and references therein). In particular, 
studies with intra-accumbens microinjection of direct or in
direct DAergic agonists have implicated core, shell, or both 
structures, depending on the drug. For example, amphet-
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Fig. 6. Em~ct of bilateral 6-0HDA infusion into ei
ther NAcc core or medial shell on locomotor re
sponse and CPP to i.p. cocaine (experiment 3). Rats 
were conditioned with i.p. cocaine (10 mg/kg). Data 
are presented as in Fig. 3. AlI groups exhibit signif
icant locomotor stimulation (A), but that of core
lesioned animaIs was smaller than that ofthe sham
and shell-lesioned groups (p < 0.05). Only sham rats 
exhibited significant CPP, but core- and shell-Ie
sioned animaIs also tended to exhibit CPP (0). Lo
comotor response correlated positively and signifi
cantly with DA'!' binding in core (B). No other 
behavioral responses correlated with DA'!' labeling 
in either structure (C, E, and F). CV, core vehicle; 
CL, core-Iesioned; SV, medial shell vehicle; SL, me
dial shelllesion. Shell refers to medial shell. 

amine acted with similar potency at either injection site, 
whereas cocaine stimulated locomotor activity most strongly 
after injection into medial OT and medial shell (Ikemoto, 
2002). Imporlantly, locomotor responses from accumbens 
core injections of cocaine may have been weakened by local 
anesthesia (Ikemoto and Witkin, 2003). 

amine (Boye et al., 2001; Sellings and Clarke, 2003, and 
references therein) and methylphenidate (L. H. L. Sellings, 
L. E. McQuade, and P. B. S. Clarke, manuscript submitted 
for publication). Taken together, they suggest a general 
mechanism by which systemically administered psycho
stimulants produce activating effects. Whether core DA 
transmission directly mediates the locomotor stimulant ac
tion ofthese drugs or plays an indirect enabling role remains 
a question for the future. 

The present experiments show that the locomotor stimu
lant effects of systemically administered cocaine are associ
ated with DAergic neurotransmission in core rather than 
medial shell. This result generalized to several doses of the 
drug and to both Lp. and i.v. routes of administration. These 
findings accord with observations using systemic amphet-

Differences between Intraperitoneal and Intrave
nous Cocaine CPP. In the present study, i.v. cocaine pro
duced CPP that appears to be dependent on DA transmission 
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Fig. 7. Relationship of DA'!' labeling in nucleus accumbens medial sheU 
versus olfactory tubercle in experiment 4 (n = 46 rats). ['2"I]RTI-55 
autoradiography for DATwas used to a8sess residual DA innervation (see 
Materials and Methods) and expressed as a percentage of the mean value 
of the sum of medial shell-vehicle and olfactory tubercle-vehide groups. 
Correlational analysis revealed a significant relationship between medial 
shell and olfactory tubercle binding (r = 0.39, p < 0.01). OTV, olfactory 
tuberde vehicle; O'!'L, olfactory tubercle-lesioned; SV, medial shell vehi
cie; SL, medial shell lesion. 

in both medial shell and OT. In contrast, i.p. cocaine CPP did 
not appear to be dependent on accumbens DA transmission. 
This finding is consistent with reports suggesting that i.v. 
cocaine produces DA-dependent CPP and i.p. cocaine pro
duces DA-independent CPP (Morency and Beninger, 1986; 
Spyraki et al., 1987). Aithough neuroadaptation may account 
for the Iack oflesion effect on i.p. cocaine CPP, this appears 
unlikely considering the fact that similar medial shelllesions 
reduced CPP both for i.v. cocaine and for amphetamine (Sell
ings and Clarke, 2003). Our results do not rule out other 
forms of accumbens involvement; indeed glutamatergic and 

serotonergic manipulations within this structure affect i.p. 
co caine CPP (Kaddis et al., 1995; Harris et al., 2001). 

Because cocaine produces CPP more potently after i.v. 
than after i.p. administration (Spyraki et al., 1987; O'Dell et 
al., 1996), care was taken in the present study to select 
submaximal i.p. and i.v. doses of cocaine approximately 
matched in terms of CPP magnitude. Hence, it is likely that 
the differential sensitivity to DA depletion reflected route of 
administration and not dose. 

The neurochemical basis of this differential susceptibility 
cannot readiIy be related to changes in extracellular DA. The 
i.v. dose used (0.5 mglkg) has been reported to increase dialy
sate DA levels in the medial shell but not the core (pontieri et 
al., 1995), whereas the i.p. dose (10 mglkg) robustly increased 
DA levels in both subregions (Cadoni et al., 2000). Another 
reporled difference between i.v. and i.p. cocaine administration 
is that only the former caused significant increases in glucose 
metabolism in NAcc and OT (Porrino, 1993); in the latter study, 
the use of a wide range of doses suggests strongly that route of 
administration was the critical factor. The basis for route-de
pendent effects on cerebral glucose utilization and the possible 
relation to cocaine reward remain to be elucidated. 

Cocaine CPP: Dependence on Both Medial Shell and 
OT. Although there is a rich body ofliterature linking the NAcc 
to drug reward, possible OT involvement has been largely un
examined (Clarke et al., 1.990; Kornetsky et al., 1991; Ikemoto, 
2003; Ikemoto et al., 2005; Ikemoto and Donahue, 2005). The 
present results suggest that both medial shell and OT play 
important l'oIes in mediating i.v. cocaine reward. 

Self-administration of cocaine directly into the ventral stria
tum appears strongly site-dependent; responding was vigorous 
for infusions into amOT, marginal in medial shell, and negligi
ble within accumbens core (Rodd-Henricks et al., 2002; Ike
moto, 2003). In addition, only cocaine infusion at amOT sites 
produced CPP at the doses tested (lkemoto, 2003).'However, the 
behavioral effect.'l of focal cocaine infusion into the NAcc (shell 

.... p < 0.0005 vs. zero 
Fig. 8. Effect of 6-0HDA lesions of olfactory tubercle 
and medial shell on Lv. cocaine CPP (experiment 4). 
CPP magnitude was calculated as the difference be
tween the time spent on the drug-paired and saline
paired sides. CPP magnitude cOlTelated positively and 
significantly with DA'!' binding in olfactory tubercle 
(C) but not with DA'!' binding in medial shell (B). O'!'V, 
olfactory tubercle vehicle; OTL, olfactory tubercle le
sioned; SV, medial shell vehicle; SL, medial shell le
sion. Shell refers to medial shell. 
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or core) may be masked by local anesthesia (Ikemoto and Wit
kin, 2003). Nevertheless, DA antagonist mÏ<:roinjection experi
ments suggest that it is the medial shell rather than the core 
that mediates the reinforcing effects of self-administered i.v. 
cocaine (Bari and Pierce, 2005). 

In experiment 2, lesions of the medial shell reduced i.v. co
caine CPP independently of accumbens core; in this experi
ment, DA denervation in the OT was minimal. When 6-0HDA 
infusions of medial shell and OT were directly compared (ex
periment 4), only OT DA innervation significantly predicted iv. 
cocaine CPP. These results may indicate that the OT is a stron
gel' mediator of cocaine reward, as concluded from findings 
based on intracranial cocaine infusion (Ikemoto, 2003). It is 
unlikely that these lesion effects represent disruptions ofmem
ory or learning, as medial shell lesions did not affect CPP 
induced by morphine (Sellings and Clarke, 2003) or ip. cocaine 
(present study), and extensive 6-0HDA lesions of OT did not 
disrupt amphetamine CPP (Clarke et al., 1990). 

