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ment à poursuivre mes études. Finalement, je remercie ma compagne de vie, Viviane,

qui ne se fatigue jamais de m’entendre parler de physique, même si elle ne comprend

pas toujours tout, et qui est toujours là pour moi.
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Abstract

Although the electroweak phase transition is predicted to be a smooth crossover in

the Standard Model, it can be made first-order by a simple new physics input. This type

of cosmological phase transition is particularly interesting since it provides a mechanism

for electroweak baryogenesis, which could explain the origin of the baryon asymmetry

of the Universe. Furthermore, first-order phase transitions produce a stochastic back-

ground of gravitational waves that future space-based detectors could probe. These

two observable quantities depend closely on the shape and terminal velocity of the

electroweak bubble wall, which are highly nontrivial to compute. Moreover, the fluid

equations previously used in the literature to describe them suffer from unphysical

artifacts that make them unreliable for supersonic walls. For these reasons, previous

studies usually considered the wall’s shape and velocity as free parameters, and fixed

them to some arbitrary values.

In this thesis, I study the Z2-symmetric singlet scalar extension of the Standard

Model, making the electroweak phase transition first-order. To accurately predict the

baryon asymmetry and gravitational waves spectrum produced by the phase transition,

I derive an improved set of fluid equations which is accurate for all wall velocities. I use

these to compute the wall’s shape and velocity from first principles instead of treating

them as free parameters. I then perform a scan of the parameter space to study the

properties of this model. I find that a large fraction of the parameter space can yield

a baryon asymmetry that agrees with observations. However, only a small fraction

can produce detectable gravitational waves. Contrary to the standard lore, I find that

these two quantities are positively correlated; however, no models were found with

both successful baryogenesis and detectable gravitational waves.
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Résumé

Bien que la transition de phase électrofaible soit prédite comme étant continue dans

le Modèle Standard, elle peut devenir de premier ordre avec de simples additions de

nouvelles physiques. Ce type de transition de phase cosmologique est particulièrement

intéressant puisqu’il fournit un mécanisme pour la baryogénèse électrofaible, qui pour-

rait expliquer l’origine de l’asymétrie baryonique de l’Univers. De plus, les transitions

de phase de premier ordre produisent un fond stochastique d’ondes gravitationnelles

qui pourrait être exploré par de futurs détecteurs spatiaux. Ces deux quantités ob-

servables dépendent sensiblement sur la forme et la vitesse terminale du mur de la

bulle électrofaible, qui sont hautement non triviales à calculer. De plus, les équations

du fluide auparavant utilisées pour les décrire ne sont pas valables pour les murs su-

personiques. Pour ces raisons, les précédentes études se contentaient généralement de

traiter la forme et la vitesse du mur comme des paramètres libres, et leur donnaient

des valeurs arbitraires.

Dans ce mémoire, j’étudie une extension du Modèle Standard avec un nouveau

champ scalaire singlet symétrique sous Z2, qui rend la transition de phase électrofaible

de premier ordre. Pour prédire de manière fiable l’asymétrie baryonique et le spectre

d’ondes gravitationnelles produits par la transition de phase, je dérive des équations

du fluide améliorées qui sont valables pour toutes les vitesses du mur. J’utilise ces

équations pour calculer la forme et la vitesse terminale du mur à partir de principes

fondamentaux, plutôt que de les traiter comme des paramètres libres. Ensuite, je fais

un scan de l’espace des paramètres pour étudier les propriétés de ce modèle. Je trouve

qu’une grande fraction de l’espace des paramètres permet d’obtenir une asymétrie bary-

onique en accord avec la valeur observée. Par contre, seulement une petite fraction

peut produire des ondes gravitationnelles détectables. Contrairement à ce qui était

cru auparavant, mes résultats montrent que ces deux quantités sont corrélées positive-

ment; par contre, aucun modèle avec à la fois une baryogénèse réussie et des ondes

gravitationnelles détectables n’a été trouvé.
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Chapter 1

Introduction

Symmetries offer a deep insight into the fundamental physical laws that govern the Universe.

Many physical phenomena, as incomprehensible as they first may seem, can be beautifully

and elegantly explained by the various symmetries of the world. As much as they have been a

powerful predictive tool in theoretical physics, they can sometimes be a double-edged sword.

A completely symmetric Universe would be too restrictive to allow for all the complexity

observed in nature. The mere fact that we exist points to the existence of an asymmetry

between matter and antimatter, and the world as we know it would be drastically different

without the breaking of the electroweak symmetry at low energy. The real world turns out

to be better described by a subtle interplay between symmetries and their breaking.

An interesting feature of symmetry breakings is that they can produce strong cosmological

signals, especially if they happened through a first-order phase transition. In some cases,

these signals could have remained until today; their detection would therefore provide a

better comprehension of the laws of physics at high energy. The goal of this thesis is to

study the production of two such signals during the electroweak phase transition (EWPT):

the baryon asymmetry of the Universe (BAU) and a stochastic background of gravitational

waves (GW). The motivation for the former is the observation that matter is much more

abundant than antimatter, while the latter is motivated by the prospect of several upcoming
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space-based GW detectors, such as LISA [5].

The production of the BAU and GW during the EWPT have already been studied exten-

sively within several standard model (SM) extensions [6–20]. These models are particularly

attractive because they generally require new physics at the electroweak scale, which is al-

ready being probed by several experiments. They are therefore much more likely to be

testable than other baryogenesis or GW production scenarios that involve higher energy

scales. Previously, the calculation of the electroweak bubble wall’s shape and velocity was

generally avoided because they are highly nontrivial to compute; they were typically consid-

ered as free parameters and fixed to some arbitrary values. However, these quantities have

an important effect on the predicted BAU and GW spectrum; hence it is not justifiable to

neglect them.

One of this thesis’s main contributions is that all the observable quantities are completely

determined from the free parameters of the model considered. In Chapter 2 (published as

Ref. [1]), we begin with a review of the fluid equations derived in Ref. [2] previously used to

compute the wall’s velocity and shape. We argue that these equations suffer from unphysical

artifacts that make them unreliable for supersonic walls. We then propose an improved set

of equations, well-behaved for all velocities, and compare the two formalisms. In Chapter

3 (published as Ref. [4]), we perform a scan of the parameter space of the Z2-symmetric

singlet scalar extension of the SM. We use our improved fluid equations to compute the wall’s

velocity and shape, which allow for a complete prediction of the BAU and GW spectrum

produced during the EWPT.

Before getting into the main subject of this thesis, I review some useful concepts not

covered in the two articles presented below. In the first introductory section, I explain the

notions of first-order phase transition and bubble nucleation. I then describe the baryon

asymmetry and the mechanisms involved in baryogenesis.

2



1.1 First-order phase transition and bubble nucleation

Phase transitions (PT) occur when the preferred ground state of a system changes at different

temperatures. They are often accompanied by a symmetry breaking, resulting in a qualitative

modification of the system’s behaviour. In this thesis, we are mainly interested in the EWPT,

where the SM’s gauge symmetry group SU(3)c×SU(2)L×U(1)Y gets broken to its subgroup

SU(3)c × U(1)EM by the Higgs boson’s non-vanishing vacuum expectation value (VEV)

v ≡ 〈h〉 6= 0. (1.1)

We start this section by presenting the main types of PT and the differences between

them. We then specialize to the case of first-order PT and describe the concept of bubble

nucleation. Finally, we introduce a simple extension to the SM which makes the EWPT first

order.

1.1.1 Classification of phase transitions

Phase transitions can be classified according to the lowest discontinuous derivative of the free

energy with respect to some thermodynamic variable (see for example Refs. [21, 22]). Within

this classification scheme, a PT with d(n)F/dX(n) as its lowest discontinuous derivative is

labeled a nth-order PT. The most common kinds are first-order (e.g. the solid/liquid/gas

transitions of various fluids) and second-order (e.g. the ferromagnetism/paramagnetism tran-

sition) phase transitions. If all the derivatives are continuous, the PT is a smooth crossover.

A simple toy model that yields a second-order PT is given by the real scalar field φ with

the potential

V (φ, T ) =
1

2
(cT 2 −m2)φ2 +

λ

4
φ4, (1.2)

with c,m2, λ > 0. This is the usual λφ4 model, but with a negative squared mass and the

leading thermal contribution ∼ T 2φ2. One can easily see that the vacuum structure of this

3
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Figure 1.1: Example of potential V for a (a) second-order and (b) first-order PT with T = 0,
T = Tc and T > Tc. φ0 is the VEV evaluated at T = 0.

potential (i.e. its minima) depends on the temperature. At high temperature (T > m/
√
c),

there is only one minimum at φ = 0, while below that temperature, there are two equivalent

vacua at φ = ±
√

(m2 − cT 2)/λ ≡ ±v. The temperature at which the transition happens is

called the critical temperature:

Tc =
m√
c
. (1.3)

The potential (1.2) for different temperatures is illustrated in Fig. 1.1 (a). Since there is no

energy barrier between the high-temperature vacuum at φ = 0 and the two low-temperature

vacua at φ = ±v, the field goes smoothly from one minimum to the other as the temperature

decreases below Tc. Therefore, the PT happens everywhere in space simultaneously, when

the temperature Tc is reached.

To obtain a first-order PT, one needs two nonequivalent vacua separated by an energy

barrier to coexist for some range of temperature. An example of such a potential is shown

in Fig. 1.1 (b). At high temperature, the minimum at φ = 0 is the true vacuum, i.e. the

potential’s global minimum which is the most stable solution. The field is therefore trapped

at φ = 0. As the temperature decreases, the second minimum’s depth at φ 6= 0 decreases

until the critical temperature Tc is reached, where both minima are degenerate. Below Tc,

the minimum at φ 6= 0 becomes the true vacuum. But since the energy barrier between the

two vacua remains, the field cannot transition smoothly towards the true vacuum, and it
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stays in the metastable minimum at φ = 0 for some time. Because of the energy barrier,

the PT can only happen through quantum tunnelling or thermal fluctuations, which are

random processes described in the next subsection. For this reason, the PT occurs only

in small regions of space at first. Then, these bubbles containing the new phase expand

until they collide and fill the whole Universe. The nucleation of these bubbles happens at

a temperature Tn, which is defined as the temperature where the probability of having one

bubble per Hubble volume is of order ∼ 1.

1.1.2 Bubble nucleation

We now derive the nucleation rate of bubbles containing the new phase in a first-order PT.

As previously stated, these bubbles proceed through quantum tunnelling or thermal fluctu-

ations, which can both be quantitatively described by an instanton solution interpolating

between the false and true vacua. In practice, most of the interesting PTs happen at high

temperatures, where thermal fluctuations are much more efficient than quantum tunnelling;

hence we only describe the former here. One can show with a semi-classical calculation that

the nucleation rate per unit volume for this process is given by [23]

Γ = T 4

(
S3

2πT

)3/2

e−S3/T , (1.4)

where S3 is the O(3)-symmetric Euclidean action

S3(T ) = 4π

∫
dr r2

[
1

2

(
dφi
dr

)2

+ V (φi, T )

]
, (1.5)

and we now allow the potential to depend on N independent real scalars φi, with i =

1, · · · , N . In the semi-classical approximation, the fields φi(r) take their classical configura-

tion which can be obtained by minimizing the action S3, yielding the equations of motion

(EOMs)

d2φi
dr2

+
2

r

dφi
dr

=
∂V

∂φi
, i = 1, · · · , N. (1.6)
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Figure 1.2: Instanton solution for the model presented in Fig. 1.1 (b) at T = 0. (a): Boundary
conditions in the inverted potential −V (φ); (b): Instanton configuration φ(r) and potential energy
V (φ). Again, φ0 is the field’s VEV evaluated at T = 0 and V0 = V (φ0). The instanton solution
was computed with the package CosmoTransitions [24].

Since the instanton solution must interpolate between the two vacua, one also needs to require

that the fields at r → ∞ are in the false vacuum φfalse
i and that the solution is smooth at

the center of the bubble r = 0. This leads, respectively, to the boundary conditions

φi(r →∞) = φfalse
i and

dφi
dr

∣∣∣∣
r=0

= 0. (1.7)

We note that the EOMs (1.6) are equivalent to the classical motion of a particle in

N dimensions with coordinates φi(r) and time r in an inverted potential −V (φi) with a

time-dependent friction force 2φ̇i/r. With the boundary conditions (1.7), the trajectory

corresponds to a particle starting with no velocity close to the potential’s global maximum

(previously the true vacuum), rolling downhill from there and stabilizing at the top of the

local maximum at φfalse
i after an infinite time. This situation is illustrated in Fig. 1.2 for the

exemplary potential at T = 0 presented in Fig. 1.1 (b). The exact position of the particle at

r = 0 is a priori unknown, but it can be determined by requiring that it does not undershoot

or overshoot the local maximum φfalse
i at r →∞.

We can now use Eq. (1.4) to compute the nucleation temperature Tn. As previously

mentioned, it is defined as the temperature where Γ is comparable to the Hubble rate per

6



Hubble volume

H

VH
=

H
4
3
π(1/H)3

=
3

4π
H4.

The Hubble rate H in the radiation-dominated era is given by

H(T ) =

(
8π3

90
g∗(T )

)1/2
T 2

Mp

, (1.8)

with Mp ≈ 1.22 × 1019 GeV the Planck mass and g∗(T ) the effective number of degrees of

freedom at temperature T (g∗ ≈ 100 for T ∼ 100 GeV). Tn can then be determined by

solving the equation

Γ(Tn) ≈ H(Tn)

VH(Tn)

⇒ e−S3(Tn)/Tn ≈ 3

4π

(
H(Tn)

Tn

)4(
2πTn
S3(Tn)

)3/2

.

(1.9)

1.1.3 Z2-symmetric singlet scalar extension

Lattice studies have shown that the EWPT is a smooth crossover in the SM [25–27]. We

therefore need some new physics input beyond the SM to get a first-order EWPT, which

is required to predict a baryon asymmetry and a strong GW signal. Fortunately, it is not

difficult to do so with the addition of modest particle content. In this thesis, we consider

the Z2-symmetric singlet scalar extension of the SM [28–37], which couples a new real scalar

field s to the Higgs boson.

The tree-level potential for the scalar sector in that extension is given by

V (h, s) =
µ2
h

2
h2 +

λh
4
h4 +

µ2
s

2
s2 +

λs
4
s4 +

λhs
4
h2s2, (1.10)

where h is the Higgs field in the unitary gauge. Provided that µ2
h, µ

2
s < 0 and λh, λs, λhs > 0,

this zero-temperature potential has four distinct minima, all separated by an energy barrier,

7



at

(h, s) = (±|µh|/
√
λh, 0) ≡ (±v0, 0) and

(h, s) = (0,±|µs|/
√
λs) ≡ (0,±w0).

Since we are today in the Higgs vacuum at (v0, 0), the two parameters µ2
h and λh can be

related to the measured values of the Higgs VEV v0 ≈ 246 GeV and mass mh ≈ 125 GeV

through the relations m2
h = −2µ2

h and v2
0 = −µ2

h/λh. The s mass is then given by m2
s =

µ2
s + λhsv

2
0/2. This model is therefore completely determined by the three free parameters

ms, λs and λhs. The latter controls the height of the energy barrier between the minima,

with a larger value corresponding to a higher barrier, and thus a stronger PT. A motivation

for imposing the Z2 symmetry for the singlet field is that it considerably reduces the number

of allowed operators, making this model more predictable.

To make quantitative predictions, one needs to add quantum and thermal corrections to

the potential (1.10), which are described in Appendix 3.A. For the purpose of the present

analysis, it is sufficient to consider only the leading thermal contributions, which are propor-

tional to h2T 2 and s2T 2. Above respective temperatures T
(h)
c and T

(s)
c , the effective couplings

of the h2 and s2 terms become positive; hence the minima at (±vT , 0) and (0,±wT ) disappear,

respectively. For T > T
(h)
c , T

(s)
c , only one minimum remains at the origin.

An interesting case is that where T
(s)
c > T

(h)
c : the singlet’s Z2 symmetry first breaks at

T = T
(s)
c , but since we impose that the Higgs vacuum is the true vacuum at T = 0, there must

be a critical temperature Tc < T
(h)
c where both the s and h minima are equally deep. Below

Tc, the s minimum becomes metastable and a first-order PT from (0, wT ) to (vT , 0) can occur,

breaking the electroweak symmetry and restoring the singlet’s Z2 symmetry. As for any first-

order PT, the second step does not happen directly at Tc, but at the nucleation temperature

Tn, which can be determined by solving Eq. (1.9). This two-step PT is illustrated in Fig.

1.3. In practice, the details of the first step are not important since the singlet field does not

couple directly to the SM particles; one only needs to make sure that T
(s)
c > T

(h)
c to get the

right symmetry breaking pattern.

8



h

s

(0, wT)

(0, 0) (vT, 0)

Second step
T = Tn

Fi
rs

t s
te

p
T

=
T(s

)
c

Figure 1.3: Two-step phase transition in the Z2-symmetric singlet scalar extension. First, the s

field gets a VEV at T = T
(s)
c ; then the fields go from (0, wT ) to (vT , 0) through a first-order PT at

T = Tn.

1.2 Baryon asymmetry

The Planck measurements of the cosmic microwave background anisotropies determine the

value of the baryon density of the Universe as [38]

Ωbh
2 = 0.02237± 0.00015, (1.11)

with h being the reduced Hubble constant. A more appropriate quantity to study the BAU

is the baryon-to-photon ratio ηb, defined as

ηb ≡
nB − nB̄

nγ
, (1.12)
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where nB, nB̄ and nγ are the number densities of baryons, antibaryons and photons, respec-

tively. It can be related to the baryon density through the relation [39]

ηb = 2.74× 10−8Ωbh
2 = (6.13± 0.04)× 10−10. (1.13)

It is well known that this asymmetry cannot be explained by the SM alone [40]. This has

motivated the development of several baryogenesis scenario involving various SM extensions.

