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Abstract  
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by 

substantial phenotypic and neuroanatomical variation. Atypicalities in multiple macrostructural 

properties have been implicated in ASD. However, canonical approaches to modelling cortical 

architecture consist of assessing case-control differences in discrete neuroanatomical metrics. 

We therefore evaluated individual variability in morphometric covariance patterns across four 

cortical measures in ASD and neurotypical subjects. These patterns were then related to 

behavioural characteristics that affect phenotypic heterogeneity. A total of 1097 participants 

were pooled across three datasets. Following quality control and matching of diagnostic groups 

for age and sex, 486 subjects aged 4-52 remained (243 ASD; mean age = 19.88 ± 9.6; 166 

females). Vertex-wise cortical thickness (CT), surface area (SA), local gyrification index (LGI) 

and mean curvature (MC) estimates were extracted. The measures were corrected for batch 

effects in a multi-parameter framework with the CovBat algorithm. Non-negative matrix 

factorization decomposed cortical covariance into 16 components that describe the spatial 

location of covarying vertices and subject-wise loading coefficients that indicate each metric’s 

contribution to the structural components. Partial least squares correlation was used to associate 

macrostructural covariance with behavioural measures. The main latent variable (LV; 87.4% 

covariance explained; p<0.0001) describes a significant correlation between younger age, 

female sex, and lower fullscale IQ, with a cortical profile characterized by increased whole-

brain contribution of CT and LGI, as well as decreased contribution of SA to covariance 

patterns. Diagnostic group does not reach significance, although ASD subjects with reduced 

social abilities and elevated sensory sensitivities display a stronger expression of the LV brain-

behaviour phenotype. These results suggest a neuroanatomical covariance signature that relates 

robustly to developmental and cognitive domains but has limited clinical relevance. 
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Résumé  
Les troubles du spectre de l’autisme (TSA) sont des maladies neurodéveloppementales 

caractérisées par des variations phénotypiques et neuroanatomiques considérables. Des 

anomalies au niveau de multiples propriétés macrostructurelles ont été impliquées dans le TSA. 

Toutefois, les approches standards modélisant l’architecture corticale consistent à l'évaluation 

des variables neuroanatomiques individuelles par rapport à des cas-contrôles.  Par conséquent, 

nous avons évalué la variabilité individuelle des motifs de covariance morphométrique au 

niveau de quatre mesures corticales au sein de sujets neurotypiques et TSA. Ces motifs ont 

ensuite été reliés à des caractéristiques comportementales qui affectent l’hétérogénéité 

phénotypique. Un total de 1097 participants ont été sélectionnés à travers trois bases de 

données. Suite à un contrôle de qualité et à la correspondance des groupes diagnostiques selon 

l’âge et le sexe, 486 sujets âgés de 4 à 52 ans ont été retenus (243 TSA; âge moyen = 19.88 ± 

9.6; 166 femmes). À chaque vertex, les estimations de l’épaisseur corticale (EC), de l’aire de 

surface (AS), de l’indice de gyrification local (IGL) et la courbure moyenne (CM) ont été 

extraites. Les mesures ont été corrigées pour l’effet de site selon une approche 

multiparamétrique avec l’algorithme CovBat. La factorisation matricielle non-négative a 

décomposé la covariance corticale en 16 composants qui décrivent la localisation spatiale des 

vertex qui covarient ensemble et les coefficients de pondération qui indiquent l’ampleur de la 

contribution de chaque métrique sur les composants structurels. L’analyse de corrélation de la 

régression des moindres carrés partiels a été utilisée afin d’associer les profils de covariances 

macrostructurelles et les mesures comportementales. Les principales variables latentes (VL; 

87.4% covariance expliquée; p<0.0001) décrivent une corrélation significative entre le jeune 

âge, le sexe féminin et un quotient intellectuel global bas associé à un profil cortical caractérisé 

par une hausse de la contribution totale du cerveau pour l’EC et l’IGL, ainsi qu’une baisse de 

la contribution de l’AS aux motifs de covariance. Le groupe diagnostique n’a pas atteint de 

résultats significatifs, bien que les sujets TSA arborant des habiletés sociales réduites et une 

sensibilité sensorielle élevée présentent une expression forte de la VL du phénotype cerveau-

comportement. Ces résultats suggèrent une signature neuroanatomique covariant de façon 

robuste avec les variables développementales et cognitives, mais ayant une pertinence plus 

limitée d’un point de vue clinique. 
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1. Introduction          

 Autism spectrum disorder (ASD) is a highly heterogeneous neurodevelopmental 

disorder that manifests variably according to age, sex, and intelligence quotient (IQ; Daniels & 

Mandell, 2014; Ruigrok & Lai, 2020; Ryland et al., 2014). Perturbations in neurodevelopmental 

processes disrupt brain maturation in ASD (Courchesne et al., 2011; Marchetto et al., 2017; 

Stoner et al., 2014; Toma et al., 2012), which is reflected across features of cortical 

macrostructure (Bedford et al., 2020; Hammill et al., 2021; Hazlett et al., 2011; Khundrakpam 

et al., 2017; Piven et al., 1990; van Rooij et al., 2018; Yang et al., 2016). However, decades of 

neuroimaging studies have failed to identify a reproducible cortical profile of ASD, despite 

growing sample sizes, accessibility of deeply phenotyped datasets, and methodological 

improvements in cortical modelling software. The inability to reconcile neuroanatomical 

substrates with clinical phenotypes poses a fundamental challenge to conceptualizing ASD and 

impedes progress in identifying neurobiological markers. These discrepancies may stem, in 

part, from the predominance of case-control paradigms, which yield limited subject-wise 

specificity. Additionally, traditional mass-univariate analyses assessing diagnostic effects on 

cortical measures are necessarily constrained to model a single outcome variable, which limits 

the understanding of interdependencies between multiple structural properties that jointly 

comprise the cortex. Together, these challenges suggest that standard analytical approaches 

may be ill-suited to capture the complexity of cortical organization in ASD. Statistical 

frameworks that model individual variation at the intersection of neurobiological and clinical 

signatures of ASD may yield more representative and clinically robust models. 

 

Therefore, the overarching aim of this thesis is to employ a complement of multivariate 

analyses to evaluate how individual variation in the structural covariance patterns of four 

cortical measures relates to each subject’s unique set of demographic and behavioural features 

known to influence ASD heterogeneity. More specifically, the aims are as follows: 1) evaluate 

individual variability in structural covariance patterns of cortical thickness (CT), surface area 

(SA), local gyrification index (LGI), and mean curvature (MC); and 2) relate these covariance 

patterns to diagnosis, age, sex, and fullscale IQ (FIQ). To address Aim 1, orthogonal projective 

Non-negative Matrix Factorization (NMF) is used to identify spatial patterns where the four 

cortical indices co-occur in consistent ways across individuals. This method segregates whole-

brain covariance patterns into spatially discrete parcels of lower dimensionality (Lee & Seung, 
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1999; Sotiras et al., 2015) such that each individual’s unique macrostructural profile is 

represented for a given component. Importantly, performing this analysis on a pooled group of 

ASD and neurotypical (NT) subjects situates individuals along a continuum of variation to 

model covariance patterns dimensionally, being unconstrained by a priori diagnostic labels. To 

address Aim 2, Partial Least Squares Correlation (PLSC) analysis is used to identify latent 

variables (LVs) that link each subject’s macrostructural covariance profile (identified in Aim 

1) to individual variation in phenotypic measures. This associative technique finds underlying 

latent dimensions that represent a composite of maximally associated brain and behavioural 

elements (Krishnan et al., 2011). Together, this work aims to offer a more comprehensive and 

individualized characterization of cortical architecture in ASD. 

 

2. Comprehensive Literature Review       
2.1 Normative Brain Development       

 Anatomical origins of the human brain are anchored in prenatal neurodevelopment. The 

precise sequence and timing of early maturational events shape neuroanatomy across 

spatiotemporal scales to influence lifelong cognitive and health outcomes. Characterizing 

elements of normative brain growth is therefore essential to understand how developmental 

dysfunctions across different levels of neural organization may culminate in a disorder such as 

ASD. 

2.1.1 Mechanisms of Prenatal Neurodevelopment     

  Neurodevelopment involves a cascade of highly coordinated cellular processes that 

occur at specific phases of embryonic and fetal maturation. These mechanisms are tightly 

regulated by genetic and environmental influences, underpinning both the structural framework 

of the central nervous system and its functional capacities.     

 Cortical morphogenesis begins during the third week of gestation with neurulation, 

when the neural plate is inducted after the formation of the notochord. The neural groove 

emerges around 23 days post conception, with folds arising and then fusing on each side of the 

plate as it transforms into the neural tube (Silbereis et al., 2016). During the fourth week of 

gestation, neuroepithelial cell populations in the ventricular zone divide symmetrically to 
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produce daughter progenitors, establishing a pool of multipotent founder progenitors (Budday 

et al., 2015). Neurogenesis begins at 40 days post conception, as radial glial cells divide to 

generate postmitotic neurons and intermediate progenitor cells, which themselves yield 

neuronal progeny. A subset of intermediate progenitors delaminate from the ventricular zone 

to form the subventricular proliferative region, where their continued division contributes to 

the expanding neuronal population. At approximately seven to eight weeks post conception, 

neurons born in both proliferative compartments migrate sequentially along radial glial fibers 

to form the layered cortical plate, where they undergo differentiation and form connections 

with neighbouring neurons through the emergence of synaptogenesis, dendritic/axonal 

arborization, and myelination (Budday et al., 2015; Jiang & Nardelli, 2016; Kowalczyk et al., 

2009; Rakic et al., 1988; Silbereis et al., 2016). Cell proliferation, migration, and differentiation 

persist throughout prenatal development, under temporal control of key molecular and 

signaling factors (Jiang & Nardelli, 2016; Sun & Hevner, 2014).  

These organizational principles unfold along both radial and tangential axes of the 

cortex, giving rise to its distinctive laminar and columnar organization. Six neocortical layers 

are arranged parallel to the pial surface, with each lamina characterized by distinct cellular 

density and configuration of synaptic and axonal projections (Wagstyl & Lerch, 2018). 

Perpendicularly, cortical columns function as processing units, spanning the layers along the 

vertical aspect (Molnar & Rockland, 2020; Mountcastle, 1997; Rakic, 2009). The cerebral 

cortex ultimately forms a neuronal sheet encasing the cerebrum, composed of projection and 

interneuron cell bodies, in addition to neuropil, vasculature, extracellular space, free water, glial 

cells, and mineral deposits (Rakic et al., 2009; Wagstyl & Lerch, 2018). Although the 

production of new neurons is almost entirely finished at parturition, ongoing changes in 

microstructure, pruning, apoptosis, and gliogenesis support cortical change during postnatal 

development (Silbereis et al., 2016). 

2.1.2 Cellular Properties of Cortical Organization     

 Cytoarchitecture scaffolds cortical macrostructure, which is commonly quantified with 

measures of thickness, area, and folding. According to the radial unit hypothesis, 

macrostructural indices stem from different neurodevelopmental origins, each arising from 

distinct progenitors and neurogenic phases (Jalbrzykowski et al., 2013). Specifically, the radial 
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dimension of the cortex (i.e., CT) is determined by the number of asymmetric divisions of 

neural progenitors within each cortical column, which govern the number of constituent cells 

(Mountcastle et al., 1997; Pontious et al., 2008; Rakic et al., 1988). The tangential dimension 

(i.e., SA) is determined by the number of radial units formed by symmetric divisions of 

neuroepithelial progenitors (Mountcastle, 1997; Pontious et al., 2008; Rakic et al., 1988, 2009).  

                                     

Figure 2.1. Cortical columns spanning laminae. Reproduced with permission from Peters and Sethares 
(1996). 

As the cortex expands laterally, folds begin to appear. Primary fissures arise as early as 

the eighth to 10th gestational week, and sulci first emerge by the 14th gestational week. During 

the third trimester, gyrification expands significantly, transforming the brain into its distinctive 

gyrencephalic form (Chi et al., 1977). The predominantly tangential direction of cortical 

expansion enables the cortical sheet to expand to roughly three times the inner cranial surface, 

while maintaining efficient wiring organization (White et al., 2010). As a result, cortical volume 

growth is attributable in large part to gyrification and SA expansion rather than increasing 

thickness (Hogstrom et al., 2013; White et al., 2010). Theories about the processes that shape 

cortical convolution have varied considerably over the decades. Earlier conjectures focused on 

the influence of forces such as friction, cranial pressure, and volumetric constraint (Le Gros 
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Clark, 1945; Papez, 1929). Subsequent theories focused more so on biological properties of the 

cortex, including differential radial expansion of laminae (Richman et al., 1975), and the tensile 

pulling of axon fibers (Van Essen, 1997). In more recent years, computational simulations have 

assessed its elasto-plastic (Toro & Burnod, 2005), adhesive (Tallinen et al., 2014), and stress-

dependent (Bayly et al., 2013) physical features. There have been growing efforts to integrate 

these theories into a cohesive framework, while also accounting for the manner in which 

cellular processes at the prenatal (e.g., neurogenesis, migration, axon guidance) and postnatal 

(e.g., synaptogenesis, dendritic arborization, cortical myelination) stages of development 

underlie the precise timing and placement of folds (Fernandez et al., 2016; Hill et al., 2010; 

Ronan & Fletcher, 2015).  

2.2 Magnetic Resonance Imaging (MRI)      

 Structural magnetic resonance imaging (MRI) has been used extensively to map brain 

morphology. The safety of this technique, along with its excellent spatial resolution and test-

retest reliability (Madan & Kensinger, 2017) allow for non-invasive in vivo characterization of 

cortical structure.  

2.2.1. MRI Physics          

 MRI signal acquisition operates on the principle of energy transfer, as the spin and 

charge properties of hydrogen particles interact with a magnetic field (Dale et al., 2015). The 

core elements of an MRI scanner, including the magnet, radiofrequency (RF) coils, and gradient 

coils manipulate magnetization of protons in the body, such that the detected signal depends on 

the manner in which a given tissue type reacts to this manipulation. Hydrogen is prevalent in 

the body due to its hydrous composition. Hydrogen contains one positively charged proton that 

rotates about its own axis, inducing a magnetic moment. The magnetic moments of a group of 

protons are null at equilibrium due to mutual cancellation of their random spin orientations 

(Elmaoğlu & Çelik, 2011). When a strong static magnetic field (B0) is applied, the hydrogen 

protons within the body rotate around the B0 axis and align their energy states either parallel or 

anti-parallel to it. Since less energy is required to align with B0, the majority of protons orient 

themselves along the main magnetic field and net magnetization is positioned in the 

longitudinal plane (z-axis). As the protons’ magnetic field interacts with B0, magnetic 

resonance is created, whereby the precessional frequency is proportional to the magnetic field 
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strength, B0, known as the Larmor frequency. The net magnetic vector of all the protons 

generates a combined magnetic vector known as the total magnetization, M0 (Currie et al., 2013; 

Elmaoğlu & Çelik, 2011).     

The RF transmit coil broadcasts an excitation pulse (B1 field) at the Larmor frequency 

to rotate the protons out of alignment with B0, such that the strength and duration of the pulse 

determines the angle of the flip (Pai et al., 2021). A 90° flip angle (FA), for instance, tilts the 

magnetization vector M0 from the longitudinal plane (z-axis) to the transverse plane (xy-axis), 

Mxy, as energy is induced to the protons, and then re-emitted at an equivalent frequency (Currie 

et al., 2013; Dale et al., 2015).  

Figure 2.2. Following a radiofrequency (RF) pulse, magnetization is tilted to the transverse plane 
perpendicular to B0, such that the degree of rotation is proportional to the RF pulse flip angle. 
Reproduced with permission from Dale et al. (2015).  

Protons reorient back to the z-axis, and transverse magnetization decreases (Currie et 

al., 2013). A brief voltage is induced in the RF receiver coil placed perpendicular to Mxy from 

the changing transverse magnetization vector while it precesses back to alignment with B0. This 

voltage constitutes the magnetic resonance signal. Over time, this signal decays as protons 

release their absorbed energy and the coherence of proton spins diminishes (Dale et al., 2015).  

The spin properties of the protons during this state are quantified with T1 and T2 

relaxation. T1 represents the rate at which protons exchange energy with their surroundings as 

magnetization realigns along the longitudinal plane, whereas T2 represents the rate at which 

transverse magnetization decreases after RF excitation, as protons dephase due to spin-spin 

interactions and magnetic field inhomogeneity (Currie et al., 2013; Lerch et al., 2017). T1 and 

T2 values are governed by the interaction of protons’ magnetic moments, most being hydrogen 
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protons in water and macromolecules in the surrounding tissue. Their biological composition 

determines the strength of the hydrogen’s bond with a given molecule, as well as the density of 

hydrogen protons within a voxel. These factors affect the interactions of their respective spin 

properties with the electromagnetic pulses. In turn, relaxation times differ for different tissues, 

yielding variation in signal intensities and contrasts between tissue types (Currie et al., 2013; 

Lerch et al., 2017; Pai et al., 2021). Manipulation of RF and gradient pulse parameters affects 

T1 and T2 relaxation times, and by extension, signal intensities of tissue for T1-weighted (T1-

w) and T2-weighted (T2-w) sequences. In T1-w scans, the period of time between successive 

pulses (repetition time; TR), and the time between an initial RF pulse and its apex (echo time; 

TE) are typically shorter relative to T2-w scans.  

Magnetic gradient coils positioned in each of the x, y, and z axes are used to locate the 

signal emitted by protons after RF radiation. Short electromagnetic pulses are superimposed 

onto B0, to generate small oscillations in the precession speed of protons away from their 

resonance at Larmor frequency, as a function of their position along the plane. These 

fluctuations cause dephasing along the gradient’s direction, allowing the MR signal to be 

spatially encoded (Currie et al., 2013; McRobbie et al., 2017).  

2.3. Image Processing          

 The three-dimensional structure of the brain is represented as approximately one million 

voxels, typically of 0.5mm3 - 1mm3 resolution. Each voxel contains a representation of MRI 

signal specific to the intensity of the tissue located within its spatial dimensions. Several 

pipelines, analytical tools, and software packages exist to process T1-w structural MRI scans. 

Although the precise sequence of the steps may differ, their main features involve transforming 

individual scans into a common format, removing artifacts that confound MRI signal, 

extracting the brain from surrounding non-brain tissue, and classifying the brain into different 

tissue and surface types. 

2.3.1 Image Registration          

 Inter-scan variation in head positioning, cranial dimensions, anatomical morphology, 

and voxel properties are resolved with image registration. This process aligns scans from 

multiple participants to an atlas template in stereotaxic coordinate space to ensure spatial 
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correspondence of anatomical structures on a voxel-wise basis (Collins et al., 1994). Typically, 

transformations are estimated by optimizing intensity-based similarity measures that seek to 

minimize differences between two images. Algorithms can iteratively revise resolution, 

smoothing, or transformation parameters to improve convergence of similarity estimates 

(Dadar et al., 2018; Zhang et al., 2019). Transformations are linear or non-linear, across varying 

degrees of freedom. Linear registration (i.e. six-parameter rigid and 12-parameter affine) 

manipulates the source scan through translation, rotation, scaling, and shearing. Non-linear 

transformation involves more elastic deformations that are suitable for addressing distortions 

on a regional level. The transformations are typically defined on a vector field that can be used 

to derive scalar values indicating the extent to which the volume of a source image expands or 

contracts to fit the target (Chung et al., 2001, 2003; Collins et al., 1994; Maintz & Viergever, 

1998; Song et al., 2017). The BestLinReg method is a widely used linear registration technique 

whereby images are initially blurred, then linear transformation estimates are hierarchically 

optimized using intensity-based gradient magnitude across increasing resolutions and degrees 

of freedom (Dadar et al., 2018; Lepage et al., 2017; Robbins et al., 2004).  

2.3.2. Bias Field Correction        

  Spatial variation in the uniformity of the main magnetic field causes smoothly 

fluctuating tissue intensity across the MR image, known as bias field inhomogeneity or 

intensity non-uniformity. This non-biological variance is a confound that can affect other 

processing steps that are reliant upon image intensity (Sled et al., 1998; Vovk et al., 2007). 

Correction of bias field inhomogeneity is therefore a standard step of image processing. State-

of-the-art algorithms include nonparametric nonuniform intensity normalization correction 

(N3; Sled et al., 1998) and its updated variant, N4ITK (N4; Tutison et al., 2010). N3 uses high 

frequency maximization to estimate the non-corrupted tissue intensity. The bias field, modelled 

as a multiplicative factor, is then smoothed with a cubic b-spline and removed from the scan, 

such that the uncorrupted image is used in successive iterations of the process (Boyes et al., 

2008; Kahali et al., 2016; Sled et al., 1998). N4 incorporates improvements in the b-spline 

approximation (e.g. multivariate and non-cubic extensions), and hierarchically fits the bias field 

across increasing surface resolutions to optimize convergence of non-uniformity estimates 

(Tutison et al., 2010).  
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2.3.3 Brain Extraction             

 Accurate estimation of cortical measurements relies on the precise removal of the brain 

from surrounding non-brain tissue. Certain attributes of non-brain tissue can challenge brain 

extraction due to their physical proximity and similar signal intensities. The dura mater, for 

example, closely circumscribes the cortex and often confounds measurements of cortical 

volume and thickness due to overestimation or underestimation of grey matter (GM; Eskildsen 

et al., 2012; Lerch et al., 2017). Brain Extraction based on the nonlocal Segmentation 

Technique (BEaST; Eskildsen et al., 2012) is a commonly used tool that crops out the skull, 

dura mater, fat, muscles, skin, eyes, bone, as well as exterior blood vessels and nerves. 

Surrounding patches of a target voxel are compared with known patches in a set of priors and 

assigned a label based on their likeness using sum of squared distance to estimate similarity. A 

brain mask is ultimately generated, whereby voxels are tagged with a label indicating whether 

they contain brain or non-brain tissue (Eskildsen et al., 2012).  

2.3.4. Tissue Classification           

  Voxels comprising the brain mask are then classified into GM, white matter (WM), 

and cerebrospinal fluid (CSF). Classification techniques typically involve intensity-based 

algorithms to estimate tissue labels. When used alone, however, they are susceptible to 

inaccuracies due to signal confounds from bias field inhomogeneity and partial volume effects 

(PVE), a phenomenon whereby a given voxel contains more than one tissue type with 

overlapping intensities (Nakamura & Fisher, 2009; Zhang et al., 2019). Therefore, these models 

are often supplemented with other approaches to improve performance. Some strategies include 

the incorporation of a priori anatomical information as spatial probabilities (e.g. Gaussian 

Mixture Model, Bayesian frameworks; Ashburner & Friston,  2003, 2005), contextual 

information from surrounding voxels (e.g. hidden Markov random fields; Zhang et al., 2001), 

allowing partial membership to more than one tissue cluster (e.g. fuzzy C-means; Chuang et 

al., 2006; Zhou et al., 2009), or modelling PVE estimates for different tissue classes (e.g., mixed 

PVE models; Choi et al., 1991; Tohka et al., 2004).  

