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ABSTRACT

This thesis comprises several manuscripts, each exploring aspects of the

dynamics of the early Universe. The foundations of the work presented lies in the

realm of cosmology, but draws heavily on string theory as a source of guidance. The

thesis commences with a motivation for the research and provides an introduction

to the contemporary views of Cosmology: following a historical perspective of

cosmology, we motivate the inflationary paradigm of Big Bang Cosmology, and

introduce several world-views promoted by string theory. The string-motivated

models will address shortcomings of cosmologies based on General Relativity and

the Standard Model, and will provide a comprehensive, coherent description of

the early Universe that is expected to transition to our observed Universe. Two

possibilities presented here include String Gas Cosmology (SGC) and the Brane

World scenario. We provide an introduction to these two constructions, and

subsequently report on the possibility of simultaneously stabilizing the dilaton and

moduli fields in SGC stabilization models, a mechanism to solve the overshoot

problem of racetrack inflation, and explore the possibility of long-lived relics in

warped reheating.
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ABRÉGÉ

Cette thèse explore la physique du jeune univers. Nous utilisons la théorie des

cordes pour nous aider à comprendre l’époque précédant la nucléosynthèse. Deux

manuscrits sont presentés: un concernant la cosmologie de gaz de cordes (string

gas cosmology, SGC), et un concernant le scénario d’un univers membrane (brane

world, BW). Nous plaçons des contraintes sur la stabilization du moduli et du

dilaton dans la construction SGC. Puis, nous étudions lépoque du réchauffement

de l’univers dans la construction BW, et nous plaçons des contraintes sur les

paramètres fundamentaux de la théorie des cordes.
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CHAPTER 1
Introduction

The fact that we live at the bottom of a deep gravity well on the surface of

a gas-covered planet going around a nuclear fireball 90 million miles away and

think this to be normal, is some indication of how skewed our perspective tends to

be.—Douglas Adams

1.1 Motivation of the Research

Cosmology is a domain of study probing the fundamentals of our existence, and

I am honoured to have been given the opportunity to explore these issues in such

a stimulating environment. There are many dichotomies that can be associated

with this word, cosmology. In a scientific context (as opposed to philosophic),

cosmology explores the origin and structure of the universe as well as its evolution.

A further dichotomy exists between theoretical and observational 1 cosmologists

and can be roughly divided by the arrow of time in their work. Observationally,

we look at objects farther and farther away, up until the surface of last scattering

(the cosmic microwave background (CMB)). Since light travels at a finite speed,

1 Note, I deliberately avoid the use of experimental since there is only one visi-
ble universe and, hence, we only have a control—the observable universe. We are
not able to recreate the universe to test it under varying conditions, though we can
create experiments to observe the universe.
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looking at objects far away corresponds to looking at objects farther back in time.

Most theorists, however, begin with events before recombination, dealing with

issues like singularity-resolution, inflation, reheating, the matter asymmetry, and

restrict themselves to models which faithfully reproduce the observable universe.

Not surprisingly, the study of our evolving universe involves numerous inter-related

parameters which, in turn, control things like the amount of matter and radiation in

our visible universe, the commencement of stellar burning, and the possibility of a

Big Crunch, to name a few. The difficulty and importance of precisely determining

these parameters has prompted the specialization of observational cosmologists,

and has motivated numerous experiments to measure the various properties of the

observable universe. Unfortunately the wealth of data does not imply that theorists

have an easy time interpreting the data and singling out a specific origin of the

cosmos. In fact, cosmologies based on General Relativity and the Standard Model

(SM) fail to explain many observations. For example, the modern paradigm of

inflationary cosmology has promoted a plethora of models and ideas, making the

precise identification of the underlying theoretical model quite difficult.

Many models of inflation predict all scales in our visible universe originated at

the Planck scale. This is an energy regime well beyond the validity of the Standard

Model of particle physics, and is likely controlled by some Theory of Everything

(TOE). With this in mind, a high energy theorist researching in cosmology hopes

that traits of the underlying theory will be imparted on todays universe. This gives

us access to scales of physics not attainable in other experiments, and provides

the possibility of constraining fundamental theories. The paradigm of inflation

has gained wider acceptance over the last decade, and one immediate effect in the

community is the application of string theory towards cosmology.

1− 2
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This thesis presents work following the recent tradition of string theorists:

utilizing cosmology to constrain fundamental theories. Our first task is to introduce

the current view of the Big Bang and the origin of our universe; with this knowl-

edge we will apply string-motivated models of the early universe with the hopes

of ameliorating the current paradigm and constraining the parameters of string

theory. A common criticism of this field of study points to the lack of predictions.

This is a misrepresentation since numerous predictions are being made, but they are

either beyond the reach of current experiments, or data is currently constraining the

theory—possibly invalidating it. As a small rebuff to these claims, the discussion

starts with a brief history of modern cosmology. This serves to remind the reader

that past observations have prompted massive shifts in our understanding—the

inflationary paradigm is providing that shift today.

A Historical Perspective

The modern study of cosmology can arguably 2 trace its roots to the Shapley-

Curtis debate of the 1920’s [1, 2, 3]. Their public debate entitled “The Distance

Scale of the universe” saw Heber Doust Curtis of Lick Observatory argue that

galaxies such as Andromeda were separate from the Milky Way, while Harlow

Shapley of Mt. Wilson Solar Observatory argued that these nebulae were part of

our galaxy. The idea that Andromeda was merely some small object resting within

our galaxy is now forgotten, but keep in mind that many discoveries had yet to be

made: the electron and proton were the only known particles, the source of stellar

2 Although I reckon anything is arguable, this event marks the first time scientific
evidence hinted at the vastness of the universe. The concept of other galaxies and
the distance scales involved were quite unfathomable.
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energy was still unknown (although we did know that gravitational potential energy

and radioactivity were not sufficient), and the theory of general relativity (GR)

had just passed its first test after Eddington observed the bending of light during a

total eclipse on May 29th, 1919. Numerous other mysteries were unexplained at this

time, and in the case of the “Great Debate” both parties ended up being partially

correct. Employing Adiaan van Maanen’s observations of apparent rotations in

spiral galaxies, Shapley argued that the distance to these nebulae would be of the

order 108 lightyears away -a quantity few astronomers felt comfortable with at the

time. Other than placing galaxies within ours, Shapley’s view of the Milky Way was

more accurate than Curtis’s view of a Sun-centred galaxy. Shapley also correctly

reported the visible extent of our galaxy to be 20 kpc. The debate was convincingly

settled when, in late 1924, Edwin Hubble reported the discovery of Cepheids in

M33, M31 and NGC 6822, and used their period-luminosity relationship to confirm

their extra-galactic origin. Additionally, his redshift–distance relation allowed the

identification of numerous other galaxies through spectroscopic data.

Again, this short diversion is meant to help set the tone of this thesis: the

collection of manuscripts subsequently presented deals with topics at the forefront

of our understanding. As with the Shapley-Curtis debate, a wealth of information

available to us today is subject to interpretation. From a High Energy Theory

perspective, however, the amount of data is so large that theoretical proposals

must fit an ever-decreasing parameter space. Hence, a proposal which successfully

describes the early universe and later evolves to explain today’s observations will

likely be greeted with much celebration, and scrutiny. In practice, the amount of

work required to verify all aspects and applications of a theory is quite substantial

and most physicists are proceeding one step at a time. This thesis adopts a similar

1− 4
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approach, although embedding the discussion in the context of string theory

provides a coherent framework to justify and guide any extensions to the SM and

GR. Whereas Shapley’s proposal was designed to fit his data, he had no guiding

principle to justify the extragalatic nature of his nebulae. In the context of this

thesis, we demand that since string theory claims to be the theory of everything, it

should provide a unified explanation for the numerous mysteries of our universe. A

brief list includes the nature of dark energy, the nature of dark matter, the origin

of neutrino mass, an explanation of the weak hierarchy, an explanation for the

SU(3)× SU(2)× U(1) group structure of the SM, and a realization of inflation.