Several factors could determine the relative contributions 
ofOT versus medial shell to psychostimulant CPP. First, the 
nature of the CPP paradigm used may be a factor. Our CPP 
procedure is based on tactile eues; other types of stimuli may 
engage other ventral striatal subregions. Another factor of 
potential importance is the drug in question. Our results 
suggest that i.v. cocaine CPP engages OT mechanisms. This 
does not appear to be the case for i.p. amphetamine CPP 
(Clarke et al., 1990). 

Conclusions 

The increase in locomotor activity observed after psycho
stimulant administration appears to be related to illcreased DA 
transmission in the NAcc core. In contrast, CPP appears more 
complex, probably depending on the drug and route of admin
istration. The present study suggests that DA transmission in 
both medial shell and OT is important for i.v. cocaine CPP. Our 
findings build on recent evidence suggesting that distinct ven
tral striatal subregions participate in different aspects of drug 
reward (Ikemoto, 2003; Sellings and Clarke, 2003; Ikemoto and 
Donahue, 2005; Pecina and Berridge, 2005). Whether these 
structures act in concert or independently remains a question 
for furtller study (van Dongen et al., 2005). 
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CHARACTERIZATION OF DOPAMINE-DEPENDENT 
REWARDING AND LOCOMOTOR STIMULANT EFFECTS OF 
INTRAVENOUSLY-ADMINISTERED METHYLPHENIDATE IN RATS 

L. H. L. SELLINGS, L. E. McQUADE 
AND P. B. S. CLARKE* 

Department of Pharmacology and Therapeutics, McGiII University, 
3655 Promenade Sir-William-Os/er, Room 1325, Montreal, Quebec, 
Canada H3G 1Y6 

Abstract-In general, psychostlmulants are thought to exert 
rewarding and locomotor stimulatlng effects via increased 
dopamine transmission in the ventral striatum. However, Uttle 
Is known about the mechanisms underlylng the effects of the 
stimulant drug methylphenldate. The present study examined 
the putative role of dopaminerglc transmission in Lv. meth
ylphenidate reward as measured by conditioned place pref
erence. Rats were shown to exhlblt condltloned place prefer
ence for I.v. methylphenidate (5 mg/kg, not 2 mg/kg). Admin
istration of the dopamine receptor antagonist cls-flupenthixol 
(0.1-0.8 mg/kg I.p.), either during condltioning or on test day, 
dose-dependently attenuated the magnitude of the condi
tioned place preference. FinaUy, we examined the effects of 
bllateral 6-hydroxydopamine leslons of nucleus accumbens 
core, medlal shell or anteromedial olfactory tubercle on the 
rewardlng and locomotor stimulant effects of methylpheni
date. Residual dopamine innervation, as assessed by radio
ligand blnding to the dopamine transporter, revealed a sig
niflcant association between core dopamine Innervation and 
the locomotor stimulant effect of methylphenldate. However, 
neither core nor medial shell dopamine Innervation was ro
lated to condltloned place preference magnitude. Instead, 
conditioned place preference magnitude was associated with 
dopamine Innervation ln the anteromedial olfactory tubercle. 
These results establish a role for dopaminergic transmission 
ln both I.v. methylphenldate condltloned place preference 
and locomotor stimulation. As weil, they suggest that dlffer
ent ventral striatal subregions mediate the rewarding (antero
medial oifactory tubercle) and locomotor stimulant (accum
bens core) effects of methylphenidate. © 2006 IBRO. Pub
IIshed by Elsevier Ltd. Ali rlghts reserved. 

Key words: dopamine, nucleus accumbens core, nucleus 
accumbens medial shell, olfactory tubercle, conditloned 
place preference, cis-flupenthlxol. 

Considerable evidence indicates that the rewarding and 
behavioral activating effects of cocaine and amphetamine 
occur via increased dopaminergic (DAergic) transmission 
in the ventral striatum (Koob et aL, 1998; EveriU and Wolf, 

·Corresponding author. Tel: +1-514-398-3616x1; fax: +1-514-398-6690. 
E-mail address:paul.clarke@mcgill.ca (P. B. S. Clarke). 
Abbreviations: amOT. anteromedial olfactory tubercle; CPP. candi
tioned place preference; DA, dopamine; DAergic, dopaminergic; DAT, 
dopamine transporter; [125I)_RTI_55. [125I)-3-/3-(4-iodophenyl)tropan-2-
j3-carboxylic acid methyl ester; NAcc, nucleus accumbens; OT. olfac
tory tubercle; SERT. serotonin transporter; 6-0HDA. 6-hydroxydopa
mine. 

2002; Wise. 2004). Much less is known in this regard about 
other psychostimulant drugs su ch as methylphenldate. 
Like cocaine, methylphenidate blocks the dopamine trans
porter (DAT) and increases interstitial dopamine (DA) lev
els in the nucleus accumbens (NAcc) in rats (Gerasimov 
et aL, 2000). In addition, PET studies employing [11C]ra
clopride binding have suggested that Lv. methylphenldate 
can also increase DA transmission in the human striatum 
(Volkow et aL, 2004). Based on this evidence and by 
analogy with other psychostimulants, Volkow et al. (2004) 
have proposed that the euphorie and/or reinforcing effects 
of methylphenidate are dependent on striatal DA transmis
sion. However, to our knowledge, no causal link be1ween 
increased DA transmission and methylphenldate reward 
has been established. 

Rewarding effects of methylphenidate occur not only in 
humans but have also been shown in animais; the drug is 
self-administered Lv. in several mammalian species in
cluding non-human primates as a replacement for other 
stimulant drugs (Bergman et aL, 1989; Kollins et aL, 2001). 
and it also Induces conditioned place preference (CPP) in 
rats (Martin-Iverson et aL, 1985; Mithani et aL, 1986; Merir
in ne et al.. 2001). The pharmacology of methylphenidate 
self-administration remains to be explored, but evidence to 
date suggests that methylphenidate CPP can occur inde
pendently of brain DA. In particular, CPP acquisition is 
inhibited only at very high doses of DA antagonists (Martin
Iverson et al., 1985; Mithani et al., 1986; Meririnne et aL, 
2001), and DAT knock-out mice are capable of exhibiting 
methylphenidate CPP (Sora et aL, 1998). 

ln previously published CPP studies. methylphenidate 
was given by Lp. injection. Studies with cocaine have 
shown that route of administration can critically determine 
abuse liability and can also determine whether CPP occurs 
via a DAergic or non-DAergic mechanism (Spyraki et al.. 
1982, 1987; Nomikos and Spyraki, 1988). Abuse liability of 
methylphenidate in humans is presumably also route de
pendent. Although oral methylphenidate exhlbits minimal 
abuse liability (Swanson and Volkow, 2003), intranasal 
abuse is common (BarreU et al.. 2005) and there are 
several reports of Lv. use (Parran and Jasinski, 1991; 
BarreU et aL, 2005). In light of this, the rewarding effects of 
Lv. methylphenidate warrant separate examination. 