2.3.5 Surface Extraction         

 Cortical surface reconstruction consists of extracting and measuring surfaces belonging 

to different tissues in a manner that preserves their geometric and topological complexities (Lee 
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et al., 2006). A popular class of surface extraction methods involve deformation-based iterative 

morphing techniques (Liu et al., 2008). In particular, marching cubes algorithms have been 

used extensively to derive surface information from three-dimensional brain volumes. In brief, 

an isosurface is fitted to the cubic dimensions of a voxel, such that the intersection of the surface 

with a voxel edge creates a triangular patch dividing its spatial features. Adjacent patches are 

connected across voxels to form a tessellated mesh for a surface class. The vertices and 

adjoining edges of the triangular facets can be used to further characterize structural properties 

of the surface on a vertex-wise basis with measurements of thickness, area, and folding 

(Lorenson & Cline, 1987; Shattuck & Leahy, 2001). Constrained Laplacian Anatomical 

Segmentation using Proximities (CLASP) algorithm for surface extraction is commonly 

integrated into image processing pipelines (Kim et al., 2005). A three-dimensional spherical 

mesh is deformed to the GM/WM boundary, and expanded from the WM surface to the outer 

cortical boundary at the GM/CSF interface to form the pial surface. A vertex-to-vertex 

correspondence is maintained between inner and outer surfaces, with GM enclosed in between 

(Evans, 2005; Kim et al., 2005; Lee et al., 2006; MacDonald et al., 2000). Following extraction, 

surface-based registration can be performed to align surfaces of an individual to an average 

template so that vertex-wise cortical measurements computed at the subject’s surface can be 

resampled to the reference template for inter-subject comparison (Lepage et al., 2021).  

2.4. Normative Developmental Trajectories of Macrostructural Properties 
 Structural properties of the cortical mantle can be quantified with measures of thickness, 

area, gyrification, and curvature, which vary in their spatial distribution across the brain and 

undergo different maturational trajectories.  

CT is quantified as the distance between corresponding points on WM and pial 

boundaries. CT follows a non-linear trajectory throughout development, increasing rapidly 

from birth, followed by decline (Fjell et al., 2015; Raznahan et al., 2011; Shaw et al., 2008) that 

may start as early as 1-2 years of age (Brown et al., 2012; Gilmore et al., 2021; Li et al., 2015; 

Remer et al., 2017; Wang et al., 2019). The spatial distribution of age-related changes is 

variable along both axes of cortical organization: sulcal depths experience more extensive 

thinning relative to gyral crowns (Vandekar et al., 2015), whereas across the cortical sheet, 

lower-order primary and sensorimotor areas mature earlier than association cortices (Brown et 
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al., 2012; Gilmore et al., 2021; Sowell et al., 2004; Syndor et al., 2021), with regionally-specific 

developmental trajectories (Ducharme et al., 2016; Mutlu et al., 2013; Shaw et al., 2008; Wang 

et al., 2019). Together, these maturational changes are thought to reflect axonal and dendritic 

remodelling, myelination, apoptosis, trophic glial and vascular changes, as well as synaptic 

pruning (Hogstrom et al., 2013; Jeon et al., 2015; Pontious et al., 2008).   

 Vertex-wise SA is typically computed by taking one third of the surface of triangular 

facets adjoining a given vertex (Lyttelton et al., 2009). Being strongly influenced by genetics, 

(Jha et al., 2018; Panizzon et al., 2009; Strike et al., 2019) changes to SA throughout the lifespan 

are less dynamic, with most of the developmental changes occurring during infancy (Jha et al., 

2018; Raznahan et al., 2012; Yu et al., 2016). Fetal and neonatal studies have shown that 

cortical development accelerates in the second half of gestation, with the enlargement of SA 

and emergence of folds (Batchelor et al., 2002; Clouchoux et al., 2012; Dubois et al., 2008). 

This rapid expansion continues in the first two years of life (Gilmore et al., 2012; Hill et al., 

2010; Li et al., 2013; Lyall et al., 2015; Remer et al., 2017) and into early childhood, increasing 

between 20-108% from 1-6 years of age, with regional dependencies (Gilmore et al., 2020; 

Remer et al., 2017). Notably, 73-83% of individual variation in SA at 6 years of age has been 

found to be present by the first year of life, relative to merely 45% of variation in CT at 2 years 

of age (Gilmore et al., 2020). SA continues to expand until later in childhood, then remains 

relatively stable or marginally declines thereafter (Ducharme et al., 2015; Lyall et al., 2015; 

Raznahan et al., 2011). These global changes are likely influenced by density of dendritic and 

synaptic architecture, gliogenesis, cortical myelination, and underlying WM development 

(Cafiero et al., 2019; Hill et al., 2010; Hogstrom et al., 2013; Rakic, 1995).    

 Approaches that quantify folding commonly involve the use of cortical SA as a 

reference. The gyrification index (GI; Elias & Schwartz, 1969; Zilles et al., 1988) represents a 

ratio of the total surface to the area of the convex hull around the brain (Zilles et al., 1997), 

such that a value of 1 describes a lissencephalic contour, and increasing values represent more 

cortex enfolded in sulcal crevices. Local gyrification index (LGI) is an extension of this 

measurement, and involves computing this ratio within a small circular region of interest on a 

cortical mesh, offering a finer grained measurement suited to three-dimensional topography 

(Schaer et al., 2008). Early studies characterizing GI found it to increase substantially during 

late gestation, and more subtly during the neonatal period, reaching an adult-like phenotype 

shortly after birth (Zilles et al., 1997). GI has been found to increase by 16% during the first 
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year of life and by 6.6% in the second year, with some evidence suggesting that the association 

cortex exhibits the most elevated growth rate (Li et al., 2014). This age-related increase in 

gyrification is believed to be predominantly driven by the dramatic increase in synaptic density, 

dendritic length and dendritic spine density that occurs in the perinatal period (Hill et al., 2010). 

GI and LGI decline in childhood and into adulthood (Forde et al., 2017; Hogstrom et al., 2013; 

Klein et al., 2014; Mutlu et al., 2013; Raznahan et al., 2011), generally exhibiting a linear 

decrease (Forde et al., 2017; Hogstrom et al., 2013; Mutlu et al., 2013), although region-specific 

non-linear trajectories have also been identified (Hogstrom et al., 2013; Klein et al., 2014; 

Mutlu et al., 2013). While gyri and sulci jointly comprise the folded surface of the mantle, they 

differ anatomically in their cellular organization and density, vascular properties, and neuropil 

concentration (Hilgetag & Barbas, 2005; Sun & Hevner, 2014; Wagstyl & Lerch, 2018).  

 Curvature is equivalent to the reciprocal of the radius of an inscribed circle, measured 

on points along the curve. Extrinsic curvature, often measured using MC, describes how the 

shape of the cortex is geometrically embedded in space (King et al., 2016; Schaer et al., 2008; 

White et al., 2010). On a surface, osculating planes define curvatures in principal directions, 

from which MC is computed. This measure of cortical complexity represents change in the 

normal direction of the curve relative to a tangent reference surface (do Carmo et al., 1976; 

Kim et al., 2006; King et al., 2016; Luders et al., 2006; MacDonald, 1998; White et al., 2010), 

yielding positive values in concave regions such as gyral crowns and negative values in convex 

regions such as sulcal folds, with a larger absolute value denoting sharper curvature (King et 

al., 2016). Studies characterizing developmental trajectories of cortical curvature in healthy 

samples have been sparse. MC of primary sulci and gyri follow variable trajectories between 

20-28 weeks of gestation. For instance, linear decreases in MC has been reported in the circular 

sulcus and parieto-occipital sulcus, curvilinear decreases in superior temporal and central 

sulcus, and non-linear increases in the fronto-parietal operculum, as well as post-central and 

lingual gyri (Habas et al., 2012). Generally, age-related changes in cortical curvature are fairly 

modest in early life, increasing 1-20% from 1-6 years of age (Remer et al., 2017), and decline 

starting in early childhood (Pienaar et al., 2008). Hemispheric asymmetries have also been 

reported in curvature patterns during the first two years of life (Li et al., 2014). The mechanisms 

underlying age-related changes in curvature are believed to be largely influenced by cortical 

myelin and WM development, as proportions of GM and WM shift in infancy. Indeed, 

regionally specific increases in WM volume in sulcal depths have been associated with 
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increasing MC (King et al., 2016). This suggests that synaptic pruning and apoptosis 

contributing to cortical volume reduction in early life are accompanied by a concomitant 

increase in myelination that may result in the expansion of both WM and curvature (King et 

al., 2016).          

 Collectively, cortical indices vary spatially in their relative proportions (Hogstrom et 

al., 2013), have distinct neurodevelopmental origins (Mountcastle 1997; Rakic, 1995), genetic 

etiologies (Pazzinon et al., 2009), and maturational time courses (Raznahan, 2011). Given the 

divergent genesis of individual cortical metrics, the natural history of the brain can be inferred 

by studying multiple measures together, with each offering unique yet complementary 

biological information. By virtue of this phenomenon, perturbations in a specific measure are 

informative of key mechanisms of developmental programming that may be disrupted in 

neurodevelopmental disorders, such as ASD (Gharehgazlou et al., 2021; Jalbrzikowski et al., 

2013).  

2.5 Autism Spectrum Disorder 

2.5.1. Diagnostic Criteria  
ASD is characterized by impairments in social interactions and communication, as well 

as repetitive behaviours and interests. According to the Diagnostic and Statistical Manual of 

Mental Disorders - 5th edition (DSM-V; American Psychiatric Association, 2013), diagnostic 

criteria are as follows: 

1) Social communication deficiencies in each of the following social domains: 

a) Social emotional reciprocity  

b) Non-verbal communication  

c) Formation and maintenance of relationships 

2) Restricted and repetitive behaviours and interests in a minimum of two of the 

following domains:  

a) Stereotyped or persistent movements, object use, or speech patterns 

b) Attachment to sameness, routines, or ritualized behaviour/speech 

patterns 

c) Extremely restricted interests or fixations 

d) Sensory atypicalities (i.e. hyper- or hyposensitivity or preoccupation 

with sensory elements of surroundings)  
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These symptoms must endure from early development, incur significant functional 

impairment in various facets of daily life, and are not attributable to a primary diagnosis of 

intellectual disability or global developmental delay. Additional specifications are provided by 

indicating the presence of language or intellectual impairment, medical/genetic conditions, 

other neurodevelopmental or psychiatric disorders, and catatonia (American Psychiatric 

Association, 2013).  

ASD is commonly diagnosed by licensed mental health or medical professionals with 

specialized training. The diagnostic procedure involves clinical observation and the 

administration of standardized diagnostic assessment tools (e.g., Autism Diagnostic 

Observation Schedule [ADOS; Lord et al., 2000; 2012] or Autism Diagnostic Interview-

Revised [ADI-R; Lord et al., 1994]), as well as comprehensive medical and family history, 

caregiver interviews, and sensory testing (Zwaigenbaum et al., 2019).  

Although not included in the core symptom domains, co-occurring psychiatric and 

medical conditions are highly prevalent, with approximately 70% of autistic individuals 

presenting with at least one comorbid mental health diagnosis and almost 50% with multiple 

(de Bruin et al., 2007; Lai et al., 2019). Among the most common are attention deficit 

hyperactivity disorder (ADHD), anxiety, obsessive compulsive disorder, bipolar disorder, 

oppositional defiant disorders, depression, and schizophrenia (Buck et al., 2014; Croen et al., 

2015; de Bruin et al., 2007; Elder et al., 2017; Lai et al., 2019). Other medical disorders are 

also over-represented, including gastrointestinal disorders, sleep disorders, epilepsy, 

hypertension, obesity, diabetes, autoimmune conditions, asthma, allergies, and hormonal 

dysregulation (Al-Beltagi, 2021; Bauman, 2010; Croen et al., 2015). Co-occurring conditions 

contribute to impairment and negatively affect developmental progression, posing additional 

challenges to accurate and timely diagnosis (Bauman 2010; Lord et al., 2022).  

 

2.5.2 Prevalence           

 ASD affects 1 in 66 Canadians aged 5-17 years old (Ofner et al., 2018). It can be reliably 

diagnosed by 2 years of age (Zwaigenbaum et al., 2019), with 56% of Canadian children 

diagnosed by 6 years of age (Ofner et al., 2018). A child’s symptom severity affects the age of 

diagnosis. Greater symptom severity and presence of language delay or cognitive deficits are 

likely to result in an earlier diagnosis (Avlund et al., 2021; Daniels & Mandell, 2013), while 

milder symptoms, and a history of other developmental or psychiatric conditions are likely to 
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result in a later diagnosis (Avlund et al., 2021). Certain sociodemographic factors are associated 

with diagnostic delays, including lower parental education and socioeconomic status, belonging 

to an ethnic minority group, female sex, and living in a rural geographic location. However, 

many of these factors are difficult to parse and conflicting findings do exist (Avlund et al., 

2021; Brett et al., 2016; Daniels & Mandell, 2013; Giarelli et al., 2010; Hrdlicka et al., 2016).  

Importantly, sex differences exist in the prevalence of ASD. Indeed, males are 

diagnosed approximately 3.5 times as often as females (Loomes et al., 2017; Posserud et al., 

2021), and about twice as often in individuals with lower IQ (Fombonne, 2009; Loomes et al., 

2017; Volkmar et al., 1993). These discrepancies may stem from sex differences in core 

symptom domains. For instance, autistic females tend to have milder restricted and repetitive 

behaviours relative to males (Antezana et al., 2018; Hartley & Sikora, 2009; Hiller et al., 2014; 

Van Wijngaarden-Cremers et al., 2014), and more expressive social skills, including social 

emotional reciprocity, non-verbal communication (Hiller et al., 2014), displays of context-

appropriate behaviour (de Giambattista et al., 2021), and friendship quality (Head et al., 2014), 

although IQ (Ryland et al., 2014) and age (Mahendiran et al., 2019) are important mediators of 

this variation. Females also have greater prevalence of co-occurring internalizing disorders 

(Supekar et al., 2017), more often display lower IQ (Werling & Geschwind, 2013), and have 

distinct behavioural and cognitive profiles (Carter et al., 2007; Lemon et al., 2011), suggestive 

of a divergent sex-specific phenotype.  

The source of these sex differences is contested. Some have argued that discrepancies 

in prevalence are attributable to the fact that females are more proficient at camouflaging 

symptoms and using compensatory coping strategies that may obscure overt ASD 

characteristics (Hull et al., 2017; Lai et al., 2017). Moreover, the traditional characterization of 

ASD has been formed from decades of predominantly male-centred research studies (Lai et al., 

2015) which may have biased diagnostic criteria, making it more likely for typically female 

symptoms to be overlooked (Hull et al., 2020). Others have argued that clinically observed sex 

differences originate from sex differences in pathophysiology. The Female Protective Effect 

theory suggests that females require more significant genetic burden and biological disruptions 

to meet diagnostic thresholds, with some studies finding a greater quantity of highly penetrant 

rare copy number variants in females that may act as ASD risk factors (Jacquemont et al., 2014; 

Levy et al., 2011). The theory posits that this protection results in more subtle behavioural 

symptoms in females when genetic load is equal to their male counterparts. In parallel, greater 
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genetic variability due to male sex chromosomes (XY) confers enhanced genetic vulnerability 

in males (Hull et al., 2020; May et al., 2019).  

 

2.5.3 Prognosis           

 Due to the lifelong course of ASD and complexity of core and co-morbid symptoms, 

autistic individuals experience functional impairments in many spheres of life (Lenroot & 

Yueng, 2013; Masi et al., 2017). Although long-term trajectories are variable (Fountain et al., 

2012; Levy & Perry, 2011), autistic individuals are generally at greater risk of higher mortality 

rates (Farley & McMahon, 2014; Hirvikoski et al., 2018), poor social (Farley & McMahon, 

2014; Magiati et al., 2014) and health outcomes (Benevides et al., 2020; Bishop-Fitzpatrick & 

Kind, 2016), in addition to limited academic and vocational achievement (Dudley & Emery, 

2014; Farley & McMahon, 2014), autonomy (Billstedt et al., 2005), and lower reports of life 

satisfaction (Burgess & Gutstein, 2007).  

Research has shown that symptomatology remains stable (Lord et al., 2006) or modestly 

improves with age (Fecteau et al., 2003; McGovern & Sigman, 2005; Shattuck et al., 2007; 

Woodman et al., 2014). Age-related changes in comorbidities have also been observed, with 

co-occurring conditions such as epilepsy and ADHD decreasing appreciably throughout 

development, whereas the prevalence of schizophrenia rises (Supekar et al., 2017). Overall, 

outcomes depend on a host of factors including symptom severity, cognitive ability, 

comorbidities, socioeconomic status, family environment, and timing of intervention onset 

(Avlund et al., 2021; Fountain et al., 2012; Matson & Smith, 2008; Taylor & Seltzer, 2010; 

Woodman et al., 2014). It is understood that achieving normative functioning should not be 

considered the ultimate benchmark for positive long-term outcomes. Rather, both self-

advocates and researchers endorse the importance of health, adaptive living skills, 

independence, community integration, education, employment, and meaningful relationships 

as key elements of optimal outcomes (Eigsti et al., 2022; McCauley et al., 2020). 

 

2.5.4 Treatment Approaches 
Most treatment efforts involve early and intensive behavioural and psychoeducational 

interventions. These approaches aim to enhance adaptive behaviours and independence by 

improving language, social communication, self-regulation, and cognitive skills, while 

reducing challenging behaviours (Posar & Visconti, 2019; Vismara & Rogers, 2010). Other 
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common treatments including speech-language, occupational (Hebert et al., 2014), and physical 

therapy (Atun-Einy et al., 2013; Mieres et al., 2012), in addition to sensory processing 

interventions (Baranek et al., 2002; Case-Smith et al., 2014). Comorbid conditions are often 

addressed through counselling and pharmacological treatments (Genovese & Butler, 2020). 

While these approaches produce favourable responses, the pervasive and complex nature of 

symptomatology requires prolonged treatments which incur significant financial cost. Indeed, 

the lifelong cost of caring for an individual with ASD in Canada has been estimated to be up to 

5.5 million dollars (Dudley & Emery, 2014). The source of these expenses stem from the 

intensity and frequency of professional services and therapies required, in addition to other 

medication, equipment, accommodations, and specialized support. Indirect costs accrued from 

lost income on the part of both caregivers and ASD individuals are a source of indirect financial 

loss (Dudley & Emery, 2014; Rogge & Janssen, 2019). 

 

2.5.5 Etiology          

 Despite the discovery of numerous biological, environmental, and epigenetic risk 

factors, a comprehensive etiological framework of ASD causation has not been established, 

which has hampered the identification of robust biomarkers.  

ASD has strong genetic liability. Heritability estimates are approximately 80%, with 

hundreds of rare and common genetic variants implicated in ASD susceptibility (Bai et al., 

2019). Genetic abnormalities include single nucleotide polymorphisms (e.g., CDH10 to CDH9 

genes at 5p14.1 locus), copy number variations (e.g., at 15q11-13, 16p11, and 22q11-13 

regions), de novo mutations (e.g., R12C and L68P point mutations of SHANK3), single gene 

conditions (e.g. Fragile X and Rett syndromes), and numerous gene variants (Bill & 

Geschwind, 2009; Bucher et al., 2021; Genovese & Butler, 2020; Grove et al., 2019; Waye & 

Cheng, 2018; Weiss et al., 2009). Studies have profiled the effect of ASD risk genes on various 

aspects of prenatal brain development, finding perturbations in synaptogenesis, calcium 

binding, cell adhesion, regulation of tissue and cell development, ion transport, axon guidance, 

neurotransmission, among many others (Grove et al., 2019; Rylaarsdam & Guemez-Gamboa,  

2019; Toma et al., 2012; Weiss et al., 2009). While abundant candidate genes have been 

recognized, most contribute modestly to overall genetic risk and many confer susceptibility to 

multiple disorders, some of which are comorbid with ASD (Genovese & Butler, 2020). Given 

the complexity of biological systems affected by genetic abnormalities, linking genotype to 
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clinical phenotype across multiple levels of biological dysfunction has been challenging. It is 

likely that candidate genes interact via both epistatic and pleiotropic effects through 

mechanistic pathways with shared functions (Tordjman et al., 2018).   

Other lines of investigation have explored alternative biological signatures. Studies of 

sex chromosome abnormalities have found that ASD is significantly overrepresented in males 

with Y chromosome aneuploidies (Tartaglia et al., 2017) as well as X-linked genetic conditions 

such as Fragile X, Turner, and Klinefelter syndromes (Baron-Cohen, 2011). Furthermore, 

mitochondrial dysfunction and co-occurring mitochondrial diseases are elevated in ASD 

(Giulivi et al., 2010; Rossignol & Frye, 2011), which affect energy metabolism and synaptic 

neurotransmission (Rossignol & Frye, 2011). Neuroendocrine dysregulation has also been 

proposed in ASD etiology, including in utero exposure to fetal and maternal androgens (Baron-

Cohen et al., 2015) and thyroid (Khan et al., 2014) hormones, as well as deficiencies in oxytocin 

receptors (Gregory et al., 2009; Pobbe et al., 2012), though their causal roles are somewhat 

contested. 

Environmental factors affecting brain development likewise play an important role in 

conferring risk. Advanced parental age, toxic metabolites (e.g., from pollutants, heavy metals, 

certain drugs/mediations), nutrient deficiencies, obstetric complications, as well as maternal 

infection, stress, hypertension, diabetes, and obesity have all been implicated in ASD risk 

(Hodges et al., 2021; Gore et al., 2014; Worsham et al., 2021). These factors can directly affect 

sensitive biological systems in utero (e.g., immune, oxidative, and endocrine function; Graham 

et al., 2021) and indirectly influence epigenetic mechanisms via DNA methylation, chromatin 

structure, and histone acetylation (Waye & Cheng, 2018) to modify gene expression involved 

in key neurodevelopmental pathways. Together, these environmental stressors exert both 

cumulative and interactive effects on neurodevelopmental programming during critical 

maturational windows and contribute to differential susceptibility to psychopathology (Buss et 

al., 2012; Entringer et al., 2016; Graham et al., 2021; Rice & Barone, 2000). 

 

2.5.6 Cortical Histology Findings        

 The post-mortem literature suggests abnormal columnar organization in ASD, such that 

minicolumns are more numerous, smaller (Casanova et al., 2002) and atypical in width 

(Casanova et al., 2006; McKavanaugh et al., 2015), particularly in frontal and temporal cortices 

(Casanova et al., 2002). More rapid proliferation of neural progenitors and reduced 
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synaptogenesis have also been found in ASD children aged 2-5 years in the dorsolateral 

prefrontal cortex (Marchetto et al., 2017), in addition to increased neuronal density in the 

prefrontal cortex (Courchesne et al., 2011), abnormal laminar architecture in prefrontal and 

temporal cortices (Stoner et al., 2014), increased CSF fluid in frontal lobes (Shen et al., 2013), 

and abnormal cellular architecture at the GM-WM interface (Avino & Hutsler, 2010). There 

has also been evidence of atypical microglial activation in the prefrontal cortex as well as 

greater microglial somal volume in WM and microglial density in GM (Morgan et al., 2010). 

Collectively, irregular cellular patterning appears to converge in prefrontal regions. Together, 

these alterations point to multifactorial cellular mechanisms that may influence both the 

composition and developmental course of macrostructural properties. 