Some of the most popular are leptogenesis [41–44], Affleck-Dine baryogenesis [45] and elec-

troweak baryogenesis (EWBG) [6–9]. We describe here the latter, starting with Sakharov’s

conditions, which are necessary conditions common to all scenarios that are required for

successful baryogenesis. We then describe the sources of B violation already present in the

SM and explain the general principles behind EWBG.

1.2.1 Sakharov’s conditions

The idea of baryogenesis is attributed to the Russian physicist Andrei Sakharov, who first

identified three necessary conditions to dynamically generate a net baryon number to explain

the observed BAU. These conditions are [46]

1. B violation

2. Deviation from thermal equilibrium

3. C and CP violation

The following arguments for each of the three conditions are based on Ref. [40]. The

first one is quite obvious: if one wants to build up a net amount of baryons, B must not be

a conserved quantity. The second condition is also easy to understand. Let us consider a

general B violating process

X → Y +B.
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If the Universe is in thermal equilibrium, the rate of that process Γ(X → Y + B) is, by

definition, equal to the rate of the inverse process:

Γ(X → Y +B) = Γ(Y +B → X).

The net B variation is then

dnB
dt
∝ Γ(X → Y +B)− Γ(Y +B → X) = 0.

A similar argument can be used to justify the requirement of C violation. If C is conserved,

the rate for the production of baryons is by definition the same as the rate for the production

of antibaryons. So again, the net B variation is

dnB
dt
∝ Γ(X → Y +B)− Γ(X̄ → Ȳ + B̄) = 0.

The condition of CP violation is a bit more subtle. Consider a process generating a left

or right-handed quark which violates C but conserves CP

X → Y + qL/R. (1.14)

C and CP act on quarks according to

C : qL/R → q̄L/R

CP : qL/R → q̄R/L

Since the process (1.14) violates C, one obtains

Γ(X → Y + qL/R) 6= Γ(X̄ → Ȳ + q̄L/R).

11



However, conservation of CP implies

Γ(X → Y + qL/R) = Γ(X̄ → Ȳ + q̄R/L),

which ensures that the total rates of quark and antiquark production are equal:

Γ(X → Y + qL) + Γ(X → Y + qR) = Γ(X̄ → Ȳ + q̄R) + Γ(X̄ → Ȳ + q̄L).

The net B production is then

dnB
dt
∝ Γ(X → Y + qL) + Γ(X → Y + qR)− Γ(X̄ → Ȳ − q̄R)− Γ(X̄ → Ȳ + q̄L) = 0.

1.2.2 B violation in the Standard Model

Although the baryon number is classically conserved in the SM, ’t Hooft showed in 1976

that B is violated by the triangle anomaly through a nonperturbative process [47]. In the

presence of background SU(2)L gauge fields W , one can show that the anomalous divergence

of the baryon current JµB is

∂µJ
µ
B =

Ng2

32π2
εµνρλW a

µνW
a
ρλ, (1.15)

where W a
µν is the SU(2)L field strength and N = 3 is the number of families. To gain some

intuition with the topological properties of the right-hand-side, we can first work out the

simpler problem corresponding to the U(1) group in two Euclidean dimensions, as done by

Coleman in Ref. [48].

Physical field configurations must have a finite action. This implies that the field must

be in a vacuum configuration at infinity, which corresponds to F µν = 0, with F µν the U(1)

strength field. Under a gauge transformation, the corresponding gauge field Aµ transforms

like

Aµ → Aµ + g∂µg−1, (1.16)
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with g(x) ∈ U(1). Therefore, a vacuum can have a non-vanishing pure gauge configuration

Aµ = g∂µg−1, (1.17)

which is completely determined by the arbitrary U(1) group element g(x). To study the

topological structure of these vacua, let us gauge transform Eq. (1.17) with another group

element h(x) ∈ U(1). One can easily see that this has the same effect as the transformation

g(x)→ h(x)g(x). (1.18)

One could therefore try to choose h = g−1 to make the field Aµ vanish everywhere. However,

this choice is not always possible. Unlike g(x), which is only defined at the spatial boundary

r → ∞, h(x) must be a continuous function everywhere in space, including at the origin.

This implies that at r = 0, h must be independent of the angular variable θ, i.e. a constant.

The function everywhere else in space can then be obtained by a continuous deformation

of this constant, which means that h(x) is topologically equivalent to the identity transfor-

mation. Therefore, one can only gauge transform into a topologically equivalent vacuum

configuration, i.e. a configuration that can be obtained from a continuous deformation.

This implies that there can be several different (but physically equivalent) vacuum config-

urations of the gauge field Aµ. Since g(x) is a map from the boundary of the two-dimensional

Euclidean space (which is the usual circle S1) to the gauge group U(1) ∼= S1, these configura-

tions are given by the homotopy classes of S1 → S1, which correspond to all the topologically

different ways one can wrap a circle around another circle. These are isomorphic to Z since

the first circle must wind an integer number of times around the other. All the gauge group

functions g(x) are therefore topologically equivalent to an element of the set

gν(θ) = eiνθ, (1.19)

13



with ν ∈ Z the winding number, which corresponds to the number of times the gauge group

U(1) winds around the spatial boundary S1.

We can now return to the more relevant case of the SU(2)L gauge group in four-dimensional

Euclidean space, which is again discussed in Ref. [48]. The previous derivation still applies,

but now, the vacuum gauge field configuration is a map from ∂R4 ∼= S3 to the gauge group

SU(2)L
∼= S3. Again, the homotopy classes of S3 → S3 are isomorphic to Z, so there is an

infinite number of different vacua labelled by a winding number ν ∈ Z. One can show that

ν can be written in terms of the field strength W µν as

ν =

∫
dx4 g2

32π2
εµνρλW a

µνW
a
ρλ =

1

N

∫
dx4∂µJ

µ
B. (1.20)

In Ref. [47], ’t Hooft showed that transitions from one vacuum to another are possible

through instanton solutions. From Eq. (1.20), one can see that such a transition violates B

by N = 3 units. During this process, the field must go through non-vacuum configurations

where Eq. (1.20) is not an integer. These field configurations have a higher energy than the

vacua, and the energy barrier between each vacuum is [49]

Esph ≈
4MW

αW
, (1.21)

where MW is the W boson’s mass and αW = g2/(4π) ≈ 1/30. ’t Hooft showed that the

rate of this transition at T = 0 is of order e−16π2/g2 ∼ 10−160, which is so small that it

should not have happened once in the Universe’s lifetime. But, at temperatures higher than

the electroweak phase transition, the gauge bosons become massless and the energy barrier

between the vacua vanishes. These transitions at finite temperature are called sphalerons,

meaning “ready to fall” in Greek. With no energy barrier to tunnel through, the sphaleron’s

rate is only suppressed by powers of g, instead of exponentially, like the T = 0 process.
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Lattice studies have shown that this rate is [50]

Γ

V
= (1.05± 0.08)× 10−6 T 4. (1.22)

The sphaleron is in thermal equilibrium as long as Γ/H > 1, with the Hubble rate

H ∼ T 2/Mp. Choosing a typical volume V ∼ 1/T 3, this condition is satisfied for

T < 1.05× 10−6Mp ∼ 1013 GeV, (1.23)

which is far above the electroweak scale. After the electroweak phase transition, although

the vacua become separated by a nonvanishing energy barrier Esph, the transition from one

vacuum to another may still be possible through thermal fluctuations which are more efficient

than quantum tunnelling at the electroweak scale. Ref. [51] has shown that the sphaleron

remains efficient after the symmetry breaking if

vn
Tn

< 1.1, (1.24)

where Tn is the nucleation temperature and vn is the Higgs VEV just after the phase transi-

tion. We will explain below why this must be avoided for EWBG to be successful. It should

be noted that the bound (1.24) is somewhat arbitrary and is model-dependent. An improved

estimate can be found in Ref. [52], but we verify in Chapter 3 that it does not have a large

impact on our results. This sphaleron bound is also gauge and scale dependent; Ref. [53] has

elaborated a gauge-independent criterion at the cost of neglecting resummation at leading

order. We therefore use the simple estimate (1.24) in this thesis.

1.2.3 Electroweak baryogenesis

We now describe how the three Sakharov’s conditions can be satisfied by the EWBG scenario

[7, 8]. Let us start with the third condition: C and CP violation. CP violating processes
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have been observed in the decay of neutral kaons [54], B mesons [55] and D mesons [56].

This CP violation is explained in the SM by the complex parametrization of the CKM

matrix, which mixes the quarks of different generations through the electroweak interaction.

However, it is generally accepted that the SM’s CP violation is insufficient for the purposes

of EWBG [40]. Nevertheless, it is straightforward to find natural extensions to the SM that

provide such a source of CP violation.

In the simple Z2-symmetric singlet scalar extension presented in Subsection 1.1.3, the

following dimension-5 operator, which yields an imaginary contribution to the top quark

mass [57], can provide the required CP violation1

VBG =
yt√

2
ht̄L

(
1 + i

s

Λ

)
tR + H.c. (1.25)

where yt is the top Yukawa coupling and Λ & 500 GeV is some energy scale above the

electroweak scale. We note that different types of CP -violating source like mixing terms

between different species can lead to resonant enhancement which can yield efficient baryo-

genesis (see for example Ref. [58]). To see that the operator in Eq. (1.25) violates CP , one

can first rewrite it as

VBG = m(z)t̄eiθ(z)γ
5

t = −m(z)tᵀeiθ(z)γ
5

γ0t∗, (1.26)

where we transposed to obtain the second equation (which do not change its value since VBG

is a real number), the minus sign comes from the fact that the two Grassmann numbers t

and t∗ anticommute, and

m(z) =
yt√

2
h(z)

√
1 +

(
s(z)

Λ

)2

,

θ(z) = arctan

(
s(z)

Λ

)
.

The two fields h and s are chargeless real scalar fields, so they both transform trivially under

1C is already maximally violated by the electroweak interaction.
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CP . For fermionic fields:

CP : ψ → iγ2γ0ψ∗, (1.27)

which implies

CP : VBG →−m(z)(iγ2γ0t∗)ᵀeiθ(z)γ
5

γ0(iγ2γ0t∗)∗

=m(z)t†γ0γ2eiθ(z)γ
5

γ0γ2γ0t

=m(z)t̄e−iθ(z)γ
5

t

(1.28)

where we used (γ2)∗ = −γ2, (γ2)ᵀ = γ2, (γ0)∗ = (γ0)ᵀ = γ0 and eiθγ
5
γµ = γµe−iθγ

5
. Hence,

the phase picks up a minus sign during the CP transformation. And since θ(z) depends on

z, the phase cannot be removed by a field redefinition. VBG is therefore a CP violating term.

The second condition that EWBG must satisfy is the loss of thermal equilibrium. This

can be obtained with a first-order phase transition, where the rapidly varying scalar fields

in the bubble wall drive the plasma around it out of equilibrium. As seen in Subsection

1.1.3, the simple addition of a Z2-symmetric singlet scalar coupling to the Higgs is enough to

create a potential barrier between the true and false minima, which makes the electroweak

phase transition first order. In Chapter 2, we will derive the transport equations needed to

describe the CP -even modes’ departure from equilibrium. Similar transport equations for

the CP -odd modes have already been derived in Ref. [3].

Finally, no new physics input is required to satisfy the B-violation condition since the

baryon number is already violated in the SM by the sphaleron process described in Subsection

1.2.2. One only needs to make sure that the sphaleron is efficient in front of the wall (which

is always the case since the SU(2)L symmetry is not yet broken there), but inefficient behind

the wall. According to Eq. (1.24), this leads to the condition

vn
Tn

> 1.1. (1.29)

The processes involved in EWBG are summarized in Fig. 1.4. At first, the CP -violating

interaction (1.25), coupled to the loss of thermal equilibrium in the wall, generates a chiral
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Figure 1.4: Summary of the processes involved in EWBG. Image originally used in Ref. [59].

asymmetry that diffuses, in part, in front of the wall. Then, this CP asymmetry is converted

into a B asymmetry by the sphaleron, which is in thermal equilibrium. This B asymmetry

finally diffuses behind the wall. Since the sphaleron is inefficient after the symmetry breaking

(as long as Eq. (1.29) is satisfied), the B asymmetry gets frozen out and stays unchanged,

forming the BAU that we observe today.
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Chapter 2

Fluid equations for fast-moving

electroweak bubble walls

Work published with James M. Cline as Ref. [1].

Abstract

The cosmological electroweak phase transition can be strongly first order in ex-

tended particle physics models. To accurately predict the speed and shape of the

bubble walls during such a transition, Boltzmann equations for the CP-even fluid per-

turbations must be solved. We point out that the equations usually adopted lead to

unphysical behavior of the perturbations, for walls traveling close to or above the speed

of sound in the plasma. This is an artifact that can be overcome by more carefully

truncating the full Boltzmann equation. We present an improved set of fluid equations,

suitable for studying the dynamics of both subsonic and supersonic walls, of interest

for gravitational wave production and electroweak baryogenesis.

2.1 Introduction

The electroweak phase transition in the early universe is known to be a smooth-crossover

within the standard model (SM), given the measured value of the Higgs boson mass [25,
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60]. The addition of new particles coupling to the Higgs can turn it into a strongly first

order phase transition, proceeding by the nucleation of bubbles of the true, electroweak

symmetry breaking vacuum, in the initially symmetric plasma. This possibility has been

widely studied because of its potential for providing electroweak baryogenesis (EWBG) [40,

59, 61], and gravity waves that might be observable in the upcoming LISA experiment [62,

63].

An important parameter for the efficiency of baryon or gravitational wave production is

the terminal speed v of the bubble walls, with baryogenesis generally favoring slower walls,

while faster walls tend to produce stronger gravity wave signals. To determine v and other

relevant properties of the bubble wall, within a given particle physics model, one must self-

consistently solve for the perturbations to the fluid induced by the wall; these are needed to

determine the frictional force acting on the wall, that brings it to a state of steady expansion.

In previous literature on this subject, quantitative study of fast-moving walls has been

hampered by an apparent singularity of the fluid equations occurring at the sound speed cs =

1/
√

3, that we will explicitly demonstrate below. This makes a microscopic calculation of

the friction in such cases problematic, motivating phenomenological estimates for the friction

[64–67], or else leaving aside supersonic walls altogether [68]. Complementary approaches

have been used to study the ultrarelativistic limit [69–71]; in this work we are primarily

interested in velocities v & cs rather than v ∼= 1. We argue that the apparent sound barrier is

an artifact of a particular truncation of the Boltzmann equations for the fluid perturbations,

and that sensible solutions exist for wall speeds up to v = 1 by making a better choice.

A similar observation was recently made in ref. [3] in the context of the CP-odd fluid

perturbations that are needed to compute the source terms for EWBG, but the analogous

study for the CP-even perturbations, relevant to determining the bubble wall properties, has

not been done. It requires more work because the perturbation in the local temperature

δτ = δT/T (not needed for the EWBG source terms) must now be included in the network.

The optimal way of doing this turns out to be somewhat subtle, as we will discuss.
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We start by reviewing the standard approach in section 2.2 and the pathology of the

perturbations it predicts for supersonic walls. We derive improved fluid equations in section

2.3, and in section 2.4 the solutions of the old and new formalisms are compared for a typical

background wall profile, as a function of the wall velocity v. These results are used in section

2.5 to compute the predictions for the friction term in the Higgs field equation of motion,

that determines the bubble wall shape and speed. There we highlight the problems with

the old approach and their absence in the new one. Conclusions are given in section 2.6.

Formulas for the coefficients of the new fluid equations are presented in Appendix 2.A, and

the results of refined estimates for the collision terms are explained in Appendix 2.B.

2.2 Old formalism (OF)

We begin by recapitulating the method that has been used in previous literature for comput-

ing the plasma perturbations [2, 65, 68, 72–75]. These are the deviations of the distribution

function f for a given particle away from its equilibrium form, that have been parametrized

as [2, 72, 76]

f =
1

eX ± 1
=

1

eβγ(E−vpz)−δX ± 1
,

δX(z) = µ+ βγ[δτ(E − vpz) + u(pz − vE)]

where β = 1/T , γ = 1/
√

1− v2 and the equilibrium part, with δX = 0, is expressed in the

rest frame of the bubble wall, taken to be planar and moving to the left. µ is the dimensionless

chemical potential (in units of temperature) and u is the velocity perturbation. The wall

frame is convenient for expressing the Boltzmann equation since the solutions in this frame

are stationary,

L[f ] =

(
pz
E
∂z −

(m2)′

2E
∂pz

)
(fv + δf) ∼= −C[f ] (2.1)

where δf = −(dfv/dX) δX ≡ −f ′v δX is the perturbation, (m2)′ = dm2/dz for a particle

whose mass depends on the background Higgs field h(z) (and possibly other fields like a

singlet scalar) in the wall, and fv is the equilibrium distribution in the wall frame.
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To approximately solve eq. (2.1), three moments are taken, by integrating over momenta∫
d 3p with the respective weight factors 2 1, γ(pz−vE) and γ(E−vpz), giving three coupled

ordinary differential equations for the perturbations q ≡ (µ, u, δτ)ᵀ, that can be written in

the 3× 3 matrix form

Avq
′ + Γq = S (2.2)

with a rate matrix Γ from the moments of the collision term C and a source S ∼ vβ2(m2)′

from the Liouville operator L in (2.1) acting on fv.

