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Preface

This thesis seeks to develop methods for the identification of treatment rules that allow

for optimal decision-making in delivering medical care, using a Bayesian perspective. Six

chapters are developed, with chapters 1 and 2 containing and introduction and a literature

review, chapters 3-5 containing original, inter-related manuscripts advancing the central aims

of this thesis, and chapter 6 containing a conclusion and discussion of future work. In writing

this thesis, I benefited from discussions and feedback from my supervisors and committee

member; this is detailed in what follows.

Chapters 1 and 2 contain the introduction and literature review, both of which were written

by Daniel Rodriguez Duque (DRD) and revised by Erica E.M. Moodie (EEMM) and David

A. Stephens (DAS).

The general problem in Chapter 3 was suggested by EEMM and DAS, and further conceptu-

alized and concretized by DRD. The methodological developments were performed by DRD

with the guidance of EEMM and DAS. The simulations were designed and coded by DRD

with troubleshooting suggestions and advice form EEMM and DAS. The illustrative exam-

ple in HIV therapy was developed in discussions with EEMM, DAS, and Marina B. Klein

(MBK); DRD performed all analyses in discussion with EEMM, DAS, and MBK. DRD wrote

the manuscript with EEMM, DAS, and MBK providing revision and suggestions.

Chapter 4 was conceptualized through discussion between DRD, EEMM, and DAS. The

framing, contextualization, and methodological developments were done by DRD with in-

put from EEMM and DAS. All simulations were designed and programmed by DRD with

guidance from EEMM and DAS. The data analysis was designed by DRD, with input from

EEMM and DAS. The manuscript was written by DRD, with EEMM and DAS providing

feedback about the content.

Chapter 5 was conceptualized in discussions between DRD, EEMM, and DAS. DRD con-
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ducted all analyses, wrote the manuscript, and wrote all programs; EEMM and DAS provided

feedback and guidance throughout all these stages.

The conclusion and discussion of future work in chapter 6 was conceived and written by

DRD with feedback and corrections provided by EEMM and DAS.
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Abstract

The availability of health data, access to powerful computing, and development of sophis-

ticated inferential tools now makes optimal sequential decision-making a realistic goal in

medicine. Consequently, with the aim of advancing evidence-based medicine, researchers aim

to identify decision rules that tailor patient care to patient specific characteristics through

time; these rules are termed dynamic treatment regimes (DTRs). Many of the established

methods for DTRs rely on the frequentist paradigm, however Bayesian methods have much

to offer as they allow for the appropriate representation and propagation of uncertainty,

including the facility to make probabilistic statements about optimal treatment strategies.

This thesis seeks to develop Bayesian methods to perform inference of optimal DTRs in order

to advance the aims of precision medicine.

The first manuscript in this thesis develops a methodology for identifying optimal DTRs by

proposing Bayesian dynamic marginal structural models (MSMs), models representing the

expected outcome under adherence to DTRs in a family indexed by a parameter ψ. To infer

about these models, Bayesian decision theory is used to motivate the maximization of an

expected posterior utility with respect to an unknown parameter. Singly and doubly robust

Bayesian inference for DTRs is also explored using posterior predictive inference and the

Bayesian bootstrap. The consequences of this Bayesian approach in quantifying uncertainty

about the optimality of a decision rule for specific patients, thereby allowing for personal-

ized decision-making, are also examined. These methods are studied using simulations and

through an example in HIV therapy, where we seek to tailor treatment, with the aim of

minimizing liver scarring.

Although (Bayesian) dynamic MSMs allow for the identification of optimal regimes, these

methods have limitations. Importantly, they require modeling of the function that maps

regime indices ψ to the expected outcome under regime adherence; this function is known

as the value function. A misspecified model for the value function may lead to bias in the

estimated optimal DTR. To avoid this, an estimator for the value of a DTR can be paired
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with a grid search for the optimal regime, however this may be computationally intractable,

especially if Bayesian methods are used requiring draws from a posterior distribution. The

second manuscript address these challenges by examining whether computer experiments

with Gaussian processes can be used to identify optimal DTRs, a procedure that requires

emulating the value function by fitting a working model on an initial set of design points

and sequentially sampling new points that are most informative about the optimum. This

methodology allows for robust estimation of optimal DTRs by permitting more flexible mod-

els of the value function, all while using data more efficiently than a grid-search. We find

that accounting for variability in the estimated value function can yield improved perfor-

mance over a grid-search, particularly when the value function exhibits multimodality. We

illustrate the use of these methods by analyzing trial data to determine if HIV therapy can

be tailored on patient-specific characteristics.

The aim of the third manuscript is to present an application of the methods developed in

the first two manuscripts and illustrate implementation using an open-source software pack-

age. For this, we make use of the trial data on HIV therapy, as in the second manuscript,

but additionally incorporate a simulated component to the data to arrive at a two-stage

sequential decision-making problem. We explore decision rules that tailor therapy based on

patients’ baseline and 20-week CD4 cell count, with the aim of maximizing CD4 cell count

at 90 weeks. For this analysis all methods considered yield similar inference regarding the

optimal DTR. This manuscript also showcases the BayesDTR package, developed to perform

the required analyses.
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Abrégé

Dans le but de faire progresser la médecine fondée sur les preuves, les chercheurs visent à

identifier des règles de décision qui adaptent les traitements du patient aux caractéristiques

spécifiques de celui-ci, à travers le temps. Ces règles sont appelées régimes de traitement

dynamiques (RDT). Plusieurs des méthodes établies pour les RDT reposent sur le paradigme

fréquentiste, pourtant les méthodes bayésiennes ont beaucoup à offrir car elles permettent de

propager l’incertitude et la représenter adéquatement, tout en rendant possibles des déclara-

tions probabilistes sur les stratégies de traitement optimales. Cette thèse vise à développer

des méthodes bayésiennes qui peuvent inférer sur des RDT optimaux afin de faire avancer

la médecine de précision.

Le premier manuscrit de cette thèse développe une méthodologie pour identifier les RDT

optimaux en proposant des modèles structurels marginaux (MSM) dynamiques bayésiennes,

qui sont des modèles représentant le résultat espéré après adhésion aux RDT dans une famille

indexée par un paramètre ψ. Pour inférer à propos de ces modèles, la théorie de la déci-

sion bayésienne est utilisée pour motiver la maximisation d’une utilité espérée a posteriori

par rapport à un paramètre inconnu. L’inférence bayésienne simplement robuste et dou-

blement robuste pour les RDT est également explorée. Les conséquences de cette approche

bayésienne sur la quantification de l’incertitude de l’optimalité d’un RDT pour des patients

spécifiques sont également examinées; ceci permet une prise de décision personnalisée. Ces

méthodes sont étudiées à l’aide de simulations et à travers un exemple qui cherche à adapter

le traitement des patients avec un objectif de minimiser les cicatrices hépatiques.

Les MSM dynamiques (bayésiens) nécessitent la modélisation de la fonction qui associe

chaque régime indexé par ψ au résultat espéré après adhésion au régime, cette fonction est

connue comme la fonction de valeur. Un modèle mal spécifié pour cette fonction peut in-

duire un biais dans l’estimation du RDT optimal. Pour éviter cela, un estimateur de la

valeur d’un RDT peut être jumelé avec une recherche par quadrillage pour trouver le régime

optimal, mais cela peut exiger des calculs insolubles quand des méthodes bayésiennes sont
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utilisées. Le deuxième manuscrit vise à relever ces défis en étudiant l’usage de processus

gaussiens pour identifier le RDT optimal, une procédure qui nécessite d’émuler la fonction

de valeur en estimant un modèle préliminaire se basant sur un ensemble de points initiaux

et en échantillonnant séquentiellement de nouveaux points. Cette méthodologie permet une

estimation robuste des RDT optimaux à travers des modèles plus flexibles de la fonction de

valeur. Nous constatons que la prise en compte de la variabilité dans la fonction de valeur es-

timée peut engendrer des gains de performance par rapport à une recherche par quadrillage,

en particulier quand la fonction de valeur est multimodale. Nous illustrons l’utilisation de

ces méthodes en analysant les données d’un essai clinique pour déterminer si le traitement

anti-VIH peut être adapté aux caractéristiques du patient.

Le troisième manuscrit présent une application des méthodes développées dans cette thèse et

illustre l’implémentation de ces méthodes en utilisant un logiciel a source ouvert. Pour cela,

nous utilisons les données de traitement pour le VIH, comme dans le deuxième manuscrit,

mais aussi nous incorporons un composant simulé pour obtenir un problème de prise de

décisions séquentiel à deux étapes. Nous explorons des règles qui adaptent le traitement en

fonction du nombre de cellules CD4 au début de l’étude et à la 20ème semaine, avec un but

de maximiser le nombre de cellules CD4 à la 90ème semaine. Ce manuscrit présent aussi

la librairie R BayesDTR, qui a été développée pour effectuer les analyses requises. Nous

concluons que toutes les méthodes considérées mènent à une inférence similaire sur le RDT

optimal.
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Chapter 1

Introduction

Precision medicine seeks to tailor treatments to patients based on their individual charac-

teristics in order to improve health outcomes. The main challenge in this field is to identify

sets of variables, called tailoring variables, that allow us to distinguish which patients would

benefit most from which types of therapies and at what time. The practice of precision

medicine can be understood to be feasible by first noting that patients differ due to a va-

riety of factors including genetic, demographic, and clinical measures in addition to their

medical history. This observation, in conjunction with the understanding that, crucially,

patients’ outcomes are not solely associated with the treatments they receive but also with

their individual characteristics, clarifies why the aim of tailoring therapy is realistic. Indeed,

the study of precision medicine begins with studying how these factors modify the effect

of treatment. However, identifying effect modification is not sufficient to identify variables

on which to tailor treatment. Generally, we require that for some values of the tailoring

variables, the expected benefit under one therapy is greater than the expected benefit under

other therapies, and vice versa for other levels of the tailoring variables. That is, if a vari-

able modifies the effect of treatment but the modification is such that all patients would still

benefit most from only one level of therapy, then this effect modification does not allow for
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tailoring [Gunter et al., 2007].

Precision medicine is guided by meeting clinicians’ decision-making needs when treating

(chronic) diseases, where decisions can be made at different times point, for example during

fixed treatment schedules, or at turning points during disease progression. At each decision

point, all relevant treatment options and all available information should be considered, while

aiming to deliver optimal care. To meet clinicians’ decision-making needs in clinical practice,

we must formalize a framework for the study of this decision-making process. This is achieved

through the study of statistical methods for dynamic treatment regimes (DTRs) [Murphy

et al., 2001, Robins, 2004], which are sets of decision rules that inform a decision maker how

to treat patients based on all pertinent data on a patient. Most often, we are interested in

estimating optimal DTRs, meaning DTRs that optimize the expected outcome if everyone in

the population under study received treatment according to the optimal decision rule.

Fundamentally, questions about DTRs are causal questions as they require asking about the

effects of interventions, for example, "what is the effect of following DTR A vs. DTR B?". In

keeping with the majority of statistical literature, the conception of causality in this thesis

comes from understanding the effects of causes, not the causes of an effect [Holland, 1986].

That is, first we identify an intervention to study and then we examine the consequences

it has on an outcome of interest. Historically, data from clinical trials have been the most

accepted sources of evidence for answering causal questions, but studying DTRs involves

complex decision rules, with possibly time-varying treatment. Running trials that allow

us to ask causal questions about DTRs can be very costly, and we must often look to

non-experimental or observational data to gain insights about the effects of DTRs, while

acknowledging that these data are susceptible to a variety of biases.

The majority of methodological developments in the study of DTRs have been within the

frequentist inferential framework, a framework which views probabilities as being limiting

frequencies under an infinite set of identical experiments. This approach to inference views
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parameters, the possible targets of inference, as fixed but unknown; probability statements

can be made for estimators of these parameters, but not for the parameters themselves.

However, the study of DTRs may also benefit from the use of a Bayesian lens. This framework

views probabilities as dependent on available information, thereby allowing for differences

in belief about a quantity of interest. This approach to inference has a more expansive

view of what uncertainties can be quantified using probabilities. More practically, this

means that Bayesian methods view unknown parameters as random variables, and inference

about these parameters is based directly on their probability distribution. This in turn

means that a Bayesian framework is a more natural approach for answering some scientific

questions; for example, it can naturally incorporate model uncertainty in the inferential

process. A Bayesian framework has additional advantages by allowing us to incorporate prior

knowledge about quantities of interest, like treatment effects, or by not requiring asymptotic

assumptions in order to perform inference. Generally, both the frequentist and Bayesian

inferential approaches have merit, and it is a worthy pursuit to advance each.

This thesis seeks to advance Bayesian inference for optimal DTRs through the development

of three manuscripts. It begins with a literature review in chapter 2, contrasting some of the

current methods, both frequentist and Bayesian, available for inference about DTRs. Chap-

ter 3 then presents a manuscript that builds on work by Saarela et al. [2015b] to achieve

Bayesian estimation of dynamic marginal structural models. These models, originally pro-

posed in a frequentist framework, have the benefit of requiring that only a mean model be

specified, all while working within an infinite-dimensional set of distributions. A Bayesian

analogue of this procedure is proposed allowing for Bayesian semiparametric inference of

optimal DTRs. Bayesian predictive inference is also explored for singly and doubly robust

estimators, thereby allowing us to consider individualized inference by ascertaining the prob-

ability that a specific patient is following an optimal therapy. An example in HIV care is

examined to illustrate the use of these methods. Chapter 4 is motivated by the acknowledg-

ment that frequentist and Bayesian dynamic MSMs have some limitations, and addresses
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these by focusing on an approach that allows for flexible modeling of the value function,

i.e. the function that maps a regime of interest to the expected outcome under regime ad-

herence. The proposed methodology uses the structure of computer experiments, where an

initial set of design points are used to fit a working model and further points are gathered

sequentially, with the aim of efficiently identifying an optimal function value. The model

fits are predicated on prior assumptions on the form of the value function, using Gaussian

processes. Further discussion is provided as to how the computer experiment approach is a

natural example of how Bayesian uncertainty quantification can be used to express uncer-

tainty about a possibly deterministic system. Lastly, the use of these methods is examined

by using clinical trial data for HIV therapy. Chapter 5 demonstrates the use of the proposed

methods using the HIV trial data from chapter 4, with an additional simulated component

that allows for considering a two-stage sequential decision-making problem. Some of the

methods discussed in chapters 3 and 4 are nuanced, and this chapter allows us to consider

in detail how they should be applied. The analysis of these data is further facilitated by the

BayesDTR R package, developed to accompany the methods in this thesis. Chapter 6 pro-

vides a conclusion for the work in this thesis, where a review of the contained contributions

is provided, possible limitations are discussed, and future work is considered.

Note that chapters 3-5 are written as self-contained manuscripts, with a preamble detailing

the contributions of each work. Although the same notation is largely maintained across all

manuscripts, it is occasionally the case that notation is altered slightly from one manuscript

to another; these variations are noted and clarified in the preamble to each manuscript.

Chapter 3 has been published in Biostatistics, chapter 4 will be submitted to a statistical

journal soon after the submission of this thesis, and chapter 5 is under review in a statistical

journal.
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Chapter 2

Literature review

This thesis focuses on statistical methods for conducting scientific studies that explore how

medical interventions can be assigned to patients using all relevant information. These

methods contribute toward the goal of delivering tailored care by moving away from a one-

size-fits-all approach in medical therapy. The aim of delivering precision care is of importance

in both acute care and chronic care settings. Generally, this thesis focuses on the development

of methods that allow for the tailoring of care for treatments that vary over time, for patients

requiring chronic care. However, time-invariant treatments, likely arising from providing

acute care, are seen as a special case. In the context of tailoring time-varying treatments,

further distinctions between treatment regimes should be made. First, a static treatment

regime is a sequence of treatments that varies through time but that can be specified at

study start; it does not change with changing patient covariates and can only depend on

baseline covariates. In contrast, a dynamic treatment regime (DTR) involves a treatment

sequence that cannot be determined at study start as it depends on patients’ changing

covariates. Although the treatment sequence is not determined at study start, the treatment

rules are fixed, and so the information used to allocate components of the sequence are

known in advance. These rules can depend on baseline and time-varying covariates. Murphy
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[2003] defines a DTR as a function that takes treatment and covariate history, including

baseline covariates, and that outputs a treatment recommendation. Of importance is the

identification of an optimal DTR, that is, the DTR that optimizes the expected outcome

under adherence to a regime; we refer to this expectation as the value of a DTR. The study

of DTRs is the study of sequential decision-making, where at each stage of the decision

process we seek to use all available information to arrive at an (optimal) decision or therapy.

Variables that help guide which treatment is right for whom are generally termed tailoring

variables. Tailoring therapy in a single-stage setting is also an important goal, and methods

for DTRs can be useful in addressing these problems as well; treatment decision rules in a

single-stage setting are termed individualized treatment rules (ITRs).

Both experimental and observational data can be used to infer about DTRs. To produce

experimental data for causal inference of DTRs requires the use of sequential multiple assign-

ment randomized trials (SMARTs) [Murphy, 2005a]. These trials can be costly to perform;

consequently, we cannot solely rely on data arising from SMARTs to study DTRs. Alterna-

tively, observational data can be used, but care should be taken as these data are susceptible

to a variety of biases. One well known bias that can arise in the use of observational data

is confounding bias, which can distort the estimate of the true effect of a treatment on an

outcome. This bias is a result of not controlling for confounders, variables that are both a

cause of treatment and of the outcome. In cross-sectional problems, confounding bias can

be accounted for using standard regression methods, however this is not always the case in

the data dependencies that are of interest in sequential decision-making problems.

To identify optimal DTRs requires asking "what if" types of questions, thereby emphasizing

the need for methods to draw causal inference about these DTRs. Most commonly, we are

concerned about performing causal inference about the value of a given DTR or about the

optimal DTR over all classes of DTRs or over a specific set of regimes. Section 2.3, provides

the formal assumptions required to perform causal inference using the methods described in
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this thesis. Informally, these assumptions require that 1) we consider a problem where the

outcome of one individual is not affected by the treatment assignment of other individuals

(known as SUTVA), 2) that there are no unmeasured confounders, and 3) that all treatment

patterns can be observed for all types of patients (known as positivity).

To formalize the decision-making process, we consider a sequence of observed treatments

z̄ = (z1, ..., zK), whereK is the number of decision points in the sequential problem and where

zk ∈ {0, 1} are binary treatments. The case of non-binary treatment can also be considered,

although this involves some additional modeling challenges. Prior to each decision point,

we observe covariates xk, which we assume contain all relevant confounders or tailoring

variables. The entire covariate history is given by x̄ = (x1, ..., xK). By z̄k and x̄k, we

refer to treatment and covariate histories up to and including stage k. We use the vector-

valued function g(·) to denote DTRs, a function that takes as input patient information

and that outputs a treatment recommendation for each stage of the process. We refer to

the DTR-enforced treatments history by g(x̄) = (g1(x1), ..., gK(x̄)). These are the treatment

recommendations that are provided by a DTR, and can differ from zk which were assigned

according to standard practice. To denote treatment recommendations up to stage k, we

write ḡk(x̄k) = (g1(x1), ..., gk(x̄k)). We focus only on deterministic DTRs, that is DTRs that

assign treatment using deterministic rules of how patient covariates are mapped to treatment

recommendations. Lastly, we use y to denote the final outcome of the decision-process. It is

this outcome that we are seeking to optimize (without loss of generality, this review focuses

on maximization). In particular, we seek gopt that, when a population of interest is treated

according to this rule, yields the optimal expected outcome. Counterfactuals are denoted by

superscripts, for example the expected counterfactual outcome under adherence to a regime

g can be denoted by E[Y g]; in Bayesian settings, draws from posterior distributions are

denoted with ∗. Throughout, we will also refer to the function mapping a regime g to the

expected outcome under adherence to g as the value function, with the expected outcome

under adherence to g being referred to as the regime value.
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Some of the methods to be discussed in this review require adapting the notation above.

As noted above, at stage k a regime g recommends a treatment by using patient covariate

information up to stage k and treatment information up to stage k−1. If we define a history

vector hk = (x̄k, z̄k−1), note that stage k treatment is not included in this history, then at

stage k, this regime should take information hk to output a treatment recommendation as

zk = g(hk). In the context of a patient following a regime g through stage k, then it is

enough to use the covariate history x̄k to output a treatment recommendation as zk = g(x̄k),

as previous treatments were assigned based on patient covariates. Further discussion on this

point can be found in Tsiatis et al. [2019].

With the required notation, it is now possible to examine Figure 2.1 which shows one possible

relational structure, known as a directed acyclic graph [Greenland et al., 1999], for data

that may be available to estimate a DTR. We measure covariates x1, x2 which can help

decide on treatment assignment z1, z2. There may be additional unobserved variables in

the problem u. Of course, in practice this is not the only structure possible, for example

x1 can be a direct cause of x2 and of y etc. Chakraborty and Moodie [2013] provide a

diagram of all possible causal paths available in this decision problem. In a longitudinal

setting, like in Figure 2.1, concerns about confounding increase as now we are also concerned

about confounders that depend on previous treatment, a phenomenon known as treatment-

confounder feedback that makes the confounder a mediatior for previous stage treatments.

In the example in Figure 2.1, x2 is a confounder that mediates z1’s effects on y. When causal

structures like this arise, using regression modeling to adjust for confounders is not sufficient

as it can lead to over-adjustment bias [Schisterman et al., 2009], a bias that occurs when

conditioning on downstream confounders leads to blocking the effect of past treatments

thereby underestimating their effect. Another bias that can arise when conditioning on

confounders in a longitudinal setting is collider-stratification bias [Greenland, 2003] which

says that conditioning on a confounder that shares a common cause, u, with the outcome will

confound the relationship between previous treatments and the outcome of interest. Further
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discussion of these issues can be found in Chakraborty and Moodie [2013], but the conclusion

that we arrive at is that to infer about optimal DTRs, we must look beyond traditional

regression methods. In the following sections, we examine specific methods designed for

inference of DTRs, created by the need to identify other tools for inferring about time-

varying treatments and DTRs.

Figure 2.1: Time-varying confounding with treatment confounder feedback in a two-stage
decision process.

The structure of the remaining literature review is now laid out. In section 2.1 we discuss

marginal structural models — one tool that can be used to infer about time-varying treat-

ments, including with regard to DTRs. These models benefit from the fact that they yield

interpretable decision rules, a challenge for other frequentist and Bayesian models. In section

2.2, we discuss general frequentist methods for DTRs and contrast some of the approaches.

Section 2.3 allows us to formally state the required assumptions for causal inference. Section

2.4 introduces some concepts in Bayesian inference, which further leads to the Bayesian DTR

literature in section 2.5. Section 2.6 discusses methods for Bayesian optimization.

2.1 Marginal Structural Models (MSMs)

One common set of models used for inferring about time-varying treatments are MSMs.

As these are of substantial focus in this thesis, we begin with an overview of their use

to specify treatment effects in longitudinal static regime settings, and we then examine

their use for DTRs. Indeed, MSMs were first developed to parameterize the effect of static

regimes [Robins et al., 2000]; specifically, an MSM is a model for a counterfactual yz̄ under
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a sequence of treatments z̄. It is marginal because it models a marginal quantity that is

not conditional on patient covariates, except possibly for baseline covariates; it is structural

because it posits a model for a counterfactual. These models are important because, when

correctly specified, they yield meaningful estimands for the causal effect of a sequence of

treatments (z1, z2, ..., zK). Most often, we are interested in marginal structural mean models,

and to correctly specify these requires correctly specifying a model for E[Y z̄] under different

treatment patterns z̄. An example of such a model is E[Y z̄] = z̄Tβ, where β is an unknown

parameter of dimension p. In this thesis, the term MSM refers exclusively to marginal

structural mean models. In this approach, one is required to specify the structure of the

mean of Y z̄, while leaving the rest of the distribution unspecified.

Now, positing a model for an MSM is relatively straightforward, however, what is not im-

mediate is understanding how to go about estimating the model parameters. The most

common way by which to estimate parameters in MSMs is via inverse probability of treat-

ment weighting (IPW). For this approach to work, the treatment assignment mechanism z̄|x̄

should be known or consistently estimated. However, no additional assumptions are placed

on the distribution of Y z̄. If the counterfactual mean is modeled as z̄Ti β, then the estimating

equations that must be solved to use IPW are given by

n∑︂
i=1

∂(yi − z̄Ti β)
∂β

1
p(z̄i|x̄i)

(yi − z̄Ti β) = 0p×1.

The solution β̂n to these equations benefits from asymptotic normality and consistency, so

long as the treatment assignment model is consistently estimated and the counterfactual

mean model is correctly specified; the subscript n references the fact that the solution de-

pends on the observed data. Furthermore, for the solution of these equation to represent

the causal parameters of interest, we require all three causal assumptions: SUTVA, no

unmeasured confounders, and positivity. Treatment assignment probabilities may be de-

composed into stage-specific contributions. For example, in a two-stage setting, we obtain
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p(z2, z1|x1, x2) = p(z2|z1, x̄2)p(z1|x1). It is possible to ask questions about optimal static

regimes, and these may be identified by finding the fixed sequence of treatments that opti-

mize the expected counterfactual outcome.

Although straightforward to implement, IPW estimators can exhibit high variability, es-

pecially if the treatment probabilities are small, thereby yielding large weights. A more

efficient estimator that can be considered is the augmented IPW estimator, also known as

a doubly robust (DR) estimator [Bang and Robins, 2005, 2008]. Briefly, a DR estimator

requires modeling: 1) the outcome as a function of exposure and covariates, and 2) the

treatment assignment process. What is useful about DR estimators is that so long as ei-

ther the outcome or treatment process is consistently modeled, consistent estimation of the

causal treatment effects is attained. Other methods to infer about MSM parameters include

a Bayesian approach proposed by Saarela et al. [2015b] and an approach using targeted

maximum likelihood estimation proposed by Rosenblum and van der Laan [2010].

MSMs are useful for estimating the effect of static regimes, but they do not allow us to ask

about dynamic regimes. For MSMs that infer about DTRs, Murphy et al. [2001] first showed

how to estimate the marginal mean outcome under adherence to a single DTR. Additional

work by van der Laan and Petersen [2007] and Orellana et al. [2010a,b] extend inference

for MSMs to allow for joint estimation of the value of regimes in a family, thereby yielding

dynamic MSMs. Interest lies in using these dynamic MSMs to compute the average causal

effect of being assigned and adhering to a specified regime in a family G = {gψ;ψ ∈ I},

indexed by a parameter ψ. Then, the first challenge in this modeling approach is to connect

the mean counterfactual outcome under adherence to regimes in G via a parameter β in

a model h(ψ; β), β ∈ ℜp. We begin with an account of how to estimate the parameter

β in a singly robust setting, and we then examine doubly robust estimation. To denote

counterfactual outcomes in which a patient receives regime gψ, we omit the g for ease of

notation; that is, we define E[Y gψ ] = E[Y ψ]. As we are dealing with deterministic DTRs
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then following Orellana et al. [2010a] the counterfactual distribution (Z̄ψ, X̄ψ) is such that

the treatment probability at stage k is

p(Zψ
ψ = zk|X̄ψ

k = x̄k, Z̄
ψ
k−1 = z̄k−1) = 1gψ

k
(x̄k)(zk),

where the indicator function is 1 when zk = gψk (x̄k) and zero otherwise. This leads to the

following weight definition for information up to stage k:

wψk (x̄k, z̄k) =
∏︁k
j=1 1gψ

k
(x̄k)(zk)∏︁k

j=1 p(zk|x̄k, z̄k−1)
.

This weight is the ratio whose numerator is an indicator function, which is 1 when patients

receive treatment according to the DTR gψ up to stage k and 0 otherwise, and whose denom-

inator is the treatment probability in the study population through stage k. Effectively, wk

truncates or censors subjects who are not adherent to regime gψ through stage k. Note that

the superscript in the weight does not indicate a counterfactual, but rather it simply refer-

ences the fact that the form of the weight depends on the regime under consideration.

With the weight definition in place, we can consider estimating the parameters in h(ψ; β).

An example of such an MSM can be h(ψ; β) = β0 +β1ψ+β2ψ
2. We see that dynamic MSMs

allow for the possibility of parameter sharing across regimes. Assuming a correctly specified

model with true parameter β+, in addition to SUTVA, no unmeasured confounders, and

positivity, the following identity is obtained:

E
[︂
wψk (Y − h(ψ; β+))

]︂
= 0 (2.1)

which motivates the the estimating function

S(ψ, β, b) =
∑︂
ψ∈I0

n∑︂
i=1

wψi,Kb(ψ) (yi − h(ψ; β)) , (2.2)
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where b(ψ) is a vector-valued function of equal dimension to β and commonly taken to

be ∂h(ψ;β)
∂β

, and where I0 ⊂ I is a finite set of regimes for which the positivity condition

holds. Following the frequentist semiparametic inferential approach, we search for the IPW

esimator β̂n such that S(ψ, β̂n, b) = 0. Although solving this equation seems challenging, it

can be done using a data-augmentation technique described in Cain et al. [2010], whereby a

new row of data is created for every regime to which a patient adheres. The solutions of this

estimating equation are asymptotically normal with a variance formula that can be arrived

at using a sandwich variance estimator [Orellana et al., 2010a,b]. The use of these dynamic

MSMs has been explored in Cain et al. [2010] for HIV therapy and in Shortreed and Moodie

[2012] for psychiatric therapy, for example.

A doubly robust estimator for the marginal counterfactual outcome under adherence to a

DTR and for parameters in h(ψ; β) has also been developed. The former was first proposed

by Murphy et al. [2001] who consider the doubly robust estimator for the marginal mean;

later this was extended to a family of regimes by Orellana et al. [2010a,b]. The DR estimation

requires identifying a series of conditional outcome models, so that consistent inference is

attained when either the treatment models or the outcome models are correctly specified.

With this aim in mind, consider a sequence of conditional outcomes ϕk defined as

ϕψK(x̄K) = E[Y |X̄K = x̄K , Z̄K = ḡψK(x̄K)] for k = K and as

ϕψk (x̄k) = E[ϕψk+1(x̄k+1)|X̄k = x̄k, Z̄k = ḡk(x̄k)] for k = 1, ..., K − 1.

Orellana et al. [2010a] show that for each k, ϕψk (x̄k) = E
[︂
Y ψ|X̄k = x̄k, Z̄k = ḡk(x̄k)

]︂
. Thus,

the ϕψk s can be interpreted as the expected counterfactual outcome had a patient followed

regime gψ throughout the entire study period conditional on information up to time k.

Modeling these outcomes with a parameter τ such that ϕψk (x̄k) = ϕψk (x̄k; τ) allows us to

13



consider the β-specific estimating function,

Sβ(ψ; β, γ, τ) ={ϕψ1 (x̄1; τ)− h(ψ; β)}

+
K−1∑︂
k=1

wψk (γ)(ϕψk (x̄k, τ)− ϕψk−1(x̄k−1, τ)) + wψK(γ)(y − ϕψK(x̄k, τ)).

Orellana et al. [2010a] show that under a correctly specified model h(ψ; β), Sβ(ψ, β, γ̂n, τ̂n)

is an unbiased estimator of zero either when the set of treatment models or when a set

of outcomes models is correctly specified and consistently estimated, where γ̂n and τ̂n are

the parameters estimated in the treatment or outcomes models, respectively. This char-

acteristic provides us with doubly robust estimation for the β+ that we seek by solving∑︁n
i

∑︁
ψ∈I0 bi(ψ)Si,β(ψ, β, γ̂n, τ̂n) = 0. Standard arguments show that β̂n is consistent and

asymptotically normal [Orellana et al., 2010a]. Tsiatis et al. [2019] have an account of the

several procedures that can be used to fit these models in practice. A discussion on the use

of singly versus doubly robust estimators can be found in Kang and Schafer [2007] and in

the commentaries to that article.

Dynamic MSMs lend themselves to inference with interpretable decision rules, however accu-

rate inference is only guaranteed when h(ψ; β) is correctly specified as well as when treatment

or outcome models are correctly specified. These offer an approach to inference that does

not require specifying parametric likelihoods, unlike a typical, fully parametric Bayesian

approach which would usually require that full distributions for the data-generating mecha-

nism to be specified. In what follows, we now examine other frequentist methods for DTRs.

In particular, we distinguish between value-search approaches and regression-based meth-

ods.
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2.2 Frequentist Methods for DTRs

A variety of other frequentist methods for estimating the effect of dynamic treatment regimes

have been proposed. For example g-methods including g-computation [Robins, 1986] and

g-estimation of structural nested models [Robins, 1993] may be used for this purpose. Other

ways by which to identify optimal DTRs include Q-learning [Murphy, 2005b], outcome

weighted learning [Zhao et al., 2012], dynamic weighted ordinary least squares [Wallace and

Moodie, 2015], and residual weighted learning [Zhou et al., 2017]. Bayesian methods have

also been proposed, although this inferential approach has received significantly less attention

in the DTR literature. For example, Arjas and Saarela [2010] performed backward induction

using Bayesian nonparametric regression models, Saarela et al. [2015a] took a parametric

approach using Bayesian predictive inference, Xu et al. [2016] used Bayesian nonparametrics

in a survival context, where patients could randomly transition between disease states, and

Murray et al. [2018] adapted Q-learning to a Bayesian setting. In this section we examine

commonly used frequentist methods, and defer discussion on Bayesian methods to section

2.5 so that we can first introduce concepts in Bayesian inference in section 2.4.

Ways by which to estimate the value of DTRs and to identify optimal DTRs are commonly

placed in two categories: value-search approaches or regression-based approaches. Value-

search methods look to directly optimize the value E[Y g], like the previously discussed

dynamic MSMs, whereas regression-based approaches model outcomes conditional on stage-

specific patient information which can subsequently be used to identify optimal DTRs. We

begin with a discussion of value-search methods, and we then examine regression-based

methods.

A related approach to that of dynamic MSMs is that of Zhang et al. [2013], who propose that

in the family of regimes of interest G, an estimator for E[Y gψ ] be chosen and subsequently

maximized as a function of ψ; this avoids positing a mean model h(ψ; β). The authors suggest

using a genetic algorithm to maximize the IPW estimator and the augmented IPW estimator.

15



Another related approach that seeks to optimize a worst-case value function is that of Mo

et al. [2021], who estimate distributionally robust ITRs in the realistic setting where data

used to estimate optimal DTRs, termed training data, are not necessarily distributed exactly

like data where the ITR will be deployed. Consequently, the authors seek to maximize

a worst-case value function in a set of distributions that are similar to the training data

distribution.

Methods for value-search estimation have also been cast as a weighted classification prob-

lem, thereby allowing for the use of statistical learning methods. These weighted learning

approaches include outcome weighted learning (OWL) [Zhao et al., 2012] for individualized

treatment rules and residual weighted learning [Zhou et al., 2017] as an improvement to

OWL. OWL was later extended to a multistage setting by Zhao et al. [2015] with methods

termed backwards outcome weighted learning and simultaneous outcome weighted learning.

We begin by describing OWL in a single-stage setting, as many of the core ideas of this group

of methods can be understood from this setup. For the purposes of exploring these methods,

we temporarily change treatment coding to z ∈ {−1, 1}, which differs from the {0, 1} coding

used in the rest of this thesis. Like with other value-search methods, an importance sampling

argument yields the following expression for the expected outcome under adherence to an

ITR g:

E[Y g] = E

[︄
1(Z = g(X))
p(Z|X) Y

]︄
.

Interest lies in directly identifying gopt(x) that satisfies gopt = arg maxg E[Y g]. It can be

shown that this maximization problem is equivalent to finding gopt that minimizes

R(f) = E

[︄
1(Z ̸= sign(f(X)))

p(Z|X) Y

]︄
, (2.3)

where we have re-expressed g(x) as sign(f(x)) for some decision function f . Consequently,

the problem now centers around finding fopt and this can be seen as a weighted classification

problem: when the treatment that a patient receives does not match the treatment sug-
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gested by the DTR, then this is an instance of misclassification and contributes to the total

missclassification error. Zhang et al. [2012] have also studied value-search estimation though

a classification lens. Empirically, the objective function in equation 2.3 can be approximated

by ∑︁n
i=1 1(zi ̸= 1(f(xi) > 0))yi/p(zi|xi). It is evident that to minimize this function, the

DTR should suggest treatments that match the observed treatments for patients with small

weighted outcomes and vice-versa. Minimizing this objective function is challenging due to

the indicator function, which here represents a 0-1 loss. Consequently, it is replaced with a

hinge loss ϕ(t) = (1 − t)+ = max(0, 1 − t), and the complexity of the decision function is

penalized by aiming to minimize the following regularized expression

1
n

n∑︂
i=1

yi
p(zi|xi)

(1− zif(xi))+ + λn||f ||2 (2.4)

with respect to f . Under some assumptions regarding the class of functions to which f

belongs, flexible decision rules can be estimated by minimizing expression (2.4) via support

vector machine techniques. Some consistency guarantees are described in Zhao et al. [2012],

who show that asymptotically minimizing the regularized problem is equivalent to solving

the original value maximization problem. Generally, these methods require the SUTVA, no

unmeasured confounders, and positivity assumptions to arrive at inference. Using this theme

of minimizing the missclassification error, Zhao et al. [2015] extend OWL to a multi-stage

setting. Backwards outcome weighted learning identifies an optimal stage k decision rule us-

ing a weighted classification problem assuming patients have followed the optimal treatment

rule from stake k + 1 onward. Contrastingly, simultaneous outcome weighted learning con-

siders the weighted classification problem across all stages and simultaneously solves for all

stage-specific optimal decision rules by adding a regularization term for each stage-specific

decision function fk. OWL faces several limitations; most importantly, although the optimal

decision rule gopt is invariant to constant shifts of the outcome, y+ c, the estimated optimal

decision rule ĝopt is not. Zhou et al. [2017] examine the optimal constant c, or function s(x),
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by which to shift y and propose residual weighted learning as a way of obtaining improved

finite sample performance. For this purpose, authors show that for any measurable function

s(x),

E

[︄
Y − s(X)
p(Z|X) 1(Z ̸=g(X))

]︄
= E

[︄
Y

p(Z|X)1Z ̸=g(X)

]︄
− E[s(X)]. (2.5)

Thus, shifting y by s(x) does not change the minimizer gopt of the problem. Zhou et al.

[2017] advocate for choosing s(x) = E [Y/(2p(Z|X))|X = x], which may be estimated via a

regression model and can reduce the estimator variance. A regularized formulation of this

problem again leads to consistent inference. These weighted learning approaches yield the

possibility of leveraging tools from the classification and prediction literature, but their main

limitation is that they do not have a straightforward manner by which to quantify uncertainty

about the obtained decision rule, a crucial element of any statistical analysis.

In contrast to value-search methods, regression-based approaches require that we model the

outcome of interest directly, conditional on stage-specific information. To examine these

methods, we return to using the {0, 1} coding for treatments. A commonly used regression

based approach is Q-learning, introduced into the statistical literature by Murphy [2005b] and

Chakraborty et al. [2010] with Moodie et al. [2012] further exploring its use with observational

data. This method begins by defining the stage-specific Q-functions, which in a two-stage

setting are given by:

Q2(h2, z2) = E[Y |H2 = h2, Z2 = z2],

Q1(h1, z1) = E[max
z2

Q2(H2, z2)|H1 = h1, Z1 = z1].

If these quantities were known, then the decision problem could be solved backward by

identifying the optimal rule at stage 2, and then identifying the optimal rule at stage 1

assuming that the optimal stage two treatment decision was followed. That is, the optimal

treatment is given by, zoptk = arg maxzk Qk(hk, zk). This procedure is known as backwards

induction. However, as these Q-functions are unknown, they must be modeled and their
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parameters estimated; they are expected outcomes conditional on stage-specific information,

thus can be tackled via the familiar tool of regression.

To fit models for the Q-functions requires considering that at each stage k there are covariates

and previous treatments that may be predictive of the outcome, and that there are also those

that may modify the effect of stage k treatment. We can separate these two histories, with

hk0 denoting previous treatments and covariates that are predictive of the stage k outcome

and hk1 those that modify stage k treatment. These two sets of variables do not have to be

mutually exclusive; indeed, it is typically the case that all variables in hk1 are contained in

hk0 to ensure strict hierarchy (i.e all main effects of interactions are retained in a model).

Consequently, models for the Q-functions can be given by: Qk(hk, zk) = βTk0hk0 +(βTk1hk1)zk ,

k = 1, ..., K. These models can be fit using standard ordinary least squares regression. Of

course the fitting procedure also requires estimating the outcomes for stages k = K−1, ..., 1,

known as pseudo-outcomes and given by ỹk = maxzk Qk(hk, zk). Then, the fitting process

proceeds backward: estimate a model for QK , use it to predict a pseudo-outcome ỹK to be

used as the outcome to fit a model for QK−1, etc. In a binary treatment setting, the optimal

regime for the models considered above says to treat when βTk1hk1 > 0. Thus, the pseudo-

outcomes can be computed in a straightforward manner as ỹ1 = βTk0hk0 +(βTk1hk1)1(βTk1hk1 >

0). Consistent estimation requires that these models be correctly specified, which may mean

specifying complex models that result in complex decision rules that are hard for clinicians

to interpret. Additionally, the no-unmeasured confounders and SUTVA assumptions are

also required. Q-learning benefits from the fact that it is straightforward to implement in

practice. An example of a practical application of Q-learning can be found in Krakow et al.

[2017] who employ the method to identify treatment strategies for graft-versus-host disease

with the aim of maximizing survival.

A related approach that additionally benefits from a double robustness property is dynamic

weighted ordinary least squares (dWOLS) [Wallace and Moodie, 2015]. This is a method
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that allows for the use of a variety of weights including inverse probability of treatment

weights and that, like Q-learning, requires performing stage-specific regressions, however

these regressions are now weighted. The double robustness property arises from its similarity

to g-estimation, a method to estimate optimal DTRs that has seen limited use in practice

due to its complex formulation. Consequently, dWOLS offers the usability of methods like

Q-learning with added robustness. This approach makes use of backward induction in the

same way that Q-learning does, however it differs in the way that the pseudo-outcomes

are computed. To understand this, we must define the blip functions γk(hk, zk) [Robins,

2004] which represent the difference in expected outcome between patients who 1) receive

treatment zk at stage k as compared to patients who receives a reference treatment (zk = 0)

at stage k, 2) have the same treatment history through stage k − 1, and 3) receive optimal

treatment subsequently. Mathematically, this can be written as

γk(hk, zk) = E[Y z̄k,z
opt
k+1,...,z

opt
K − Y z̄k−1,0,zoptk+1,...,z

opt
K |Hk = hk], for k = 1, ..., K, (2.6)

where zoptj are optimal treatments and zj are the treatments actually received by the patient.

Note that γk(hk, zk) corresponds to the model βkhk1 previously discussed in the Q-learning

approach, where the blip function was modeled linearly in that case. With this definition,

the pseudo-outcome at stage k can be defined as ỹk = y + ∑︁K
j=k+1(γj(hj, z

opt
j ) − γj(hj, zj)).

Effectively, this operation removes the effect of observed treatments from stage k+1 onward

and adds the effect of optimal treatment, to arrive at the desired pseudo-outcomes. Models

for stage specific (pseudo) outcomes can be set as E[Ỹk|Hk = hk, Zk = zk] = fk(hk) +

γk(hk, zk), where fk(hk) is termed the treatment-free part of the model. This model is the

same as the model for the expected pseudo-outcomes in Q-learning.

So long as the blip function is correctly specified, inference for the blip parameters will be

consistent if the treatment assignment models or if the treatment-free part of the outcome

models are correctly specified. To arrive at causal inference, the SUTVA, no unmeasured
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confounders, positivity, and strict hierarchy assumptions are required. Wallace et al. [2017]

explored model assessment and selection for dWOLS, a subject that has seen little attention

in the DTR literature; dWOLS has seen extensions to other settings, including for continuous

treatments [Schulz and Moodie, 2021] and for survival outcomes [Simoneau et al., 2020].

In this section, we have reviewed frequentist methods to estimate optimal DTRs. We saw

value-search methods often require us to restrict ourselves to a family of regimes. In con-

trast, regression-based methods do not necessarily require restricting to a family of regimes

but they require correct modeling of the outcome process. Models leading to interpretable

optimal DTRs may face a high risk of misspecification; flexible models can lead to optimal

decision rules that are challenging to interpret. The next section presents in more detail the

assumptions required to draw causal inference.

2.3 Assumptions for Causal Inference

We now expand on the assumptions needed to draw causal inference. The stable unit treat-

ment value assumption is an assumption that requires (causal) consistency in the sense that

observed covariates and outcomes under assigned treatment equal their counterfactual coun-

terparts under the observed treatments. Mathematically, we may say that for k = 1, ..., K,

X
z̄k−1
k = Xk if Z̄k−1 = z̄k−1 and that Y z̄ = Y if Z̄ = z̄. That is, all observed quantities

equal their corresponding counterfactual quantities [Rubin, 1980, Hernán and Robins, 2020].

A consequence of this assumption is that the outcome of a given individual is not affected

by the treatment assignment of other individuals, known as the no interference assumption.

The no unmeasured confounders (sequential randomization) assumption can be understood

in two ways, one that makes use of counterfactuals and one that does not. These definitions

are given by:

• Definition 1: For each stage of the decision process, conditional on confounders and

treatment history up to time k, treatment assignment at time k is independent of the
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counterfactual outcomes Y z̄ and all other future intermediary outcomes X̄ z̄k
k+1. Mathe-

matically, we may write that for k = 1, ..., K, Y z̄ ⊥ Zk|X̄k, Z̄k−1 and (X̄ z̄k
k+1, ..., X̄

z̄K−1
K ) ⊥

Zk|X̄k, Z̄k−1 [Robins, 1986].

• Definition 2: As presented in Arjas [2012], consider the unobserved history up to time k,

Lk = {(Y, Zt, Xt, Ut), t = 1, ..., k}, where Ut are unobserved covariates. These contrast

observed covariates Xt. Furthermore, defining the observed history up to time k by

Ok = {(Y, Zt, Xt), t = 1, ..., k}. Then, the sequence of treatments {Zt} is unconfounded

relative to latent variables {Ut} if for each k, Zk and {Ut, t = 1, .., k} are conditionally

independent given (Ok−1 = ok−1, Xk = xk). Mathematically, this may be written as

p(zk|lk−1, uk, xk) = p(zk|ok−1, xk), k = 1, ..., K. Throughout this thesis, we assume

that xk contains all the necessary information in order to ensure unconfoundedness,

consequently we omit the variables uk from our notation.

Lastly, the positivity (absolute continuity) assumption requires that for k = 1, ..., K if

fX̄k,Z̄k−1
(x̄k, z̄k−1) ̸= 0 then P (zk|x̄k, z̄k−1) > 0. From a practical viewpoint, this says that we

should be able to observe all types of patients receive all types of treatments. As stated by

Hernán and Robins [2020], when considering a specific DTR g, then positivity needs to hold

only for treatment and covariate histories consistent with g.

In the next section, we discuss topics in Bayesian inference, so that we can further discuss

Bayesian methods for DTRs in section 2.5.

2.4 Bayesian Approaches to Inference

In this section, we touch on some important elements of Bayesian inference that are drawn

upon throughout this thesis. We first discuss the traditional approach to Bayesian inference,

and we then examine some of the characteristics of Bayesian nonparametric inference. We

focus on the Dirichlet process model and additionally discuss some elements of Bayesian
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decision theory. The methods discussed in this section are not restricted to a sequential

decision-making problem, so we consider only a random variable Y , which could be univariate

or vector-valued.

Much of the statistical literature focuses on performing inference having observed a sequence

of independent and identically distributed (IID) random variables. The De Finetti repre-

sentation theorem [De Finetti, 1931, Hewitt and Savage, 1955] motivates modeling infinitely

exchangeable sequences of observations, which include IID observations, as the product of

a likelihood that is conditionally independent on a parameter θ and a prior probability

for θ. In parametric inference, the parameter θ belongs to a finite dimensional space and

it is assumed that this parameter encodes everything that is unknown about this distri-

bution. Then, by combining the likelihood for the data with a prior probability for θ, it

becomes possible to perform statistical modeling and inference. In the next sections, we

examine Bayesian nonparametric inference, where the parameter is infinite dimensional, like

the data-generating distribution itself. We also examine contemporary literature that allows

us to move away from the prior times likelihood paradigm, when inferring about a parameter

of interest θ.

2.4.1 Bayesian Nonparametric Inference and the Dirichlet Pro-

cess

Focusing on distributions that are conditionally independent based on a finite dimensional

parameter θ is a restrictive modeling choice; if the distribution is misspecified, then inference

for the estimand of interest, represented by the parameter θ, has no guarantee of being con-

sistent. Bayesian nonparametrics reduces the restrictions in Bayesian modeling by taking the

entire distribution as the parameter necessary to fully specify a likelihood. Nonparametric

approaches offer greater flexibility and robustness to model misspecification [Müller et al.,

2015]. Effectively, the distribution (parameter) belongs to an infinite dimensional space,
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hence the term nonparametric. Like before, we may combine a likelihood with a prior for

the space of distribution functions Π(f) in order to perform inference. More specifically, we

have have the following:

1. A prior model Π(f) econding beliefs about the class of distributions giving rise to our

data.

2. A likelihood such that conditional on f , Y1, Y2, ..., Yn ∼ f , where n is the sample size.

Generally, if we choose to make use of nonparametric priors, we may think of Bayes rule as

operating in the following manner [Walker, 2010] in order to yield the posterior:

Π(df |y1, ..., yn) = Πn
i=1fY (yi)Π(df)∫︁

Πn
i=1fY (yi)Π(df)

One possible choice of nonparametric prior is the Dirichlet process (DP) prior, not to be

confused with the Dirichlet distribution. Before examining the properties of this prior, let

us define the Dirichlet process.

Consider a base measure (probability distribution) Gx and a constant α > 0. A distribution

f with sample space Ω is defined as being distributed according to a DP(α,Gx) if for every

measurable partition of Ω, (A1, ..., Ak), (f(A1), ..., f(AK)) ∼ Dir(αGx(A1), ..., αGx(AK)),

where Dir corresponds to the Dirichlet distribution. Ferguson [1973] shows that processes

with these properties can actually exist. We may consider the DP a distribution on discrete

distributions. However, as we will see next, these discrete distributions cannot be described

using a finite number of parameters, hence the term nonparametric.

The first important question that arises from theDP definition is how to sample distributions

from the DP . This may be done via what is known as the stick-breaking construction

[Sethuraman, 1994] which begins by considering V1, V2, V3, ...
iid∼ Beta(1, α) and defining

π1, π2, ... as following a stick-breaking process with parameter α if π1 = v1, π2 = (1 −

v1)v2, π3 = (1 − v1)(1 − v2)v3, ...etc, with ∑︁∞
i=1 πi = 1. Then, fY (y) is said to be a random
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discrete distribution following a DP(α,Gx) if it is of the form

fY (y) =
∞∑︂
i=1

πi1xi(y),

with xi being observed quantities drawn form Gx. We note that fY is in the scale of πis,

not of xis. A common result is that for large values of α, the process variance is smaller

and so fY (y) will concentrate around Gx [Teh, 2017]. The canonical form of a distribution

sampled from the DP involves an infinite sum. A sample from a DP can be approximated

by truncating the sum at a large index (i.e. when πi are small).

Having these definitions in place, we can now consider the consequence of placing aDP(α,Gx)

prior on data generating distributions. This prior is a conjugate prior, so that the posterior

is also a DP [Ghosal, 2010] of the form

DP(α + n,
α

α + n
Gx + 1

α + n

n∑︂
i=1

1yi(y)).

We may be interested in the posterior predictive distribution

f(y∗
n+1|y1, ..., yn) =

∫︂
f(y∗

n+1|f)Π(df |y1, ..., yn).

A well known result from Blackwell and MacQueen [1973] is that the posterior predictive

distribution is given by:

f(y∗
n+1|y1, ..., yn) = α

α + n
Gx(y∗

n+1) + 1
α + n

n∑︂
i=1

1yi(y∗
n+1).

Under a specific choice of α, the DP prior allows us to arrive at a procedure known as

the Bayesian bootstrap, first discussed by Rubin [1981] . The Bayesian bootstrap uses the

same nonparametric assumptions discussed above, meaning it places a DP prior on the data

generating distribution. In the context of a Bayesian bootstrap, we allow |α| → 0. In
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practice, we can think of α as being effectively zero by taking it to be such a small number

that it has negligible effects on inference. This modeling choice leads us to the following

posterior:

Π(df |y1, ...yn) = DP(n, 1
n

n∑︂
i=1

1yi(y)). (2.7)

In this case, given that the base measure is discrete and has finite support, we may write a

distribution sampled from the posterior as

f(y) =
n∑︂
i=1

πi1yi(y), where (π1, ..., πn) ∼ Dir(1, ..., 1) (2.8)

[Gasparini, 1995]. This is a key fact as now a distribution sampled from the posterior DP

is uniquely represented by a finite vector of weights. The reason as to why expression (2.8)

is termed the Bayesian bootstrap is because it can also be seen as the frequentist bootstrap

when each weight πi takes values in {0, 1/n, ..., n/n} representing the proportion of times

that yi appears in a given bootstrapped sample [Mitra and Müller, 2015]. This Bayesian

bootstrapping procedure allows us to perform a Bayesian analysis, all while utilizing tools

that are familiar to the broader statistical community. Although Bayesian nonparametrics

allows for flexible modeling, sometimes the estimand of interested is a finite-dimensional

parameter. In the next section we examine how parameters can be incorporated into an

inferential scheme, even when they are not embedded in a parametric likelihood.