 

2.5.7 Case-Control Differences in MRI-Derived Cortical Measures 
         One of the earliest and most replicated findings is of early brain overgrowth, which has 

been shown with measures of enlarged head circumference (Courchesne et al., 2003), increased 

brain weight (Bailey et al., 1993) and brain volume (Courchesne et al., 2001; Hazlett et al., 

2006, 2011; Ismail et al., 2016; Li et al., 2017; Schumann et al., 2010). However, beyond this 

early developmental stage, a consensus regarding region-specific trends remains elusive. For 

instance, one review article reported that 41% of studies found significant increases in frontal 

lobe GM volume (GMV) in ASD subjects relative to NT controls, 24% reported a decrease, 

and 35% reported no statistical difference (Pagnozzi et al., 2018).   

 

2.5.7.1 Cortical Thickness and Surface Area 

These discrepancies extend to volume’s subcomponents as well. Indeed, conflicting 

findings point to both decreases (Ecker et al., 2013, 2014; Hadjikhani et al., 2006; Hyde et al., 

2010; Jiao et al., 2010; Scheel et al., 2011), and increases (Haar et al., 2016; Hardan et al., 2006; 

Hyde et al., 2010; Khundrakpam et al., 2017; Yang et al., 2016) in CT in ASD subjects 

compared to controls, as well as reduced (Ecker et al., 2013, 2014; Mensen et al., 2017), and 

enlarged SA (Doyle-Thomas et al., 2013; Hazlett et al., 2011). Null findings are also prevalent 

(Mak-Fan et al., 2011; Raznahan et al., 2011; Wallace et al., 2013, 2015; Yang et al., 2016). 

Longitudinal studies have been conducted to address the often non-overlapping age ranges in 

cross-sectional reports. Evidence points to a relative absence of normative age-related thickness 

decline in ASD subjects from early to late childhood (Smith et al., 2016), as well as steeper 
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thickness decrease in temporal and occipital regions in older childhood (Hardan et al., 2009). 

Between adolescence and early adulthood, greater reductions have been reported in parietal 

(Wallace et al., 2010, 2015; Zielinski et al., 2014), frontal, and occipital lobes (Zielinski et al., 

2014), with slower thinning in adulthood (Zielinski et al., 2014). With respect to SA, some 

longitudinal studies do not report developmental differences (Smith et al., 2016; Wallace et al., 

2015), while others have observed greater SA enlargement between 2-5 years of age in ASD 

subjects (Hazlett et al., 2011), as well as a lack of age-related reduction between late childhood 

and adulthood in superior temporal, postcentral, and supramarginal partitions (Mensen et al., 

2017).         

 

2.5.7.2 Case-Findings from Large-Scale Studies 

Another approach to resolving discrepant cross-sectional findings has involved 

amassing larger subject pools. In recent years, there has been mounting concern about low 

statistical power in small- and moderately- sized neuroimaging studies that may reduce the 

detection of true effects, while also increasing the likelihood of false positives and artificially 

inflated effect sizes (Postema et al., 2020). Several recent studies have therefore probed 

morphometric case-control differences with well-powered sample sizes. Some examples 

include a study by Bedford et al. (2020) employing a vertex-wise meta-analytic approach 

(n=3145) and an ENIGMA Consortium study by van Rooij et al. (2018), using a mega-analysis 

(n=3222). Overall, the location, direction, and magnitude of case-control differences fails to 

replicate across studies, apart from increased CT in ASD subjects within frontal and cingulate 

regions (Bedford et al., 2020; van Rooij et al., 2018). Unreplicated findings include ASD-

specific CT decreases in the temporal pole, entorhinal cortex, and parahippocampus (van Rooij 

et al., 2018), as well as increases in occipital and temporal poles, postcentral gyrus, and 

precuneus (Bedford et al., 2020). Neither study found significant diagnostic effects on SA. 

Notably, the importance of sex, IQ, and clinical severity have been empirically shown. 

Bedford et al. (2020) and van Rooij et al. (2018) describe enlarged thickness in temporal and 

frontal cortices in ASD males, with the former finding additional regions of significance, 

alongside ASD female-specific patterns with larger effect sizes. Both studies also report 

differential spatial patterns for significant diagnosis-by-IQ trends in CT. Further, both Bedford 

et al. (2020) and van Rooij et al., (2018) noted that ASD symptom severity was associated with 

increased CT in frontal nodes, in addition to study-specific anatomical trends. Medication use 
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was associated with CT only in the inferior temporal region by van Rooij et al. (2018), and 

neither study detected a significant effect of comorbidities on cortical measures. 

Unreconciled differences between large scale studies suggest that merely increasing 

sample size is not enough to resolve inconsistencies. Indeed, inter-study differences in 

participant characteristics (e.g., ascertainment practices, inclusion/exclusion criteria), data 

collection (e.g., scanners, acquisition sequences), processing (e.g., software), quality control, 

site correction, and analysis (e.g., region-of-interest vs vertex-wise approaches, statistical 

models, covariate management) likely contribute to variability in findings. Moreover, it is 

apparent that accounting for sources of heterogeneity such as sex, age, IQ, and symptom 

severity is essential to generate robust statistical inferences. 

 

2.5.7.3 Folding 

Measures of cortical folding have received less attention in the ASD literature. Early 

work using manual assessments identified developmental cortical malformations in a subset of 

ASD subjects, including localized regions of polymicrogyria (i.e. the presence of many 

abnormally small gyri; Piven et al., 1990). Other qualitative assessments of sulcal morphology 

have identified altered shape and depth of sulcal folds in ASD subjects within frontal, parietal, 

and insular clusters (Nordahl et al., 2007), the left Sylvian fissure (Brun et al., 2016), as well 

as the temporo-parietal junction and anterior insula (Dierker et al., 2015).  

Increased GI has been found in children and adolescents with ASD within the left 

prefrontal cortex (Hardan et al., 2004) and right parietal lobe (Kates et al., 2009). Conversely, 

age-related lobar-level GI decreases in the left prefrontal and parietal cortex have also been 

identified in older ASD children and adolescents (Bos et al., 2015). Studies using LGI have 

reported mixed findings. Increases in ASD subjects relative to controls have been identified in 

the precuneus and occipital lobes (Wallace et al., 2013), frontal lobes (Ecker et al., 2016; Kohli 

et al., 2019; Libero et al., 2018; Yang et al., 2016), temporal and parietal lobes (Ecker et al., 

2016; Kohli et al., 2019; Yang et al., 2016), as well as precentral gyri (Ecker et al., 2016; Kohli 

et al., 2019), central sulcus, postcentral gyri (Ecker et al., 2016), insula (Kohli et al., 2019), 

lingual gyrus, and isthmus cingulate (Yang et al., 2016). Conversely, reductions in LGI have 

been noted in the precentral gyrus, frontal, parietal, and parieto-occipital regions (Schaer et al., 

2013), the lingual gyrus (Kohli et al., 2019), and fusiform gyri (Libero et al., 2019). Notably, a 

number of studies have not found any significant diagnostic effects on GI or LGI including 
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Schaer et al. (2015), Hirjak et al. (2016), Koolschijn and Geurts (2016), Casanova et al. (2009) 

and Gharehgazlou et al. (2021) as well as a meta-analysis of ~1000 participants by 

Gharehgazlou et al. (2020). 

One longitudinal LGI study has been conducted in children 3-5 years of age, which 

found enhanced LGI in ASD within this age range relative to stable or declining values in NT 

controls (Libero et al., 2018). Cross-sectional studies have noted increasing LGI with age in 

ASD children (Kates et al., 2009; Yang et al., 2016), followed by a decrease in adolescence 

(Bos et al., 2015; Gharehgazlou et al., 2021; Kohli et al., 2019; Wallace et al., 2013), and 

adulthood (Koolschijn & Geurts, 2016). Some evidence suggests greater LGI in ASD females 

relative to males in ventromedial prefrontal and orbitofrontal cortices (Schaer et al., 2015), 

though many studies consist of male-only subjects (e.g. Casanova et al., 2009; Hardan et al., 

2004; Libero et al., 2013; Nordhal et al., 2007; Wallace et al., 2013; Yang et al., 2016) and thus 

more evidence is needed to substantiate these findings. Significant diagnosis-by-IQ effects have 

generally not been supported (Bos et al., 2015; Gharehgazlou et al., 2021; Kates et al., 2009; 

Wallace et al., 2013). Interestingly, a number of studies that identified significant diagnostic 

differences in GI or LGI did not find any co-occurring group differences in SA (Bos et al., 

2015; Kohli et al., 2019; Wallace et al., 2013; Yang et al., 2016) or volume (Schaer et al., 2013), 

despite the fact that folding is intrinsically tied to cortical expansion, which could suggest 

questionable neurobiological specificity. 

These discrepant findings could be due to a number of factors. Studies vary in the global 

brain measure used as a covariate in statistical models of GI/LGI, which have included 

intracranial volume (ICV; Yang et al., 2016), total brain volume (TBV; Ecker et al., 2016; 

Hardan et al., 2004; Kohli et al., 2019), cortical volume (Schaer et al., 2015), SA (Ecker et al., 

2016; Gharehgazlou et al., 2021), or none (Bos et al., 2015; Casanova et al., 2009; Hirjak et al., 

2016; Nordhal et al., 2007; Schaer et al., 2013; Wallace et al., 2013). Some have also applied 

additional smoothing kernels to LGI values (Ecker et al., 2016; Hirjak et al., 2016; Koolschijn 

& Geurts, 2016) which may serve as a source of methodological variance. It is also possible 

that many studies are simply underpowered to detect reliable effects, with the majority having 

sample sizes of ~100 subjects or less (e.g. Bos et al., 2015; Casanova et al., 2009; Ecker et al., 

2016; Hardan et al., 2004; Hirjak et al., 2016; Kates et al., 2009; Koolschijn & Geurts, 2016; 

Nordhal et al., 2007; Schaer et al., 2013; Wallace et al., 2013; Yang et al., 2016). Lastly, 

atypicalities in sulcal and gyral morphology may exist in ways that are not captured with GI or 
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LGI measures such as qualitative differences in the shape and placement of folds 

(Gharehgazlou et al., 2020). Indeed, individual variation in folding patterns may challenge 

accurate registration during image processing and further confound the abovementioned issues.  

         Few studies investigating curvature exist in the ASD literature. Of those found, there 

have been reports of increased Gaussian curvature in ASD subjects relative to controls, 

especially in the superior temporal region (Levman et al., 2018) as well as sex-specific 

qualitative differences in MC of ASD subjects (Hammill et al., 2021). 

 

Taken together, ASD heterogeneity extends beyond key symptom domains to 

encompass variation in etiological pathways (Masi et al., 2017), onset (Ozonoff et al., 2010), 

comorbidities (Lai et al., 2019), developmental trajectories (Fountain et al., 2012), cognitive 

abilities (Mandy et al., 2015), and neuroanatomy (Bedford et al., 2020; van Rooij et al., 2018). 

In order to establish a cohesive understanding of interdimensional variability, it is essential to 

use statistical models that account for individual variation across multiple clinical and 

neurobiological domains.  

 

2.6 Statistical Considerations 
Clinical heterogeneity has long been considered the primary source of inconsistent 

neuroimaging findings in ASD. However, in recent years, there has been growing 

acknowledgement that limitations of common statistical approaches also contribute to ongoing 

replicability challenges.  

 

2.6.1 Limitations of Univariate Models 
For decades, mass-univariate models have been the main statistical method in case-

control studies probing the relationship between diagnostic status and MRI-derived 

neuroanatomical indices. This approach fits the same Ordinary Least Squares regression model 

to each vertex/voxel across the brain to evaluate β weights of predictor variables (e.g. ASD 

diagnosis; β1X1) relative to the variance of a vertex-wise neuroanatomical outcome 

measurement (e.g., CT; Yi; Guillaume et al., 2018; McIntosh & Mišić, 2013). After multiple 

comparison correction, the analyses yield a set of vertices that represent the location of 

significant diagnostic differences in the average value of the neuroanatomical metric, which 

can be represented with statistics that convey the effect size and significance (e.g., t-values, 
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standardized beta coefficients, q-values; Patel, 2022). While this method has yielded many 

valuable findings and is favoured for its ease of interpretation (Friston et al., 1995), there are 

several key challenges due to the high-dimensional and multi-scaled nature of neuroimaging 

data and the disproportionate ratio of features to samples (i.e. thousands of vertices per subject; 

O’Toole et al., 2007; Wang et al., 2014). 

The substantial number of vertex-wise models introduces a number of constraints. For 

one, statistical inferences are generally made in the absence of regression diagnostics to confirm 

that linear model assumptions are met, which are important for accurate variance and parameter 

estimation (Guillaume et al., 2018; Luo & Nichols, 2003; Zhu et al., 2007). Moreover, each 

vertex is assumed to be independent, which ignores spatial autocorrelation, the systematic 

regional variation between neighbouring vertices (Habeck, 2010). This modelling scheme 

obviates the possibility that an observed diagnostic effect is represented by a joint collection of 

interdependent vertices (McIntosh & Mišić, 2013). Further, the stringent multiple comparison 

correction required to limit inflation of Type I error across thousands of models produces 

conservative significance thresholds that reduce sensitivity to smaller effect sizes (O’Toole et 

al., 2007; Poline & Brett, 2012). Given the subtlety and variability of brain-behaviour 

associations, identifying reproducible phenotypes requires thousands of subjects (Marek et al., 

2022), which is prohibitive for many researchers.  

From an interpretation standpoint, case-control univariate models produce an average 

vertex-wise measurement for a given group, which may be unrepresentative of neurobiological 

variation in heterogeneous disorders such as ASD (e.g., Pua et al., 2019; Tunç et al., 2019; 

Zabihi et al., 2019). Compounding this issue further is the fact that case-control designs suffer 

from the choice of variables used as covariates, which may drive directionality or effect sizes. 

Indeed, it is common practice to residualize important sources of variability (e.g. sex and age) 

as nuisance variables or remove them as covariates to limit collinearity (Bedford et al., 2020; 

Bethlehem et al., 2020; Lombardo et al., 2019). Previous studies have underscored the 

differential effects of raw versus residualized predictors, the risk of biased coefficient estimates 

(Lynam et al., 2006; Wurm & Fisicaro, 2014; York, 2012), and inadequate modelling of age- 

and sex-specific effects (Bethlehem et al., 2020). Interpretive challenges are also created, as 

partialling predictors effectively isolates cortical measures from variables that are intrinsically 

tied to their anatomical organization. Ultimately, probing diagnostic effects without accounting 
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for variance attributable to sex and age may fail to create clinically and biologically robust 

models. 

 

2.6.2 Structural Covariance         

 Modern computational techniques recognize that brain regions are organized in 

community structures, underpinned by common biological and functional processes. One 

strategy to evaluate this phenomenon is structural covariance, which measures coordinated 

patterns of macrostructural change between brain regions that is consistent across individuals 

(Alexander-Bloch et al., 2013; Lerch et al., 2006). This index represents a fundamental 

organizational principle of the cortex because brain regions that change together also share 

similarities in underlying gene expression profiles (Romero-Garcia et al., 2018), structural 

connectivity (Yee et al., 2018), and functional coupling (Liao et al., 2013). Moreover, a growing 

body of research suggests that differences in structural covariance networks exist across ages, 

psychiatric disorders, and cognitive abilities (Liu et al., 2017; Mitteroecker et al., 2012; Seidlitz 

et al., 2018; Sha et al., 2022; Sharda et al., 2016; Zielinski et al., 2012), implying functional 

and clinical relevance. Previous studies of structural covariance in ASD have identified 

differences from NT subjects, with functional implications across various socio-cognitive 

domains including social-emotional regulation (Zielinski et al., 2012), theory of mind 

(Bernhardt et al., 2013), and language functioning (Sharda et al., 2016). These studies 

demonstrate that covariance patterns of distinct cortical metrics may differentially influence 

cognitive function and clinical symptomatology. 

 

2.6.3 Multivariate Analyses 
Multivariate approaches are increasingly prevalent as counterpoints to canonical 

univariate techniques. These methods identify interdependencies between input variables in a 

sparse and low dimensional latent framework (Habeck, 2010; Habeck et al., 2010; McIntosh & 

Mišić, 2013), representing the fusion of individual elements that covary or correlate together 

(McIntosh & Lobaugh, 2004). In the context of neuroimaging data, multivariate analyses 

combine thousands of individual cortical vertices into structural networks of interrelated 

regions (McIntosh & Mišić, 2013), which are suitable for modelling the spatially distributed 

and interdependent nature of cortical organization (Segovia et al., 2014). These techniques are 

therefore more sensitive and specific to subtle interactions between a collection of cortical 
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regions that share commonalities in an underlying dimension (Habeck et al., 2010) and may be 

jointly involved in a clinical, cognitive, or biological phenomenon (Patel, 2022; Sotiras et al., 

2015). Many exploratory multivariate techniques aim to identify data-driven patterns of 

covariation using singular value decomposition (SVD). These methods decompose input data 

(e.g vertex-by-subject matrix of CT values) into: 1) a set of latent components that describe the 

spatial location of covarying vertices and 2) subject-level loadings that describe each 

individual’s expression of the components (McIntosh & Mišić, 2013).  

Importantly, the subject-wise component loadings yield an individualized profile of 

each subject’s covariance networks. The patterns can thus be expressed in a continuous manner, 

which aligns with the increasingly dimensional view of many psychopathologies (Patel, 2022). 

This scheme places an individual with a set of characteristics or symptoms along a continuum 

of variation (either within a disorder, with the normative population, or transdiagnostically) to 

identify patterns across individuals rather than groups (Lombardo et al., 2019). Aspects of 

health and illness can thus be understood across a range of functioning rather than seeking 

group-level differences relative to a diagnostic threshold (e.g. Research Domain Criteria 

framework; Cuthbert, 2015). Similarly, biological dysfunctions underpinning psychopathology 

are increasingly understood to transcend diagnostic classifications to fall along broader spectral 

dimensions (Stoyanov et al., 2020). For instance, in some cases, variations in the degree of a 

given dysfunction can inform treatment plans and prognostic predictions over and above a 

diagnostic label (McPartland, 2016).  

In line with the dimensional view of ASD (American Psychiatric Association, 2013), 

studies seeking to understand its pathophysiology ought to similarly adopt dimensional 

approaches across multiple domains implicated in ASD symptomatology. Indeed, there is a 

growing need to understand how variability is coordinated across biological systems in an 

individualized manner (Lombardo et al., 2019; Vargason et al., 2020). A number of multivariate 

techniques can be employed to achieve this aim, two of which are covered in detail below.  

 

2.6.3.1 Non-negative Matrix Factorization (NMF) 

Orthogonal projective NMF (Lee & Seung, 1999, 2000; Yang & Oja, 2010) is an 

unsupervised matrix decomposition technique that models dominant patterns of covariance in 

the data, whereby an input matrix X (m x n) is factorized into a product of two matrices W (m 

x k) and H (k x n) that jointly recover the raw data patterns through a linear combination of 
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latent components and subject-wise loadings (Sotiras et al., 2015). Here, m represents cortical 

vertices, n represents subjects, and k represents user-selected components. NMF is well-suited 

for neuroimaging data because it identifies data-driven covariance patterns of lower 

dimensionality that can be mapped to subjects on an individual basis. Since the elements of the 

input and output matrices are constrained to be non-negative, it allows for an additive 

reconstruction of components to recapitulate the covariance patterns of the original data in a 

sparse and parts-based way (Sotiras et al., 2015; 2017).  

 

NMF seeks to approximate the factorization of X≈WH by solving the following 

minimization problem (Lee & Seung, 1999; Sotrias et al., 2015):  

    (1)                                                  min ||X - WH||2F                    

whereby W ≥ 0, H ≥ 0 and || .||2F represents the squared Frobenius norm, the cost function that 

is minimized. 

The projective property (Yuan & Oja, 2005), allows for the subject-by-metric loadings 

of the H matrix to be estimated as the projection of the data matrix X to the components W:  

    (2)                                                       H = WTX 

Such that H is now replaced in the approximation: X≈WWTX (Yang & Oja, 2010). 

Further, the orthogonality constraint on W modifies the minimization problem as 

follows (Sotiras et al., 2015; Robert et al., 2022): 

    (3)                                                    minW ||X - WWTX||2F 

  whereby WWT = I, W ≥ 0, such that I represents the (orthogonal) identity matrix, and || .||2F 

represents the squared Frobenius norm.   

The spatial location of covariance patterns is represented in the W matrix, also known 

as the basis matrix, which is organized with m vertices by k components. This matrix describes 

the components’ spatial properties by indicating the weightings of each vertex onto every 

component, represented with a W score. Through a multiplicative update rule, W is iteratively 

revised to minimize the reconstruction error while satisfying orthogonality constraints (Varikuti 

et al., 2018; Yang & Oja, 2010):                

    (4)                                                  𝑊′#$ = 	𝑊#$
((()*),-

(**)(()*),-
                       

where i = 1.. number of vertices and j = 1.. number of components. 
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The orthogonal parameter of orthogonal projective NMF ensures that components are 

non-overlapping, which improves specificity and interpretability, while the projective property 

ensures that all components participate in the reconstruction of the entire data sample, which 

improves sparsity (Sotiras et al., 2015). Additionally, the orthogonality constraint renders the 

NMF minimization mathematically nearly identical to that of k-means clustering, which allows 

a soft clustering of vertices with a winner-take-all approach (Ding et al., 2005). Thus, although 

the W matrix contains component-wise weights for each vertex, the clustering property allows 

the allocation of a given vertex to a single component with the highest W weight. This way, 

each vertex is assigned to the component to which it has the strongest membership, thereby 

improving sparsity and interpretability. 

The H matrix stores each subject’s loading coefficient or weighting onto each 

component. If a multi-metric input is used, the H matrix shows each subject’s loading onto each 

cortical metric comprising every component. It is organized with k components by n subject-

metric combinations. Due to the projective property, the subject-by-metric loadings are 

estimated as the projection of the data matrix X to the components: H = WTX (Sotiras et al., 

2015; Yang & Oja, 2010). The magnitude of a loading coefficient therefore indicates the extent 

to which a given metric is expressed within each component’s covariance pattern for a given 

participant, indicating subject-level macrostructural variation.  

 

 NMF is gaining traction in the ASD neuroimaging literature. Tang et al. (2019) used 

joint-symmetrical NMF to identify modules of functional MRI (fMRI) data with network 

clustering, then trained ASD classifiers with the extracted features. Similarly, Pua et al. (2021) 

used automatic relevance determination and projective NMF to link individual variation in 

fMRI subnetworks to symptom severity. With electroencephalography data, Zhou et al (2020b) 

identified frequency-specific networks that differ between ASD and NT individuals, as well as 

age-related changes in connectivity (Zhou et al., 2020a). NMF has also been implemented with 

diffusion tensor imaging data to identify ASD-specific components and their developmental 

features using a projective variant, together with graph embedding (Ghanbari et al., 2014). With 

structural measures, a recent use case (Shan et al., 2022) involved ℓ0–sparse NMF to identify 

GMV components in ASD and NT participants. Subject-level loadings were then used to 

evaluate individual deviations in a normative modelling framework, followed by clustering to 

identify ASD subtypes. ASD-specific components of gene expression have also been detected 
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across common and cell-type specific patterns with integrative regularized NMF (Guan et al., 

2022). 