The Av matrix depends on v in such a way that A−1
v Γ becomes singular at v = cs, and

has only positive eigenvalues for v > cs. By constructing a Green’s function to solve eq. (2.2)

3, one can see that this implies that the perturbations q must strictly vanish in front of the

wall for v > cs. Ref. [3] has argued that this kind of behavior is unphysical, since the fluid

equations (2.2) describe particle diffusion, which is a physically distinct process from the

propagation of sound waves. There is no reason why diffusion should be suddenly quenched

in the vicinity of a supersonic wall, since some fraction of particles in front of the wall can

still travel fast enough to get ahead of it.

2.3 Improved fluid equations (NF)

In this section we propose a new formalism (NF) for the fluid equations, motivated by

the recent paper [3]. In that work, the problem of artificial suppression of diffusion for

supersonic walls was overcome, following a long-established method of dealing with the

velocity perturbation u [77–79]. The adoption of a specific form for u is known to lead to

unphysical results, that can be avoided by instead writing the perturbations in the form

f = fv − f ′v δX̄ + δfu (2.3)

2In the fluid frame these are simply 1, pz and E.
3Strictly speaking, this method only works when the z-dependence of A−1

v Γ can be ignored on either side
of the wall, but the same conclusion is borne out by a full numerical solution.
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where now δX̄ omits the velocity perturbation u, which is instead encoded through δfu in

such a way that

u ∝
∫
d 3p

pz
E
δfu and

∫
d 3p δfu = 0 . (2.4)

To deal with other integrals involving δf , one makes a factorization ansatz

∫
d 3pQ δfu → u

∫
d 3pQ

E

pz
fv (2.5)

for any quantity Q. This procedure was shown in ref. [77] to lead to nonsingular diffusion

in front of supersonic walls, so long as one carefully evaluates the full v-dependence of Av,

rather than linearizing it in v, and weighting the Boltzmann equation by the moments 1,

pz/E.

However ref. [77] only considered the case of CP-odd perturbations, where δτ plays no

significant role and hence was omitted. Our purpose in this work is to extend those results

to include δτ , whose value is needed for the full solutions to the field equations determining

the shape and speed of the bubble walls. To determine this additional perturbation, a third

moment is needed. We find that by choosing the weighting factor E, in addition to 1 and

pz/E (all defined in the wall frame), the resulting Av matrix becomes

Av =


C1,1
v γvC−1,0

0 D0,0
v

C0,1
v γ(C−1,1

v − vC0,2
v ) D−1,0

v

C2,2
v γ(C1,2

v − vC2,3
v ) D1,1

v

 (2.6)

where the dimensionless functions Cm,n
v and Dm,n

v are defined as

Cm,n
v = Tm−n−3

∫
d3p

(2π)3

pnz
Em

(−f ′v) ,

Dm,n
v = Tm−n−3

∫
d3p

(2π)3

pnz
Em

fv .

With this choice, detAv has no singularity for wall speeds between v = 0 and 1, and it gives
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the desired behavior in which diffusion ahead of the wall only gets suppressed in the limit

v → 1. The source term becomes

S = γv
(m2)′

2T 2


C1,0
v

C0,0
v

C2,1
v

 . (2.7)

In previous literature, the coefficients corresponding to Cm,n
v and Dm,n

v were usually

calculated in the limit of vanishing mass (as well as only leading order in v), but we find that

the variation of m2(z) for the relevant particles within the wall can have a significant impact

on the shape of the solutions. We thus retain the full mass- and v-dependence of those

functions. Moreover, it is possible to analytically determine the v-dependence by boosting

to the plasma frame (see Appendix 2.A).

We have also updated the components of the collision matrix Γ to account for the new

choice of moments. The calculation of ref. [2] is improved by correcting some errors pointed

out in ref. [80] and by using a Monte Carlo algorithm to compute more accurately the collision

integrals. The new values of the collision terms are given in Appendix 2.B.

2.4 Solutions for a Standard Model-like plasma

Next we apply the improved fluid equations to a SM-like plasma in the context of a first

order electroweak phase transition. The species that couple most strongly to the Higgs

boson are the top quark t and the electroweak gauge bosons. The W and Z bosons are

approximated as having the same distribution functions, and we will refer to them collectively

as W bosons. The remaining particles form a background fluid which is assumed to be in

thermal equilibrium (µbg = 0) at a z-dependent temperature T + δτbg(z) [2]. Even if they

are not driven out of chemical equilibrium by the phase transition, these lighter fields still

play an important role in the dynamics of the bubble wall. One might also expect the Higgs
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Figure 2.1: First row: solutions for the perturbations of the W and t fluids within
the old formalism, for T = 100 GeV, L = 5γ/T , h0 = 150 GeV and wall velocities
v = 0.2, 0.5, 0.7, 0.95, as a function of z/L. Second row: corresponding results for the
improved fluid equations. Third row: comparison of the friction term (2.15) obtained with
both formalisms, with solid curves for NF and dashed for OF. The symmetric phase in front
of the bubble wall is to the left.

boson distribution to be perturbed, but its small number of degrees of freedom makes its

contribution negligible compared to that of t or W . It is therefore included in the background

fluid (and similar reasoning could also be applied to additional fields not present in the SM,

e.g., a singlet scalar).

The complete set of matrix equations for the t, W and background components is

At(q
′
t + q′bg) + Γtqt = St

AW (q′W + q′bg) + ΓW qW = SW

Abgq
′
bg + Γbg,tqt + Γbg,W qW = 0

where At, AW , St and SW are given in eqs. (2.6) and (2.7), using the appropriate equilibrium
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distribution functions. The A matrix for the background fluid is

Abg = NfAt|m=0 +NbAW |m=0, (2.8)

with Nf and Nb respectively the fermionic and bosonic number of degrees of freedom included

in the background fluid (Nf = 78 and Nb = 19 in the SM). We evaluate At and AW at m = 0

because all the particles in the background fluid are approximately massless. Energy and

momentum conservation fixes Γbg,t = −12Γt and Γbg,W = −9ΓW [65], and Γt and ΓW are

evaluated in Appendix B.

To solve the system (2.8), one can eliminate q′bg using the third equation; however the

fact that µbg = 0 makes one of the three “bg” equations redundant. We have chosen to keep

the first and third “bg” component equations (corresponding to the weighting factors 1 and

pz/E), since this leaves Abg nonsingular for v ∈ (0, 1). The result is

q′bg = −Ã−1
bg (Γbg,tqt + Γbg,W qW ) (2.9)

where Ã−1
bg is the inverse of the 2 × 2 Abg matrix, projected onto the 1,3 columns and 2,3

rows of a 3× 3 matrix. It can be written in terms of the 3 matrices

P1 =


0 0 0

0 1 0

0 0 1

 , P2 =


1 0 0

0 0 0

0 0 1

 , P3 =


0 0 0

1 0 0

0 0 0


and the 3× 3 Abg matrix defined in (2.8):

Ã−1
bg = (P2AbgP1 + P3)−1 − P ᵀ

3 (2.10)
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The six remaining equations take the form

Aq′ + Γ q = S (2.11)

with

A =

 AW 0

0 At

 , S =

 SW

St

 , q =

 qW

qt

 ,

Γ =

 ΓW − AW Ã−1
bg Γbg,W −AW Ã−1

bg Γbg,t

−AtÃ−1
bg Γbg,W Γt − AtÃ−1

bg Γbg,t


(2.12)

To compare the new and old formalisms (denoted by NF and OF in the following) for

a generic first order phase transition, we model the bubble wall using a tanh ansatz for the

background Higgs field,

h(z) =
h0

2

[
1 + tanh(z/L)

]
(2.13)

where h0 is the VEV of the Higgs in the broken phase and L is the wall thickness. As

an example we solve eqs. (2.11) within the OF and NF for T = 100 GeV, h0 = 150 GeV,

L/γ = 5/T 4 and several wall velocities, using the collision rates given in [2] for the OF and

the ones evaluated in Appendix B for the NF. We include a factor γ in L in order for the

wall to have a constant thickness in the plasma frame. The solutions are shown in Figure

2.1, for a series of increasing wall velocities.

One can notice that within the NF, the perturbations in front of the wall (z < 0) vanish

only in the limit v → 1, as required by causality. This is not the case in the OF, whose

solutions always vanish in front of the wall for v > 1/
√

3. As argued in ref. [3], this behavior

is unphysical, since there is no reason for particles not to be able to diffuse in front as long

as their vz velocity component is higher than v.

As a consistency check, we observe that the linearization of the Boltzmann equation in

4L/γ is the wall thickness as measured in the plasma frame. Fixing LT/γ rather than LT makes it easier
to see that the diffusion tails in front of the wall disappear as v → 1.
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δX and u is justified, since all the perturbations are generally well below unity in magnitude.

We have tested that this condition holds for most wall parameters; the linearization starts

to break down only in the extreme cases of very fast (v & 0.95) and thin walls (L . 1/T ).

2.5 Consequences for wall friction

An important application is the calculation of the friction term F in the Higgs equation of

motion multiplied by h′ = dh/dz [65],

Eh ≡ h′′h′ − ∂Veff

∂z

∣∣∣∣
T

− F = 0, (2.14)

where Veff |T is the finite-temperature potential evaluated at the unperturbed background

temperature, and

F (z) =
∑
i

dm2
i

dz
Ni

∫
d3p

(2π)32E
(δfu,i − f ′v,iδX̄i)

=
∑
i

dm2
i

dz

NiT
2

2

[
C1,0

0 µi + C0,0
0 (δτi + δτbg) +D0,−1

v (ui + ubg)
]
.

Here the sum is over the species t and W , and Ni is the corresponding number of degrees of

freedom. An exact solution to eq. (2.14) exists only for a specific wall velocity and shape,

and so the accurate estimation of F is important for determining the wall properties. An

ansatz such as (2.13) can give a rough approximate solution, where v and L are determined

by demanding that two moments of eq. (2.14) vanish [2, 65, 68], for example

M1 ≡
∫
dz Eh = 0,

M2 ≡
∫
dz Eh(2h− h0) = 0

We plot F (z) constructed from the OF and NF solutions in the bottom row of Figure

2.1. At small v, the friction predicted by NF is ∼ 20% larger, leading us to expect the NF
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Figure 2.2: (a): Evolution of the friction with v in the old formalism (OF), showing dis-
continuous behavior across the sound barrier. Each F (z) curve is labeled by its value of v.
(b): The spatial integral of the friction in the OF (blue) and NF (orange) as a function of
v, further illustrating the discontinuous behavior of the OF around the sound speed, and
the smooth behavior of the NF. (c): The ratio of the two curves in (b). All the curves were
obtained with T = 100 GeV, L = 5/T and h0 = 150 GeV.

to predict a smaller wall velocity than the OF for subsonic walls. This difference is mainly

due to our improved calculation of the collision integrals and the fact that we keep the

full mass dependence of the Cm,n
v and Dm,n

v functions. In this very coarse grid on velocity

space, v = 0.2, 0.5, 0.7, 0.95, the friction appears to be qualitatively similar in shape at

each velocity, involving primarily a modest rescaling factor to relate the results of the two

approaches.

Despite the appearance in Fig. 2.1 of no dramatic difference between the two formalisms,

more careful investigation in the vicinity of the sound speed reveals the crucial pathology

of the OF. In Fig. 2.2(a) we plot F (z) for a series of wall speeds from 0.56 to 0.59 within

the OF, revealing that it briefly becomes negative before suddenly becoming positive again.

This is even more clear in terms of the integral of the friction
∫
dz F (z), which we plot as

a function of v for the OF and NF in Fig. 2.2(b). The integral undergoes a discontinuity

near v = cs in the OF, while remaining smooth and continuous in the NF. The ratio of the

integrals between the NF and OF is plotted in fig. (2.2)(c), underscoring the relatively good

two agreement of the two, except close to cs.

In addition to giving incorrect results close to v = cs, this discontinuous behavior of the

OF makes it difficult to automate searches for wall properties, since the jump in
∫
F dz leads
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to a similar discontinuity in the moment M1 whose zero is being searched for. As expected,

the second moment M2 is also discontinuous in the OF. This was the practical difficulty that

prompted our investigation. In contrast the NF gives smooth results, which we have argued

is the expected behavior on physical grounds, since diffusion should not be greatly sensitive

to whether the speed is slightly above or below cs.

2.6 Conclusion

In this work we have pointed out a shortcoming at high wall speeds (v & cs) with the fluid

equations that have been used, since their introduction in ref. [2], to calculate the friction F

on electroweak bubble walls. We have also proposed a modification to these equations that

solves the problem. It is reassuring that the two approaches give results that are not too

different from each other at low wall speeds—and there the difference arises mainly because

we have improved estimates of the collision rates, rather than the changes in formalism that

become important at high v. Near the sound barrier and above, the differences are more

significant, with our new results evolving continuously as a function of v, whereas the old

ones exhibit a discontinuity in F at v = cs. The new system predicts lower friction at high

v > cs compared to the old one, which is likely to lead to faster walls. At low v the opposite

is true. Application of these methods to a realistic model is underway [4].

The new elements in our treatment are a different choice of weighting factors for taking

moments of the Boltzmann equation, and a different treatment of the velocity perturbation.

The latter has long been recognized and recently highlighted in the high-v context in ref.

[3]. While there are strong theoretical motivations for the velocity perturbation, the choice

of weighting factors is more arbitrary, and cannot be justified a priori.

Instead we have made a phenomenological determination, by finding a set of moments

that give the expected behavior for the fluid perturbations as a function of v. One could

characterize it as an educated guess, that should be validated by finding a more exact solution
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of the full Boltzmann equations. There are several ways one could imagine doing this. Instead

of three moments and three perturbations, one could increase this number to N and look

for convergence of a physical quantity like the friction with increasing N . Alternatively, one

could approximate the distribution function f by taking N bins in momentum space and

seeking convergence with growing N . This is an investigation we hope to undertake in future

work.
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2.A v-dependence of the Cm,n
v and Dm,n

v functions

The coefficients appearing in the A matrix generally depend on the local particle masses

m(z)/T and the wall velocity v. They can be evaluated numerically directly from their

definition (2.7), but it is also possible to analytically calculate their v-dependence, by making

the substitution E → γ(E + vpz) and pz → γ(pz + vE) to boost the integration variables to

the plasma frame. This transforms fv to f0, the equilibrium distribution function evaluated

at v = 0, and leaves the combination d3p/E invariant.

In this way, the Cm,n
v and Dm,n

v functions can be expressed as a sum (finite or infinite)

of Cm,n
0 and Dm,n

0 , the corresponding functions evaluated at v = 0. One can show that

(henceforth omitting the subscript 0)

C−1,1
v = γ3v [C−2,0 + (2 + v2)C0,2]

C0,0
v = γ C0,0

C0,1
v = γ2v (C−1,0 + C1,2)

C0,2
v = γ3 [v2C−2,0 + (1 + 2v2)C0,2]
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C1,0
v = C1,0

C1,1
v = γv C0,0

C1,2
v = γ2(C1,2 + v2C−1,0)

C2,1
v = v C1,0 − 1

γ2

∞∑
n=1

v2n−1C2n+1,2n

C2,2
v = γv2C0,0 +

1

γ3

∞∑
n=1

v2n−2C2n,2n

C2,3
v = γ2v3C−1,0 + γ2v(v4 − 3v2 + 3)C1,2 − 1

γ4

∞∑
n=2

v2n−3C2n−1,2n

D−1,0
v = γ2(D−1,0 + v2D1,2)

D0,0
v = γD0,0

D1,1
v = γvD0,0

With these, it is sufficient to compute the required Cm,n and Dm,n at only a few values of

m/T and use interpolation to quickly compute them for any m/T . The infinite series are all

well-behaved: they are exact at v = 0 and v = 1 using only the first term of the series, and

an accuracy of less than 1% for all v ∈ [0, 1] is achieved using a small number of terms.

2.B Evaluation of the collision rates

We discuss here the calculation of the collision integrals by a corrected and improved version

of the method used in ref. [2]. The collision term for a given particle species is

C[fv(p)] =
∑
i

1

2NpEp

∫
d3k d3p′ d3k′

(2π)52Ek2Ep′2Ek′
|Mi|2δ4(p+ k − p′ − k′)P [fv(p)] ;

P [f(p)] = f(p)f(k)
(
1± f(p′)

)(
1± f(k′)

)
− f(p′)f(k′)

(
1± f(p)

)(
1± f(k)

)
,

where the sum is over all the relevant processes listed in Table 2.1, p is the momentum of

the incoming particle whose distribution is being computed, Np is its number of degrees of
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freedom, k is the momentum of the other incoming particle, and p′, k′ are the momenta of

the outgoing particles. |Mi|2 is the squared scattering amplitude, summed over the helicities

and colors of all the external particles. The distribution functions appearing in P are Fermi-

Dirac or Bose-Einstein depending the respective external particles, and the ± is + for bosons

and − for fermions.

P can be simplified by expanding it to linear order in the perturbations. Using the

definition (2.1) of the distribution function with δX(p) = µ+ βγδτ(Ep − vpz)− δf/f ′v, one

can show that P becomes

P [f ] = f(p)f(k)(1± f(p′))(1± f(k′))
∑

(±δX) (2.15)

where the sum is over the external particles not in equilibrium and the ± in front of δX is

+ for incoming particles and − for outgoing particles.

