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ABSTRACT 

Pork spoilage has been a global concern because it can bring about economic loss as well as 

cause health hazard to consumers. While traditional methods for assessing spoilage offer accuracy, 

they suffer from drawbacks including long processing time, sample destruction, and laborious 

protocols. To develop a more rapid, non-invasive and easy-to-use approach for pork spoilage 

identification, we integrated a portable Raman spectrometer with machine learning algorithms for 

fresh and spoiled pork samples differentiation. In this thesis project, pork tenderloin and pork 

musculus semimembranosus were selected as samples to evaluate the capability of Raman 

spectrometer for pork spoilage detection. During 14-day preservation of pork samples at 4°C, we 

collected Raman spectra (785 nm) and assessed microbiological profiles at the same time. The 

spectral data was divided based on microbial testing into two categories: fresh and spoiled. Then 

chemometrics including PCA and several supervised machine learning algorithms were 

constructed to solve 2-group classification problem. The models collectively attained a 70% 

accuracy rate, with our self-developed convolutional neural networks (CNNs) deep learning 

algorithm surpassing this with an accuracy of over 90%. Additionally, we examined bacterial 

community dynamics via 16S rRNA high-throughput sequencing, unveiling a direct correlation 

between Raman spectral changes and bacterial composition at both the phylum and genus levels. 

In conclusion, this study validates the use of a portable Raman device as an effective tool for 

identifying pork spoilage, with implications for broader applications in the rapid detection of meat 

spoilage within the food industry. 
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RÉSUMÉ 

La détérioration de la viande de porc est une préoccupation mondiale car elle peut entraîner 

des pertes économiques ainsi que des risques pour la santé des consommateurs. Alors que les 

méthodes traditionnelles d'évaluation de la détérioration offrent une précision, elles présentent 

des inconvénients, notamment des temps de traitement longs, la destruction des échantillons et 

des protocoles laborieux. Pour développer une approche plus rapide, non-invasive et facile à 

utiliser pour l'identification de la détérioration du porc, nous avons intégré un spectromètre Raman 

portable avec des algorithmes d'apprentissage automatique pour la différenciation des 

échantillons de porc frais et avariés. Dans ce projet de thèse, le filet de porc et le musculus 

semimembranosus du porc ont été sélectionnés comme échantillons pour évaluer la capacité du 

spectromètre Raman à détecter la détérioration du porc. Pendant la conservation des échantillons 

de porc pendant 14 jours à 4°C, nous avons collecté des spectres Raman (785 nm) et évalué les 

profils microbiologiques en même temps. Les données spectrales ont été divisées en deux 

catégories en fonction des tests microbiologiques : frais et avariés. Ensuite, des méthodes de 

chimiométrie incluant PCA et plusieurs algorithmes d'apprentissage automatique supervisés ont 

été construits pour résoudre le problème de classification en 2 groupes. Les modèles ont 

collectivement atteint un taux de précision de 70 %, avec notre algorithme d'apprentissage 

profond de réseaux neuronaux convolutionnels (CNNs) auto-développé dépassant cela avec une 

précision de plus de 90 %. De plus, nous avons examiné la dynamique de la communauté 

bactérienne via le séquençage à haut débit de 16S rRNA, révélant une corrélation directe entre les 

changements spectraux Raman et la composition bactérienne aux niveaux du phylum et du genre. 
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En conclusion, cette étude valide l'utilisation d'un appareil Raman portable comme outil efficace 

pour identifier la détérioration du porc, avec des implications pour des applications plus larges 

dans la détection rapide de la détérioration de la viande dans l'industrie alimentaire. 
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CHAPTER 1. INTRODUCTION 

1.1 General Introduction 

Pork and pork-based products have constituted a significant component of human diets for 

millennia. In recent decades, meat consumption has surged globally, with pork being the most 

consumed meat type internationally (Tao and Peng 2015). Therefore, ensuring the safety and 

quality of pork is of paramount importance. Owing to its richness in various nutrients, pork is 

highly perishable and vulnerable to microbial contamination. Such contamination precipitates a 

reduction in both quality and safety, engendering public health concerns (Huang et al. 2013). The 

meat industry is thus obligated to monitor and assess bacterial spoilage within meat products to 

comply with consumption sanitary standards. Although numerous traditional methods have been 

developed for the detection of meat spoilage, they are usually costly, time-intensive, complex, 

and destructive to the samples (Liu et al. 2019). In recent years, the development of rapid, portable, 

non-invasive and cheap analytical technique arises attention in meat spoilage detection (Kucha 

and Ngadi 2020). 

Raman spectroscopy has demonstrated considerable promise as a technique for identifying 

food spoilage, possessing the advantages mentioned previously and showcasing its potential in 

several studies (Sowoidnich et al. 2010; Zając et al. 2017; Yang et al. 2020; Orlando et al. 2021). 

Esteemed for its non-destructive capabilities in biological analysis, Raman spectroscopy provides 

detailed insights into the structural changes occurring within samples. The technique operates on 

the principle of Raman scattering, which elucidates the vibrational modes of the chemical bonds 

or functional groups within molecules (Windom and Hahn 2013). Consequently, Raman 

spectroscopy is theoretically capable of detecting subtle changes in pork meat during storage, 
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thereby assessing its freshness. Furthermore, recent advances in multivariate statistical analyses 

have enhanced the efficiency of interpreting complex Raman spectra, potentially revolutionizing 

its applicability in the evaluation of meat spoilage. 

Moreover, 16S rRNA high-throughput sequencing has emerged as a formidable method for 

elucidating the phylogeny and taxonomy of bacteria and archaea within varied microbial 

populations (Janda and Abbott 2007). It can provide reliable comprehension of bacterial 

communities and analyze the relationship between changes in microorganisms and pork spoilage. 

The understanding of microbial compositions during pork spoilage process can reveal possible 

microbial changes and offer insights to the metabolic process involved in pork spoilage. This 

thesis aims to ascertain the efficacy of Raman spectroscopy in the detection of pork spoilage and 

to investigate the association between Raman spectral data and bacterial compositions. 

Furthermore, this research endeavors to develop a Raman spectral database, which could serve as 

a valuable resource for future applications in the food indus      

1.2 Research Hypotheses and Objective 

This thesis articulates three primary hypotheses: (1) Portable Raman spectroscopy can be 

utilized effectively for the acquisition of time-series Raman spectral data. (2) Such spectra can 

be categorized and differentiated on the basis of microbial load and the extent of spoilage. (3) 

Raman spectral data are amenable to analysis through machine learning algorithms, enabling 

the formulation of predictive models for the precise evaluation of meat spoilage. 

To validate the proposed hypotheses, the research delineates three corresponding 

objectives: (1) To systematically gather microbe-related test data and Raman spectra throughout 

the storage timeline. (2) To conduct a thorough analysis of the Raman spectra in conjunction 

with sequencing data. (3) To construct a comprehensive database and to engineer an advanced 

deep learning algorithm for the expeditious identification of pork spoilage. 
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CHAPTER 2. LITERATURE REVIEW 

2.1 Introduction of pork spoilage 

2.1.1 Importance of pork spoilage detection 

Pork and its products are one of the most consumed meat products around the world owing 

to its property of containing relatively high levels of minerals, polyunsaturated fatty acids, 

essential amino acids and vitamins that are of vital importance to maintain human health (Hu et 

al. 2022). According to the statistics from Food and Agriculture Organization of the United 

Nations (FAO), global pig meat production output was 124.6 million tonnes in 2022, increasing 

by 1.8 percent from 2021 and accounting for about 46 percent of global meat production output. 

Such escalating demand for pork has catalyzed considerable advancements in the meat industry 

and intensified consumer emphasis on meat safety and quality (Zhao et al. 2022a). 

The rich nutrients in pork meat provide a potential breeding ground for undesirable bacteria, 

making it vulnerable to microorganisms spoilage and lipid oxidation and resulting in off-flavors, 

discoloration, gas and slime production (Zhang and Peng 2016; Godziszewska et al. 2017). In the 

United States alone, the economic toll of pork spoilage on the meat industry is estimated to surpass 

1 billion US dollars annually (Li et al. 2022a). Moreover, the degradation of pork due to 

biochemical reactions and microbial metabolic activity poses not only a financial burden but also 

a significant health risk to consumers (Huang et al. 2014). Therefore, it is necessary to evaluate 

the freshness of pork to assure its quality and safety throughout all stages of meat production, 

transportation and storage phases (Li et al. 2016a).      

2.1.2 Influencing factors of pork spoilage 

While meat quality losses could be implicated by multiple agents, such as microbiological 

metabolism, actions of enzymes, chemical reactions and physical changes, spoilage caused by 
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bacteria metabolic activities is the major concern (Pellissery et al. 2020; Gu et al. 2021). 

Microbiological contamination originates from animal microbiota, processing environment and 

human manipulations, and the spoilage status is related to the types and amount of 

microorganisms under particular storage conditions (Gill 1983; Nychas et al. 2008). Previous 

studies have demonstrated that bacteria are the predominant spoilage microorganisms in meat. 

Although yeasts and molds are also present, they are rarely monitored because they are described 

as subdominant microbiota, and can be detected mainly after long storage period (Chaillou et al. 

2015). Among all the factors that would influence the diversity and abundance of microbiome 

during meat spoilage, temperature and packaging are considered as the paramount ones 

(Doulgeraki et al. 2012).  

2.1.2.1 Storage temperature 

Temperature below the optimum temperature range of microbial growth can retard 

microbiological propagation and achieve the prevention of spoilage. Traditional preservation 

methods, such as chilled and frozen storage, have been in practice for decades (Lu et al. 2019). 

Chilled storage (-1.5 to 5°C) typically extends the meat's freshness for a few weeks. Despite the 

reduced temperature, oxidative and microbial degradation continues to a certain extent, rendering 

it suitable for short-term preservation only. (Coombs et al. 2017; Yuan et al. 2023). Conversely, 

frozen storage at -18°C is a long-standing solution for extended preservation, spanning several 

months to over a year (Muela et al. 2010; Soyer et al. 2010; Pinheiro et al. 2019). This method, 

however, is not without drawbacks, as ice crystal formation can cause cellular damage and muscle 

deterioration, adversely affecting water holding capacity and color stability (Soyer et al. 2010; 

Leygonie et al. 2012). In addition to these established methods, superchilling, which entails 

reducing the temperature of food products to 1-2°C below their initial freezing point, has garnered 

significant attention in recent years (Duun and Rustad 2007). This technology combines the 
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beneficial effects of low temperature with conversion of only partial water into ice, which makes 

it less susceptible to the deteriorative process (Kaale et al. 2011). Although there are many choices 

for storage temperature, refrigerated (4°C) pork is the most commonly form of raw pork sale in 

the market because it owns superior quality in tenderness, juiciness, flavor and color (Wang et al. 

2021c). Moreover, this storage condition is effective in deactivating enzymes and slowing 

biochemical decay, consequently extending the shelf-life of the product. 

2.1.3 Packaging condition 

Packaging exerts a significant influence on meat quality, with the primary packaging 

techniques categorized into air-permeable, vacuum, and modified atmosphere packaging (MAP) 

(McMillin 2008). Air-permeable packaging employs films designed with perforations that 

facilitate oxygen diffusion from the atmosphere, thereby creating an aerobic environment that can 

hasten spoilage through the proliferation of Pseudomonas species (Doulgeraki et al. 2012; 

McMillin 2017). Vacuum packaging is an effective technique for raw meat preservation based on 

the removal of surrounding atmosphere from the pack to maintain vacuum. The wrapping material 

in vacuum packaging is impermeable and serves as a barrier between outside the environment 

and within the container. Nonetheless, this condition would promote the dominance of obligate 

and facultative anaerobes including lactic acid bacteria and B. thermosphacta (Enfors et al. 1979). 