2.4.2 Bayesian Decision Theory

Much of Bayesian inference focuses on inferring about parameters embedded in a likelihood.

However, there may be scenarios where interest is not in these parameters but in parameters

embedded in utility or loss functions. Walker [2010] lays out a framework to justify decision-

making based on optimizing expected posterior utilities/losses.

To define the benefit of an action, Walker [2010] proceeds by example in considering a model
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selection problem where we seek the optimal choice of θ for a parametric family of densities

F = {h(y; θ); θ ∈ ℜ} when modeling data generated by a distribution f(y), which may or

may not be contained in the set F. A natural manner in which to do this is to define a

utility that expresses the benefit of selecting a function h(·) and to search for the action that

maximizes this utility; alternatively a loss function can be defined and minimized.

For example, if the Kullback-Leibler (KL) divergence (d(f, h) =
∫︁
f log(f

h
)) is used as a

measure of divergence between two distributions, and if we take the expectation of this

divergence with respect to the posterior predictive distribution, then we are interested in

finding θ∗ that maximizes E[log(h(Y ∗; θ))|y1, ..., yn]. Regardless of whether F contains the

true posterior distribution or not, the optimal choice of θ is the minimizer of the posterior

expected loss, as it allows us to update our believe of the loss-minimizing parameter in light

of new data. If a nonparametric model leading to the Bayesian bootstrap is used, then

minimizing the KL divergence is equivalent to maximizing

E[log(h(Y ∗; θ))|y1, ..., yn] = Eπ[
n∑︂
i=1

πk log(h(yi; θ))] = 1
n

n∑︂
i=1

log(h(yi; θ)),

leading to a θ∗ that is the maximum likelihood estimator. Walker [2010] goes on to explain

how this setup allows for linking random distributions from the posterior distribution with

draws from θ∗ in order to construct a posterior distribution for the utility/loss optimizing

parameter, θ∗. Furthermore, this procedure can be regarded as a case of semiparametric

inference in the sense that inference about a finite dimensional parameter is being made, all

while working with an infinite dimensional space of distributions. Semiparametric inference

has an expansive literature in the frequentist setting, see for example Tsiatis [2007], and the

utility/loss optimization framework discussed above has promise in allowing for the benefits

of frequentist semiparametric theory and methodology to be brought over into a Bayesian

framework.

This utility/loss optimization framework was taken by Saarela et al. [2015b] who consider
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inference using utilities to infer about static treatment regimes of time-varying treatments

using marginal structural models. Stephens et al. [2022] and Luo et al. [2022] have also

considered the use of Bayesian inference via utilities in a causal setting. Non-causal work

includes Bissiri et al. [2016], who propose inferential procedures in a loss/utility function

rather than a likelihood, and Lyddon et al. [2019], who examine inference via loss functions

by proposing the loss-likelihood bootstrap. A decision-making framework based on utilities

is appealing as a means to perform Bayesian inference. It has the possibility of obviating

some of the challenges with Bayesian inference that require specifying complex likelihoods

and that may face a risk of model misspecification. In the next section, we examine some of

the work that has been done on Bayesian inference for DTRs. As we will see, in contrast to

the frequentist approach, there is a paucity of Bayesian approaches for DTRs and some of the

existing methods must be carefully adapted to each inferential problem, thus discouraging

their use in applied literature.

2.5 Bayesian Methods for DTRs

Bayesian inference has many appealing aspects: the flexibility of incorporating prior infor-

mation into the inferential problem, the possibility of drawing inference without the necessity

for asymptotic considerations, and the coherence of making probabilistic statements about

the quantities of interest are but some of the advantages. However, Bayesian inference faces

challenges too as the standard approach requires identifying likelihoods that face a risk of

misspecification. Furthermore, the resulting inferential procedures are often complex and

may have a heavy computational burden. In the following, we discuss some current ap-

proaches to Bayesian inference for DTRs and note that the current literature still requires

further developments so that these methods can be more widely adopted in general prac-

tice.

28



Arjas and Saarela [2010] directly address the problem of Bayesian inference for DTRs by

considering the analysis of data from the well-known Multicenter AIDS Cohort Study [Kaslow

et al., 1987] to assess the effect of initiating therapy with AZT, an antiretroviral medication.

They infer an optimal DTR in a two-stage setting with the aim of maximizing 12 month

CD4 cell count, and they do so with a full likelihood based Bayesian analysis. The authors’

approach requires them to model the intermediate covariate, x2, distribution in addition to

conditional outcome distributions using nonparametric regression models defined in Saarela

and Arjas [2011]. In their application, a single stage two covariate needs to be included

in the analysis, thereby making the modeling approach feasible. In particular, x2 is the

univariate variable CD4 cell count at six months. Backward induction is used to identify

optimal regimes by first estimating posterior predictive expectations using Markov Chain

Monte Carlo (MCMC) and Monte Carlo integration. The authors argue that the entirely

probabilistic framework of their approach is an asset, however it is unclear how the proposed

approach could be applied in settings with other data characteristics, for example with

more tailoring covariates or in observational studies that require adjusting for a variety of

confounders, possibly time-varying. These added characteristic would require modeling a

multivariate x2 distribution. Furthermore, the resulting optimal DTRs identified with this

method have no analytic expression or clear interpretable form. Saarela et al. [2015a] follow

a similar likelihood approach but make use of fully parametric models. Zajonc [2012] also

explore full likelihood based methods, with the aim of sampling from a posterior predictive

distribution of counterfactual outcomes and intermediary covariates, in order to evaluate the

value under a small set of regimes and consequently identify the optimal DTR. Lee et al.

[2015] explore Bayesian methods requiring the specification of a likelihood in a clinical trial

design that adaptively optimized patient doses.

Other work using Bayesian methods in the DTR realm includes that of Xu et al. [2016],

who are motivated to evaluate chemotherapeutic regimes for acute myelogenous leukemia.

They compare several candidate dynamic regimes with the aim of maximizing mean over-
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all survival time in a setting where patients can transition to several disease states, namely

death, resistant disease, complete remission, or progressive remission. Bayesian nonparamet-

ric survival regression models for transition times between states are used. In particular they

propose a dependent Dirichlet process mixture (of normals) model [MacEachern, 1999] with

a Gaussian process prior on the mean function of the normal distributions. Having described

a sampling strategy for these models, the authors make use of G-computation [Robins, 1986]

to arrive at an estimate for the mean survival time for each regime. This computation is

as in Wahed and Thall [2013], who examine the same question in cancer therapy but who

use a frequentist likelihood-based regression approach. The authors compare the proposed

Bayesian nonparametric approach with IPW and augmented IPW in simulation and identify

that their proposed approach yields improved performance by decreasing uncertainty around

the estimated regime value. Although this approach works well, the estimation procedure

leads to a general lack of interpretability, which may be of importance when addressing clini-

cal questions. Questions remain regarding the adaptability of this approach to settings where

the optimal regimes is chosen among a large, possibly infinite, set of regimes as opposed to

a small discrete set of candidate regimes.

A Bayesian approach to identifying optimal ITRs that may have broader applicability

is proposed by Logan et al. [2019], who use Bayesian additive regression trees (BARTs)

[Chipman et al., 2010] to model E[Y |X = x, Z = z]. With this model in place, solv-

ing arg maxz E[Y |X = x, Z = z] permits for the maximization of the marginal outcome

E[E[Y |X,Z = g(X)]]. Their approach models the outcome Y using a sum of Bayesian re-

gression trees, each represented by a function h(x, z;T,M), where T denotes a tree structure

consisting of interior and terminal nodes, with branches representing decision rules based on

covariates, and where M denotees a list of function values at the terminal nodes. Mathe-
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matically, this model posits that

Y = f(x, z) + ϵ, with ϵ ∼ N(0, σ2) and

f(x, z) =
m∑︂
j=1

h(x, z;Tj,Mj).

The authors then move to place a BART prior on f , using notation f ∼ BART . More specif-

ically, this is a prior for the constituents of the tree; nodes in the tree are assigned probabilites

of having a child node; covariates that partition a node, the partitioning value, and the values

at the terminal nodes are also assigned priors. With this prior structure, authors use MCMC

to obtain trees {T dj ,Md
j } for j = 1, ...,m and MCMC iterations d = 1, ..., D. The BART

procedure is viewed as yielding draws {fd; d = 1, ..., D} from the posterior distribution of f

[Logan et al., 2019]. Across draws from the posterior distribution, E[Y |X = x, Z = z] can

be approximated by using Ê[Y |X = x, Z = z] = 1/D∑︁D
d=1 E[Y |X = x, Z = z, fd]. The

BART ITR is then defined as gBART (x) = arg maxz Ê[Y |X = x, Z = z]. This means that for

a given covariate x, the optimal treatment can be identified. Logan et al. [2019] also discuss

how to compute the value at the optimal ITR and its associated uncertainty by drawing

from the posterior distribution. They mention that an advantage of this methodology is

its ability to handle complex functional forms in the outcome process as well as covariate-

treatment interactions, which is of pertinence in the study of ITRs. One main limitation of

this approach is the lack of interpretable decision rules that result.

A Bayesian Q-learning approach proposed by Murray et al. [2018], termed by authors a

Bayesian machine learning method, takes a similar approach to Logan et al. [2019] but

focuses on a sequential setting. This approach is best understood by considering a two-stage

problem. In the authors’ setup, stage-specific rewards Y1, Y2 are available, and an optimal

decision rule is one that maximizes the expected cumulative outcome of Y = Y1 + Y2.

Backward induction is used to arrive at the stage-specific optimal strategies, which requires
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positing stage-specific outcome models. At stage 2, a stage 2 model is posited:

Y2|H2 = h2, Z2 = z2, θ2 ∼ f2(y2|h2, z2, θ2)

θ2 ∼ p20(θ2),

with θ2 being an unknown parameter with prior p20. From this model, a posterior predictive

distribution f2n(y∗
2|h2, z2, θ2,Dn) can be obtained and used to evaluate the posterior optimal

decision rule ĝ2opt(h2) = arg supz2 E[Y ∗
2 |H2 = h2, Z2 = z2,Dn]; note that for each θ the

optimal decision rule is given by g2opt(h2; θ2) = arg supz2 E[Y2|H2 = h2, Z2 = z2, θ2]. The

last-stage decision rule is straightforward to identify; the challenge comes at the first stage

where a likelihood and prior should be placed on the cumulative counterfactual outcome

having received optimal stage 2 treatment:

Y z1,g2opt|X1 = x1, Z2 = z2, θ1 ∼ f1(y|x1, z2, θ1)

θ1 ∼ p10(θ1).

Unfortunately, these counterfactual outcomes are not observed for all patients; if a patient

follows the optimal stage two treatment, then the counterfactual of interest is observed,

yz1,g2opt = y1 + y
z1,gopt
2 = y. However, for patients where z2 is not the optimal therapy then

yz1,g2opt = y1 + y
z1,gopt
2 is not observed. For these patients, yz1,gopt

2 can be considered missing

and denoted by ymis2 . The aim here is to obtain the stage 1 posterior predictive distribution,

f1n(y∗|z1, g2opt,Dn), as this will allow for computing the stage 1 posterior expected outcome.

For this, the posterior distribution of θ1, p1n(θ∗
1|d2opt,Dn), must be computed; to address the

fact that some counterfactual outcomes are not observed, Murray et al. [2018] arrive at the
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following computation:

p1n(θ∗
1|d2opt,Dn) ∝ p10(θ1)

×
∫︂ ⎛⎝ ∏︂

i:z2i=g2opt(h2;θ2)
f1(y1i + y2i|x1i, z1i, θ1)

×
∫︂ ⎡⎣ ∏︂

i:z2i ̸=g2opt(h2;θ2)
f1(y1i + ymis2i |x1i, z1i, θ1)

⎤⎦
f2n(ymis2 |Dn)dymis2

⎞⎠p2n(θ∗
2|Dn)dθ∗

2.

A standard Bayesian computation for the posterior distribution of θ1 would take the product

of the prior p10 on the first line, with the stage 1 likelihood for the counterfactual outcomes

of interest. Unfortunately as some of these values are missing, the likelihood must be split

into a component with observed values for those who follow the optimal stage two rule and

with missing values for those who do not follow it. Marginalization can then be performed

over the missing values using the f2n distribution. Lastly, as there is also uncertainty around

the optimal stage 2 rule, the splitting of the likelihood into unobserved and observed con-

tributions must also marginalized over all values of the optimal stage two treatment; this

is the role of p2n in the equation. Murray et al. [2018] provide an algorithm for sampling

from this posterior, which can then be used to compute a posterior predictive distribution

to ultimately compute:

ĝ1opt(x1) = arg sup
z1
E[Y z1,g2opt∗|X1 = x1, Z1 = z1,Dn].

Note that the priors in this Bayesian Q-learning approach were not specified; authors advo-

cated for using Bayesian nonparametric regression models like BART.

Bayesian methods for DTRs have progressed slowly; generally the inferential problem is chal-

lenging and not amenable to "likelihood times prior" approaches, as it becomes necessary to

model intermediary covariates, or to posit likelihoods that face a high risk of model misspec-
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ification, unless nonparametric approaches are utilized. The Bayesian Q-learning approach

developed by Murray et al. [2018] shows promise though resulting optimal treatment rules

are not necessarily interpretable. There is a gap in the literature in developing Bayesian

methods that can yield interpretable optimal DTRs all while being robust to model misspec-

ification. Additionally, we note that beyond methods that estimate the value for a small set

of regimes and then identify an optimum among these, the value-search approach to infer-

ence has not been exploited in the Bayesian setting. In the next section, we examine another

approach to function optimization, which has not been explored in the DTR literature.

2.6 Function Optimization using Computer Experiments

As discussed, value-search approaches involve maximizing the value function directly; these

can be implemented by specifying parsimonious models for the value function with dynamic

MSMs and consequently maximizing the value function, using a genetic algorithm to maxi-

mize an estimator of the value function, or changing the value function optimization problem

into a classification problem that minimize a weighted misclassification error. These are all

promising approaches, however there are other methods for function maximization that have

not yet been examined in the DTR literature. In particular, the area of computer experi-

ments, has placed much focus in solving problems of the form arg maxψ f(ψ). These methods

are usually motivated by settings where f(ψ) is challenging to evaluate, and so a working

model for the objective function should be fit using a set of design points and sequentially

sampling more experimental points based on a selection criterion. Generally, this criterion,

known as an infill criterion, is such that it selects points most informative about where an

optimum may be.

Usually, an approximation for the objective function is formed using a Gaussian process (GP)

assumption, which says that any set of values of f evaluated at any arbitrary {ψ1, ..., ψm}

have an m-variate Gaussian distribution Quadrianto et al. [2017]. These processes are
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uniquely determined by their mean function m(ψ) = E[f(ψ)] and their covariance func-

tion k(ψi, ψj) = E[(f(ψi)−m(ψi))(f(ψj)−m(ψj))].

Models obtained through the GP assumption have been used extensively in regression and

classification tasks [Williams and Rasmussen, 2006]. When the aim is to emulate a function

using a set of experimental points, models arising from the GP assumption are often termed

kriging models [Krige, 1951]. In particular, these models seek to model a function f(ψ) for ψ

in some domain of interest in order to make predictions about f , when only knowing values at

a set of experimental points {ψ1, ..., ψm}. The GP assumption allows for the quantification of

uncertainty about f even if it is not the result of a random phenomenon. Rather, uncertainty

in this problem arises, at least in part, as a result of only partially observing a deterministic

phenomenon; this kind of uncertainty is termed epistemic [Roustant et al., 2012]. Kriging

methods can be combined with sequential sampling strategies that evaluate the objective

function at new experimental points; usually, the reason for sequential sampling is to identify

new points that inform the model about the location of a maximizer.

Kriging methods, including those used to optimize unknown functions, have a long history.

For example, Kushner [1964] maximize a multipeaked curve in the presence of noise, us-

ing a specific Gaussian process assumption and the maximum probability of improvement

as an infill criterion. Jones et al. [1998] introduce the efficient global optimization (EGO)

algorithm for identifying function optima in deterministic computer experiments. Their ap-

proach makes use of an infill criterion known as the expected improvement criterion which

is now very popular in applications. O’Hagan [2006] make a case for Bayesian kriging, and

discussed why Bayesian methods are more appropriate for many kriging tasks. Lizotte [2008]

acknowledge that a Bayesian approach is appropriate, but also that a fully Bayesian analysis

is complex and challenging to adopt; consequently the author used empirical Bayes or max-

imum a posteriori inference to estimate GP parameters and to perform optimization.

Kriging methods in settings with point-wise noisy observations are of substantial interest in
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some fields [Roustant et al., 2012], where values of f cannot be directly observed, even at the

experimental points; only a noisy version of f is observable. In computer experiments, for

example, Forrester et al. [2006] and Huang et al. [2006] proposed optimization methods using

kriging in a homoskedastic noise settings. Kriging methods accommodating heteroskedastic

noise have received less attention, but fully Bayesian approaches have been explored including

by Goldberg et al. [1997] and Wang [2014]. With an attempt at reducing the computational

burden, other Bayesian inspired approaches have also been proposed [Kersting et al., 2007,

Zhang and Ni, 2020]. In optimization settings that involve noisy observations, the choice

of infill criterion becomes important; Picheny et al. [2013] review infill criteria for noisy

observation problems in settings where sampling at the same function input is informative

and in settings where it is not.

The problem of identifying a value-maximizing DTR can be seen as a problem of function

optimization. The computer experiments literature is vast, with methods that have seen

applications in many fields. Surprisingly, no work has been done to explore the use of these

optimization methods in the realm of identifying optimal DTRs.

2.7 Summary

In this literature review, we have discussed the goals of precision medicine and some of the

methodological challenges that need to be overcome and the assumptions that need to be

made in order to effectuate these objectives. We have discussed value-search and regression

based methods, and generally we have observed that methods that yield interpretable deci-

sion rules are important; one challenge that we saw when examining Bayesian DTR methods

is the interpretability of the decision rules and the fact that there is a scarcity specifically

in Bayesian value-search approaches. Our discussion of Bayesian nonparametric methods

allowed us to observe that these methods yield flexible modeling strategies and in the con-

text of Gaussian process optimization, which is an optimization approach not explored in

36



precision medicine, we see that Bayesian methods are required, as frequentist approaches

are not always amenable to characterizing the uncertainties of interest; this consideration

alone is reason to advocate for the development of Bayesian inferential methods in general,

although the benefit of incorporating priors, and being able to make probabilistic statements

about quantities of interest is also important.
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Chapter 3

Semiparametric Bayesian Inference

for Optimal Dynamic Treatment

Regimes

Preamble to Manuscript 1. This chapter presents the first manuscript in this thesis; it

builds on work by Saarela et al. [2015b] who show how to infer about marginal structural

models for static regimes using a utility maximization framework. It is also motivated by

work in Saarela et al. [2016] who use Bayesian predictive inference and a doubly robust

estimator in a cross-sectional setting.

This manuscript analogizes frequentist developments for inference about MSMs in a Bayesian

framework: first an estimation procedure was developed for static MSMs [Robins et al., 2000],

and later this was extended to dynamic MSMs [Orellana et al., 2010a]. This manuscript

develops the latter within a Bayesian paradigm such that estimation and inference can

be achieved with the benefits of the probabilistic statements and interpretation that the

Bayesian framework permits.

Bayesian literature for optimal dynamic treatment regimes (DTRs) is scarce, in part because
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conventional Bayesian approaches requiring a likelihood pose a challenge in this setting,

where model misspecification is of considerable concern. Observational studies compound

the difficulty of performing causal inference, as confounding must be addressed. The work

in this chapter demonstrates how to bypass these difficulties through a decision theoretic

Bayesian approach.

Specifically, the contributions in this chapter include i) a demonstration of how inference for

dynamic MSMs may be cast as a Bayesian problem of utility maximization thereby allowing

for the estimation of the expected outcome under adherence to a DTR and of optimal DTRs,

ii) the defining of a probability measure that facilitates performing causal inference about

the DTRs of interest and that allows for a Bayesian interpretation of the data-augmentation

procedure needed to infer about optimal DTRs, iii) a demonstration of how to perform

individualized inference using a novel computation for the probability that a specific patient

should receive a given treatment, based on what has been learned from data about the

optimal treatment strategy, iv) an examination of how Bayesians may regard singly and

doubly robust inference for DTRs via a nonparametric prior, and v) the exploration how

these methods may be applied to answer a substantive question in HIV care.

This manuscript has been published in Biostatistics [Rodriguez Duque et al., 2022b]. Note

that the online supplementary material that is mentioned in section 9 of this chapter is also

given in this thesis’ Appendix A.
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Abstract

Considerable statistical work done on dynamic treatment regimes (DTRs) is in the frequen-

tist paradigm, but Bayesian methods may have much to offer in this setting as they allow for

the appropriate representation and propagation of uncertainty, including at the individual

level. In this work, we extend the use of recently developed Bayesian methods for Marginal

Structural Models (MSMs) to arrive at inference of DTRs. We do this 1) by linking the

observational world with a world in which all patients are randomized to a DTR, thereby

allowing for causal inference and then 2) by maximizing a posterior predictive utility, where

the posterior distribution has been obtained from non-parametric prior assumptions on the

observational world data-generating process. Our approach relies on Bayesian semipara-

metric inference, where inference about a finite-dimensional parameter is made all while

working within an infinite-dimensional space of distributions. We further study Bayesian

inference of DTRs in the doubly robust setting by using posterior predictive inference and

the non-parametric Bayesian bootstrap. The proposed methods allow for uncertainty quan-

tification at the individual level, thereby enabling personalized decision making. We examine

the performance of these methods via simulation and demonstrate their utility by exploring

whether to adapt HIV therapy to a measure of patients’ liver health, in order to minimize

liver scarring.
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3.1 Introduction

Precision medicine is a research area that seeks to tailor patient care to improve health

outcomes, all while reducing over-treatment. For conditions that require sustained therapy

through time, assigned treatments may vary through stages of the treatment process. To

identify treatment strategies that follow the principles of precision medicine, stage-specific

treatments must be allowed to change with patients’ evolving characteristics. These treat-

ment strategies are termed dynamic treatment regimes (DTRs). DTRs contrast static treat-

ment regimes, where time-varying treatments are assigned at study-start. One tool employed

to infer about time-varying treatments are marginal structural models (MSMs). These mod-

els were developed to evaluate the effect of static regimes [Robins et al., 2000] and later

extended to evaluate adherence to DTRs [Murphy et al., 2001], and to identify optimal

DTRs [Orellana et al., 2010a, van der Laan and Petersen, 2007]. MSMs rely on an appealing

estimation strategy; they allow scientists to target a finite set of causal estimands without

requiring restrictive assumptions about the family of data generating distributions. Semi-

parametric methods like these have mostly been studied from a frequentist viewpoint.

Semiparametric methods are enviable as they avoid specifying fully parametric probabilistic

models that face a high risk of misspecification. These methods may be contrasted with the

conventional Bayesian approach to inference, which seeks to multiply a parametric likelihood

with a prior. In simple settings, this approach works well, but in more complex settings,

like in sequential decision-making, the correct specification of a likelihood is highly suspect.

Some work has been done examining the effects of model misspecification in Bayesian in-

ference. For example, Walker [2013] shows that under some conditions, parameters in the

misspecified model converge to the minimizers of the Kullback-Leibler divergence. Although

this is reassuring, it does mean that inference cannot be guaranteed to be consistent and

consequently, treatment recommendations based on misspecified models could be subopti-

mal. Furthermore, in a setting with time-varying confounding and mediation, the correct
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specification of a likelihood with parameters representing causal treatment effects will not

yield fruitful results; this is because only confounded data are available and these data follow

a different probability law. Now, one approach that may guarantee consistency is Bayesian

inference via completely non-parametric specifications. In the DTR setting Bayesian non-

parametrics have been used to estimate the effect of a small number of dynamic regimes [Xu

et al., 2016], but when the family of regimes grows, this approach may not be feasible to

identify optimal regimes, due to computational limitations. Generally, it is unresolved how

Bayesians may best capitalize on semiparametric approaches to inference about DTRs, and

this is one of the challenges that our work addresses.

A variety of other methods for estimating the effect of DTRs have been proposed. For

example g-methods including g-computation [Robins, 1986], and g-estimation of structural

nested models [Robins, 1993]. Other ways by which to identify optimal DTRs include Q-

learning [Zhao et al., 2009], and outcome weighted learning [Zhao et al., 2012]. In a Bayesian

setting, a standard parametric approach to inference requires specifying the full dynamics of

the data generating process in order to learn about dynamic regimes. For example Saarela

et al. [2015a] use a predictive Bayesian approach that requires the specification of parametric

distributions for outcomes and intermediate covariates in order to identify optimal DTRs.

Murray et al. [2018] propose a Bayesian adaptation to Q-learning that utilizes machine

learning methods for flexible modeling, however the approach still relies on likelihoods for

stage-specific rewards/outcomes. Exceptionally, a few researchers have explored the use of

Bayesian non-parametric methods in the DTR setting; Arjas and Saarela [2010] take this

approach, however their method is not computationally feasible as the number of confounders

increases.

Ideally, Bayesians would target a finite dimensional estimand that indexes a large family

of regimes, all while working within an infinite dimensional class of data generating dis-

tributions. Recent work has elucidated ways in which semiparametric inference may be
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viewed through a Bayesian lens. First, let us review the frequentist setup. Frequentist semi-

parametrics begins with an estimating function, which under certain modeling assumptions

(e.g. for the mean) is an unbiased estimator of zero. For finite samples, setting the estimat-

ing function equal to zero and solving for a parameter of interest β yields an estimator β̂∗
n

which, under regularity conditions, is consistent and asymptotically normal. A framework

for Bayesian semiparametric inference should allow us to take a similar approach. It was

not until recently that MSMs for static regimes were provided with a Bayesian motivation

by considering the maximization of an expected posterior predictive utility [Saarela et al.,

2015b], which required solving for β in a manner analogous to the frequentist procedure.

Later, using a similar flavor, Bayesian doubly robust inference was motivated [Saarela et al.,

2016]. Other similar recent approaches have further considered inference via utility func-

tions [Bissiri et al., 2016] and through the loss-likelihood bootstrap [Lyddon et al., 2019].

What is particularly liberating about these inferential procedures is that Bayesian methods

can be used to infer about parameters that are not necessarily embedded in a likelihood,

which would undoubtedly be misspecified. However, none of these approaches have examined

causal inference for optimal DTRs.

Our work builds on the general framework developed by Saarela et al. [2015b] for performing

Bayesian causal inference with MSMs. Those authors focused on inferring about stage-

specific causal treatment effects of static regimes. As it is well established that MSMs

can also be used to infer about (optimal) DTRs, our work seeks to examine how to use

this general framework to perform Bayesian causal inference of DTRs. This requires us to

carefully interpret the estimands of interest, so that we may conceive of a counterfactual

world that allows for causal inference. In the doubly robust setting, we explore posterior

predictive inference for DTRs. This approach to inference was proposed by Saarela et al.

[2016], but it has only been studied in the cross-sectional setting. We transparently lay

out the use of this new framework for Bayesian causal inference, and with this in mind, we

explore the performance of this approach via simulations with treatment rules like "assign
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treatment when a covariate value x exceeds a threshold θ", with the aim of identifying

θopt that optimizes a final outcome. Additionally, with the purpose of illustrating how this

methodology may be used in practice, we consider an analysis of HIV therapy using data from

the North American AIDS Cohort Collaboration on Research and Design (NA-ACCORD)

where we aim to learn about whether to tailor on FIB4, a measure of liver scarring, in order

to decide when to switch antiretroviral therapies, with the aim of minimizing long term liver

damage.

In addition to the above-mentioned contributions, we note that frequentist uncertainty quan-

tification does not allow for decision-makers to ask if a new patient will benefit from therapy

suggested by an optimal DTR. As we will elaborate, Bayesian posterior predictive inference

allows for decision-makers to assess the probability that therapy is optimal for a specific

patient, thereby allowing for individualized care. To our knowledge, no other approach

quantifies uncertainty at the patient-level decision-making process.

The approach to inference presented here uses the posterior predictive distribution in order

to answer causal questions about DTRs; there is no need to model counterfactual outcomes

directly. The advantages and detriments of counterfactuals has been studied by, for example,

Dawid [2000]. Arjas [2012] presents an approach similar to the one taken here, where the

quantities of interest are expected conditional outcomes.

3.2 Estimation Strategy

In this section, we first describe the inferential setting and motivate Bayesian inference via

a utility maximization framework. We follow this by a precise definition and formulation

for connecting two probability laws: the observational world law and the law that allows

us to draw causal inference about optimal DTRs by eliminating confounding. We then

provide a prior that facilitates robust inference in the developed framework. Lastly, we

examine specific utilities that allow for causal inference about optimal DTRs. Some of the
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developments parallel Saarela et al. [2015b], but require some specific considerations for our

context; we also take the opportunity to emphasize some of the nuanced arguments present

in this framework.

3.2.1 Inferential Setting

We consider a sequential decision problem with K decision points and a final outcome y to be

observed at stage K + 1. Decisions taken up to stage k give rise to a sequence of treatments

z̄k = (z1, ..., zk), zj ∈ {0, 1}. At each stage k, a set of covariates xk is available for decision-

making and it is assumed that these consist of all time-fixed and time-varying confounders.

To denote covariate history up to time k, we write x̄k = {x1, ..., xk}. Subscripts are omitted

when referencing history through stage K. We denote a DTR-enforced treatment history

by g(x̄) = (g1(x1), ..., gK(x̄K)). Our focus is restricted to deterministic DTRs. Throughout,

we will consider a family of DTRs, which will be indexed by r ∈ I to give G = {gr(x̄); r ∈

I}. The index is omitted when it is clear that our focus lies on a single DTR. Treatment

and covariate histories may be considered under the probability laws in two worlds: the

observational world O which denotes the law giving rise to the data in the study population,

and the experimental world E , which denotes a world in which causal inference may be

performed. In the next sections, the definition of E will be made more precise. Lastly,

variables sampled from a posterior distributions are shown with ∗.

As in Saarela et al. [2015b], we assume that for each i = 1, ..., n, n+ 1, ..., bi = (yi, x̄i, z̄i) are

infinitely exchangeable sequences to deduce the de Finetti representation (as in Bernardo

and Smith [2009]) in the observational world:

pO(b1, ..., bn) =
∫︂
τ,ϕ,γ

n∏︂
i=1

pO(yi|x̄i, z̄i, τ)

K∏︂
j=1

pO(xij|z̄i(j−1), x̄i(j−1), ϕj)pO(zij|z̄i(j−1), x̄ij, γj)p(τ, ϕ, γ)dτdϕdγ.
(3.1)

In Appendix A.1, we provide a more general representation in cases where there may be
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unmeasured causes u of both intermediary and the final outcome. Outcomes do not in-

form the treatment assignment mechanism, characterized by a parameter γ (i.e. pO(γ|b̄) ∝

p(γ|x̄, z̄))[Saarela et al., 2015b]. The no unmeasured confounders assumption allows us to

model treatment assignment probabilities in equation (3.1) with observed covariates only as

pO(zij|z̄i(j−1), x̄ij, γj). This assumption is not often encountered outside the counterfactual

framework, so we provide it in Appendix A.1.

3.2.2 Bayesian MSMs for Dynamic Regimes

Saarela et al. [2015b] have previously considered Bayesian MSMs to estimate the stage-

specific effect of static regimes. However, in a precision medicine setting, it is not immediately

clear how to employ this method of inference to infer about DTRs. In what follows, we adapt

their work to the dynamic MSM setting for DTRs, attempting in the process to clarify the

nuances in this general framework. To allow for MSMs to make Bayesian inference of optimal

DTRs, we must make several considerations. First, consider a utility function U(b̄, g, β);

which represents a patient’s utility as a function of patient covariates and regime assignment,

parameterized by an unknown parameter β. This utility may take any form relevant to

the decision-maker (further details about this decision-theoretic approach may be found in

Walker [2010]). We will see that some specific utilities allow us to infer about the causal

parameters of interest. As Bayesian decision-makers, we are interested in finding the value

of β that maximizes the posterior expected utility EE [U(b∗, g, β)|b̄]. This is an expectation

taken with respect to the experimental measure in which patients are randomized to regimes

in G at study start, with probability p(g). When we consider a finite set of regimes in which

patients have equal probability of randomization, we may replace this probability with 1/Cg,

where Cg = |I|. In the experimental setting consider vi = (bi, gi) ≡ (xi, zi, yi, gi), and assume
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infinite exchangeability to obtain:

pE(v1,..., vn) =
∫︂ n∏︂

i=1
pE(yi|x̄i, z̄i, gi, τ)

K∏︂
j=1

pE(xij|z̄i(j−1), x̄i(j−1), gi, ϕj)pE(zij|z̄i(j−1), x̄ij, gi, αj)p(gi)p(τ, ϕ, α)dτdϕdα. (3.2)

Note pE(zij|zi(j−1), x̄ij, gi, αj) = 1g(x̄ij)(zij), as treatment is deterministically assigned condi-

tional on regime. For convenience, we re-express the product across all stages as∏︁K
j=1 1gj(x̄ij)(zij) =

1g(x̄i)(z̄i). This representation differs from that presented in Saarela et al. [2015b], as the

experimental world here differs. Now, we seek to link E and O. In particular, we make this

link with respect to the posterior predictive distribution. Note that considering measures

E and O under a predictive inferential setting allows us to bypass the use of counterfactual

quantities and allows us to directly consider the conditional distributions of Y given Z [Arjas,

2012]. For any utility, an importance sampling argument yields

EE [U(b∗, g, β)|b̄] =EGE

[︂
Eb∗

E |g[U(b∗, g, β)|g, b̄]
⃓⃓⃓
b̄
]︂

=EGE

[︄∫︂
b∗
U(b∗, g, β)pE(b∗|g, b̄)pO(b∗|b̄)

pO(b∗|b̄)

⃓⃓⃓⃓
⃓b̄
]︄

=EO

⎡⎣ 1
CG

∑︂
{r∈I}

w∗rU(b∗, gr, β)
⃓⃓⃓⃓
⃓⃓b̄
⎤⎦ . (3.3)

Randomization to regime gr is equiprobable for all regimes in our experimental world; this

is captured by the constant CG (See Appendix A.1 for more details). The weights wr in

equation (3.3) are given by

w∗r = 1gr(x̄∗)(z̄∗)∏︁K
j=1 pO(z∗

j |z̄∗
j−1, x̄

∗
j , b̄)

.

The denominator is the well-known treatment probability in the observational measure; the

numerator is the probability of a sequence of treatments conditional on regime assignment.

Note that this weight formula differs from that presented in Saarela et al. [2015b], though
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the general procedure is the same. For equation (3.3) to hold for the entire support of

the data, we require that for each g, pE(b∗|g, b̄) be absolutely continuous with respect to

PO; this is equivalent to the positivity condition cited in the causal inference literature.

Practically, this means that if a patient following regime g has recorded history (x̄k, z̄k−1)

and receives treatment zk, then in the observational world we should be able to find patients

of this sort. Note that as in the frequentist setting, these dynamic MSM weights are not

stabilized, and the above argumentation clarifies why the usual stabilization is not possible

in the DTR framework. Although importance sampling can motivate inverse probability of

treatment weighting (IPW) – a classical approach to estimating MSMs in the frequentist

setting – the inferential machinery must still come from semiparametric theory. In Bayesian

inference, importance sampling and an appropriate prior lead to a method of inference. In

the frequentist literature, the linking of two measures is not usually termed importance

sampling; this is done via a Radon-Nykodym derivative. This derivative was first used by

Murphy et al. [2001] to connect the observational distribution with the distribution in which

all patients follow a DTR, and it has been further adapted in works like Johnson and Tsiatis

[2004, 2005], Orellana et al. [2010a], and Hu et al. [2018].

Now that we know how to link the expected utility in the experimental worlds with the

observational world, we must consider how to infer about the parameter of interest β. Recall

that as Bayesian decision makers, our best estimate for β is one that maximizes the posterior

expected utility. This requires a posterior distribution to characterize the uncertainty of this

maximizer. Consequently, before specifying the utility of choice and before performing the

necessary maximization, we must specify a prior. The prior we consider is not placed on β as

is done in Bayesian parametric inference; the prior is placed on the family of data generating

distributions in the observational world PO, and denoted by PF . In fact, this prior induces

a prior on β as PB(β ∈ Ω) = PF({PO : β(PO) ∈ Ω}). A robust, non-informative choice

of prior in the observational measure is the non-parametric Dirichlet process (DP) prior,

which asymptotically concentrates around the true data generating distribution. Stephens
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et al. [2022] explore in detail the consequences of what the Dirichlet process prior implies

for a prior on a functional, like β. Now, when DP(α,Gx) is chosen such that |α| → 0, we

obtain the non-parametric Bayesian bootstrap as the posterior predictive distribution. This

Bayesian bootstrap is the same as that employed by Saarela et al. [2015b], however we have

been explicit about the assumptions needed to utilize it. This bootstrap is analogous to the

Bayesian bootstrap presented in Rubin [1981]. Under this specification, one sample drawn

from the posterior DP is given by p(b∗|b̄, π) = ∑︁n
i=1 πi1bi(b∗), where π = (π1, ..., πn) is a sam-

ple from Π ∼ Dir(1, ..., 1), a Dirichlet distributed random variable with all concentration

parameters equal to one. Note that under the Bayesian bootstrap assumptions, any distribu-

tion sampled from the posterior DP is uniquely determined by Π. To compute functionals of

the posterior predictive, we require p(b∗ ∈ A|b̄) = EΠ[p(b∗ ∈ A|b̄,Π)] which are estimated by

resampling weights (π1, ..., πn) from Dir(1, ..., 1), and computing the average over samples.

Consequently, under Bayesian bootstrap assumptions, we compute the expected posterior

experimental world utility via:

EE [U(b∗, g, β)|b̄] = EΠ[EE [U(b∗, g, β)|b̄,Π]] = EΠ

[︄
1
CG

n∑︂
i=1

∑︂
r∈I

πiw
∗r
i U(bi, gr, β)

]︄
. (3.4)

βopt, the true maximizer of the expected utility, can be expressed by maximizing the expected

posterior utility: βopt = arg maxβ EΠ [∑︁n
i=1 πi

∑︁
r∈I w

∗r
i U(bi, gr, β)]. Furthermore, the uncer-

tainty around βopt may be characterized by noting that βopt is a deterministic function of π,

computed as

βopt(π) = arg max
β

n∑︂
i=1

πi
∑︂
r∈I

w∗r
i U(bi, gr, β).

Thus, uncertainty in the posterior distribution reflects uncertainty in βopt; this approach to

Bayesian inference is discussed by Walker [2010]. We may disregard CG for the purposes

of predictive inference. Modulo Monte Carlo error, this is an exact Bayesian procedure,

regardless of the sample size. In work by Saarela et al. [2015b], simulations show that

multiplying πi with importance sampling weights dampens the effect of extreme weights
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thereby leading to improved variance estimators as compared to those relying on asymptotic

approximations, the latter tending to underestimate variance. From equation (3.4), we note

that to draw inference in the experimental world, we require an analytic expression for the

weight w; this leads us to modeling the treatment assignment probabilities. We touch on

this in Section 2.3. Furthermore, we note that inverse probability weighting methods may

not be adequate in settings with many stages, as these require us to take the product of

many probabilities, thereby leading to large weights and yielding both bias and imprecision

[Robins et al., 2008, Scharfstein et al., 1999]. We now present some utilities that allow for

causal inference of DTRs.

Utility as Negative Squared Error Loss:

An appealing choice of utility is the negative square error loss given by: U(b∗, gr, β, ) =

−(y∗ − h(β, r))2, where h(β, r) models E[y∗|gr, b̄]. This leads to solving:

βopt(π) = arg max
β

[︄
−

n∑︂
i=1

πi
∑︂
r∈I

w∗r
i (yi − E[y|gr, β])2

]︄
. (3.5)

Again, over repeated draws from Π, this is an exact Bayesian procedure for finite samples,

modulo Monte Carlo variation. This procedure allows us to leverage the possibility that pa-

tients adhere to multiple DTRs, thereby contributing to the objective function multiple times.

Orellana et al. [2010a] show that solving for βopt = arg maxβ [−∑︁n
i=1

∑︁
r∈I w

∗r
i (yi − E[y|gr, β])2]

yields a consistent estimator for β when the mean model is correct. We note that dynamic

MSMs are not impacted by issues of non-regularity that arise in methods like Q-learning and

g-estimation. See Appendix A.2. Analogously, our procedure can be seen to be consistent
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for β, by computing the posterior expected utility:

EE
[︂
−(y∗ − h(β, r))2|b̄

]︂
= −

∫︂
b∗

∑︂
r∈I

w∗r(y∗ − E[y∗|gr, β])2pO(b∗|b̄)db∗

= −
∫︂
b∗

∑︂
r∈I

w∗r(y∗ − E[y∗|gr, β])2 1
n

n∑︂
i=1

Ibi(b∗)db∗

= − 1
n

n∑︂
i=1

∑︂
r∈I

w∗r
i (yi − E[y∗|gr, β])2.

We see that the βn which maximizes the equation above is the same as that which solves

the estimating equation in Orellana et al. [2010a]. Indeed we see why our approach may

be regarded as a way to unify Bayesian inference with dynamic MSMs. Now, we need

not limit ourselves to a finite family of regimes. If the family of DTRs is indexed by a

continuous parameter, then a relaxed positivity condition described in Orellana et al. [2010a]

will allow us to perform inference on values of the index where positivity may not hold. This

condition says that instead of requiring that we observe patients who followed all regimes

of interest, we require for patients to follow a subset of regimes. More specifically, β in

h(β, r) may be identified ∀r ∈ I even when the positivity assumption fails for some r, and

it suffices to observe r for sufficient points such that β is identifiable. For example, a model

h(β, r) = β0 + β1r + β2r
2 that is correctly specified is identifiable if positivity is met for

at least three values of r ∈ I. Of course, the model should be correct in the range of

inference. For example, if the identified optimal r is far from the range of observed values,

we should question the resulting inference. When searching for optimal DTRs via smooth

modeling, we must keep in mind that we seek two optimal posteriors: the first is the posterior

distribution of β̄ = (β0,opt, β1,opt, β2,opt); the second is the posterior distribution of ropt which

is a deterministic function of β̄.
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Utility as Log Likelihood:

If we choose the utility as the log likelihood of the outcome conditional on regime assignment

in E , then for repeated samples of Π we can compute

βopt(π) = arg max
β

n∑︂
i=1

πi
∑︂
r∈I

w∗r
i,Kℓ(yi|gr, β). (3.6)

The choice of this utility is guided by aiming to minimize the Kullback-Leibler divergence

between ℓ(yi|gr, β) and the data-generating distribution. β may describe the relationship be-

tween gr and y for any r ∈ I thus making it a target for causal inference. Interestingly, this

utility actually allows us to consider conventional parametric Bayesian inference (i.e. likeli-

hood times prior) by making use of the weighted likelihood bootstrap [Newton and Raftery,

1994]. We show that ∑︁r w
∗r
i,Kℓ(yi|gr, β) can be regarded as a weighted likelihood in order

to connect the Bayesian bootstrapping procedure with the weighted likelihood bootstrap.

Denote Ai as the set of regimes to which patient i adheres, then for r1, r2 ∈ Ai we have that

w∗
Ai

= w∗r1
K = w∗r2

K . These weights are zero otherwise. Then, we may write equation (3.6)

as

βopt(π) = arg max
β

n∑︂
i=1

πiw
∗
Ai

∑︂
r∈Ai

ℓ(yi|gr, β). (3.7)

Note that w∗
Ai

∑︁
r∈Ai

ℓ(yi|gr, β) is a weighted likelihood; in accordance with the weighted

likelihood bootstrap, βopt(π) may be regarded as a sample from the posterior distribution

of β under a flat prior. Thus, repeated sampling from this posterior allows for quantifica-

tion of uncertainty around β. Other priors may be incorporated via sampling importance

resampling, but this is not essential and is not the focus of our work.

3.2.3 Implementation

To clearly lay out how to perform Bayesian causal inference using the proposed approach,

we provide Algorithm 1. Here, the aim is to obtain a sample from the posterior distribution
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of β̄. The algorithm is shown for when the utility is proportional to the squared error loss,

or the Normal log likelihood, but it is straightforward to see how it may be adapted to other

likelihoods. The data-augmentation procedure described can be further understood from

Cain et al. [2010], where a new row of data is created for every regime to which a patient

adheres. Recall that equation (3.4) leads us to requiring a model for the weights w. For a

given draw of the posterior distribution, we consider the model pO(z∗
j |z̄∗

j−1, x̄
∗
j , γj(π)), j =

1, ..., K. The parameters γj may be regarded as coming from a posterior utility maximization

framework with the same non-parametric prior. When the utility is the log-likelihood, we

solve:

γj(π) = arg max
γj

n∑︂
i

πi log pO(zi,j|z̄i,j−1, x̄i,j, γj).

Then, for every draw of Π, we first fit the weighted treatment propensity model and use

the resulting weight w(π) in equation (3.5). By computing EΠ{EE [U(b∗, g, β)|b̄,Π]}, we are

indirectly incorporating the uncertainty about γj into the estimation procedure.

Data: DATAO
for r ← 1 to CG do // Create AUGDATAO based on regime adherence

Replicate rows of DATAO for patients adherent to regime gr
end
Posit model for h(r, β)
for i← 1 to B do // B is number of posterior draws

Draw π = (π1, ..., πn) from ∼ Dir(1, ..., 1)
Estimate pO(zk|z̄k−1, x̄k, γj, π) ∀k
Compute weights wi(π), i = 1, ..., n // n is number of patients

Add weights to AUGDATAO
Run regression with mean h(r, β) and with weights πiwri (π)

end
Output: Posterior distribution of β∗

DATAO is input data with one row per patient and is used to fit treatment models.
AUGDATAO is augmented data, where patients are duplicated for as many DTRs as
they adhere to. This dataset is used to run regression for h(r, β).

Algorithm 1: Fitting procedure for Bayesian dynamic MSM.
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3.3 Predictive Doubly Robust Bayesian Inference for

DTRs

In the frequentist literature, inverse probability of treatment weighting (IPW) is known to be

an inefficient semiparametric procedure; it also yields inconsistent inference if the treatment

models are miss-specified. To gain efficiency and robustness, researchers can consider the

doubly robust estimator for the marginal mean of a DTR. This requires identifying a series

of conditional outcome models, so that consistent inference is attained when either a set of

treatment models or a set of outcome models is correctly specified. We now use some of the

inferential framework presented in the previous section, and first developed in Saarela et al.

[2016], to arrive at Bayesian doubly robust inference for the expected outcome of a DTR

g. Though the underlying mechanics hinge on the developments of Saarela et al. [2016],

examining and evaluating the use of this doubly robust estimator in a sequential DTR

setting is of scientific pertinence. For reasons that will be elaborated on in the following,

we no longer seek to model in a unified manner the expected outcome for regimes in a

family G, and therefore no longer consider inference via utilities. To preserve the notation

we have developed so far, it is enough to consider a family G containing a single DTR.

Consequently, identifying optimal DTRs now requires evaluating the doubly robust estimator

to be proposed at each DTR of interest and comparing the expect outcomes. Effectively, these

are expectations in a regime-enforced world, where everyone in the study population follows

a regime g; this contrasts the previously considered experimental world where patients are

randomized to DTRs in a family. With this aim in mind, consider a sequence of conditional

predictive outcomes ϕ∗
k+1, k = 1, ..., K. For k = K, these are defined as

ϕ∗
K+1(x̄∗

K) = EO[y∗|x̄∗
K , z̄

∗
K = ḡK(x̄K), b̄]. (3.8)
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For k = K − 1, ..., 1, ϕ∗
k+1 are defined as

ϕ∗
k+1(x̄∗

k) = EO[ϕ∗
k+2(x̄k+1)|x̄k, z̄∗

k = ḡk(x̄∗
k), b̄]. (3.9)

These are expected outcomes in the observational world, conditional on subjects who had

covariate history x̄k and that followed the regime g up to time k. It can be shown via a con-

ditional expectation argument that Eg[y∗|b̄] = EO[ϕ∗
2(x∗

1)|b̄], the estimand of interest.

Next, we describe how models for ϕ∗
k may be fit in a Bayesian framework; following this,

we motivate the doubly robust estimator when models for ϕ∗
k+1 are correct or when models

for w∗
k are correct. Based on the de Finetti representation in equation (3.2), we see that

outcome models are parameterized by τ such that ϕ∗
k+1(x̄k) = ϕ∗

k+1(x̄k; τ). From equations

(3.8) and (3.9) we see exactly how a model should be fit for the mean of the conditional

outcomes. We should begin by fitting a model for time point k = K and continue backward;

the outcomes for stage k can be computed once a model for stage k + 1 has been fit. We

can treat uncertainty in τ analogously to how we treated uncertainty in γ, the parameter

corresponding to the treatment assignment model in the observational world: we make it

dependent on Π via a non-parametric, non-informative prior. However, instead of posing

a likelihood model as was done for the treatment assignment mechanism, we consider the

negative squared error loss utility and posit a model for the conditional outcomes. Then,

for every draw of Π, we can estimate ϕ∗
k+1(x̄k, π) = Eg[y∗|x̄∗

k = x̄k, π, τ(π)]. In Appendix

A.3.1, we provide details as to how τ may be estimated and incorporated into the inferential

procedure.

Ultimately, we seek to estimate Eg[y∗|b̄] unbiasedly either when the conditional outcome

models are correct, or when the treatment models are correct. This may be achieved by

noting the following equality, which follows directly from Orellana et al. [2010a]:

Eg[y∗|b̄] = EO

[︄
ϕ∗

2(x̄∗
1) +

K∑︂
k=2

w∗
k−1(ϕ∗

k+1(x̄∗
k)− ϕ∗

k(x̄∗
k−1)) + w∗

K(y∗ − ϕ∗
K+1(x̄∗

K))
⃓⃓⃓⃓
⃓ b̄
]︄
. (3.10)
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From (3.10), we see that when outcome models are correct the estimator is unbiased (see

Appendix A.3.2). To see that it is an unbiased estimator when treatment models are correct,

we change the form of the estimator. Define h(b̄) = Eg[y∗|b̄] and add 0 = ∑︁K
k=1 w

∗
k−1[h(b̄)−

h(b̄)] to obtain

Eg[y∗|b̄] = EO

[︄
h(b̄) + w∗

K

(︂
y∗ − h(b̄)

)︂
−

K∑︂
k=1

(w∗
k − w∗

k−1)(ϕ∗
k+1(x̄∗

k)− h(b̄))
⃓⃓⃓⃓
⃓ b̄
]︄
, (3.11)

where w0
.= 1. In Appendix A.3.2, we show how to arrive at this equation and that it is

unbiased.

Now that we have identified our estimator of choice for any posterior distribution, let us

use the same prior used in the singly robust case and obtain the Bayesian non-parametric

bootstrap as the posterior. Then, conditional on a posterior draw, we write (3.10) as

Eg[y∗|b̄,Π] =
n∑︂
i=1

πi

[︄
ϕ∗
i2(xi1) +

K∑︂
k=2

w∗
ik−1(ϕ∗

ik+1(x̄ik)− ϕ∗
ik(x̄ik−1)) + w∗

iK(yi − ϕ∗
iK+1(x̄Ki))

]︄
.

(3.12)

Models for the ϕs and ws now depend on Π and may be incorporated into the inferential

process as in (3.2.3). Furthermore, we may compute Eg[y∗|b̄] = EΠ
[︂
Eg[y∗|b̄,Π]

]︂
by resam-

pling Dirichlet weights, thereby enabling us to obtain a doubly robust estimator for the value

of a DTR, including its uncertainty. As mentioned, the doubly robust Bayesian estimator

proposed is only for the marginal mean of a DTR, not for the parameters in a model for

the marginal mean linking a family of DTRs (e.g E[y∗|b̄, gr] = β0 + β1r + β2r
2). In order

to obtain doubly robust estimators of the latter, an appropriate utility would have to be

proposed so that when importance sampling is used to link the experimental world with the

observational world, the obtained expression in the observational world is doubly robust.

Then, to use the proposed estimator to identify optimal DTRs, we are required to perform

a grid search. Murphy et al. [2001] suggested that outcome models should be coherently

parameterized so that for k2 > k1, a model conditional on information up to time k2 would
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yield a model conditional on information up to time k1 when covariates between k2 and k1

are marginalized.