 

Outside of ASD research, there has also been a growing interest in using NMF for 

multimodal analyses. One approach has relied on topic modelling, which has been used to 

incorporate fMRI, structural, and phenotypic data in ADHD participants (Anderson et al., 

2014), as well as in imaging genetics using multi-view NMF with sparsity constraints and prior 

knowledge use (Won et al., 2022). Multimodal fusion has also been performed within a joint 

NMF framework, which factorizes more than one input matrix simultaneously (Zhang et al., 

2012). Wang et al. (2020) used a variant of this approach, group sparse joint NMF, to fuse 

fMRI, single nucleotide polymorphism, and DNA methylation data to identify latent 

multimodal patterns in schizophrenia (Wang et al., 2020). Lastly, within the orthogonal 

projective NMF framework, multimodal input matrices have been used to decompose 

covariance patterns across structural and diffusion MRI measures to create parcellation maps 

of the hippocampus (Patel et al., 2020) and striatum (Robert et al., 2022). 

 

2.6.3.2 Partial Least Squares Correlation (PLSC)      

PLSC is an associative multivariate technique that finds a linear combination of 

variables that yields maximally correlated orthogonal LVs relating two input matrices, each 

containing different data types from the same set of participants (McIntosh & Mišić, 2013). 

This method can be used to identify interdependencies between variables of interest by inferring 

underlying multivariate dimensions linking brain and behavioural data. The input consists of a 

matrix X (n x p) organized n subjects by p brain variables and a matrix Y (n x q) organized n 

subjects by q behavioural variables. The X and Y matrices are standardized across columns. A 

cross covariance matrix R (q x p) is generated where  

    (5)      R = YTX  

Since the relationship between X and Y is measured by the dot product, standardizing 

the input yields a correlation value between corresponding columns of the two matrices. This 

cross-correlation matrix is then subjected to SVD (Krishnan et al., 2011), such that  

    (6)      R = UΔVT                                  

The SVD decomposes X and Y into left and right singular vectors (U [p x l] and V [q x 

l]; i.e. saliences) and a diagonal matrix of singular values (Δ) whereby the rows of U and V 
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correspond to input matrices X and Y, respectively, whereas their columns represent novel 

components. The ith columns of U and V weigh the contribution of each individual input 

feature to the LV such that they maximally correlate (Krishnan et al., 2011; McIntosh & Mišić, 

2013; Zeighami et al., 2019). The ith singular value is proportional to the covariance explained 

by a LV and is computed as the ratio of the squared singular value to the sum of all squared 

singular values (McIntosh & Lobaugh, 2004; Zeighami et al., 2019). Therefore, the ith left 

singular vector (U), ith right singular vector (V), and ith singular value jointly comprise a LV 

(Zeighami et al., 2019). Additionally, brain and behaviour scores are computed by projecting 

the original subject-wise matrices onto the weighted patterns U and V as  

    (7)                 Lx = XU and Ly=YV  

to quantify the extent to which a given subject maps onto the LV (Zeighami et al., 2019). 

 

 PLS has been useful for relating neuroimaging and behavioural variables in ASD. 

Previous studies have associated GMV patterns with social skill measures (Sato et al., 2017) 

and diagnostic membership (Ecker et al., 2012). It has also been used in combination with 

classification algorithms to identify diagnosis- and sex-specific phenotypes (Gorriz et al., 

2019). PLS has been employed with functional data to associate age-related changes in resting 

state fMRI with diagnostic status and symptom severity (Morgan et al., 2019) and to link 

magnetoencephalography-derived connectivity with executive functioning skills (Mišić et al., 

2015). 

PLS Regression (PLSR) variants have also been implemented in ASD to link diagnostic 

differences in CT measurements (Romero-Garcia et al., 2018) and functional connectivity 

networks (Long et al., 2022) to gene expression profiles, to identify resting state functional 

brain networks related to behavioural metrics (Wong et al., 2016), and to account for site effects 

in CT (Moradi et al., 2017) and resting state fMRI data (Bhaumik et al., 2018).  

    

Taken together, as researchers look beyond case-control paradigms and mass-univariate 

testing, there has been growing interest in using large and representative samples, multi-metric 

approaches, and data-driven techniques to more comprehensively characterize individual 

variation of cortical anatomy in ASD. The main objective of this thesis is therefore to employ 

multivariate analyses to link individualized multi-metric covariance patterns with common 

sources of phenotypic heterogeneity within a dimensional framework of ASD.  
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3. Methods 
Broadly, the methodological workflow is as follows: First, T1-w scans were processed, 

and cortical derivatives were extracted. Case-control differences in global and vertex-wise CT, 

SA, LGI, and MC measures were assessed with linear mixed effects models and general linear 

models, respectively. The CovBat algorithm was implemented to remove batch effects in the 

mean, variance, and covariance of the four measures in a cross-metric framework. NMF was 

subsequently used to model joint covariance patterns between the CovBat-corrected cortical 

indices. To confirm that methodological decisions did not bias our results, we performed NMF 

on two decomposition granularities, on matched and unmatched subjects, and on GMV-

residualized and non-residualized input measures. Univariate analyses were then used to 

examine diagnostic differences in NMF-derived covariance loadings. Lastly, PLSC was used 

to identify LVs that describe brain-behaviour interrelations. The most significant and stable LV 

was qualitatively related to additional cognitive and clinical variables.  

 

3.1 Participant and Acquisition Details 
The sample consists of 1097 individuals aged 2-65 years (452 ASD; 42.9% female; 

mean age=17.11 y/o) from three sources: the Hospital for Sick Children (SickKids Hospital; 

n=520) in Toronto, the Province of Ontario Neurodevelopmental Disorders (POND) Network 

(n=330) <https://www.braincode.ca/content/open-data-releases>, and the UK Medical 

Research Council Autism Imaging Multicentre Study (UK AIMS) Consortium (n=247). 

Demographic information can be found in Table 4.1. 

 

3.1.1 SickKids Hospital 
A total of 520 cross-sectional T1-w scans acquired between November 2010 and May 

2016 at the Taylor laboratory at SickKids Hospital in Toronto, Ontario are included in the study. 

Scanning was performed with a Magnetization Prepared Rapid Gradient Echo (MPRAGE) 

sequence on a 3T Siemens Tim Trio (MAGNETOM, Siemens AG, Erlangen, Germany) with a 

12 channel head coil and 1mm3 resolution; FOV= 192 mm x 240 mm x 256 mm; TR/TE/TI/FA 

= 2300ms/2.96ms/900ms/9°. Foam padding around the head was used to limit movement of 

participants, who watched a movie during image acquisition using an MRI-safe audio/visual 

system. 



 

 
 
 

 
42 

Research ethics approval was received from the Hospital for Sick Children Research 

Ethics Board. Informed written consent was obtained from adult participants and parents of 

participating children. Informed verbal assent was obtained from children. ASD diagnosis was 

ascertained by expert clinical judgment through medical diagnostic reports as well as ADOS 

General and ADOS-II assessments (Lord et al., 2000; 2012) in accordance with DSM-IV or 

DSM-V criteria (American Psychiatric Association, 2000, 2013; Leung et al., 2019; Safar et 

al., 2020, 2021; Vogan et al., 2019; Yuk et al., 2020). A subset of 437 subjects had FIQ scores 

available, assessed with age-appropriate versions of the Wechsler Intelligence Scale (Wechsler, 

1999, 2011).  

 

3.1.2 POND 
A total of 330 baseline cross-sectional T1-w scans acquired between July 6, 2016 and 

March 8, 2021 are included in the study. Scanning was performed at the SickKids Hospital 

(n=260) in Toronto, Ontario on a 3T Siemens Prisma Fit and at Queen’s University in Kingston, 

Ontario (n=70) on either a 3T Siemens Tim Trio (n=67) or 3T Siemens Prisma Fit (n=3). 

Acquisition sequences are as follows. At SickKids Hospital, Toronto, Ontario: MPRAGE 

sequence on a Siemens Prisma Fit with 20 channel head coil and 0.8mm3 resolution; 

FOV=240mm x 300mm x 320mm; TR/TE/IT/FA=1870ms/3.14ms/945ms/9°. At Queen’s 

University, Kingston, Ontario: i) MPRAGE sequence on a 3T Siemens Tim Trio with 32 

channel head coil and 1mm3 resolution; FOV= 224mm x 300mm x 320mm; TR/TE/TI/FA= 

2300ms/2.98ms/900ms/9°. ii) MPRAGE sequence on a 3T Siemens Prisma Fit with 20 channel 

head coil and 0.8 mm3 resolution; FOV= 240mm x 300mm x 320mm; TR/TE/TI/FA= 

1870ms/3.1ms/945ms/9°.          

Research ethics approval was received from each site’s institutional research ethics 

board. Informed written consent was obtained from adult participants and parents of 

participating children. Informed verbal assent was obtained from children. ASD subjects have 

a primary diagnosis of ASD in accordance with DSM-IV or V criteria (American Psychiatric 

Association, 2000; 2013). Clinical ascertainment was performed with the ADOS-II (Lord et al., 

2012) and ADI-R (Lord et al. 1994) by experienced clinicians. NT control subjects have no 

history of psychiatric, neurodevelopmental, or neurological diagnoses, premature birth (<35 

weeks), nor family history of neurodevelopmental disorders in first-degree relatives 

(Gharehgazlou et al., 2021; Hammill et al., 2021; Jacobs et al., 2021; Kushki et al., 2021; Nakua 
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et al., 2022; Safar et al., 2022). FIQ was available for 291 subjects, estimated using age-

appropriate standardized assessments including the Stanford-Binet Intelligence Scales (Roid & 

Pomplun, 2012) or Wechsler Intelligence Scales (WASI, WASI-II; WISC-IV; WPPSI-III, 

Wechsler 1999, 2003, 2005, 2011, 2012).  

 

3.1.3 UK AIMS 
A total of 247 cross-sectional T1-w scans from the UK AIMS Consortium are included 

in the study. Images were acquired at the Institute of Psychiatry, Psychology and Neuroscience 

at King’s College London (IoP; n=121) and the Autism Research Centre, University of 

Cambridge (n=126). Scanning was conducted using 3T GE HDx Signa Systems scanners 

(General Electric, Milwaukee, USA) with an 8 channel receive-only RT head coil. Standardized 

acquisition protocols were implemented across sites, with a Driven Equilibrium Single Pulse 

Observation of T1 sequence that simulated T1-w inversion recovery images; 1mm3 resolution; 

FOV= 176mm x 256mm x 256mm; TR/TI/FA = 1800ms/50ms/20° (Bedford et al., 2020; Ecker 

et al., 2012, 2017; Lai et al., 2012).        

 Ethical approval was obtained from the National Research Ethics Committee, Suffolk, 

England. Subjects with ASD met diagnostic criteria of either International Classification of 

Diseases-10 (WHO, 1992) or DSM-IV guidelines (American Psychiatric Association, 2000). 

Diagnosis was ascertained with the ADI-R (Lord et al. 1994) by experienced clinicians. 

Exclusion criteria for all subjects include a history of psychiatric disorders, substance use 

disorders, severe head injury, ASD-related genetic disorders, or neurological conditions that 

affect brain structure and function. NT control subjects did not have a family history of ASD 

(Deoni et al., 2008; Ecker et al., 2012, 2016, 2017; Lai et al., 2011, 2012, 2013). Intelligence 

was assessed with the WASI (Wechsler, 1999). 

 

3.2 Image processing 

3.2.1 Preprocessing 
Raw T1-w scans were preprocessed in dataset-specific batches with the iterativeN4 

Multispectral pipeline <https://github.com/CoBrALab/iterativeN4_multispectral >. Briefly, the 

pipeline performs N4 correction of bias field inhomogeneities (Tutison et al., 2010) with an 

iterative correction and tissue estimation algorithm. Target voxels were successively refined 

using intensity thresholding by optimizing cross-correlation measures across increasing 
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resolutions. Scans underwent affine registration to the MNI ICBM NLIN SYM 09c model and 

patch-based brain segmentation using the BeAST algorithm (Eskildsen et al., 2012), followed 

by an additional stage of registration performed non-linearly, and tissue classification. The final 

outputs include an inhomogeneity corrected image, a corrected non-local-means denoised 

image, a brain mask, and converged tissue classification. The pipeline was run with the default 

settings for tissue priors, convergence threshold (0.01), maximum iterations (10), prior weights 

for classification probabilities (0.25), and cropping parameters. 

 

3.2.2 Processing 
The bias field-corrected version of T1-w scans along with each scan’s generated brain 

mask were then submitted to the CIVET 2.1.1 pipeline in dataset-specific batches (Montreal 

Neurological Institute; <https://www.bic.mni.mcgill.ca/ServicesSoftware/CIVET>; Ad-

Dab’bagh et al., 2006). T1-w images were linearly registered to MNI ICBM152 average 

template (Kim et al., 2005; Lepage et al., 2017; MacDonald et al., 2000; Mazziotta et al., 2001; 

Tohka et al., 2004; Zijdenbos et al., 1998). Voxels were classified into WM, cortical and 

subcortical GM, CSF, and background. Cortical surface reconstruction was performed for each 

hemisphere with the CLASP algorithm and PVE estimation (Kim et al., 2005; Lepage et al., 

2017; MacDonald et al., 2000; Tohka et al., 2004; Zijdenbos et al., 1998). Extracted surfaces 

were nonlinearly co-registered to surface templates based on sulcal morphometry using 

spherical registration, while maintaining vertex-wise mesh alignment between surfaces classes 

(Lepage et al., 2017; 2021; Robbins et al., 2004).   

The pipeline was implemented with default CIVET parameters in addition to the 

following specifications: 12-parameter affine alignment to template model, inclusion of MC 

maps, hippocampus masking, disabling of N3 correction (Sled et al., 1998), iterative PV 

estimates, tlaplace method for CT estimates (Lerch & Evans, 2005) and Automated Anatomical 

Labeling parcellation (Tzourio-Mazoyer et al., 2002).  

 

3.2.3 Cortical Derivatives 
Cortical measurements were derived at 81,924 vertices, resampled to the MNI 

ICBM152 surface model. Vertex-wise CT was computed as the distance between WM and pial 

boundaries with automated three-dimensional extraction via Laplacian distance and PVE 

classification (Lerch & Evans, 2005; Tohka et al., 2004) and blurred with a 30mm full-width 
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at half-maximum (FWHM) surface-based diffusion smoothing kernel. Vertex-wise SA was 

computed by imposing a Voronoi parcellation and calculating one third of the area of each 

adjacent triangular facet adjoining a vertex, midway between GM and WM surfaces (Lyttelton 

et al., 2009), and smoothing with a 40mm FWHM surface-based diffusion kernel. Vertex-wise 

LGI represents the quantity of cortex buried in sulci relative to the convex hull, computed with 

a post-processing script using CIVET-derived surfaces 

<https://github.com/r03ert0/surfaceratio> and a sphere radius of 20mm (Toro et al., 2008). 

Vertex-wise mean surface curvature was computed as the average of principal curvatures 

midway between GM and WM surfaces, then smoothed with a 30mm FWHM surface-based 

diffusion kernel (do Carmo et al., 1976; Kim et al., 2006; King et al., 2016; Luders et al., 2006).

 The ‘averge_surface’ CIVET command was used to compute population surface 

average brain maps for visualizing statistical outputs. Vertices belonging to the non-cortical 

midline of both hemispheres were masked, leaving a total of 77,122 vertex-wise measures per 

cortical metric to be used in analyses. 

 

3.3 Quality Control (QC) 
Step-wise quality control (QC) was implemented at three stages of the workflow. Rating 

was performed by the author across all QC stages for SickKids and UK AIMS datasets, and by 

the author and a co-rater for the POND dataset. Raters established reliability by reviewing 

criteria outlined in QC guidelines, rating the same set of out-of-sample scans, cross-referencing 

scores, resolving discrepancies, and repeating the process if necessary. For POND QC, raters 

split subjects in half, rated their respective sets, and discussed borderline scans to arrive at a 

consensus. All scores were reviewed by the author to ensure consistency with rating criteria 

used for other datasets. Intra-rater reliability was enforced by re-rating a minimum of half of 

the scans at each stage, with particular attention given to ambiguous cases. Raters were blind 

to phenotypic data, including diagnosis. 

 

3.3.1 Motion QC 
First, raw T1-w scans were inspected for the presence of visible motion artifacts such 

as ringing and blurring. The scans were rated on a four-point scale according to the following 

criteria <https://github.com/CoBrALab/documentation/wiki/Motion-Quality-Control-(QC)-

Manual> with 0.5 ratings assigned for additional specificity. Scores were allocated based on 
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the proportion of the brain affected and depth of artifacts. A stringent cut-off rating of ≥2 was 

used to exclude scans as failures (n=265). Failed ratings were generally reserved for ringing 

and blurring that were non-superficial, extended throughout several slices, and/or were 

accompanied by notable acquisition artifacts. For POND participants with multiple baseline 

scans, the highest quality scan was kept. If equivalent ratings were obtained for multiple scans 

from a given session, those with the earliest acquisition date were kept.  

 

3.3.2. iN4 QC 
 The QC images generated by the iterativeN4 Multispectral pipeline were rated on a five-

point scale according to the following criteria 

<https://docs.google.com/presentation/d/1vTqy9KDop_2QD7p6-NIYV-rL5IdkZyvQRPc69-

kWDlA/edit#slide=id.ga9ce5ca1b4_0_10>. QC scores were penalized if residual bias field, 

brain masking errors (e.g., brain mask contamination with non-brain tissue, mask 

underestimation, image registration inaccuracies), and/or misclassification of tissue classes 

were identified, with ratings dependent on the extent and severity of these artifacts. Scans with 

a score of >3 were considered failures and excluded (n=19). Failed ratings were reserved for 

significant misclassification or underestimation of brain mask, exclusion of brainstem or 

cerebellum, and/or significant regions of uncorrected bias field. Since the tissue classification 

produced by the iterativeN4 Multispectral pipeline was not used for further data processing or 

analyses, the presence of any related errors in the iN4 QC images were noted but not counted 

towards a failed rating. 

 

3.3.3. CIVET QC 
 QC images (i.e., verify.png and clasp.png) generated by the CIVET pipeline were rated 

on a three-point scale according to the following criteria: 

<https://github.com/CoBrALab/documentation/wiki/CIVET-Quality-Control-Guidelines>. 

Scores were dependent on the accuracy of surface classification and extraction, with penalties 

assigned for segmentation errors of tissue classes (i.e., overestimations, underestimations, 

misclassifications). Scans with white matter bridges, blood vessels, and misclassified ventricles 

were flagged and examined in greater detail. Specifically, raw images were visualized with GM 

and WM surface objects overlaid to assess extent of the errors. Other CIVET QC images were 
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examined to corroborate scan quality (e.g., laplace.png, converge.png, surfsurf.png). Scans 

with a score of 0 were considered failures (n=51). CIVET failures were generally reserved for 

sizable under-, over- or misclassifications of tissue/surface classes, perfuse WM bridges, and/or 

ventricle misclassifications, or a combination of such errors that significantly diminished the 

quality of tissue surfaces.  

Scans that passed all three stages of QC and had complete data for the main variables 

of interest were included in statistical analyses. 

 

3.4 Batch Correction 
Differences in scanning equipment and acquisition protocols between sites are known 

to induce unwanted variability in the data that can systematically bias cortical measures and 

reduce reliability (Fortin et al., 2017, 2018). A common strategy to resolve this issue involves 

residualizing the site or scanner from cortical measures of interest and using the residuals in 

statistical analyses. However, this approach may remove variance attributable to behavioural 

variables that are confounded with site or scanner, in cases where systematic demographic 

differences exist. Additionally, this approach fails to account for site effects in the covariance 

structure of the measures, which is of particular interest in multivariate analyses. Therefore, to 

address these concerns, raw brain measures were harmonized across sites with the Correcting 

Covariance Batch Effects (CovBat) batch correction tool 

<https://github.com/andy1764/CovBat_Harmonization> (Chen et al., 2022), a multivariate 

extension of the original Combating Batch effects when Combining Batches (ComBat) package 

(Fortin et al., 2017, 2018). We opted to use CovBat instead of ComBat because the former 

removes site effects from mean, variance, and covariance of brain data, whereas the latter 

removes site effects solely from mean and variance. Since the aim of this thesis is to 

characterize covariance patterns between multiple cortical indices, we sought to remove site 

effects from the combined covariance structure of all four cortical measures rather than batch-

correcting each metric individually, as is typically done. 

In brief, CovBat uses Empirical Bayes to adjust site-specific location and scaling 

parameters by shifting within-site mean and variance in the marginal distributions of cortical 

measures to that of the pooled data (Chen et al., 2022; Fortin et al., 2017, 2018). Within-site 

covariance is adjusted by performing principal component analysis (PCA) on the ComBat-

corrected residuals and shifting the covariance matrix of each site to that of the combined 
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covariance structure. The adjusted PC scores are then projected back from eigenspace to yield 

vertex-wise corrected values in their original units (Chen et al., 2022). 

 

3.5 Statistical Analyses 
3.5.1 Descriptive Statistics 

Participants who passed QC (n=762; Table 4.1) were characterized with descriptive 

statistics using the base ‘stats’ package in R v.3.5.1 <https://www.r-project.org/>. Non-

parametric tests were used for assessing group differences in continuous variables to account 

for non-normal data distribution.  

A chi-square test was used to assess diagnostic group differences (i.e. ASD vs NT 

control) in the proportion of males to females. A non-parametric Wilcoxon-Mann-Whitney test 

was used to assess diagnostic group differences in age and FIQ.  

Next, chi-square tests were used to assess QC group differences (i.e. included vs 

excluded) in the proportion of ASD to NT control subjects and males to females. Wilcoxon-

Mann-Whitney tests were used to assess QC differences in age, FIQ, and clinical severity  

Finally, chi-square tests were used to assess dataset differences in the proportion of 

included to excluded subjects, ASD to NT control subjects, and males to females. A Kruskal-

Wallis test was performed to assess dataset differences in age and FIQ, followed by the pairwise 

Wilcoxon Rank Sum test with Benjamini-Hochberg correction for multiple comparisons. 

 

3.5.2 Univariate Analyses 
 Associations between diagnostic status and cortical measures were evaluated with linear 

mixed effects models and general linear models.  

 

3.5.2.1 Linear Models: Global Measures 

To inspect diagnostic differences in raw global brain measures, linear mixed effects 

models were performed with the ‘lme4’ package in R v.3.5.1 on subjects who passed QC and 

had available diagnosis, age, and sex data (n=749). The models were fit with diagnosis, age, 

sex, and TBV as fixed effects, global cortical measure as outcome variable, and site as a random 

effect. A version of each model was also run without including TBV as a covariate. The 

variance inflation factor was used to confirm the absence of collinear predictors. Regression 

diagnostic tests were performed on model residuals and the random effect structure to confirm 
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that linear model assumptions were met. Results are reported with a Bonferroni correction for 

six models (α of 0.05/6 = padj < 0.008): 

Mean_CT ~ Diagnosis + Age + Sex + TBV + (1|Site) 

Total_SA ~ Diagnosis + Age + Sex + TBV + (1|Site) 

Mean_LGI ~ Diagnosis + Age + Sex + TBV + (1|Site) 

Mean_MC  ~ Diagnosis + Age + Sex + TBV + (1|Site) 

GMV ~ Diagnosis + Age + Sex + TBV + (1|Site) 

TBV ~ Diagnosis + Age + Sex + (1|Site) 

 

3.5.2.2 Linear Models: Vertex-wise Measures 

Vertex-wise general linear models were performed with the base ‘stats’ package in R 

v.3.5.1 on CovBat-corrected measures (see section 3.5.2 for CovBat implementation details) 

for subjects who passed QC and had available diagnosis, age, sex, and FIQ data (n=668; 

Supplementary Table 2). Statistical models were fit for each vertex-wise cortical metric with 

diagnosis, age, sex, and the global equivalent of each vertex-wise measure set as predictor 

terms. Correction for multiple comparisons was done with false discovery rate (FDR; 

Benjamini & Hochberg, 1995) using the ‘p.adjust’ function. The statistical models are as 

follows: 

 CTi ~ Diagnosis + Age + Sex + Mean_CT  

SAi ~ Diagnosis + Age + Sex + Total_SA  

LGIi ~ Diagnosis + Age + Sex + Mean_LGI  

MCi  ~ Diagnosis + Age + Sex + Mean_MC 

Masked midline vertices were added back to map the data to its original dimensions 

(81,924 vertices). FDR-corrected t-values were visualized using functions in MINC-toolkit 

v.1.9.18 and MINC-toolkit-extras v.1.0 with a modified create_civet_image.sh script 

<https://github.com/CoBrALab/minc-toolkit-extras/blob/master/create_civet_image.sh> on 

population surface average .obj files.  