The quantities needed for the fluid equations are the moments of C[f ]. These have the

general form

∑
i

1

2NpEp

∫
d3k d3p′ d3k′

(2π)52Ek2Ep′2Ek′
|Mi|2δ4(p+ k − p′ − k′)P [fv]

pnz
Em
p

=
∑
i

1

2NpEp

∫
d3k d3p′ d3k′

(2π)52Ek2Ep′2Ek′
|Mi|2δ4(p+ k − p′ − k′)P [fv] γ

n−m (pz + vEp)
n

(Ep + vpz)m

where we boosted to the plasma frame to get the second line. Using the substitution (2.5),

the perturbations become in that frame

δX(p) = µ+ βEpδτ −
(
Ep + vpz
pz + vEp

)(
f0

f ′0

)
u (2.16)

Following the treatment of ref. [2], the calculation of the collision rates has been done to

leading log accuracy, where it is justified to neglect the masses of all the external particles,

which implies Ep = p. One can also neglect s-channel contributions and the interference
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Process |M|2
Top quark:
t̄t→ gg −128

3
g4
s

st
(t−m2

q)2

tg → tg −128
3
g4
s

su
(u−m2

q)2
+ 96g4

s
s2+u2

(t−m2
g)2

tq → tq 160g4
s
s2+u2

(t−m2
g)2

W bosons:
Wq → qg −72g2

sg
2
w

st
(t−m2

q)2

Wg → q̄q −72g2
sg

2
w

st
(t−m2

q)2

WW → f̄f −27
2
g4
wst
[

3
(t−m2

q)2
+ 1

(t−m2
l )2

]
Wf → Wf 360g4

w
u2

(t−m2
W )2
− 27

2
g4
wsu

[
3

(u−m2
q)2

+ 1
(u−m2

l )2

]
Table 2.1: Relevant processes for the top quark and W bosons and their corresponding
scattering amplitude in the leading log approximation.

between diagrams because they are not logarithmic. To account for thermal effects, we use

propagators of the form 1/(t−m2) or 1/(u−m2), where m is the exchanged particle’s thermal

mass. It is given by m2
g = 2g2

sT
2 for gluons, m2

q = g2
sT

2/6 for quarks, m2
W = 5g2

wT
2/3 for W

bosons and m2
l = 3g2

wT
2/32 for leptons [81].

The top quark collisions are dominated by their strong interactions; we include only

contributions to |M|2 of order g4
s for t interactions. For the W bosons, we include terms

of order g2
sg

2
w and g4

w. The relevant processes are shown with their corresponding |M|2 in

Table 2.1 5.

To evaluate the integrals in (2.16), one can first use the delta function and the symmetry

of the integrand to analytically perform five of the twelve integrals. This can be done

efficiently using the parametrization detailed in refs. [80, 82, 83]. The remaining seven

integrals can be evaluated analytically using several approximations, justified to leading

log accuracy. However, we have found that it is more precise to numerically compute these

integrals, which can be done with a Monte Carlo algorithm. One can use a stratified sampling

algorithm or VEGAS to reduce the variance, but this is generally not necessary since it only

5As pointed out in ref. [80], there were some errors in the expressions of the scattering amplitudes in [2].
They failed to include a 1/2 symmetry factor in the amplitude for t̄t→ gg and made some algebraic errors
in tq → tq and Wf →Wf .
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takes a few seconds to get an accuracy of ∼ 1% in most cases.

With the linearization of P [f ] made in (2.15), the moments of the collision term can be

written as linear combinations of the three perturbations: T
(

Γ
(i)
µ µ+ Γ

(i)
τ δτ + Γ

(i)
u u
)

. Then

the Γ matrix appearing in eq. (2.2) takes the form

Γ = T


Γ

(1)
µ Γ

(1)
τ Γ

(1)
u

Γ
(2)
µ Γ

(2)
τ Γ

(2)
u

Γ
(3)
µ Γ

(3)
τ Γ

(3)
u

 (2.17)

where the Γ
(j)
i coefficients are dimensionless. The v-dependence of the upper-left 2× 2 block

can be expressed analytically, giving

Γ
(1)
µ,t = 0.00196, Γ

(1)
µ,W = 0.00239

Γ
(1)
τ,t = 0.00445, Γ

(1)
τ,W = 0.00512

Γ
(2)
µ,t = 0.00445 γ, Γ

(2)
µ,W = 0.00512 γ

Γ
(2)
τ,t = 0.0177 γ, Γ

(2)
τ,W = 0.0174 γ
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The remaining components have been fitted to quartic polynomials:

Γ
(1)
u,t = (5.36v − 4.49v2 + 7.44v3 − 5.90v4)× 10−3

Γ
(1)
u,W = (4.10v − 3.28v2 + 5.51v3 − 4.47v4)× 10−3

Γ
(2)
u,t = γ(1.67v + 1.38v2 − 5.46v3 + 2.85v4)× 10−2

Γ
(2)
u,W = γ(1.36v + 0.610v2 − 2.90v3 + 1.36v4)× 10−2

Γ
(3)
u,t = (4.07− 2.14v2 + 4.76v3 − 4.37v4)× 10−3

Γ
(3)
u,W = (2.42− 1.33v2 + 3.14v3 − 2.43v4)× 10−3

Γ
(3)
µ,t = (0.948v + 2.38v2 − 4.51v3 + 3.07v4)× 10−3

Γ
(3)
µ,W = (1.18v + 2.79v2 − 5.31v3 + 3.66v4)× 10−3

Γ
(3)
τ,t = (2.26v + 4.82v2 − 9.32v3 + 6.54v4)× 10−3

Γ
(3)
τ,W = (2.48v + 6.27v2 − 11.9v3 + 8.12v4)× 10−3

Our results and differ from those of [2] by factors of O(1). Even taking account of the

errors previously mentioned, our results are still roughly 2 times smaller. As discussed in ref.

[68], this discrepancy is due to the various leading log approximations made in [2] in order

to analytically evaluate the collision integrals. Either procedure is valid to leading accuracy,

which gives an estimate of the theoretical uncertainty associated with this approximation.

It may be worthwhile (though quite laborious) to include subleading contributions for future

studies relying upon these fluid equations.
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Bridge

Now that we have derived an improved set of fluid equations reliable for all wall

velocities, all the properties of the first-order EWPT within a given model can, in

principle, be completely determined. More specifically, the BAU and GW spectrum

produced during the PT, which are quite sensitive to the wall’s velocity and shape, can

be predicted. In the next chapter, we apply the new formalism previously developed

to the Z2-symmetric singlet scalar extension of the SM. We propose a UV-completed

model with a vectorlike top partner, which yields a dimension-5 CP -violating operator.

We then perform a scan of the parameter space to determine the likelihood of obtaining

the observed BAU and a detectable GW signal.
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Chapter 3

Baryogenesis and gravity waves from

a UV-completed electroweak phase

transition

Work published with James M. Cline, Avi Friedlander, Dong-Ming He,

Kimmo Kainulainen and David Tucker-Smith as Ref. [4].

Abstract

We study gravity wave production and baryogenesis at the electroweak phase tran-

sition, in a real singlet scalar extension of the Standard Model, including vector-like top

partners to generate the CP violation needed for electroweak baryogenesis (EWBG).

The singlet makes the phase transition strongly first-order through its coupling to the

Higgs boson, and it spontaneously breaks CP invariance through a dimension-5 con-

tribution to the top quark mass term, generated by integrating out the heavy top

quark partners. We improve on previous studies by incorporating updated transport

equations, compatible with large bubble wall velocities. The wall speed and thickness

are computed directly from the microphysical parameters rather than treating them as

free parameters, allowing for a first-principles computation of the baryon asymmetry.

The size of the CP-violating dimension-5 operator needed for EWBG is constrained
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by collider, electroweak precision, and renormalization group running constraints. We

identify regions of parameter space that can produce the observed baryon asymme-

try or observable gravitational (GW) wave signals. Contrary to standard lore, we find

that for strong deflagrations, the efficiencies of large baryon asymmetry production and

strong GW signals can be positively correlated. However we find the overall likelihood

of observably large GW signals to be smaller than estimated in previous studies. In

particular, only detonation-type transitions are predicted to produce observably large

gravitational waves.

3.1 Introduction

Phase transitions in the early universe provide an opportunity for probing physics at high

scales through cosmological observables, in particular, if the transition is first order. In

that case, it may be possible to explain the origin of baryonic matter through electroweak

baryogenesis (EWBG) [6–9] or variants thereof [84]. Such transitions can also produce relic

gravitational waves (GWs) that may be detectable by future experiments like LISA [63, 85],

BBO [86], DECIGO [87, 88] and AEDGE [89].

It is remarkable that even though the electroweak phase transition (EWPT) is a smooth

crossover in the standard model (SM) [25, 26], it can become first order with the addition of

modest new physics input, in particular a singlet scalar coupling to the Higgs [28–37], that

can also be probed in collider experiments [20, 90–100]. There have been many studies of

such new physics models with respect to their potential to produce observable cosmological

signals [10, 11, 15, 17, 19, 101–109]. However, it is challenging to make a first-principles

connection between microphysical models and the baryon asymmetry or GW production,

since these can be sensitive to the velocity vw and thickness Lw of the bubble walls in the

phase transition, which are numerically demanding to compute [2, 65, 68–70, 72, 73, 110–

114]. Most previous studies that encompass EWBG and GW studies of the EWPT therefore

leave vw and Lw as free parameters. This limitation was addressed recently in Ref. [115],
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which undertook a comprehensive investigation of the EWPT enhanced by coupling the

Higgs boson to a scalar singlet with Z2 symmetry. The simplicity of this model facilitates

doing an exhaustive search of its parameter space.

In the present work we continue the investigation started in Ref. [115], which determined

vw and Lw over much of the model parameter space, but did not try to predict the baryon

asymmetry or GW production. Moreover, that study was limited to subsonic wall speeds,

due to a breakdown of the fluid equations that determine the friction on the wall. Recently

a set of improved fluid equations was postulated in Refs. [1, 3], that do not suffer from

the subsonic limitation. We use these in the present work in order to fully explore the

parameter space, where high vw can be favorable to observable GWs, and also compatible

with EWBG. It will be shown that for strong deflagrations, the fluid velocity in front of the

wall saturates and even decreases with increasing wall velocity vw. Since the walls become

thinner at the same time, the baryon asymmetry is enhanced at larger wall velocities for

these transitions, becoming positively correlated with a strong GW signal. Despite this

positive correlation, we find that producing the observed baryon asymmetry together with a

GW signal detectable in next generation observations is not possible, in contrast to previous

estimates [15, 20]. The difference comes from several factors working in the same direction.

For example, we find larger wall velocities and thicknesses than Ref. [15], which suppress

the baryon asymmetry. Moreover, our GW fits include a recently derived suppression factor

due to shock reheating [116, 117], which leads to a much weaker GW signal for strong

deflagrations.

A further improvement in this work is to present an ultraviolet completion of the ef-

fective coupling that gives rise to the CP-violation needed for EWBG. We introduce heavy

vectorlike top partners which when integrated out induce a CP-violating coupling of the

singlet scalar s to top quarks, giving the source term for EWBG.6 Although the effective

operator description of this term is quite adequate for quantitatively understanding EWBG

6Hints of the presence of such a particle in LHC data were recently presented in Ref. [118].
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[119, 120], its resolution in terms of underlying physics is necessary for quantifying how

large its coefficient can be, consistent with laboratory constraints. We present the details in

section 3.2, including comprehensive collider limits on the top partners and the subsequent

constraints on the effective theory. The finite-temperature effective potential of the theory is

also outlined there, along with a discussion of cosmological constraints on the small explicit

breaking of the Z2 symmetry, that is necessary for EWBG.

The paper continues in Sect. 3.3 with a brief description of our methodology for finding

the high-temperature first-order phase transitions, and characterizing their strength. This

is followed in Sect. 3.4 by a detailed account of how the bubble wall speed and shape are

determined. The techniques for computing the baryon asymmetry and GW production

are described in Sect. 3.5. We present the results of a Monte Carlo exploration of the

model parameter space with respect to these observables in Sect. 3.6, with emphasis on

the interplay between successful EWBG and potentially observable GWs. Conclusions are

given in Sect. 3.7, followed by several appendices containing details about construction of

the finite-temperature effective potential, solving junction conditions for the phase transition

boundaries, and predicting GW production.

3.2 Z2-symmetric singlet model

We study the Z2-symmetric singlet scalar extension of the SM with a real singlet s coupled

to the Higgs doublet H. The scalar potential is

V (H, s) = µ2
hH
†H + λh

(
H†H

)2
+
λhs
2

(
H†H

)
s2 +

µ2
s

2
s2 +

λs
4
s4. (3.1)

We work in unitary gauge, which consists of taking H = h/
√

2; the Goldstone bosons still

contribute to the one-loop and thermal corrections, but they are set to zero in the tree-level

potential. We assume µ2
h < 0 and µ2

s < 0, which implies that the potential has non-trivial

minimums at v ≡ h = ±|µh|/
√
λh ≈ 246 GeV, s = 0 and h = 0, s = ±|µs|/

√
λs. The scalar
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fields’ mass in the vacuum can then be written in terms of the parameters of the potential

as m2
h = −2µ2

h ≈ (125 GeV)2 and m2
s = −λhsµ2

h/(2λh) + µ2
s.

The other relevant interaction of s is a dimension-5 operator yielding an imaginary con-

tribution to the top quark mass [121]:

LBG = − yt√
2
htL

(
1 + i

s

Λ

)
tR + H.c. (3.2)

This term will be ignored during the discussion on the phase transition; however it is essential

for generating the baryon asymmetry, since it gives the CP-violating source term when s

temporarily gets a VEV in the bubble walls of the electroweak phase transition. In Eq.

(3.2) we have adopted a special limit of a more general model, in which the dimension-5

contribution is purely imaginary. This can be understood as a consequence of imposing

CP in the effective Lagrangian, with s coupling like a pseudoscalar, s → −s. Hence it is

consistent to omit terms odd in s in the scalar potential (3.1), even though Eq. (3.2) is odd

in s. The CP symmetry prevents a VEV from being generated for s by loops.

The effective operator is generated by integrating out a heavy singlet vectorlike top quark

partner T , whose mass term and couplings to the third generation quarks qL = (tL, bL), Higgs

and singlet fields are

ytq̄LHtR + η1q̄LHTR + iη2T̄LstR +MT̄LTR + H.c. (3.3)

including also the SM qL-Higgs coupling. This is invariant under CP if s→ −s.7 Integrating

out T leads to the effective operator in (3.2) with scale

Λ =
ytM

η1η2

. (3.4)

We consider experimental constraints on the scale Λ below.

7The interaction term iη3TLsTR also respects CP for real η3. We neglect it to simplify our analysis.
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In previous literature, thermal corrections were frequently approximated by including just

the first term of the high-temperature expansion of the thermal functions presented in the

Appendix B. However, this approximation fails at temperatures below the mass of particles

strongly coupled to the Higgs, as can happen in models with a high degree of supercooling.

Therefore, we employ the full one-loop thermal functions. This will be shown to have a

large impact on the values of the tunneling action, and thus of the nucleation temperature.

In addition to the tree-level potential and the thermal corrections, we also include the one-

loop correction and the thermal mass Parwani resummation [122]. The complete effective

potential then becomes

Veff = Vtree + VCW + VT + δV. (3.5)

The details are presented in Appendix 3.A.

3.2.1 Laboratory constraints

It is important to determine how low the scale Λ of the dimension-5 operator in Eq. (3.4)

can be, since it has a strong impact on the baryon asymmetry ηb; in the limit of large Λ, ηb

scales as 1/Λ. The relevant masses and couplings are constrained by direct searches for the

top partner and precision electroweak studies. Moreover the properties of the singlet s are

constrained by collider searches.

After electroweak symmetry breaking, a Dirac mass term (t̄L, T̄L)(mt

0
µ
M

)
(
tR
TR

)
is gener-

ated for t, T , with mt = ytv/
√

2 and µ = η1v/
√

2 that is diagonalized by separate rotations

on (tR, TR) and (tL, TL), with mixing angles

tan 2θL = 2
Mµ

M2 −m2
t − µ2

, tan 2θR = 2
mtµ

M2 + µ2 −m2
t

. (3.6)

For example, we consider a benchmark point with η1 = 0.55 and a physical T mass MT = 800

GeV, which correspond to M = 794 GeV and mixing angles θL = 0.126 and θR = 0.027. The

relations between yt and the physical top mass differ from the SM ones by less than 1%,
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which is allowed by current LHC constraints [123, 124]. For sufficiently large η2, decays of

T to ht/Zt/Wb induced by mixing are highly subdominant to T → st, and searches for

vector-like top partners that focus on the former channels are evaded. Near the Goldstone-

equivalent limit (which should apply reasonably well for MT = 800 GeV and relatively small

s masses, ms ∼ 100 GeV), the branching ratio for T → st is

B(T → st) ' η2
2

η2
2 + 2η2

1

. (3.7)

We roughly estimate from Refs. [125, 126] that for MT = 800 GeV, vector-like quark searches

that target SM final states are evaded provided B(T → st) >∼ 90%, corresponding to η >∼ 2.4

for our benchmark point. Ref. [127] (see Fig. 1 of contribution 5; also [128]) has reinterpreted

collider bounds to constrain the parameter space (ms,MT ) for models in which T → st

dominates, finding that top partner masses above ∼ 750 GeV are allowed in the case where

s decays 100% into two gluons. This is true in our model, where the dominant s decays are

induced by the loop diagrams shown in Fig. 3.1. One can estimate that the gluon final state

dominates over that of b quarks by a factor of (g2
sms/g

2
wmb)

2 & 103, and over decays into

photons by (gs/e)
4 ∼ 300. Precision electroweak data constrain the additional contributions

to the oblique parameters, especially T , which is corrected by [129]

∆T = Tsms
2
L

(
−(1 + c2

L) + s2
L r + 2c2

L

r

r − 1
ln r

)
. 0.1 , (3.8)

where Tsm = 1.19 is the SM value, cL = cos θL, sL = sin θL, and r = (MT/mt)
2; the upper

limit is from section 10 of [130]. The benchmark point chosen above almost saturates this

constraint, giving ∆T ' 0.09.

