I * l National Library
of Canada du Canada

Bibliothéque nationate

Canadian Theses Service Service des thases canadiannes

Ottawa, Canada
K1A ON4

NOTICE

Thequality of this microformis heavily dependent upon the
quality of the original thesis submitted for microfilming.
Every eflort has been made to ensure the highest quality of
reproduction possible.

If pages are missing, contact the university which granted
the degree.

Some pages may have indistinet print especially i the

original pages were typed with a poor typewriter ribbon or
if the university sent us an inferior photocopy.

Reproduction in full or in part of this micrcform is governed
by the Canadian Copyright Act, R.S.C. 1970, ¢. C-30, and
subsequent amendments.

NL-339 (1, 88/04) ¢

AVIS

La qualité de cetie microforme dépend grandement de la
qualité de la thése soumise au microfilmage. Nous avons
tout fait pour assurer une qualité supérieure de reproduc-
tion.

S'il_ manque des pages, veuillez communiquer avec
l'université qui a contéré le grade.

La qualité d'impression de certzines pages peut laisser a
désirer, surlout si les pages originales ont été dactylogra-
phiées 3 I'aide d'un ruban usé ou si l'université nous a fait
parvenir ung photocopie de qualité inférieure.

La reproduction, méme padielle, de cette microforme est

soumise A la Loi canadienne sur le droit d'auteur, SRC
1970, ¢. C-30, et ses amendements subséquents,

Canada

The Super-Actor Machine:
A Hybrid Dataflow/von Neumann

Architecture

by
Herbert Hing-Jing Hum

School of Computer Science
McGill University, Montréal
Québec, Canada

May 1992
a thesis submitted to the Faculty of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

Copyright © 1992 by Herbert Hing-Jing Hum

National Library

Bibliothéque nationate
of Canada

du Canada

B+R

Canadian Theses Service Service des théses canadiennes

QOttawa, Canada
KI1A ON4

The author has granted an irrevocable non-
exclusive licence allowing the National Library
of Canada to reproduce, kuan, distribute or sell
copies of his/her thesis by any means and in
any form or format, making this thesis available
to interested persons.

The author retains ownership of the copyright
in his/fher thesis. Neither the thesis nor
substantial extracts from it may be printed or
otherwise reproduced without his/her per-
mission.

L'auteur a accordé une licence irrévocable et
non exclusive permettant a la Bibliothéque
nationale du Canada de reproduire, préter,
distribuer ou vendre des coples de sa thése
de quelque manigre et sous quelque forme
que ce soit pour mettre des exemplaires de
cette thése 4 la disposition des personnes
intéressées.

L'auteur conserve la propriété du droit d'auteur
qui protége sa thése. Niia thése ni des extraits
substantiels de celleci ne doivent &tre
imprimés ou autrement reproduits sans son
autorisation.

ISBN 0-315-74897-4

Canad?

Abstract

Emerging VLSI/ULSI technologies have created new opportunities in designing computer
architectures capable of hiding the latencies and synchronization overheads associated with
von Neumann-style multiprocessing. Pure Datafiow architectures have been suggested as
solutions, but they do not adequately address the issues of local memory latencies and
fine-grain synchronization costs. In this thesis, we propose a novel hybrid dataflow/von
Neumann architecture, called the Super-Actor Machine, to address the problems facing von
Neumann and pure dataflow machines. This architecture uses a novel high-speed memory
organization known as a register-cache to tolerate local memory latencies and decrease
local memory bandwidth requirements. The register-cache is unique in that it appears as a
register file to the execution unit, while from the perspective of main memory, its contents
are tagged as in conventional caches. Fine-grain synchronization costs are alleviated by the
hybrid execution mode! and a loosely-coupled scheduling mechanism.

A major goal of this dissertation is to characterize the performance of the Super-
Actor Machine and compare it with other architectures for a class of programs typical of
scientific computations. The thesis includes a review on the precursor called the McGill
Dataflow Architecture, description of a Super-Actor Execution Model, a design for a Super-
Actor Machine, description of the register-cache mechanism, compilation techniques for
the Super-Actor Machine and results from a detailed simulator. Results show that the
Super-Actor Machine can tolerate local memory latencies and fine-grain synchronization
overheads—the execution unit can sustain 99% throughput—if a program has adequate
exposed parallelism.

ii

-

Résumé

L’émergence de nouvelles technologies de VLSI/ULSI a crée de nouvelles possibilités pour
la conception d’architectures d’ordinateurs capables de cacher les temps d’attente et de
synchronisation associés au multitraitement de style von Neumann. Des architectures de
flux de données pur sont suggérées, mais elles ne résolvent pas les problémes de temps
d’attente de la mémoire locale et des cofits de synchronisation i grains fins. Dans cette
thése, nous proposons une nouvelle architecture hybride de flux de données/von Neumann,
appelée la “Super-Actor Machine”, pour résoudre les problémes auxquels sont confrontées
les machines de von Neumann et de flux de données pur. Cette architecture utilise une
nouvelle organisation de la mémoire rapide appelée “register-cache” pour tolérer les temps
d’attente de la mémoire Iocale et diminuer les exigences de largeur de bande de 1a mémoire
locale. Le “register-cache” est unique car il apparait comme un bloc de registres i 1’unité de
traitement tandis que pour la mémoire locale, leurs contenus sont référencés comme pour
une antémémoire conventionnel. Les cofits de synchronisation & grains fins sont allégés par
le modele de traitement hybride et un mécanisme d’ordonnancement couplé librement.

Un but majeur de cette thése est de caractériser la performance de la “Super-Actor Ma-
chine” et de la comparer avec d’autres architectures pour uneclasse des programmes typique
des applications scientifique. Cette these comprend une présentation de 1’architecture de
base, appelée “McGill Dataflow Architecture™, un modéle de wraitement “super-actor”, la
conception de la “Super-Actor Machine”, un description du “register-cache”, les techniques

1ii

iv

de compilation pour la “Super-Actor Machine”, ainsi que des résultats d’un simulateur
détaillé. Les résultats montrent que la “Super-Actor Machine” peut tolérer les temps
d’attente de la mémoire locale et les coiits de synchronisation & grains fins (I’unité de
traitement peut soutenir un débit de 99%) si le programme a un niveau de parallélisme
apparent suffisant.

¢ ¢

Acknowledgments

I am eternally grateful to my supervisor, Guang Gao, for giving me this opportunity to
pursue my dreams of designing the next generation of computers, Without his infinite
enthusiasm, his broad and insightful knowledge of computer systems, and his never-ending
pursuit for excellence, this thesis would not have been possible. I am also grateful for
the guidance from Jack Dennis who has breathed excitement into dataflow computing and
illuminated the grand possibilities of architectures based on those ideas. I would also like
to thank the folks in the Advanced Computer Architecture and Program Structures Group
(ACAPS) who have influenced my work and provided many valuable comments in my
endeavours: Philip Wong, for helping us substantiate our ideas; Rene Tio, for his insightful
comments on the McGill Dynamic Dataflow Architecture; and Robert Yates, Guy Tremblay,
Russ Olsen, Erik Altman, Kevin Theobald, Laurie Hendren, Jean-Marc Monti and other
members of ACAPS for their interest and comments on the Super-Actor Machine. Indeed,

the corp &’ esprit that permeates through this group is very conducive to productive research
par excellence.

I would like to thank the Natural Sciences and Engineering Research Council for
supporting my studies. I would also like to thank the people at Centre de recherche
informatique de Montréal (CRIM) for sponsoring and giving me this chance to pursue my
doctoral degree. With their generosity, I was able to conduct my research with state-of-the-
art equipment and in relative tranquility for those moments when I needed it most. Notably,
I would like to thank Renato de Mori for offering me a research position at CRIM and for
introducing me to Gao; Frances de Verteuil and Bernard Turcotte for always believing in
and supporting me; Jacqueline Bourdeau for her valuable French lessons; Thina Nguyen

v

vi

for helping me with the diagrams, Justin Bur for his help with [ATX and other system stuff,
Darren Kinley and Ron Hall for more system stuff, and Claude Achcar, Anne Gisiger, Daniel
Gorham, Diane Goupil, Darren Kinley, Asnat Macoosh, Jennifer Muise and Charles Snow
for their friendship and long talks on politics. Je voudrais remercier tous mes collégues au
CRIM.

Lastly, I would like to express my deepest appreciation to my wife, Jeanne, my two
daughters, Justine and Lauren, and my son, Emerson for their love and understanding while
I was writing yet another paper. If there was ever a contest for the ideal wife, Jeanne would
definitely get my vote. I am also very thankful to my parents, Hector and Shang-Foon, for
their love and the perfect role models they have provided. They have shown me that hard
work and commitment to one’s beliefs will result in much satisfaction.

Dedication

To my wife, Jeanne, and our children, Justine, Lauren, and Emerson

vil

Contributions

Listed below, we summarize the contributions of this dissertation. The contributions are:

o the definition of an abstract machine model for the Super-Acior Machine and
the accompanying Super-Actor Execution Model.

¢ The proposition of a novel hybrid dataflow/von Neumann architecture—the
Super-Actor Machine[66].

¢ The invention of a novel high-speed memory organization known as the “Reg-
ister-Cache”[65, 67, 68)'. It is employed in the new architecture to tolerate
local memory latencies and reduce local memory bandwidth requirementsin a
multi-threaded architecture.

¢ The examination of compilation techniques for generating Super-Actor Ma-
chine code from a well-formed dataflow graph. And,

o the construction of a detailed simulator for verifying the effectiveness of the
SAM on loop kernels typical of scientific applications, and the ensuing simu-
lation study.

Contributions to the understanding and advancement of the McGill Dataflow Architec-
ture (MDFA)—the architecture on which the Super-Actor Machine is based—also resulted
from my doctoral studies, but they are not elaborated here in this thesis. Instead, those
contributions are simply listed here:

'Currently, there is a patent pending on the register-cache mechanism. The patent application is bascd on
[65].

viii

¢ 9

the simulation study of the execution efficiency of the MDFA 48] whick led to

the identification of the excessive cumulative fine-prain synchronization cost
problem.

The study of the Limited Balancing Technique (45, 46, 49] as a compilation
technique to address the excessive cumulative fine-grain synchronization cost
problem.

The proposal for extending the MDFA to handle concurrent function invoca-

tions which lead to the McGill Dynamic Datafiow Architecture Model [S1. 47].
And,

the construction of a prototype simulator for investigating the efficiency issues
in the McGill Dynamic Dataflow Architecture [71]. Results from this simulator
have further contributed to our understanding of dynamic dataflow executions.

ix

o)

Contents
ABSITACt L e e e e e e e e ii
Résumé e e i
Acknowledgments e v
Dedication e vii
Contributions e viii

Introduction 1
1.1 Two Fundamental Issues in Multiprocessing 3
1.I.1 The Memory Latency Problem 4
1.1.2 The SynchronizationProblem 7
1.2 AddressingtheProblems 7
1.21 The Dataflow Model of Computation 9
1.2.2 Existing Dataflow Architectures 12
1.2.3 Advantages of the DataflowConcept 16
1.24 ProblemsinParadise 16

1.3 Synopsis

I

¢

CONTENTS

xi

2 The Problems 18
2.1 The Problem of Tolerating Local Memory Latencies 19

2.2 The Problem of Fine-Grain Synchronization Costs 21

23 DisCussion 23
2.3.1 Multi-Threaded Architectures 24

232 Objectiveso 25

3 The Argument-Fetching Dataflow Model 27
3.1 The Argument-Fetching Principle 27
3.l.1 Argument-Fetching in a Multiprocessor Context 29

3.1.2 Previous Argument-Fetching Dataflow Work 31

3.2 The McGill Dataflow Architecture 32
3.2.1 TheProgram Format forthe MDFA 34

3.2.2 Example Program Tuples forthe MDFA 36

33 Whythe MDFA?. 39
3.3.1 Data Value Movement Analysis 4]

3.3.2 The Cost of Bundling Data and Signal Processing Information . . 43

3.33 Cost Analysis of Conditional Expressions 45

334 Summary 45

34 Summary. ... 46

CONTENTS

4 A New Architecture

4.1 Addressing the Locality Issue

............

4.1.1 A New Execution Model and Novel Memory Organization

4,2 Format of Textual Information in the Pseudo-Code

5 The Abstract Model of the Super-Actor Machine

5.1 The Abstract Program Execution Model
5.1.1 The Super-ActorGraph
5.1.2 Examples of Super-Actor Graphs
5.1.3 Determinate Super-ActorGraphs
5.14 Discussions

5.2 The Abstract MachineModel
5.2.1 Symbols Used in the Models

5.2.2 The Basic Abstract MachineModel
5.2.3 Instruction Set of the Abstract SAM Model
5.2.4 The Intermediate Abstract Model
5.2.5 The Advanced Model of the SAM

53 Summary. e

............

............

............

............

............

oooooooooooo

............

xii

48

49

S0

51

52

?

¢

L=

CONTENTS

6 The Architecture of the Super-Actor Machine

6.1

Mechanisms Needed for Super-Actor Processing

6.2 A Processing Element of the Super-ActorMachine

6.2.1 TupleDefinitionso
6.2.2 The Register-Cache Architecture,
62.3 The Actor Scheduling Unit
6.2.4 The Actor PreparationUnit
6.2.5 The Long-Latency Actor ExecutionUnit
6.2.6 The Super-ActorExecutionUnit.
627 LocalMainMemory
6.3 SUMIAIY . . . v v v e v v e e e e e e e e e e e

7 Generating Code for the Super-Actor Machine

7.1

7.2

Well-Formed Dataflow Graphs

1.1.1

The Partitioner

7.2.1

7.2.2

7.2.3

1.2.4

.......................

Encapsulators ina Dataflow Graph
The PartitioningPhase
The Location Assignment Phase
Deadlock-Free Super-Actor Graphs

An Example Partitioning

Xiit

115

116

118

120

124

135

139

145

148

154

158

178

CONTENTS xiv

7.3 Considerations in Partitioning 0o 183
7.3.1 Machine Specific Constraints for Partitioning 183
7.3.2 Some Optimizationsin Partitioning 185
74 TheTranslator i v vttt et e e e e 195
741 AnExample i 197
75 TheAssembler 0 i e 199
7.5.1 Calculating the Count Signal Weights 199
752 RemovingMergeNodes 201
7.5.3 Packing the Attributes, Instructions,etc. 202
TO SUMMATY . . . v v v v v e v e e e e e e e e e e e 203
8 Simulations 204
8.1 The Simulated Architecture oo 205
82 TheTestPrograms v v v v v v vt e i e i e o e e e 207
8.2.1 SimulationResults. 0. .. 210

8.2.2 A Performance Measure for Comparisons Between Various Archi-
TECIUTES o v v v v v v v e e e e e e e 216
83 Summary. e e e e e 218

?

¢

CONTENTS

9 Related Work

10

9.1
9.2
9.3
94
9.5
2.6
9.7
98
9.9

The Denelcor Heterogeneous Element Processor
Horizon and the Tera Computer
The Hybrid Dataflow/von Neumann Architecture

P-RISCand *T

The Decoupled Graph/Computation Architecture

The LGDG Architecture

Conclusion

10.1 Future Work

.............

......................

.............

...........................

...........................

......................

.............

...........................

Dataflow Software Pipelining

A.l Dataflow Software Pipelining for Idealized Machines

Functions of the Advanced Machine Model

An Assembly Language for the SAM

C1

Super-Actors . . . , .
C.1.1 Support-Actors

C.1.2 Long-Latency Actors

C.1.3 Miscellaneous

...........................

xv

225
225
226
227

228

230

232

233

235

237

241

CONTENTS

D SAMAL Code for the Benchmark Programs

D.1 SAXPY . . . e e e
D2 SAXPBYPC e e e e
D3 LivermoreLoopl it i

D.4 SAXPY3

Bibliography

xvi

248

249

251

254

256

272

List of Tables

8.1 Results for SAXPY, SAXPBYPC, SAXPY3,and Loopl. 211

8.2 Varying the maximum number of active super-actors, 215

xvii

List of Figures

1.1

1.2

1.3

1.4

1.5

1.6

1.7

2.1

2.2

23

3.1

3.2

33

Types of multiprocessors. v v v v i v i e 2
Von Neumann-type processIng. v v v v v v v v v v v v b e e 3
Dataflowprocessing.o i e 9
Successive snapshots of a dataflowexecution. 10
A dataflow graph representing a conditional statement. 11
A static dataflow processingelement. 13
A tagged-token dataflow processing element, 15
The trend in device development. 19
An abstract dataflow architecture, L L. 22
A processing element of a multi-threaded architecture. 25
The argument-fetching and argument-flow principles. 28

Interprocessor communications for the argument-fetching and -flow prin-
Clples. e e e e e e e e e e 30

The McGill Datafiow ArchitectureModel. 32

xviil

¢

LIST OF FIGURES

Xix
34 Aprogramtuple. e e 37
3.5 A program tuple representing a conditional expression. 38
3.6 A program tuple representing aloopconstruct. 40
5.1 Components ofasuper-actorgraph. 55
5.2 Statesof asuper-actorinstance.o ... 60
5.3 A defencapsulatorina super-actorgraph. 63
5.4 An if-then-else encapsulator in a super-actor graph. 65
5.5 Aloop encapsulator in a super-actorgraph. 67
5.6 Examples of super-actorgraphs. 69
3.7 Conditional super-actorgraphs. 71
5.8 Aloop encapsulator in a super-actorgraph. 73
5.9 Function applications in a super-actorgraph. 75
5.10 The Basic Abstract MachineModel. 86
5.11 The BasicMemoryModel.. 86
5.12 Super-actors in the Intermediate SA Graph Model. 95
5.13 A super-actor graph with the new super-actorsyntax, 97
5.14 Super-actor instance states in the intermediate machine model, 98
5.15 The intermediate abstract machine model of the SAM., 104
5.16 The intermediate memory model of the SAM. 105
5.17 The abstract machine modelof the SAM., 11

LIST OF FIGURES XX

5.18 The memory model of the abstract machine. 112
6.1 The Super-ActorMachine. 116
6.2 A processing element of the Super-Actor Machine. 118
63 TheRegister-Cache., 125
6.4 Theregistering process. v v v v v v v v i e e 126
6.5 APU components which interface with the R-caches. 127
6.6 The Actor SchedulingUnit. 136
6.7 The ActorPreparationUnit, 140
6.8 The Support-ActorExecutionUnit. 144
6.9 TheL-ActorExecutionUnit.. 146
6.10 The Super-ActorExecutionUnit. 148
6.11 The mapoflocal mainmemory. 155
6.12 The program segment and data segmentmaps.. 156
7.1 A possible organization of a compiler forthe SAM. 161
7.2 The defand if-then-elseencapsulators. 164
73 Theloopencapsulator. 165

7.4 An example of an improper aggregation of actors which can lead to deadlock. 168

75 Exampleofaredundantarc, 173
7.6 Apartitioningexample. 180
7.7 Puart 2 of the partitioningexample. 182

LIST OF FIGURES

.

¢

xxi
7.8 An example where support-actorsareused., ..., 186
7.9 A super-actor graph for the parallelizing example. 189
7.10 The parallelized (‘vectorized®) super-actorgraph. 191

7.11 A super-actor graph representing a ‘vectorized’ and software-pipelined loop. 193

7.12 The overlay map of the previous SA graph. 194
7.13 The overlay map for the partitioning example in figure 7.6. 198
7.14 An example of weighted count signals. 201
7.15 Encoding merge nodes intosignal lists, 202
8.1 SA graph of unrolled-4 version of SAXPY, 209
82 SAXPY3. 210
8.3 Execution pipe utilization rate for different versions of SAXPY. 212
8.4 Execution profile for the 8-loop unrolled-16 version of SAXPY. 213

8.5 Varying memory access times for the 8-loop unrolled-16 version of SAXPY3.214

A.l Anexample of a dataflow software pipeline.. 234
A.2 Balancing a dataflow software pipeline. 236
D.I Overlaylayout for SAXPY. 249
D2 Overlay layout for SAXPBYPC. 251
D.3 Overlay layout for Livermore Loopl. 254

D4 Overlay layout for SAXPY3, 257

Chapter 1
Introduction

Since the beginning of the computer era, multiprocessor systems have been heralded as
solutions to the ever increasing computational needs of the user community. The promise
of multiprocessors lies in their ability to attain shorter execution times for parallelizable
tasks than if they were executed on a uniprocessor system. In multiprocessor Systems
classified as MIMD machines (Multiple-Instruction stream Multiple-Data stream) [39],
multiple independent processing elements (PEs) linked together by some interconnection
network work together to process a single task.! Memory units for storing program and data
can be directly attached to each PE (node) or they can form separate urics on the network.
Typically, such memory placements in the system differentiate the system as a distributed
memory multiprocessor or a shared memory multiprocessor, respectively (fig. 1.1). There
has been work on distributed shared memory systems [88] where physical memory units
are distributed amongst individual PEs, but through software and/or hardware means, a
single logical memory space is presented to the user. Such work attempts to address the
common complaint that distributed memory machines are difficult to program while at the
same titne, retaining the scalability property of distributed memory raultiprocessors. 2

!Henceforth, the word multiprocessors will mean MIMD machines; SIMD (Single-Instruction stream
Multiple-Data stream) machines are not included.

*The novel architecture presented in this dissertation utilizes a distributed shared memory system.

3

¢

CHAPTER 1. INTRODUCTION

[8]

PE [#-» <+ Mem Mem [« PE [+
PE > Network [*+>Mem Mem|«-» PE [« Network
*
PE (e <-» Mem Men |« PE [«
Shared Memory Distributed Memory

Figure 1.1: Types of multiprocessors.

The power of a multiprocessor is realized by breaking down a task into multiple col-
laborating processes (this is the act of parallelizing the task), distributing the processes to
individual PEs in the multiprocessor system, and letting the PEs compute in parallel. The
speedup—the ratio of the time for executing the task on a single processor to the time it
takes on the multiprocessor—is dependent on the amount of useful parallelism in the task
and on the underlying hardware: the interconnection network and the PEs,

Generally, today’s multiprocessing systems, e.g., the BBN Butterfly, the Intel Hy-
percube, the Meiko Computing Surface, etc., use proprietary networks and off-the-shelf
microprocessors.? In designing these multiprocessors, much effort has been expended on
the design of the networks, whereas the processors used as PEs are the same type as those
found in uniprocessor systems. The question which begs to be asked is: does using pro-
cessors typical of those found in uniprocessor systems as PEs in a multiprocessor impose a
limitation on the system from attaining maximum speedup? The answer to that question is
an unequivocal yes! The reason is that such processors are based on an inherently sequential
execution model—the von Neumann model of computation, In the von Neumann model
of computation, the abstract machine model consists of a Central Processing Unit (CPU)

3The transputer microprocessor used in the Meiko Computing Surface consists of a processing unit and a
network interface unit integrated on one chip. The unique feature is the onchip network interface which we
consider to be a part of the interconnection network.

CHAPTER . INTRODUCTION 3

Hogin i i
for i-1 ... 5 E CPU 1>
o;- e —- E e
: Compile | : Load
endfor ! E
end, , !
_/\ i E Processor
Program E i
Machir;(; -lit-eia-r;-s;;nation

Figure 1.2: Von Neumann-type processing.

containing a program counter. The program counter is used to step through the program—a
totally ordered list of instructions generated by the compiler—and the CPU processes the
data according to the instruction currently designated by the program counter {fig. 1.2),
When such processors are used in a multiprocessing context, inefficiencies will arise due
to processor idling, i.e., the time when a processor does no useful work while waiting for a
memory request to be fulfilled or a synchronization event to occur.

1.1 Two Fundamental Issues in Multiprocessing

Arvind and Iannucci [15] have eloquently argued that von Neumann-type multiprocessing
systems are prone to performance degradations arising from two fundamental problems:

e memory latencies for non-local memory access, and

e synchronization costs—costs incurred when context-switching from a waiting
process to a ready process instead of idling for synchronization events.

69

CHAPTER 1. INTRODUCTION 4

1.1.1 The Memory Latency Problem

Memory latency is defined as the time between the issuing of a memory access request and
the fulfillment of that request. When a PE wants to access non-local memory—memory
which is not within the same PE—the memory access must traverse the interconnection
network resulting in a latency which is generally greater than that for a local memory
access. Furthermore, as the number of processing elements in the system increases, the
latency can become greater and more varied. One way to hide this memory latency is to
arrange the thread of instructions such that instructions following the memory accessing
one are independent of the data requested, thus the CPU can continue executing instructions
while the memory request is serviced. This is termed the delayed load technique and is
commonly employed in compilers for RISC (Reduced Instruction Set Computer) processors
[92, 631. This technique would yield limited benefits since it may be difficult to find enough

independent instructions to follow the memory accessing one. One reason for the difficulty

is that when a memory accessing instruction is encountered, a compiler usually looks for
an independent instruction in the vicinity of that instruction, where the vicinity is generally
restricted to the block of instructions belonging to a function/procedure which contains
that memory accessing instruction. Furthermore, the latency for remote accesses can be
long and unpredictable, thus limiting the compiler’s effectiveness in knowing how many
independent instructions should be inserted after a delayed load. Some interconnection
networks can guarantee a fixed response time for a remote access, however, the latency still
remains long relative to the cycle time of the processor and having the compiler fill two or
more delay slots after a memory load instruction is difficult—Gross[58] has found that a
compiler can fill 70% of the first delay slot with a useful instruction, 30% for the second,
and 10% for the third. If there are not enough executable instructions to overlap a non-

local memory request, the processor has no recourse but to execute no-ops (no operation
insauctions).

Hardware solutions to tolerate memory latencies use mechanisms similar to areservation

“Note that we can only hide the effects of memory latency, and we cannot eliminate it altogether due to
technological constraints.

CHAPTER 1. INTRODUCTION 5

stadon® {111, 113] or load/store queues as used in decoupled architectures[102]. These
devices allow instructions to be issued continuously as long as they do not require the
data from a pending memory request. The reservation station mechanism checks whether
instructions can proceed after a memory request rather than relying on a compiler to do itat
compile time. Decoupled architectures which use load/store queues allow an instruction to
be processed as long as its operands are in registers or on top of the load queue—operands
are fetched into the load queue and later popped off when needed (an empty load queue
implies that the data has not been fetched yet). One of the premises of run time solutions
is that memory latencies are variable, thus a statically determined instruction schedule
would not be ideal. In general, reservation station-like mechanisms can only support a
limited number of instructions issued out of order which can be less than that required
to hide a non-local memory access. The major disadvantage of load/store queues is that
they cannot handle memory requests returning out of order. Another problem with both
of these hardware solutions is that when a context-switch® must be performed (e.g., the
current process must wait till some event happens and decides that another process should
be executed instead), the processor must wait until all pending instructions in the reservation
stations (load/store queues) have been processed before the next process can commence,
thus increasing the synchronization overhead.’

Another means of decreasing the effects of memory latency is to use high-speed buffers
close to the CPU in the form of registers and caches [103], i.e., to organize the memory into
a hierarchy of small fast memory close to the CPU, and slower and larger memory farther
away. Such an organization is used to exploit the principle of locality which states that a
program tends to exhibit two phenomena during its sequential execution:

e temporal locality, that is, when a memory location has been addressed, it is
likely to be addressed again in the near future, and

SReservation stations are also used to allow a processor to perform out-of-order execution to avoid
data hazards; hazards which can arise when multiple instructions want to modify/read a piece of data
simultaneousty.

$Context-switching, which is implemented via software routines, involves the selection of an executable
thread and the swapping to and from memory values like the program counter, temporaries stored in registers,
ete.

"The synchronization overhead is defined in section 1.1.2,

3

'Y

L~

CHAPTER 1. INTRODUCTION 6

e space locality, i.e., when a memory location has been addressed, neighbouring
locations are likely to be addressed in the near future.

Registers are the fastest memory in the hierarchy and are programmer (compiler) visible,
that is, they can be directly addressed and the programmer (compiler) is responsible for
managing their use. Since the instruction sequence is ordered at compile time, techniques
can be employed in analyzing the lifetimes of scalar variables such that register usage can be
effectively managed by performing register allocation [22, 23]. Caches are slightly slower
memory than register memory, are usually not programmer (compiler) visible, and work on
the principle of keeping the most recently referenced data in the high-speed buffer. When
a memory request arrives at the cache, the cache memory is associatively searched for the
requested address, 1.e., address tag(s) associated with the cache’s contents are matched with
the incoming request’s address. If it’s there, the time for the memory response will just be
the delay to access the cache. But if it’s not there, the response time will be the associative
search time plus the time to go to main memory to fetch the requested data.® All this
management of cache memory is handled by dedicated hardware so that cache access times
are as close to the CPU cycle as possible.

To tolerate increasing memory latency, larger register files can be employed, but this
leads to a larger processor state which in turn, leads to a larger context-switching overhead.
As for using caches, there is the problem of cache coherence [21] where multiple copies
of the same data can be kept in the caches of different PEs and all these copies must be
kept consistent. This problem can be solved with hardware mechanisms which implement
some coherency protocols [8] and work best in shared bus multiprocessors (a system where
a common bus is used as the interconnection network). However, questions concerning
the limitations imposed by these coherency protocols on the system scalability have been
raised. Furthermore, it might appear that using a cache will not influence the switching
overhead as does the use of registers, but the time it takes to bring in new blocks for the
executable process and possibly swapping them with blocks of pending processes should
be accounted for—time which should be added to the switching overhead. With these

81f the cache is filled, then some caiche block must be replaced. If some data in that block has been altered,
then the block must be written back to memory, thus possibly increasing the response time.

CHAPTER 1. INTRODUCTICN 7

problems, it is not surprising that von Neumann processors can spend an inordinate amount
of time doing no useful work when employed in a multiprocessor context.

1.1.2 The Synchronization Problem

Associated with a process is its strate which contains things like a program counter, processor
status bits, and temporary values stored in registers. When a process must be suspended
due 1o some event and another ready process executed, some instructions are required to
select the ready process, store the state (context) of the suspended process to memory and
bring in the context of the ready process from memory. The time to perform the context-
switch, i.e., suspend a process and start executing another, is termed the synchronization
overhead. This synchronization overhead can be decreased if the size of the process state
is decreased, but the only reducible entities of the state are the number of assigned registers
and the blocks of memory in the cache which belong to the process. Limiting the number
of memory blocks for each process is «2nerally not within the power of the programmer, so
this is a very difficult task. The reduction of the number of assigned registers may worsen
the memory latency problem since a process might have to access main memory more
often. Another solution would be to keep the states of multiple processes in fast memory
so that the synchronization overhead can be decreased. Architectures like the HEP [105]
have done just that, but such architectures have swayed far away from the von Neumann
model and have spawned a separate architectural class called multi-threaded architectures
(These architectures will be described in a later section.) So for von Neumann based
multiprocessors, synchronization costs and memory latency are intertwined and vexing
problems which appear to be its nemeses forever.

1.2 Addressing the Problems

For the next generation of processing elements, a multitude of architectural options to solve
the two fundamental problems will become feasible. Furthermore, with the emergence of

¢ 4

CHAPTER 1. INTRODUCTION 8

ULSI (Ultra Large Scale Integration) technology which promises the capability of 50~100
million transistors on a chip {54], many camps are debating how such enormous hardware
parallelism should be exploited. The method of squeezing multiple processors onto a chip
immediately and obviously comes to light (e.g., the Micro 2000 project at Intel which pro-
poses to squeeze four processors on one chip). However, the two fundamental problems still
remain, albeit they are pushed to a smaller scale. Another possibility is the combination of
superscalar (ability to issue multiple instructions per cycle) and superpipelined (arithmetic
and logic units performing base operations such as integer add are pipelined with multiple
stages) features into one processor [76]. This solution still does not satisfactorily address
the two fundamental problems as stated above. The superscalarity permits the processor to
issue memory request(s) concurrently with ALU operations, so the memory latency prob-
lem can be somewhat alleviated by the possible issue of multiple memory accesses and the
overlapping of memory accesses with ALU operations. However, there can be a limitto the
instruction-level parallelism when the programming model and underlying execution model
is sequential [118)°, a limitation which restricts the effectiveness of overlapping memory
requests with ALU operations. Moreover, the problem of context-switching overhead on
synchronization events remains. In fact, the switching overhead could be larger due to the
increased contextual information required in supporting superscalarity.

With the inherent problems of utilizing von Neumann processors as computing engines
in a multiprocessing system, some leading edge research in parallel processing hardware
are focused on overcoming the two fundamental problems by investigating different models
of computation. One such model which has received much attention is the dataflow model
of execution 53, 10, 4, 28, 115, 109, 27]. Multiprocessor systems consisting of dataflow
processing elements appear to circumvent the problems associated with von Neumann-type
multiprocessor systems because they are based on an inherently parallel model of execution.
In dataflow processing, the user’s program is first compiled into a dataflow graph in which
the directed arcs between actors (instructions) indicate the flow of data, not the flow of
control. There are no extraneous dependency arcs for imposing an order of instruction

The programmer expresses the application iz a sequential fashion which makes the compiler's task of
finding the inherent parallelism that more difficult. Superpipelining further increases the burden on the
compiler to find more instruction-level parallelism.

CHAPTER 1. INTRODUCTION 9

Begin E E
1 ' I
or i=1 ... ' ! H
jo ... - E 2 i o Unit
: Compile | o o o @ Load
endfor ! H L.
U\ : :
i E Processor
Program ! ;
S ;
Machine Representation

Figure 1.3: Dataflow processing.

execution; impositions which can hide the implicit parallelism from being exploited by
the underlying machine. This dataflow graph, actually a machine code representation of
the graph, is then loaded into a dataflow machine and the execution of instructions will be

governed by the arrival of data flowing into their input arcs; not by some program counter
(fig. 1.3).

1.2.1 The Dataflow Model of Computation

In the following subsections, we will review the dataflow model and its associated archi-
tectures so that the readers may get a taste of the simplicity and elegance of the model.

The dataflow model describes computations in terms of locally controlled events; ac-
tivations (firings) of individual instructions (actors) [27]. A group of actors linked by
dependency arcs forms a dataflow graph (a program module in conventional terminology),
where the actors are nodes and the arcs indicate destinations of an instruction’s result. The
decision to fire an actor is based on the availability of the operands of that actor. Therefore,
there is no concept of a single locus of control (program counter concept in von Neumann

$

¢

CHAPTER 1. INTRODUCTION 10

u

2
v
4
1

u
6
v
w a) w
u
v

10 :
1 (b)

u

{
6
v
S
w

w (<)

9o
(d)

Figure 1.4: Successive snapshots of = Jataflow execution.

computers). Data flows through the dataflow graph on entities called tokens, and when all
the input tokens of an actor have arrived, that actor becomes enabled and is subsequently

fired. Instruction-level parallelism can be easily exploited because multiple actors can be
fired simultaneously.

Let us look at a program example for the expression (u +v} x (v+w). Figure 1.4 details
successive snapshots of the graph as data tokens are flowing through it. In figure 1.4(a),
data tokens representing values of , v, and w are presented; (b} shows the result of the +
actor firing and producing a token on its output arc; (c) shows the other actor firing; and
finally (d) indicates the completion of the multiply actor and creation of its output token.

A dataflow graph can represent a conditional expression with a switch actor, decider
actors and 7- or F-gate actors. For the conditional expression

if p(y) then f(x,y) else g(y) endif

the dataflow graph is shown in figure 1.5. The decider actor is represented by the diamond

NI T .

CHAPTER 1. INTRODUCTION 11

Figure 1.5: A dataflow graph representing a conditional statement.

shaped node, the T- gate by the circular node, and the switch actor by the oval-shaped
node. A dataflow graph constructed with the well-formed graph constructs [27] like the
elementary actor and the conditional graph block, has the expressive power for representing
all of the common features of 2 computer language, for example, conditionals, iterations,
recursions, etc.

A nice property of the dataflow model is that no matter which order the actors are
executed (as long as they follow the rules of firing), the model guarantees that given a set
of inputs, a unique set of outputs is produced from the execution ot a well-formed dataflow
graph [31). This determinacy property indicates that the dataflow model is functional in
nature, i.e., the input/output behaviour is unaffected by the history of computational events,
and is a boon to programmers who must deal with parallel processing where outcomes must
be repeatable.

3

¢

O

CHAPTER 1. INTRODUCTION 12

1.2.2 Existing Dataflow Architectures

A typical architecture which supports the dataflow paradigm is a collection of dataflow
processors (PEs) linked by some routing network(s). In each processor, there is a *parking
area’ for the actors (instructions) waiting for their input tokens (operands). Once ali the
necessary tokens have arrived for the node, the node is activated for execution (sent of’ to
the execution unit in the processor). From there, a token or tokens are generated. A token
is then sent through the routing network(s) if it is destined for a remote PE, otherwise, it

is routed to the local PE. This process is repeated until all nodes which can be fired are
executed.

There are two mainstream dataflow architectures which have been extensively re-
searched: the static dataflow architecture[34], and the dynamic or tagged-token dataflow
architecture [17, 10}. In the next two sections, we describe the structures of pure dataflow
architectures, that is, architectures which require each basic instruction (e.g., an add,
compare, etc.) be scheduled for activation via a mechanism which checks for the arrival of
the necessary operands.

Static Dataflow Architecture

The static dataflow model specifies that there are at most one data token on each dependency
arc, This restriction is achieved by the following execution rules:

e an actor is fired if and only if its input arcs have all received a token and its
output arcs are all empty; and

e when the actor is fired, it removes one token from each of its input arcs, and
notifies its predecessor nodes of the completion of the execution by putting a
token on each of its output arcs.

This restriction of one token per arc provides an elegant manner for pipelining the data (This
is the basis of dataflow software pipelining which is reviewed in appendix A). Function

CHAPTER 1. INTRODUCTION 13

«—e——— Operation Units |«

Routing
Network

Fetch
Unit

A

Update Y Queue
Unit

] \ Activity /

Store
(RAM)

Figure 1.6: A static dataflow processing element.

invocations are generally supported by in-line copies of the function data graph, although
limited function sharing is possible [112]. General function recursions are not directly
supported, however tail recursions can be supported through iteration loops. The simplicity
of the model and the architecture makes implementing a static dataflow machine feasible

and effective in handling many problems of array computation in numerical supercomputing
[29].

In general, a static dataflow PE can be represented by a circular pipeline as shown in
figure 1.6. The update unit is responsible for updating instruction templates representing
dataflow actors. The templates assigned to the PE are stored in the activity store. When
a token arrives for a given actor, the template is updated and if it is firable—all its tokens
have arrived—its address is put onto the queue. The fetch unit is responsible for fetching
the information of firable actors (pointed to by the addresses in the queue) from the activity
store and sending them off to the operation units. Once an actor has been fired, its result
is packaged into token(s) and sent either to a PE on the network or back to the update unit
within the PE,

Machines built to support this static dataflow model include: Dennis’ Engineering
Model [36], the LAU {93], etc. References for other static datafiow machines can be found

?

¢

CHAPTER 1. INTRODUCTION 14

in[117].

Tagged-Token Dataflow Architecture

The tagged-token dataflow model allows multiple occurrences of tokens on a dependency
arc, therefore, it requires that the tokens be coloured (tagped) to indicate the invocation
instance. Thus this model allows function recursion and multiple invocations of a function
with one copy of the function graph. (Loop unraveling [11], where a loop is unrolled
dynamically at run time, is also supported.) However, with this generality comes the
need for specialized hardware—typically implemented with associative memory—for token
matching. A major problem with this model has been the overhead of token matching and
the overhead of resource management required for handling large amounts of parallelism
atrun time. A solution to the resource management problem has been proposed by Arvind
and Culler [24, 11] and a solution to avoid colour matching hardware has been detailed

to alleviate but not completely eliminate the token matching (fine-grain synchronization)
overhead [89].

A tagged-token dataflow PE can also be represented by a circular pipeline (fig. 1.7).
The PE consists of: a waiting-matching section where incoming tokens are matched to
their partners via associative hardware (the newer generation of tagged-token architectures
uses only a directly addressable memory in a scheme called the Explicit Toke~ Store [89]),
an instruction fetch section which fetches the instruction of the actor onc. uie actor has
received all its operands, the ALU for executing the instructions, and an output section for
generating tokens with the results of the instructions and their associated tags.

Machines built to support the dynamic dataflow model include: the Manchester Data-
flow Prototype [59], the Sigma-1 [64), the Monsoon [89]'°, etc. References o other
dynamic dataflow machines can also be found in [117].

1°Actually, the Monsoon also supports hybrid dataflow/von Neumann nrocessing,

CHAPTER I. INTRODUCTION 15

y

Waiting-Matching
Unit
L Y

Y

Program
Memory

Routing
Network

Figure 1.7: A tagged-token dataflow processing element.

§

¢

CHAPTER I. INTRODUCTION 16

1.2.3 Advantages of the Dataflow Concept

The natre of the dataflow model stipulates that a single processor support multiple can-
didate instructions for concurrent execution. By having multiple instructions ready for
execution, processor idling can be minimized by rapidly switching to other ready instruc-
tions. Unpredictable latencies associated with non-local memory requests can be hidden
by quickly switching to another executable instruction instead of waiting for the memory
response; in this sense, the request is done off-line. That is to say, some other unit other
than the execution unit is responsible for the memory access while the execution unit can
continue processing other instructions which do not require a non-local memory access.
When the request has been fulfilled, the memory requesting instruction becomes exccutable
again and is put back into a pool {or queue) where it waits to be processed by the execution
unit.'' As for synchronization costs during context-switching, the switch can be rapidiy
performed in a dataflow processor because the contextual information (state) associated
with an individual instruction is minimal, and the next ready instruction is easily moved
from the ready pool to the execution unit.

The above arguments in favour of dataflow processors are also elaborated by Arvind and

Tannucci in their classic paper dealing with the two fundamental problems of multiprocessing
[14]'12

1.24 Problems in Paradise

Pure dataflow computers, though, are not free of problems. Since Gajski et al.[40] voiced
their reservations about pure dataflow machines, most concerns brought forward in that
article have been addressed save for a couple of serious ones.

*IThis type of memory request is commonly referred to as a splir-phase transaction [16}.
"2They have since written five more versions of the same paper,

CHAPTER 1. INTRODUCTION 17

1.3 Synopsis

In the next chapter, we present the problems of pure dataflow implementations, and outline
the objectives of this dissertation. In chapter 3, we review the McGill Dataflow Archi-
tecture (MDFA) since it forms the basis of our research work. The MDFA is based on
the argument-fetching principle which allows it to address one of the problems raised in
the next chapter; thus the architecture model, along with the argument-fetching principle
is detailed. Chapter 4 introduces the work on the Super-Actor Machine—a hybrid data-
flow/von Neumann architecture—which attempts to address the problems as outlined in
chapter 2. In chapter 5, we describe the abstract model of the SAM which serves as the
SAM’s behavioural specification as well as a foundation for future compiler and hardware
development. The architecture of one processing element of the SAM is detailed along with
the design of the register-cache mechanism—a high-speed memory organization tailored
for hybrid dataflow/von Neumann computing (multi-threaded computing)—in chapter 6.
Chapter 7 examines some compiling techniques for generating code for the SAM. To exam-
ine the performance characteristics of the SAM, experiments with a detailed simulator were
performed and their resuits are presented in chapter 8. This architecture is put into perspec-
tive with a review of related multi-threaded architectures in chapter 9. Finally, we conclude
this dissertation by summarizing this thesis and outlining future work in chapter 10.

1

¢

Chapter 2

The Problems

As was pointed out in the Introduction, two fundamental problems which von Neumann
multiprocessors fail to simultaneously address are: tolerating non-local memory latencies
and high synchronization costs arising from high context-switching overheads, In pure
dataflow implementations, there are two parallel problems, namely:

o tolerating local memory latencies, that is, how does the PE architecture hide
the latency of a local main memory accesses from the execution pipeline(s)?
Put another way, how does the architecture provide fast instruction and operand
access 10 keep up with the execution pipeline(s)? And,

e tolerating fine-grain synchronization costs.

For a dataflow machine to efficiently exploit ‘fine-grain’ parallelism, fast operand access
{13, 471, and tolerable fine-grain synchronization costs [48, 12] are crucial.

In this chapter, we examine the two parallei problems in pure dataflow implementations
and propose the use of a hybrid dataflow/von Neumann architecture as an approach to
solving the problems facing von Neumann and pure dataflow multiprocessor systems.

18

CHAPTER 2. THE PROBLEMS 19

100000%
o 10000% CPU
g
E
=
[
[-%
1000%
DRAM
100% :
1980 '82 "84 86 ‘88 '90 92

Figure 2.1; The trend in device development.

2.1 The Problem of Tolerating Local Memory Latencies

If we look at today’s trend in device technology development (fig. 2.1—duplicated from
[62]), we note that the processor speed—the basic cycle ime—is increasing at a rate
much quicker than the memory access time of Random-Access Memory (RAM), The main
emphasis of RAM chip development is the squeezing of more and more memory cells onto
a single die, whereas processor chip development emphasizes smaller and smaller clock
cycles at the same time as squeezing more and more peripheral circuits onto the same chip.
Without a radical enabling technology to address the memory access time in RAM chips,
the gap will continue to grow. In modern von Neumann machines, a programmer (compiler)
visible register file and a high-speed cache memory are used to substantially diminish the
impact of local memory latencies—mechanisms which have not been examined for dataflow
machines until recently [89].

The absence of a single locus of control in the pure dataflow model of computation
presents new challenges to conventional register allocation techniques. Effective reuse
of high-speed registers in pure dataflow machines, that is. deciding which values should

}

¢

l .‘,‘3‘,'

CHAPTER 2. THE PROBLEMS 20

be kept in registers and which should not, is not obvious. As for a conventional cache,
allowing firable actors from different parts of the dataflow graph to execute in any order
can have detrimental effects. The reason is that a cache is designed to exploit the principle
of locality exhibited in the execution of a totally-ordered list of instructions; firable actors
executed in any order may diminish that locality effect. One solution is the use of large
fast memory—memory with register-like speed. However, the huge size of the register file
can lead to increases in access latency and make them less attractive, A variation on the
theme is the use of multiple register sets for storing active stack frames' as detailed in the
Monsoon architecture[89]. A problem with this solution is that structure memory elements
cannot be stored in frames. The solution proposed in this thesis involves a moderate size
register file (say 1K to 4K words) which uses hardware guided by software directives for
register management. However, the effectiveness of the devices in the Monsoon and the one
proposed in this thesis rely on the principle of locality, an effect which may be diminished
in the pure dataflow model of execution.

Another competitive sclution to tolerating local memory latencies would be the use of
parking stores® for each memory accessing stage in the execution pipeline so that local
memory latencies can be tolerated. A parking store mechanism continuously accepts
instructions and issues memory requests for them. Pending instructions are put in a parking
area, and only when an instruction has its requests fulfilled is the instruction permitted
to leave the parking store and advance to the next stage. If the memory system has a
varying access time (e.g., the memory system is hierarchical and contains a cache?), then
instructions can leave the parking store out of order. These memory latency hiding devices
are limited in their effectiveness, because it may restrict the effective utilization of the
pipeline and the scalability of the basic pipe beat. Introducing parking stores into the
execution pipe can limit the reduction of the basic pipe beat, and in the worst case, it might
even increase it. The reason is that the parking store must be associatively searched when

VA siack frame is a contiguous set of memory locations used to contain a function activation's iemporary
values,

214 [71), the parking store is called a reservarion pool. In fact, a parking store functions similarly to a
reservation station.

31n this scheme, lockup-free caches {100, 79] would be used, A lockup-free cache is a conventional cache
with the following improvement: a cache miss will not necessarily cause the execution pipeline to freeze, and
other memory requesting instructions can be accepted by the cache while a cache miss is processed,

CHAPTER 2. THE PROBLEMS 21

looking for a position to park a pending instruction. Granted that with today’s technology,
the associative search space can be small-—on the order of four to eight locations—but as
the speed differential between the processor and local main memory increases, the parking
store will have to be larger in order to tolerate the increased local memory latency. Some
tradeoffs will have to be examined since a larger parking store can lead to a longer pipe
cycle due to the increased associative search space,

From the above review, we can see that known mechanisms for tolerating local memory
latencies in von Neumann machines are unsatisfactory for pure dataflow machines. This
was one motivation in carrying out the research of this dissertation.

2.2 The Problem of Fine-Grain Synchronization Costs

Though the context-switching overhead of synchronizations per actor is minimal, the total
fine-grain synchronization cost is another challenge for pure dataflow machines. The data-
flow model stipulates that each and every instruction monitor the arrival of operands and/or
signals for firing information. This implies that the machine must perform a synchroniza-
tion operation® for every waiting instruction which receives a datum (or signal). In [48], we
reported our experimental studies which show that the fine-grain synchronization require-
ments can easily overwhelm the underlying machine and lead to a considerable degradation
in PE utilization. Let us see why this can happen. A typical dataflow PE is a circular
pipeline which can be separated into an execution unit responsible for the actual execution
of the actor’s instri:ution, and a scheduling unit responsible for signaling other actors that
an actor has been executed and for determining which actors are firable® (fig. 2.2). Let us
assume that the execution and scheduling units are fully pipelined, i.e., each one can accept
an input every cycle, and the memory accesses are ideal. In order to keep the execution
unit filled with useful work, the throughput of both units must match with each other (since

“This requires architecture support of one counting semaphore-like operation per instruction activa-
tion. Binary semaphores used in conventional dynamic dataflow machines are a special case of counting
semaphores.

*This can be casily visualized from the two figures of generic static and dynamic dataflow architectures.

?

¢.

CHAPTER 2. THE PROBLEMS 22

Execution
Unit

Scheduling
Unit

Figure 2.2: An abstract dataflow architecture.

they are hooked up as a circular pipe). However, when the average fan-in/fan-out factor of
actors is greater than one, then the scheduling unit must have a throughput equal or greater
than that of the execution unit in order to keep it busy. This will require a scheduling unit
capable of processing more than one signal every cycle, thus leading to greater hardware
complexity and increased costs as compared to a scheduling unit which only has to have
a throughput less than the execution unit. We haved called this, the excessive cumulative
Jfine-grain synchronization cost problem.

Another fine-grain synchronization problem is related to a group of actors with low fan-
in/fan-out factors (a fan-out of one indicates sequential code). For these groups of actors,
the order of operand/signal arrivals can be determined a priori (i.e., at compile time and if
the execution of the sequential thread is performed on one PE), so performing the fine-grain
synchronization check for actors within the group is inefficient and unnecessary since the
actors can be arranged in a totally ordered list and executed sequentially. By arranging
groups of actors into ordered sequences, there is no need to universally schedule all actors
via the fine-grain synchronization hardware. Nevertheless, pure datafiow machines must
schedule all actors in this manner, and we have termed it the universality of fine-grain
synchronization problem.

CHAPTER 2. THE PROBLEMS 23

One last problem deals with the implementation of fine-grain synchronization support
mechanisms. In many tapged-token dataflow architectures proposed to date, the data for
synchronization (the semaphore value which guards the execution of the actor) is embedded
along with the operand values in the data structure which represents a token. As a result, the
scheduling mechanism and execution pipeline in a processor design are tightly coupled—a
tight-coupling of two units implies that a link between the units has no buffering mechanism.
This causes unnecessary restrictions like the replication of data in multiple tokens, and the
tight-coupling of the semaphore update and operand fetch hardware; a coupling which may
lead to unwanted pipeline bubbles [90].° This problem is called the implementation of
fine-grain synchronization support problem.

2.3 Discussion

In view of the fine-grain synchronization problems and the problems of tolerating local
memory latencies, we decided to investigate a different class of architectures, called the
hybrid dataflowl/von Neumann architecture, for its applicability in addressing the issues.

Hybrid dataflow/von Neumann architectures are a sub-class of multi-threaded architectures
[60, 110].

Recently, investigating multi-threaded architectures has gained popularity in the data-
flow research community as well as in the von Neumann research community [3, 71.
The problem of fine-grain synchronization, i.e., excessive cumulative costs and the in-
efficiency of universality, has spurred recent interest in hybrid datafiow/von Neumann
architecture models [30, 43, 84, 57, 96, 73]). (The problem of implementing an efficient
fine-grain synchronization mechanism has already been addressed in the McGill Dataflow
Architecture—10 be reviewed in chapter 3).