As opposed to vacuum packaging, MAP replace the original gaseous environment by flushing 

three principal gases: nitrogen (to avoid the oxidation of lipids), carbon dioxide (to inhibit 

microbial growth) and oxygen (to prevent the reproduction of anaerobes) (Narasimha Rao and 

Sachindra 2002). These gases are used in combination with varying proportions to impart the 

desirable meat quality.    

2.1.4 Indicators of pork spoilage  

2.1.4.1 Physical and chemical indexes 
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As spoilage progresses, microbial activity and endogenous enzymatic actions precipitate 

alterations in both the physical properties and chemical composition of meat. These 

transformations are manifest in several physicochemical parameters including pH, water-holding 

capacity (WHC), color (L*, a*, b*), levels of thiobarbituric acid reactive substances (TBARS), 

and total volatile basic nitrogen (TVB-N) content (Díaz et al. 2008; Coombs et al. 2017; Bekhit 

et al. 2021). 

The pH value is a widely recognized and reliable gauge of meat freshness, with the pH of 

fresh meat generally ranging between 5.8 and 6.2 (Waimin et al. 2022). A pH exceeding 6.5 is 

indicative of spoilage and represents a potential health hazard. Throughout the maturation of meat 

products, including pork, there is a hydrolytic breakdown of muscle proteins into ammonia, 

amines, and other alkaline compounds, culminating in an elevated pH (Liu et al. 2019).  

Water-holding capacity describes the ability of muscle to retain moisture, which is also a 

key quality parameter and has profound impacts on the tenderness, firmness and juiciness of meat 

products (Bowker and Zhuang 2015). The underlying mechanisms of WHC are intricately linked 

to muscle proteins, especially myofibrillar proteins, which bind and immobilize water within the 

muscle structure (Huff-Lonergan and Lonergan 2005). Throughout the postmortem aging process, 

proteolysis and denaturation of proteins impact on water forced out of the muscle fibers and 

expelled into the surroundings (Koomkrong et al. 2017; Zhang et al. 2023). Traditionally, WHC 

is either measured as drip loss or ultimately observed as purge in fresh meat packaging (Kapper 

et al. 2014). Elevated drip loss negatively impacts the visual appeal and textural quality of pork, 

resulting in decreased consumer acceptance and potential rejection. 

Color perception notably affects consumer purchasing decisions regarding pork, with 

brightness often equated with freshness and quality (Norman et al. 2004). Colorimetric analysis, 

typically articulated in CIE parameters such as lightness (L*), redness (a*), yellowness (b*), and 
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color difference (E*), facilitates objective assessments. There is an established positive 

correlation between the a* value, indicating redness, and consumer favorability; a bright red hue 

is generally favored (Holman et al. 2016). As the storage time prolongs, meat discoloration occurs, 

correlated with the redox states of myoglobin derivatives—namely deoxyhemoglobin, 

oxymyoglobin, and metmyoglobin (Zhang and Peng 2016). Furthermore, these shifts in 

myoglobin are closely associated with oxidative changes and the proliferation of spoilage-specific 

microorganisms (Motoyama et al. 2010).  

Thiobarbituric acid reactive substances (TBARS) are indicative of the extent of lipid 

oxidation, a process of critical concern as it drives the development of rancid odors and surface 

browning in meat (Wu et al. 2016). TBARS test is to determine the extent of formation of 

malonaldehyde (MDA), which is the most important and abundant aldehyde among the 

degradation products of lipid peroxides derived from the oxidation of polyunsaturated fatty acids 

(Wenjiao et al. 2014). This assay operates on the principle that MDA reacts stoichiometrically 

with thiobarbituric acid (TBA) to form a pink MDA-TBA adduct, the intensity of which can be 

measured spectrophotometrically. Consequently, the TBARS value serves as a quantitative metric 

for assessing the freshness of pork based on the degree of lipid oxidation (Kucha and Ngadi 2020). 

Total volatile basic nitrogen (TVB-N) refers to the volatile substances that contain alkaline 

nitrogen, including ammonia (NH3), dimethylamine nitrogen [(CH3)2NH], and trimethylamine 

nitrogen [(CH3)3N] (Prabhakar et al. 2019). These compounds arise from the breakdown of 

proteins and nitrogenous substances, resulting in the formation of organic amines (Bekhit et al. 

2021). Specifically, as proteins in pork degrade, they yield low molecular weight metabolites such 

as histamine, tyramine, putrescine, and tryptamine (Yang et al. 2017). These metabolic 

byproducts are implicated in off-flavors and sensory displeasure, with their increasing 
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concentration correlating with the progression of meat spoilage. Thus, TVB-N serves as a critical 

indicator for evaluating the extent of meat spoilage (Leng et al. 2021). 

2.1.4.2 Microbial profiles  

Total viable counts (TVC) of bacteria serve as a critical microbiological metric for assessing 

the hygienic quality and safety of meat, as well as for monitoring spoilage over time. The 

acceptable limits for TVC vary by country and region. In the European Union, TVC of 

mechanically separated meat should be less than 5 × 106 CFU/g (EC No. 2073/2005). In China, 

according to GB/T 9959.2-2008, the limit of TVC in meat is < 1 × 106 CFU/g. Similarly, in 

Australia, the TVC standard for hygienic meat and meat products is recommended as < 1 × 106 

CFU/g or CFU/cm2 (AS 4696:2007) (Kim and Jang 2018). As a consequence, it has been 

commonly established that the critical value of TVC in relation to the spoilage is 106 CFU/g 

(Wang et al. 2012). Surpassing this benchmark can lead to discernible deterioration in meat 

quality and pose risks to consumer health (Barbin et al. 2013; Tao and Peng 2015). 

As TVC increase during the storage period, the microbial communities also undergo shifts 

and succession, reflecting on the changes of predominant microorganisms. Several studies were 

conducted using 16S rRNA sequencing to reveal the bacterial community profiles of pork samples 

during preservation at 4°C (Li et al. 2019; Zhou et al. 2020; Wang et al. 2021c; Zhao et al. 2022b). 

While specific predominant genera identified vary across studies, a consensus is observed at the 

phylum level, with Proteobacteria and Firmicutes consistently representing the highest relative 

abundances. At the genus level, Pseudomonas spp., Acinetobacter spp., Photobacterium spp., and 

Brochothrix spp. are recurrently recognized. Variability in these studies likely arises from a 

multitude of factors, including environmental conditions, storage duration, atmospheric exposure, 

meat source and cut, as well as the inherent heterogeneity of meat samples. Profiling microbial 

communities is instrumental in identifying sources of contamination and targeting specific 
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bacterial growth, thus informing the development of preservation techniques designed to manage 

the predominant spoilage microorganisms effectively.           

2.2 Detection technologies of pork spoilage 

The assessment of pork quality can be characterized as the evaluation of various attributes 

that determine its safety for consumption over a certain period (Taheri-Garavand et al. 2019). 

Physical, chemical, and microbiological indicators, indicative of freshness, have been explored 

in the preceding section. Utilizing these indicators, a range of robust methods have been 

established for assessing pork freshness and identifying spoilage. 

Conventional methods for determining meat quality are generally divided into subjective 

and objective approaches (Wu et al. 2022). Subjective methods rely heavily on human sensory 

assessment, drawing on an inspector's experience to evaluate aspects like color, smell, flavor, 

and tenderness. Despite offering immediate feedback, such evaluations are inherently laborious 

and biased, with outcomes often influenced by the inspector's level of fatigue (Limbo et al. 2009). 

In contrast, objective methods involve laboratory-based microbial assays and physicochemical 

analyses using specialized equipment. Microbial assessments typically include culturing in 

controlled conditions and colony counting, while devices such as pH meters and colorimeters 

gauge physical and chemical attributes (Elmasry et al. 2012). These techniques offer 

improvements over sensory methods in terms of accuracy and repeatability (Kamruzzaman et 

al. 2015). However, they are not without their challenges, including potential sample destruction, 

the necessity for trained personnel, and significant time investment (Khaled et al. 2021). To 

accommodate the modern meat industry's need for automation and high-throughput processing, 

novel rapid and non-destructive techniques have been developed for efficient quality assessment. 

In recent years, heightened consumer consciousness regarding food safety and 

advancements in computer science have paved the way for the integration of artificial 
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intelligence in non-invasive quality assessment methods (Cheng et al. 2017). Consequently, 

various non-destructive technologies have been employed as effective instruments for 

evaluating pork spoilage, including sensor technology, computer vision, and spectroscopy (Shi 

et al. 2021). 

Sensor techniques incorporate a suite of sensors designed for detecting odors, tastes, or 

patterns, notably through the application of electronic noses (E-nose) and electronic tongues (E-

tongue) (Munekata et al. 2023). These devices are engineered to replicate human sensory 

functions, effectively identifying volatile compounds and profiling taste-related signals. 

Researchers have thus leveraged E-nose and E-tongue systems to quantify total viable counts 

(TVC) and total volatile basic nitrogen (TVB-N) in pork, providing a metric for freshness (Gil 

et al. 2011; Wang et al. 2012; Li et al. 2016b; Chen et al. 2019). Despite these applications, the 

analytical scope of E-nose and E-tongue technologies remains limited, often providing a narrow 

range of detection indices that may not fulfill the requirements for a comprehensive, multi-index 

evaluation (Shi et al. 2021).  

Computer vision (CV) technology captures spatial data through digital imagery, 

supplanting the need for human visual assessment, and is adept at extracting features such as 

color, size, marbling, and other textural attributes of the meat's surface (Girolami et al. 2013). A 

typical CV setup includes a camera, controlled lighting, a computer, and specialized image 

processing software. This technology has been successfully deployed for evaluating pork color 

and marbling, assessing pork freshness, and estimating the quality of both pork and poultry 

meats (Xiao et al. 2014). Nonetheless, CV technology has a notable limitation; it is constrained 

to external and surface characteristics and does not yield insights into the internal composition 

of the sample (Taheri-Garavand et al. 2019).  
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Spectroscopic techniques are among the most advanced for detecting spoilage in food and 

meats, as alterations in meat constituents produce distinct spectral fingerprints. These methods 

are frequently coupled with chemometric approaches and multivariate statistical analyses to 

yield an extensive data analysis. Within the scope of meat spoilage detection, several 

spectroscopic technologies have been employed, including near-infrared (NIR) spectroscopy 

(Horváth et al. 2008; Balage et al. 2015; Kucha and Ngadi 2020), Fourier transform infrared 

(FTIR) spectroscopy (Papadopoulou et al. 2011; Zając et al. 2017; Fengou et al. 2019), Raman 

spectroscopy (Sowoidnich et al. 2010; Yang et al. 2020), and hyperspectral imaging (HSI) 

(Barbin et al. 2013; Dissing et al. 2013; Huang et al. 2013; Feifei et al. 2015; Zheng et al. 2017). 

Each technique offers unique benefits and their applicability within the meat industry has been 

validated.  

Raman spectroscopy, in particular, enjoys the advantage of minimal interference from 

water molecules, which exhibit weak Raman scattering, thus avoiding the strong interference 

signals commonly encountered in NIR or FTIR (Santos et al. 2018). Furthermore, the database 

for Raman peak assignment is well-established, facilitating the identification of chemical 

structures within biological tissues. The convergence of advancements in stoichiometry and 

computational technology has enabled the widespread application of Raman spectroscopy in 

meat spoilage detection (Talari et al. 2015). However, to optimize its potential, more rigorous 

research is required to establish repeatable and robust analytical models. Taken together, Raman 

spectroscopy shows distinguished potential as a rapid and promising technique for pork spoilage 

or freshness identification, also to explore microbial and quality change during preservation. 

More details of Raman spectroscopy will be introduced in the following section. 

2.3 Raman spectroscopy 
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Raman spectroscopy was first introduced in the first half of 20th century by the Nobel 

laureate Chandrasekhara Venkata Raman and Grigorij Samuilovič Landsberg (Orlando et al. 