There are also direct searches for resonant production of the singlet, by gluon-gluon

fusion. The coupling of s to t in the mass eigenstate basis is yst = η2 cos θR sin θL ∼ η2θL,

while that to T is ysT = −η2 cos θL sin θR ∼ −η2θR. The squared matrix element for the
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Figure 3.1: Feynman diagrams for decay of the singlet s. The decay into gluons is by far the
dominant channel.

decays s→ gg is [131]

|M|2 =
(αs
π

)2

m4
s

∣∣∣∣∣∑
i=t,T

ysi
mi

τi

[
sin−1

(
τ
−1/2
i

)]2

∣∣∣∣∣
2

, (3.9)

where τi = 4m2
i /m

2
s. The parton-level production cross section for gg → s is σ̂ = π|M|2δ(ŝ−

m2
s)/(256 ŝ) where the 256 comes from averaging over gluon colors and spins. Integrating

this over the gluon PDFs gives the hadron-level cross section

σ(pp→ s) =
π

256m4
s

|M|2Lg ≡
π

256m4
s

|M|2
∫ 1

m2
s/s

dx

x
[xfg](x)[xfg](m

2
s/sx) (3.10)

in which dependence on ms drops out except in the parton luminosity factor Lg. This

production is probed via decays s → γγ, whose branching ratio is approximately B(s →

γγ) = (8/9)α2/α2
s [131]. For the dominant s→ gg decay into gluons, in principle LHC dijet

resonance searches could be constraining, but these exist only for ms & 500 GeV which is

beyond the range of interest for the present study. To a good approximation, σ(pp → s) is

determined by ms and Λ. In Fig. 3.2(a) we show limits from ATLAS [132, 133] and CMS

[134] on σB(s → γγ) as a function of ms, along with the predictions for various Λ, and

in Fig. 3.2(b) we show the associated lower bounds on Λ. In the low-mass region (65 GeV

< ms < 110 GeV), lower bounds on Λ range roughly from 400 GeV to 650 GeV; in the

intermediate-mass region (110 GeV < ms < 160 GeV), Λ is not yet constrained by diphoton

resonance searches, and for much of the high-mass region (ms > 160 GeV), Λ is bounded to

be above 1 TeV. For our subsequent scans of parameter space, we adopt a fixed reference
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Figure 3.2: Left (a): experimental limits from ATLAS [132, 133] and CMS [134] for resonant
production of s by gg fusion followed by decays into photons (solid lines), versus predictions
at different values of of Λ. Right (b): corresponding lower bounds on Λ.

value for Λ,

Λref = 540 GeV, (3.11)

which is large enough to be consistent with much of the low-ms region. Because Λref is well

below the lower-bounds on Λ in the high-mass region, we confine our scans to ms < 160 GeV

for consistency.8

The constraints from precision electroweak data, diphoton resonance searches, and vector-

like quark searches are shown in the η1-η2 plane in Fig. 3.3, for MT = 800 GeV, where

we approximate the T search constraints by the requirement B(T → st) > 0.9, and for

MT = 1300 GeV, heavy enough to evade T searches for any B(T → st). For the chosen

ms, it is apparent that the reference value Λ = 540 GeV is attainable for η2 >∼ 2.5 for

MT = 800 GeV and η2 >∼ 3 for MT = 1300 GeV. For slightly heavier s in the window

110 GeV < ms < 160 GeV, diphoton resonance searches are evaded and the red contours

disappear. In this case even lower values of Λ are allowed provided one is willing to consider

larger values of η2. Since the baryon asymmetry ηb scales roughly as 1/Λ, it is straightforward

to reinterpret our final results for larger (or smaller) Λ. From the results of Section 3.6 one

8Although we do not pursue this point here, lower values of Λ are consistent with ms > 160 GeV if
B(s → γγ) is suppressed, for example by a dominant invisible decay channel; LHC constraints on tt plus
missing energy [135, 136] are in that case evaded for MT >∼ 1350 GeV.
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Figure 3.3: For selected T and s masses, constraints on η1 and η2 from precision electroweak
data (green), diphoton resonance searches [133, 134](red), and searches for vector-like quarks
[125] (blue), along with contours of Λ in GeV. The allowed region is unshaded.

can infer that a significant fraction of models remain viable for baryogenesis for Λ = 2Λref

(or for even larger Λ), a scale consistent with more modest couplings, η2 ∼ 1.5.

Allowing for very large values of η2 could invalidate the effective theory above the heavy

top partner threshold M at scales only slightly larger than M , which would require us

to specify additional new physics in order to have a complete description. There are two

principal challenges arising from the running of the couplings,

dη2

d lnµ
∼=

η3
2

4π2
(3.12)

dλs
d lnµ

∼=
9λ2

s

8π2
− 3 η4

2

2π2
+
λsη

2
2

2π2
(3.13)

where µ denotes the renormalization scale. The most serious problem is that for large values

of η2, the self-coupling λs is quickly driven to zero, and the scalar potential becomes unstable.

The second is that η2 reaches a Landau pole at somewhat higher scales. The first problem

could be ameliorated by coupling additional scalars to s, without impacting our results for

EWBG or GWs. For this reason, we do not limit the scope of our investigation based on

the running of λs. Regarding the second problem, we note that even for η2 = 3, the Landau

pole is nearly an order of magnitude above M , which we consider to be an acceptably large
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range of validity for the effective theory.

3.2.2 Explicit breaking of Z2 symmetry

Since we are considering a scenario where the Z2 symmetry s→ −s is spontaneously broken

during the early universe and restored at the EWPT, domain walls form before the EWPT,

and the universe will consist of domains with random signs of the s condensate. The source

term for EWBG that arises from Eq. (3.2) is linear in s, resulting in baryon asymmetries

of opposite signs, that could average to zero after completion of the EWPT. To avoid this

outcome, the Z2 symmetry should be explicitly broken, by potential terms

Vb = µbs(h
2 − v2) + µ′bs

3 (3.14)

with small coefficients µb, µ
′
b. We have used the freedom of shifting s by a constant to remove

a possible tadpole of s at the true vacuum (h, s) = (v, 0).

The presence of the biasing potential Vb can prevent the baryon washout in several ways.

First, if the transition to the broken-s phase is of second order, even a small tilt can suffice

to make the lower-energy vacuum dominate. Second, in a first order transition, symmetry

breaking terms can bias the bubble nucleation rates to prefer the lower-energy vacuum.

Indeed, the number of bubbles nucleated during the transition is n ∼
∫ t∗
tc

dtΓ(t), where

t∗ is the time when transition completes, and Γ(t) ∼ exp(−S3/T ). Writing the action as

S3± = S̄3 ∓ δS in the two respective vacua, the relative number density of bubbles in each

phase at the end of the transition becomes n+/n− ≈ exp(2 δS∗/T∗). In general [137] S3 ∝ E,

where E is the coefficient of the cubic term in the potential. Using this scaling we may

write δS∗ = (δE/E0)S̄∗3 , where typically S∗3/T∗ ≈ 100. In our model E0 ≈ (3λs)
3/2T/12π, so

taking Vb = µb′s
3, corresponding to δE = µb′ , and T∗ ≈ 100 GeV, the condition for single-

phase vacuum dominance becomes µb′ >∼ 0.1λ
3/2
s GeV. Barring very large λs, this condition

is easily met with no limitations on our analysis.
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Even if a domain wall network forms, the higher-energy domains will collapse due to

pressure gradients, and we should ensure that this process completes before the EWPT. The

collapse starts with the acceleration of a wall at relative position R according to R̈ = −∆V/τ ,

where τ ∼
√
λsw

3 is the surface tension (distinct from the tension σ used above in the

nucleation estimate), ∆V ∼ Vb(0, w) ∼ µ′bw
3 is the difference in the vacuum energies, and

w ∼ µs/
√
λs is the singlet VEV. Using H = 1/2t and T ≈ 100 GeV, one finds that walls

reach light speed in time

δt

t
=
τH

δV
∼ 10−5

√
λs

(
eV

µb′

)
, (3.15)

which is practically instantaneous on the timescales of interest, for reasonable values of µb′ .

We note that global symmetries like Z2 are expected to be broken by quantum gravity effects,

so that it could be reasonable to anticipate µ′b ∼ v2/Mp ∼ 0.1 eV, which is large enough from

the perspective of Eq. (3.15).

The higher energy domains subsequently collapse at the speed of light, since there is

no appreciable friction. The time required for this process to complete is determined by

R∗ = 2a(t1)
∫ t2
t1
dt/a(t), where R∗ is the comoving size of the domain wall separation. By the

Kibble mechanism one expects that R∗ = AH−1
∗ with A . 1, leading to the ratio of domain

wall collapse to formation times t2/t1 = (1 +A/2)2. The temperature interval corresponding

to this time interval is ∆T/T ≈ A, assuming that the growth phase also proceeded at the

speed of light.

The temperature of the first phase transition, T1 can be estimated as that when ∂2V/∂s2

becomes negative. In the approximation of neglecting Vb, and keeping only leading terms in

the high-T expansion, one finds T 2
1 − T 2

c ∼ λhw
2
c/cs where Tc is the critical temperature of

the EWPT, and cs = (3λs + 2λhs) /12. Thus the temperature difference between transitions

is of order ∆T1c ∼ λhw
2/(csTc). Requiring that ∆T1c/Tc > A then gives

A <
12λh

3λs + 2λhs

w2
c

T 2
c

∼ O(1) . (3.16)
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Given that A ∼ (T∗/S
∗
3)(∆T/T )∗ ∼ 10−2-10−4 [2], this is a very weak constraint. We

conclude that it is easy to avoid cosmological problems associated with the domain walls by

small symmetry breaking terms, that do not affect the rest of our analysis.

3.3 Phase Transition and Bubble Nucleation

In the examples of interest for this work, the phase transition in the Z2-symmetric singlet

model proceeds in two steps: starting from the high-temperature global minimum h = s = 0,

a transition first occurs to nonzero s, while the Higgs field remains at h = 0. This is followed

by the EWPT, in which s returns to zero and h develops its VEV. The h2s2 interaction

provides the potential barrier to make this a first order transition.

As usual, the first order transition occurs at the bubble nucleation temperature Tn, which

is below the critical temperature Tc, where the two potential minima become degenerate,

Veff(h, s, Tc)| h=0,
s=wc

= Veff(h, s, Tc)|h=vc,
s=0

(3.17)

Bubble nucleation occurs when the vacuum decay rate per unit volume Γd becomes compa-

rable to H4, the Hubble rate per Hubble volume. The decay rate is [23]

Γd ∼= T 4

(
S3

2πT

)3/2

exp

(
−S3

T

)
, (3.18)

where S3 is the O(3) symmetric action,

S3 = 4π

∫
r2dr

(
1

2

(
dh

dr

)2

+
1

2

(
ds

dr

)2

+ Veff

)
. (3.19)

The precise criterion that we use for nucleation is

exp (−S3/Tn) =
3

4π

(
H (Tn)

Tn

)4(
2πTn
S3

)3/2

, (3.20)
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which is satisfied when S3/Tn ∼= 140 [138]. We used the package CosmoTransitions [24] to

calculate S3. The action obtained with the full potential can differ significantly from the

commonly used thin wall approximation [139, 140] or the approximation of evaluating it

along the minimal integration path for the potential [15]. We compare the predictions for

nucleation of these approximations to the full one-loop result, for several exemplary models,

in Table 3.1. The approximate methods tend to underestimate the action, giving a higher

nucleation temperature; hence we use the values derived from the full one-loop action in the

following.

λhs ms (GeV)
S3/T |T=100 GeV Tn (GeV)

Thin wall MPP 1-loop Thin wall MPP 1-loop
1 120 234 277 427 93.5 92.6 89.8

1.7 200 68.7 101 151 115.6 109.8 100.1
3.2 300 37.9 36.8 54.3 134.3 133.8 121.6

Table 3.1: Examples of the dimensionless tunneling action S3/T , evaluated at T = 100 GeV,
and ensuing nucleation temperatures, computed within the thin wall and minimal potential path
(MPP) approximations, compared with the value obtained using the resummed one-loop potential.
In there example, λs = 1 and Λ = 540 GeV.

There are two complementary parameters for characterizing the strength of the first order

transition. One is the ratio of the Higgs VEV to the temperature at the time of nucleation,

vn/Tn, which is especially relevant for EWBG, as we will discuss in Sect. 3.5.2. The other,

which is more important for GW production, is the ratio of released vacuum energy density

to the radiation energy density [141, 142]:

α =
1

ργ

(
∆V − Tn

4
∆
dV

dT

)
, (3.21)

where ργ = g∗π
2T 4

n/30, g∗ is the effective number of degrees of freedom in the plasma (we

use g∗ = 106.75) and ∆ denotes the difference between the unbroken and broken phase. α

quantifies the amount of supercooling that occurs prior to nucleation, which determines how

much free energy is available for the production of GWs.
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3.4 Wall velocity and shape

The derivation of the wall velocity and field profiles is a technically demanding problem [2],

that was first addressed in the context of Higgs plus singlet models in Refs. [65, 68, 143],

in various approximations. One must solve the equations of motion (EOM) for the scalar

sector coupled to a perfect fluid,

Eh(z) ≡ −h′′(z) +
dVeff(h, s;T+)

dh
+
∑
i

Ni
dm2

i

dh

∫
d3p

(2π)32E
δfi(~p, z) = 0,

Es(z) ≡ −s′′(z) +
dVeff(h, s;T+)

ds
+
∑
i

Ni
dm2

i

ds

∫
d3p

(2π)32E
δfi(~p, z) = 0,

(3.22)

where z is the direction normal to the wall, that is to a good approximation planar by

the time it has reached its terminal velocity. We use a sign convention where the wall is

moving to the left, so that z > 0 corresponds to the broken phase. The sum is over all the

relevant species coupled to h or s in the plasma, with Ni and mi respectively denoting the

number of degrees of freedom and the field-dependent mass of the corresponding species,

and δfi the deviation from equilibrium of its distribution function. All the temperature-

dependent quantities appearing in these equations are evaluated at T+, which is the plasma’s

temperature just in front of the wall. We calculate T+ in Appendix 3.B using the method

described in Ref. [142], and δfi will be computed in Sect. 3.4.1.

The terms in Eqs. (3.22) with δfi represent the friction9 of the plasma on the wall, that

leads to a terminal wall speed vw < 1, unless the friction is too small and the wall runs away

to speeds close to that of light. Following previous work, we take the dominant sources of

friction to be from the top quark (i = t) and electroweak gauge bosons (i = W ), neglecting

the contributions to friction from the Higgs itself and from the singlet. This approximation is

bolstered by the smaller number of degrees of freedom Nh = Ns = 1 compared to Nt = 12 and

NW = 9, as well as the smallness of the Higgs self-coupling λh and the not-too-large values

9The term “friction” is strictly speaking not correct, but we adopt this commonly used terminology.
More accurately, the last terms in (3.22) represent the additional pressure created by the out-of-equilibrium
perturbations, which modify the effective action in the same way as the usual thermal excitations.
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of the cross-coupling λhs that will be favored in the subsequent analysis. Then the friction

term for the s equation of motion vanishes, since s couples only to itself and to the Higgs,

apart from its suppressed dimension-5 coupling to t. This allows for some simplification in

the following procedure.

In Ref. [115], a similar study of the present model was done, where no a priori restriction

of the wall shape was assumed, but it was found that the actual shapes conform to a very

good approximation to the tanh profiles

h(z) =
h0

2
[1 + tanh(z/Lh)],

s(z) =
s0

2
[1− tanh(z/Ls + δ)],

(3.23)

where h0 and s0 are respectively the vacuum expectation values (VEV) of the h and s fields

in the broken and unbroken phases. Hence we adopt the ansatz (3.23), which allows the

singlet and Higgs wall profiles to have different widths, and to be offset from each other

by a distance Lsδ. The s field’s VEV is taken to be the usual one evaluated at T+, which

solves the equation dVeff(0, s;T+)/ds
∣∣
s=s0

= 0. The situation is more complicated for the h

field, for which the Higgs VEV should be evaluated at T−, the plasma’s temperature behind

the wall. Since we are fixing a constant temperature T+ in the potential, the change in the

effective action due to the shift in the background temperature must be accounted for by

the perturbation in the broken phase. As a consequence we are choosing h0 so that it solves

the equation

(
dVeff(h, 0;T+)

dh
+
∑
i

Ni
dm2

i

dh

∫
d3p

(2π)32E
δfi(~p, z)

)∣∣∣∣∣
h=h0,z→∞

= 0 . (3.24)

This choice guarantees that the Higgs EOM is satisfied far behind the wall. We will estimate

the uncertainty of our results due to this approximation in Sect. 3.6.4.