The attraction is simple: in a dataflow graph, each individual actor is the basic unit of
work and scheduling quantum for the underlying machine, and fine-grain synchronization

SA pipeline bubble refers to the no-operation (NOP) instruction inserted into the pipeline by the instruction
issuer due to some foreseen hazard in the execution pipe or because there were no executable instructions to
dispatch at that moment.

A

CHAPTER 2. THE PROBLEMS 24

is performed to schedule each instruction. However, some actors can be logically grouped
into threads so that the cost of synchronizations can be reduced by performing the syn-
chronizations only among the threads, while actors within a thread can be scheduled via
the conventional and more efficient technique of sequencing with a program counter, 2 la
von Neumann. A thread is both a compiler and run time entity: at compile time, program
instructions are aggregated into totally-ordered sequences called threads, and at run time,
instances of threads are created on demand and the activation of the thread instances? are
govemned by the dependencies as stipulated at compile time.

2.3.1 Multi-Threaded Architectures

A Multi-threaded architecture [60, 110] is characterized by a node architecture which
attempts to support multiple thread instances efficiently. Via the introduction of multiple
copies of fast memory required for executing a sequential thread (e.g., the utilization of
multiple sets of registers and multiple program status words, etc.), a mechanism for storing
active thread instances, hardware for selecting which active thread instance to process,
and some mechanism for processing synchronization events, a multi-threaded computer
can exploit the parallelism at a desired level in an application (fig. 2.3). This exploitation
is effected by pipelining and simultaneously executing instructions from different active
threads, and by rapidly switching among the active threads. As we can see, the fine-grain
synchronization problem associated with pure dataflow machines is less of an issue in these
machines because instructions within a thread are sequenced with a counter while only
the activation of thread instances require explicit synchronization via the synchronization
mechanism. However, the issue of efficient synchronization support, i.e., the introduction
of a minimal number of synchronization operations and the employment of scheduling
mechanisms which can hide the synchronization overhead by overlapping the execution
of useful instructions, must still be addressed. Furthermore, these architectures must
effectively tolerate local memory latencies and provide fast operand access, though the
challenge is a lesser one than it is for pure datafiow machines (ordinary caches can be used

7We will use the word ‘threads’ and *thread instances’ interchangeably to describe instances of threads.

CHAPTER 2. THE PROBLEMS 25

B

Figure 2.3: A processing element of a multi-threaded architecture.

e

I
Pipelined
Execution
Unit

1PE

to exploit the locality effect when executing the totally-ordered sequence of instructions
within a thread).

2.3.2 Objectives

To address the issues as outlined above, we propose a novel hybrid dataflow/von Neumann
architecture called the Super-Actor Machine (SAM), Since this is a novel architecture, our
primary objectives are;

¢ to define a Super-Actor execution model and an abstract machine model for
the SAM,

¢ to outline a proposed implementation of the SAM, in particular, the novel
high-speed memory organization called a register-cache, and

¢ to examine how machine code can be generated for the SAM.

CHAPTER 2. THE PROBLEMS 26

)

£

Once those objectives have been fulfilled, our next one is to examine the pertormance of
one node of the Super-Actor Machine for a certain class of programs, that is, to investigate
whether the node architecture of the Super-Actor Machine can tolerate local memory
latencies and fine-grain synchronization costs. The last objective is explicitly focused on
the performance of a single PE of the SAM because we believe that;

o the efficientutilization of one PE in the SAM is necessary if the multiprocessor
system is to be used efficiently, and

o the speedup of a hybrid dataflow'von Neumann architecture in a multiprocess-
ing context should be similar to those obtained by dataflow architectures since
they also have support for tolerating global memory latencies and synchroniza-
tion costs.®

A detailed simulator is constructed for the purpose of carrying out the last objective.

¥This is not to say that the SAM's multiprocessing abilities should not be investigated, except that it
is bevond the scope of this thesis, Monti's work(82} on interprocessor communications is one step in that

0 direction.

Chapter 3

The Argument-I'etching Dataflow Model

In this chapter, we outline the argument-fetching dataflow model which is the starting
point for our research on the Super-Actor Machine, and describe one implementation of
an argument-fetching architecture called the McGill Dataflow Architecure (section 3.2).
In section 3.3, we compare via a quantitative analysis the argument-fetching paradigm
to the typical argument-flow model on which a majority of previously proposed dataflow
machines are based. Lastly, we conclude this chapter by describing a variant of the McGill
Dataflow Architecture which supports the dynamic dataflow model of computation, and a
study indicating that the architecture can be overwhelmed by fine-grain synchronization
requirements of a computation.

3.1 The Argument-Fetching Principle

An actor in the dataflow model has two roles: one is the processing of operands and the
production of a result when all the inputs have arrived, and the other is the signaling of
other actors that the result is available. Many proposed datafiow machines are based on
the argument-flow principle where data generated by an actor must flow in a token to an
assigned location of the successor actor which requires it as an operand. For example,

27

CHAPTER 3. THE ARGUMENT-FETCHING DATAFLOW MODEL 28

Argument-flow Argument-fetch

Figure 3.1: The argument-fetching and argument-flow principles.

the location for an actor’s operand is within an instruction template which contains the
actor’s instruction, pointers to actors which require its result, and space for a guard value
which indicates when the actor has received all its inputs. By having tokens containing
the data and the tokens themselves acting as signals to the receiving actors, the roles of
a dataflow actor can be neatly accomplished. However, the direct implementation of this
argument-flow principle leads to two inefficiencies, namely

o excess data movement and unnecessary data replication, and/or

o the imposed tight-coupling between the mechanism for instruction execution
and that for scheduling.

The paper by Dennis and Gao [32] proposes an architecture based on the argument-fetching
principle where data generated as a result of an actor execution is directly stored in data
memory, and when a subsequent actor requires that data, it directly fetches it from dat
memory just as in conventional processor architectures. The diagram in figure 3.1 best
illustrates the two concepts. From the diagram, one can immediately see that excess
operand/result movement and replication are eliminated in the argument-fetching case
since it only has to store its result once even if it is required by multiple actors. Another
benefit is that since data which the instructions execute upon are logically stored together,

CHAPTER 3. THE ARGUMENT-FETCHING DATAFLOW MODEL 29

so too can the scheduling information—the pointers to successor actors and the guard
(semaphore) value—be logically and physically stored together. This separation of data -
and scheduling information has now freed the associated architectures from tightly-coupling
their execution and scheduling logic. It may not be obvious why this is a benefit, but if one
considers the case where an actor 1equires two or more inputs before it can be executed,
then a tight-coupling of execution and scheduling logic would force the introduction of
a ‘bubble’—a no-op instruction—in the execution mechanism whenever an n-ary actor
(n > 1) receives an operand but is not ready for execution. This tight-coupling has forced
the Monsoon machine [89] (an implementation of a tagged-token dataflow architecture)
to incur a significant amount of wasted no-op cycles, e.g., 29% for a simulated annealing
approach to the traveling salesman problem [25]. An architecture with a loosely-coupled
execution and scheduling mechanism would have the opportunity of processing a ready
actor instead of the no-op.'

3.1.1 Argument-Fetching in a Multiprocessor Context

An inherent property of the argument-flow principle is that it is tailored for multiprocessing
since the result of an actor is packaged into a token along with the destination information
and sent to the successor actor regardless if its local or not. If the argument-fetching
principle is used for duta passing between actors residing on different PESs, then the number
of interprocessor communication messages would be double that for the argument-flow
case. Let us anatyze this situation. In the argument-fetching case, the actor (r1) generating
the result must first store it in local memory and send the first message telling the successor
actor (n2) that it generated a value (fig. 3.2). Then 22 must send the second message
asking for the value; some mechanism will fetch the value and package itin a third message
destined for (PEy). After the value has been consumed, the successor actor sends an
acknowledgement signal (the fourth message) to the actor which generated the value so
that it can proceed to penerate the next result.?2 As for the argument-flow case, it would

1 Loosely-coupled units imply that buffering mechanisms exists between the units such that the throughput
of a unit can be relatively independent of another.

2 We are assuming that both the argument-fetching and argument-flow cases are based on the static datallow
model of computation.

-1

¢

CHAPTER 3. THE ARGUMENT-FETCHING DATAFLOW MODEL 30

Argument-flow Argument-fetch

Figure 3.2: Interprocessor communications for the argument-fetching and -Alow principles.

require unly two interprocessor messages, the first containing the result (and signal) to the
successor and the second, the acknowledgement signal from the successor.

Interprocessor communications are costly (in terms of hardware resources, especially
when high bandwidths are required) and the message traversal times are generally long
and variable. Excessive interprocessor messages tend to increase total execution times
{(due to network contention, packaging of the messages, etc.) and :hift the bottleneck
to the communication network. Thus in our work [44, 82], we advocaie the argument-
flow principle for data-passing between actors on different PEs and the argument-fetching
principle for actors residing on the same PE. The determination of which arcs can possibly
and do cross processing element boundaries can be done at compile time. At run time, un
actor which notices that one or more of its emanating arcs are tagged for argument-fiow,
will activate some mechanism which fetches the data from local memory, packages it, and
sends it to a location where the successor actor resides.

CHAPTER 3. THEARGUMENT-FETCHING DATAFLOW MODEL 31

3.1.2 Previous Argument-Fetching Dataflow Work

The argument-fetching principle is not a new idea, it was first proposed in Rumbaugh'’s
dissertation [95], and later, researchers from France and England also brought forward
this concept (94, 116]. (This principle is currently the basis of three other proposed multi-
threaded machines, one by Dennis [30], another by Dai and Giloi [26] and one by Evripidou
and Gaudiot[37). These architectures will be reviewed in chapter 9.)

In Rumbaugh’s dissertation, he described an architecture called the Intermediate Data-
flow Machine in which the notion of storing result data into memory instead of circulating it
around the machine as data tokens was introduced. To the author’s knowledge, he was the
firstto document the idea. He mentioned the use of token memory to store the data produced
by an activated actor and successor actors requiring that result value will access it via an
indexed pointer in the corresponding 3-address instruction, Signals produced by a recently
fired actor are sent to an updating unit where respective count values are decremented.
When a count value has reached zero, the corresponding address of the actor’s instruction
is sent to the execution unit. The information stored in the updating unit corresponds to a
control graph which contains the same paitial ordering information as found in the origi-
nal dataflow graph. This architectural description is quite similar to the McGill Dataflow
Architecture Model which we describe in the next section.

What was elucidated in the Dennis and Gao paper [32) was that an architecture can be
built on the principle of a clear separation of the execution and signaling & scheduling
component. The signaling component can be thought of as a simple function unit which can
be pipelined to attain maximum throughput and the execution unit can be a conventional
processing unit minus the program counter. This concept provides us the opportunity to
incorporate ideas from more than forty years of research in von Neumann architectures into
a dataflow machine.

¢

CHAPTER 3. THE ARGUMENT-FETCHING DATAFLOW MODEL 32

IPU done link
fire link —— /
\\ Exccution Pipe /,

\)

y Y ICU
‘ M |[DM < >
1o

other
> PEs
v

ISU

Enable Signal
Conuoller Processor f

ECM SLM

Figure 3.3: The McGill Dataflow Architecture Model.

3.2 The McGill Dataflow Architecture

The McGill Dataflow Architecture (MDFA) [51, 50] was conceived with the argument-
fetching principle in mind, thus it has an instruction synchronizing and scheduting mecha-
nism which is completely separate from the critical instruction processing data path (fig. 3.3).
The latter, which is called the instruction processing unit, or IPU, consists of essentially sim-
ilar hardware stages for pipelined instruction execution as found in a conventional pipelined
processor, e.g., instruction fetch/decode, effective address calculation and operand fetch,
execution (or the arithmetic and logic unit, ALU), and result store. The major difference is
that the IPU does not contain a program counter to control the instruction sequencing, hence,
we chose not to use the term central processing unit for the [PU. A separate unit called the
instruction scheduling unit, or ISU, plays the role of determining which instructions are to
be executed by the IPU. Furthermore, the IPU presents some advantages over i traditional
execution pipeline:

CHAPTER 3. THE ARGUMENT-FETCHING DATAFLOW MODEL 33

o the datatiow model of computation guarantees that no pair of simultaneously
enabled instructions can be in conflict over data, thus simplifying the pipe
design (pipe interlocking mechanisms are unnecessary);

» pipeline gaps caused by conditional branches cannot arise since those facilities
are implemented ‘off-line’ by the ISU; and

o the arithmetic and logic unit (ALU) stage can consist of multiple sub-pipelines
of varying lengths for handling different types of instructions (e.g., floating-
point and fixed-point adds, etc.) since the order of instruction completion in
the execution pipeline does not matter.

In the figure, the IPU and ISU are linked in a circular path—the typical circular pipeline
of dataflow processors. However, the fire and done links are buffered with first-in-first-out
(FIFO) queues so that the throughput rates of the two units can vary and be relatively
independent during program execution. The fire link delivers enabled instruction addresses
(a fire signal) to the IPU. When an instruction has been completed, its address is sent back
with a condition code (together they form the done signal) to the ISU via the done link.
When an actor is being executed in the IPU, its instruction is fetched from the Instruction
Memory (IM) and the opcrand fetch stage is used to retrieve its operands from Data Memory
(DM). After the execution stage, the result is stored directly into DM in the result store
stage and finally, a done signal is emitted.

The ISU consists of a Signal Processor and an Enable Controller, The signal graph
(a graph representing the partial ordering of actors in a dataflow graph) of a program is
represented in the ISU by the signal lists stored in the Signal List Memory (SLM) of
the signal processor. Each signal iist represents a set of signal arcs emanating from the
associated node of the signal graph. The Enable Couitt Memory (ECM) of the enable
controller holds enable counr (the guard value) and reset count values for each node in
the signal graph. In response to a done signal from the IPU for instruction =, the signal
processor retrieves the signal lists for » and sends a count signal for each entry in the active
lists—the set of active lists is determined by the condition code returned with the done
signal. The signal processor interprets the condition code using these simple rules:

o the addresses in the unconditional signal list are always signaled:

b

(o

CHAPTER 3. THE ARGUMENT-FETCHING DATAFLOW MODEL 34

e :f the condition code is true (false), the addresses in the true (false) list are also
signaled.

When the enable controller receives a count signal, it decrements the count value of the
indicated node. If this enable count value reaches zero, an “enable” flag for this instruction
is set and the reset-count value is copied back into the enable count value to prepare it for
the next firing cycle of the instruction. Enable flags are continuously monitored by the
enable controller; for each enabled node, a fire signal is sent and its enable flag reset.

The Interprocessor Communications Unit (ICU) is used to send packets across the
network. When the signal processor notices that a particular count signal is destined for
an actor residing on a remote PE, the signal is routed to the ICU instead. In the 1CU,
corresponding information indicates where the data should be fetched from local data
memory and tiie data is packaged with the destination address and sent out on the network.
At the remote IPE, the data is stored locally and the receiving actor is notified. When an
acknowledgement packet is received by the ICU (indicating that the successor actor has
consumed the value), the ICU notifies the actor specified in the packet. A more detailed

description of the interprocessor cominunications process can be found in Monti’s thesis
[82].

3.2.1 The Program Format for the MDFA

A dataflow program graph G for the McGill Daraflow Architecture is represented by a
program tuple:

Gi=< PS>

where F is a set of IPU instructions and § is a signal flow graph represented by a set
of signaling instructions. Each actor in the dataflow program graph has an entry in both
P and S sections of the program tuple. The instructions in P (p-instructions) contuin no
information pertaining to the sequence of execution. Instead, the sequencing infermation
appears separately in the signal flow graph S.

CHAPTER 3. THE ARGUMENT-FETCHING DATAFLOW MODEL 35

Instruction Format for thz IPU
The instruction graph P is a list of instructions where:

P ::= <p-inst-list>

<p-inst-list> ::= <p-instruction>
| <p-instruction> <p-inst-list>

<p-instruction> ::=
<opcode> <op-address> <op-address> <result-address>

<op-address> , <result-address> ::= <mode> <address>
(Inthe above modified BNF notation, the expression <x>, <y> ::=z implies that the tokens
z and y both have the form z.) Each p-instruction is a three address instruction commonly
used in conventional architectures. These instructions are stored in the instruction memory

and are executed by the IPU. The mode in the address field can either indicate that a constant
is in the address field or that an actual address is there.

Signal Gra,.”. : ormat for the ISU

The signal graph S of the program tuple determines the sequencing of the instructions.
Formally, the graph consists of a list of signal nodes:

S ::= <s-node-list>

<s-node-list> ;= <s-node>
| <s-node> <s-node-list>

<s-node> ::= <signal-count> <signal-lisi:»

<signal-count> 1= <reset-count> <enable-count>

¢

CHAPTER 3. THE ARGUMENT-FETCHING DATAFLOW MODEL 36

<signal-list> ::= <u-list> <t-list> <f-list>
<u-list>, <t-list>, <f-list> 1= <s-list>

<s-list> 1= [<address>]°

(Expressions of the form [< zz >]° imply zero or more tokens of type zz.) Each signal
node, or s-instruction, contains three address lists designated the unconditional, true and
false signaling lists. The true and false lists are used in the implementation of conditionat
expressions. An element of a signal list is an address of an actor. The signal count consists
of both the enable count and reset count fields to facilitate the dataflow firing rules.

3.2.2 [Example Program Tuples for the MDFA

The program tuple representing the expression:
z:i=(z+y)*x(z—y+3)

is shown in figure 3.4. (From now on, we will express example programs as SISAL expres-
sions [80].) The p-code represents the unordered set of 3-address instructions corresponding
to the nodes in the s-code. The nuinber in the upper ieft-hand comer of each s-node is the
initial enable count value and the one in the lower left-hand corner is the reset count value.
The backward signal arc, shown as a gray directed arc (e.g., the directed arc from nd to
n3), is an acknowledgement arc. The reception of all acknowledgement signals by a node

indicates that it may overwrite its result location since all its successor(s) have consumed
it,

A conditional expression like:

z:=if1 < 3then z +y else z — y endi

can be converted to the program tuple shown in figure 3.5. The arcs emanating from the U,

CHAPTER 3. THE ARGUMENT-FETCHING DATAFLOW MODEL

p-code:
nl:+xyu
n2:- xyv
n3:+ 3 vw
+ 3 nd*uwz

s-code:

37

node X i) 2 -I
nodcy*- nl

";L:; 2

2l !

n4
Z

——®node z

=g

dataflow graph _"l-xl n2 n3

’4
(3 L2]

program tuple

Figure 3.4: A program tuple.

¥

¢

p-code:
nl:<i 3t
n2:+ xyz
nd- xyz

dataflow graph

s-code:

[)

node i .’3‘1._....

node X g——

L]

ol

CHAPTER 3. THE ARGUMENT-FETCHING DATAFLOW MODEL

=

node y *J

n2

n3

program tuple

Figure 3.5: A program tuple representing a conditional expression.

CHAPTER 3. THE ARGUMENT-FETCHING DATAFLOW MODEL 39

T, and F, of nl in the s-code correspond to the elements found in the unconditional, true
and false signal lists of 1. Unlabeled arcs emanating from other s-nodes are unconditional
arcs. Note that the true and false gates used in conditional expressions of a datafiow graph
are not required.

With the basic conditional expressions, loop constructs can be easily represented. For
example, the loop:

z:=foriinl,N
ji=oldj+1
return j
endfor

can be represented by the program tuple in figure 3.6.

From the above examples, we have shown that converting a datafiow graph representa-
tion to its corresponding program tuple is a straightforward one-to-one transformation. Itis
clear from the examples that if the original dataflow graph is well-behaved—a set of inputs
produces a unique set of outputs, the graph returns to its initial state after an execution, and
the graph is conflict-free (i.e., the merge nodes do not receive two inputs simultaneously
on its input arcs)—then the program tuple is well-behaved and thus retains the determinacy
property of the datafiow model.

3.3 Why the MDFA?

The advantages of the argument-fetching machine over the argument-flow ones are most
evident in a single processing element, and thus, the comparisons will be focused on one
PE. Multiprocessing issues of argument-fetching versus argument-flow have already been
discussed in section 3.1.1 where no advantage is claimed for argument-fetching. In the
following sections, we will first analyze the excess data value movement in the argument-
flow muchines, then we will compare the memory bandwidth requirements in the MDFA

?

¢

CHAPTER 3. THE ARGUMENT-FETCHING DATAFLOW MODEL

Y
‘ l
<N
©
@
dataflow graph
s-code:
p-code: . o]
i< i Ng o omedei m—=A 0 Hl
n2:+ 114 i L [Tei2 Fﬂ 1
ndi+joij o
node J "" l L l n3 |
: 1
... |

program tuple

Figure 3.6: A program tupie representing a loop construct.

40

CHAPTER 3. THE ARGUMENT-FETCHING DATAFLOW MODEL 41

to & straightforward implementation of a static argument-flow machine. Lastly, we will
compare the savings in actor firings arising from the elimination of true- and false-gates in
conditional constructs.

3.3.1 Data Value Movement Analysis

The most obvious advantage the MDFA has over the static argument-flow architectures is
the decreased amount of data value movement—traffic that is accounted to the passing of
data values between actors. As we have already mentioned, a result value is stored only
once in the argument-fetch model, whereas for the argument-flow one, it can be stored
many times depending on the fan-out of the actor which produced it. Now let us analyze
quantitatively the savings in data value movement in the argument-fetching architecture for
one processing element, The data traffic (implicitly, the memory bandwidth requirements)
for data value movement will be calculated for a typical actor. |

For this analysis, let f, represent the average fan-out of a typical actor, and let f; be
the average fan-in, The sizes of the operands, results, and memory addresses are set to z
bytes.® Assume that the static dataflow graph is executed once and each actor is to be fired
only once. This implies that actors are not required to signal their predecessor actors that
they have executed. Since we are only examining the case for one PE, let us assume that
the entire dataflow graph is to be executed on one processing element.

For the static argument-flow architecture, each “firing” of an instruction must read its
operand slot(s) once through the Fetch unit and store its result into the operand slot(s) of the
successor actor(s) through the Update unit (see section 1.2.2). So for each actor, fetching
an operand takes 2z bytes, z bytes for sending the address to memory, and z bytes for the
return of the data value itself. For a typical actor, the data traffic to and from tne activity
store for operand fetching would be:

DT, = fi2e (3.1)

3Intoday’s 32-bitmicroprocessors, the size of amemory address is typically equal to the size of an operand
or result,

}

¢

%

CHAPTER 3, THE ARGUMENT-FETCHING DATAFLOW MODEL 42

To store the result, we aiso require 2z bytes, thus a typical actor’s dau traffic for storing
the result is:

DTrs = fo2z (3.2)

The total data traffic attributed to data value movement for a typical actor is:

DTiot

[

DTOf + DTrs
(fl' + fo)zz (3-3)

In the McGill Dataflow Architecture, a typical actor requires f;2z bytes for operand
fetching, but since we only store the result once, the storing only generates 2z bytes of
traffic, for a total of:

DTy = (fi + 1)22 (3.4)

In general, f, > 1 (how else will the parallelism be generated?), so let us assume that
fi = fo = 1.7 and that = = 4 bytes (assurning that we are working with a 32-bit machine).*
Then an actor’s data traffic for the argument-flow machine is = 27 bytes whereas the MDFA
generates & 22. This 27/22 =~ 1.23 or 23% savings in data traffic reduces the memory
bandwidth requirements accordingly, so at execution time, data memory will be accessed
less frequently. This decreases the chances of memory contention and thus the execution
pipe may stall less often. The net result should be a decrease in execution time?, assuming
that the scheduling mechanism in the MDFA is as good as the one in the argument-flow
machine. Next, we will see how the scheduling mechanism in a naive implementation of
an argument-flow machine can perform worse than the one in the MDFA.

*In Ghosal and Bhuyan's performance analysis (55) of the Manchester Datallow Machine, they assumed
an averape fan-out factor of 1.4 where only monadic and dyadic actors are considered and an actor's fan-out is
restricted to 2. If the fan-out of an actor is not restricted, then the average fan-in fan-out should be somewhat
greater, thus we estimate the value to be 1.7.

SWe have taken the liberty of assuming that the ¢xecution pipe is a conventional multi-stage pipeline
without any buffering mechanism to and from data memory.

CHAPTER 3. THE ARGUMENT-FETCHING DATAFLOW MODEL 43

3.3.2 The Cost of Bundling Data and Signal Processing Information

In the MDFA, the separation of the instruction processing mechanism and the instruction
scheduling mechanism is clearly encouraged along with the use of the Harvard architecture
type of memory structure, i.e., the separation of instruction and data into separate memory
units. In many argument-flow dataflow architectures, this separation of memory is not as
obvious, thus a straightforward implementation of a static argument-flow architecture—let
us call this the naive argument-flow architecture (NAFA)—may bundle the signal and data
processing information for a particular actor into a contiguous space of memory.® That
is, the NAFA requires that the operator, operands, destination addresses and enable count
value of an actor be stored contiguously such that only one address is required to fetch the
information for an enabled actor, This grouping of data and signaling information into the
activity store causes memory contentions between the instruction scheduling (the update
unit) and the memory interfacing stage of the data processing mechanism (the fetch unit).

Let us analyze the memory bandwidth requirements of the NAFA’s activity store for a
typical actor. As we have shown in eqn. 3.3, operand fetching and result storing produces
(f; + f.)2z bytes of traffic. Let us assume that the operator is z/2 bytes and the enable
count is z/8 byte.” When an actor is enabled, the fetch unit sends one address (z bytes)
to get the operator, operands and f, destination addresses (f,2 bytes). After the actor has
been executed, the update unit must store the result and retrieve the enable count f, times
on average (f,z/8 bytes). After decrementing the enable count value, it must be stored;
thus, the actor will produce f,(z + z/8) bytes of data traffic (address plus enable count). In
total, an actor generates:

DT1otal = DTior+ DTsig
(.f i+ f 0)23 +

(z + (fox) + (for/B) + (folz + z/8)))
fi2z + f,4.25z+z (3.5)

SThe actual implementations of the argument-flow architectures may not bundle the signal and data
processing information together. However, since we are not aware how much information separation actually
takes place, then we will just anatyze the base case where there is no information partitioning,

71t operands are four bytes long, then the enable count would be .3 bytes or four bits.

¥

¢

),

CHAPTER 3. THE ARGUMENT-FETCHING DATAFLOW MODEL 44

bytes of data traffic to and from the activity store.

As for the MDFA, all memory references by the ISU are addressed to the SLM and
ECM. (SLM, ECM, IM and DM are physically separated from each other.) The data traffic
to and from the SLM by an actor is 3z + f,z bytes; 2z bytes for retrieving the signal
list offsets (x bytes for the acdress and z bytes for the offset) plus z + f.z to retrieve the
addresses in the list. As for the ECM, the data traffic there is f,2.25z bytes; z +z/8 bytes
to fetch and the same amount to store. In the IM, the memory traffic is 2.5z + f;z bytes; =
bytes for the address, z/2 for the operator, f;z the operand addresses, and = bytes for the

result address, As analyzed in eqn. 3.4, the data traffic generated by an actor to and from
data memory is f;2z + 2z.

Assuming the same values for f;, f,, and = as in the previous analysis, data memory
has the greatest bandwidth requirement at = 22 bytes per actor. In the NAFA, the activity
store must support & 47 bytes of traffic per actor. As we can see, the bandwidth required
from the single memory subsystem in the NAFA is more than double that ofithe most used
memory subsystem in the MDFA.? This implies that the McGill Dataflow Architecture can
execute faster due to fewer memory contentions, Furthermore, the scheduling mechanism
in the NAFA may stall more often because its memory accesses must contend with the

accesses from the data processing mechanism. The ISU in the MDFA does not have that
problem.

The argument-fetching principle allows one to conceptually separate different types of
distinct information, and thus at the architectural level, it was natural to physically store
each type in their own memory subsystems for an overall increase in memory bandwidth.
Traditional static dataflow architectures could also have utilized different memory units
to store the operators, operands, etc., but with the argument-flow principie, it was not us
obvious. This development of the argument-fetching principle in dataflow computing is
similar to the development of the Harvard-type architecture in the von Neumann camp—
separating instructions and data into different memory subsystems—the trade-off being

¥Though the foral data traffic in the MDFA is greater than that of the NAFA, a lot of that traflic is in
the addresscs required for fetching data. However, those addresses are directed to each separate memory
subsystern without fear of contention.

CHAPTER 3. THE ARGUMENT-FETCHING DATAFLOW MODEL 45

increased hardware requirements for faster execution. Today, all fast conventional von
Neumann processors utilize the Harvard-type architecture [62] in one form or another.

3.3.3 Cost Analysis of Conditional Expressions

A less obvious advantage of the MDFA is in its handling of conditional expressions.
Figure 3.5 shows a conditional expression expressed in a dataflow graph and corresponding
program tuple. The true- and false-gates are not required for the signal graph, so for every
conditional expression, a minimum of two actors are not required. The savings in memory
usage is not the main advantage; the savings is at execution. Since every conditional
expression executed must traverse through its true or false arm, at least one extra actor (e.g.,
multiple values sent into one arm will require multiple gate actors) is processed each time.
Studies have shown that during a run of a typical program, conditionals are executed 11
to 51% of the time [78). Therefore, the MDFA would execute 11 to 51% less actors than
other dataflow architectures which require true- and false-gates in conditional constructs.

3.34 Summary

We have quantitatively analyzed the advantages of the McGill Dataflow Architecture and
w= have shown that:

» on average, there is substantially less memory bandwidth requirement for data value
movement in a single processing element as compared to a static dataflow architecture
which implements the argument-flow principle. This results in less contentions for
memory cycles and thus less chance of stalling the execution pipe. Hopefully, this
results in a faster execution time.

e Ina naively implemented static dataflow architecture, where data, signal, and actor
information are grouped contiguously, increased memory contentions may arise be-
tween the data processing and signal processing parts of the processing element due

CHAPTER 3. THE ARGUMENT-FETCHING DATAFLOW MODEL 46

to increased memory bandwidth requirements. It has been analyzed, that the memory
bandwidth requirements on the activity store in the naive implementation is nearly

double that of the most heavily accessed memory unit—the data memory—in the
MDFA.

o Atthedataflow graph level, the MDFA will execute 11 to 51% less actors in a typical
program as compared to a dataflow architecture which requires the use of true- and
false-gates in conditional expressions,

34 Summary

In this chapter, we have reviewed the argument-fetching principle and the McGill Dataflow
Architecture which supports it. It was shown that the argument-fetching principle is benefi-
cial within a processing element of a multiprocessor system, and that passing data between
actors on different processing elements should adhere to the argument-fiow principle.

The architecture described in this chapter implements the static dataflow model of
computation. A variant of the MDFA which can support concurrent and recursive function
invocations at run time has also been proposed and investigated in the course of our
research [47, 71]. The argument-fetching architecture which supports the dynamic dataflow
model of computing is called the McGill Dynamic Dataflow Architecture (MDDFA), the
precursor of the Super-Actor Machine. The basic notion behind a dy .amic argument-
fetching architecture is the frame of contiguous memory locations—called a function over-
lay—assuciated with each function invocation. An overlay, akin to a stack frame as
used in conventional von Neumann architectures, contains function linkage information
and overlay slots for containing results and enable count values of actor instances. By
associating a base address of an overlay with each fire and done signal, instances of actors
belonging to different function invocations can access their associated overlays. And by
introducing an ‘apply’ and a ‘return’ actor, functions can be invoked and values returned
to the caller function dynamically. Simulations of a possible configuration of the MDDFA
were performed where function-call intensive benchmark programs were used to examine

CHAPTER 3. THE ARGUMENT-FETCHING DATAFLOW MODEL 47

its effectiveness in supporting function applications. Interested readers are referred to
(71, 70].

-.

However, all was not fine with the MDFA. In a study of the efficiency issues of the McGill
Dataflow Architecture [48], we found that the synchronization overhead for scheduling at
the individual instruction level can easily overwhelm the instruction scheduling unit. The
experiments examined datafiow software pipelined loop bodies (see appendix A) on a
simulator of the MDFA. We discovered that the signal processing capacity (C) of the
scheduling unit(s) must be greater than or equal to the average signal density (S) of the
computation multiplied by the processing capacity (P) of the instruction processing unit(s).
C represents the number of count signals the ISU can process per cycle and P represents
the number of instructions the IPU(s) can process per cycle. The average signal density
is computed by the total count signals emitted during the computation divided by the total
instructions executed. In general, S is greater than one (dyadic instructions already require
two signals to be enabled) and this implies that the throughput of the scheduling unit must
be greater than the throughput of the processing unit in order that the IPU(s) can be kept
busy. That is, if the IPU can accept a fire signal every cycle, then the ISU must be able
to process multiple count signals per cycle to keep up. Another way of keeping the IPUs
busy is to generate code which reduces unnecessary signaling by grouping instructions into
threads or “macro dataflow nodes”. Instructions inside a thread can be scheduled with a
simple counter, while the activations of thread instances are explicitly synchronized, i.e.,
processed by the ISU. This requires the extension of the basic MDFA to support hybrid
exccution and leads us to the focus of this dissertation: what evolutionary steps should be
taken to modify the MDFA such that it can efficiently support, at the architectural level, the
notion of an aggregation of dataflow actors (threads)? How do we supply a low and fixed
memory access time to the ISU which was assumed in the experiments we performed in our
study? To answer these questions, we propose a novel architecture called the Super-Actor
Machine.

?

¢

Chapter 4

A New Architecture

In the next four chapters, a novel pipelined multi-threaded architecture called the Super-
Actor Machine[65, 67, 66, 68] is described and analyzed. The Super-Actor Machine
(SAM) is to be a muliprocessor system consisting of processing elements linked together
by some interconnection network. The SAM implements the argument-fetching principle
and supports dynamic function application. A processing element of the SAM consists of
heterogeneous processing units responsible for processing short and fixed latency instruc-
tions, processing long latency instructions, scheduling aggregates of instructions, etc,

The primary application domain of the SAM is scientific numerical computations where
sustainable and efficient floating point performance is crucial. An important feature of
the Super-Actor Machine which allows it to attain high floating point performance is
its ability to simultaneously issue and overlap floating-point arithmetic operations with
many other operations in one processing element. This ability is coupled with a highly
pipelined execution unit which allows it to have a fast cycle time. Moreover, a processing
element also has the capability of issuing multiple instructions from multiple streams of
instructions. Machines with these features represent a new direction in architecture research
where the two fundamental problems of multiprocessing can be addressed in a processing
element which has the capability of multiple instruction issue and fully pipelined function
units—features which are heralded for the next generation of uniprocessor RISC muchines

48

CHAPTER 4. A NEW ARCHITECTURE 49

[61, 108].

4.1 Addressing the Locality Issue

For this muiti-threaded machine and others in its class, the ability to exploit the principle
of locality (temporal and spatial) is challenging and is necessary to tolerate local memory
latencies. We have looked towards modemn von Neumann machines for ways to tolerate
local memory latencies and to provide sufficient local memory bandwidths in multi-threaded
architectures. . . unfortunately, no satisfactory answers were found.

In modern RISC architectures, the reduction in local memory latencies is achieved
by the extensive use of (explicit) programmable registers and (implicit, i.e., generally not
programmable) high-speed caches. A number of programmable registers alone can only
provide a partial solution because:

e increasing programmable registers will increase the context of a thread, result-
ing in an increased overhead for context-switching; and

o the task of allocating registers for multiply active threads is complicated by the
non-deterministic arrival times of thread triggering events.

As for the conventional cache solutions, there are many limitations which have been studied
and reported for modern von Neumann machines. Below, we list the important limitations:

e the published high hit ratios have been reported mostly on non-scientific bench-
mark programs. For scientific applications where large arrays (vectors) of data
are accessed and manipulated in the computation, the cache performance can
be less than adequate [19, 107]. The major reason is that typical caches can-
not contain the large arrays so that the throughput of the execution pipe is
effectively limited by the time for loading a line into cache.

¢ When a cache miss occurs, the instruction pipeline usually stalls or freezes,
causing considerable performance degradation [62]. This degradation will
become more severe as the mismatch in processor speed and memory access
times continues to grow—as witnessed in the new generation of processors.

?

¢

CHAPTER 4. A NEW ARCHITECTURE 50

e The fact that most conventional caches are transparent to the programmers
(compilers) makes performance improvements by optimizing compilers diffi-
cult,

o Lastly, conventional cache memory was not designed with multi-threaded
architectures in mind. Frequent switchings between instruction threads have
a negative impact on the locality of reference. Moreover, multiple active
contexts contend for limited cache space which further erodes the benefits
of the cache because of unwanted cache line replacements. Some notabie
examples of multi-threaded architectures have rejected the use of caches, e.g.,
the Tera Computer[7] and the HEP[105].

4.1.1 A New Execution Model and Novel Memory Organization

To address the issue of tolerating local memory latencies, the Super- Actor Machine supports
a new model of execution called the Super-Actor Execution Model and incorporates a novel
high-speed memory organization known as the regisrer-cache. Asthe word “register-cache”
suggests, it is organized both as a register file and a cache. Viewed from the execution
unit, its contents are addressable similar to ordinary CPU registers using relatively short
addresses. From the main memory perspective, it is content addressable, i.e., its contents
are tagged just as in conventional caches. The basic idea of the register-cache organization
is simple: a number of registers are grouped into a block where a register in a block is
accessed using an offset from the address of the block; an offset vaiue embedded in the
compiler generated code. The binding of a register block to a register-cache line address is
adaptively performed at run time, thus resulting in a dynamically allocated register file.

The Super-Actor Machine effectively utilizes this new memory organization by support-
ing the notion of non-preemptable instruction threads, called super-actors, at the instruction
set architecture level. A super-actor becomes ready for execudon only when:

1. the data dependence is satisfied, i.e., all its input data are logically generated;
and

2. space locality is satisfied, that is, its input data are physically residing in the
register-cache and space is reserved there to store its resuit.

=

CHAPTER 4. A NEW ARCHITECTURE 51

The first condition is similar to the so-called firing rule in a traditional datafiow machine,
however each scheduling quantum in the SAM is an instruction thread instead of one
instruction. The second condition, a feature unique to the SAM architecture, ensures that
an enabled super-actor can be scheduled for execution only when all memory accesses of
its instructions are guaranteed to be in the high-speed buffer memory. In a processing
element of the SAM, a processing unit is responsible for enforcing the second condition
by ensuring that the necessary data is in the register-cache. In this manner, the load/store
between fast memory and the slower main memory is a non-blocking off-line operation,
i.e., other super-actors which already have their data in fast memory can proceed while the
super-actor requiring a memory load to the regisier-cache is processed by another unit other
than the execution unit. By supporting this new model of execution, the execution unitina
processing element will never freeze when accessing instructions or data, thus eliminating
one main source of pipeline performance degradation. Furthermore, since the throughput
of the execution unit is not dependent on a cache hitratio, the execution time of applications
are not at the mercy of the cache performance if there is enough exposed parallelism in the
application.

4.2 Format of Textual Information in the Pseudo-Code

In the following chapters, pseudo-code will be used to illustrate algorithms, operations of
function blocks, etc. We would now like to explain the font usage in the pseudo-code.

Type Font Example(s)
keywords sans-serif-bold | function, while
function calls sans-serif label(xyz)
identifiers italic abc, Dfi+j]
textual directives | roman clear registers

Comments are enclosed in /* ... */ delimiters.

£y

Chapter 5

The Abstract Model of the Super-Actor
Machine

In our view, the abstract model of the Super-Actor Machine should serve three purposes:

¢ to be a behavioural specification of the Super-Actor Machine,

¢ to be a foundation for the development of future compiler optimization tech-
niques which are specific to the SAM, and

e to be a foundation for future architectural developments and improvements of
the SAM.

To fully define an abstract model of the Super-Actor Machine, we define an abstract program
execution mod:' and an abstract machine mode!. The program execution model provides a
high-level picture to a compiler writer while the machine model is more for the hardware
implementors.

The abstract program execution model is detailed in the next section and the abstract
machine model is described in section 5.2. We conclude this chapter in section 5.3 by
discussing other related execution models.

52

CHAPTER 5. THE ABSTRACT MODEL OF THE SUPER-ACTCR MACHINE 53

5.1 The Abstract Program Execution Modeli

The abstract program execution model is defined by giving the syntax of a Super-Actor
Graph—an organization of a program’s instructions which the abstract machine model of
the SAM can execute—and its operational semantics. The transformation of a well-formed
dataflow graph to a super-actor graph which retains the determinacy property of the dataflow
model is outlined in chapter 7.

Ii: the next section, we describe the super-actor graph which can be executed on the base
abstract ruachine model. Syntactic extensions and semantic refinements to the base execu-
tion model are introduced as the base abstract machine model is enhanced. Section 5.1.2
illustrates the concept of super-actor graphs with examples, and section 5.1.3 examines how
a super-actor graph can be determinate.

5.1.1 The Super-Actor Graph

The Super-Actor Machine executes a Super- . tor Program, P, which is a set of program
graphs called Super-Actor Graphs, G.

P= {Gl, Gz, ...Gn}

G, is the super-actor graph which starts the execution of P and is called the main super-actor
graph. A super-actor graph G; represents a function definition in P and consists of two
parts: a signal flow graph and an associated overlay map.! A signal flow graph consists of
virtual nodes and super-actors which are linked by directed edges. A super-actor contains
a list of one or more instructions and virtual nodes are similar to super-actors but with no
list of instructions. They are virtual in the sense that they do not exist in the actual machine
code which is executed by an implementation of the Super-Actor Machine. They are part
of the SA graph syntax for explaining high-level constructs such as function definitions,
if-then-else constructs, and loop constructs. The directed arcs in the signal flow graph

'Indeed, the super-actor graph is not a ‘graph’ in the graph-theoretic sense. For the lack of better
terminology, we will continue to cal: the signal flow graph and its associated overlay map a super-actor graph.

&

CHAPTER 5. THE ABSTRACT MODEL OF THE SUPER-ACTOR MACHINE 54

indicate the data and/or control dependencies and each one specifies a directed path for the

traversal of signals, as in the argument-fetching datafiow model; they are not used for the
traversal of tokens containing data.

An overlay map of a SA graph specifies the locations of super-actors’ results in an
overlay. This overlay is a set of locations in overiay space and consists of one or more
overlay blocks. An overlay block is a group of one or more locations in an overlay and has
an attached label for identification. The primary purpose of an overlay is to be a storage
medium for conveying data between super-actors belonging to the same activation of a SA
graph, i.e., for super-actors in the same function activation. (We will discuss how super-
actors in different function activations can communica:e with each other when we discuss
function application instructions on page 58.) Results of each super-actor are assigned
unique locations within an overlay, although multiple super-actors depositing their resuits
to the same locations are possible (e.g., certain super-actors in a conditional construct must
deposit their results in the same locations so that successor super-actors of the conditional
construct can access them). Note that overlay space is not used for storing structure memory
objects—vectors, arrays, etc.—instead, stricture memory space is used for those purposes
(these will be discussed when structure memory operations are introduced).

The super-actor graph can best be defined by rirst describing its components and then the
compile-time entives called encapsulators which are used by the compiler to group super-
actors and virtual nodes together to represent high-level constructs such as conditionals
and loop expressions. Encapsulators are not part of the super-actor graph’s syntax, but are
solely used to explain the structuring of SA graphs.

Components of a Super-Actor Graph

The notation and terminology for the three types of virtual nodes, the two types of super-
actors, and the overlay map are shown in figure 5.1 and are explained below,

Overiay Map Inan overlay map, blocks associated with the same SA graph have unique
block identifiers (block-ids for short) such that instructions within a super-actor in the SA

CHAPTER 5. THE ABSTRACT MODEL OF THE SUPER-ACTOR MACHINE

virtual nodes

/\ B -

top node bottom node merge node
super-actor switch super-actor
o/ k YW EIWE
\1 / ‘\"/ \/ 'E‘/Tﬁ'/F\"f
instr-1 instr-1
instr-2 instr-2
instr-n instr-n

awA SN CTOTE

overlay map

Figure 5.1: Components of a super-actor graph.

33

&

CHAPTER 5. THE ABSTRACT MODEL OF THE SUPER-ACTOR MACHINE 56

graph can identify which overlay block(s) it operates on and access the appropriate locations.
k. wever, blocks associated with two different SA graphs can have the sume label (we will
see how they can be differentiated when we discuss function activations). The first dashed
box beside a block-id (e.g., z, ¥ or z in figure 5.1) is termed the first location of the biock,
and successive locations are placed to the right of the preceding one. A location within an
overlay is also called an overiay siot.

Super-Actors and Their Instructions A super-actor has one or more incoming (input)
edges and one or more outgoing (output) edges—solid directed arcs ir figure 5.1—which
connect it to other super-actors or virtual nodes. It also has zero or more incoming acknowi-
edgement edges and zero or more outgoing acknowledgement edges—hashed directed
arcs—which are used to convey acknowledgement signals. Acknowledgement signals are
generally used when a super-actor wants to acknowledge its predecessor(s) (ancestor(s))
that it has fired so that the predecessor (ancestor) can be re-activated once it has received
another set of inputs. In our discussions, outgoing acknowledgement edges are classified
as outgoing edges while incoming acknowledgement edges are separately identified from
incoming (input) edges. Within a super-actor is a totally ordered list of n instructions where
an instruction is of the form:

oftr: [op]°[res)

The above notation indicates that there can be zero or more operand fields and an optional
result field, depending on the operation as specified in optri. The optr: field contains an
operation like ‘add’, ‘abs’, etc., and an operand field contains either an immediate value,
or an overlay slot pointer—value indicating a location within an overlay. The res (result)
field contains an overlay slot pointer. In the illustration of SA graphs, we represent an
immediate value with the format ‘#{’; an overlay slot pointer is represented by ‘block-
id.offset’. The offset value is an integer where zero indicates the first location in the overlay
block identified by block-id, one, the nextlocation, and so on. (In the following discussions,
we will sometimes use the word ‘actors’ to imply super-actors.)

CHAPTER 5. THE ABSTRACT MODEL OF THE SUPER-ACTOR MACHINE 57

Other instructions within a super-actor include a ‘nop’ instruction, branching instruc-
tions, relational and logic instructions, structure memory operations, and function appli-
cation operations. The instruction ‘nop’—no operand nor result ﬁelds—represcnts‘ “no
operation”.? Branching instructions ar~ used to branch to an instruction within the same
super-actor. A branch instruction, ‘br’ has one field containing an immediate value which
indicates the offset of the next instruction from the current one to branch to. A conditional
branch instruction within a super-actor, e.g., ‘brt’ for “branch when true”, requires two
address fields: the first one pointing to a location containing the condition code (generated
by a previous instruction), and the second, an immediate value indicating an offset from
the current instruction. Instructions which generate a condition code (a boolean value) are
called relational or logic instructions, e.g., ‘<’, ‘and’, etc.

Structure Memory Instructions Four instructions are provided for structure memory
operations. Structure memory (SM) objects are stored in structure memory space and are
used to represent vectors, matrices, etc. A SM object is identified by a structure memory
object identifier (SMO-id) and each element within the object can be accessed via an offset
value; an offset from the identifier. ‘SMalloc’ and ‘SMdealloc’ are used to allocate and
deallocate structure memory space for a SM object. The SMalloc instruction takes one
operand which specifies the size of the SM object, and returns a SMO-id which identifies
that SM object. The SMdealloc instruction takes one operand which is a SMO-id, and
deallocates that space, i.e., the space is freed up for allocation to another SM object.

‘SMread’ and ‘SMwrite" are instructions used to access values within a SM object. The
SMread instruction takes three or four arguments where the first one specifies the structure
memory object identifier of the SM object and the second, the offset into the object locating
the first element to be read. The third argument specifies the id of the overlay block in which
the read value(s) are to be stored. The first read value is stored in the first overlay block
location, the second, in the second block location, and so on. The optional fourth argument
specifies the number of successive elements to be read; an absence defaults the number

3The *nop” instruction is only used in the abstract modei so that cxamples can be clearly illustrated. In an
actual machine code, *nop’ instructions within a super-actor are not necessary.

]

CHAPTER 5. THE ABSTRACT MODEL OF THE SUPER-ACTOR MACHINE 58

of values to read to one. The SMwrite instruction also takes three or four arguments: the
first one specifies the SMO-id of the SM object, the second, the offset into the SM object
indicating the first destination location of the write, and the third, the block-id of the overlay
block which contains the values to be copied. The optional fourth argument specifies the
number of successive elements to be written from the overlay block to the SM object; again,
an absence implies that there is only one value to be copied.

Function Application Instructions Function applications are supported by three in-
structions: ‘Oalloc’, ‘Odealloc’ and ‘send’ instructions. The ‘Oalloc’ instruction takes one
operand which points to some information in data memory (the function application data
are treated as if they were constants) representing some function definition, say f. Such
information includes how many operand blocks are required by f’s SA graph, and the SA
graph itself. The *QOalloc’ instruction allocates an overlay from overlay space for the newly
invoked f function, creates the function instance—the function instance consists of actor
instances (super-actors associated with the function instance)—and deposits an overlay
pointer value into 2 location in the caller’s overlay as specified by the result field value of
the Oalloc instruction. This overlay pointer is basically the base address of the overlay and
is attached to a signal—signals sent between super-actors—to uniquely identify the function
activation the signal is associated with. It is also used by instructions within a super-actor
to identify the overlay to access. The ‘Odealloc’ has the simple task of deallocating an
overlay, that is, declaring that the overlay will not be accessed by actors of a function
instance to be terminated. Basically, the space of the dezllocated overlay is freed up for
assignment to another function invocation.

The ‘send’ instruction is used to pass a value between the caller and callee functions and
can be used to issue a signal to an appropriate super-actor when the value has been sent.?
The ‘send’ instruction takes three or four operands. The first operand specifies the value
to be copied, the second operand specifies the overlay (the overlay pointer), and the third
value specifies the overlay slot to receive the value. The fourth operand, if it is specified,

31f multiple super-actors have to be notified, then the one super-actor which the send instruction notifles
can be made responsible for notifying the other super-actors.

CHAPTER 5. THE ABSTRACT MODEL OF THE SUPER-ACTOR MACHINE 5%

contains an actor id. Combined with the overlay pointer as specified in the second operand,
the fourth operand indicates which actor instance to send a signal to.

A super-actor which invokes a functiun or returns values for a fun:ion instance must
have the function application instructions at the end of its list of instructions. Also, a super-
actor can only invoke one function; this becomes obvious when we show an example of
function applications on page 72. The syntax of the above instructions are clearly described
in a later section when the instruction set of the abstract machine model is detailed.

Switch Super-Actor A switch super-actor has zero or more unlabeled outgoing edges—
these are the same type of output edges as those found in a regular super-actor—and it
has one or more true (‘T’) labeled output edges and one or more false (‘'F’) labeled ~utput
edges. As for acknowledgement arcs, there are input acknowledgement arcs—the same
as the ones in a regular super-actor—and labeled and unlabeled output acknowledgement
edges. The zero or more unlabeled output acknowledgement arcs are the same type as the
output acknowledgement arcs of a regular super-actor. As for labeled (true or false labeled)
outgoing acknowledgement arcs, a switch super-actor can have zero or more of each. The
instruction list of a switch super-actor is similar to a regulas super-actor except that the last
instruction in the ordered list is responsible for generating a condition code.

Super-Actor Instances

Since an actor (switch or regular) can be associated with multiple function activations
(multiple instances of the same function can be concurrently active), we call the entity
of an actor associated with a function instance a super-actor instance or actor instance
for short. An instance of actor sa in function activation f1 is differentiated from another
instance of actor sa in function activation f2 by the overlay pointers OP, and OPy; of
the associated overlays. Any function activation and its overlay can be identified by its
overlay pcinter. We use the pair {(overlay-pointer, actor-id)to identify an actor instance and
the expression overlay-pointer.block-id to uniquely identify an overlay block. The overlay-
pointer associated with an actor instance points to the overlay of that actor instance. Thus

CHAPTER 5. THE ABSTRACT MODEL OF THE SUPER-ACTOR MACHINE 60

received all signals from

received all signals
from mput and mpul

dormant

send signals on
outgoing edges

Figure 5.2: States of a super-actor instance.

a signal with an associated overlay pointer OP 4, destined for actor sa, will be sent to the
actor instance (OP),sa}, and instructions of that actor instance will find their operands and
deposit their results in overlay OP;—the overlay of actor instance (OP,sa).