Recent rodent studies using amphetamine and co
caine suggest that rewarding and locomotor stimulant drug 
effects can be anatomically dissociated within the ventral 
striatum. To date, reward processes have been most 
clearly linked to the medial portion of the NAcc shell 
(Di Chiara et aL, 2004). For example, direct and indirect 
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OAergic agonists are self-administered by rats directly into 
this subregion but not into NAcc core (Ikemoto and Wise, 
2004). However, recent studies have implicated the (an
tero)medlal olfactory tubercle (a mOT) as potentially more 
important than the medial shell in both cocaine and am
phetamine reward (Ikemoto, 2003; Ikemoto et al., 2005; 
Sellings et al., 2006). In contrast, locomotor stimulation 
has been reported in rats after focal infusion of psycho
stimulants and direct DA agonists into core and/or shell 
sites, depending on the drug in question (e.g. Ikemoto, 
2002). Using an alternate approach, we recently combined 
systemic amphetamine challenge with prior 6-hydroxydo
pamine (6-0HOA) lesions of NAcc core or medial shell 
(Sellings and Clarke, 2003). In this study, OAergic deple
tion in core and medial shell reduced amphetamine-in
duced locomotor stimulation and CPP, respectively. 

The ai ms of the present study were three-fold. First, we 
set out to establish whether rats would form a CPP for Lv. 
methylphenidate. Second, we tested if systemic DA recep
tor blockade would affect either the acquisition or the ex
pression of methylphenidate CPP. The final aim was to 
determine if the rewarding and locomotor stimulant effects 
of Lv. methylphenidate could be dissociated by ànatomi
cally-selective 6-0HOA lesions of ventral striatal subre
gions, including NAcc core, medial shell, and medial olfac
tory tubercle (OT) as previously seen with cocaine (Sell
ings et al., 200?). 

EXPERIMENTAL PROCEDURES 

Subjects 

Subjects were 111 male Long-Evans rats (Charles River, st. 
Constant, Ouebec, Canada) weighing 270-340 9 at time of sur
gery. Rats were housed individually (experiments 1 and 4) or in 
groups of three (experiments 2, 3 and 5) in clear Plexiglas cages 
in a temperature- and humidity-controlled animal colony, lit from 
7 A.M. to 7 P.M. Food and water were available ad libitum except 
during behavioral testing. Ali experiments were approved by the 
McGili Faculty of Medicine Animal Care Committee in accordance 
with Canadian Council on Animal Care guidelines. Experiments 
were carried out in accordance with the European Communities 
Council Directive (86/609/ECC) for the Care and Use of Labora
tory Animais. Ali efforts were made to minimize the number of 
animais used and their suffering. 

Intravenous eatheterization 

Rats were implanted with chronic indwelling Silas tic catheters 
(0.51 mm I.D. and 0.94 mm O.D., Fisher Scientific, Montreal, 
Ouebec, Canada) in the left jugular vein under ketamine (80 mg/ 
kg) and xylazine (16 mg/kg) anesthesia. Tubing was secured to 
the vein by surgical silk sutures, led s.e. to the skull surface, and 
was then fitted onto a 22 gauge cannula attached to a plastic 
connector (Model number C313G-5UP, Plastics One, Roanoke, 
VA, USA). The cannula/connector was fixed to the animal's skull 
with small stainless steel screws (Lomir, Notre-Dame-de-L'lIe 
Perrot, Ouebec, Canada) and dental cement (Stoelting, Wood 
Dale, IL, USA). To keep catheters patent, 0.1-0.15 ml heparinized 
0.9% saline was administered at the end of surgery, on the first 
day of behavioral testing, and every 2-3 days thereafter. Animais 
were allowed 7-10 days recovery from surgery before starting 
CPP testing. 

Stereotaxie infusion of 6-0HDA 

ln experiment 4, at the sa me time as i.v. catheterization surgery, 
rats were placed in a stereotaxie apparatus (Kopf, Tujunga, CA, 
USA) with the Incisor bar set at -3.9 mm. Bilateral infusions of 
either 6-0HOA (Iesioned groups) or vehicle (sham-Iesioned 
groups) were made into either NAcc core or medial shell, or 
amOT. Infusions into ail three lesion sites were made via a 30 
gauge stainless steel cannula attached by polyethylene tublng to 
a 10 ",,1 Hamilton syringe. For core and medial shell, syringes were 
driven by a model 5000 Micro Injection Unit (Kopf). For amOT, 
syringes were driven by a syringe pump. For greater accuracy, 
coordinates for ail three target subregions were derived from the 
mean of bregma and interaural coordinate systems. Thus, ante
rior-posterior coordinates were +10.2 mm from interaural zero 
and +1.2 mm from bregma for both core and shell; in amOT, they 
were + 1 0.7 mm and + 1.7 mm from interaural zero and bregma 
respectively. Lateral coordinates were ±0.6 mm (shell), ±2.4 mm 
(core) or ±0.8 mm (amOT). Ventral coordinates for shell (three 
injections) were +2.0, +2.4, and +2.8 mm frominteraural zero 
and -8.0, -7.6, and -7.2 mm from bregma. Ventral coordlnates 
for core were +2.7 mm from interaural zero and -7.3 mm from 
bregma; for mOT, they were +1.1 mm from interaural zero 
and -8.9 mm from bregma. These lesion parameters were based 
on pilot studies, and represented the best compromise belween 
target structure DAT depletion and anatomical selectivity. The 
core and amOT are roughly spherical, lending themselves to 
single infusions, whereas the medial shell is vertically elongated 
and hence best depleted with a ventrodorsal series of infusions. 
Ali coordinates are based on the atlas of (Paxinos and Watson, 
1997). 

6-0HDA or vehicle was infused on each side in a volume of 
0.2 p,) (amOT), 0.1 ",,1 (core), or as three infusions of 0.05 ",,1 
(medial shell). The rate of infusion was 0.1 ""I/min for core and 
medial shell, and 0.1 ",,1110 min for amOT. The concentration of 
6-0HDA used was 80 ""g/""I (core), 48 ""g/""I (medial shell) or 40 
fLglfLl (amOT). The cannula remained at the final infusion site for 
5 min. Animais were allowed 7-10 days' recovery prior to the start 
of conditioning. 

cpp and locomotor activity testing 

The apparatus and general procedure were as previously described 
(Sellings and Clarke, 2003). Briefly, the procedure consisted ofthree 
phases: pre-exposure (one day), conditioning (six days) and test 
(one day). Ali phases were carried out in a one-compartment box 
(58 cmx29 cmx53 cm) with walls made of white plastic-coated 
partiele board. In the one-day pre-exposure phase, rats recelved I.v. 
saline infusions immediate prior to placement in the CPP cage. Beta 
Chip sawdust bedding (NEPCO, Warrensburg, NY, USA) covered 
the floor of the cage. The conditioning phase lasted six consecutive 
days, with one session of 15 min occurring each day. In ail, there 
were three sessions with drug and three sessions with saline admin
istration, occurring on altemating days. Two square tactile tiles of 
either bar or mesh texture were placed in the bottom of the cage, and 
paired with drug or saline administration. During this phase, the video 
tracking software (EthoVision v 3.0, Noldus Information Technology, 
Leesburg, VA, USA) measured locomotor activity, expressed as 
horizontal distance moved (in meters). During the test phase, one bar 
and one mesh tile were placed on the bottom of the cage. The time 
spent on bar or mesh texture was measured by EthoVision software. 
Ali three phases were carried out under darkroom lighting using a 
Kodak GBX-2 safelight filter (Vistek, Toronto, Ontario, Canada), to 
minimize visual eues. Animais do not spontaneously prefer either 
texture (L. H. L. Sellings and P. B. S. Clarke, unpublished observa
tions), and ail experiments were as fully counterbalanced as possible 
with respect to drug-texture pairing and order of drug pairing (drug
saline or saline-drug) within each surgery group. For ail experi
ments, pre-exposure sessions lasted 20 min, conditioning sessions 
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for 15 min, and the test session 10 min. To facilitate Lv. infusion 
immedlately after placement in the test cage, a fluid swivel was fixed 
above the center of each cage. Each swivel was connected to on one 
end to a 1 ml syringe, and on the other end to a brass connector 
(Produits MSM, Laval, Quebec, Canada) and protective spring (Hei
plex, Montreal, Canada) via Tygon tubing of 0.51 mm diameter 
(Fisher Scientific). The cannula fixed to the skull of the rat was 
attached to the Tygon tubing, and the brass connector fastened to 
the plastic connector, to secure the tubing to the cannula. Drug was 
Infused over 25--30 s at a volume of 1 ml/kg. 