To approximately solve the Higgs EOM, one can define two independent moments M1,2

of Eh(z), and assume that they both vanish at the optimal values of vw and Lh. A convenient
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Figure 3.4: Moments of the Higgs EOM (a) M1 and (b) M2 as a function of the wall velocity vw
and the Higgs wall width Lh for a model with parameters λhs = 1, λs = 1 and ms = 130 GeV. The
red dot is the solution of Eqs. (3.25,3.26). As expected, M1 is roughly independent of Lh while M2

depend mainly on Lh. The moments are discontinuous at vw ≈ 0.63 because this corresponds (for
this specific model) to the boundary between hybrid and detonation walls, where v+ and T+ are
discontinuous.

choice is [65]

M1 ≡
∫
dz Eh(z)h′(z) = 0, (3.25)

M2 ≡
∫
dz Eh(z)[2h(z)− h0]h′(z) = 0. (3.26)

These also have intuitive physical interpretations that naturally distinguish them as good

predictors of the wall speed and thickness, respectively. M1 is a measure of the net pressure on

the wall, so that Eq. (3.25) can be interpreted as the requirement that a stationary wall should

have a vanishing total pressure; nonvanishing M1 would cause it to accelerate. Therefore

one expects that Eq. (3.25) principally determines the wall speed vw, while depending only

weakly on the thickness Lh. With our sign convention, M1 can be interpreted as the pressure

in front of the wall minus the pressure behind it, so that M1 > 0 corresponds to a net force

slowing down the wall. On the other hand, M2 is a measure of the pressure gradient in the

wall. If nonvanishing, it would lead to compression or stretching of the wall, causing Lh

to change. Hence Eq. (3.26) mainly determines Lh, and depends only weakly on vw. The

two equations are approximately decoupled, facilitating their numerical solution. This is

illustrated in Fig. 3.4, which shows the dependence of M1 and M2 on vw and Lh.
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We chose a different approach to determine the singlet wall parameters Ls and δ. Instead

of solving moment equations analogous to (3.25,3.26), one can determine their values by

minimizing the s field action

S(Ls, δ) =

∫
dz

{
1

2
(s′)2 + [Veff(h, s, T+)− Veff(h, s∗, T+)]

}
=

s2
0

6Ls
+

∫
dz [Veff(h, s, T+)− Veff(h, s∗, T+)] ,

(3.27)

with respect to Ls and δ. Here s∗ is a field configuration with arbitrary fixed parameters L∗s

and δ∗, that we choose to be L∗s = Lh and δ∗ = 0. The second term is just a constant, but it

allows for the convergence of the integral by canceling the contributions of Veff at z → ±∞.

This method has the advantage that it does not depend on any arbitrary choice of moments,

and it is more efficient to numerically minimize the function of two variables than to solve

the system of equations for the moments of the EOMs.

3.4.1 Transport equations for fluid perturbations

The final step toward the complete determination of the velocity and the shape of the wall

is to compute the distribution functions’ deviations from equilibrium δfi, by solving the

Boltzmann equation for each relevant species in the plasma. The method of approximating

the full Boltzmann equation by a truncated set of coupled fluid equations was originally

carried out in Ref. [2], for the regime of slowly-moving walls (see also Ref. [65]). This

approach was recently improved in Ref. [1] in order to be able to treat wall speeds close to

or exceeding the speed of sound consistently. We briefly summarize the formalism, which we

use in the present study.

The out-of-equilibrium distribution function can be parametrized in the wall frame as

f =
1

exp[βγ(E − v+pz)(1− δτ)− µ]± 1
+ δfu, (3.28)

where β = 1/T+ and the± is + for fermions and− for bosons. δτ and µ are the dimensionless
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temperature and chemical potential perturbations from equilibrium, and δfu is a velocity

perturbation whose form is unspecified, but is constrained by
∫
d3p δfu = 0. By assuming

that the perturbations are small, one can expand f to linear order in µ, δτ and the velocity

perturbation δfu to obtain

δf ≈ δfu − f ′[µ+ βγ δτ(E − v+pz)], (3.29)

with

f ′ =
d

dX

1

eX ± 1

∣∣∣∣
X=βγ(E−v+pz)

. (3.30)

To simplify the problem, one models the plasma as being made of three different species:

the top quark, the W bosons (shorthand for W± and Z) and a background fluid, which

includes all the remaining degrees of freedom. It is convenient to write the velocity pertur-

bation as u ∝
∫
d3p (pz/E) δfu when constructing the moments of the linearized Boltzmann

equation. By taking three such moments, using the weighting factors 1, E and pz/E, the

perturbations are determined by transport equations

Aq′ + Γq = S, (3.31)

q′bg = −Ã−1
bg (Γbg,tqt + Γbg,W qW ), (3.32)

where prime denotes d/dz, qi = (µi, δτi, ui)
ᵀ, q = (qᵀW , q

ᵀ
t )

ᵀ, the Γ matrices are collision

terms, and S is the source term, whose definitions, as well as those of the the matrices A, Γ,

Ã−1
bg , Γbg,t, Γbg,W , can be found in Ref. [1]. If A and Γ were independent of z, one could use

the Green’s function method to solve Eq. (3.31); however, A is a function of mi(z)/T . To

deal with this dependence on z, we discretize space, z → z0 + n∆z with n = 0, · · · , N − 1,

and Fourier transform Eq. (3.31),

2πi

∆z

(
k

N
−
⌊

2k

N

⌋)
q̃k +

1

N

N−1∑
l=0

˜(A−1Γ)(k−l) modN q̃l = ˜(A−1S)k, k = 0, · · · , N − 1, (3.33)
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where the tilde denotes the discrete Fourier transform. This is a linear system that is

straightforward to numerically solve for q̃k. Once q̃k is known, it can be transformed back

and interpolated to obtain q(z). Eq. (3.32) can then be integrated using a Runge-Kutta

algorithm.

Finally, one can substitute Eq. (3.29) into the Higgs EOM (3.22) to express the friction

in terms of the fluid perturbations µi, δτi and ui. This leads to the result

∫
d3p

(2π)32E
δfi =

T 2
+

2

[
C1,0

0 µi + C0,0
0 (δτi + δτbg) +D0,−1

v (ui + ubg)
]
, (3.34)

where the functions Cm,n
v and Dm,n

v can be found in Ref. [1].

3.5 Cosmological signatures

We have now established the machinery needed to compute all the relevant properties of

the first order phase transition bubbles, starting from the fundamental parameters of the

microscopic Lagrangian. In this section we describe how to apply these results for the

estimation of GW spectra and the baryon asymmetry.

3.5.1 Gravitational Waves

We follow the methodology of Refs. [63, 116, 117, 142, 144] to estimate future gravitational

wave detectors’ sensitivity to the GW signals that can be produced by a first-order elec-

troweak phase transition in the models under consideration. The GW spectrum Ωgw(f)

is the contribution per frequency octave to the energy density in gravitational waves, i.e.,∫
Ωgw d ln f is the fraction of energy density compared to the critical density of the universe.

The spectrum gets separate contributions from the scalar fields, sound waves in the plasma

and magnetohydrodynamical turbulence created by the phase transition:

Ωgw(f) = Ωφ(f) + Ωsw(f) + Ωm(f) , (3.35)
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Each of these contributions depends on the wall velocity vw, the supercooling parameter α

(Eq. (3.21)), and the inverse duration of the phase transition, defined as

β = H(Tn)Tn
d

dT

S3

T

∣∣∣∣
T=Tn

. (3.36)

Another useful quantity is the mean bubble separation, which can be written in terms of vw

and β as [63]

R =
(8π)1/3

β
max[cs, vw]. (3.37)

It has been shown in Ref. [70] that interactions with gauge bosons prevent the wall from

running away indefinitely towards γ → ∞. In that case, the contribution from the scalar

fields has been shown to be negligible. Furthermore, the estimates for the magnetohydro-

dynamical turbulence are very uncertain and sensitive to the details of the phase transition

dynamics [145], and are expected to be much smaller than the contribution from sound

waves. Hence, we consider only the effects from the latter, and set Ωm(f) = Ωφ(f) = 0. For

convenience, we reproduce the numerical fits of the GW spectra derived in Refs. [63, 116,

117, 142, 144] in appendix 3.C.

We will use these predictions with respect to four proposed space-based GW detectors:

LISA [5], AEDGE [89], BBO [146] and DECIGO [87]. A successful GW detection depends

upon having a large enough signal-to-noise ratio [147],

SNR =

√
T
∫ fmax

fmin

df

[
Ωgw(f)

Ωsens(f)

]2

(3.38)

where Ωsens(f) denotes the sensitivity of the detector10 and T is the duration of the mission.

The sensitivity curves for the detector LISA, BBO and DECIGO were obtained from Ref.

[148]. Whenever SNR is greater than a given threshold SNRthr, we conclude that the signal

10For AEDGE, we use the envelope of minimal strain that can be achieved by each resonance, with its
width scaled to approximate Ωsens(f). This curve is expected to reproduce the correct SNR up to about
10%.
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can be detected. In general, this threshold can depend upon the configuration of the detector.

For all the experiments, we take SNRthr = 10 and T = 1.26×108 s. In the following, SNRmax

will designate the maximum signal-to-noise ratio detected by one of the detectors:

SNRmax ≡ max[SNRLISA, SNRAEDGE, SNRBBO, SNRDECIGO]. (3.39)

While Ωsens(f) can be obtained from the noise spectrum of a detector, it is not practical

to compare it to the GW spectrum directly; one needs to compute the SNR to determine

if a signal is detectable. A useful tool for visualizing the sensitivity of a detector is the

peak-integrated sensivity curve (PISC) defined in Refs. [149–151], which is a generalization

of the power-law sensitivity curve [152]. The main advantage of the former is that it does

not assume a power-law spectrum, hence it conserves all the information about the SNR. In

the simple case where one considers the contribution from only one GW source, the PISC

can be obtained by factorizing the GW spectrum as

Ωgw(f) = Ωp S(f, fp), (3.40)

where fp and Ωp = max[Ωgw(f)] are the peak frequency and GW amplitude and S is a

function that parametrizes the spectrum’s shape, with a maximum at f = fp and S(fp, fp) =

1. One can then write the SNR as

SNR = SNRthr
Ωp

ΩPISC(fp)
, (3.41)

with the PISC

ΩPISC(fp) = SNRthr

[
T
∫ fmax

fmin

df

(
S(f, fp)

Ωsens(f)

)2
]−1/2

. (3.42)

By construction, any GW signal that peaks above the PISC has SNR > SNRthr and can

therefore be detected.
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3.5.2 Baryogenesis

The mechanism of electroweak baryogenesis is sensitive to the speed and shape of the bubble

wall during the phase transition. In most previous studies, these quantities were treated as

free parameters to be varied, but in this work we have already derived them, as was discussed

in Section 3.4. An important requirement for EWBG is to avoid the washout, by baryon-

violating sphaleron interactions, of the generated asymmetry inside the bubbles of broken

phase, once they have formed. This leads to the well-known constraint [51]

vn
Tn

> 1.1 , (3.43)

which was derived within the SM for low Higgs masses where a first order EWPT was

possible. The bound can be slightly higher (up to 1.2) in singlet-extended models [52],

depending upon the parameters, due to the sphaleron energy being modified. Here we adopt

the SM constraint (3.43); we checked that taking the more stringent bound 1.2 removes

∼ 5% of viable models in the scan over parameter space to be described below.

Near the bubble wall, CP-violating processes associated with the effective interaction in

Eq. (3.2) give rise to perturbations of the plasma, that result in a local chemical potential

µBL
for left-handed baryons, which by imposing the chemical equilibrium of strong-sphaleron

interactions, is related to those of the tL, tcR and bL quarks by

µBL
=

1

2

(
1 + 4Kt

1

)
µt +

1

2

(
1 + 4Kb

1

)
µb − 2Kt

1µtc , (3.44)

where the Ka
1 functions were defined in [79] (Ka

1 = Da
0 in the notation of [3]). The µBL

potential biases sphalerons, leading to baryon number violation, whose associated Boltzmann

equation can be integrated to obtain the baryon to photon ratio11

ηb =
405 Γsph

4π2vwγwg∗T

∫
dz µBL

fsphe
−45Γsph|z|/4vw , (3.45)

11The extra factor of γw = 1/
√

1− v2w in the denominator was pointed out by Ref. [3].
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where fsph quantifies the diminution of the sphaleron rate in the broken phase [153, 154]. The

most challenging step for the computation of EWBG is in the determination of the chemical

potentials µtL , µtcR and µbL appearing in Eq. (3.44). They satisfy fluid equations resembling

the network (3.31,3.32), except that the potentials relevant for EWBG are CP-odd, whereas

those determining the wall profiles are CP-even.

The CP-odd transport equations have been discussed extensively in the literature, leading

to two schools of thought as to how best to compute the source term for the CP asymmetries.

These are commonly known as the VEV-insertion [155, 156] or WKB (semiclassical) [76, 77,

157–160] methods, respectively. A detailed discussion and comparison of the two approaches

was recently given in Ref. [3], which quantified the well-known fact that the VEV-insertion

source tends to predict a larger baryon asymmetry than the WKB source, by a factor of

∼ 10. In the present work we adopt the WKB approach, which was updated in Ref. [3] to

allow for consistently treating walls moving near or above the sound speed. In addition, that

reference computed the source term arising from the same effective interaction (3.2) as in

the present model, so we can directly adopt the CP-odd fluid equations studied there.

3.6 Monte Carlo results

To study the properties of the phase transition, we performed a scan over the parameter

space of the models, imposing several constraints. We found that variations in λs do not

qualitatively change the results, prompting us to initially fix its value at λs = 1, leaving λhs

and ms as the free scalar potential parameters. We will first discuss this slice of parameter

space, and later consider the quantitative dependence on λs. We also chose Λ = 540 GeV,

which is conservative since there are no collider constraints on its value for singlet masses

in the region ms = [110, 160] GeV. Recall that Λ is important for the determination of the

baryon asymmetry ηb, which is expected to scale roughly as 1/Λ. Finally, in order to prevent

Higgs invisible decays, we imposed ms > mh/2.
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We used a Markov Chain Monte Carlo algorithm to efficiently explore the regions of

parameter space having desired phase transition properties. Starting with an initial model

satisfying the sphaleron bound (3.43), one generates a new trial model by randomly varying

the parameters λi by small increments δi. The trial model is added to the chain using a

conditional probability

P = min

[
vn/Tn

1.1
, 1

]
(3.46)

that favors models having strong first order phase transitions, and for which a solution to

the nucleation condition (3.20) can be found. We adjust the δi so that roughly half of the

models are kept in successive trials, with larger values of δi being more likely to result in a

rejection.

This procedure yielded 842 models with strong phase transitions, of which 712 were

amenable to finding solutions for the moment equations (3.25-3.26). Our analysis typically

works for γ . 10; for faster walls, the algorithm for determining the wall properties becomes

numerically unstable and does not yield reliable results. This is due to the large (500× 500)

matrix ˜(A−1Γ) of eq. (3.33) becoming singular as vw → 1. It is therefore difficult to determine

the type of solution of the 130 remaining models using our methodology alone: they could

either stabilize at ultrarelativistic speeds, or (from a naive perspective—see below) run away

indefinitely towards γ →∞. The value of the baryon asymmetry should not be affected by

this ambiguity since it is negligible for vw ≈ 1. The GW spectrum produced during the phase

transition is sensitive to this distinction since runaway walls have a nonnegligible fraction

of their energy stored in the wall, while for non-runaway walls, the energy gets dissipated

into the plasma, so the fraction of energy in the wall becomes negligible. This ambiguity

can be lifted using the result of Ref. [70], which found that in the limit γ →∞, interactions

between gauge bosons and the wall create a pressure proportional to γ, preventing it from

running away.12 We therefore assume that the 130 models without a solution to the moment

12More recently, the authors of Ref. [111] have carried out an all-orders resummation at leading-log acuracy,
finding that the pressure is in fact proportional to γ2 for fast-moving walls.
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Figure 3.5: Scan of the parameter space with λs = 1 and Λ = 540 GeV. The colors represent (a)
the terminal wall velocity vw, (b) the maximum signal-to-noise ratio of gravitational waves that
could be detected by either LISA, AEDGE, BBO or DECIGO and (c) the baryon asymmetry (in
units of the observed value) produced by the phase transition. The red dots in (a) correspond to
detonation solutions with vw ≈ 1, and the latter are not included in (c) since they are expected to
produce a negligible baryon asymmetry (see text).

equations (3.25-3.26) correspond to non-runaway walls with vw ≈ 1. The results of this

scan, showing the calculated wall velocity, signal-to-noise ratio of gravity waves observable

by at least one of the proposed experiments (LISA, AEDGE, BBO or DECIGO), and the

predicted baryon asymmetry (in units of the observed value) are presented in Fig. 3.5, in

the plane of of λhs versus ms.

3.6.1 Deflagration versus detonation solutions

A striking feature of these results is that all the detonation solutions have vw ≈ 1.13 We have

tested that this is not specific to the choice of fixed parameter values, but also holds for all

models having 0.01 < λs < 8 and Λ > 110 GeV; hence it seems to be a general property of

phase transitions in the Z2-symmetric singlet framework. One can understand this behavior

by considering the net pressure opposing the wall’s expansion, M1 (recall Eq. (3.25-3.26)),

as a function of the wall velocity, as illustrated in Fig. 3.6. It shows how M1 differs when

evaluated with the appropriate quantities v+, T+ rather than the incorrect ones vw, Tn. Using

13Strictly speaking there are models with vw < 1 detonation solutions but these always have another
solution at a lower velocity corresponding to a deflagration or hybrid wall. Then only the latter solution is
physically relevant, since the bubble is created at vw = 0 and accelerates until it reaches the solution with
the lowest velocity.

65



0.0 0.2 0.4 0.6 0.8 1.0
vw

0.06

0.04

0.02

0.00

0.02

M
1/T

4 n

M1(v + , T + )
M1(vw, Tn)

0.0 0.2 0.4 0.6 0.8 1.0
vw

0.85

0.90

0.95

1.00

1.05

1.10 v + /vw

T + /Tn

(a) (b)

Figure 3.6: Left (a): Pressure on the wall M1 as a function of the wall velocity vw. The solid
(dashed) line corresponds to the pressure evaluated at the velocity v+ (vw) and the temperature T+

(Tn). Right (b): Relation between the naive variables vw, Tn and the ones relevant for evaluating
M1, namely v+ and T+. Both plots were obtained using the parameters ms = 130 GeV, λhs =
λs = 1 and Lh = 5/Tn. The shaded region corresponds to hybrid wall solutions characterized by
cs < vw < ξJ .

the latter, we would find no solution to the equation M1 = 0 for the exemplary model used in

Fig. 3.6, and would then incorrectly conclude that it satisfies vw ≈ 1. The relevant quantities

are those measured right in front of the wall, v+ and T+. The speed v+ is smaller than vw for

vw < ξJ , which would lower the pressure against the wall (ξJ is the Jouguet velocity, defined

as the smallest velocity a detonation solution can have). However, in the same region, the

temperature T+ is larger than Tn, which causes the pressure to increase. The latter effect

turns out to dominate over the former. Indeed, the actual pressure, represented by the solid

blue line in Fig. 3.6, increases much more rapidly than M1(vw, Tn) close to the speed of

sound. This qualitative difference allows for a solution to M1 = 0, which would have been

missed if we had used the naive quantities vw and Tn.