Operationai Scinantics of Super-Actor Instances The operational semantics of a super-
actor instance can be described by the following state transitions (fig. 5.2):

o Anactor instance (OP;, A-id)is in its initial state when it is waiting for a signal
from each of its input edges. Once it has received a signal from each one of its
input arcs, it becomes active.

s The ordered list of instructions in an active super-actor instance (OP;, A-id)is
executed until completion. During ihe 2ctorinstance’s execution, an instruction
accesses its operand(s) from the overlay, OP;, (overlay access is not necessary
for an immediate value) and stores its result(s), if required, in the same overlay.
Once the instructions have been executed, a signal with an attached OP; wi .
be sent along each one of the actor’s outgoing edges (this includes the outgoing
acknowledgement edges). Lastly, the actor instance (re)enters its dormant
state.

e Anactor instance is in its dormant state when it is waiting for a signal from each
of its input edges and from each of its incoming acknowledgement arcs, Once it

CHAPTER 5. THE ABSTRACT MODEL OF THE SUPER-ACTOR MACHINE 61

has received asignal from each one of itsinput arcs and input acknowledgement
arcs, it becomes active.

Actor instances are in their initial states when an Qalloc instruction creates the function
activation to which they belong, that is, all actor instances are put into their initial states
when they are created.

Operational Semantics of a Switch Super-Actor The operational semantics of a switch
super-actor instance are similar to a regular super-actor instance, the only difference is that
after all the instructions have been executed, a signal will be sent along each one of its
unlabeled outgoing edges (this includes the outgoing acknowledgement arcs) and along the
labeled outgoing edges (including labeled output acknowledgement arcs) which correspond
to the condition code as generated by the last instruction.,

Virtual Node Instances

Virtual nodes associated with a function instance are called virtual node instances or node
instances for short.

“QOperations” of Virtual Nodes The “operational semantics” of virtual node instances
are as follows (below, we discuss the instances associated with a function activation with
overlay pointer OF;):

o Top node: once activated, it sends signals with the overlay pointer OP; along
its emanating edges. '

¢ Bottom node: once it has received a signal from each of its incoming arcs, it
terminates execution of the function instance associated with OP;, i.e., actor
instances associated with that function activation will no longer exist.

¢ merge node: when one signal is received at one of its input edges, a signal with
OP; is sent out on each of its outgoing edges.

CHAPTER 5. THE ABSTRACT MODEL OF THE SUPER-ACTOR MACHINE 62

?

The astute reader will note that the merge node is non-deterministic and will wonder if
the appearance of such merge nodes in a SA graph might render a super-actor graph non-
deterministic. In the next sections, we will see how a SA graph structured as encapsulators
can be determinate.

Atomicity of a Super-Actor Instance

From the above operational semantics of (switch) super-actor instances, one can note that
the execution of an actor instance is atomic, that is, once an actor instance becomes active,
it will be executed until completion without the possibility of suspension. Treating a super-
actor instance as an atomic entity at execution time resembles the treatment of actors in
a dataflow machine. In this sense, the super-actors in this execution model are similar to
the actors in the dataflow model, except that super-actors can contain multiple instructions;
thus the term *‘super-actor™.

The atomic execution of super-actor instances presents two immediate benefits:

o first, resources required to execute a super-actor instance can be allocated to
it only during its active state so that it cannot “hog” the resources while it is
waiting on some event*, and

¢ second, the possible introduction of a unique mechanism which allows an
enabled super-actor to pre-load its required data into high-zpeed memory so
that local memory latencies can be minimized. (This mechanism is detailed in
the next chapter.)

“This “hogging" of resources by suspended threads can cause some problems in machines such as the HEP
[105). For example, the HEP has resources for 64 live threads—threads which can be aciive or suspended. It
the program has mere than 64 threads, then the programmer must be careful in allocating : >sources such that
deadlock due to resources does not resuit.

CHAPTER 5. THE ABSTRACT MODEL OF THE SUPER-ACTOR MACHINE 63

def func-name

A e e e e I R

! T l
' i
! defbody o s 20N
| overaymap « [it] |in] 1)
! x:::‘.: |
o] ¥
A Y. |
I - = '
1 AAA1 Ieal | ! alearvaless,] 1
—mmw e " '
: o 0-1 . ___| :t
! \ .
1 1
| B !
| e o ot e e e e e e o ———— o —————_ - |
i = initial AE-node of body

o = output AE-node of body

Figure 5.3; A def encapsulator in a super-actor graph.

Encapsulators

To describe the structuring of super-actor graphs, we borrow the notion of encapsulators—a
compiler notion which groups one or more dataflow actors—from Traub’s graph represen-
tation for Id [114].5 Three types of encapsulators are used: a def, an if-then-else and a loop
encapsulator. In the following descriptions of encapsulators, we use the term AE-node to
imply either a super-actor (non-switch), an if-then-else encapsulator, or a loop encapsulator
(switch super-actors are encapsulated in if-then-else and loop encapsulators).

Def Encapsulator A def encapsulator represents a function definition and is shown in
figure5.3. It contains an uverlay map and a signal flow graph representing the super-actor
graph of a function definition. The signal flow graph contains a top (T') and a bottom (B)
virtual node, and a def-body which contains an acyclic graph of one or more AE-nodes.

$Traub's encapsulator's are similar to Ackerman’s encapsulators for VAL [1].

3

CHAPTER 5. THE ABSTRACT MODEL OF THE SUPER-ACTOR MACHINE 64

The top node has emanating edges to initial AE-nodes in the def-body—AE-nzdes which
can be activated when the function is invoked. The bottom node has input edges from the
last AE-nodes (cailed output AE-nodes of the def-body) to be activated in the function.
In all functions except the main function, the output AE-node to be activated would be a
super-actor which returns values to the caller function,

The overlay map specifies overlay locations where results of super-actors belonging to
the function definition are stored. An AE-node at the top level of the def-body has unique
locations in the overlay for storing its results and successors of that AE-node can {ind their
inputs in those locations. Also, the overlay map contains a special reserved overlay block
for function linkage information. We label this block ‘AAA’ in our discussions of function
applications. (The passing of values between caller and callee functions will be illustrated
later in an example of function applications.)

To start the execution of a function instance, the corresponding top node instance is
activated. Eventually, the bottom node instance receives all its necessary signals and
terminates the function activation.

If-Then-Else Encapsulator An if-then-else encapsulator is used to conceptualize the
notion of conditional expressions. The if-then-else encapsulator contains a pred-body
(predicate body), a then-body, an else-body, and one or more merge nodes (fig. 5.4). Inside
the pred-body, there is one switch super-actor, and within a then- or else-body, there is an
acyclic graph of one or more AE-nodes. The switch super-actor is the “point of control” for
the encapsulator, i.e., it is responsible for triggering initial AE-node(s) in either the then- or
else-body via the labeled output arcs.5 Initial AE-nodes in a body are those which icceive
all their input data from AE-nodes exterior of the body, and an AE-node in the body which
produces data to be consumed by exterior AE-nodes or which triggers AE-nodes exterior of
the body is called an output AE-node.” Output AE-nodes in the then- and else-bodies deposit
their results in the same overlay locations and are responsible for signaling the successors

SThere is only one switch super-actor in the pred-body because the triggering of the then- or elsc-body
depends on one boolean value; thus multiple switch super-actors are not necessary.
"1'hese definitions are similar to the ones in the def-body.

CHAPTER 5. THE ABSTRACT MODEL OF THE SUPER-ACTOR MACHINE

I
switch :

i = initial AE-node of then body ei = initial AE-node of else body
10 = output AE-node of then body eo = output AE-node of else body
m = merge node

Figure 5.4: An if-then-else encapsulator in a svrer-actor graph.

65

r

CHAPTER 5. THE ABSTRACT MODEL OF THE SUPER-ACTOR MACHINE 66

of the encapsulator through the use of merge nodes; successors of the encapsulator can find
their input in those overlay locations. An AE-node other than an output AE-node at the
top level of the then- or else-body has unique locations in an overlay for storing its results
so that successors of that AE-node can find their input from those locations. The switch
super-actor in the pred-body also has unique locations for storing its results (if any).

Note that the outgoing signal arities of the then- and else-bodies should be the same
so that a merge node has two incoming arcs, one from the then-body and the other from
the else-body. This does not imply that the number of output AE-nodes in the then- and
else-bodies are the same since an AE-node can have multiple outgoing arcs.

Loop Encapsulator A loop encapsulator consists of a predicate body (pred-body), a loop-
body, and one or more merge nodes (fig. 5.5). The pred-body is executed when signals
are sent from the predecessor AE-nodes of the encapsulator through the merge node(s) to
the initial AE-nodes in the pred-body.? The predicate-body is responsible for triggering
initial AE-nodes in the loop-body when a condition is met.® If not, the successor AE-nodes
of the encapsulator are signaled. The retriggering of the pred-body——the reiteration of the
loop—is the responsibility of the output AE-node(s) in the loop-body, and the signaling
from those AE-node(s) go through the same merge node(s) which have incoming edges
from the predecessors of the loop encapsulator. Moreover, the output AE-nodes of the
loop-body deposit values to be used by the initial AE-nodes of the pred-body into the same
overlay locations as do the predecessor AE-nodes of the loop. Successors of the loop which
use those values from the output AE-nodes can also find them in the same overlay locations.
A non-output AE-node at the top-level of the loop-body has unique locations in an overlay
for storing its results; the same applies to the AE-nodes (including the switch super-actor)
in the pred-body. Note that the incoming signal arity of the encapsulator is the same as the
outgoing signal arity of the loop-body.

8Since a switch super-actor can be the sole actor in the pred-body, then it can be considered an AE-node.

®Again, only one switch super-actor is necessary since the {re)activation of the loog-body is dependent on
one boolean value,

CHAPTER 5. THE ABSTRACT MODEL OF THE SUPER-ACTOR MACHINE

L B A S ——— .
| A i
|
|
! m-ILz..L- -m-n\ A i
! !
el L
: ! pi-1 |. .| per | !
! A ¥\ i |
|
l | switch : l
I \ super-actor | I !
Y U N [
| loop ody __ !
1 | I
1 |
1. 1
3 4 |
| |
[l
| |
! \/ !
: ! !
| |
[|
sy |
! |
: |
----------------------------- _v_-_ -

Ii = initial AE-node of loop body pi = initial AE-node of pred body
lo = output AE-node of loop body m =merge node

Figure 5.5: A loop encapsulator in a super-actor graph.

67

CHAPTER 5. THE ABSTRACT MODEL OF THE SUPER-ACTOR MACHINE 68

5.1.2 [Examples of Super-Actor Graphs

In this section, corresponding super-actor graphs of a simple expression, a conditional
expression, and a loop expression are presented. Lasdy, tunction applications in a SA
graph are illustrated.

Simple Expressions Examples of portions of super-actor graphs which represent the
expression (1 +p + g) — (p+ q) * (r — t) are shown in figure 5.6. In figure 5.6, the SA
graph of part (a) is a direct one-to-one mapping from the dataflow graph representation of
the expression, i.e., each super-actor only contains one instruction, Parts (b) and (c) show
different representations of the same expression; the difference is in the partitioning. In all
three cases, the data to be used by actor e—represented in the figure by just the letter ‘e’
for clarity—will be found in the first location of overlay block 34 (s4.0) and the remaining
blocks, as shown in the figure, contain the initial values to be used by the super-actors.
(Actors p, g, 7 and ¢ are represented by their letters for clarity and the output values generated
by those actors are put in blocks p0, g0, r0 and 0 respectively.) In figure 5.6(b), actors
1 and 3 from (a) are grouped to form actor 1 and actors 2, 4, and 5 from (a) form actor
2, In (c), actors 1 and 2 from (a) form actor 1 and actors 3, 4, and § form actor 2. The
arcs between actors indicate the explicit synchronizations, and as shown in (b) and (c), the
synchronization requirements are less than the one in (a).

Let us detail figure 5.6(b) further. For simplicity of the foilowing explanation, we will
assume that all signals will have the same overlay pointer attached to thern, and that there is
only one instance of each actor. Thus, we can call an actor instance simply as an actor and
uniquely identify an overlay block by iis biock id. So let us begin. Instructions in actor 1
access their operands from overlay blocks s0, p0 and q0. As for actor 2, its operands are in
blocks s4 and 50, and »0 and t0. When signals from actors p and g are emitted (this implies
that the values p and ¢ would have been deposited in overlay blocks p0 and ¢0), actor 1
becomes active. It executes its instructions, deposits its results into block s0, and signals
actor 2, If actor 2 has also received signals from actors = and ¢, it can then be activated.
Finally, actor 2 will deposit its result in overlay block s4 and send a signal to actor e.

CHAPTER 5. THE ABSTRACT MODEL OF THE SUPER-ACTOR MACHINE 69

overlay map p\' ’/q r, '/l

I y
:g:“::: 11 add p0.0 q0.0 0.0} 2| sub r0.0 0.0 1.0
52':::3 ¥ \ \ (a)

i
:é,====: 3[add #1 50,0 s20 | 4} mut 50.0 s1.0 s3.0
03 N
o _r |
q0C g | 5% sub 52.0 53.0 s4.0
pOL ! l

e
P\‘ /q
overlay map

1:{ 1: add p0.0 0.0 0.0
s4 "0 3radd #1 50.0 s0.1 T

T ———- t ®
o fer LS

L
0 F 1 2§ 2: sub 10.0 10.0 s4.0
qQ0 i g 4: mul s0.0 4.0 54.0
pOip | 5: subs0.1 54,0 s4.0

v

e

\WARY,

overlay map
1:{ 1: 2dd p0.0 0.0 s0.0
sdi___ 1T _ i 2:sub 10.0 0.0 s0.1
LI
0T v X
0T] 2:13:add #1 s0.0 s4.0
L q ! 4; mul s0.0 50.1 sd.1
poLlp ! 5:subs4.0 s4.1 s4.0

)

e

Figure 5.6: Examples of super-actor graphs.

¥

o

o

CHAPTER 5. THE ABSTRACT MODEL OF THE SUPER-ACTOR MACHINE 10

Conditional Expressions There are two ways to represent conditional expressions in
SA graphs: one uses the branch and conditional branch instructions within a super-actor,
and the other is expressed in the context of an if-then-else encapsulator. In figure 5.7, the
super-actor graphs represent the expression:

h = let
a,b:=ifp+1 > nthen
pgtf
else
nvg-'f
in
(a+byx2

Figure 5.7(a) shows a super-actor graph which uses branch instructions within a super-actor.
Pa:t (b) of the figure uses an if-then-else encapsulator to show a conditional expression
constructed with a switch super-actor (actor 1) of the pred-body and a merge node (node 4).
Actor 2 is both the initial and output super-actor (AE-node) of the then-body and actor 3 is
also an initial and output super-actor, but of the else-body. Thus actor 2 has a true labeled
arc from actor 1 and an output edge to the merge node, and actor 3 has a false labeled arc
from actor 1 and an output edge to the merge node. The reader can note that the output
super-actors in the then- and else-bodies deposit their data in the same location of the same
overlay block (a0). Actor 5’s counterpart in figure 5.7(a) is actor 2.

Though it is not shown in figure 5.7, the representation of a conditional ex, ression in
(b) has an advantage over the one in (a) in that multiple AE-nodes in either the then- or
else-bodies can be invoked in parallel for increased parallelism, e.g., multiple true-labeled
arcs can emanate from the switch super-actor to trigger multiple initial AE-nodes in the
true-body simultaneously.

Loop Expressions A loop expression can also be expressed within a super-actor with
branching instructions or in the context of a loop encapsulator. In figure 5.8, the super-actor
graph for the loop:

CHAPTER 5. THE ABSTRACT MODEL OF THE SUPER-ACTOR MACHINE 71

s-\f' /p.n
1:{ add p0.0 #1 500
> 50.0 p0.0 s0.0

brt 0.0 #4
id p0.1 s0.0
overley map sub 0.0 g0.1 s0.1
e br #3
o Lead __ id p0.0 0.0 ®
Or T T T add 0.0 0.1 s0.1
T sk o0p

y

2] add s0.0 s0.1 h0.0
mul #2 h0.0 h0.0

!

1:[add p0O #1 00] |
> $0.0 p0.1 0.0 | |
1

overlay map

! ') { i : it
Q0L B LT 1%} id 000200 | ¥ id p0.1 200 !
pOL Lty ;Ii add g0.0 £0.120.1 | | n} subg0.0 §0.100.1 | §
I

4

‘| odd a0.0 40.1 h0.0
mul #2 h0.0h0.0

!

Figure 5.7: Conditional super-actor graphs.

?

]

CHAPTER 5. THE ABSTRACT MODEL OF THE SUPER-ACTOR MACHINE 72

for initial
=0
=0
while = <= 64 repeat
Ji=AR]+ A+ 11+ AL+ 2]+ A[2+ 3] +old
1:=0ldi+4
returns value of 7
end for

is shown. Nodes 1 and 2 are merge nodes which receive signals from the predecessor
AE-nodes of the encapsulator (AE-nodes : and 7) and signal the initial super-actor (actor 3)
in the pred-body. The predecessor AE-nodes of the loop encapsulator initialize the values
of 2 and j to zero and the address of array ‘A’ and deposit them into overlay block 10 that
is, locations 0.0, 0.1, and 0.2 respectively. The switch super-actor either triggers the
initial AE-nodes (actors 4 and 6) in the loop-body when the value in k0.0 is less than 64,
or it signals the successor AE-node(s) of the encapsulator. Actor S is responsible for the
sum-reduction of the block of four elements of array 4 '°, and the final result of the loop is
found in 20.1.

Function Applications Function application support in the super-actor execution model
is similar to the one in the McGill Dynamic Dataflow Architecture{47]. We can have one
super-actor which performs the role of an ‘apply’ actor and another a ‘return” actor. In the
super-actor execution model, an ‘apply’ super-actor has the following tasks:

1. allocate an overlay for the new function activation and create the actor instances
(the Oalloc instruction),

2. store the necessary function linkage information in the callee’s overlay,

3. copy the arguments to the callee’s overlay, and

4, trigger the top node in the callee (the last three steps can be accomplished with
the send instruction).

1%Note that actors 4 and 5 can be combined to form one actor; the separation of the SMread instruction
from other instructions is a prelude to the modifications as proposed in the advanced abstract machine model,

CHAPTER 5. THE ABSTRACT MODEL OF THE SUPER-ACTOR MACHINE 73

|

|

I -

'{ ST 1 add i0.0 #4 i0.0
‘1a 10,1 100 10,

: add i0.1 10.1 i0.1 I

I

|

I

add i0.1 10.2 i0.1 !
add i0.1 0.3 i0.1 ;
y I

Figure 5.8: A loop encapsulator in a super-actor graph.

CHAPTER 5. THF ABSTRACT MODEL OF THE SUPER-ACTOR MACHINE 74

The ‘return’ super-actor has these tasks:

1. copy the return values to the caller’s overlay (send instruction), and

2. deallocate the overlay (Odealloc instruction). Terminating the function in-
stance is the responsibility of the bottom node.

Before we see how ‘Oatloc’, ‘Odealloc’ and ‘send’ instructions can be used to implement
function applications, let us re-iterate the syntax of those instructions:

Qalloc func-ptr res-loc

send val overl-ptr loc [actor-id]

and Odealloc takes no arguments. The argument func-ptr is a pointer to the function to be
invoked, and res-loc is the location (in the caller’s overlay) to store the overlay pointer of
the newly created overlay. val is the value to be sent, overi-ptr is the overlay pointer of the
overlay to receive the value, loc is the location within the overlay pointed to by overi-ptr
where the value is to be stored, and the optional actor-id specifies which actor to notify
once the value has been sent; the actor instance is specified by the pair {(over{-ptr, actor-id).

In figure 5.9(a), we show an ‘apply’ super-actor in function g invoking a function f.
The apply instruction within actor appl is a macro-instruction and the actual instructions
are shown in part (b) of the figure. The syntax of the apply macro-instruction is as follows:
the first operand specifies the location of the pointer to the information of the function to be
invoked, the second specifies the location of the first argument to be sent, the third operand
specifies the location where the first return values are to be stored, and the last operand
specifies how many arguments are to be sent to the callee. Thus, the apply instruction says,
invoke function f with the arguments a and b and store the return valuesin overlz.xy block 0.
The return instruction within actor ret! of part (a) of the figure is also a macro-instruction
and its syntax is as follows: the first operand specifies where the first return value is located,
and the second, the number of return values to send back. The dashed directed arc from the
actor is not part of the syntax of the super-actor graph but is used to indicate that the return

- CHAPTER 5. THE ABSTRACT MODEL OF THE SUPER-ACTOR MACHINE 75

f*s overlay map
g AAA TOB TOR PR ST AT
apply p0.0 a0.0 ¢0.0 #2 S 0 l—col_di

-~
.--
~—
-~
~o

rsl:isub cO.Q c0.1c0.2

(@)

\/

appl:d Oalloc p0.0 0.0

send 10.0 0.0 #AALAD

send AAA.D 10.0 #AAAL

send #'1s1’ t0.0 #AAA2

send #c0.0"10.0 #AAAD

send a0.0 10.0 #AAAL

send a0l 0.0 #AAAS #ETOP

v

\/

retl:{ send 0.0 AAA.l AAAZ
add #1 AAA3 AAA3
send 0.1 AAAl AAAJZ AAA2
Odealloc
Y

(b)

Figure 5.9: Function applications in a super-actor graph.

6

CHAPTER 5. THE ABSTRACT MODEL OF THE SUPER-ACTOR MACHINE 76

super-actor is responsible for sending the signals which emanate from the apply super-actor,
i.e., to actor rs/. Note that an apply super-actor can only invoke one function since the
return éuper—actor in the callee is responsible for signaling the successors of the apply super-
actor. Multiple invocations by an apply super-actor would violate the super-actor execution
model since signals “from” the apply super-actor can be emitted before the super-actor is
actually finished executing, i.e., the multiple function calls have all been terminated.

Figure 5.9(b) shows the super-actors corresponding to the apply and return actors in (a).
The apply super-actor first allocates the overlay for f. Then it sends the overlay pointer of
the new function f to the first location in overlay block AAA of the new overlay so that
actor instances within the new function activation can have access to their overlay pointer. !!
Next, the function linkage information is sent. This includes: the overlay pointer of the
caller, the id of the actor (actor rs/) to trigger once the values are returned, and the location
in the caller’s overlay (an overlay block-id and an offset) where the first return value can
be found. By convention, all function linkage information are deposited into assigned
locations in an overlay block labeled AA A. Once the linkage information are sent, the two
parameters a and b (in locations ¢0.0 and 40.1) can be sent. The last send instruction in the
super-actor is responsible for signaling the top node in function f.

In the ‘return’ super-actor, values ¢ and d (in block »0 of the callee function’s overiay)
are copied to the ¢0 block in the caller function’s overlay and the second send instruction
also triggers the super-actor labeled rs1 in the caller. The add instruction between the two
send instructions is used to increment the destination location from 0.0 (for value ¢) to
0.1 (for value d). Lastly, the Odealloc instruction deallocates the overlay for the function
instance. (Note that with the layout or function linkage information in the AA 4 block, the
return super-actor can only signal one super-actor for the apply signal actor. If more than
one actor must be signaled or acknowledged, then a super-actor which does nothing but
signal those actors can be insert;d. and the return super-actor signals that super-actor.)

1This will not be necessary in the machine model where every actor instance has access to its overlay
pointer.

CHAPTER 5. THE ABSTRACT MODEL OF THE SUPER-ACTOR MACHINE 17

5.1.3 Determinate Super-Actor Graphs

As was pointed out in the review of the datafiow model (see section 1.2.1), a nice feature
for parallel processing is the determinacy property where given a set of input values, the
same output values will be produced by the execution of a well-formed datafiow graph [31)
regard] . of the firing sequence of enabled dataflow actors. This property is guaranteed as
long as the execution system follows the firing rule.

We would like to have this determinacy property for the super-actor execution model,
and to that end, the SA graph must be well-formed and the underlying machine model must
follow the same firing rules as those imposed on a dataflow machine. The only difference
is that the unit of execution is an aggregate of instructions instead of one instruction. (From
the operational semantics of a super-actor instance, one can see that the firing rules are
similar to those of the dataflow model.)

So what is a well-formed super-actor graph? A well-formed super-actor graph is an
acyclic graph of AE-nodes, where an AE-node is a super-actor, an if-then-else construct (a
super-actor graph with the structure of an if-then-else encapsulator), or a loop construct (a
loop encapsulator). A body (pred-, then-, else-, and loop-body) in an if-then-else or loop
encapsulator contains a well-formed super-actor graph, that is, a well-formed super-actor
graph is recursively defined,

We argue that an execution of an instance of a well-formed super-actor graph on a
machine which adheres to the operational semantics of the super-actor execution model
exhibits the determinacy property. Proving this claim formally is beyond the scope of this
thesis, so we simply outline a proof which examines the well-behavedness of a well-formed
SA graph. '* A super-actor graph is well-behaved if: it is one-in-one-out, that is, if given
a set of inputs and it is notified by its input signals, a set of outputs is produced and its
successors notified via output signals; it is conflict-free, that is, no merge node can have
multiple input signals simultaneously on its input arcs during any execution of the graph;
and itis clean, that is, after an execution of the graph, the graph is in the same state as it was

12In this informal argument, we refer to a super-actor graph instance as a super-actor graph for short, Also,
actor instance is simply referred to as an actor, and node instance, a node,

CHAPTER 5. THE ABSTRACT MODEL OF THE SUPER-ACTOR MACHINE 78

before the execution.'’> (Before a graph is executed, its state is such that each super-actor
in the graph is waiting to receive a signal from each of its input edges.)

There are two steps to this argument. In the first step, we show that if a well-formed
SA graph is given one set of inputs, it is one-in-one-out and clean via structural induction.
(A def encapsulator consists of an acyclic graph (body) of one or more AE-nodes, which
when invoked is executed only once). !* In the second step, we argue that a well-formed
SA graph is conflict-free via contradiction.

In the first step, there are three constructs to examine: a body of one or more (non-switch)
super-actors, an if-then-else construct, and a loop construct. The basis of this induction is
that each individual super-actor is functional, that is, given a set of inputs, it produces a set
of outputs and that it retains no state which can alter the output for the next set of inputs.
Moreover, the state of an executing super-actor can only be altered by instructions of that
super-actor. (Chap. 7 will outline an algorithm to generate such functional super-actors
from a dataflow graph).

In brief, each super-actor in a body of one or more super-actors fires exactly once during
an execution of the body, that is, when the necessary signals appear on the input arcs of
the body. When the output values are produced by the body, signals on the output arcs
of the body will notify the successors of the body. Therefore, a body of super-actor(s) is
one-in-one-out. Since a super-actor is functional and is ready to fire when presented the
next set of inputs, then a body of super-actor(s) is also clean if another set of inputs to the
body is only presented when the body has finished executing.

The execution of an if-then-else construct is triggered when all inputs are produced
by predecessors of the construct and all the necessary input signals are received. One of
two bodies (then- or else-body) is triggered for execution by the switch super-actor in the
pred-body—signals sent on labeled output arcs of the switch super-actor. Since the selected
body is nested within the if-then-else construct, we may assume that the body is one-in-
one-out and clean via the induction hypothesis. It is only clean if no other set of inputs

'3The definition of well-behaved is adapted from (31] and [95].
“Reusing a function instance, for example in software pipelined code, is possible if the SA graph is
structured differently. However, this is a subject for future investigation.

CHAPTER 5. THE ABSTRACT MODEL OF THE SUPER-ACTOR MACHINE 79

are presented to the if-then-else construct while the if-then-else is still executing, Once the
results from the body are produced—results of the if-then-else construct—the successors
of the if-then-else are triggered through the virtual merpe node(s). Thus the if-then-else
construct is one-in-one-out. After the output is produced, the switch super-actor is ready to
fire when presented the next set of inputs because it is functional, the virtual merge nodes
are ready to fire again,' and either body is clean, thus the construct is clean if another set
of inputs to the construct is not presented while the construct is executing.

When the loop is triggered for execution, the initial AE-nodes in the pred-body are
triggered. Then the pred-body either triggers the loop-body for an iteration or the successors
of the loop when a condition is not met. Each iteration of the loop-body uniquely determines
the values for the next iteration or the exit values if the loop terminates. Since the pred- and
loop-bodies are nested in the construct, we assume that they are one-in-one-out and clean if
no other set of inputs are presented to the loop while the loop is executing. Once the results
of the loop are produced, the switch super-actor in the pred-body triggers the successors
of the loop, thus the Joop construct is one-in-one-out. Every component in the construct is
ready to fire when the next set of inputs are presented to the loop and no component retains

any state, thus the loop construct is clean if no other set of inputs to the loop is presented
while the loop is still executing.

From the analysis of if-then-else and loop constructs, they can be regarded as (non-
switch) super-actors. That is, they do not logically fire until all inputs are produced and
the input signals have arrived, and they send output signals to their successors when their
results are produced (one-in-one-out); and they do not retain any state which can alter the
output for the next set of inputs after they have executed, and they are ready for the next
set of inputs upon termination (clean). Therefore, bodies containing if-then-else and loop
constructs in place of super-actors are one-in-one-out and clean if no other set of inputs is
presented to the body while the body is executing.

In the second step of this proof outline, we show via contradiction that the merge nodes
in a well-formed SA graph cannot be in conflict, i.e., the SA graph is conflict-free, (This

1In this machine, a merge node is actually executed and its operational semantics observed.

CHAPTER 5. THE ABSTRACT MODEL OF THE SUPER-ACTOR MACHINE 80

second step is integral in showing that an AE-node does not receive another set of inputs
until it has completely processed its current set of inputs; a property which the clean property
is dependent upon.) Let us assume that there is conflict in a merge node in either an if-then-
else or loop construct, say construct z. This can only occur if z is nested within another
construct, say ¥, in which y produces another set of inputs to = directly and/or through
other AE-nodes nested in the same body as = while z is executing (note that the body which
contains z is an acylic graph of AE-nodes). Construct y can be a body of AE-nodes (i.e., a
body of a def encapsulator), an if-then-else, or a loop encapsulator, If y is a body of a def
encapsulator, then we know that it is executed only once when invoked—only one set of
inputs—so z only receives one set of inputs (from the first step of this proof, we note that
each AE-node at the top level of a body in a def encapsulator is one-in-one-out) and thus
it is impossible for the merge nodes in z to be in conflict. If y is either an if-then-else or
loop construct, then the merge nodes in £ can be in conflict if the merge nodes in y is in
conflict, that is, if y receives a set of inputs from the construct it is nested within while y
is executing. However, at the top level of this nesting is a body of a def encapsulator—a
function definition (note that in the definition of the super-actor program, every function
definition is represented by a def encapsulator). Therefore, z can never be presented with
another set of inputs while it is executing. Thus the merge nodes of z are conflict-free and
z is conflict-free.

Since a well-formed SA graph is one-in-one-out, clean, and conflict-free, then it is well-
behaved. And since a well-formed super-actor graph is well-behaved, and well-behaved
implies determinate [27], then the well-formed super-actor graphs are determinate.

5.1.4 Discussions

In chapter 7, we will see how well-formed super-actor graphs can be transformed from
dataflow graphs.

We have yet to show the use of acknowledgement arcs in a SA graph. The first
example of their use is shown when we describe dataflow software pipelined SA graphs in

?

)

CHAPTER 5. THE ABSTRACT MODEL OF THE SUPER-ACTOR MACHINE 81

section 7.3.2 (see appendix A for dataflow software pipelining). Acknowledgement arcs are
used primarily for exploiting the “pipelining of operations™ which is possible in the static
dataflow model of computation; pipelining operations within a loop is extremely useful in
exploiting inter-iteration parallelism. The well-formed SA graphs, as presented above, do
not support pipelining of operations. However, adding acknowledgement arcs in the right
places will remove this restriction (as shown in fig. 7.11 in section 7.3.2).

5.2 The Abstract Machine Model

In this section, we describe the abstract machine model via step-wise enhancements to the
description of the most abstract machine model. This base model (sect. 5.2.2) corresponds
roughly to the super-actor instance state transitions in the abstract program execution model,
(The definition of symbols as used in the models are found in sect. 5.2.1 and the instruction
set for the machine models is found in sect. 5.2.3.) The second model, which we have called
the “Intermediate Abstract Machine Model”, corresponds to the stage where two extra states
are added to the state transitions to facilitate the pre-loading of high-speed memory and the
reservation of physical resources required to execute a super-actor instance (sect. 5.2.4).
Finally, the last model includes the feature of separating ‘regular’ super-actors from those
which have different processing requirements so that the execution of regular super-actors
can be unhindered (sect. 5.2.5). Extensions to the syntax of super-actors and refinements
to the semantics of actor instances will be introduced accordingly.

Describing the machine model in this manner allows the reader to readily comprehend
the basic features of the Super-Actor Machine. Moreover, it also facilitates future compiler
optimization efforts and enhancements to the SAM itself by isolating the features which we
think are beneficial in today’s technology but which may not be in the future as technology
evolves.

1

CHAPTER 5. THE ABSTRACT MODEL OF THE SUPER-ACTOR MACHINE 82

5.2.1 Symbols Used in the Models

The symbols appearing in this section are used in conjunction with the associated memory
model of the three abstract machine models. Where appropriate, other symbols will be
introduced as the machine model is enhanced.

First, let us define an actor in this machine model by describing its components. An
instance of an actor can be identified by the base address of the function overlay (overlay
pointer = base address) the actor instance belongs to and the actor’s id (id):

<actor-instance-id> ::= <base-address> <id>

Attributes of an actor, which we term the static attributes can be accessed via its id value.
Attributes of an instance of an actor, called the dynamic attributes, can be accessed via
a combination of the base-address and id value. Thus, an actor instance can be wholly
defined by its static and dynamic attributes:

<actor-instance> ::= <static-attributes> <dynamic-attributes>

<static-attributes> ::= <instr-list> <reset-count> <init-count>
<signal-lists>

<instr-list> ::= [<instruction>]°
<reset-count>>, <init-count> ::= integer

<signal-lists> ::= <uncond-list> |
<uncond-list> <t-list> <f-list>

<uncond-list>, <t-list>, <f-list> ::=list of actor ids

(To remind the reader, expressions of the form [<xx>]° implies zero or more <xx> tokens.)
The static attributes of an actor instance include its list of instructions, a reset enable count,

CHAPTER 5. THE ABSTRACT MODEL OF THE SUPER-ACTOR MACHINE 83

an initial enable count and its signal lists. Note that the reser-count, init-count, and signal-
lists are used to represent the arcs in the signal flow graph of the super-actor graph. The
init-count specifies the number of input arcs a super-actor has and the reset-count specifies
the number of input arcs plus the number of input acknowledgement arcs of a super-actor.
The signal-lists represent the output edges of a super-actor. Merge nodes are encoded within
the signal lists, reset-counts and init-counts of actors, thus they do not exist in the machine
model. (For example, actor z signals merge node m which in turn signals actor y, actor =
also signals y through m. In the unconditional signal-lists of z and z, there is simply an
entry to y in each list. And in the reset-count and init-count of y, only one signal is needed
to activate y.)

<instruction> ::= <optr> [<opr-res-field>}°
<optr> ::= ‘add’ | ‘sub’ | etc.

<opr-res-field> ::= <opr-res-type> <opr-res-val>
<opr-res-type> ::= ‘reg’ | ‘immed’ | ‘slot-ptr’
<opr-res-val> ::= integer | <slot-ptr>

<slot-ptr> ::= <block-id> <offset>

<block-id> ::= offset from overlay base address locating the
first element of overlay block

<offset> ::= integer

In the super-actor execution model, the type of operand/result field of an instruction could
only be an immediate value or an overlay slot pointer (slot-ptr) which points to a location
within the actor instance’s overlay. In the machine model, we have added a repister type—
oper-res-type equals reg—where a temporary register can be used to communicate values
between instructions of the same super-actor instance; temporary registers can not be used
for any other purposes. This addition allows a super-actor instance to use less overlay
space than if no temporary registers were used. In an operand/resuit field of an instruction

CHAPTER 5. THE ABSTRACT MODEL OF THE SUPER-ACTOR MACHINE 84

in a super-actor graph, the form ‘Ry’ is used to indicate the yth register which contains an
operand or is the destination of the instruction’s resuit.

The dynamic attributes of an actor instance are:

<dynamic-attributes> ::= <enable-count>> <running-status>> <cond-code>
<enable-count> ::= integer
<running-status> ::= ‘terminated’ | ‘non-terminated’

<cond-code> 1= ‘true’ | ‘false’ | ‘uncond’

Each actor instance maintains its own enable count (number of signals to be received before
the instance can be enabled), a running status, and a condition code. The running status
is used by the machine to determine which actor instance has just finished executing and
the condition code (cond-code) is used to fetch the appropriate signal lists when an actor
instance has just been executed.

The Memory Units There are three basic memory units—all having linear addressing—
in the machine models: Actor Attribute Memory (AA[1), Instruction Memory (I[1) and Data
Memory (D[]). In the following machine models, the static attributes of an actor can be
accessed via the actor’s id and corresponding attribute pointers into actor attribute memory.
Instructions of an actor are stored in the instruction memory and can be accessed with the
actor’sid. Data memory contains the function overlays (i.e., operands, results and dynamic
attributes of actor instances), and stucture memory objects. The overlay and structure
memory spaces as differentiated in the super-actor execution model are combined into one
space—the data memory—in the abstract machine model. That is, overlay pointers and
structure memory identifiers (entities from the super-actor graph execution model) become
data memory addresses, and overlay block ids (again, from the super-actor execution model)
become offset values, i.e., offsets from an overlay pointer (a data memory address). Overlay
blocks from the execution model are called data blocks in the machine model. Information

?

¢

CHAPTER 5. THE ABSTRACT MODEL OF THE SUPER-ACTOR MACHINE RS

within overlays can be accessed with offset values stored in the actor attribute memory
and instructions within the instuction memory are accessed with addresses which are also
stored in the actor attribute memory. The symbols for component locations of an actor with
id AP (called actor AP for short) in the actor attribute memory are:

S ymbol Points to (locations in actor attribute memory AA[J):

AP.I address in instruction memory containing first instruction of actor AP

AP.N; no. of instructions of actor AP

AP.C, reset count value of actor AP

AP.C; initial count value of actor AP

AP.SL, first actor id in the unconditional signal list of actor AP

AP.SL, first actor id in the true signal list of actor AP

AP.SL; firstactor id in the false signal list of actor AP

AP.Ng, no. of ids in unconditional signal list of actor AP

APl Ng, no. of ids in true signal list of actor AP

AP.Ng; no. of ids in false signal list of actor AP

AP.ec offset from OP which locates the enable count of actor instance (OP AP)
in data memory

AP.cc offset from OP which locates the condition code of actor instance (OP AP)
in data memory

AP.rs offset from OP which locates the running state of actor instance (OP.AP)
in data memory

An overlay pointer (OP) in tandem with an actor’s id {AP) uniquely identifies an instance
of an actor, (OP AP).

5.2.2 The Basic Abstract Machine Mode!

The base abstract machine model of the SAM consists of two pools: the Dormantand Active
Pools for containing actor instances (fig. 5.10). To move the actor instances between pools,
we introduce three agents into the model: the activation, the execution, and the deactivation
agents (fig. 5.10). These three agents modify the state of an actor instance and thus directly
access and alter the memories as shown in the associated memory model (fig. 5.11). To

CHAPTER 5. THE ABSTRACT MODEL OF THE SUPER-ACTOR MACHINE

dormant pool

deactivation agent

active pool

activation agent

[

¥

Figure 5.10: The Basic Abstract Machine Model.

dormant pool

D

W
1T
M

AAM = actor attribute memory
IM = instruction memory
DM = data memory

active pool l l

[M

DM

Figure 5.11: The Basic Memory Model.

86

CHAPTER 5. THE ABSTRACT MODEL OF THE SUPER-ACTOR MACHINE 87

start the execution of a super-actor program, an overlay for the main super-actor graph is
created in data memory and instances of actors belonging to the main SA graph are put into
their initial states and deposited into the dormant pool, i.e., an instance of the main function
is created. Then the enable count (value in D[OP +AA[AP.ec])) of the top node instance of
the main function instance is set to zero. Lastly, the agents are started for execution. Below
are the procedures as executed by each agent; procedure activate for the activation agent,
procedure execute for the execution agent, and deactivate for the deactivation agent.

procedure activate ()
do (forever)

from Dormant Pool, pick (OPAP)with D[OP + AA[AP.ec]1=0
DI[OP + AA[AP.ec]] := AA[AP.C,]

put {OP,AP)in Active Pool
D[OP + AA[AP.r5]] = ‘non-terminated’
enddo

The activation agent is responsible for picking actor instances in the dormant pool which
have their enable counts equal to zero; i.e., they are enabled. It resets an enabled actor’s
enable count to the actor’s reset value and puts the actor instance into the active pool.

procedure execute ()
do (forever)
from Active Pool, pick (OP,AP)with D[OP + AA[AP.7s]] = ‘non-terminated’
ent =0
while (cnt < AA[AP.N]) do
perform (OP, AP, I[AA[AP.I] + cni], AA[AP.Ny), cnt)
ent:;=cnt+1
endwhile
put {OP,AP}back in Active Pool
DIOP + AA[AP.rs]]} ;= ‘terminated’
enddo

CHAPTER 5. THE ABSTRACT MODEL OF THE SUPER-ACTOR MACHINE 88

The execute agent simply executes the instructions in an active actor instance. The cnz
variable in the execute procedure acts as the program counter for the active actor instance
and can be modified by branch instructions, as explained later.

The procedure perform is a big case statement handling the different instructions of the
abstract machine. A description of the instruction set best illustrates this procedure and
appears in the next section.

procedure perform (OP, AP, Instr, no.-instr, cnt)
case Instr

endcase

procedure deactivate ()
do (forever)
from Active Pool, pick (OP,AP)with D[OP + AA[AP.rs]] = ‘terminated’
/* send unconditional signals */
do (i :=0to (AA[AP.Ng,] - 1))
AP' := AA[AP.SL, +1]
decrement D[OP + AA[AP'.ec]]
enddo
if (D[OP + AA[AP.cc]] = ‘true’) then
/* send signals to actors in true signal list */
do (i :=0to (AA[AP.Ng] - 1))
AP' = AA[AP.SL, +1]
decrement D[OP + AA[AP'.ec]]
enddo
if (D[OP + AA[AP.cc]] = ‘false’) then
/* send signals to actors in false signal list */
do (i :=0to (AA[AP.Ng;] — 1))
AP’ := AA[AP.SL; +1]
decrement D[OP + AA[AP'.ec]]
enddo
enddo

CHAPTER 5. THE ABSTRACT MODEL OF THE SUPER-ACTOR MACHINE 89

In procedure deactivate, the condition code of an actor instance is checked to see if actors in
the true or false signal list must be sent signals. Regardless, the actors in the unconditional
list are always sent signals. An actor instance which receives a signal simply gets its enable
count value decremented. Once all signals for a terminated actor instance have been sent,
that actor instance is put back into the dormant pool where it waits to be re-activated again.

5.2.3 Instruction Set of the Abstract SAM Model

In the following instructions, operand/result fields are represented by the form pxx, where
xx can be an integer value between one and four, The fields have three addressing modes
{see definition of <opr-res-type>), and the following macro substitution is used:

macro * (pxx)
case (pxx.opr-res-type)
reg: reg(pxx.opr-res-val]
immed: pxx.opr-res-val
slot-ptr: DIOP + pxx.opr-res-val.block-id + pxx.opr-res-val.offset)
endcase

The fields within pxx are taken from the definition of <op-res-field> as found on page 83.
In the following instruction set definition, we use reg, immed, and sp to indicate the
register, immediate, and slot pointer addressing modes of pxx, respectively. In the semantic
description of instructions, the form *pxx is used as a shorthand representation for the macro
call *(pxx). For example, the expression “*p/” in a semantic description is replaced by the
expression “reg[pl.opr-res-val]” if pl specifies the register addressing mode. This macro
is similar to macros in Lisp, that is, everytime the macro is encountered, an expression
substitution is performed and then the whole statement containing the new expression is
evaluated.

Lastly, the semantic description below uses the parameters passed into the perform
procedure as listed above.

D)

CHAPTER 5. THE ABSTRACT MODEL OF THE SUPER-ACTOR MACHINE 90

Arithmetic Operations These instructions are of the standard 3-address and 2-address

varieties where ablnop are operations like ‘add’, ‘mul’, etc., and aunop are operations like
‘abs’, ‘id’, etc.

instruction: abinop pi p2 p3
addressing modes: pl, p2 :=reg | sp | immed
p3u=reg|sp
semantic: *p3 := *pl abinop *p2
if (cnt = no.-instr —1) then
D[OP + AA[AP.cc]] := ‘uncond’

The if-then expression at the end of semantic description is used to check if the instruction

is the last one in the super-actor. If so, then the condition code of the actor instance is set
accordingly.

instruction: aunop pl p2
addressing modes: pl ::=reg | sp | immed
p2 i=reg|sp
semantic: *p2 .= aunop *pl
if (cnt = no.-instr —1) then
D[OP + AA[AP.cc]] := ‘uncond’

Relational and Logic Operations These operations are also of the standard 3-address or

2-address types. Iblnop are operations like ‘<’, *<’, ‘and’, etc., and lunop are operations
like ‘not’, ‘zero’, etc.

instruction: ibinop pl p2 p3

addressing modes: pl, p2 ::=reg | sp | immed
p3=reg|sp

semantic: *p3 1= *pl Ibinop *p2,

if (cnt = no.-instr —1) then
if (#p3 = “T") then
D[OP + AA[AP.cc]] := ‘true’
else
DI[OP + AA[AP.cc]] := ‘false’

I CHAPTER 5. THE ABSTRACT MODEL OF THE SUPER-ACTOR MACHINE 91

instruction: lunop p! p2

addressing modes: pl ::=reg | sp | inmed
p2 =reg| sp

semantic: *p2 = aunop *p{

if (cnt = no.-instr —1) then
if (xp3 = ‘T") then
D[OP + AA{AP.cc]] := ‘true’
else
DIOP + AA[AP.cc]] := ‘false’

To control the evaluation of actors, the above relational and logic operations are used at the
end of a switch super-actor, as previously mentioned.

Control Operations These instructions—unconditional and conditional branches—only
control the stream of evaluation within an actor:

| instruction: br p!
addressing modes: pl ::=reg | sp | immed

semantic: cnt:=cnt+%pl — 1
if (cnt < —1 or cnt >= no.-instr —1) then error

Note that after an execution of a branch instruction, the instruction counter, cnt, is one less
than the desired counter value, however, it will be incremented by one in the while loop of
the execute procedure before the next instruction is fetched.

instruction; brx pl p2, where x=t| f
addressing modes: pl ::=reg|sp
p2 :=reg | sp | immed

semantic: if (xpl = z) then
ont=cnt+ xp2 — |
if (cnt < =1 or cat >= no.-instr —1) then
error

td

CHAPTER 5. THE ABSTRACT MODEL OF THE SUPER-ACTOR MACHINE o2

Function Applications The following send instruction along with overlay management
instructions are used to perform function applications. The send instuction can also
be used for interprocessor communications. {(In interprocessor communication, the base
address p2 serves a dual role by also indicating which processing element to send the
data.) The send instruction takes three operands and an optional fourth operand (the square
brackets indicate an optional argument). The parameter pJ specifies the value to be sent, p2
is the overlay pointer indicating which overlay is to receive the value, and p3 is the offset
value from p2 locating where in the overlay the sent value is to be stored. The p4 argument
is an actor id, and if it is specified, the actor instance {p2, p4)is to be sent a signal when the
send has completed.

instruction: send p! p2 p3 [p4]
addressing modes: pl, p2, p3,p4 .:=reg| sp | immed
semantic: D[*p2 + *p3] :=*pl

if (p4 specified) then

decrement D[*p2+ AA[(*p4).ec]]
if (cnt = no.-instr —1) then
D[OP + AA[AP.cc]] := ‘uncond’

In function applications, the send instruction is used to pass a parameter, pJ, between caller
and callee.

Overlay Management Operations To allocate and deallocate overlays, Oalloc and Ode-
alloc instructions are used. The p! argument in Qalloc specifies a pointer to function
information and p2 will contain the overlay pointer of the newly allocated overlay.

CHAPTER 5. THE ABSTRACT MODEL OF THE SUPER-ACTOR MACHINE 93

instruction; Qalloc pi p2
addressing modes: pJ ::=reg | sp | immed
p2 =reg|sp
semantic; allocate an overlay, its size is specified in the function
information pointed to by *pJ
OP’ := base address of new overlay
*p2 ;= OP

for (each actor, AP’, of new function) do
DIOP' + AA[AP .ec]]:= AA[AP'.C;]
endfor
if (cnt = no.-instr —1) then
D{OP + AA[AP.cc]] :=*‘uncond’

instruction: Qdealloc

semantic: deallocate overlay pointed to by OP
D[OP + AA[AP.cc]] := *uncond’

As alluded to in the above semantics, the Odealloc instruction is to be the last one within

a super-actor and that an instance of that super-actor be the last one to be activated in a
function instance.

Structure Memory Operations These instructions are for creating, deleting, and access-
ing data structures which may represent arrays, vectors, etc.

instruction: SMalloc pl p2
addressing modes: pl ::=reg | sp | immed
p2 i=reg | sp

semantic: allocate a block of contiguous memory of size *p/ with
SMP as the memory address of the first word
*p2 1= SMP
if (cnt = no.-instr —1) then
D[OP + AA[AP.cc]] := *uncond’

CHAPTER 5. THE ABSTRACT MODEL OF THE SUPER-ACTOR MACHINE 94

instruction: SMdealloc p/
addressing modes: pJ ::=reg | sp

semantic: deallocate structure memory object pointed to by *pl
if (cnt = no.-instr —1) then
D[OP + AA[AP.cc]] := ‘uncond’

In operations SMread and SMwrite, p/ represents the base address of the structure
memory (SM) object and p2 is the offset. The operand p3 indicates a location within the
overlay. If p4 is specified and is greater than one, then it implies multiple reads or writes.
A SMread means that value(s) in the SM object are deposited into overlay locations and a
SMwrite copies value(s) in overlay locations to the SM object. In the semantic description
below, the function address(x) returns the memory address of the data block pointer z.

instruction: SMread pl p2 p3 [p4]

addressing modes: plp2,p4 ::=reg | sp | immed
p3i=sp

semantic: *p3 = D[*pl + *p2]

if (p4 specified and *p4 > 1) then
J =address(p3)
doz:=1to(*p4—1)
D{j +1) := D[*pl + *p2 + 1]
if (cnt = no.-instr —1) then
DIOP + AA[AP.cc]] := ‘uncond’

instruction: SMwrite pl p2 p3 [p4]

addressing modes: pl, p2, p4 ::=reg | sp | immed
p3i=sp

semantic: D[*pl + *p2] :=*p3

if (p4 specified and *p4 > 1) then
j :=address(p3)
doi:=1to (*p4—1)
D[*pl + *p2 +1i) := D[j +1]
if (ent = no.-instr —1) then
D{OP + AA[AP.cc]) := ‘uncond’ |

CHAPTER 5. THE ABSTRACT MODEL OF THE SUPER-ACTOR MACHINE 95

(%

super-actor switch super-actor
v \ / » 4 ; 4 ; 4
\- * / -,*- * '.l ', ‘.
BA 1 BA 1
instr-1 instr-1
instr-2 instr-2
instr-n instr-n
-

VAR AEATaEr

Figure 5.12: Super-actors in the Intermediate SA Graph Model.

Miscellaneous Instructions

instruction: nop

semantic: if (ent = no.-instr —1) then
DI[OP + AA[AP.cc]] := ‘uncond’

5.2.4 The Intermediate Abstract Model

From the basic abstract machine model of the SAM, we note that the instructions of a super-
actor along with the data blocks containing the operands of a super-actor’s instructions can
be pre-loaded into fast buffer memory such that the average memory accessing times of
instructions can be decreased when a super-actor is active.