Experimental design 

Experiment 1. Rats (n=17) were conditioned at one of two 
doses of I.v. methylphenldate (2 mg/kg, n=8 and 5 mg/kg, n=9) 
and subsequently tested for CPP. 

Experiment 2. Rats (n=25) were adminislered one of four 
doses of cis-flupenthixol (0 mg/kg (n=5), 0.1 mg/kg (n=7), 
0.3 mg/kg (n=8) or 0.8 mg/kg (n=5)) s.e., 30 min prior to each of 
the six conditioning sessions (drug: 5 mg/kg methylphenidate, 
i.v.), and subsequently tested for CPP. 

Experiment 3. Rats (n=28) were conditioned with 5 mg/kg 
Lv. methylphenidate. On test day, rats received one of four doses 
of cis-flupenlhixol (0 mg/kg (n=6), 0.1 mg/kg (n= 7), 0.3 mg/kg 
(n=8) or 0.8 mg/kg (n=7» s.e., 30 min prior to placement in the 
cage. 

Experiment 4. Rats (n=25) sustaining vehicle (sham
lesioned; n=6) or 6-0HDA infusion into core (core-Iesioned; n=9) 
or medial shell (shell-Iesioned; n= 1 0) were subsequently condi
tioned wilh 5 mg/kg Lv. methylphenidate after recovering from 
surgery as described above. 

Experiment 5. Rats (n=17) sustaining amOT vehicle (sham; 
n=6) or 6-0HDA (Iesion; n=11) infusions were subsequently 
condilioned wilh 5 mg/kg Lv. methylphenidate after recovering 
from surgery. 

Tissue preparation 

Tissue was prepared for autoradiography and Nissl-staining 
(Cresyl Violet) as previously described (Sellings and Clarke, 
2003). Briefly, rats were killed 3-5 h following CPP testing, by 
decapitation under sodium pentobarbital (20 mg/kg, i.v.) anesthe
sia. Rats not anesthetized within 10 s of injection were excluded 
from statistical analysis. Brains were removed, frozen in 2-meth
ylbutane at -50 ·C for 30 s, and stored at -40 ·C. Coronal 
sections (20 p,m) were taken on a cryostat at four rostrocaudal 
levels (11.2,10.7,10.2 and 9.7 mm anterior to interaural zero) 
through the ventral striatum. At each level, four adjacent sections 
were collected for autoradiography and one for Nissl staining with 
Cresyl Violet. Sections were thaw mounted onto gelatin-subbed 
slides, air dried at room temperature for 20-30 min, and stored 
with desiccant at -40 ·C. 

Quantitative autoradiography 

The extent of the 6-0HDA lesion was quantified by autoradio
graphie labeling of DAT (Sellings and Clarke, 2003), using a 
nonsaturating concentration of [1251]-3-{3-(4-iodophenyl)tropan-2-
{3-carboxylic acid methyl ester ([1 251]RTI-55; 2200 Ci/mmol; NEN
Mandel, Guelph, Ontario, Canada). This radioligand allows visu
alization of either DAT or serotonin transporter (SERT) binding. To 
visualize DAT binding, SERT was occluded using the serotonin 
selective reuptake inhibitor citalopram HBr (50 nM). Analogously, 
to visualize SERT binding, DAT was occluded using the DAT 
reuptake inhibitor GBR 12935·2HCI (1 p,M). Sections were thawed 
at room temperature for 10 min and then placed in a staining dish 
containing an aqueous buffer solution of 120 mM NaCI, 0.1 M 

sucrose, 10 mM sodium phosphate buffer, and 10 pM [1251]RTI_55, 
with the pH adjusted to 7.4. Nonspecific binding was determined 
by addition of 10 p,M GBR 12909 and 50 nM citalopram HBr in the 
DAT and SERT autoradiographie assays, respectively. Slides 
were incubated at room temperature for 2 h and then washed 
three times in cold buffer solution (once for 1 min, twice for 20 min) 
and for 1-2 s in distilled and deionized water. They were then blow 
dried and placed in X-ray film cassettes. Kodak BioMax MS film 
(Amersham Biosciences. Baie d'Urfé, Québec, Canada) was ex
posed to slides for 48 h (DAT) or 120 h (SERT) wlth [1 251] auto
radiographic standards (Amersham Biosciences). After develop
ment of film, DAT and SERT binding was quantified using an 
MCID M4 imaging system (Imaging Research, st. Catherines, 
Ontario, Canada). The mean DAT binding was first calculated at 
each anteroposterior level and these mean values were then 
averaged across levels. 

Histologieal examination 

Tissue was stained with Cresyl Violet 10 assess non specifie dam
age, as previously descrlbed (Selllngs and Clarke, 2003). 

Drugs 

Drug sources were as follows: methylphenidate S04 (gift of Na
tional Institute on Drug Abuse, Bethesda, MD, USA); cis-flu
penthixol (Sigma-Aldrich, Oakville, Ontario, Canada); citalopram 
HBr (gift from H. Lundbeck AIS); ketamine HCI (Vetalar, Vetrep
harm, London, Ontario, Canada); xylazine HCI (Anased, Novo
pharm, Toronto, Ontario, Canada); GBR 12909 (NIMH Chemical 
Synthesis and Drug Supply Program), and GBR 12935·2HCI (Sig
ma-Aldrich). Unless otherwise stated, ail other chemicals were 
obtained from Fisher Scientific. Both methylphenidate S04 and 
cis-flupenthixol were dissolved in sterile 0.9% saline and injected 
at 1 ml/kg. Methylphenidate was administered Lv. immediately 
after placement in CPP boxes. Cis-flupenthixol was administered 
Lp. 30 min prior to ail conditioning sessions (experiment 2) or the 
CPP test (experiment 3). 6-0HDA HBr was dissolved in sterile 
0.9% saline containing 0.3 mg/ml sodium metabisuifite (Sigma
Aldrich) as an antioxidant and protected from light. Vehicle solu
tions, as weil as 6-0HDA to be infused into medial shell, were 
neutralized to pH 7.3:t0.1 wlth NaOH (to reduce non-specifie 
damage; see Resuits). Doses of ail drugs except 6-0HDA HBr are 
expressed as the sait. 6-0HDA HBr doses are expressed as the 
free base. 