A Theoretical Perspective

An alternative approach to addressing these issues is through generic model

building (or toy models), where the effects of a few assumptions or modifications

are characterized. Both approaches have merit, with generic model-building

providing a rough guideline for solving the problem at hand. If a particular effect

is quite beneficial (for instance, finding a viable model of inflation), one may search

for these features in their preferred TOE. A recent example of this interplay comes

from the study of extra dimensions, with two ideas laying the foundations for new

perspectives on physics. In ref. [5], the weak hierarchy was explained by suggesting

spacetime is fundamentally higher-dimensional. By isolating the dependence on

the extra dimensions we may identify the 4D effective action and relevant 4D

parameters. For example, given a 4 + n dimensional product space R4 ×Mn with

coordinates xµ associated with our four dimensions and yi belonging to n internal

directions, the action for Einstein gravity is

S =

∫
d4+nx

√
− det |GMN |M2+nR(xµ, yi) (1.1)

1− 5
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we isolate the dependence along our directions xµ

S =

∫
d4x
√
− det |gµν |

[∫
dny
√

det |gab|M2+nR(xµ)+∫
dny
√

det |gab|M2+nR(ya)

]
(1.2)

With Vn ≡
∫
dny
√

det |gab| ' Ln, where L is the size of the internal directions,

we identify the 4d Einstein action as the first term in (1.2), together with the 4D

Planck constant

MPl = VnM
4+n . (1.3)

The expansion in equation (1.2) is based on the assumption of a background

described as

ds2 = gµν(x
µ)dxµdxν + gab(y

a)dyadyb

⇒ R = gµν(x)Rµν(x) + gab(y)Rab(y) . (1.4)

The assumption of such background facilitates the easy identification of Newton’s

constant, though the procedure does generalize to less-trivial backgrounds. The

result, in this case, is a theory whose effective 4D Planck scale can be extremely

high, Mpl ' 2 × 1018GeV, but whose fundamental scale M is suppressed by the

volume of the compact space Vn, and is consequently small. This suppression is

greatest for large extra dimensions, but the fact that SM particles don’t show

signs of extra dimensions suggests that they are confined to a 4-dimensional

subspace (called a “3-brane”), while gravity can propagate throughout. In this

case, the shortest-scale tests of gravity constrain the size of any extra dimension to

R ≤ 44µm [6, 7], so we have the curious notion that each point along our brane is

accompanied by n dimensions which may be larger than the width of a human hair.

1− 6
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Extending this exploration of large extra dimensions, the Randall-Sundrum

model of extra dimensions [4] provided an alternative explanation for the weak

hierarchy. Their exploration of warped spaces showed that gravity can be mediated

at the Planck scale, but physics local to the warped hypersurfaces can be exponen-

tially suppressed (or warped) down to the weak scale. Their model has laid the

foundations for warped compactifications in string theory, and has also provided a

new mechanism to explain the weak hierarchy. Theory is motivating a lot of new

perceptions consistent with our notions of physics; it is all the more amazing when

one theory is providing the impetus.

The lesson of the Shapley-Curtis debates hints at the importance of question-

ing our notions of the universe, and reaffirms the scientific process as an important

means for guiding our understanding. This alone, however, does not fully justify

research into string theory, even though the scientific method indicates problems

with the SM and GR. Instead, new proposals should make unique predictions and

provide the possibility of being tested. We have mentioned that string theory makes

numerous bold predictions, but it has a tough time making testable predictions.

The underlying problem is that string theory naturally exists at the GUT scale

(' 1015GeV), whereas the best terrestrial experiments reach energies of ' 103GeV

at accelerators and ' 1011GeV for cosmic-ray showers (with extremely low lu-

minosity). So, the trouble with string theory is finding situations where stringy

signatures may exist. Let us continue our story of modern cosmology where, with

the motivation for an inflationary epoch, we’ll see that the early universe is a per-

fect regime for testing string theory. Hopefully the reader will agree that, despite its

not being tested, string theory is providing us with novel mechanisms to explain our

perception of the universe.
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More History

The next most important event in modern cosmology can be traced to the

1964 discovery by Penzias and Wilson of a persistent, homogeneous, and isotropic

background radiation. 3 The “noise” of their detector was interpreted by Dicke,

Peebles, Roll and Wilkinson [12] as the relic radiation from the Big Bang Nucle-

osynthesis scenario described by Alpher, Bethe, and Gamow (ABG) [14]. This

observation helped establish the application of GR to cosmological scenarios and

established the Hot Big Bang model as a viable model for the early universe.4 As

most readers are probably aware, the standard model of cosmology suffers from

several key problems. There are numerous reviews of the big bang and its short-

comings (see, for example, [15, 16]), but the following brief listing will serve as our

review:

• Horizon Problem: without inflation, scales beyond several degrees in the sky

were never in causal contact. This conflicts with the observation that the sky

is remarkably homogeneous and isotropic on all scales. Inflation brings all

scales into causal contact.

3 There is an interesting Canadian result often overlooked in the history of the
CMB. Over twenty years prior, Dr. Andrew McKellar observed emission lines for
diatomic molecules in the interstellar medium. These correspond to rotational
modes in the radio regime, and he associated their excitation to some ambient 3K
bath [13].

4 Here “early” refers to the epoch of nucleosynthesis. Assuming a thermal distri-
bution of particles, ABG showed the abundances of light elements are produced in
the right proportions. Since nuclear binding energies are several MeV , this corre-
sponds to an era when the universe was ' 10−13 its current size. This is still much
larger than the early universe epoch of inflation or quantum gravity.
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• Flatness Problem: the universe can be characterized as either an open

(Ω > 1), flat (Ω = 1), or closed (Ω < 1) universe, where the flat solution

is unstable. Here, Ω = ρ/ρcrit is the energy budget of the universe, and

ρcrit = 3H2/8πG is the energy density of a flat universe. We observe a flat

universe to high accuracy today, so the initial conditions must be extremely

fine-tuned to accommodate these observations. Inflation stretches out any

intrinsic curvature, thus explaining the initial conditions.

• Monopole Problem: the phase transition from some GUT to the SM should

have produced numerous topological defects; however, we do not observe any.

If inflation happens after the symmetry breaking, then any defects can be

blown outside the horizon.

• Baryon Asymmetry: We live in a matter-dominated universe, but the thermal

phase of the Big Bang should have produced equal amounts of matter and

anti-matter. Inflation does not provide a simple explanation of this observa-

tion, but the Sakharov conditions are known to be necessary conditions for

the asymmetry to be produced [8].

• Initial Singularity: evolving the scale factor backwards in time suggests that

the universe evolved from a single point. Most models incorporating inflation

still suffer from this problem.