3.4 Individualized Decision Making

Now that we have developed the inferential approach, we turn our attention to examining

how to incorporate this into an individualized decision-making scheme. This consideration

is particular to the DTR setting that we explore. For illustrative purposes, we focus on the

following class of regimes: treat if xk > θ for k = 1, ..., K. Suppose that a new patient is

observed with covariate value xnew1 . Our interest is in deciding whether this patient should be

treated based on our belief about the optimal θ. To do this, we are interested in computing

P (θ∗
opt < xnew1 |b̄). This may be done by taking a sample of size m from the posterior

distribution and computing p1 = (1/m)∑︁θ 1(θ∗
i < xnew1 ). Indeed this can be done for all

stages pk. Effectively, this probability is informing the decision-maker about how certain

they should be in switching treatment given the patient’s current health status, if the aim

is to select an optimal therapy. It is then up to the decision-maker to make a treatment

decision given that probability. Note that a patient’s decision about treatment at a given

stage does not alter the optimality of consequent decision rules, though it may alter the

optimality of the overall treatment course. This individualized approach may be taken with

any optimal regime derived through the proposed methodology, and we elaborate on this in

the simulations.

3.5 Simulations

In this section, we use simulations to evaluate how this Bayesian approach to inference can

be used to infer about optimal DTRs. We focus on multi-stage problems with a sample size

of n = 500. All results are presented over 500 Monte Carlo replications. For comparison,

we also provide results for the frequentist approach. Generally the strategy was to induce
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time varying confounding with treatment-confounder feedback. All intermediary variables

were Gaussian, and all treatment variables Bernoulli. We followed the approach in Stephens

[2015] to generate outcomes that allowed for the analytic identification of the optimal regimes.

The true value (expected outcome) under the optimal regime was obtained by generating a

large sample of data in which patients adhered to the optimal regime. Further simulation

details can be found in Appendix A.4, as well as results for other sample sizes and for when

intermediary variables are Gamma-distributed.

For simulation I, we considered a family of regimes indexed by θ1, θ2 where treatment is

assigned when xk exceeds θk, θk ∈ [0, 1], k = 1, 2. The known optimum is (θ1opt, θ2opt) =

(0.4, 0.8) and the outcome y = x1 − (−θ1opt + x1)(1θ1opt>z1 − z1) − (−θ2opt + x2)(1θ2opt>z2 −

z2) +
√

0.5ϵ, ϵ ∼ N(0, 1). We evaluate the performance of both the IPW and doubly

robust estimator thereby leading us to compute these estimators for discrete values of

θk ∈ {0, 0.1, 0.2, ..., 0.9, 1}. Table 3.1 shows the results of the estimation procedure. The

first column indicates the type of estimation procedure that was used. The second refers to

the model specification. For the doubly robust estimator "None" means that both treatment

and outcome models are miss-specified ; "Treat" means the treatment models are correctly

specified; "Outcome" means that outcome models are correctly specified; "Both" means all

models are correctly specified. "IPW" refers to the IPW estimator with correctly specified

treatment models. For incorrectly specified models, we use intercept-only regressions. For

the Bayesian approach, point estimates are provided at the posterior mean. For simulation I,

the mean outcome at the optimal regime can be seen (from the data-generating mechanism)

to be 0.

In Table 3.1 we observe that estimators with at least one set of models correct are unbiased.

As expected, when the treatment and outcome models are all correctly specified, efficiency is

maximized. The coverage probability measures the proportion of time that the true optimum

is inside a 95% credible interval, across replications. As far as we are aware, there is no way
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to obtain a confidence interval for the optimal threshold in the frequentist setup. This is

because we have evaluated the estimator in a grid of thresholds θ and identified the θ̂opt

that maximizes the mean outcome; for the Bayesian setup, we have sampled the posterior

distribution of θopt. "Estimated Outcome Train Pop." refers to estimated expected outcome

under the optimal regime, this is known to be 0; "Mean Outcome Test Pop." refers to the

mean outcome under the optimal DTR, in a new population with a different distribution for

intermediate covariates. Thinking about the mean outcome in a test population allows us to

contemplate how the identified optimal DTR will perform once deployed in the real world.

We see that the frequentist and Bayesian methods perform similarly, and surprisingly the

"no models correct" scenario leads to good performance in the testing set, though this is due

in part to the scale of the value function which has a narrow range (see Appendix A.4). The

uncertainty measures for θk,opt appear to be slightly higher for the Bayesian analysis than for

the frequentist analysis. One reason for this may be that the Bayesian method acknowledges

uncertainty in the outcome and treatment models, whereas the frequentist method takes

these as known. The coverage probability for θ1 in the no models correct scenario is low,

and surprisingly it is close to nominal for θ2. For the other setups, the coverage probabilities

are slightly higher than their nominal value. Of course, it is important to keep in mind

that this was a discrete problem and the coverage probabilities depend on the coarseness of

the exploration grid; we have observed in other simulations that finer grids lead to further

tightening of the confidence intervals toward the nominal value (results not shown). However,

this must be balanced with the computational costs of an estimation procedure on a fine

grid.

Now, we can ask whether newly observed patients will benefit from the estimated optimal

rule. For illustration, we restrict the family of regimes to have a common threshold across

periods: θ1 = θ2 = θ, with θopt = 0.6 (see Appendix A.4). Figure 3.1(a) shows the prob-

ability that a patient should receive treatment z = 1 at stage 1 for a single Monte Carlo

replicate. This is a step function as θ was computed over a set of discrete values. Patients
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Table 3.1: Results for simulation I (n=500; 500 Monte Carlo replicates). Point estimates are
means across Monte Carlo replicates; standard deviations are Monte Carlo standard deviations.

Method Model
Correct

Posterior
Mean

of
θ̂1opt

Posterior
Mean

of
θ̂2opt

Estimated
Outcome

Train Pop.

Coverage
Probability
θ1opt, θ2opt

Mean
Outcome
Test Pop.

Frequentist None 0.247 (0.116) 0.641 (0.183) 0.250 (0.120) — 0.587 (0.012)
Frequentist Treat 0.468 (0.232) 0.753 (0.207) 0.045 (0.066) — 0.584 (0.017)
Frequentist Outcome 0.385 (0.193) 0.735 (0.210) 0.022 (0.065) — 0.588 (0.014)
Frequentist Both 0.415 (0.182) 0.793 (0.162) 0.018 (0.056) — 0.591 (0.011)
Frequentist IPW 0.441 (0.205) 0.747 (0.209) 0.035 (0.064) — 0.587 (0.014)
Bayesian None 0.246 (0.124) 0.641 (0.192) 0.271 (0.119) 0.860, 0.914 0.586 (0.012)
Bayesian Treat 0.480 (0.253) 0.759 (0.203) 0.070 (0.064) 0.990, 0.964 0.582 (0.019)
Bayesian Outcome 0.371 (0.207) 0.737 (0.232) 0.037 (0.065) 0.974, 0.986 0.585 (0.015)
Bayesian Both 0.414 (0.194) 0.797 (0.166) 0.029 (0.056) 0.978, 0.974 0.590 (0.012)
Bayesian IPW 0.454 (0.218) 0.761 (0.214) 0.055 (0.063) 0.990, 0.964 0.585 (0.017)

with low and high values of x1 experience high certainty as to whether they should receive

optimal treatment or not. Patients whose covariate is near the true optimal threshold of

0.6 experience low certainty. Figure 3.1(b) shows the same result across 500 Monte-Carlo

replicates, emphasizing that there is high uncertainty around the true value. It can also be

useful to obtain a smooth decision curve. This may be done by evaluating the doubly robust

estimator over a much finer grid of points or by modeling E[y∗|b̄, gθ] via a smooth function

such as β0 + β1θ + β2θ
2 (quadratic) and using IPW. Figure 3.1(c) shows the results of the

individualized rule with the quadratic model and IPW estimator; the decision rule is much

smoother and provides high certainty for most values of x1, except for those closest to 0.6.

Figure 3.1(d) shows the Monte Carlo variation around this curve; most uncertainty is around

the true value of the threshold.

For simulation II, we explore a family of regimes indexed by ψ1, ψ2, ψ3 such that ψ1xk1 +

ψ2xk2 > 0.5−3ψ3u; k = 1, ..., 4; xk1, xk2 are normally distributed intermediary covariates and

u is a binary baseline covariate. This regime has an interpretation that treatment should be

given if the weighted sum of xk1 and xk2 is above a threshold, and this threshold depends

on patients’ baseline covariate u. Increments of 0.05 were used for ψ1, ψ2 and of 0.1 for ψ3.
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(a) (b)

(c) (d)

Figure 3.1: Simulation I, stage 1 individualized treatment probabilities: (a) Individualized
decision rule using doubly robust estimator with only the treatment model correct; (b) Same
as (a) over 500 Monte Carlo replicates; (c) Individualized decision rule using IPW with a
quadratic MSM; (d) Same as (c) over 500 Monte Carlo replicates.

Appendix A.4.3 shows the data generating mechanism for this setup. The optimal regime

is given by ψ1opt = ψ2opt = 0.5, ψ3opt = 0.1, with a value of 1. We see from Table 3.2

that all scenarios, except the no models correct scenario are unbiased, with the all models

correct scenario yielding the best results. Correctly specifying the outcome model provides

improvement in the estimation of the value at the optimum over just getting the treatment

model correct. We do not include a ψ2 column in the table, as the constraint ψ1 + ψ2 = 1

makes this redundant. We note again that the coverage probabilities are high, recall that

this is driven by the coarseness of the exploration grid; a finer grid in this problem would be
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very computationally intensive. Appendix A.4.2 presents a similar simulation without the

binary covariate.

In Figure 3.2 we further illustrate how the Bayesian framework can be leveraged for indi-

vidualized inference. We observe, for one replicate, the probability that a patient should be

treated under the optimal decision rule, given a set of covariates. These probabilities are

computed by using the posterior distribution of ψ1opt, ψ2opt, ψ3opt via P (ψ∗
1optx11 +ψ∗

2optx12 +

ψ∗
3optu > 0.5). There are regions of high certainty that indicate patients should or should not

receive treatment according to the optimal rule; there are also regions with more uncertainty

regarding the choice of optimal treatment. In fact, patients with baseline covariate u = 0

face higher uncertainty overall than those with u = 1.

Table 3.2: Results for simulation II (n=500; 500 Monte Carlo replicates). Point estimates are
means across Monte Carlo replicates; standard deviations are Monte Carlo standard deviations.

Method Model
Correct

Posterior
Mean

of
ψ̂1opt

Posterior
Mean

of
ψ̂3opt

Estimated
Outcome

Train Pop.

Coverage
Probability
ψ1opt, ψ3opt

Mean
Outcome
Test Pop.

Freq. None 0.590 (0.126) 0.103 (0.104) 2.003 (0.355) — 0.526 (0.064)
Freq. Treat 0.479 (0.157) 0.101 (0.125) 1.160 (0.155) — 0.530 (0.057)
Freq. Outcome 0.503 (0.048) 0.102 (0.020) 1.004 (0.068) — 0.581 (0.010)
Freq. Both 0.499 (0.031) 0.100 (0.004) 1.000 (0.065) — 0.585 (0.004)
Freq. IPW 0.464 (0.157) 0.089 (0.134) 1.198 (0.184) — 0.529 (0.055)

Bayes. None 0.589 (0.123) 0.094 (0.106) 2.200 (0.351) 0.952 0.996 0.549 (0.022)
Bayes. Treat 0.481 (0.165) 0.089 (0.124) 1.254 (0.150) 0.992 1 0.539 (0.025)
Bayes. Outcome 0.498 (0.050) 0.101 (0.016) 1.008 (0.066) 0.994 1 0.587 (0.005)
Bayes. Both 0.497 (0.029) 0.100 (0.004) 1.001 (0.064) 1 1 0.591 (0.003)
Bayes. IPW 0.468 (0.163) 0.072 (0.130) 1.317 (0.198) 0.992 1 0.537 (0.024)

There is some debate in the literature on choice of doubly versus singly robust estimators; see

e.g. Kang and Schafer [2007] and Bang and Robins [2005]. Our simulations emphasize that

a lot is to be gained, in precision and accuracy, if we correctly specify the outcome models,

when compared to the doubly robust estimator with only treatment models correct or the

IPW estimator. Efficiency is maximized when all models are correct, thereby clarifying that
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(a) (b)

Figure 3.2: Simulation II individualized treatment probabilities using IPW estimator; (a)
Stage 1 treatment probability for those with u = 0 (b) Stage 1 treatment probability for
those with u = 1.

these considerations are not just theoretical; they also impact analyses with finite sample

size. When deciding whether to use the singly robust or the doubly robust estimator, it

is important to ask what is better understood: the treatment assignment process, or the

outcome process.

3.6 Case Study: Analysis of the NA-ACCORD

Treatment for HIV infection with antiretroviral therapy (ART) must be lifelong to maintain

control of HIV viral replication and improve immune function. Consequently, there is concern

that some combinations of drugs may cause long-term harm. The multi-drug nature of this

therapy allows for some flexibility in treatment course. Research by Klein et al. [2016] is

consistent with the possibility that some ART agents contribute to long term liver damage in

patients with chronic hepatitis C (HCV) infection. ART agents, like protease inhibitors (PI),

may also help reduce adverse liver outcomes by providing virologic control [Macías et al.,

2006], while also having some detrimental effects on liver health [Young et al., 2021]. We
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examine how to tailor ART therapy to reduce liver damage by exploring the use of Bayesian

dynamic MSMs for tailoring therapy to patients’ FIB4 score, an age-adjusted score that

quantifies liver fibrosis; higher values indicate greater damage [Sterling et al., 2006]. We aim

to identify whether there is an optimal FIB4 score at which patients should switch therapy,

in order to minimize subsequent FIB4. In particular, for the purposes of demonstrating the

use of the proposed methods, we explore the effect of switching into PI (z=1) and away from

any other ART regimen (z=0) when FIB4 score surpasses a level θ, and when all patients

start out on a non-PI based therapy. This is a thresholding regime, where we search for the

optimal θ in the DTR: switch when FIB4> θ.

We use data from the NA-ACCORD to identify a cohort of patients who initiated ART

therapy from 2004 onwards, the period in which modern ART treatments were approved.

Patients in this cohort may or may not have other viral infections, such as HCV and hepatitis

B (HBV). Study initiation (time zero) is the first instance of ART treatment, after which

patients are followed-up for a 12 month exposure ascertainment period. It is in this period

where we may examine which DTRs patients follow. Lastly, outcomes are taken to be the

first FIB4 measurement 18 to 30 months after study initiation. The outcome observation

period is as defined because liver measurements are not taken at every follow-up visit, though

they should occur at least annually as per standard of care. Patients are lost to follow-up if

they stopped receiving ART, had missing ART records, or if they did not have an observed

outcome. The range of thresholds is determined by the fifth and ninety-fifth quantile of FIB4

scores at baseline. We identify patient records every six months and record the treatment

that patients received. Potential confounders included were: time-varying CD4 cell count,

time-varying viral load, and the following baseline variables: insurance status, indicator of

risky alcohol consumption, drug use, HCV status, HBV status, race, and sex.

Based on the six-month observation intervals, there were a total three decision points, each

requiring a set of models. Potential confounders were identified a priori through discussions
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with a subject matter expert. Stage-specific propensity scores were then fit to achieve balance

across treatments at each time point. Censoring weights were incorporated to eliminate

selection bias. For the doubly robust estimator, it was assumed that the variables in outcome

models explained both confounding and/or selection. The models that were fit can be found

in Appendix A.5. Sensitivity analyses were performed in order to determine whether results

were sensitive to model specifications. Balance from the propensity scores was assessed using

SMD and by using a frequentist fit of the propensity scores. Balance was examined at all

stages. Outcome models were examined to ensure the predicted distribution did not differ

from the observed.

For a fixed value of θ, patients are indicated to switch treatments when their FIB4 measure-

ments surpass θ. Accordingly, patients in the study could be categorized into five groups

for each regime (gθ) considered: those 1) indicated to switch but did not switch (ISNS),

or switched at the wrong time; 2) indicated to switch and switched (ISS); 3) not indicated

to switch and did not switch (NISNS); 4) not indicated to switch and switched (NISS);

and 5) those who were assigned to PI at baseline (NR). Patients indicated to switch were

given six months to do so (a grace period). To improve the properties of the estimators, we

normalized the weights in the analysis and assessed positivity for each candidate regime by

checking whether the distribution of the propensity scores at each interval for the modeled

treatment are similar in the regime adherent group and the regime non-adherent group. The

propensity to switch treatment was generally small, highlighting that relatively few indi-

viduals contribute to the estimation of our regime of interest – a limitation that must be

acknowledged; more details can be found in Appendices A.5.3 and A.5.4. Only patients in

the ISS and NISNS groups could adhere to a regime for the full study period. Consequently,

patients in the other groups were artificially censored when they deviated off the specified

regime. 95% credible intervals were calculated for all point estimates, approximated using

500 draws from the posterior distribution; point estimates were reported at the posterior

mean. Details of the analysis plan can be found in Appendix A.5. We evaluated the estima-
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Table 3.3: NA-ACCORD case study: follow-up information for a subset of regimes (n = 22, 768).

θ ISNS ISS NISNS NISS NR Uncensored
ISS

Uncensored
NISNS

0.4 12172 611 244 8 9733 412 244
1.0 6798 398 5618 221 9733 276 5618
1.6 3194 213 9222 406 9733 143 9222
2.2 1732 143 10684 476 9733 89 10684
2.8 1136 111 11280 508 9733 73 11280

Note: ISNS=Indicated to switch & did not switch; ISS=Indicated to switch & switched; NISNS=Not
indicated to switch & did not switch; NISS=Not indicated to switch and switched; NR=Received PI
at baseline.

tors at thresholds of 0.4 to 2.8 in units of 0.2; the minimum and maximum threshold value

correspond to the 5th and 95th percentile of the FIB4 distribution. In Table 3.3, we present

follow-up information for a subset of these regimes. We did not posit a marginal structural

model as a function of θ (e.g. a quadratic form) as we wanted to make use of both the IPW

and doubly robust estimators. Although our overall sample size is large, we see that only

half of patients follow a non-PI ART regimen at study start. Additionally, roughly 30% of

ISS and NISS patients are censored or artificially censored. The number of NISNS patients

varies strikingly across regimes. However, this is to be expected: for a threshold of 0.5, only

a small proportion of patients are not indicated to switch, and a relatively large proportion

of patients switch in the first year of the study. The sample size in the ISS group is generally

low, which is unfortunate. In part, this is due to the fact that when patients are indicated

to switch, not only should they switch, but they should switch within the indicated time.

The sample size in the ISS group is further reduced for large values of θ as for these values,

only a small number of patients would be indicated to switch.

From Figure 3.3 (a), we confirm that we are underpowered to detect any differences in final

FIB4 scores, and that the doubly robust estimator provided some gains in efficiency. It is

noteworthy that FIB4 scores drop overall at the end of the study, compared to the baseline

values. We note that from this figure, there is no interior point that clearly minimizes FIB4
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(a) (b)

Figure 3.3: (a) Mean FIB4 score under each DTR based on Bayesian IPW and doubly robust
analyses, with 95% credible intervals (from 500 posterior draws). (b) Individualized treat-
ment probability using doubly robust estimator. Note that in (a) the points corresponding
to each method are presented out of phase for illustrative purposes. In reality, points are on
top of each other starting at 0.4 and continuing in increments of 0.2.

score, thereby suggesting that there is no benefit to tailoring. A threshold of θ = 0.4 yields a

DTR that is very close to the static treatment always switch into PI. Though this may raise

the question as to why patients would be given a drug other than PI, we remind the reader

that there are a variety of other ART treatments, some of which may be more beneficial

and some which may be more detrimental. From Table 3.4 we can examine the expected

outcomes for a subset of regimes. We note that the IPW and doubly robust estimator

yield very similar point estimates across most regimes; both estimators point to the same

conclusions. In addition, Figure 3(a) also leads us to question the utility of individualized

inference in this scenario. Though the figure shows a relatively flat relationship between

the value function and the threshold (with considerable uncertainty), the value function

under adherence to each candidate regime is not flat, as is shown in Appendix Figure A.4.

Consequently, we can ask the probability that a patient’s FIB4 value is greater than the

optimal threshold. This results in Figure 3.3(b), which indicates that when a patients FIB4

score is at 0.8 or greater, they have a high probability of being above the optimal threshold.

We discuss this further in Appendix A.5.6.

This analysis had several limitations. First, the follow-up may have been too short for
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Table 3.4: NA-ACCORD case study: expected FIB4 (outcome) under adherence to regime
θ. Numbers in brackets are posterior standard deviations.

θ IPW Doubly Robust
0.4 1.145 (0.054) 1.116 (0.048)
1.0 1.176 (0.051) 1.133 (0.044)
1.6 1.205 (0.048) 1.159 (0.039)
2.2 1.221 (0.048) 1.183 (0.040)
2.8 1.214 (0.045) 1.184 (0.039)

the outcome of interest, as switching therapies may not have an immediate effect on liver

scarring; this is likely a long-term process. The reason for the short follow-up was that

after the first year, therapeutic switches were relatively rare. Also, there was a trade-off in

extending the follow-up time: it would allow for more therapeutic switches but also increase

artificial censoring due to going off regime. Though many confounders were included in the

analysis, some may have been missed. Importantly, we did not have information on why

patients switched therapy. Additionally, it would have been beneficial to study only patients

co-infected with HCV and HBV, as these are at higher risk of liver complications. However,

sample size limitations did not allow for this.

3.7 Discussion

In this work, we explored recently developed Bayesian semiparametric methods to infer

about optimal DTRs. For this purpose, we sought to transparently develop a way to utilize

Bayesian dynamic MSMs, this involved targeting experimental world causal parameters when

only observational world data was available. We also inferred about optimal DTRs via

posterior predictive inference and a doubly robust estimator; this approach had not been

studied in a longitudinal DTR setting. Our simulations showed that the proposed methods

work well, though they exhibit slightly more variability than their frequentist counterpart.

The analysis of the NA-ACCORD provided a demonstration of how these methods might

be used in clinical research, though we note that the results were limited by the fact that
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therapeutic switching was infrequent in practice. Still, this case study aimed to show that

our proposed inference could be implemented meaningfully. Though our approach does not

necessitate counterfactual notation, the idea of counterfactuals still permeates this work;

the experimental world considered is indeed a world where, counter to fact, patients have

been randomized to a specific treatment strategy of interest. Additionally, the resulting

conditional posterior predictive quantities are equal to their counterfactual counterparts in

this unconfounded world. Throughout, we focused on the non-parametric Bayesian bootstrap

in order to draw inference in a non-informative, robust way. Indeed our choice of prior allowed

us to connect our approach to the way frequentist semiparametric estimators are obtained.

Though these methods may feel different, they have the same ingredients that appear in

conventional Bayesian analyses. A prior leads to posterior inference in the observational

world, and importance sampling allows us to infer about worlds that are of scientific interest.

When we are interested about inferring about parameters in a utility, the Dirichlet process

prior that we make use of implicitly induces a prior on these parameters; these ideas as

explored further in Stephens et al. [2022]. We remind the reader that the proposed method

is valid for any sample size. We also note that methods discussed herein are not limited

to decisions taken at fixed dates; they may also be triggered by events. For example, a

second-line therapy may be given only when first-line therapy lacks efficacy, as in Krakow

et al. [2017].

3.8 Software

Software in the form of R code can be found on GitHub on the following link:

https://github.com/Danroduq/semiparametric-Bayesian-DTRs.

70



3.9 Supplementary Material

Supplementary material is available online at http://biostatistics.oxfordjournals.

org.

Acknowledgments

DRD is supported by a doctoral fellowship from the National Sciences and Engineering Re-

search Council of Canada (NSERC). EEMM and DAS acknowledge support from Discovery

Grants from NSERC. EEMM is supported by a career award from the Fonds de recherche

du Québec - Santé and a Canada Research Chair (CRC) in Statistical Methods for Precision

Medicine. MBK is supported by a CRC Tier I and reports grants for investigator-initiated

studies from ViiV Healthcare, Merck, and Gilead; and consulting fees from ViiV Healthcare,

Merck, AbbVie and Gilead. The authors are grateful to the NA-ACCORD, and the full

acknowledgment can be found in the Appendix. The content of this manuscript is solely the

responsibility of the authors.

71

http://biostatistics.oxfordjournals.org
http://biostatistics.oxfordjournals.org


Chapter 4

Estimation of Optimal Dynamic

Treatment Regimes using Gaussian

Process Emulation

Preamble to Manuscript 2. The Bayesian dynamic MSMs considered in the previous

chapter are an important contribution to Bayesian inference as they allow for a robust

Bayesian inferential procedure that obviates some of the usual challenges in Bayesian infer-

ence for optimal DTRs. However, frequentist and Bayesian dynamic MSMs are not without

their limitations. These require that a model for the value function of regimes in a family

be specified; incorrectly specified models can lead to identifying as optimal a DTR which is

in fact not. Notwithstanding, value-search methods like dynamic MSMs have some useful

characteristics upon which to capitalize. When using regression-based methods, it may be

necessary to posit flexible models in order to correctly identify the optimal DTR, thereby

resulting in optimal DTRs that are not clinically interpretable. Contrastingly, value-search

methods, specifically those that restrict themselves to a family of regimes, do not face a

trade-off between model complexity and the interpretability of the optimal regime. The
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following manuscript takes advantage of this property.

The manuscript presented in this chapter seeks to bridge the literature gap to examine how

methods for function optimization can be leveraged in the context of identifying optimal

DTRs, in particular using Gaussian process emulation. The original contributions in this

manuscript include i) the classification of the sources of variability that can arise in the

estimated value function, particularly as it pertains to the IPW estimator, ii) the charac-

terization of the value function maximization problem in order to understand the emulation

techniques amenable to the problem, iii) the evaluation of Gaussian process methods that

can be used to identify optimal DTRs, including those that can account for homoskedastic

and heteroskedastic variability, iv) the creation of data-generating mechanisms for multi-

dimensional, multi-modal value functions for sequential decision problems, v) the evaluation

of grid-search methods for identifying optimal regimes, and vii) the exposition of these

methodologies using trial data on HIV therapeutic agents to identify an individualized ther-

apy recommendation, including examining how sampling uncertainty can be incorporated

into the inferential procedure.

Note that the notation in this chapter changes slightly from previous chapters. In manuscript

I, the family of regimes was indexed by r or θ; in this manuscript, the indexing variable

changes to ψ, as θ parameterizes covariance matrices to be introduced. Additionally, the

number of decision points is now T , as opposed to K, as K will now denote a covariance

matrix.
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Abstract

In precision medicine, identifying optimal sequences of decision rules, termed dynamic treat-

ment regimes (DTRs), is an important undertaking. One approach investigators may take

to infer about optimal DTRs is via Bayesian dynamic Marginal Structural Models (MSMs).

These models represent the expected outcome under adherence to a DTR for DTRs in a fam-

ily indexed by a parameter ψ; the function mapping regimes in the family to the expected

outcome under adherence to a DTR is known as the value function. Models that allow for the

straightforward identification of an optimal DTR may lead to biased estimates and therefore

to sub-optimal treatment recommendations. If such a model is computationally tractable,

common wisdom says that a grid-search for the optimal DTR may obviate this difficulty. In

a Bayesian context, computational difficulties may be compounded if a posterior mean must

be calculated at each grid point. We seek to alleviate these inferential challenges by imple-

menting Gaussian Process (GP) optimization methods for estimators for the causal effect of

adherence to a specified DTR. We examine how to identify optimal DTRs in settings where

the value function is multi-modal, which are often not addressed in the DTR literature. We

conclude that a GP modeling approach that acknowledges noise in the estimated response

surface leads to improved results. Additionally, we find that a grid-search may not always

yield a robust solution and that it is often less efficient than a GP approach. We illustrate

the use of the proposed methods by analyzing a clinical dataset with the aim of quantifying

the effect of different patterns of HIV therapy.
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4.1 Introduction

In health research, as data capture and storage capacities improve, the questions researchers

ask are becoming more complex. Ambitious questions may be posed in the quest for preci-

sion medicine where investigators seek to tailor treatment to patient-specific characteristics

through stages of the clinical decision-making process. This tailoring requires sets of de-

cision rules, termed dynamic treatment regimes (DTRs), that take patient information as

inputs and that output a treatment recommendation at each stage of the treatment decision-

making process. Often, researchers are interested in asking causal questions in relation to

these DTRs. Most directly, such questions focus on quantifying what is the causal effect of

adherence to a specific DTR and identifying what might the optimal DTR be. The search for

an optimal therapy is an important one in medicine, as it aims to avoid over-treatment, all

while providing sufficient care to arrive at the targeted outcome. Answering questions about

DTRs is challenging, even in data-rich environments; more data may imply that we can ask

more challenging questions, but the curse of dimensionality tells us that we cannot altogether

escape thinking about statistical models. In this work, we examine how Gaussian Processes

(GPs) may yield a strategy that allows for the identification of optimal DTRs.

In the frequentist setting, inferential methods for DTRs have been traditionally performed

via semi-parametric models. These include dynamic marginal structural models (MSMs)

[Orellana et al., 2010a], g-estimation of structurally nested mean models [Robins, 1986], Q-

learning [Murphy, 2005b] and outcome weighted learning [Zhao et al., 2012]. For Bayesians,

where modeling the entire probabilistic dynamics is often required for inference, a variety

of methods for DTRs have also been proposed, including those of Arjas and Saarela [2010],

Saarela et al. [2015b], Xu et al. [2016], Murray et al. [2018], and Rodriguez Duque et al.

[2022b]. Although much of the Bayesian literature in this area has focused on adapting

existing frequentist estimation approaches for DTRs, the computationally intensive nature

of Bayesian inference limits their usability. In this work, we focus on eliminating some
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of the modeling challenges with DTRs in order improve the usability of methods, be they

frequentist or Bayesian.

Our work is motivated by Dynamic MSMs, where a Bayesian version was recently proposed

[Rodriguez Duque et al., 2022b]. These allow for the estimation of the value function of

DTRs in a family G indexed by a, possibly multi-dimensional, parameter ψ ∈ I. In a family

of DTRs of the form "treat when covariate value x exceed a threshold ψ", researchers may

posit a marginal mean model such as E[Y gψ ] = β0 + β1ψ + β2ψ
2. Unfortunately, we cannot

be certain that this model is correctly specified or that it is sufficiently flexible to correctly

identify the optimal regime. One way around this issue is to estimate the expected outcome

under each regime in the family, if there is a finite number of them, or to estimate the

expected outcome of a large set of regimes and then extrapolate the value to other regimes.

This essentially amounts to a grid-search and is an appealing approach as we have access

to standard estimators for the expected outcome under adherence to a DTR. Unfortunately,

this may be computationally intensive, particularly in settings with many stages, complex

decision rules, and a variety of confounders. Computational challenge may be compounded

in Bayesian settings where sampling of a posterior distribution is often required. Even if

a grid-search is feasible, it has not been established in the literature whether it reliably

identifies the optimal regime or whether there are other robust approaches that use data

more efficiently.

The contribution of this work is to examine how to utilize computer experiments to identify

optimal DTRs in a family G; an optimal DTR is one that maximizes the value function. In

a DTR context, a "computer experiment" should sample the value function at strategically

chosen points with the aim of approximating the entire value function, all while limiting

the number of samples obtained. These experiments should begin by selecting an initial set

of design points I, and then using an estimator for the value of a DTR at these points to

arrive at a working model for the value function. This working model can then be utilized
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to select new points sequentially using a criterion, known as an infill criterion (or acquisition

function), that specifies where an optimum may be. We focus on the Expected Improvement

criterion Jones et al. [1998] which has been well studied and is known to balance exploration

of the input space with exploitation of the optimizing region. Using this approach, we focus

on methods that yield models more flexible than those used with Dynamic MSMs and that

allow for the sequential sampling of additional points in order to improve the estimation of

optimal DTRs. The models used are obtained via a GP prior, with parameters fit using

empirical Bayes or maximum a posteriori (MAP) inference. This is a novel approach to

identifying optimal DTRs that has not previously been explored in the precision medicine

literature. The computer experiment faces an additional challenge in that we do not have

access to the value function, but rather to an estimator for the value of a DTR which

can be evaluated point-wise. Via simulations, we find that a GP modeling approach that

acknowledges uncertainty in the estimated regime values can successfully identify optimal

DTRs. Additionally, we find that a grid-search for the optimum may not always be the

best solution, especially in multi-modal settings which challenges the received wisdom that a

grid-search is as reliable as other methods. We find that computer experiments via GPs can

perform better than a grid-search, all while using fewer experimental points. In addition to

these contributions, we illustrate how to use the discussed methods to perform a statistical

analysis on clinical data arising from HIV therapy.

4.2 Background

Traditionally, computer experiments to identify an optimum were performed using regression-

based methods fit on a set of experimental points. However, these methods may not be well

suited for identifying optimal responses. Huang et al. [2006] mention that regression-based

approaches may be inefficient as they attempt to predict the response curve over the entire

feasible domain, as opposed to the neighborhood of the optimum. Additionally, the linear
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regression models used are usually relatively simple, and may not fit complex systems ade-

quately over the entire domain similar to the issues we described with Dynamic MSMs. Con-

sequently, more recent literature on computer experiments focuses on approaches using GPs

and sequentially sampling new experimental points most relevant to the optimization.

A GP is a stochastic process for which all outcome vectors, regardless of the dimension,

have a multivariate Normal distribution. Models arising from the GP assumption are often

termed kriging models. In a computer experiments context, these models are widely used in

two settings: 1) where researchers would like to fit a flexible model, which may be used for

prediction in unobserved locations; or 2) where researchers are working with a function that

is expensive to evaluate and would like to identify the optimum of this function, all while

limiting the number of function evaluations. The latter is also termed Bayesian optimization

[Pourmohamad and Lee, 2021] and is most relevant to our work. In addition to the GP

assumption, much of this literature focuses on settings where the input-output relationship

is known. Our setting is nuanced as we only have access to an estimated (noisy), yet

deterministic, output for any given input. Consequently, we must think carefully about the

problem characteristics before developing an optimization strategy.

Sacks et al. [1989] were among the first researchers to explore using GPs for computer ex-

periments. Later, Currin et al. [1991] used a similar methodology but in a Bayesian context.

O’Hagan et al. [1999] argued that a Bayesian perspective is crucial for computer experiments

with deterministic functions as, for a fixed input, the output does not change. Consequently,

uncertainty about the response surface is not aleatory. Notwithstanding, a fully Bayesian

treatment of this problem is often highly complex as it requires Markov Chain Monte Carlo

to sample from posterior distributions, and to evaluate the infill criterion, comprised of a pos-

terior expectation, at each point in the optimization procedure. Thus, some compromises

must be made. We take this into consideration and seek practical methods that balance

the benefits of the Bayesian and frequentist approach. One concern may be, as with any
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optimization procedure, that there exist local maxima within the operating domain of in-

terest, making the identification of a global maximum more challenging. Jones et al. [1998]

emphasize that a computer experiments methodology based on GPs is good for modeling

non-linear multi-modal functions. In addition to the GP model, which requires specification

of a covariance function an infill criterion must be specified. There are a variety of infill

criteria in the literature; we make use of the Expected Improvement criterion although some

care should be taken as it encounters theoretical problems in settings with noisy outputs.

We will examine these issues in what follows.

4.3 Problem Characteristics

Before characterizing our specific inferential problem, let us fix some terminology regarding

the surfaces of interest. The value surface refers to the true relationship between a DTR,

gψ, and its value E[Y gψ ]; the estimation surface refers to the surface obtained by point-wise

evaluation of an estimator Ê[Y gψ ] for varying ψ ∈ I; note that I is an index set that can

be continuous or discrete. When we make use of an inverse probability weighted (IPW)

estimator to obtain this surface, we refer to this estimation surface as the IPW-surface.

Lastly, the emulation surface is the posterior mean of a given GP of interest that is meant

to approximate the value surface.

Our setting is unique in that we are looking to emulate the value surface by only observing

values from the estimation surface. As the estimation surface is produced by evaluating

an estimator point-wise in a relevant domain, this function exhibits a non-smooth quality,

and we are in a setting where the observed output is a noisy version of the true output.

We will see that this non-smoothness may affect the results obtained via a grid-search. As

investigators, we are likely interested in smoothing out this noisy surface, believing the true

value function to be smooth; a GP-based model allows for this possibility.

The lack of smoothness of the estimated surface is mainly a consequence of using a finite
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sample size to estimate the value of regimes in G. Furthermore, we may ask whether ad-

equately capturing this noise structure improves the resulting inference and whether this

noise structure is homoskedastic or heteroskedastic. There are several components in the

data analysis that may lead to a heteroskedastic structure. These include 1) measurement

error, possibly including more variability in treatment arm than in the response arm; 2)

relatively smaller sample-size in some regions of the regime index set than others; and 3)

patient responses being more distant from the value function in some areas of the index set

than others. We more precisely illustrate these considerations in the following sections and

in Appendix B.1.

Kriging methods can also be used in settings with noisy observations; Picheny and Gins-

bourger [2014] provide an overview of these methods in an optimization setting. Indeed,

stochastic kriging is nuanced and not all methods are applicable in all settings. Stochas-

tic kriging is often utilized when emulating a response surface where at each experimental

point the output varies when re-evaluated at the same input. In settings that do not in-

volve sequential sampling of experimental points this definition is sufficient, as a model is

fit on a fixed and known set of points. However, when sequential sampling is required, more

care should be taken in defining the problem. There are some settings where we observe a

noisy function but where there is no uncertainty in the output when re-evaluating at already

sampled points. Forrester et al. [2006] explain that in this setting there is no uncertainty in

the output, even if there is noise around the true curve. In other settings, re-evaluating at

the same input yields varying outputs. This detail is consequential when identifying infill

criteria for stochastic kriging. In some cases, we gain information by re-sampling at the same

data-point — in others we do not. Our motivating DTR setting relates most to the case

where a curve exhibits a characteristic jitter but where there is no uncertainty in the output

of already sampled points.

Stochastic kriging has focused on methods with homoskedastic noise; however there is a

81



growing literature on incorporating heteroskedastic noise in the inferential procedure. For

example, Ankenman et al. [2008] and Yin et al. [2011] incorporate heteroskedastic noise

by estimating the noise variance at design points; these authors’ approach requires that the

function of interest be evaluated at the design points multiple times. Frazier et al. [2011] also

discuss heteroskedastic error and propose a method for financial time series. A fully Bayesian

approach is presented by Goldberg et al. [1997] who seek to place a GP prior on the log noise,

yielding two GP priors. Indeed a fully Bayesian treatment is computationally intensive, but

some work has been done on alleviating these issues; Wang [2014] has looked at fast MCMC

procedures for GPs with heteroskedastic noise. Thinking about practicality, Kersting et al.

[2007] follow the same approach as Goldberg et al. [1997], however they focus on most likely

heteroskedastic GPs to estimate the input-dependent noise level. Zhang and Ni [2020] offer

an improvement on most likely heteroskedastic GPs by providing an approximately unbiased

estimator for the input-dependent noise. In what follows we will examine the performance

of the latter approach.

From the above considerations, we regard a GP model that acknowledges noise as possessing

an important characteristic; it remains to examine what criteria may be used to sample

points sequentially. Picheny et al. [2013] provide a review of infill criteria used for stochas-

tic kriging. Frazier and Wang [2016] emphasize that the Expected Improvement criterion

benefits from some optimality results in the deterministic setting but that these benefits

are lost in noisy stochastic settings. In particular, in deterministic settings, the Expected

Improvement criterion ensures the true optimum will be identified as the number of exper-

imental points increases. This result hinges on the posterior variance at already sampled

points being zero [Locatelli, 1997], but this property is not necessarily present in stochastic

settings. Many infill criteria allow for re-evaluations at already sampled points, but this

is not desirable in our setting. There are other technical issues in revisiting experimental

points with the GP , for example ill-conditioned matrices. Forrester et al. [2006] propose a

solution for using the Expected Improvement in noisy settings by utilizing a re-interpolation
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approach for optimization. This is the approach that we explore.

4.4 Methods

We consider a sequential decision problem with T decision points and a final outcome y.

Decisions taken up to stage t give rise to a sequence of treatments z̄t = (z1, ..., zt), zj ∈ {0, 1}.

At each stage t, a set of covariates xt is available for decision-making and it is assumed that

these consist of all time-fixed and time-varying confounders. To denote covariate history up

to time t, we write x̄t = {x1, ..., xt}. Subscripts are omitted when referencing history through

stage T . Then, all patient information is given by b = (x̄, z̄, y). We denote a DTR-enforced

treatment history by g(x̄) = ḡ(x̄) = (g1(x1), ..., gT (x̄T )). Throughout, we will consider a

family of DTRs, indexed by ψ ∈ I to give G = {gψ(x̄);ψ ∈ I}. In general, we allow ψ to be

a p-dimensional column vector. The index is omitted when it is clear that our focus lies on

a single DTR. Based on these definitions, we posit that values υi on the estimation surface

are a noisy realization of the value surface f(ψ) as given by the following relationship:

υi = f(ψi) + ϵi , ϵi ∼ N(0, γ2(ψi)), i = 1, ...,m. (4.1)

Our target of inference is the value surface f for which there is epistemic uncertainty. As

equation 5.10 makes clear, this problem is further complicated as we do not observe f , but

instead mereley a noisy version of it. To fix the notation about this model, suppose we

have data D = {ψi, υi}mi=1. Then define the following vector quantities ψ = (ψ1, ..., ψm)T ,

υ = (υ1, ..., υm) and f = (f1, ..., fm). We also define γ̄2 = (γ2(ψ1), ..., γ2(ψm)). Note that

these are observations taken on the estimation surface. We have control of the observations

that we sample from this surface, and these contrast the observations on the sample (x̄, z̄, y)

which are fixed at a sample size n.

To perform inference, we place a prior on f , which represents our belief about the value
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function associated with a family of DTRs indexed by ψ ∈ I. We choose this to be a prior

dπ(f) in a function space f ∈ F . Heuristically, as in Shi and Choi [2011], updating can be

done via the equation:

P (f ∈ A|D, γ2) =
∫︂
A

p(υ|f, γ2)dπ(f)∫︁
F p(υ|f, γ2)dπ(f) , A ⊂ F . (4.2)

More concretely, the prior that we make use of is a GP prior, which has the consequence

that for any finite set of observations ψ, f |ψ ∼ N(µ0f , K). K is a covariance matrix cal-

culated via a covariance function k(ψi, ψj) that is parameterized by parameters (θf , σ2
f ),

with θf being a vector with entries θfd controlling the correlation between points in the dth

dimension and σ2
f being a parameter that scales the correlation function to yield the covari-

ance function. The GP requires specification of a set of hyperparameters ηf = (µ0f , θf , σ
2
f ).

Without further knowledge of the problem, it is challenging to specify values for these hy-

perparameters. Specifying priors for these hyperparameters is possible, but it may increase

computational challenges to carry out a fully Bayesian treatment of this problem. More com-

monly, empirical Bayes is used to estimate the hyperameters via maximum likelihood, as in

Shi and Choi [2011]. Alternatively, MAP estimation of the hyperparameters may be used.

Conditional on fixing these hyperparameters, at their MAP or empirical Bayes estimates,

standard arguments for the conditional distribution of a multivariate normal distribution

yield the posterior distribution at a new point ψm+1 to be:

fm+1|ψm+1, ηf , γ̄
2,D ∼ N(µfm+1 , σ

2
fm+1)

µfm+1 = µ0f + kTm+1(K + S)−1(υ − µ0f )

σ2
fm+1 = k(ψm+1, ψm+1)− kTm+1(K + S)−1km+1,

(4.3)

where S is a diagonal matrix of noise variances with iith entry equal to γ2
i = γ2(ψi); km+1 =

(k(ψ1, ψm+1), ..., k(ψm, ψm+1)) is the variance vector between already sampled points and

the new point ψm+1. In the empirical Bayes setting, the covariance parameters are fixed
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values. Consequently, they need not be included in the conditioning, we do this however for

compatibility with the MAP approach. Note that unlike the more well known GP model for

computer experiments, this model does not necessarily interpolate the observed data. That

is, µfm+1 does not necessarily perfectly predict the observed data points. This is desirable,

as we seek a smooth response curve, but we only have access to the noisy estimation surface.

To recover the interpolating model, we set γ2(ψi) = 0 ∀i. As Forrester et al. [2006] point

out, the interpolation property of a GP occurs when there is no measurement error in the

data observation mechanism and comes from noting that the posterior variance is zero at

already sampled points. In what follows, we will more closely examine non-interpolating

scenarios. The remaining quantity of interest is the posterior distribution for the noisy

observations:

υm+1|ψm+1, ηf , γ̄
2, γ2

m+1,D ∼ N(µυm+1 , σ
2
vm+1)

µυm+1 = µfm+1

σ2
υm+1 = k(ψm+1, ψm+1)− kTm+1(K + S)−1km+1 + γ2

m+1.

(4.4)

4.4.1 Homoskedastic Inference

If noise is a concern, an interpolating GP approach may not be adequate, and we may look

to allow for noise around the surface. If we assume that the noise variance is homoskedastic,

then we have that γ2(ψi) = γ2 ∀i. Under an empirical Bayes approach our posterior of

interest is p(υm+1|ψm+1,D) = p(υm+1|ψm+1, ηf , γ
2,D). To compute values for the hyperpa-

rameters, we maximize p(υ|ψ, ηf , γ2). Efficient computational approaches to identifying the

maximizers of this marginal likelihood can be found in Park and Baek [2001] and Roustant

et al. [2012]. With access to this model, we could additionally combine it with MAP es-

timation of θf in order to arrive at an approximation for p(υm+1|ψm+1,D). This requires

maximizing p(ηf , γ2|D) with respect to ηf , γ
2 in order to obtain ηmapf , γ2,map. MAP esti-

mation then uses the approximation p(ηf , γ2|D) ≈ 1(ηmap
f

,γ2,map)(ηf , γ2)d(ηf , γ2) in order to
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arrive at the posterior predictive distribution as:

p(υm+1|ψm+1,D) ≈
∫︂
p(υm+1|ψm+1, ηf ,D)1(ηmap

f
,γ2,map)(ηf , γ2)d(ηf , γ2) = p(υn+1|ψm+1, η

map
f , γ2,map,D).

Lizotte [2008] has examined MAP inference for deterministic computer experiments under

a Log-Normal prior for θf ; we also examine the consequences of this prior on MAP infer-

ence.

4.4.2 Heteroskedastic Inference

Alternatively, we may believe that the response surface exhibits heteroskedastic noise. This

poses special challenges as it requires performing inference for each of the noise variances, γi,

in the observed data. For this, we examine an approach proposed by Zhang and Ni [2020]

that places a second GP prior on the regression residuals ei = |ri|q = |υi−µυi|q, q ∈ Z+, with

covariance function ke(ψi, ψj) and parameters ηe = (µ0e, ηe, σ
2
e). Authors show that under

these assumptions a method of moments estimator for the input-specific noise variances can

be arrived at via:

E[|ri|q] = γqi
s(q) , (4.5)

where s(q) is a correction factor. When q = 1, s(1) =
√︂
π/2, and the estimator for the input-

dependent noise is approximately γ̃i =
√︂
π/2E[|ri|] =

√︂
π/2µei , where µei is the posterior

mean of the second GP . A fully Bayesian computation that acknowledges uncertainty in γi

would require an integral like:

p(υm+1|ψm+1, ηf ,D) =
∫︂ ∫︂

p1(υm+1|ψn+1, ηf , γ̄
2, γ2

m+1, ηe,D)p2(γ̄2, γ2
m+1|ψn+1,D)dγ̄dγm+1.

(4.6)

For known γ̄, γm+1, sampling from p1 is Normal with posterior mean and variance as described

in equation (5.12). However, this computation is challenging because the γ2 are unobserved.

Goldberg et al. [1997] provide an MCMC approach to allow for sampling from p2 which com-
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putes the integral of interest, however this is computationally intensive. Kersting et al. [2007]

proposed that p2 be approximated by the most likely noise level. The most likely noise level is

calculated as the posterior mean of a GP that has been placed on log(γi); recall that at each

function value, the GP is Normally distributed, therefore making the most likely value the GP

mean. Zhang and Ni [2020] provide an improved way to estimate γi, as described in equation

4.5, in order to yield the approximation υm+1|ψm+1, ηf , ¯̃γ2, γ̃2
m+1,D ∼ N(µυm+1 , σ

2
νm+1). As

in the empirical Bayes approach, γ̃2
i are assumed known in the computation. Consequently,

we can treat this posterior distribution as a GP and perform inference as before.

In the following, we examine how to pair the homoskedastic and heteroskedastic models with

the expected improvement criterion in order to arrive at a sequential sampling scheme.

4.4.3 Infill Criterion

We return to the question of an appropriate infill criterion when we are interested in per-

forming minimization. The Expected Improvement in our setting is given by: EI(ψ) =

E [max(0, υ(ψ)− υmax)|D]. The expectation is taken with respect to the posterior distribu-

tion and υmax = max(υ1, ..., υm). Further computation yields:

EI(ψ) = (µυm+1(ψ)− υmax)Φ
(︄
µυm+1(ψ)− υmax

συm+1(ψ)

)︄
+ συm+1(ψ)ϕ

(︄
µυm+1(ψ)− υmax

συm+1(ψ)

)︄

when συm+1(ψ) > 0 and 0 otherwise. Φ is the CDF of the Standard Normal distribution and

ϕ is the corresponding pdf.

4.4.4 Re-interpolation

As discussed, using the Expected Improvement as a criterion for sequential sampling may

not be theoretically justified in a deterministic computer experiment with noisy observations,

in particular when a regressive model is used rather than an interpolating model. Regressive

models are ones that do not interpolate the sample data, like the homoskedastic and het-
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eroskedastic models discussed above. The challenge in using the Expected Improvement with

these models arises from the fact that the error συm+1(ψ) at sample points will be non-zero

even though the output will not vary when the estimation function is re-evaluated at these

sample points. Consequently, convergence toward global optimum cannot be guaranteed

[Locatelli, 1997]. Forrester et al. [2006] introduce a re-interpolation method that attains

zero error at the sample locations. This can be done by building an interpolating GP on the

values predicted by the regressive model mean µυm+1 and sequentially sampling using the Ex-

pected Improvement based on this model. The procedure is termed re-interpolation because

the interpolating model is built on the predicted mean values of the regressive model.

First, the re-interpolating procedure uses predictions at sample points obtained from the

mean of υm+1|ψm+1,D in order to create a new dataset D′. At sample point i, we define

the predicted values as υ̂i = µυm+1(ψi) to yield responses (υ̂1, ..., υ̂m) and new data D′ =

{ψi, υ̂i}mi=1. Then using an interpolating GP assumption on these data, we obtain a similar

heuristic as before: p(υ̂m+1|ψm+1,D′) = p(υ̂m+1|ψm+1, ηf̂ ,D′), where the posterior mean and

variance are given by:

µυ̂m+1 = µ0υ̂ + kTm+1K
−1(υ̂ − µ0υ̂)

σ2
υ̂m+1 = k(ψm+1, ψm+1)− kTm+1K

−1km+1,

with µ0v̂ being the prior mean of the interpolating process. This re-interpolating procedure

leads to two essential properties: 1) the posterior mean of the υ and υ̂ processes are the same

i.e. µυm+1 = µυ̂m+1 , and 2) the variance of the υ̂ process is zero at already sampled points.

The latter is the crucial characteristic required to preserve the optimality of the Expected

Improvement criterion. With this re-interpolating model, the Expected Improvement can

be calculated to determine new sampling locations. In Appendix B.2, we provide additional

details on the equality of the two posterior means. Forrester et al. [2006] mention that the

covariance function K remains unchanged, so ηf does not need to be re-optimized.
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4.4.5 Design of Experiments

One component of the design of experiments is to determine the initial number of design

points. Loeppky et al. [2009] investigate this issue and conclude that ten points per dimension

is a reasonable rule-of-thumb when the dimension is less than five. We simply select them in

equally spaced increments. Another option, for example, is to select design points randomly,

but given the nature of our experiment, we aim to eliminate variability due to the initial

sampling strategy. Strategies to select design points include simple random sampling, or

Latin Hypercube sampling [McKay et al., 1979]. Designs based on distance measures are

also possible, like those that seek to maximize the minimal distance between experimental

points [Johnson et al., 1990].

Another design element that must be considered is the covariance function. Some covariance

functions in the GP lead to smoother surfaces than others. One common choice of covariance

is the Matern covariance family. Common choices in this family are the Matern5/2 covari-

ance which is twice differential and the Matern3/2 covariance which is differentiable once.

These are examples of isotropic covariance functions, meaning that the correlation between

points depends only on the distance between them. We focus on the Matern5/2 covariance

given by:

k(ψi, ψj) = σ2
f

D∏︂
d=1

(︄
1 +
√

5|ψid − ψjd|
θfd

+ 5(ψid − ψjd)2

3θ2
fd

)︄
exp

(︄
−
√

5|ψid − ψjd|
θfd

)︄
, (4.7)

where D is the number of dimensions in the index vector.