Data analysis 

A commercial software program (Systat v10.2, SPSS Inc., Chi
cago, IL, USA) was used for ail data analyses. CPP magnitude 
was calculated as the difference between times spent on the 
drug-paired and vehicle-paired sides during the 10-minute test 
session. Locomotor responses to methylphenidate were calcu
lated as the difference of locomotor counts between drug and 
saline conditioning sessions. Saline scores were calculated as the 
mean activity over ail three conditioning sessions with saline. For 
experiment 2, group differences for both CPP magnitude and 
saline or methylphenidate-induced locomotor activity were ana
Iyzed by ANOVA followed by Dunnett's test. The existence of 
significant CPP magnitude was determined by one-sample t-tests 
with Bonferroni correction. For experiment 3, since data were not 
normally distributed, Kruskal-Wallis ANOVA followed by multiple 
Mann-Whitney U tests with Bonferroni correction were used to 
compare CPP magnitude after cis-flupenthixol treatment to the 
control (dose=O) group. In addition, the existence of a significant 
CPP magnitude and locomotor stimulant effect was determined by 
the Wilcoxon test between times spent on the drug-paired vs. 
saline-paired texture, with Bonferroni correction for multiple com
parisons. For experiment 4, group differences were analyzed by 
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ANOVA. To determine whether rats axperienced locomotor sen
sitization, three factors were used: LESION (I.e. 6-OHOA vs. 
vehicle infusion [shamJ), AREA (Le. core vs. medlal shell) and 
SESSION (Le. difference scores [methylphenidate-saline) over 
successive pairs of conditioning sessions). In experiment 5, group 
differences were examined by Student's t-tes!. For both experi
ments 4 and 5, the relationship between behavioral measures vs. 
[
125I)_RTI_55 labeling was analyzed by linear regression (multiple 

in experiment 4, single in experiment 5). Values given for rare 
derived from single linear regression analyses in both experi
ments. A P value of less than 0.05 (two-tailed) was considered 
slgniflcan!. Group data are expressed as mean:tS.E.M. through
out. In experiments 4 and 5, analyses on the DAT and SERT 
autoradiography were done by post hoc Dunnett's test and mul
tiple t-tests, respectively, with Sonferroni correction. Outliers, as 
defined by the statistical program, were removed prior to statistical 
analysis. Additionally, in experiment 4, CPP data from four rats 
were missing due to an equipment malfunction during testing. 

RESULTS 

Experiment 1: rats express a CPP for 
I.v. methylphenidate 

The occurrence of Lv. methylphenidate CPP was initially 
established in experiment 1. Here, rats were conditioned 
with either 2 mg/kg methylphenidate (n=8) or 5 mg/kg 
methylphenidate (n=9). CPP magnitude was calculated 
as the difference between times spent on the drug
paired and vehicle-paired sides during the 10-minute 
test session. Rats formed a significant preference for the 
f100r texture paired with the higher dose only (P<0.005, 
Fig. 1A). Rats conditioned with 2 mg/kg spent 274::!::18 s 
on the saline-paired texture and 326::!::18 s on the meth
ylphenidate-paired texture. For rats conditioned with 
5 mg/kg, 195::!::18 s were spent on the saline paired 
texture, and 405::!:: 18 s on the methylphenidate-paired 
texture. Additionally, rats formed CPP regardless of 
which texture was the conditioned stimulus; CPP magni
tude did not differ significantly between rats conditioned 
with bar vs. those conditioned with mesh texture (calcu
lated as the difference between times spent on the drug-

paired and vehicle-paired textures: P>O.5, Fig. 18). Loco
motor activity measured during the conditioning phase was 
significantly stimulated by both doses of methylphenidate 
(P<0.005 for bath, Fig. 1 C). 

Experiment 2: the acquisition of a CPP for 
I.v. methylphenldate Is dose-dependently aUenuated 
by cis-flupenthlxol given durlng conditionlng 

The effect of systemic DA receptor blockade on the acqui
sition of Lv. methylphenidate CPP was investigated ln 
experiment 2. Here, rats received 0, 0.1, 0.3 or 0.8 mg/kg 
cis-f1upenthixol Lp. 30 min prior to each conditioning ses
sion. Rats were conditioned with 5 mg/kg methylphenidate. 
Only rats receiving vehicle or 0.1 mg/kg cis-f1upenthixol 
exhibited significant CPP (P<0.01 for both; one-sample 
t-test with Bonterroni correction, Fig. 2A). Only the 
0.3 mg/kg group differed significantly from control (Dun
neU's test P<0.05; Fig. 2A), with a similar trend in the 
0.8 mg/kg group (P=0.087; Fig. 2A). Locomotor activity 
after saline administration was significantly inhibited by 
the 0.8 mg/kg dose (DunneU's test P<0.005, Fig. 2B). In 
view of this, the locomotor stimulant effect of methyl
phenidate was not examined by a difference score (Le. 
drug-saline). Activity in methylphenidate sessions was 
also reduced by the 0.8 mg/kg dose (DunneU's test: 
P<0.05, Fig. 2B). 

Experiment 3: CPP expression for 
i.v. methylphenidate Is dose-dependently attenuated 
by cis-flupenthixol administration on test day 

The effect ot systemic DA receptor blockade on the ex
pression of Lv. methylphenidate CPP was investigated in 
experiment 3. Here, rats were conditioned with 5 mg/kg 
methylphenidate and subsequently received 0, 0.1, 0.3 or 
0.8 mg/kg cis-f1upenthixol Lp. 30 min prior to CPP testing. 
Only rats receiving vehicle or 0.1 mg/kg cis-f1upenthixol 
exhibited significant CPP (P<0.05 tor both; Wilcoxon test 
with Bonterroni correction; Fig. 2C). Only the 0.3 mg/kg 
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Fig. 1. Establishment of Lv. methylphenidate CPP in intact rats. Rats (n=8-9 per group) were tested in a CPP procedure after three vehicle exposures 
and three Lv. methylphenidate exposures of either 2 mg/kg or 5 mglkg. (A) Rats receiving three pairings with 5 mg/kg showed a significant place 
preference (** P<O.005, one-sample t-test with Bonferroni correction) whereas those receiving 2 mg/kg did not (P>O.30). (B) Rats conditioned to either 
texture; rats receiving 5 mg/kg methylphenidate expressed a significant CPP regardless of whether the drug was paired with bar or mesh liIes. (C) Rats 
exhibit significant locomotor stimulation at both the 2 mg/kg and 5 mg/kg group (** P<O.005, *** P<O.0005, one-sample t-test with Bonferronl 
correction). 
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Fig. 2. Effect of cis-f1upenthixol on the acquisition and expression of Lv. methylphenidate CPP. In ail experiments, rats were trained in the CPP 
paradigm with 5 mg/kg methylphenidate. During conditioning (A and B), or on test day (C and D). rats received either 0, 0.1, 0.3 or 0.8 mg/kg 
CÎs-f1upenthixol (n=5-8 per group). When given during conditioning, only rats receiving vehicle or 0.1 mg/kg cis-f1upenthixol exhibited significant 
CPP (** P<0.01, one-sample t-tests with Bonferroni correction, A). Cis-f1upenthixol dose-dependently reduced CPP acquisition for I.v. 
methylphenidate (t P<0.05, @ P=0.087, DunneU's test, A). Cis-f1upenthixol treatment also reduced locomotor activity in saline sessions 
(ttt P<0.005, DunneU's test, B) and in methylphenidate sessions (t P<0.05, DunneU's test, B). When given on test day, only rats receiving 0 
or 0.1 mg/kg cis-flupenthixol exhibited significant CPP (* P<0.05, one-sample t-test with Bonterroni correction, C). Significant reduction ot CPP 
expression was observed after treatment with 0.3 mg/kg cis-flupenthixol (t P<0.05, Mann-Whitney U test with Bonterroni correction, Cl. Only 
rats receivlng the highest dose (0.8 mg/kg) exhibited significant hypoactivity on test day (* P<0.05, Mann-Whitney U test with Bonterron! 
correction, D). 

group differed significantiy from control (Mann-Whitney 
U with Bonferroni correction P<0.05; Fig. 2C). At the high
est antagonist dose (0.8 mg/kg), CPP magnitude was 
highly variable and hard to interpret, since the animais 
were not only less active (P<0.05; Mann-Whitney with 
Bonterroni correction; Fig. 20), but also tended to "camp" 
in a small area of the test box; indeed, several rats spent 
the entire 10-minute test session on one side of the test 
box. 