Inflation is able to overcome several of the classical problems listed above

and, more importantly, it successful predicted a scale-invariant power spectrum,

inflation is now considered a key ingredient of the Big Bang model. Developed in

the early 1980s by Guth [17] (see also [18] for earlier, related work), this model

explained the flatness, monopole, and horizon problems of the universe. More

importantly, inflation predicted a scale-invariant power spectrum as the seed for

1− 9



1− 10

Figure 1–1: Evolution of the Hubble scale and physical modes. During inflation ti <
t < tf , physical modes expand past the horizon, thus freezing-out. Upon transition
to a radiation or matter dominated phase t > tf , modes re-enter the horizon since
the Hubble scale grows faster than the scale factor.

structure formation [19, 20]; this was later verified by several CMB experiments.

A qualitative understanding of this scale-invariance can be seen in Figure 1–1. As

seen, physical modes are exponentially stretched and eventually pass the Hubble

length H−1 during inflation. The Hubble length is (roughly) constant during

inflation, so all fluctuations cross the same Hubble scale. If all fluctuations are

generated by the same mechanism the amplitude of fluctuations should be the same

on all scales; so during inflation, all physical modes cross the same Hubble scale and

freeze out with the same amplitude of fluctuation. We observe these fluctuations

after reheating, time tf , when the Hubble scale grows faster than physical modes

which consequently re-enter the horizon.

Quantitatively, one can understand this prediction from the linear expansion

of the Einstein equations about a homogeneous and isotropic background. For our
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purposes it suffices to apply Newtonian gravity to a perfect fluid in an expanding

background. This approach requires the two parameters ρ and a(t), where the

former describes the matter content and a(t) is the scale factor determining the evo-

lution of space. Physical scales x(t) are related to co-moving coordinates q through

the relation x(t) = a(t)q. Recalling that a body suspended in a homogeneous shell

does not experience a net gravitational force, we are prompted to look at fluctua-

tions of the matter field ρ = ρo + δρ. Newtonian dynamics in a static background

results in Poisson’s equation

δρ̈ = 4πGNδρ , (1.5)

where GN is the gravitational constant, and overdots refer to time derivatives.

Since gravity lacks negative charges, we see that inhomogeneities are accelerated,

so over-densities will experience runaway growth. In an expanding background the

analogous equation of motion (in Fourier space) in a vanishing background (ρ0 = 0)

becomes

δρ̈k + 2

(
ȧ

a

)
δρ̇k +

(
c2
s

a2
k2

)
δρk = 0 (1.6)

where c2
s = dP

dρ
is the sound speed in the single-component fluid and k is the

wavenumber. Equation (1.6) describes, conveniently, the damped harmonic os-

cillator. During inflation a(t) = exp(Ht), so the damping is on the Hubble rate,

H. Modes within the Hubble length (the horizon) k−1 � H−1 undergo damped

oscillation, while modes larger than the Hubble length freeze out. So, modes within

the horizon experience damped oscillation until they cross the Hubble scale H−1;

subsequent evolution exponentially decays away and the perturbations are frozen

in at the Hubble-crossing value. Note, a formal analysis of this system based on
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general relativity and quantum fields results in a more complicated equation of mo-

tion for the behaviour of the fluctuations in equation (1.6), but this simple scenario

serves to show the result that the Hubble scale H ≡ ȧ
a

plays an important role in

determining the behaviour of fluctuations. This observation still holds in the more

formal setting.

As with most physical phenomena, more information is encoded in fluctuations

about the mean than in the mean itself. In cosmology, the mean of the CMB

(the relic temperature) gives us a rough estimate of the age of the universe, but

anisotropies provide information on the matter content of the universe, the scale

of inflation, and several other fundamental parameters. For this reason, the last

fifteen years have seen a concerted effort in measuring the CMB on all scales

within the horizon; some experiments include efforts from the COBE, MAXIMA-1,

Boomerang, and WMAP collaborations [21, 22, 23], plus future experiments such as

the South Pole Telescope and Planck satellite [24, 25].

1.1.1 Outline of the Thesis

Our in-exhaustive look at modern cosmology has ended with strong support for

the model of inflation coming from the observationally-verified prediction of a flat

power spectrum. Circumvention of the flatness and horizon problems places a lower

bound on the number of e-foldings during inflation, N ≥ 60. For instance, to solve

the horizon problem the largest scale we observe today (the present horizon H−1
0 )

must have been smaller than the horizon length during inflation H−1
I . A physical

scale today λ0 will be given by its initial scale λi times the amount of intervening

expansion

λ0 = λi

(
a(t0)

a(tf )

)(
a(tf )

a(ti)

)
. (1.7)
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There are two factors contributing to the expansion. The amount during the era of

inflation (ti ≤ t ≤ tf )

a(tf )

a(ti)
= eHI(tf−ti) = eN , (1.8)

and the amount of expansion during the era of radiation-matter domination

(tf ≤ t ≤ t0)

a(t0)

a(tf )
=

Tf
T0

. (1.9)

Here T0 ' 2.73K corresponds to todays CMB temperature and Tf is the tem-

perature at the end of inflation (the reheat temperature). Imposing the condition

necessary to solve the horizon problem gives

λi = H−1
0

(
a(tf )

a(t0)

)(
a(ti)

a(tf )

)
= H−1

0

(
T0

Tf

)
e−N ≤ H−1

I (1.10)

⇒ N ≥ ln

(
T0

H0

)
− ln

(
Tf
HI

)
' 67 + ln

(
HI

Tf

)
. (1.11)

Since the scale of inflation is greater than the reheat temperature HI > Tf the hori-

zon problem is avoided if N > 67. Note that the second equality in equation (1.11)

assumes reheating occured immediately following inflation. An intermediary phase

between inflation and reheating will result in another contribution
Tf
Tr

to (1.11),

though the bound N ≥ 67 still applies.

A similar calculation shows that modes may originate below the Planck scale

λi ≤ lp and be within our horizon provided

λi = H−1
0

(
T0

Tf

)
e−N ≤ lp (1.12)

⇒ N ≥ ln

(
T0

H0

)
− ln (lp Tf ) (1.13)
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In this case the logarithmic corrections may be large. For high reheat temperatures

T ' 1010GeV visible modes emerged from the Planck scale in models with N ≥ 85

e-foldings. Many models of inflation do provide this much inflation, so there is hope

that signatures from a quantum theory of gravity may persist to have observational

consequences today.

We introduced a few of the motivating factors for the research subsequently

presented; these factors are coming from both theoretical and observational

domains. As discussed, the theoretical motivation draws on the bold claims of

string theory and demands that a TOE should provide a natural explanation for the

early universe. Although many mysteries of the universe have known explanations

outside the usual constructions of the Standard Model and General Relativity, they

may be contrived and poorly motivated. For this reason, this thesis focuses on

mechanisms proposed by string theory.

The research presented falls under two broad subjects: String Gas Cosmol-

ogy [9], and the scenario of brane-antibrane inflation [10, 11]. The next two sections

describe the setup of each scenario; they aim to provide a conceptual background in

order to access the subsequent chapters. The remaining chapters are reproductions

of published, and soon-to-be submitted manuscripts.

1.2 Background Material

1.2.1 String (Brane) Gas Cosmology

The field of String Gas Cosmology (SGC) represents one of the first attempts

to embed string theory in a cosmological scenario [9]. The pioneering work of

Brandenberger and Vafa (BV) showed how the T -dual nature of string theory

may be used to overcome the initial singularity inherent in the Big Bang scenario.
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Additionally, they were able to argue why, within the context of string theory, one

may expect only three large directions out of the nine predicted.