 

3.5.3 CovBat  

3.5.3.1 CovBat Implementation 
Vertex-wise cortical matrices were extracted for subjects that passed QC and had 

complete data for diagnosis, age, sex, and FIQ (n=668; Supplementary Table 2). This was done 
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for every cortical measure (CT, SA, LGI, and MC) to yield four matrices, each of dimensions 

(77,122 vertices by 668 subjects). Each column contained all cortical vertices for a given 

subject, and each row contained cortical values for a given vertex across subjects. The matrices 

were concatenated together vertically into a tall matrix of dimensions (77,122 vertices * 4 

measures = 308,488 vertices by 668 subjects). Each subject’s unique combination of dataset, 

site, and scanner was coded as a ‘batch’, representing the smallest grouping level. The list of 

batches are as follows: SickKids_Toronto_Trio, POND_Toronto_Prisma, 

POND_Queens_Trio, POND_Queens_Prisma, UKAIMS_IoP_GE, and 

UKAIMS_Cambridge_GE. The three subjects belonging to the POND_Queens_Prisma 

designation did not pass motion QC, so this batch was excluded from CovBat correction. The 

default Empirical Bayes parameters were implemented in CovBat package v.1.0 

<https://github.com/andy1764/CovBat_Harmonization>, which uses functions from 

<https://github.com/brentp/combat.py> in Python v.3.6.8 <https://www.python.org/>. The 

number of components accounting for 95% covariance explained was selected, as 

recommended by the CovBat developers (Chen et al., 2022). Variability attributable to batches 

was removed from cortical measures, while inter-site biological variability in diagnostic status, 

sex, age, and FIQ was preserved. The multi-metric CovBat-corrected output matrix was then 

split into each of the four measures, yielding four matrices of CovBat-adjusted residuals, each 

of dimension (77,122 vertices by 668 subjects). 

Due to this novel multi-metric CovBat implementation, we sought to confirm that: 1) 

batch-specific mean, variance, and covariance were removed from CovBat-corrected measures 

and 2) batch-specific demographic associations with cortical measures were retained. For 

validation analyses, both the raw pre-CovBat (77,122 vertices by 668 subjects) and corrected 

post-CovBat (77,122 vertices by 668 subjects) matrices were used for each of the four 

measures. To ensure that diagnosis, age, and sex were not confounded with batches, these three 

variables were residualized from raw and CovBat-corrected measures prior to the analyses 

outlined in Aim 1. 

 

3.5.3.2 CovBat Validation 
All CovBat validation analyses were performed with the base ‘stats’ package in R 

v.3.5.1. Batch effects in mean vertex-wise cortical measures were examined before and after 
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CovBat correction. Vertex-wise one-way ANOVAs were performed separately on pre- and 

post-CovBat values: 

RawCorticalMeasurei _Vertexj ~ Batch 

CovBatCorrectedCorticalMeasurei_Vertexj ~ Batch 

The resulting p-values were FDR-corrected across 77,122 vertices with the ‘p.adjust’ 

function. The proportion of vertices with significant batch effects were computed. 

 

Batch effects in the variance of median cortical measures were examined before and 

after CovBat correction with Bartlett’s Sphericity test: 

RawMedianCorticalMeasurei ~ Batch 

CovBatCorrectedMedianCorticalMeasurei ~ Batch 

 

Batch effects in covariance patterns between the cortical measures was assessed by 

performing a PCA on scaled median CT, SA, LGI, and MC values with the ‘prcomp’ function. 

Batch effects on PC weights were assessed with a one-way ANOVA: 

 RawMedianPCi_Weights ~ Batch 

CovBatCorrectedMedianPCi_Weights ~ Batch 

Tukey’s Honestly Significant Difference test was used to assess pairwise differences. 

 

To confirm that diagnostic, age, and sex relationships with cortical measures were 

retained after batch correction, general linear models were implemented on pre- and post-

CovBat median values: 

RawMedianCorticalMeasurei ~ Diagnosis + Age + Sex 

CovBatCorrectedMedianCorticalMeasurei ~ Diagnosis + Age + Sex 

Improvement in overall model fit was assessed by comparing the adjusted R2 and 

residual standard error (RSE) values. The effect size and significance of each model predictor 

was assessed by comparing t-values and p-values. 

 

3.5.4 Covariate Matching 
To ensure that multivariate analyses are not driven by the disproportionate ratio of ASD 

to NT control subjects, the sample of 668 subjects that passed QC without missing data for the 

four main variables of interest were matched across diagnostic groups for age and sex. The 
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‘Matchit’ package v.4.4 (Ho et al., 2011) was used in R v.4.1.2, using functionalities from the 

‘Matching’ package (Diamond & Sekhon, 2013; Sekhon, 2011). Improvement in covariate 

balance was assessed with standardized mean difference, variance ratio, and empirical 

cumulative density functions. Genetic matching with Mahalanobis distance yielded the most 

robust balance statistics and was therefore chosen as the optimal matching method. A total of 

486 participants remained after the matching procedure (Supplementary Table 3).  

 

3.5.5 Multivariate Analyses 
3.5.5.1 Non-negative Matrix Factorization (NMF) 

For a given cortical measure, vertex-wise metrics were stacked across both hemispheres 

to create a single column vector of data per subject. A vertex-by-subject (m x n) matrix for the 

486 matched subjects was created for each of the four cortical measures, with participants 

organized by ascending age within each metric block (77,122 vertices by 486 subjects). Next, 

raw vertex-wise cortical matrices were CovBat corrected as described above (section 3.5.2) in 

CovBat Run 1. In brief, the four metric blocks were concatenated vertically, creating a multi-

metric input matrix (308,488 vertices by 486 subjects) that was CovBat corrected to remove 

variability in cortical measures attributable to batch, and retain variability attributable to 

diagnosis, age, sex, and FIQ. The default Empirical Bayes parameters were implemented in 

CovBat package v.1.0 <https://github.com/andy1764/CovBat_Harmonization> in Python 

v.3.6.8.  

The large batch-corrected matrix was then split into four cortical matrices each of 

dimension (77,122 vertices by 486 subjects) and GMV was residualized on a vertex-wise basis 

from each metric. This was done because preliminary analyses of non-residualized data found 

that each subject’s NMF component loadings were strongly correlated with GMV, which 

suggested that covariance patterns captured by the NMF may have been driven by inter-subject 

differences in GMV, a measure that varied substantially across the wide age range. For 

completeness, associations with other global brain measures were also probed (TBV, mean CT, 

total SA, mean LGI, mean MC), but GMV displayed the strongest relationship. Therefore, a 

matrix of vertex-wise GMV (77,122 vertices x 486 subjects) was extracted and CovBat 

corrected in CovBat Run 2 as a single metric input matrix, with batch variability in 

demographic variables preserved in a similar manner. GMV was computed for each subject by 
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summing across all CovBat-corrected GMV vertices. This measure was then residualized from 

each subject’s vertex-wise CovBat-corrected cortical metrics that were computed in Run 1. 

The batch-corrected and GMV-residualized matrices were then z-scored across 

columns of subjects to account for differences in magnitude between the cortical measures. 

This axis of standardization was chosen to ensure that individual differences in a given vertex-

wise measure (columns) were not overshadowed by the greater within-subject variation in 

cortical measures across the cortex (rows). This allowed the NMF analysis to prioritize 

individual variation in covariance patterns rather than covariance within subjects, which would 

yield a parcellation-type decomposition. The CovBat-corrected, residualized, and z-scored 

cortical matrices were then concatenated together width-wise into a multi-metric matrix of 

dimensions (77,122 vertices by 486 subjects * 4 metrics = 1944 columns), and shifted by the 

minimum value to induce non-negativity. Each subject was therefore represented a total of four 

times, once within each cortical metric block. 

 

3.5.5.1.1 NMF Implementation  

The final matrix created in section 3.5.5.1 was used as input for NMF 

<https://github.com/CoBrALab/cobra-nmf>, using publicly available code 

<https://github.com/asotiras/brainparts> with Octave v.5.2.0 <https://docs.octave.org/v5.2.0/> 

functions, and the ‘sklearn’ v.0.23.1 package in Python v.3.6.8. The analysis was initialized 

with non-negative double singular value decomposition (NNDSVD; Boutsidis & Gallopoulos, 

2008) with maximum iteration of 100,000 and tolerance of = 0.00001. This initialization 

strategy is advantageous relative to the randomized alternative because it has been shown to 

diminish residual error more efficiently, prioritize sparsity, and converge on a deterministic 

solution (Boustidis & Gallopoulos, 2008; Sotiras et al., 2015). The algorithm converges on a 

solution when the tolerance threshold for the error value is met.  For completeness, NMF 

decompositions were also performed on non-GMV-residualized input matrices and on 

unmatched subjects (n=668; Supplementary Table 2). 

 

3.5.5.1.2 Component Selection 

The reliability and accuracy of decompositions were assessed for a range of 2-30 NMF 

component solutions with split-half stability analysis and change in reconstruction error. The 

number of components ultimately chosen for constructing the low-rank matrix approximation 
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balanced: 1) maximal stability, such that similar component outputs were produced when NMF 

was performed across random resamplings of subjects; and 2) minimal reconstruction error, 

such that the residual error between the reconstructed covariance pattern (W x H) and the 

original covariance structure of the input data (X) was attenuated.  

 

3.5.5.1.3 NMF Stability Analysis 

A split-half stability analysis was performed to quantify the degree of spatial overlap 

between components when NMF was applied to random subsamples of subjects. The 486 

subjects were split into two subgroups, na=243 and nb=243 with stratified random sampling by 

diagnosis, sex, and median values for age, and FIQ. This was done across 10 unique splits of 

participants for a total of 20 subgroups. Multi-metric input matrices Xa and Xb (77,122 vertices 

by 243 * 4 measures = 972 subjects) were generated for each subgroup of each split after 

residualizing GMV on a vertex-wise basis from each cortical measure. NMF was performed 

for each subgroup’s input matrix for every other granularity between 2-30 components. 

Together, this yielded a total of 20 subgroups x 15 granularities = 300 NMF runs. Each 

combination of split and granularity therefore had two component matrices Wa and Wb (m x 

k), and two weight matrices Ha and Hb (k x n), with one for each subgroup. 

For each component matrix, a similarity matrix CWa and CWb (m x m) was generated 

by computing the cosine similarity between component scores of each vertex with every other 

vertex (i.e. between rows of W matrices) within each subgroup, such that higher similarity 

scores are indicative of two vertices sharing membership in the same component (Kalantar-

Hormozi et al., 2022; Patel et al., 2020; Robert et al., 2022). Corresponding rows of the 

similarity matrices CWa and CWb were then correlated to quantify the degree to which a given 

vertex is grouped with the same set of vertices when NMF is applied to different subgroups. 

Correlation coefficients were then averaged across all vertices to yield a stability measure for 

k granularity. This was repeated for a total of 10 splits of data across 15 component 

granularities, yielding a stability coefficient for each granularity (Kalantar-Hormozi et al., 

2022; Patel et al., 2020; Robert et al., 2022). A higher correlation coefficient is indicative of 

more stable component solutions across subsets of the sample.  

 

3.5.5.1.4 NMF Accuracy Testing 

The reconstruction error for each split of data was computed as such: 
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Reconstruction error A = || Xa - WaHa|| 2F 

Reconstruction error B = || Xb – WbHb|| 2F 

such that Xa and Xb are input matrices of two subgroups of a split (Patel et al., 2020; 

Robert et al., 2022). The change in reconstruction error at granularity k to granularity k+2 is 

computed from 2-30 component solutions, representing change in accuracy as additional 

component granularities are added. For each granularity, reconstruction error matrices are 

generated by performing element-wise subtraction of the original from the reconstructed input, 

such that each element of the input matrix has an error value. The Frobenius norm is computed 

for each component’s reconstruction error matrix to derive a single error value for a given 

decomposition k, which is then averaged across components and splits of data.  

 

3.5.5.1.5 Linear Models: Case-Control Differences  

 The association between demographic variables and NMF subject-by-metric loadings 

for each component were examined using general linear models with the base ‘stats’ package 

in R v.3.5.1. This statistical approach assessed the effect of diagnosis on subject loadings for 

each of the measures comprising the covariance patterns. The following model was 

implemented, with Bonferroni correction applied across the total number of models: 

 Componenti_Metricj_Weights ~ Diagnosis + Age + Sex + FIQ 

 

3.5.6.1 PLSC 

3.5.6.1.1 PLSC Implementation 

PLSC was used to relate each subjects’ loadings onto the NMF-derived components 

with a set of behavioural variables using the ‘pyls’ package v.0.1.6 

<https://github.com/rmarkello/pyls> in Python v.3.8.3. The X matrix contained n subjects by p 

component-by-metric combinations such that a given element represents a subject’s loading 

onto a metric within an NMF component (486 subjects by k components * 4 metric loadings). 

The Y matrix contained n subjects by q demographic variables (diagnosis, age, sex, and FIQ) 

of dimensions (486 subjects by 4 behavioural variables). Symmetrical SVD was used to 

decompose the cross-covariance matrix to yield a set of LVs that represent the association 

between subjects’ loadings onto the multi-metric covariance components and their 

demographic information.  
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3.5.6.1.2 PLSC Permutation Testing 

The statistical significance of the LVs was assessed through non-parametric 

permutation testing of singular values. Rows of the X matrix were shuffled to eliminate the 

relationship between brain and behaviour variables. SVD was applied to the newly generated 

correlations, such that a new singular value of the LVs was calculated for each permutation 

(n=10,000) to construct a null distribution (McIntosh & Lobaugh, 2004; McIntosh & Mišić, 

2013). A threshold of p <0.05 was considered significant. 

 

3.5.6.1.3 Bootstrap Resampling 

The reliability of each brain and behavioural variable’s contribution to the LVs were 

assessed with bootstrap resampling. Sampling with replacement was done to generate a 

sampling distribution for each singular vector weight (Zeighami et al., 2019), then the 

contribution of each variable to the LV was reassessed (n=10,000). A bootstrap ratio (BSR) 

was calculated by dividing the vector weight of a given LV by the standard error to produce a 

reliability estimate (Krishnan et al., 2011; McIntosh & Lobaugh, 2004; McIntosh & Mišić, 

2013). A brain salience weight of 1.96 was used to threshold significance as it is comparable 

to a z-score in normally distributed BSRs, thus corresponding to p<0.05; 95% confidence 

interval (Efron & Tibshirani, 1986; McIntosh & Lobaugh, 2004). 

 

3.5.6.1.4 PLSC Latent Variable (LV) Stability Analysis  

 The reliability of the brain-behaviour associations captured by each LV was assessed 

with split-half stability using the procedure outlined in Kovacevic et al. (2013). This approach 

assessed whether stability of the associations between left and right singular vectors is high for 

different subsets of the sample. Additionally, it ensures that the LVs are not disproportionately 

driven by very strong associations between variables in one input matrix in cases when the 

other input matrix has weaker associations. In brief, the 486 subjects were resampled 200 times 

into split halves of (na=243 and nb=243) to create a total of 400 split half folds. Cross-

correlation matrices Ra and Rb were generated for each split, which were decomposed with 

SVD to yield left and right singular vectors (Ua, Ub, Va, Vb). Correlations were then computed 

between subgroups of each split, (i.e. Ua, Ub and Va,Vb), yielding a mean correlation across 

split halves (Ucorr, Vcorr), which was then compared against a null distribution of randomly 

permuted data (pUcorr, pVcorr; Kovacevic et al., 2013). 
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All subject resampling for permutation and bootstrapping analyses were performed with 

Procrustes rotation to limit the possibility of altering the order of LVs and salience signs during 

SVD (McIntosh & Lobaugh, 2004).  

 

 

 

 
Figure 3.1. Multivariate workflow. An input matrix containing subjects’ vertex-wise cortical values is 
decomposed with Non-negative Matrix Factorization to yield a component matrix representing the 
spatial location of covarying vertices and a subject matrix containing subjects’ loadings onto each of 
the metrics comprising the components. The subject loadings are used as input into the Partial Least 
Squares Correlation analysis, along with a set of demographic variables. These features are cross-
correlated and decomposed into latent variables, which represent a composite of maximally correlated 
brain and behavioural variables. CT = Cortical Thickness. SA = Surface Area. LGI = Local Gyrification 
Index. MC = Mean Curvature.    
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4. Results 

4.1. Descriptive and Univariate Statistics 
4.1.1 Demographic Information 

From an initial sample of 1097 subjects, a total of 762 remained after three stages of 

QC (Table 4.1). The subjects that passed QC were aged 4-65 years with 262 ASD (88 

female/174 male) and 500 NT control subjects (246 female/254 male); SickKids (n=402), UK 

AIMS (n=211) and POND (n=149). Of these, a total of 668 passed subjects had complete data 

for the main demographic variables of interest (diagnosis, age, sex, and FIQ). Specifically, 13 

subjects (SickKids) had missing ages and 85 had missing FIQ scores (n=69 SickKids, n=16 

POND). For a breakdown of subjects excluded at each stage of QC, see Figure 4.2. 

 
 
Table 4.1. Demographic information of subjects before and after quality control. ASD = Autism 
Spectrum Disorder. NT = Neurotypical. FIQ = Fullscale IQ. 
 

Before QC 
(After QC) 

POND 
N=330 

(N=149) 

SickKids 
N=520 

(N=402) 

UK AIMS 
N=247 

(N=211) 

Total 
N=1097 
(N=762) 

Female_ASD 47(22) 25(20) 54(46) 126(88) 

Male_ASD 149(54) 106(66) 71(54) 326(174) 

Female_NT 58(36) 194(165) 49(45) 301(246) 

Male_NT 76(37) 195(151) 73(66) 344(254) 

ASD: NT 196:134(76:73) 131:389(86:316) 120:122(100:111) 452:645(262:500) 

Age (years) 
Range [median] 

 
2-21.96[11.92] 

(4-21.96[13.78]) 

4-65[13] 
NA=16 

(4-65[14]) 
NA=13 

 
18-52[25] 

(18-52[25.76]) 

2-65[15] 
NA=16 

(4-65[16.42]) 
NA=13 

FIQ 
Range [median] 

40-144[105] 
NA=39 

(44-142[106]) 
NA=12 

69-149[111] 
NA=83 

(69-149[111]) 
NA=69 

 
73-137[116] 

(73-137[117]) 

40-149[109] 
NA=122 

(44-149[110]) 
NA=81 
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4.1.1.1 Diagnostic Differences in Demographic Variables  

Diagnostic groups differ significantly in the proportion of males to females (𝜒2 (df =1) 

=17.02, p<0.001). There is no significant diagnostic difference in age, U(NASD=262, 

Ncontrol=500)=68033, z=1.50, p=0.136), however ASD subjects have significantly lower FIQ 

(Mdn= 107.0) than NT control subjects (Mdn=114.0), U(NASD=262, Ncontrol=500)= 39370, z = 

-5.63, p<0.001).  

 

4.1.1.2 QC Differences in Demographic Variables  

Included and excluded participants differ significantly in the proportion of ASD to NT 

control subjects (𝜒2(df=1)=47.90, p<0.001) and males to females (𝜒2(df=1)=25.28, p<0.001). 

Age of excluded subjects (Mdn= 11.0) is significantly lower than included subjects 

(Mdn=16.42), U(Nincluded=762, Nexcluded=335)=725566, z= -10.93, p<0.001), as is FIQ of 

excluded subjects (Mdn=105.0), relative to included subjects (Mdn=112.0), U(Nincluded=762, 

Nexcluded=335)=70932, z= -7.232, p<0.001). Conversely, clinical severity measured with the 

ADOS-G Total score, is significantly higher in excluded (Mdn = 11.0) relative to included 

subjects (Mdn=9.0), U(Nincluded=100, Nexcluded=25)=1437, z= -0.64, p=0.03). 

 

4.1.1.3 Dataset Differences in Demographic Variables  

Datasets differ significantly in the proportion of included to excluded subjects (𝜒2(df 

=2)=136.7, p<0.001), ASD to NT control subjects (𝜒2(df =2)=109.11, p<0.001) and males to 

females (𝜒2(df=2)=10.038, p=0.006). Age differs significantly by dataset, (𝜒2 (df=2)=423.12, 

p<0.001; Figure 4.1B), including SickKids and UK AIMS (p<0.001), SickKids and POND 

(p<0.001), and UK AIMS and POND (p<0.001). FIQ also differs significantly by dataset 

(𝜒2(df=2)=71.292, p<0.001; Figure 4.1D), including SickKids and POND (p<0.001), SickKids 

and UK AIMS (p<0.001), and UK AIMS and POND (p<0.001). 
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A.        B. 

C.    D.     

                          
Figure 4.1. Histograms showing demographic characteristics for subjects who passed QC. A. Age 
distribution by group. B. Age distribution by dataset. C. Fullscale IQ distribution by group. D. Fullscale 
IQ distribution by dataset. FIQ = Fullscale IQ. POND = Province of Ontario Neurodevelopmental 
Disorders Network. UK_AIMS = UK Medical Research Council Autism Imaging Multicentre Study. 
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Figure 4.2. Stepwise exclusion numbers for each stage of quality control. Passed subjects with no 
missing age data (n=749; Table 4.1) were used in univariate analyses of global measures. Passed 
subjects with no missing age or FIQ data (n=668; Supplementary Table 2) were used in vertex-wise 
univariate analyses and CovBat validation analyses. A subset of these subjects matched across diagnosis 
for age and sex were used for multivariate analyses (n=486; Supplementary Table 3). QC = Quality 
Control. FIQ = Fullscale IQ. Dx = Diagnosis. 
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4.1.2 Brain Measures 
4.1.2.1 Global Brain Measures: Linear Mixed Effects Models  

Results of the global linear mixed effects models show that relative to NT controls, 

ASD subjects have insignificantly greater mean CT (β=0.0150 (SE=0.0063), t=2.36, p=0.018), 

total SA (β=157.9 (SE=448.9), t=0.35, p=0.725), mean LGI (β=0.0077 (SE=0.0062), t=1.22, 

p=0.219), GMV (β=3467 (SE=1606), t=2.15, p=0.031), and TBV (β=7909 (SE=9142), t=0.86, 

p=0.387), and insignificantly lower average MC (β= -0.000065 (SE=0.00010), t= -0.65 p=0.51; 

Figure 4.3) at the Bonferroni-adjusted significance threshold. Removing TBV as a covariate 

does not change the significance of any model: mean CT (β=0.0164 (SE=0.0069), t=2.36, 

p=0.0182), total SA (β=1139.350 (SE=1098.701), t=1.03, p=0.3), mean LGI (β=0.0089 

(SE=0.006482), t=1.38, p=0.168), GMV (β=6891.921 (SE=3846.416), t=1.79, p=0.073), and 

mean MC (β= -0.0001.34 (SE=0.00011), t= -1.13, p=0.258).  