4.4.6 Estimation Surface

As previously mentioned, the estimation surface can be produced with any estimator for the

value of a DTR. In this work, we make use of the normalized IPW estimator. Then, for

a family of interest, the estimator can be evaluated on a grid of ψs in order to yield the
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resulting estimation surface. The normalized IPW estimator is given by

∑︁
iw

ψ
i yi∑︁

iw
ψ
i

,where wψi =
1ḡψ(x̄i)(z̄i)∏︁T

j=1 p(zj|z̄j−1, x̄j)
. (4.8)

An additional layer of complexity is encountered if we are interested in using a Bayesian

estimator to perform inference. This is because computing a posterior mean often requires

sampling from the posterior distribution, which may be a computationally intensive task.

In this case, a grid-search for the optimal DTR may become intractable. Rodriguez Duque

et al. [2022b] provide a Bayesian estimator for the value of a DTR by making use of inverse

weighting and the Bayesian bootstrap. Often, Markov Chain Monte Carlo is required to

estimate posterior means; although there may be some Monte Carlo variability in the esti-

mated mean, if we fix a seed when sampling the posterior distribution, then we can arrive

at an estimation procedure that is still deterministic.

Generally, bootstrapping can allow for the quantification of sampling uncertainty. For ex-

ample, in our setting, it may be that we are interested in quantifying uncertainty around

the estimation surface. For a set of observations (b1, ..., bn), the bootstrap procedure sam-

ples each observations independently with replacement and with equal probability 1/n in

order to estimate the quantity of interest. A similar procedure can be arrived at through

a Bayesian lens as first proposed by Rubin [1981]. This requires a posterior distribution

that places a random probability πi of sampling observation bi in a bootstrapped sample;

these probabilities have mean 1/n thereby connecting the procedure to frequentist bootstrap.

This Bayesian bootstrap procedure can be arrived at by placing Dirichlet Process DP(α,G)

prior on the data-generating distribution, where α is a concentration parameter and where

G is a base distribution. In particular, when α is chosen such that |α| → 0, we obtain

the Bayesian bootstrap as the posterior predictive distribution. Under this specification,

one sample drawn from the posterior DP is given by p(bn+1|b̄, π) = ∑︁n
i=1 πi1bi(bn+1), where

π = (π1, ..., πn) ∼ Dir(1, ..., 1) is a sample from the Dirichlet distribution with all concentra-

90



tion parameters equal to one. Under these assumptions, any distribution sampled from the

posterior DP is uniquely determined by π. For example the Bayesian bootstrap can be opera-

tionalized to quantify posterior belief about the population mean E[bn+1|b̄] = Eπ[E[bn+1|b̄, π]]

by sampling weights (π1, ..., πn) and computing

E[bn+1|b̄, π] =
∫︂
bn+1

bn+1

n∑︂
i=1

πi1bi(bn+1)dbn+1 =
n∑︂
i=1

πibi. (4.9)

This quantity can be computed over many draws of the weights in order to obtain the full

posterior distribution for the mean. Taking the mean across all these bootstrap samples

results in an estimate for E[bn+1|b̄].

Sources of Variation

As we have already discussed, the estimation surface exhibits non-smoothness. In this sec-

tion, we examine some possible sources of heteroskedastic variation. These considerations are

most consequential for finite sample sizes. In this exploration, we limit ourselves to regimes

of the form "treat if x > ψ", as this is a common regime in the literature, and it leads to

clear examples about how heteroskedasticity is manifested. Additionally, we focused on the

normalized IPW estimator for the value of a regime which uses only patients observed to

adhere to the regime of interest.

Note that in contrast to static treatment regimes, an individual can be simultaneously ad-

herent with many DTRs [Cain et al., 2010]. Furthermore, for a given sample with binary

treatment, there are two response curves: the treated curve and the untreated curve. For a

fixed ψ, we can use the sample to estimate E[Y gψ ]. Furthermore, for an increase in ψ from

ψ1 to ψ2, only treated patients can become non-adherent and only untreated patients can

become adherent because of the form of rule under consideration. Only patients with co-

variate values ψ1 ≤ x ≤ ψ2 are eligible to become adherent/non-adherent. These properties

are important in examining the variability in the estimation surface.
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The first case we consider is heteroskedasticity due to distance from the value surface. This

relates to how close/far the estimated treated and untreated curves are from the value surface.

Recall that the value surface represents a population average; individual responses can vary

substantially around this surface. For an increase in ψ from ψ1 to ψ2, there will be a set

of patients who become non-adherent with regime ψ2 and a set who become adherent. As

the IPW estimator uses only observations on those adherent to a regime, if either the newly

adherent/non-adherent patients have a response value that is far from the IPW-surface, then

these observations will have a considerable influence on the estimate, especially for relatively

small sample sizes. If the observations tend to have a response that is near the population

average, then the IPW-surface will be less influenced by these observations.

The second case is heteroskedasticity due to the noise structure at the individual level.

Consider an additive error term in the data-generating mechanism, such as: zϵ1 + (1− z)ϵ2,

where ϵ1 = N(0, 5), ϵ2 = N(0, 0.5). We might not think this is an issue, as for estimation via

an estimating equation, it does not matter whether noise is heteroskedastic or homoskedastic,

so long as it has zero mean. However, when estimating the value surface for the purposes

of identifying a maximum, this may be consequential. As ψ increases, we lose treated

patients, and we gain untreated patients. This means that we lose observations with high

variability and gain observations with low variability; this noise structure at the individual

level transforms into heteroskedasticity at the estimator level. Now, we may ask when this

data-generating mechanism may arise. One case may be when treatment leads to relatively

reliable improvements, but lack of treatment leads to disease progression taking on a variety

of forms, and therefore leading to higher variability.

The third consideration that may lead to heteroskedasticity in the estimation surface is the

result of differing effective samples sizes across values of ψ. It is well known that the IPW

estimator for a regime ψ only uses patients who are adherent to the regime. Consequently,

different regimes will use different number of patients to compute the value of the corre-
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sponding regime. This means that the estimator will exhibit differing levels of variability for

a range of ψs. In Appendix B.1, we further illustrate all three cases discussed.

4.5 Simulations

In what follows, we examine several data-generating mechanisms and DTRs to assess whether

the GP approaches presented do allow for the identification of optimal DTRs; we addition-

ally compare these to a grid-search. We refer to the interpolating, homoskedastic, and

heteroskedastic GP models as IntGP , HMGP , and HEGP , respectively. We present results

for a sample size of n = 500 with a Matern5/2 covariance function. To produce the estima-

tion surface, we make use of the normalized IPW estimator. To compare across modeling

strategies, each analysis was performed on 500 Monte Carlo replicates. Appendices B.3

through B.5 examine scenarios with a sample size of n = 1000, a Matern3/2 covariance, and

a Log-Normal prior.

4.5.1 Simulation I

For this simulation, we generate covariate x ∼ U(−1.5, 1.5), treatment z ∼ Binom(p =

expit(2x)), error distributions ϵ1 = N(0, σ = 0.25), ϵ2 = N(0, σ = 0.05), and final outcome

y = −(x + .8)x(x − .9)z + zϵ1 + (1 − z)ϵ2. We explore the regime "treat if x > ψ", ψ ∈

(−1.5, 1.5). Note that expit(·) refers to the inverse logit function. With this data-generating

mechanism, the systematic component of y varies from -2 to 2.5 and the optimal regime

represents a 5 % improvement (in the range of y) over the worst regime in the class. In

Figure 4.1, we observe the value function for this problem and the IPW-surface, across

multiple replicates. It is visually evident that the function has two local maxima but only

one global maximum at ψ = 0.9. There appears to be more variability for low values of ψ

than for high values. Contrary to standard practice, a grid-search for the optimum may not

work well, as evidenced by the large interquartile range (IQR) in Table 4.1.
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For this simulation, the computer experiment was designed such that we sampled an initial

set of design points in increments of 0.25, yielding an initial set of 13 points. Then, addi-

tional points were sampled sequentially using the Expected Improvement criterion, up to

25 additional points. All measures of variation correspond to Monte Carlo variation across

replicates. We do not compute coverage probabilities for each GP , as for a fixed replicate,

the uncertainty represented by the GP is constrained to uncertainty in the IPW-surface

resulting for a specific sample of size n; it does not incorporate sampling uncertainty. In-

corporating sampling uncertainty requires a more computationally intensive procedure, one

that we explore in the case study.

(a) (b)

Figure 4.1: Simulation I: (a) Value function (b) IPW estimates of value function, across 50
replicates.

Table 4.1: Results for grid-search with increments of 0.01 and n = 500. True ψopt=0.9; true
value at optimum 0.165.

Statistic ψ̂opt Value at ψ̂opt
Mean (SD) 0.427 (0.800) 0.172 (0.022)

Median (IQR) 0.860 (1.600) 0.171 (0.029)

From Figure 4.2, we see the results of the three modeling strategies for one replicate. These

curves represent the posterior mean after sampling 25 additional points using the Expected

Improvement as the infill criterion. In the figure, we restrict the domain of ψ for better

visualization around the local and global optima, but in Appendix B.3 the curves can be

visualized for the entire decision space. From the figure, we see why the interpolating model
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is likely to under-perform; occasionally, due to noise in the fit, there will be a maximizer of

the IPW-surface that is not close to 0.9. In these scenarios, the IntGP will interpolate the

data, whereas the other two methods can adjust the estimate based on the identified noise

level. Careful examination of the graphs reveals that the interpolation is most consequential

around the local optimizer ψ = 0.8. Although HEGP may assign higher variability to certain

regions, it may also assign lower variability and become closer to interpolating. These plots

contrast the differences between these methods, but they do not inform us about what will

happen across many analyses. Consequently, we now look to assess their performance across

multiple replications. Recall that unlike the context encountered in conventional computer

experiments, here we have a target surface, the true value function, that for a given sample

can be approximated by the IPW-surface. The IPW-surface is only an intermediary in the

whole process, and we are interested in comparing the target surface with the emulation

surface, in particular with respect to the optimizer.

(a) (b) (c)

Figure 4.2: Simulation I: Emulation surfaces at +25 points overlaid over the IPW-surface in
restricted domain for ψ ∈ [−1, 1.2] (a) IntGP (b) HMGP (c) HEGP .

Table 4.2 shows the simulations results pertaining to the optimal threshold, for each modeling

type. From this table, we note that the mean across replicates is not unbiased; this is due

to the multi-modality of the problem. The variability is higher for the grid-search and for

the interpolating method than for the other methods. In what follows, due to the nature of
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the problem, we focus mainly on medians and interquartile ranges, though additional tables

relating to means can be found in Appendix B.3; as expected, due to the multi-modality of

the problem, the mean appears to be a biased estimator for the optimal threshold. We note

further that the performance of the interpolating model degrades slightly as more samples

are added, specifically with regard to the precision. The median obtained by the HMGP is

closest to the truth, and performance seems to increase slightly as more samples are added.

For this simulation, all methods perform relatively well, even after few points are sampled.

We note that at 25 additional samples, all three methods outperform the grid-search, which

used 300 function evaluations, as measured by the median and IQR.

Table 4.3 shows the consequences of the estimation procedure on the value of the optimal

regime. We see that, like the grid-search values in Table 4.1, these does not deviate as much

as the optimizer. This is because the local and global optimizers in the value function have

similar values. Figure 4.3 depicts the results for both the optimal threshold and for the

value at the optimum; in panel (a) we see that the interpolating method appears to display

worse performance as more points are sampled; this is an artifact of the interpolation that

the method performs. From this simulation, we conclude that the HMGP and HEGP , which

acknowledge noise in the IPW-surface, yield results that are closest to the truth across

replicates. We also conclude that any of the GP modeling approaches outperform the grid-

search, which additionally is less computationally efficient. In Appendix B.3, we find that

for a larger sample size of n = 1000 the performance of the grid-search improves to become

comparable with the GP approaches.

Table 4.2: Simulation I: Estimated optimal ψ after +m points; n = 500 with 13 design points over
500 replicates. True ψopt= 0.9.

Measure +1 +5 +10 +15 +20 +25
Mean SD IntGP 0.472 (0.760) 0.474 (0.759) 0.481 (0.755) 0.475 (0.764) 0.454 (0.779) 0.440 (0.787)
Mean SD HMGP 0.466 (0.766) 0.501 (0.737) 0.484 (0.751) 0.477 (0.754) 0.471 (0.757) 0.469 (0.761)
Mean SD HEGP 0.487 (0.751) 0.504 (0.736) 0.499 (0.741) 0.479 (0.753) 0.472 (0.759) 0.476 (0.759)

Median IQR IntGP 0.863 (0.194) 0.867 (0.231) 0.866 (0.208) 0.867 (0.210) 0.865 (0.240) 0.861 (1.552)
Median IQR HMGP 0.874 (0.260) 0.873 (0.189) 0.871 (0.218) 0.869 (0.226) 0.866 (0.227) 0.868 (0.237)
Median IQR HEGP 0.869 (0.186) 0.868 (0.188) 0.872 (0.206) 0.866 (0.212) 0.865 (0.219) 0.865 (0.213)
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Table 4.3: Simulation I: Estimated value at ψ̂opt after +m points, median (IQR); n = 500 with 13
design points over 500 replicates. True value at ψopt: 0.165.

+1 +5 +10 +15 +20 +25
IntGP 0.169 (0.029) 0.170 (0.029) 0.171 (0.029) 0.171 (0.029) 0.171 (0.029) 0.171 (0.028)

HMGP 0.169 (0.029) 0.170 (0.029) 0.170 (0.029) 0.170 (0.029) 0.170 (0.028) 0.170 (0.028)
HEGP 0.169 (0.029) 0.170 (0.029) 0.170 (0.029) 0.170 (0.029) 0.170 (0.029) 0.171 (0.029)

(a) (b)

Figure 4.3: Simulation I: Boxplot at +m points; n = 500 with 16 design points (a) Optimal
ψ1 (b) Value at optimum.

4.5.2 Simulation II

Simulation II explores a two-stage treatment rule, treat if xk > ψk, ψk ∈ [−2.25, 1.8], k = 1, 2.

This example examines a value function that is multi-modal, with one global maximizer,

and some other local maxima. The data-generating mechanism for this simulation is as

follows:

y = 0.2x1−0.2(x1 + 2.25)(x1 + 1.5)(x1 + 0.3)(x1 − 1.8)(x1 − .75)(1(x1−1.5)>0 − z1)

−0.2(x2 + 2.1)(x2 + 1.65)(x2 + 0.3)(x2 − 2.1)(x2 − 1.35)(1(x2−0.75)>0 − z2) + ϵ.

Intermediary variables are distributed as x1 ∼ N(0, 1.52); x2 ∼ 1.5z1 + N(0, 1.52) and

treatment variables as z1 ∼ Bern(expit(−(1/1.5)x1)) and z2 ∼ Bern(expit(−(1/1.5)x2 +

(1/1.5)z1). Additive noise is distributed as ϵ ∼ N(0, 0.32). In Appendix B.4, we also explore
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heteroskedastic additive noise. The value function is given in Figure 4.4 (a), with 3-D

version found in the Interactive Supplement. As in Simulation I, this problem exhibits

multi-modality, thus we focus on medians and IQRs. From Figure 4.4 (b) we observe the

IPW-surface still captures the general characteristics of the value function. This can also be

seen in the Interactive Supplement.

(a) (b)

Figure 4.4: Simulation II: (a) Value function (b) IPW-surface.

An initial set of design points is taken in increments of 0.75 to yield at a total of 16 points.

Before examining the results for each of these settings, we examine the results of a grid-

search. From Table B.9, we see that there is a high amount of variability in the estimated

optimal ψ1 parameter, as measured by the IQR. This is similar to what was observed in

Simulation I. Estimates of ψ2 perform better, as there is no multi-modality in this axis. In

what follows, we will compare the GP approaches to the grid-search.

Table 4.4: Simulation II: Results for grid-search with increments of 0.05 and n = 500. True
(ψ1opt, ψ2opt) = (1.8,−0.3); true value at optimum 0.241.

Statistic ψ̂1opt ψ̂2opt Value at Optimum
Mean (SD) 1.098 (1.140) -0.409 (0.382) 0.277 (0.094)

Median (IQR) 1.725 (1.725) -0.375 (0.300) 0.275 (0.132)

From Figure 4.5, which shows one replicate analysis for each of the three GP methods, we

see from the points on the plot that the cross-section at ψ1 = 1.8 is explored the most; this
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cross-section contains the global optimizer. For this replicate, the second optimum is not

well identified by any of the GPs.

(a) (b) (c)

Figure 4.5: Simulation II: Contour plot of emulation surface at +25 points (a) IntGP (b) HMGP
(c) HEGP .

Comparing Table 4.5 with the results of the grid-search, we note that at +25 points the

median optimal values resulting from the HMGP are closer to the truth than those arrived

at via a grid-search; most notably the IQR for ψ1opt is much smaller. This strengthens the

observation from Simulation I that a grid-search is not always the most robust approach. We

also observe that the HEGP outperforms the grid-search at +25 points. In the ψ2 direction,

all three methods perform similarly, with the HMGP and HEGP outperforming the grid-

search at 25 additional samples. We see from Table 4.6 that all GPs perform equally well

in estimating the value at the optimum. From Figure 4.6 we can visualize how sampling

additional experimental points improves the estimation of ψ1opt and ψ2opt. From panel (a), we

see that after 11 sampled points, the first quartile and the median ψ̂1opt are at the true value

of the optimal threshold for all GP methods. The solid horizontal line on the plot is placed

at the grid-search IQR+ ψ1opt value. This allows us to see that after 21 sampled points the

IQR for both the HMGP and the HEGP is smaller or equal to that of the grid-search IQR

which uses 3721 grid points, thereby emphasizing the increased efficiency that a GP approach

can provide. We note additionally that the HEGP achieves improved results slightly faster

than the HMGP , however the HMGP achieves comparable results after a few additionally
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sampled points. Panel (b) in the plot shows the results for the ψ2opt parameter; we see that

all GP methods perform consistently well, with the HMGP and HEGP performing slightly

better than the IntGP . From Figure 4.7, we see that the estimation of the optimal value

is similar across all methods. Overall, this example allows us to conclude that a method

that acknowledges noise in the estimation surface is important in order to more precisely

estimate the optimizers. We note again that the improvement offered by the GP is most

relevant in the direction of multi-modality. In Appendix B.4, we see that an increased

sample size improves the estimation of the ψ1opt parameter, but that the HMGP and the

HEGP still outperform the grid-search and the interpolating approach. Although the HMGP

seems to require slightly more data to achieve the performance of the HEGP for this specific

setting, we must keep in mind that the HEGP is more computationally intensive than the

HMGP approach as it requires fitting a GP on estimated residuals. We note additionally

that in all simulations shown in Appendix B.4, the performance of the HMGP and HEGP

is comparable

Table 4.5: Simulation II: Estimated optimal ψ1 and ψ2 after +m points, median (IQR); n = 500
with 16 design points over 500 replicates. True (ψ1opt, ψ2opt) = (1.8,−0.3).

Parameter Method +1 +5 +10 +15 +20 +25
ψ1opt IntGP 0.000 (0.950) 0.123 (2.074) 1.800 (2.036) 1.800 (2.026) 1.800 (1.995) 1.800 (1.988)
ψ1opt HMGP 0.779 (2.925) 1.800 (2.116) 1.800 (1.930) 1.800 (1.928) 1.800 (1.805) 1.800 (0.657)
ψ1opt HEGP 0.580 (2.406) 1.800 (2.054) 1.800 (1.925) 1.800 (1.901) 1.800 (1.731) 1.800 (1.636)
ψ2opt IntGP -0.241 (0.420) -0.285 (0.325) -0.321 (0.296) -0.334 (0.301) -0.317 (0.311) -0.331 (0.318)
ψ2opt HMGP -0.256 (0.400) -0.306 (0.286) -0.322 (0.242) -0.328 (0.225) -0.317 (0.216) -0.318 (0.219)
ψ2opt HEGP -0.242 (0.411) -0.312 (0.300) -0.327 (0.260) -0.319 (0.262) -0.323 (0.249) -0.312 (0.247)

Table 4.6: Simulation II: Estimated value at (ψ̂1opt, ψ̂2opt) after +m points, median (IQR); n = 500
with 16 design points over 500 replicates. True value at (ψ1opt, ψ2opt): 0.241.

+1 +5 +10 +15 +20 +25
IntGP 0.196 (0.123) 0.238 (0.141) 0.258 (0.140) 0.264 (0.138) 0.264 (0.136) 0.267 (0.133)

HMGP 0.198 (0.136) 0.234 (0.144) 0.247 (0.141) 0.259 (0.136) 0.264 (0.137) 0.265 (0.131)
HEGP 0.200 (0.135) 0.236 (0.140) 0.255 (0.133) 0.263 (0.135) 0.264 (0.133) 0.264 (0.132)
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(a) (b)

Figure 4.6: Simulation II: Boxplot at +m points; n = 500 with 16 design points: (a)
Optimal ψ1 (b) Optimal ψ2. The dashed lines indicates the two optimal parameter; the solid
horizontal line in panel (a) is placed at the grid-search IQR + ψ1opt value.

Figure 4.7: Simulation II: Boxplot of value at optimum after +m; n=500 with 16 design
points.

4.5.3 Simulation III

For simulation III, we explore a family of regimes indexed by ψ1, ψ2, ψ3 such that ψ1xk1 +

ψ2xk2 > 0.5 − 3ψ3u; k = 1, ..., 4; xk1, xk2 are Normally distributed intermediate covariates

and u is a binary baseline covariate. Details of the data-generating mechanism can be found

in Appendix B.5. In the results tables, we do not include a ψ2 column, as we apply the

following constraint: ψ1 + ψ2 = 1. Note that ψ1, ψ2 ∈ [0.2, 0.8] and ψ3 ∈ [−0.3, 0.3]. The

known optimizer is (ψ1, ψ3) = (0.5, 0.1) and the value at the optimizer is 1. A set of 20 design

points is obtained by sampling in increments of 0.2 and 0.15 in ψ1 and ψ3 directions.
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We see from Figure 4.8 (a) that this is a uni-modal setting, different from Simulation I

and II. From Figure 4.8 (b) we see how the IPW-surface captures the general form of the

value function. Although this is a uni-modal example, in what follows, our presentation

focuses on medians and interquartile ranges, in order to maintain consistency with the other

simulations. Additional tables can be found in Appendix B.5.

(a) (b)

Figure 4.8: Simulation III: (a) Value function (b) Estimated value function using normalized
IPW.

From Table B.25, we see that the grid-search performs better than in the multi-modal ex-

amples, with variability around the optimizer decreasing. We observe from Figure 4.9 that

for a fixed replicate, the HEGP best captures the shape of the true value function.

Table 4.7: Simulation III: Grid-search results in increments of 0.01 and n = 500. True
(ψ1opt, ψ3opt) = (0.5, 0.1); true value at optimum: 1.

Statistic ψ̂1opt ψ̂3opt Value at Optimum
Mean (SD) 0.471 (0.153) 0.104 (0.120) 1.233 (0.147)

Median (IQR) 0.470 (0.220) 0.110 (0.150) 1.231 (0.189)
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(a) (b) (c)

Figure 4.9: Simulation III: Contour plot of emulation surface at +25 points: (a) IntGP (b) HMGP
(c) HEGP .

From Table 4.8, we see that all three GPs yield good results, even for a small number of

additional samples. Given the results of simulations I and II, these results suggest that the

choice of GP modeling approach is most consequential in multi-modal settings and that there

is no drawback in using a HMGP , even if the value function is uni-modal. In a real-data

analysis we do not have knowledge of whether we are in a multi-modal problem; hence, a

GP approach that acknowledges variability in the estimation surface is advisable. We note

as well that all three GP modeling approaches achieve good performance for a small fraction

of the function evaluations required by a grid-search. Figure 4.10 shows that even at a few

additional points, the optimizers are well identified. From Table 4.9, we see that as additional

points are sampled, the accuracy of the estimated optimal value decreases slightly; this can

also be observed in Figure 4.11. A reason for this may be that a good working model is arrived

at after very few additional points in this scenario, additional sampling concentrated in one

region may lead to overfitting some of the noise on the estimation surface. Three dimensional

renderings related to this simulation can be found in the Interactive Supplement.
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Table 4.8: Simulation III: Estimated optimal ψ1 and ψ3 after +m points, median (IQR); n = 500
with 20 design points over 500 replicates. True (ψ1opt, ψ3opt) = (0.5, 0.1).

Parameter Method +1 +5 +10 +15 +20 +25
ψ1opt IntGP 0.445 (0.200) 0.460 (0.204) 0.476 (0.216) 0.473 (0.231) 0.476 (0.230) 0.476 (0.229)
ψ1opt HMGP 0.473 (0.217) 0.488 (0.218) 0.471 (0.224) 0.475 (0.230) 0.475 (0.228) 0.479 (0.230)
ψ1opt HEGP 0.477 (0.200) 0.471 (0.223) 0.467 (0.219) 0.466 (0.217) 0.462 (0.226) 0.462 (0.224)
ψ3opt IntGP 0.150 (0.150) 0.131 (0.166) 0.121 (0.159) 0.118 (0.148) 0.118 (0.150) 0.116 (0.155)
ψ3opt HMGP 0.137 (0.152) 0.127 (0.153) 0.117 (0.164) 0.115 (0.167) 0.115 (0.159) 0.112 (0.159)
ψ3opt HEGP 0.131 (0.159) 0.125 (0.160) 0.119 (0.156) 0.113 (0.158) 0.116 (0.158) 0.112 (0.155)

Table 4.9: Simulation III: Estimated value at (ψ̂1opt, ψ̂3opt) after +m points, median (IQR); n = 500
with 20 design points over 500 replicates. True value at (ψ1opt, ψ3opt): 1.

+1 +5 +10 +15 +20 +25
IntGP 1.118 (0.189) 1.154 (0.200) 1.174 (0.198) 1.185 (0.200) 1.187 (0.197) 1.195 (0.193)

HMGP 1.070 (0.194) 1.108 (0.205) 1.128 (0.202) 1.147 (0.196) 1.156 (0.197) 1.160 (0.196)
HEGP 1.074 (0.196) 1.108 (0.200) 1.129 (0.205) 1.138 (0.208) 1.148 (0.204) 1.158 (0.201)

(a) (b)

Figure 4.10: Simulation III: Boxplot after +m points; n = 500 with 20 design points (a)
Optimal ψ1 (b) Optimal ψ3.
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Figure 4.11: Simulation III: Boxplot of value at optimum after +m; n = 500 with 20 design
points.

4.6 Case Study

In this case study, we analyze data from Hammer et al. [1996] to illustrate how the GP

methods may be applied in a setting with real data. These data come from a double-blinded

randomized trial of HIV antiretroviral therapies undertaken to compare treatments using

single and double nucleosides as a means of treating HIV type 1. Patients with CD4 cell

counts between 200 to 500 cells/mm3 were enrolled in the study. A total of 2467 patients were

assigned to one of four daily regimens 1) 600 mg of zidovudine, 2) 600 mg of zidovudine &

400 mg of didanosine, 3) 600mg of zidovudine & 2.5 mg zalcitabine, or 4) 400 mg didanosine.

The primary end-point in the study was an observation of ≥ 50 percent decline in CD4 cell

count, progression to AIDS, or death. Overall, the zidovudine regimen was found to be

inferior to other regimens, with regard to the primary end-point.

Variables found in the dataset include those captured at baseline including patients’ race,

sex, baseline CD4, weight, age, history of antiretroviral therapy, symptoms of HIV infection,

and Karnofsky score, as well as those captured later in the study such as 20 week CD4.

These data may be accessed via the LongCART package in R [Kundu, 2021]. We restrict

our analysis to the use of two dual-therapies and aim to determine which patients should

be given zidovudine with zalcitabine versus zidovudine with didanosine, thereby recognizing
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that mono-therapy is widely considered inadequate. In particular, we examine whether

tailoring on baseline CD4 cell count and baseline weight yields improved 20 week CD4 cell

counts, the outcome of interest. There are no missing data in any of the variables required

for this analysis. There are 524 patients in the zidovudine & zalcitabine arm and 522 in the

zidovudine & didanozine arm. The known treatment probability is 0.5 by design, however we

estimate these probabilities, as this has been shown to improve efficiency when using IPW

estimators [Henmi and Eguchi, 2004]. Now, the specific family of regimes that we consider

is: receive zidovudine with didanosine if baseline weight > ψW and baseline CD4 > ψCD4,

where ψW ∈ [50, 100] and ψCD4 ∈ [200, 600]. For every regime index (ψW , ψCD4), a value is

estimated, and this is used to inform the resulting GP , regardless of whether it is a one-stage

decision rule or a multi-stage decision rule. In this analysis, we make use of the normalized

IPW estimator for the value of a regime, and pair it with the proposed GP approaches.

Using the normalized IPW estimator on a fine grid of points yields the value function dis-

played in Figure 4.12. We see that there appears to be a trough for combinations of low

ψW and low ψCD4; there is also a high value region for large ψW , across a wide range of

ψCD4. From the 3-D rendering in the Interactive Supplement, we see that the IPW-surface

is rather smooth; this, in part, is brought about by the use of the normalized IPW. We have

also examined the resulting surface when using the standard IPW estimator, and it was

characteristically more noisy, leading to the possibility of more modeling challenges.
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Figure 4.12: HIV Study: Contour plot of normalized IPW-surface. Axes labels show the
variable associated with the threshold on the plot.

A standard approach that one may take via value-search estimation is to perform a grid-

search for the optimal regime (ψWopt, ψCD4
opt ). It is noteworthy that for a single sample, as in

this analysis, a grid-search for the optimal regime will not provide a measure of sampling

uncertainty around the identified optimum. To arrive at a complete statistical analysis

of these data, we seek to quantify this uncertainty by using the Bayesian bootstrap over

500 samples, where at each sample a Dirichlet vector is observed, with all concentration

parameters equal to one and dimension equal to the number of patients in the study. If,

for each of these bootstrap samples, we compute the optimal regime, then what results is

a distribution for the optimum. We report the median optimal index and optimal value,

with 95% credible intervals. We do this for both a coarse and fine grid to examine whether

the grid choice impacts the results, which are shown in Table 4.10. The coarse grid has

increments of 15 kg and 35 cells/mm3 in the weight and CD4 axes, respectively; the fine

grid has increments of 10 kg and 20 cells/mm3. We see from the table that as expected, the

choice of grid impacts the resulting inference. Table 4.10 also shows the results of fitting a

quadratic MSM with mean (β0 + β1ψW + β2ψ
2
W + β3ψCD4 + β4ψ

2
CD4 + β5ψWψCD4), using the

same bootstrapping approach. The fitted model appears to fit the data relatively well, as

shown in Interactive Supplement. However, note that there is no variability in the optimal

ψW , revealing some deficiencies in the model.
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In addition to sampling uncertainty, there is another type of uncertainty that can be impor-

tant to quantify in the grid-search approach. This is uncertainty reflecting the coarseness

of the grid chosen. For a fixed grid, the identified optimum has uncertainty relative to the

optimum that would be found were we to use a grid with increments approaching zero. How-

ever, there is no clear way to incorporate this uncertainty using a grid-search. As we will

discuss, the GP approach can attribute more uncertainty to regions that have not been well

explored and combine this with the sampling uncertainty.

Table 4.10: HIV Study: Estimated optimal value and optimal index via a coarse and fine
grid-search, with 95% credible intervals.

Type Coarse Grid Fine Grid MSM
ψ̂CD4
opt 305 (200-533) 280 (200-460) 343 (200-440)
ψ̂Wopt 95 (80-95) 100 (80-100) 100 (100-100)

Week 20 CD4 408 (396-421) 408 (396-421) 409 (396-423)

As before, we compare the performance of the IntGP , HMGP , and HEGP . The analysis

presented makes use of the Matern5/2 covariance, and in Appendix B.6 we present the result

for a Matern3/2 covariance. A natural initial number of design points comes from creating a

grid in increments of 15 kg and 125 cells/mm3, from 50 kg to 100 kg, and from 200 cells/mm3

to 600 cells/mm3, respectively. This yields a total of 16 design points which is of the order

explored by [Loeppky et al., 2009]. We investigated sampling up to an additional 25 points.

By this point, the Expected Improvement relating to the HMGP and HEGP had reached a

plateau and ψWopt, ψCD4
opt had converged around a point; the IntGP did not yet show signs of

complete convergence at 25 additional points, but this is not surprising, as we know in a noisy

optimization setting, the interpolating method is not the most appropriate approach. Figure

4.13 shows the estimated value function for each of the modeling approaches . All three yield

approximately the same conclusion regarding where the optimal regime may be, and all three

methods have focused on choosing additional points in the high ψw region. As we noted

previously, the IPW-surface is only moderately noisy. Consequently, it is not surprising that

the resulting curves appear to yield similar inference, even with the interpolating GP model.
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When a noisier estimator is used, like the un-normalized IPW estimator, we have observed

the interpolating model to yield an estimated response surface that is flat everywhere except

for regions very near already sampled points. This emphasizes the fact that although the

proposed methodology can be used with any off-the-shelf estimator, the resulting inference

can be impacted by the properties of the chosen estimator.

(a) (b) (c)

Figure 4.13: HIV Study: Contour plot of emulation surface at +25 points (a) IntGP (b) HMGP
(c) HEGP .

As with the grid-search approach, in addition to estimating the optimal regime, we are in-

terested in providing a measure of uncertainty about this optimum. Again, there are two

sources of uncertainty to consider. The first is the sampling uncertainty: how will the esti-

mated optimum change across samples. The second relates to the uncertainty represented

in the posterior GP . This posterior informs us about uncertainty in the functional relation-

ship between inputs and outputs, having explored a finite number of points in the index

set. Consequently this can also inform us about the uncertainty in the maximizer of the

functional relationship between inputs and output. To further characterize what this uncer-

tainty represents, we should consider that if we were to sample the index space very densely;

the posterior uncertainty around the curve and the consequent maximizer would be mini-

mized. However, densely sampling the index space does not mean that the uncertainty in

the maximizer has gone to zero, as there still remains sampling uncertainty.
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We first examine how to quantify the posterior uncertainty and we then explore how to

incorporate sampling uncertainty. To obtain a measure of the posterior uncertainty in the

maximizer, after having explored an additional +m points, we first compute the model

parameters at +m observations, and we then draw N sample paths from the posterior. For

each sample path, we compute the optimizer to obtain a distribution for the optimal regime.

Then, to incorporate the sampling uncertainty, we can use the Bayesian bootstrap for this

procedure over 500 replicates. Ultimately, this yields a distribution of optimal regimes that

represent both sources of uncertainty. We have implemented this for all three GP modeling

approaches and the results are presented in Table 4.11. We note that the HMGP and HEGP

arrive at very similar conclusions, after having explored +25 points, and that the median

optimal regime in the interpolating approach is in the credible interval of the other two

methods. We note additionally that the credible intervals of the IntGP are much wider

than those of the other two methods; the HEGP approach results in slightly tighter credible

intervals for the ψCD4
opt parameter. Inference at +15 points is very similar to that which results

at +25 points. The estimated optimal regime is at thresholds of 98 kg and 290 cells/mm3,

yielding an expected CD4 cell count of 408 cells/mm3. There is considerable uncertainty

regarding the optimal threshold in the ψCD4 direction, but this can be understood from the

relatively flat relationship that appears for high values of ψW , as can be well explored in the

Interactive Supplement. Producing Table 4.11 is a computationally intensive procedure. In

Appendix B.6, we discuss some efficiency considerations for performing this analysis.
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Table 4.11: HIV Study: Estimates and 95 % credible intervals for each GP modeling strategy; 250
sample paths; 500 Bayesian bootstrapped samples.

Model Parameter +1 +5 +15 +25
IntGP ψ̂Wopt 98 (66-98) 98 (58-98) 94 (54-98) 94 (54-98)
IntGP ψ̂CD4

opt 365 (200-597.5) 305 (200-597.5) 327.5 (200-597.5) 357.5 (200-597.5)
IntGP 20 Week CD4 409.2 (397.1-421.7) 408.7 (397.2-421.09) 409.4 (398.0-425.5) 410.1 (398.3-426.3)

HMGP ψ̂Wopt 98 (66-98) 98 (66-98) 98 (78-98) 98 (78-98)
HMGP ψ̂CD4

opt 357.5 (200-597.5) 305 (200-597.5) 290 (200-522.5) 290 (200-492.5)
HMGP 20 Week CD4 409.0 (397.0-421.4) 408.3 (396.8-420.5) 408.3 (397.15-420.2) 408.2 (397.3-420.5)
HEGP ψ̂Wopt 98 (70-98) 98 (66-98) 98 (74-98) 98 (78-98)
HEGP ψ̂CD4

opt 350 (200-597.5) 305 (200-597.5) 290 (200-515) 290 (200-462.5)
HEGP 20 Week CD4 408.9 (397.0-421.4) 408.2 (396.6-420.4) 408.1 (396.8-420.3) 408.4 (396.9-420.5)

Increments for the sample paths were by 4kg in the ψW axis and by 7.5 cells/mm3 in the ψCD4 axis

The purpose of this case study was to show how an off-the-shelf estimator could be combined

with GP techniques in order to arrive at a conclusion about the optimal regime. We saw

that the homoskedastic and heteroskedastic analyses produce similar inference. Overall, we

can conclude that there are regions of higher and lower value in the value function and that

based on the HMGP and HEGP there is an optimal threshold of 98 kg and 290 cells/mm3

in the weight and CD4 direction, respectively. There is relatively low uncertainty around

ψWopt, but there still remains high levels of uncertainty around ψCD4
opt .

4.7 Discussion

We have been motivated by the possibility that some value-search estimators may not be

robust in identifying optimal DTRs, in particular Dynamic MSMs or a grid-search. We

explored whether a Bayesian optimization approach via GPs could allow for the inference

of optimal DTRs. We determined that the estimation surface resulting from the use of an

estimator for the value of a DTR tends to exhibit a non-smooth quality resulting from the

point-wise variation of the estimator. This led us to examine possible sources of variability in

the estimation surface and to consider approaches that allow for varying noise structures. Via
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simulation studies, we examined the performance of three GP methods and found that out

of these methods the HMGP and HEGP consistently yielded comparable or more accurate

and precise inference than the IntGP . Simulations also showed that a grid-search is not

always the most accurate approach with GP methods tending to provide more accurate and

precise results. These methods also required significantly less estimator evaluations to arrive

at an estimate for the optimum, thereby making them more efficient than a grid-search. We

conclude that there can be much to gain in using an HMGP or HEGP . The performance

of the HMGP and HEGP was similar across all twelve simulations, except in simulation

II, where for a sample size of n = 500, the HEGP yielded more precise inference slightly

faster than the HMGP . After a few extra sampled points, the HMGP achieved comparable

inference to the HEGP and that the HMGP is much more computationally efficient to fit, and

therefore we would recommend utilizing the HMGP in general applications. The comparable

inference that these two methods yield was confirmed in the case study, which additionally

served to emphasized that this methodology can be applied meaningfully in order to identify

an optimal decision rule. Additionally, the case study allowed us to examine how both

sampling and posterior uncertainty in the value function can be well represented. Future

work should look to examine whether a fully Bayesian treatment benefits the inferential

process. Additionally, examining whether the GP can jointly represent sampling variability

in addition to uncertainty about the value function is an important area of investigation.

Studying the use of other infill criteria and examining the consequences of different stopping

rules is also of methodological interest.
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Chapter 5

Bayesian Inference for Optimal

Dynamic Treatment Regimes in

Practice

Preamble to Manuscript 3. The previous chapters proposed new methods for identifying

optimal DTRs, which contrast with current approaches to the estimation of optimal DTRs.

The third manuscript, contained in this chapter, seeks to advance the use of the methods

proposed in the previous two chapter by showcasing a standard analysis using these meth-

ods.

The original contributions of this manuscript include i) the design of a plasmode simulation

based on a clinical trial for HIV therapy to illustrate the use of Bayesian dynamic MSMs,

Bayesian singly and doubly robust estimators paired with a grid-search, and Gaussian process

emulation to identify optimal DTRs and ii) the creation of an R package that performs the

analyses using methods considered in this thesis, which requires a thorough classification of

the components needed to perform the proposed analyses. At the time of thesis submission,

this manuscript was under review in a statistical journal.
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Abstract

In this work, we examine recently developed methods for Bayesian inference of optimal

dynamic treatment regimes (DTRs). DTRs are a set of treatment decision rules aimed

at tailoring patient care to patient-specific characteristics, thereby falling within the realm

of precision medicine. In this field, researchers seek to tailor therapy with the intention of

improving health outcomes; therefore, they are most interested in identifying optimal DTRs.

Recent work has developed Bayesian methods for identifying optimal DTRs in a family

indexed by ψ via Bayesian dynamic marginal structural models (MSMs) [Rodriguez Duque

et al., 2022b]; we review the proposed estimation procedure and illustrate its use via the new

BayesDTR R package. Although methods in [Rodriguez Duque et al., 2022b] can estimate

optimal DTRs well, they may lead to biased estimators when the model for the expected

outcome if everyone in a population were to follow a given treatment strategy, known as

a value function, is misspecified or when a grid-search for the optimum is employed. We

describe recent work that uses a Gaussian process (GP) prior on the value function as a means

to robustly identify optimal DTRs [Rodriguez Duque et al., 2022a]. We demonstrate how a

GP approach may be implemented with the BayesDTR package and contrast it with other

value-search approaches to identifying optimal DTRs. We use data from an HIV therapeutic

trial in order to illustrate a standard analysis with these methods, using both the original

observed trial data and an additional simulated component to showcase a longitudinal (two-

stage DTR) analysis.
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5.1 Introduction

Precision medicine builds on the concept of evidence-based medicine to determine not just

the average efficacy of therapeutic or surgical interventions, but which intervention is right

for whom. With this aim in mind, statisticians have sought to develop methods that allow

for the discovery of tailored interventions. This has been done via statistical methods for

dynamic treatment regimes (DTRs). DTRs are a set of decision rules that take patient

information as inputs and that output a decision [Murphy et al., 2001]. Most importantly,

researchers in this realm have proposed methods that can determine the causal effect of being

assigned to a specific DTR and to identify optimal DTRs, that is, DTRs with the highest

expected outcome, or value. Frequentist inference has been given much attention to this

field while Bayesian methods have received significantly less heed. In this work, we examine

methods that allow for Bayesian causal inference of optimal DTRs, in particular methods

that can robustly identify the optimal strategy.

There are many frequentist methods for identifying optimal DTRs. These include though

are not limited to g-computation [Robins, 1986], g-estimation of structural nested mod-

els [Robins, 1993], Q-learning Murphy [2005b], dynamic marginal stuctural models (MSMs)

[Orellana et al., 2010a], and outcome weighted learning [Zhao et al., 2012]. Bayesian methods

have also been proposed, including by Saarela et al. [2015a] who use a predictive Bayesian

approach that requires the specification of parametric distributions for outcomes and inter-

mediate covariates, Murray et al. [2018] who propose a Bayesian adaptation to Q-learning,

Arjas and Saarela [2010] who use Bayesian non-parametric regression and backward induc-

tion, and Xu et al. [2016] who use Bayesian non-parametrics in a survival context, where

patients can transition between disease states. Recently, a Bayesian method for inferring

optimal DTRs via dynamic MSMs was developed [Rodriguez Duque et al., 2022b]. In ad-

dition to allowing for population-level inference, this approach also allows for individualized

inference by enabling a decision-maker to determine whether a patient with a specific set of
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characteristics is receiving optimal therapy.

Although Bayesian inference via dynamic MSMs provides a means for identifying optimal

DTRs, limitations remain; for example, inference hinges on the correct specification of a

marginal model. A Gaussian Process (GP) prior has recently been proposed to model the

value function and consequently identify optimal DTRs via a sequential sampling scheme

[Rodriguez Duque et al., 2022a]. In principle, GP-based methods can utilize any estimator

for the expected outcome under adherence to a DTR, known as the value for the regime, and

avoid some of the drawbacks associated with some value-search approaches. For example

using a dynamic MSM to directly model the value surface may not perform well if the model

is incorrectly specified. Alternatively, if a grid-search is used to obviate the issues of directly

modeling the value surface, an inefficient procedure results which may not correctly identify

the optimal DTR when the value function is multi-modal and which may be computationally

intractable when Bayesian estimators are utilized. Although identifying a local optimum may

result in improved treatment over standard practice, identifying the global optimum is of

importance, as only then can we claim a patient is receiving optimal therapy, especially when

the difference in value between the optima is of clinical significance. A Bayesian approach

that makes use of GPs to represent uncertainty in the value function has the potential to more

efficiently utilize information by strategically selecting experimental points that are expected

to be optimizers and by providing a very flexible model for the value function.

In this paper, we aim to review how a Bayesian approach may capitalize on semiparametric

inference as presented in Saarela et al. [2015b] and Rodriguez Duque et al. [2022b] in order

to identify optimal DTRs. This is important as the ideas required for this inferential ap-

proach are nuanced and therefore challenging for practitioners to implement. We introduce

a new package BayesDTR to illustrate how to utilize these methods in practice. With these

foundations in place, we further study how GP optimization can be used to identify opti-

mal DTRs, and we examine how the BayesDTR package provides functionalities to perform
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an analysis reliant on these methods. There are several packages available in the Com-

prehensive R Archive Network (CRAN) that performs estimation or inference about DTRs.

These include DTRreg which implements dynamic weighted least squares, g-estimation, and

Q-learning [Wallace et al., 2020], DTRlearn2 which performs outcome weighted learning

[Chen et al., 2020], DynTxRegime which permits several methods including inverse probabil-

ity weighting (IPW) and augmented IPW [Holloway et al., 2020], and SMARTbayesR which

allows for Bayesian inference of optimal DTRs with data arising from SMART designs with

binary outcomes [Artman, 2021]. Currently, there are no packages that allow for Bayesian

semiparametric inference of optimal DTRs, nor any that directly use GP optimization with

estimators for the value of a DTR.

This article is organized as follows: section 2 introduces recently developed Bayesian meth-

ods for identifying optimal DTRs, section 3 describes the functions in the BayesDTR that

allow for the use of these methods. For illustrative purposes, we adapt data from a clinical

trial on HIV therapy, available in the LongCART R package [Kundu, 2021], to perform a plas-

mode simulation depicting a standard analysis with these methods and package. Section 4

demonstrates how to use this package to perform a standard analysis with these methods.

We summarize and conclude in section 5.

5.2 Methods

5.2.1 Bayesian Dynamic MSMs for Optimal Dynamic Regimes

In this section, we examine how to perform inference for optimal DTRs via dynamic MSMs,

using the methods developed by Rodriguez Duque et al. [2022b]. To do this, the inferen-

tial setting must first be formalized and notation defined. Consider a multi-stage decision

problem with K decision points and final continuous-valued outcome y. At every decision

point k, a set of covariates xk is observed. It is assumed that these consist of all time-fixed

and time-varying confounders, if there are any. Covariate history up to time k is denoted by
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x̄k = {x1, ..., xk}, and observed treatment history up to stage k is given by z̄k = (z1, ..., zk),

zj ∈ {0, 1}. Subscripts are omitted when referencing history through stage K. All patient

information is grouped into b = (x̄, z̄, y). As interest is centered around examining the effect

of adherence to specific DTRs, the DTR-enforced treatment history can be considered by

g(x̄) = (g1(x1), ..., gK(x̄K)), gi(x̄i) ∈ {0, 1}. This is the sequence of treatments that would be

observed if a patient followed a treatment strategy g throughout the entire follow-up period;

it contrasts the treatment history z̄ that is observed in patients in an analytic dataset. The

observed treatment history z̄ and the DTR-enforced treatment history g(x̄) only coincide

in patients who have treatments consistent with those suggested by a DTR g. The DTR-

enforced treatment history up to stage k is given by ḡk(x̄k) = (g1(x1), ..., gk(x̄k)). Attention

is restricted to a family of DTRs indexed by ψ ∈ I to give G = {gψ(x̄);ψ ∈ I}. Note that

we only consider deterministic DTRs that assign treatment deterministically using patient

information. An example of a DTR indexed by a parameter ψ is one of the form "treat

at stage k when xk > ψk". Interest lies in two treatment and covariate distributions: the

observational world distribution PO which denotes the law giving rise to the data in the

study population, and the experimental world distribution PE , which is problem specific,

and should be defined such that causality can be inferred. Under these two worlds, the

marginal distribution of x1 is identical, and the dependence of xk on previous treatment and

covariates is also unchanged for k = 2, ..., K, however the component of the joint distribu-

tion governing treatment allocation differs. For example, Saarela et al. consider a world in

which treatments are sequentially randomized so that stage-specific treatment effects can be

estimated [Saarela et al., 2015b]. Rodriguez Duque et al. focus on an experimental world

where patients are randomly assigned to a DTR in I at study start [Rodriguez Duque et al.,

2022b]. Lastly, variables sampled from a posterior distributions are shown with ∗.

Inference for Bayesian dynamic MSMs begins by considering a utility U(b, gψ, β, ); focus

is on the negative squared error loss utility, U(b, gψ, β, ) = −(y − h(β, ψ))2, where h(β, ψ)

models EE [Y |G = gψ], indexed by an unknown parameter β and where the expectation is
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taken with respect to the true data-generating distribution in the experimental world. This

utility is of interest because it allows for an explicit model of the quantity of interest, the

expected outcome under assignment to a regime gψ, in a world where regime assignment is

unconfounded. For a Bayesian decision-maker, interest lies in the value of β that maximizes

the posterior expected utility EE [U(B∗, G, β)|b̄]. This is an expectation taken with respect

to the experimental measure in which patients are randomized to regimes in G at study

start, with probability p(G = g). The basis for this decision theoretic approach is well

laid out in Walker [2010]. When a finite set of regimes is considered, with patients having

equal probability of randomization, p(g) can be replaced with 1/CG, where CG = |I|. With a

chosen utility, the next step in this approach lies in linking E andO with respect to a posterior

predictive distribution. The required linkage is given by the following equation:

EE [U(B∗, G, β)|b̄] = EO

⎡⎣ 1
CG

∑︂
{ψ∈I}

wψ∗U(B∗, gψ, β)
⃓⃓⃓⃓
⃓⃓b̄
⎤⎦ , (5.1)

with weight wψ∗ given by

wψ∗ =
1gψ(X̄∗)(Z̄∗)∏︁K

j=1 pO(Z∗
j |Z̄∗

j−1, X̄
∗
j , b̄)

. (5.2)

The denominator in the weight is the treatment probability in the observational world. The

numerator is the probability of a sequence of treatments conditional on regime assignment;

as only deterministic DTRs are considered, these probabilities are either 0 or 1, thereby

yielding the indicator function. Randomization to regime gψ is equiprobable for all regimes

in the experimental world, and this is captured by the constant CG. The ∗ notation clarifies

that the expectation in equation (5.1) is taken with respect to a posterior predictive distribu-

tion. For equation (5.1) to hold, a patient following regime gψ with recorded history (x̄K , z̄K)

should have a positive probability of being observed in the observational world; effectively

this is the positivity condition encountered in the causal inference literature [Murphy et al.,

2001]. Additionally, as is frequently found in the causal inference literature, the sequential

no unmeasured confounders assumption is also required [Murphy et al., 2001]. Note that the
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weight formula is not stabilized and that having a stabilization term involving the marginal

treatment probabilities in O would change E to one where the marginal treatment probabil-

ities are as in O. It may be that the resulting probability law in E is not well defined, given

that treatments in E are dictated by DTRs.

Having linked the experimental world with the observational world, focus becomes centered

on how to infer about the parameters of interest β. Equation (5.1) now allows for the use of

observed world data to perform posterior inference in the experimental world. To perform

Bayesian inference in this setting, a prior must be specified. Unlike parametric Bayesian

inference, where a prior for β is specified directly, a prior is placed on the family of data

generating distributions in the observational world PO, denoted by PF . Effectively, this prior

induces a prior on β as PB(β ∈ Ω) = PF({PO : β(PO) ∈ Ω}). The prior of choice is the non-

parametric Dirichlet process DP(α,Gx) prior with scaling parameter |α| → 0. This prior has

the benefit of converging asymptotically to the true data-generating distribution [Ghosal and

van der Vaart, 2017]. Under this specification, the Bayesian bootstrap yields the posterior

predictive distribution [Rubin, 1981]. A sample drawn from the posterior DP is given by

pO(b∗|b̄, π) = ∑︁n
i=1 πi1bi(b∗), where π = (π1, ..., πn) is a sample from π ∼ Dir(1, ..., 1),

a Dirichlet distributed random variable with all concentration parameters equal to one.

Under the DP prior that yields the Bayesian bootstrap, any distribution sampled from the

posterior DP is uniquely determined by π. Stephens et al. [2022] provide further details on

the DP model and its consequences on Bayesian causal inference. Incorporating these prior

assumptions allows for the expected posterior experimental world utility to be computed

as:

EE [U(B∗, G, β)|b̄] = Eπ[EE [U(B∗, G, β)|b̄, π]] = Eπ

⎡⎣ 1
CG

n∑︂
i=1

∑︂
ψ∈I

πiw
ψ
i U(bi, gψ, β)

⎤⎦ . (5.3)

Note that the right-most expression depends only on observed data, hence the ∗ notation is

dropped; this includes dropping the ∗ from the weight wψi , as it is no longer a random variable
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but rather an instantiation of that random variable. With this expression for the posterior

expected utility, focus turns to maximization. The maximizer of the experimental world ex-

pected posterior utility can be obtained by solving: βopt = arg maxβ Eπ
[︂∑︁n

i=1 πi
∑︁
ψ∈I w

ψ
i U(bi, gψ, β)

]︂
.