The possible circumvention of the initial singularity can be easily verified from

the SGC equations of motion. They are derived from the low-energy effective action

of supergravity; in D dimensions this is [26, 27]

S0 =
1

2k2
D

∫
dDx
√
−Ge−2φ

[
R + c+ 4 (∇φ)2 − 1

12
H2

]
, (1.14)

where c is some constant which vanishes for the critical dimensions D = 26

(D = 10) for the bosonic (super) string, and H = dB is the antisymmetric tensor

field strength, R is the Ricci scalar, φ the dilaton, and κ0 is related to the string

length. For D ≤ 10, 2κ2
D =

(
2π
√
α′
)D−2

g2
s (2π)−1 = 16πGD where ls =

√
α′ is

the string length, gs is the string coupling, and GD is the D-dimensional Newton

constant. From the form of κD it is apparent that Equation (1.14) is the tree-level

expansion in α′ and the string coupling gs = eφ0 , where φ0 is the expectation

value of the dilaton. This action exhibits a property called scalar factor duality, or

T -duality. Under the ansatz

ds2 = −dt2 +
∑
i

a2
i (t)dx

2
i , ai ≡ eλi(t) , i ∈ 1, 2, . . . , D − 1 , (1.15)

this duality means the configuration obtained through the simultaneous transforma-

tions of

ai → ãi = a−1
i and φ→ φ̃ = φ− 2

∑
i

ln (ai) , (1.16)

is also a solution of the graviton-dilaton system of equations [26].

Scale factor duality is absent in general relativity, but it may play an important

role in evading the initial singularity. Recall that the standard Big Bang approaches
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a singularity as t → 0+. In the context of string theory one believes that stringy

degrees of freedom should become important; in this case it is the dilaton φ.

Instead of approaching the initial singularity we first approach the string scale.

Now, however, physics happening below the string scale l < ls have a dual

description happening on scales above the string scale l̃ = l2s
l
> ls. We are able

to evade the microscopic singularity by describing the system in a dual set of

coordinates operating above the string scale.

The second important outcome of ref. [9] was a string-inspired explanation for

the dimensionality of spacetime. It provided a dynamical mechanism explaining

why only three of the dimensions predicted by string theory may have grown

observably large. The starting point is a small, dense and hot universe with all

fundamental degrees of freedom near thermal equilibrium—a starting point in

analogy with SBB. From the initial state of 9 compact dimensions, BV showed that

strings wrapped around these directions act as a confining potential, restricting

their growth. Once the network of confining strings evolves, certain directions

should lose their winding and they will be free to evolve. As a single string moves,

it sweeps out a two-dimensional worldsheet. Two strings will sweep out four

spatial directions, but for them to intersect they must share one. Thus, strings

will naturally interact in three spatial directions, defining our subspace which

subsequently grows large.

Subsequent work in this field has extended the domain of SGC into a near-

complete description of the early universe. In ref. [28], the authors exhibit a loi-

tering phase of the universe during which the Hubble radius grows larger than the
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physical extent of the universe. As a result the brane problem5 in BGC is solved

since branes would be in causal contact and can possibly annihilate. The initial

singularity and horizon problems of the SBB scenario are solved without relying on

an inflationary phase. Loitering allows for previously causally disconnected regions

to communicate; this allows for topological defects to annihilate (the generalized

domain wall problem) and for equilibrium to be reached on all scales (the horizon

problem). SGC also provides a mechanism for isotropization and for stabilizing

the internal directions (the moduli fields) [29, 30, 31, 33]. The first contribution

of this thesis falls into the domain of SGC, and investigates the simultaneous sta-

bilization of the dilaton and moduli fields. The works previously cited employed

species of momentum modes and winding modes to explain loitering, isotropiza-

tion and moduli stabilization; but in all cases the dilaton was free to evolve. This

poses a problem for late-time dynamics since a varying dilaton leads to a varying

Newton’s constant, as well as a fifth force. One of my papers [32], together with

Prof. J. Cline, shows that the effective potential provided by contributions of wind-

ing modes and momentum modes leaves a runaway direction [32]. Fortunately,

this outcome was later ameliorated in heterotic string theory using massless string

modes (string species carrying both winding and momentum charge) [34]. Chap-

ter 2 is a reproduction of the manuscript [33], a collaboration with Dr. T. Biswas

and Prof. J. Cline. It may be seen as an extension of the SGC scenario as it embeds

a gas of strings into the racetrack potential for moduli stabilization. In it, we show

5 The brane problem is a generalization of the domain wall problem in standard
cosmology. Extended objects dilute slower than matter or radiation and will quickly
come to dominate the energy density of the universe, in conflict with observation.
This situation can be avoided if the objects can decay or annihilate.
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that wound strings may act to solve the overshoot problem inherent in this model

(discussed in the manuscript).

The field of SGC continues to draw considerable interest, and was recently

discovered to include a mechanism for producing a flat power spectrum [35,

36]. The importance of this result cannot be overly stressed: CMB observations

have verified the existence of a flat primordial power spectrum; however, only

cosmic strings and inflation have been shown to produce such conditions. Cosmic

strings have subsequently been ruled out as the dominant source of structure

formation owing to their differing evolution upon exiting the horizon. The near-

scale invariance predicted by SGC predicts a blue spectrum for gravitational waves,

giving it a distinctive signature from typical models of inflation. We note however,

that this work is not without criticism [37].

SGC continues to be an active field of research and provides a tantalizing

view of the early universe. It dynamically predicts the number of large direc-

tions, explains the isotropization of space, stabilizes both the dilaton and moduli

fields, explains the horizon and defect problems of the SBB, and now provides a

mechanism to produce a scale-invariant power spectrum.

1.2.2 Brane World Scenario

The Brane World (BW) scenario is also a popular branch of research at-

tempting to understand our early universe. Following the discovery of D-branes

(higher-dimensional objects in strings theory [38]), the authors of [11] described a

setup where our spatial dimensions are the surface of a 3-brane and the standard-

model particles are interpreted as the endpoints of open strings attached to the

brane. Despite the criticism that the stabilization of the internal directions is not

achieved through some dynamical mechanism (i.e. the compactification is put in
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by hand and may represent a form of tuning), the BW paradigm provides a robust

picture that hints at the explanation of many problems, including the weak hierar-

chy, the mechanisms of inflation, and the reheating (or preheating) of the universe.

Figure 1–2 provides a pictorial view of this situation.

Figure 1–2: A diagram of the Brane World scenario. This generic construction in-
cludes a stack of D-branes (left) upon which open strings may end. The branes
may be physically separated, in which case open string modes may end on different
branes. This is the common setup for Brane inflation, where the brane-separation
r behaves as the inflaton. Gravitational modes (right) are closed strings which are
free to travel through bulk. Strings may end on different branes even if they are not
separated.

1− 19



1− 20

The work addressed in Chapter 3 focuses on the process of reheating in the

warped BW scenario; we now describe the inflationary mechanism in the brane

world scenario to motivate the necessity of warped manifolds. This will give us

a more generic, qualitative understanding of the system at hand. As originally

pointed out in [10], the interaction energy between a parallel D3-brane and its

corresponding antibrane can give rise to inflation in the early universe. The branes

feel both a gravitational force (exchange of closed strings) and a gauge force; in the

case of parallel branes these forces cancel and the branes feel no net force. For the

brane-antibrane system these forces combine to provide an attractive force; in this

case the separation r plays the role of the inflaton. As the branes approach each

other the inflaton becomes tachyonic6 at the critical separation r < 1/Ms (the

string length), thus ending inflation.