Neuroehemieal and anatomieal selectivity after 
6-0HOA lesion (experiments 4 and 5) 

To assess nonspecific tissue damage, sections were Nissl
stained with Cresyl Violet. As previously reported (Sellings 
et aL, 2006), only minimal cellioss was evident at the site 

of infusion for ail sham-Iesioned groups and for the group 
infused with 6-0HDA in the core subregion. Tissue from 
rats infused with 6-0HDA in medial shell or amOT exhib
ited a region of decreased cell density compared with 
control. This region of non specifie damage did not extend 
more than 0.3 mm from the site of infusion. Sampling 
locations for DAT and SERT binding density, RTl-55 au
toradiographs of DAT and SERT binding are shown in 
Fig. 3. For brevity, only one hemisphere is shown; lesions 
were bilateral and imaging was performed on both hemi
spheres. Residual DAT and SERT binding as a percent of 
combined sham groups are given in Tables 1 and 2. Ra
dioligand binding to SERT in tissue from lesioned animais 
was minimally changed in 6-0HDA vs. sham-Iesioned rats. 
Radioligand binding is not changed after vehicle infusion 
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Fig. 3. Autoradiographs for DAT and SERT binding. Fig. 3 shows DAT and SERT autoradiographs for sham-, core-, medial shell- and amOT-lesioned 
rats at four rostrocaudallevels. Excess cold conditions for both DAT and SERT blnding were negligible. Areas sam pied to determine depletions are 
shown at right (Le. NAcc core, medial shell, ventral shell, OT and ventral caudate-putamen). Depletions in DAT and SERT binding were calculated 
as a percentage of sham-Iesioned rats, by taking the mean of ail sampled areas (shown at right) at a particular level for ail four rostrocaudallevels, 
and ultimately taking a mean of these four numbers. Sampled areas for core, medial shell, ventral shell and ventral caudate putamen were identical 
for both experlments 4 and 5, and are depicted both in cartoon form and superimposed onto DA T autoradiographie images from a sham-Iesioned rat. 
OT was analyzed as a homogenous structure for experiment 4 (as seen under ·ventral striatal subregions"), but as three heterogeneous subregions 
in axparimant 5 (basad on Ikemoto, 2003; OT subregions). These three subdivisions were amOT, anterolateral OT and posterior OT. The former two 
were examined at levels 11.2, 10.7 and 10.2. The lalter (posterior CT) was examined al levels 9.7, 9.2 and 8.7 (only level 9.7 shown, see Sailings 
et al., 2006 for details). 

(Le. sham lesion) vs. intact tissue, as rats receiving unilat
eral vehlcle Infusions show no changes in DAT or SERT 
binding on the intact vs. sham lesioned side (L. H. L. 
Sellings and P. B. S. Clarke, unpublished observations). 

Experiment 4: Effects of 6-0HDA leslons of NAcc 
core vs. medlal shell on I.v. methylphenidate 
CPP and locomotor activlty 

Here, rats recelved intracerebral infusion of 6-0HDA 
aimed at either accumbens core or medial she1l7-10 days 
prior to the start of conditioning. 

The locomotor response to I.v. methylphenidate was 
attenuated by core, but not medlal shelJ lesions 

ln experiment 4, rats did not exhibit signiticant locomotor 
sensitization (SESSION: F(2,42)=3.50, P>O.05; Fig. 4A). 
However, to avoid any potential confounding factor of le
sion effects on locomotor sensitization, the locomotor dif
ference score (methylphenidate-saline) from the tirst drug 
and saline conditioning session were used, 50 that locomo
tor scores were examined from only the first drug exposure. 
Saline test locomotor activity did notdiffer significantly be-

Table 1. Reductions in DAT and SERT binding sean in cora- and medial shell-Iesioned groups (experiment 4) 

Surgary group DAT SERT 

Sham Core mShell Sham Core mShell 

Sam pied region 
Core 100::!:7 20::!:3···· 95::!:5 1 OO::!: 5 108::!:6 97::!:3 
mSh 100::!:8 48::!:4tt 38::!:6'" 100::!:4 97::!:5 94::!:3 
vSh 100::!:6 35::!:6tt 98::!:8 100::!:6 118::!:8 1 08::!: 3 
OT 100::!:12 46::!:4'" 80::!:4 100::!:6 116::!:5 108::!:4 
vCP 100::!:10 50::!: 7" 107::!:6 1 OO::!: 3 88::!:3 93::!:3 

Columns represent each of the three different surgery groups: sham-Iesioned, core and medial shell. DAT and SERT binding were determined in 
each rat. Rows represent the transporter binding in live ventral striatal subregions, expressed as the mean::!:SEM percentage of sham-Iesioned rats. 
Abbreviations are as follows: mSh, medial shell; vCP, ventral caudate-putamen; vSh, ventral shell . 
•• P<O.005; tt P<O.OO1; ••• P<O.0005; •••• P<O.00005 vs. sham-Iesioned control, Dunnett's test for each brain area, Bonferroni-correcled. 
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Tabla 2. Reductions in DAT and SERT blnding seen in anteromedial 
OT-Iesioned rats (experiment 5) 

Surgery group DAT SERT 

Sham amOT Sham amOT 

Sampled region 
Core 100±5 96±4 100±10 97±7 
mSh 100±5 95±6 100±9 98±10 
vSh 100±7 85±4 100±8 97±12 
amOT 100±17 26±5tt 100±2 106±10 
alOT 100±10 64±7 100±3 107±14 
pmOT 100±5 82±4 100±8 104±10 
plOT 100±6 95±3 100±5 113±9 
vCP 100±7 90±3 100±5 97±7 

Columns represent each of the Iwo different surgery groups: sham
lesioned and anteromedial OT-Iesioned. DAT and SERT binding were 
determined in each rat. Rows represent the transporter binding in eight 
ventral striatal subregions, expressed as the mean±SEM SEM per
centage of sham-Iesioned rats. Abbreviations are as follows: alOT, 
anterolateral olfactory tubercle; mSh, medial shell; pmOT, posterior
medial olfactory tubercle; plOT, posteriorlateral olfactory tubercle; 
vCP, ventral caudate-putamen; vSh, ventral shell. 
tt P<O.001 vs. sham-Iesioned control, multiple t-tests with Bonferroni 
correction. 

tween surgery groups (LESIONxAREA; F(1,21)=0.03, P> 
0.50) and were as follows: 58±7 (sham), 54±5 (core 
6-0HDA) and 47±1 (medial shell 6-0HDA). Ali groups ex
hibited significant locomotor stimulation (P<0.05 to P<0.005, 
one-sam pie t-test with Bonferroni correction; Fig. 4B), but this 
response was smaller in the core-Iesioned group compared 
with the shams (P<0.05 for core-Iesioned vs. sham-Iesioned 
group, Dunnett's test; Fig. 4B). A significant positive associ
ation was observed between the locomotor response to i.v. 
methylphenidate and core DAT binding (P<0.005, r=0.60, 
Fig. 4C). No relationship was apparent for medial shell 
(Fig.4D). 

cpp magnitude for i.v. methylphenidate related 
slgnificantly to nelther core nor medial shell residual 
DAT binding 

ln experiment 4, both the sham- and medial shell-Iesioned 
groups exhibited a significant CPP, with a similar trend in 
the core-Iesioned group (P=0.06; Fig. 4E). Multiple regres
sion analysis revealed no significant relationships between 
CPP magnitude and DAT binding in core (Fig. 4F) or 
medial shen (Fig. 4G). In view of this negative result, we 
used stepwise multiple Iinear regression analysis as a post 
hoc exploratory tool in order to assess a possible contri
bution of amOT. Three predictive variables were included 
in the model: DAT binding in core, medial shen, and amOT. 
The Iterative model showed that medial shen and amOT in 
combination significantly predicted CPP magnitude, but 
the contribution of neither structure on its own was signif
icant (amOT positive association, P=0.055, medial shen 
negative association, P=0.11). 