 

4.1.2.2. Vertex-wise Measures: General Linear Models 

 Results of the vertex-wise general linear models show that there is no significant effect 

of diagnosis on any of the vertex-wise cortical measures at 1%-5% FDR. At a more relaxed 

threshold of 10% FDR, a significant decrease in CT within the ASD group is observed in the 

right precentral gyrus (Supplementary Figure 1). No other models yielded significant diagnostic 

differences. Brain maps of vertex-wise standard deviation of the four cortical measures reveal 

metric-specific patterns of regional variation (Supplementary Figure 2). 
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Figure 4.3. Results of linear mixed effects models showing the main effect of diagnostic group on global 
brain measures (y-axis), with age (x-axis), sex, and total brain volume as fixed effects and site as a 
random effect. Age is modelled as a linear term. Subjects are coloured by diagnosis. DX = Diagnosis. 
ASD = Autism Spectrum Disorder. 
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4.2 CovBat Validation Results 

     

        

     
Figure 4.4. Density plots depict raw global measures coloured by batch. POND = Province of Ontario 
Neurodevelopmental Disorders Network. UKAIMS = UK Medical Research Council Autism Imaging 
Multicentre Study. IoP = Institute of Psychiatry, Psychology and Neuroscience. GE = General Electric. 
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4.2.1 Mean 

Raw global measures differ in batch-specific variability (Figure 4.4). Results of the 

vertex-wise ANOVA indicate that 86.2% of raw CT vertices, 84.17% of raw SA vertices, 

31.9% of raw LGI vertices, and 25.9% of raw MC vertices have significant batch effects. 

Following CovBat correction, no vertices remain with significant batch effects in any of the 

four measures.  

 

4.2.2 Variance 
Results of Bartlett’s Sphericity test reveal that raw median CT values demonstrate a 

significant difference in variance attributable to batch (K2=16.42, p=0.002), whereas after 

CovBat-correction, this difference is removed (K2=0.73, p=0.94). Other raw cortical values do 

not display significant inhomogeneities of variance attributable to batch, including median SA 

(K2=4.66, p=0.32; [post-CovBat (K2=0.57, p=0.96)]); median LGI (K2=3.61, p=0.46; [post-

CovBat (K2=1.86, p=0.76)]), as well as median MC (K2=5.08, p=0.27; [post-CovBat (K2=3.42, 

p=0.48)]).  

 

4.2.3 Covariance 
Results of the PCA performed on raw median CT, SA, LGI, and MC values identified 

four principal components (PCs), explaining: PC1 (45.5%), PC2 (30.12%), PC3 (16.2%) and 

PC4 (8.1%) of the covariance. PC1 weights differ significantly between batches (F(4)=13.54, 

p<0.001). Specifically, the mean value of PC1 weights is significantly different between 

POND_Toronto_Prisma and POND_Queens_Trio (p=0.03), SickKids_Toronto_Trio and 

POND_Queens_Trio (p<0.001), UKAIMS_Cambridge_GE and POND_Toronto_Prisma 

(p=0.004), UKAIMS_Cambridge_GE and SickKids_Toronto_Trio (p<0.001), and 

UKAIMS_IoP_GE and UKAIMS_Cambridge_GE (p=0.01). Additionally, PC3 weights differ 

significantly between batches (F(4)=2.618, p=0.03). The mean value of PC3 weights is 

significantly different between UKAIMS_Cambridge_GE and POND_Toronto_Prisma 

(p=0.04). There are no significant batch differences in PC2 weights (F(4)=0.30, p=0.877), nor 

PC4 weights (F(4)=0.936, p=0.442).       

Although not homologous to the previous analysis, results of the PCA performed on 

CovBat-corrected median CT, SA, LGI, and MC identified four PCs explaining: PC1 (43.5%), 

PC2 (31.5%), PC3 (16.3%), and PC4 (8.5%) of the covariance. No significant batch effects 
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were found on PC1 weights (F(4)=0.162, p=0.958), PC2 weights (F(4)=0.046, p=0.996), PC3 

weights (F(4)=0.188, p=0.945), nor PC4 weights (F(4)=0.107, p=0.98). 

 

4.2.4 Demographic Associations 
Results of general linear models used to assess demographic relationships with median 

cortical values are reported below in Tables 4.2-4.5. Across metrics, goodness-of-fit measures 

including the adjusted R2 and RSE improve after CovBat correction. The CovBat-corrected 

models predict a greater proportion of variance in average cortical measures relative to the raw 

models, with marginally decreased RSE. The largest improvements are seen in CT, the outcome 

measure with the greatest batch effect. The variance explained of the model increases from 

39% in raw measures to 50% in batch-corrected measures: Median CT (raw: F(3,664)=147.7, 

p<0.001, R2=0.39, RSE=0.089; [CovBat-corrected: F(3,664)=224.5, p<0.001, R2=0.50, 

RSE=0.086]). The parameters of other measures are as follows: Median SA (raw: 

F(3,664)=89.21, p<0.001, R2=0.28, RSE=0.187; [CovBat-corrected: F(3,664)=120.2, p<0.001, 

R2=0.34, RSE=0.177]); Median LGI (raw: F(3,664)=120.5, p<0.001, R2=0.34, RSE=0.0086; 

[CovBat-corrected: F(3,664)=155.9, p<0.001, R2=0.41, RSE=0.084]). Median MC (raw: 

F(3,664)=37.01, p<0.001, R2=0.13, RSE=0.001; [CovBat-corrected: F(3,664)=41.32, p<0.001, 

R2=0.15, RSE=0.001]).  

Individual predictors within the models maintain their associations with the outcome 

measures (Tables 4.2-4.5), with two exceptions. One is the ‘Age’ covariate in the median SA 

models, which reaches significance (p<0.001) following CovBat correction, in contrast to its 

insignificant status (p=0.08) prior to adjustment (Table 4.3). The second is the ‘Diagnosis’ 

covariate in the median MC models, which is significant (p=0.03) prior to CovBat correction, 

but insignificant (p=0.07) after adjustment (Table 4.5).  
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Table 4.2. Results of linear models assessing the effect of diagnosis, age, and sex on median cortical 
thickness before and after CovBat correction. Degrees of freedom, F-statistic, and adjusted R2 are shown 
for each model. Unstandardized beta coefficient, t-value, and p-value are shown for each predictor.  CT 
= Cortical Thickness. DX= Diagnosis.  

Statistical 
Model: CT 

Degrees of 
Freedom 

F-statistic Adjusted 
R2 

Predictor β Coefficient 
[95% CI] 

T-value P-value 
 

 
 
Raw_Median_
CT ~ DX + 
Age + Sex 

 
 
 
3,664 

 
 
 
147.7 

 
 
 
0.39 

DX 0.022  
[0.008, 0.037] 

3.11 0.001 

Age -0.007  
[-0.008, -0.006] 

-19.73 p<0.001 

Sex -0.038  
[-0.052, -0.024] 

-5.47 p<0.001 

 
 
CovBat_Corre
cted_Median_
CT ~ DX + 
Age + Sex 

 
 
 
3,664 

 
 
 
224.5 

 
 
 
0.50 

DX 
 

0.018  
[0.005, 0.032] 

2.69 0.007 

Age -0.008  
[-0.009, -0.008] 

-24.77 p<0.001 

Sex -0.038  
[-0.051, -0.025] 

-5.63 p<0.001 

 
 
Table 4.3. Results of linear models assessing the effect of diagnosis, age, and sex on median surface 
area before and after CovBat correction. Degrees of freedom, F-statistic, and adjusted R2 are shown for 
each model. Unstandardized beta coefficient, t-value, and p-value are shown for each predictor. SA 
=Surface Area. DX= Diagnosis.  

Statistical 
Model: SA 

Degrees of 
Freedom 

F-statistic Adjusted 
R2 

Predictor β Coefficient 
[95% CI] 

T-value P-value 

 
 
Raw_Median_ 
SA ~ DX + Age 
+ Sex 

 
 
 
3,664 

 
 
 
89.21 

 
 
 
0.28 

DX -0.026  
[-0.003, 0.056] 

1.74 0.081 

Age -0.001  
[-0.002,0.0002] 

-1.70 0.088 

Sex -0.233  
[-0.262, -0.203] 

-15.692 p<0.001 

 
 
CovBat_Correct
ed_Median_SA 
~ DX + Age + 
Sex 

 
 
 
3,664 

 
 
 
120.2 

 
 
 
0.34 

DX 
 

0.017  
[-0.010, 0.046] 

1.21 0.2227 

Age -0.005  
[-0.007, -0.004] 

-7.50 p<0.001 

Sex -0.233  
[-0.261, -0.206] 

-16.58 p<0.001 
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Table 4.4. Results of linear models assessing the effect of diagnosis, age, and sex on median local 
gyrification index before and after CovBat correction. Degrees of freedom, F-statistic, and adjusted R2 
are shown for each model. Unstandardized beta coefficient, t-value, and p-value are shown for each 
predictor.  LGI = Local Gyrification Index. DX= Diagnosis. 

Statistical 
Model: LGI 

Degrees of 
Freedom 

F-statistic Adjusted 
R2 

Predictor β Coefficient 
[95% CI] 

T-value P-value 

 
 
Raw_Median_
LGI ~ DX + 
Age + Sex 

 
 
 
3,664 

 
 
 
120.5 

 
 
 
0.34 

DX 0.010  
[-0.003, 0.024] 

1.44 0.148 

Age -0.006  
[-0.006, -0.005] 

-16.55 p<0.001 

Sex -0.054  
[-0.068, -0.041] 

-7.92 p<0.001 

 
 
CovBat_Corre
cted_Median_
LGI ~ DX + 
Age + Sex 

 
 
 
3,664 

 
 
 
155.91 

 
 
 
0.41 

DX 
 

0.006  
[-0.007, 0.020] 

0.929 0.353 

Age -0.006  
[-0.007, -0.006] 

-19.23 p<0.001 

Sex -0.055  
[-0.068, -0.042] 

-8.25 p<0.001 

 
Table 4.5. Results of linear models assessing the effect of diagnosis, age, and sex on median mean 
curvature before and after CovBat correction. Degrees of freedom, F-statistic, and adjusted R2 are shown 
for each model. Unstandardized beta coefficient, t-value, and p-value are shown for each predictor. MC 
= Mean Curvature. DX= Diagnosis.  

Statistical 
Model: MC 

Degrees of 
Freedom 

F-statistic Adjusted 
R2 

Predictor β Coefficient 
[95% CI] 

T-value P-value 

 
 
 
Raw_Median_
MC ~ DX + 
Age + Sex 

 
 
 
3,664 

 
 
 
37.01 

 
 
 
0.13 

DX -0.0002          
[-0.0005,            
-0.00002] 

-2.13 0.0331 

Age 0.00003 
[0.00001, 
0.00004] 

4.59 p<0.001 

Sex 0.001  
[0.0008, 0.001] 

8.67 p<0.001 

 
 
CovBat_Corre
cted_Median_
MC ~ DX + 
Age + Sex 

 
 
 
3,664 

 
 
 
41.32 

 
 
 
0.15 

DX 
 

-0.0002  
[-0.0004, 
0.00002] 

-1.78 0.0749 

Age 0.00003 
[0.00002, 
0.00004] 

5.19 p<0.001 

Sex 0.001 
[0.0009, 0.001] 

9.09 p<0.001 
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CovBat validation results confirm that the novel multi-metric implementation was 

successful in removing batch effects in the mean, variance, and covariance of cortical measures, 

while retaining biological variability attributable to demographic variables. 

 

4.3. NMF Results 

4.3.1. Component Selection  

                              
Figure 4.5. Stability coefficient (red) and change in reconstruction error (blue) across 2-30 component 
granularities. Granularities with optimal balance of stability and accuracy are indicated in orange boxes.
  

 

Results of the split-half stability analysis are shown in Figure 4.5. The stability 

coefficient and reconstruction error demonstrate inverse trends across increasing component 

granularities. Stability declines, with certain exceptions, suggesting that the most common 

sources of covariance among subjects are captured with fewer components, while smaller and 

more localized parcels yield less generalizable decompositions. On the other hand, accuracy of 

the reconstructions improves at higher resolutions, suggesting that a larger number of 

components yield more localized and accurate approximations of the covariance patterns.  

Specifically, stability peaks at k=6 and k=16 solutions, with smaller error bars in the 

latter granularity. The greatest improvement in accuracy occurs when moving from k=4 to k=6 

components, and a more stable plateau is reached after k=10 components. Ultimately, k=6 and 

k=16 were chosen as the optimal resolutions. The k=6 solution demonstrates strong stability 

and follows the largest gain in accuracy, while k=16 has marginally higher stability and 

comparatively lower change in reconstruction error. Therefore, the k=16 decomposition is 

shown as the main result and the k=6 decomposition can be found in Supplementary Figure 6.  
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4.3.2 16 Component NMF Decomposition 

A.                 

          
B. 

     
Figure 4.6. NMF Decomposition A. Spatial maps for a 16 component decomposition showing 
covariance patterns of the four cortical measures. Darker orange hues represent vertices with high W 
scores and therefore strong membership in a given pattern. Anatomical descriptors corresponding to 
each component are displayed above the brain maps. B. The H matrix shows participants arranged along 
the x-axis and components along the y-axis. Brighter colours indicate a higher participant-by-metric 
loading onto a given component, suggesting greater contribution of that metric to the component’s 
covariance pattern. C = Component. CT = Cortical Thickness. SA = Surface Area. LGI = Local 
Gyrification Index. MC = Mean Curvature.  
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Figure 4.7. Total component weights are shown for each subject and component. Subjects are 
represented as dots connected by lines across components, coloured by diagnostic and sex group. C = 
Component. ASD = Autism Spectrum Disorder.  

 

Results of the 16 component NMF decomposition are shown in Figure 4.6. Spatial maps 

depict vertex-wise W scores for each component (Figure 4.6A), indicating patterns of multi-

metric covariance across individuals. Covarying vertices are found in anatomically proximal 

and bilaterally symmetric clusters within known cortical partitions. The H matrix depicts 

subject-wise weightings onto each component-by-metric combination (Figure 4.6B), indicating 

cortical covariance profiles. Cortical measures display variation in the magnitude and spatial 

topography of subject weights. Together, the W scores and H weights describe individual 

variability in multi-metric covariance at a vertex-wise scale.  

Total component weights summed across metrics are shown in Figure 4.7. Irrespective 

of group, subjects load most strongly onto covariance patterns in C2 (posterior frontal cortex). 

Component weights are not clearly separated by diagnostic or sex characteristics.  
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4.3.3. Univariate Case-Control Differences in NMF Weights 

      
Figure 4.8. Heatmap on the left shows results of linear models investigating the main effect of diagnosis 
on subjects’ component-by-metric weights, covarying for age, sex, and fullscale IQ. Each row 
represents a statistical model with model terms along x-axis and corresponding response variables along 
y-axis. T-values are shown for predictors that remained significant after multiple comparison correction 
(α of 0.05/64 models = padj <0.0007). Selected plots of the highest weighted component, C2, are 
depicted on the right (CT=yellow box; LGI=green box). C= Component. CT = Cortical Thickness. SA 
= Surface Area. LGI = Local Gyrification Index. MC = Mean Curvature. ASD = Autism Spectrum 
Disorder. FIQ = Fullscale IQ. 
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Univariate results reveal no significant effect of diagnosis on individual variability in 

covariance patterns for any of the component-by-metric weight combinations (Figure 4.8). 

Older subjects display a global decrease in CT (C2-14, C16) and SA (C1-7, C9-11, C13, C15-

16), alongside widespread increases in MC (C1, C3-4, C7-12, C14). Females demonstrate a 

perfuse increase in CT (C2, C4, C5-6, C9-14, C16) and localized decreases in MC relative to 

males in occipital (C8, C11), superior parietal (C10), and orbitofrontal (C3) regions, as well as 

the cuneus (C8), precuneus (C14), fusiform gyrus (C11), and parieto-occipital fissure (C13). 

Individuals with higher FIQ show a widespread decrease in CT (C2, C5-6, C9-14, C16) and a 

localized increase in MC in the orbitofrontal cortex (C3).  

  

 

4.4 PLSC Results 
4.4.1 Permutation Testing Results 
                                         

                                
Figure 4.9. Scree plot showing significance and covariance explained of each latent variable (LV). LV1 
(red) and LV2 (green) remain significant after permutation testing. Grey dotted line represents p=0.05. 
    
  

Results of PLSC permutation testing are displayed in Figure 4.9. Two LVs remain 

significant. LV1 (p<0.0001) explains 87.4% covariance and LV2 (p<0.001) explains 8.9% 

covariance. 
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4.4.2 Significant LVs 
A.     Latent Variable 1 

 

 
 

B.         C.              D. 
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E.               Latent Variable 2 

 
F.          G.       H. 

       
 
Figure 4.10. Partial least squares correlation (PLSC) results showing significant latent variables (LVs) 
that capture the relationship between subjects’ NMF covariance weights and behavioural characteristics. 
A. Results of LV1. Barplots show each behavioural measure’s loading onto the LV, expressed as a 
correlation coefficient. Orange bars are indicative of measures that contribute significantly to the LV. 
Brain maps on the right depict the 16 component NMF solution, with adjacent heat maps showing 
bootstrap ratios (BSR) of the NMF component-by-metric loadings. A BSR of 1.96 (95% CI) was used 
to threshold significance. Coloured squares (non-grey) indicate cortical measures within each 
covariance pattern that contribute significantly to the LV. Positive BSRs are displayed in green 
(denoting an increase of a given metric in the adjacent component) and negative in purple (denoting a 
decrease). B. Correlation of brain scores (brain patterns of LV projected onto individual subjects) and 
behaviour scores (behaviour patterns of LV projected onto individual subjects) coloured by diagnostic 
group (r=0.56; p<0.0001). C. Brain scores grouped by diagnosis. D. Behaviour scores grouped by 
diagnosis.  E. Results of LV2. F. Correlation of brain and behaviour scores for LV2 (r=0.15; p<0.001). 
G. Brain scores grouped by diagnosis for LV2. H. Behaviour scores grouped by diagnosis for LV2. LV 
= Latent Variable. FIQ = Fullscale IQ. M = Male. F = Female. DX = Diagnosis. NT = Neurotypical. 
ASD = Autism Spectrum Disorder. C = Component. CT = Cortical Thickness. SA = Surface Area. LGI 
= Local Gyrification Index. MC = Mean Curvature.  
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4.4.2.1 LV Brain-Behaviour Patterns 

Results of the PLSC analysis show that behavioural variables that contribute 

significantly to LV1 include younger age (r= -0.56), lower FIQ (r= -0.27), and female sex (r= 

0.13), which are significantly correlated with increased whole-brain contribution of CT (except 

C8; posterior occipital cortex & cuneus) and LGI (except C7; pars opercularis /triangularis & 

lateral sulcus) as well as decreased whole-brain contribution of SA to covariance patterns 

(except C13; parieto-occipital fissure). MC displays an increase in C4 (ventral sensorimotor & 

superior temporal gyrus), C5 (anterior temporal), C8 (posterior occipital cortex & cuneus), C15 

(lingual gyrus), and C16 (parahippocampal gyrus), as well as a decrease in C6 (inferior parietal 

& posterior temporal pole; Figure 4.10 A-D).   

 Behavioural variables that contribute significantly to LV2 include higher FIQ (r = 0.16), 

male sex (r = -0.16), and NT control status (r = -0.09), which is significantly correlated with 

lower CT in C1 (dorsal sensorimotor), C2 (posterior frontal), C4 (ventral sensorimotor & 

superior temporal gyrus), C5 (anterior temporal), C6 (inferior parietal & posterior temporal 

pole), C10 (superior parietal cortex), C11 (lateral occipital cortex & fusiform gyrus), C13 

(parieto-occipital fissure); higher SA in C6 (inferior parietal & posterior temporal pole), C9 

(dorsolateral prefrontal cortex & medial frontal gyrus) and C11 (lateral occipital cortex & 

fusiform gyrus); higher LGI in C1 (dorsal sensorimotor), C2 (posterior frontal), C4 (ventral 

sensorimotor & superior temporal gyrus), C7 (pars opercularis/triangularis & lateral sulcus), 

C8 (posterior occipital cortex & cuneus), C9 (dorsolateral prefrontal cortex & medial frontal 

gyrus), C10 (superior parietal cortex), C11 (lateral occipital cortex &  fusiform gyrus), C13 

(parieto-occipital fissure), C14 (precuneus), C15 (lingual gyrus); and lower MC in C16 

(parahippocampal gyrus; Figure 4.10 E-H).  

  

4.4.2.2 LV Split-half Stability Results 

Stability results of LV1 reveal that left and right singular vector correlations are 

significant across split halves (rUcorr = 0.95, pUcorr <0.001; rVcorr = 0.98, pVcorr <0.001), 

indicating stability of brain-behaviour associations captured by LV1 across subgroups of 

subjects. However, stability results of LV2 show that left and right singular vector correlations 

are not significant across split halves (rUcorr = 0.62, pUcorr <0.001; rVcorr = 0.84, pVcorr = 

0.16), indicating that the brain-behaviour patterns captured by LV2 are not generalizable across 

subgroups of subjects.  
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4.4.2.3 Metric-Specific Regional Variation 

Across metrics, CT is the cortical measure with the greatest overall contribution to 

covariance patterns in LV1 (Supplementary Table 5). The largest absolute CT BSRs are 

observed in frontal regions, specifically C9 (dorsolateral prefrontal cortex & medial frontal 

gyrus), C3 (orbitofrontal cortex), and C7 (pars opercularis/triangularis & lateral sulcus). Across 

components, CT is the largest contributor to covariance patterns in frontal (C2, C3, C7, C9) 

and temporal (C4, C5, C6) parcels, as well as inferior parietal lobule (C6), anterior cingulate 

(C12), and precuneus (C14). LGI is the dominant contributor to covariance patterns in the 

dorsal sensorimotor cortex (C1), cuneus (C8), superior parietal cortex (C10), ventral occipital 

cortex (C11), parieto-occipital fissure (C13), and lingual gyrus (C15). SA is the dominant 

contributor to the parahippocampal gyrus (C16), showing an inverse relationship with the other 

measures.  

  

4.4.2.4 Effects of Methodological Variability  

Methodological variation in the statistical workflow was found to affect both NMF and 

PLSC results. Specifically, performing NMF on unmatched subjects (n=668; Supplementary 

Figure 4), and non-GMV-residualized input measures (n=668; Supplementary Figure 5) 

affected: 1) optimal component granularity of NMF stability analyses; 2) the anatomical 

location of spatial components; and 3) direction of brain-behaviour associations captured by 

PLSC LVs, relative to the results shown in Figure 4.10. However, when the analyses were 

performed on two different NMF decomposition granularities (i.e. six and 16 components), 

while keeping constant subject matching and GMV-residualization, PLSC results were 

remarkably similar (n=486, Supplementary Figure 6). 
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4.4.3 Relating LV1 to Other Clinical and Cognitive Variables 
A.               B.     