2021), but it was established after the development of laser light equipment implementation in 

the second half of the century. As a non-destructive analytical technique, Raman spectroscopy is 

highly versatile, suitable for both laboratory and field conditions, and adept at detecting structural 

changes in diverse sample states, including solids and liquids. Renowned for its rapid, 

straightforward, and non-invasive approach, the application of Raman spectroscopy has expanded 

significantly, finding utility in the analysis of agricultural products (Yang and Ying 2011), and 

branching out to various other industries, including food safety and the textile sector (V et al. 

2019).  

2.3.1 Mechanism and instrumentation 

The fundamental mechanism of Raman spectroscopy is based upon the inelastic scattering 

of photons, also referred to as Raman scattering. Unlike elastic scattering, in which the frequency 

of the scattered light is the same as incident photon, Raman scattering results in the emission of 

photons with shifted frequency due to the interactions between incident light and vibrational 

energy of the molecules (Windom and Hahn 2013). The energy gap between incident and Raman-

scattered photon is termed as Raman shift or wavenumber, which describes the vibrational modes 

of chemical bond or functional group within the molecule. Raman scattering occurs when a 

molecule vibrational mode is excited by incident light and cause deformation in electron cloud, 

thereby result in a change in polarizability. Raman spectrum is a plot of the intensity of the 

scattered light as a function of Raman shift. Usually, Raman spectra are plotted in units of intensity 

(which can be arbitrary) versus Raman shift in wavenumbers (cm-1) so that data can be easily 

compared even different frequencies of the incident light are used. Since Raman shift is unique 
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within each molecule, Raman spectra can depict the molecular composition and structure of a 

targeted material thus to provide fingerprinting information of the sample. 

Raman spectrum is divided into two regions: the fingerprint region that ranges from 400 to 

1800 cm-1 and high wavenumber region ranging from 2800 to 3800 cm-1 (E. Masson et al. 2018). 

The majority of Raman spectroscopic studies for biomedical applications focus on the 

fingerprinting region, which is rich in biochemical information associated with proteins, lipids, 

nucleic acids and carbohydrates (Haka et al. 2009; O’Brien et al. 2017). To be more specific, 

characteristic bands associated with proteins are amide I to VII (I: 1600–1690 cm−1, II: 1480–

1580 cm−1, III: 1230–1300 cm−1, IV: 625–770 cm−1, V: 640–800 cm−1, VI: 540–600 cm−1, VII: 

200 cm−1) (Rygula et al. 2013). Wavenumber region between 1050 and 1500 cm-1 is related to 

lipids and the most typical features of Raman spectra of lipids are involved with the presence of 

hydrocarbon chain (Czamara et al. 2015). Spectral bands at 800-1200 cm-1 are assigned to 

stretching vibrations of the OH, CH/CH2 and C-O/C-C groups in carbohydrates (Wiercigroch et 

al. 2017). Except for the fingerprinting region, high wavenumber regions also contain valuable 

information corresponding to the vibration of the analytes, which is complementary to the patterns 

found in the fingerprinting region. The assignment of most common Raman bands in biological 

tissues have been summarized by numerous studies, which can serve as a library for the 

interpretation and analysis of Raman peaks (Talari et al. 2015).  

In comparison with its counterpart Rayleigh scattering, Raman scattering could rarely occur 

with low probability. Its increasing application is mainly attributed to the development of highly 

efficient laser source, sensitive detectors, valid Rayleigh filter and high-throughput optics (Chase 

1994). The instrumentation of modern Raman spectroscopy is usually composed of light source, 

filter, monochromator, sample holder and detector. A schematic diagram of Raman spectrometer 

is shown in Figure 2.1. Several types of excitation lasers have been used in Raman spectrometer, 
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such as argon ion (488.0 and 514.5 nm), krypton ion (530.9 and 647.1 nm), He:Ne (632.8 nm), 

Nd:YAG (1064 nm and 532 nm) and diode laser (Das and Agrawal 2011). Among these, diode 

laser source is more commonly applied to biological tissues because they can provide a higher 

energy efficiency than gas-based laser (Angel et al. 1995; Müller et al. 2013). In biological studies, 

particularly live cells, NIR lasers especially at 785 nm and 830 nm are most extensively utilized 

as the excitation light. This is due to the fact that NIR laser can reduce the chance of fluorescence 

interference, as well as they have a lower photon energy that does not cause substantial 

photodamage to the samples (Butler et al. 2016; Wang et al. 2018b). 

Besides, there are two major technologies used to collect Raman spectra: namely dispersive 

Raman spectroscopy and Fourier transform Raman spectroscopy. They are different in laser 

source and how they detect and analyze Raman scattering signals. Both techniques have unique 

advantages and application scenarios (Das and Agrawal 2011). When selecting Raman 

spectroscopic instrumentation, factors such as sample characteristics, output requirement and 

others should be all taken into consideration to achieve an ideal result.    

 

Figure 2.1 A schematic diagram of Raman spectroscopic system (Wang et al. 2018b). 

2.3.2 Advantages of Raman spectroscopy in food applications 

Traditional analytical methods like high-performance liquid chromatography (HPLC), gas 

chromatography (GC), and their mass spectrometry-coupled variants, along with atomic 
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absorption spectrometry, have seen widespread use in detecting and identifying components in 

agricultural and food products (Yang and Ying 2011). Although these methods are powerful and 

accurate, they are time-consuming, slow, invasive, and require strict sample pretreatment process 

or professional operation (Jin et al. 2016). Spectral analysis techniques such as infrared 

spectroscopy (IR), fluorescence spectroscopy, and Raman spectroscopy, offer a contrast by being 

rapid, non- or less-destructive, and more cost-effective. IR is intensively interfered by water in 

biological samples because water has strong absorption bands in IR, and fluorescence 

spectroscopy is only limited to the samples that have fluorescence effects. In contrast, water, the 

main constituent in food samples, only generates weak Raman signals and therefore exhibits 

much less interference with Raman spectra (Li and Church 2014). This feature provides Raman 

spectroscopy significant advantages over IR spectroscopy in aqueous and biochemical studies. 

Besides, Raman spectroscopy is also well known for its minimum sample preparation procedure 

and easy-to-use operation process. Additionally, Raman spectra can cover a wide range of 100-

4000 cm-1, which reveal abundant compositional and structural knowledge. The concentration-

dependent nature of Raman peaks further enables quantitative analysis (Wang et al. 2021a). These 

benefits, coupled with the advancement of intelligent data processing algorithms, have propelled 

Raman spectroscopy to the forefront of applications in agricultural and food science (Sun et al. 

2022).   

2.3.3 Application of Raman spectroscopy in food spoilage detection 

Rapid detection of food spoilage is crucial, and Raman spectroscopy has emerged as a potent 

technique for quality assessment and spoilage characterization through microbial load analysis. A 

wealth of research has affirmed Raman spectroscopy's efficacy in identifying spoilage across 

various food categories, including meats (Sowoidnich et al. 2010; Argyri et al. 2013; Cheng and 

Sun 2015; Zając et al. 2017; Jaafreh et al. 2018, 2019; Yang et al. 2020; Kim et al. 2021; Liu et 



 16 

al. 2023), fruit (Guo et al. 2021b; Cai et al. 2023), beverage (Rodriguez et al. 2013; Uusitalo et al. 

2017), and vegetables (Sachdev et al. 2016). Among these applications, the application in meat is 

more investigated since Raman spectra are sensitive to the changes in proteins and lipids that can 

be considered as the markers of meat spoilage. To further understand and evaluate its performance, 

several representative studies related to identification of meat spoilage using Raman spectroscopy 

will be introduced below. 

Sowoidnich and co-workers used a portable 671-nm Raman spectroscopic device for rapid 

meat spoilage detection of porcine musculus longissimus dorsi (LD) and musculus 

semimembranosus (SM) (Sowoidnich et al. 2012). In this study, meat samples were stored at 5°C 

for 3 weeks. A series of time-dependent Raman spectra were collected, and the spectral data were 

analyzed by principal component analysis (PCA). The separation in PCA plot for both LD and 

SM coincided with the time slot around the 7 post-mortem day when bacterial surface load 

exceeded 106 CFU/cm2. Thus, the researchers concluded that Raman spectroscopy was effective 

for differentiating between fresh and spoiled meat. However, it is critical to note that the study 

did not employ any validation or alternative multivariate classification techniques to corroborate 

the PCA findings. Similar limitations were present in related research (Schmidt et al. 2010; 

Sowoidnich et al. 2010). Nonetheless, these series of studies set up the foundation to fast evaluate 

meat spoilage using Raman spectroscopy, which requires further investigation and 

comprehensive analysis. 

A further study used FT-IR and Raman spectroscopies to detect and record spoilage process 

in chicken meat (Zając et al. 2017). The research entailed storing chicken breast muscle at 22°C 

over a ten-day period, during which spectral data were collected. The analysis of the spectral 

information involved deconvoluting the experimental Raman bands into Lorentzian components. 

The analytical phase consisted of correlating the integral intensities of specific Raman bands with 
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the presence of free amino acids and protein structures. This correlation followed patterns 

identified in prior research. The findings led the authors to affirm that both Raman spectroscopy 

and FTIR are viable for tracking temporal changes attributable to meat spoilage. 

In another study, Yang and others investigated the use of Raman spectroscopy to predict 

beef spoilage in vacuum packaging and modified atmosphere packaging (Yang et al. 2020). 

Utilizing a partial least squares regression model, the researchers demonstrated the technique’s 

capability to predict total viable counts and concentrations of lactic acid bacteria 21 days post-

mortem. Similarly, the output proved that Raman spectroscopy could reflect meat spoilage by 

indicating the changes in the secondary structure of proteins and amino acid contents. Yet, it is 

still required to determine the robustness and repeatability of this model with a larger database. 

Overall, the application of Raman spectroscopy in determination of meat spoilage has been 

preliminarily investigated. In order to better detect meat spoilage, enhancement can be made from 

two ways: one is to further explore the relationship between intensities of Raman bands and the 

change of chemical compositions during deterioration process, and the other is to apply more 

advanced calculating algorithms to conduct multivariate statistical analysis with a larger 

independent dataset.     

2.4 Data Analysis of Raman Spectra 

Raman spectral data is in a nature of high dimension. This feature benefits the substantial 

information included in Raman spectra, but also makes it complicated to interpret the details 

hidden behind Raman peaks. Improvement of computational approach and experimental setups 

trigger the development of chemometrics. Chemometric technique is a powerful analytical 

method to extract information and subtle difference from Raman data using knowledge of 

mathematics, statistics and computer science. However, the difference in Raman spectra is not 

only delicate, it is also easily masked by artifacts, such as fluorescence background, instrumental 
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operation, measurement errors or degradation of samples (Brown et al. 2020). Hence, the process 

of removing those before applying chemometrics is of great importance. Although there is not yet 

a standardized procedure and it depends on the user’s need, the well-recognized workflow for 

Raman spectroscopic data analysis consists of data pre-processing and chemometric model 

construction.   

2.4.1 Data preprocessing 

Due to the presence of unwanted effects in Raman spectral data, it is necessary to suppress 

and remove those undesired effects to restore the ‘clean’ Raman signals of interest by doing data 

cleaning (Bocklitz et al. 2011). The methodology of Raman spectral pre-processing has been 

established and it is summarized to be a generally accepted workflow, which includes the steps 

of quality control, cosmic spikes removal, baseline correction, smoothing, spectral truncation, and 

normalization (Guo et al. 2021a). 

Quality control constitutes the preliminary step, aimed at ensuring the integrity of spectral 

data by eliminating apparent outliers. These outliers typically exhibit characteristics such as 

severe photodamage, pronounced signal contamination, or an inadequate signal-to-noise ratio. 