Refinements to the Super-Actor Graph

To reflect this enhancement, we first modify the syntax of a super-actor to include a group
of block assignments, BA; (fig. 5.12). A block assignment is basically an instruction to the
@ machine indicating which block of data is to be pre-loaded into fast buffer memory. Each

CHAPTER 5. THE ABSTRACT MODEL OF THE SUPER-ACTOR MACHINE 96

block assignment specifies a block id to be assigned to a temporary variable and has the
form

temp-block-name .= block-val

where temp-block-name has the form ‘B’zz and zz is an integer value, and block-val
is an overlay block-id. The reason for introducing temp-block-name is so that during
the execution of an active actor’s instructions, the machine does not have to perform an
associative search in the fast buffer memory to look for the appropriate locations to access;
it simply accesses some fast memory (actually, a register set assigned to each active actor
instance) indexed with Bzz values for pointers to the assigned fast buffer memory blocks.
Therefore, accessing operands and result locations can all be performed without having to
access slower data memory. To facilitate this indirection in retrieving operands or storing
results, instructions which access a an overlay slot will now indirectly specify it via a
temp-block-name, i.e., Bzz is used as a block pointer in the operand/result field of an
instruction.'® (In the original definition of the operand/result field—see definition of op-
res-field on page 83—the slot-ptr component for the ‘slot-ptr’ addressing mode consists of
a block-id and an offset. Here, the block-id is replaced with a block pointer, Bzz.)

Figure 5.13 shows a super-actor graph with the new super-actor syntax. This super-actor
graph is a translation from the super-actor graph of figure 5.6(b). Note that the operand and
result fields of instructions indirectly refer to the appropriate data block viaa Bzz variable.
An element within a block is still accessed via an offset.

Refinements to the Super-Actor Execution Model

To reflect the pre-loading enhancement in the super-actor execution model, we introduce
two intermediate states separating the dormant and active states of a super-actor instance;
the enabled and ready states (fig. 5.14). The enabled state is reserved for actor instances
which have just received all their signals and the ready state serves as an indication that
the actor instance has its necessary instructions and data pre-loaded. The ready state also

1In the implementation of the SAM, Bzz values will be used to index into a set of registers containing
poiniers to memory blocks in a high-speed memory device called the register-cache.

iy~

CHAPTER 5. THE ABSTRACT MODEL OF THE SUPER-ACTOR MACHINE 97

l’\ /q

L B1:=p0
B2:=q0
B3 :=s0
overlay map
add B1.0 B2.0 B3.0
s4C_" 1 add #1 B30 B3.l T l
i — \
© CoCT T~ /
Wirr Z Bl:=1)
Or g | B2:=10
go '==‘.It=| B3:=5s0
- Bd =54

sub BL.O B2.0 B4.0

mul B3.0 B4.0 B4.0
sub B3.1 B4.0 B4.0

'

c

Figure 5.13: A super-actor graph with the new super-actor syntax.

indicates that physical resources such as an instruction counter, and temporary registers
need to be reserved before the actor instance can become active. Having the two extra
states allows the pre-loading of data and the reservation of resources to be performed
simultaneously on two different actor instances since those tasks are independent.

The operational semantics of a super-actor instance in this model is described by the
following state transitions:

* Anactor instance is in its initial state when it is waiting for a signal from each
of its input edges. It becomes enabled when it has received a signal from all
input edges. (In the machine model, the number of remaining signals to be
received before the actor instance is enabled is indicated by its enable-count.
The init-count is used to initialize the enable count of an actor instance when
a function is activated, and once a super-actor instance has been enabled—its
enable count is zero—the enable count is reset to the reser-count value,)

o For an enabled super-actor instance to make a transition into the ready state,
the following must be prepared: all of the blocks of data as specified in the

CHAPTER 5. THE ABSTRACT MODEL OF THE SUPER-ACTOR MACHINE 98

dormant enabled

Figure 5.14: Super-actor instance states in the intermediate machine model.

block assignments along with the instructions of the super-actor must be in fast
buffer memory.

o A ready super-actor instance enters the active state when it is assigned an
available physical domain (context) to keep track of its running state during
its active phase. (In our machine model, the running state of an actor instance
includes a pointer to which instruction is currently being processed, a status
word, and some temporary registers.)

e Instructions in an active super-actor instance (OP;, A-id)can be executed.
When the execution has terminated, its assigned context will be released.
Finally, the active super-actor instance will send signals with overlay pointer
OP; on its outgoing edges (in the machine model, signals will be sent to actors
in the signal list!”), and (re)enter the dormant state.

o An actor instance is in its dormant state when it is waiting for a signal from
each of its input edges and input acknowledgement edges. It becomes enabled
when a signal from each its input edges and input acknowledgement edges has
arrived. (In the machine model, the enable count becomes zero and is reset to
the reset count value.)

The reader may note that the original execution model is still preserved in the sense that

17For a switch super-actorinstance, actorsin a selected signal list which correspond toa computed condition
code will also be sent signals,

3

¢

CHAPTER 5. THE ABSTRACT MODEL OF THE SUPER-ACTOR MACHINE 99

an actor instance must still receive all signals before it can be executed, and once enabled,
it must execute to completion before it notifies other actor instances. The additions—
additional states and transitions—are merely aimed at efficiency issues in the machine
model. For example, let us look at figure 5.6(a). If super-actor 1 and 2 are simultaneously
enabled, and the execution agent can only process one active super-actor at a time, then
while super-actor 1 is executed upon, super-actor is not processed. In the base abstract
machine model, the operands as used by the super-actors are not fetched until needed, and
if fetching from data memory takes longer than a basic execution cycle, then the execution
agent may have to wait for memory requests to be fulfilled. In the intermediate machine
model, while super-actor 1 is being processed, the operands as required by super-actor 2
can be pre-fetched into fast memory such that when it is time for actor 2 to be processed,
the execution agent does not have to wait for the memory requests of actor 2.

Refinements to the Abstract Machine Model

In the abstract machine model, overlay space and structure memory space are represented
as data memory, that is, we can access structure memory objects as easily as we access
overlays. Therefore, we can divide a SM object (represented as a contiguous memory space
in data memory) into structure memory blocks where each block has one or more elements
of a SM object and can be identified by an offset value from the structure memory object id
(a data memory address). With this representation, the block assignments in a super-actor
can specify a structure memory block via an indirection; the block-val argument in a block
assignment can specify a location within an overlay which contains the memory address
of the structure memory block. The reason for introducing the indirect addressing mode is
so that the execution of the abstract machine can be more efficient by not always requiring
structure memory read and write instructions to copy data back and forth between a structure
memory object and locations accessible by a super-actor’s instructions. The question now
is; why do we bother having the SMread and SMwrite instructions at all? The answer lies in
a multiprocessor implementation of the SAM. In a multiprocessor SAM, some SM objects
will reside in a local PE while others are in remote PEs. Accessing local SM objects can

. be efficiently performed using the indirect addressing mode since the access latency is only

CHAPTER 5. THE ABSTRACT MODEL OF THE SUPER-ACTOR MACHINE 100

the local main memory latency time. However, remote SM objects should use the SMread
and SMwrite instructions since they will generally take a longer time for execution and
should be processed by a dedicated unit which interfaces to the interconnection networlk !8
(this enhancement is proposed in the advanced abstract machine model; the advantage is
that the fast memory pre-loader mechanism in the machine does not have to interface with
the interconnection network).

There are now two addressing modes in a block assignment: local, and indirect. In
the local addressing mode, block-val is an identifier of the overlay block to be pre-loaded,;
the overlay block is within the overlay of the actor instance which requests the load. (The
local addressing mode is the original and only addressing mode of block assignments as
previously described.) In the indirect addressing mode, block-vai is a pointer to a location
in the requesting actor instance’s overlay which contains a data memory address (address
of a data block—structure memory block or overlay block which may belong to another
function instance).'?

L]

In an illustration of a super-actor graph, the indirect addressing mode in a block as-
signment is indicated if block-val has the form ‘@block-id.offset’. Later, the function
block-addr presents the block addressing modes in the context of the intermediate abstract
machine model.

An Indirect Addressing Mode for Instructions Currently, the operand/resuit fields of
an instruction in a super-actor have three addressing modes: immediate, register, and slot
pointer. In the slot pointer mode, the offset is fixed at compile time, and if some applications
require the ability to access certain data depending on the input, then the execution of such
applications can be inefficient. Thus, we now introduce an indirect addressing mode
for operand/results field so an instruction can access any element within a block of data

'"The same line of reasoning applies to why the *send’ instruction is still used for function application
linkage.

1Note that the possibility of indirectly addressing an overlay block provides another means for actors in
different function instances to communicate with each other, This can result in efficient function invocations
when both the caller and callee are known to reside on the same PE. That is, the copying of arguments to the
callee’s overlay can be avoided, only a pointer nead be passed.

!

CHAPTER 5. THE ABSTRACT MODEL OF THE SUPER-ACTOR MACHINE 101

¢

which was pre-loaded into fast buffer memory. The format of an operand or result field
utilizing the indirect addressing mode is: ‘Bxx.Ry' where ‘Bxx’ is used as an index into an
actor instance’s assigned register set which stores pointers to data blocks in the fast buffer

memory, and ‘Ry’ indicates the yth temporary register containing the offset into that data
block.

Additions to an Actor’s Components

The artributes of an actor are now augmented with a block assignments component:

<auributes> ::= <block-assgt> <instr-list> <reset-count> <init-count>
<signal-lists>

<block-assgt> ::= [<b-ptr> <block-val>]°
<b-ptr> ::= ‘B’ integer

<block-val> ::= <block-type> <block-value>
<block-type> ::=‘indir’ | *local’
<block-value> ::= <overlay-slot> | <block-id>

<overlay-slot> ::= offset from overlay base address indicating the location containing
the memory address of the data block to be loaded

Below, the opr-res-type field is augmented t¢ reflect the indirect addressing mode for
operands/results.

<opr-res-type> ::= ‘reg’ | ‘immed’ | ‘slot-ptr’ | ‘slot-indir’

<opr-res-val> ::= integer | <slot-ptr> | <slot-indir>

The slot-ptr component in an instruction must be changed to reflect the use of a Bzz b-ptr,
@ and a new component slot-indir must be added:

CHAPTER 5. THE ABSTRACT MODEL OF THE SUPER-ACTOR MACHINE 102

<slot-ptr> 1= <b-ptr> <offset>
<slot-indir> ::= <b-ptr> <reg-name>

<reg-name>> ::= integer

Since register sets {see next section) are assigned to an actor instance to store pointers
to the fast buffer memory, the dynamic-attributes component of an actor instance is now
augmented with a fb-ptrs component;

<dynamic-attributes> ::= <enable-count> <running-status> <cond-code>
<fb-ptrs>

<fb-ptrs> ::= list of fast buffer memory block pointers

Elements in a fb-ptrs list can be accessed by using a b-psr value as an index. The other
components of dynamic-attributes are still stored in an overlay of the data memory.

Additions to the Memory Model and Related Symbols

Since block assignments are added to an actor’s synta~, we use the symbol AP.BA.1 to point
to a location in the actor attribute memory containing the ith block assignment of actor AP.
The symbol AP.Ng, locates the number of block assignments of actor AP.

In the memory model for the intermediate abstract machine model, we represent the
fast buffer memory with the symbol: FB[]. The fast buffer memory is divided into blocks
and it is assumed that the size of a block is equal to the largest data block (an overlay or
structure memory block) required. Each block in FB[] is identified with a unique label L:
where FB[L1] is the location of the first element in block Li. The number of blocks in FB[]
is greater than or equal to the greatest number of blocks a super-actor instance requests
during its pre-loading of fast buffer memory phase (when an enabled actor instance becomes
ready). This ensures that the readying agent (described below) does not deadlock when it
tries to prepare the fast memory for the execution of an enabled super-actor instance.

?

CHAPTER 5. THE ABSTRACT MODEL OF THE SUPER-ACTOR MACHINE 103

The fb-prrs of an active actor instance are stored in a set of registers called pointer
registers (PR{ }[1). A set of pointer registers is assigned to each enabled actor instance
when it becomes ready, i.e., during the fast buffer pre-loading phase of an actor instance.
For example, the expression PR{OP, AP}[yy] represents the pointer register set assigned
to actor instance (OP, AP}. The value in the square brackets (yy) can be *I” for indicating
that the register contains a pointer to a block in FB[] which contains the instructions of the
actor, or yy can be a b-ptr ‘ Bzz’ for indicating that the register contains a pointer to a fast
buffer memory block which contains data block Bzz of the actor instance.

In the following table, we show the added symUuls to various information in memory
units. We remind the rcaders that the other symbols are found on page 85.

Symbol Points to (locations in actor attribute memory AA[]):

AP.BA.i ithblock assignment of actor AP
AP.Np4 no. of block assignments of actor AP

Points to (locations in pointer registers PR{OP,AP}{)

‘IP’ a pointer value locating a fast buffer memory block containing
instructions of actor AP (actually, points to first instruction of actor AP)
‘Bax a pointer value locating a fast buffer memory block containing

the xxth data block of actor instance (OP, AP)

(actually, pointer value points to first data value within the
xxth data block)

The Intermediate Abstract Machine Model

The intermediate abstract machine model is shown in figure 5.15, and the associated memory
model appears in figure 5.16.

The actions of the deactivation-enabling, readying, and activation agents are listed
below.

CHAPTER 5. THE ABSTRACT MODEL OF THE SUPER-ACTOR MACHINE 104

deactivation-
enabling agent

enabled pool

active pool ready pool readying agent

execution agent
activation agent

Figure 5.15: The intermediate abstract machine model of the SAM.

procedure deactivate-enable () /* deactivation-enabling agent */
do (forever)
from Active Pool, pick {OP,AP)with D[OP + AA[AP.7s]] = ‘terminated’
deallocate assigned resources, copy data blocks
back to main memory and free those data blocks
do (i := 0 to (AA[AP.Ns,] — 1))
decrement-reset (OP, AA[AP.SL, +1])
enddo
if (D[OP + AA[AP.cc]] = ‘true’) then
do (i := 0 to (AA[AP.Ns,] — 1))
decrement-reset (OP,AA[AP.SL, + i])
enddo
if (D[OP + AA[AP.cc]] = ‘false’) then
do (i := 0to (AA[AP.N5s] - 1))
decrement-reset (OP, AA[AP.SL; +1])
enddo
enddo

CHAPTER 5. THE ABSTRACT MODEL OF THE SUPER-ACTOR MACHINE

enabled pool

’/—\dormanl pool
Y

L

\
T

AAM lA] A
- i
i
active poolT ready pooll

A IR
l————
\ fast memory

 resources |
pM___ |||
AAM = actor attribute memory

DM = data memory

IM = instruction memory
PR = pointer registers

Figure 5.16: The intermediate memory model of the SAM.

105

CHAPTER 5. THE ABSTRACT MODEL OF THE SUPER-ACTOR MACHINE 106

The deactivation-enabling agent performs the tasks of the activate and deactivate agents in
the base abstract model. That is, it removes terminated actor instances from the active pool
and signals the actor instances which require notification. The decrement-reset procedure
is responsible for decrementing an actor instance’s enable count and if it become zero, it is
reset to the actor’s reset value and that actor instance is put into the enabled pool.

procedure decrement-reset (OP, AP')
decrement D[OP + AA[AP'.ec]]
it (D[OP + AA[AP'.ec]] = 0) then
DI[OP + AA[AP' .ec] := AA[AP'.C,]
put {OP,AP'}into the Enabled Pool

The readying agent first checks to see if there are any free blocks in the the fast buffer
memory before it can proceed to process an enabled actor instance. Once there is space,
the actor’s block of instructions are fetched from instruction memory and are stored in the
fast buffer memory. A pointer to the assigned FB[] block is stored in the ‘I’ register of the
assigned pointer register set. Then the required data blocks of the actor instance are loaded
and the assigned pointer registers updated. Lastly, the actor instance is put into the ready
pool.

procedure ready () /* readying agent */
do (forever)
from Enabled Pool, pick (OP,AP)
if (no free block in FB[]) then wait
/* fetch instructions of enabled actor instance into fast memory */
ptr:=label of a free block
assign a set of pointer registers to (OP,AP)
fetch J[AA[AP.I]] to I[AA[AP.I1+ AA[AP.Ny] — 1] and
put into FB[ptr]
PR{OP,AP}[IP] :=ptr
/* now fetch data blocks into fast memory */
do (¢ := 1to AA[AP.Np,])
it (no free block in FB[]) then wait
ptr = label of a free block

CHAPTER 5. THE ABSTRACT MODEL OF THE SUPER-ACTOR MACHINE 107

fetch data block at D[block-addr(AA[AP.BA.:])] and
put into FB(ptr]
PR{OP,AP}[AA[AP.BA.i.b-ptr]] := ptr
enddo

put (OP AP)into Ready Pool
enddo

In the above procedure and the following function, components of AP.BA.1 are accessed
with the token names as defined in <block-assgt> (see page 101).

tunctlon block-addr(b-assgt)
case (b-assgt.block-info.block-type)
indir. D[OP+ b-assgt.block-info.block-value]
local: OP+ b-assgt.block-info.block-value
endcase

In procedure deactivate-enable, the data blocks are copied back to data memory when
an actor execution is terminated and in procedure ready, enabled actors get their d -ta blocks
fetched from data memory. All this copying may lead to significant and excessive memory
bandwidth requirements. This is why we introduce a novel architectural concept called the
register-cache to address this issue. This will be further discussed in chapter 6.

procedure activate ()
do forever
if (resources available) then
from ready pool, pick (OP,AP)
allocate resources to {OP AP)

put {OP AP)into activate pool
enddo

The actions of the execution agent are basically the same as the one in the basic

abstract machine model, except that the parameters of the perform call are now (OP, AP,
FB[PR{OPAP}IP] + cnt], AAf[AP.N;], cnt).

<

CHAPTER 5. THE ABSTRACT MODEL OF THE SUPER-ACTOR MACHINE 108

The instruction set of this model is also the same except that the operand/result field has
an added mode, as indicated by macro *:

macro * (pxx)
case (pxx.opr-res-type)
reg. reg[pxx.opr-res-val]

immed. pxx.opr-res-val
slot-ptr: FB[PR{OP, AP} [pxx.opr-res-val.b-ptr]
+ pxx.opr-res-val.offset)
slot-indir: FB[PR{OP,AP}[pxx.opr-res-val.b-ptr]
+ reglpxx.opr-res-val.reg-name])
endcase

where the mode slot-indir is for indirect addressing within a data block (see Indirect
Addressing Mode for Instructions on page 100). Note that all operand and result accesses
do not haye to access slower data memory.

A problem with indirect addressing by instructions is the possibility of a value in register
[px.opr-res-val.reg-name] not being within bounds of 2 data block. In the next chapter, we
show how the register value can be enforced to be within bounds by the hardware,

5.2.5 The Advanced Model of the SAM

To further enhance the execution efficiency of the Super-Actor Machine model, we introduce
two types of super-actors: sequential super-actors, and parallel super-actors. In a sequential
super-actor, the data dependencies between instructions require that they be sequentially
executed. Note that switch super-actors are classified as sequential super-actors. The second
type of super-actor, called a parallel super-actor, is a special case of sequential super-actors
where the instructions are data independent, i.e., instructions within a parallel super-actor
do not depend on any results produced by any other instruction within the super-actor. Thus,
insuuictions in parallel super-actors can be executed in parallel. An example of a parallel
super-actor is shown in figure 5.6(c). Actor 1 can be classified as a parallel super-actor since
there are no dependencies between the instructions. To differentiate parallel and sequential

o

CHAPTER 5. THE ABSTRACT MODEL OF THE SUPER-ACTOR MACHINE 109

super-actors in a SA graph, we label a parallel super-actor with PSA. Super-actors without
a label are sequential.

In the intermediate abstract machine model, we note that structure memory operations,
overlay management instructions, and the send instruction can access slower main memory
whenthey are being processed (in a multiprocessing implementation, they can access remote
memory). Processing such instructions along with other instructions which only access fast
memory (registers and fast buffer memory) within the same execution unit can adversely
affect the throughput rate of the execution unit. Thus we propose that instructions which
access main memory during their execution be separated from other instructions which
do not, i.e., they are grouped separately into their own actors. These instructions which
can have long and unpredictable latencies are called long-latency iastructions and are
excluded from ordinary (sequential and parallel) super-actors. Long-latency instructions
are: SMalloc, SMdealloc, SMwrite, SMread, send, Oalloc, and Odealloc. An actor
containing a long-latency instruction is called a long-latency actor (*L-actor’ for short) and
is labeled LA in a super-actor graph. Generally, an L-actor contains only one long-latency
instruction, although multiple instructions within an L-actor are allowed, e.g., the ‘apply’
and ‘return’ actors as shown in figure 5.9. By introducing a type field for actors, actors can
be separated such that a dedicated unit can handle L-actors and the main execution unit can
handle ordinary super-actors which generally have short and predictable completion times
(the short execution times are aided by the fact that all memory accesses by the instructions
are to fast memory).

Furthermore, instructions which modify memory addresses for indirect block addressing
(values in locations pointed to by overlay-slot, see page 101), should be grouped separately
into aggregates called support-actors.*° In a super-actor graph, they appear with an SPPTA
label. The separation of these instructions from super-actors is implementation specific and
will be explained when we discuss the proposed architectural implementation of the SAM.

Pre-processing L-actors by pre-loading a fast memory with their operands and results is
probably not worthwhile since such actors access slower main memory. Accesses to main

1n chapter 7, we show how support actors can be gencraled in SA graphs.

CHAPTER 5. THE ABSTRACT MODEL OF THE SUPER-ACTOR MACHINE 110

memory generally dictate the actor’s execution time. Thus, we propose that no pre-loading
of fast memory be performed for L-actors and that block assignments not be specified in the
syntax of L-actors. Pre-processing of support-actors will also not be performed; the reason
is solely an economic one. Thus, block assignments are also not part of the support-actor’s
syntax.

Note that although L-actors and support-actors are differentiated in the advanced abstract
machine model, they are still regarded as super-actors in the super-actor execution model.

The Model

We now describe the abstract machine model of the SAM which closely resembles the advo-
cated implementation. This model is represented by five pools containing actor instances in
their various states (fig. 5.17): the Dormant Actor Pool, the Enabled Actor Pool, the Ready
Super-Actor (SA) Pool, the Active Super-Actor Pool and the Active Other-Actor (OA)
Pool. The major difference between this model and the intermediate one is the addition
of the other-actor activation and execution agents for handling long-latency and support
actors. The associated memory model is sketched out in figure 5.18. As shown in this
model, many heterogeneous actions can occur simultaneously.

Operation of this Model

Starting the execution of a super-actor program on this machine model is similar to the
routine employed in the basic abstract machine model. The following description applies
to the machine model once the agents have been started.

When an actor instance in the Dormant Actor Pool has received all its signals (this is
the enabling function of the deactivation-enabling agent), the actor instance’s enable count
will be reset and the actor instance moved to the Enabled Actor Pool. In the process, the
type of the actor, the pointer to its memory in the /M and the pointer to its overlay in
DM fetched. Once in the Enabled Actor Pool, the SA-readying agent will put super-actor

3

=

CHAPTER 5. THE ABSTRACT MODEL OF THE SUPER-ACTOR MACHINE

deactivation-
enabling agent

dormant pool enabled pool

SA-
readying agent
OA-
activation agent

active-SA poo ready-SA pool

active-QA pool

execution agent

SA-
activation agent

QA-
execution agent

Figure 5.17: The abstract machine model of the SAM.

111

CHAPTER 5. THE ABSTRACT MODEL OF THE SUPER-ACTOR MACHINE 112

/\dormant pool enabled pool /_) ™
\

aAM |, | [a] \

>
i T T Tow
T | overlay
active-SA pool ready-SA pool

o

Kfast memory

=L\

active-QA pool

et}

S

Figure 5.13: The memory model of the abstract machine.

3

CHAPTER 5. THE ABSTRACT MODEL OF THE SUPER-ACTOR MACHINE 113

instances into the Ready Super-Actor Pool by fetching the instructions and data from IM
and DM and putting them in the fast memory. Also, a set of pointer registers is assigned
to each enabled super-actor instance and the necessary pointers stored. The OA-activation
agent would put actors other than super-actors (i.e., long-latency actors and support actors)
into the Active Other-Actor Pool where they can be processed by the OA-execution agent,
Once an actor instance has been processed by the OA-execution agent, it will be labeled
as ‘terminated’ and the deactivation-enabling agent will fetch the corresponding signal
list and update the memory in DM (the enable counts) of the actor instances which require
notification. Finally, the actor instance will be put back into the Dormant Actor Pool. As for
super-actor instances in the Ready Super-Actor Pool, the SA-acrivation agent is responsible
for obtaining the necessary resources (e.g., a register set, a program counter, etc.) for
executing the super-actor instance. Once they are obtained, the super-actor instance is put
in the Active-SA Pool. The SA-execution agent is responsible for processing the super-
actor instances where all required resources and data for processing are local to the agent,
Once the actor instance is processed, the resources are deallocated, the super-actor instance
labeled ‘terminated’ and the deactivation-enabling agent takes over. The deactivation-

enabling agent treats terminated super-actors the same way it treats terminated L-actors and
support-actors.

To formally define the agents, we describe their actions in a similar format as those
used in the former two models. Since they are simple extensions of functions performed
by agents in the previous two machine models, we will list them in appendix B.

3.3 Summary

In this chapter, we have outlined a new execution model called the Super-Actor Execution
Model which uses a super-actor graph as the program format for the abstract SAM model.
We have also formally described the abstract machine models which represent the Super-
Actor Machine. The abstract machine model is defined in 2 manner where proposed features

are isolated so that the reader may quickly comprehend the functioning of the Super-Actor
Machine.

CHAPTER 5. THE ABSTRACT MODEL OF THE SUPER-ACTOR MACHINE 114

A super-actor graph is a variant of dataflow graphs where the nodes are aggregations of
one or more simple actors, and the arcs between the nodes indicate the signal flow rather
than the flow of data. In the past, other program representations like Sarkar’s Program
Dependence Graph [99], and the Program Dependence Web of Ballance, Maccabe and
Ottenstein [18] have been proposed. Since those program representations can generate
dataflow graphs, it could be possible to generate SA graphs given the other program
representations (we will outline techniques to generate SA graphs from datafiow graphs in
chapter 7). The novelty in this work is in the way the nodes get executed, that is, they
are executed atomically where all required data must be logically produced and physically
residing “close” to the execution mechanism. Once activated, the super-actor executes till
termination. The Macro Dataflow Model of Sarkar[99] also stipulates that aggregates in his
macro dataflow nodes (super-actors} be executed to completion once activated. However,
his work is focused only on the compiling aspects and did not propose any architectural
model.

With the super-actor execution model, a novel scheme where inherent parallelism of an
application can be used to hide the local memory latencies—latencies for fetching data from
local main memory to fast buffer memory close to the execution unit—from the execution
unit has been introduced. In the next chapter, we will describe one possible implementation
of the Super-Actor Machine and the device for tolerating local memory latencies.

Chapter 6

The Architecture of the Super-Actor
Machine

The Super-Actor Machine is to be a multi-processor system consisting of multiple process-
ing elements (PEs) linked together by some interconnection network (fig. 6.1—the ICU is
the interprocessor communications unit). Memories are distributed to each processor in the
machine, and the aggregation of these memories presents a global address space which is
shared among all processors; thus, there is no centralized global memory subsystem. In this
chapter, we will concentrate our discussions on one processing element and assume that
the interconnection network can be a multi-stage interconnect (a tutorial on interconnection

networks can be found in [120]). The interprocessor communications are handled by the
Inter-PE Communications Unit (ICU).

115

CHAPTER 6. THE ARCHITECTURE OF THE SUPER-ACTOR MACHINE 116

PE e
: Local re—a{F cution fu—m ICU : .
¢ | Memory ait .
E . ol |1
' '
Q Network
P e .
E Local |e—a{Execution ja—s E o
i | Memory Unit Icu M
' o i

Figure 6.1: The Super-Actor Machine.

6.1 Mechanisms Needed for Super-Actor Processing

To support the execution of a parallel super-actor!, where its instructions can be entered
into an execution pipeline at each pipe beat? without fear of data hazards (the hazard of
multiple instructions in the execution pipe which are modifying and accessing the same
data concurrently), the machine will require:

¢ acounter to sequence through the instructions of a super-actor, and

e a high-speed memory which can be pre-loaded with the necessary data so that
instructions of parallel super-actors can be issued every pipe beat and proceed
through the pipe without impediment.

!In this chapter, we will use “super-actor” (“actor”) when referring to a super-actor (actor) instance where
possible, i.e., when there is no confusion of what we mean.

2 Actually, the instructions can be executed in parallel, but since the proposed PE architecture has only one
execution pipe for super-actors, we will restrict our discussions 1o this configuration.

Ty

CHAPTER 6. THE ARCHITECTURE OF THE SUPER-ACTOR MACHINE 117

For a sequential super-actor, where an instruction can only enter the execution pipe after

knowing that the previous instruction of the super-actor has been executed, the machine
will need:

e a counter as mentioned for the execution of parallel super-actors:

e a sequencing mechanism which can issue instructions from multiple active
sequential super-actors so that their execution can be interleaved with other

sequential/parallel super-actors for maximal utilization of the execution pipe;
and

o for each active sequential super-actor in the execution pipe, a register set for
storing temporary results and a condition code is required. Thus, multiple
register sets are necessary to hold distinct sets of temporary values for several
active sequential super-actors.

The main purpose of the sequencing mechanism is to keep a smooth flow of operations in the
execution pipe. This is done by “micro context-switching” among active sequential/parallel
super-actors. The register-cache (see below) and the multiple register sets will also help in
smoothing the instruction flow through the pipe by keeping every memory access to a low
and fixed latency.

As was previously mentioned, long-latency actors have different processing require-
ments thar those of sequential and parallel super-actors (see section 5.2.5), thus a unit for
processing only long-latency actors will be incorporated into the machine.

To synchronize all of the different types of actors, a dedicated synchronizer and schedul-
ing unit for handling the signals between actors is required. The reason is that super-actors
with one instruction can have a high synchronization requirement to computation ratio.
Moreover, performing fine-grain da.aflow-like synchronizations can effectively hide the
latencies associated with inter-PE operations,

From the requirements specified above, we arrived at a design for the Super-Actor
Machine which is based on the McGill Dynamic Dataflow Architecture{47, 71]. The
separation of the execution unit from the scheduling unit permitted the easy addition of
mechanisms such as the register-cache pre-loader, sequencer, register sets, and the register-
cache,

CHAPTER 6. THEARCHITECTURE OF THE SUPER-ACTOR MACHINE 118

N SEU

‘———b- N ™ other
, LEU PEs
local |
main SllppOl‘l:
memory actor !
© 7 |exec. i APU
pipe |

ASU -

Figure 6.2: A processing element of the Super-Actor Machine.

6.2 A Processing Element of the Super-Actor Machine

A processing element of the Super-Actor Machine has five processing units: the Super-
actor Execution Unit (SEU), the Actor Preparation Unit (APU) which has an adjoining
support-actor execution pipe, the Actor Scheduling Unit (ASU), the L-actor Execution Unit
(LEU), and the local main memory (see fig. 6.2).

The local main memory contains the overlays of function instances which have been
assigned to the PE, structure memory objects, and the program code, i.e., all instructions
and data for the PE are stored in this local main memory. A program segment contains the
program code consisting of local constants, function invocation information, actor attributes,

C

¢ 4

CHAPTER 6. THE ARCHITECTURE OF THE SUPER-ACTOR MACHINE 119

instructions of actors, and the corresponding signal lists. A data segment containing a
function overlay consists of information for returning values to the caller function, siots
(memory locations) for the operands and results, and the enable count values for the
corresponding actors. A data segment can also be used to contain structure memory
objects instead of function overlays. (We will say more about the local main memory in
section 6.2.7.)

The SEU processes ready sequential and parallel super-actors and is capable of intes-
leaving instructions from active super-actors for maximal utilization of the execution pipe.
When a super-actor has been terminated, a done signal is emitted to the ASU.

The APU utilizes a register-cache loader for making an enabled super-actor ready by
ensuring that the requested data and instructions can be found in the register-cache. (The
register-cache loader is responsible for processing the block assignments of an enabled
super-actor—see section 5.2.4.) For a super-actor to become ready, there is also a short-cut
path for super-actors which are labeled as *fast-path candidates™ at compile time. The
short-cut path eliminates much overhead associated with loading the repister-cache with
the necessary data when it can be determined that the operands/result space are most likely
already in the register-cache (this mechanism and the technique to identify the fast-path
candidates will be discussed in detail in later sections). The APU is also responsible for
routing L-actors to the LEU and support-actors to an attached RISC pipeline. The reasons
for introducing a separate execution unit for processing support-actors are two-fold: the
first is that the results of support-actors will be accessed by the register-cache loader in the
APU, so introducing the attached RISC pipeline to generate and deposit the support-actor
results into a separate data cache can decrease the memory bandwidth demands on the
register-cache. (Otherwise, the SEU would execute these support-actors and place those
results into the register-cache. Now, the register-cache loader simply accesses the data
cache of the support-actor execution pipe.) The second is that the additional execution pipe
further increases the instruction-level parallelism the architecture can exploit.

The LEU processes long-latency actors and contains the Inter-PE Communications Unit
(ICU) for sending and receiving data from the interconnection network.

CHAPTER 6. THE ARCHITECTURE OF THE SUPER-ACTOR MACHINE 120

The purpose of the ASU is to process done signals for super-actors, L-actors and sup-
port-actors. In processing the done signals, the ASU identifies other actors which become
enabled, and sends these enabled actors to the APU.

Before we describe the processing units in detail, we will define the tuples as used in
the algorithms which describe the processing units’ functions. Then, the register-cache
mechanism will be detailed since it is at the heart of the Super-Actor Machine. Afterwards,
the ASU, the APU and the attached support-actor execution unit, the LEU, the SEU, and
local main memory (including the memory map) will be described in the following sections.

6.2.1 Tuple Definitions

The reader may skip this section and continue with the next section on page 124. However,
the reader will have to refer to this section if he/she wants to understand the full details of
the algorithms.

The list of tuples and their components is in alphabetical order. Tuples contain two or
more components, €.g., <XX, Yy, zz> is a tuple and is equivalent to <xx> <yy> <zz>.
Expressions of the form [<xx>]' indicate one or more tuples of the form <xx>.

<F-off> ::= offset from <sig-list-ptr> locating the false signal list
<F-len> ::=length of false signal list

<La-info> ::= <instr-ptr, length>

<T-off> ::= offset fror:n <sig-list-ptr>> locating the true signal list

<T-len> ::= length of true signal list

<R-cache-tag> ::= <mem-block-addr, reserve-count, age-count>

<U-off> ::= offset from <sig-list-ptr> locating the unconditional signal list

3

¢

CHAPTER 6. THE ARCHITECTURE OF THE SUPER-ACTOR MACHINE 121

<U-len> ::=length of unconditional signal list
<active-flag> =T | ‘F
<actor-attr>> ::= <actor-type, sig-list-ptr, actor-info>

<actor-cache-entry> ::= <sig-list-ptr, start-offset, end-offset,
instr-line, op-res-line>

<actor-cache-tag> ::= <base-addr, actor-ptr, active-flag, age-count>
<actor-info> ::= <sa-info> | <sppta-info> | <La-info>

<actor-ptr> ;= address of actor, <actor-atir>

<actor-type> ::=*sa’ | ‘sppta’ | ‘La’

<age-count> ::= integer value indicating the age of a cache line

<alu-out> ::= <cxt-id, sa-type, last-instr, res-value, res, write-to-mem>
<base-addr> ::= base address of overlay

<cond-code> ::=‘U’ | ‘T’ | ‘F*

<count-signal> ::= <base-addr, actor-ptr, enbl-cnt-ptr, dec-value, fast-path-cand>

<ctxt> ::= <base-addr, actor-ptr, sig-list-ptr, sa-type, instr-line,
curr-offset, end-offset, op-res-lines, ready-flag, free-flap>

<ctxt-id> ::=id of context

<curr-offset> ::= offset from the beginning of the instruction block
locating the currently processed instruction

<dec-rsrvd-count> ::= <instr-line, op-res-lines>
<dec-value> ::= decrement value for the enable count

<done-signal> ::= <base-addr, sig-list-ptr, cond-code>

CHAPTER 6. THEARCHITECTURE OF THE SUPER-ACTOR MACHINE

<d-R-cache-req> ::= <mem-block-addr, line-directive, line-type>
<enbl-L-actor> ::= <base-addr, sig-list-ptr, instr-ptr, length>
<enbl-actor> ::= <base-addr, actor-ptr, fast-path-cand>

<enbl-cnt-off> ::= offset from <base-addr>> which points to the enable
count of the actor pointed to by <actor-addr>

<enbl-cnt-ptr> ::= address of the enable count to be decremented

<enbl-sa> ::= <base-addr, actor-ptr, sig-list-ptr, sa-type,
instr-info, op-res-info>

<enbl-sppta> ::= <base-addr, sig-list-ptr, instr-ptr, length>

<end-offset> ::= offset value locating the last instruction in the
memory block pointed to by mem-block-addr of instr-info

<fast-path-cand> ::= *Y" | ‘N" indicating if the actor is a fast-path
candidate or not

<free-flag> :=‘T" | ‘F’

<i> := integer

<instruction> ::= <opcode, opl, op2, res>

<instr-info> ::= <line-directive, mem-block-addr, start-offset, end-nffset>
<instr-line> ::= instruction R-cache line no.

<instr-no> ::= address of instruction in i-R-cache

<instr-packet> ::= <ctxt-id, instr-no, sa-type, last-instr, op-res-lines>
<instr-ptr> ::= address of first instruction in actor

<j> = integer

122

CHAPTER 6. THE ARCHITECTURE OF THE SUPER-ACTOR MACHINE 123

3

¢

<last-instr> ::=*T" | ‘F’

<length> ::= number of instructions in actor

<line-directive> ::= ‘load’ | ‘optional’

<line-mode> ::= ‘direct’ | ‘local’ | ‘indirect’

<line-type> ::=*oprnd’ | ‘res’

<line-value> ::= <mem-block-addr> | <offset-value> | <pointer>
<mem-block-addr> ::= memory block address

<no.-op-res-infos> ::= number of <op-res-info>"s

<opl>, <op2> ::= <operand-mode, operand-value>

<offset-value> ::= local overlay offset locating memory address of
overlay block to be loaded

<operand-mode> ::= ‘reg’ | ‘Rc’ | ‘indir’ | ‘immed’
<operand-value> ::=i]ij

<op-res-info> ::= [<line-directive, line-mode, line-type, line-value>]!
<op-res-lines> ::= list of data R-cache line nos.

<pointer> ::= pointer locating memory address of block to be lcaded
<ready-flag> ::= ‘T’ | ‘F

<ready-sa> ::= <base-addr, actor-ptr, sig-list-ptr, sa-type, instr-line,
start-offset, end-offset, op-res-lines>

<res> ;= <result-mode, result-loc>

g <reserve-count> ::= integer value indicating how many super-actors have

CHAPTER 6. THE ARCHITECTURE OF THE SUPER-ACTOR MACHINE 124

¢

reserved the line
<reserve-lines> ::= <op-res-lines>
<result-mode> ::=‘reg’ | ‘Rc’ | ‘indir’
<result-loc> ;=i | i.j
<res-packet> ::= <ctxt-id, sa-type, last-instr, res-value>
<res-value> ::= value of result as generated by an instruction
<sa-info> ::= <sa-type, instr-info, op-res-info>
<sa-type> ;1= ‘seq’ | ‘par’
<sig-list-entry> ::= <actor-ptr, enbl-cnt-off, dec-value, fast-path-cand>

<sig-list-key> ::= <U-off, U-len>
| <U-off, U-len, T-off, T-len, F-off, F-len>

<sig-list-ptr> ::= address of <sig-list-key>
<sppta-info> ::= <instr-ptr, length>

<start-offset> ::= offset value locating the first instruction
in the memory block pointed to by mem-block-addr of instr-info

<write-to-mem>> ;= ‘sppta-d-cache’ | ‘LEU-d-cache’ | “nil’

6.2.2 The Register-Cache Architecture

In the previous chapter, we described an algorithm for making an enabled super-actor ready
by loading its necessary data into fast memory and then storing the memory blocks back
(to main memory when a super-actor is terminated (see section 5.2.4). In this section, we

¥

¢

CHAPTER 6. THE ARCHITECTURE OF THE SUPER-ACTOR MACHINE 125

SEU SEU execution pipe
instruction issuer
registers/
» tags ;
8 cache lines

A k
A Y

APU = > loader/storer

main memory -

Figure 6.3: The Register-Cache.

introduce the register-cache mechanism which attempts to decrease the wraffic of copying
data back and forth to main memory.

A register-cache (R-cache for short) is organized both as a register file and a cache.
Viewed from the SEU, its contents are directly accessible using relatively short addresses;
a process similar to the addressing of general registers in conventional processors. The
SEU interfaces with two R-caches, an instruction R-cache (i-R-cache) and a data R-cache
(d-R-cache). (The reason for having separate instruction and data R-caches is so that
instructions and data do not have to compete for R-cache space. Moreover, it provides
an increased memory bandwidth for the SEU.) From the APU’s perspective, though, an
R-cache is content addressable, i.e., its contents are tagged just as in conventional caches
(fig. 6.3). Each R-cache line is tagged with the information as indicated in R-cache-tay,.
To make effective use of all R-cache lines, the APU sees a fully-associative cache. The
associativity of the R-cache is important in determining the maximum number of active
and ready super-actors a PE can support (described later in section 6.2.4). The R-cache can
also have a set-associative organization, however, a small associativity factor will limit the

CHAPTER 6. THE ARCHITECTURE OF THE SUPER-ACTOR MACHINE

main memory

5604

21
20

to APU

\ . line age rsvd dddr. registers/ s
go. cnt cot tags cache lines N

memory block

-
-
-
-
-

L)
+
1)

[~ 5604]

SEU uses 21 concatenated with offset to
access memory locations 5604->5607
where 0 <= offset <= 3

Figure 6.4: The registering process,

number of live super-actors (active and ready super-actors).

126

The binding of a block of memory to an R-cache line is done at run time and is performed
using cache update and replacement algorithms which operate on the reserve-counts and
age-counts in the tag section. Once this is done, the R-cache locations within a line can be

directly accessed by the SEU using short addresses, just as if they were general registers
(i.e., the full address of a local main memory location is not used when the SEU addresses
the R-cache). The short addresses are formed by concatenating a compiler generated offset

in the code with the line number of the assigned R-cache line. This binding of a memory

block to a particular line in the R-cache is called registering and is shown in figure 6.4,

CHAPTER 6. THE ARCHITECTURE OF THE SUPER-ACTOR MACHINE 127

to SEU
from SEU
PSA/SSA
ready queue
7 3 t
R-cache > }
L 2 to R-caches
loader »| fast-path ;—w
candidate
checker
from actor 3
fetcher/router

from fast-path
switcher

Figure 6.5: APU components which interface with the R-caches.

The Check-In Process for the R-Caches

In this section, the R-cache loader of the APU will be detailed along with the “Check-in"

process of a memory block. The rest of the mechanisms in the APU will be described later
in section 6.2.4.

The R-cache loader receives an enabled super-actor tuple, enbl-sa, and is responsible
for checking-in the enabled super-actor, i.e., ensuring that all the necessary data for the
operation of the super-actor is in the R-cache and that space is reserved in the R-cache for
its results. The enbl-sa tuple consists of a base address (base-addr), the enabled actor’s id
(actor-ptr), 2 pointer to the actor’s signal list (sig-list-ptr), the super-actor’s type (sa-type)
and information regarding its block of instructions and operand/result blocks (instr-info,
no.-op-res-infos, and op-res-info). When an enbl-sa tuple is presented to the R-cache
loader, the PSA/SSA ready queue (see figure 6.5, a complete diagram of the APU appears
in figure 6.7) is checked to see if it is not full. The number of slots in the ready queue
is related to the number of active and ready super-actors the R-cache can contain; thus

CHAPTER 6. THE ARCHITECTURE OF THE SUPER-ACTOR MACHINE 128

checking the ready queue is equivalent to checking for “is memory avaiiable in R-cache?”
(the size of the ready queue will be discussed in a later section). Once there is space in
the ready queue, information for the operand/result lines is sent to the data R-cache and
the R-cache loader waits for the assigned d-R-cache line numbers.? Next, the information
for the instruction block is sent to the instruction R-cache and a corresponding R-cache
line is received.* Lastly, the ready-sa tuple is sent to the PSA/SSA ready queue.® The
ready-sa tuple consists of a base address, the actor’s id, signal list pointer, super-actor type,
instruction R-cache line number (instr-line), offsets indicating the first and last instructions
in the instruction R-cache line (start-offset and end-offset), and a list of data R-cache line
numbers (op-res-lines).

The check-in algorithm used by the R-cache loader is listed below.

algorithm check-in
Input <enbl-sa>
output <ready-sa> to PSA/SSA ready queue and
to fast-path candidate checker
function
If (PSA/SSA ready queue is full) then wait
for (i := 10 no.-op-res-lines) do
op-res :=1i*® op-res-info
d-R-cache-req.mem-block-addr =
calculate-mem-block-addr(op-res.line-value, op-res.line-mode,
base-addr)
d-R-cache-req.line-directive := op-res.line-directive
d-R-cache-req.line-type := op-res.line-type
send <d-R-cache-reg> to d-R-cache
it (R-cache-line-no. not received from d-R-cache) then wait
append R-cache-line-no. to ready-sa.op-res-lines

3The ordering of operand and result lines which appear in the op-res-info component of the input enbl-sa
tuple most be maintained, such that the corresponding R-cache line numbers will also appear in the same
order in op-res-lines of the output ready-sa tuple. We will see why this is necessary when the operation of
the SEU is described.

4Actually, the interaction between the i-R-cache and the R-cache loader and those between the d-R-cache
and the R-cache loader can be done in parallel. The simulator described in chapter 8 does exactly that.

5The ready-sa tuple is also sent to the fast-path candidate checker unit so that pertinent information can
be stored, The stored information is detailed when we explain the fast-path mechanism.

b §

CHAPTER 6. THE ARCHITECTURE OF THE SUPER-ACTOR MACHINE 129

endfor
send instr-info.mem-block-addr to i-R-cache
If (R-cache-line-no. not received from i-R-cache) then wait
ready-sa.instr-line := R-cache-line-no.
send <ready-sa> to fast-path candidate checker unit
and to PSA/SSA veady queue

Notations of the form xx.yy refer to the yy component of the xx tuple. For the sake of clarity,
the components of the output tuples which are not explicitly assigned in the algorithm
contain values from the appropriate components of the input tuple. Also, whenever it can
be unmistakenly determined which tuple a component originates from, the tuple name will
be omitted for clarity. For example, in the above algorithm, the instr-cnfo component in the
statement “send instr-info.mem-block-addr ...” can only come from the input enbl-sa tuple,
thus the tuple name was omitted. The following algorithms will also adopt this policy.

function calculate-mem-block-addr (line-value, line-mode, base-addr)
case (line-mode)
‘direct’: line-value
‘local’: line-value + base-addr
‘indirect’: Mem[line-value + base-addr]
endcase

The calculate-mem-block-addr function calculates the memory address of the data block to
be pre-loaded into the data R-cache and is a translation of the block-p#r function on page 107,
The direct addressing mode was added so that the machine can access locations which are
fixed at compile orload time, e.g., values in a constants table.® The line-mode of an operand
or result line indicates whether line-value is a memory block address {mem-block-addr), an
offset from the base address of the local overlay indicating the overlay block (offset-value),
or an indirect value (pointer) where the memory block address is found in a local overlay

SIn a super-actor graph, the direct addressing mode of a block assignment is represented by the *#' sign,
For cxample, ‘Bl := ficonst-block’ indicates that the data block labeled as const-block—a data memory
address in the SAM implementation-—should be pre-loaded.

CHAPTER 6. THE ARCHITECTURE OF THE SUPER-ACTOR MACHINE 130

slot (Mem(line-value + base-addr)).”

An analogy of this check-in process can be found at the ticket counter in an airport.
Before boarding the airplane (execution unit), the tour group (super-actor) must first receive
their boarding passes indicating that a block of seats are reserved (set of cache lines L it
requires is in place). The assignment of seats within the block (relative locations of operands
and results) to each member (instruction) uf the tour group can be done staticaily by the tour
group manager (at compile time). However, the final row numbers are assigned dynamically
prior to the departure (the processing of the super-actor) during the check-in time. Two
divergences from the analogy are: the SAM architecture can overlap the check-in process
of super-actors with the execution of other ready super-actors, and super-actors can share
blocks.

Operations of a Register-Cache

In this section, we will describe the functioning of the data register-cache. The functions
of the i-R-cache is similar to the d-R-cache except simpler since it is read only and it only
processes one type of requests from the R-cache loader,

The inputs to the data R-cache are: read and write requests to explicit locations in the
R-cache; a dec-rsrvd-count signal from the SEU which contains the R-cache line numbers
a terminated super-actor had reserved and no longer needs; a write-to tuple containing
the R-cache line number which is to be copied to a write-to-cache (this cache is either
the data cache of the support-actor execution pipe or the data cache of the LEU); loads,
mandatory loads and reserve signals from the R-cache loader (d-R-cache-req tuple); and
a list of R-cache lines to be reserved from the fast-path candidate checker. Note that all
these inputs from different processing units (SEU, R-cache loader, and fast-path candidate
checker) can come tv the R-cache simultaneously, but the tag information must be updated

"The programmer can always sei line-value past the houndaries of the overlay. The only means for
cnsuring that the program does oot perform out-of-bound accesses is to attach a program id to portions of
memory which the program can access and 10 attach the same program id to the actor attribute. Thus, some
hardware logic can perform the boundary checking at run time by comparing the program ids.

&9

CHAPTER 6. THE ARCHITECTURE OF THE SUPER-ACTOR MACHINE 131

atomically (for instance, a reserve signal and dec-rsrvd-count signal both access the same
line, so the reserve count must reflect the situation correctly). To enforce the atomic updates
of the count fields, simultaneous tag-checking and counter incrementing/decrementing is
done atomically, and simultaneous requests will be serialized by sor.e arbitration logic.

The dec-rsrvd-count signal from the SEU is used to decrement the reserve-counts of
R-cache lines. The write-to signal is used to enforce cache coherency between the d-
R-cache and the LEU and support-actor execution pipe data caches via software control.
Mandatory loads are necessary because operand line(s) of a super-actor which were written
by an L-actor must be brought into the d-R-cache since the LEU can only write to main
memory. Another scenario which requires a mandatory load is when a function is newly
created (function applications are handled by the LEU) and the input parameters must be
loaded into the d-R- zache in case an old copy of the memory blocks which contain the input
parameters—that is, those memory blocks were allocated to a defunct overlay—is still in
the d-R-cache. Mandatorily loading those blocks ensures that the initial super-actors of the
function will operate on the correct data.

In the d-R-cache, the registering process begins when a memory block address is sent
to the R-cache from the APU. Read-in requests are issued for operand lines and reserve
requests are issued for result lines. Lines containing both operand and result values would
be identified as an operand lire at compile time.® The reason why there is a distinction
between operand and result lines is so that the d-K-cache does not have to perform memory
block loads for result lines. During the registering process, the Le = Recently-Used (LRU)
cache replacement policy is used on lines which are no longer necded (i.e., lines with
reserve-counts equal to zero) to find a replacemerr line. The LRU algorithm uses the
age-counts to decidz which line to replace, i.e., a line with the maximum age-count value
is a candidate for replacement, Note that the age-count values are updated only by requests

from the APU, not by accesses from the SEU. After the registering process, we say that the
instruction is checked-in,

The algorithm describing the operation of the data R-cache is listed below.