Uncertainty in βopt may be characterized by noting that βopt is a deterministic function of π,

in arguments similar to those in Walker [2010]. Thus, draws from the posterior distribution

of βopt can be done via:

β∗
opt(π) = arg max

β

n∑︂
i=1

πi
∑︂
ψ∈I

wψi U(bi, gψ, β).

This relationship emphasizes that uncertainty in the posterior distribution reflects uncer-

tainty in βopt. CG may be disregarded for the purposes of predictive inference. This is an

exact Bayesian procedure, modulo Monte Carlo error. Under the specified negative squared

error loss utility inference is arrived at by solving:

β∗
opt(π) = arg max

β

⎡⎣− n∑︂
i=1

πi
∑︂
ψ∈I

wψi (yi − h(β, ψ))2

⎤⎦ . (5.4)

From equation (5.3), it is evident that to draw inference in the experimental world, the weight

wψ needs to be computed; this leads to modeling the treatment assignment probabilities.

For each draw of π a model pO(zj|z̄j−1, x̄j, γj(π)), k = 1, ..., K can be considered. The

parameters γj may be regarded as coming from a posterior utility maximization framework

with the same DP prior. When the utility is the log-likelihood, the following maximization

is required:

γ∗
k,opt(π) = arg max

γk

n∑︂
i

πi log pO(zi,k|z̄i,k−1, x̄i,k, γk).

Then, for every draw π, the weighted treatment propensity model can be fit, and the resulting

weight, wψ, in equation (5.2) is now dependent on π. Effectively, for each draw π, computing

βopt(π) is coupled with computing γk,opt(π). Thus across draws of π, uncertainty in γj is being

incorporated into the estimation procedure. From a practical perspective, the glm function
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in R can be used to fit these models, making use of the weights argument to supply the

relevant information; the optimizer for the negative squared error loss utility is the same as

that which maximizes the Gaussian likelihood. There is some flexibility in the specification

of h(β, ψ). One example is h(β, ψ) = β0 + β1ψ+ β2ψ
2, which can be maximized analytically

to identify an optimal DTR. To fit this model requires plugging in h(β, ψ) into equation

(5.4) and solving it. To solve equation (5.4) requires a data augmentation procedure that

duplicates patient data rows for as many regimes as to which they are adherent. This

procedure is detailed in Cain et al. [2010] with further considerations for the specification

of these models found in Rodriguez Duque et al. [2022b]. A description for the estimation

procedure can be found in Algorithm 1.

Data: DATAO // One row per patient; n patients
for ψ ∈ I do // Create AUGDATAO based on regime adherence

Duplicate rows of DATAO for patients adherent to regime gψ
Add column specifying regime index ψ

end
Posit model for h(β, ψ)
for i← 1 to B do // B is number of posterior draws

Draw π = (π1, ..., πn) from Dir(1, ..., 1)
Using weighted logistic regression, estimate pO(zk|z̄k−1, x̄k, γk, π) ∀k
Compute weights wψi , i = 1, ..., n, using probabilities in the previous step
Add weights to AUGDATAO

Perform regression with mean h(β, ψ) and with weights πiwψi to obtain β∗
opt(π)

Maximize h(β(π), ψ) to obtain a sample from ψ∗
opt(π)

end
Output: Posterior distribution of ψ∗

opt

DATAO is an input dataset with one row per patient and is used to fit treatment
models. AUGDATAO is an augmented dataset, where patients are duplicated for each
DTR to which they adhere. This dataset is used to run regression for h(β, ψ).

Algorithm 1: Fitting procedure for Bayesian dynamic MSM and for identifying ψopt.

In the remainder of this section, we introduce three additional Bayesian methods of estima-

tion and inference for optimal DTRs (via inverse weighting with a grid-search in section 2.2,

via a doubly robust grid-search approach in 2.3, and using Gaussian processes to emulate the

value function in 2.4, with additional considerations for individualized inference in section
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2.5 and normalization of IPW weights relevant to the methods of sections 2.2-2.3 in section

2.6). As with dynamic MSMs, the target of inference of the methods in sections 2.2 and 2.3

is a marginal mean, namely the expected outcome under adherence to a regime gψ. Impor-

tantly, one difference in the terminology used in this paper is that dynamic MSMs allow for

parametric models of the value given gψ for a continuum of ψs, whereas methods in sections

2.2 and 2.3 target the value of a regime, one regime at a time.

5.2.2 Optimal DTRs via Bayesian IPW Inference

and a Grid-Search

It may be that we want to avoid using the methods in the previous section, as we do not

want to model the value function directly with h(β, ψ). This can be because an incorrectly

specified model may lead to incorrectly identifying the optimal DTR. One way to avoid this

is to use an estimator for the value of a DTR and to perform a grid-search for the optimum

over the indices I in a family. This requires estimating the value under adherence to a

regime for a discrete grid of indices, Igrid ⊆ I. One way to estimate the value of each regime

in the grid is to use the Bayesian IPW which uses a similar framework as in the previous

section, with a few differences. In particular, posterior predictive inference is paired with

IPW to yield an inferential procedure that uses weighting to create an importance sampling

projection of O into a regime-enforced world were everyone in the study population follows a

fixed regime gψ. This allows us to use data from O, where not all patients follow the regime

of interest, to infer about a regime-enforced world. This regime-enforced world contrasts

the previously considered experimental world where patients are randomized to DTRs in a

family at baseline. If we use this method of estimation to compute Egψ [Y ∗|b̄] for each regime

in the grid, we can then identify the regime yielding the highest value.

As with the Bayesian MSM, an importance sampling argument and a DP prior on the
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observational world data-generating distribution, leads us to the following:

Egψ [Y ∗|b̄] = Eπ[Egψ [Y ∗|b̄, π]] = Eπ

[︄
n∑︂
i=1

πiw
ψ
i yi

]︄
. (5.5)

The weights wψi are computed as in the previous section. Over repeated draws of π, we

can compute an estimate for Egψ [Y ∗|b̄] and its associated variability, relying again on the

Bayesian bootstrap to provide an appropriate posterior predictive distribution. Defining

ỹψ(π) = Egψ [Y ∗|b̄, π], for conciseness, the optimal regime and its associated variability can

be obtained by computing ψopt(π) = arg maxψ∈Igrid{yψ1(π), ..., yψp(π)}, where p = |Igrid|, for

each draw of π. The treatment models can be incorporated into the estimation procedure

in the same way as in the previous section.

In practice, for each draw of π, treatment models are fit using the entire observed data

and the probability that patients received the treatment they were observed to receive,

pik(π) = pO(zi,k|z̄i,k−1, x̄i,k, γ
∗
k,opt(π)), is computed for each decision point. Then, for each

regime in Igrid, weights wψ are computed. Patients who do not follow regime gψ will have a

weight of zero, meaning they do not contribute directly to the IPW expression. Patients who

do follow regime gψ have weights that depend on pik(π), k = 1, ..., K. Although patients

who do not adhere to regime gψ do not contribute directly to the IPW expression, they

do contribute to the analysis as they inform the treatment assignment models. Once the

value of each regime in Igrid has been estimated, the regime that optimizes the value can

be identified in order to identify ψ∗
opt(π). This procedure can be repeated over draws of π in

order to obtain the posterior distribution of the optimal regime.

5.2.3 Optimal DTRs via Bayesian Doubly Robust Inference

and a Grid-Search

Another related approach, which has been explored by Rodriguez Duque et al. [2022b] to

identify optimal DTRs, is to perform a grid-search using Bayesian posterior predictive infer-
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ence and the doubly robust (DR) estimator proposed by Orellana et al. [2010a]. Bayesian

predictive inference was first paired with doubly robust estimators by Saarela et al. [2016]

to estimate the effect of static treatment regimes. Attention is first given to the character-

istics of this estimation approach in order to arrive at a Bayesian estimate of the expected

outcome under adherence to a regime gψ. In the context of identifying an optimal DTR, the

doubly robust estimator can then be used to estimate the value of a discrete set of regimes

in a family indexed by I and the optimal regime in the family identified via a grid-search,

as presented in the previous section. This means that, like in the previous section, a model

h(β, ψ) does not need to be specified. In particular, the DR estimator used yields consis-

tent inference when either a set of treatment models is correctly specified or when a set of

outcome models is correctly specified. Thus, in addition to fitting a sequence of treatments

models, as is needed with the IPW estimator, the doubly robust estimator requires that a

sequence of conditional outcomes ϕψ∗
k , k = 1, ..., K be estimated. These are defined as

ϕψ∗
K (x̄K) = EO[Y ∗|X̄∗

K = x̄K , Z̄
∗
K = ḡψK(x̄K), b̄] for k = K and as

ϕψ∗
k (x̄k) = EO[ϕψ∗

k+1(x̄k+1)|X̄∗
k = x̄k, Z̄

∗
k = ḡψk (x̄k), b̄] for k = K − 1, ..., 1.

Note that these expectations are taken with respect to the probability distribution form

the observational world, conditional on subjects who have covariate history x̄k and who

followed the regime gψ up to time k. These ϕψ∗
k can be interpreted as the posterior expected

outcome conditional on covariates x̄k and treatments z̄k = ḡk(x̄k) in a world where regime

gψ is followed from stage k + 1 to K. We use the ∗ notation on the ϕs to emphasize that

they are expectations taken with respect to a posterior distribution. Further details on

these quantities can be found in Orellana et al. [2010a]. It can be shown via a conditional

expectation argument that Egψ [Y ∗|b̄] = EO[ϕψ∗
1 (X∗

1 )|b̄], the estimand of interest.

The next section describes how models for ϕψ∗
k may be fit using regression by parameterizing

them with τ such that ϕψ∗
k (x̄k) = ϕψ∗

k (x̄k; τ). With these models fit, uncertainty in the pa-
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rameters can be treated analogously to how uncertainty in γ is treated: it is made dependent

on π via the Bayesian bootstrap. Rather than positing a likelihood model as was done for

the treatment assignment mechanism, a negative squared error loss utility can be maximized

instead. The result is that for every draw of π, ϕ∗
k(x̄k, τ(π)) can be estimated.

Now that these outcome models have been specified, it remains to provide an expression

that exhibits the double robustness property when the expectation is taken with respect

to the true data generating mechanism. Such an expression is obtained from the following

equality:

Egψ [Y ∗|b̄] = EO

[︄
ϕψ∗

1 (X∗
1 ) +

K∑︂
k=2

wψ∗
k−1(ϕ

ψ∗
k (X̄∗

k)− ϕψ∗
k−1(X̄∗

k−1)) + wψ∗
K (Y ∗ − ϕψ∗

K (X̄∗
K))

⃓⃓⃓⃓
⃓ b̄
]︄
.

(5.6)

Then, the expression inside the expectation on the right hand side exhibits the double

robustness property if the outcome models ϕψ∗ are correctly specified or if the treatment

models in wψ∗
k are correctly specified. Note that parameters γ and τ in the models have been

suppressed for brevity. We note that for this expression to possess the desired property,

the positivity condition and the no unmeasured confounders assumption in Orellana et al.

[2010a] must be met. To incorporate the sampling scheme, a single sample from the posterior

distribution of the estimand of interest can be obtained by conditioning on a single draw π

in order to obtain:

Egψ [Y ∗|b̄, π] =
n∑︂
i=1

πi

[︄
ϕψ

∗

i1 (xi1) +
K∑︂
k=2

wψik−1(ϕ
ψ∗
ik (x̄ik)− ϕψ∗

ik−1(x̄ik−1)) + wψiK(yi − ϕψ∗
iK(x̄iK))

]︄
.

(5.7)

By resampling Dirichlet weights, Egψ [Y ∗|b̄] = Eπ
[︂
Egψ [Y ∗|b̄, π]

]︂
and its associated uncertainty

can be computed. Models for the ϕs and ws are coupled with π and may be incorporated into

the inferential process as was done with the IPW estimators of the previous two sections.

To arrive at an optimal regime, this DR estimator can be used to perform a grid-search for

the optimum.
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Fitting Outcome Models

To fit the outcome models, some additional definitions are required. First, define the func-

tion

Qψ∗
K (x̄K , z̄K) = EO[Y ∗|X̄∗

K = x̄K , Z̄
∗
K = z̄K , b̄] and the stage K pseudo-outcome as

∆ψ∗
K (x̄K , z̄K−1) = Qψ∗

K (x̄K , z̄K−1, zK = gψ(x̄K)).

This is the expected outcome under observed treatment and covariate values, except for

at stage K where treatment is assigned according to regime gψ. For the remaining stages

k = K − 1, ..., 1 define

Qψ∗
k (x̄k, z̄k) = EO[∆ψ∗

k+1|X̄∗
k = x̄k, Z̄

∗
k = z̄k, b̄], with stage k pseudo-outcome

∆ψ∗
k (x̄k, z̄k−1) = Qψ∗

k (x̄k, z̄k−1, zk = gψ(x̄k)).

Then, as elaborated on in Tsiatis et al. [2019], we can compute the quantities of interest

through ϕψ∗
k (x̄k) = Qψ∗

k (x̄k, ḡk(x̄k)) for k = 1, ..., K. Of course, in practice Qψ∗
k and ∆ψ∗

k

are unknown, consequently regression models for Qψ∗
k should be fit and ∆ψ∗

k predicted based

on these models. Once all models for Qψ∗
k have been fit, then ϕψ∗

k (x̄k) can be estimated.

The functions in the BayesDTR package render the estimation of these outcome models

straightforward, as all that is required is that users specify the stage-specific models for the

pseudo-outcomes (or outcome if at the final stage); the package will perform the required

computations in order to arrive at a fit for the ϕψ∗
k s. This regression approach is one of

several ways to fitting the required outcome models, with Tsiatis et al. [2019] expanding on

other methods that can be used.

With these definitions, we now provide a two-stage example of how to obtain estimates for

the ϕψ∗
k s. For illustrative purposes, we omit notation pertaining to posterior inference, and

then comment on how to incorporate this. The estimation procedure begins by specifying
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the following two models:

Qψ
2 (x̄2, z̄2) = E[y|x̄2, z̄2] = β21x1 + (β22 + β23x1)z1 + β24x2 + (β25 + β23x2)z2, (5.8)

Qψ
1 (x1, z1) = E[∆ψ

2 |x1, z1] = β11x1 + (β12 + β13)z1, (5.9)

where ∆ψ
2 = E[Y |X̄2 = x̄2, Z1 = z1, Z2 = gψ2 (x̄2)]. We can use, for example, the lm function

in R to fit these models. Note that ∆ψ
2 is not observed and so it must be predicted using the

stage two model. Once these models have been fit, we may compute the outcomes for the

doubly robust estimator by using the data and the estimated models to predict:

ϕψ2 (x̄2) = Qψ
2 (x̄2, ḡ

ψ(x̄2)) = β21x1 + (β22 + β23x1)gψ1 (x1) + β24x2 + (β25 + β23x2)gψ2 (x̄2),

ϕψ1 (x1) = Qψ
1 (x1, g

ψ(x1)) = β11x1 + (β12 + x1)gψ1 (x1).

To incorporate the posterior sampling component, it is necessary to additionally weight by

π when fitting models in equations (5.8) and (5.9) so that the estimated βs are dependant

on π. This can be done through the weights argument in the lm function. These outcomes

may then be used in equation (5.7) to obtain an estimate of the value under adherence

to a DTR gψ. Over repeated draws of π, Egψ [Y ∗|b̄] and its associated uncertainty can be

computed. Having computed these estimates of the value for all candidate regimes in Igrid,

the value-maximizing regime is selected as optimal.

5.2.4 Identifying Optimal DTRs via Gaussian Process Emulation

As discussed in the preceding sections, there are several value-search approaches to identi-

fying optimal DTRs. The value surface can be modeled directly via a dynamic MSM and

consequently maximized or a grid-search can be employed in order to identify the optimal

regime. Directly modeling the value surface with a dynamic MSM can yield accurate, in-

terpretable results, but this is only guaranteed when the value surface is correctly specified;
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for example, incorrectly specifying a quadratic MSM can lead to inadequate inference about

optimal regimes if the relationship is not in fact quadratic or poorly approximated by such

a function over the range of ψs considered. A grid-search also has limitations in that it may

not robustly identify the optimal regime, especially when the estimator used exhibits higher

variability in some regions of the decision space than in others or when the value surface

is multi-modal. In addition, the grid-search is not a particularly efficient approach as it

requires many estimator evaluations, which may be computationally burdensome, especially

in Bayesian settings where posterior predictive quantities must be computed. An important

question that arises from these considerations is whether these limitations can be avoided

by alternate methods.

One approach recently explored by Rodriguez Duque et al. [2022a] is to make use of com-

puter experiments to identify optimal DTRs. The term "computer experiment" refers to the

idea of sampling function values at strategically chosen points in order to approximate the

function, with a limited number of samples. In a DTR context, this involves considering

a DTR family, indexed by ψ ∈ I, selecting an initial set of design points in I, and using

an estimator for the value of a DTR at these points. With a working model for the value

surface, more points can be selected sequentially using a criterion that specifies where an

optimum may be. Traditional approaches for computer experiments use regression-based

methods to approximate a response surface of interest, like the value surface. However,

these approaches have been critiqued, for example, by Huang et al. [2006] who emphasize

that regression models are often too simple and unlikely to well-represent complex systems

over the entire domain. This critique is analogous to the concerns that arise when using

smoothly modeled MSMs to identify optimal DTRs.

Contemporary literature on computer experiments focuses on using GPs to approximate com-

plex functions and to identify optimizing points [Santner et al., 2018]. A GP is a stochastic

process where any finite collection of variables in the process has multivariate Normal distri-
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bution. Much of the computer experiments literature has centered around settings in which

the function to be maximized is known. However, it should be apparent that this is not the

scenario under consideration here in the DTR context. In particular, an analyst wishing to

perform a DTR analysis does not have access to direct observations of the value function;

they have access only to a noisy, estimated version of the value function. With this nuanced

difference in mind, some further considerations are required.

In order to better understand the problem characteristics, some terminology regarding the

functional relationships in the problem should be set. The target of inference is the value

surface which represents the relationship between a DTR gψ idexed by ψ and its value

Egψ [Y ]. As the value surface is not accessible, it must be approximated via the estimation

surface, a surface that results from point-wise evaluation of an estimator to obtain Êgψ [Y ]

for varying ψ ∈ I. Evaluating the estimation surface on a fine grid is not desirable as

not all points on the grid provide the same information about the optimal DTR’s location.

It would be beneficial to have a sample where each data point provides a high level of

information toward identifying the optimizing point. Consequently, the aim is to use a

restricted number of points from the estimation surface to produce an emulation surface

which represents posterior belief about the value surface based on the information gathered

from the estimation surface, with the goal of performing fewer evaluations than would be

needed for the grid-search approaches of sections 2.2 and 2.3. As will be clarified in what

follows, this posterior belief will be represented by a GP .

Another consideration is that belief about the value surface should emphasize some smooth-

ness, however the estimation surface used to infer about the value surface is not smooth.

This is because it is the result of point-wise evaluations of an estimator which utilizes a finite

sample to generate an estimate. Recent work concludes that this non-smooth or noisy quality

may be heteroskedastic and consequently an inferential approach that accounts for this char-

acteristic may be desirable [Rodriguez Duque et al., 2022a]. Authors in Rodriguez Duque
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et al. [2022a] examine some methods that allow for optimization via GP , while accounting

for the noise structure. They find that a homoskedastic treatment of the problem yields

improved results over a GP method that does not account for noise or a grid-search, while

providing comparable results to an approach that allows for heteroskedastic noise and that is

more computationally intensive. The implementation in the BayesDTR package focuses on a

homoskedastic treatment of the noise structure in order to perform optimization; we review

this here. The estimation process begins by positing that the estimation surface is a noisy

version of the value surface which is denoted by f(ψ):

υi = f(ψi) + ϵi , ϵi ∼ N(0, γ2), i = 1, ...,m, (5.10)

with m being the number of observed points on the estimation surface. Using a Bayesian

non-parametric framework, a GP prior is placed on f ; this prior allows for f to belong

to a broad class of continuous functions. Practically, this means that for any ψ , f |ψ

is N(µ0, K) with covariance matrix K computed via a covariance function k(ψi, ψj) and

parameterized by ηf = (θf , σ2
f ). θf is a vector, where entries θfd control the correlation

between points in the dth dimension; σ2
f scales the correlation function to yield the covariance.

Bayesian formulations of this problem have been advocated for by O’Hagan et al. [1999],

who emphasize that uncertainty in f is not solely aleatory. For example, in a setting where

γ2 = 0, f is a "knowable" function in the sense that it can be evaluated at different values

of ψ. However, as it has not been evaluated at all values, there is uncertainty about the

function’s values in the locations where it has not yet been observed. This uncertainty is

not sampling uncertainty arising from the variability in output under a sequence of identical

experiments. Prior to continuing, some further notation should be defined, recalling that

in this problem the units of observation are now sample points from the estimation surface,

not sample points (x̄, z̄, y) relating to patient information which are fixed at a sample size n.

In this problem, data are observed as D = {ψi, υi}mi=1, and the following vectors are defined
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ψ = (ψ1, ..., ψm)T , υ = (υ1, ..., υm)T and f = (f1, ..., fm)T . Recall that ψi is the regime index

for the ith regime (sample point) in the sample and that it could be a vector quantity.

Assuming known hyperparameters, the posterior distribution for the value of a new obser-

vation ψm+1 is given by:

f ∗
m+1|ψm+1, ηf , γ

2,D ∼ N(µf∗
m+1

, σ2
f∗
m+1

)

µf∗
m+1

= µ0 + kT (K + γ2Im)−1(υ − µ0f )

σ2
f∗
m+1

= k(ψm+1, ψm+1)− kTm+1(K + γ2Im)−1km+1,

(5.11)

with km+1 being the covariance vector between observed points ψ and the new point ψm+1.

The posterior distribution for value of an observation on the noisy estimation surface is given

by:

υ∗
m+1|ψm+1, ηf , γ

2, γ2
m+1,D ∼ N(µυ∗

m+1
, σ2

υ∗
m+1

)

µυ∗
m+1

= µf∗
m+1

σ2
υ∗
m+1

= k(ψm+1, ψm+1)− kTm+1(K + S)−1km+1 + γ2.

(5.12)

In an empirical Bayes framework the posterior predictive distribution is given by p(υ∗
m+1|ψm+1,D) =

p(υ∗
m+1|ψm+1, ηf , γ

2,D), meaning the parameters are assumed known even though they must

be estimated in practice. These are estimated by maximizing the likelihood p(υ|ψ, ηf , γ2).

This maximization is performed in the BayesDTR package, using the concentrated likelihood

discussed in Roustant et al. [2012] and Park and Baek [2001]. The concentrated likelihood is

obtained by plugging-in estimated parameters that have maximum likelihood estimates with

analytic expressions. We clarify this in what follows, but first it must be noted that these

likelihoods are not always easy to maximize, even with gradient methods, so it is advisable

to perform the maximization with several random starting locations as is made possible with

the DesignFit function to be discussed in later sections.

In order to maximize the likelihood, the covariance function must first be specified. Common
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choices for the covariance functions, which yield smooth sample paths, are the Matérn3/2

and Matérn5/2 covariances. The Matérn3/2 covariance function between two regime indices

ψi, ψj is given by:

k(ψi, ψj) = σ2
f

D∏︂
d=1

(︄
1 +
√

3|ψid − ψjd|
θfd

)︄
exp

(︄
−
√

3|ψid − ψjd|
θfd

)︄
,

where D is the dimension of ψ and ψid and θfd are the dth entries in the ψi and θf vec-

tors, respectively. This product emphasizes the point that different candidate rules in G

should have the same dimension, and each entry in the index should represent the same rule

element.

Although empirical Bayes requires maximizing a likelihood dependent on parameters µ0, ηf , γ
2,

the maximization is more efficiently performed by changing the parameterization. We now

provide this new parameterization; full details of this parameterization can be found in

Roustant et al. [2012]. By defining α = σ2
f/(σ2

f + γ2) and considering the correlation ma-

trix R defined by K = σ2
fR, (K + γ2Im) can be re-expressed as v(αR + (1 − α)Im), where

v = (σ2
f + γ2). This re-parameterization results in a likelihood dependent on µ0f , θf , v, α,

whereas the likelihood in the original parameterization dependended on µ0f , θf , σ
2
f , and γ2.

As there are analytic expressions for the optimal µ0f and v, the user only needs to concentrate

on the maximization in the θf and α directions.

Priors for θf can be incorporated independently for each dimension d, for example, via a Log-

Normal prior distribution with parameters µd, σ2
d, which can be used to express belief about

the size of θfds and consequently the correlation between points. This prior is independent for

each θfd and can be added into the log concentrated likelihood with the following term

D∑︂
d=1
−(log(θfd)− µd)2

2σ2
d

− log(θfdσd
√

2π). (5.13)

Maximizing the concentrated log likelihood with the added term above amounts to maximum
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a posteriori inference, where parameter estimates are fixed at the maximizers of the posterior

distribution. One approach to setting the prior hyperparametrs is to identify what a 10%

change is in the direction of interest. Then, the hyperparameters should be chosen such that

the 5th and 95th percentiles of the Log-Normal distribution yield a correlation between 0.05

and 0.95. This posits that in the direction of interest, a unit change of 10% of the range of

values will have function outputs that can either be very different from each other or very

similar. This is similar to Lizotte [2008], who set hyperparameter values that prevent the

θfds from getting very small or very large, thereby preventing that function’s value from

being nearly exactly correlated or uncorrelated.

Sequential Sampling and Stopping Considerations

Recall the desired experimental setup: an initial set of design points are obtained and an

initial model is fit on these data. This model, together with a rule for sampling additional

points is used to identify new points that are most informative about the optimization

process. The rule used to identify new points to sample is generally termed an infill criterion,

and a review of possible criteria for stochastic computer experiments can be found in Picheny

et al. [2013]. The focus here lies in using the well-known expected improvement criterion

[Jones et al., 1998] as the infill criterion. In the deterministic setting, Frazier and Wang

[2016] mention that this criterion benefits from a result that states that the true optimum

will be identified as the number of experimental points increases, as shown by Locatelli

[1997]; this is not guaranteed in the stochastic setting, as uncertainty remains in already

observed points, thus requiring for some adaptations.

One solution for this, proposed by Forrester et al. [2006], is to use a re-interpolation ap-

proach. To perform the re-interpolation, the mean υ̂m = E[υ∗
m|ψm,D] is computed for each

observed data point; this results in a new dataset D′ = {ψi, υ̂i}mi=1. A GP can then be fit

on these new data, assuming there is no noise, ϵ, in the process. The resulting GP has the

property that there is zero uncertainty at already sampled points, thereby allowing for the
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use of the expected improvement criterion as a basis for sequential sampling. When the ob-

jective is maximization, this criterion is given by EI(ψ) = E [max(0, υ(ψ)− υmax)|D′], with

υmax = max(υ1, ..., υm). It is important to understand what this criterion means, in order

to understand why it should be maximized to identify new points to add to the sample. At

a point ψnew where υmax is expected to be greater than υ(ψnew), this criterion is zero. At a

point ψnew where υ(ψnew) is expected to be greater than υmax, this criterion is large, with

magnitude increasing with the difference in values. Therefore, maximizing this criterion adds

points to the sample that are believed to have a higher value than the currently observed

maximizer. Importantly, the expectation is taken with respect to the posterior distribution

and it can be further developed to yield the well-known formula:

EI(ψ) = (µυ∗
m+1

(ψ)− υmax)Φ
(︄
µυ∗

m+1
(ψ)− υmax

συ∗
m+1

(ψ)

)︄
+ συ∗

m+1
(ψ)Φ̇

(︄
µυ∗

m+1
(ψ)− υmax

συ∗
m+1

(ψ)

)︄
(5.14)

when συm+1(ψ) > 0 and 0 otherwise. Φ is the CDF of the Standard Normal distribution and

Φ̇ is the pdf.

As the expected improvement is zero at each visited point, it is clear that the function exhibits

multi-modality. Maximization of this function can be performed via a genetic algorithm, as

is done in Roustant et al. [2012], and implemented by Mebane, Jr. and Sekhon [2011] with

the rgenoud package in R.

Finally, one natural question that arises is when to stop sampling. One approach may be to

stop sampling when the expected improvement at newly sampled points plateaus near zero.

Another approach, which we utilize in the illustrative example in section 4, is to plot the

newly sampled points in order of sampling, to determine if sampling has converged around

a specific region, which may suggest that the algorithm is sampling in a region where it

believes the optimum to be.
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Uncertainty Quantification and Fitting Procedure

One important element that should be addressed is the quantification of uncertainty in the

estimated optimal DTR. In a grid-search, uncertainty in the optimum can be estimated via

the Bayesian bootstrap. However this can be computationally intractable if the estimator

employed arises from a posterior distribution with no analytic expression for the mean, as

this requires complex computation for each bootstrap sample. Furthermore, bootstrapping

the grid-search does not quantify uncertainty arising from the grid size selected. Certainly a

coarse grid should have a different level of uncertainty about the optimizer than a fine grid,

however, it is not clear how to quantify this.

With the GP approach presented, a Bayesian bootstrapping scheme can also be used to

quantify sampling uncertainty. It can be further combined with the posterior uncertainty

which represents uncertainty in the value function after having sampled m points form the

estimation surface. For example, for each bootstrapped sample, N sample paths can be

obtained from the posterior distribution and the optimum identified for each of these sample

paths. Over bootstrapped samples, the resulting distribution of optima is reflective of both

uncertainties. In what follows, we will examine how to quantify uncertainty in this manner

with the BayesDTR package. This is of course a computationally intensive procedure.

In Algorithm 2, we provide a full description of how to identify optimal DTRs with the

discussed GP methodology.

5.2.5 Individualized Inference

The Bayesian methods discussed so far permit individualized inference. This is best under-

stood via an example. Consider the regime "treat if x > ψ" and suppose that a new patient

is observed with covariate value xnew. Interest lies in deciding whether this patient should

receive treatment, based on what is known about the optimal threshold, ψopt. This involves

computing P (xnew > ψ∗
opt|b̄) by taking a sample of size m from the posterior distribution of
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/* First obtain point estimates for ψopt */
Estimate value, ỹψ := Egψ [Y ], at experimental points P = {ψ1, ..., ψm}
Estimate GP parameters
Perform re-interpolation as in Forrester et al. [2006]
do

Sample new point by solving ψnew = arg maxψ{EI(ψ);ψ ∈ I}
Estimate value at ψnew
Add ψnew to experimental points: P = {ψnew} ∪ P
Identify ψopt = arg maxψ{ỹψ;ψ ∈ P}
Estimate GP parameters and perform re-interpolation;

while Not converged // Assess convergence as in section 2.4.1
Set m+ = |D| // Now have point estimate for ψopt

/* Now computing variability around optimal thresholds */
for i← 1 to B do // B is number of Bayesian bootstrap draws

Draw π = (π1, ..., πn) from Dir(1, ..., 1)
/* Estimates, ỹψ(π), now depend on π as in section 2.2 and 2.3 */
As above, sequentially sample points by maximizing EI(ψ) and updating GP
parameters

Stop sampling when total of m+ experimental points are in P
Draw N sample paths from posterior GP
Compute optimizer for each sampled path
Store vector of length N , containing N optimizers

end
Output: Vector of length N ·B containing posterior distribution of ψopt

Algorithm 2: Finding optimal DTRs using GP emulation.

ψ∗
opt and computing p = (1/m)∑︁ψ 1(xnew > ψ∗

i ). Given uncertainty in ψopt, this measure

informs a decision maker about the probability that xnew is above the true optimal threshold.

Effectively, then, it provides evidence for whether the patient should receive treatment if the

optimal regime is to be followed. This approach is relevant to all types of decision rules. We

will see in the illustrative example how to implement this individualized inference about the

treatment decision.

5.2.6 Frequentist and Normalized Estimators

The Bayesian approaches discussed in sections 2.1-2.3 all have frequentist counterparts. Point

estimates for the quantities of interest can be arrived at in a straightforward manner. For
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the dynamic MSMs in section 2.1, it is necessary that πi for i = 1, ..., n be removed from

equation (5.4). Solving this new equation will yield the frequentist point estimates. For

the IPW method, it is required that the expectation in equation (5.5) be computed to yield∑︁n
i=1

1
n
wψi yi, as Eπ[πi] = 1/n. For the doubly robust approach, it is required that the πi in

equation (5.7) be replaced with 1/n. Treatment models are now fit without any dependence

on π.

In practice, using estimators with less variability can improve the resulting inference. In the

case of the IPW and DR estimators, it is clear that reducing the variability in the weights

will reduce the variability in the estimator. This may be achieved via normalized weights.

Weight normalization is discussed in Hernán and Robins [2020], and has been explored in

Xiao et al. [2010], as a means of reducing variability in weighted estimators. In this Bayesian

setting, there is a contribution to the weights from the importance sampling weights and from

the Dirichlet weights. For each sample of Dirichlet weights π = (π1, ..., πn), the normalized

weights can be defined as:

w̄ψik =

πi1ḡψ
k

(x̄ik)(z̄ik)yi∏︁k
j=1 pO(zij|z̄ij−1, x̄ij)

n∑︂
i=1

πi1ḡψ
k

(x̄ik)(z̄ik)∏︁k
j=1 pO(zij|z̄ij−1, x̄ij)

, k = 1, ..., K. (5.15)

Taking the expectation in the numerator and the denominator across π yields the normalized

weights that could be used in a frequentist analysis as in Hernán and Robins [2020]. Replacing

πiw̄
ψ
ik in the IPW or DR estimator by the weight in equation (5.15) yields the normalized

estimators.

5.3 Implementation

In this section, we examine the functions in the BayesDTR package that can be used to

carry out inference with the methods described previously. We first examine the BayesMSM
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function, which permits identification of optimal DTRs using Bayesian dynamic MSMs,

IPW, and doubly robust estimators. We then focus our attention on the DesignFit and

SequenceFit functions which perform estimation using the GP methodology of section 2.4.

We also examine the FitInfer function which allows for the quantification of uncertainty

in the optimal DTR when using GPs.

5.3.1 Functions to Identify Optimal DTRs using Bayesian Dy-

namic MSMs, IPW, and Doubly Robust Estimators

The following code provides the syntax required to use the BayesMSM function. The BayesMSM

function has three distinct functionalities: I) to infer about the parameters of a dynamic

MSM via IPW, II) to estimate the value of a grid of regimes via IPW, and III) to estimate

the value of a discrete set of regimes via the doubly robust estimator.

#loading BayesDTR package
library(BayesDTR)
#Basic parameters in the BayesMSM function
BayesMSM(PatID,Data,Outcome_Var,Treat_Vars,Treat_M_List,Outcome_M_List,MSM_Model,

G_List,Psi,Bayes=TRUE,DR=FALSE,Normalized=FALSE,B=100,Bayes_Seed=1)

PatID and Data allow users to supply an analysis dataset and to indicate the patient identi-

fier. Note that the analytic dataset should contain only one row per patient. Outcome_Var is

a character variable specifying the final-stage outcome, and Treat_Vars is a character vector

specifying the stage-specific treatment variables. Treatment variables should be coded as {0,

1}. Treat_M_List and Outcome_M_List are lists containing the formulas for the treatment

and outcome models, depending on which estimator is being used. In each list, there should

be as many formulas as treatment decision points and they should be ordered chronologically.

A formula for the MSM of interest can be supplied via the MSM_Model parameter, if the aim

is to make use of functionality I.

The next set of parameters are those relevant to the family of dynamic regime of interest.
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The G_List variable allows the user to define the stage-specific decision rules of interest.

The Psi parameter is a matrix specifying the DTR index grid that will be used to create an

augmented dataset if using a dynamic MSM or to perform a grid-search if directly using an

estimator for the value. In Psi, there should be one column per regime index coordinate and

it is necessary that the column names match the names in the regime indices provided to

G_List. For example if at stage one, the regime of interest is "treat when psi_1>x", then Psi

should contain a column named psi_1. The rows of Psi corresponds to a single point in the

grid. The function can handle decision rules that involve one of five comparison operators

per stage ==,>,<,>=,<= and these can be put together with logical operators &,|. On either

side of the comparison operator, there can be parameters that index the family of regimes,

or there can be tailoring covariates. The parameters and tailoring covariates can appear in

the same expression with the usual mathematical operators for example as given by the rule

"treat when psi_1*x_1+psi_2*x_2>0". Lastly, the Bayes, DR, and Normalized parameters

indicate whether a Bayesian or frequentist analysis should be carried out, whether or not the

DR estimator should be used, and whether weights should be normalized or not. B allows the

user to indicate the number of Bayesian bootstrapped samples to perform when Bayes=TRUE.

The default fit for this function is to use a grid-search with the IPW estimator.

The Bayesian analysis returns a matrix containing the posterior distribution of interest. For

functionality I, there are as many columns as terms in the MSM_Model formula, and the

number of rows is equal to B. Each matrix column represents a sample from the posterior

distribution for a regression coefficient. For functionalities II and III, columns in the matrix

represent points in the grid of Psi and the rows, like in functionality I, represent distinct

posterior draws. The frequentist analysis returns point estimates, with columns representing

the same parameters as in the Bayesian analysis. If the user is interested in providing a

measure of variability for the frequentist estimates, the non-parametric bootstrap can be used

by calling the BayesMSM function within the bootstrapping function in the boot package. The

illustrative example in Section 4 will provide clarity as to the required format that variables

141



should be provided in and how to perform each of the analyses of interest. Additionally, a

systematic description of required and optional parameters for each functionality is provided

in Appendix C.1.

5.3.2 Functions to Identify Optimal DTRs using

Gaussian Processes Emulation

We now examine the syntax for functions in the BayesDTR package used to identify optimal

DTRs using GPs. The first function we examine is the DesignFit function which allows us

to fit a GP model on an initial set of design points.

DesignFit(PatID,Data,Outcome_Var,Treat_Vars,Treat_M_List,Outcome_M_List,
G_List,Psi,Normalized=TRUE,DR=FALSE,
Numbr_Samp,IthetasU,IthetasL,Covtype,
Likelihood_Limits,Prior_List=NA, Prior_Der_List=NA)

The parameters used on the first two lines of the DesignFit function above are those already

introduced with the BayesMSM function. In particular, these allow the user to utilize the

frequentist IPW or DR estimator to produce the estimation surface. Note that the MSM_Model

parameter should not be used in this application, as the GP only makes use of the IPW or

DR estimator for the value of a single regime at a time. If a value for this parameter

is passed to the function, it will be ignored and the default normalized IPW estimator

will be used. Other required parameters used by the function include Numbr_Samp which

specifies the number of random starts when optimizing the Gaussian likelihood and Covtype

which specified whether the Matérn3/2 (Covtype=1) or Matérn5/2 (Covtype=2) covariance

functions will be used. The user should also provide the limits for the parameter coordinates

in θf in the likelihood via IthetasL, IthetasU, where L stands for the lower bound of the

parameter and U stands for the upper bound. Placing bounds in the optimization is useful,

otherwise the gradient optimizers may explore a region of the parameter space that yields

a non-invertible covariance matrix, thereby interrupting the optimization procedure. As we
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are interested in assessing whether the model is being fit correctly, the Likelihood_Limits

parameter is a list of vectors allowing the user to set the limits for plotting the likelihood

for the θf coordinates. Each list element is a vector containing the lower and upper bound

for each covariance parameter.

Independent priors can also be placed on these parameters by defining the optional pa-

rameters Prior_List and Prior_Der_List. These are lists containing the formula for the

log prior distributions and for the derivatives of the prior. Importantly, a specific naming

convention for elements of these lists should be maintained. For example, in a two-stage

setting, the θf1 parameter should be represented by theta1 and the θf2 parameter should

be represented by theta2. Adding more dimensions to the problem simply requires adding

more elements to the list and maintaining the naming convention. Appendix C.2 provides a

systematic description of which parameters are required and which are optional. Note that

by default, these optimization functions identify a DTR that maximizes the value function.

If the objective is to minimize the value function, users should supply the negative of the

outcome variable to Outcome_Var and allow the function to maximize the value.

The DesignFit function returns a list of several important parameters. In particular, it

returns an Update list containing information about the updated GP fit as well as a ReInter

list containing the x_max_ri and Y_max_ri values corresponding to the optimal regime index

and value identified with the currently available experimental points. The function also

returns the parameter values related to the estimated hyperparameters, these can be found

in the thetas and alpha parameters.

Now we explore how to sequentially sample additional points using the SequenceFit function

which identifies new points to sample by maximizing the expected improvement and then

re-estimates the GP parameters based on the new information.
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SequenceFit(Previous_Fit,Additional_Samp,
Control_Genoud=list(Domain=matrix(c(200,200,500,500),ncol=2)))

All parameters in the SequenceFit function are required with the first being the Previous_Fit

parameter which stores an object returned by either the DesignFit function or the SequenceFit

function. Being able to supply an object returned by the SequenceFit function is important

as we may want to continue sampling sequentially even after we have called this function

once. Effectively, all options in the object passed to the Previous_Fit parameter are in-

herited in the SequenceFit function. The additional_samp parameter allows the user to

tell the function how many additional samples to take sequentially. The last parameter in

the function is relevant to the optimization of the expected improvement via the genetic

algorithm as implemented by the genoud function. This is the Control_Genoud parameter

which is a list of parameters to be passed to the genoud function. Importantly, the only re-

quired parameter to be passed to the genoud function is the Domain parameter which carries

information about the domain in which optimization will be performed; it should be a matrix

with number of columns equal to the dimension of the regime index, and with columns indi-

cating the lower and upper boundary in each dimension. The SequenceFit function returns

the same object as the DesignFit function, with the addition of the EI_hist parameter.

This parameter contains the expected improvement value at each of the sequentially sampled

points.

One option that may be of interest to a user is to compute the posterior mean after arriving

at a GP fit. This can be done via the PostMean function.

PostMean(X,GP_Object)

This function only requires that an object returned from the DesignFit or SequenceFit

functions be supplied to GP_Object, in addition to a parameter X specifying a coordinate

at which to evaluate the mean.

144



Lastly, as discussed in section 2.4.2, it may be important to provide a measure of uncertainty

when identifying the optimal DTR. The function FitInfer allows the user to do this.

FitInfer(Design_Object,Boot_Start,Boot_End,N,Psi_new,Location,Additional_Samp)

This function requires a Design_Object parameter, which is the object returned by the

DesignFit function. The Boot_Start and Boot_Stop parameters allow the user to spec-

ify the number of Bayesian bootstrapped samples, for example from Boot_Start=1 to

Boot_End=100, all while allowing for reproducibility as each bootstrapped sample is linked

to a specific seed for random number generation. If we were interested in reproducing only

bootstrap number 50, we could set Boot_Start=50 and Boot_End=50, and run the function.

Furthermore, the N parameter tells the function how many sample paths to obtain from the

posterior GP at each bootstrapped sample. The Additional_Samp parameter is the same

as that in SequenceFit function, and the Psi_new parameter is the grid of points for which

to search for an optimum in each sampled path drawn from the posterior GP . It also deter-

mines the dimension of the covariance matrix used to generate the sampled paths, so a very

fine grid may be computationally intractable. The only optional parameter in this function

is the Location parameter which allows the user to specify where the output of the function

should be saved.

This function returns a matrix with number of columns equal to the number of regime

index elements plus one. The last column corresponding to the optimal value, and the prior

columns correspond to the estimated optimal index. The number of rows in the matrix is

N(Boot_Start-Boot_End+1), as for each bootstrapped sample there are N posterior paths

sampled and an optimum identified for each of these paths.

As we are dealing with a GP , which depends on a covariance matrix that needs to be inverted,

numerical issues may arise. For example, when using the SeqFit function to sequentially

sample points, users should take care to check that the sampling has not focused on a very
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specific region. If it has, this is evidence for convergence of the algorithm and may lead

to a non-invertible covariance matrix if too many points are sampled in the same region.

This non-invertability arises as nearby points can exhibit nearly perfect correlation. This

issue can be carried downstream to the quantification of uncertainty if convergence for some

bootstrapped samples is achieved faster thereby possibly yielding non-invertible matrices.

Issues with non-invertibility are mainly numerical; conceivably, given enough precision in

the matrix computation, matrices would be invertible.

5.4 Illustrative Example with the BayesDTR Package

For illustrative purposes, we adapt data from Hammer et al. [1996] to demonstrate how

the discussed methods may be applied with the BayesDTR package. These data originate

from a double-blinded randomized trial performed to compare treatments using single and

double nucleosides as a means of treating HIV type 1. Focus is given to patients’ CD4 cell

count which provides a measure of the health of patients’ immune system, with higher values

indicating better health. Study enrollment required patients to have CD4 cell counts between

200 and 500 cells/mm3. A total of 2467 patients were assigned to daily doses of one of four

treatments 1) 600 mg of zidovudine, or 2) 600 mg of zidovudine & 400 mg of didanosine,

or 3) 600 mg of zidovudine & 2.5 mg zalcitabine, or 4) 400 mg didanosine. Variables found

in the dataset include patients’ race, sex, baseline CD4, 20 week CD4, weight, age, history

of antiretroviral therapy, symptoms of HIV infection, and Karnofsky score. These data may

be accessed via the LongCART package in R [Kundu, 2021].

We restrict our analysis to the use of two dual-therapies, in order to determine which pa-

tients should be given zidovudine with zalcitabine versus zidovudine with didanosine, coded

as 1 and 0, respectively. In particular, we examine whether tailoring therapy on baseline

and 20 week CD4 cell counts yields improved 96 week CD4. As the original trial involved

treatment assignment only once, we perform a plasmode simulation that randomly assigns
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an additional treatment decision point at 20 weeks. Variables for this analysis did not exhibit

any missing values. There were 524 patients in the zidovudine & zalcitabine arm and 522 in

the zidovudine & didanozine arm. The known stage-specific treatment probability was 0.5

by design, however we estimate these probabilities, as this can improve efficiency when using

IPW estimators [Henmi and Eguchi, 2004]. As we added an additional treatment variable,

we also simulate the final outcome which depends on cd4.0 and cd4.20 variables representing

baseline and 20 week CD4 cell count, respectively, a sex variable that equals 1 for males and

0 for females, and treatment variables z1 and z2. This outcome is deterministically generated

by:

y = max(0, 0.2(5cd4.0 + 6sex+ (−3000 + 9cd4.0)z1 + (−3000 + 9cd4.20)z2)). (5.16)

For illustrative purposes, we allow y to represent the final outcome which we take to be 96

week CD4 cell count and the aim is to maximize this value. Without the max() function

in this data generating mechanism, a small proportion of values would be negative, which

is not meaningful given that the outcomes represent a cell count. These adapted data can

be found in the BayesDTR package via the BayesDat dataset. The specific regime that we

explore is "at each stage, assign to zidovudine with zalcitabine if CD4 cell count is greater

than ψk, for k = 1, 2". ψ1 and ψ2 are restricted to vary between 200 and 500 cells/mm3. A

regime like this may be of interest if a patient requires one therapy when CD4 cell counts

are low and another therapy when CD4 cell counts are closer to stable levels. As we know

the data-generating mechanism given in equation (5.16), we can compute the mean outcome

under adherence to a specific regime g by setting z1 = g1(x1) and z2 = g2(x2) and plugging

these values into the equation. Doing so for a fine grid of regime indices allows us to produce

Figure 5.1, an approximation for the value function. Employing a grid-search with a grid of

increments of five yields an optimal regime at (ψ1, ψ2) = (335, 335) with an optimal value

of 610 cells/mm3. This matches very closely to the regime obtained theoretically, if we
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assume that the effect of truncating a small set of negative values at zero is small. With

this assumption, the theoretical optimum can be approximated to be at (333.3, 333.3). In

what follows, we will compare this optimum, which is a very good approximation for the

true optimal regime, with optima estimated via other methods.

Figure 5.1: Value function for the rule "treat with zidovudine and zalcitabine when CD4 cell
count is greater than ψk for k = 1, 2" found via Monte Carlo methods using the known data
generating mechanism.

5.4.1 Bayesian MSM, IPW, and Doubly Robust Inference

We now examine how to define the parameters in the BayesMSM function in order to analyze

these data using each of the three estimation approaches available in the function. In the

treatment models, we include variables that may not have achieved balance by chance, even

though in these data treatment was randomized. In the outcome models, we include these

variables as well and additionally include the variables that interact with treatment and that

therefore allow for tailoring. Of course, the outcome models are very slightly misspecified,

due to the truncation at zero in the data-generating mechanism. However, we will see that

this does not appear to have a serious impact on the results.

#identifying variables in dataset
Outcome_Var="cd4.outcome"
Treat_Vars=c("z1","z2")
PatID="pidnum"
#defining treatment models
Treat_M_List=list(tformula1="z1~karnof+race+gender+symptom+str2+cd4.0+wtkg",
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tformula2="z2~karnof+race+gender+symptom+str2+cd4.20+wtkg+z1")
#defining outcome models
Outcome_M_List=list(

oformula1="Pseudo_Outcome~karnof+race+gender+symptom+str2+cd4.0+z1+cd4.0:z1",
oformula2="cd4.outcome~karnof+race+gender+symptom+str2+cd4.0+cd4.20+z1+

cd4.0:z1+z2+cd4.20:z2")
#defining stage specific decision rules
G_List=list(g1=expression(cd4.0>=psi1),

g2=expression(cd4.20>=psi2))
#defining MSM model for when directly modeling the value function
MSM_Model="cd4.outcome~1+psi1+I(psi1^2)+psi2+I(psi2^2)"

It is necessary that in the lists defined above, the naming convention of the list elements be

maintained (e.g., treatment models being named tformula1, tformula2, etc.). Furthermore,

the formulas provided should follow the general conventions for formulas supplied to the

glm function. Models in Treat_M_List are each fit using logistic regression with the glm

function and with parameter family="binomial"; models in Outcome_M_List are each fit

using the lm function as the outcomes are assumed to be continuous. The expressions in

the G_List parameter should contain the conditions for receiving the treatment coded as

1. For functionality I, the target of inference is the coefficients associated with the terms

in the model supplied to MSM_Model. Based on the model supplied above, there are five

coefficients of interest, each corresponding to one of the terms supplied to MSM_Model. We

refer to these coefficients as β0, ..., β4. We now provide code for calling the function when

estimating optimal DTRs using each of the three estimation methods from section 2.1-2.3.

First, we examine code relevant to directly modeling the value function by fitting a Bayesian

dynamic MSM with IPW.

#defining grid for augmented dataset
Psi=as.matrix(expand.grid(seq(200,500,50),seq(200,500,50)))
colnames(Psi)=c("psi1","psi2")
#fitting quadratic MSM
QuadMSM=BayesMSM(Data=BayesDat,PatID=PatID,Outcome_Var=Outcome_Var,

Treat_Vars=Treat_Vars,Treat_M_List=Treat_M_List,
G_List=G_List,Psi=Psi,MSM_Model=MSM_Model,Bayes=TRUE,B=100)
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The code above defines the grid upon which to create the augmented dataset required for

fitting a dynamic MSM, as outlined by Cain et al. [2010]. In this example, psi1 and psi2

index the family of regimes of interest and they match with the variable names defined in

G_List. It is important that the column names of Psi, representing coordinates of the

regime index, be named exactly as they appear in G_List; the function checks for this

match in labels, and it will produce a warning if the names do not match. This function

call also requires supplying the MSM_Model parameter and setting the Bayes parameter to

TRUE in order to obtain the Bayesian estimator. Additionally, setting B=100 returns 100

posterior draws of the parameters associated with the MSM supplied by MSM_Model. Note

that the Normalized parameter cannot be used when the MSM_Model parameter is supplied.

This function call returns a matrix with columns representing β0, ..., β4 corresponding to

the MSM specified by MSM_Model. Rows in this matrix correspond to posterior draws of

the βs. To identify the optimal regime, the quadratic function can be maximized for each

posterior draw; this yields the posterior distribution of the optimum. We now examine how

the BayesMSM function can be used to estimate the value of a grid of DTRs via the IPW or

DR estimator, which are the second and third functionalities available with the BayesMSM

function.

#defining grid for grid-search
Psi=as.matrix(expand.grid(seq(200,500,15),seq(200,500,15)))
colnames(Psi)=c("psi1","psi2")
#fitting IPW estimator to a discrete set of regimes
Grid_IPW=BayesMSM(Data=BayesDat,PatID=PatID,Outcome_Var=Outcome_Var,

Treat_Vars=Treat_Vars,Treat_M_List=Treat_M_List,G_List=G_List,
Psi=Psi,Bayes=TRUE,Normalized=TRUE,B=100)

#fitting DR estimator to a discrete set of regimes
Grid_DR=BayesMSM(Data=BayesDat,PatID=PatID,Outcome_Var=Outcome_Var,

Treat_Vars=Treat_Vars,Treat_M_List=Treat_M_List,Outcome_M_List=Outcome_M_List,
G_List=G_List,Psi=Psi,Bayes=TRUE,Normalized=TRUE,DR=TRUE,B=100)

In the code above, we first define the grid used for the grid-search. We then call the

BayesMSM function to return the posterior samples using the IPW and DR estimators. The
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main difference between the two calls is that the DR approach needs the added param-

eter Outcome_M_List and setting DR=TRUE. For both of these estimation procedures, the

BayesMSM function returns a matrix where each column represents a regime index in the

same order as provided by the Psi parameter and where each row represents a single draw

from the posterior distribution. Normalized=TRUE indicates that we are using normalized

weights.