Identification of these outliers can be performed through visual examination or by employing 

more objective criteria like Hotelling’s t-squared, Mahalanobis distance or Q residuals to set 

exclusion thresholds (Penny and Jolliffe 2001). It is vital to substantiate the outlier status of a 

spectrum with evidence before its removal, thereby preserving the validity of the dataset. 

Subsequent to quality control, the removal of cosmic spikes is imperative. These spikes 

manifest as abrupt and pronounced peaks within Raman spectra, stemming from high-energy 

cosmic rays interacting with the charge-coupled device (CCD) detector (Ryabchykov et al. 2016). 

They appear randomly in Raman spectra and would affect the following analysis of data 

negatively because of their high intensities. To mitigate this, spike detection and correction 
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procedures are undertaken. Typically, an interpolation technique, utilizing values from the 

periphery of the affected regions, is implemented to restore the spectral data compromised by 

cosmic spikes (Gautam et al. 2015).   

Baseline correction is a crucial procedure to eliminate the influence from fluorescence 

background or substrate. It is easy to remove substrate background only through recording Raman 

spectra of substrate, followed by subtraction. Removing fluorescence background is more 

complicated since the background would vary, which requires mathematical calculation. Some 

common methods exploited for baseline correction are briefly summarized here: 1) polynomial 

fitting based method, which is a widely adopted method due to its simplicity and efficacy (Lieber 

and Mahadevan-Jansen 2003); 2) differentiation based method focusing on calculating 

derivatives, often implemented via the Savitzky-Golay algorithm or kernel estimation (Savitzky 

and Golay 1964; Wand and Jones 1994); 3) asymmetric least squares method, which provides a 

more refined correction by weighing the residuals differently (He et al. 2014). Given their 

flexibility, there is no one-size-fits-all solution - each method has its own merits, and the choice 

often depends on the requirements of subsequent data analysis. Cautions should be taken while 

selecting the method because unreasonable baseline correction will mask the original Raman 

spectral features. 

Smoothing of Raman spectra is considered discretionary in data analysis, as its benefits are 

often minimal and may potentially obscure valuable analytical details (Guo et al. 2021a). Then, 

the last step of Raman spectra preprocessing is spectral truncation and normalization. Spectral 

truncation is to cut down the wavenumber regions into a specific region of interest that contains 

substantial spectral features. After that, normalization is the final procedure that can eliminate the 

influence of intensity fluctuation. The peak that is constant among different spectra can be chosen 

as reference and scaled to 1. 
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It's crucial to recognize that the sequence and choice of preprocessing steps are not set in 

stone but rather contingent on the specific goals of the analysis. These steps can interact with one 

another, affecting the overall outcome; hence, they should be viewed holistically. To maintain 

integrity, it is advisable to apply a uniform preprocessing protocol across all spectra within a given 

dataset. 

2.4.2 Model construction 

Multivariate statistical analyses are efficient in translating multiple complex Raman spectra 

into informative results simultaneously for a better interpretation. There are many chemometric 

models available for selection and application. Even the models to choose vary between different 

dataset, the three main objectives of multivariate statistical analysis are: 1) data description; 2) 

classification, discrimination, and clustering; 3) regression and prediction (Gautam et al. 2015). 

In the context of this thesis, which centers on classification, discrimination, and clustering, 

subsequent discussions will concentrate on multivariate statistical analyses tailored for 

classification. 

Chemometric models for classification are typically categorized into two main types: 

unsupervised and supervised methods (Xu et al. 2020). Unsupervised methods are adept at 

identifying inherent groupings within an unlabeled data set without prior knowledge of class 

labels, often serving as a preliminary step to supervised analysis. Principal component analysis 

(PCA), K-Means clustering, and hierarchical cluster analysis (HCA) stand as exemplary 

unsupervised techniques (Byrne et al. 2016).  

Different from unsupervised methods, supervised methods require to label each class that 

needs to be discriminated, which can usually achieve a better clustering performance. To be more 

specific, there are two steps when conducting supervised models. The first phase is to establish a 

model using patterns from the training dataset, in which the class assignments are known. 
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Thereafter, the second phase is to use testing dataset to validate the reliability of the model learned 

from the first step. Common supervised models used in spectroscopic analysis are linear 

discrimination analysis (LDA), support vector machine (SVM), partial least square discrimination 

analysis (PLS-DA), Bayes classifier, and decision tree (DT) (Xu et al. 2020). However, these 

conventional models may not always be sufficient, especially when the underlying relationships 

in Raman spectral data are intricate. In such instances, advanced machine learning algorithms like 

artificial neural networks (ANN) can offer substantial improvements in discriminatory power 

(Özbalci et al. 2013). 

While supervised models are potent, their reliance on labeled data can become a challenge, 

particularly with extensive datasets. Consequently, a hybrid approach that combines unsupervised 

and supervised methods is sometimes preferable. The subsequent section will provide a succinct 

overview of various unsupervised and supervised chemometric models that have been 

implemented in this thesis.  

2.4.2.1 Principal component analysis (PCA) 

Principal component analysis is one of the best-known unsupervised multivariate statistical 

analysis technique, which aims to reduce the dimensionality of the data and generate a new set of 

orthogonal variables called principal components (PCs) (Ilie et al. 2017). The construction of PCs 

involves the computation of eigenvectors and eigenvalues from the covariance matrix of the data. 

The first PC captures the greatest variance within the data, with each successive component 

accounting for the next highest variance. Often, the cumulative variance described by the initial 

PCs is sufficient to represent the major spectral differences. Consequently, classification of 

Raman spectra in most cases can be achieved with these first few PCs (Tu and Chang 2012). 

Further insights can be gleaned from the loadings of the PCs, which elucidate the specific spectral 

features contributing to the variance (Shinzawa et al. 2009). 
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2.4.2.2 Logistic regression (LR) 

Logistic regression is a type of supervised linear regression model, which performs linear 

weighted calculation on input data to obtain different weights of input variables and results into 

possibility. Although the logistic regression model itself merely outputs the possibility of a certain 

class or event taking place and does not perform classification, it can be used as a classifier by 

choosing a cutoff value as the decision boundary to discriminate different classes. Previously, LR 

is most used when the variables are binary or dichotomous. It has been currently generalized to 

do multi-category classification with multinomial logistic regression model (Dreiseitl and Ohno-

Machado 2002; Lieber et al. 2009). 

2.4.2.3 Decision tree (DT) 

The decision tree is a versatile supervised machine learning algorithm that can facilitate both 

classification and regression tasks. It mirrors the architecture of a tree, with root nodes, branches, 

and leaf nodes. Within this framework, each leaf node corresponds to a class label outcome, while 

the branches serve as decision points that evaluate the attributes leading to those labels (Patel and 

Prajapati 2018). In the realm of multivariate statistical analysis, the decision tree stands out as a 

robust technique that integrates mathematical and computational methods to categorize and 

delineate datasets. A salient advantage of the decision tree model lies in its human-like reasoning 

capabilities, which allow for the simplification and intuitive interpretation of complex Raman 

spectral data (Li et al. 2022b).  

2.4.2.4 Support vector machine (SVM) 

Support vector machine (SVM) represents another sophisticated supervised classification 

model. Its foundational mechanism involves identifying an optimal hyperplane that serves as a 

decisive boundary to distinguish between various classes in a dataset (Qi et al. 2023). This optimal 

hyperplane is constructed by calculating the distance from data points to the boundary and 
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determine the one that has the maximum margin between separated classes (Lussier et al. 2020). 

When a new observation is projected into this hyperplane, it can be easily grouped. Sometimes, 

to handle more complex differentiation mission in higher dimensions, core function will be 

acquired as a competent technique (Pan et al. 2022). Given its distinctive effectiveness with 

spectroscopic data, SVM has been extensively applied alongside Raman spectroscopy within the 

food industry for tasks such as detecting adulteration, conducting compositional assessments, and 

identifying bacterial strains (Tan et al. 2019; Kelis Cardoso and Poppi 2021; Du et al. 2022). 

2.4.2.5 Convolutional neural networks (CNNs) 

Convolutional neural networks (CNNs) is a supervised deep machine learning model that is 

well-known for its ability of feature extraction from images and text (Fukuhara et al. 2019). 

Recently, CNNs has been employed to classify samples characterized by Raman spectroscopy, 

and it was reported that CNNs classifiers outperformed other conventional classification methods 

with a higher accuracy (Kazemzadeh et al. 2022). Some studies used the collected Raman spectra 

combined with CNNs to differentiate biological samples, such as E. coli, pork skin samples, as 

well as breast cancer tissue (Ho et al. 2019; Sohn et al. 2020; Ma et al. 2021). In addition, CNNs 

model has the advantage of working as an end-to-end tool, which can analyze spectroscopic data 

from preprocessing directly to the final classification output (Liu et al. 2017). Such an end-to-end 

tool can offer an alternative to the conventional analysis pipeline. Hence, the procedure such as 

baseline correction can be automatically achieved by using the CNNs system. 

The computational structure of CNNs mimics the complicated mechanism of how cells in 

human brain identify and deal with visual images. As shown in Figure 2.2, the architecture of 

CNNs model consists of five parts: input layers, convolutional layers, pooling layers, then 

followed by fully connected layers and output layers. Raw data can be imported directly into the 

input layers. Convolutional layers with kernel then will perform to extract features from input 
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layer, and different kernels extract different features (Gu et al. 2019). Thereafter, the function of 

pooling layer is to do a second extraction from convolutional layer, which can find out the most 

prominent characteristic (Liu et al. 2017). Normally, a CNNs architecture contains at least two 

convolutional layers and two pooling layers. With more layers are set, it is more likely to achieve 

better clustering results. The fully connected layers act to integrate and connect all the extracted 

features together to yield a categorization result in the output layers. With well-trained CNNs 

model, the raw data of Raman spectra can be input and processed to output a certain classification 

with a high accuracy. 

 

Figure 2.2 Illustration of basic structure of CNNs model (Gu et al. 2019). 

2.5 16S rRNA high-throughput sequencing 

In this thesis project, the change of features in Raman spectra during pork spoilage process 

is not only identified by chemometrics but also analyzed by 16S rRNA high-throughput 

sequencing in parallel to assess how microbial changes can affect Raman spectra. Therefore, the 

following session will give an introduction of 16S rRNA high-throughput sequencing technique 

and briefly summarize its application in bacterial community analysis in meat samples. 

2.5.1 Mechanism 

16S rRNA sequencing has been a powerful technology to clarify the phylogeny and 

taxonomy of bacteria and archaea in a diverse microbial population (Janda and Abbott 2007). The 

reasons of wide application of 16S rRNA sequencing for taxonomic classification can be 
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summarized as: 1) it is available in almost all bacteria. 2) the function and structure of 16s rRNA 

gene has not changed over time. 3) the length of the 16S rRNA gene can provide enough 

bioinformation (Janda and Abbott 2007). In general, 16S rRNA is a part of the 30S subunit of 

prokaryotic ribosome and it binds with 19 proteins to form the structure of the subunit 

(Schluenzen et al. 2000). To be more specific, 16S rRNA is approximately 1500 base pairs long 

and includes several highly conserved regions and 9 hypervariable regions that alternate each 

other (Bukin et al. 2019). The conserved regions can be used to design primers, and the 

hypervariable regions are for taxonomic classification (Yang et al. 2016). The taxonomic 

classification is based on the similarity of the hypervariable regions to generate operational 

taxonomic unit (OTU) by comparing OTU sequence with the database reference. Nowadays, the 

generally accepted assumption of OTU identification is that more than 95% similarity represents 

the same genus and more than 97% similarity can be regarded as the same species (Johnson et al. 

2019).  