$The compiler must be certain that the producer actor of the line containing operands and results will not
be simultaneously active with a consumer actor of that line,

CHAPTER 6. THE ARCHITECTURE OF THE SUPER-ACT(JR MACHINE

algorithm d-R-cache
Input readiwrite request | <write-to>
| <dec-rsrvd-count> from SEU
<d-R-cache-req> from R-cache loader
<reserve-lines> from fast-path candidate checker
output data or acknowledgment-signal to SEU
R-cache-line-no. to ASU
acknowledgement-signal to fast-path candidate checker
function
/* process inputs from SEU */
If (readiwrite from SEU) then service it
it (<dec-rsrvd-count> from SEU) then
decrement reserve-count of the R-cache-line-nos. in the list
if (<write-to> from SEU) then
write R-cache line as indicated by R-cache-line-no.
to data cache as indicated by write-to-cache and
send acknowledgement-signal to SEU
/* process input from fast-path candidate checker */
If (input from fast-path candidate checker) then
increment reserve-count of the R-cache-line-nos. in the list
increment age-count of R-cache lines with reserve-count = 0
send acknowledgement-signal to fast-path candidate checker
/* the registering process (process input from R-cache loader)*/
I (input from R-cache loader) then
if (line-type = ‘oprnd’) then
case (line-directive)
‘load’; load-line()
‘optional’: It (line exists) then
increment reserve-count of line
send R-cache-line-no. to R-cache loader
else loadine()

endcase
else /* line-type = ‘res’ */
If (line exists) then

increment reserve-count of line
send R-cache-line-no. to R-cache loader
else reserve-line()
increment age-count of lines with reserve-count =0

132

CHAPTER 6. THE ARCHITECTURE OF THE SUPER-ACTOR MACHINE 133

procedure load-line ()
use LRU replacement policy on lines with reserve-count = 0 and
write back dirty line if necessary
read memory block pointed to by mem-block-addr into assigned line
increment reserve-count and zero age-count of assigned line
send assigned R-cache-line-no. to R-cache loader

procedure reserve-line ()
use LRU replacement policy on lines with reser:~-count = 0 and
write back dirty line if necessary
increment reserve-count of assigned line
send R-cache-line-no. to R-cache loader

The Size of the Register-Cache

For the tandem of the APU and R-cache (i-R-cache or d-R-cache) to function correctly, i.c.,
the SEU is guaranteed that an active super-actor will always find its instructions, operands,
and result locations in the register-caches, there is a minimum number of required R-cache
lines. The minimum number of lines is (J + K) x L for J ready super-actors and K active
super-actors, assuming that the R-cache is fully associative and L is the maximum number
of register-cache lines allocated per super-actor.” That is, J is the number of slofs in the
PSA/SSA ready queue, and K is the maximum number of allowable super-actors in the
SEU. To arrive at this number of R-cache lines, we must assume the worst case scenario
where no live (active or ready" super-actors share R-cache lines. On average, however,
many super-actors do share lines, so (J + K') x L R-cache lines support more than (J + K)
live super-actors. The use of reserve-counts in the R-caches guarantees that a register-
cache line which is reserved by one or more super-actors will not be replaced until those
super-actor(s) which requested it exits the SEU.

SFor an m-way set-associative R-cache C organization, then (J + K) must be less than or equa to |m/ L].

CHAPTER 6. THE ARCHITECTURE OF THE SUPER-ACTOR MACHINE 134

The guarantee of notreplacing a line until it is not needed also requires that the PSA/SSA
ready queue issue a ‘full signal’ before the queue is actually filled. The reason is that the R-
cache loader and the fast-path candidate checker (discussed in ‘The Fast-Path Mechanism’
on page 141) operate in parailel—both the loader and checker can access the R-caches and
deposit a ready super-actor in the ready queue simultaneously. That is, in order for the
guarantee to be upheld, the PSA/SSA ready queue must issue a full signal when the queue
still has one slot left; both the fast-path candidate checker and R-cache loader check with
the ready queue before an enabled super-actor is processed. In this manner, an enabled
super-actor can be processed without the worry of a needed R-cache line being inadvertently
replaced.

Features of the Register-Cache

Beneficial features of the regicter-cache mechanism include:

e R-cache lines are assigned dynaraically at run time to active super-actors,
thus providing a capability beyond the conventional static register allocation
techniques performed at compile time. For instance, a register allocator may
not know if a particular value should be kept in registrrs because some long-
latency instruction is to be ¢xecuted after the productioi: of the value and before
the use of that value. With the register-cache, the value is simply left there, and
hopefully, when the consurer is activated, the value is still in register-cache
(if not, it is simply fetched frou: main memory).

o Super-actors (threads) can pass data between each other via high-speed mem-
ory.

o There i, ue” overlapping of memory block loads/stores with computations
because the loader/storer of the R-cache can load a line while the SEU accesses
an element in the R-cache. This is useful because a memory block load to the
R-cache may take multiple cycles. Conventional caches generally have one
port, so while a memory block is being loaded, no other unit can access the
cache.

o Local main memory bandwidth requirements can be decreased since the R-
cache attempts to keep the most recently used R-cache lines in high-speed

K il et s T i 23t b ot

ek it g bk it

EA A b

]

CHAPTER 6. THE ARCHITECTURE OF THE SUPER-ACTOR MACHINE 135

memory. This feature is reinforced by the fast-path mechanism (page 141)

which allows frequently activated super-actors to share operands/results effec-
tively.

¢ Keeping active super-actors’ computation times bounded by providing a low
and fixed memory latency time.

¢ Avoiding associative searching (tag-matching) when the super-actor execution
pipe accesses values in the R-cache. Instead, the task of associative searching

is performed by a separate processing unit removed from the critical execution
datapath. And,

e an effective pre-fetch mechanism where a pre-fetched line “will not replace a
line which is needed by another live super-actor. This benelit comes at a cost
of an associative R-cache—the associativity basically determines how many
super-actors can be live in a PE of the SAM at any given time. If an ordinary
cache with a pre-fetch mechanism replaced a R-cache in the SAM, it would
run the risk of replacing lines which are needed by other live super-actors. In
general, ordinary caches have low associativities, say four or less, '° thus there
can be unwanted line replacements due to multiple memory blocks mapping
to the same cache line. However, low associativities in ordinary caches are
required so that access times can be kept low—every access must perform
an associative search, and the smaller the associativity, the faster the access.

Full associativity can be used in the R-caches because the SEU accesses them
directly as if they were register files.

First and foremost, these features are beneficial in a uniprocessor context, and second,

these benefits are manifested in » multiprocessing context via a more effective processing
element.

6.2.3 The Actor Scheduling Unit

The Actor Scheduling Unit consists of two sub-units: a signal processor and an enable
controller (fig. 6.6). Standard set-associative caches are used for the signal list cache
(SL cache) and the enable count cache. These caches are used to store the most recently

191n 1oday's newer generation of RISC computers, dirccted-mapped caches are often employed.

CHAPTER 6. THE ARCHITECTURE OF THE SUPER-ACTOR MACHINE 136

enable done signals
controller ‘
o store] {dec/ ” sipnal |
APU emit [reser[JFeich [processor
[3
9 Y
enable
count SL
cache cache
Y
to local g—_J
main
memory

Figure 6.6: The Actor Scheduling Unit.

accessed signal lists and enable counts so that average access times and local main memory
bandwidth requirements can be decreased.

The Signal Processor

The signal processor processes done-signal tuples and sends count-signals to the enable
controller stage. A done-signal for an actor is issued by the support-actor execution pipe,
the SEU or the LEU and is a tuple containing; a base address, a pointer to the actor’s signal
list and a condition code (cond-code). The signal processor basically takes the done signal
and fetches the signal lists according to the condition code and issues a count signal for
each entry in the list. An entry in the signal list (sig-list-entry) is a 4-tuple and consists
of an actor pointer, a local overlay offset value locating the enable count of the actor, a
weight for the count signal (dec-value), and flag indicating whether the actor is a fast-path
candidate or not (fasr-path-cand). The enable count value will require a few bits (say,
four bits) for its representation and is much less than a standard 32-bit word; thus the

¢ 3

CHAPTER 6. THE ARCHITECTURE OF THE SUPER-ACTOR MACHINE 137

enable count offset can be a pair, the first value indicating the offset from base-addr, and
the second value indicating the offset within the word. Another point to note is that the
count signals are weighted by the magnitude of dec-value. The reason for weighted count
signals will be explained in a later section (see A Uniform Reset Value on page 139). The
count-signal tuple emitted from the signal processor consists of: a base ac.sess, an actor

address, a pointer to the enable count value of the actor (enbl-cnt-ptr), the decrement value
(dec-value) and the fast-path candidate flag.

The algorithm describing the operations of the signal processor is listed below. Though
not shown, it is straightforward to group the operations into three separate stages, one to
fetch the signal list key and calculate the location of the signal lists, the second to sequence

through the signal lists, and the last for calculating the enable count pointer and sending off
a count-signal:

algorithm sig-processor
Input <done-signal>
output <count-signal>
function
sig-list-key := Mem/[sig-list-ptr]
/* send signals to actors in uncond. list */
for (i := 0 to sig-list-key.U-len — 1) do
entry := Mem[sig-list-key.U-off + i]
fill-count-signal (entry, base-addr)
output <count-signal>
endfor
/* now send signals to actors in t- or f-sig-list if required */
If (cond-code = ‘T”) then
for (z := 0 to sig-list-key.T-len — 1) do
entry := Mem{sig-list-key.T-off + i]
fill-count-signal (entry, base-addr)
output <count-signal>
endfor
if (cond-code = 'F') then
for (i := 0 to sig-list-key.F-len - 1) do
entry .= Mem{sig-list-key.F-off + i]
fil-count-signal (entry, base-addr)
output <count-signal>

(CHAPTER 6. THE ARCHITECTURE OF THE SUPER-ACTOR MACHINE 138

endfor
Note that Mem{[x] indicates the value in main memory location z.

procedure fill-count-signal (entry, base-addr)
count-signal.actor-ptr ;= entry.actor-ptr
count-signal.enbl-cnt-ptr .= entry.enbl-cnt-off + base-cddr
count-signal.dec-value := entry.dec-value
count-signal.fast-path-cand .= entry.fast-path-cand

The Enable Controller

The enable controller sub-unitis a 3-stage pipeline consisting of an enable count fetch stage,
a decrement/reset stage and a store/emit stage. The enable controller outputs an enbl-actor
tuple to the APU when an actor has its enable count reach zero. The enbl-actor tuple

consists of a base address, an actor pointer, and a fast-path candidate flag. The algorithm
for the enable controller is;

algorithm enable-controller
Input <count-signal>
output <enbl-actor>
function
new-cnt := Mem{enbl-cnt-ptr] — dec-value
It (new-cnt = 0) then
output <enbl-actor>

Memf{enbl-cnt-ptr] .= reset-value
else

Mem{enbl-cnt-ptr] = new-cnt

A subtlety in the enable controller has 10 do with its pipelined structure. Since the fetch
stage can function concurrently with the decrement/reset stage, care must be taken such
(’ that an enable count value is updated aromically. To enforce the atomic updates of count

CHAPTER 6. THE ARCHITECTURE OF THE SUPER-ACTOR MACHINE 139

values, a mechanism akin to bypass latches found in traditional RISC pipelines must be
employed between the decrement/reset and fetch stage. In this scheme, the bypass latch is
checked to see if the last enable count which was updated is the same as the one entering
the decrement/reset stage. If so, then the value in the bypass latch is decremented instead.

A Uniform Reset Value The reser-value in the above algorithm is a constant for all enable
counts. This uniform reset value is a boon to function applications in that the enable count
values of actors in a newly created function do not have to be initialized individually with
different values; all enable count values of the new overlay are set to one value. In fact,
if the super-actor graph constitutes a self-cleaning function body where an actor’s state is
made ready for the next set of input operands before the function overlay is deleted, then the
function creation routine will not have to worry about initializing count values in the enable
count cache, though the LEU must still initialize the enable counts in the new overlay, i.e.,
initialize them in main memory.!! The idea here is simple: if a new overlay uses a memory
address for an enable count, and that memory address also happens to be in the enable count
cache (that memory address was also used by a defunct function instance for an enable
count value), then because of the self-cleaning feature of function bodies, the location in
the enable count cache will aiso contain the correct initial count value (the self-cleaning

feature ensures that all enable counts of “ctors in a terminated function are set to the initial
value).

Since the initial enable count values are uniform and the reset values are also uniform,

the count signals must be weighted (computed at compile time) so that an actor will receive
the correct number of signals before it can be enabled (section 7.5.1).

6.24 The Actor Preparation Unit

The APU consists of the fast-path mechanism, an actor attribute fetcher/router, a R-
cache loader, an attached support-actor execution unit and various FIFO and LIFO queues

*'There is still one more catch before this scheme is realizable, all other high-speed memories in a PE must
not contain an enable count value, We will see how this can be enforced at compile time in a later scction,

CHAPTER 6. THE ARCHITECTURE OF THE SUPER-ACTOR MACHINE 140

to SEU
? from SEU
PSA/SSA queue
to ASU
4 Tf

- ‘ Rcache [*t0 R-caches

0« | support «—s{sppta [loader

local I actor d-cache " v
memory execution
unit _. fast-path
candidate actor | —» to R-caches
T checker
f
L > —* to LEU

to actor

local actor | fetcher/

- attribute *—" router

memory cache Y
. fast-path enabled
switcher actor

Figure 6.7: The Actor Preparation Unit.
(fig. 6.7).

The actor fetcher/router stage is responsible for fetching the actor attributes by exam-
ining the word pointed to by actor-ptr for the actor type (super-actor = sa, support-actor
= sppta, and L-actor = La) and fetching the necessary attributes according to each type.
‘The actor attributes are represented by the actor-artr tuple which consists of the actor type
(actor-type), the pointer to its signal list, and other attributes of the actor (actor-info). If
the actor is a super-actor, actor-info consists of the super-actor type, information indicating
where its instructions can be found and information pertaining to the operand/resuit lines
to be pre-loaded into the d-R-cache. If the actor is either a support-actor or a L-actor,

o

CHAPTER 6. THE ARCHITECTURE OF THE SUPER-ACTOR MACHINE 141

actor-info consists of a pointer to the first instruction of the actor (instr-ptr) and the number
of instructions of the actor (length). Once the router has fetched all the attributes, it can
output the information for an enabled support-actor (enbl-sppta), an enabled super-actor
(enbl-sa) or an enabled L-actor (enbl-L-actor) to their respective queues.

We believe that the use of a LIFO queue for containing enabled super-actors can better
exploit the temporal and spatial locality of data references in the R-caches. A LIFO queue
should result in fawer requests by the R-caches tc main memory as compared to a FIFO
scheduling scheme because a super-actor which was just enabled by asignal of a processed
super-actor should have a greater chance of finding an R-cache line containing its operands
(the R-cache line for the results of the just processed super-actor) in the data R-cache. As
for the FIFO queues of enabled L-actors and support-actors, the scheduling scheme is less

important due 1o their non-deterministic completion times (cache misses, interconnection
delays, ztc.).

The Fast-Path Mechanism

The fast-path mechanism consists of the fas:-path switcher and the fast-path candidate
checker. This path is used to avoid unnecessary loading of super-actor attributes and
probing of the R-caches. The idea is simple: for super-actors in loop constructs which are
enabled every time the loop iterates, the lines they use might still be in the R-caches when
they are enabled the next time around.'? These super-actors can be tagged by the compiler as
possibie fast-path candidates so that when they are enabled, the fast-path switcher will route
them to the fast-path candidate checker (other types of enabled actors are sent directly to the
actor fetcher/router) where a small fully associative cache—the actor-cache—containing
the labels of recently executed super-actors can be checked for its presence. If an enabled
super-actor has its entry in the actor-cache, then the R-cache line numbers which it used
previously are retrieved, the lines reserved by sending the list of R-cache line numbers
to the R-caches and a corresponding ready-sa entry is then deposited into the PSA/SSA

2Note that if a function overlay can be reused by another instance of the same function, then we may also
tag some more super-actors other than the initial super-actors of the function as fast-path candidates,

CHAPTER 6. THE ARCHITECTURE OF THE SUPER-ACTOR MACHINE 142

<

queue. However, if that instance of a super-actor is not present in the actor-cache, then the
enbl-sa tuple will be sent back on the regular path (to the actor fetcher/router) where its
other attributes can be fetched and the R-caches probed.

The Actor-Cache An entry in the actor-cache (actor-cache-entry) consists of a signal list
pointer, the start and end offsets locating the start and end instructions in the i-R-cache line,
the instruction R-cache line number and the R-cache line numbers of the operand/results.
Each entry has a tag containing the following information: a base address, an actor pointer,
a flag indicating if the actor instance is active or not (active-flag), and an age count, The
active-flag is used when the age-counts of lines are updated. If an entry contains an active
super-actor, its age-count will not be updated when a new entry is input from the fast-path
candidate checker. This is to ensure that the super-actors present in the actor-cache will
still have their lines in the R-caches. This will become clearer when the operation of the
fast-path candidate checker is detailed next.

The Fast-Path Candidate Checker The fast-path candidate checker takes either a ready
super-actor tuple (ready-sa) from the R-cache loader, an enabled actor tuple (enbi-actor)
from the fast-path switcher, or a terminate-signal (consisting of a base address and actor
pointer) from the SEU as input. A terminate signal from the SEU simply switches off
the active flag of the actor-cache entry containing the actor instance as indicated in the
terminate signal. This will make the actor-cache entry a candidate for replacement when a
new label of a ready super-actor instance comes from the R-cache loader. The new entry is
put into the actor-cache and is a replacement for the oldest entry—the one with the largest
age-count. Whenever a new entry is put into the actor-cache, age-counts of inactive entries
are incremented, not just all entries, The reason is that active super-actors may not terminate
in the order they were made ready'?, and the actor-cache can only replace entries which
do not contain active super-actors. When there is an input from the fast-path switcher, the

1For example, a sequential super-actor is made active and this sequential super-actor represents a loop (a
small loop with, say, less than five instructions in the loop body) which is iterated, say 1000 times. A parallel

super-actor is then made active and it only has, say eight instructions. Definitely, the parallel super-actor will
terminate before the sequential super-actor.

J

CHAPTER 6. THE ARCHITECTURE OF THE SUPER-ACTOR MACHINE 143

PSA/SSA ready queue is checked if there is an empty slot or not. Once the checker is
allowed to proceed, the actor-cache is associatively searched for the previous activation of
the super-actor instance. If its there, the tag of the entry is updated, the data retrieved, and
a ready-sa tuple is sent out to the PSA/SSA queue. Otherwise, the enbl-actor tuple is sent
back to the fast-path switcher which sends it along the regular path.

The algorithm for the fast-path candidate checker is listed below:

algorithm fast-path candidate checker
input <ready-sa> from R-cache loader
<enbl-actor> from fast-path switcher
<terminate-signal> from SEU
output <enbl-actor> to fast-path switcher
<ready-sa> to PSA/SSA ready queue
function
it (input from SEU) then
set active-flag of corresponding entry to ‘F’
I (input from R-cache loader) then
replace entry with max, age-count and corresponding tag in actor-cache
with new entry
increment age-count of entries with active-flag = ‘F’
if (input from fast-path switcher) then
It (no space in PSA/SSA queue) then wait
check actor-cache for entry
if (there) then
set age-count of that entry to 0 and active-flag to ‘T”
send instr-line to i-R-cache
send op-res-lines to d-R-cache
wait for acknowledgement signals from R-caches
output <ready-sa> to PSA/SSA ready queue
else

output same <enbl-actor> to fast-path switcher

CHAPTER 6. THE ARCHITECTURE OF THE SUPER-ACTOR MACHINE 144

register
Isle & 10 ASU
Yy
I _| done
I———»sequenccr > RISC pipeline ™ emitter
enabled)
support —*™ (o sppta d-cache
PP sppta
actor Spp
i-cache
'y
to
local =
memory

Figure 6.8: The Support-Actor Execution Unit.

The Support-Actor Execution Unit

The support-actor execution unit (fig. 6.8) is responsible for processing support-actors, that
is, actors which modify memory block addresses used in indirect block addressing.

The actor sequencer first stores the base address of the actor instance into an assigned
register (say, register 0) so that instructions in the support-actor will have access to it. It
then issues the first instruction pointed to by instr-ptr in the enbl-sppta tuple and each
successive instruction till all instructions of the support-actor have been issued. At that
time, a done-signal in which the condition code is set to ‘U, is sent to the done emitter
stage where it waits till the RISC pipeline triggers it. In order that the RISC pipeline can
signal the done emitter stage, an ‘end’ tag is entered into the RISC pipeline along with the
last instruction of the support-actor. When the ‘end’ tag reaches the result store stage in the
RISC pipe. a signal is then sent to the done emitter stage to release the done-signal.

-y

CHAPTER 6. THE ARCHITECTURE OF THE SUPER-ACTOR MACHINE 145

To decrease the local main memory bandwidth requirements of the super-actor exe-
cution unit, an instruction and data cache (sppta i-cache and sppta d-cache) based on the
conventional set-associative organization are used. It is through the sppta d-cazhe in which
a support-actor can communicate its results to a dependent super-actor; the register-cache

loader performs indirect data block addressing by accessing the memory address through
the sppta d-cache.

The RISC pipeline only executes integer add and multiply instructions, shifts, and the
standard load and store instructions since the sole purpose of a support-actor is to perform
address calculations. No branching instructions will be supported so the RISC pipe can be
much simpler than traditional ones. Another feature of the execution pipeline is that the pipe
does not have to be drained of instructions from a previous support-actor before another can
enter the pipe. To facilitate this feature, two register sets are used. A bit indicating which
set to use is sent with each instruction so that while one support-actor is finishing, another
can follow immediately. The bit is flipped everytime a new support-actor is processed
by the sequencer. Care must be taken in that the minimum number of instructions in a
Sup,-ort-actor must be greater than the number of stages through the longest path in the
RISC pipe (in the RISC pipe which we used for the simulations, there are six stages through
the path which performs the integer multiply) so that the first and third actors in a string of
three simultaneously enabled support-actors will not access the same register set.

6.2.5 The Long-Latency Actor Execution Unit

The Long-latency actor Execution Unit (LEU) is responsible for processing L-aciuy, i.c.,
inter-PE operations, function applications, and structure memory accesses. The LEU is also
very simple and consists of a sequencer, an execution pipe, an instructior and data cache,
and done emitter stage (fig. 6.9). The operations of the LEU components are very similar to
the support-actor execution unit but simpler. The sequencer and done emitter perform the
same duties, but since there is only one register file, only one L-actor can be in the pipe at
any time. Furthermore, the instructions of an L-actor are not simple instructions as found in
the support-actor, but complex instructions involving more than two operand values. This

(CHAPTER 6. THE ARCHITECTURE OF THE SUPER-ACTOR MACHINE

146

la— (0 Other
ICU PEs
| register]
| file
[
y
enabled . iveli 1 done
Lactor —"sequencer » execution pipeline o] emitier —l
to ASU
1
LEU LEU
i-cache d-cache [* from SEU
[y)
o
local
memory

Figure 6.9: The L-Actor Execution Unit.

CHAPTER 6. THE ARCHITECTURE OF THE SUPER-ACTUR MACHINE 147

implies that if a simple RISC pipe is used for the execution pipe, then each L-actor would
have to invoke some stored routine (similar to tiie microprogram store in CISC processors,
1o process the long-latency instructions. The data cache of the LEU must be a write-through
cache since the data an LEU produces may be consumed by super-actors.'* The only way
the SEU can fetch the data which was written by an LEU actor is via the mandatory load
from local main memory (not via the LEU d-cache). In figur= 6.9, the input path from the
SEU to the LEU d-cache is used when the SEU encounters a wrtto instruction which copies
a d-R-cache line to the LEU d-cache; it is not used for data accesses by the SEU (the *writo’
instruction is explained in more detail when we describe the SEU).

The connected interprocessor communications unit (ICU) is responsible for routing
packets to and from the PE. It accepts packets from the LEU execution pipe and sends them
onto the net. Data from the net are stored directly into local main memory and the ICU

notifies the LEU execution pipe to send done signals to the ASU so that the appropriate
actors can be notified.

As we have mentioned, the LEU is responsible for handling interprocessor commu-
nications, feriction applications, and structure memory operations. For communications,
the execution unit of the LEU creates a packet containing the data, the destination and
actor instance ids-—actors to be notified—and sends it to the ICU. Creation of a structure
memory object involves the searching of a free memory list for the appropriate chunk of
memory space and allocating it. Deletion of structure memory objects entails the return
of the pointer to the free memory list. The process for function applications is similar to
the actions performed by the apply and return super-actors as outlined in the SAM abstract
machine model (see Function Applications on page 72).

From these descriptions, it is quite evident that LEU and support-actor instructions are
different in terms of their format and processing needs. Thus, it was natural for us to
introduce heterogeneous nrocessing units into a PE of the SAM.

1¥The data cache in the support-actor execution pipe does not have to be write-through since the reg-cache
loader is the only other unit which accesses the data produced by suppon-actors.

CHAPTER 6. THE ARCHITECTURE OF THE SUPER-ACTOR MACHINE 148

contexts register sets
L
A 44 b A
Y
i v ¥
update &
ready | activator issuer |—s i-fetch [—»{op-ferch result | done |
super- store cmitter
actor N
toi- & d-
R-caches
. T i Y
to i-R-cache to d-Rcache lo ASU

Figure 6.10: The Super-Actor Execution Unit.

6.2.6 The Super-Actor Execution Unit

The structure of the execution unit is shown in figure 6.10. The contexts contain sets of
registers (we call aset of registers a ‘context slots’ or *cortext’ for short) for keeping track of
the states of active super-actors. The activaror is responsible for monitoring which context
slot is available and loading the available slot with the information of a ready super-actor.
The task of the issuer is to take the next context which is ready to issue an instruction,
say z, and send the necessary information into the execution pipe to initiate instruction z.
The execution pipeline consists of an i-fetch, an op-fetch, an ALU and a result store stage.
The i-fetch stage only accesses the i-R-cache for retrieving instructions and the op-fetch
and result store stages access either the registers in the register sets or the d-R-cache. The
update & done emitter stage is responsible for signaling a context containing a sequential
super-actor if one of its instructions has exited the result store stage. It will also send a

done-signal for a super-actor when it encounters its last instruction. The condition-code of
the done signal will be indicated by the result store stage.

CHAPTER 6. THE ARCHITECTURE OF THE SUPER-ACTOR MACHINE 149

The Contexts

A context constitutes the state of an active super-actor which is currently being processed by
the SEU. Each context (ctxt tuple) is identified with a unique identifier and the informatinn
contained in a context consists of a base address, an actor pointer, pointer to the actor’s signal
lists, the super-actor’s type, the current and end offsets locating the currently processed
instruction and last instruction in the instruction line (an i-R-cache line), an ordered list of
d-R-cache line numbers, a ready-flag and a free-flag.

Associated with each context is a register set for storing temporary values and an id
number identifying the context (ctxr-id). The expression rsfctxr-id, if identifies the ith
register in the register set associated with context ctxr-id. The register sets cannot be used
for passing values between super-actors; the advantage is that state saving is not necessary.
We recommend that the number of contexts in the SEU be greater than the maximum
number of stages through the execution pipe. The reason is that if all active super-actors
in the SEU are sequential, then the execution pipe can still be kept fully busy by issuing
instructions from the contexts in a round-robin fashion.

The Activator

The operation of the activator is as follows: when the free-flag of a context becomes
*T”, the activator will simultansously issue a dec-rsrvd-count signal to the R-caches and a
terminate-signal to the fast-path candidate checker. (The dec-rsrvd-count signal consists of
the instruction R-cache li) - number (sent to the i-R-cache) and a list of operand and result
R-cache line numbers (sent to the d-R-cache). The terminare signal consists of the base-
addr and actor-ptr of the just freed context.) Then the activator will take the next ready
super-actor and store its base-addr, actor-ptr, sig-list-ptr, sa-type, instr-line, end-offset, and
op-res-lines in their respective locations in the free context. The start-offset value from the
ready-sa tuple will be put in curr-offset, the ready-flag setto *T", and the free-flag set1o0 *F’,

CHAPTER 6. THE ARCHITECTURE OF THE SUPER-ACTOR MACHINE 150

The Issuer

The issuer is responsible for monitoring the ready-flags of the contexts and picking the
first available context. For a ready context, it issues an instruction packet (instr-packef) to
the execution pipe. The packet consists of; the id of the contexr (ctxr-id), the address of
the instruction in i-R-cache (instr-no), the super-actor type, a 8:g indicating whether it is
the last instruction or not (last-instr), and the operand/result R-cache line numbers. The
algorithm describing the issuer operations is shown below:

algorithm issuer
output <instr-packet>
function
ctxt-id := id of cext with ready-flag = ‘T
cixt.ready-flag := ‘F’
instr-no ;- concatenate (cext.instr-line, ctxt.curr-offset)
increment cext.curr-offset
If {ctxt.curr-offset = ctxt.end-offset) then
last-instr :='T"
else
last-instr ;= ‘F’
If (cext.sa-type = ‘par’) then
/* for parallel sa, set ready-flag back to true */
ctxt.ready-flag .= ‘T’
endif
output <instr-packet>

The Execution Pipe

In designing the execution pipe, a major goal is to initiate an independent instruction every
pipe beat, thus the smooth pipeline should have the following features:

1, itis clean or free of structural hazards, and

2. all stages in the pipeline have a uniform and fixed processing time.

The last feature is aided by the fact that the memory accessing stages only access registers
or the R-caches.

3

CHAPTER 6. THE ARCHITECTURE OF THE SUPER-ACTOR MACHINE 151

The I-Fetch Stage The i-fetch stages retrieves the corresponding instruction pointed to
by instr-no from the i-R-cache and sends the tuple <ctxt-id, sa-type, instruction, last-instr,
op-res-lines> to the op-fetch stage. The instruction which is fetched consists of: an opcode,
two values for the operands (op] and 0p2) and another value for the resul” (res).

The Op-Fetch Stage The op-fetch stage fetches the operands according to the following
four modes: register (reg), location in d-R-cache (Rc), indirect addressing within a d-R-
cache line (indir), and immediate (immed). These four modes are identical to tiiose in the
intermediate abstract machine model (section 5.2.4).

case (operand-mode)
reg: operand .= rs[ctxt-id, i]
Re: operand := d-R-cache[concatenate (ctxt.op-res-lines{i] Nl
indir: temp-line := int(rs[ctxt-id, i] | line-size)
temp-off := mod(rsfctxt-id, i} / line-size)
operand .=

d-R-cachefconcatenate (ctxt.op-res-lines{temp-line], temp-off)]
immed: operand := i
endcase

The register mode simply indicates that the value is found in the assigned register set of the
actor. Indirect addressing within a data block in the SAM (see An Indirect Addressing Mode
for Instructions on page 100) is implemented by taking the integer value (the int function)
of rs{ctxr-id, i] divided by the R-cache line size as the index into the op-res-lines array and
using the modulus (the mod function) of rsfctxr-id, i] divided by the R-cache line size as
the offset value. This scheme is more fiexible than the one proposed in the intermediate
abstract machine model where the indirection can only occur within a pre-specified R-cache
line. To enforce the rule that each active super-actor can access only the d-R-cache lines
it requested, the lower bound of 4 is set to zero and the upper bound to the length of the
op-res-lines list minus one. Any value which does not point to an entry in the op-res-lines
list will be flagged as a run time error.

The Rc and indir modes involve some calculation and indirections before the operand
values e fetched. To aid the execution pipe in having a smooth throughput, this op-fetch

an

CHAPTER 6. THE ARCHITECTURE OF THE SUPER-ACTOR MACHINE 152

stage can be divided into multiple sub-stages. A direct path to bypass some stages for
immediate and register type operands can be incorporated. The beauty of this execution
model is that there is no ordering specified for instructions within the pipe, thus instructions
can complete out-of-order and the execution pipe can be simplified in the sense that no
interlocking logic is required.

Once the operands have been fetched, the op-fetch stage sends the tuple <cexr-id,
sa-type, last-instr, opcode, operandl, operand2, res> into the ALU.

The ALU

The ALU consists of multiple sub-pipes for processing integer operations, floating-point
additions, multiplications, etc. Since some pipes have fewer stages than others, e.g., the
integer pipe might have two stages, whereas a floating-point add pipe might be six stages
iong, adding FIFO queues at the end of the shorter pipes and having a prioritized merge
logic which favours the longer pipes can allow the ALU to accept an instruction every pipe
beat. With multiple sub-pipes, instructions entering the ALU stage may leave out of order,
thus some pertinent information from the tuple <ctxr-id, sa-type, last-instr, and res> which
was input from the op-fetch stage must accompany the operation and operands through the
sub-pipes in the ALU stage. s

The ALU outputs a tuple, alu-out, containing: the context id, super-actor type, last
instruction flag (Ise-instr), value of the result (res-value), information where the result is to
be stored (res), and a flag indicating whether the d-R-cache line should be copied to other
data caches or not (write-to-mem). The d-R-cache line would be the line as specified in
res-value. The write-to-mem field contains either ‘sppta-d-cache’, ‘LEU-d-cache’ or ‘nil’,
and is set by the operation, wrtto, which the ALU would have just processed. (Operation
wrtto will be detailed in the next section.)

'*Some optimizations can be performed here. For instance, shorter sub-pipes with the same pipe length
can share the same FIFO buffers. And latches in each stage which contain the pertinent information of the
input tuple can be shared by pipes of equal length,

3

¢

CHAPTER 6. THE ARCHITECTURE OF THE SUPEX-ACTOR MACHINE 153

The Result Store Stage

The modes of the result location are similar to the modes for operands except that there
is no ‘immediate’ mode. The result store stage takes the alu-out tuple, stores the result
according to information in alu-out.res and checks if a d-R-cache line has to be ropied to
another cache or not. The algorithm for the result store stage is shown below:

algorithm result-store
Input <alu-out>
output <res-packet> to update&done emitter

<write-10> to d-R-cache
function

store res-value according to information in res

If (write-to-mem = ‘sppta-d-cache’ or ‘LEU-d-cache') then
send <write-to> to d-R-ca.he
wait for acknowledgement signal fro d-R-cache

output <res-packet>

res-packet is a tuple containing the context id, the last instruction flag, the super-actor type
and the result value. write-to is a tuple containing write-to-nmem and the d-R-cache line
number which is to be copied.

The wrtto instruction is used to enforce the consistency between the d-R-cache and
the data caches of the support-actor execution pipe and the L-actor execution pipe. Itis
assumed that at compile ti=2, certain data which are shared amongst the SEU and the other
two execution pipes will be determined and wrtto instructions inserted into the appropriate
super-actors. A writo operation requires the copying of d-R-cache lines to ihe oiher data
caches and its res-packet tuple can be passed to a sub-unit responsible for issuing the write-
to wple to the d-R-cache. There, it can wait for a signal from the d-R-cache to indicate
that the line has been copied (copying a d-R-cache will also clear its dirty bit) before the
res-packet is sent to the update & done emitter stage. This will prevent the blockage of
other instructions which can go straight to the update & done emiteer stage.

CHAPTER 6. THE ARCHITECTURE OF THE SUPER-ACTOR MACHINE 154

The Update & Done Emitter

The last stage of the SEU takes a res-packet tuple as input and may issue a done signal to
the ASU. The update & done emitter is responsible for setting the ready-flag of the context
labeled ctxt-id if the sa-type is ‘seq’. Also, if last-instr is *T°, the context labeled ctxt-id
will have its free-flag set to “T” and a done signal is emitted to the ASU. To form the
done-signal, the base-addr and sig-list-ptr are retrieved from the context labzled ctxt-id,
and the condition code is set to res-value if it is either *T" or ‘F’, otherwise it is set to ‘U".

6.2.7 Local Main Memory

The local memory is to be a banked memory subsystem where blocks of memory (a
contiguous memory space of, say, sixteen words) are interleaved amongst the memory
banks. The accessing of a block of memory from a particular bank can be performed in
‘burst’ mode!® where devices like Static-Column RAMs are used [56]. The banks themselves
can be accessed concurrently under the control of a Memory Switch whick :terfaces the
memory banks to the accessing units. As we have described in the previous sections, high-
speed memories'” exist between the local main memory and the processing units which
need to access memory so that the average access times and the main memory bandwidth
requirements can be decreased.

The Memory Map

The memory map of the local main memory is shown in figure 6.11.

At the bottom of memory sits the working area for administrative instructions, i.e.,
data structures for overlay management instructions, structure memory operations, inter-PE
operations, etc. The rest of the memory is used fo. storing program segments (PS.) and

'%The block of data is streamed a word or multiple words every cycle 10 or from the unit which is accessing
it.
‘7We did not want to use the word *cache’ since not alt of the high-speed memories are caches.

CHAPTER 6. THE ARCHITECTURE OF THE SUPER-ACTOR MACHINE 155

PS - program segments
= templates

DS - data segments
= overlays /
structure memory
objects

free space

admin. working area

Figure 6.11: The map of local main memory.

data segments (DS;). The actor attributes, their signal lists, and their instructions are stored

in program segmenis. Whereas data segments contain overlays of function instances or
structure memory objects.

The program segments are divided into contiguous spaces each containing certain types
of information. Figure 6.12 shows a typical program segment. The bottom is reserved
for local constants and information for function applications such as the overlay size for a
function, an offset locating the first enable count value in a function overlay, etc. Since local
constants are accessed by the data R-cache, the area must start and end on a data R-cache
line boundary (address mod line-size{d-R-cache] = 0). Instructions of actors are placed
in the next upper contiguous area.'® The instruction area is further divided into sub-areas.
Instructions for sequential and parallel super-actors are grouped together and are separate
from the group of support-actor instructions, which in turn are separate from the long-
latency instructions. The boundaries between these groups of instructions are dependent on

18This was also alluded to when we mentioned in section 6.2.2 that the memory block address (mem-block-
addr) is an address 1o a memory block the size of an R-cache line.

CHAPTER 6. THE ARCHITECTURE OrF THE SUPER-ACTOR MACHINE 156

1
signal lists enable count,
values
actor
attributes
nperands &
results
| instructions
) loc. for first ret. value
ﬁﬁiﬁ?ﬁﬂ" id of actor to signal
area caller’s base address
DS for overlay
PS x

Figure 6.12: The program segment and data segment maps.

the cache line sizes of the processing units which must uccess them. For example, the LEU
must access long-latency instructions and the LEU instruction cache sitting between main
memory and the LEU has a cache line size of four words. This information is known by the
compiler, thus it would arrange the long-latency instructions to start on a 4-word boundary

(address mod 4 = 0) and assure that the group of long-latency instructions would end on a
4-word boundary,

The actor attribute area of PS. contains information like pointers to the signal lists,
addresses of operand lines, etc. (see section 6.2.4), and the signal list region contains the

signal lists. Again, the boundaries of the actor attribute and signal list regions must take
into account the line sizes of their respective caches.

The mapping of an overlay in a DS segment is also illustrated in figure 6.12.'° The
caller’s base address is located in the first slot, the id of the actor in the caller to notify when
after return values are sent back is in the second slot, and the third slot contains the offset

1>We did not illustrate the mapping of structure memory since the data segment usage would be straight-
forward where the first clement would start at the base address of the segment,

CHAPTER 6. THE ARCHITECTURE OF THE SUPER-ACTOR MACHINE 157

from the base of the caller’s overlay to store the first return value. in the next. Operand and
result values are stored contiguously in the next memory area and the last area contains the
enable count values. The boundary between the instruction result area and enable count
area is determined by the d-R-cache line size and the line size of the enable count cache.

The “Blocking’ of Typed Information

The “blocking” of different types of information, that is, putting one type of information
into a contiguous memory space where the memory space starts and ends on a k-word
boundary, will allow the multiple caches in the PE to retain the types of data which are
accessed by the processing unit the cache is attached to so that:

o prefetching (the loading of a cache line with multiple words) can be more

effective, i.e., information which has nothing to do with the processing unit
will not be fetched,

¢ no hardware cache coherency mechanisms are necessary to keep the data
consistent in the various caches of one PE, and

» there may be less contentions for a particular bank in local main memory.

The second point is not obvious, so let us examine the various caches in a PE, namely, the
instraction caches, the actor attribute cache, the R-caches, the signal list cache and enable
count cache. All the instruction caches, the actor attribute cache, the i-R-cache, and the
signal list cache are read-only (let us call these read-only caches), and since they do not
contain any data common to the data caches, d-R-cache, and the enable count cache, then
the read-only caches do not affect the consistency. Data which are written by the SEU
and are accessed by the support-actor execution pipe or LEU will be kept consistent in the
data caches by the wrtto instruction, i.e., by software control. Data writien by the LEU
and are accessed by the SEU are kept consistent by the write-through data cache in the
LEU and the mandatory load mechanism in the APU. Data wr...on by the support-actor
execution pipe may be accessed by only the R-cache loader and no other execution pipe
reqliires access to that data. Data written by the LEU and accessed by the support-actor

CHAPTER 6. THE ARCAITECTURE OF THE SUPER-ACTOR MACHINE 158

pipe are rare and the SEU can be used as a go-between, i.e., the compiler can introduce
a super-actor which performs a mandatory load and then a wrtto instruction to copy the
data to the sppta d-cache. Lastly, the enable count cache contains data not found in the
other data caches, so there are no cache consistency problems. However, a problem may
develop when an overlay is reused by another function invccadon. Values in the sppta
data cache and LEU data cache from a function instance which used the same overlay may
still exist. (Old values in the d-R-cache are of no concem if the compiler adheres to the
rule which stipulates that all initial super-actors of a function use mandatory loads for their
operand lines.) This problem can be resolved if some cache line invalidation mechanism
is employed when an overlay is deallecated.

6.3 Summary

In this chapter, we have presented an implementation of the advancad absiract machine
model (section 5.2.5). The mapping of the machine model to this implementation is as
follows: a major portion of the deactivation-enabling agent corresponds to the ASU; the
remaining portion of the deactivation-enabling agent which fetches the actor attributzs, the
SA-readying agent, OA-activation agent and the SA-activation agent maps to the APU; th
SA-execution agent is the SEU, and the OA-execution agent is represented by the attached
support-actor execution pipeline and the LEU. Lastly, the memory units in the memory
model are represented by the respective caches and the main memory.

We have detailed one possible implementation of the Super-Actor Machine which uses
the register-cache mechanism to hide local memory latencies. Heterogeneous processing
units are employed within one PE of the SAM to exploit the parallelism between different
types of actors. Variations of the basic configuration are possible, for example, the merging
of the support-actor execution unit and the LEU, an instruction issuer in the SEU which
emits two or more instructions into the execution pipe, allowing the support-actor execution
pipe to process conditionals, utilizing a register-cache for the support-actor execution pipe,
ete. Such variations are subject to further investigation where trade-off issues must be

3

¢

%

CHAPTER 6. THE ARCRITECTURE (F THE SUPER-ACTOR MACHINE 159

considered. Other issues to be examined in the future include: the design of the inter-
processor communications unit and how multiprocessing can be efficiently supported, the
implementation of virtual memory support, and a formal analysis of the cache consistencies
in one processing element of the SAM. In the next chapter, we will look at some compiling
techniques for generating machine code for the Super-Actor Machine.

Chapter 7

Generating Code for the Super-Actor
Machine

A compiler which generates machine code for the SAM might contain four stages: a front
end, a partitioner, a translator and an assembler (fig. 7.1). The front end is responsible for
parsing a program written in a high-level language and generating a well-formed dataflow
graph. The high-level language can be a functional language such as SISAL[80], VAL[2],
Id{85], etc. or an imperative language, e.g., FORTRAN. Generating a well-formed dataflow
graph from a functional language is a well understood process [1, 114], and only recently,
has there been work [18] which outlines a method for generating dataflow graphs from
a subset of FORTRAN, Machine independent optimizations like loop invariant removal,
constant folding, dead code removal, etc.[5] can also be performed on the dataflow graph
and is beyond the scope of this thesis. The generated dataflow graph from the front-end
will be attributed with information to aid the partitioning phase in aggregating dataflow
actors into super-actors. Once a well-formed super-actor graph (section 5.1.3) is generated,
the translator will produce the corresponding Super-Actor Machine Assembly Language
(SAMAL) representation (appendix C outlines a preliminary version of SAMAL). In the
last stage, the assembler takes the SAMAL code, generates the executable format for the
SAM and at the same time, pacxs that executable forruat (actor attributes, instructions, etc.)
into memory areas with computed boundaries as stipulated in section 6.2.7.

160

-

¢4

CHAPTER 7. GENERATING CODE FOR THE SUPER-ACTOR MACHINE

/

oplimizations

\
\\

/J
/
\

\

\

program written in
high level language

Y

Front-end
{parser)

well-formed
dataflow graph

Y

3

Partitioner

super-actor
gra

=1
=2

A
A

o

Translator

SAMAL representation

)

-t

Assembler

{ machine code

Figure 7.1: A possible organization of a compiler for the SAM.

ad

V

161

o

CHAPTER 7. GENERATING CODE FOR THE SUPER-ACTOR MACHINE 162

Much work has been done on the front end of compilers and most of it can be adapted
here to generate dataflow graphs; thus we do not dwell on the issues in the front-end stage.
Instead, this chapter focuses on the partitioning techniques for generating super-actors
(sect. 7.2 and 7.3), the translation (sect. 7.4), and the assembly processes (sect. 7.5). But
first, well-formed dataflow graphs—inputs to the partitioning phase—are reviewed in the
next section. The reason why we suggest that the partitioning phase operate on well-formed
dataflow graphs is that there is an existing and readily available compiler (the Id compiler
{114]) which generates a well-formed dataflow graph as an intermediate form. (Perhaps
a more efficient method of generating super-acior graphs can have the partitioner operate
upon some form of an abstract syntax tree as generated by the front-end parser, but we will
leave this to future work.)

7.1 Well-Formed Dataflow Graphs

In the review of dataflow computing (section 1.2.1), we have shown examples of well-
formed dataflow graphs in the form of a simple arithmetic and logic computation . lock, a
conditional construct and a loop construct. The partitioning afgorithm as outlined in this
chapter takes a well-formed dataflow graph as input and generates well-formed super-actor
graphs. The determinacy property of dataflow computing van be retained in the super-actor
execution model if the structures of well-formed constructs—the structures of conditional
and loop constructs in a dataflow graph—are retained in the super-actor graph (SA graph).
In this chapter, we illustrate the structures of well-formed constructs by borrowing the
notion of encapsulators from Traub[114].! (In section 5.1.1, we borrowed the notion of
encapsulators to explain the syntax and semantics of function definitions, and conditional
and loop constructs in a SA graph.)

"Traub used encapsulators for grouping dynamic dataflow actors. Here, we use them to group static
dataflow actors.

s
#-‘;‘.

CHAPTER 7. GENERATING CODE FOR THE SUPER-ACTOR MACHINE 163

7.1.1 Encapsulators in a Dataflow Graph

Three major encapsulators are used: a def, an if-then-else, and a loop encapsulator (figure 7.2
and 7.3).

The def encapsulator corresponds to a furction codeblock of a program and contains
a body (acyclic graph) of one or more nodes. A node is either a dataflow actor, an if-
then-else encapsulator or loop encapsulator, where the bodies within if-then-else and loop
encapsulators also contain nodes (as defined below). When a function is invoked, the input
arguments (tokens on arg arcs) trigper dataflow actors in the body and eventually, tokens are
produced on the result arcs (res arcs) which are then routed back to the caller—periormed
by a ‘return” actor. Lastly, a token is sent out of the body (along the signal arc) to the
def encapsulator which triggers the termination of the function. For all def encapsulators

except the main def encapsulator-—the main furction definition of the program—ai retumn
actor will send results back to the caller.

The if-then-else encapsulator represents an if-then-else expression and contains switch
actors, merge actors, a decider actor (see sect. 1.2.1 for the operations of different dataflow
actors), and a then- and an else-body.? The then-body and else-body can each contain an
acyclic graph of one or more nodes. Merge actors and switch actors (shown in hashed lines
in the figure) appear in the frame of the encapsulator and are used in the actual dataflow
graph—the one to be executed by a dataflow machine—to implement the if-then-clse
expression. The p inputs are routed to the decider actor which generates a condition code
to route the inputs (tokens coming in on if-inp arcs) to the then-inp or else-inp arcs. Either
the nodes in the then-body or else-body will be triggered and the outputs of the ‘triggered’
body sent to the merge actors. There, they are routed to the output arcs {if-out’s), The
encapsulator cannot process another set of inputs until the merge actors have executed—
firing rules for a static dataflow merge actor—that is, until one of the bodies have produced
the outputs. Thus the construct can exhibit a determinate behaviour.

The loop encapsulator is used to represent a loop expression and consists of merge
actors, switch actors (switch gates), a predicate-body (pred-body) and a loop-body. Again,

2In Traub's work, the decider actor is not included in the encapsulator.

CHAPTER 7. GENERATING CODE FOR THE SUPER-ACTOR MACHINE 164

boundary of
L/ body
i
swich epl if-inpn ¥ decider

IF-THEN-ELSE \\- -

frame

' -9
mcrg/ l se l
actor . .

if-out 1 if-outm

Figure 7.2: The def and if-then-else encapsulators.

- CHAPTER 7. GENERATING CODE FOR THE SUPER-ACTOR MACHINE

token
LOOP ‘ — } ~
Y. ¥ F_ S e ——
I %}ﬂ@ F::.!“ faning
|4 L 4

/fr/'lmc

..... ¥ o)
outl out m

Figure 7.3: The loop encapsulator.

o

165

CHAPTER 7. GENERATING CODE FOR THE SUPER-ACTOR MACHINE 166

the merge actors and switch gates used in the actual dataflow graph are shown in hashed
lines in the frame of the encapsulator, and each body (an acyclic graph) can contain one or
more nodes. The encapsulator takes its inputs (from the inp arcs) and sends them onto the
pred-val arcs via the merge actors. The tokens with an ‘f” value (for false) indicate that the
merge actors are ready to route the input tokens from the inp arcs to the pred-val arcs. The
pred-val arcs supply the data to the pred-body and the switch actors, The predicate-body
is thus triggered and produces a token on the pred arc. If the token on the pred arc is true,
the tokens on the pred-val arcs are fed to loop-body (through the switch gates) and the loop
body is triggered. When the output of the loop-body is produced, they are routed to the
pred-val arcs and the cycle continues once more. When the token on the pred arc is false,
the values on the pred-val’s get routed to the out arcs by the switch actors and the outputs
of the loop generated. The token with a false label from the pred arc is also sent to the
merge actors and the loop is ready to process the next set of inputs. In this manner, the

loop construct processes only one set of inputs at a time and can exhibit a deterministic
behaviour.

With this description of encapsulators, it is evident how a well-formed static dataflow
graph can be mapped to a dataflow graph containing actors and encapsulators. We call
the latter an encapsulated dataflow graph. A program can be represented by a set of def
encapsulators (function definitions) and is called an encapsulated program.

7.2 The Partitioner

In this section, we define two terms to differentiate encapsulators in a dataflow graph and

those in a super-actor graph. A df-encapsulator is an encapsulator containing dataflow
actors, and a sa-encapsulator is an encapsulator of super-actors.

The input to the partitioner is an encapsulated program, and for each def df-encapsulator
in the program. a well-formed SA graph is produced, i.e., a def sa-encapsulator. There are
two phases in this process: first, each def df-encapsulator in the encapsulated program
is partitioned. that is super-actors and if-then-else and loop sa-encapsulators created: and

CHAPTER 7. GENERATING CODE FOR THE SUPER-ACTOR MACHINE 167

second, location assignments for the results of super-actors are performed along with the
generation of block assignments (sect. 5.2.4) for each super-actor. In the following sections,
we will first look at how super-actors and well-formed constructs in a SA graph can be
generated (sect. 7.2.1 to 7.2.2). In section 7.2.3, we discuss the deadlock-free property

of the partitioned graph. Lastly, section 7.2.4 illustrates the partitioning process with an
example,

7.2.1 The Partitioning Phase

The partitioning strategy for generating a well-formed SA graph is as follows:

1. from the encapsulated dataflow graph, dataflow actors in the same body can be

grouped into a super-actor such that the structure of the if-then-else and loop
constructs can be maintained in the SA graph;® and

2. assure that the super-actors do not create cycles which can lead to deadlock.