C.           D.        

E.            F.      

                   
Figure 4.11. Correlations of LV1 brain and behaviour scores are shown for ASD (circles) and NT 
(triangle) subjects. Individuals are coloured by scores on cognitive and clinical assessments, shown 
separately in each plot. Hotter colours represent higher IQ for plots A-B, more items endorsed for plots 
C-E (signifying more symptoms or clinical severity), and fewer items endorsed for plot F (signifying 
less symptoms; reverse grading). A. Subjects are coloured by Verbal IQ scores (r=0.53). B. Perceptual 
IQ scores (r=0.53). C. Social Communication Questionnaire Total scores (r=0.29). D. Repetitive 
Behaviour Scale Total scores (r=0.25). E. Autism Diagnostic Observation Schedule General Total 
scores (r=0.38). F. Short Sensory Profile Total Scores (r= 0.27). ASD = Autism Spectrum Disorder.  NT 
= Neurotypical.   
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LV1 brain and behaviour scores were correlated (Figure 4.11) for a subset of individuals 

included in the multivariate analyses that had additional cognitive and clinical data available 

(Supplementary Table 4). Each individual was coloured by their respective assessment values 

to produce a qualitative characterization of subjects who express the brain-behaviour profile 

captured by LV1.  

The most striking relationship was seen for cognitive measures. Specifically, subjects 

in both diagnostic groups with lower Verbal IQ (VIQ) and Perceptual IQ (PIQ) express the 

LV1 phenotype more strongly relative to those with higher IQ values. To a lesser extent, ASD 

subjects with higher Social Communication Questionnaire scores (i.e. greater social 

impairment; Figure 4.11C) and lower Short Sensory Profile total scores (i.e. greater sensory 

sensitivities; Figure 4.11F) map onto LV1 to a greater degree, relative to subjects with lower 

social impairments and sensory sensitivities. Weaker differentiation is evident for Repetitive 

Behaviour Scale Total scores (i.e. stereotyped behaviours; Figure 4.11D) and ADOS-G Total 

scores (i.e. clinical severity; Figure 4.11E). These results reaffirm the main PLSC findings that 

cognitive ability has stronger relevance to the LV1 brain-behaviour phenotype than clinical 

variables. 

 

 

5. Discussion  
 The lack of reproducible ASD neurophenotypes may stem from two fundamental 

limitations of neuroimaging studies. The first is the predominance of case-control analytical 

approaches, which seek to find average group differences in neuroanatomical measures based 

on a priori diagnostic labels. This conceptual scheme is unrepresentative of biological and 

clinical heterogeneity captured by the broad ASD umbrella, nor does it account for the 

possibility that neuroanatomical variability may exist along a continuum of variation with the 

normative population.  The second is the paucity of statistical approaches that robustly model 

shared variance among age, sex, and IQ, as they pertain to variability in neuroanatomical 

properties and phenotypic presentation of ASD.  

To this end, we used NMF to decompose individual variation in cross-metric covariance 

patterns in a data-driven dimensional framework. Specifically, covariance was modelled in a 

pooled group of ASD and NT subjects to yield transdiagnostic spatial patterns, in addition to 

subject-specific loadings that describe each individual’s unique macrostructural profile. We 
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then used PLSC to relate these covariance patterns to diagnosis, age, sex, and FIQ. We find that 

structural networks of covariation are predominantly associated with age and general cognitive 

ability, with no significant diagnostic differences. These findings suggest a limited 

neuroanatomical signature corresponding to the clinical ASD construct.  

 

5.1. Univariate Results 
Conventional univariate analyses were first employed to assess diagnostic differences 

in global and vertex-wise cortical measures in order to characterize the data. ASD subjects had 

greater mean CT relative to NT controls, but this relationship did not survive multiple 

comparison correction (Figure 4.3). Similarly, at the vertex-level, no group differences were 

found in any of the cortical indices at 5% FDR; although at a more lenient significance 

threshold, decreased CT was observed in the right precentral gyrus of ASD subjects 

(Supplementary Figure 1). Interestingly, metric-specific regional variation was evident in 

vertex-wise standard deviation of the four measures (Supplementary Figure 2). This may 

suggest that although there were no statistically significant group differences in mean vertex-

wise measures, more subtle and localized regional variation exists in morphometric 

organization.  

Previous studies in the literature have also reported null findings for case-control 

differences in CT and SA (Mak-Fan et al., 2011; Mensen et al., 2017; Wallace et al., 2013, 

2015; Yang et al., 2016), as well as GI/LGI (Casanova et al., 2009;  Gharehgazlou et al., 2020, 

2021; Hirjak et al., 2016; Koolschijn & Geurts, 2016; Schaer et al., 2015). Likewise, decreased 

CT has been reported in ASD relative to NT participants (Ecker et al., 2013, 2014; Hadjikhani 

et al., 2006; Hyde et al., 2010; Jiao et al., 2010; Scheel et al., 2011; van Rooij et al., 2018). 

Notably, Hammill et al (2021) observed lower CT in the right precentral gyrus of ASD subjects 

at the same FDR threshold (see Supplementary Figure 9, Hammill et al., 2021), alongside 

regional CT increases. Spatial patterns of case-control CT differences reported here do not 

replicate those found in previous work by our group (see Bedford et al., 2020). These 

discrepancies may stem from several factors. First, the pool of participants and their 

demographic characteristics differ between studies. Preprocessing (i.e. bpipe versus iN4 

Multispectral) and processing (CIVET 1.1 versus CIVET 2.1.1) pipelines are also sources of 

disparity. Quality control was conducted by different raters, although effort was made to 

standardize approaches by using guidelines developed in the lab (see section 3.3). Importantly, 
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Bedford et al (2020) used a random-effects meta-analytic approach, which pooled effect sizes 

across sites, while in the current work, CovBat was used to correct batch effects across multiple 

sites and measures, followed by mass-univariate general linear models. The latter approach 

modelled age as a linear term and covaried for the global brain measure corresponding to the 

vertex-wise outcome metric. It is possible that using Akaike Information Criterion to select the 

best-fitting model terms and removing the global covariate may yield results that align more 

closely with previous work. In a similar vein, applying CovBat (or ComBat) to each metric 

independently may have been a more appropriate strategy for univariate analyses, rather than 

correcting for batch effects across all four measures concurrently. Indeed, the present use of 

CovBat may have altered the mean and variance of individual metrics, relative to what would 

be expected if batch correction was performed for each index separately. Empirically testing 

how different CovBat applications affect downstream statistics could be explored in future 

studies. 

 

5.2 CovBat Validation Results 
A series of validation analyses were performed to confirm the success of a novel multi-

metric implementation of the CovBat batch correction algorithm. This technique removes batch 

effects from mean, variance, and covariance patterns of brain data, while retaining biological 

relationships in specified behavioural variables. Instead of applying CovBat to a single cortical 

measure as was done in the proof-of-concept paper (Chen et al., 2022), we applied the algorithm 

to four cortical measures simultaneously to align with our overarching analytical aim. To this 

end, CovBat-corrected vertex-wise measures were analyzed to confirm the absence of batch 

effects in the mean, variance, and covariance of brain metrics (section 4.2). We also 

demonstrated that relationships between demographic and cortical variables were retained after 

CovBat correction (Tables 4.2-4.5). Together, these results validate the effectiveness of this 

application.  

Certain CovBat-related considerations are worth acknowledging. CovBat requires users 

to specify the behavioural variables whose associations with brain features are to be preserved 

(i.e., diagnosis, age, sex, and FIQ in the current work). These relationships are removed with 

linear approaches, which may not be suitable for modelling certain brain-behaviour 

relationships such as age (Chen et al., 2022; Pomponio et al., 2020).  Furthermore, CovBat 

assumes that the optimal covariance structure is found in the covariance matrix of the combined 
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dataset, so covariance patterns of individual batches are shifted to that of the pooled data. 

However, this approach may be insufficient to remove batch effects in more complex cases 

when the covariance of individual batches diverge from that of the pooled data (e.g., do not lie 

along PC directions). Alternatively, overcorrection of PCs may occur in cases when individual 

batches have marginal or nonexistent batch effects in covariance patterns (Chen et al., 2022). 

Other applications of CovBat should be attempted to systematically assess the relative benefits 

and drawbacks of different strategies for multi-metric or multimodal data. For instance, we 

considered batch correcting NMF component weights instead of raw measures but were 

concerned that NMF would capture noise attributable to batch effects. For validation purposes, 

NMF components from one batch could be projected onto another batch to confirm reliability 

of spatial patterns in the pooled analyses. This could be accompanied by the use of more 

advanced classification techniques (e.g., support vector machines) for detection of batch and 

demographic variables in CovBat-adjusted residuals. Lastly, it may be worthwhile to apply 

CovBat to individual cortical measures rather than a multi-metric input to confirm that the latter 

approach is a more effective use case for multi-metric multivariate analyses. 

Increasingly, novel approaches are emerging for retrospectively harmonizing structural 

brain data across batches. Some have extended existing ComBat capabilities by controlling for 

non-linear age effects with generalized additive models (Pomponio et al., 2020) or enabling 

meta-analytic implementations (Radua et al., 2020). Other approaches eliminate technical 

variability during data processing rather than from cortical derivatives (e.g., the Removal of 

Artificial Voxel Effect by Linear regression method; Fortin et al., 2016). Alternative techniques 

have made use of source-based morphometry for voxel-wise data (Chen et al., 2014), 

hierarchical Bayes for normative modelling (Bayer et al., 2021), and generative adversarial 

models to eliminate a priori scan or site labels (Liu et al., 2021). More rigorous comparisons 

of these strategies are needed to evaluate their efficacy for a variety of participant characteristics 

and downstream statistical analyses.  

 

5.3 NMF Results 
NMF was used to investigate the shared covariance structure between multiple 

macrostructural measures, each offering distinct yet complementary biological information.  
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5.3.1 Selecting Component Granularity 
Using orthogonal projective NMF (Lee & Seung, 1999, 2000; Yang & Oja, 2010) we 

found both six and 16 component solutions optimally balanced generalizability across 

subgroups and minimal residual error in the reconstructed low-rank matrices (Figure 4.5). 

Spatially, the six component decomposition (Supplementary Figure 6) yielded broader and 

more non-specific patterns of variation that were bilaterally symmetric and adhered to lobular 

anatomy. In comparison, the finer grained 16 component decomposition (Figure 4.6 A) 

produced more focal and regionally differentiated patterns.  

Selecting the optimal decomposition granularity impacts the spatial variation captured 

by components as well as downstream statistics performed on component weights. Previous 

studies investigating cortical covariance patterns with NMF have likewise evaluated stability 

and accuracy of decompositions to arrive at a granularity decision. For instance, Sotiras et al. 

(2015) evaluated GM covariance in a human aging dataset with NMF, PCA, and Independent 

Component Analysis (ICA) across 2-100 component resolutions. The authors found that as the 

number of NMF components increased, so did sparsity and coherence, while reconstruction 

error declined. Split-half generalizability measured with the inner product varied across 

resolutions, with a decline observed at ~2-10 components, followed by a slight increase at ~25 

components, and a subsequent plateau. Sotiras et al. (2017) used NMF to map CT covariance 

patterns in adolescent participants. The authors found peaks in split-half stability at two, seven, 

and 18 component granularities, which closely approximate the stability peaks seen in our work 

at two, six, and 16 components (Figure 4.5). NMF has also been used to assess covariance 

patterns in a clinical framework. Sanfelici et al. (2021) evaluated LGI covariance patterns in a 

group of patients with recent onset depression, recent onset psychosis, and clinical high risk, 

relative to healthy controls. An 18 component solution was selected after assessing change in 

reconstruction error and split-half stability in the group of control participants. The authors 

validated this granularity in two held-out sites, before applying it to the group of clinical 

subjects. Similarly, Shan et al. (2022) used NMF to identify GMV covariance patterns in ASD 

and NT participants. Changes in reconstruction error and sparsity were assessed from 2-20 

components in two samples of NT subjects, then the degree of spatial overlap was computed 

for a smaller range of components between the NT groups to select the granularity with the 

highest reproducibility. A six component solution was chosen and used for separate NMF 

decompositions in ASD and NT groups. Taken together, although these model selection 
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approaches produce quantitative values, it is important to bear in mind that the decomposition 

granularity is ultimately chosen by the user, even in cases where the optimal combination of 

favorable parameters may be ambiguous.   

Lastly, previous work has confirmed that incorporating multiple modalities or metrics 

yields more robust decompositions relative to unimodal analyses performed independently on 

each modality, likely owing to the fact that more information is available at each vertex to guide 

consistent and accurate decompositions (Patel et al., 2020; Robert et al., 2022). Indeed, our 

multi-metric solutions achieved high stability across subjects (r= ~0.7) and a plateau in 

reconstruction error slope (Figure 4.5).  

 

5.3.2 Other Methodological Considerations 
Outside of granularity selection, methodological decisions at other stages of the 

workflow affect spatial features of components. Batch correction approaches vary between 

studies, with some researchers opting to residualize site or scanner variables from raw data 

(e.g., Patel et al., 2022; Shan et al., 2022), while others apply algorithms such as ComBat (e.g., 

Sanfelici et al., 2021) prior to NMF implementation. These techniques differ with respect to 

the amount of batch-specific noise remaining in cortical measures, as well as the manner in 

which associations between brain and behavioural measures are affected if they are confounded 

with site (Fortin et al., 2018). Importantly, neither approach removes batch effects from 

covariance patterns of brain measures, which is of particular concern for multivariate analyses 

(Chen et al., 2022).  

Secondly, if substantial age differences exist in a pool of participants, it is possible that 

covariance patterns capture age-related changes in global cortical measures (e.g., mean CT, 

total SA, GMV, TBV) that are not explicitly modeled in the NMF. To this end, we tested 

whether global brain measures may be conflated with localized metric-specific spatial patterns. 

Indeed, we found that GMV exhibited the strongest correlation with NMF H weights when 

raw/non-residualized indices were used as NMF input (Supplementary Figure 3). GMV was 

therefore residualized on a vertex-wise basis from every cortical measure prior to NMF 

implementation to ensure that vertex-wise covariance patterns were not driven by individual 

variation in GMV. This step ultimately affected the split-half stability results and spatial 

patterns of components, relative to unresidualized analyses (Supplementary Figure 5).

 Furthermore, when constructing the multi-metric NMF input, it is necessary to 
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standardize each metric block to account for varying magnitudes of cortical measures. 

Standardization approaches should be considered in relation to the variance that a user wishes 

to prioritize, given that the magnitude of a vertex-wise measure differs according to the matrix 

axis. For instance, in a vertex-by-subject matrix of CT values, greater variation exists in the 

magnitude of CT measures within a given subject (i.e. between rows/vertices) than between 

two subjects’ CT measures for a given vertex (i.e. between columns). Since the aim of our 

analysis was to capture individual variability in morphological covariance patterns, we 

standardized the measures across columns to ensure that the more subtle variation in CT 

magnitude between individuals would not be overshadowed. For an alternative standardization 

approach that yields parcellation-type decompositions, see Patel et al. (2020), Robert et al. 

(2022), and Kalantar-Hormozi et al. (2022).  

Lastly, inter-study variation in NMF parameters contribute to variability in results. This 

includes differences in initialization strategies (e.g., randomized, NNDSVD), numerical solvers 

(e.g., multiplicative update, coordinate descent), constraints (e.g., orthogonality, sparsity), and 

cost functions.  

 

5.4 PLSC Results 
PLSC analysis was used to associate individual variation in morphometric covariance 

patterns with demographic and behavioural characteristics that affect phenotypic heterogeneity 

in ASD.  

 

5.4.1. Age and Cognitive Correlates of Structural Covariance 
Across both decomposition granularities, younger age, female sex, and lower FIQ 

contributed significantly to LV1, with age having the strongest correlation (r= -0.56). These 

variables were significantly associated with increased whole-brain contribution of CT, 

decreased whole-brain contribution of SA, widespread increase in LGI, and more subtle and 

regionally nuanced MC patterns. The relationships were stable across subsets of subjects, as 

seen in the LV1 split-half stability analysis (section 4.4.2.2), suggesting that the brain-

behaviour patterns represent primarily age-driven, whole-brain changes that are robust across 

subjects and NMF resolutions.  

Across measures, the largest absolute BSRs were observed for CT in frontal lobe 

components, specifically dorsolateral prefrontal cortex, medial frontal gyrus, orbitofrontal 
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cortex, pars opercularis/triangularis and the lateral sulcus. Across components, CT was the 

largest contributor to covariance patterns in association areas primarily involved in higher order 

cognition, including frontal and temporal parcels, as well as the inferior parietal lobule, anterior 

cingulate, and precuneus. LGI was the dominant contributor in regions involved in sensory 

processing and integration, including dorsal sensorimotor cortex, cuneus, superior parietal 

cortex, ventral occipital cortex, parieto-occipital fissure, and lingual gyrus. This pattern of 

brain-behaviour results suggests metric-specific functional delineations, with CT exhibiting the 

most robust relationship with age and cognitive ability. 

 

Previous work assessing the spatial patterning of age-related maturation have found that 

cortical development follows regionally heterochronous trajectories whereby lower-order 

primary sensory and motor areas mature before higher-order association areas involved in 

language and cognition (Amso and Casey, 2006). This maturational profile has been 

recapitulated at both local (Gogtay et al., 2004) and network (Khundrakpam et al., 2013; 

Raznahan et al., 2011; Zielinski et al., 2010) scales, and aligns with the developmental staging 

of functional processes (Alexander-Bloch et al., 2013). Inter-regional communication 

transitions from local to distributed topologies throughout development (Alexander-Bloch et 

al., 2013; Zielinski et al., 2010), with network-specific growth trajectories (Liu et al., 2017), 

and evidence of sexual differentiation in temporal (Zielinski et al., 2010) and spatial (Raznahan 

et al., 2011) patterning. 

This hierarchical organization is likewise seen in CT, with developmental changes 

occurring spatially from sensorimotor to association axes (Brown et al., 2012; Gilmore et al., 

2021; Sowell et al., 2004; Syndor et al., 2021). Importantly, relative to other cortical measures, 

CT is more amenable to experience-induced plasticity (Gilmore et al., 2020), and is thought to 

facilitate cortical refinement through adaptations to functional demands in the environment 

(Lerch et al., 2011).  

 

Studies investigating the structural substrates of general intelligence have also identified 

relationships between CT and FIQ, predominantly in higher-order association cortices. These 

regions reside in the temporal lobe (Choi et al., 2008; Karama et al., 2009; Narr et al., 2007), 

cingulate (Karama et al., 2009; Menay et al., 2013), as well as prefrontal (Menary et al., 2013; 

Narr et al., 2007), extra-striate (Narr et al., 2007), and parietal (Karama et al., 2009; Menary et 
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al., 2013) cortices. Sex differences in spatial patterns have been observed, with female-specific 

CT-FIQ relationships reported in prefrontal and temporal association cortices, and male-

specific patterns in temporal-occipital association cortices (Narr et al., 2006). Additionally, sex 

differences have been reported in the valence of brain-cognition links in prefrontal 

compartments (Goh et al., 2011). Another line of evidence suggests an age-related inversion of 

the relationship between CT and FIQ, with negative associations in early childhood (< eight 

years old), and positive associations in frontal and temporal regions in later childhood (> eight 

years old; Shaw et al. 2006). When examining this relationship in a subscale-specific manner, 

Menary et al. (2013) found more widespread, positive coupling between CT and FIQ in a 

sample of 9-16 year old subjects, whereas in the older sample of 16-24 year-olds, this was found 

only for non-verbal IQ scores.  

CT structural covariance patterns have also been investigated in relation to intelligence. 

In one study, Khundrakpam et al. (2017) related interregional correlations in CT with IQ 

subscales, finding divergent regions of cognitive associations in higher versus lower VIQ and 

PIQ. Graph-theoretic analyses revealed that higher VIQ subjects demonstrated more optimal 

topological organization relative to those with lower VIQ.  Specifically, these subjects 

displayed higher global efficiency and modularity, alongside lower local efficiency. 

Differences in regional efficiency in higher VIQ versus lower VIQ individuals were also found. 

In another study, Seidlitz et al. (2018) developed Morphometric Similarity Networks to 

evaluate pairwise interregional correlation of multiple macro- and micro-structural indices. 

PLSR was used to assess the effect of inter-individual variability in node degree for each 

subject’s MSN on VIQ and PIQ scores. The dominant LV described a significant association 

between high node degree of language-related cortical regions in left frontal and temporal 

cortices, with higher VIQ and PIQ. Together, these findings suggest greater integration of 

cortical regions involved in higher order intellectual function, with some spatial specificity 

pertaining to cognitive domains.  

 

Our work adds to this literature by demonstrating that in younger subjects (median 

age=18.42) with lower cognitive abilities (median FIQ=111.5), CT has the greatest contribution 

to cortical covariance patterns, with the highest values observed in association cortices. These 

results underscore the biological importance of CT in supporting developmental and cognitive 

processes. 
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5.4.2 Clinical Correlates of Structural Covariance 
We did not find a significant contribution of diagnostic status to LV1 in the PLSC 

analysis. However, since ASD status approached significance (Figure 4.10), we sought to 

further characterize the subjects that expressed the LV1 phenotype in relation to additional 

cognitive and clinical variables. In line with our PLSC results, we observed that LV1 was more 

robustly related to cognitive rather than clinical measures (Figure 4.11). Indeed, both ASD and 

NT subjects with lower VIQ and PIQ exhibited the LV1 brain-behaviour profile more strongly, 

relative to those with higher VIQ and PIQ. Additionally, ASD subjects with greater social 

impairment and sensory sensitivities mapped more strongly onto the LV1 patterns relative to 

those with lower social impairment and sensory sensitivities. In comparison, repetitive 

behaviour symptomatology and ASD clinical severity showed less discernible relationships 

with LV1. These findings suggest that individual differences in neuroanatomical organization 

are more representative of developmental, cognitive, and behavioral variation than a diagnostic 

label. 

It is possible that part of the variance attributable to diagnosis was subsumed by FIQ 

due to significant case-control differences in FIQ (see Section 4.1.1.1). Indeed, during the 

matching procedure, ASD and NT subjects were paired for age and sex, but not FIQ. This 

decision was undertaken for a number of reasons. FIQ represents a general measure of cognition 

that is closely related to ASD diagnosis, level of functioning, and phenotypic presentation (Rao 

et al., 2015), thus it is difficult to dissociate ASD as a diagnostic label from IQ as a cognitive 

construct. In a similar vein, some have argued that valid assessment of IQ in ASD is often 

confounded by symptoms of ASD and its common comorbidities (e.g., impairments in social 

communication, ritualized behaviors/speech, fixed interests, limited attention span) since 

prolonged engagement of verbal, comprehension, and social skills are required during the 

administration of standardized cognitive assessments (Rao et al., 2015; Wolff et al., 2022). 

Moreover, the use of FIQ as a composite score of cognition may be unrepresentative of the 

variable and nuanced IQ profiles observed in autistic individuals (Wolff et al., 2022). Thus, 

matching subjects on FIQ may ultimately further bias clinical samples (Jarrold & Brock, 2004).  