Unfortunately the resultant model of inflation brought in several problems

unique to this setup. In particular, to get enough inflation we need the slow-roll

parameters to be small; however, one finds that demanding η ∝ V ′′/V � 1

gives inconsistent results. To see this, recall that the inflaton is associated with

open string modes stretching between the D3 branes. The action is given by the

Dirac-Born-Infeld (DBI) action

S = −τ3

∫
d4x
√
− det |Gµν | (1.17)

6 In this context the word tachyonic is employed to indicate that V ′′(r) < 0, in-
dicating that we are not expanding about the true vacuum. This does not imply
faster-than-light propagation
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where τ3 is the brane tension and Gµν is the induced metric on the brane

Gµν = gAB
∂XA

∂xµ
∂XB

∂xν
= ηµν +

∂φI

∂xµ
∂φI

∂xν
. (1.18)

Here, Xµ defines the embedding of the brane worldsheet into physical space,

gab is the worldsheet metric, and φI are transverse oscillations to the brane. Upon

expanding Equation (1.17) to linear order, the DBI action for a fluctuating brane

takes the approximate form

S = −τ3

∫
d4x

[
1− 1

2

(
∂φ

∂x

)2

+ · · ·

]
. (1.19)

In the brane-antibrane inflationary scenario, one imagines a D starting near a

D-brane. Defining the brane-separation as rI = φI − φ̄I , where (φ̄I) φI is the

fluctuation of the (anti) brane, the Lagrangian obtains terms related to the brane

separation

L = −1

2
τ3(∂r)2 − V (r) . (1.20)

Finally, we recognize the canonically normalized inflaton as

ϕ =
√
τ3 r =

√
τ3

[∑
I

(
rI
)2

]1/2

, (1.21)

and the potential is found to be

V (ϕ) = 2

(
τ3 −

κ2
10τ

4
3

ϕ4

)
, κ2

10 = M−8
10 = M−2

p L6 (1.22)

with κ10 as the 10D Newton constant (related to the 4D Planck constant by the

compactification volume L6). For large field values of ϕ, the potential (1.22) is

dominated by the brane tension, and the field may slowly evolve. The slow-roll
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constraint

η ≡M2
p

V ′′(ϕ)

V
' −

(
L

r

)6

� 1 (1.23)

implies that the brane-antibrane system must be separated by distances (r) larger

than the compactification length (L), or r � L [39]. Obviously this cannot

physically happen. Another drawback of this setup is the assumption of a stabilized

volume modulus for the internal directions—the effects of such a mechanism may

drastically change the inflaton potential V (ϕ).

Fortunately some of the issues in this string-inflationary model were mended by

incorporating background fluxes. In particular, Gidding, Kachru and Polchinksi [40]

showed that fluxes in warped compactifications (such as the Klebanov-Strassler

(KS) throat [41]), generically stabilize the dilaton and complex structure moduli

of type IIB string theory compactified on a 6D Calabi-Yau (CY) manifold. In

addition to moduli stabilization, the warped KS throat provides a mechanism for

generating large hierarchies similar to the Randall-Sundrum model [4], and the scale

of warping is generated from natural values of the quantized flux generating the

background.

Repeating the brane-antibrane construction in this warped background, the

authors of [43] (collectively known as KKLMMT) showed that the inflaton potential

becomes

V (ϕ) =
2a4

oτ3

1 + a4
o (ϕ− ϕo)−4 ' 2a4

oτ3

(
1− a4

o

ϕ4

)
(1.24)

where a3
o = e−2πK/gsM � 1 is the amount of warping, set by the background

flux quanta K and M . Now the constraint η ' −
(
L
r

)6
a0 � 1 is easily satisfied

due to the warp factor a0. So, embedding the braneworld scenario in a warped
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background solves the η problem, providing a viable model of inflation in string

theory. Embedding the scenario in a warped background also brings about the

weak-hierarchy solution previously discussed.

The inflationary story in this model gets more complicated when one considers

the dynamics of the overall volume (Kähler) modulus. This is the one modulus

which is not stabilized by the fluxes. The interaction of T with the inflaton ϕ

induces a mass for ϕ of the inflationary scale m2
ϕ ' H2 and spoils the slow-roll

conditions. Numerous solutions have been proposed to overcome the η problem;

they generically involve modifying the superpotential W to cancel the unwanted

positive contribution of m2
ϕ. In ref. [42] it was assumed the Kähler modulus was

stabilized by some nonperturbative contribution, and they showed this resulted in a

de Sitter vacuum consistent with late-time cosmology. Later, ref. [43] parameterized

an additional ϕ dependence to the superpotential, and showed the inflaton mass

can be made sufficiently small for inflation by tuning the new parameter 1 part in

100—now the model can give both early and late-time inflation. Later, the cor-

rections were explicitly calculated within string theory [44] and the corresponding

corrections to the F -term potential were calculated by [45]. The result was that the

corrections coming explicitly from string theory cannot help with the tuning of the

inflaton potential for certain classes of embeddings.

The story of primordial inflation in brane-antibrane configurations of string

theory proves to be somewhat tricky, but working models are known to exist. The

working example in Ref. [46] envisions a system of two nearby throats together with

a brane at the midpoint in the bulk CY. The brane is at an unstable maximum,

but the potential may be tuned against the unwanted positive contribution of

the Kähler modulus in order to, finally, satisfy η � 1. It should be pointed out
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Figure 1–3: The brane inflation construction is based on a background of NS-NS
and RR fluxes supporting multiple KS warped-throats. Inflation takes place at a
higher scale, so is observationally constrained to shorter throats. A mobile D3 falls
down the throat and annihilates with a D3, thus ending inflation. Reheating sub-
sequently happens, although the specifics depend on several factors, including the
amount of warping, and the possibility of tunneling to different throats.

that this system does suffer from poorly-motivated initial conditions, and may

seem unnatural in its construction. A concise review of the developments in this

inflationary scenario is found in ref. [47]; for the purpose of this thesis we have

introduced enough background to have a coherent picture of the scenario, and

the reader should have a picture of the setup. A pictorial summary is provided in

Figure 1–3; here, a generic compactification has a CY -bulk with warped regions

caused by NS and RR fluxes in the background. The inflationary scale (set by

observation through the COBE normalization) limits the amount of warping, so one

imagines a background with numerous warped throats, with inflation happening in

one throat and subsequent tunneling to a standard model throat [48].

The process of reheating in the (warped) BW scenario proceeds through a

sequence of decays. Chapter 3 deals with the latter phase of this process, and
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the reader is referred to [49] for a comprehensive review. Regardless of the brane-

antibrane construction providing inflation, it ends in a similar matter. So, the

results we present on reheating should apply equally to each construction. A clear

picture of the reheating process is provided in [49], and is reproduced here in

Figure 1–4. Conventional models of inflation characterize reheating through the

efficiency of inflaton decay into other degrees of freedom. In the brane-antibrane

scenario the initial reheating process is extremely fast and effective, such that

all inflaton energy is converted into heavy degrees of freedom in the form of

closed strings [50, 51]: this is step 1 of Figure 1–4. This occurs when the inter-

brane distance goes below the string length and the inflaton becomes tachyonic,

signaling an instability in the system which quickly evolves. Next, the heavy closed

strings decay into lighter degrees of freedom in the form of massless gravitational

radiation plus its KK excitations (step 2 of Figure 1–4). BBN places constraints

on the amount of gravitational radiation; however, this is not a concern in this

scenario because the 4D coupling to KK modes is exponentially enhanced by the

wavefunction overlap [48]. In contrast, the graviton is massless and constant in the

bulk and does not contribute exponential warping to the decay vertex, resulting

in a smaller branching fraction. As a small added complexity, in multi-throat

constructions one must compare the tunnelling rate between throats with the decay

rate within a throat.