The reason for possible deadlocks is that the SAM executes a super-actor instance in
an atomic manner where it must execute till completion once activated (see operational
semantics of a super-actor instance on page 60). In other words, an instruction within 2
super-actor must either get its input from another instruction within the aggregate or its
input must already have been produced by another super-actor instance before it can be
activated. Therefore, erroneous groupings which can lead to deadlock must be avoid-
ed in the aggregation phase. An example of an improper grouping which results in an
unpermitted cycle between super-actors A; and A; is shown in figie 7.4; permitted cycles
are the looping structures found in loop sa-encapsulators since tt ey are retained from the
loop df-encapsulators during the transformation process.

The Method of Dependence Sets

To create a SA graph which has no static cycles :hat can cause deadiock, we base our
algorithm on an algorithm described by Iannucci in his dissertation[75] to perform the

3We will sce later how an if-then-else or loop construct can be grouped within a super-actor.

&

CHAPTER 7. GEiN_RATING CODE FOR THE SUPER-ACTOR MACHINE 168

Ai Aj

Figure 7.4: An example of an improper aggregation of actors which can lead to deadlock.

partitioning of dataflow actors in an acyclic subgraph of the encapsulated datafiow graph.
The Method of Dependence Sets (MDS) takes an acyclic dataflow graph (the acyclic portions
of a dataflow graph) and generates aggregates called scheduling quantums (SQ). This
algorithm deals with the avoidance of static cycles and dynamic cycles—a dynamic cycle
is a cyclic dependence arising from I-Structure[16) accesses. However, we do not have the
problem of dynamic cycles since we do not intend to support I-Structures.

In Jannucci’s MDS algorithm, each node (dataflow actor, an if-then-else, or a loop
df-encapsulator) is assigned an input dependence set and an output dependence set. A
dependence set contains a set of node identifiers. The algorithm traverses the graph in
topological order, assigns the output dependence set of a node base- o its input dependence
set and its type; the input dependence set is dependent on the output dependence set of the
node’s input nodes. (The input dependence set of nodes wirh no input and nodes which
are immediately executable when the function they belong to is invoked is the empty set.)
If a node is a long-latency actor—in our work, a long-latency actor is one which takes an .
unknown amount of time for completion such as a structure memory cperation, a function
application operation or an inter-PE instruction*—then its output dependence set is the
union of its input dependence set and a set containing its id, otherwise, it is simply its
input dependence set. As input and output dependence sets are assigned. SQs are formed

*In Tannueei’s work, a long-latency instriction (actor) &5 generalty characterized by an I-structure access.

CHAPTER 7. GENERATING CODE FOR THE SUPER-ACTOR MACHINE 169

from nodes having the same input dependence set. In effect, new SQs are created for the
successor actors of a long-latency actor. Note that an SQ can contain multiple if-then-else
and/or loop constructs if there are no long-latency actors within those constructs.

The Super-Actor Generating Algorithm

In our work, long-latency actors cannot be grouped with other actors, so we must modify
the MDS algorithm. Also, we do not need to create super-actors with multiple if-then-else
and/or loop constructs (in lannucci’s work, the larger the SQ, the better), thus we can
retain the structures of if-then-else and loop constructs (structures which are the basis for
well-formed SA graphs). Lastly, we must introduce signal arcs which are not a one-t0-one
correspondence with tie arcs in the original dataflow graph.

Below, are the definitions as used in our partitioning algorithm called the Super-Actor

Generating Algorithm (SA-gen):

Definition 7.1 A node is either a dataflow actor, an if-then-else df-encapsulator, or a loop
df-encapsulator.

Definition 7.2 The Input Dependence Set of a node i, IDS(i), is the union of the output
dependence sets of all nodes from which i receives input.

Definition 7.3 The Output Dependence Set of @ node i, ODS(1), is the union of IDS(i) and

the singleton set containing the id of i if i is a long-latency actor or a df-encapsulator,
otherwise, ODS(i) is simply IDS(i).
Given the set of def df-encapsulators representing the encapsulated program,
P={D\,D,,..D,}

where D; is an encapsulated datafiow graph, the SA-gen will generate an encapsulated
graph of “pseudo super-actors”, that is, a graph of sa-encapsulators containing pseudo

CHAPTER 7. GENERATING CODE FOR THE SUPER-ACTOR MACHINE 170

super-actors. A pseudo super-actor is similar to a super-actor, the exceptions are that it
contains one or more dataflow actors (instead of super-actor instructions) and it has no block
assignments (R-cache loading instructions) yet. Each pseudo super-actor will eventually
become a super-actor after the dataflow actors are converted and block assignments inserted.
The term sa-node implies either a (pseudo) super-actor—includes a (pseudo) L-actor—or
an if-then-else or loop sa-encapsulator of (pseudo) super-actors.

A sink node of node 1 is a node on which an output arc of node ¢ rzrminates, thus function
sink-nodes (x) returns a list of sink nodes of node z. Also, there is no sink node at the end
of an output arc which crosses a body boundary (a boundary of either a body of the def
encapsulator, a then-, else-, pred- or loop-body) so that the partition-graph procedure may
terminate properly, i.e., instructions exterior of a body cannot be grouped with instructions
within the body). Function id(x) returns a unique label corresponding to z, where z can be
a node, a body (then-, else-, pred-, or loop-body), or a def df-encapsulator. And function

append (x,y) takes the list of elements in y and appends it to the end of the list of elements
in z,

algorithm SA-gen
input P
output encapsulated graphs of pseudo super-actors
function
for (each D; of P)do
insert a top node, T', which signals
all nodes which receive all their inputs from the incoming arguments
ODS(T) :=id(D;)
partition-graph (sink-nodes(T))
insert-arcs (T')
endfor

procedure partition-graph (to-do-list)
while (to-do-list is not empty) do
1 := pop (to-do-list)
if (1 has not been processed and
ODS(source of input arc of) is defined for all input arcs of I) then
IDS(I) := union of ODS()’s of all nodes from which I receives input

Ry

CHAPTER 7. GENERATING CODE FOR THE SUPER-ACTOR MACHINE

case (type of I)
encapsulator:
partition-encapsulator (1)
ODS(I):=IDS(I) v id (I)
append (to-do-list, sink-nodes (1))
long-latency actor:
create SA(id (1))
put [in SA(id (1))
label SA(id (1)) as ‘LA’
ODS(1) := IDS(I) U id (I}
append (to-do-list, sink-nodes (1))
ordinary dataflow actor:
create SA(IDS(I)) if it does not exist
put I atend of SA(IDS(I))
ODS(1) .= IDS(I)
append (to-do-list, sink-nodes (1))
endcase
endwhlle

procedure partition-encapsulator (1)
If (is an if-then-else df-encapsulator) ihen

create SA(id(x)) for decider actor =, and put z in SA(id (x})

create pred-body in I and put SA(id(x)) into pred-body of J

label SA(id(x)) the switch super-actor of the pred-body of I

for (body := {then-body, else-body}) do
insert top node, T', which signals all nodes of body which receive

all their inputs from the incoming arguments

ODS(T) ;= id (body)
partition-graph (sink-nodes (T))
insert-arcs (T")

endfor

create-well-formed-cond ()

else /* df-encapsulator is a loop */

for (body := {pred-body, loop-body}) do

insert top node, T', which signals all nodes of body which receive
all their inputs from the incoming arguments

ODS(T) :=id (body)
partition-graph (sink-ncdes (7))
insert-ares (1)

17

% CHAPTER 7. GENERATING CODE FOR THE SUPER-ACTOR MACHINE 172

endfor
create-well-formed-loop (1)

Procedure insert-arcs (T) performs the following steps on a body of nodes (body of a
def encapsulator, then-, else-, pred-, or loop-body):

1. Insert signal arcs, Traverse acyclic dataflow graph rooted at T and for each
output arc of node z which does not exit the body do (that is, a node which is
an encapsulator is treated as if it is a dataflow actor and its internal structure is
not traversed):

¥ := node on which output arc of = terminates
case (type of =)
dataflow actor:
case (type of y)
dataflow actor: create signal arc from super-actor containing z to
super-actor containing y, if it does not exist and they are
not in the same super-actor
if-then-else encap.. create signal arc from super-actor containing =
to switch super-actor of pred-body of y, if it does not exist
loop encap.: create signal arc from super-actor containing
to corresponding merge node in y°
endcase
if-then-else encap..
case (type of y)
dataflow actor: create signal arc from corresponding merge node
in z to super-actor containing y, if it does not exist
if-then-else encap.. create signal arc from corresponding merge node
in z to switch super-actor of pred-body of y
loop encap.: create signal arc from corresponding merge node
in z° to corresponding merge node iny
endcase
loop encap.:
bval := negation of the label of a labeled arc terminating in
loop-body of =
case (type of y)
dataflow actor: create a bval labeled signal arc from switch
E super-actor in pred-body of « to super-actor containing y,
i

CHAPTER 7. GENERATING CODE FOR THE SUPER-ACTOR MACHINE

{a,b}\ /{a,c}

super-
actori
{a,b,c,i}
{a,b.c,i}
redundant L-actor
arc J
a!b|cli lj}
super-
{...} arc label actor k

Figure 7.5: Example of a redundant arc.

if it does not exist

if-then-else encap.: create a bval labeled signal arc from switch

super-actor in pred-body of z to switch super-actor of
pred-body of ¥
loop encap.; create a bval labeled signal arc from switch

173

super-actor in pred-body of = to corresponding mei ge node in y

endcase
endcase

2. Removal of redundant arcs. Redundant signal arcs between sa-nodes in the
body should be removed (an example of a redundant signal arc is shown in
figure 7.5). This can be accomplished by first labeling the output arcs of the
associated top virtual node with the set containing the id of the body. Then
each outgoing signal arc of an sa-node in the body is labeled with the union
of the singleton set containing the id of the sa-node and the labels of the input
signal arcs of the sa-node; thus a label of an arc is a set of ids (see figure 7.5).
An input arc of sa-node z is deemed redundant and can be removed if its label

SNote that an incoming arc in a loop df-encapsulator terminates on a merge actor, thus there is a corre-

sponding merge node for cach incoming arc.

$Notc that every outgoing arc of an if-then-else df-encapsulator originates from a merge actor, thus there

is a cormesponding merge node for each outgoing arc,

¢ 3

CHAPTER 7. GENERATING CODE FOR THE SUPER-ACTOR MACHINE 174

is a subset of a label of another of z’s input arcs.

3. Removal of redundant merge nodes in loop encapsulators. Redundant virtual
merge nodes in loop encapsulators’, identified by having the same two prede-
cessor sa-nodes, can be combined into a new merge node which has as input

the same two sa-nodes, and as output, the union of output arcs of the redundant
virtual merge nodes.

Procedure create-well-formed-cond (I) transforms an if-then-else df-encapsulator, 7,
to an if-then-else encapsulator containing pseudo super-actors (fig, 5.4 shows an if-then-
else sa-encapsulator). The only things missing are the input and output arcs of the sa-
encapsulator; they are added in procedure insert-arcs. The following steps are executed to
produce an if-then-else sa-encapsulator:

1. Add labeled signal arcs. Add true output arc(s) from the switch super-actor
in the pred-body to the sa-node(s) containing dataflow actor(s) poinied to by
the top node (added in partition-encapsulator) in the then-body. And similarly,

add false output arc(s) to the else-body. Remove the two top nodes in the then-
and else-bodies.

2. Create virtual merge nodes. For each merge actor in ti.. ;rame of the original
encapsulator, create a virtual merge node. For each input arc to the merge actor,
add an input arc from the corresponding sa-node of the source of that dataflow
arc to the virtual merge node.® Redundant virtual merge nodes, identified by
having the same two predecessor sa-nodes, can be combined into 4 new merge
node which has as input the same two sa-nodes.

Procedure create-well-formed-loop is similar to create-well-formed-cond except that
it transforms a loop df-encapsulator to a loop sa-encapsulator (the reader should refer to
fig. 5.5 for the structure of the loop encapsulator in a SA graph). Just as with create-well-
formed-cond, the input and output arcs of the sa-encapsulator will be added by insert-arcs.
Create-well-formed-loop performs the following steps on encapsulator I

"Redundant merge nodes in if-then-clsc encapsulators are removed in function creaie-well-formed-cond,
Note that the virtual merge nodes are non-deterministic, so its input arcs do not have to be destined for a
specific port as does the input arcs of a merge actor in an cncapsulated dataflow graph,

CHAPTER 7. GENERATING CODE FOR THE SUPER-ACTOR MACHINE 175

1. Insert labeled signal arcs. Locate the switch super-actor in the pred-body? and
add true (false) output arc(s) from the switch super-actor to the sa-node(s) con-
taining instructions pointed to by the top node {added in partition-encapsulator)
in the loop-body, that is those sa-nodes which are initial sa-nodes. (True output
arc(s) are added if dataflow actors in the loop-body received tokens from the
true arcs of the switch gates, otherwise false output arc(s) are added.) Remove
the two top nodes in the pred- and loop-bodies.

2. Create virtual merge nodes. For each merge actor in the frame of the original
encapsulator, create a virtual merge node. For an input arc from a node in the
loop-body to the merge actor, add an input arc from the sa-node of the source
to the virtual merge node. Axnd for each output datafiow arc of the merge actor,
add an output arc from the virtual merge node to the corresponding sa-node or
switch super-actor which contains the datafiow actor the merge actor signals.

When signals are added in the steps of procedure create-well-formed-cond and create-
well-formed-loop, some signals may originate or terminate from sa-nodes which are not
super-actors. In those cases, the rules as outlined in the first step of procedure insert-arcs
should be followed.

Algorithm SA-gen basically calls procedure partition-graph for each def df-encapsulator.
The top node, T, is a virtual node (see section 5.1.1) introduced by the partitioner; i.e.,
it does not appear in the final machine code.!” A top node of a def sa-encapsulator is
used to indicate the actors to notify when the function is invoked. Moreover, its output
dependence set contains the id of the def df-encapsulator so that dataflow actors within
the df-encapsulator can only ve grouped with other dataflow actors within the same df-
encapsulator; the input dependence sets of the actors which the virtual top node signals will
contain the id of the def df-encapsulator, thus the input dependence sets of all actors in the
df-encapsulator will contain that id.

The partition-graph procedure traverses a dataflow graph and groups dataflow actors
with the same input dependence set together, i.e., if 1D S(z) = IDS(5) then dataflow actors

’The condition code generating instruction may not be the last instruction in the switch super-actor so
some reordering may be necessary.

1%Bottom nodes as described in scction 5.1.1 are not necessary since the *return’ instruction already performs
a function instance termination,

1

¢

CHAPTER 7. GENERATING CODE FOR THE SUPER-ACTOR MACHINE 176

¢ and j belong in the same super-actor, SA(1 D S(3)). For long-latency dataflow actors, an
individual super-actor (an L-actor to be exact) is created for each one. Assigning a long-
latency instruction to an individual L-actor ensures that the successor dataflow actors are
put into a new super-actor. This is very important since we do not want instructions waiting
for results from a long-latency operation to be waiting in the SEU. Note that the algorithm
processes a node only when all of its predecessor nodes’ ODSs have been defined, thus
the instructions in a super-actor would be in a topological ordering since instructions are
appended to the end of a super-actor’s instruction list.

When an if-then-else or loop df-encapsulator is processed, a body within a df-encap-
sulator is treated like the body in a def encapsulator. That is, a top node is inserted which
has output signal arcs to the nodes which can be fired once the body is activated, and the
output dependence set of the top node contains the id of the body. The latter action ensures
that dataflow actors in the body can only be grouped with other dataflow actors within the
same body. When a body of a df-encapsulator has been partitioned, inserz-arcs is invoked
just as is done for the body of a def df-encapsulator. Top nodes in the then-, else-, pred-
and loop-bodies are only introduced to facilitate the create-well-formed-xv procedures—

called after the encapsulator has been partitioned—unlike the role of the top node in a def
sa-encapsulator.

As the reader may note, procedure partition-graph operates .on acyclic subgraphs of the
well-formed dataflow graph; cycles of loop constructs are ‘hidden’ by procedure partition-
encapsulator. Also, the switch actors and merge actors are hidden from partition-graph,
thus they are not grouped into any super-actor.

When the SA-gen terminates, the list of dataflow actor(s) within a pseudo super-actor
constitutes the list of instructions of that super-actor and the signal arcs created in insert-
arcs, create-well-formed-cond and create-well-formed-loop are the arcs in the SA graph. A
restriction of this algorithm is that only L-actors and sequential super-actors are produced.
Moreover, this algorithm can produce arbitrarily large super-actors. We will see Jater
(page 183) how support-actors and parallel super-actors can be formed, and how we can
limit the number of instructions within a super-actor.

CHAPTER 7. GENERATING CODE FOR THE SUPER-ACTOR MACHINE 177

In the SA-gen algorithm, the structure of if-then-else and loop constructs are preserved;
the if-then-else and loop df-encapsulators in the encapsulated datafiow graph are simply
transformed to the if-then-else and loop sa-cncapsulators in a SA graph. Original data
flow arcs between ordinary dataflow actors (e.g., ‘add’, ‘mul’) are either transformed to
signal arcs between super-actors (a signal arc between super-actors may replace two or
more dataflow arcs), or are deemed redundant due to the topological ordering of datafiow
actors (as represented by the list of instructions) within a super-actor. Therefore, data
dependencies between instructions are implicitly maintained, and the well-formedness of
the original dataflow graph can be retained in the SA graph.

7.2.2 The Location Assignment Phase

The second and last phase in the transformation process involves the assignment of locations
in overlay blocks to the outputs of super-actors and the creation of block assignment
entries—]oad instructions for the R-cache loader—for parallel and sequential super-actors.
Dataflow actors which produce results only for consumption by dataflow actors within
the same super-actor can use temporary registers, while other dataflow actors producing
results to be consumed by dataflow actors external of the super-actor must be assigned a
location within an overlay block. The original dataflow arcs in the encapsulated dataflow
graph should be used as a guide for reserving a location within an overlay for results of
instructions of super-actors and also for indicating where an instruction in a super-actor can
find its operands.

This phase must be aware of where input arguments to a function are placed (in the
AAA overlay block—see fig. 5.3), and for constant values which cannot be expressed as an
immediate operand of an instruction, those values are put into a table containing constants.
Results of a super-actor should be kept within one overlay block, and if results of a super-
actor do not fill an entire block (the size is determined by the d-R-cache line size in the
underlying machine implementation) then that block may be shared with other actors.

Caution must be exercised in that memory blocks which are modified by a particular
execution unit must contain like-wise data such that cache-consistency problems do not

CHAPTER 7. GENERATING CODE FOR THE SUPER-ACTOR MACHINE 178

arise (see The Blocking of Typed Information on page 157). For instance. if a block
contains data written by the sppta execution pipe, then all other locations in that block must
contain data written by that execution pipe because if it contains, say data written by the
LEU, then the sppta d-cache and the LEU d-cache can be inconsistent if that block appears
in both caches simultaneously with differing values. This can lead to erroneous values
being stored in main memory when dirty cache lines are copied back.

Lastly, block assignment entries for super-actors are created and dataflow actors within
super-actors are converted to the instruction formats similar to those found in the instruction
set of the abstract machine model (section 5.2.3).

7.2.3 Deadlock-Free Super-Actor Graphs

We claim that for any acyclic subgraph of datafiow actors, the application of SA-gen
produces an acyclic subgraph of super-actors. This can be proven by contradiction, and the
formal proof can be given along the line as used by Iannucci {75). An informal argument
is as follows: a cycle involving one AE-node is not possible. The reasons are that in
procedure insert-arc, step one prohibits the creation of a loop involving one super-actor
(the case where z and y are both dataflow actors), and that procedure insert-arc itself only
traverses an acyclic graph while inserting arcs. A cycle involving two or more AE-nodes
is not possible because from the partitioning algorithm, this would imply that the input
dependence set of one of the AE-nodes in the cycle is a proper subser of itself, which is
impossible (from the partition-graph procedure, the input dependence set of a AE-node
contains the union of its input nodes’ output dependence set, thus its input dependence set
can never be a proper subset of that of its predecessor).

One last question to address is that, does the same inputs to a datafiow graph and its
generated SA graph produce the same outputs? Since the list of instructions in a super-actor
isinatopological ordering of the corresponding datafiow actors (procedure partition-graph),
the SA graph is deadlock-free, and the well-formed SA graph retains the well-behavedness
and determinacy properties of the dataflow graph, then the answer is yes.

CHAPTER 7. GENERATING CODE FOR THE SUPER-ACTOR MACHINE 179

7.24 An Example Partitioning

Let us now step through the algorithm with an example. Figure 7.6(a) shows an encapsulated
dataflow graph which computes the expression:

function g (i,j: integer returns integer)

k= let
b= f(5)
h :=if b then
(i+1)*2
else
i—1
in
(h*2)+1
end let
returns k
end function;

When the encapsulated dataflow graph is processed by algorithm SA-gen, a top node is
introduced such that its outgoing arc would point to the ‘apply’ node and partition-graph
is called with the id of the apply actor in the ro-do-list, The partition-graph procedure
processes the ‘apply” actor and since the apply node is a long-latency actor, a super-actor,
SA(<I>),is created with the single instruction (long-latency actor a in fig. 7.6(b)). (Note
that we used 0 as the id of the def df-encapsulator. Also, the original dataflow arcs are
represented by dashed directed arcs in figure 7.6(b), and the solid arcs represent signal
arcs.) The if-then-else node is processed next and procedure partition-encapsulator takes
over. The decider actor (actor 3) is put into SA(<3>) (super-actor b), and the then- and
else-bodies are each processed like a body of a def df-encapsulator resulting in nodes 4
and 5 being grouped into super-actor ¢ and node 6 in a separate super-actor (d). Since
there is only one super-actor in each body, no signal arcs are added by function inserr-arc.
In procedure create-well-formed-cond, the pred-body of the encapsulator is created with
switch super-actor b, the labeled signal arcs inserted and the top nodes in the then- and
else-bodies removed. The virtual merge node (node m) is created with signal arcs from
super-actors ¢ and d. Popping up to the def df-encapsulator level. node 7 is processed next.

‘ CHAPTER 7. GENERATING CODE FOR THE SUPER-ACTOR MACHINE 180

a) datafiow graph b) graph with pscudo super-actors

def A

if-then-else L 4

Figure 7.6: A partitioning example.

CHAPTER 7. GENERATING CODE FOR THE SUPER-ACTOR MACHINE 181

Since IDS(7) = (0, 1, 2), it will be put in a new super-actor, SA(<0, 1, 2>) (super-actor e).
Node 8 is next and because IDS(8) = (0, 1, 2), it will be added to super-actor e. Finally,
node 9 is processed and since it is a long-latency actor, it is grouped by itself into long-
latency actor f, SA(<9>). Procedure insert-arcs is then invoked for the body of the def
sa-encapsulator. An arc from a to the if-then-else sa-encapsulator is created and it is directly
routed to the switch actor in the pred-body of the if-then-else sa-encapsulator—actor b, An
output arc from the if-then-else to actor e is created, and the source of that signal arc is
from virtual merge node m, the (only) corresponding merge node of the merge actor. Next,
an arc is added from actor e to actor f, and the insert-arcs procedure is terminated. The
partition-graph procedure is then terminated since the to-do-list has become empiy and
control is returned to algorithm SA-gen.

Next, allocating overlay locations to super-actor results is performed. Block s0 is
introduced to hold the output values of actor ¢, and ¢ or d (¢ and d write to the same
location). Actor b’s output is merely discarded—stored in a temporary register—so it needs
no space in the overlay. Actor e accesses its operands from s0 and stores its outputin s0.1;
the location where actor f can find its operand. The input values to the function, 2, 7 and
the function name °f* are stored in the AAA block along with the caller’s base address,
the rer-sig actor and the offset value from the caller’s base address locating the position
to store the return value (see Function Applications on page 72). Next, block assignment
entries are generated for actors b, ¢, d, and e, and dataflow actors are converted to the pioper
instruction formats of super-actors. The resulting SA graph is shown in figure 7.7.

*apply’ and ‘retarn’ instructions are shown for the first time in a SA graph (fig. 7.7), so let
us detail their syntax (they are similar to the syntax of apply and return macro-instructions
in fig. 5.9). For the apply instruction, there are three operands and an optional fourth
one, The first operand is a local overlay offset (block-ptr-id.offset) indicating the function
pointer, the second operand is also a local overlay offset, but it indicates the location of the
first argument of the function application. The third operand is yet another local overlay
offset and it indicates the location where the first return value is to be stored. Subsequent
return values are stored in the next locations. The optional fourth argument—an immediate
value—indicates the number of arguments io be sent to the callee function; the absence of

CHAPTER 7. GENERATING CODE FOR THE SUPER-ACTOR MACHINE 182

o
|

a1 apply AAAS AAA.4 AAAS

overlay map }

e e - b: Bl:=
(R N IS T A O Y S0 B L AAA

= Bl1.6 #T" Rl

/ \
c Bl:= AAA d: Bl := AAA
B2:=s0 B2 :=50

add #1 B1.3 RI subBL.3 #1 B2.0

mul R1 #2 B2.0 _/
\m;m_

y
e Bl := AAA
B2 :=50

mul #2 B2.0 Rl
addB1.3 R1 B2.1

Y

f:| return s0.1 l

Figure 7.7: Part 2 of the partitioning example.

CHAPTER 7. GENERATING CODE FOR THE SUPER-ACTOR MACHINE 183

the operand implies that only one argument is to be passed. The return instruction has one
operand and an optional second one. The first operand is a local overlay offset indicating
the Jocation of the first return value. The optional second operand indicates—an immediate
value—the number of return values to be sent back to the caller; the absence of the operand
signifies that there is only one return value.

7.3 Considerations in Partitioning

7.3.1 Machine Specific Constraints for Partitioning

The partitioner must be aware of a few architecture and implementation specific features
and constraints; partitions for support-actors, the length limit of parallel and sequential
super-actors, making values written by the SEU visible to the other units, and ensuring that
all instructions within a parallel super-actor would be executed before a done signal is sent
to the ASU.

Instructions Within Parallel Super-Actors Instructions can have varying completion
times and if a parallel super-actor consists of, say a mix of integer and floating-point
instructions, then the partitioner must order the instructions such that the one with the
longest completion time be the last in the list. Since the SEU turns on the ‘last instruction’
flag on the last instruction packet of an active context and the SEU only issues a done
signal when the result-store stage encounters such a packet, then it can be guaranteed that
all previous instructions within the parallel super-actor would have been executed if the last
instruction in the list takes the longest time for completion.

Making SEU Written Values Visible to other Units If a sequential or parallel super-
actor produces a value which is to be accessed by a long-latency actor or support actor, then
the partitioner must automatically place a wrtto instruction at the end of that super-actor.
The wrtto instruction would specify that the d-R-cache line containing the results be made

CHAPTER 7. GENERATING CODE FOR THE SUPER-ACTOR MACHINE 184

visible—to the LEU (if the consumer is an L-actor) or the support-actor execution pipe (if

the the consumer is a support-actor). That is, the line is copied to the appropriate data cache
(LEU d-cache or SPPTA d-cache).

The Length Limit The number of instructions within a parallel and sequential super-
actor is limited by the maximum number of i-R-cache lines allocated per active super-actor
multiplied by the number of instruction words per i-R-cache line. For instance, if the SAM
implementation allows only one i-R-cache line of sixteen words per super-uctor, then the
partitioner can only create parallel or sequential super-actors each having a maximum of
sixteen instructions. This can be easily enforced in the algorithm by keeping a running
count of instructions in regular (non support and non long-latency) super-actors; once the
count is equal to the maximum, the super-actor is deemed filied. This length limiting
restriction requires a slight modification in the partitioning algorithm, where after a regular
super-actor has been completely filled, the ODSs of each instruction within the super-actor
are augmented with a unique identifier, say the id of the first instruction in the super-actor. In
this manner, the just filled super-actor will be treated like an encapsulator so that consumer

instructions of the super-actor can be properly aggregated and the deadlock-free property
can be maintained.

An equal concern is the number of d-R-cache lines allocated per active parallel or
sequential super-actor. If a super-actor requires data from too many different super-actors,
then memory block sharing between super-actors should be considered. This scenario
basically occurs for parallel super-actors and not for sequential super-actors. The reason is
that inputs to sequential super-actors would be generated by two or less super-actors within
the same body since the partition-graph procedure starts a new super-actor when the output
dependence set of the source nodes of a dyadic node are different, If a super-actor requires

data from too many different memory blocks, then in the worst case, id nodes for moving
data will have to be introduced.

Partitions for Support-Actors As was mentioned in section 5.2.5, support-actors are
used to alter the address of the memory block a parallel or sequential super-actor can

CHAPTER 7. GENERATING CODE FOR THE SUPER-ACTOR MACHINE 185

access. This indirect data block addressing mode can be used if the structure memory
object {or a portion of the structure memory object) which the super-actor is supposed
to access is known to reside in local main memory. This high-level information can be
specified by the programmer or determined by some data partitioning algorithm. (To
ensure that a structure memory object and the code which accesses it reside on the same
processing element, an extra input must be added to the SMalloc and apply instructions
for informing the long-latency actor execution unit to create a structure memory object
locally (SMalloc) and to invoke a particular function locally (apply). The intent was for the
LEU to perform dynamic load balancing via automatic distribution of function instances to
less busy processing elements. However, letting the programmer or compiler have control
over where data and function instances are created can lead to more efficient processing.)
Figure 7.8 shows a SA graph which uses a support-actor. This SA graph is similar to the
one shown in figure 5.8, The differences are that: the SMread long-latency actor (actor
4 in fig. 5.8) is replaced by a support-actor (actor 5), and an extra super-actor (actor 1) is
introduced to pre-process the inputs to the loop. We call actor 1 a loop pre-processing actor
and its function is to decrement the address of array ‘A’ by four, and perform a wrtto of that
block to the data cache of the support-actor execution pipe.!! The reason for decrementing
the address of array ‘A’ by four in the loop pre-processing actor is that the support-actor
increments it by four before actor 6 is fired. In super-actor 6, the ‘@’ is used to indicate
that the block assignment to B2 is an indirect data block address.

7.3.2 Some Optimizations in Partitioning

In this section, we examine some possible optimization techniques which can be employed
before, during, or after the partitioning phase. Some transformations which might be
performed are: the grouping of an entire if-then-else or loop construct within a sequential
super-actor, the enlargement of the switch super-actor in an if-then-else construct, the
parallelization of loop bodies. software pipelining of loop bodies, and the identification of

WThe syntax of ‘writo’ instruction is as follows: it contains two operands, the first operand specifies which
data cache 1he data block is to be copicd to, the d-cache of support-actor execution pipe (sppta) or that of the
LEU ("leu). The second operand specities which block is to be copied via a b-pir (Ba).

CHAPTER 7. GENERATING CODE FOR THE SUPER-ACTOR MACHINE 186

L

ki B1:=i0 overlay map

B2 mo 0 £0Ta-FALT
sub B1.2 #4 B2.0 mor

wrtto ‘sppta’ B2

A
Bl :=i0

4:

>= B1.0 #64 R1

E
SPPTA / T

5 add m0.0 #4 m0.0

o: B1:=1i0 \
B2 :=@m{.0
add B1.1B2.0RBI1.1

add B1.1B2.1B1.1| 7 B1:=i}

add B1.1B2.2B1.1
add B1.1 B2.3B1.1 add B1.0 #4 BL.0

1 —

Figure 7.8: An example where support-actors are used.

CHAPTER 7. GENERATING CODE FOR THE SUPER-ACTOR MACHINE 187

fast-path candidate super-actors.

Small If-Then-Else and Loop Constructs An if-then-else construct can be classified
as ‘small’ enough if: it contains less than z instructions where z is determined by the
machine, and there are no long-latency operations within its then- and else-bodies. If a
small if-then-else construct is identified, then it would be advantageous to group the entire
construct within one sequential super-actor. For instance, the if-then-else in figure 7.6 can
be flagged as a smali one such that the partitioner would put the whole expression into one
sequential super-actor. As for a small loop construct, an added stipulation is that all the
data which the loop body operates upon must be contained in the input memory blocks
of the sequential super-actor. This implies that if a structure memory accessing actor or a

super-actor which performs indirect block addressing appears in a loop body, then that loop
is not considered a ‘small’ loop.

Enlarging the Switch Super-Actor in a Conditional The switch super-actor in the if-
then-else construct, as generated by the partitioner, contains only one instruction. The
switch super-actor can be enlarged if the if-then-else df-encapsulator includes a body of
one or more dataflow actors for generating the boolean value for routing the inputs. For
example, in a high-level language, the construct:

if pthen z else y

can signify that the expression p should be the body of dataflow actors to generate the boolean
value for the if-then-else df-encapsulator. Then this new pred-body can be partitioned in

a similar fashion as the pred-body of a loop df-encapsulator, possibly producing a switch
super-actor with more than one instruction,

Parallelizable Loops When a loop is identified as parallelizable, e.g., a ‘forall’ in VAL
terms [2], the instructions in the body can be replicated to form a paratlel super-actor which

3

CHAPTER 7. GENERATING CODE FOR THE SUPER-ACTOR MACHINE 188

consumes a block or two of data and produces another block of data. That is. these parallel
super-actors can exploit the data parallelism within the loop and are thus akin to vector
instructions—a vector instruction processes blocks of data (chap. 4 of{72]). Ineach parallel
super-actor, the same operation appears multiple times and the number of operations would
be equal to the maximum number of instructions per super-actor. The operand and result
fields of each instruction in a paralle] super-actor would be different since each operates on
its own set of inputs and produces its own result(s). The blocks of data which are operated
upon basically correspond to vector registers in a vector processor since they will be loaded
into the d-R-cache before the parallel super-actor (vector instruction) can be executed. '

For example, the loop:

D :=for kin 0, nreturns array of
(A[k] + B[k]) * C[k]

can be flagged as parallelizable. Figure 7.9 shows the SA graph for the above example
when it is not parallelized. Array D is the output of this loop and since it is allocated by
some predecessor of the loop, i.e., its address is stored in memory, the loop can simply send
a signal to its successor when it is done. The loop pre-processing actor (actor 1) decrements
all of the array addresses by one!? such that the increment of the induction variable & in
10.4 can be performed in the switch super-actor (actor 2) instead of another super-actor in
the loop-body. This results in a more efficient execution because an extra super-actor in the

loop-body (the one which would have to increment the induction variable in loop-body)
can be eliminated.

When the compiler encounters the loop construct above, ' it can automatically generate
the parallel super-actors, alter the structure memory reads and writes to work in block mode
(actors 3, 4, and 5), alter the subtraction instructions in the loop pre-processing actor (actor

>We arc assuming that the number of words in a d-R-cache linc is cqual to that of the i-R-cache line.

13Note that we cheated and let the pre-processing actor deposit its results in the locations of its inputs; the
partitioner explicitly indicates that the actor should have its own result location. As long as this loop is not
presented with a new set of inputs while it is exccuting, then it does not really matter,

"“The compiler should be able to deteet that this is a parallelizable loop cither by automatic inspection or
as told by the programmer.

CHAPTER 7. GENERATING CODE FOR THE SUPER-ACTOR MACHINE

overlay map

i0 LBy LAY T TS T T a0

¢

Bl :=i0

sub B1.0 #1 B1.0
sub Bl.]l #1 Bl.l
sub B1.2 #1 B1.2
sub B1.3 #1 Bl1.3
sub B1.4 #1 Bl4

Bl :=1)

add #1 Bl.4 Bl4
writo 'leu Bl

< _Bl.4 BlLS5 RI

T

LA
¥IsMread 0.3 10.4c0.0] 4|

LA 1

LA

SMircad 10.110.4 200 /[SMread i0.20.4b0.0

6 Bl:=al

B2 := b0
B3 :=10

add B1.0 B2.0 B3.0

P

Bl:=10
B2:=c0
B3 :=1l

mul B1.0 B2.0 B3.0

LA

8| SMwrite i0.0 0.4 11.0

Figure 7.9: A super-actor graph for the parallelizing example.

|

189

CHAPTER 7. GENERATING CODE FOR THE SUPER-ACTOR MACHINE 190

1), and alter the add instruction in the switch super-actor (actor 2). Figure 7.10 shows the
resulting parallelization. For the example in figure 7.10, we assumed that there are sixteen
words per R-cache line so that the loop was unrolled sixteen times. Parallel super-actors
(labeled PSA) perform the “vector add”™ (actor 6) and “vector multiply™ (actor 7).

The above example shows that the Super-Actor Machine can be used effectively to
exploit data parallelism just as vector computers can with operations like vector-add, vector-
multiply, etc. Other more complicated vector operations are also possible, for example,
vector reduction instructions such as vector-sum (a vector instruction which takes a vector
and adds its elements to produce a sum), can be performed with sequential super-actors.
The question is: will such sequential super-actors be as effective as vector-sum instructions
in vector computers? This can be answered indirectly by realizing this fact; if multiple
sequential super-actors performing the vector-sum operation are simultaneously enabled
and each one is executed in round-robin fashion in the SEU, then the SEU can be fully
utilized as is the case with parallel super-actors.

A major difference between the SAM’s “vector instructions” and those of a vector
computer is that multiple operators must be rebeated within a parallel super-actor, whereas
a vector instruction in a vector computer only specifies the instruction once. This seems like
memory space is wasted to repeat the instruction multiple times in a *vector’ super-actor, but
the trade-off is for simpler logic in the issuer of the super-actor execution pipe. Furthermore,
the copy of instructions in a ‘vector’ super-actor can be shared by multiple actors. For
instance, if two or more parallel super-actors were to perform a vector-add on different
vectors, then the actor attributes of those super-actors can point to the same instruction code
block. The MultiTitan architecture[77] also uses multiple scalar instructions to replace
vector instructions, but the translation is done at run time, The advantage cited for the

MultiTitan is that vector and scalar registers can be treated uniformly, thus our architecture
also has the advantage of that property.

Dataflow Software Pipelinable Loops As the reader may have noticed, even though the
above example loop was parallelized (*vectorized’), i.e., arrays A, B, and €' were operated
on in block mode, vector chaining [72] where vector registers act as buffers between

CHAPTER 7. GENERATING CODE FOR THE SUPER-ACTOR MACHINE 191

overlay map
T H () WO TN T W T (ol A O W
a0f__1__J C__J
bO_ Lt L__ 1
I L__J
OL-_t__ Lo
i — T dee D770
{
L Bl:=i0

sub B1.0 #16 B1.0
sub B1.1 #16 Bl.1
sub Bl.2 #16 B1.2
sub Bl1.3 #16 BlL.3
sub Bl.4 #16 Bl.4

._\T_L,

2 Bl:=il
add #16 Bl4 Bl.4
wrtto "ley Bl

< Bl4 B15 Ri E

T T

LA LA LA
3:[SMread i0.3 i0.4 c0.0 #16] | SMread 0.110.4 20,0 #16]>° {SMread 0.2 i0.4b0.0 #16

6 B1:=2a0
B2:= b0 Y
Bi:=10

add B1,0 B2.0 B30

add B1,1 B2l B3.1

add B1,15 B215 B3.15

L ESA -

Bl:=t0
B2:=cl

{mul B1.0 B2.0 B30

mul Bl B2 B3.i

mul B1.15B2,15 B3,13

gt
*| SMwrite 0.0 i0.4 11.0
L

Figure 7.10: The parallelized (‘vectorized’) super-actor graph.

¢

CHAPTER 7. GENERATING CODE FOR THE SUPER-ACTOR MACHINE 192

concurrently executing vector operations (parallel super-actors) did not seem possible, The
loop body can only be re-activated when the SMwrite L-actor (actor 8) has issued a signal to
the switch super-actor (actor 2) through the virtual merge node. To get the *chaining’ effect,
where blocks of data can be loaded and stored while other parallel supec-actors can execute

simultaneously, we can apply dataflow software pipelining techniques {appendix A) to the
parallelized loops.

To pipeline the above example, id nodes are first introduced to balance the software
pipeline (actors 9, 10, and 11 in fig. 7.11; fig. 7.12 shows the overlay map). The three id
nodes are used to propagate the offset value for arrays C and D. The task of sending
an acknowiedgement arc from the loop-body has been removed from the last actor (the
SMwrlte long-latency actor—actor 8) to the initial actors of the loop-body, that is actors
which receive signals from the switch super-actor in the pred-body (actors 9, 4, and 5).
Note that two extra merge nodes are introduced to handle the acknowledgement signals
from the three initial super-actors in the loop-body. Also, the loop pre-processing actor
(actor 1) must now signal three merge nodes instead of one. As for acknowledgement arcs,
each super-actor within the loop-body must acknowledge its predecessor(s) to maintain the

pipelining effect. Also, the switch super-actor must acknowledge the loop pre-processing
actor upon termination of the loop.

By software pipelining and balancing the loop, the loop body now contains four stages
(excluding the switch super-actor since it belongs in the pred-body). That is to say, this code
structure can support an average of two loop iterations at any given time. This translates to
a little more than 20 (41 instructions in the loop—including the instructions in the switch
super-actor—divided by the two phases of a dataflow software pipe) simultaneously active
instructions for concurrent execution. If further parallelism need be exposed, this software
pipelined loop can be multiply instantiated such that each loop instance handles a block of
elements of the array computation. For example, if the above example was to compute a
1000 elements of array D, then four loop instances can be created where the first instance
handles the first 250 elements, the next instance, the next 250 elements, and so on.

The astute reader may note that a done signal can be sent to the successors of the loop
before the SMwrite actually writes the last sixteen elements into array D. To correct this

‘ CHAPTER 7. GENERATING CODE FOR THE SUPER-ACTOR MACHINE 193

PSA l
I; Bl:=i0
sub B1.0 #16 B1.0
sub B1.1 #16 Bl.1
sub B1.2 #16 B1.2
sub B1.3 #16 B1.3
sub Bl1.4 #16 Bl 4

||‘"|L ‘|’|_" il
2 Bl:=i0
add #16 Bl.4 Bl1.4
wrtto "len Bl
< Bl4d

%\
Bl."lo "

BI=107) 4 fsmread i0.110.4 20,0 41q > [sMread 02104 000#16] | [

e N— A —
id Bl.4 B2.0 [P 4
//‘ \ 6: Bl:=20
B2:=b0
10: S B3:~10
f__Bl:=d0 ISMread i0.3d0.0c0.0 #16| - 71 0 B2.0 B30
4B 4 add B1.1 BL1 B3.i
1
i add B1.15 B2.15 B3.15
& e
i PSA 1 _,-""“-— Y
Y T Bl:=t0
113 Bl :=d0 B2 :=c0
id B1.1 B1.2 B3:=tl
wnto'lcu‘ Bl

mu! B1.0 B2.0 B3.0
\ mul BL.1 B2.1 B3.1

-

\ mul B1.15 B2.15 B3.15
LA AN Y
81 SMwrite 0.0 d0.2 11,0 #16

(Figure 7.11: A super-actor graph representing a *vectorized™ and software-pipelined loop

CHAPTER 7. GENERATING CODE FOR THE SUPER-ACTOR MACHINE 194

overlay map
i0 LY T A T @y [T o T
S I T R
Lt I PP
OC - _ T " T C__ 1
0L __ V"~ e L1
S T T
OC " T T

Figure 7.12: The overlay map of the previous SA graph.

situation, the SMwrite actor can trigger an added switch super-actor (similar to the one in
the pred-body) which increments its own index variable (not the one in i0.4) and checks if
it is greater than n. If so, it will be responsible for triggering the successors of the loop.
However, we have left the loop as it currently appears in figure 7.11 because if another
software pipelined loop is the consumer of array D, then the loop in the figure can be readily
integrated with the consumer loop, i.e., collective loop fusion [119] can be performed.

Identifying Fast-Path Candidate Super-Actors This optimization process requires little
or no aid from the programmer. Basically, the strategy for identifying fast-path candidate
actors is: for each parallel or sequential super-actor within loop encapsulators, check if the
required memory blocks containing the operands have to be loaded mandatorily (e.g., if a
block was written by an L-actor, then the block must be loaded before a super-actor can use
it), if not, then label the super-actor as a fast-path candidate. For example, let us look at the
above software-pipelined loop body. The switch super-actor and the three id nodes (actors
2,9, 10,2and 11) can all be labeled as fast-path candidates because for every iteration, they
access the same data blocks. The parallel super-actors performing the addition of elements
of A to B, and the one performing the multiplication of elements of C to the resulis of
the addition (actors 6 and 7) cannot be labeled as fast-path candidates since the producers
of the operands for those super-actors are long-latency actors. Even if the SMread actors

CHAPTER 7. GENERATING CODE FOR THE SUPER-ACTOR MACHINE 195

{actors 3, 4 and 5) were converted to support-actors, the addition and multiplication parallel
super-actors cannnt be considered as fast-path candidates because the support-actors wiil
logically change the operand lines the super-actors access (by changing the pointer values
which indicate which memory blocks the parallel super-actors should be operating upon),
and that change can only be reflected physically in the d-R-cache if an activation of the
super-actor is pre-processed by the R-cache loader. What the fast-path mechanism allows
is the reuse of the same d-R-cache lines which the last activation of the super-actor used. A
super-actor which has its operand lines changed for each activation cannot use the fast-path
mechanism since the d-R-cache lines containing the operands from the previous activation
is not valid for the current activation.

7.4 The Translator

The translation phase, i.e., creating a SAMAL (Super-Actor Machine Assembly Language,
see appendix C) program,'® is a stroightforward process once the super-actor program is
produced. The first task of the translator is to assign the constants in the constants table to
data blocks. (To minimize the copying of constants from one data block to another—this
can arise when a super-actor requires constants residing in multiple data blocks—constants
accessed by a particular function should be grouped together.) Next, the translator visits
each SA graph in the super-actor program and collects information for function applications.
For each function, the size of the overlay must be determined along with the list of actors
to notify when the function is invoked (from the signal arcs of top nodes). The size of
the overlay is determined by the number data blocks used in the function, excluding the
data blocks containing the constants. The list of actors to notify contains the ids of actors
pointed to by the virtual zop node of the function definition. Furthermore, for each apply
instruction in the super-actor graph, information is collected concerning the placement of
return values in the caller’s overlay. A single offset value from the caller’s overiay base
address can be used for the location of return values (the return values are stored in a
contiguous area). The list of actor(s) to notify once values are returned from a function

3The reader may want to briefly glance at appendix C before proceeding.

CHAPTER 7. GENERATING CODE FOR THE SUPER-ACTOR MACHINE 196

call are indicated by the signal arcs emanating from the L-actor. If there are more than one
actor to notify, then one is chosen at random to be signaled by the apply L-actor, and the
other actors must be signaled by the chosen one. Once the function invocation information
is gathered, the generation of the super-actor program can be performed by traversing the
super-actor graphs and producing the corresponding SAMAL code for each actor and its
contained instructions. (The actual ids of actors to signal for apply and return L-actors
are determined at the assembler stage. Also, the location of the first enable count value

in a function overlay—required when initializing an overlay—is also determined in the
assembler.)

For a sequential or parallel super-actor, the translator must perform the following tasks:

¢ Blocks of operand data which must be loaded into the d-R-cache are those

produced by long-latency actors. Thus, those data block descriptors must have
an ‘L’ prefix to indicate a mandatory load,

¢ The positions of descriptors (block assignments—load instructions for the
R-cache loader) within the data block descriptor array are fixed so that an oper-
and/result field of an instruction can specify which block to access by specifying
an integer value which indicates the element in the data block descriptor array.

¢ For a sequential super-actors, results of instructions which are not visible
outside of the actor will be deposited in registers. Subsequent instructions
which use those results will access the appropriate register. If the number
of temporary registers in the register set is not enough, then a reordering of
instructions within the actor is necessary. If that is not sufficient, then extra
space in the block which stores the results of the super-actor must be reserved;
these extra spaces will act as temporary registers since the access times to
temporary registers or to data R-cache are the same.

For support-actors, the translator must perform the following tasks:

1. insert load instructions to bring the necessary values into registers. The values

operated by the support-actor will be specified by an offset from the overlay’s
base address (register 0);

CHAPTER 7. GENERATING CODE FOR THE SUPER-ACTOR MACHINE 197

2. insert instructions to perform the required operations while being aware of
the delayed loads and the latency of the integer multiply instruction (e.g., the
support-actor execution pipe in our siraulations assumes a three cycle latency);
and

3. copy back the necessary values from registers to memory.

Note that the minimum number of instructions in a support-actor must be greater than the

number of stages in the support-actor execution pipe (see section 6.2.4), thus the support-
actor might have to be padded with nops.

For long-latency actors, the translator performs a direct translation where the operands
can be specified as offsets from the overlay’s base address (register 0).

7.4.1 An Example

Let us look at the example in figure 7.6 and generate the corresponding SAMAL code
representation. Let’s assume that during the location assignment phase of the partitioner,
it was decided that the data block containing the arguments (including the caller’s base
address and the id of the apply actor which invoked the function) should be grouped with
the result blcek of L-actor a because those values are modified by L-actors, and that the
output of ¢ or d will share the same block as the output of actor e. And let us say that a data
block contains sixteen words. From the data block optimizer, an overlay map for function
‘g’ is laid out and is shown in figure 7.13. (This example shows that a lot of memory
space is wasted, but in an actual compilation, function‘g’ would most likely be in-lined for

efficiency purposes.) The SAMAL code for the example is listed below; line numbers are
+.ot part of the SAMAL syntax,

Func g #2
(TN (U: »a)
LA a (U: >b) Apply #'f &4 &6
SA S b (U:) (T: >c) (F: >d) (OL&D)
(= rel.6 #'T regl)

LW, W W S I % B

-3

CHAPTER 7. GENERATING CODE FOR THE SUPER-ACTOR MACHINE 198

cnable-counts

16 s0.0 s0.1

wa |0]
b AARIO | cb-addr {retsigid] gy | G | § | °F foual -
0 1 2 3 4 5 ¢

Figure 7.13: The overlay map for the partitioning example in figure 7.6.

6 SA S ¢ (U: >m) (OL&0 R&l6)
7 (add #1 rcl.3 regl
8 mul #2 regl rc2.0)
9 SA'S d (U: >m) (OL&0 R&l6)

10 {sub rel.3 $#1 rc2.0)

11 MN m (U: >e)

12 SA S e (U: >h) (O&lé 0&0)
13 (mul recl.0 #2 regl

14 add regl rc2.2 rel.l
15 wrtto ‘leu #1)

16 LA £ (U:) Return §17)

Line ! is a directive stating that function ‘g’ with two arguments are to be defined. The
brackets enclosing lines 2 to 16 lists the actors belonging to function ‘g’. Line 2 describes the
virtual top node of the function (directive *TN”) with an unconditional signal list *(U: >a)’
specifying that a forward signal arc points to actor ‘a’. The ‘>’ signifies a forward signal
arc. The actor on line 3 describes the L-actor a (the directive ‘LA’ indicates a long-latency
actor) and the information ‘(U: >b)’ indicates that a forward unlabeled signal arc emanates
from the L-actor. The following information on that line specifies that it is an ‘apply’
L-actor which invokes function ‘{” (specified by the operand, # f—in immediate mode), the
next operand ‘&4’ specifies the location of the argument—an offset value from the local
overlay—and the third operand is another local overlay offset specifying the location for
the return value. Line 4 specifies the sequential super-actor b (‘SA’ stands for super-actor
and the following *S” indicates sequential). From the specifications of the signal lists (the

CHAPTER 7. GENERATING CODE FOR THE SUPER-ACTOR MACHINE 199

information in brackets with either a *U:’, *T:” or *F:” as the first element), the reader may
note that b is a switch super-actor. The next set of brackets contains the description for
the data blocks to be loaded. An ‘Q’ prefix specifies that it is an operand block, the ‘L’
indicates that it is mandatory to load it, and the value ‘&0’ says that the overlay offset of
the block is zero (block ‘AAA’). On line 5 is the instruction of super-actor b—a relational
instruction comparing the value in the sixth location of the first memory block !¢ which is
lnaded for the super-actor (‘rc1.6’) to the ‘T’ value and depositing the result into register 1.
The other super-actors are similarly defined. The virtual merge node m is listed on line 11.
Readers may refer to appendix C for the syntax of the actors, virtual nodes, etc.