Traditionally, 16S rRNA sequencing has been employed with Sanger capillary sequencing 

to distinguish genus, but this method is low-throughput and the process is time-consuming. The 

development of next-generation sequencing (NGS) can provide a higher throughput data and 

enables microbiome analysis based on 16S rRNA.  

Next generation sequencing, also known as high-throughput sequencing, is a technique that 

can sequence nucleotides faster and easier than Sanger sequencing, which is known as first 

generation sequencing. Compared with the first-generation sequencing, NGS has the 

improvement of easier preparation and processing millions of sequencing in parallel at the same 

time. In addition, the detection of bases is performed cyclically and the cost is more effective 

(Park and Kim 2016). However, current NGS technology rely on much shorter reads and have an 

intrinsically higher error rate than Sanger sequencing. The likelihood of error that happens vary 
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among each platform and sequencing scheme so that the users need to be aware of the risks to 

circumvent these issues. Nowadays, there are lots of available sequencing platforms, such as 

Roche, Life Technologies, and Illumina, all of which rely on different principles and can fit the 

need of varied read lengths (Janda and Abbott 2007). Since Illumina platform was used to proceed 

part of 16S rRNA sequencing in this thesis project, the next paragraph will briefly introduce the 

mechanism and workflow of Illumina technology. 

Illumina workflow includes four basic steps: library preparation, cluster generation, 

sequencing and data analysis. The first step of library preparation is finished by randomly 

fragmentating either DNA or cDNA sample, followed by oligonucleotides adapter ligation and 

adding barcodes. These adapters carry specific sequence and can enable the subsequent 

amplification and sequencing steps (Modi et al. 2021). For cluster generation, the library will be 

loaded into a flow cell and the adapters in fragments will be bounded to the complimentary oligos 

inside the lawn. Through the process of ‘bridge PCR’, each fragment will be amplified into 

clusters. Then, those clusters are ready for the sequencing step. While sequencing, Illumina uses 

reversible terminator-based method that can detect single base and carries out the ‘sequencing by 

synthesis’ technology. During each sequencing cycle, the result can be detected by the fluorescent 

emission of each cluster. Finally, the raw data will be preprocessed into clean data that can be 

used for downstream analysis. Then, the reads can be aligned to the reference database with 

specific pipelines. 

The high-throughput, effective and accurate attributes made the next generation sequencing 

based on 16S rRNA an outstanding method to analyze the community compositions and dynamics 

of microorganisms. 

2.5.2 Application in pork spoilage 
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16S rRNA high-throughput sequencing is recognized as a robust methodology for 

delineating the complexities of bacterial populations and elucidating the link between microbial 

shifts and pork spoilage. Various studies have delved into the transformation of microbial 

community compositions during the spoilage process of pork (Li et al. 2019; Zhou et al. 2020; 

Zhao et al. 2022b). One such study by Li and colleagues leveraged the V3-V4 hypervariable 

regions of 16S rRNA for high-throughput sequencing, providing insights into the bacterial 

communities present in refrigerated pork over a period of ten days (Li et al. 2019). The bacterial 

diversity decreased as storage time passed, and Pseudomonas, Acinetobacter and Photobacterium 

were dominant genus in pork samples and closely associated with pork spoilage. Another study 

used the same technique to analyze how temperature affected the bacterial communities in pork 

meat (Zhao et al. 2022b). The bacterial compositions were highly similar between pork meat 

stored at -2°C and 4°C, with Pseudomonads and Brochothrix being the dominant taxa. In another 

study, Zhou and others assessed the influence of bacterial extraction methods on bacterial 

communities of chilled pork (Zhou et al. 2020). The difference in operation led to various profiles 

of bacteria in the samples, but Pseudomonas and Photobacterium were present most frequently. 

In summary, the composition of bacterial communities in pork is influenced by a myriad of 

factors, including the origin of the sample, storage temperature, and handling methods. 

Investigating the microbial profiles throughout the pork spoilage process not only enriches our 

understanding of potential microbial transitions but also sheds light on the metabolic activities 

that contribute to spoilage. This knowledge can be leveraged to reinterpret changes in Raman 

spectra associated with spoilage, potentially unveiling correlations that enhance our ability to 

monitor and assess meat quality through spectroscopic techniques. 
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CHAPTER 3. MATERIALS AND METHODS 

3.1 Materials 

Fresh pork samples of two different portions, namely musculus semimembranosus (SM) 

(~1.5 kg/piece) and tenderloin (~900 g/piece), were supplied from a local company in Montreal. 

The samples were delivered with vacuum packaging at 4°C in foam box. There were three batches 

of each portion in total, which were considered as biological replicates. Therefore, each of these 

two portions had three replicates. Tryptic soy agar (TSA) and phosphate-buffer saline (PBS) were 

purchased from Sigma-Aldrich (Sigma-Aldrich, Canada). Raman spectra were collected by using 

an EZRaman-I Series portable Raman spectrometer (Enwave Optronics, Inc., Irvine, CA, USA). 

The total genomic DNA was extracted by using the DNeasy PowerSoil Pro Kit (Qiagen, Valencia, 

CA, USA).  

3.2 Sample preparation 

After the samples were received, each piece of pork meat was split into halves. One half 

was cut into 9 small pieces, with each weighted 25 g, and then these small cubes were preserved 

in sterile polyethylene sampling bags (Nasco B01385WA Whirl-Pak® Homogenizer Blender 

Filter Bags) separately for microbial testing. Another half was cut into 9 pieces of 1 cm thickness 

and also preserved in sampling bags individually for Raman spectral collection. All these meat 

samples were stored at 4°C for up to 14 days. 

3.3 Microbial testing of pork spoilage 

    Microbial testing was conducted through two parts simultaneously, namely using the 

traditional method to detect total viable counts and 16S rRNA high-throughput sequencing. The 

experiment was conducted on Day 1, Day 2, Day 3, Day 4, Day 6, Day 8, Day 10, Day 12, and 

Day 14. 



 29 

3.3.1 Determination of total viable counts 

For the determination of total viable counts, a piece of 25 g sample was taken out and 225 

mL PBS solution was added, followed by homogenization in a stomacher for 2 min at 22°C. After 

serial dilutions, 100 µL of the diluted samples was spread onto TSA, followed by incubation at 

37°C for 48 h to determine total viable counts. Each sample was analyzed in triplicates. 

3.3.2 16S rRNA high-throughput sequencing 

3.3.2.1 DNA extraction 

Samples of Day 1, Day 4, Day 8, and Day 14 were chosen for DNA extraction and high-

throughput sequencing analysis, and each sample was tested in duplicates. On each day, 40 mL 

of the homogenized solution was centrifuged at 15,000 ×g for 5 min. Then, the supernatant was 

discarded and the pellet was harvested for DNA extraction. Total genomic bacterial DNA was 

extracted using the DNeasy PowerSoil Pro Kit according to the manufacture’s protocols. The 

DNA quality was confirmed by 1% agarose gel electrophoresis, and the DNA concentration and 

purity were determined by using a UV-Vis spectrophotometer (NANODROP 2000C, Thermo, 

USA). 

3.3.2.2 High-throughput sequencing 

Extracted DNA samples were then sent to Novogene Corp. (Novogene, Beijing, China) for 

16S rRNA amplicon sequencing. The V4 variable region of the 16S ribosomal DNA gene was 

amplified with the primers 515F (GTGCCAGCMGCCGCGGTAA) and 806R 

(GGACTACHVGGGTWTCTAAT). PCR reactions were carried out with 15 μL of Phusion® 

High -Fidelity PCR Master Mix (New England Biolabs), 2 μM of forward and reverse primers, 

and about 10 ng template DNA. Thermal cycling consisted of initial denaturation at 98°C for 1 

min, followed by 30 cycles of denaturation at 98°C for 10 s, annealing at 50°C for 30 s, and 

elongation at 72°C for 30 s, and 72°C for 5 min finally.  
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The amplified PCR products were mixed with 1X loading buffer (contained SYB green) 

and detected by 2% agarose gel electrophoresis. Then, the mixture PCR products was purified 

using the Qiagen Gel Extraction Kit (Qiagen, Germany).  

Sequencing libraries were generated using the TruSeq® DNA PCR-Free Sample 

Preparation Kit (Illumina, USA) following manufacturer's recommendations and index codes 

were added. The library quality was assessed on the Qubit@ 2.0 Fluorometer (Thermo Scientific) 

and Agilent Bioanalyzer 2100 system. At last, the library was sequenced on an Illumina NovaSeq 

6000 platform (Illumina, San Diego, CA, USA) and 250 bp paired-end reads were generated. 

3.3.2.3 Data analysis 

The sequencing raw data with primer and barcode removed was trimmed and aligned to 

obtain high quality sequencing data using mothur v1.48.0 software 

(https://github.com/mothur/mothur/releases/tag/v1.48.0) following the protocol provided in a 

previous study (Kozich et al. 2013). Then, the effective tags with 97% similarity were clustered 

into OTU. Each OTU was assigned to a taxonomy based on SILVA Database (https://www.arb-

silva.de/) by a naive Bayesian model using Ribosomal Database Project (RDP) classifier v2.2 

(Wang et al. 2007; Quast et al. 2013).  

To evaluate richness and diversity of bacterial communities within sample, alpha-diversity 

indexes including Coverage, Chao 1, ACE, Shannon index, and Simpson’s index were calculated 

(Kemp and Aller 2004). Analysis of variance (ANOVA) was carried out for data analysis, and 

one-way multiple comparison test by Fisher Least Significant Difference (LSD) test was 

performed. A P-value of < 0.05 was considered as significant. Beta-diversity analysis was 

performed by Principal Co-ordinate Analysis (PCoA) to evaluate the difference in bacterial 

composition between samples. All the analyses were conducted using RStudio 

(http://www.rstudio.org/). 
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3.4 Raman spectral collection 

    Raman spectral collection time-points were consistent with microbial testing days, which 

were on Day 1, Day 2, Day 3, Day 4, Day 6, Day 8, Day 10, Day 12, and Day 14. On each 

measurement day, sample would be taken out from the sampling bag and deposited onto a clean 

petri dish covered with polyethylene cling wrap to mimic the pork packaging sold in the 

supermarket. For each sample, 30 spectra were collected with packaging from 30 different 

positions. Similarly, 30 spectra were also collected without cling wrap packaging from 30 

positions. The portable Raman spectrometer system is equipped with a 785-nm diode laser with 

a maximum laser power of 282 mW. The Raman scattering signals were generated by illuminating 

pork samples using a 250-mW laser power over 40-s integration time. The Raman signals over 

the wavenumber range of 2189-100 cm-1 were recorded with signal resolution of 1 cm-1. 

3.4.1 Pre-processing of Raman spectral data 

    First, cosmic spikes were visually inspected and removed from the collected Raman 

spectral data using NGSLabSpec software (Horiba Jobin Yvon, Edison, NJ, USA). Then, the 

baseline was corrected by Asymmetric Least Squares Smoothing Baseline method using 

OriginPro 2021b (OriginLab Corp.) with parameters set as: asymmetric factor = 0.001, threshold 

= 0.01, smoothing factor = 5, number of iterations = 10. All spectra were normalized to the 

intensity of the Raman peak at 1002 cm-1, which is attributed to the presence of phenylalanine 

(Talari et al. 2015). 