Experiment 5: affacts of 6·0HDA lasions of amOT 
on I.v. methylphenidate CPP 

ln light of recent results suggesting that the entirety of 
the medial ventral striatum is important in psychostimu
lant induced reward (see Discussion), the effects of 
6-0HDA lesions of the amOT on Lv. methylphenidate 
CPP were examined. In experiment 5, only sham-Ie
sioned animais exhibited significant CPP (P<0.001; 
one-sample t-test with Bonferroni correction; Fig. 5A). 
CPP magnitude differed significantly between sham
and anteromedial OT-Iesioned animais (P<0.005; Stu
dent's t-test; Fig, 5A). Additionany, linear regression 
analysis showed a significant association between the 
degree of DAT depletion in anteromedial OT and CPP 
magnitude (P<0.02; Fig. 5B). Neither activity after sa
line administration nor methylphenidate-induced loco
motor stimulation was significantly altered by the lesion 
(P>0.05 and P>0.50 respectively). 

The possibility of contribution of other OT subregions 
to methylphenidate CPP was examined post hoc using 
stepwise linear regression analysis. The OT subregions 
included were amOT, anterolateral olfactory tubercle 
(aIOT), posteriormedial olfactory tubercle (pmOT) and pos
teriorlateral olfactory tubercle (plOT). The only predictor 
retained in the final equation was amOT (P<0.05). 

DISCUSSION 

Previous reports have shown that methylphenidate can 
sustain i.v. self-administration in several species, including 
non-human primates, rats and dogs (Kollins et al., 2001; 
Volkow and Swanson, 2003), and can also produce a CPP 
when given intraperitoneally (Martin-Iverson et al., 1985; 
Mithani et al., 1986; Meririnne et al., 2001). Here, we extend 
these findings to show that methylphenidate can also pro
duce a CPP when given i.v. Both acquisition and expression 
of this CPP were dose-dependently reduced by systemic 
administration of the D1/D2 receptor antagonist cis
flupenthixol. In contrast, CPP following methylphenidate 
appeared to be unaffected by DA de nervation of either 
core or medial shen prior to conditioning. Instead, DA 
de nervation in amOT significantly reduced i.v, methyl
phenidate CPP. The unconditioned locomotor stimulant 
effect of methylphenidate was dose-dependently reduced 
by cis-flupenthixol administration and was associated with 
DA innervation of accumbens core. These results suggest 
that both the locomotor stimulant and rewarding effects of 
i.v. administered methylphenidate are DA dependent, and 
that these effects are segregated within the ventral 
striatum. 

Methodologlcal considerations 

Given the size, shape and proximity of brain regions 
lesioned in this study, substantial depletion of one struc
ture was virtuany impossible without affecting other 
nearby structures to some degree. The multiple Iinear 
regression analyses used in the current study circum
vented this problem in part by considering the degree to 
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Fig.4. Effectof 6-0HDA lesions of accumbens core or medial shell on i.v. methylphenidate-induced locomotion and CPP. Rats (n=6-10 per group) 
received bilateral 6-0HDA or vehicle infusions (i.e. sham-Iesion) into accumbens core or medial shell, and were subsequently conditioned with 
methylphenidate (5 mg/kg). Locomotor scores (methylphenidate-saline) for ail three conditioning pairs (Le. three pairs of methylphenidate and saline 
exposures during the CPP conditioning phase; indicated as 1, 2 and 3) are shown ln panel A. Rats did not exhibit slgnificant behavioral (Iocomotor) 
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Fig. 5. Effecl of 6-0HDA lesions of amOT on Lv. methylphenidate-induced CPP. Rats (n=6-11 per group) received bilateral 6-0HDA or vehicle 
infusions (I.e. sham lesion) Into accumbens core or medial shell, and were subsequently conditioned with methylphenldate (5 mg/kg). Only 
sham-Iesloned rats exhlblted a slgnificant CPP, whlch dlffered slgnlficantly from the CPP magnitude of anteromedlal OT-Iesloned rats (ttt P<0.0001, 
one-sam pie t-test wlth Bonferronl correction; •• P<0.005, Student's t-test; panel A). CPP magnitude correlated significantly wlth anteromedial OT DAT 
blndlng (P<0.02; panel B). DAT bindlng is expressed as percent of sham-Iesioned rats of the target structure being examined. Abbrevlations are as 
follows: amOTV, amOT sham; amOTL, amOT lesion. 

which a given structure (core or medial shell) was de
pleted in each individual animal. One drawback of this 
method is that it does not allow for the possibility that 
lesions may have caused non-uniform DAT depletions; 
indeed, this was the case in a subset of lesioned ani
mais. However, since there were no consistencies as to 
which portion of any target structure was spared (ros
trocaudally, mediolaterally or dorsoventrally), the cur
rent method of sampling appears to faithfully represent 
DAT depletion in ventral striatal structures. This being 
said, we cannot rule out the possibility that our behav
ioral effects resulted from damage to functionally impor
tant "hot spots" within the targeted structures. 

The statistical approach adopted here is essentially 
correlational; however, when the present results are inte
grated with previous findings, causal Inferences can be 
made with some confidence. To infer a causal link, it is 
important to first exclude the possibility that the lesion 
effects on behavior may have resulted from non-specific 
damage. This appears unlikely for the following reasons. 
First, 6-0HDA tends to destroy catecholaminergic neurons 

. quite selectively (Jonsson, 1983) and accordingly, our le
sions produced IiUle if any change in 5-HT transporter 
binding levels. Second, Nissl staining revealed only slight 
non-specific damage in 6-0HDA lesioned animais com
pared with sham-operated controls; the area of non-spe
cific damage was confined to a small region directly adja
cent to the infusion site. 

Methylphenidate most likely increased noradrenergic 
as weil as DAergic transmission in our experiments (Kuc-

zenski and Segal, 1997), and our 6-0HDA infusions al
most certainly destroyed noradrenergic as weil as DA ter
minais. We specifically avoided using desipramine pre
treatment to protect noradrenergic afferents (e.g. Kelly and 
Iversen, 1976) since we have observed mortality rates of 
>25% resulting from the commonly used dose (25 mg/kg 
Lp.) in this strain of rat (L. H. L. Sellings, A. Constantin and 
P. B. S. Clarke, unpublished observations). However, 1055 
of noradrenergic afferents is unlikely to account for our 
les ion effects on either behavioral measure, for the rea
sons given below. 

ln terms of psychomotor stimulant-induced locomotion, 
pharmacological and lesion manipulations of ventral stria
tal noradrenaline appear to have IiUle or no effect in rats 
(Pijnenburg et aL, 1975; Roberts et aL, 1975). Moreover, in 
the present study, changes in locomotion were associated 
with lesions ln the accumbens core, a subregion which is 
largely devoid of noradrenergic afferents (Berridge et aL, 
1997; Delfs et aL, 1998). 