7.5 The Assembler

The task of the assembler is to compute the weights of count signals; remove the merge
nodes (the other type of virtual nodes, the top nodes, are simply deleted); assign locations
for the constants, actor attributes, the actors’ instructions, the actors’ signal lists, and the
enable count values of the actors; translate the SAMAL code to machine readable form;

and fill in all of the remaining information once the locations of actor attributes, signal lists,
etc. are known.

7.5.1 CTalculating the Count Signal Weights

Conceptually, an enable count of an actor consists of two parts: an integer value, sy,
indicating how many (forward) signals are required to activate the actor and another integer
value showing how many (backward) acknowledgement signals, s, are required to set the
actor back to its initial state where it can be triggered for activation for the next set of
input values. Notifications of incoming input values are indicated by forward signals, thus
the enable count of an actor in its initial state should be equal 10 s;. When an actor has

16115 descriptor is first in the list of data block descriptors, thus it is identified as the first memory block of
the super-actor.

3

CHAPTER 7. GENERATING CODE FOR THE SUPER-ACTOR MACHINE 200

been activated, it can only be reactivated when it has received all of its acknowledgment
signals (s4) plus the signals indicating that a new set of input values have been computed
(s#). Therefore, the value used to reset the enable count, s, of an actor should be equal to
§f+ 3a. In our implementation of the SAM, we would like the reset values of all actors
to be uniform so that function applications can be efficient (see Uniform Reset Value on
page 139). Let us label this uniform reset value, S,, and S, = §y+ 5, where Sy is the
uniform initial count value and S, is the uniform acknowledgement count value. For this
to happen, the count signals (the forward and acknowledgement signals) must be weighted
so that the machine code representation of the signal graph can mirror the actual structure
of the super-actor graph. That is, for a super-actor with s 7 input arcs,

’9
D wi=S$;

i=t

where w; is the weight of input arc i. Similarly, the weights of acknowledgement arcs can
be computed.

From the super-actor graphs we have shown thus far, we note that in general, (switch)
super-actors do not have any acknowledgement arcs (except when dataflow software pipe-
lining is employed). However, S, is a (non-zero) positive integer value, so an actor must
receive an acknowledgement signal in order that a uniform reset value can be used. To
alleviate this problem, we can simply add a self-acknowledgement arc for an actor which
does not have an acknowledgement arc, This was done for the benchmark programs we
used in our simulations, In retrospect, we could have used two reset values instead of one: a
Jull reset value (equal to Sy + S,), and an initial reset value (equal to the initial count value,
St). We can flag an actor as requiring a full reset value or an initial reset value whenever it
needs to be reset, that is, an actor without any acknowledgement arc is flagged as requiring
an initial reset value. The trade-offis less signal requirements at run time versus the expense

of increased hardware logic and increased memory space for differentiatin g the reset value
requirements of actors.

Let us now look at an example. Assume that S ¢ of all actors is eight, S, equals seven
and that the number of input edges incident on actor = is three, where actors a, b and ¢!’

Actors a, b and ¢ can be merge nodes, but we will sec how weights to the output signals of the predecessors

CHAPTER 7. GENERATING CODE FOR THE SUPER-ACTOR MACHINE 201

Figure 7.14: An example of weighted count signals.

the actors sending the forward signals. Lastly, actor d is the sole consumer of the result of
z. If actor a’s count signal to z has a weight one, and b’s count signal to z is also weighted
one, then ¢'s count signal to = should have a weight of six. Actor d’s acknowledgement
count signal to = would be weighted seven. Figure 7.14 illustrates the example. The top
left corner of actor = shows the enable count when the actor is in its initial state and the top
right corner indicates the reset value. The signal arcs are weighted accordingly.

7.5.2 Removing Merge Nodes

Merge nodes are removed before the actual machine code is generated, i.e., the merge nodes
will be encoded in the actors’ signal lists and their reset counts. First the weights of output
arcs of merge nodes are computed just as if they were actors. An output arc of an actor
(merge node) which terminates on a merge node m ‘inherits’ the weights of the output arcs
of m. For example, in figure 7.15, actor a signals actor z and y through m, thus the output
arc of a inherits the weights of the signals to = (weight of four) and y (weight of three). In
z’s signal list will appear two entries, an id of actor = with a weight of fourand an id of actor

of merpe nodes can be assigned in the next section.

CHAPTER 7. GENERATING CODE FOR THE SUPER-ACTOR MACHINE 202

a b
(x4, (v,3) (x4, (y,39

Figure 7.15: Encoding merge nodes into signal lists.

y with weight three. The same goes for actor b, This scheme can be applied recursively to
cases where merge nodes output to other merge nodes.

An optimization technique to reduce signals through merge nodes can be applied for
cases where an actor (actor) signals multiple merge nodes and those merge nodes send
signals to one actor y. Instead of having multiple entries of actor y in the signal list of =,

they can be combined, i.e., only one entry to y need exist with a weight equal to the sum of
the weights of the former signals to y.

7.5.3 Packing the Attributes, Instructions, etc.

As we have mentioned in chapter 6, actor attributes, instructions for sequential and parallel
super-actors, instructions for support-actors, instructions for L-actors, and the actors’ signal
keys and signal lists should be put into separate contiguous memory space. This can be
simply performed by collecting the machine code for all the actor attributes from all
actors, the machine code for all the instructions of sequential and parallel super-actors, etc.
together, determining the space required for each type of information, and then organizing
them according to the program segment map (shown in figure 6.12) while respecting the
boundaries for each type of information (as specified by the line sizes of various caches).

CHAPTER 7. GENERATING CODE FOR THE SUPER-ACTOR MACHINE 203

7.6 Summary

In this chapter, we have outlined a scheme for transforming an encapsulated dataflow graph
into a well-formed SA graph. We have shown how super-actors can be generated and have
brought forward many optimization issues which are to be investigated in future research.
In particular, we have discussed some machine specific constraints on the partitioning algo-
rithm, such as making values visible to the LEU and support-actor execution pipe, limiting
the number of instructions per super-actor, and creating support-actors. We also exam-
ined some partitioning optimizations such as producing parallelized loops, and dataflow
software-pipelined code. Moreover, we have described how a SA graph can be expressed
as SAMAL code and how machine code can be generated which adheres to the rules as
specified by the architecture.

Issues for future research include: having muitiple long-latency instructions within an
L-actor, sharing of memory blocks (R-cache lines) between super-actors (when a super-
actor does not fully utilize all the locations within a block), the placement of results in
memory blocks such that a super-actor can request the minimum number of memory blocks
containing its operands and results, the sharing of the same instruction code by different
super-actors (for example, having a sequence of instructions for representing a ‘vector-add’
operation), and acknowledgement arc insertion rules for dataflow software pipelining.

Chapter 8

Simulations

A major goal of this dissertation is to examine the performance of one processing element
of the Super-Actor Machine, and a parallel objective is to determine whether the SAM can
address the issues of tolerating local memory latencies and fine-grain synchronization costs.
To achieve these objectives, we demonstrate the power of the SAM through simulations
with a detailed simulator of one PE of the SAM.

The successes of simulation-guided system development, like that of the IBM RS/6000
[91], have added weight to the notion of experimentation and validation via architectural
simulations. This has reinforced our commitment to using this methodology in researching
novel architectures. For our research of the Super-Actor Machine, a detailed simulator was
written in Common Lisp with Flavors. With a detailed simulator,

the desired functionality of the SAM can be verified,

the SAM’s performance can be gauged,

the innerworkings of the SAM better understood, and

o further enhancements of the architecture can be guided via simulation experi-
ments.

204

CHAPTER 8. SIMULATIONS 205

To gauge the performance of the SAM, a set of small loop kernels which are common in
scientific numerical applications were selected for use as benchmark programs. The major
reason is that a compiler is not yet available and the only feasible solution at this time is
to simulate small hand-coded benchmarks; other efforts in designing novel architectures
also face this reality (see page 48 of [62]). However, these loop kernels can be used
to simulate real scientific applications by chaining multiple loop kernels into producer-
consumer relations. By restricting ourselves to small loop kernels, and chaining these

kernels to form synthetic benchmark programs, the performance of the SAM can be better
understood due to the simple nature of these programs.

In the simulation studies, we concentrate on the efficiency aspects of one PE. We
compare the performance of a 1-PE SAM to a state-of-the-art superscalar uniprocessor
machine, the IBM RS/6000. The investigation of the SAM's multiprocessing capabilities
will be left to future research.

8.1 The Simulated Architecture

In the simulations, some of the design parameters of the SAM architecture were arrived
at by examining similar parameters in existing machines, while others were based on
rough calculations of the requiremenis for effective processing. This section lists the
default parameters of the simulated SAM architecture, The changes to these parameters

will be indicated when different experiments are performed on variants of the basic SAM
configuration.

The local main memory is made up of sixteen banks with access times of six machine
cycles. A memory controller is used to regulate accesses to them. Addresses are interleaved
amorgst the banks and each bank can service a request independently from the others.

The signal processor and the enable controller of the ASU are pipelined functional
blocks with 2 pipe beat of one machine cycle. The signal processor is a three stage pipe
and so is the enable controller. A 1K word 4-way set-associative cache with a line size of

CHAPTER 8. SIMULATIONS 206

eight words is used to buffer requests for signal lists from the signal processor to the main
memory. The enable controller accesses memory through a 512 word 4-way set-associative

cache with a line size of one word. An enable count is only four bits, so one word contains
the enable counts of eight actors.

In the APU, the fast-path switcher (see fig. 6.7) takes one cycle. The fetching of actor
attributes in the APU goes through a 1K word 4-way set-associative cache with a line
size of eight words. The fetcher/router can take one to three cycles to process an enabled
actor—depending on the number of attributes fetched. The R-cache loader can load an
R-cache line in a maximum of eight cycles (one to form the address, six for the access
and one to load) if no write-back is required. A write-back of a dirty line would require
an extra seven cycles. Reserving a line takes only one cycle. Requests from the R-cache
loader to the i-R-cache and d-R-cache are performed in parallel. The fast-path candidate
checker requires two cycles to make an enabled fast-path candidate super-actor ready. The
actor-cache in the checker has space for 64 entries, as calculated from the d-R-cache and

i-R-cache sizes, see below. The PSA/SSA ready queue has space for (64 — 16) ready
Super-actors.

The support-actor execution pipe is a basic RISC pipe with a pipe beat of one cycle,
i.e., there are an instruction fetch, operand fetch, execution and result store stages. In the
execution stage, there are two sub-pipes, one to handle add-type instructions and the other,
multiply instructions. An integer add-type instruction takes one cycle while an integer

multiply goes through a three stage pipe. The i-cache and d-cache are both 1K words 4-way
set-associative with a line size of four words.

There are sixteen available physical contexts in the SEU, so there are sixteen sets of
registers where each set contains eight 32-bit registers (eight temporary registers is overkill,
but for the following experiments, a large number,of registers made our task of manually
allocating registers within a sequential super-actor easier). We chose the value of sixteen
physical contexts because the execution pipe has eleven stages through its longest path; if
the contexts contained only sequential super-actors, then we would require a minimum of
eleven active super-actors to keep the pipe fully busy. The execution pipeline has a pipe
beat of one machine cycle and the instruction issuer is also pipelined with a cycle time of

CHAPTER 8. SIMULATIONS 207

one machine cycie. The floating point add, multiply and approximate reciprocal pipes are
six stages long with a pipe beat of one cycle, and the integer pipe is one stage long. Fetch
and stores from the register set or register-cache each take one cycle. The i-R-cache is
1K words with sixteen words per line. This implies that a super-actor can only contain a
maximum of sixteen instructions. Arvind and his associates [9] have found that the average
grouping of dataflow actors are of size four, so sixteen should be plenty.! Moreover, as we
shall see via the experiments, sixteen instructions per super-actor is very beneficial when
super-actors must contain enough instructions to keep the execution unit busy. The memory
portion (registers/cache lines) of the i-R-cache is two-ported, one for the read access by
the execution pipeline and the other, for the write access by the loader/storer (see fig. 6.3).
However, the tag portion is only one-ported so that tags cannot be simultaneously altered.
The d-R-cache is also 1K words with four words per line and the path to main memory
is four words wide. Each super-actor is allowed a maximum of four lines. The memory
portion of the d-R-cache is four-ported, two for operand reads, one for resuit store, and one
for the loader/storer. Again, the tag portion is only one-ported.

The LEU was not modeled since the preliminary experiments were only used to inves-
tigate the impact of the register-caches in a PE of the Super-Actor Machine.

8.2 The Test Programs

For this study, we have hand-coded four small benchmark programs. The four benchmark
programs are: SAXPY, SAXPBYPC, SAXPY3, and Lawrence Livermore Loop 1 [81].
SAXPBYPC is the same FOR-loop construct as SAXPY except the expression is a * X[i]+
b Y[4] + ¢ instead of a * X[i] + Y'[Z]. The SA graph for SAXPY appears in figure 8.1 in
which the loop is unrolled four times and is dataflow software pipelined (n is assumed to be
a multiple of four). In the graph, the loop pre-processing actor (actor 1) prepares the inputs
to the loop and copies the array addresses to the d-cache of the support-actor execution

I'This does not mean that the rest of the cache line goes to waste. In fact, other super-actors can share the

same i-cache-line, the only requirentent being that an assembler or compiler must handle the arrangement of
instructions into contiguous blocks which are aligned on 16-word boundaries.

]

i

CHAPTER 8. SIMULATIONS 208

pipe. Two support-actors (actors 4 and 5) are responsible for calculating the 4-element
block offsets of arrays X, Y and Z for actors 6 and 7. Actor 6 performs the multiply
operation on four elements of X and actor 7 takes those results and adds them to four
elements of ¥ and deposits the results in Z. SAXPY3 is a synthesized loop kernel which
consists of two SAXPYs producing the input arrays for the third SAXPY—this simulates
a producer consumer relation (fig. 8.2). The SAXPYs were inlined and loop fusion [119]
was applied so that the loop overhead (the processing of the induction variables) can be
reduced to one third of the original amount. This is not the only benefit of loop fusion, in

our case, fusing loops also yields increased parallelism to be exploited by the underlying
machine.

For all four benchmarks, the loops were unrolled four times so that parallel super-actors
can be formed by aggregating four identical operators in the loop.? They were unrolled
four times because the base design of the SAM which was simulated has a d-R-cache
line size of four words. The index sequencing is handled by a switch super-actor which
can either trigger super-actors in the loop body or exit when it is finished. The arrays
which the loops process are stored locally in main memory and support-actors are used to
perform address calculations for the super-actors in the loop body. The switch super-actor
has six instructions (the extra instructions are for calculating the remaining elements to be
computed when = is not a multiple of four), while the parallel super-actors in the loop body
have four instructions each. Support-actors have an average of seven instructions each.
Appendix D contains the machine code for the four benchmark programs.

Dataflow software pipelining[48] was utilized to increase the amount of exposed par-
allelism in the programs, With dataflow software pipelining, a code body for SAXPBYPC
was reconstructed with five stages, thus handling 2.5 simultaneous iterations and exposing
more parailelism, while a code body for Loop1 was reconstructed with six stages. However,
SAXPY could not really benefit from software pipelining due to its small loop body—only
three stages in the loop body were produced when it was software pipelined. For the
SAXPY3 benchmark, software pipelining was only applied to the individual SAXPYs, and
was not applied to the whole SAXPY3, i.e., id nodes were not used to buffer the input of

*This is the vectorization technique as mentioned in section 7.3.2.

¢

CHAPTER 8. SIMULATIONS

overlay map

T e — e e eop e o e

.

B2 -aO

=1i0

sub B1.1 #4 BIl.1
sub B2.0 #4 B0
sub B2.1 #4 B2l
sub B2.2 #4 B22
wrtto sppta B2

2

add B1.1 #4 Bl
> Bl.l1 Bl.2 Rl

VAN

4| add 20.2 #4 20.2]

/A Ny

N

‘ladd a0.0 #4 a0.0

add 20.1 #4 a0.1

\

PSA

B1:=i0
B2 :=@a0.2
B3:=t)

mul B1.0 B2.0 B3.0
mul B1.0 B2.1 B3.1
mul B1.0 B2.2 B3.2
mul B1.0 B2.3 B33

Z

7: Bl :¥ t0

B2 :=@al0.1
B3 :=@a0.0

add B1.0 B2.0 B3.0
add B1.1 B2.1 B3.1
add B1.2 B2.2 B3.2

add B1.3 B2,3 R3.3

Figure 8.1: SA graph of unrolled-4 version of SAXPY.

209

CHAPTER 8. SIMULATIONS 210

A:=SAXPY (2, X, Y) x —» SAXPY
B : = SAXPY (al, X1, Y1) y =
in —_—-
SAXPY (22, A, B) 1l »| SAXPY
Xl —= SAXPY | _
yl —™

Figure 8.2: SAXPY3.

the B elements to the consumer SAXPY. The reason is that this benchmark is supposed to
simulate producer consumer relations in scientific code where, in general, functions like
SAXPY are optimized separately and then later inlined.

8.2.1 Simulation Results

Two versions of each program were written: one which only had one ioop that iterated
from element 1 to 1200, and the other version with four simultaneous loops, i.e., each
loop was invoked in parallel where a loop iterated through 300 elements. The results are
shown in table 8.1. The reader should note that several operations can be issued each cycle
besides an ALU operation in the SEU, and the utilization rate shown in table 8.1 does
not reflect the processing of those other operations. The speedup factor was calculated
by dividing the execution time for the 1-loop version by that of the 4-loop version. From
the table, one can conclude that more parallelism resuits in a higher utilization of the SEU
and the more parallelism the compiler exposes in a program, the faster the execution due
to the opportunity of overlapping memory loads to the R-cache with the processing in the
SEU (well, at least until the SEU is 100% utilized). The varying and non-linear speedups
where the SEU is not 100% utilized indicate that either not enough parallelism was exposed
and/or the exposed parallelism was not structured properly, In figure 8.3, we show the
execution pipe utilization for varying numbers of parallel loops and unrolling factors for

CHAPTER 8. SIMULATIONS

211

1 Loop 4 Loops
Benchmark execution SEU execution SEU
time (cycles) | utilization | time (cycles) | utilization | Speedup
SAXPY 30988 12% 9231 42% 34
SAXPBYPC 45490 14% 11348 56% 4.0
Loopl 33648 22% 13354 56% 25
SAXPY3 41819 20% 14376 58% 29

Table 8.1: Resuits for SAXPY, SAXPBYPC, SAXPY3, and Loopl.

the SAXPY benchmark.? For the unrolling factor of eight and sixteen, a parallel super-actor
can execute eight and sixteen instructions respectively. Accordingly, the d-R-cache line
size was increased to eight and sixteen words for this experiment. The SAXPY version
with eight parallel loops and unrolling factor of sixteen actually sustains 99% execution
pipe utilization when start-up and wind-down phases are discounted (fig. 8.4).

Tolerating Increased Local Memory Latencies

One advantage of processor architectures which support multiple threads of computations
is their ability to tolerate increases in global memory latencies [73). In this section, we
investigate the SAM’s ability to tolerate local memory latencies. Figure 8.5 plots the
sustained execution pipe utilization and the completion time for the 8-loop unrolled-16
version of SAXPY3 and SAXPY. Since SAXPY3 has more exposed parallelism, it can
sustain the 100% SEU utilization until the delay for an R-cache load is sixteen cycles,
whereas SAXPY can only sustain it till an R-cache load of ten cycles. For von Neumann
machines which rely on a conventional cache, the utilization of the execution pipe would
diminish proportionately with respect to the increase in average memory access times;
instruction level parallelism cannot be exploited to hide the local memory latencies.

3Currently, a simple performance model of the SAM is being formalized and preliminary analysis correlates
well with the curves as shown.

CHAPTER 8. SIMULATIONS

1 212
100% +
unrolled 16
\\\ =
lled 8
.5 unrolle \\ &
b
N
b
=
2
a 50% T
=
8 unrolled 4 ®
3
W
S
@
0% ; : } \\
1 2 4 8 16
parallel loops

Figure 8.3: Execution pipe utilization rate for different versions of SAXPY,

CHAPTER 8. SIMULATIONS

213

IHII

7 Instructions 1nput to SEU 1n last [0 cycles

Plot cut Window

Tine

Figure 8.4: Execution profile for the 8-loop unrolled-16 version of SAXPY.

CHAPTER 8. SIMULATIONS

completion time
% ep utilization

1009083
5y
-
B
5 50& - ®@----@r -
‘;’ 3
& 3
7000 &
g
| .
B e000 =
. ‘3
ks
.- =¥
5000 §
SAXPY
______ = 4000
—“-E--‘-—
0% [#===--fel , 3000
8 10 12 16 20 24

214

ez
iy

delay in R-cache load (cycles)

Figure 8.5: Varying memory access times for the 8-lcop unrolled-16 version of SAXPY3.

g e e

CHAPTER 8. SIMULATIONS 215

max. number size of
active super-actors | d-R-cache (Words) | sustained U.,
64 4K 99%
32 2K 99%
16 1K | 9%

Table 8.2: Varying the maximum number of active super-actors,

Efficient Utilization of High-Speed Memory

Another experiment was performed to examine the effects of restricted resources on the
perfcrmance of the SAM, namely, the size of the R-caches. The original size of the R-caches
allowed for 64 active super-actors, and in this experiment, the maximum number of active
super-actors was varied from 16 to 64, i.e., the size of the d-R-cache was varied from 1X
words to 4K words for a d-R-cache line size of sixteen. The resuits of this experiment are
shown in table 8.2 for the SAXPY version. of eight loops and unrolling factor of sixteen.
In each case, SAXPY was used to calculate 1152 elements. If a set of resources (registers,
etc.) must be reserved for every possibly active super-actor, then this version of SAXPY
would require 24 sets, but as we can see, the SAM can make do with sixteen. This result
clearly demonstrates that though a super-actor may be enabled for execution (their data are
logically generated), but not ready (because its required data are not in fast memory), it will
not hinder the execution throughput by ‘hogging’ some resource in the SEU and preventing
other super-actors which are truly ready from executing. Other multi-threaded architectures
such as the HEP, the future Tera computer, and APRIL (see chapter 9 for a review of these
architectures) which allow suspended threads to keep their assigned resources, will not
be able to share register sets as efficiently as the SAM. In a multiprocessor context, it is
necessary to have many ready threads to hide the unavoidable latencies of interprocessor
communications. The question is whether limited resources such as high-speed registers

should be reserved for the lifetime of a thread; the reservation of these resources is necessary
to minimize context-switching times.

*The minimum number of sixteen was used because the SEU pipe needed a minimum of cleven active
super-actors to keep it filled if' all the active super-actors were sequential.

CHAPTER 8. SIMULATIONS 216

8.2.2 A Performance Measure for Comparisons Between Various Ar-
chitectures

To compare the performance of the SAM to other architectures, we need a performance
measure which can reflect the degree of exploited fine grain parallelism resulting from the
instruction level concurrency in the architecture, and the ability of the compilerin generating
code to utilize such parallelism. To that end, we would like to introduce a performance
measure called FAB, for Floating-point Arithmetic and logic operations per machine Beat. 5
This measurement is computed by dividing the total number of only the floating-point
arithmetic and logic operations by the total number of machine cycles required to execute

a certain benchmark program. A machine cycle is defined as one pipe beat of the execution
unit.
total no, FP AL operations

total no. machine cycles
Note that memory access operations, register transfer or other data movement operations,
NOPs, etc. are not included in the number of floating-point ALU operations. Instead
such instructions are reflected in the denominator of the above formula, and are deemed
overhead or supporting instructions. The number of memory loads and stores for a given
benchmark is a reflection of the idiosyncrasies of an architecture, and thus should not be
included as ‘useful’ FP instructions.® (For example, in VLIW [38] machines—Very Long
Instruction Word machines—many register-to-register moves are used to move data to the
proper execution unit.) More important, the programmer is only interested in how fast the

machine can perform the FP operations as specified in the high-level algorithm (which does
not include loads and stores).

FAB =

Just as with MFLOPS and MIPS measurements, different benchmark programs will
produce different FABs when run on the same architecture. Using the same set of bench-
mark programs, the quality of different compilers can also be compared using this measure.

SFor non-numerical applications, one can use JAB—Integer Arithmetic/logic instructions per machine
Beat—for measuring integer performance,
“The FAB measurement is similar to the inverse of the CPF (cycles per floating-point operation) mea-

surernent as described in [62] except that they include all floating-point instructions including loads and
stores.

CHAPTER 8. SIMULATIONS 217

A higher FAB indicates a greater ability in utilizing the power of floating-point ALU units
without disruption. Interpreted from a different angle, an architecture with a higher FAB rat-
ing can deliver the same MFLOPS performance with a more moderate hardware technology
than one with a lower FAB. To summarize the advantages of the FAB measurement:

¢ it implicitly measures the ability of a processor architecture to overlap FP AL opera-
tions with support operations; thus, it also implicitly measures the degree of exploited
fine-grain parailelism contributing to the overall floating-point performance;

¢ it measures the normalized floating-point performance of the processor architecture,
i.e., how fast it can issue useful FP instructions per machine cycle;

e itis largely device technology independent; and

e it can also be used to measure the impact of compilers.

In the SAM, the sustained FAB rating for the 8-loop unrolled-16 version of SAXPY is
0.85 if the start-up and wind-down times are ignored. The maximum FAB rating for this
version of SAXPY on the SAM is 0.86 (32 fp operations in every 37 SEU instructions).
To put this value into perspective, the IBM RS/6000 produces a FAB rating of nearly
one for the SAXPY loop.” However, the RS/6000 uses the combined floating-point add-
multiply instruction which issues two FP operations each cycle and only has a floating-
point pipe of three stages. Many researchers have doubted whether a processor architecture
which supports fine-grain processing {due to the overhead in supporting concurrently active
threads) would ever be able to compete with the state-of-the-art von Neumann processors
on a one-to-one basis for any class of applications. These results have shown that it
is indeed possible. If one considers the limitations of a conventional cache for large
scientific computations—the performance of the machine drops precipitously when the
problem becomes too large for the cache [101, 106]—then the SAM will definitely have
an advantage since the size of high-speed memory (the d-R-cache) does not affect the

performance of the SAM as long as the application has enough exposed parallelisms (this
was implicitly demonstrated in table 8.2).

"Unrolling does not benefit this benchmark program on the RS/6000 because the induction variable
processing and array indexing ar. already overlapped,

3

¢

CHAPTER 8. SIMULATIONS 218

8.3 Suvmmary

Inthis chapter, we have performed some simulation experiments to examine the performance
of the Super-Actor Machine for a class of loop kernels typical of scientific numerical
applications. We have shown that the SAM can hide the local memory latencies from
the execution unit if the kernels were structured in a fashion where inherent parallelism is
exposed. It was also shown that the SAM can tolerate increased local memory latencies if
there are enough exposed parallelisms. Furthermore, it was shown that limited high-speed
memory (registers) can be used more effectively in the SAM than other multi-threaded
machines which rely on ordinary registers. Lastly, a performance measure was introduced
to show the effectiveness of the architecture in performing useful computations, With
this measure, it was shown that the SAM can compete with a state-of-the-art superscalar
processor for the class of loop kernels we have examined.

Chapter 9

Related Work

In this chapter, a non-exhaustive survey of other multi-threaded architectures is presented.
It is very encouraging to note that an increasing number of archiiecture researchers are
examining multi-threaded computing to answer the fundamental problems of von Neumann
multiprocessing and pure dataflow computing. Moreover, we note that recent independent

research have been conducted on applying the argument-fetching principle to multi-threaded
architectures.

9.1 The Denelcor Heterogeneous Element Processor

The Denelcor HEP{105, 104] was the first commercial multi-threaded architecture which
attempted to address the fundamental problems of multiprocessing. The HEP system could
contain up to sixteen PEMs (Process execution modules) and 128 data memory modules
(DMMs). The most interesting aspect of the HEP is its PEMs. In one PEM, multiple
processes are interleaved into an eight-stage pipeline. As long as there are eight processes
ready tn execute, i.e., eight Process Status Words (PSWs) — each containing a program
counter and other information - are residing in the PSW queue, the execution pipeline
can be kept fully busy. A task is a collection of processes and each process represents a

219

3

¢

CHAPTER 9. RELATED WORK 220

thread of control. There are provisions for 128 active processes -- 64 user processes and 64
supervisor processes — for each PEM.

For processes waiting on a memory access or synchronization event, there is a separate
functional unit called the scheduler function unit (SFU) which is responsible for transferring
data to and from the 2048 general-purpose registers and putting the waiting process back
onto the PSW queue. Tolerating local memory latencies was not an issue in the HEP since
it was a shared-memory machine where each PEM does not have any form of local main
memory. Instead, that problem is shifted to the encmpassing task of tolerating global

memory latencies. The HEP relies on fast context-switching and a massive register file for
tolerating memory latencies.

Fine-grain synchronization support in the HEP is provided in the form of fulllempty
bits on memory locations. Synchronizing instructions which wait on the full/empty bit will
circulate in a queue in the SFU if the memory location it was synchronizing on was empty.
Synchronization support is also found in the register file via full/empty bits on each register.

The limitations of HEP are as follows:

1. Each instruction within a sequential thread must incur the full eight stage
latency of the pipe and slow down the execution of the program if it is highly
sequential. (A pipelined von Neumann processor would only incur the eight-
stage latency for the first instruction of the sequential thread. However, it
would be quite difficult to keep the entire pipe filled most of the time.)

2. Limiting the number of active processes to 64 can present problems in some
applications which have more than 64 active processes, especially when most of
those active processes could be waiting on a synchronization event. While such
active processes are waiting, they would still occupy the resources allocated
to active user processes and thus prevent other processes not waiting on a
synchronization event from executing.

3. Having only registers as fast memory penalizes computations with subscripted
variables since allocating registers for them is difficult, thus all subscripted
variable access must go through main memory unless indicated otherwise at
compile time — a challenging task as shown in [20].

CHAPTER 9. RELATED WORK 221

4. A major problem with providing only binary semaphores (guard values in
which at most two signals can be incident on an actor) for fine-grain syn-
chronization is the extra cumulative synchronization costs when compared to
synchronizations with general counting semaphores. Sarkar{98] shows that
binary semaphores may require O(N?) operations as compared to O(N) op-
erations when general counting semaphores are used for synchronization in a
dependence graph with N vertices. This implies that the execution unit must
incur this added overhead and slow down the execution unnecessarily.

5. Finally, instructions which wait on a full bit in the register must circulate
through the execution pipe and cause unwanted bubbles (see p. 427 of [6]).

9.2 Horizon and the Tera Computer

The demise of Denelcor Inc. did not spell the end of multi-threaded computers of HEP’s
lineage. In 1988, Burton Smith came out with a design for the Horizon Computer[110].
In the Horizon, a processing element (PE) can support a maximum of 128 i-streams ~
processes in the HEP. In this incarnation of the HEP, instructions in an i-stream can be
executed sequentially instead of overlapped with other i-streams. A special look-ahead
bit associated with each instruction is used to help in the pipelining of the instructions
from a single i-stream. Only when there must be a switch to another i-stream — caused
by synchronizing instructicns or instructions depending on memory access instructions —
will the PE execute instructions from another i-stream. Another major difference is that an
instruction in an i-stream is now a Long Instruction Word (LTW) so that multiple instructions
can be issued in one cycle. In one cycle, a PE can issue a memory accessing instruction,
an arithmetic instruction and a control instruction (a branching instruction). Just as in the
HEP, the Horizon relies on a huge register file to address the issue of tolerating memory
latencies and utilizes full/empty bits for fine-grain synchronization.

To summarize the Horizon architecture, it has partially addressed the first problem of
HEP where sequential threads are less penalized by the use of LIW which can decrease the
completion time of sequential threads. The problem of supporting a limited number of active
threads has been alleviated with the introduction of hardware support for 128 i-streams.

¢4

CHAPTER 9. RELATED WORK 222

Also, registers no longer have full/empty bits, so instructions cannot circulate through the
execution pipe waiting on a register to become filled. However, the other problems of
HEP are still problems for the Horizon due to its exclusive use of a large register file for

tolerating memory latencies and the use of full/empty bits (binary semaphores) for fine-prain
synchronization.

Smith is currently leading the Tera Computer Co. and is in the progress of building
the Tera Computet[7]. The Tera Computer is based on the Horizon, i.e., a multi-threaded
architecture executing long instruction words. There are minor differences such as the
introduction of a look-ahead field instead of a single look-ahead bit, etc. In any case,

the mechanisms for tolerating memory latencies and its fine-grain syachronization support
remain the same.

9.3 The Hybrid Dataflow/von Neumann Architecture

Robert Iannucci, from Arvind’s group at MIT, proposed a design of the Hybrid Dataflow/von
Neumann Architecture[73, 75). The development of this architecture is being continued
at IBM’s T. J. Watson Research Center and has been renamed the EMPIRE Processor[74].
The architecture of the PE is similar to the HEP design in that one execution pipeline is to
be shared by the Scheduling Quantums (SQs) — threads of control - supported in the PE.
Two queues are used to hold enabled Continuations (similar to the PSW in the HEP) and
suspended ones — continuations which are waiting for synchronization events or memory
loads. A PE continuously executes instructions from one SQ until a possibly suspensive
instruction is fetched. At that time, an instruction from another enabled SQ is fetched. In
this manner, pipeline flushes due to possible suspensions are unnecessary.

To tolerate local memory latencies, a cache containing the frames' of recently executed
SQs, the current active SQ, and that of the next SQ in the enabled queue is used as a high-
speed buffer for main memory. A small register file can also be used to store temporary

1A frame corresponds to the memory space allocated 10 an invocation of a function, where the function
can have multiple SQs,

CHAPTER 9. RELATED WORK 223

resuits for use by instructions within the same SQ. Note that the entire frame must be
residing in the cache before an SQ of that particular frame can enter the execution pipe.
This can result in unnecessary prefetching if only a few values from that frame are used.
Another issue that is not addressed with this scheme is the support for often referenced
subscripted variables — all subscripied variable are not cached and accesses must go to main
memory, unless determined otherwise at compile time.

Fine-grain synchronization support is provided in the form of full/empty bits on memory
locations.2 Again, the spectre of inefficient synchronizations with binary semaphores
shadows this architecture. A compounding effect is that when a suspensive instruction
waiting on a synchronization event enters the execution pipe, it will cause a bubble if the
cvent has not occurred. These ALU bubbles are not insignificant; an example of their
impact is reported in a paper by Papadopoulos and Culler[90] for a machine based on the
pure dataflow model of execution. However, a hybrid architecture should have less ALU
bubbles due to less suspensive instructions. In contrast, the SAM supports the atomic
execution of threads where no suspensive instructions are permitted in a super-actor.

94 P-RISC and *T

Another spin-off architecwure from Arvind’s group is in the form of P-RISC - Paraliel RISC
— which was conceptualized by Rishiyur Nikhil and Arvind [84, 87]. The architecture
of a processing element is basically a RISC pipeline with a queue for storing enabied
instructions, and a port to I-Structure memory. A simple integer ALU is used in place of
multiple function units commonly found in other multi-threaded machines, and its memory
hierarchy consists of: local main memory, a high-speed cache used for caching a subset of
frames,® and a register file, The P-RISC can have an arbitrary number of active threads
similar to Iannucci’s machine. At the instruction set architecture level, they added “fork”,
“join”, “start” and “loadc” instructions. The fork instructions are used to start other threads

2This is the J-Structure mechanism championed by members of Arvind’s group.
3A frame here has the same definition as a frame in Ianoucci’s architecture, that is, the memory space for
an invoked function.

CHAPTER 9. RELATED WORK 224

and the join instructions are used to synchronize threads. The start instructions are used to
create threads, and the loadc instructions for split-phase memory reads. I-Structures{16]
are also supported by way of the “I-read” and “I-write” instructions.

Since the tolerance of local memory latencies and the fine-grain synchronization support
are identical to Jannucci’s hybrid architecture, Nikhil’s machine will also face the same
limitations. Other problems also exist, for example, an instruction can cause a cache miss
in the P-RISC pipeline which can led to a degradation in performance. Another limitation
of this architecture has to do with its load/store nature. Whenever a thread starts executing,
registers must be loaded, and whenever there is a possible suspensive instruction i the
thread, all required temporary values in the registers must be copied back to main memory
before the suspensive instruction can be processed. The last problem has to do with its
simple RISC pipeline where the overhead of loads and stores can significantly dearade its
performance on ‘useful’ computations. It would be interesting to investigate the possibility
of supporting multiple instruction issuing capabilities to hide the overhead of loads and
stores. Neverthe'ess, we believe Nikhil and Arvind are the first to propose a multi-threaded
architecture based on minimal additions to a basic RISC pipeline.

The P-RISC effort has been combined with that of the Monsoon [89] in an architecture
called the *T (pronounced “start”) [86]. The project seeks to support multi-threading by
using a Motorola 88110 superscalar RISC processor as the computing engine and added
hardware to perform synchronizations among the threads. One may regard the the hardware
for synchronization, called the synchronization processor as the ISU in the McGill Dataflow
Architecture and the 83110 as the IPU of the MDFA, The major difference between *T and
its predecessors is that only one thread can be executed upon at any time in the 88110, i.e.,
instructions from active threads cannot be interleaved. The *T is similar in many respects
to the USC Decoupled Architecture and the LGDG Architecture as reviewed below.

CHAPTER 9. RELATED WORK . 225

9.5 The EM-4

Another multi-threaded architecture which shares the same lineage as the EMPIRE :ind P-
RISC is Sakai’s EM-4[97, 96] which is being developed at the Electrotechnical Laboratory
of Japan. Sigma-1[64, 121] is the precursor of EM-4 and the Sigma-1 is ETL’s effort in
building a machine to support Arvind’s tagged-token dataflow model of execution. The EM-
4 differs from the Sigma-1 in that it is designed to support symbolic computations instead
of numeric-intensive applications, and it supports the execution of Strongly-Connected
Blocks — a thread of execution — along with regular datafiow actors. The architecture of
the EM-4 bears great resemblance to the tagged-token dataflow architectures[10], that is,
the PE contains a single circular execution pipeline in which fine-grain synchronization
is performed along with other arithmetic operations. When the PE encounters the first
instruction of a strongly-connected block, the entire PE will only execute instructions of
that block.

Tolerating local memory latencies is provided in the form of a small register file to be
used by instructions within a strongly connected block. Instructions which must perform
some synchronization are still hindered by the response time of local main memory; it is not
clear whether any caching memory is used to buffer local main memory to the execution
pipe. It would appear that unless the majority of the nodes in a dataflow graph can be
included in some strongly-connected blocks, this architecture can suffer from the same
limitations which face pure datafiow machines.

Fine-grain synchronization support is provided in the form of full/empty bits on memory

locations. So the problems of binary semaphores and performing synchronizations within
the execution pipeline are also present in this architecture.

9.6 APRIL

Anant Agarwal et al.[3] proposed a multi-threaded architecture based on a SPARC im-
plementation. In this architecture, the main objective is to efficiently support sequential

!

¢

o)

CHAPTER 9. RELATED WORK 226

computations and perform a rapid context-switch when a thread executes a remote memory
request or synchronization event. It was decided that a PE (APRIL) of the ALEWIFE
system s.aould support 4 active threads because of the limitations in registers and the ad-
verse impacts of multiple active threads on the cache performance. In the implementation,
the register window facility of the SPARC processor is used for the register set of each
active context and context-switching must be performed by a trap handler. Even so, the
context-switch can be performed in about 10 cycles. A major problem of only supporting 4
active contexts per PE is what happens when all 4 contexts are waiting on a synchronization
event? Swapping coutexts to and from memory can be quite expensive. Also, with all

RISC based implementations, its performance on floating point-intensive applications is
weak.

This architecture tolerates local memory Jatencies with the use of the register set and a
conventional cache between the execution unit and memory. Thus, it suffers from the same
cache coherence problems as conventional von Neumann multiprocessors. Also, cache
misses will lower its performance, Fine-grain synchronization support is performed via

full/empty bits on memory locations, so the inefficiency of binary semaphores is also a
problem,

9.7 A Modern “Static” Architecture

A multi-threaded architecture which shares the same parent [33] as the SAM architecture
was proposed by Jack Dennis[30]. A processing element of the Modern “Static” Archi-
tecture resembles the Argument-Fetching Dataflow Architecture. The main difference in
Dennis’ new machine is the support of threads of computations (called instructions in this
architecture) by the combined instruction queue-execution system (the IPU of the MDFA—
see section 3.2). In the proposal, the execution system can support up to 8 active threads
and overlap the execution of instructions (called sections) in the execution pipe.

Local memory latencies are tolerated via the use of small register sets for each active
thread, and a scheme of employing queues between the memory accessing stages in the

CHAPTER 9. RELATED WORK 227

execution system and the interleaved memory. Controllers regulating the queues of the
memory accessing stages, called Memory Transaction Controllers, are responsible for
elasticizing the execution pipe so that instructions (sections) with different memory demands
can “hop over” other pending sections, and execution stages do not get backed up as often
from congestions in succeeding stages. Putting these controllers in perspective, they are
like the parking store as mentioned in section 2.1, and such devices have their limitations.
Moreover, as the processing speed of the execution pipe increases with respect to the
memory accessing times, the queue sizes in the Memory Transaction Controllers must
increase accordingly, which can possibly increase the latency of the execution system.

Fine-grain synchronization is supported by an instruction scheduler (the ISU of the
MDFA) which is removed from the execution path, so for the synchronization aspect, this
architecture will enjoy the same benefits as that of the SAM architecture.

9.8 The Decoupled Graph/Computation Architecture

At the University of Southern California, Evripidou and Gaudiot{37] proposed the USC
Decoupled Graph!Computation Architecture based on a Multilevel Data-Flow Execution
Model. This execution model proposes that a dataflow graph should now consist of three
types of actors: scalar actors (the basic one instruction actor of dataflow), vector macro-
actors, and compound macro-actors (or CMA) which are made up o« scalar and/or vector
instructions. The arcs between these actors serve to signal a particular actor when it can
be executed, i.e., its data has been logically produced and it can proceed. This model and
the super-actor execution model are very similar in the types of actors and the way actors
are executed atomically. The major difference is that the actors in the multilevel data-flow
execution model do not have a temporary state where the necessary data is prefetched to
fast memory before they caa be executed. The lack of this state can cause the underlying
architecture to stall when the required data is not immediately accessible.

The proposed processing element architecture consists of a graph unit and computation
unit—units which have the same function as the ASU in the SAM and the data processing

CHAPTER 9. RELATED WORK 228

unit in the McGill Dataflow Architecture. The graph unit is responsible for processing
acknowledgement signals (done signais in the SAM terminology) from the computation
unit and send ready signals (fire signals in the SAM) to the computation unit when an actor
or macro-actor can be executed. Queues are used to buffer signals betweer the graph and
computation units. As in the SAM, data is not passed in tokens between the two main
units; the computation unit simply deposits and fetchs them from memory as required. The
three main differences between this architecture and the SAM are the memory hierarchy
employed for reducing memory latencies, the function units for executing the actors, and
the mechanism for synchronizing and scheduling actors. The suggested memory hierarchy
is a cache-based subsystem where a Queue and Cache Controller monitors the queues and
tries to pre-fetch the context-blocks which contain the instances of thz actors (the context-
block corresponds to an overlay in the SAM terminology). This strategy is similar to
the one employed in Iannucci’s EMPIRE [73] and thus has similar drawbacks. Another
difference has to do with the function units for processing executable actors; they have
suggested one computation unit & la MDFA, whereas the SAM proposes heterogeneous
function units— function units which are optimized for their own particular tasks. Lastly,
the scheduling unit in the USC architecture still relies on a waiting-matching stor= since the
token relabeling technique [52] is employed. (The relabeling scheme requires that tags of
tokens be hierarchically created and deleted at run time, i.c., fields of bits are added to the
tag when a sub-context (a context can be regarded as an instance of a code block) is created
and tokens can be matched more than once. Thus it wewld be quite difficult to employ the
Explicit Token Store technique as found in P-RISC[84] and Monsoon[89]).

9.9 The LGDG Architecture

Another architecture which bears resemblance to the MDFA is the Large Grain Dataflow
Graph Architecture (LGDG Architecture) proposed by Dai and Giloi [26]. The premise of
this machine is the LGDG computation model. This model consists of ‘O-nodes’ whick
operate on data, and *C-nodes’ which operate on the signals passed between the O-nodes,
An O-node basically corresponds to the group of instructions within a super-actor and a

CHAPTER 9. RELATED WORK 229

C-node corresponds roughly to an s-node in the MDFA/SAM. The operational semantics
of this model is also similar to the super-actor execution model; the major difference is the
lack of temporary states for priming the high-speed memory.

The LGDG architecture consists of a graph-level unit (the ASU in the SAM) and a
node-level unit (the data processing unit of the MDFA). An O-node is executed atomically
in a node-level unit and when it is finished, a dummy or boolean token is sent to the
graph-level unit. A dummy or boolean token is the same as the done signal in the SAM; a
dummy token is a done signal with a condition code of ‘U’ and a boolean token is a done
signal with a condition code of “T” or ‘F’. To activate an O-i.0de, a dummy token is sent to
the node-level unit, thus this architecture is also based on the argument-fetching paradigm.
The LGDG architecture is similar to the SAM, the major difference is that Dai and Giloi
suggested that the node-level unit be composed of multiple homogeneous processors known
as N-RISC processors (for non-branch RISC processor, i.e., no conditionals are handled by
the processor). Since multiple processors are used to implement the node-level unit, then
some cache coherency schemes must be employed if a cache-based memory hierarchy is
used. Furthermore, there is no guarantee that an N-RISC processor will not stall due to
memory accesses. The graph-level unit is very similar to the ASU in that a mechanism is
used to decrement and check the guard values, instead of some waiting-matching hardware
as proposed in the USC machine.

Chapter 10

Conclusion

This dissertation has documented our research efforts in addressing the problems of local
memory latencies and synchronization overheads facing von Neumann and pure dataflow
processors. We brought forth a design of a multi-threaded architecture called the Super-
Actor Machine which incorporates the following architectural features

* amemory organization which can guarantee that all accesses from the execution
unit be satisfied with high-speed memory, and

¢ an efficient thread scheduling mechanism which is loosely-coupled from the
execution unit

so that the two problems can be effectively addressed. We have shown that a processing
element of the Super-Actor Machine can tolerate local memory latencies and fine-grain
synchronization overheads while sustaining 99% throughput of its execution unit.

To arrive at this juncture of our research, we started our work with a base architecture
called the McGill Dataflow Architecture. This pure dataflow architecture is based on the
concept of argument-fetching where results of instructions are stored in data memory and
subsequent accesses by successor instructions simply fetch the required data from data
memory. This entails a logical separation of the data processing aspects from instruction

230

CHAPTER 10. CONCLUSION 231

scheduling, which in turn, naturally dictates a physical separation of the instruction execu-
tion unit and instruction scheduling unit at the implementation level. The advantages of
the McGill Dataflow Architecture versus other proposed datafiow architectures based on
the argument-flow principle were illustrated via analysis. Based on these advantages, the
newly proposed multi-threaded architecture incorporates this concept of a loosely-coupled
scheduling mechanism.

Through simulation studies, it was shown that pure dataflow machines with fine-grain
scheduling required the scheduling mechanism to have a greater throughput than the instruc-
tion execution mechanism. This conclusion steered our research towards multi-threaded
architectures where aggregates of one or more instructions are scheduled via the data-driven
paradigm while instructions within an aggregate are sriheduled via a simple instruction
counter. This model of execution lessened the demands on the scheduling mechanism from
having to have a greater throughput than the execution unit in order to keep it usefully busy.

In the course of researching muiti-threaded architectures, the Super-Actor Machine was
proposed and formally described. This architecture supports a new execution model in
which an aggregate of instructions, calied a super-actor, is first ‘prepared’ before it can be
dispatched to the execution unit. This Super-Actor Execution Model stipulates that in the
preparation phase of an aggregae, the aggregate must first be assured that all its necessary
operands are in high-speed memory znd that space for its resuits have been reserved in high-
speed memory before any of its instructions are processed. A novel memory organization
called a register-cache was proposed and detailed to support this new model. Furthermore,

a preparation unit was also introduced into the circular pipeline so as to interface with the
register-cache.

Compilation ‘. hniques for converting a well-formed dataflow graph into a graph of
super-uctors were also investigated. An algorithm, called SAGA, was proposed to generate
deadlock-free and determinate super-actor graphs. Also, optimization techniques to gen-
erate effective codes such as dataflow software pipelining, ‘vectorization’, etc. were also
examined in the context of super-actor graphs.

t CHAPTER 10. CONCLUSION 232

Simulation results from a detailed simulator were obtained. and it was clearly shown
that given a sufficient amount of parallelism in the application pr ygram—we investigated
loop kernels which are typical of scientific code—the Super-Actor Machine can sustain a
99% throughput of its execution unit while tolerating local memory latencies and fine-grain
synchronization overheads. Moreover, extra instruction-level parallelism can be employed
to tolerate the increased memory latencies anticipated in future generation processors.

10.1 Future Work

Much work remains in investigating the performance issues of the Super-Actor Machine.
In this section, we list some topics for future research:

e simple performance models for analyzing the effectiveness of the Super-Actor
Machine should be: formally defined. These models will further our under-
standing of the mechanisms in the SAM.! This work might entail a fresh look
at how architectural modules can be specified and how the properties of such
modules can be merged to yield properties of the entire system.

e Techniques for generating code specific to the Super-Actor Machine have only
been detailed in this dissertation and have not been implemented yet. Definitely,
the next stages of this work will require the implementation of a code generator
and the further investigation of different optimization strategies.

® The detailed simulator must be augmented with a Super-Actor Machine As-
sembly Language Assembler so that more involved simulation studies can be
performed. This addition shoul3 be enhanced with debugging support facilities
s0 that development times of SAMAL code can be minimized.

e The investigation of efficient muld-processor support should be performed,
especially with regard to sending and receiving blocks of data. It is quite
evident that the SAM will function effectively if blocks of data were operated
on at a time (in fact, most architectures with cache-like memory which fetches
blocks of data at a time have this property).

1This work is a subject of our ongoing research [69)].

Appendix A

Dataflow Software Pipelining

This code block takes as input two arrays A and B and produces another array X in a
monolithic fashion', such that:

The technique of dataflow software pipelining involves the arrangement of a dataflow
graph such that successive ¢ ..putations can follow each other through one copy of the
code block. If we present a sequence of values to the inputs of a dataflow graph, these
values can flow through the program in a pipelined fashion. For the static dataflow model
of computation, software pipelining is essential in exploiting the parallelism within a loop
body, and thus, is a necessary optimization for numerical scientific applications.

For example, the code block
X =foriinln
returns array of

exp(exp(2*Ali], 2) + exp(2*B[i], 2), 2)
end for

which computes the expression

'Monolithic fasinon implies that a portion or the whole array is produced by one code block.

233

&9

APPENDIX A. DATAFLOW SOFTWARE PIPELINING 234

Aln].. Al

Bin]...

v / v v

stage 1 stage 2 stage 3 stape4

Figure A.1: An example of a dataflow software pipeline.

XG]= (2% Al + 2 * BEDH?, Vi€ (1,n)

can be software pipelined (figure A.1). The array elements of the result array X can
be evaluated in parallel because there are no data dependencies among them. That is,
successive elements of the input array A and B will be fetched and fed into the dataflow
graph, e.g., A[1], A[2],..., A{n] and B([1]}, B{2),..., B[n], and the computation proceeds
in a pipelined fashion. This figure also illustrates the fine-grain parallelism that exists in
the code block. Instructions that belong to the same stage can be executed in parallel,
since there are no data dependencies among them. Moreover, during the execution of the
program, multiple stages can be executed concurrently, e.g., stages 1 and 3 are enabled and
can be executed in parallel and the same applies to stage 2 and stage 4. In this sense, there
are basically two execution phases in a dataflow software pipeline: one phase to execute
the actors in the odd numbered stages and the other phase for the even numbered phases.
The power of fine-grain parallelism is displayed by programs that form a large pipeline in
which many instructions in multiple stages can execute concurrently.