3.4.2 Spectral analysis using chemometrics 

After pre-processing, Raman spectra with the wavenumber region of 960 to 1800 cm-1 were 

used for constructing chemometrics. To identify the spectral features first, Raman spectra of 

different storage days were analyzed by using PCA and scores plot of the first two PCs were 

drawn to show the relationships of these profiles using OriginPro 2021b (OriginLab Corp.).  
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Meanwhile, we tested and compared various supervised classification tools for their abilities 

to discriminate fresh and spoiled pork meat using Raman spectral information. These tools 

included logistic regression (LR), decision tree (DT), support vector machine (SVM), and deep 

learning algorithms based on convolutional neural networks (CNNs). To assess the reliability of 

these models, we randomly selected 90% of the Raman spectral data as the training dataset, while 

the remaining 10% was used as testing dataset. During the model training, only the training 

dataset was visible for the construction and modification of algorithms. The testing dataset was 

then employed to validate the generalization ability of the models. Four mainstream indexes 

including accuracy, precision, recall, and F1 score were calculated to evaluate the performance of 

these classification models (Chen 2021). All the machine learning models were implemented 

using Python 3.10 and Ubuntu 22.04. For the traditional classification methods such as LR, DT 

and SVM, they were established by scikit-learn library v1.2.1. The realization of our self-designed 

neural network was built based on TensorFlow 2.11. 

Our self-designed neural network utilizes a one-dimensional CNN as the initial feature 

extractor from the input Raman spectra tensor. The input tensor has a shape of 1 × 841, 

representing intensity information for various frequencies. Subsequently, three convolutional 

layers and multiple Batch Normalization (BN) layers are employed after the input layer to extract 

features from the Raman spectral data. Following each BN layer is a ReLu activation (Fuentes et 

al. 2023). Finally, these features are connected to Fully Connected layers for prediction after 

passing through a Global Average Pooling layer and a Flatten layer.  
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CHAPTER 4. RESULTS AND DISCUSSION 

4.1 Determination of microbial growth curve 

Microbial analysis is the most traditional and generally applied method used to detect 

bacterial levels. In this study, we firstly determined the total viable counts (TVC) of 

microorganisms on pork samples during the storage period. Figure 4.1 displays the examined 

microbial growth curve for both pork tenderloin [Figure 4.1 (a)] and pork musculus 

semimembranosus (SM) [Figure 4.1 (b)]. The TVC of each sample increased during refrigerated 

storage. In the case of both pork tenderloin and pork SM, the TVC curve pointed out an initial lag 

phase from day 1 to day 2. After this time slot, bacteria grew exponentially until day 8, and then 

entered the steady state with microbial loads between 109 and 1010 CFU/g, indicating the complete 

spoilage of meat samples. According to China national food safety standard (GB/T 9959.2–2008), 

the upper tolerable limit of microorganism in fresh and frozen pork is 106 CFU/g. The dashed 

lines in the figure indicate the threshold value of 106 CFU/g. For the two different portions, day 

4 is the threshold time point where the TVC values of days before day 4 (including day 4) are 

below 106 CFU/g, and TVC values exceeded this upper limit after day 4. Therefore, pork samples 

of day 1-4 could be classified as fresh, and the pork meat after day 4 could be regarded as spoilage. 

Furthermore, the TVC values differed slightly between samples, and this could be explained by 

the inhomogeneity nature of the meat samples and complicated components of each batch, such 

as the content of fats, proteins and carbohydrates.  
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Figure 4.1 Total viable counts (TVC) of (a) pork tenderloin and (b) pork musculus 

semimembranosus (SM). The dashed lines indicate the threshold value of 106 CFU/g. 

4.2 Raman spectroscopic analysis 

4.2.1 Raman spectra of pork tenderloin (TL) 

Storage time-dependent Raman spectra with the labels of characteristic Raman bands of 

pork tenderloin (TL) in the wavenumbers of 960-1800 cm-1 are presented in Figure 4.2. Raman 

spectra of Figure 4.2 (a) are collected without packaging, and Raman spectra of Figure 4.2 (b) 

are collected with packaging. For clarity, the spectra are baseline corrected, normalized and 
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averaged. In accordance with the result of TVC test, Raman spectra of day 1, 2, 3, 4 are classified 

as ‘fresh’, and shown in green lines. Meanwhile, spectra of day 6, 8, 10, 12, 14 are regarded as 

‘spoiled’ and matched with red lines. To demonstrate the difference in time slot within each class 

(fresh or spoiled), the darker color means a longer storage time. In addition, some characteristic 

Raman bands observed in the spectra and their tentative assignments are summarized in Table 

4.1. 

As shown in Figure 4.2, in line with the storage time, the Raman spectra generally maintain 

their basic shapes, but some major peaks change gradually. The pork TL sample show typical 

protein spectra where Raman bands for amide I at 1653 cm-1, amide II at 1080 cm-1, and amide 

III at 1268 and 1318 cm-1 could be observed (Movasaghi et al. 2007; Sowoidnich et al. 2012). 

These protein-related bands are crucial as they can reflect the secondary structures information of 

proteins in meat sample, thus they are important indicators of meat spoilage. Specifically, amide 

I and amide III are considered to be more structure-sensitive than amide II (Chi et al. 1998; 

Talaikis et al. 2020). Therefore, amide I and amide III are mainly chosen as the markers for the 

analysis of protein structure and content. From the results of Raman spectra, some conclusions 

could be drawn on the mechanism of meat spoilage. As mentioned before, the progress of pork 

meat spoilage is accompanied by the degradation of proteins. The content of proteins decreased 

during spoilage, which could be clearly observed from the decreased intensities of the bands at 

1653 cm-1, 1318 cm-1 and 1268 cm-1, which correspond to amide I and amide III. It can be seen 

from the spectra that even at the early stage of the storage, slight changes of protein spectra still 

occurred. This results was consistent with other previous studies that amide I and amide III would 

decrease during storage as the result of protein breakdown and the disordered arrangement of 

protein secondary structures (Zając et al. 2017; Jaafreh et al. 2018; Yang et al. 2020). This was 
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closely related to the increase in the number of TVC during storage and decomposition of proteins 

by bacteria. 

Moreover, the sharp and strong peak at 1002 cm-1 is exhibited by aromatic ring containing 

amino acids (Zhu et al. 2011). This band is attributed to phenylalanine, which is stable to the 

environmental changes (De Gelder et al. 2007). The phenyl ring can preserve its amount in the 

proteins even after protein hydrolysis, indicating that the change in phenylalanine cannot be 

reflected by the differences in Raman spectral intensity at 1002 cm-1 and this peak cannot be 

utilized for determining pork spoilage. Consequently, this band can be used as a standardized 

reference point when the Raman spectra are normalized (Nawrocka et al. 2016). 

Tyrosine (Tyr), also an aromatic amino acid, is characterized in the Raman spectra at 1176 

and 1206 cm-1. Pork is high in dietary tyrosine, and tyrosine is present in a variety of proteins 

(Kühn et al. 2019). The degree of autolysis and bacterial spoilage have been estimated by 

detecting tyrosine in some previous studies (Strange et al. 1977). Due to the growth of bacteria 

and proteolysis of pork meat, extra free tyrosine may be produced, which should be reflected on 

the Raman signal intensity of Tyr bands. Although this trend was observed slightly opposite in 

our results for both Figure 4.2 (a) and Figure 4.2 (b), the intensities of Tyr bands did not 

significantly vary. This may be explained by spectral variation or decarboxylation reactions of 

Tyr and formation of biogenic amine tyramine (Triki et al. 2018). Similar to Tyr, tryptophan (Trp) 

at 1552 and 1618 cm-1 were also clearly identified. There was no obvious difference in the 

intensity of Raman bands at 1552 cm-1, and the intensity of bands at 1618 cm-1 became weaker 

during the storage. This phenomenon may be induced by the conversion of tryptophan into indole, 

which is an important indicator of protein decomposition in pork caused by bacteria metabolism. 

Furthermore, characteristic bands of residues and protein backbone [C-C stretch (νCC) and C-N 

stretch (νCN)] at 1053 and 1080 cm-1 were also notable in the spectra (Sowoidnich et al. 2012). 



 37 

Comparing the Raman spectral results collected without polyethylene cling wrap packaging 

[Figure 4.2 (a)] and with packaging [Figure 4.2 (b)], the shapes and peaks from two figures were 

similar, and the Raman peaks generated from polyethylene wrapper could not be observed. This 

might be due to the fact that one-layer packaging of cling wrap is thin that mimics the actual 

packaging commonly used in the grocery stores and the laser of Raman spectroscopy focused 

directly on the meat surface passing through the packing material. This outcome denotes that 

Raman device has the potential to be used in actual situation for detecting pork spoilage without 

removing the packaging, which enhances the convenience of the application greatly. 

Overall, the Raman spectra show distinguishable capability of recognizing changes of 

secondary structure of proteins and content of amino acids that can be treated as the indicators of 

pork spoilage. As the number of microbial colony counts grows, proteolysis happens and the 

number of free amino acids increases as well. Therefore, the changes of pork compositions can 

be detected and recorded by Raman spectroscopy during the preservation and spoilage process. 

However, it is challenging to identify the spoilage levels only via visual examination because of 

the large amount of data or the subtle difference. To determine more detailed information and 

achieve rapid detection of pork spoilage, multivariate statistical analysis such as PCA and 

application of machine learning algorithms are required, which will be discussed in the next 

section. 
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Figure 4.2 Averaged background corrected and normalized Raman spectra of pork tenderloin (TL) 

in storage time of day 1, 2, 3, 4, 6, 8, 10, 12, and 14. (a) Raman spectra collected without 

packaging. (b) Raman spectra collected with packaging. 
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Table 4.1 Assignments of major peaks in Raman spectra 

Wavenumber (cm-1) Peak assignment (Talari et al. 2015) 

1002 Phenylalanine 

Phenylalanine (collagen assignment) 

1033 Phenylalanine of collagen 

1053 C-O stretching, C-N stretching (protein) 

1080 Amide II 

Typical phospholipids 

Phosphate vibrations (phosphodiester groups in 
nucleic acids) 

Tryptophan 

1176 C-H bending tyrosine (proteins) 

1206 Tyrosine, hydroxyproline 

1268 Amide III (collagen assignment) 

1318 Amide III (⍺-helix)	

1339 Tryptophan, CH2/CH3 wagging, twisting and/or 
bending mode of collagens and lipids 

1448 CH2 deformation (protein vibration), a marker for 
protein concentration 

1552 Tryptophan, ν(C=C), porphyrin 

1618 Tryptophan, ν(C=C), porphyrin 

1653 Amide I, carbonyl stretch (C=O) 

4.2.2 Raman spectra of pork musculus semimembranosus (SM) 

The storage-time dependent Raman spectra of pork musculus semimembranosus (SM) 

stored up to 14 days at 4°C are displayed in Figure 4.3. The data are also baseline corrected, 

normalized to the intensity at 1002 cm-1, and then averaged. As described previously, Raman 

spectra of pork SM collected without packaging is presented in Figure 4.3 (a), and spectra 

collected with packaging is shown in Figure 4.3 (b). In addition, the colors of lines are 
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corresponding to the microbial results, where green-like color denotes fresh samples and red-like 

color denotes spoiled samples. 

Similar to the results obtained from pork TL, in the Raman data of pork SM, the decrease 

of intensities of protein related bands such as amide I and amide III could be observed clearly. In 

addition, the increase of tyrosine content could be seen from the bands at 1176 cm-1. According 

to Figure 4.2 and Figure 4.3, the Raman spectra of pork TL and pork SM had the similar spectra 

shapes and dominant peaks. The trend of how the intensities of Raman bands change in the result 

of pork SM was consistent with the previous description of pork TL. To avoid repetition, detailed 

description of those involved peaks could be found in section 4.2.1. To conclude, based on the 

result of our study, Raman spectroscopy also shows its competency to detect and identify spoilage 

caused by microorganisms in pork SM samples. 
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Figure 4.3 Averaged background corrected and normalized Raman spectra of pork musculus 

semimembranosus (SM) in storage time of day 1, 2, 3, 4, 6, 8, 10, 12, and 14. (a) Raman spectra 

collected without packaging. (b) Raman spectra collected with packaging. 