We find that the previous statements apply quite generally: for all models, T+ > Tn when

vw < ξJ , and this always leads to a much higher pressure on the wall, even if the difference

between T+ and Tn is quite small; the pressure barrier at vw = ξJ is always greater than

the maximum possible value for a detonation solution. Therefore, if the phase transition is

strong enough to overcome the pressure barrier at ξJ , the solution becomes a detonation, but

the pressure in the region vw > ξJ is never enough to prevent it from accelerating towards
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Figure 3.7: Shape and velocity of the deflagration solutions. (a) Correlation between the wall
velocity vw and the fluid velocity in front of the wall, v+; (b) dimensionless wall width Lh × Tn
versus vw; and (c) correlation of the s and h wall widths. Colors indicate the supercooling parameter
α (Eq. (3.21)) in (a,b), or the wall offset δ (Eq. (3.23)) in (c).

vw ≈ 1. If the phase transition is weaker, the pressure barrier is high enough to impede the

detonation, and it becomes a deflagration or hybrid solution.

The wall thickness and speed for the models with deflagration14 solutions are shown in

Fig. 3.7, which demonstrates that the behaviors for subsonic (deflagration) and supersonic

(hybrid) walls are qualitatively different. Subsonic walls generally have v+ ≈ vw, which is

expected since the fluid should not be strongly perturbed by a slowly moving wall. The wall

width is not uniquely determined by vw, but there exists a clear correlation, with slower

walls being thicker. For supersonic cases, the correlation between v+ and vw gets inverted:

higher wall velocity leads to lower v+. The wall width becomes uniquely determined by vw

and the relation between these two variables is to a good approximation linear. One observes

that stronger phase transitions, quantified by higher values of α, generally produce faster

and thinner walls. Even for the strongest transitions our solutions still have wall thickness

LT >∼ 3. Since the semiclassical force mostly affects particles with momenta 〈kz〉 ∼ T , we

find L〈kz〉 >∼ 3, so that the semiclassical approximation is still valid. In fact the semiclassical

picture has been shown to remain valid for surprisingly narrow walls [161], working very well

for L〈kz〉 ≈ 4 and still reasonably for L〈kz〉 ≈ 2. There is a linear correlation between the h

14Henceforth we take “deflagration” to also include hybrid solutions
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Figure 3.8: (a): Maximum amplitude of GW as a function of the peak frequency fp with the
peak-integrated sensitivity curve ΩPISCh

2 (solid line) and the sensitivity Ωsensh
2 (dashed line) of

the four considered detectors. (b) and (c): Spectrum of GWs produced by the 10 models with the
highest SNRmax for (b) deflagration and (c) detonation solutions.

and s wall widths, but the slope is not 1; in all cases, we find that Lh > Ls. The distribution

of wall offset values δ is also indicated in Fig. 3.7(c).

3.6.2 Baryogenesis and gravity wave production

Of the 842 sampled models, 517 are able to generate the baryon asymmetry at a level

large enough to agree with observations, and 20 detonation walls can produce observable

gravitational waves. We found no detectable deflagration solutions. More detailed results

are presented in Table 3.2. The complementarity of the experiments considered here, with

respect to the present model, can be appreciated by considering the relation between the

maximum GW amplitude15 max[Ωgwh
2] and the frequency of this peak amplitude fmax, as

shown in Fig. 3.8 (a). The peak frequency of the strongest detonation walls are positioned

exactly in LISA’s region of maximal sensitivity, while the peak frequency of the deflgration

solutions are closer to the peak sensitivity of AEDGE, DECIGO and BBO. The complete

spectrum’s shape are also shown in Fig. 3.8 (b,c) for deflagration and detonation solutions

respectively. We conclude that detonation walls could be probed by LISA, DECIGO and

BBO, but not by AEDGE.

15h = 0.678 is the reduced Hubble constant defined by H0 = 100h km s−1 Mpc−1 [38].
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In previous studies, where the wall velocity was considered as a free parameter, there was

an expectation that baryogenesis would be less efficient with increasing vw, whereas gravity

waves would become more so. In the present study, where vw is not adjustable but is a

derived parameter, we surprisingly find that rather than EWBG and stronger GWs being

anticorrelated, instead they are positively correlated, as is illustrated in Fig. 3.9 (a). This can

be understood from the fact (see Fig. 3.7 (b)) that Lh is a decreasing function of vw, which

enhances EWBG. Moreover, the relevant velocity for EWBG is v+, which is a decreasing

function of vw for supersonic walls, and is bounded by v+ < cs; this effect also enhances

EWBG for fast-moving walls. The actual relation between ηb and vw is shown in Fig. 3.9 (b)

and, at least for supersonic walls, there is a positive correlation between these two variables.

Fig. 3.9 also indicates that the supercooling parameter α is positively correlated with both

ηb and SNRmax: stronger phase transitions generally lead to both higher GW and baryon

production.

Detailed predictions for EWBG in the Z2 symmetric model were previously made in

Refs. [15] and [20], as opposed to merely requiring the sphaleron bound (3.43) to be satisfied.

Comparisons with the present work are hindered by the fact that different source terms for the

CP asymmetry were assumed. In Ref. [15], the dimension-6 coupling i(yt/
√

2)(s/Λ)2h̄tLtR

was used, rather than the dimension-5 coupling in Eq. (3.2). Moreover, a value vw = 0.2

was taken for the wall velocity, and an estimate Lh = vn/
√

8Vb was made for the wall width,

where vn is the Higgs VEV at the nucleation temperature, and Vb is the potential barrier

between the two minima. For the same potential parameters (λs = 0.1) as in [15], we find

no values of vw below 0.43, and our determination of Lh is two to three times larger than

the estimate in [15]. Both of these discrepancies would lead to overestimating the efficiency

of EWBG, helping to explain why Ref. [15] obtains a high frequency of successful models,

despite the extra suppression that should result from using a dimension-6 source term.

In Ref. [20], the dimension-5 coupling to leptons rather than the top quark was stud-

ied, and a different formalism (the VEV insertion approximation) for computing the CP
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Figure 3.9: (a): Relation between the SNRmax and the baryon asymmetry produced by the phase
transition. (b): Baryon asymmetry as a function of the wall velocity. Both plots only show the
deflagration models.

asymmetry was employed, which tends to give significantly larger estimates for the baryon

asymmetry than the WKB method that we adopt [3]. For the parameters of the benchmark

models taken in that paper, we find significantly higher wall velocities, vw ∼ 0.6-0.7 than the

values vw . 0.1 that were needed to match the observed baryon asymmetry there. This can

be compensated by increasing the CP-violating phase φ = 0.02 assumed there by a factor of

∼ 10. We are reanalyzing this alternative source term within the EWBG formalism used in

the present paper (work in progress).

3.6.3 Dependence on λs and Λ

To study the quantitative dependence on the singlet self-coupling λs, we performed 3 other

scans similar to the one previously described, taking λs = 0.01, 0.1 and 8 (the largest value

being near the limit of perturbative unitarity) and Λ = 540 GeV. The results of these scans

are summarized in Table 3.2. We find that EWBG remains efficient for λs & 0.1. Again, we

found no deflagration walls producing detectable GW, and no models detectable by AEDGE.

These results confirm that only detonation solutions, which are not good candidates for

EWBG, could be probed by GW detectors. Increasing λs generally leads to stronger phase

transitions, resulting in more models with successful EWBG and detectable GWs.
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The value of Λ (recall Eq. (3.4)) can in principle also have an effect on the strength of the

phase transition, through the effective potential’s dependence on the top quark mass. The

leading thermal term added to the potential varies like h2s2T 2/Λ2, which becomes negligible

at high Λ, but could significantly modify the behavior of the phase transition for Λ ∼ Tn,

resulting in a larger baryon asymmetry and GW production. We have verified that this

term is already subdominant when Λ = 540 GeV. However, for ms > 110 GeV, the weaker

constraints allow for values of Λ as low as 300 GeV, which could have an important effect

on the phase transition.

To test the sensitivity to lower values of Λ, we repeated the previous scans using Λ =

Λmin(ms), where Λmin is given by

Λmin(ms) =

 540 GeV, ms < 110 GeV

300 GeV, 110 GeV < ms < 160 GeV
(3.47)

The results are shown in Table 3.216. As one could anticipate from the relation ηb ∼ 1/Λ,

EWBG is more efficient at lower values of Λ. One can also see that the number of detonation

walls or walls generating detectable GW does not change substantially, which indicates that

the lower values of Λ do not change the character of the phase transition.

3.6.4 Theoretical uncertainties

In Ref. [1], the integrals that determine the collision rates Γ appearing in the Boltzmann

equation network (3.31-3.32) were reevaluated, and it was noticed that the leading log ap-

proximation that was used in their derivation leads to theoretical uncertainties of O(1) in the

fractional error. To study the impact of these uncertainties on our results, we recomputed

the wall velocity with uniformly rescaled collision rates, Γ→ 2Γ and Γ→ Γ/2. The ensuing

variations of velocity ∆v and wall width ∆L are shown in Figs. 3.10 (a) and (b) respectively.

16The λs = 0.01 scan is omitted since all accepted models satisfy ms < 110 GeV, making the results
identical to those of the previous scan.
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Λ λs ηb/ηobs > 1
Detonation

Total SNRmax > 10 SNRLISA > 10 SNRBBO > 10 SNRDECIGO > 10
0.01 0 80.5 2.68 0.8 2.5 0.27

540 0.1 10.1 53 0.89 0.2 0.89 0.2
GeV 1 61.4−5.6

+4.6 15.4+2.4
−1.4 2.38 +0

−0 0.83 +0
−0 2.38 +0

−0 0.71 +0
−0

8 73.3 26.4 6.2 2.81 6.2 3.16

Λmin

0.1 21.6 49.3 1.39 0.69 1.19 0.4
1 69.6 18.1 2.21 0.97 2.07 0.97
8 85.7 13.8 3.55 1.01 3.55 1.52

Table 3.2: Statistics from the scans performed with λs = 0.01, 0.1, 1, 8 and Λ = 540 GeV and Λmin.
Each entry corresponds to the percentage of models satisfying the indicated constraint. In the
row for λs = 1 and Λ = 540 GeV, the exponents (indices) correspond to the error obtained by
substituting the collision matrix Γ for 2Γ (Γ/2). Λmin is the minimum value of Λ allowed by
laboratory constraints.

The effect on vw can be significant for slow walls, leading to a ±40 % change when vw ∼ 0.2.

On the other hand for nearly supersonic walls, vw & cs, the wall speed is quite insensitive to

Γ. The variation of Lh is generally below 5%, much smaller than the corresponding variation

in Γ.

This behavior is not surprising since, near the speed of sound, the pressure on the wall

is mainly determined by the variation of T+, which does not depend on Γ. Likewise, the

results for the baryon asymmetry and GW production turn out to be relatively robust against

variations in Γ. This is demonstrated by the error intervals in the λs = 1 row of Table 3.2.

The error on the ratio of models satisfying ηb/ηobs > 1 or SNRi > 10 is of order 10%, which

is much smaller than the range of variation in Γ.

Another source of uncertainty is the discrepancy between the temperatures computed

with the Boltzmann equation (see Section 3.4.1) and the conservation of the energy-momentum

tensor (see Appendix 3.B). Ideally one should obtain T+ = TBE(z → −∞) and T− = TBE(z →

∞), where TBE(z) = T+(1 + δτbg(z)) is the local temperature calculated with the Boltzmann

equation. The first condition is always satisfied since we impose the boundary condition

δτbg(−∞) = 0, but we fail to recover the second one due to the different approximations

made in the two methods. The discrepancy becomes larger as vw approaches the Jouguet

velocity ξJ , where T+ increases compared to T− ≈ Tn (see Fig. 3.6 (b)). On the other hand,
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δτbg does not change significantly in the same region. Hence, we observe an error in the

temperature of order ∆T = T− − TBE(∞) ≈ T− − T+. Since the temperature is not accu-

rate in the broken phase, the Higgs EOM is not automatically satisfied asymptotically. To

solve that problem, we shift the actual Higgs VEV h− evaluated in the broken phase by an

amount −∆h, so that the adjusted VEV h0 = h−−∆h asymptotically solves the EOM (see

Eq. (3.24)). This gives an additional source of uncertainty for vw and Lh.

We estimate the errors induced on vw and Lh by ∆T and ∆h, assuming they are small

enough to justify keeping just the first order terms. Assuming that vw is completely deter-

mined by the solution of M1 = 0 and Lh by M2 = 0, the error on these solutions can be

obtained by expanding around the estimated values. For example, for the error in the wall

velocity is estimated by

0 = M1(vw+∆v, h0+∆h, T (z)+∆T (z)) ≈M1(vw, h0, T (z))+
∂M1

∂vw
∆v+

∫
dz

δM1

δT (z)
∆T (z)+∆hM1,

(3.48)

where ∆hM1 = M1(vw, h0 + ∆h, T )−M1(vw, h0, T ), and we integrate over the temperature

variation because M1 is a functional of T (z). Since vw is the solution of M1(vw, h0, T (z)) = 0,

the absolute errors on vw and Lh are estimated as

|∆v| ≈ (|∆TM1|+ |∆hM1|)
∣∣∣∣∂M1

∂vw

∣∣∣∣−1

,

|∆L| ≈ (|∆TM2|+ |∆hM2|)
∣∣∣∣∂M2

∂L

∣∣∣∣−1

,

(3.49)

where ∆TMi =
∫
dz(δMi/δT (z))∆T (z). Notice that Eq. (3.49) overestimates the errors

since ∆TMi and ∆hMi have opposite signs. From Eqs. (3.22,3.25,3.26), one can see that the

functional derivative δMi/δT (z) can be approximated by d
dT

(∂Veff/∂h), so that

∆TMi ≈
∫
dz

d

dT

(
∂Veff

∂h

)
Fi(z)∆T (z) , (3.50)

where F1 = h′ and F2 = h′(2h− h0). We can simplify this integral with the approximation

73



∆T (z) ≈ (T− − T+)[1 + tanh(z/Lh)]/2. Furthermore, we approximate d
dT

(
∂V
∂h

)
as being

constant and half of its maximal value, occurring near z = 0. Then

∆TMi ≈
1

2
(T− − T+)Ci

d

dT

(
∂Veff

∂h

)∣∣∣∣
z=0

, (3.51)

where C1 =
∫
dzF1(z)[1+tanh(z/Lh)]/2 = h0/2 and C2 = h2

0/6. Substituting this expression

in Eq. (3.49), we finally obtain that the errors on vw and Lh are given by

|∆v| ≈
{∣∣∣∣14(T− − T+)h0

d

dT

(
∂Veff

∂h

)∣∣∣∣
z=0

+ |∆hM1|
} ∣∣∣∣∂M1

∂vw

∣∣∣∣−1

,

|∆L| ≈
{∣∣∣∣ 1

12
(T− − T+)h2

0

d

dT

(
∂Veff

∂h

)∣∣∣∣
z=0

+ |∆hM2|
} ∣∣∣∣∂M2

∂Lh

∣∣∣∣−1

.

(3.52)

The relative errors are presented in Fig. 3.10 (c) for the scan with λs = 1 and Λ = 540

GeV. The error on vw is below 7% for 97% of the models, and exhibits no strong correlation

with vw. This happens because ∆T = T− − T+ and dM1/dvw are roughly proportional (see

Fig. 3.6), and therefore cancel each others’ contributions. The relative error on Lh is small

at low velocity (or large Lh), but becomes more significant near the speed of sound, however

without ever exceeding 10%.
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Figure 3.10: (a) and (b): Relative changes ∆v/vw and ∆L/Lh in the wall velocities and widths
obtained by substituting Γ→ 2Γ or Γ/2 respectively. (c): Absolute error on vw and Lh due to the
discrepancy between the temperatures computed with the Boltzmann equation and the conservation
of the energy-momentum tensor (see Eq. (3.52)).
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3.6.5 Comparison of the GW signal with previous studies

We end this section with a brief comparison with recent studies of the GW produced during

a first-order electroweak phase transition. With the prospect of the upcoming LISA experi-

ment, numerous forecasts of the GW spectrum have been made for various extensions of the

Standard Model [10–14]. Most of these find regions of model parameter space that would

produce detectable GWs. Here we focus on studies of the singlet scalar extensions [15–20].

Our results agree qualitatively with the conclusions of previous work, in the prediction

of GWs detectable by LISA, DECIGO and BBO. However there are distinctions stemming

from differences in methodology. To compute the GW contribution from the sound waves,

previous authors used the numerical fit presented in Ref. [85], while we used the updated

formulas of Refs. [116, 117]. This leads to a smaller peak frequency, decreasing the number

of detectable models. Ref. [85] also does not include the factor 1− (1 + 2HR/
√
Ksw)−1/2 in

the GW amplitude (see Appendix 3.C). We find that this factor is generally quite small (of

order 10−3-10−2 for deflagrations and 10−2-10−1 for detonations); hence the predicted GW

signals are considerably reduced.