Based on the function calls above, we can estimate the mean value for each of the regimes

in the grid; the result is given in Figure 5.2. We see that all methods agree about the

general shape of the value function and that in this case both the doubly robust and MSM

yield relatively smooth, interpretable surfaces. As with any posterior distribution, summary

statistics can be provided. To obtain the posterior distribution for the optimal DTR, the

regime index that yields the highest value should be identified for each posterior sample.

Doing this across all posterior samples yields the posterior for the optimum. This is shown

in the following code for the doubly robust analysis:

#obtaining index of regime that maximizes value for each posterior sample
max_index=apply(Grid_DR,1,FUN=function(X){which(X==max(X))})
#obtaining posteriro distribution of value at optimum
max_val=apply(Grid_DR,1,max)
#obtaining posterior distribution for stage 1 and stage 2 optimal thresholds
Psi[max_index,]
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(a) (b) (c)

Figure 5.2: Estimation surface for the rule "treat with zidovudine and zalcitabine when CD4
cell count is greater than ψk for k = 1, 2" using (a) quadratic MSM (b) normalized IPW
grid-search (c) normalized DR grid-search.

Table 5.1 shows the posterior median and the 95% credible intervals for the optimal stage-

specific threshold using each of the three described methods. We see that broadly all three

methods agree regarding the location of the optimal thresholds. The doubly robust estimator

is best at identifying the stage two optimal parameter whereas the quadratic MSM is best in

identifying the first stage parameter. All methods seem to perform better at identifying the

second stage parameter than the first stage parameter. We also see that the optimal DTR

estimated by the DR estimator exhibits less variability than the IPW estimator, which is

known to possess the most variability.

Table 5.1: Estimated optimal thresholds with 95% credible intervals for the rule "treat with
zidovudine and zalcitabine when CD4 cell count is greater than ψk for k = 1, 2".

Method ψ̂1opt ψ̂2opt Value at Optimum
Quadratic MSM 361.4 (337.1,389.2) 332.0 (306.7,357.4) 603.7 (569.3,642.7)
Normalized IPW grid-search 380 (250,400) 350 (260,400) 613.4 (578.8,652.1)
Normalized DR grid-search 380 (330,420) 340 (330,340) 607.5 (582.5,632.6)

Individualized inference can also be implemented. The code below illustrates how this is

done for the first stage. First, the posterior distribution for ψ1opt is computed, in this case

we use the Grid_DR matrix returned from the BayesMSM function. Then, the probability that

a patient’s baseline CD4 cell count is greater than the optimal threshold is obtained. Below,
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we compute this probability for a range of CD4 values, Psi1_Grid,that correspond to new

patients in order to obtain the probas1 variable.

#computing posterior distribution for optimal index
max_index=apply(Grid_DR,1,FUN=function(X){which(X==max(X))})
#defining range of new cd4 cell counts
#this range is not for one patient but for a set of new patients with varied CD4s
Psi1_Grid=seq(200,500,5)
#computing the probability that a patient's baseline CD4 cell count is greater
#than the optimal stage 1 threshold
probas1=sapply(Psi1_Grid, FUN=function(X, max_index){mean(X>Psi[max_index,1])},

max_index=max_index)

Having computed these probabilities, we can plot them to better visualize the uncertainty.

Figure 5.3 shows the first stage probabilities associated with each of the estimation methods

discussed and for a range of CD4 cell values that can correspond to newly seen patients. We

see that the plot associated with the quadratic MSM is smoothest and displays the most

certainty about the optimal treatment allocation, as evidenced by the narrow window of the

threshold over which the probabilities are farther from 0 or 1.

(a) (b) (c)

Figure 5.3: Individualized optimal treatment allocation probabilities for the rule "treat with
zidovudine and zalcitabine when CD4 cell count is greater than ψk for k = 1, 2" (a) quadratic
MSM (b) normalized IPW grid-search (c) normalized DR grid-search.
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5.4.2 Illustrative Example using Gaussian Processes

In this section, we continue using the case study presented to examine how to use the

BayesDTR package to implement an analysis that uses GP emulation to identify an optimal

DTR. We begin by fitting a GP model on an initial set of design points; the required code

is given below. The initial set of design points in this setting is in Psi and is limited to

16.

#creating grid of initial design points
Psi=as.matrix(expand.grid(seq(200,500,100),seq(200,500,100)))
colnames(Psi)=c("psi1","psi2")

#fitting GP model on initial set of design points
start_fit=DesignFit(PatID=PatID,Data=BayesDat,Treat_M_List=Treat_M_List,

Outcome_Var=Outcome_Var,Treat_Vars=Treat_Vars,G_List=G_List,Psi=Psi,
Numbr_Samp=5,IthetasU=c(600,600),IthetasL=c(0.01,0.01),Covtype=2,
Likelihood_Limits=list(seq(250,500,2), seq(250,500,2),
Prior_List=NA, Prior_Der_List=NA))

With a GP process model being fit on an initial set of design points, the next step is to

sample an additional set of experimental points by maximizing the expected improvement.

This is done with the SequenceFit function. In this case we select an additional six points.

#Updating model with newly sequentially sampled points
second_fit=SequenceFit(Previous_Fit=start_fit,Additional_Samp=6,

Control_Genoud=list(Domain=matrix(c(200,200,500,500),ncol=2)))

Once additional samples have been obtained, the sample points can be plotted to examine

whether the algorithm has focused sampling in a specific region, thereby providing evidence

that an adequate maximizer has been identified. Figure 5.4 shows these plots. The first

16 points correspond to the design points, the remaining six points correspond to those

sequentially sampled; we see that the sequentially sampled points have remained very much in

the same area thereby providing evidence for convergence. Note that it does not matter what
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order the first 16 points are plotted in, as they were sampled simultaneously. Users should be

cautious about how many additional points to sample in settings like this, as sampling points

that are proximal to each other can result in non-invertible covariance matrices. Using the

model fit of six additional points, we can determine the optimal thresholds and the value at

the optimal thresholds. Y_max_ri gives the value at the optimum to be 601.8 cells/mm3; the

optimizer can be found with x_max_ri which is determined to be 381.6 cells/mm3 and 334.4

cells/mm3 for ψ1opt and ψ2opt, respectively. These estimates are similar to those obtained

with other methods (See Table 1). We will see in what follows how uncertainty can be

quantified.

(a) (b)

Figure 5.4: Design points with an additional six sequentially sampled points from estimation
surface corresponding to the rule "treat with zidovudine and zalcitabine when CD4 cell count
is greater than ψk for k = 1, 2" (a) stage 1 threshold (b) stage 2 threshold.

With convergence attained, the resulting posterior mean can be visualized. This can be done

via the PostMean function provided below.

#creating grid
Psi=as.matrix(expand.grid(seq(200,500,10),seq(200,500,10)))
colnames(Psi)=c("psi1","psi2")
#computing posterior mean on grid of points
estimated_y=apply(Psi,1,FUN=PostMean,GP_Object=second_fit)

Evaluating the posterior mean on a grid of points yields Figure 5.5. We see that it broadly

resembles the other value surfaces (see Figure 2).
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Figure 5.5: Emulated surface after six sequentially sampled points corresponding to the rule
"treat with zidovudine and zalcitabine when CD4 cell count is greater than ψk for k = 1, 2".

The last step in the inferential process is to use the FitInfer function to quantify the

uncertainty around the optimizers. Based on the convergence plots above, we chose to

perform inference at 6 additionally sampled points. We perform 100 bootstraps, with 100

sampled paths in each bootstrap.

#defining additional parameter for this function
Location="posterior_sample.csv"
#computing uncertainty around optimal DTR
Variability_Matrix=FitInfer(Design_Object=start_fit,Boot_Start=1,Boot_End=100,

N=100,Psi_new=Psi_new,Location=Location,Additional_Samp=6)

Using the output of the FitInfer function, we compute the median and 95% credible in-

terval of the quantities of interest, and we obtain that ψ1opt is 380 cells/mm3 (335,410),

ψ2opt 335 cells/mm3 (245,395), and the value at the optimum is 607 cells/mm3 (569,646).

These estimates broadly match the results obtained with the grid-search and direct modeling

approaches. The credible intervals exhibit slightly more variability, but they reflect more

sources of uncertainty than those that result from other methods. With these parameter set-

tings, the FitInfer function takes roughly two hours to run on an Intel Core i7 processor

with 16 GB of RAM.

Although we did not make use of priors on the covariance parameters for the example analysis
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above, Log-Normal priors could have been used. The code needed to specify such priors is

given below, where prior parameters are set using the strategy described in section 2.4.

#defining independent logged log-normal prior distributions
Prior_List=list(
theta1_prior="-(log(theta1)-3.64)^2/(2*0.76^2) -log(theta1*0.76*sqrt(2*pi))",
theta2_prior="-(log(theta2)-3.64)^2/(2*0.76^2) -log(theta2*0.76*sqrt(2*pi))")
#defining derivative of logged log-normal prior distributions
Prior_Der_List=list(
theta1_der_prior="-(log(theta1)-3.64)/(0.76^2*theta1)-1/theta1",
theta2_der_prior="-(log(theta2)-3.64)/(0.76^2*theta2)-1/theta2")

5.5 Discussion

Herein, we have examined recent Bayesian methodologies for identifying optimal dynamic

treatment regimes and have used data adapted from an HIV trial to illustrate how to perform

a standard DTR analysis with these methods. The BayesDTR package contains the BayesMSM

function which allows users to smoothly model the value surface of regimes in a family via

Bayesian dynamic MSMs with IPW estimation. These methods allow the user to take an

approach that is similar in flavour to frequentist semiparametric methods but that results

in estimators that are entirely Bayesian. The function additionally allows users to perform

a grid-search for the optimal value, and thereby estimate the oprimal treatment strategy,

using a Bayesian IPW or doubly robust estimator. Given the limitations of these methods

which include a potentially high computation burden (grid-search methods) or vulnerability

to model misspecification (parametric MSM), the package also incorporates functions that

perform Gaussian process optimization to allow for the identification of optimal DTRs in

conjunction with IPW and DR estimators. The DesignFit function in the package fits a GP

on an initial set of design points, and the SequenceFit function allows users to sequentially

sample more points based on belief about where the optimum lies. Lastly, the FitInfer

function allows users to quantify uncertainty around the optimal regime. Although this
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optimization takes an empirical Bayes approach, it is important that the inherent Bayesian

perspective is acknowledged in this setting, as a frequentist approach, although it may work

well in practice, does not acknowledge that uncertainty in the problem extends beyond

aleatory uncertainty. More precisely, this means that a computer experiment as described

in this paper does not have an outcome that depends on chance; the outcome will always

be the same if the experiment is performed multiple times. Consequently, a frequentist

framework does not accommodate the characteristics of this problem. In contrast, although

the computer experiment may have a deterministic nature, there is still uncertainty about

the optimal regime once the experiment is complete; it is only Bayesian methods that allow

for the quantification of this uncertainty.

There are still several improvements that can be made in future versions of the package, for

example introducing a function that allows the user to use an estimator for the regime value

of their choosing, so as not to be limited to the ones implemented in the BayesDTR package.

Although the illustrative analysis considered a two-stage problem, this package places no

restrictions on the number of stages in the decision-problem. Additionally, as discussed, the

treatment rules that can be considered with the package may involve multiple covariates per

stage. Additionally, adding other methods to stabilize covariance matrices when they are

near non-invertability could be beneficial, for example by adding a nugget effect.
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Chapter 6

Conclusion

6.1 Summary

This thesis focused on the development of methods for inference of optimal dynamic treat-

ment regimes using a Bayesian lens. Chapter 3 examined the conditions under which dynamic

marginal structural models could be regarded as arising from a Bayesian semiparametric in-

ferential framework. This is significant because semiparametric inference is generally a robust

inferential framework that can lead to interpretable results but that is generally employed

in frequentist settings. Indeed, the resulting inferential procedure proposed in chapter 3 is

one that is accessible to the wider research community, all while being entirely Bayesian.

This contrasts with other Bayesian methods in this area. The use of posterior predictive

inference with the Bayesian bootstrap was examined for both the doubly and singly robust

estimators. These estimators’ performance was evaluated using simulations which showed

that accurate and precise inference can be obtained, with much to be gained in efficiency

when outcome models in the doubly robust estimator are correctly specified. The proposed

Bayesian methods also benefit from the fact that direct probability statements can be made

about quantities of interest; this property is demonstrated by computing the probability
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that a specific patient is receiving an optimal treatment allocation, thereby allowing for

individualized inference.

Chapter 4 of the thesis sought to improve issues that might arise with model misspecifica-

tion of dynamic MSMs. An improvement was proposed using Gaussian processes to flexibly

model the value function and through the use of the expected improvement as an acquisition

criterion to identify new points where an optimum may exist. The bridging of this optimiza-

tion methodology to the DTR realm is consequential, as it has a much sought after duality: it

allows for the value function to be flexibly modeled, a desirable property of regression-based

approaches, all while allowing for interpretable optimal DTRs to be identified, a property

more tractable to value-search approaches when clinically significant families of DTRs are

chosen. This chapter further characterized the unique elements involved in optimizing the

value function when using point-wise evaluations of an estimator to gain information. Par-

ticular attention was given to the sources of variability that can result in the use of such

point-wise evaluation of the IPW estimator; this characterization can be found nowhere else

in the literature. Simulations further examined how using models that acknowledge that

only a noisy version of the value function is observed can lead to improved performance,

particularly in settings where the value function is multi-model. This is one of very few

works in the DTR literature that creates data-generating mechanisms for multi-modal value

functions. Additionally, an examination of these multi-modal value functions showed that

contrary to common belief, a grid-search is not always be the best alternative to identify-

ing optimal DTRs, and that it is an inefficient manner by which to use information about

the value function. The analysis of an HIV therapeutic trial examined how this precision

medicine methodology can be used to obtain a flexible model for the value function and to

consider how uncertainty may be quantified.

Chapter 5 explored the use of the proposed estimation methods to infer a two-stage optimal

DTR, coming from HIV trial data with an additional simulated component. In particular it
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showed how therapy could be tailored based on stage-specific CD4 cell counts. The resulting

analyses contrasted using a quadratic dynamic MSM, a grid search with Bayesian IPW

and augmented IPW estimators, as well as with Gaussian process emulation. The fitting

procedures for these methods are provided in detail, an important element due to the subtle

constituents in some of these approaches. The development and use of the BayesDTR package

to implement all methods proposed in this thesis ensures these methodologies to becomes

more accessible to the wider research community.

6.2 Future Work

Although this thesis has advanced the methods for DTRs, there are still a variety of inter-

esting, consequential research avenues.

One interesting area of future work is to determine if the utility maximization framework

discussed in chapter 3 can be extended to other settings. For example, examining how doubly

robust inference can be cast in the proposed utility maximization framework is of importance.

Furthermore, work can be done in determining if these methods can be successfully adapted

to a survival setting by considering the utility as the negative Cox partial likelihood. This

utility framework also has potential to be adopted in the weighted learning approaches

discussed in chapter 2, where the focus is to minimize a weighted missclassification error,

which can be considered a negative utility function.

Some Bayesian causal inference methods adapt frequentist semiparametrics methods in order

to arrive at an estimation procedure; the work in chapter 3 is a fruitful example of this.

It would be interesting to identify a formal framework, whereby frequentist semiparamteric

methods could be adapted to a Bayesian setting, with all its benefits. For the work presented

in chapter 3, the proposed method used a robust non-informative prior; however further study

to examine how informative priors can be used, for example to code information about where

an optimal regime may be, is warranted.
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The emulation methodology presented in chapter 4 also leads to several avenues of future

work. For example, evaluating the consequences that a fully Bayesian treatment, both

on inference itself and on practical feasibility, would be important in order to understand

the trade-offs between computational feasibility and inference. Further comparison of other

sequential sampling and stopping criteria would also be beneficial. Examining ways by which

to incorporate sampling uncertainty that do not require such a computationally intensive

procedures is also important.

As with many statistical methods, the resulting inference for methods used in chapters 3-5

relies on the correct specification of models, in this context of treatment assignment and/or

outcome models. It would be of interest to specify a more formal framework whereby flexible

models can be specified and sensitivity analyses conducted to determine how sensitive the

results are to model specification. This is particularly consequential in longitudinal settings

where the number of models that must be posited grows with the number of time points.

These sensitivity analyses would also be beneficial in examining how sensitive results are to

the specification of the marginal structural models in dynamic MSMs, which are often taken

to be a parsimonious function. Integrating the possibility of these sensitivity analyses into

the BayesDTR package is also of future interest. Similarly, designing methods that allow for

sensitivity analyses in cases where there are unmeasured confounders would be of tremendous

practical use.

6.3 Concluding Remarks

This thesis contributes to the methodological body of work for DTRs, specifically using a

Bayesian lens. New methods were developed, and, importantly, they were contextualized

into the contemporary literature on DTRs and precision medicine methods. In particular,

these methods have a very different mechanics to many other methods in the current DTR

literature. The illustrative examples on HIV therapy support the utility of these methods
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in clinical research, a field that will continue to increase its focus on precision health in the

coming years.
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APPENDIX A

Appendix to Manuscript 1

A.1 Technical Details

No Unmeasured Confounders Assumption: Consider the unobserved history up to

time k, Fk = {(y, zt, xt, ut), t = 1, ..., k}, where ut are unobserved covariates. Furthermore,

consider observed history up to time k is given by Hk = {(y, zt, xt), t = 1, ..., k}. Then, the

sequence of treatments {zt} is unconfounded relative to latent variables {ut} if for each k,

zk and {ut, t = 1, .., k} are conditionally independent given (Hk−1, xk). Mathematically, this

may be written as pO(zk|Fk−1, uk, xk) = pO(zk|Hk−1, xk), k = 1, ..., K.

De Finetti Representation: Below we consider a more general form of the De Finetti rep-

resentation presented in the main paper. We do this by considering the vector (yi, x̄i, z̄i, ui),

where ui are determinants of the outcome and intermediate variables. We assume that these

vectors are infinitely exchangeable in order to deduce the de Finetti representation in the
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observational world:

pO(b1, ..., bn) =
∫︂
ϕ,γ,τ

n∏︂
i=1

[︃∫︂
u
pO(yi|x̄i, z̄i, ui, τ)

K∏︂
j=1

pO(xij|z̄i(j−1), x̄i(j−1), ui, ϕ1j)pO(ui|ϕ2)dui

K∏︂
j=1

pO(zij|z̄i(j−1)x̄ij, γj)
⎤⎦ p(ϕ, γ)dτdϕdγ.

The absence of ui in the treatment assignment probability is due to the no unmeasured

confounders assumption. We can also look at the representation in the experimental measure

by considering: vi = (bi, gi) ≡ (yi, x̄i, z̄i, gi), and assuming infinite exchangeability in order

to obtain

pE(v1, ..., vn) =
∫︂ n∏︂

i=1

[︃∫︂
u
pE(yi|x̄i, z̄i, gi, ui, τ)

K∏︂
j=1

pE(xij|zi(j−1), xi(j−1), ui, gi, ϕ1j)pE(ui|ϕ2)dui

K∏︂
j=1

pE(zij|zi(j−1), xij, gi, αj)p(gi)
⎤⎦ p(ϕ, α)dτdϕdα.

Change of Measure Details Corresponding to Equation (2.3):

Let us first see how to fully develop the importance sampling argument, and then how to

obtain the form of the weights. We connect the experimental world with the observational
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world as follows:

EE [U(b∗, g, β)|b̄] =EGE

[︂
Eb∗

E |g[U(b∗, g, β)|g, b̄]
⃓⃓⃓
b̄
]︂

=EGE

[︄∫︂
b∗
U(b∗, g, β)pE(b∗|g, b̄)pO(b∗|b̄)

pO(b∗|b̄)

⃓⃓⃓⃓
⃓b̄
]︄

=EGE

[︄
EO

[︄
U(b∗, g, β) 1g(x̄∗)(z̄∗)∏︁K

k=1 pO(z∗
k|z̄∗

k−1, x̄
∗
k, b̄)

⃓⃓⃓⃓
⃓b̄
]︄⃓⃓⃓⃓
⃓b̄
]︄

=EO

⎡⎣ 1
CG

∑︁
{r∈I} U(b∗, gr, β)1gr(x̄∗)(z̄∗)∏︁K
k=1 pO(z∗

k|z̄∗
k−1, x̄

∗
k, b̄)

⃓⃓⃓⃓
⃓⃓b̄
⎤⎦ .

=EO

⎡⎣ 1
CG

∑︂
{r∈I}

w∗rU(b∗, gr, β)
⃓⃓⃓⃓
⃓⃓b̄
⎤⎦ .

Now let us examine how we may obtain the weights w∗ for DTR-MSMs. Note that we need

only consider the single-stage problem, as the multi-stage case follows directly.

pE(Y = y, Z = z,X = x|G = g)

=pE(Y = y, Z = z,X = x|G = g)
pO(Y = y, Z = z,X = x) pO(Y = y, Z = z,X = x)

= pg(Y = y, Z = z,X = x)
pO(Y = y, Z = z,X = x)pO(Y = y, Z = z,X = x)

= pg(Y = y, g(X) = z,X = x)
pO(Y = y|Z = z,X = x)pO(Z = z|X = x)pO(X = x)pO(Y = y, Z = z,X = x)

=pg(Y = y|g(X) = z,X = x)pg(g(X) = z|X = x)pg(X = x)
pO(Y = y|Z = z,X = x)pO(Z = z|X = x)pO(X = x) pO(Y = y, Z = z,X = x)

Note that in the above argument, when we condition on g(X) = z,X = x, we may run

into issues if g(x) does not equal z. However, in practice this is not a concern as the joint

probability pE(Y = y, g(X) = z,X = x) would take the value zero in such a situation, and
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so this term would not contribute to the calculation. Continuing, we find:

pE(Y = y, Z = z,X = x|G = g)

=pg(Y = y|g(X) = z,X = x)pg(g(X) = z|X = x)
pO(Y = y|Z = z,X = x)pO(Z = z|X = x) pO(Y = y, Z = z,X = x)

= pg(Y = y|g(X) = z,X = x)1g(x)(z)
pO(Y = y|Z = z,X = x)pO(Z = z|X = x)pO(Y = y, Z = z,X = x).

Now, we are looking for cancellation between the outcome probabilities. We have already

established that when g(x) ̸= z, the numerator is equal to zero. When g(x) = z, we have

that pg(Y = y|g(X) = z,X = x) = pO(Y = y|Z = z,X = x). Thus we may finish by

writing:

pE(Y = y, Z = z,X = x|G = g)

= 1g(x)(z)
pO(Z = z|X = x)pO(Y = y, Z = z,X = x),

yielding the weights that we were seeking.

A.2 Discussion on Non-Regularity in DTRs

We note that the arguments presented in this paper are Bayesian. Thus, conditional on

the posited model, the resulting inference is valid for any sample size. We emphasize that

the premise of the Bayesian bootstrap is not related to attaining asymptotic consistency,

but simply it is about proposing a specific model for the data, and carrying out inference

conditional on this model. That being said, we may still ask how well we would expect

these methods to perform as more data are observed. As noted in the main paper, the

parameters of dynamic MSMs can be shown to be consistent [Orellana et al., 2010a, van der

Laan and Petersen, 2007]. We mainly make use of the estimator for the value of a specific

DTR, and this is also asymptotically normal and regular as laid out by Murphy et al. [2001].
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In what follows, we emphasize that estimation of dynamic MSMs do not suffer from non-

regularity as is the case with other methods, like Q-Learning, G-estimation of structural

nested mean models, and dynamic weighted ordinary least squares (dWOLS) [Wallace and

Moodie, 2015].

We proceed by discussing the relevant literature on non-regularity in order to understand

why it does not play a role in the estimation of parameters in dynamic MSMs. Additionally,

we present a simulation that illustrates our point. Our simulation is similar in spirit to

that of Chakraborty et al. [2010], where we draw 1000 bootstrapped samples and evaluate

whether the obtained coverage differs significantly from the nominal 95%. As we expect, the

parameters in the MSM do not exhibit issues with non-regularity.

It was Robins [2004] who first raised the issue of non-regularity in methods aimed at es-

timating parameters relevant to identifying optimal DTRs. The key issue is illustrated in

the context of estimating the absolute value of a population mean, |µ|, from n i.i.d observa-

tions. A maximum likelihood approach may first estimate the mean µ̂, and then this may be

plugged into |·| to obtain an estimator for |µ|. What Robins [2004] emphasizes is that |µ̂| has

different asymptotic distributions depending on the value of µ (when µ = 0 vs. µ ̸= 0). This

is what yields a non-regular estimator, and the crux of this issue is in the fact that the abso-

lute value function is discontinuous at zero. Consequently, Wald-type confidence intervals do

not perform well. Chakraborty et al. [2010] examine whether bootstrap confidence intervals

yield appropriate inference in non-regular settings, but they point out that the success of

the bootstrap relies on the smoothness of the estimator. Accordingly, one should not expect

the bootstrap to provide adequate inference at or near the point of non-regularity.

For Q-learning, it is clear where non-regularity arises. Consider a two-stage setting where

the stage II model is yi = γ20 +γ21z1 +γ22x1z1 +γ23z2 +γ24x2z2. The stage I pseudo-outcome

becomes ỹi = γ20+γ21z1+γ22x1z1+1(γ23z2+γ24x2z2 > 0). This pseudo-outcome is discontin-

uous at γ23z2 +γ24x2z2 = 0. Therefore, we should expect that plugging-in γ̂20, γ̂21, γ̂22, γ̂22, γ̂22

168



to compute ˆ̃yi will cause issues with the estimation of stage I parameters, as these will de-

pend on a discontinuous function of other parameters. Non-regularity is not only an issue at

γ23z2 + γ24x2z2 = 0 but also near it; Chakraborty et al. [2010] explored this via simulation

and found non-regularity to impact inference. Earlier works also noted non-regularity to

arise in G-estimation [Moodie and Richardson, 2010].

The parameters in dynamic MSMs do not suffer from the above-mentioned issues. Unlike

G-estimation, dWOLS, and Q-learning, dynamic MSMs do not require recursively solving

estimating equations, where the stage I equation has plug-in estimators obtained by solving a

stage II estimating equation. Therefore, for dynamic MSMs, the estimators are not functions

of discontinuous functions of other estimators. Ultimately, this means that the parameters in

dynamic MSMs do not suffer from the same types of difficulties with non-regularity. Let us

now examine an example in which non-regularity impacts inference in Q-learning but plays

no role in the inference of parameters in dynamic MSMs. We consider a family of regimes

that says treat if xk > θk for k = 1, 2. The proposed data-generating mechanism is one that

allows for straightforward marginalization so that we can posit a correct model for E[Y θ1θ2 ].

The outcome is given by:

Y = γ0 + γ1z1 + γ2x1z1 + γ3z2 + γ4x2z2 + ϵ (A.1)

Variables are distributed as: x1 ∼ N(0, 9), x2 ∼ N(0, 4)z1, z2 ∼ bern(0.5). Then,

E[Y θ1θ2 ] = γ0 + γ1C11(θ1) + γ2C12(θ1) + γ3C21(θ2) + γ4C22(θ2) (A.2)

where,

C21(θ2) = E[1(x2 > θ2)|x1, z1] = p(x2 > θ2),

C22(θ2) = E[x21(x2 > θ2)|x1, z1] = 4√
2π
exp(−θ2

2/(2 · 42)).
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C11, C12 have an analogous form. Then, we have an analytic form for the marginal model.

We assume further that γ3, γ4 > 0 and consider the following scenarios:

• Scenario I: γ0 = 1, γ1 = 1, γ2 = 1, γ3 = 0, γ4 = 0.

• Scenario II: γ0 = 1, γ1 = 1, γ2 = 1, γ3 = 0.001, γ4 = 0.001.

• Scenario III: γ0 = 1, γ1 = 1, γ2 = 1, γ3 = 1, γ4 = 1.

Scenario I explores inference in a non-regular setting; scenario II explores a near non-regular

setting, and scenario III explores a regular setting. We make use of B = 1000 bootstrap

samples, a sample size of n = 1000, and R = 500 replications. We first examine these

scenarios in the context of Q-learning. The correctly specified models that we fit are as

follows:

Stage I : γ10 + γ11z1 + γ12x1z1

Stage II : γ20 + γ21z1 + γ22x1z1 + γ23z2 + γ24x2z2

The pseudo-outcome in stage I is: γ20 + γ21z1 + γ22x1z1 + (γ23 + γ24x2)1(γ23 + γ24x2 > 0).

Note that because of the specific data-generating mechanism, these models are correctly

specified.

Table A.1 shows that, as expected, the parameters for the stage II model present no evidence

of non-regularity as measured by coverage or bias. We note that apart from the point

estimates, stage II inference is the same for all scenarios, hence the shorter table. From

Table A.2, we see where the non-regularity becomes present. The stage I intercept exhibits

coverage that is significantly different from nominal in the non-regular case. This persists

even in the close-to-non-regular setting. Furthermore, as is shown in Table A.5, evidence of

non-regularity disappears in a gradient, as the data-generating mechanism gets further from

the completely non-regular setting.
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Table A.1: Scenario I Coverage of 95% CI for Q-learning stage II parameters.
B = 1000;n = 1000;R = 500.

Parameter Coverage Mean Bias SD
γ20 0.946 0.9997 -0.0003 0.0112
γ21 0.958 1.0004 0.0004 0.0124
γ22 0.952 1.0001 0.0001 0.0029
γ23 0.940 0.0000 0.0000 0.0131
γ24 0.938 0.0000 0.0000 0.0045

*indicates significant difference from 0.95

Table A.2: Coverage of 95% CI for Q-learning stage I parameters γ10, γ11, γ12.
B = 1000;n = 1000;R = 500.

Parameter γ3 = γ4 Coverage Estimate Bias SD
γ10 0 0.884* 1.0059 0.0059 0.0098
γ11 0.958 1.0004 0.0004 0.0124
γ12 0.952 1.0001 0.0001 0.0030
γ10 0.001 0.898* 1.0065 0.0051 0.0098
γ11 0.958 1.0004 0.0004 0.0124
γ12 0.952 1.0001 0.0001 0.0030
γ10 1 0.944 2.3997 0.0041 0.0653
γ11 0.954 0.9948 -0.0052 0.0927
γ12 0.954 0.9998 -0.0002 0.0213

*indicates significant difference from 0.95

The Q-learning results are only presented for the frequentist bootstrap, as the use of the

Bayesian bootstrap has not been studied in this literature. In the following, we look at

the resulting inference for the Frequentist and Bayesian dynamic MSMs. The θ used to

create the augmented data required for these methods are {−4,−2.5,−1, 0.5, 2, 3.5}. As

expected, there are no issues with any coverage probabilities; this can be seen in Tables A.3

and A.4.
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Table A.3: Results frequentist dynamic MSM; B = 1000;n = 1000;R = 500.

Parameter γ3 = γ4 Coverage Estimate Bias SD
γ0 0 0.954 1.0038 0.0038 0.4194
γ1 0.952 0.9597 -0.0403 1.5826
γ2 0.948 0.9913 -0.0087 0.7859
γ3 0.958 0.0439 0.0439 1.2823
γ4 0.944 -0.0046 -0.0046 0.8172
γ0 0.001 0.954 1.0037 0.0037 0.4194
γ1 0.952 0.9597 -0.0403 1.5826
γ2 0.948 0.9913 -0.0087 0.7859
γ3 0.958 0.0448 0.0438 1.2823
γ4 0.944 -0.0036 -0.0046 0.8172
γ0 1 0.956 0.9921 -0.0079 0.5344
γ1 0.946 0.9944 -0.0056 2.0336
γ2 0.958 1.0081 0.0081 0.9960
γ3 0.946 1.0114 0.0114 1.6185
γ4 0.956 0.9900 -0.0100 1.0225

*indicates significant difference from 0.95

Table A.4: Results Bayesian dynamic MSM. B = 1000;n = 1000;R = 500.

Parameter γ3 = γ4 Coverage Estimate Bias SD
γ0 0.000 0.950 0.9922 -0.0078 0.4183
γ1 0.934 1.0303 0.0303 1.6094
γ2 0.952 1.0099 0.0099 0.7619
γ3 0.938 -0.0270 -0.0270 1.2993
γ4 0.952 -0.0092 -0.0092 0.7893
γ0 0.001 0.950 0.9922 -0.0078 0.4182
γ1 0.934 1.0302 0.0302 1.6095
γ2 0.952 1.0099 0.0099 0.7618
γ3 0.938 -0.0260 -0.0270 1.2994
γ4 0.952 -0.0082 -0.0092 0.7892
γ0 1.000 0.966 1.0130 0.0130 0.5264
γ1 0.956 0.9613 -0.0387 2.0571
γ2 0.956 0.9826 -0.0174 0.9608
γ3 0.958 1.0305 0.0305 1.6333
γ4 0.952 1.0102 0.0102 0.9893

*indicates significant difference from 0.95

In what follows, we examine how inference is impacted as γ3 = γ4 get further away from the

non-regular case. For Table A.5, we see that as we get further from non-regularity, the closer
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to nominal coverage becomes in Q-learning. Note that only results for the γ10 parameter

are shown as this is the parameter that most clearly exhibits issues with non-regularity in

Q-learning. From Tables A.6 and A.7, we see that the frequentist and Bayesian bootstrap

yield adequate inference with the dynamic MSM, regardless of proximity to the non-regular

case.

Table A.5: Results of Q-Learning for different levels of non-regularity; B = 500, n =
1000, R = 500.

Parameter γ23 = γ24 p-value Coverage Mean Estimate Bias SD
γ10 0 < 0.001 0.854 1.0064 0.0064 0.0099
γ10 0.001 < 0.001 0.858 1.0069 0.0056 0.0098
γ10 0.005 < 0.001 0.906 1.0101 0.0031 0.0097
γ10 0.010 0.031 0.928 1.0156 0.0017 0.0097
γ10 0.050 0.051 0.930 1.0700 0.0002 0.0104
γ10 0.100 0.473 0.942 1.1397 0.0001 0.0121
γ10 1.000 0.356 0.940 2.3963 0.0007 0.0672
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Table A.6: Frequentist dynamic MSM; B = 500, n = 1000, R = 500.

γ2 = γ4 p-value Coverage Mean Estimate Bias SD
γ0 0 0.356 0.960 0.9777 -0.0223 0.4193
γ1 0.608 0.944 1.1461 0.1461 1.5732
γ2 0.758 0.954 1.0355 0.0355 0.7879
γ3 0.608 0.944 -0.1176 -0.1176 1.2878
γ4 0.608 0.944 -0.0476 -0.0476 0.8202
γ0 0.001 0.356 0.960 0.9777 -0.0223 0.4193
γ1 0.608 0.944 1.1461 0.1461 1.5732
γ2 0.758 0.954 1.0355 0.0355 0.7879
γ3 0.608 0.944 -0.1165 -0.1175 1.2878
γ4 0.608 0.944 -0.0465 -0.0475 0.8202
γ0 0.005 0.356 0.960 0.9778 -0.0222 0.4193
γ1 0.608 0.944 1.1459 0.1459 1.5730
γ2 0.758 0.954 1.0352 0.0352 0.7879
γ3 0.608 0.944 -0.1124 -0.1174 1.2875
γ4 0.758 0.946 -0.0423 -0.0473 0.8202
γ0 0.010 0.259 0.962 0.9780 -0.0220 0.4193
γ1 0.608 0.944 1.1457 0.1457 1.5728
γ2 0.758 0.954 1.0350 0.0350 0.7879
γ3 0.608 0.944 -0.1073 -0.1173 1.2872
γ4 0.758 0.946 -0.0370 -0.0470 0.8203
γ0 0.050 0.259 0.962 0.9791 -0.0209 0.4198
γ1 0.758 0.946 1.1441 0.1441 1.5725
γ2 0.918 0.948 1.0328 0.0328 0.7887
γ3 0.608 0.944 -0.0663 -0.1163 1.2857
γ4 0.918 0.948 0.0053 -0.0447 0.8214
γ0 0.100 0.259 0.962 0.9804 -0.0196 0.4210
γ1 0.918 0.952 1.1421 0.1421 1.5743
γ2 0.758 0.946 1.0302 0.0302 0.7909
γ3 0.608 0.944 -0.0149 -0.1149 1.2856
γ4 0.608 0.944 0.0582 -0.0418 0.8240
γ0 1.000 0.918 0.952 1.0052 0.0052 0.5519
γ1 0.608 0.956 1.1056 0.1056 1.9877
γ2 0.473 0.958 0.9821 -0.0179 1.0391
γ3 0.356 0.960 0.9086 -0.0914 1.5885
γ4 0.608 0.956 1.0101 0.0101 1.0772

174



Table A.7: Bayesian dynamic MSM; B = 500, n = 1000, R = 500.

Parameter γ3 = γ4 p-val percent Estimate Bias SD
γ0 0 0.051 0.930 0.9857 -0.0143 0.4521
γ1 0.259 0.962 1.0905 0.0905 1.5410
γ2 0.081 0.932 1.0211 0.0211 0.8449
γ3 0.608 0.956 -0.0709 -0.0709 1.2483
γ4 0.356 0.940 -0.0363 -0.0363 0.8702
γ0 0.001 0.051 0.930 0.9857 -0.0143 0.4521
γ1 0.259 0.962 1.0906 0.0906 1.5411
γ2 0.081 0.932 1.0211 0.0211 0.8449
γ3 0.608 0.956 -0.0699 -0.0709 1.2484
γ4 0.356 0.940 -0.0353 -0.0363 0.8702
γ0 0.005 0.051 0.930 0.9856 -0.0144 0.4521
γ1 0.259 0.962 1.0909 0.0909 1.5414
γ2 0.081 0.932 1.0212 0.0212 0.8449
γ3 0.608 0.956 -0.0661 -0.0711 1.2486
γ4 0.356 0.940 -0.0314 -0.0364 0.8702
γ0 0.010 0.051 0.930 0.9855 -0.0145 0.4521
γ1 0.259 0.962 1.0912 0.0912 1.5418
γ2 0.081 0.932 1.0212 0.0212 0.8449
γ3 0.608 0.956 -0.0613 -0.0713 1.2489
γ4 0.356 0.940 -0.0264 -0.0364 0.8701
γ0 0.050 0.051 0.930 0.9847 -0.0153 0.4524
γ1 0.356 0.960 1.0941 0.0941 1.5459
γ2 0.081 0.932 1.0218 0.0218 0.8455
γ3 0.473 0.958 -0.0233 -0.0733 1.2519
γ4 0.473 0.942 0.0131 -0.0369 0.8704
γ0 0.100 0.051 0.930 0.9838 -0.0162 0.4534
γ1 0.356 0.960 1.0977 0.0977 1.5531
γ2 0.051 0.930 1.0225 0.0225 0.8473
γ3 0.259 0.962 0.0243 -0.0757 1.2573
γ4 0.182 0.936 0.0624 -0.0376 0.8719
γ0 1.000 0.051 0.930 0.9668 -0.0332 0.5651
γ1 0.918 0.948 1.1624 0.1624 2.0210
γ2 0.356 0.940 1.0355 0.0355 1.0660
γ3 0.918 0.948 0.8805 -0.1195 1.6245
γ4 0.259 0.938 0.9507 -0.0493 1.0883
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A.3 Considerations for Doubly Robust Estimator

In this section, we present additional details related to ideas discussed in Section 3 of the

main paper. This includes details about how to fit outcome models in the doubly robust

estimator.

A.3.1 Outcome Models

In this section, we provide details about how to fit outcome models for the doubly robust

estimator. Recall that for k = K, ϕ∗
K+1 is defined as

ϕ∗
K+1(x̄∗

K) = EO[y∗|x̄∗
K , z̄

∗
K = ḡK(x̄K), b̄],

and for k = K − 1, ..., 1, ϕ∗
k+1 is defined as

ϕ∗
k+1(x̄∗

k) = EO[ϕ∗
k+2(x̄k+1)|x̄∗

k, z̄
∗
k = ḡk(x̄∗

k), b̄].

First, note that based on the prior we have selected (which yields the non-parametric

Bayesian bootstrap as the posterior), it is enough to fit these models on the observed

data, conditional on a draw from the Dirichlet weights. In a regression setting, the weights

would just be incorporated into the weights argument in the lm function. We now fo-

cus on how to pose these models, based on the data generating mechanism in the single

threshold simulation, which can be found in Appendix C. The outcome is generated via

y = x1 − (−θopt + x1)(1x1>θopt − z1)− (−θopt + x2)(1x2>θopt − z2) +
√

0.5ϵ. Note that θopt is

a constant and ϵ ∼ N(0, 1). Then, we may look to fit the following model:

E[y|x̄, z̄] =β21x1 + β221x1>θopt + β23z1 + β24x11x1>θopt + β25x1z1

+ β261x2>θopt + β27z2 + β28x21x2>θopt + β29x2z2.

(A.3)
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We use this model to compute ψ2 = E[y|x̄, z1, z2 = g(x2)]. We then seek to fit a model

conditional on just stage one information. This requires marginalizing over x2 when z2 =

g(x2) in equation A.3. For this, we need to compute a few quantities:

1)E[1x2>θopt |x1, z1] = p(θopt − z1 − 0.5x1 < ϵ|x1, z1)

= 1− Φ(θopt − z1 − 0.5x1)

:= T1(x1, z1)

2)E[g(x2)|x1, z1] = E[1x2>θ|x1, z1]

= 1− Φ(θ − z1 − 0.5x1)

:= T2(x1, z1)

3)E[x21x2>θopt |x1, z1] = E[(z1 + 0.5x1 + ϵ)1θopt<z1+0.5x1+ϵ|x1, z1]

:= T3(x1, z1)

4)E[x2g(x2)|x1, z1] = E[(z1 + 0.5x1 + ϵ)1θ<z1+0.5x1+ϵ|x1, z1]

:= T4(x1, z1)

T1, T2, T3 may be approximated numerically through quick draws of a normal distribution.

This leads us to the model:

E[ψ2|x1, z1] = β11x1 + β121x1>θopt + β13z1 + β14x11x1>θopt + β15x1z1

+ β16T1(x1, z1) + β17T2(x1, z1) + β18T3(x1, z1) + β19T4(x1, z1).

When θ = θopt, then we have T1 = T2 and T3 = T4, and so two of these terms must be taken

out of the model in this special case. Note that marginalization becomes slightly complex as,

x2 depends on both z1 and x1. If it only dependent on z1 which is binary, things would be

simplified as stage 1 terms would absorb any marginalization terms. Of course, in practice

it is difficult to correctly specify these models, but one would hope that specifying a flexible

enough model would lead to improved results with regard to efficiency. Once these two
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models have been fit, we may compute

ϕ2(x1) = β11x1 + β121x1>θopt + β13g(x1) + β14x11x1>θopt + β15x1g(x1) + β16T1(x1, g(x1))

+ β17T2(x1, g(x1)) + β18T3(x1, g(x1)) + β19T4(x1, g(x1))

and

ϕ3(x̄2) =β21x1 + β221x1>θopt + β23g(x1) + β24x11x1>θopt + β25x1g(x1)

+ β261θopt>x2 + β27g(x2) + β28x21θopt>x2 + β29x2g(x2).

We then use these last two expressions in the doubly robust estimator.

A.3.2 Bayesian Double Robustness

If we are able to show the equivalence between expressions (10) and (11) in the main article,

then we will have demonstrated the double robustness property. Consider:

ϕ∗
2(x̄∗

0) +
K∑︂
k=2

w∗
k−1(ϕ∗

k+1(x̄∗
k)− ϕ∗

k(x̄∗
k−1)) + w∗

K(y∗ − ϕ∗
K+1(x̄∗

K)))

= ϕ∗
2(x̄∗

0) + w∗
K(y∗ − ϕ∗

K+1(x̄∗
K)) +

K∑︂
k=2

w∗
k−1ϕ

∗
k+1(x̄∗

k)−
K−1∑︂
k=1

w∗
kϕ

∗
k+1(x̄∗

k)

= ϕ∗
2(x̄∗

0) + w∗
K(y∗ − ϕ∗

K+1(x̄∗
K)) + w∗

K−1ϕ
∗
K+1(x̄∗

K−1)− w∗
1ϕ

∗
2(x̄∗

1)−
K−1∑︂
k=2

(w∗
k − w∗

k−1)ϕ∗
k+1(x̄∗

k)

= w∗
Ky

∗ −
K∑︂
k=1

(w∗
k − w∗

k−1)ϕ∗
k+1(x̄∗

k)−
K+1∑︂
k=2

w∗
k−1(h(B̄)− h(b̄))

= w∗
Ky

∗ − w∗
Kh(b̄) + w∗

0h(b̄)−
K∑︂
k=1

(w∗
k − w∗

k−1)ϕ∗
k+1(X̄∗

k) +
K∑︂
k=1

(w∗
k − w∗

k−1)h(b̄)

= h(b̄) + w∗
K(y∗ − h(b̄))−

K∑︂
k=1

(w∗
k − w∗

k−1)(ϕ∗
k+1(x̄∗

k)− h(b̄)),

recalling that w∗
0 = 0 and that h(b̄) = Eg[y∗|b̄]. From the first expression we may see that

this is an unbiased estimator when the conditional means are correctly specified. This is
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obtained from an iterated expectation argument, and by showing that E[w∗
k−1(ϕ∗

k+1(x̄∗
k) −

ϕ∗
k(x̄∗

k−1))|x̄k−1] = 0. The full argument can be seen in Orellana et al. [2010b]. The last

expression allows us to see this is unbiased when the treatment assignment models are

correctly specified by noting that E[w∗
k|x̄∗

k, z̄k−1] = w∗
k−1 and by again using an iterated

expectation.

A.4 Simulation Details

This appendix explores inference for the following regimes types: 1) single threshold regimes,

2) double threshold regimes, 3) weighted regimes, and 4) weighted regimes where the thresh-

old depends on a binary baseline covariate. Simulations 2) and 4) are those in the main

paper.

A.4.1 Thresholding DTRs

The data generating mechanism is given by:

• x1 ∼ N(0, 1), x2 ∼ N(0, z1 + 0.5x1)

• z1 ∼ Bern(p = expit(1.5x1)), z2 ∼ Bern(p = expit(2x2 − 0.5z1))

• y = x1− (−θ1opt +x1)(1θ1opt>z1− z1)− (−θ2opt +x2)(1θ2opt>z2− z2) +
√

0.5ϵ, ϵ ∼ N(0, 1)

and θ1opt, θ2opt the location of the desired optima. In the single threshold simulation,

we have that θ1opt = θ2opt = θopt.

Note that "expit" is the inverse logit function. For the out of sample prediction, we used

a population of n = 10, 000 and x1 ∼ N(0.6, 1), x2 ∼ N(0.1 + z1, 1). Figure A.1 plots the

expected outcome under the DTRs considered in this section.
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(a) (b)

Figure A.1: (a) Response surface for single threshold simulation with Normal covariates; (b)
Response surface for double threshold simulation with Normal covariates.

Single Threshold Simulation

Table A.8 shows results for single threshold simulation, under a sample size of n = 500. This

contrasts the sample size of n = 1000 shown in Table A.9. Here, θopt = 0.6, and the value

at the optimum is 0. Generally, the results follow the same pattern though with an overall

loss of precision corresponding to the reduction in sample size.

Table A.8: Results for single threshold simulation (Normal covariates; n = 500; 500 Monte
Carlo replicates).

Method Model
Correct

θ̂ Estimated
Outcome

Train Pop.

Coverage
Probability

θ

Mean
Outcome
Test Pop.

Frequentist None 0.416 (0.110) 0.217 (0.120) — 0.587 (0.013)
Frequentist Treat 0.637 (0.189) 0.038 (0.070) — 0.589 (0.014)
Frequentist Outcome 0.580 (0.176) 0.015 (0.069) — 0.591 (0.014)
Frequentist Both 0.618 (0.159) 0.013 (0.057) — 0.593 (0.010)
Frequentist IPW 0.638 (0.183) 0.029 (0.066) — 0.590 (0.013)
Bayesian None 0.414 (0.118) 0.232 (0.119) 0.664 0.586 (0.014)
Bayesian Treat 0.648 (0.201) 0.057 (0.068) 0.976 0.587 (0.015)
Bayesian Outcome 0.573 (0.188) 0.026 (0.068) 0.980 0.590 (0.016)
Bayesian Both 0.624 (0.168) 0.021 (0.057) 0.972 0.592 (0.012)
Bayesian IPW 0.641 (0.196) 0.045 (0.065) 0.976 0.588 (0.015)
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Table A.9: Results for single threshold simulation (Normal covariates; n = 1000; 500 Monte
Carlo replicates).

Method Model
Correct

θ̂ Estimated
Outcome

Train Pop.

Coverage
Probability

θ

Mean
Outcome
Test Pop.

Frequentist None 0.419 (0.093) 0.209 (0.084) — 0.588 (0.011)
Frequentist Treat 0.635 (0.172) 0.024 (0.047) — 0.591 (0.013)
Frequentist Outcome 0.599 (0.122) 0.012 (0.044) — 0.596 (0.006)
Frequentist Both 0.608 (0.122) 0.010 (0.038) — 0.596 (0.007)
Frequentist IPW 0.624 (0.155) 0.018 (0.045) — 0.593 (0.011)
Bayesian None 0.418 (0.097) 0.218 (0.083) 0.516 0.588 (0.012)
Bayesian Treat 0.642 (0.178) 0.038 (0.045) 0.976 0.590 (0.014)
Bayesian Outcome 0.597 (0.132) 0.018 (0.044) 0.980 0.595 (0.008)
Bayesian Both 0.611 (0.128) 0.016 (0.038) 0.972 0.596 (0.008)
Bayesian IPW 0.634 (0.172) 0.030 (0.044) 0.968 0.591 (0.013)

Note: Standard deviations are Monte Carlo standard deviations

We also investigate the results when intermediary covariates are Gamma-distributed as fol-

lows: x1 ∼ Gamma(α = 2, β = 2), x2 ∼ Gamma(α = z1 + 0.5x1, β = 1). The known mean

outcome under the optimal threshold is 1 in the training population. In the test population,

the distribution of intermediary covariates was changed to be x1 = Gamma(α = 1.5, β = 1)

and x2 = Gamma(α = z1 + 0.5x1, β = 2). The exploration grid was the same as the Normal

setup except that the thresholds started at 0.05, given that Gamma covariates are positive.

The results mostly parallel the already observed results, see Table A.10 and A.11. Notable

is that the resulting credible intervals appear to be slightly more conservative.
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Table A.10: Results for single threshold simulation (Gamma covariates; n = 500; 500 Monte
Carlo replicates).

Method Model
Correct

θ̂ Estimated
Outcome

Train Pop.

Coverage
Probability

θ

Mean
Outcome
Test Pop.

Frequentist None 0.127 (0.165) 1.065 (0.058) — 1.444 (0.016)
Frequentist Treat 0.609 (0.160) 1.024 (0.054) — 1.489 (0.011)
Frequentist Outcome 0.578 (0.192) 1.044 (0.084) — 1.485 (0.014)
Frequentist Both 0.624 (0.136) 1.020 (0.047) — 1.490 (0.010)
Frequentist IPW 0.654 (0.167) 1.044 (0.059) — 1.486 (0.015)
Bayesian None 0.181 (0.219) 1.132 (0.062) 0.774 1.450 (0.021)
Bayesian Treat 0.632 (0.167) 1.092 (0.052) 0.998 1.487 (0.014)
Bayesian Outcome 0.614 (0.182) 1.155 (0.087) 1 1.486 (0.013)
Bayesian Both 0.649 (0.138) 1.080 (0.046) 0.998 1.489 (0.011)
Bayesian IPW 0.706 (0.173) 1.124 (0.061) 0.962 1.482 (0.018)

Table A.11: Results for simulation I (Gamma covariates; n = 1000; 500 Monte Carlo repli-
cates).

Method Model
Correct

θ̂ Estimated
Outcome

Train Pop.

Coverage
Probability

θ

Mean
Outcome
Test Pop.

Frequentist None 0.076 (0.079) 1.051 (0.045) — 1.439 (0.008)
Frequentist Treat 0.608 (0.131) 1.015 (0.037) — 1.491 (0.008)
Frequentist Outcome 0.587 (0.146) 1.027 (0.065) — 1.490 (0.009)
Frequentist Both 0.610 (0.106) 1.010 (0.033) — 1.493 (0.005)
Frequentist IPW 0.632 (0.153) 1.025 (0.042) — 1.488 (0.012)
Bayesian None 0.106 (0.146) 1.085 (0.044) 0.546 1.442 (0.014)
Bayesian Treat 0.625 (0.131) 1.062 (0.036) 1 1.491 (0.009)
Bayesian Outcome 0.608 (0.143) 1.107 (0.065) 1 1.490 (0.009)
Bayesian Both 0.626 (0.111) 1.052 (0.032) 1 1.492 (0.007)
Bayesian IPW 0.671 (0.160) 1.080 (0.044) 0.974 1.486 (0.014)

Double Threshold Simulation

In Table A.12 we examine the results of the double threshold simulation with normal covari-

ates and a larger sample size than presented in the main paper. Here, θ1opt = 0.4, θ2opt = 0.8,

and the value at the optimum is 0. There is a general gain in precision due to the larger

sample size; additionally, the coverage of the confidence intervals deviates slightly farther
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from the nominal coverage.