With light KK states now populated, the corresponding metric fluctuations

interact with the remaining D3 branes located at the bottom of the throat.

Energy is deposited to open string modes on the brane through the KK-modes

worldvolume coupling to the DBI term describing the brane (step 3 of Figure 1–4):

this interaction primarily excites fluctuations of the brane. The final step to reheat
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the universe and produce SM particles is the transfer of the open string energy in

the form of scalar fluctuations into fermions living on the brane. This interaction

may proceed because the gauge theory associated with the brane contains fermions

ψ in the adjoint representation. The scalar fluctuations Y interact with these

fermions through the tri-linear coupling
√
gsψ̄Y ψ (step 4 of Figure 1–4).

For a detailed description of the reheating sequence, the reader is once again

referred to [49]. Additionally, [49] pointed out a potential problem with the

reheating sequence that had hitherto been ignored. In the first work exploring the

decay of closed strings into SM particles, [48] showed that reheating into massive

modes can be quite efficient because the radial wavefunction for massive Kaluza-

Klein (KK) modes grows exponentially towards the infrared (IR) end of the throat.

This efficient reheating means that inflation can occur in one throat, while the SM

brane may reside in another throat. The observation of [49] was that KK modes

may be excited not just radially (as in [48]), but also along the internal directions.

Owing to the isometries of these directions in the throat, KK modes must decay

through angular-momentum conserving vertices. This leaves the possibility of a

long-lived relic which corresponds to the lightest state charged along the internal

directions (LMCS) since it cannot decay into uncharged, massless states—there is a

similar story in supersymmetry involving R-parity and the lightest supersymmetric

state. A possible consequence is that new degrees of freedom, beyond the SM,

will exist during nucleosynthesis, conflicting with BBN constraints. Chapter 3

quantifies the observations of [49]. We find that reheating can be suppressed if

the isometries remain intact; fortunately the throat is attached to a CY region at

the tip. The complicated geometry of the CY breaks the isometries in the throat

which is expressed as a particular solution, or background shift. The particular
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solution can absorb the charge of the relic, thus catalyzing the decay. The operator

accommodating the decay faces many restrictions since it must absorb the charge of

the LMCS, it cannot break 4D Lorentz invariance, the deformation must not ruin

the background, and breaking SUSY may be undesirable since it leads to stronger

constraints. For the T 1,1 geometry of the KS throat, we identify a different operator

than the one used in ref. [49], and find the lifetime of the possible relic is much

less than the estimate therein. Generically, the study may be used to place strong

constraints on fundamental parameters of the theory, or face conflicts with BBN

and the SUSY-breaking scale.
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Figure 1–4: Described more thoroughly in the text, this diagram depicts the se-
quence of decays from the inflaton into radiation in the Brane World scenario. The
figure was taken from ref. [49]

1− 28



CHAPTER 2
Moduli stabilization in brane gas cosmology with superpotentials

Prediction is very difficult, especially if it’s about the future.—Niels Bohr

FOREWORD: In this chapter we extend upon a previous publication of this

author [32] concerning moduli stabilation in Brane Gas Cosmology. We look at the

interplay between a gas of brane and superpotentials arising from flux stabilization

scenarios. We find that the gas of branes generates an effective potential with a

slowly moving minimum. This acts like a source of friction so that fields rest in the

local minimum provided by the superpotential and branes, preventing moduli from

overshooting to infinity.

This work is reproduced in accordance with the Assignment of Copyright

agreement, JCAP c©2005 IOP Publishing Ltd.:
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Abstract

In the context of brane gas cosmology in superstring theory, we show why it is

impossible to simultaneously stabilize the dilaton and the radion with a general

gas of strings (including massless modes) and D-branes. Although this requires

invoking a different mechanism to stabilize these moduli fields, we find that the

brane gas can still play a crucial role in the early universe in assisting moduli

stabilization. We show that a modest energy density of specific types of brane

gas can solve the overshoot problem that typically afflicts potentials arising from

gaugino condensation.
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2.1 Introduction

A major success of brane gas cosmology (BGC) is the utilization of stringy

effects to explain the origin of the hierarchy of dimensions. In the seminal proposal

of Brandenberger and Vafa [1], it was argued that in the early universe all direc-

tions could fluctuate about the self-dual radius due to the presence of both winding

and momentum modes. The argument asserts that strings will generically intersect

in (3+1)-dimensional subspaces, so that such a subspace will lose its winding and

subsequently expand into the large directions we observe today. This scenario was

mathematically realized by Tseytlin and Vafa in the context of dilaton gravity [2],

and has since been extended to include the effects of a gas of Dp-branes, where

Alexander, Easson, and Brandenberger [3] argued that such a gas would result in a

hierarchy of extra dimensions. Namely the original 9-dimensional spatial manifold

should decompactify into a hierarchical product space of T4 × T2 × T3.

Subsequent investigations indicate that wound strings provide a mechanism

for isotropization [4] and stabilization [5] of the the compact dimensions, and that

the mechanism works on toroidal orbifolds [6]. The framework for these results is

usually the low energy effective action of type IIA string theory, where the salient

differences from general relativity are a massless dilaton and the dynamics of

extra dimensions. These differences lead to the result that negative pressure in the

compact directions, due to wound strings, results in contraction, not acceleration.

The dilaton is assumed to have no potential other than that which is induced by its

coupling to the bulk string frame Lagrangian e−2φ(R + (∇φ)2) and possible D-brane

sources; most successes of BGC rely on the dynamical running of the dilaton toward

weak string coupling, gs � 1.
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On the other hand one would like to stabilize the dilaton at a value where gs

is still large enough to be consistent with gauge coupling unification [7]. Moreover

if gs becomes too small, the interactions between strings become too weak to allow

the annihilation of winding modes in three dimensions, where the space should be

allowed to grow [8]. (See also [9] for a discussion similar issues.) Rather there is

only a window of finely-tuned initial conditions consistent with three dimensions

ultimately growing to be large. A third reason that the dilaton must not continue

to roll to arbitrarily small values is the constraint from fifth force experiments and

null searches for time variation of physical constants [10]; these preclude the dilaton

from continuing to evolve at late times.

For these reasons it is imperative to reconcile brane gas cosmology with the

stabilization of both the radion and the dilaton. In [11] it was shown that using

just the string winding and momentum modes this is not possible. We therefore

first investigate whether by including more general string and brane states one can

achieve such a stabilization. (A similar but less general analysis has been done in

[12].)

Our result, in the context of superstring theories, is that a general gas of D-

branes and strings cannot stabilize both moduli, although they can stabilize one

linear combination of them. However, the brane gas can still play an important

role in the process of stabilizing both fields, due to the overshoot problem [13].

A much-studied mechanism for stabilizing the radion involves adding racetrack

potentials coming from gaugino condensation (and possibly an antibrane [14]).