Another significant difference arises from our determination of the wall velocity, which was

treated as a free parameter in previous work, whereas we have computed it from the micro-

physics. The GW spectrum and hence signal-to-noise ratio and ultimately the detectability

are strongly dependent on the wall speed. For example, Ref. [16] assumed vw = 0.95 for

all models, which considerably enhanced GW production and led to more optimistic predic-

tions. Moreover, using a fixed value for vw hides the discontinuous transition between the

deflagration and detonation solutions shown in Fig. 3.8.

3.7 Conclusion

In this work we have taken a first step toward making complete predictions for baryogenesis

and gravity waves from a first order electroweak phase transition, starting from a renormal-
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izable Lagrangian that gives rise to the effective operator needed for CP-violation. This is

in contrast to previous studies in which quantities like the bubble wall velocity or thickness

were treated as free parameters, instead of being derived from the microphysical input pa-

rameters as we have done here. This is a necessary step for properly assessing the chances

of having successful EWBG and potentially observable GWs, since the two observables are

correlated in a nontrivial way, when they are both computed from first principles.

We have incorporated improved fluid equations, both for the CP-even perturbations that

determine the friction acting on the bubble wall [1], and for the CP-odd ones that are

necessary for baryogenesis [3], that can properly account for wall speeds close to the sound

barrier. Earlier versions of these equations were singular at the sound speed, making reliable

predictions impossible for fast-moving walls. Contrary to previous lore, we find that EWBG

can be more efficient for faster walls, due in part to the tendency for fast walls to be thinner.

The Z2-symmetric singlet model with vector-like top partners, analyzed in this work, was

chosen for its simplicity, but the methods we used can be applied to other particle physics

models that could enhance the EWPT. For example, singlets with no Z2 symmetry have

additional parameters, and would thus be likely to have more freedom to simultaneously

yield large GW production and sufficient baryogenesis. It would be interesting to identify

other UV-completed models with these properties. A limitation we identified with the Z2-

symmetric model is that for the large values of the η2 coupling that are desired for EWBG,

the singlet self-coupling is rapidly driven toward zero by renormalization group running,

above the top partner threshold.

For future work, some improvements could be made to the analysis presented here. The

wall velocity might be more accurately determined at low vw by using collision rates for

the fluid perturbation equations beyond leading-log accuracy, and by including the singlet

and Higgs out-of-equilibrium (friction) contributions. Another limitation is that the current

state-of-the-art for predicting the GW spectrum is subject to large systematic uncertainties

for wall velocities close to the speed of sound. Since a large fraction of deflagration transitions
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have 0.5 <∼ vw <∼ ξJ , our analysis of the GW production could greatly benefit from more

accurate fits in that range of wall speeds.
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supported by the Academy of Finland grant 31831.

3.A Effective Potential

We describe here the full effective potential used to describe the phase transition in the

Z2-symmetric singlet model. It takes the general form

Veff(h, s, T ) = Vtree(h, s) + VCW(h, s, T ) + VT (h, s, T ) + δV (h, s). (3.53)

Vtree is the scalar degrees of freedom’s tree-level potential obtained in the unitary gauge by

setting in Eq. (3.1) H → h/
√

2 and by omitting the VBG term:

Vtree(h, s) =
µ2
h

2
h2 +

λh
4
h4 +

λhs
4
h2s2 +

µ2
s

2
s2 +

λs
4
s4. (3.54)

VCW is the Coleman-Weinberg potential in the MS renormalization scheme that incorporates

the vacuum one-loop corrections and VT is the thermal potential:

VCW(h, s, T ) =
1

64π2

∑
i=W,Z,γL,1,2,χ,t

niM̃
4
i (h, s, T )

[
log

M̃ 2
i (h, s, T )

µ2
− Ci

]
,

VT (h, s, T ) =
∑

i=W,Z,γL,1,2,χ,t

niT
4

2π2

∫ ∞
0

dy y2 log
[
1± e−

√
y2+M 2

i (h,s,T )/T 2
]
− g̃π2T 4

90
,

(3.55)

where the sums go over all the massive particles, including the thermal mass. Here, we include

the contribution from the W and Z gauge bosons, the photon’s longitudinal polarization γL,
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the Goldstone bosons χ, the top quark and the eigenvalues of the mass matrix of the Higgs

boson and singlet scalar m1 and m2. We impose the renormalization energy scale as µ = v,

where v = 246 GeV is the Higgs vacuum expectation value. The ± in the thermal integral

is + for fermion and − for bosons and g̃ =
∑
B

NB + 7
8

∑
F

NF = 85.25 with the sums running

over all the lighter degrees of freedom not included in the first term of VT . The Ci’s are

constants given by

C1,2,χ,t = 3/2 and CW,Z,γL = 5/6, (3.56)

and the ni’s are the particle’s number of degrees of freedom:

nWT
= 4, nWL

= nZT
= 2, nZL

= nγL = 1, n1,2 = 1, nχ = 3, nt = −12. (3.57)

We adopt the method developed by Parwani [122] to resum the Matsubara zero-modes for

the bosonic degrees of freedom. It consists of replacing the bosons’ vacuum mass m2
i (h, s)

by the thermal-corrected one M 2
i (h, s, T ) = m2

i (h, s) + Πi(T ), with the self-energy given by

Πs(T ) =

(
1

4
λs +

1

6
λsh

)
T 2,

Πh(T ) = Πχ(T ) =

[
1

16

(
3g2

1 + g2
2

)
+

1

2
λh +

1

4
y2
t +

1

24
λhs

]
T 2,

ΠWL
(T ) =

11

6
g2

1T
2,

ΠWT
(T ) = ΠZT

(T ) = ΠγT (T ) = 0.

(3.58)

The thermal masses for the longitudinal mode of the photon and Z boson are

M 2
ZL

(s, h, T ) =
1

2

[
m2
Z(s, h) +

11

6

g2
1

cos2 θw
T 2 + ∆(s, h, T )

]
and

M 2
γL

(s, h, T ) =
1

2

[
m2
Z(s, h) +

11

6

g2
1

cos2 θw
T 2 −∆(s, h, T )

]
,

(3.59)
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with

∆(s, h, T ) =

[
m4
Z(s, h) +

11

3

g2
1 cos2 2θw
cos2 θw

(
m2
Z(s, h) +

11

12

g2
1

cos2 θw
T 2

)
T 2

]1/2

. (3.60)

At low temperature (m2
i /T

2 � 1), one would expect all the thermal effects to be Boltz-

mann suppressed, since the species i becomes essentially absent from the plasma. This

is manifestly the case for VT , since the thermal integrals decay exponentially in the limit

M 2
i /T

2 ≈ m2
i /T

2 � 1. However, in the same limit, VCW would depend quadratically on T if

we used the thermal masses defined above. This would spoil the potential’s low-T behaviour.

Therefore, we define a regulated thermal mass17 M̃ 2
i = m2

i +R(m2
i /T

2)Πi, that should only

be used in VCW. R(x) is a regulator chosen to recover the right behaviour in the low and

high-T limit. In order to do so, it should be a smooth function satisfying R(x = 0) = 1 and

R(x) ∼ e−
√
|x| when |x| � 1. We choose here the integrated Boltzmann number density

function given by

R(x) =
1

2
[x]K2

(√
[x]
)
, (3.61)

where K2 is the modified Bessel function of the second kind and [x] = x tanh(x) is a smoothed

absolute value.

The last term of Eq. (3.53) contains the following counterterms:

δV (h, s) = Ah2 +Bh4 + Cs2 +D, (3.62)

17For the photon and Z boson’s longitudinal mode, we define Πi = M 2
i −m2

i , which should reproduce the
desired behaviour.
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which are fixed by requiring the renormalization conditions

0 =
∂Veff

∂h

∣∣∣∣
h=v,s=0,T=0

m2
h =

∂2Veff

∂h2

∣∣∣∣
h=v,s=0,T=0

m2
s =

∂2Veff

∂s2

∣∣∣∣
h=v,s=0,T=0

0 = Veff |h=v,s=0,T=0 .

(3.63)

While the use of the resummed one-loop potential is a clear improvement over the lead-

ing thermal-mass-corrected approximation, one should keep in mind that higher loop cor-

rections and even nonperturbative physics may be relevant, in particular for very strong

transitions [162–164].

3.B Relativistic fluid equation

We here calculate the hydrodynamical properties of the plasma close to the wall using the

method described in Ref. [142]. The quantities of interest are the temperatures T± and the

velocities of the plasma measured in the wall frame v±. The subscript + and − indicate that

the quantity is measured in front or behind the wall respectively.

By integrating the conservation of the energy-momentum tensor equation across the wall,

one can show that the quantities T± and v± are related by the equations

v+v− =
1− (1− 3α+)r

3− 3(1 + α+)r
,

v+

v−
=

3 + (1− 3α+)r

1 + 3(1 + α+)r
,

(3.64)
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where α+ and r are defined as

α+ ≡
ε+ − ε−
a+T 4

+

,

r ≡
a+T

4
+

a−T 4
−
,

a± ≡ −
3

4T 3
±

∂Veff

∂T

∣∣∣∣
±
,

ε± ≡
(
−T±

4

∂Veff

∂T
+ Veff

)∣∣∣∣
±
.

(3.65)

These quantities are often approximated by the so-called bag equation of state, which is

given in Ref. [142]. This approximation is expected to hold when the masses of the plasma’s

degrees of freedom are very different from T , which is not necessarily true in the broken

phase. Therefore, we keep the full relations (3.65) in our calculations.

Subsonic walls always come with a shock wave in front of the phase transition front. The

Eqs. 3.64 can be used to relate T± and v± at the wall and the shock wave, but we need

to understand how the temperature and fluid velocity evolve between these two regions.

Assuming a spherical bubble and a thin wall, one can derive from the conservation of the

energy-momentum tensor the following differential equations

2
v

ξ
= γ2(1− vξ)

(
µ2

c2
s

− 1

)
∂ξv,

∂ξT = Tγ2µ∂ξv,

(3.66)

where v is the fluid velocity in the frame of the bubble’s center and ξ = r/t is the inde-

pendent variable, with r the distance from the bubble center t the time since the bubble

nucleation. With that choice of coordinates, the wall is positioned at ξ = vw. µ is the

Lorentz-transformed fluid velocity

µ(ξ, v) =
ξ − v
1− ξv

, (3.67)
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and cs is the speed of sound in the plasma

c2
s =

∂Veff/∂T

T∂2Veff/∂T 2
≈ 1

3
. (3.68)

The last approximation is valid for relativistic fluids, which models well the unbroken phase.

In the broken phase, the particles get a mass that can be of the same order as the temperature,

and it causes the speed of sound to become slightly smaller.

One can find three different types of solutions for the fluid’s velocity profile: deflagration

walls (vw < c−s ) have a shock wave propagating in front of the wall, detonation walls (vw > ξJ)

have a rarefaction wave behind it and hybrid walls (c−s < vw < ξJ) have both shock and

rarefaction waves. ξJ is the model-dependent Jouguet velocity, which is defined as the

smallest velocity a detonation solution can have. Each type of wall have different boundary

conditions that determine the characteristics of the solution. Detonation walls are supersonic

solutions where the fluid in front of the wall is unperturbed. Therefore, it satisfies the

boundary conditions v+ = vw and T+ = Tn. For that type of solution, Eqs. (3.64) can be

solved directly for v− and T−.

Subsonic walls always have a deflagration solution with a shock wave at a position ξsh

that solves the equation v−shξsh = (c+
s )2, where v−sh is the fluid’s velocity just behind the shock

wave measured in the shock wave’s frame. It satisfies the boundary conditions v− = vw and

T+
sh = Tn. Because these boundary conditions are given at two different points, the solution

of this system can be somewhat more involved than for the detonation case. Indeed, one

has to use a shooting method which consists of choosing an arbitrary value for T−, solving

Eqs. (3.64) for T+ and v+, integrating Eqs. (3.66) with the initial values T (vw) = T+ and

v(vw) = µ(vw, v+) until the equation µ(ξ, v(ξ))ξ = (c+
s )2 gets satisfied. One can then restart

this procedure with a different value of T− until the Eqs. (3.64) are satisfied at the shock

wave. Hybrid walls satisfy v+ < c−s < vw and they have the boundary conditions v− = c−s

and T+
sh = Tn, which make them very similar to the deflagration walls.
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3.C Gravitational Wave Production

For the convenience of the reader, we here reproduce the formulae from Refs. [63, 116, 117,

142, 144] that determine the GW spectrum from sound waves and turbulence in a first order

phase transition. The spectrum is [116, 117]

Ωsw(f) = 8.83× 10−7K2
sw

(
HR

cs

)(
1−

(
1 +

2HR√
Ksw

)−1/2
)(

100

g∗

)1/3

Ssw (f), (3.69)

whereKsw = κswα/(1+α), with κsw the efficiency coefficient of the sound wave. As previously

stated, we assume that all the walls have non-runaway solutions and that the contribution

from turbulence is negligible; hence we set Ωsw = Ωφ(f) = 0. The function parametrizing

the shape of the GW spectrum is

Ssw(f) =

(
f

fsw

)3(
7

4 + 3 (f/fsw)2

) 7
2

, (3.70)

and the peak frequency fsw is

fsw = 2.6× 10−5 Hz

(
1

HR

)(
Tn

100 GeV

)( g∗
100

) 1
6
. (3.71)

Numerical fits for the efficiency coefficient κsw (the fractions of the available vacuum energy

that go into kinetic energy) were presented in [142]. For non-runaway walls, these fits depend

on the wall velocity and are given by

κsw =


c
11/5
s κaκb

(c
11/5
s −v11/5w )κb+vwc

6/5
s κa

, vw . cs

κb + (vw − cs)δκ+ (vw−cs)3

(ξJ−cs)3
[κc − κb − (ξJ − cs)δκ], cs < vw < ξJ

(ξJ−1)3ξ
5/2
J v

−5/2
w κcκd

[(ξJ−1)3−(vw−1)3]ξ
5/2
J κc+(vw−1)3κd

, vw & ξJ

(3.72)
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where cs = 1/
√

3 is the sound velocity and the different parameters are given by

ξJ =

√
2α/3 + α2 + cs

1 + α
δκ = −0.9 log

√
α

1 +
√
α

κa =
6.9v

6/5
w α

1.36− 0.037
√
α + α

κb =
α2/5

0.017 + (0.997 + α)2/5

κc =

√
α

0.135 +
√

0.98 + α
κd =

α

0.73 + 0.083
√
α + α

(3.73)

We caution that while these fits, when used as input for a signal-to-noise estimate, are

useful to get an overall estimate for the GW signal in a given model, their precise predictions

should be interpreted with care. The fit for the sound wave production is reliable for relatively

weak transitions α < 0.1, which is the range where most of our models fall. For stronger

transitions the fit can overestimate the GW-signal by as much as a factor of thousand (strong

deflagrations) [165]. In addition to the strength of the transition, fit parameters have also

been shown to be sensitive to the shape of the effective potential [166] and the wall velocity

[63, 117]. As explained in Ref. [63] Eqs. (3.69-3.71) are not expected to be accurate for

0.5 <∼ vw <∼ ξJ , which includes a large fraction of the deflagration models found in this work.

Thus, pending improvements in the theoretical predictions for GW spectra in this range of

wall speeds, the results should not be regarded as conclusive.
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Chapter 4

Conclusions

This thesis has substantially improved the calculation of the BAU and GW spectrum pro-

duced during a first-order EWPT. This has been accomplished by rederiving the fluid equa-

tions that describe the loss of thermal equilibrium in the wall, which is required to determine

the velocity and the shape of the electroweak bubble wall. Using this improved formalism,

it is possible to study the electroweak bubble’s behaviour without any constraint on the wall

velocity, which was previously prohibited by the unphysical singularity of the fluid equations

at the speed of sound.

We have applied these new fluid equations to the Z2-symmetric singlet scalar extension,

which has led to a number of surprising results. While the deflagration and hybrid solutions

cover a wide range of velocities, all the detonation solutions are ultrarelativistic, with vw ≈ 1

(γ > 10). It is caused by the shock wave’s reheating as the wall velocity approaches the speed

of sound. This creates a pressure barrier preventing the wall from becoming a detonation,

unless the PT is very strong, in which case the wall reaches an ultrarelativistic velocity. This

pressure barrier also implies that a large fraction of the walls reaches a terminal velocity

close to the speed of sound. Additionally, contrary to the standard expectation, we found

a positive correlation between the BAU and the GW signal’s strength, at least within the

deflagration and hybrid walls. An significant fraction of the models considered is able to
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reproduce the observed BAU, which indicates that this EWBG scenario is a good candidate

to solve the matter-antimatter asymmetry problem. However, only a small fraction of order

1% could produce GW detectable by next-generation space-based detectors.

Although the analysis presented in this thesis represents a clear improvement over the

standard treatment, there are still many ways it could be extended further. The collision

integrals calculated in Chapter 2 are only good to leading-log accuracy, which is quite im-

precise. A next-to-leading-log calculation could substantially improve these terms’ accuracy,

leading to a more precise determination of the wall velocity. Moreover, we neglected the fric-

tion on the wall from the scalar fields, which could also have some effect on the wall velocity.

Finally, the formulas to compute the GW spectrum are not expected to be accurate for wall

velocities close to the speed of sound. A considerable fraction of our models fall into that

range; therefore, we can expect a large error regarding these models’ detectability.

The formalism developed in Chapter 2 is very general: it is straightforward to apply it to

any model of a first-order EWPT. This thesis has shown that EWBG is a viable option, but it

is not limited to the singlet scalar extension considered here. It would be quite interesting to

do a survey of some of the most popular models of EWBG and make a thorough comparison

between them. In some cases, it would also be possible to predict dark matter, which would

have great implications for cosmology. A general better understanding of physics at high

energy is possible by further improving the methodology and continuing the work undertaken

in this thesis.
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