 

Contrary to our results, previous studies investigating case-control differences in 

structural covariance patterns have found diagnostic differences related to symptom 

dimensions, developmental trajectories, and structural properties of covariance networks.  
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Sharda et al. (2016) found that ASD subjects with lower language functioning had lower 

structural covariance in CT but not SA in left fronto-temporal areas when using language-based 

seed regions. Similarly, Bernhardt et al. (2013) observed that subjects with ASD had lower 

covariance in CT structural networks occupying regions involved in Theory of Mind, including 

the dorsal medial prefrontal cortex and temporal parietal junction, which corresponded to 

decreased self-reported perspective-taking abilities. Conversely, increased GMV structural 

covariance patterns between subcortical and subcortical-cortical regions have been linked to 

elevated insistence of sameness scores on the Repetitive Behaviour Scale assessment 

(Eisenberg et al., 2015). 

From a developmental perspective, Wang et al. (2022) found age-related alterations in 

structural covariance profiles of ASD infants, with significant case-control differences by 24 

months of age in SA covariance networks, accompanied by significant differences in network 

segregation, integration, and small-worldness, particularly in fronto-parietal and occipital 

compartments. Leveraging a sliding window approach, Cai et al. (2021) assessed changes in 

CT covariance patterns from 7-45 years of age, finding an inverted U-shaped trajectory in both 

ASD subjects and NT controls, with the ASD group showing a sustained lag relative to the NT 

group.  

Other organizational properties of structural covariance networks also show case-

control distinctions. For instance, Zielinski et al. (2012) identified a more restricted GM 

intensity salience network across diffuse regions in the ASD group, alongside more nuanced 

region-specific diagnostic differences in the default mode network. Sha et al. (2022) reported 

predominantly right-lateralized asymmetry of CT structural covariance patterns of ASD 

subjects in the fusiform gyrus and subdivisions of the frontal cortex, with no significant effect 

of clinical severity, medication use, IQ, or gender on asymmetry measures. Bethlehem et al. 

(2017) found that hubs in CT and LGI covariance networks displayed lower node degree in 

ASD subjects relative to NT controls, suggesting weaker integration with other nodes in the 

network. 

Using SVD-based decomposition techniques that are more comparable with our 

approach, other studies have identified clusters of cortical regions that covary together. For 

instance, Shan et al. (2022) used a sparse-NMF variant to decompose voxel-wise GMV in ASD 

and NT controls separately, then used subject loadings to evaluate individual deviations from 

normative trajectories, followed by a clustering to identify ASD subtypes. The authors found 
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group differences in subject weights in five of six components occupying most cortical and 

subcortical parcels. Covariance patterns in the medial frontal cortex and parietal lobe were 

significantly associated with ADOS communication scores, whereas those in the cerebellum, 

parietal lobe, frontal lobe, and limbic system were significantly associated with ADOS social 

scores. Lastly, Mei et al. (2020) used ICA to map GM covariance patterns. General linear 

models were first used to relate ICA-derived subject weights with diagnostic status, finding that 

ASD-specific decreases in volume of insula and aspects of the frontal lobe, in addition to an 

increase in the caudate nucleus. Significantly decreased volume of amygdala, hippocampus, 

and parahippocampal gyrus in the ASD group were also found. Since case-control differences 

were observed, ICA was then performed solely on the ASD subjects, and Canonical Correlation 

Analysis was used to relate ASD subjects’ ICA component weights with cognitive and clinical 

assessments. A significant canonical variate related volume of thalamus, putamen, motor 

cortex, and cerebellum, in addition to distributed regions of frontal, parietal, and occipital 

divisions with greater repetitive/stereotyped behaviors and sensory sensitivities. 

 

Differences between our results and those reviewed above may be due to a number of 

factors. While our PLSC analysis included age, sex, and IQ as main variables, other studies 

have either set these variables as covariates (Cai et al., 2021; Eisenberg et al., 2015; Sha et al., 

2022; Sharda et al., 2016; Zielinski et al., 2012), residualized them from raw data (Shan et al., 

2022; Wang et al., 2022), or matched for age, IQ (and/or gender) but did not explicitly model 

these variables statistically (Bernhardt et al., 2013; Bethlehem et al., 2017). Matching strategies 

also vary among studies, with some pairing subjects based on IQ (Bernhardt et al., 2013; 

Bethlehem et al., 2017; Zielinski et al., 2012), or additional cognitive variables (Bernhardt et 

al., 2013). We performed our analyses on both matched and unmatched subjects to assess 

putative differences in diagnostic effects that may be attributable to the disproportionate ratio 

of ASD subjects to NT controls. Since we found that the direction of diagnostic results differed 

in either case, we performed our main analyses in the matched subset of subjects to limit the 

possibility of group size discrepancy driving our results. 

Accounting for inter-subject differences in global cortical measures was also performed 

inconsistently, with some studies covarying or residualizing TBV (Sharda et al., 2016; Zielinski 

et al., 2012), ICV (Eisenberg et al., 2015), mean GMV (Cai et al., 2021), or the global 

equivalent of the local measure being used (e.g. mean CT or total SA; Bernhardt et al. 2013; 
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Wang et al., 2022). In our work, we found that covariance patterns expressed the strongest 

correlation with GMV among the other measures we tested (TBV, mean CT, total SA, mean 

LGI, mean MC) and thus we decided to residualize GMV from our vertex-wise measures before 

modelling structural covariance. In light of these findings, it may be useful for researchers to 

quantitatively test a range of global measures on covariance networks to arrive at an 

empirically-based decision. 

Lastly, across studies, covariance patterns are modelled using a variety of statistical 

techniques, including seed-based interregional associations (Bernhardt et al., 2013; Eisenberg 

et al., 2015; Sharda et al., 2016; Zielinski et al., 2012), graph theoretical network analyses 

(Bethlehem et al., 2017; Cai et al., 2021; Wang et al., 2022), and decomposition-based 

multivariate techniques (Shan et al., 2022; Mei et al., 2021). Each approach quantifies 

covariance differently and varies with respect to subject-wise specificity. Interestingly, the 

other multivariate techniques reviewed here modelled structural covariance separately in ASD 

and NT control subjects, presumably to relate subject weights from the clinical decomposition 

to additional ASD-specific assessments. However, this approach assumes that ASD and NT 

subjects have inherently divergent covariance profiles and creates challenges with selecting the 

optimal component granularity for both group that would allow for homologous comparisons. 

Instead of adopting a case-control paradigm, we opted to identify patterns of covariance in a 

pooled group of ASD and NT controls to model covariance patterns within a dimensional 

framework. Since significant diagnostic differences were not observed, we did not perform 

follow-up decompositions on cases and controls separately. 

 

5.5 Interdependencies Between Cortical Measures 
When considering the cortical BSRs in LV1, CT demonstrated an inverse relationship 

with SA, and positive relationships with LGI and MC. CT and SA represent orthogonal axes of 

cortical organization, and thus it is not surprising that they are independent in their spatial 

organization, considering their divergent genetic (Pazzinon et al., 2009) and 

neurodevelopmental (Raznahan et al., 2011) profiles.  

Conversely, CT and MC describe cortical properties along the same spatial dimension, 

with CT representing the distance between WM and pial boundaries, and MC representing the 

convexity or concavity of the cortex along its radial aspect. Previous research has shown that 

sulcal depths are thinner than gyral crowns (Vandekar et al., 2015), with sulci and gyri also 



 

 
 
 

 
92 

showing different cellular and vascular properties (Hiletag & Barbas, 2005; Sun & Hevner, 

2014; Wagstyl & Lerch, 2018) thereby confirming shared regional variation between these two 

measures.  

Interestingly, LGI shows a negative association with SA. This inverse relationship is 

somewhat unexpected given that LGI is partly derived from SA, representing the ratio of SA 

to the convex hull within a region of interest. These findings could suggest limited anatomical 

specificity of LGI as a measure of folding, possibly stemming from methodological challenges 

related to quantifying cortical convolutions, and individual variability in folding patterns that 

may affect quality of image registration. Furthermore, the SA-LGI relationship reported here 

may be specific to the particular set of brain and behavioural variables included in the PLSC 

analysis. Indeed, LV1 associates globally reduced SA and elevated LGI with younger age, 

lower IQ, and female sex. An equally valid way to interpret LV1 results is that globally elevated 

SA and reduced LGI are significantly associated with older age, higher IQ, and male sex.   

 

By incorporating multiple measures to characterize cortical covariance patterns, we are 

able to represent more information at each vertex, relative to modelling covariance of each 

measure separately. However, this approach comes with certain interpretational drawbacks. 

Primarily, the relative covariance of four cortical properties must be interpreted within the 

context of each measure’s individual variance across the mantle, in terms of both spatial extent 

and absolute magnitude (Supplementary Figure 2).  

Relatedly, the precision of spatial specificity also varies for each metric. For instance, 

while vertex-wise CT represents the distance between corresponding points on WM and pial 

boundaries along the vertical dimension, vertex-wise SA represents one third of the SA of 

triangular facets adjoining a vertex along the horizontal dimension, thereby comprising a larger 

spatial field. The large size of blurring kernels used in CIVET software (i.e. 30mm for CT and 

MC; 40mm for SA) may also play a role in reducing spatial specificity of each measure, 

particularly for measures of cortical complexity. Conceivably, the importance of reducing 

random noise by imposing a Gaussian distribution may be less relevant for multivariate than 

univariate analyses, and thus future studies may benefit from assessing the effect of smaller 

kernel sizes.  

Further still, cortical measures vary in their measurement reliability. Indeed, one study 

reported lower reproducibility of CT-derived covariance patterns across different subsets of 
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age- and sex-matched subjects than SA and GMV metrics, particularly with smaller sample 

sizes and multi-site data (Carmon et al., 2020). This is likely due to the fact that CT is derived 

from signal intensity, therefore being more susceptible to measurement error stemming from 

scans of different resolutions, subjects of different ages, as well as software used to process 

scans and derive cortical measurements (Carmon et al., 2020).  

 

5.6 Univariate versus Multivariate Results of Covariance Weights 
Univariate models were used to complement the multivariate results with the aim of 

evaluating the associations between behavioural variables and variation in morphometric 

covariance. Linear models confirmed the absence of diagnostic effects on the covariance 

weights (Figure 4.8). Across analyses, age and IQ effects were pronounced, with CT showing 

inverse relationships with both variables. Main trends of global CT increases in females relative 

to males were consistent across modelling schemes. Interestingly, LGI failed to reach 

significance in any univariate model, relative to its profuse effects seen in the PLSC analysis. 

Indeed, LGI results differed substantially between the analytic approaches, with a lack of 

significant effects in all univariate results. This could suggest that individual behavioural 

predictors have greater effects on MC as a measure of cortical complexity, whereas the 

interdependencies between age, sex, and FIQ differentially impact LGI’s contribution to cross-

metric covariance. Future work could use interaction terms to model dependencies between 

predictor variables in univariate models. 

 

5.7 Limitations  
The findings presented here should be interpreted in the context of several limitations. 

First, many subjects were excluded due to QC and the matching protocol (only 44% of baseline 

subjects were included in matched multivariate analyses). Excluded individuals consisted of a 

greater proportion of ASD subjects, were younger, and had lower IQ and higher clinical 

severity relative to included subjects. Furthermore, the lack of standardized clinical and 

cognitive variables is a major drawback of unharmonized datasets. Indeed, only four variables 

(diagnosis, age, sex, FIQ) were complete across datasets, which limited our ability to 

quantitatively relate the multivariate results to additional dimensions of ASD symptomatology. 

Similarly, datasets differ in their ascertainment practices, exclusion criteria, and acquisition 
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protocols. Although we statistically accounted for these differences, they may nonetheless 

affect our findings. Lastly, age-related changes are modelled from cross-sectional data, and are 

represented as correlative linear relationships. Given the substantial age range of participants, 

it is likely that age-related trends may in fact be non-linear. The use of univariate approaches 

to model non-linear age terms in relation to covariance weights would be beneficial to 

supplement the current set of multivariate results.  

  

 

6. Conclusion  
We evaluated interdependencies between morphometric covariance patterns and 

subjects’ behavioural characteristics in ASD and NT individuals, while accounting for several 

sources of methodological variation. We found that sexually differentiated macrostructural 

networks are largely driven by younger age and lower cognitive ability, with no significant 

diagnostic differences in the main LV. Our brain-behaviour results suggest that CT is the most 

robust contributor to covariance patterns, being primarily anchored in association areas 

involved in higher order cognitive processes. We show that individual variation in structural 

covariance has metric-specific functional delineations but limited clinical relevance. 
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Appendix 
Supplementary Table 1. Statistical differences between included and excluded subjects 
 
Table S1. Statistical differences in demographic variables between subjects included and excluded after 
quality control (QC). Total before QC (n=1097); after QC (n=762). ASD = Autism Spectrum Disorder. 
NT = Neurotypical. FIQ = Fullscale IQ.  
 

 Included Excluded Test Statistic 

ASD 262 190  
𝜒 2 (df =1) = 47.90 

p<0.001 
 NT 500 145 

Male 428 242  
𝜒 2 (df = 1) = 25.28 

p<0.001 
 Female 334 93 

Median Age 16.42 11.00 U=72566, p<0.001 

Median FIQ 111.00 108.00 U=70932, p<0.001 

 

 
Supplementary Table 2. Demographic information of unmatched subjects 
 
Table S2. Demographic information for unmatched subjects used for vertex-wise univariate analyses 
and CovBat validation analyses (n=668). ASD = Autism Spectrum Disorder. NT = Neurotypical. FIQ 
= Fullscale IQ.  
 

Before 
Matching 

POND 
N=137 

SickKids 
N=320 

UK AIMS 
N=211 

Total 
N=668 

Female_ASD 18 19 46 83 

Male_ASD 46 60 54 160 

Female_NT 36 117 45 198 

Male_NT 37 124 66 227 

ASD: NT 64:73 79:241 100:111 243:425 

Age(years) 
Range [median] 

4.37-21.96 [13.78] 4-49 [13] 18-52 [25.76] 4-52 [16.29] 

FIQ 
Range [median] 

44-142 [106] 69-149 [111] 73-137 [117] 44-149 [112] 
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Supplementary Table 3. Demographic information of matched subjects 
 
Table S3. Demographic information for matched subjects used for multivariate analyses (n=486). ASD 
= Autism Spectrum Disorder. NT = Neurotypical. FIQ = Fullscale IQ.  
 

After  
Matching 

POND 
N=108 

SickKids 
N=196 

UK AIMS 
N=182 

Total 
N=486 

Female_ASD 18 19 46 83 

Male_ASD 46 60 54 160 

Female_NT 13 36 34 83 

Male_NT 31 81 48 160 

ASD: NT 64:44 79:117 100:82 243:243 

Age(years) 
Range [median] 

4.47-21.9[13.58] 4-49[12] 18-52[25] 4-52[18.42] 

FIQ 
Range [median] 

44-142[105] 69-144[111] 73-137[116] 44-144[111.5] 
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Supplementary Table 4. Additional information for subjects used in LV1 qualitative 
characterization 
 
Table S4. Additional clinical and cognitive measures for matched subjects included in qualitative 
characterization of LV1 (Figure 4.11). NA = Not Available. 
 

Assessments UK AIMS 
N=182  

POND 
N=108  

Total 
N=290 

ADOS_G_Total  
Range [median] 

          2-22 [10] 
         N=97 ASD 

                 -           2-22 [10] 
N=97 ASD 

Verbal IQ 
Range [median] 

71-144 [114] 
N=182 

        43-134 [101] 
             N=104 

NA=4 

43-144 [109] 
N=286 

Perceptual IQ 
Range [median] 

67-138 [115] 
N=182  

        46-160 [106] 
 N=104 
  NA=4 

46-160 [112] 
N=286 

Social Communication 
Questionnaire Total 
Score 
Range [median] 

-              0-34 [8] 
            N=113 
             NA=3 

            0-34 [8] 
            N=113  
            NA=3 

Repetitive Behaviour 
Scale Total Score 
Range [median] 

-              0-85 [9] 
            N=124 
            NA=4 
 

            0-85 [9] 
             N=124 
             NA=4 

Short Sensory Profile 
Total Score 
Range [median] 

-  75-190 [151] 
N=93 

NA=155 

75-190 [151] 
N=93 

NA=155 
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Supplementary Figure 1. Vertex-wise general linear model results 
        

    
 
Figure S1. Results of vertex-wise linear models for subjects who passed QC and have complete 
diagnosis, age, sex, and FIQ data (n=668), projected onto population surface averages. Corresponding 
statistical models are shown above each brain map. CovBat-corrected values were used as input. 
Multiple comparison correction was performed with FDR. T-values of the ‘diagnosis’ predictor term 
are shown for vertices that remained significant at the 10% FDR threshold. A significant CT decrease 
was found in the right precentral gyrus of ASD subjects relative to NT controls. No other models yielded 
significant diagnostic differences at this threshold. DX = Diagnosis. ASD = Autism Spectrum Disorder. 
FDR = False Discovery Rate. CT = Cortical Thickness. SA = Surface Area. LGI = Local Gyrification 
Index. MC = Mean Curvature.  
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Supplementary Figure 2. Vertex-wise standard deviation of raw measures 
 

 

 
Figure S2. Standard deviation of raw vertex-wise cortical metrics for n=668 subjects. CT = Cortical 
Thickness. SA = Surface Area. LGI = Local Gyrification Index. MC = Mean Curvature. 
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Supplementary Figure 3. Correlation of NMF subject weights with global brain 
measures: Non-GMV-residualized input measures 
 

 
Figure S3. NMF was performed on CovBat-corrected data of unmatched subjects, without residualizing 
any global measures. An eight component decomposition was chosen following a stability analysis. H 
matrix component-by-metric weights are correlated with global measures (TBV, mean CT, total SA, 
mean LGI, mean MC, GMV, TBV). GMV displayed the strongest correlation with NMF H weights 
across components. 
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Supplementary Figure 4. Multivariate results for unmatched subjects 
A. 

 
B. i)       ii) 

          
Figure S4. Results of Non-negative Matrix Factorization (NMF) and Partial Least Squares Correlation 
(PLSC) analyses using vertex-wise input matrices of CovBat-corrected and GMV-residualized data for 
n=668 subjects who passed QC and had available diagnosis, age, sex, and FIQ data. A. Results of split-half 
stability analysis revealed that a six component decomposition achieved optimal balance of generalizability 
and accuracy. B. i) Spatial map of six-component NMF decomposition, projected onto a population surface 
average. Each vertex of the W matrix was assigned to the highest weighted component in a winner-take-all 
fashion. ii). PLSC results for latent variable 1 (LV) explain 91.4% covariance (p<0.0001). Barplots (top) 
depict behavioural variables contributing to LV1 as correlation coefficients, with significant contributions 
shown in dark grey. Barplots (bottom) show bootstrap ratios (BSRs) of cortical measures for each component 
(x-axis), such that a BSR of 2.58 is used to threshold significance. M= Male. F= Female. DX = Diagnosis. 
TD = Typically Developing. ASD = Autism Spectrum Disorder. CT = Cortical Thickness. SA = Surface 
Area. LGI = Local Gyrification Index. MC = Mean Curvature. 
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 Supplementary Figure 5. Multivariate results for unmatched subjects with non-GMV-
residualized data 
 
A. 

                            
 
B. i)       ii)                                                        

 
 
Figure S5. Results of Non-negative Matrix Factorization (NMF) and Partial Least Squares Correlation 
(PLSC) analyses using vertex-wise input matrices of CovBat-corrected and non-GMV-residualized data for 
n=668 subjects who passed QC and had available diagnosis, age, sex, and FIQ data. A. Results of split-half 
stability analysis revealed that an eight component decomposition achieved optimal balance of 
generalizability and accuracy. B. i) Spatial map of eight component NMF decomposition, projected onto a 
population surface average. Each vertex of the W matrix was assigned to the highest weighted component in 
a winner-take-all fashion. ii). PLSC results for latent variable 1 (LV) explaining 85.6% covariance 
(p<0.0001). Barplots (top) depict behavioural variables contributing to LV1 as correlation coefficients, with 
significant contributions shown in dark grey. Barplots (bottom) show bootstrap ratios (BSRs) of cortical 
measures for each component (x-axis), such that a BSR of 2.58 is used to threshold significance. M= Male. 
F= Female. DX = Diagnosis. TD = Typically Developing. ASD = Autism Spectrum Disorder. CT = Cortical 
Thickness. SA = Surface Area.LGI = Local Gyrification Index. MC = Mean Curvature.   
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Supplementary Figure 6. Six component NMF decomposition on matched, GMV-
residualized data 
  

A. 

                       
B.                                                                                       

 
Figure S6. A. Spatial maps for a six component decomposition showing covariance patterns of the four 
cortical measures overlaid on population surface averages. B. Brighter colours indicate a higher 
participant-by-metric loading onto a given component’s vertex, suggesting greater magnitude of that 
metric within the subject’s covariance pattern. CT = Cortical Thickness. SA = Surface Area. LGI = 
Local Gyrification Index. MC = Mean Curvature. 
 
 

 

 

 

 



 

 
 
 

 
147 

Supplementary Figure 7. Six Component PLSC Results for LV1 
A.                                                   Latent Variable 1 

        
B.                                                    C.                                            D.  

      
 
Figure S7. Partial least squares correlation (PLSC) results showing significant latent variables (LV) that 
capture the relationship between subjects’ demographic characteristics (barplots) and NMF covariance 
weightings (brain heat maps). A. Results of LV1. Barplots show each behavioural measure’s contribution to 
LV, expressed as a correlation coefficient. Error bars display bootstrapped 95% confidence intervals (CI). 
Orange coloured bars are indicative of measures that contribute significantly to the LV. Brain maps on the 
right depict the six component NMF solution, with adjacent heat maps showing bootstrap ratios (BSR) of 
the NMF component-by-metric loadings. A BSR of 1.96 (corresponding to a 95% CI) is used to threshold 
significance. Coloured squares (non-grey) indicate cortical measures within each covariance pattern that 
contribute significantly to the LV. Positive BSR are displayed in green and negative in purple. B. Correlation 
of subjects’ brain and behaviour coloured by diagnostic group (r=0.54, p<0.0001). C. Brain scores grouped 
by diagnosis. D. Behaviour scores grouped by diagnosis. LV = Latent Variable. FIQ = Fullscale IQ. M = 
Male. F = Female. DX = Diagnosis. NT = Neurotypical. ASD = Autism Spectrum Disorder. C = Component. 
CT = Cortical Thickness. SA = Surface Area. LGI = Local Gyrification Index. MC = Mean Curvature.  
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Supplementary Table 5. 16 Component PLSC Bootstrap Ratios 
Table S5. Bootstrap ratios (BSR) are shown for the dominant metric within each component. Positive 
BSR values indicate increase, whereas negative BSR values indicate decrease of a given metric within 
the covariance pattern captured by the component. 
 

Component Anatomical Descriptor Dominant Metric BSR value 

1  Dorsal sensorimotor LGI 14.63 

2  Posterior frontal CT 13.16 

3  Orbitofrontal CT 16.86 

4  Ventral sensorimotor & superior 
temporal gyrus 

CT 8.48 

5  Anterior temporal CT 11.33 

6  Posterior temporal & inferior 
parietal 

CT 12.33 

7  Pars triangularis/opercularis, and 
lateral sulcus 

CT 13.37 

8  Cuneus LGI 8.94 

9  Dorsolateral prefrontal cortex & 
medial frontal gyrus 

CT 18.65 

10  Superior parietal LGI 11.81 

11  Ventral occipital LGI 8.86 

12  Anterior cingulate CT 12.26 

13 Parieto-occipital fissure LGI 10.11 

14  Precuneus CT 13.11 

15 Lingual gyrus LGI 5.77 

16  Parahippocampal gyrus SA -10.84 

 

 