Table A.12: Results for double threshold simulation (Normal covariates; n = 1000; 500 Monte
Carlo replicates).

Method Model
Correct

θ̂1 θ̂2 Estimated
Outcome

Train Pop.

Coverage
Probability

θ1, θ2

Mean
Outcome
Test Pop.

Frequentist None 0.254 (0.097) 0.677 (0.142) 0.236 (0.086) — 0.591 (0.008)
Frequentist Treat 0.470 (0.204) 0.788 (0.175) 0.031 (0.045) — 0.588 (0.015)
Frequentist Outcome 0.393 (0.164) 0.783 (0.156) 0.016 (0.043) — 0.593 (0.008)
Frequentist Both 0.416 (0.152) 0.801 (0.145) 0.013 (0.037) — 0.594 (0.007)
Frequentist IPW 0.443 (0.179) 0.790 (0.180) 0.023 (0.044) — 0.590 (0.012)
Bayesian None 0.252 (0.104) 0.682 (0.154) 0.250 (0.085) 0.770, 0.918 0.590 (0.008)
Bayesian Treat 0.473 (0.217) 0.795 (0.179) 0.047 (0.043) 0.970, 0.988 0.587 (0.016)
Bayesian Outcome 0.390 (0.171) 0.787 (0.179) 0.026 (0.043) 0.986, 0.992 0.591 (0.010)
Bayesian Both 0.419 (0.159) 0.809 (0.148) 0.021 (0.037) 0.982, 0.982 0.593 (0.008)
Bayesian IPW 0.456 (0.191) 0.798 (0.183) 0.036 (0.043) 0.978, 0.988 0.589 (0.014)

Note: Standard deviations are Monte Carlo standard deviations

Next, we can examine the results when intermediary covariates are Gamma-distributed as

described in the previous section. Tables A.13 and A.14 show the results for this setup.

Overall, we observe that the optimal threshold are unbiasedly estimated, and that credible

intervals are somewhat conservative leading to higher coverage probabilities. Part of this is

due to the choice of increments: larger increments leading to higher coverage. The value at

the optimal thresholds is also unbiased.
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Table A.13: Results for double threshold simulation (Gamma covariates; n = 500; 500 Monte
Carlo replicates).

Method Model
Correct

θ̂1 θ̂2 Estimated
Outcome

Train Pop.

Coverage
Probability

θ1, θ2

Mean
Outcome
Test Pop.

Frequentist None 0.129 (0.074) 0.751 (0.210) 1.145 (0.076) — 1.481 (0.005)
Frequentist Treat 0.379 (0.181) 0.791 (0.173) 1.038 (0.049) — 1.488 (0.010)
Frequentist Outcome 0.401 (0.211) 0.757 (0.177) 1.055 (0.068) — 1.485 (0.014)
Frequentist Both 0.406 (0.168) 0.792 (0.149) 1.024 (0.043) — 1.490 (0.009)
Frequentist IPW 0.456 (0.197) 0.785 (0.188) 1.050 (0.052) — 1.485 (0.016)
Bayesian None 0.136 (0.087) 0.757 (0.216) 1.197 (0.072) 0.810, 0.974 1.481 (0.005)
Bayesian Treat 0.393 (0.190) 0.806 (0.177) 1.099 (0.049) 0.998, 0.964 1.487 (0.012)
Bayesian Outcome 0.446 (0.208) 0.760 (0.186) 1.131 (0.069) 0.994, 0.988 1.484 (0.017)
Bayesian Both 0.426 (0.171) 0.807 (0.150) 1.076 (0.043) 1.000, 0.994 1.489 (0.010)
Bayesian IPW 0.494 (0.213) 0.800 (0.186) 1.128 (0.053) 1.000, 0.952 1.482 (0.021)

Table A.14: Results for double threshold simulation (Gamma covariates; n = 1000; 500 Monte
Carlo replicates).

Method Model
Correct

θ̂1 θ̂2 Estimated
Outcome

Train Pop.

Coverage
Probability

θ1, θ2

Mean
Outcome
Test Pop.

Frequentist None 0.109 (0.034) 0.780 (0.163) 1.131 (0.060) — 1.480 (0.002)
Frequentist Treat 0.386 (0.150) 0.805 (0.150) 1.024 (0.037) — 1.491 (0.006)
Frequentist Outcome 0.383 (0.180) 0.790 (0.140) 1.035 (0.052) — 1.489 (0.009)
Frequentist Both 0.401 (0.125) 0.809 (0.128) 1.014 (0.032) — 1.493 (0.005)
Frequentist IPW 0.419 (0.150) 0.784 (0.164) 1.030 (0.040) — 1.490 (0.009)
Bayesian None 0.110 (0.038) 0.785 (0.175) 1.159 (0.058) 0.542 0.980 1.480 (0.003)
Bayesian Treat 0.387 (0.162) 0.821 (0.152) 1.066 (0.036) 1.000 0.970 1.490 (0.007)
Bayesian Outcome 0.426 (0.188) 0.786 (0.151) 1.088 (0.053) 1.000 0.990 1.488 (0.013)
Bayesian Both 0.408 (0.136) 0.819 (0.127) 1.049 (0.031) 1.000 0.990 1.492 (0.006)
Bayesian IPW 0.451 (0.164) 0.805 (0.168) 1.082 (0.040) 1.000 0.962 1.489 (0.011)

An analogous individualized decision rule graph can be produced for the thresholds in this

simulation, however this is no more instructive than the figure for the single threshold

rule.
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A.4.2 Weighted DTRs Simulation

Next, we explore one additional simulation. For this family of regimes, patients are treated in

stage one if ψ1x1,1 + ψ2x1,2 > 0.5 and in stage two if ψ1x2,1 + ψ2x2,2 > 0.5. Here, ψ1, ψ2 > 0

such that ψ1 + ψ2 = 1. The optimal parameters are chosen to be ψ1opt = ψ2opt = 0.5.

The response surface is this setting is similar to that in Simulation II. The data generating

mechanism proceeds as follows:

• x1,1 ∼ N(1, 1), x1,2 ∼ N(0, 1)

• z1 ∼ Bern(expit(1.5x1,2 + 2x1,1))

• x2,1 ∼ N(0.2z1 + 0.1x1,1, 1), x2,2 ∼ N(0.5z1 + 0.1x1,2, 1)

• z2 ∼ Bern(p = expit(1.5x2,2 − 0.6z1 + 2x2,1))

• z1,opt = 0.5x1,1 + 0.5x1,2 > 0.5, z2,opt = 0.5x2,1 + 0.5x2,2 > 0.5,

• y = x11 +x12− (0.5x11 + 0.5x12− 0.5)(z1,opt− z1)− (0.5x21 + 0.5O22− 0.5)(z2,opt− z2) +
√

0.5ϵ,

ϵ ∼ N(0, 1)

The value at the optimal threshold can bee seen to be 1. For the test population, we used

a population size of n = 10, 000 and x1,1 ∼ N(0.1, 1), x1,2 ∼ N(0.5, 1), x2,1 ∼ N(0.1 +

0.2z1 + 0.1x1,1, 1), x2,2 ∼ N(0.5 + 0.5z1 + 0.1x1,2, 1). Results are presented in the Table A.15

and A.16, and we observed that we obtain unbiased results. Surprisingly, even with both

nuisance models misspecified, the estimator performs quite well in terms of coverage, though

it estimates the outcome under the optimal regime with high bias. Note that although there

are two-parameters in this decision rule, the condition that ψ1 + ψ2 = 1, makes it so that it

is enough to evaluate the coverage probability of only one parameter; this is also why the

Monte Carlo standard errors in the ψ1, ψ2 columns are the same.
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Table A.15: Frequentist and Bayesian results (n = 500; 500 Monte Carlo replicates).

Method Model
Correct

ψ̂1 ψ̂2 Estimated
Outcome

Train Pop.

Coverage
Probability

ψ1

Mean
Outcome
Test Pop.

Frequentist None 0.719 (0.251) 0.282 (0.251) 0.208 (0.206) — 0.509 (0.078)
Frequentist Treat 0.477 (0.193) 0.523 (0.193) 1.110 (0.274) — 0.551 (0.045)
Frequentist Outcome 0.518 (0.122) 0.482 (0.122) 1.022 (0.096) — 0.571 (0.027)
Frequentist Both 0.474 (0.117) 0.526 (0.117) 1.038 (0.124) — 0.571 (0.027)
Frequentist IPW 0.464 (0.208) 0.536 (0.208) 1.215 (0.559) — 0.545 (0.049)
Bayesian None 0.754 (0.258) 0.247 (0.258) 0.258(0.201) 0.944 0.496 (0.078)
Bayesian Treat 0.473 (0.199) 0.527 (0.199) 1.142(0.272) 0.964 0.550 (0.048)
Bayesian Outcome 0.523 (0.131) 0.477 (0.131) 1.034(0.095) 0.980 0.569 (0.030)
Bayesian Both 0.476 (0.119) 0.524 (0.119) 1.047(0.119) 0.968 0.571 (0.027)
Bayesian IPW 0.460 (0.211) 0.540 (0.211) 1.264(0.563) 0.950 0.544 (0.050)

Table A.16: Frequentist and Bayesian results (n = 1000; 500 Monte Carlo replicates).

Method Model
Correct

ψ̂1 ψ̂2 Estimated
Outcome

Train Pop.

Coverage
Probability

ψ

Mean
Outcome
Test Pop.

Frequentist None 0.731 (0.249) 0.269 (0.249) 0.184 (0.140) — 0.507 (0.079)
Frequentist Treat 0.462 (0.170) 0.538 (0.170) 1.061 (0.140) — 0.557 (0.041)
Frequentist Outcome 0.521 (0.104) 0.479 (0.104) 1.015 (0.062) — 0.575 (0.024)
Frequentist Both 0.469 (0.109) 0.531 (0.109) 1.021 (0.066) — 0.573 (0.026)
Frequentist IPW 0.454 (0.190) 0.545 (0.190) 1.117 (0.242) — 0.551 (0.046)
Bayesian None 0.759 (0.250) 0.241 (0.250) 0.217 (0.136) 0.958 0.497 (0.079)
Bayesian Treat 0.455 (0.173) 0.545 (0.173) 1.086 (0.138) 0.988 0.556 (0.042)
Bayesian Outcome 0.526 (0.112) 0.474 (0.112) 1.023 (0.062) 0.972 0.573 (0.027)
Bayesian Both 0.471 (0.107) 0.529 (0.107) 1.029 (0.064) 0.970 0.573 (0.025)
Bayesian IPW 0.448 (0.193) 0.552 (0.193) 1.156 (0.236) 0.968 0.549 (0.047)

Now, we may examine the individualized inference for this scenario. Figure A.2 shows us

that there are combinations of xk1, xk2 where there is high certainty about following the

optimal regime and areas of low certainty.
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(a) (b)

Figure A.2: Weighted DTR simulation individualized treatment probabilities using doubly
robust estimator; (a) Stage 1 treatment (b) Stage 2 treatment.

A.4.3 Weighted DTRs with Binary Covariate Simulation

Here, we provide the details for simulation II in the main paper. In this family of regimes,

patients are treated if ψ1xk1 +ψ2xk2 > 0.5− 3ψ3u, k = 1, .., 4, where ψ1 +ψ2 = 1, ψ1, ψ2 > 0.

The exploration grid is given by ψ1, ψ2 ∈ [0.2, 0.8] in increments of 0.05 and ψ3 ∈ [-0.3,0.3]

in increments of 0.1. This yields a grid of 91 points, with known optima ψ1opt = 0.5, ψ2opt =

0.5, ψ3opt = 0.1. The specific data generating mechanism used is given by:

• x11 ∼ N(1, 1), x12 ∼ N(0, 1), u ∼ ·Bern(0.5), z1 ∼ Bern(expit(0.5x12 + x11))

• xk1 ∼ N(0.2zk−1 + 0.1xk−1,1, 1), xk2 ∼ N(0.5zk−1 + 0.1xk−1,2, 1), k = 2, 3, 4

• zk ∼ Bern(p = expit(0.5xk2 − 0.6zk−1 + xk1)), k = 2, 3, 4

• zk,opt = 0.5xk1 + 0.5xk2 + 0.3u > 0.5, k = 1, .., 4

• y = x11 + x12 −
∑︁4
k=1(0.5xk1 + 0.5xk2 + 0.3u− 0.5)(zk,opt − zk) +

√
0.1ϵ, ϵ ∼ N(0, 1)

Table A.17 shows the results for a sample size of n = 1000. Generally, we observe a gain in

precision as compared to the n = 500 table in the main paper. Additionally, we note that

when all models are correct, we estimate ψ3opt very well. This reflects the fact that the value

function is more peaked in this direction as compared to other parameters. For the test
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population, xk1, xk2 were shifted by 0.1 and 0.5, respectively and u ∼ Bern(0.7); we observe

that the doubly robust estimator yields the highest value, as expected.

Table A.17: Frequentist and Bayesian results (n = 1000; 500 Monte Carlo replicates).

Method Model
Correct

ψ̂1 ψ̂3 Estimated
Outcome

Train Pop.

Coverage
Probability
ψ1, ψ3

Mean
Outcome
Test Pop.

Frequentist None 0.570 (0.099) 0.092 (0.091) 1.871 (0.282) — 0.546 (0.051)
Frequentist Treat 0.472 (0.136) 0.107 (0.101) 1.096 (0.111) — 0.544 (0.051)
Frequentist Outcome 0.503 (0.040) 0.100 (0.004) 1.002 (0.048) — 0.583 (0.006)
Frequentist Both 0.502 (0.025) 0.100 (0.000) 0.999 (0.045) — 0.585 (0.004)
Frequentist IPW 0.478 (0.137) 0.099 (0.110) 1.120 (0.139) — 0.543 (0.051)
Bayesian None 0.571 (0.108) 0.097 (0.085) 1.995 (0.272) 0.95 0.996 0.558 (0.021)
Bayesian Treat 0.465 (0.133) 0.105 (0.103) 1.164 (0.100) 0.986 1 0.547 (0.026)
Bayesian Outcome 0.501 (0.036) 0.100 (0.000) 1.006 (0.049) 0.992 1 0.590 (0.003)
Bayesian Both 0.499 (0.022) 0.100 (0.000) 1.001 (0.045) 1 1 0.592 (0.002)
Bayesian IPW 0.459 (0.142) 0.102 (0.105) 1.206 (0.117) 0.984 1 0.544 (0.026)

A.5 Details of the NA-ACCORD Analysis

In what follows, we describe the procedure used to create the data, the analysis plan, the

specific models utilized, and we address questions of positivity, individualized inference, and

balance.

A.5.1 Data Creation

Study Start: Study initiation (time zero) is the first instance of ART treatment on or after

2004 in the NA-ACCORD database.

• Study start is not enrollment date as many patients have a long lag between cohort

enrollment and ART initiation.

Censoring: Last ART record that has continuous follow-up from study start and that has

CD4 and viral load measurements available. This entails the following:
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1. There is a monthly ART record from month one up until the month of study exit.

• Note: some patients have no records for several months and then continuous

follow-up resumes. Study exit for these patients is the last month of the first

instance of continuous follow-up.

• There is one exception to the above: If patients have four or fewer months of

ART records missing and then continuous follow-up begins again, these months

are filled with the last observed treatment. This approach is reasonable as patients

do not switch treatment very often.

2. Each record can be associated with a viral load and CD4 cell count measurement.

• Associate each ART record with CD4 and viral load measurement by taking

closest measurement date to ART record date, and using last observation carried

forward.

• With the exception of missing baseline lab values, patients who have missing lab

values are censored at the first instance of missingness.

• Patients who have missing lab values at study start are kept in the study and we

create a status variable which indicates baseline missingness.

Stage-specific Censoring Details:

• Stage 1: Patients lost to follow up after stage 1 covariates are observed but before

stage 2 covariates are observed are censored at stage 1.

• Stage 2: Patients lost to follow up after stage 2 covariates are observed but before

stage 3 covariates are observed are censored at stage 2.

• Stage 3: Patients lost to follow-up after stage 3 covariates are observed but before

final outcome is observed are censored at stage 3.

Study End: Study end is 18 months after study start; the outcome FIB4 is taken to be the
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first FIB4 measurement recorded after study end, within 12 months.

Details of the follow-up can be observed in the following diagram:

Figure A.3: Study Stages

Treatment: We dichotomize all ART treatments to PI based or another ART medication.

Some patients receive dual therapy in combination with PI; these are included in "other

ART" group.

Treatment Decisions: We consider 6-month observation intervals thereby leading to three

treatment decision points: one in the first month of the study, one in the 7th month of the

study, and one at 13th month.

Augmented Data Creation

The regimes we explore are of the family: start on a non-PI based ART therapy and switch

into PI when FIB4 > θ. Refer to a dataset with information about patients adhering to a

regime in this family by Rθ. In addition to the censoring described in the section above, we

must take care to keep track of artificial censoring in Rθ. A patient is artificially censored

with respect to a regime with threshold θ when they stop adhering to the regime. If they

never adhere to the regime, then they are artificially censored at baseline. Adherence to Rθ

can be determined based on the following category of patients:

1. Indicated to Switch but did Not Switch (ISNS): Artificial censoring at Indicated switch

date.

2. Indicated to Switch and Switched (ISS): No artificial censoring. If patient switches

more than once during the study period, then they are artificially censored at the time
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of their second switch.

3. Not Indicated to Switch and did Not Switch (NISNS): No artificial censoring.

4. Not Indicated to Switch but Switched (NISS): Artificial censoring at switch date.

5. No Regime (NR): Initial therapy was PI; artificial censoring at baseline.

Note on creating Rθ:

• Each Rθ dataset will contain all patients in the study population. Even patients who

are artificially censored at baseline will contribute to fitting outcome models, and

toward the fit of the doubly robust estimator.

• To determine the θ that will be used in the data augmentation, look at the distribution

of FIB4 measurements at baseline and create equally spaced increments of 0.2. Based

on the data, it turned out that the starting value was 0.4.

Final Datasets: At the end of the above data creation we should have two datasets:

• DATA in long format constitutes of patients in the study population up until their

censoring or the study end date. This dataset does not contain any variables that

reference regime adherence.

• AUGDATA is the stacked Rθ datasets. Each Rθ datasets is a long-format dataset of

patients who adhere to regime Rθ with threshold θ, for the full follow-up period. Each

of these dataset have an additional variable providing the regime index θ.

A.5.2 Analysis

For simplicity, we first describe the frequentist analysis, and then describe the Bayesian

adaptation.

Treatment Propensity Models: Use DATA to fit a logistic regression model for each

stage. Possible time-varying confounders include CD4 cell count and Viral load. These
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variables are certainly used to assign treatment, and were proxies for level of HIV infection.

There is some evidence to suggest that HIV is associated with decreased liver health. There-

fore, these variables may also mediate previous treatment effects.

Censoring Models: Fit censoring models for each decision point.

Outcome Models: The first conditions on baseline information; the second conditions on

information up to stage 2; the third conditions on information up stage 3.

Weight Construction:

• Estimate stage-specific treatment and censoring models.

• For all patients in AUGDATA use the treatment propensity model to compute the

probability that they received their observed treatment at each time point.

• Invert each of these probabilities to obtain a weight for each patient for each decision

point. Collapse AUGDATA into one observation per patient per regime, and multiply

all patient weights in order to create a final weight variable for each patient.

Inverse Probability Weighting Analysis: This analysis is only performed on the subset

of cases who are neither censored nor artificially censored. Fit a weighted regression with

FIB4 as the outcome and with regime index as the predictor. The weights are the ones

calculated in the above step. This fit yields the normalized IPW estimator.

Doubly Robust Analysis: Make use of doubly robust estimator. This estimator makes

used of all observations censored or uncensored (up to the censoring point).

Bayesian Inference Adaptation:

• Draw a vector of Dirichlet weights for as many patients as in DATA. Assign one of

these weights to each patient by adding a Dirichlet weight variable to DATA. Note

that this variable will not have variation within patients. Additionally, merge these

weights into AUGDATA.

• Fit the treatment propensity, censoring, and outcome models as above, but this time
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incorporate the Dirichlet weights into the fitting. Construct the weights for the col-

lapsed data as before, using the predictions from the treatment propensity model.

• For the IPW analysis, fit the marginal mean model by multiplying the final weights in

the collapsed AUGDATA by the Dirichlet weights of each person in AUGDATA.

• For the doubly robust analysis, run regression, where outcome for each patient is the

person-specific contribution to equation (12) in the main paper, and where the predictor

is index.

• Repeat this over many iterations in order to obtain the posterior distribution of interest.

Analysis Models:

We now specify the models used for analysis.

Censoring Models:

Stage 1 : status+ status× rcs(log(CD4)) + AgeBaseline+ Insurance+ AtRiskAlcohol

+ Sex+ Smoking +DrugUse+Race+ CalendarY ear

Stage 2 : rcs(log(CD4)) + AtRiskAlcohol + Smoking +DrugUse+Race+ CalendarY ear

Stage 3 : rcs(log(CD4)) + AtRiskAlcohol + Smoking +DrugUse+Race+ CalendarY ear

Treatment Models:

Stage 1 : status+ status× rcs(log(CD4)) + AgeBaseline+ Insurance+ AtRiskAlcohol

+ Sex+HCV +Race+ CalendarY ear

Stage 2 : rcs(log(CD4)) + Sex+ Insurance+HCV + Stage1Treat+Race+ CalendarY ear

Stage 3 : rcs(log(CD4)) + Sex+ Insurance+HCV + Stage2Treat+Race+ CalendarY ear

Note: rcs denotes a restricted cubic spline; Stage1Treat denotes stage 1 treatment and

Stage2Treat denotes stage 2 treatment. Some patients have missing lab values at baseline;

this is indicated by the status variable in the models above.

Outcome Models:

193



Stage 1 : index+ index× (Sex+ AgeBaseline+ Smoking +DrugUse+HBV +HCV

+ Insurance+ Treat+ status× rcs(log(CD4)) + status× rcs(log(V iralLoad)))

Stage 2 : index+ index× (Sex+ AgeBaseline+ Smoking +DrugUse+HBV +HCV

+ Insurance+ Stage1Treat+ Treat+ rcs(log(CD4)) + rcs(log(V iralLoad)))

Stage 3 : Sex+ AgeBaseline+ Smoking +DrugUse+HBV +HCV + Insurance

+ Stage1Treat+ Stage2Treat+ Treat+ rcs(log(CD4)) + rcs(log(V iralLoad))

Note: The index variable in the models above is fit as a categorical variable, denoting the

regime index.

Sensitivity Analyses: The following sensitivity analyses were performed:

• Sensitivity Analysis I: All models the same, except that outcome model restricted cubic

splines are replaced with log(CD4) and log(V iralLoad) terms.

• Sensitivity Analysis II: All models the same, except for outcome model restricted cubic

splines are replaced with rcs(log(TimeBetween×CD4)) and rcs(log(TimeBeteween×

V iralLoad)) terms. This model attempts to account for the fact that not all lab

measurements are taken within the same amount of time of the decision point.

• Sensitivity Analysis III: All models the same, except for outcome model restricted

cubic splines are replaced with log(TimeBetween × CD4) and log(TimeBeteween ×

V iralLoad) terms.

Conclusion of sensitivity analysis: results changed only minimally across models.

A.5.3 Positivity

Two types of positivity violations are of concern: structural positivity and practical positivity

[Petersen et al., 2012]. The former refers to when patients with specific sets of characteristics

are precluded from receiving a treatment; we do not think this is an issue here. The latter
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refers to the fact that we do not observe all treatments covariate combinations, due to a finite

sample size. This is of concern in our setting, as therapeutic switches were infrequent. Zhu

et al. [2021] mention that if propensity scores (PS) are used for achieving balance, then the

focus should be on assessing PS overlap between treatment groups. We assessed positivity for

each candidate regime by checking whether the distribution of the propensity score at each

interval for the modeled treatment are similar in the regime adherent group and the regime

non-adherent group. This must be done separately for each regime of interest (each θ). In

the first stage, all regimes start by evaluating the hypothetical world in which all patients

start on a non-PI regimen. Therefore, at this stage the treatment was the probability of

receiving PI. For this reason, we only need to perform one comparison across all regimes for

this stage (there is no dependence on θ at this stage). We observe that there is overlap from

Table A.18. For the second and third stage, the propensity of interested was in those who

switched treatment. Therefore, we compared the probability that a patient switched into

PI in the adherent group vs. the non-adherent group; these comparisons are specific to a

threshold θ and are presented for a subset of regimes in Table A.18. Propensity score overlap

indicated that patients who adhered have similar covariate distributions to those who did

not adhere. Therefore the types of patients who switch in the regime-enforced world are well

represented in the observational world. The propensity to switch treatment was generally

small, highlighting that relatively few individuals contribute to the estimation of our regime

of interest – a limitation that must be acknowledged.
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Table A.18: Propensity score overlap between patients who adhered to a specific regime and
patients who did not adhere for a subset of regimes. (Adh.="Adherent").

Regime θ Group 0% 10% 25% 50% 75% 90% 100%
Adh. Stage 1 0.198 0.440 0.515 0.606 0.693 0.747 0.835

Non-Adh. Stage 1 0.179 0.383 0.453 0.537 0.628 0.698 0.820
0.4 Adh. Stage 2 0.012 0.018 0.023 0.037 0.056 0.071 0.119
0.4 Non-Adh. Stage 2 0.011 0.018 0.023 0.035 0.052 0.067 0.130
0.4 Adh. Stage 3 0.006 0.010 0.013 0.018 0.030 0.041 0.050
0.4 Non-Adh. Stage 3 0.006 0.010 0.012 0.017 0.027 0.036 0.062
1.0 Adh. Stage 2 0.012 0.017 0.022 0.033 0.051 0.067 0.123
1.0 Non-Adh. Stage 2 0.011 0.019 0.024 0.037 0.053 0.070 0.130
1.0 Adh. Stage 3 0.006 0.010 0.013 0.018 0.027 0.037 0.062
1.0 Non-Adh. Stage 3 0.006 0.011 0.013 0.020 0.029 0.037 0.062
1.6 Adh. Stage 2 0.011 0.018 0.022 0.034 0.051 0.066 0.123
1.6 Non-Adh. Stage 2 0.012 0.020 0.026 0.039 0.056 0.073 0.130
1.6 Adh. Stage 3 0.006 0.010 0.013 0.019 0.028 0.037 0.062
1.6 Non-Adh. Stage 3 0.007 0.011 0.014 0.021 0.030 0.039 0.062
2.2 Adh. Stage 2 0.011 0.018 0.022 0.034 0.051 0.067 0.123
2.2 Non-Adh. Stage 2 0.012 0.021 0.028 0.041 0.059 0.075 0.130
2.2 Adh. Stage 3 0.006 0.010 0.013 0.019 0.028 0.037 0.062
2.2 Non-Adh. Stage 3 0.007 0.011 0.015 0.022 0.032 0.040 0.061
2.8 Adh. Stage 2 0.011 0.018 0.022 0.034 0.051 0.066 0.123
2.8 Non-Adh. Stage 2 0.012 0.021 0.029 0.043 0.062 0.077 0.130
2.8 Adh. Stage 3 0.006 0.010 0.013 0.019 0.028 0.037 0.062
2.8 Non-Adh. Stage 3 0.007 0.012 0.016 0.023 0.032 0.042 0.061

A.5.4 Normalization of Weights

In real data analyses, the variability of the estimators is an important consideration. One

approach to arrive at more robust estimates is to use weight normalization, as this can reduce

the variability of the resulting weights. A discussion of weight normalization can be found in

Chapter 12 of Hernán and Robins [2020], and it has been further explored in the literature

for example in Xiao et al. [2010]. For a sample of Dirichlet weights π = (π1, ..., πn), the

normalized IPW estimator for the value of a regime gr is:

∑︁n
i=1

πi1gr(x̄i)(z̄i)yi∏︁K

j=1 pO(zij |z̄ij−1,x̄ij)∑︁n
i=1

πi1gr(x̄i)(z̄i)∏︁K

j=1 pO(zij |z̄ij−1,x̄ij)
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Taking the expectation in the numerator and the denominator across Π, yields the familiar

frequentist estimator. The same approach can be taken with the weights in the doubly robust

estimator.

A.5.5 Balance Diagnostics

Next, we assess the balance obtained from the resulting weighting We used standardized

mean differences to assess balance. Table A.20 shows the treatment balance assessment at

each stage, using the full weights. Some standardized mean differences are moderately large,

even after weighting, but this must be considered in the context of having a finite sample

size and several probabilities contributing to the weighting of each observation.

A.5.6 Results for Individualized Inference

By looking at Figure 3 in the main paper, it may be tempting to conclude that there is no

benefit to tailoring. This is actually not the case. We remind the reader that we are after

the computation: θmin = arg min(Eθ1 [Y ], ..., Eθ13 [Y ]). From Figure A.4, we note that across

draws of Π, the expected outcome under regime θ follows a predictable pattern. That is, for

small θ the outcome tends to be lower than for high values of θ. We conclude that Figure 3

in the main paper does not display all necessary information.

Figure A.4: Values for six different samples of the posterior distribution

To enrich our analysis, we consider the posterior distribution of two types of θ: one is θmin,

which was the original target and which is thought to minimize end-stage FIB4; the second
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is θmax, which corresponds to the worst decision rule we can obtain by maximizing end-stage

FIB4. We now see from Table A.19 that the outcome-minimizing and outcome-maximizing

threshold are not equiprobable. Consequently this does allow us to consider individualized

inference, though we should realize that even if we can identify an optimal threshold, it

is still clear that the expected change in final FIB4 is minimal and therefore the resulting

optimal decision rule will have limited clinical value.

Table A.19: Posterior Distribution of outcome minimizing/maximizing regimes (500 poste-
rior draws).

Threshold 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
θmin 232 3 192 36 6 7 18 0 0 1 0 0 5
θmax 2 17 0 2 11 8 3 16 4 32 57 182 166

From Figure A.5(a), we see that the when a patient’s FIB4 score is at 0.8 or greater, they

should switch into PI if they hope to follow optimal therapy. From figure A.5(b), we see

that we should be careful regarding when to switch into PI. Operationalizing a rule that says

switch when FIB4 is greater than 2.6 means that we might actually be following the least

optimal regime. Of course, we remind the reader that the difference in effect size that each

of these regimes yield is small.

(a) (b)

Figure A.5: Cases study individualized treatment probabilities using doubly robust estima-
tor; (b) Treatment based on θmin (a) Treatment based on θmax.
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Table A.20: Balance diagnostics on the weighted sample: NA-ACCORD.

Stage 1 No PI PI SMD
n 7438.8 5182.2

Smoking (%) 4112.9 (55.3) 2888.7 (55.7) 0.009
At Risk Alcohol (%) 1971.3 (26.5) 1478.1 (28.5) 0.045

Drug Use (%) 1495.4 (20.1) 992.7 (19.2) 0.024
Sex (%) 1258.4 (16.9) 1240.3 (23.9) 0.175

Age at Baseline (mean (SD)) 40.07 (11.05) 40.89 (10.56) 0.076
Race Group(%) 0.067

Black 2874.1 (38.6) 1875.4 (36.2)
Missing 533.6 ( 7.2) 444.5 ( 8.6)

Other 405.3 ( 5.4) 273.6 ( 5.3)
White 3625.7 (48.7) 2588.7 (50.0)

Insurance (%) 3148.4 (42.3) 1946.2 (37.6) 0.097
HCV at Baseline (%) 736.3 (9.9) 772.8 (14.9) 0.153
HBV at Baseline (%) 381.5 (5.1) 359.6 (6.9) 0.076

Stage 2 No PI PI SMD
n 7138.2 5482.8

Smoking (%) 3921.4 (54.9) 2921.8 (53.3) 0.033
At Risk Alcohol (%) 1871.6 (26.2) 1466.8 (26.8) 0.012

Drug Use (%) 1381.3 (19.4) 900.8 (16.4) 0.076
Sex (%) 1267.1 (17.8) 1333.8 (24.3) 0.162

Age at Baseline (mean (SD)) 40.77 (11.02) 41.41 (10.37) 0.060
Race Group (%) 0.100

Black 2792.0 (39.1) 2063.4 (37.6)
Missing 500.8 (7.0) 535.6 (9.8)

Other 386.5 (5.4) 301.1 (5.5)
White 3458.9 (48.5) 2582.8 (47.1)

Insurance (%) 2959.3 (41.5) 1975.0 (36.0) 0.112
HCV at Baseline (%) 723.5 (10.1) 847.7 (15.5) 0.160
HBV at Baseline (%) 366.9 ( 5.1) 398.0 ( 7.3) 0.088

Stage 3 No PI PI SMD
n 7156.6 5464.4

Smoking (%) 3946.3 (55.1) 2895.3 (53.0) 0.043
At Risk Alcohol(%) 1863.6 (26.0) 1445.0 (26.4) 0.009

druguse (%) 1393.1 (19.5) 884.4 (16.2) 0.086
Sex(%) 1287.5 (18.0) 1365.2 (25.0) 0.171

Age at Baseline (mean (SD)) 40.78 (11.00) 41.24 (10.34) 0.043
Race Group (%) 0.105

Black 2792.9 (39.0) 2111.3 (38.6)
Missing 504.9 (7.1) 541.4 (9.9)

Other 391.9 (5.5) 298.8 (5.5)
White 3466.9 (48.4) 2513.0 (46.0)

Insurance(%) 3010.2 (42.1) 1940.8 (35.5) 0.135
HCV at Baseline (%) 732.6 (10.2) 844.8 (15.5) 0.157
HBV at Baseline (%) 372.2 ( 5.2) 387.4 ( 7.1) 0.079
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APPENDIX B

Appendix to Manuscript 2

B.1 Heteroskedasticity

In this section, we further explore possible reasons as to why heteroskedasticity can arise in

the estimation surface. For all examples related to this exploration, we focus on regimes of

the form treat if "x > ψ". As described in the main text, when going from regime gψ1 to

regime gψ2 (ψ1 < ψ2), only treated patients can become non-compliant and only untreated

patients can become compliant.

B.1.1 Heteroskedasticity Type I

The first source of heteroskedasticity relates to the fact that patient-level responses can

exhibit substantially higher levels of variability than the estimation surface. We consider the

following data generating mechanism for the purposes of illustration.

• n = 10000, x ∼ U(−1, 1), z1 ∼ bin(1, 0.5)

• Y = 1000(−x+ (x+ 0.8)x(x− 0.2)(x− 0.4)(x− 0.8)z1)

Note that y|x1, z1 is deterministically generated so as to avoid other sources of variability.
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In panel (a) of Figure B.1, we see the mean response for the treated and untreated patients,

as well as the value function. We note that in this scale, the value function looks flat, but it

is actually multimodal. In panel (b) of Figure B.1, we observe the normalized IPW-surface,

and we see that there are clear signs of heteroskedasticity. Most notably, there is much more

variability in the edges of the plot than in the middle. This variability depends mainly on

three elements: 1) how close are the treated and untreated lines to the IPW surface, 2) how

many patients become compliant, and 3) how many patients become non-compliant.

It is clear from Figure B.1 that the IPW-surface exhibits less variability around zero. This

corresponds to when the treated and untreated lines are closest to the IPW-surface. Con-

versely, when the lines are far from the IPW surface, more variability is observed. We may

ask ourselves why there should be more variability if, in some cases, the treated line and the

untreated lines are proximal to each other. In an unconfounded setting, for an increase in ψ,

the number of lost non-compliers is the same as the number of new compliers, on average.

However, for a finite sample there may be more/less new compliers than non-compliers, and

it is these differences that lead to variability in the curve, even if treated and untreated

response lines are similar. This source of heteroskedasticity is mainly a finite sample con-

sideration; as more patients contribute to the IPW estimator, it becomes harder to shift the

mean by a large amount when patients become compliant/non-compliant.

Figure B.1: Heteroskedasticity Type I: (a) Value surface and treated/untreated response
curves (b) IPW-surface with treated/untreated response
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B.1.2 Heteroskedasticity Type II

The second type of heteroskedasticity that we consider is heteroskedasticity that arises at

the individual level. For this we consider the following data-generating mechanism.

• n = 1000, ϵ1 = N(0, 5), ϵ2 = N(0, 0.5)

• x ∼ U(−10.5, 10.5), z ∼ binom(1, 0.5)

• Homoskedastic Mechanism: y = 100(−2x+ xz + ϵ1)

• Heteroskedastic Mechanism: y = 100(−2x+ xz + zϵ1 + (1− z1)ϵ2).

Note that there is again no confounding in this mechanism. This ensures that the number

of units adherent to each regime is approximately equal across ψ. For the IPW estimator,

conditional on known treatment propensities, variance is related to the number of units

adherent to a treatment; we refer to this as the effective sample size. As we will see in Case

III, confounding plays a role in the effective sample size and consequently on the variability

structure.

From Figure B.2, we observe that the variability of the IPW-surface is heteroskedastic. From

panel (a) we see that when there is homoskedastic noise in the person-level mechanism, this

transfers to homoskedastic noise in the IPW-surface. The noise only plot in panel (c) is

created by taking the weighted mean of the noise terms only. It is quite straightforward to

see why heteroskedasticity comes about for regimes of type treat if "x > ψ". We have already

established that, as we move from left to right in the plot, we lose treated patients and gain

untreated patients. This means that we are losing observations with high variability (ϵ1)

and gaining observations with low variability (ϵ2). This has the consequence of affecting the

variability of the resulting estimator.
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(a) (b) (c)

Figure B.2: Heteroskedasticity Type II: n=1000 (a) IPW estimator; homoskedastic case (b)
IPW estimator; heteroskedastic case; (c) Noise Component of heteroskedastic case

B.1.3 Heteroskedasticity Type III

We now illustrate how variability is a function of sample size, in particular, we note that

a given set of data may be more informative about one regime versus another, leading to

the notion of effective sample size. One way to influence the effective sample size is by

changing the confounding structure in the problem. Consider the following data generating

mechanism:

• z ∼ binom(1, p), x ∼ (Γ(α = 1/3, β = 2)− 1).

• Confounding case: p = expit(2.5x), Non-confounding case: p = 0.5.

• y = 100(−2x+ xz).

We contrast confounded and unconfounded data because even unconfounded data, which

result in equal effective sample sizes across regimes, can lead to heteroskedasticity. This

heteroskedasticity is likely arising from Case I. To examine whether effective sample size

induces heteroskedasticity, we must compare the variability in the unconfounded case with

the variability in the confounded case; if there is a non-constant change in variability of the

estimator across regimes, then we can determine that further heteroskedasticity has been

induced. Panels (b) and (c) in Figure B.3 show that the effective sample size is the same

across all regimes and that there is heteroskedasticity.
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(a) (b) (c)

Figure B.3: IPW estimator under no confounding setting (a) Expected outcome for varying
thresholds (b) Standard deviation of estimator for varying thresholds (c) Sample size for
varying thresholds.

Now if we induce confounding, as a way to manage the effective sample size, we obtain the

results in Figure B.4. We see that for higher values of ψ, the effective sample size falls. For

these same values the standard deviation increases. Comparing the standard deviation in

Figure B.3 and B.4, we see that this change in variability is not uniform, thereby informing

us that effective sample size leads to further heteroskedasticity. To understand how this drop

in effective sample size comes about, note that the x distribution is concentrated on the right

side of the plot. Furthermore, note that as we move from left to right, we encounter more

data and a larger and larger portion of these patients are receiving treatment due to the

confounding structure. Treated patients are exactly the patient we lose as we move right,

and we are only gaining a small number of untreated patients. This results in the observed

drop in effective sample size.

(a) (b) (c)

Figure B.4: IPW estimator under confounding setting (a) Expected outcome for varying
thresholds (b) Standard deviation of estimator for varying thresholds (c) Sample size for
varying thresholds.
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B.2 Re-Interpolation

Here we show that the posterior mean in the re-interpolating process is the same as the

posterior mean in the original process, be it in a homoskedastic or heteroskedastic setting.

That is, we show that µυ̂m+1 = µυm+1 . For this, we first show that the empirical Bayes

estimates for the prior means are the same, that is µ0υ̂ = µ0υ. The empirical Bayes expression

for µ0v is given by:

µ0v = µ0f = 1T (K + S)−1υ

1T (K + S)1 . (B.1)

This equation tells us that 1(K + S)−11µ0υ = 1(K + S)−1υ. Now based on the mean given

in equation B.1, we are able to write the vector of predicted values as:

υ̂ = 1µ0v +K(K + S)−1(υ − 1µ0v). (B.2)

Then substituting this into the expression for µ0υ̂, analogous to expression B.1, we ob-

tain:

µ0υ̂ =1TK−1υ̂

1TK1

=1TK−11µ0υ + 1T (K + S)−1(υ − 1µ0f )
1TK−11

=µ0υ + 1(K + S)−1υ − 1(K + S)−11µ0υ

1TK−11

=µ0υ + 0.

(B.3)
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Plugging in the expression for υ̂ into the expression for the posterior mean in the re-

interpolating model we get

µυ̂m+1 = µ0υ̂ + kTK(v̂ − 1µ̂0υ)

= µ0υ̂ + kTK−1(1µ0υ +K(K + S)−1(y − 1µ0f )− 1µ0υ̂)

= µ0υ̂ + kTK−11µ0υ + kT (K + S)−1(y − 1µ0f )− kTK−11µ0υ

= µ0v + kT (K + S)−1(υ − 1µ0υ)

= µυm+1 .

(B.4)

This was what we were required to show. Additionally, we recall that the Kriging variance

at a new sample point is σ2
υ̂m+1 = k(ψm+1, ψm+1)− kTK−1k and it has the desired property

of having zero error at already sampled points. All details of this approach can be found in

Forrester et al. [2006].

B.3 Simulation I

In this section, we explore other simulation settings to determine whether the obtained

results are sensitive to modeling assumptions. This includes examining the performance of a

Matern3/2 covariance. Generally, the Matérn covariance family is identified by parameters ν

and κ. This family of covariances has a particularly nice form when ν = κ+ 1/2. Generally

κ is known to control how fast the correlation decays with distance, which determines the

low frequency (Coarse-scale) behaviour. ν is known to control the high frequency (fine-scale)

smoothness of the sample paths. Before examining the results for other simulation settings,

we observe from Table B.1 that for a sample size of n = 1000, the grid search improves

substantially as compared to the n = 500 setting.
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Table B.1: Simulation I: Results for grid-search with increments of 0.01 and n = 1000. True
ψopt = 0.9; true value at optimum 0.165.

Statistic ψ̂opt Value at Optimum
Mean (SD) 0.559 (0.691) 0.169 (0.025)

Median (IQR) 0.880 (0.133) 0.169 (0.020)

B.3.1 Simulation I: Matern5/2 Covariance; Sample Size n = 500

From Figure B.5, we see the emulated curves for a single replicates when n = 500. These

are the curves shown in Figure 2 of the main text, but now the domain has not been

restricted.

(a) (b) (c)

Figure B.5: Simulation I: Emulation surfaces at +25 points overlaid over the IPW-surface (a)
IntGP (b) HMGP (c) HEGP .

The results in Table B.2 are in line with the results (median IQR) presented in the main

paper, and we see that all modeling approaches estimate well the value at the optimum.

Table B.2: Simulation I: Estimated value at ψ̂opt optimum after +m points, mean (SD); n =
1000 with 13 design points over 500 replicates. True value at optimum: 0.165.

GP +1 +5 +10 +15 +20 +25
IntGP 0.169 (0.021) 0.171 (0.021) 0.171 (0.021) 0.171 (0.021) 0.171 (0.022) 0.172 (0.021)

HMGP 0.169 (0.021) 0.170 (0.021) 0.170 (0.021) 0.170 (0.021) 0.170 (0.021) 0.170 (0.021)
HEGP 0.169 (0.021) 0.170 (0.021) 0.170 (0.021) 0.170 (0.021) 0.170 (0.021) 0.171 (0.021)
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B.3.2 Simulation I: Matern5/2 Covariance; Sample Size n = 1000

From Figure B.6, we see that the IPW-surface exhibits more smoothness than the n = 500

scenario. Consequently, the emulation surfaces are very smooth. Frame (a) makes clear why

the IntGP may identify the incorrect optimum more often than the other methods; there are

spikes in the fit around the local maximum at −0.8.

(a) (b) (c)

Figure B.6: Simulation I: Contour plot at +25 points (a) IntGP (b) HMGP (c) HEGP .

From Table B.3, we see that the mean is still biased for the optimal threshold. If we focus

on the medians, we see that all three GP modeling approaches work well, with the HMGP

having slightly more precision than the other methods. Inference is improved slightly by

sampling additional points. From Table B.4, we see that all modeling approaches perform

well in computing the value at the optimum.

Table B.3: Simulation I: Estimated optimal ψ after +m points; n = 1000 with 13 design points over
500 replicates and Matern5/2 covariance. True ψopt = 0.9.

Measure GP +1 +5 +10 +15 +20 +25
Med. (IQR) IntGP 0.875 (0.169) 0.880 (0.126) 0.881 (0.124) 0.881 (0.122) 0.882 (0.124) 0.882 (0.126)
Med. (IQR) HMGP 0.880 (0.167) 0.883 (0.116) 0.884 (0.118) 0.882 (0.121) 0.884 (0.118) 0.883 (0.124)
Med. (IQR) HEGP 0.877 (0.167) 0.884 (0.124) 0.884 (0.118) 0.885 (0.117) 0.885 (0.121) 0.884 (0.120)
Mean (SD) IntGP 0.548 (0.693) 0.582 (0.668) 0.586 (0.668) 0.577 (0.676) 0.578 (0.677) 0.572 (0.681)
Mean (SD) HMGP 0.555 (0.692) 0.596 (0.659) 0.577 (0.674) 0.580 (0.674) 0.581 (0.673) 0.576 (0.676)
Mean (SD) HEGP 0.547 (0.696) 0.586 (0.667) 0.582 (0.672) 0.589 (0.668) 0.581 (0.675) 0.577 (0.677)

210



Table B.4: Simulation I: Estimated value at ψ̂opt after +m points; n = 1000 with 13 design points
over 500 replicates and Matern5/2 covariance. True value at ψopt: 0.165.

Measure GP +1 +5 +10 +15 +20 +25
Med. (IQR) IntGP 0.167 (0.020) 0.168 (0.020) 0.168 (0.020) 0.169 (0.020) 0.169 (0.020) 0.169 (0.020)
Med. (IQR) HMGP 0.167 (0.019) 0.168 (0.020) 0.168 (0.020) 0.168 (0.020) 0.168 (0.020) 0.168 (0.020)
Med. (IQR) HEGP 0.167 (0.019) 0.168 (0.020) 0.168 (0.020) 0.168 (0.020) 0.168 (0.020) 0.168 (0.020)
Mean (SD) IntGP 0.167 (0.015) 0.168 (0.015) 0.168 (0.015) 0.168 (0.015) 0.168 (0.015) 0.168 (0.015)
Mean (SD) HMGP 0.167 (0.015) 0.167 (0.015) 0.167 (0.015) 0.167 (0.015) 0.167 (0.015) 0.168 (0.015)
Mean (SD) HEGP 0.167 (0.015) 0.167 (0.015) 0.167 (0.015) 0.167 (0.015) 0.168 (0.015) 0.168 (0.015)

Figure B.7: Simulation I: Boxplot at +m points; n = 1000 with 13 design points and
Matern5/2 covariance (a) Optimal ψ (b) Value at optimum.

B.3.3 Simulation I: Matern3/2 Covariance; Sample Size n = 1000

We see from Figure B.8 that the posterior means of the GPs very much resemble those in

the Matern5/2 scenario, and that they capture well the value surface. From Table B.5 and

B.6, we see that the results for this setting are almost unchanged.

Figure B.8: Simulation I: Contour plot at +25 points (a) IntGP (b) HMGP (c) HEGP .
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Table B.5: Simulation I: Estimated optimal ψ after +m points; n = 1000 with 13 design points over
500 replicates and Matern3/2 covariance. True ψopt =0.9.

Measure GP +1 +5 +10 +15 +20 +25
Med. (IQR) IntGP 0.875 (0.149) 0.880 (0.131) 0.882 (0.122) 0.881 (0.124) 0.882 (0.125) 0.881 (0.124)
Med. (IQR) HMGP 0.875 (0.149) 0.882 (0.122) 0.882 (0.122) 0.884 (0.123) 0.882 (0.126) 0.881 (0.124)
Med. (IQR) HEGP 0.875 (0.149) 0.881 (0.120) 0.884 (0.120) 0.885 (0.123) 0.882 (0.124) 0.882 (0.124)
Mean (SD) IntGP 0.549 (0.690) 0.570 (0.678) 0.579 (0.673) 0.573 (0.681) 0.572 (0.681) 0.575 (0.680)
Mean (SD) HMGP 0.552 (0.687) 0.579 (0.671) 0.578 (0.675) 0.576 (0.678) 0.57 (0.682) 0.570 (0.682)
Mean (SD) HEGP 0.549 (0.689) 0.583 (0.668) 0.582 (0.673) 0.581 (0.673) 0.577 (0.677) 0.572 (0.680)

Table B.6: Simulation I: Estimated value at ψ̂opt after +m points; n = 1000 with 13 design points
over 500 replicates and Matern3/2 covariance. True value at ψopt: 0.165.

Measure GP +1 +5 +10 +15 +20 +25
Med. (IQR) IntGP 0.167 (0.020) 0.168 (0.020) 0.169 (0.020) 0.169 (0.020) 0.169 (0.020) 0.169 (0.020)
Med. (IQR) HMGP 0.167 (0.019) 0.168 (0.020) 0.168 (0.020) 0.169 (0.020) 0.169 (0.020) 0.169 (0.020)
Med. (IQR) HEGP 0.167 (0.019) 0.168 (0.020) 0.168 (0.020) 0.169 (0.020) 0.169 (0.020) 0.169 (0.020)
Mean (SD) IntGP 0.167 (0.015) 0.168 (0.015) 0.168 (0.015) 0.169 (0.015) 0.169 (0.015) 0.169 (0.015)
Mean (SD) HMGP 0.167 (0.015) 0.168 (0.015) 0.168 (0.015) 0.168 (0.015) 0.168 (0.015) 0.168 (0.015)
Mean (SD) HEGP 0.167 (0.015) 0.168 (0.015) 0.168 (0.015) 0.168 (0.015) 0.168 (0.015) 0.168 (0.015)

(a) (b)

Figure B.9: Simulation I: Boxplot at +m points; n = 1000 with 13 design points and
Matern3/2 covariance (a) Optimal ψ (b) Value at optimum.

B.3.4 Simulation I: Matern5/2 Covariance; Sample Size n = 1000;

Log-Normal Prior

We see from the results below that the Log-Normal prior on the covariance parameter θf

with a Matern5/2 covariance does not change the results substantially. The hyperparameters
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in the Log-Normal prior were selected so that the 5th and 95th percentiles of the distribution

have a correlation of 0.05 and 0.95, respectively, for a 10% increase in the range of ψ. This

makes this prior rather non-informative.

(a) (b) (c)

Figure B.10: Simulation I: Contour plot at +25 points: (a) IntGP (b) HMGP (c) HEGP .

Table B.7: Simulation I: Estimated optimal ψ1 after +m points; n = 1000 with 13 design points over
500 replicates, Matern5/2 covariance and Log-Normal prior. True ψopt = 0.9.

Measure GP +1 +5 +10 +15 +20 +25
Med. (IQR) IntGP 0.881 (0.085) 0.888 (0.112) 0.888 (0.112) 0.888 (0.107) 0.890 (0.108) 0.886 (0.121)
Med. (IQR) HMGP 0.873 (0.157) 0.880 (0.123) 0.881 (0.113) 0.884 (0.115) 0.882 (0.117) 0.882 (0.119)
Med. (IQR) HEGP 0.873 (0.157) 0.880 (0.124) 0.882 (0.123) 0.880 (0.121) 0.883 (0.118) 0.882 (0.116)
Mean (SD) IntGP 0.609 (0.651) 0.604 (0.659) 0.606 (0.659) 0.601 (0.664) 0.606 (0.660) 0.578 (0.683)
Mean (SD) HMGP 0.551 (0.691) 0.589 (0.664) 0.586 (0.668) 0.580 (0.675) 0.574 (0.678) 0.574 (0.678)
Mean (SD) HEGP 0.552 (0.688) 0.585 (0.667) 0.578 (0.674) 0.577 (0.676) 0.577 (0.675) 0.577 (0.676)

Table B.8: Simulation I: Estimated value at ψ̂opt after +m points; n = 1000 with 13 design points
over 500, Matern5/2 covariance and Log-Normal prior. True value at ψopt: 0.165.