The Minkowski minimum of these potentials is typically separated from a runaway

(decompactification) direction by a very small barrier, which would always be

overcome by the inertia of the fields if their initial conditions were not finely tuned
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to be close to the desired minimum. One of our main observations is that a gas of

brane winding modes can very robustly solve this problem by slowing down the

modulus as it rolls down its steep potential.

Our plan is as follows: in Section 2.2.1 we describe the BGC scenario and

motivate the dimensional reduction procedure to obtain a d-dimensional theory of

gravity with two scalar fields (the dilaton and radion), with an effective potential

coming from the brane gas. In Section 2.2.3 we discuss some of the features of the

effective potential; namely, we show that provided the dilaton is stabilized by some

other mechanism, branes can stabilize all the extra dimensions. Section 2.3 presents

our no-go theorem showing that under the given assumptions, there exists an

unstabilized direction in the moduli space of the dilaton and radion no matter what

modes are included in the gas of D-branes and strings. In particular we also show

that the presence of massless F-string modes do not help in lifting the runaway

direction. In section 2.4 we consider the combined effect of the brane gas with a

superpotential, such as would arise from gaugino condensation and antibranes, and

show that the brane gas can provide a remedy for the overshoot problem. We give

our conclusions in section 2.5. Technical details are given in the appendices.

2.2 Effective Brane Gas Cosmology

2.2.1 Supergravity coupled to Strings and Brane Sources

A starting point for BGC is type IIA string theory compactified on a 9-

dimensional toroidal background, which may be thought of as the result of com-

pactifying M -theory on S1. The low-energy bulk effective action of this theory is
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given by

SIIa =
1

2κ2

∫
dDx
√
−Ge−2φ

(
R + 4GMN∇Mφ∇Nφ−

1

12
HµναH

µνα

)
, (2.1)

where G is the determinant of the ten-dimensional background metric Gµν , φ is

the dilaton, H is the field strength corresponding to the bulk antisymmetric tensor

field Bµν , and κ is the D-dimensional Newton’s constant. For simplicity we ignore

any flux contributions, and take H = 0. We envision this analysis to apply in the

late-time era of BGC [1, 3, 6, 15], an epoch where the extra, compact dimensions

are expected to be isotropized [4], and winding modes in the large directions have

annihilated. Thus, we consider a spacetime consisting of a flat, d-dimensional FRW

universe, and an isotropic compact subspace of n extra dimensions

ds2 = GMNdX
MdXN = gµνdx

µdxν + b2(t) γmndy
mdyn (2.2)

= −dt2 + a2(t) dxidx
i + b2(t) dymdy

m, i ∈ {1, . . . , d},m ∈ {1, . . . , n} (2.3)

where ym are the coordinates of the n extra dimensions. The total action comprises

the above bulk action (2.1) and the action of all matter present. Sources are

included by adding matter terms for both the strings (ρs) and Dp-branes (ρp).

Owing to the different world-sheet couplings between the dilaton and the branes

and strings, the matter action has the form

Sm = −
∫
dDx
√
−G

(
ρs + e−φρp

)
(2.4)

TMN = − 2√
−G

δSm
δGMN

. (2.5)

We continue the construction of late-time BGC by considering separate species

of strings and branes, each possibly having excited momentum (in the case of

branes also known as “vibrational modes” [16]) in the large or compact subspaces,
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but having winding modes only along the compact directions. Then one can show

(see appendix 2.6) that the stress energy tensor for the strings and branes simplifies

to

−T 0
0 = ρs + e−φρp =

∑
i

[
ρie
−αiφa−d(1+ωi)b−n(1+ω̂i)

]
(2.6)

T ab = P δab =
∑
i

ωi
[
ρie
−αiφa−d(1+ωi)b−n(1+ω̂i)

]
δab (2.7)

Tmn = p δmn =
∑
i

ω̂i
[
ρie
−αiφa−d(1+ωi)b−n(1+ω̂i)

]
δmn . (2.8)

In the preceding expressions the summation is performed over the relevant modes

contributing to the gas of strings and branes, P and p being the sum-total pressure

along the large and compact directions respectively. αi = 0 for string sources,

αi = 1 for brane sources, and ρi is the initial energy density for a particular mode,

with effective equation of state pi = ω̂iρi, Pi = ωiρi. The values of ω and ω̂ depend

on the specific type of mode, dimensionality of the branes and the number of large

and extra dimensions (see table 2–1), but the important thing is that all the known

modes can be described by these quantities.

Variation of the action (2.1) together with the matter action (2.4) and metric

ansatz (2.3) results in the system of equations

−d
(
ȧ(t)

a(t)

)2

− n

(
ḃ(t)

b(t)

)2

+ ϕ̇2 = eϕE (2.9)

d

dt

(
ȧ(t)

a(t)

)
− ϕ̇ ȧ(t)

a(t)
= 1

2
eϕP (2.10)

d

dt

(
ḃ(t)

b(t)

)
− ϕ̇ ḃ(t)

b(t)
= 1

2
eϕp (2.11)

ϕ̈− d
(
ȧ(t)

a(t)

)2

− n

(
ḃ(t)

b(t)

)2

= 1
2
eϕE , (2.12)
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where we have introduced the shifted dilaton as ϕ ≡ 2φ − d ȧ(t)
a(t)
− n ḃ(t)

b(t)
(recall that

d = 3 and n = 6), and a dot denotes differentiation with respect to time. Eqs. (2.9-

2.12) are the string frame, or dilaton-gravity, equations of motion. Equation (2.9)

is the 0-0 Einstein equation; notice that in the string frame the kinetic term for the

(shifted) dilaton contributes to the energy with apparently the wrong sign—this

is due to the nonminimal coupling between the Ricci Scalar and the dilaton. The

spatial components of the Einstein equations (2.10-2.11) show that the acceleration

of the scale factor is proportional to the pressure, and thus the negative-pressure

winding modes lead to contraction—this is the key ingredient of the Brandenberger-

Vafa mechanism. Eq. (2.12) is the dilaton equation of motion. Equation (2.9) is not

dynamical, but is rather an equation of constraint, which can be used to determine

the initial dilaton velocity to be

ϕ̇ = ±

√√√√eϕE + d

(
ȧ(t)

a(t)

)2

+ n

(
ḃ(t)

b(t)

)2

. (2.13)

It is customary to choose the negative solution since the string coupling gs = eφ

then evolves toward weak coupling, where a perturbative description is valid. Since

all the terms under the square root are positive, the dilaton cannot bounce.

The rolling of the dilaton, although important for the BV mechanism and the

stabilization of the moduli fields, may also be deleterious to the BGC scenario.

In [8], Easther, Greene, Jackson, and Kabat show that if the dilaton rolls too

quickly, winding-mode annihilation may be suppressed, so that dynamical evolution

leading to three large spatial dimensions is not favoured. The rolling of the dilaton

also implies evolution of volume of the compact space. A conformal transformation

on the metric may absorb the φ-R coupling term, but this means the Einstein frame

scale factors get additional time dependence from φ(t). This problem has typically
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been set aside (on the assumption that the dilaton will be stabilized at a later time)

in discussions of stabilization of the extra dimensions [5]. However, in order to

have a complete and consistent picture in the framework of brane gas cosmology

one indeed needs to address the issue of stabilizing the dilaton along with radion

stabilization, and this is what we devote the next few subsections to.