4.3 Classification of fresh and spoiled pork meat 

4.3.1 Principal component analysis 

To determine more detailed information of spectral changes, principal component analysis 

was applied on the preprocessed Raman spectra in the wavenumber region from 960 to 1800 cm-

1. Classification of Raman spectra from pork samples are displayed through scores of PCA plots 

for PC1 and PC2 since these two PCs carry most of the spectral variations between pork samples 

under different storage times (Brereton 2007). The pork samples could be grouped into two 

classes, according to the results of microbial analysis, fresh (day 1, 2, 3, 4) shown in green dots 

and spoilage (day 6, 8, 10, 12, 14, 16) shown in red dots. Figure 4.4 presents the PCA scores plot 

from pork TL without packaging [Figure 4.4 (a)] and with packaging [Figure 4.4 (b)], and pork 

SM without packaging [Figure 4.4 (c)] and with packaging [Figure 4.4 (d)]. 
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As shown in Figure 4.4, i the principal component analysis (PCA) did not reveal a distinct 

demarcation between fresh and spoiled pork, resulting in overlapping clusters. T This blurring is 

anticipated because spoilage is a progressive process, and a clear separation between stages is not 

always evident. Compared with previous studies of using Raman spectroscopy to identify 

spoilage in poultry or porcine samples, where obvious clustering of different groups of freshness 

could be observed in the PCA plots, our study increased the number of replicates and robustness 

of data largely (Sowoidnich et al. 2010, 2012; Jaafreh et al. 2018). Those studies represented each 

day’s readings with daily averaged Raman spectra, which facilitated clear day-to-day clustering 

in PCA analysis. With respect to our study, all the Raman spectral data collected from three 

biological replicates at different times were employed for drawing PCA plots. While analyzing 

Raman spectra within each biological replicate individually, the trend of data dots changing from 

fresh to spoiled could be observed, which revealed the ability of Raman spectroscopy to detect 

the variations during pork storage. When combining data received from all the replicates together, 

this trend disappeared and was replaced by overlapping. This is attributed to the complicated 

constituents of pork and the heterogeneity among each sample. 

Although the categorization of different groups is not significant seen from scores plot of 

PCA, it is possible to discover the complex spectral changes during pork spoilage. To analyze 

which Raman bands are responsible for the separation in PCA, plots of PC1 and PC2 loadings 

are displayed in Figure 4.5. Since the loading plots of four PCA results are similar, only the 

loading plots of pork TL samples (without packaging) is selected to be shown for better 

illustration and the Raman spectra of the first measurement day was also exhibited for correlating 

loading scores with the Raman bands. As shown in Figure 4.5 (b), the main contributors of PC1 

were amide III bands at 1268 and 1318 cm-1, amide I band at 1653 cm-1, amide II band at 1080 

cm-1, C-O stretching and C-N stretching at 1053 cm-1, tryptophan at 1339 cm-1, and CH2 
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deformation at 1448 cm-1. These bands were correlated with a negative sign of loadings, and most 

of these bands were closely related to the spectra of protein moieties. Except for the bands 

mentioned above, significant contributors arise for PC2 from phenylalanine of collagen at 1033 

cm-1, C-O stretching and C-N stretching at 1053 cm-1, and amide II band at 1080 cm-1. These 

bands are correlated with a positive sign of loadings. This conclusion is in accordance with the 

previous studies that the variations of Raman spectra from different storage days were mainly 

induced by the decomposition of proteins during spoilage process. 

The classification ability of fresh and spoiled groups was not satisfactory using PCA due to 

the inhomogeneity nature between each biological replicate. To perform superior categorization 

and build a larger database, supervised advanced machine learning algorithms were applied. 

(a)  (b)  

(c)  (d)  

Figure 4.4 Principal component score plots of Raman spectra from: (a) pork tenderloin (TL) 

(without packaging). (b) pork tenderloin (TL) (with packaging). (c) pork musculus 
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semimembranosus (SM) (without packaging). (d) pork musculus semimembranosus (SM) (with 

packaging) 

 

Figure 4.5 Loadings of the PCA of Raman spectral data (pork TL, without packaging) for PC1 

(b) and PC2 (a). Raman spectra of the first measurement day (c) are shown for comparing the 

Raman bands. 

4.3.2 Supervised machine learning algorithms 

In order to evaluate the ability of Raman spectra for detecting pork spoilage and also 

construct a database for future application in food industry, four classification machine learning 

algorithms were investigated, and their performances are summarized in Table 4.2 and Table 4.3. 

In the current study, two-class classification for fresh or spoiled recognition of pork TL and pork 

SM were explored using four models, namely LR, DT, SVM and CNNs. Additionally, four 

parameters (i.e., accuracy, precision, recall and F1 score) were calculated to assess the 
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performance of these models (Wang et al. 2021b). Among different types of classifiers, CNNs 

model with 3 convolutional layers provided >90.00% accuracy, with the highest accuracy of 93.79% 

when classifying pork TL samples collected with packaging. Meanwhile, LR and SVM models 

provided the second-best and similar performance for most of the results, with the value of 

accuracy around 80.00%. However, DT model showed the worst classification ability to 

discriminate fresh and spoiled samples with identification accuracy ranging from 64.71% to 

75.00%. 

According to the previous results, Raman spectra from day 1, 2, 3, 4 are labeled as fresh 

group, and Raman spectra from day 6, 8, 10, 12, 14 are labeled as spoiled, indicating that the 

number of spectra in the spoiled group is more than fresh group due to the uneven measurement 

days. Therefore, the dataset is unbalanced as the number of samples in one class is larger than the 

number of samples in the other class (Chicco and Jurman 2020). Under the circumstances, 

accuracy may cause misleading result because it would provide overestimation of the classifier 

ability on the majority class, and this phenomenon is called accuracy paradox (Sokolova et al. 

2006; Chicco and Jurman 2020; Alexander et al. 2023). To counteract this, additional performance 

metrics like precision, recall, and the F1 score must be considered for a comprehensive evaluation 

of the classification model’s efficacy. When assessing these metrics, CNNs model still 

outperforms others reaching almost more than 90.00% of precision, recall and F1 score. Similarly, 

SVM and LR models provided results close to 80.00%, and DT model had the lowest precision, 

recall and F1 score for both pork TL and pork SM samples. These outcomes not only corroborate 

the proficiency of Raman spectroscopy in distinguishing between fresh and spoiled pork but also 

highlight the CNN model's superiority in classifying spectroscopic data relative to other 

established algorithms. 
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Although pork spoilage can be visually recognized at the later stage of storage, there is a 

clear need to establish spectral databases and classification models to facilitate high-throughput 

and automated analysis. This is particularly crucial during the critical transition phase, where 

subtle shifts in pork's chemical composition are indicative of early spoilage. Studies have 

illustrated that Raman spectroscopy, when coupled with Convolutional Neural Networks (CNNs), 

can significantly enhance the accuracy of freshness detection in seafood, such as a reported 90.60% 

accuracy in classifying the freshness of sea bass fillets, surpassing traditional methods like PCA, 

PLS-DA, and SVM (Wang et al. 2023). In another study, the authors employed hyperspectral 

imaging technology coupled with CNN to distinguish fresh and frozen-thawed beef, reaching the 

accuracy of 88.89% (Pu et al. 2023). Referring to the similar research, the overall accuracy, 

precision, recall and F1 score of the CNNs model used in our study is satisfactory, and the ability 

of this CNNs model for identifying pork spoilage is confirmed. To further improve the power of 

the classifier as well as for the application of Raman spectroscopy-based tool for rapid detection 

of pork spoilage in real-world scenarios, it is important to increase the number of biological 

replicates. 

 

Table 4.2 The optimized models for 2-class classification of fresh and spoiled pork tenderloin 

(TL) samples based on Raman spectral data. 

Sample 
type 

Number 
of 

spectra 
Model 

Classification performance 

Accuracy Precision Recall F1 score 

Pork TL 
(without 

packaging) 
688 

LR 77.61% 74.42% 88.89% 0.81 
DT 70.15% 77.14% 69.23% 0.73 

SVM 79.10% 86.49% 78.05% 0.82 
CNNs 91.45% 93.21% 90.68% 0.92 

Pork TL 
(with 

packaging) 
536 

LR 79.54% 77.27% 80.95% 0.79 
DT 75.00% 70.37% 86.36% 0.78 

SVM 83.65% 84.18% 87.23% 0.86 
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CNNs 93.79% 95.40% 95.62% 0.96 

 

Table 4.3 The optimized models for 2-class classification of fresh and spoiled pork musculus 

semimembranosus (SM) samples based on Raman spectral data. 

Sample 
type 

Number 
of spectra Model 

Classification performance 

Accuracy Precision Recall F1 score 

Pork SM 
(without 

packaging) 
627 

LR 77.27% 75.00% 81.82% 0.78 
DT 69.70% 66.67% 70.97% 0.68 

SVM 80.30% 80.49% 86.84% 0.84 
CNNs 90.44% 91.25% 93.36% 0.93 

Pork SM 
(with 

packaging) 
675 

LR 79.41% 78.94% 83.33% 0.81 
DT 64.71% 62.16% 69.70% 0.66 

SVM 76.47% 80.00% 75.68% 0.78 
CNNs 89.92% 88.47% 91.53% 0.90 

4.4 Sequencing data analysis 

To evaluate the correlation between bacterial composition and Raman spectral changes 

during spoilage, 16s rRNA high-throughput sequencing of pork samples collected from day 1, 4, 

8, and 14 were applied. For sequencing data analysis, bacterial richness and diversity were 

determined by calculating alpha-diversity including Simpson, Shannon, ACE and Chao 1 indexes, 

and beta-diversity was analyzed by Principal Co-ordinates Analysis (PCoA). In addition, bacterial 

community and its dynamics were evaluated based on calculating relative abundance at both 

phylum and genus levels. 

4.4.1 Bacterial richness and diversity 

4.4.1.1 Pork tenderloin (TL) 

A total of 1,675,007 high quality effective sequences were obtained by merging and filtering 

raw sequence from each sample, with length from 250 bp to 270 bp. Effective sequences were 

clustered into 7312 OTUs according to 97% similarity. To form an overall picture, the results of 

the analysis of averaged alpha-diversity indexes are presented in Table 4.4. To better observe 
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those values, alpha-diversity indexes of each sample are shown in Figure 4.6, including (a) Chao1 

index (b) ACE index, (c) Shannon index, and (d) Simpson 1 index. To explain the meaning of the 

labels, samples of four measurement days (day 1, 4, 8, and 14) were selected for sequencing 

analysis because they were critical time points. Day 1 was the beginning of storage, and day 4 

represented the end of fresh status. While day 8 was the start of steady status of microbial growth 

and day 14 was the end of the whole experiment, both representing the spoilage status. There 

were two batches selected for testing on each measurement day, and each batch included two 

replicates prepared from two subsamples. 

Alpha-diversity metrics summarize the diversity within a single sample, with respect to its 

richness (number of taxonomic groups present) and diversity (distribution of the abundance of 

the groups) (Willis 2019). Typically, Chao 1 and ACE (abundance-based coverage estimator) 

indexes are generated to estimate the total number of species in a community, while Shannon and 

Simpson indexes are often used to measure the diversity of a community, taking both abundance 

and relative abundances into account (Xia and Sun 2023). The data presented in Table 4.4 and 

Figure 4.6 reveal a gradual decline in the Chao 1 and ACE indices over the storage duration, with 

a marked decrease by day 14. Similarly, the Shannon and Simpson indices for days 4, 8, and 14 

were substantially lower compared to the baseline established on day 1. This downward trend 

indicates a diminishing richness and evenness within the bacterial community, reflecting an 

increase in dominance by particular bacterial species—a finding that aligns with the outcomes of 

similar research (Li et al. 2019). Additionally, the coverage metrics exceeded 98% across all 

samples, indicating a comprehensive representation of the predominant microorganisms in the 

pork TL samples. 