Reward functions are more clearly associated with 
medial accumbens shell and amOT (see below). Although 
these subregions receive significant noradrenergic input 
(Versteeg et al., 1976; Berridge et aL, 1997), several ob
servations indicate that noradrenergic denervation proba
bly did not significantly influence the magnitude of methyl
phenidate-induced CPP. First, stimulation of noradrenergic 
transmission does not appear to produce a CPP (Martin
Iverson et aL, 1985; Subhan et aL, 2000). Second, neither 
Ct nor f3 adrenergic receptor antagonists affect the reward
ing effects of Lv. cocaine, as reflected by self-administra-

sensltizatlon. However, ail groups exhlblted locomotor stimulation. Locomotor stimulation data for only the first conditlonlng pair (I.e. the dlfference 
between the first drug and saline exposures) were further examlned. The stimulant response was smaller ln the core lesloned group (t P<O.05; 
Dunnett's test; panel B) but still slgnlficant. Locomotor response correlated posltlvely and slgnificantly wlth DAT blnding in core (panel C), but not ln 
medial shell (panel D). Sham and medial shell-Iesloned groups exhiblted a signlficant CPP, wlth a similar trend ln the core-Iesloned group (@ P=0.06, 
* P<0.05, ** P<0.005, one sample t-test wlth Bonferronl correction, panel E). CPP magnitude dld not correlate signlficantly wlth elther core or medial 
shell DAT bindlng (panels F and G). DAT blndlng Is expressed as percent of sham-Iesloned rats of the target structure belng examlned. Values for 
rare obtalned from single linear regresslon analyses; P-values, however, are from the multiple linear regresslon analysls. Abbrevlations are as follows: 
CL, core lesion; CV, core vehlcle (sham); SL, medial sheillesion; SV, medlal shell vehlcle (sham). Shell refers 10 medlal shell. N per group: 9 (core 
leslon), 10 (medial sheilleslon), 6 (comblned sham groups). 
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tion behavior (Johanson and Fischman, 1989). Finally, the 
disruptive effects of ventral striatal 6-0HDA lesions on 
cocaine self-administration appear unrelated to noradren
aline depletion (Roberts et aL, 1977, 1980). 

Ventral strlatal DA and methylphenidate reward 

Previous DA antagonist studies focused on the acquisition 
of Lp. methylphenidate CPP, and yielded only equivocal 
evidence for blockade (Martin-Iverson et aL, 1985). In the 
present study, cis-f1upenthixol was given either during con
ditioning, or on the test day, and in both cases Lv. meth
ylphenidate CPP was blocked. At the lower effective dose 
(0.3 mg/kg), cis-f1upenthixol would be expected to act prin
cipally on DA receptors, with only a weak antagonist effect 
at 5-HT2 receptors (Matsubara et aL, 1993). The inhibition 
of methylphenidate CPP was probably not due to a disrup
tion of memory recall, since high doses of 01 or 02 an
tagonists did not inhibit expression of CPP for Lp. cocaine 
(Cervo and Samanin, 1995). 

DAergic transmission in the NAcc is considered piv
otai to psychomotor stimulant reward (Koob et aL, 1998; 
Everitt and Wolf, 2002; Di Chiara et aL, 2004; Wise, 
2004), and we previously reported a strong association 
between DA innervation of medial shell and amphet
amine CPP (Sellings and Clarke, 2003). However, in the 
present study, methylphenidate CPP was altered by 
focal catecholamine depletion in neither accumbens me
dial shell nor core. One potential expia nation of these 
negative findings 15 that our lesions were not substantial 
enough to produce a detectable behavioral deficit, par
ticularly since compensatory neuroadaptations may 
have occurred in the 7-10 day interval between 6-0HDA 
infusion and behavioral testing. However, this expia na
tion is unlikely for two reasons. First, core lesions were 
behaviorally significant, insofar as core-Iesioned ani
mais showed a reduced locomotor response to methyl
phenidate. Second, our medial shell depletions were of 
similar magnitude to those in a previous study where 
significant reductions in CPP magnitude were observed 
after a similar delay between lesion and CPP training 
(62%; Sellings and Clarke, 2003). 

The main finding in the present study was the reduction 
in CPP magnitude observed after 6-0HDA infusions into 
amOT. These Infusions produced a DAergic depletion of 
74% in the target area, with a smaller depletion (36%) in 
the adjacent anterolateral OT. Importantly, DAT binding in 
the medial shell was virtually unchanged. This finding sug
gests that Lv. methylphenidate CPP depends critically on 
DA transmission in OT, probably in its anteromedial por
tion. This accords with recent evidence suggesting that the 
amOT plays a role in psychostimulant reward, and most 
likely does not represent a memory deficit, as a 6-0HDA 
lesion of the OT did not impair amphetamine CPP (Clarke 
et aL, 1990). In particular, both cocaine and amphetamine 
are avidly self administered into anteromedial OT (Ike
moto, 2003; Ikemoto et aL, 2005), and 6-0HDA lesions of 
the OT appear to reduce CPP for Lv. cocaine (Sellings et 
aL, 2006). The present findings, however, do not rule out a 

role for other subcompartments of the OT in methylpheni
date CPP. 

The NAcc core and locomotor activation 

There is currently no consensus on the role of core vs. 
shell in psychostimulant-induced locomotor activation 
(Boye et aL, 2001; Ikemoto, 2002 and references 
therein). Studies employing intra-accumbens microin
jection of direct or indirect DAergic agonists have impli
cated core, shell, or both structures. After focal admin
istration, the relative importance of core vs. shell ap
pears to de pend on the drug in question. For example, in 
a recent study (Ikemoto, 2002), amphetamine acted with 
similar potency at either injection site, whereas cocaine 
stimulated locomotor activity more strongly after injec
tion into medial shell. In contrast to published findings 
based on intracranial infusion, the locomotor stimulant ef
fect of systemically-administered amphetamine and co
caine appears dependent on DA transmission in accum
bens core rather than shell (Weiner et aL, 1996; Boye et 
aL, 2001; Sellings and Clarke, 2003; Sellings et aL, 2006). 
The present results extend this conclusion to methylpheni
date, although a contribution from ventral caudate-puta
men cannot be ruled out (Campbell et aL, 1997). No pre
vious studies have, to our knowledge, examined 
the relative contributions of medial shell and core to meth
ylphenidate-induced locomotion. Whether core DA trans
mission directly mediates the locomotor stimulant action of 
psychomotor stimulants drugs, or instead plays an indirect 
enabling role, remains a question for the future. 

CONCLUSIONS 

The present study suggests that the rewarding properties 
of Lv. methylphenidate are dependent on DA transmission, 
as also suggested by human imaging studies. More spe
cifically, the anatomical site appears to be the amOT, and 
not the medial shell. In contrast; a role for Lv. methylpheni
date-induced locomotor activity was attributable to accum
bens core. These results extend our previous findings with 
amphetamine and cocaine, and strengthen the hypothesis 
that psychomotor stimulants exert their stimulant and re
warding effects via increased DA tone in functionally seg
regated territories within ventral striatum. The posslbility 
that drug reward is mediated by small subregions within 
ventral striatum has several implications, not least for hu
man PET studies where spatial resolution may be a limiting 
factor. 
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