APPENDIX A. DATAFLOW SOFTWARE PIPELINING 235

A.1 Dataflow Software Pipelining for Idealized Machines

Dataflow software pipelining was proposed as a model for structuring fine-grain parallelism
[35, 83] and has been studisd mostly under an idealized dataflow architecture model with
infinite resources[41]2. Here is 2 summary of some of the main results. A graph is balanced
if every path from an input node to an output node contain exactly the same number of actors.
A graph is said to be maximally pipelined if it is balanced. To achieve maximum pipelining,
a basic technique (called balancing) is used to transform an unbalanced dataflow graph into
a balanced graph by introducing FIFQ buffers—or strings of identity {ID) actors—on certain
arcs. An example of balancing a software pipe is shown in figure A.2. Figure A.2(a) shows
an unbalanced software pipeline which basically has 2 stages, and (b) shows a balanced
pipe where the introduction of two ID actors has created a four stage pipeline and increased
the exposed parallelism. To optimally balance a graph, a minimum amount of buffering
is introduced into the graph such that its execution can be fully pipelined. The technique
of optimally balancing an acyclic dataflow graph can be formulated into certain linear
programming problems which have efficient algorithmic solutions; algorithms which can
be used to perform code optimization in a dataflow compiler [42].

*Recently, preliminary studies of dataflow software pipelined code on a more realistic architecture have
been performed(45, 46, 49]. Those articles illustrate a new technique for structuring a software pipelined
code block such that it makes a balanced use of the data processing and instruction scheduling mechanisms
of the target architecture.

APPENDIX A. DATAFLOW SOFTWARE PIPELINING 236

Z[n])..Z[1]

(@)

3

‘.
Z[n). Z[1]
X[n]..X[1] °&° °

Yin)...Y[1] o

!
{
Y

\ ¥ \
stage 1 stage 2 stage 3 siage 4 b)

Figure A.2: Balancing a dataflow software pipeline.

Appendix B

Functions of the Advanced Machine
Model

For each agent in the advanced machine model, there is a corresponding procedure it
executes. But first, we introduce a new piece of information in the actor attribute memory:
the actor type. We use the symbol, AP.AT, to denote the location containing the actor’s
type information. AA[AP.AT] has three possible values: par-sa, seq-sa, and other-actor
for parallel super-actors, sequential super-actors and other-actors (long-latency actors and

support actors), respectively. Definitions of other symbols can be found in the tables on
pages 85 and 103.

The SA-activation agent executes the activate procedure as listed in the intermediate

machine model, the only difference is that it now operates on the Ready-SA, and Active-SA
Pool.

procedure SA-activare ()
do (forever)
if (resources available) then
from ready-SA pool, pick (OP AP)
allocate resources to {OP,AP)
put (OP AP)into active-SA pool

237

-

APPENDIX B. FUNCTIONS OF THE ADVANCED MACHINE MODEL 238

enddo

The SA-readying agent performs a procedure which is slightly different than the ready

procedure in the intermediate model; it selects only parallel or sequential super-actors for
processing.

procedure SA-ready ()
do (forever)
from Enabled Pool, pick {OP.,AP)with
AA[AP.AT] = ‘par-sa’ or ‘seg-sa’
if (no free block in FB[]) then wait
/* fetch instructions of enabled actor instance into fast memory */
ptr :=label of a free block
fetch I[AA[AP.1]] to I[AA[AP.I]+ AATAP.N1) — 1] and put into FB[ptr]
PR{OP,APYIP] :=ptr
/* now fetch data blocks into fast memory */
do (i := 1t0 AA[AP.Nas])
if (no free block in FB[]) then wait
ptr ;= label of a free block
fetch data block at Dfblock-addr(AA[AP.BA.i])] and put into FB[ptr]
PR{OP,AP}[AA[AP.BA.i.b-ptr]] := ptr
enddo
put (OP,AP)into ready-SA pool
enddo

The SA-execution agent executes the following procedure:

procedure SA-execute ()
do (forever)
from active-SA pool, pick (OP.AP)with
D[OP + AA[AP.rs]] = ‘non-terminated’

if (AA[AP.AT] = ‘seq-sa’) then
cnt ;=0
while (cnt < AA[AP.N;]) do

perform (OP, FB[PR{OP,AP}[IP]+ cnt], AA[AP.N;], cni)

APPENDIX B. FUNCTIONS OF THE ADVANCED MACHINE MODEL 239

cnt'=cnt+1
endwhile
else
In paraliel do (z := 0 to (AA[AP.N;] — 1))
perform (OP, FB[PR{OP,AP}(I P] + z],AA[AP.N1], z)
enddo
endif
put {OP AP)back in active-SA pool
D[OP + AA[AP.rs]] := ‘terminated’
enddo

The OA-activation agent performs a straightforward task:

procedure OA-activate ()
do (forever)
from enabled pool, pick (OP AP)with AA[AP.AT] = ‘other-actor’
put {OP,AP)into active-QA pool
D[OP + AA[AP.rs]] := ‘non-terminated’
enddo

The OA-ececution agent performs a procedure which is a big case statement similar to
the one in the execute procedure of the basic abswract machine model (section 5.2.2).

procedure OA-execute ()
do (forever)
from active-OA pool, pick (OP.AP)
with D[OP + AA[AP.7s]] = ‘non-terminated’
ent:=0
while (cnr < AA[AP.N]) do
perform (OP, AP, ITAA[AP.I] + cnt], AA[AP.N7), cnt)
cnt:=cnt+1
endwhile
put (OPAP}back in active-OA pool
D[OP + AA[AP.7s]} := ‘terminated’
enddo

APPENDIX B. FUNCTIONS OF THE ADVANCED MACHINE MODEL 240

Finally, we list the procedure for the deactivation-enabling agent. The decrement-reset
procedure is the same as the one in the intermediate model.

procedure deactivate-enable ()
do (forever)
from active-SA pool or active-OA pool, pick (OP AP)with
D[OP + AA[AP.rs]] = ‘terminated’
it (actor from active-SA pool) then
deallocate assigned resources and copy data blocks back to main memory
and free those data blocks
do (i := 0 to (AA[AP.Ns,]1 — 1))
decrement-reset (OP, AA[AP.SL, + 1))
enddo
If (D[OP + AA[AP.cc]] = ‘true’) then
do (i := 0 to (AA[AP.Ngs] — 1))
decrement-reset (OP, AA[AP.SL; +1])
enddo
if (DIOP + AA[AP.cc]] = ‘false’) then
do (2 := 010 (AA[AP.Nss] ~ 1))
decrement-reset (OP, AA[AP.SL; +1])
enddo
enddo

Appendix C

An Assembly Language for the SAM

In this appendix, we describe a preliminary version of an assembly language for the Super-
Actor Machine, called SAMAL (Super-Actor Machine Assembly Language). Programs
expressed in SAMAL can be straightforwardly transtated to an appropriate machine repre-

sentation for execution on the Super-Actor Machine. Some issues in the assembly process
are examined in chapter 7,

C.1 Super-Actors

The assembler directive for specifying a super-actor is SA. The type of the super-actor, be
it sequential (‘S’) or parallel (‘P’), must be specified along with its identifier (label). A
fast-path candidate has a type specifier of ‘FS’ or ‘FP’ depending on whether it is sequential
or parallel.

241

APPENDIX C. AN ASSEMBLY LANGUAGE FOR THE SAM 242

| Super-Actors |
Directive

SA type label sig-list [t-sig-list, f-sig-list]
([data-block-desc]!) ([instruction]})

Instructions

optr oprmdl [oprmd2] resuit
brx [opmnd1] offset
wrtto to-loc line

An unconditional signal list (sig-lis¢) has the form (U: actor-idl....) which contains actor
identifiers, Each identifier has a prefix to indicate whether the signal is an acknowledgement
signal (*>") or simply a signal (‘<’). This indicator is used by the assembler to calculate
the appropriate weights of count signals. The true and false signal lists (£-sig-fist and f-
sig-list respectively) are optional and are dependent on whether the super-actor is a switch
super-actor or not. The true and false signal lists have the form (T: actor-idl,...) and
(F: actor-iul,...), respectively. The array of data block descriptors (data-block-desc) is
information pertaining to the operand/result memory blocks the super-actor operates upon,
i.e., these are load instructions for the R-cache loader. (Readers are reminded that symbols
of the form [zz]' imply one or more xx’s.) A data block descriptor can be a memory
block address, an offset from the local overlay’s base address which indicates the memory
address of a data block, or a pointer value. A pointer value locates an overlay slot which
contains the memory address of a data block; a pointer value is used for indirect data block
addressing (see page 100 for indirect data block addressing). In a data block descriptor, the
prefix ‘# indicates a memory block address, an offset from the overlay buse address (v1!is
an overlay offset) is indicated by ‘&’, and a pointer value by ‘@". Furthermore, a prefix of
‘O’ or ‘R’ identifies whether the data block descriptor is an operand or result lin, and the
prefix ‘L’ indicates a mandatory load of the data block into d-R-cache.

The operator (oprr) of a super-actor instruction can be an arithmetic or logic instruction
such ladd for integer add, fmul for floating-point multiply, etc. The operand field of these
instructions can be an immediate value, a R-cache line descriptor, an indirection descriptor

APPENDIX C. AN ASSEMBLY LANGUAGE FOR THE SAM 243

or a register name (see section 6.2,6). An immediate value is written as ‘#i’, the form
‘rci,j’ is used to indicate a data block descriptor, an indirection pointer is ‘@ i, and a
register name, ‘reg i’. The result field has the same modes as the operand field except that
no immediate values are allowed.

Branch instructions brx are restricted to sequential super-actors. The operand field is
required if the branch instruction is brt or brf because the memory pointed to by the operand
field must contain a condition code which was generated by a previous relational or logic
instruction. The operand can be a R-cache line descriptor, an indirection descriptor or a
register name (most often, it will be a register name). An unconditional branch, br does not
require the operand field specification. The offset is an integer value (an immediate value)
which the branch instruction must add to the respective instruction counter if the condition
has been met {or unconditionally for br).’

The wrtto instruction is used to copy a d-R-cache line specified by /i~¢ (an index of the
data block descriptor array) to either the support-actor execution pipe d-cache (‘sppta’) or
the L-actor execution unit d-cache (*leu’) as indicated by to-loc. Since the data cache line
sizes in the support-actor execution pipe and LEU may be different from the d-R-cache line
size, the line specifier may also contain a value indicating which portion of the d-R-cache
line should be copied. For example, let’s assume that the d-R-cache line is sixteen words
long, and the other two data caches have four words per line, If the d-R-cache line is
partitioned into four 4-word segments, then /ine can be a tuple indicating the d-R-cache
line and which 4-word segment to be copied. In any case, we will leave this to future
refinements of the architecture.

C.1.1 Support-Actors

Instructions in a support-actor are to be executed in a simplified RISC pipeline, thus standard
RISC instructions will be used, i.e., all instructions are register-to-register and only load
(1d) and store (St) instructions are used to access data memory.

!In the simulated machine of chapter 8, the offset value is onc less than the actual since every ready context
in the SEU must have its instruction counter incremented before an instruction is fetched.

APPENDIX C. AN ASSEMBLY LANGUAGE FOR THE SAM 244

| Support-Actors |

Directive

SPPTA label sig-list ({instruction)’)

Instructions

Id regl immed res-reg

St regl reg2

nop

optr opmdl [oprnd2] result

The directive for specifying a support-actor is simpler because no data block descriptors
need be specified. The id instruction performs the operation:

register[res-reg] .= DM[register{regl] + immed]
and the st instruction:
DM(register{reg2]] = registerreg!]

nop instructions can be used to fill delayed load slots if no other instruction can be inserted.
optr instructions are instructions like integer add, mul, etc. and their operands are either
register names (reg /) or immediate values (#1). No floating point instructions are supported.

C.1.2 Long-Latency Actors

Long-latency actors consists of 7., instruction, so the directive only serves the purpose of
identifying the instruction and its associated list of actors to signal.

P

%

APPENDIX C. A» ASSEMBLY LANGUAGE FOR THE SAM 245

| _ Support-Actors |
Directive

LA label sig-list instruction

Structure memory operations

SMalloc size res
SMdealloc opmd
SMread name offset dest [len]
SMwrite name offset src [len]

Inter-PE communications

Send src overl dest recv-sa {len]

Function applications

Apply f-name argl-offset resl-offset [len]
Return retl-offset [len]

SMalloc and SMdealloc are used to allocate and deallocate structure memory space.
Structure memory can be used for representing arrays, etc. The size field specifies how
many words the structure memory object must be and can be an overlay offset (&) or
an immediate value (#{). The field res is an overlay offset which points to the location
containing the base address of the just allocated structure memory object. oprnd is an
overlay offset pointing to a location which contains the base address of the structure
memory object to deallocate. The name field of SMread and SMwrite is an overlay offset
where the base address of the structure memory object can be found. offset is some location
in the overlay (specified as an overlay offset) which contains an offset value from the
structure meraory object's base address. The offset plus the base address points to the first
(or only one, depending on the optional len fieid) element to be read or written. len can be
an overlay base address offset or an immediate value. dest is the destination address where
the structure memory element(s) is to be put. And src is the source address which contains

*Indexing and bounds checking can be performed by compiler supplied code segments or some hardware
logic,

¥ 3

APPENDIX C. AN ASSEMBLY LANGUAGE FOR THE SAM 246

the data to be written to siriacture memory. Both dest and sre can be overlay offsets or
absolute address values (imznediate operand).

The src of the Send instruction specifies a location within the overlay of the first source
value to be copied to the location specified by the over! and dest values. The over! and
dest indicate the overlay and offset within that overiay {the first destination location) to
veceive the first source value. src, overl and dest can be overlay offsets or inmediate values.
iet . -sa is the id of the actor—the overlay base address (over/) along with the id forms the
actor instance’s identifisr—which is to be signaled once the data has been copied. recv-sa
can be an overlay cfset or immediate value. The optional length argument (len) specifies
the sumber of sources values to be copied to the destination. Note that acknowledgement
~ignals can be implemented by a Send instruction where the memory address of the source
and destination values point to non-existent memory locations.

At the machine code level, function application instructions will be converted into a
combination of calls to a meiiory resource manager which invokes the overlay operations as
described in section 5.2.3, and some Send instructions. Information about the function will
be extracted automatically by the assembler and put into the local constant area of a program
segment. In the apply instruction, f-name is the function name and is an actual label: the
assembler will be responsible for matching the labels to actual memory locations—locations
where function invocation information can be found. argl-offset is the location of the first
argument to be passed when the function is invoked and res!-offset specifies the location
where the first return valuc can be stored. Both can be an overlay offset value. The optional
length field len—an overlay offset or an immediate value—indicates how many arguments
are 1o be passed to the callee function. The ret-offset in the return instruction is the
igcation of the first return value and the optional length field indicates how many return
values are to be sent back to the caller function. 'The ret/-offset can be an overlay offest; -
the /en field can be an overlay offset or an immediate value.

APPENDIX C. AN ASSEMBLY LANGUAGE FOR THE SAM 247

C.1.3 Miscellaneous

To spect.y a function, the Func directive is used. no-args is an immediate value specifying
the number of input arguments the function is expecting, and acior is an actor directive. A
virtual top node, one for each function definition, is specified by the directive TN. Its only
component is an unconditional list. A virtual bottom no‘i* need not be specified since the
‘return’ L-actor terminates a function invocation. A virtual merge node is specified with
the MN directive and simply contains the label of the node and an unconditional signal list.

| Miscellaneous |
[Directive

Func label no-args ([actor]!)
TN sig-list
MN label sig-list

Appendix D

SAMAL Code for the Benchinark
Programs

The Super-Actor Machine Assembly Language code for SAXPY, SAXPBYBC, Livermore
Loop 1 and SAXPY3 are listed below. The SAMAL codes are a direct translation from the
actual “machine code” used in the simulations!. All the codes show the unrolled four times
version of the loops in which the super-actor ‘begin’ is the top node, i.e., it is signaled to
start the computation. (Note that the top node, ‘begin’, is also the loop pre-processing actor
for the loop.) Unrolling to eight and sixteen times are straightforward and are not shown
here. Creating multiple instances of the loop bodies, e.g., two, four and eight instances

reqaires the shuple replication of an overlay for each loop instance and triggering the top
node of each instance at the beginning of the simulation run.

!In the machine code for the simulated architecture, a WIttO instruction is simply indicated in a field
attached to the result field of an appropriate instruction—the last instruction which writes to that d-R-<cache
line. All Wrtto instructions simply force a write-back of the d-R-cache line back to main memory since the
LEU has not been implemented for the simulations.

APPENDIX D. SAMAL CODE FOR THE BENCHMARK PROGRAMS

12 temp spaces
8 lx‘ lY] QZ!
4 i n rem
base
enable counts
address—»

Figure D.1: Overlay layout for SAXPY.

D.1 SAXPY

SAXPY computes this expression:

Z :=foriinl,n
returns array of
a* X[{]+Y[i]
end for

249

The overlay layout for one unrolled-4 SAXPY loop instance is shown in tigure D.1.

Note that overlay does not include any function application information since the LEU has

not been implemented in the simulation yet.

In the following SAMAL code, value ‘a’ is stored in memory location 0. The code
only applies to an array size which is a multiple of four; code for handling the reraaining
elements (for an array size not a multiple of four) are notincluded. The number of remaining
elements to be processed is deposited in location six of the overlay at the end of the loop.

APPENDIX D. SAMAL CODE FOR THE BENCHMARK PROGRAMS

SA P begin (U: >m)

(0&4)

(isub rcl.0 #4 rcl.0)

MN m (U:

>Ccom

P)

SA FS comp (U: <comp) (T: <begin) (F: >xf)

{0&4)

(iadd
isub
i<
brf
iadd
i<

SPPTA igenl (U:

(1d
nop

rel.
rel.
regl
reg2
regl
ragl

reg0

0 #4 rel.0
1l rcl.0 regl
#0 reg?
#1
#4 rel.2
#0 regl)

#8

add regl #4
add reg0 §8

st
nop)

SPPTA igen2 (U:

(1d
1d
add
add
add
st
add
st

regl

reg0
reg0
regl
reg2
reg0
regl
reg3
reqg2

reg?

#9
$#10
#4
#4
#9
reg3
#1

recl

<xf <igenl)

regl

regl
reg2

<yf <igen2)

regl
reqg2
regl
reg2
reg3

rey3
)

SA P xf (U: >yf >igenl >m)

(OL@8
(fmul
fmul
fmul
fmul

O#0

rcl.
rcl.
recl.
rel.

R&12)

0 reg2.
1 rec2,.
2 re2,
3 re2.

rc3. 0
rec3. 1l
rc3.2
re3. 3)

o O O O

250

(. APPENDIX D, SAMAL TODE FOR THE BENCHMARK PROGRAMS 251

20
16 temp spaces

12
8| X Y (2

i n rem

base
address-

A engble counts

Figure D.2: Overlay layout for SAXPBYPC.

SA P yf (U: <xf >igen2 <yf)
(O&12 OL@9 R@10)

(fadd rcl.0 rc2.0 re3.0
fadd rel.l re2.1 re3.l
fadd rcl.2 rc2.2 re3.2
fadd recl.3 rc2.3 re3.3

wrtto 'LEU #3)

D.2 SAXPBYPC

SAXPBYPC computes this expression:

Z:=foriinl,n
returns array of
ax X[E]+bxY[i]+c
end for

The overlay layout for one unrolled-4 SAXPBYPC loop instance is shown in figure D.2.

APPENDIX D. SAMAL CODE FOR THE BENCHMARK PROGRAMS 252

In the following SAMAL code, value *a’ is stored in memory location zero, *b’ in one
and ‘¢’ in two.

SA P begin (U: >m)
(0&4)
(isub rcl.0 #4 rel.0)

MN m (U: >comp)

SA FS comp (U: <comp) (T: <beqin) (F: >xf >yf)

(0&4)

(iadd rcl.0 #4 rcl.o

isub rcl.l rel.0 regl

i< regl #0 reg2

brf reg2 #1

iadd regli #4 rcl.?2

i< regl #0 regl)

SPPTA igenl (U: <xf <igenl)
(14 regQ #8 regl
nop
add regl #4 regl
add reg0 #8 reg?2
st regl reg2
nop)

SPPTA igen2 (U: <yf <igen2)
(ld reg0 %9 regl
nop
add regl #4 regl
add reg0 #9 reg2
st reql reg2
nop)

SPPTA igen3 (U: <add2 <igen3)
(14 reg0 #10 regl
nop
add regl #4 regl
add reg0 #10 reg?2
st regl reg2

APPENDIX D. SAMAL CODE FOR THE SENCHMARK PROGRAMS

nop)

SA P xf (U: >addl >igenl >m)
(OL@8 0#0 R&l2)

{fmul rcl.0 xec2.0 rc3.0
fmul recl.l rc2.0 re3.l
fmul rel.2 rc2.0 re3.2
fmul rel.3 rc2.0 »23.3)

SA P yf (U: >addl >igen2 >m)
{O#0 OL@9 R&l6)

(fmul rel.l re2.0 re3.0
fmul rel.l re2.1 re3.l
fmul rel.l rc2.2 re3.2
fmul rel.l rc2.3 re3.3)

SA FP addl (U: »add2 <xf <yf)

(0&12 Q&16 R&20)

(fadd rcl.0 rec2.0 re3.0
fadd rel.l rc2.1 rec3.1
fadd rcl.2 rc2.2 re3.2
fadd rel.3 re2.3 rec3.3

SA P add2 (U: <addl <add2 >igen3)
(0&20 O#0 R@10)

(fadd rel.0 re2.2 re3.0
fadd rcl.l re2.2 rec3.l
fadd recl.2 rec2.2 re3.2
fadd rcl.3 rc2.2 re3.3

wrtto 'LEU #3)

253

R

APPENDIX D. SAMAL CODE FOR THE BENCHMARK PROGRAMS

24
20
16 temp spaces
12
8 6Z¢ iY’ 6S!
4 i n rem
base
|
address—m enable counts

Figure D.3: Overlay layout for Livermore Loopl.

D.3 Livermore Loopl

Livermore Loopl computes the expression:

S:=fortinl,n
returns array of

g+ (Yl x(r* Z[+10) +¢ x Z[i + 11]))

end for

254

The overlay layout for one unrolled-4 livermore loop! loop instance is shown in fig-

ure D.3,

In the following SAMAL code, value *q’ is stored in memory location zero, ‘r’ in one

and ‘t’ in two.

SA 5 begin (U: >m)
(0O&4 0&8)
{(isub rcl.0 #4 rcl.0
iadd rc2.0 #8 rc2.0
iadd rec2.0 #4 rc2.1)

APPENDIX D. SAMAL CODE FOR THE BENCHMARK PROGRAMS 255

MN m (U: >comp)

SA FS comp (U: <comp) (T: <begin) (F: >zl »>z2)

(0&4)

(iadd rcl.0 #4 rcl.O

isub recl.1l rcl.0 reqgl

i< regl #0 reg2

brf reg2 #1

iadd regl #4 rcl.2

i< regl #0 regl)

SPPTA igenl (U: <multl <igenl)
(1d reg0 #10 regl
nop
add reql #4 regl
add reg0 #10 reg2
st regl reg2

nop)

SPPTA igen2 (U: <zl <z2 <igen2)

(ld reg0 #8 regl
1d regq0 #9 reg2
aldd regl #4 regl
add reg2 #4 reg2
add reg0 #8 reg3
st regl reg3

add reg3 #1 reg3
st reg?2 reg3)

SPPTA igen3 (U: <addl <igen3)
(1d reg0 #11 regl
nop
add recl #4 regl
add reqg0 #11 reg2
st regl reg?2

nop)

SA P zl (U: >igenl >z3 >m)
(O#0 0@8 0@9 R&l2)
{fmul rcl.0 rc2.2 rec4.0

APPENDIX D. SAMAL CUDE FOR THI. BENCHMARK PROGRAMS

fmul rel.l re2
fmul rel.0 rc2
fmul rel.l re3

SA P z2 (U: >igen2
(O#0 O@9 Rs&l6)

(fmul
fmul
fmul
fmul

SA FP z3
(0&l12
(fadd
fadd
fadd
fadd

SA P mult
(OL@10
(fmul
fmul
fmul
fmul

SA P addl
(C#0 O
(fadd
fadd
fadd
fadd
wrtto

recl.0
rel.l
rel,O
rel.l

rec2.

rc2
rc2

rcl.

.3 red. 1l
.3 red .2
0 red . 3)

>z3 >m)

0 rc3.0
.1 re3.l
.1 re3.2
2 rc3.3)

(U: >multl <zl <z2\
0&16 R&20)

rel,o
rel,?2
rc2.0
rc2.2

I (U:
0&20
rcl.,0
rcl.l
recl.?2
rel.3

{U:

rcl.
rcl.0
rel.0
rcl.0
"LEU

recl
rcl
rc2
rc2

.1 rc3.
.3 rec3.
.1 re3.
.3 re3.

w PR o

>addl <z3 >igenl)
R&24)

rc2
rc2
rec2
rc2

#3)

D4 SAXPY3

.0 re3.
.1 re3d.
.2 rel.
.3 re3.

Ww i o

)

<multl <addl >igen3)
&24 R@11)

0 rc2.
rc2.
rcz.
rc2.

re3.0
re3.l
re3.2
re3d. 3

LS O e -}

256

The expression computed by SAXPY3 is shown in fipure 8.2. The overlay layout for one
unrolled-4 SAXPY3 loop instance is shown in figure D.4.

APPENDIX D. SAMAL CODE FOR THE BENCHMARK PROGRAMS 257

T temp spaces

12 ‘z'
KU | Y| X2 | Y2

1 n rem

base
address——»-

enable counts

Figure D.4: Overlay layout for SAXPY3.

in the following SAMAL code, value ‘al’ is stored in memory location zero, ‘a2’ in
four and ‘a3’ in eight. Though the instruction list of super-actors x2, x3, and y2 are given in
the code, the actual machine code for x2 and x3 simply have pointers to the instructions of
super-actor x/ since they are all the same. The same is true for y/’s and y2’s instructions.

SA P begin (U: >m)
(O&4)
(isub rcl.0 #4 recl.0)

MN m (U: >comp)

SA FS comp (U: <comp) (T: <begin) (F: >x1 >x2)

(0&4)

(iadd rcl.0 44 rcl.0

isub rel.l rcl.0 regl

i< regl #0 reqg2

brf reg2 1

iadd regl #4 rcl.?2

i< regl #0 regl)

SPPTA igenll (U: <xl1 <igenll)
(ld reg0 #8 regl
nop
add regl #4 regl

€

APPENDIX D. SAMAL CODE FOR THE BENCHMARK PROGRAMS

add reqg0 #8 reg2
st regl reg?2
nop)

SPPTA igenl2 (U: <yl <igen?2)
(ld regD #9 regl
nop
add regl #4 regl
add reg0 #9 reg?
st regl reg?
nop)

SPPTA igen2l (U: <x2 <igen21l)
{1d reg0 #10 regl
nop
add regl #4 regl
add reg0 #10 reg2
st regl reg2
nop)

SPPTA igen22 (U: <y2 <igen22)
(1d regld #12 regql
nop
add regl #4 regl
add reg0 #12 reg2
st regl reg2
nop)

SPPTA igen3 (U: <y3 <igen3)
(1d reg0 #12 regl
nop
add regl #4 regl
add reg0 #12 reg2
st regl reg2
nop)

SA P x1 (U: >yl >igenll >m)
(OL{d8 O#0 R&l6)
(fmul rel.0 re2.0 rc3.0
fmul rcl.l re2.0 re3.l

258

APPENDIX D. SAMAL CODE FOR THE BENCHMARK PROGRAMS

fmul rcl.2 rc2.0 re3.2
fmul rcl.3 re2.0 rel.3)

SA P %2 (U:

>y2 >igen2l >m)

(OL@10 O#4 R&24)

{ fmul
fmul
fmul
fmul

SA FP x3
(0&20
{fmul

fmul
fmul
fmul

SA P yl (U:

{0&16
(fadd
fadd
fadd
fadd

SA P y2 (U:

(0824
{ fadd
fadd
fadd
fadd

SA P y3 (U:

rcl.
recl.
rcl
rcl.

(U:
O#8
rcl.
rcl.
rcl
rel.

0
1
.2 rc2.
3

1
.2 re2.
3

rec2.
re2.,

rci.
rc3i.
re3,
rci,

[= N o B o I)
w P o

rcl.

<yl >y3)
R&32)
0 rc2.

re2.

rci,
rc3.
rc3l.
re3,

o O OO
Wt - O

rc2.)

<x1 >igenl2 >x3)

OL@9 R&20)

rel.
rcl.
rcl.
rcl.

0 re2.0 rec3.0
1 rc2.l re3.l
2 rc2.2 re3.2
3 rc2.3 re3,3)

<x2 >igen22 >y3)

OL@11 R&28)

rcl.
Icl.
rcl.
rcl.

0 re2.0 re3.0
1 re2.l re3.l
2 rc2.2 re3.2
3 re2.3 re3d,3)

<x3 >igen3 <y2)

(0832 0828 R@12)

{fadd recl.0 rec2.
fadd recl.l rc2.
fadd rcl.2 re2.
fadd rcl.3 xc2.
wrtto

rc3.o
re3.l
reid,2
re3i.3

Wt = O

'LEU #3)

259

Bibliography

[1] W. B. Ackerman. Efficient implementation of applicative languages. Technical
Report 323, Laboratory for Computer Science, MIT, Cambridge, MA, March 1984,

(2] W. B. Ackerman and J. B. Dennis. VAL—a value-oriented algorithmic language.
Technical Report 218, Laboratory for Computer Science, MIT, 1979,

[3] A. Agarwal, B. H. Lim, D. Kranz, and J. Kubiatowicz. APRIL: A processor archi-
tecture for multiprocessing. In Proceedings of the 17th International Symposium on
Computer Architecture, pages 104-114. ACM and IEEE, 1990.

[4] T. Agerwala and Arvind. Special issue on data flow systems. JEEE Computer, 15(2),
February 1982,

[5] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers—Principles, Technigues, and
Tools. Addison-Wesley Publishing Co., 1986.

(6] G. S. Almasi and A. Gottlieb. Highly Parallel Computing. Benjamin/Cummings
Publishing, Redwood City, California, 1989.

[73 R. Alverscn et al. The Tera computer system, In Proceedings of the 1990 Interna-
tional Conference on Supercomputing, June 11-15, 1990, Amsterdam, Netherlands,

pages 1-6. ACM, 1990. Also in ACM SIGARCH Computer Architecture News, 18:3,
September, 90.

[8] J. Archibald and J.-L. Baer. Cache coherence protocols: Evaluation using a muitipro-

cessor simulation model. ACM Transactions on Computer Systems, 4(4):273-298,
November 1986.

260

BIBLIOGRAPHY 261

[9] Arvind. Personal communication, 1990.

[10] Arvind and D. E. Culler. Dataflow architectures. Annual Reviews iiz Computer
Science, 1:225-253, 1986.

[11] Arvind and D. E. Culler. Managing resources in a parallel machine. In J. V. Woods,
editor, Fifth Generation Computer Architecture, pages 103-121. Elsevier Science
Publishers, 1986.

[12] Arvind, D. E. Culler, and K, Ekanadham. The price of asynchronous parallelism:
An analysis of dataflow architeceures. Computation Structures Group Memo 278,
Laboratory ‘or Compter Science, MIT, 1988,

[13] Arvind, M. L. Dertouzos, R. S. Nikhil, and G. M. Papadopoulos. Project dataflow—
the Monsoon architecture and the Id programming language. Computation Structures
Group Memo 283, Laboratory for Computer Science, MIT, March 1988.

[14] Arvind and R. A. Iannucci. A critique of multiprocessing von Neumann style. In
Proceedings of the Tenth Annual International Symposium on Computer Architecture,
pages 426136, 1983.

[15] Arvindand R. A. Iannucci. Two fundamental issues in multiprocessing. Computation
Structures Group Memo 226, Laboratory for Computer S. ce, MIT, 1987.

[16] Arvind, R. S, Nikhil, and K. K. Pingali. I-structures: Data structures for parallel
computing. ACM TOPLAS, 11(4):598-632, October 1989.

(17] Arvind and R. S. Nikhil. Executing a program on the MIT tagged-token dataflow
architecture. IEEE Transactions on Computers, 39(3):300-318, March 1990.

[18] R. A.Ballance, A, B. Maccabe, and K. J. Ottenstein. The program dependence web:
A representation supporting control-, and demand-driven interpretation of imperative
languages. In ACM SIGPLAN’90 Conference on Programming Language Design
and Implementation, White Plains, NY, June 20-22, 1990, page 257. ACM, 1990,

BIBLIOGRAPHY 262

[19] D. Callahan and A. Porterfield. Data cache performance of supercomputer appli-

cations. In Proceedings of the Supercomputing *90 Conference, New York, NY,
1990.

[20] D. Callahan, S. Carr, and K. Kennedy. .mproving register allocation for subscripted
variables. Proceedings of the SIGPLAN *90 Conference on Programming Language
Design and Implementation, June 1990. White Plains, N,

[21] L.M.Censier and P. Feautrier. A new solution to the coherence problem in multicache
systems. IEEE Transactions on Computers, pages 11121118, December 1978.

[22] G.J. Chaitin et al. Register allocation via coloring, In Proceedings of the SIGPLAN
Symposium on Compiler Construction, pages 98-105, 1982.

[23] F.Chow andJ. Hennessey. Register allocation by priority-based coloring. Conference
Record of ACM SIGPLAN Symposium on Compiler Construction, 1984.

[24] D. E. Culler and Arvind. Resource requirements of dataflow programs. In Proceed-

ings of the 15th Annual International Symposium on Computer Architecture, pages
141-150, 1988.

[25] D.E. Culler and G. M. Papadopoulos. Monsoon: an explicit token-store architecture.

In Proceedings of the International Symposium on Computer Architecture, 1990.

[26] K. Dai and W. K. Giloi. A basic architecture supporting LGDG computation. In

Proceedings of the 1990 International Conference on Supercomputing, Amsterdam,
the Netherlands, 1990,

(27] 1. B. Dennis. First version of a data-flow procecwre language. In Proceedings of the

Colloque sur la Programmation, volume 19 of Lecture Notes in Computer Science,
pages 362-376. Springer-Verlag, 1974,

[28] J. B. Dennis. Data flow supercomputers. IEEE Computer, 13(11):48-56, November
1980.

BIBLIOGRAPHY 263

[29] J. B. Dennis. Data flow for supercomputers. In Proceedings of the 1984 CompCon,
March 1984,

[30] J. B. Dennis. The evolution of ‘static’ data-flow computing. In J.-L. Gaudiot and
L. Bic, editors, Advanced Topics in Data-Flow Computing. Prentice-Hall, 1990.

[31] J. B.Dennis, J. B. Fosseen, and J. P. Linderman. Data flow schemas. In International
Symposium on Theoretical Programminy;, LNCS 5, pages 187-215. Springer-Verlag,
Berlin, 1972,

{32] J. B. Dennis and G. R. Gao. An efficient pipelined dataflow processor architecture.
In Proceedings of the Supercomputing '88 Conference, pages 368-373, Florida,
November 1988. IZEE Computer Society and ACM SIGARCH.

[33] J. B. Dennis and G. R. Gao. An efficient pipelined dataflow processor architecture.

Technical Report TR-SOCS-88.06, School of Computer Science, McGill University,
Montreal, February 1988,

(34] J. B. Dennis and D. P. Misunas. A preliminary architecture for a basic data-flow

processor. In The Second Annual Symposium on Computer Architecture, pages
126-132, January 1975.

[35] J. B. Dennis and K. S. Weng. Application of data flow computation to the weather
problem. In High Speed Computer and Algorithm Organization, pages 143-157,
New York, 1977. Academic Press.

[36] J. B. Dennis, Y-P.L. Willie, and W, B. Ackerman. The MIT data flow engineering

model. In Proceedings of the IFIP 9th World Computer Congress, Paris, France,
September 1983.

[37] P. Evripidou and J.-L. Gaudiot. The USC decnupi~d multilevel data-flow execu-
tion model. In J.-L. Gaudiot and L. Bic, editors, Advanced Topics in Data-Flow
Computring. Prentice-Hall, 1991,

¢ 4

i

BIBLIOGRAPHY 264

[38] J.A.Fisher. Wide instruction word architectures: solving the supercomputer software

problem. In A. Lichnewsky and C. Saquez, editors, Supercomputing, pages 55-71.
Elsevier Science Publishers, New York, 1987.

[39] M.J.Flynn. Some computer organizations and their effectiveness. IEEE Transactions
on Computers, C-21(9):948-960, September 1972.

[40] D. D. Gajksi, D. A. Padua, D. J. Kuck, and R. H. Kuhn. A second opinion on data
flow machines and languages. JEEE Computer, 15{2):58-69, February 1982,

[41] G.R. Gao. Aspects of balancing techniques for pipelined data flow code generation,
Journal of Farallel and Distributed Computing, 6:39-61, 1989,

[42] G. R. Gao. A Code Mapping Scheme for Dataflow Software Pipelining. Kluwer
Academic Publishers, Boston, December 1990,

[43] G. R. Gao. A fiexible architecture model for hybrid data-flow and control-flow

evalvation. In J.-L. Gaudiot and L. Bic, editors, Advanced Topics in Data-Flow
Computing. Prentice-Hall, 1991.

[44] G.R.Gao, H.H.J. Hum, and J. M. Monti. Towards an efficient hybrid dataflow archi-

tecture model. In Proceedings of PARLE '91, Parallel Architectures and Languages
Europe, Eindhoven, the Netherlands, June 1991.

[45] G. R. Gao, H. H. J. Hum, and Y. B. Wong. An efficient scheme for fine-grain

software pipelining. In Proceedings of the CONPAR '90-VAPP IV Conference,
pages 709-720, Zurich, Switzerland, September 1990.

[46] G.R.Gao, H. H. J. Hum, and Y. B. Wong. Limited balancing —an efficient method
for dataflow software pipelining. In Proceedings of the Intern itional Symposium on
Parallel and Distributed Computing, and Systems, New York, NY, October 1990.

[47] G. R. Gao, H. H. J. Hum, and Y. B. Wong, Parallel function invocation in a
dynamic argument-fetching dataflow architecture. In Proceedings of PARBASE 90—
International Conference on Databases, Parall.i Architectures, and Their Applica-

tions, pages 112-116, Miami Beach, FL, March 7-9 1990. 1IEEE Computer Society.

(BIBLIOGRAPHY 265

[48] G. R. Gao, H. H. J. Hum, and Y. B. Wong. Towards efficient fine-grain software
pipelining. In Proceedings of the ACM International Conference on Supercomputing,
pages 369-379, Amsterdam, the Netherlands, June 1990,

[49] G. R, Gao, H. H. J. Hum, and Y. B, Wong. Toward efficient fine-grain software
pipelining and the limited balancing technique. International Journal of Mini and
Microcomputers, 13(2):57-68,1991.

[50] G. R. Gao and R. Tio. Instruction set definition for the argument-fetching data-
flow machine., ACAPS Technical Memo 01, School of Computer Science, McGill
University, Montreal, February 1988,

[51] G.R.Gao, R.Tio, and H. H. J. Hum. Design of an efficient dataflow architecture with-
out dataflow. In Proceedings of the International Conference on Fifth-Generation
Computers, pages §61-868, Tokyo, Japan, December 1988.

[52] J. L. Gaudiot. Structure handling in data flow systems. IEEE Transactions on
Computers, C-35(6):489-502, 1986.

[53] J.L.Gaudiotand L. Bic, editors. Advanced Topics in Data-Filow Computing. Printice-
Hall, 1991.

[54] P. P. Gelsinger et al. Microprocessors circa 2000. IEEE Spectrum, pages 4347,
October 1989.

[55] D. Ghosal and L. N, Bhuyan. Performance evaluation of a dataflow architecture.
IEEE Transactions on Computers, 39(5).615-627, May 1990,

(56] J.R.Goodman and M.-C. Chiang. The use of static column RAM as a memory hierar-

chy. In Proceedings of the 11th International Symposium on Computer Architecture,
pages 167-174, 1984,

[57] V. G. Grafe, G. S. Davidson, J. E. Hoch, and V. P. Holmes. The Epsilon data-

flow processor. In Proceedings of the 16th International Symposium on Computer
Architecture, pages 36—45, Israel, June 1989.

BIBLIOGRAPHY 266

[58] T. R. Gross. Code Optimization of Pipeline Constraints. PhD thesis, Stanford
University, 1983,

[59] J. R. Gurd, C. C, Kirkham, and I. Watson. The Manchester prototype dataflow
computer. Communications of the ACM, 28(1):34-52, January 1985.

(0] R. H. Halstead Jr and T. Fujita .ASA: A mulitithreaded processor architecture
fer parallel symbolic computing. In Proceedings of the 15th Annual International
Symposium on Computer Architecture, pages 443-451, 1988.

[61] J.L.Hennessy and N. P. Jouppi. Computer technology and architecture: An evolving
interaction. IEEE Computer, pages 18-29, Sept. 1991,

[62] J. L. Hennessy and D. A, Patterson. Computer Architecture: A Quantitative Ap-
proach. Morgan Kaufmann Publishers, Inc., 1990.

[63] L. Hennessy. VLSI processor architecture. IEEE Transactions on Computers, C-

33(12):1221-1246, 1984.

[64] K. Hiraki, S. Sekiguchi, and 1. Shimada. Efficient vector processing on a dataflow
supercomputer SIGMA-1. In Proceedings of IEEE Computer Society and ACM
SIGARCH Supercomputing ' 88 Conference, Orlando, FL, 1988.

[65] H. H.J. Hum and G. R. Gao. A register-cache for fine-grain multi-thread comput-

ing. ACAPS Technical Memc 13, School of Computer Science, McGill University,
Montreal, August 1990.

[66] H. H. . Hum and G. R. Gao. Efficient support of concurrent threads in a hybrid
dataflow/von Neumann architccture. In Proceedings of the IEEE Symposium on
Parallel and Distributed Processing, December 1991.

[67] H.H.J. Hum and G. R. Gao. A novel high-speed memory organization for fine-grain

multi-thread computing. In Proceedings of PARLE '91, Parallel Architectures and
Languages Europe, Eindhoven, the Netherlands, June 1991,

BIBLIOGRAPHY 267

[68] H. H. J. Hum and G. R. Gao. A high-speed memory organization for hybrid data-

flow/von neumann computing. Future Generation Computer Systems, to appear in
1992.

(69] H. H. J. Hum and G. R. Gao. Modeling the Super-Actor Machine. Acaps tech-
nical memo, School of Computer Science, McGill University, Montreal, 1992, in
preparation,

[70] H.H.J. Hum and Y. B. Wong. A prototype of an argument-fetching dataflow machine
interpreter/simulator. ACAPS Design Note 13, School of Computer Science, McGill
University, Montreal, May 1989,

[71] H. H. J. Hum and Y. B. Wong. The design and implementation of an argument-
ferching dataflow machine testbed. In Proceedings of the Canadian Conference on
Electrical and Computer Engineering, Ottawa, Ont., September 1990.

(72] K. Hwang and F. A. Briggs. Computer Architecture and Parallel Processing. Mc-
Graw Hill Book Company, New York, 1984.

[73] R. A. Iannucci. Toward a dataflow/von Neumann hybrid architecture. In Proceedings

of the 15th Annual International Symposium on Computer Architecture, pages 131-
140. ACM, June 1988.

{74] R. A.lannucci. Parallel Machines: Parallel Machine Languages. Kluwer Academic
Publishers, Boston, MA, 1990.

[75] R. A. lIannucci. A Datafiow / von Neumann Hybrid Architecture. PhD thesis, MIT,

Dept. of Electrical Engineering and Computer Science, May 1988. Technical Report
MIT/LCS/TR-228.

[76] N.P. Jouppi and D. W. Wall. Available instruction-level paralielism for superscalar
and superpipelined machines. In Proceedings of the Third International Conference

onArchitectural Support for Programming Languages and Operating Systems, pages
272-282, Boston, MA, 1988,

BIBLIOGRAPHY

268

[77) N. P. Jouppi, J. Bertoni, and D. W. Wall. A unified vector/scalar floating-point
arciitecture. In Proceedings of the Third International Conference on Architec-

tural Support for Programming Languages and Operating Systems, pages 134-143,
Boston, Massachusetts, 1989,

" [78] M. G. H. Katevenis, Reduced Instruction Set Computer Architectures for VLSI, MIT

Press, Cambridge, 1985.

[79] D. Kroft. Lockup-free instruction fetch/prefetch cache organization. In Proceedings
of the Eighth International Symposium on Computer Architecture, 1981,

[80] J.R. McGraw et al. SISAL: Streams and iteration in a single assignment lanpuage—

language reference manual version 1.2, Technical Report M-146, Lawrence Liver-
more National Laboratory, 1985.

[81] F. H. McMahon. The Livermore FORTRAN Kemels: A computer test of numer-
ical performance ranges. Technical Report UCRL-537415, Lawrence Livermore
National Laboratory, Livermore, CA, December 1986,

[82] 1. M. Monti. Interprocessor communication supports for a multiprocessor dataflow

machine. Master’s thesis, School of Computer science, McGill University, Montreal,
March 1991.

[83] L. B. Montz. Safety and optimization transformations for data fiow programs.

Technical Report 240, Laboratory for Computer Science, MIT, Cambridge, MA,
January 1980.

[84] R, S. Nikhil and Arvind. Can dataflow subsume von Neumann computing? In

Proceedings of the 16th Imernational Symposium on Computer Architecture, pages
262-272, Israel, 1989,

[85] R. S. Nikhil. Id (Version 88.0) reference manual. Computation Structures Group
Memo 284, Laboratory for Computer Science, MIT, March 1988.

BIBLIOGRAPHY 269

[86] R.S. Nikhil, G. M. Papadopoulos, and Arvind. *T: a killer micro for a brave world.

Computational Structures Group Memo TM-325, M. L. T, Laboratory for Computer
Science, July 1991. '

[87] R.S. Nikhil, The parallel programming language Id and its compilation for parallel

machines. Computation Structures Group Memo 313, Laboratory for Computer
Science, MIT, July 1990.

[88] B. Nitzberp °nd V. Lo, Distributed shared memory: A survey of issues and algo-
rithms, IEEE Computer, 24(8):52-60, Aug. 1991.

(891 G. M. Papadopoulos. Implementation of a General Purpose Dataflow Multiproces-
sor. PhD thesis, MIT, 1988.

[90] G.M.Papadopoulosand D. E. Culler. Monsoon: An explicit token-store architecture.

In Proceedings of the Seventeenth Annual International Symposium of Computer
Architecture, Seattle, WA, pages 82-91, 1990.

[91] S.Z. Pasha and E. H. Welbon. Performance-directed design guidance using simu-
lation. In Mamata Misra, editor, IBM RISC System/6000 Technology. International
Business Machines Corporation, 1990. Order No. SA23-2619.

[92] D. A. Patterson. Reduced instruction set computers. Communications of the ACM,
28(1):8-21, 1985.

[93]1 A.Plas. LAU system architecture. In Proceedings of the 1976 International C onfer-
ence on Parallel Processing, Aug. 1976.

[94] A.Plas, D. Comte, O. Gelly, and J. C, Syre. LAU system architecture; A parallel
data driven processor based on single assignment. In Proceedings of the 1976
International Conference on Parallel Processing, pages 293-302, 1976.

[95] J. E. Rumbaugh. A parallel asynchronous computer architecture for data flow pro-

grams. Technical Report MIT/LCS/TR-150, Laboratory for Computer Science, MIT,
1975.

BIBLIOGRAPHY 270

[96] S. Sakai et al. An architecture of a datafiow single chip processor. In Proceedings

of the 16th Internaticnal Symposium on Computer Architecture, pages 46-53, Israel,
1989.

[97] S. Sakai et al. Pipeline optimization of a data-flow machine, In J, L. Gaudiot and
L. Bic, editors, Advanced Topics in Dataflow Computing. Prentice-Hall, 1990.

(98] V. Sarkar. Synchronization using counting semaphores. Proceedings of the ACM
1988 International Conference on Supercomputing, pages 627-637, July 1988.

[99] V. Sarkar. Partitioning and Scheduling Parallel Programs for Multiprocessors.
Pitman, London and The MIT Press, Cambridge, MA, 1989. In the series, Research
Monographs in Parallel and Distributed Computing. This monograph is a revised
version of the Author’s Ph.D. dissertation published as Technical Report CSL-TR-
87-328, Stanford University, April 1987.

[100] C.Scheurichand M. Dubois. The design of a lockup-free cache for high-performance

multiporocessors. In Proceedings of the Supercomputing ' 88 Conference, Orlando,
FL, 1988,

[101] M.L. Simmons and H. J. Wasserman. Performance evaluation of the IBM RISC Sys-
tem/6000; Comparison of an optimized scalar processor with two vector processors.
In Proceedings of Supercomputing 90, pages 132-141. IEEE, November 1990.

[102] A.J. Smith. Decoupled access/execute computer architectures. ACM Transactions
on Computer Systems, 2(4):289-308, Nov. 1984,

[103] A.J.Smith. Cache memories. ACM Computing Surveys, 14(3):473-530, Sept. 1989,

(104} B. J. Smith. A pipelined shared resource MIMD computer. In Proceedings of the
1978 International Conference on Parallel Processing, 1978.

[105] B. J, Smith. The architecture of HEP. In J. S. Kowalik, editor, Parallem MIMD

Computation: HEP Supercomputer and its Application, pages 41-55. The MIT
Press, 1985.

BIBLIOGRAPHY 271

[106] K.So and V. Zecca. Program iocality of vectorized applications running on the IBM
3090 with vector facility. /BM Systems Journal, 27(4):436-451, 1988.

[107] K. So and V. Zecca. Cache performance of vector processors. In /5th International
Symposium on Computer Architecture, pages 261-268. IEEE, June 1988.

{108] H. S. Stone and J. Cocke. Computer architecture in the 1990s. IEEE Computer,
pages 30-38, Sept. 1991,

[109] 8. S. Thakkar, editor, Selected Reprints on Dataflow and Reduction Architectures.
[EEE Computer Society Press, Washington, D.C., 1987.

[110] Mark R. Thistle and Burton J. Smith. A processor architecture for Horizon. In
Proceedings of the Supercomputing ' 88 Confereace, Orlando, FL. 1988.

[111] J. E. Thornton. Parallel operation in the Control Data 6600. In Proceedings of the
AFIPS Fall Joint Computer Conference, 1964.

[112] K. W. Todd. Function sharing in a static data flow machine. In Proceedings of the
1982 International Conference on Parallel Processing, pages 137-139, 1982.

[113] R.M. Tomasulo. An efficient algorithm for exploiting multiple arithmetic units, /BM
Journal of Research and Development, 11:25-33, Junuary 1967.

[114] K. R. Traub, A compiler for the MIT tagged-token dataflow architecture. Master’s
thesis, Dept. of Electrical Engineering and Computer Science, MIT, 1986.

[£15] P. C. Treleaven, D. R. Brownbridge, and R. P. Hopkins. Data-driven and demand-
driven computer architecture. Computing Surveys, 14(1):93-143, March 1982.

[116] P. C. Treleaven, R. P, Hopkins, and P. W. Rautenbach. Combining data flow and
control flow computing, Computer Journal, 25(2):207-217, 1982.

{117] A. E. Veen. Dataflow machine architecture. Computing Surveys, 18(4):365-396,
December 1986.

BIBLIOGRAPHY 272

[118] D. W. Wall. Limits of instruction-level paralielism. In Proceedings of the In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS IV), pages 176188, April 1991.

[119] M. 1. Wolfe. Optimizing Supercompilers for Supercomputers. Pitman, London
and MIT Press, Cambridge, MA, 1989. In the series, Research Monographs in
Parallel and Distributed Computing. Revised version of the author’s Ph.D. disserta-
tion, Published as Technical Report UIUCDCS-R-82-1105, University of 1llinois at
Urbana-Champaign, 1982,

[120] C.-L. Wu and T.-Y. Feng. Tutorial: Interconnection Networks for Parallel and
Distributed Processing. IEEE Computer Society Press, Washington, D.C., 1984,

[121] T. Yuba et al. Sigma-1: A dataflow computer for scientific computations. Computer
Physics Communications, 37:141-148, 1985.