Measure GP +1 +5 +10 +15 +20 +25
Med. (IQR) IntGP 0.166 (0.020) 0.167 (0.020) 0.167 (0.020) 0.167 (0.020) 0.167 (0.020) 0.167 (0.021)
Med. (IQR) HMGP 0.167 (0.020) 0.168 (0.020) 0.168 (0.020) 0.168 (0.020) 0.168 (0.020) 0.168 (0.020)
Med. (IQR) HEGP 0.167 (0.019) 0.168 (0.020) 0.168 (0.020) 0.168 (0.020) 0.168 (0.020) 0.168 (0.020)
Mean (SD) IntGP 0.167 (0.016) 0.168 (0.016) 0.169 (0.016) 0.169 (0.016) 0.169 (0.016) 0.168 (0.016)
Mean (SD) HMGP 0.167 (0.015) 0.167 (0.015) 0.167 (0.015) 0.168 (0.015) 0.168 (0.015) 0.168 (0.015)
Mean (SD) HEGP 0.167 (0.015) 0.167 (0.015) 0.168 (0.015) 0.168 (0.015) 0.168 (0.015) 0.168 (0.015)
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(a) (b)

Figure B.11: Simulation I: Boxplot at +m points; n = 1000 with 13 design points, Matern5/2
covariance and Log-Normal prior (a) Optimal ψ (b) Value at optimum.

B.4 Simulation II

From Table B.9, we see that the grid search results for n = 1000. These reveal much more

precise results than the grid search for n = 500. In the following sections we examine the

method performance under a variety of modeling assumptions.

Table B.9: Simulation II: Grid search results with increments of 0.05 and n = 1000. True
(ψ1opt, ψ2opt) = (1.8,−0.3); true value at optimum 0.241.

Statistic Simulation ψ̂1opt ψ̂2opt Value at Optimum
Median (IQR) Homoskedastic 1.800 (0.150) -0.300 (0.225) 0.260 (0.081)
Median (IQR) Heteroskedastic 1.800 (0.150) -0.300 (0.225) 0.267 (0.094)
Mean (SD) Homoskedastic 1.488 (0.730) -0.360 (0.233) 0.260 (0.065)
Mean (SD) Heteroskedastic 1.401 (0.888) -0.366 (0.290) 0.267 (0.073)

B.4.1 Simulation II: Matern5/2 Covariance; Sample Size n = 500

The following tables present the results for main simulation as measured by the mean and

standard deviation, having presented the results for the median and interquartile range in

the main paper. As expected, the results reveal the multi-modality of the problem.
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Table B.10: Simulation II: Estimated optimal ψ1 after +m points; n = 500 with 16 design points
over 500 replicates, and Matern5/2 covariance. True ψ1opt =1.8.

Measure GP +1 +5 +10 +15 +20 +25
Mean (SD) IntGP -0.111 (1.209) 0.429 (1.378) 0.745 (1.309) 0.854 (1.266) 0.904 (1.247) 0.912 (1.261)
Mean (SD) HMGP 0.302 (1.589) 0.599 (1.560) 0.862 (1.390) 0.999 (1.313) 1.085 (1.249) 1.139 (1.194)
Mean (SD) HEGP 0.324 (1.548) 0.577 (1.499) 0.886 (1.356) 0.996 (1.306) 1.105 (1.227) 1.126 (1.204)

Table B.11: Simulation II: Estimated optimal ψ2 after +m points; n = 500 with 16 design points
over 500 replicates, and Matern5/2 covariance. True ψ2opt = -0.3.

Measure GP +1 +5 +10 +15 +20 +25
Mean (SD) IntGP -0.389 (0.571) -0.413 (0.483) -0.422 (0.439) -0.429 (0.422) -0.426 (0.423) -0.429 (0.437)
Mean (SD) HMGP -0.391 (0.569) -0.420 (0.489) -0.429 (0.466) -0.416 (0.422) -0.410 (0.421) -0.411 (0.429)
Mean (SD) HEGP -0.378 (0.564) -0.411 (0.471) -0.435 (0.442) -0.428 (0.429) -0.430 (0.455) -0.426 (0.450)

Table B.12: Simulation II: Estimated value at ψ̂1opt, ψ̂2opt after +m points; n = 500 with 16 design
points over 500 replicates, and Matern5/2 covariance. True value at ψ1opt, ψ2opt: 0.241.

Measure GP +1 +5 +10 +15 +20 +25
Median (SD) IntGP 0.199 (0.095) 0.242 (0.101) 0.259 (0.100) 0.264 (0.099) 0.266 (0.097) 0.269 (0.096)
Median (SD) HMGP 0.200 (0.102) 0.233 (0.103) 0.250 (0.099) 0.259 (0.097) 0.263 (0.096) 0.265 (0.095)
Median (SD) HEGP 0.203 (0.101) 0.237 (0.103) 0.253 (0.098) 0.260 (0.097) 0.264 (0.095) 0.266 (0.095)

B.4.2 Simulation II: Matern5/2 Covariance; Sample size n = 1000

Figure B.12 shows that, visually, the IPW-surface generally captures the main characteristics

of the value function. This can also be seen in the Interactive Supplement. Additionally,

Figure B.13 shows the estimated value function resulting from each of the three GP modeling

approaches, after 25 additional sampled points. All three approaches explore the region

around the global optimum; only the HMGP gives some possibility that there is another

local maxima around the center of the domain.
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(a) (b)

Figure B.12: Simulation II: (a) Value function (b) Estimated value function using normalized
IPW.

(a) (b) (c)

Figure B.13: Simulation II: Contour plot at +25 points: (a) IntGP (b) HMGP (c) HEGP .

If we examine what results after 500 replications of this analysis, Table B.13 and B.14 show

that relatively good performance can be attained using all three methods after sufficient

exploration, though the HMGP and HEGP yield even better performance, specifically with

regard to the ψ1 parameter, as they have a lower IQR. When compared to the grid search,

the HMGP and HEGP yield similar performance with regard to ψ2, and better performance

with regard to ψ1.
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Table B.13: Simulation II: Estimated optimal ψ1 after +m points; n = 1000 with 16 design points
over 500 replicates, and Matern5/2 covariance. True ψ1opt =1.8.

Measure GP +1 +5 +10 +15 +20 +25
Med. (IQR) IntGP 0.000 (0.536) 0.359 (2.003) 1.800 (1.933) 1.800 (0.219) 1.800 (0.124) 1.800 (0.104)
Med. (IQR) HMGP 1.800 (1.800) 1.800 (1.520) 1.800 (0.000) 1.800 (0.000) 1.800 (0.000) 1.800 (0.000)
Med. (IQR) HEGP 1.800 (1.80) 1.800 (1.741) 1.800 (0.000) 1.800 (0.000) 1.800 (0.000) 1.800 (0.000)
Mean (SD) IntGP 0.089 (1.015) 0.609 (1.246) 1.046 (1.158) 1.233 (1.039) 1.352 (0.930) 1.413 (0.866)
Mean (SD) HMGP 0.759 (1.510) 1.013 (1.396) 1.212 (1.181) 1.402 (0.962) 1.506 (0.818) 1.501 (0.813)
Mean (SD) HEGP 0.671 (1.598) 0.969 (1.408) 1.237 (1.191) 1.343 (1.062) 1.452 (0.907) 1.466 (0.899)

Table B.14: Simulation II: Estimated optimal ψ2 after +m points; n = 1000 with 16 design points
over 500 replicates, and Matern5/2 covariance. True ψ2opt = 0.3.

Measure GP +1 +5 +10 +15 +20 +25
Med. (IQR) IntGP -0.237 (0.365) -0.297 (0.231) -0.331 (0.193) -0.335 (0.198) -0.333 (0.193) -0.330 (0.194)
Med. (IQR) HMGP -0.181 (0.313) -0.303 (0.236) -0.323 (0.176) -0.315 (0.175) -0.314 (0.174) -0.310 (0.161)
Med. (IQR) HEGP -0.150 (0.332) -0.291 (0.224) -0.309 (0.156) -0.309 (0.171) -0.315 (0.176) -0.313 (0.177)
Mean (SD) IntGP -0.274 (0.419) -0.330 (0.309) -0.370 (0.287) -0.363 (0.254) -0.360 (0.242) -0.359 (0.232)
Mean (SD) HMGP -0.249 (0.385) -0.316 (0.313) -0.345 (0.248) -0.344 (0.232) -0.349 (0.226) -0.343 (0.248)
Mean (SD) HEGP -0.232 (0.369) -0.301 (0.292) -0.338 (0.223) -0.343 (0.227) -0.348 (0.233) -0.347 (0.231)

Table B.15: Simulation II: Estimated value at ψ̂1opt, ψ̂2opt after +m points; n = 1000 with 16 design
points over 500 replicates, and Matern5/2 covariance. True value at ψ1opt, ψ2opt: 0.241.

Measure GP +1 +5 +10 +15 +20 +25
Med. (IQR) IntGP 0.176 (0.087) 0.225 (0.108) 0.249 (0.094) 0.254 (0.086) 0.256 (0.082) 0.257 (0.082)
Med. (IQR) HMGP 0.205 (0.103) 0.238 (0.095) 0.249 (0.089) 0.250 (0.082) 0.254 (0.084) 0.255 (0.080)
Med. (IQR) HEGP 0.205 (0.112) 0.235 (0.100) 0.247 (0.096) 0.252 (0.093) 0.255 (0.082) 0.254 (0.080)
Mean (SD) IntGP 0.180 (0.068) 0.224 (0.076) 0.246 (0.073) 0.252 (0.070) 0.254 (0.067) 0.256 (0.067)
Mean (SD) HMGP 0.202 (0.078) 0.229 (0.076) 0.243 (0.072) 0.248 (0.069) 0.252 (0.068) 0.253 (0.067)
Mean (SD) HEGP 0.201 (0.079) 0.229 (0.075) 0.243 (0.073) 0.249 (0.070) 0.253 (0.067) 0.253 (0.066)

We can also visualize these results via Figures B.14 and B.15. The superiority of the HMGP

becomes apparent in estimating the ψ1 parameter, as it identifies the global optimum much

faster than the other two methods. Although all three approaches yield results that con-

centrate around the true value after a certain number of samples, the HMGP and HEGP

approaches converge around the true value more quickly than the IntGP .
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(a) (b)

Figure B.14: Simulation II: Boxplot at +m points; n = 1000 with 16 design points, and
Matern5/2 covariance (a) Optimal ψ1 (b) Optimal ψ2.

Figure B.15: Boxplot of value at optimum after +m points; n = 1000 with 16 design points,
and Matern5/2 covariance.

B.4.3 Simulation II: Matern5/2 Covariance; Sample Size n = 1000;

Heteroskedastic Noise

In this section, we explore the consequences of having additive heteroskedastic noise as

opposed to homoskedastic noise. We consider the following additive noise structure for the

Simulation II data generating mechanism: ϵ = z1ϵ12 + (1 − z1)ϵ21 + z2ϵ12 + (1 − z2)ϵ22,

where ϵ11, ϵ12 ∼ N(0, 0.052) and ϵ21, ϵ22 ∼ N(0, 0.452). We see from Figure B.16 (a) that

the estimated value function is not as well captured as in the additive homoskedastic noise

scenario. This can be further observed in the Interactive Supplement. From Figure B.16
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(b), we see that the additive heteroskedastic noise introduced at the individual level results

in further heteroskedasticity at the estimator level.

(a) (b)

Figure B.16: Simulation II: (a) Estimated value function (b) Standard deviation of additive
noise term, across replicates.

We see from Figure B.17 that the additive heteroskedastic noise has not changed the explo-

ration substantially. From Table B.13, we see that the HMGP and HEGP produce better

results than the interpolating and grid search approaches, specifically looking at the IQR.

In this case, however, the grid search yields relatively good performance. It is surprising

that the HEGP does not yield improved performance in this setting. In part, this is due to

the fact that it is challenging to estimate the noise surface when we are exploring only very

specific regions of the domain (where the maximum may be). Consequently, there is not

enough data to obtain a precise estimate of the systematic structure in the heteroskedastic

noise. When introducing this approach to HEGPs, Zhang and Ni [2020] only examined it in

one dimensional problems, and in a non-optimization context. This means that there was

a considerable amount of data in all regions of the domain, thereby allowing for the precise

estimation of a systematic component to the noise variance. A scatter plot of the residu-

als can be found in the Interactive Supplement. We see that in regions that are not well

explored, the residuals are nearly zero. However, more exploration in those regions would

certainly change the estimated residual structure.
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(a) (b) (c)

Figure B.17: Simulation II: Contour plot at +25 points: (a) IntGP (b) HMGP (c) HEGP .

Table B.16: Simulation II: Estimated optimal ψ1 after +m points; n = 1000 with 16 design points
over 500 replicates, and Matern5/2 covariance. True ψ1opt = 1.8.

Measure GP +1 +5 +10 +15 +20 +25
Med. (IQR) IntGP 0.00 (0.569) 0.262 (2.056) 1.800 (1.962) 1.800 (1.694) 1.800 (0.215) 1.800 (0.149)
Med. (IQR) HMGP 1.710 (1.935) 1.800 (1.776) 1.800 (0.165) 1.800 (0.000) 1.800 (0.000) 1.800 (0.000)
Med. (IQR) HEGP 1.125 (2.197) 1.800 (1.800) 1.800 (0.856) 1.800 (0.000) 1.800 (0.000) 1.800 (0.000)
Mean (SD) IntGP 0.017 (1.079) 0.560 (1.306) 0.954 (1.234) 1.156 (1.126) 1.247 (1.045) 1.326 (0.966)
Mean (SD) HMGP 0.580 (1.539) 0.906 (1.407) 1.134 (1.245) 1.300 (1.104) 1.387 (1.008) 1.417 (0.964)
Mean (SD) HEGP 0.481 (1.583) 0.817 (1.436) 1.139 (1.233) 1.315 (1.073) 1.416 (0.951) 1.452 (0.913)

Table B.17: Simulation II: Estimated optimal ψ2 after +m points; n = 1000 with 16 design points
over 500 replicates, and Matern5/2 covariance. True ψ2opt = -0.3.

Measure GP +1 +5 +10 +15 +20 +25
Med. (IQR) IntGP -0.257 (0.392) -0.294 (0.262) -0.315 (0.248) -0.329 (0.260) -0.327 (0.265) -0.324 (0.265)
Med. (IQR) HMGP -0.201 (0.344) -0.287 (0.267) -0.312 (0.232) -0.312 (0.230) -0.320 (0.223) -0.319 (0.228)
Med. (IQR) HEGP -0.190 (0.343) -0.275 (0.248) -0.309 (0.218) -0.313 (0.232) -0.315 (0.227) -0.315 (0.222)
Mean (SD) IntGP -0.336 (0.530) -0.349 (0.377) -0.365 (0.336) -0.369 (0.312) -0.368 (0.307) -0.367 (0.305)
Mean (SD) HMGP -0.311 (0.505) -0.326 (0.361) -0.355 (0.316) -0.367 (0.324) -0.377 (0.336) -0.370 (0.306)
Mean (SD) HEGP -0.314 (0.521) -0.344 (0.403) -0.349 (0.319) -0.366 (0.324) -0.371 (0.320) -0.377 (0.325)

Table B.18: Simulation II: Estimated value at ψ̂1opt, ψ̂2opt after +m points; n = 1000 with 16 design
points over 500 replicates, and Matern5/2 covariance. True value at ψ1opt, ψ2opt: 0.241.

Estimate GP +1 +5 +10 +15 +20 +25
Med. (IQR) IntGP 0.182 (0.098) 0.232 (0.113) 0.253 (0.107) 0.261 (0.096) 0.261 (0.096) 0.262 (0.093)
Med. (IQR) HMGP 0.202 (0.118) 0.229 (0.116) 0.249 (0.110) 0.256 (0.101) 0.259 (0.098) 0.261 (0.094)
Med. (IQR) HEGP 0.203 (0.118) 0.234 (0.116) 0.249 (0.109) 0.255 (0.098) 0.259 (0.097) 0.260 (0.093)
Mean (SD) IntGP 0.187 (0.073) 0.231 (0.082) 0.249 (0.080) 0.257 (0.077) 0.259 (0.076) 0.259 (0.074)
Mean (SD) HMGP 0.200 (0.085) 0.228 (0.085) 0.245 (0.082) 0.252 (0.078) 0.256 (0.076) 0.258 (0.074)
Mean (SD) HEGP 0.199 (0.084) 0.231 (0.085) 0.246 (0.080) 0.254 (0.077) 0.258 (0.074) 0.259 (0.074)
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(a) (b)

Figure B.18: Simulation II: Boxplot after +m points; n = 1000 with 16 design points, and
Matern5/2 covariance (a) Optimal ψ1 (b) Optimal ψ2.

Figure B.19: Simulation II: Boxplot of value at optimum for +m points; n = 1000 with 16
design points, and Matern5/2 covariance.

B.4.4 Simulation II: Matern3/2 Covariance; Sample Size n = 1000

We see from Figure B.20, that under the Matern3/2 covariance, the local maximizer is

still not captured and all methods focus exploration in the area near the global maximizer.

From Tables B.19-B.21, we see that the GPs perform slightly worse than in the Matern5/2

covariance setting. We see from Figure B.21 that with this covariance function it takes more

additional samples for the HMGP to achieve increased precision.
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Figure B.20: Simulation II: Contour plot at +25 points: (a) IntGP (b) HMGP (c) HEGP .

Table B.19: Simulation II: Estimated optimal ψ1 after +m points; n = 1000 with 16 design points
over 500 replicates, and Matern3/2 covariance. True ψ1opt = 1.8.

Measure GP +1 +5 +10 +15 +20 +25
Med. (IQR) IntGP 0.000 (0.506) 1.800 (1.958) 1.800 (1.761) 1.800 (0.055) 1.800 (0.054) 1.800 (0.058)
Med. (IQR) HMGP 0.247 (1.800) 1.800 (1.906) 1.800 (1.898) 1.800 (1.714) 1.800 (0.100) 1.800 (0.089)
Med. (IQR) HEGP 0.343 (1.800) 1.800 (1.852) 1.800 (1.859) 1.800 (0.101) 1.800 (0.076) 1.800 (0.071)
Mean (SD) IntGP 0.120 (1.057) 0.725 (1.273) 1.155 (1.142) 1.334 (1.008) 1.416 (0.912) 1.418 (0.906)
Mean (SD) HMGP 0.415 (1.260) 0.736 (1.334) 1.030 (1.181) 1.188 (1.078) 1.289 (0.998) 1.343 (0.947)
Mean (SD) HEGP 0.493 (1.365) 0.813 (1.346) 1.106 (1.172) 1.263 (1.033) 1.345 (0.953) 1.387 (0.920)

Table B.20: Simulation II: Estimated optimal ψ2 after +m points; n = 1000 with 16 design points
over 500 replicates, and Matern3/2 covariance. True ψ2opt =-0.3.

Measure GP +1 +5 +10 +15 +20 +25
Med. (IQR) IntGP -0.279 (0.378) -0.309 (0.238) -0.327 (0.202) -0.331 (0.195) -0.330 (0.197) -0.333 (0.201)
Med. (IQR) HMGP -0.256 (0.362) -0.298 (0.208) -0.302 (0.195) -0.312 (0.200) -0.309 (0.204) -0.317 (0.205)
Med. (IQR) HEGP -0.217 (0.354) -0.301 (0.223) -0.304 (0.200) -0.314 (0.190) -0.315 (0.192) -0.317 (0.191)
Mean (SD) IntGP -0.302 (0.407) -0.355 (0.297) -0.364 (0.266) -0.364 (0.260) -0.363 (0.263) -0.365 (0.256)
Mean (SD) HMGP -0.285 (0.404) -0.343 (0.291) -0.349 (0.257) -0.351 (0.256) -0.353 (0.255) -0.356 (0.248)
Mean (SD) HEGP -0.262 (0.398) -0.337 (0.283) -0.350 (0.273) -0.352 (0.264) -0.354 (0.259) -0.356 (0.255)

Table B.21: Simulation II: Estimated value at ψ̂1opt, ψ̂2opt after +m points; n = 1000 with 16 design
points over 500 replicates, and Matern3/2 covariance. True value at ψ1opt, ψ2opt: 1.

Measure GP +1 +5 +10 +15 +20 +25
Med. (IQR) IntGP 0.181 (0.093) 0.234 (0.101) 0.253 (0.091) 0.259 (0.084) 0.259 (0.083) 0.261 (0.082)
Med. (IQR) HMGP 0.191 (0.100) 0.234 (0.102) 0.245 (0.092) 0.250 (0.092) 0.255 (0.090) 0.257 (0.089)
Med. (IQR) HEGP 0.195 (0.104) 0.235 (0.099) 0.248 (0.092) 0.253 (0.091) 0.256 (0.088) 0.258 (0.083)
Mean (SD) IntGP 0.186 (0.071) 0.233 (0.074) 0.250 (0.071) 0.256 (0.068) 0.258 (0.067) 0.259 (0.067)
Mean (SD) HMGP 0.193 (0.074) 0.228 (0.076) 0.242 (0.072) 0.247 (0.071) 0.252 (0.070) 0.254 (0.069)
Mean (SD) HEGP 0.198 (0.074) 0.231 (0.075) 0.245 (0.071) 0.251 (0.069) 0.254 (0.068) 0.256 (0.067)

222



Figure B.21: Simulation II: Boxplot after +m points; n = 1000 with 16 design points, and
Matern3/2 covariance (a) Optimal ψ1 (b) Optimal ψ2.

Figure B.22: Simulation II: Boxplot of value for +m points; n = 1000 with 16 design points,
and Matern3/2 covariance.

B.4.5 Simulation II: Matern5/2 Covariance; Sample Size n = 1000;

Log-Normal Prior

We see from Figure B.23 that the HMGP and HEGP , capture both the global maximum and

local maximum. We see from Tables B.22-B.24 that at an additional 25 points, the results

using the Log-Normal prior are very similar to those without a prior. From Figure B.24 and

B.24, we see that the effect of additional points is very similar to that of the no prior setting.

The prior hyperparameters were chosen using the same approach as in simulation I.
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(a) (b) (c)

Figure B.23: Simulation II: Contour plot at +25 points (a) IntGP (b) HMGP (c) HEGP .

Table B.22: Simulation II: Estimated optimal ψ1 after +m points; n = 1000 with 16 design points
over 500 replicates, Matern5/2 covariance, and Log-Normal prior. True ψ1opt = 1.8.

Measure GP +1 +5 +10 +15 +20 +25
Med. (IQR) IntGP 0.000 (0.677) 0.000 (2.074) 1.800 (2.012) 1.800 (1.638) 1.800 (0.141) 1.800 (0.125)
Med. (IQR) HMGP 0.000 (1.125) 0.000 (2.097) 1.800 (1.964) 1.800 (0.067) 1.800 (0.035) 1.800 (0.043)
Med. (IQR) HEGP 0.000 (1.125) 0.019 (2.061) 1.800 (1.921) 1.800 (0.067) 1.800 (0.053) 1.800 (0.056)
Mean (SD) IntGP 0.054 (1.006) 0.394 (1.235) 0.933 (1.180) 1.190 (1.060) 1.296 (0.996) 1.348 (0.944)
Mean (SD) HMGP 0.074 (1.015) 0.296 (1.235) 1.047 (1.151) 1.383 (0.932) 1.492 (0.801) 1.500 (0.801)
Mean (SD) HEGP 0.074 (1.032) 0.410 (1.289) 1.086 (1.100) 1.404 (0.919) 1.479 (0.831) 1.502 (0.796)

Table B.23: Simulation II: Estimated optimal ψ2 after +m points; n = 1000 with 16 design points
over 500 replicates, Matern5/2 covariance, and Log-Normal prior. True ψ2opt =-0.3.

Measure GP +1 +5 +10 +15 +20 +25
Med. (IQR) IntGP 0.000 (0.111) -0.226 (0.309) -0.316 (0.248) -0.328 (0.219) -0.328 (0.207) -0.329 (0.203)
Med. (IQR) HMGP 0.000 (0.110) -0.232 (0.324) -0.317 (0.200) -0.325 (0.192) -0.318 (0.189) -0.319 (0.195)
Med. (IQR) HEGP 0.000 (0.112) -0.230 (0.316) -0.317 (0.220) -0.329 (0.190) -0.321 (0.185) -0.313 (0.191)
Mean (SD) IntGP -0.247 (0.555) -0.338 (0.425) -0.366 (0.307) -0.373 (0.271) -0.373 (0.256) -0.373 (0.255)
Mean (SD) HMGP -0.248 (0.555) -0.345 (0.421) -0.365 (0.286) -0.357 (0.243) -0.357 (0.235) -0.353 (0.230)
Mean (SD) HEGP -0.251 (0.555) -0.336 (0.404) -0.363 (0.284) -0.363 (0.273) -0.352 (0.223) -0.353 (0.236)
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Table B.24: Simulation II: Estimated value at ψ̂1opt, ψ̂2opt after +m points; n = 1000 with 16 design
points over 500 replicates, Matern5/2 covariance, and Log-Normal prior. True value at ψ1opt, ψ2opt:
1.

Measure GP +1 +5 +10 +15 +20 +25
Med. (IQR) IntGP 0.167 (0.089) 0.217 (0.103) 0.246 (0.100) 0.254 (0.092) 0.255 (0.089) 0.256 (0.085)
Med. (IQR) HMGP 0.164 (0.092) 0.206 (0.107) 0.246 (0.091) 0.254 (0.086) 0.255 (0.082) 0.256 (0.080)
Med. (IQR) HEGP 0.164 (0.092) 0.214 (0.105) 0.246 (0.092) 0.252 (0.087) 0.254 (0.081) 0.256 (0.081)
Mean (SD) IntGP 0.173 (0.067) 0.216 (0.075) 0.241 (0.073) 0.251 (0.070) 0.255 (0.069) 0.256 (0.068)
Mean (SD) HMGP 0.171 (0.068) 0.208 (0.077) 0.242 (0.072) 0.251 (0.068) 0.254 (0.066) 0.255 (0.066)
Mean (SD) HEGP 0.172 (0.068) 0.214 (0.077) 0.242 (0.071) 0.252 (0.068) 0.255 (0.066) 0.255 (0.066)

(a) (b)

Figure B.24: Simulation II: Boxplot after +m points; n = 1000 with 16 design points,
Matern5/2 covariance, and Log-Normal prior (a) Optimal ψ1 (b) Optimal ψ2.

Figure B.25: Boxplot of value at optimum after +m points; n = 1000 with 16 design points,
Matern5/2 covariance, and Log-Normal prior.
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B.5 Simulation III

In this section, we present additional results for other simulation settings in simulation III.

Before this, we provide the full data-generating mechanism:

• x1,1 ∼ N(1, 1), x1,2 ∼ N(0, 1)

• z1 ∼ Bern(p = expit(1.5x1,2 + 2x1,1))

• x2,1 ∼ N(0.2z1 + 0.1x1,1, 1), x2,2 ∼ N(0.5z1 + 0.1x1,2, 1)

• z2 ∼ Bern(p = expit(1.5x2,2 − 0.6z1 + 2x2,1))

• z1,opt = 0.5x1,1 + 0.5x1,2 > 0.5, z2,opt = 0.5x2,1 + 0.5x2,2 > 0.5

• y = x11 + x12 − (0.5x11 + 0.5x12 − 0.5)(z1,opt − z1) − (0.5x21 + 0.5Ox22 − 0.5)(z2,opt −

z2) +
√

0.5ϵ,

ϵ ∼ N(0, 1).

From Figure B.25, we see that the mean value estimates well the optimal parameters, and

this reflects the fact that this is a uni-modal problem.

Table B.25: Simulation III: Grid search results for simulation III in increments of 0.01 and
n = 1000. True (ψ1opt, ψ2opt) = (0.5, 0.1); true value at optimum: 1.

Statistic ψ̂1opt ψ̂3opt Value at Optimum
Mean (SD) 0.479 (0.132) 0.111 (0.100) 1.143 (0.103)

Median (IQR) 0.480 (0.170) 0.11 (0.130) 1.141 (0.131)

B.5.1 Simulation III: Matern5/2 Covariance; Sample Size n = 500

The following tables present the means and standard deviations pertaining to the estimated

parameters of interest. These complement the tables in the main paper, showing the medians

and IQRs.
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Table B.26: Simulation III: Estimated optimal ψ1 after +m points, mean (SD); n = 500 with 20
design points over 500 replicates, and Matern5/2 covariance. True ψ1opt =0.5.

GP +1 +5 +10 +15 +20 +25
IntGP 0.479 (0.172) 0.480 (0.164) 0.482 (0.161) 0.477 (0.161) 0.478 (0.16) 0.479 (0.157)

HMGP 0.477 (0.178) 0.488 (0.170) 0.485 (0.169) 0.483 (0.166) 0.482 (0.164) 0.483 (0.165)
HEGP 0.480 (0.174) 0.481 (0.171) 0.476 (0.163) 0.479 (0.161) 0.478 (0.161) 0.479 (0.160)

Table B.27: Simulation III: Estimated optimal ψ3 after +m points, mean (SD); n = 500 with 20
design points over 500 replicates, and Matern5/2 covariance. True ψ3opt = 0.1.

GP +1 +5 +10 +15 +20 +25
IntGP 0.107 (0.139) 0.105 (0.136) 0.102 (0.132) 0.099 (0.131) 0.100 (0.128) 0.098 (0.129)

HMGP 0.114 (0.137) 0.111 (0.137) 0.106 (0.136) 0.107 (0.134) 0.104 (0.132) 0.100 (0.137)
HEGP 0.113 (0.139) 0.113 (0.135) 0.106 (0.136) 0.103 (0.134) 0.104 (0.131) 0.103 (0.130)

Table B.28: Simulation III: Estimated value at ψ̂1opt, ψ̂3opt after +m points, mean (SD); n = 500
with 20 design points over 500 replicates, and Matern5/2 covariance. True value at ψ1opt, ψ3opt: 1.

GP +1 +5 +10 +15 +20 +25
IntGP 1.127 (0.150) 1.161 (0.154) 1.177 (0.151) 1.188 (0.151) 1.193 (0.149) 1.199 (0.147)

HMGP 1.076 (0.154) 1.115 (0.159) 1.138 (0.157) 1.153 (0.155) 1.163 (0.154) 1.168 (0.152)
HEGP 1.078 (0.153) 1.116 (0.158) 1.139 (0.156) 1.152 (0.154) 1.162 (0.151) 1.168 (0.151)

B.5.2 Simulation III: Matern5/2 Covariance; Sample Size n = 1000

From Figure B.26, we see that the IPW-surface does not completely capture the shape of

this value function, for a specific sample of size n = 1000.. Consequently, for this replicate,

none of the GPs capture well the optimal parameters after an additional 25 sampled points;

this can be seen from Figure B.27.

Figure B.26: Simulation III: Estimated value function using normalized IPW.
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(a) (b) (c)

Figure B.27: Simulation III: Contour plot at +25 points (a) IntGP (b) HMGP (c) HEGP .

We see from Tables B.29, B.30, and B.31 that in this case, unlike the multi-modal cases, all

three GP yield similar results. The increase in sample size brings about more precision as

compared to the n = 500 case. Additionally, we see from these settings that convergence

happens rather quickly, and there is only a slight improvement when sampling additional

points up to 25.

Table B.29: Simulation III: Estimated optimal ψ1 after +m points; n = 1000 with 20 design points
over 500 replicates, and Matern5/2 covariance. True value ψ1opt =0.5.

Measure GP +1 +5 +10 +15 +20 +25
Med. (IQR) IntGP 0.474 (0.200) 0.472 (0.175) 0.475 (0.170) 0.478 (0.173) 0.485 (0.172) 0.487 (0.178)
Med. (IQR) HMGP 0.491 (0.200) 0.489 (0.162) 0.478 (0.164) 0.486 (0.164) 0.485 (0.164) 0.484 (0.170)
Med. (IQR) HEGP 0.489 (0.189) 0.494 (0.165) 0.489 (0.164) 0.485 (0.169) 0.479 (0.172) 0.482 (0.173)
Mean (SD) IntGP 0.483 (0.141) 0.475 (0.137) 0.477 (0.136) 0.477 (0.137) 0.484 (0.136) 0.486 (0.137)
Mean (SD) HMGP 0.483 (0.150) 0.482 (0.141) 0.479 (0.138) 0.482 (0.135) 0.484 (0.134) 0.484 (0.135)
Mean (SD) HEGP 0.483 (0.144) 0.486 (0.140) 0.484 (0.136) 0.483 (0.137) 0.481 (0.137) 0.481 (0.136)

Table B.30: Simulation III: Estimated optimal ψ3 after +m points; n = 1000 with 20 design points
over 500 replicates, and Matern5/2 covariance. True value ψ3opt =0.1.

Measure GP +1 +5 +10 +15 +20 +25
Med. (IQR) IntGP 0.139 (0.138) 0.116 (0.121) 0.103 (0.118) 0.106 (0.121) 0.106 (0.121) 0.108 (0.125)
Med. (IQR) HMGP 0.109 (0.098) 0.106 (0.106) 0.105 (0.108) 0.104 (0.114) 0.105 (0.119) 0.108 (0.121)
Med. (IQR) HEGP 0.107 (0.098) 0.108 (0.109) 0.110 (0.113) 0.110 (0.119) 0.106 (0.119) 0.104 (0.116)
Mean (SD) IntGP 0.111 (0.110) 0.109 (0.108) 0.106 (0.107) 0.107 (0.106) 0.107 (0.106) 0.109 (0.105)
Mean (SD) HMGP 0.110 (0.103) 0.110 (0.101) 0.107 (0.100) 0.105 (0.100) 0.107 (0.100) 0.111 (0.101)
Mean (SD) HEGP 0.112 (0.105) 0.110 (0.105) 0.105 (0.105) 0.106 (0.105) 0.104 (0.107) 0.104 (0.107)
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Table B.31: Simulation III: Estimated value at ψ̂1opt, ψ̂3opt after +m points; n = 1000 with 20 design
points over 500 replicates, and Matern5/2 covariance. True value at ψ1opt, ψ3opt: 1.

Measure GP +1 +5 +10 +15 +20 +25
Med. (IQR) IntGP 1.060 (0.137) 1.086 (0.132) 1.103 (0.130) 1.109 (0.133) 1.114 (0.129) 1.117 (0.129)
Med. (IQR) HMGP 1.028 (0.134) 1.053 (0.134) 1.066 (0.140) 1.080 (0.130) 1.089 (0.132) 1.092 (0.133)
Med. (IQR) HEGP 1.033 (0.137) 1.062 (0.138) 1.073 (0.126) 1.080 (0.133) 1.086 (0.131) 1.091 (0.129)
Mean (SD) IntGP 1.064 (0.105) 1.091 (0.106) 1.106 (0.104) 1.112 (0.104) 1.115 (0.104) 1.118 (0.104)
Mean (SD) HMGP 1.028 (0.105) 1.056 (0.108) 1.071 (0.108) 1.080 (0.106) 1.088 (0.105) 1.093 (0.105)
Mean (SD) HEGP 1.032 (0.104) 1.060 (0.106) 1.075 (0.104) 1.083 (0.104) 1.089 (0.102) 1.093 (0.102)

From Figure B.28, we see that optimal indices are well identified across simulations; from

Figure B.29, we see that the value is slightly less well estimated.

(a) (b)

Figure B.28: Simulation III: Boxplot after +m points; n = 1000 with 20 design points, and
Matern5/2 covariance (a) Optimal ψ1 (b) Optimal ψ3.

Figure B.29: Simulation III: Boxplot of value at optimum after +m points; n = 1000 with
20 design points, and Matern5/2 covariance.
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B.5.3 Simulation III: Matern3/2 Covariance; Sample Size n = 1000

We see from Figure B.30 that using a Matern3/2 covariance does not improve the fit for this

specific replicate.

(a) (b) (c)

Figure B.30: Simulation III: Contour plot at +25 points (a) IntGP (b) HMGP (c) HEGP .

From Tables B.32-B.34, we note that the use of a Matérn 3/2 covariance provides slightly

more precise results in this setting, but not sufficiently so to determine that the choice be-

tween the two covariance functions we explore is consequential in the estimation results.

Table B.32: Simulation III: Estimated optimal ψ1 after +m points; n = 1000 with 20 design points
over 500 replicates, and Matern3/2 covariance. True ψ1opt =0.5.

Measure GP +1 +5 +10 +15 +20 +25
Med. (IQR) IntGP 0.473 (0.200) 0.483 (0.174) 0.490 (0.173) 0.493 (0.172) 0.493 (0.168) 0.491 (0.167)
Med. (IQR) HMGP 0.485 (0.200) 0.479 (0.170) 0.485 (0.169) 0.483 (0.168) 0.487 (0.168) 0.487 (0.163)
Med. (IQR) HEGP 0.485 (0.200) 0.485 (0.171) 0.487 (0.169) 0.490 (0.164) 0.488 (0.166) 0.482 (0.169)
Mean (SD) IntGP 0.482 (0.142) 0.481 (0.133) 0.484 (0.132) 0.486 (0.131) 0.489 (0.132) 0.488 (0.132)
Mean (SD) HMGP 0.480 (0.147) 0.481 (0.137) 0.482 (0.136) 0.482 (0.131) 0.483 (0.132) 0.485 (0.133)
Mean (SD) HEGP 0.481 (0.145) 0.482 (0.140) 0.484 (0.136) 0.487 (0.135) 0.484 (0.134) 0.484 (0.134)

Table B.33: Simulation III: Estimated optimal ψ3 after +m points; n = 1000 with 20 design points
over 500 replicates, and Matern3/2 covariance. True ψ3opt =:0.1.

Measure GP +1 +5 +10 +15 +20 +25
Med. (IQR) IntGP 0.139 (0.139) 0.114 (0.120) 0.110 (0.118) 0.109 (0.120) 0.106 (0.121) 0.103 (0.123)
Med. (IQR) HMGP 0.111 (0.096) 0.109 (0.108) 0.108 (0.111) 0.106 (0.114) 0.104 (0.115) 0.105 (0.113)
Med. (IQR) HEGP 0.106 (0.098) 0.101 (0.107) 0.105 (0.115) 0.103 (0.118) 0.106 (0.119) 0.107 (0.118)
Mean (SD) IntGP 0.111 (0.109) 0.109 (0.105) 0.107 (0.102) 0.108 (0.102) 0.108 (0.101) 0.108 (0.102)
Mean (SD) HMGP 0.113 (0.105) 0.110 (0.103) 0.107 (0.100) 0.107 (0.100) 0.106 (0.101) 0.107 (0.101)
Mean (SD) HEGP 0.112 (0.104) 0.104 (0.103) 0.105 (0.103) 0.104 (0.102) 0.106 (0.102) 0.108 (0.101)
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Table B.34: Simulation III: Value at ψ̂1opt, ψ̂3opt after +m points; n = 1000 with 20 design points
over 500 replicates, and Matern3/2 covariance. True value at ψ1opt, ψ3opt: 1.

Measure GP +1 +5 +10 +15 +20 +25
Med. (IQR) IntGP 1.061 (0.133) 1.089 (0.133) 1.103 (0.138) 1.113 (0.134) 1.117 (0.136) 1.121 (0.132)
Med. (IQR) HMGP 1.033 (0.136) 1.061 (0.134) 1.080 (0.132) 1.097 (0.133) 1.100 (0.134) 1.104 (0.133)
Med. (IQR) HEGP 1.037 (0.136) 1.069 (0.133) 1.087 (0.128) 1.095 (0.124) 1.102 (0.125) 1.107 (0.132)
Mean (SD) IntGP 1.064 (0.103) 1.092 (0.106) 1.107 (0.107) 1.115 (0.106) 1.120 (0.105) 1.125 (0.104)
Mean (SD) HMGP 1.031 (0.105) 1.062 (0.108) 1.080 (0.108) 1.093 (0.108) 1.100 (0.107) 1.106 (0.106)
Mean (SD) HEGP 1.035 (0.104) 1.067 (0.108) 1.086 (0.105) 1.096 (0.104) 1.103 (0.105) 1.107 (0.103)

(a) (b)

Figure B.31: Simulation III: Boxplot after +m points; n = 1000 with 20 design points, and
Matern3/2 covariance (a) Optimal ψ1 (b) Optimal ψ3.

Figure B.32: Boxplot of value at optimum after +m points; n = 1000 with 20 design points,
and Matern3/2 covariance.
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B.5.4 Simulation III: Matern5/2 Covariance; Sample Size n = 1000;

Log-Normal Prior

Figure B.33: Simulation III: Contour plot at +25 points: (a) IntGP (b) HMGP (c) HEGP .

Table B.35: Simulation III: Estimated optimal ψ1 after +m points; n = 1000 with 20 design points
over 500 replicates, Matern5/2 covariance, and Log-Normal prior. True ψ1opt =0.5.

Measure GP +1 +5 +10 +15 +20 +25
Med. (IQR) IntGP 0.466 (0.200) 0.480 (0.177) 0.475 (0.170) 0.477 (0.170) 0.475 (0.167) 0.477 (0.169)
Med. (IQR) HMGP 0.456 (0.200) 0.476 (0.180) 0.483 (0.179) 0.482 (0.173) 0.485 (0.173) 0.485 (0.168)
Med. (IQR) HEGP 0.465 (0.200) 0.470 (0.169) 0.472 (0.168) 0.475 (0.166) 0.480 (0.169) 0.483 (0.167)
Mean (SD) IntGP 0.481 (0.142) 0.479 (0.138) 0.478 (0.139) 0.477 (0.137) 0.478 (0.136) 0.477 (0.135)
Mean (SD) HMGP 0.479 (0.143) 0.481 (0.134) 0.483 (0.136) 0.482 (0.134) 0.484 (0.133) 0.484 (0.132)
Mean (SD) HEGP 0.482 (0.141) 0.479 (0.136) 0.477 (0.135) 0.477 (0.136) 0.481 (0.135) 0.483 (0.134)

Table B.36: Simulation III: Estimated optimal ψ3 after +m points; n = 1000 with 20 design points
over 500 replicates, Matern5/2 covariance, and Log-Normal prior. True ψ3opt =0.1.

Measure GP +1 +5 +10 +15 +20 +25
Med. (IQR) IntGP 0.143 (0.132) 0.116 (0.126) 0.112 (0.120) 0.110 (0.118) 0.110 (0.120) 0.110 (0.122)
Med. (IQR) HMGP 0.139 (0.140) 0.111 (0.121) 0.111 (0.123) 0.109 (0.123) 0.103 (0.124) 0.101 (0.123)
Med. (IQR) HEGP 0.135 (0.135) 0.107 (0.119) 0.110 (0.117) 0.107 (0.113) 0.105 (0.121) 0.102 (0.122)
Mean (SD) IntGP 0.113 (0.108) 0.112 (0.104) 0.111 (0.104) 0.111 (0.104) 0.109 (0.105) 0.110 (0.105)
Mean (SD) HMGP 0.113 (0.108) 0.107 (0.101) 0.109 (0.102) 0.107 (0.103) 0.107 (0.104) 0.107 (0.102)
Mean (SD) HEGP 0.111 (0.110) 0.110 (0.101) 0.110 (0.101) 0.109 (0.100) 0.108 (0.100) 0.107 (0.100)
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Table B.37: Simulation III: Estimated value at ψ̂1opt, ψ̂3opt after +m points; n = 1000 with 20 design
points over 500 replicates, Matern5/2 covariance, and Log-Normal prior. True value at ψ1opt, ψ3opt:
1.

Measure GP +1 +5 +10 +15 +20 +25
Med. (IQR) IntGP 1.062 (0.132) 1.089 (0.127) 1.105 (0.135) 1.112 (0.134) 1.113 (0.131) 1.116 (0.132)
Med. (IQR) HMGP 1.055 (0.138) 1.071 (0.127) 1.084 (0.129) 1.096 (0.132) 1.098 (0.133) 1.099 (0.132)
Med. (IQR) HEGP 1.054 (0.134) 1.077 (0.126) 1.083 (0.125) 1.090 (0.126) 1.096 (0.131) 1.098 (0.134)
Mean (SD) IntGP 1.064 (0.105) 1.092 (0.107) 1.106 (0.105) 1.112 (0.105) 1.115 (0.105) 1.117 (0.104)
Mean (SD) HMGP 1.058 (0.104) 1.074 (0.106) 1.086 (0.106) 1.093 (0.105) 1.098 (0.106) 1.101 (0.105)
Mean (SD) HEGP 1.058 (0.102) 1.077 (0.106) 1.085 (0.103) 1.091 (0.101) 1.096 (0.101) 1.099 (0.102)

(a) (b)

Figure B.34: Simulation III: Boxplot after +m points; n = 1000 with 20 design points,
Matern5/2 covariance, and Log-Normal prior (a) Optimal ψ1 (b) Optimal ψ3.

Figure B.35: Simulation III: Boxplot of value at optimum after +m points; n = 1000 with
20 design points, Matern5/2 covariance, and Log-Normal prior.
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B.6 Additional Details on the HIV Treatment Analy-

sis

In this section we explore some additional details related to the case study. We begin by

discussing measures to improve efficiency in inferring about the optimal regime. Obtaining

sample paths from the GP amounts to sampling from a multivariate Normal distribution; the

dimension of the multivariate Normal depends on the number of points in the sample path.

A very fine grid may be the obvious choice, but this can be computationally burdensome as

the time it takes to sample from a multivariate Normal vector of dimension d does not grow

linearly in d. One approach that helps in this regard is to sample not from the multivariate

Normal variable directly but rather to use the property that the conditional and marginal

distributions of a multivariate Normal vector are multivariate Normal and to sample from

these lower dimensional variables. Although this fact may facilitate sampling from very

high dimensional distributions, we must also keep in mind modeling constraints; two points

that are very close together will be almost perfectly correlated thereby leading to covariance

matrices that are near singular. The general approach should then be to use a grid that is

sufficiently fine for the exploration of interest but also sufficiently coarse so that issues with

covariance matrix singularity will not arise.

Another approach to speed up computation time when generating sample paths from the

multivariate Normal may be to only sample the paths in the vicinity of the optimum, as iden-

tified by the posterior mean. The reasoning for this is that points far from the optimum will

have low correlation, thereby making them unlikely candidates to be an optimum. Having

low correlation across large distances is data-dependent. For this problem, the correlation

remains high across the range of possible distances, therefore not allowing us to use examine

this approach. Figure 35 shows the correlation for the homoskedastic fit after exploring +25

points, and we see that a strong correlation remains even at large distances.
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Figure B.36: HIV Study: Matern5/2 correlation (a) change in weight (b) change in CD4.

Figure B.38 shows the contour plots for the posterior mean surface using each GP modeling

approach with a Matern3/2. We note that in this case, the IntGP is more in agreement

with the other fitting procedures, in contrast with the Matern5/2 scenario where it identified

two troughs rather than one. We also see that the homogenous and heteroskedastic models

follow very similar exploration paths, thereby suggesting that the heteroskedastic model has

identified a low level of heteroskedasticity. The Interactive Supplement allows us to further

explore the obtained response surfaces.

Figure B.37: HIV Study: Emulation surface with Matern3/2 covariance after +25 points (a)
IntGP (b) HMGP (c) HEGP .
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Table B.38: HIV Study: Estimates and 95% credible intervals for each GP modeling strategy; 250
sample paths; 500 Bayesian bootstrapped samples; Matern3/2 covariance.

GP Variable +1 +5 +15 +25
IntGP ψ̂optW 94 (58-98) 98 (58-98) 98 (58-98) 98 (58-98)
IntGP ψ̂optCD4 372.5 (200-597.5) 342.5 (200-597.5) 305 (200-597.5) 305 (200-597.5)
IntGP 20 Week CD4 409.8 (397.7-422.8) 409.0 (397.5-421.2) 409.3 (398.0-422.8) 409.6 (397.8-422.8)

HMGP ψ̂optW 94 (58-98) 98 (58-98) 98 (74-98) 98 (78-98)
HMGP ψ̂optCD4 372.5 (200-597.5) 335 (200-597.5) 290 (200-575) 290 (200-530)
HMGP 20 Week CD4 409.7 (397.7-422.7) 408.7 (397.2-420.9) 408.6 (397.0-420.7) 408.5 (397.5-421.0)
HEGP ψ̂optW 94 (58-98) 98 (58-98) 98 (74-98) 98 (78-98)
HEGP ψ̂optCD4 372.5 (200-597.5) 327.5 (200-597.5) 290 (200-545) 282.5 (200-530)
HEGP 20 Week CD4 409.7 (397.6-422.5) 408.7 (397.36-420.8) 408.5 (397.0-420.7) 408.6 (397.0-421.1)
Increments for the sample paths were by 4kg in the ψW axis and by 7.5 cells/mm3 in the ψCD4 axis

Now we look at the results for the Log-Normal prior. We see from the figures and tables

below that the results are essentially the same as those obtained without the prior.

Figure B.38: HIV Study: Emulation surface after +25 points with Matern5/2 covariance and
Log-Normal prior (a) IntGP (b) HMGP (c) HMGP .
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Table B.39: HIV Study: Estimates and 95% credible intervals for each GP modeling strategy; 250
sample paths; 500 Bayesian bootstrapped samples; Matern5/2 covariance; Log-Normal prior.

Method Variable +1 +5 +15 +25
IntGP ψ̂optW 94 (58-98) 98 (58-98) 94 (54-98) 94 (54-98)
IntGP ψ̂optCD4 372.5 (200-597.5) 335 (200-597.5) 365 (200-597.5) 365 (200-597.5)
IntGP 20 Week CD4 409.5 (397.5-422.4) 408.7 (397.4-421.3) 409.8 (397.5-424.6) 410.1 (397.8-425.1)

HMGP ψ̂optW 94 (50-98) 98 (58-98) 98 (78-98) 98 (78-98)
HMGP ψ̂optCD4 372.5 (200-597.5) 312.5 (200-97.5) 290 (200-530) 290 (200-485)
HMGP 20 Week CD4 412.3 (397.9-436.4) 408.7 (397.3-421.1) 408.3 (397.1-420.8) 408.4 (397.3-420.9)
HEGP ψ̂optW 94 (54-98) 98 (58-98) 98 (78-98) 98 (78-98)
HEGP ψ̂optCD4 372.5 (200-597.5) 305 (200-597.5) 290 (200-522.5) 290 (200-507.5)
HEGP 20 Week CD4 411.0 (397.7-431.4) 408.6 (397.2-421.3) 408.4 (397.03-420.6) 408.4 (397.3-420.7)
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APPENDIX C

Appendix to Manuscript 3

In this Appendix, we more systematically lay out the parameters required to use the functions

in the BayesDTR package.

C.1 Parameters for BayesMSM function

We begin by examining the parameters in the BayesMSM function.

BayesMSM(PatID,Data,Outcome_Var,Treat_Vars,Treat_M_List,Outcome_M_List,
MSM_Model,G_List,Psi,Bayes=TRUE,DR=FALSE,Normalized=FALSE,B=100,Bayes_Seed=1)

Aim 1: Marginal Structural Model

• Required: PatID, Data, Outcome_Var, Treat_Vars, Treat_M_List, MSM_Model, G_List,

Psi

• Optional: Bayes, B, Bayes_Seed

• Unavailable: Normalized

Aim 2: Grid-Search IPW Estimator
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• Required: PatID, Data, Outcome_Var, Treat_Vars, Treat_M_List, G_List, Psi

• Optional: Bayes, Normalized, B, Bayes_Seed

Aim 3: Grid-Search Doubly Robust Estimator

• Required: PatID, Data, Outcome_Var, Treat_Vars, Treat_M_List, Outcome_M_List,

G_List, Psi, DR=TRUE

• Optional: Bayes, Normalized, B, Bayes_Seed

C.2 Parameters for Gaussian Process Functions

We now examine the parameters required to perform the Gaussian Process optimization.

DesignFit(PatID,Data,Outcome_Var,Treat_Vars,Treat_M_List,Outcome_M_List,
Normalized=TRUE,DR=FALSE,G_List,Psi,
Covtype,Numbr_Samp,IthetasU,IthetasL,Likelihood_Limits=NA,
Prior_List=NULL,Prior_Der_List=NULL)

• Required: PatID, Data, Outcome_Var, Treat_Vars, Treat_M_List, G_List Numbr_Samp,

IthetasU, IthetasL, Covtype

– Note: The default is to use the normalized IPW estimator.

• Optional: Outcome_M_List, Normalize, DR, Likelihood_Limits, Prior_List, Prior_Der_List

– Note: The doubly robust estimator can be used by specifying the Outcome_M_List

and DR parameters.

SequenceFit(Previous_Fit,Additional_Samp,Control_Genoud=list())

• Required: Previous_Fit, Additional_Samp, Control_Genoud

– Note that in particular the Control_Genoud function requires the Domain element.

We have demonstrated the use of this parameter in the main paper (section 3.2).
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FitInfer(Design_Object,Boot_Start,Boot_End,Psi_new,N,Location,
Additional_Samp,Control_Genoud=list())

• Required: Design_Object, Boot_Start, Boot_End, Psi_new, N, Additional_Samp,

Control_Genoud

• Optional: Location
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