Principal Coordinates Analysis (PCoA) was employed to assess beta-diversity, reflecting 

the variations in species composition among samples at different stages of storage, as visualized 
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in Figure 4.7 (Heino et al. 2015). The samples from day 1 were distinctly segregated from those 

of subsequent days, indicating a significant initial difference in the bacterial community structure 

of the fresh pork. Conversely, the samples from days 4, 8, and 14 formed a cluster, suggesting 

that their bacterial compositions became increasingly similar as storage progressed, and the 

differences between these time points were not substantial. 

 

Table 4.4 The averaged alpha-diversity indexes calculated for the bacterial communities of pork 

tenderloin (TL) samples for high-throughput sequences reads determined at a 97% similarity. 

Attribute Storage time (days) 
1 4 8 14 

Coverage 0.9846 ± 
0.0018c 

0.9855 ± 
0.0033bc 

0.9892 ± 
0.0028ab 

0.9912 ± 
0.0034a 

Chao 1 1423.27 ± 
166.97a 

1310.26 ± 
227.37a 

1044.16 ± 
159.43ab 

752.78 ± 
296.45b 

ACE 1483.37 ± 
238.33a 

1436.83 ± 
217.4a 

1136.15 ± 
258.14ab 

821.86 ± 
304.6b 

Shannon 3.07 ± 0.51a 1.67 ± 0.61b 1.22 ± 0.39b 1.31 ± 0.87b 
Simpson 0.87 ± 0.03a 0.48 ± 0.14b 0.38 ± 0.14b 0.39 ± 0.26b 

The data with various upper lowercase letters in each vertical column indicate the significant 

difference (P < 0.05). 
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(c) (d)  

Figure 4.6 Alpha-diversity indexes calculated for the bacterial communities of pork tenderloin 

(TL) samples for high-throughput sequences reads determined at a 97% similarity. (a) Chao1 

index. (b) ACE index. (c) Shannon index. (d) Simpson index. 

 

Figure 4.7 Principal co-ordinate analysis (PCoA) of bacterial communities of pork tenderloin 

(TL) samples. 
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clustered into 5878 OTUs according to 97% similarity. The averaged alpha-diversity indexes of 

each day are displayed in Table 4.5, and the alpha-diversity indexes of each sample are shown in 

Figure 4.8, including (a) Chao1 index, (b) ACE index, (c) Shannon index, and (d) Simpson index. 

Contrary to expectations, the Chao 1 and ACE indices depicted in Table 4.5 and Figure 4.8 

showed an increase over the storage period, implying that the number of operational taxonomic 

units (OTUs) rose with extended storage time. This anomalous trend may be attributed to a 

multitude of factors, such as the intrinsic inhomogeneity of the pork SM samples, environmental 

variables, and the potential release of nutrients favoring the proliferation of certain bacteria. 

Notably, substantial variance within the same batch contributed to a large standard deviation in 

average values, possibly due to the subsamples being stored separately. Given the significant 

intra-sample variability, additional replicates might be required to enhance the robustness of these 

findings. Consistent with previous observations in pork TL and corroborating other studies, the 

Shannon and Simpson indices were notably reduced by days 4, 8, and 14 compared to day 1, 

suggesting a decline in microbial evenness as certain bacterial species predominated. The 

coverage exceeding 99% for all pork SM samples suggests a comprehensive detection of the 

bacterial community. 

The analysis of beta-diversity using Principal Coordinates Analysis (PCoA), as presented in 

Figure 4.9, reinforced the trends observed in pork tenderloin (TL) samples. On the initial day, the 

freshest pork SM samples were clearly delineated from those of later dates, with no overlaps 

evident. This clear segregation on day 1 underscores a distinct bacterial community composition 

at the outset of storage. As storage time progressed, the samples from days 4, 8, and 14 grouped 

closely, suggesting a convergence in microbial composition across these times. This pattern of 

beta-diversity for pork SM samples corroborates the findings from the pork TL sample set, 

affirming the consistency of the microbial dynamics regardless of the cut of pork being analyzed. 
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Table 4.5 The averaged alpha-diversity indexes calculated for the bacterial communities of 

musculus semimembranosus (SM) samples for high-throughput sequences reads determined at a 

97% similarity. 

Attribute Storage time (days) 
1 4 8 14 

Coverage 0.9961 ± 
0.0037 

0.9972 ± 
0.0019 

0.9946 ± 
0.0033 

0.9922 ± 
0.0071 

Chao 1 686.22 ± 
599.15 

494.77 ± 
281.57 

1018.84 ± 
579.33 

1386.43 ± 
1223.79 

ACE 746.83 ± 
646.73 

559.08 ± 
315.78 

1122.67 ± 
651.89 

1500.48 ± 
1344.33 

Shannon 2.16 ± 0.27a 1.06 ± 0.1c 1.33 ± 0.14bc 1.67 ± 0.54b 
Simpson 0.82 ± 0.02a 0.55 ± 0.03c 0.62 ± 0.05bc 0.66 ± 0.07b 

The data with various upper lowercase letters in each vertical column indicate the significant 
difference (P < 0.05). 
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Figure 4.8 Alpha-diversity indexes calculated for the bacterial communities of pork musculus 

semimembranosus (SM) samples for high-throughput sequences reads determined at a 97% 

similarity. (a) Chao1 index. (b) ACE index. (c) Shannon index. (d) Simpson index. 

 

Figure 4.9 Principal co-ordinate analysis (PCoA) of bacterial communities of pork musculus 

semimembranosus (SM) samples. 
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of all OTUs. Similar observations of predominant phyla were reported in other relevant studies 

to evaluate bacterial spoilage profiles of pork under refrigerated storage (Wang et al. 2021c; Zhao 

et al. 2022b). Moreover, as the storage time extended, the percentage of Proteobacteria increased 

and the proportion of Firmicutes decreased slightly. Figure 4.10 (b) displays the changes of 

relative abundance at the genus level with the top 10 ranking genera characterized. On day 1, 

Pseudomonas, Stenotrophomonas and Acinetobacter were the dominant genus with close relative 

abundance within four samples at day 1. As storage progressed, Pseudomonas became 

increasingly dominant from day 4 onwards, while Stenotrophomonas and Acinetobacter levels 

significantly reduced, dwindling almost completely by the end of the observation period. These 

findings align with other studies where Pseudomonas was found to be a key contributor to 

spoilage in chilled pork, often alongside Acinetobacter and Brochothrix (Peruzy et al. 2019; Wang 

et al. 2021c; Zhao et al. 2022b). Furthermore, although Stenotrophomonas is not typically 

associated with pork spoilage, it has been identified in other livestock products and quick-frozen 

foods, indicating its relevance in food spoilage contexts (Zhang et al. 2019). 

Pseudomonas is acknowledged as a principal spoilage agent in raw meats, demonstrating a 

widespread presence across various foodstuffs including fresh pork, beef, poultry, vegetables, 

milk, and seafood (Raposo et al. 2016). Notably adaptable, Pseudomonas has been detected under 

numerous environmental conditions, such as ambient air and modified atmosphere packaging 

(Parlapani et al. 2015). In this study, Pseudomonas started with an approximate 25% presence, 

escalating to around 75% by the end of the storage period, a pattern that echoes findings from 

previous research (Li et al. 2019). Both Pseudomonas and Acinetobacter are known to emit 

volatile metabolites, typically as byproducts of protein and amino acid catabolism, contributing 

notably to the generation of total volatile basic nitrogen (TVB-N) (Wang et al. 2018a). Given that 

TVB-N is commonly used as an indicator of protein spoilage, the increased prevalence of these 
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bacteria correlates with the observed reduction in protein-associated peaks in Raman spectral 

analysis (Bekhit et al. 2021).   

(a)  

(b)  

Figure 4.10 Dynamics of relative abundance (%) of bacterial taxa based on 16s rRNA sequencing 

at phylum (a) and genus (b) level in pork tenderloin (TL) samples during 14-days storage. 
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The bacterial community dynamics of pork SM were also expressed in the form of relative 

abundance at phylum and genus level and demonstrated in Figure 4.11. At the phylum level, top 

9 phyla including Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes, Acidobacteria, 

Gemmatimonadetes, Planctomycetes, Verrucomicrobia, and Thermotogae are characterized in a 

descending order. Despite some differences from pork tenderloin (TL) samples, the primary phyla 

remained consistent, with Proteobacteria and Firmicutes dominating, together constituting over 

95% of all OTUs. The changes of the increasing proportion in Proteobacteria as well as 

decreasing share in Firmicutes were also observed. At the genus level, different from genera 

recognized in pork TL, the top 3 dominant genera in pork SM were Acinetobacter, Pseudomonas, 

and Brochothrix, which are the most frequently identified genera in pork spoilage process as 

previously discussed. On day 1, the relative abundance of Acinetobacter, Pseudomonas, 

Brochothrix, and Leuconostoc were close, while Acinetobacter and Brochothrix were found to be 

more abundant on day 4. However, by days 8 and 14, Brochothrix's presence diminished, leaving 

Acinetobacter and Pseudomonas as the dominant genera. The growth of these spoilage-associated 

bacteria contributes to the acceleration of spoilage, marked by muscular degradation, 

discoloration, and off odors (Wang et al. 2021c). Although the relative abundance of dominant 

bacteria varied irregularly, it was consistent with the changes of the characteristic peaks identified 

with Raman spectroscopy. The differences between bacterial composition of pork TL and pork 

SM could be explained by different parts of pork, source of meat, environment and detection time. 
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(a)  

(b)  

Figure 4.11 Dynamics of relative abundance (%) of bacterial taxa based on 16s rRNA sequencing 

at phylum (a) and genus (b) level in pork musculus semimembranosus (SM) samples during 14-

days storage. 
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CHAPTER 5. CONCLUSTION 

In this study, the capability of Raman spectroscopy combined with chemometrics for rapid 

in situ identification of pork meat spoilage was assessed using pork tenderloin and pork 

musculus semimembranosus samples. To correlate the changes of Raman spectra and bacterial 

compositions, the bacterial community dynamics of pork tenderloin and pork musculus 

semimembranosus samples during storage at 4°C for 14 days were evaluated using 16S rRNA 

high-throughput sequencing. Firstly, microbial test of total viable counts was calculated, which 

revealed that day 4 was the threshold of timepoint to differentiate fresh and spoiled pork samples. 

In the meantime, Raman spectra were collected with an integration time of 40 s and laser power 

of 250 mW. Furthermore, chemometrics including PCA and several supervised machine learning 

algorithms were applied to solve 2-group classification problem. Although the separation in PCA 

was not obvious, CNNs deep learning algorithm could provide > 90% accuracy to identify and 

differentiate fresh and spoiled pork samples. In addition, Next-generation sequencing data 

pinpointed Proteobacteria and Firmicutes as the dominant phyla in both pork tenderloin and 

pork musculus semimembranosus, while at the genus level, Pseudomonas, Stenotrophomonas, 

and Acinetobacter were prevalent in pork tenderloin, and Acinetobacter, Pseudomonas, and 

Brochothrix in pork musculus semimembranosus. Notably, the shift in bacterial communities 

during spoilage paralleled changes in the characteristic Raman spectral peaks, underscoring the 

synergy between microbial shifts and spectroscopic signatures. 

To the best of our knowledge, this study represents a pioneering effort to integrate portable 

Raman spectroscopy with machine learning algorithms and high-throughput sequencing for the 

identification of pork spoilage. Our findings confirm that Raman spectroscopy is a powerful tool, 

capable of rapidly and non-destructively distinguishing between fresh and spoiled pork with high 
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precision. The development of an extensive Raman spectral database, enriched by future studies 

incorporating a larger number of replicates, will further solidify the potential of this technique. It 

holds great promise for becoming a standard, quick-screening method that could be deployed 

throughout the pork supply chain for ensuring meat quality and safety. 
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