The preceding observations also stress the utility of viewing gravity from

the point of view of the four-dimensional Einstein frame, which is more intuitive

than the 10D string frame. An effective four-dimensional action is achieved by

conformally absorbing the dilaton, integrating out the extra dimensions, and

performing a second conformal transformation to absorb the scale factor of the

extra dimensions. The result is a minimally-coupled theory of BGC, where the

original string and brane sources act as an effective potential for both the radion

and dilaton fields. This approach was first advocated in [17] to study stabilization

of extra dimensions in the presence of hydrodynamical fluids and was used to study

string winding and momentum modes in [11]. We now generalize the analysis to

include all possible string and brane sources.

2.2.2 Effective Potential

Upon performing dimensional reduction on both the string and brane sources,

we obtain general relativity coupled to two scalar fields, the dilaton and radion,

with an effective potential coming from the brane gas. As outlined in Appendix 2.6,

a string/brane source whose energy density behaves as ρ = ρie
−αiφa−d(1+ωi)b−n(1+ω̂i),
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with equations of state ωi and ω̂i in the d large and n compact directions respec-

tively, provides an effective potential in d+ 1 dimensions

Veff,i = ρi e
2νiψ e2µiϕ ā−d(1+ωi)

νi =
1

2

(
−ω̂i +

d

d− 1

(
ωi −

1

d

))√
(d− 1)n

(d+ n− 1)

µi =
1

2

(
−dωi − nω̂i + 1− αi

d+ n− 1

2

)√
1

d+ n− 1
(2.14)

This is expressed in terms of the canonically normalized moduli ψ and dila-

ton ϕ fields, and the Einstein-frame scale factor ā of the d large directions. αi

parametrizes string (αi = 0) or brane (αi = 1) contributions, and ρi is the initial

energy density of the ith component of the brane gas. We work in Planck units,

M−2
pl = 8πGN = 1. The net effective potential will comprise several contributions

of the form (2.14), depending on the type of excited modes; Appendix 2.6 discusses

the equations of state, and the coefficients µi, νi for the various string and brane

sources and the results are summarized in Table 1.

2.2.3 Radion Stabilization

To understand the effects of string and brane sources in late-time BGC, we

now specialize to the case of three large directions (d = 3) with winding modes only

in the compact dimensions. First suppose that brane sources are not present, so the

effective potential for the system is given by contributions from strings alone—this

emulates the setup of [1, 5, 11, 15, 18]. Three representative species of strings are

considered, namely, W : strings with winding numbers in the compact direction

(ω = 0, ω̂ = − 1
n
), M6: momentum excitations in the compact directions (ω = 0,

ω̂ = 1
n
), and M3: momentum in the large directions (ω = 1

d
, ω̂ = 0). Summing
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Table 2–1: A summary of the radion and dilaton couplings in the effective poten-
tial due to various species of gas. The spatial background consists of d large and n
compact directions, with equations of states ω and ω̂ respectively.

source E ∝ a−dωb−nω̂ ω ω̂ µi νi

d = 3

general string a−dωb−nω̂ ω ω̂ −3ω−nω̂+1√
4(n+2)

−(ω̂+ 1
2

(1−3ω))
√
n√

2(n+2)

general brane a−dωb−nω̂ ω ω̂ −3ω+nω̂+n
2√

4(n+2)
−(ω̂+ 1

2
(1−3ω))

√
n√

2(n+2)

wound string a0b1 0 −1
n

1√
n+2

1−n
2√

2n(n+2)

wound brane a0bp 0 −p
n

(p−n
2

)

2
√
n+2

p−n
2√

2n(n+2)

string momentum a0b−1 0 1
n

0 −
√

n+2
8n

brane momentum a0b−1 0 1
n
−1

4

√
n+ 2 −

√
n+2
8n

d = 3, n = 6
wound string a0b1 0 −1

6
1√
8

− 1
2
√

6

wound brane a0bp 0 −p
n

p−3

2
√

8

p−3

4
√

6

string momentum a0b−1 0 1
n

0 −1√
6

brane momentum a0b−1 0 1
n

− 1√
2

−1√
6

contributions (2.14), we obtain

Vs(ā, ϕ, ψ) = ρWe
(1−n

2
)
√
Bψe
√

A
2
ϕā−3 + ρM6

e−(1+n
2

)
√
Bψā−3 + ρM3

ā−4 , (2.15)

where ρW , ρM3
, ρM6

parametrize the initial energy densities of the three kinds of

components, B = 2
n(n+2)

, and A = 2
n+2

. Let us assume that the dilaton has been

stabilized by an external potential and consider the effect of the string gases on

the unstabilized radion. Taking the dilaton VEV to be φ = 0 and ignoring the M3

momentum modes, which anyway gets redshifted by the expansion of the universe,

the string gas effective potential (2.15) becomes

Vs(ā, ψ) = ā−3
[
ρNe

(1−n
2

)
√
Bψ + ρMe

−(1+n
2

)
√
Bψ
]
. (2.16)

2− 11



2− 12

Battefeld and Watson point out [11] that this is a stable potential for ψ only if the

number of extra dimensions is n = 1, in which case it reduces to V (ā, ψ = 0) ∼ 1
ā3 .

This can be considered a source of dark matter, similar to the string-inspired

example of Gubser and Peebles [19]. However, in the case of n > 2, [11] points out

that the effective potential behaves as V (ā, ψ) ∼ e−aψ/ā3, so that the radion also

runs away to ∞. Since n = 6, one sees that the presence of strings cannot stabilize

the dilaton or the radion.

We note that in [20, 21] massless string states were invoked to obtain stabi-

lization of the moduli. However, the former are not present in the type II string

(being removed by the GSO projection). Although, they are present at the self-dual

radius in the heterotic string,1 additionally, [21] requires quantized modes of the

D-string to achieve complete stabilization of all moduli. It is not clear to us that

the D-string can be quantized in the same way as the fundamental string.

Let us therefore consider whether extending the analysis of [11] to the case

of general brane sources can solve the problem of moduli stabilization. Consider

the contributions to Veff coming from p-branes wrapping the compact dimensions

(ω = 0, ω̂ = − p
n
, denoted Ñ), and momentum modes in the compact dimensions

(ω = 0, ω̂ = 1
n
, denoted M̃). The net effective potential from equation (2.14) is

Vp(ā, ϕ, ψ) =
1

ā3

[
ρÑe

(p−n
2

)
√
Bψe(p−n

2
)
√

A
2
ϕ + ρM̃e

−(1+n
2

)
√
Bψe−(1+n

2
)
√

A
2
ϕ
]

(2.17)

This scenario is similar to those analyzed in [3, 4, 12, 16, 18]. As we will now

explore, the result of including a gas of branes is the improved stability of the

radion. Inspection of (2.17) reveals that provided p > n
2
, all internal directions will

1 We thank Subodh Patil for discussions on this point.
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be stabilized, since there are both rising and falling exponentials depending on ψ:

Vp(ā, ψ) = ρÑe
(p−n

2
)
√
Bψā−3 + ρM̃e

−(1+n
2

)
√
Bψā−3 . (2.18)

where again we have assumed ϕ = 0. This has a nontrivial minimum close to

ψ = 0 provided that p > n
2
. Since string theory requires n = 6, the presence of

(p > 3)-branes in the compact directions will stabilize the moduli.

However a more detailed analysis may be necessary to realize these stability

conditions: According to the heuristic argument of Alexander, Brandenberger,

and Easson [3], winding modes will generically intersect in 2p + 1 dimensions, so

that only objects with p ≤ 2 should remain wound in the 6 compact directions.

In this case, the stability requirement will not be satisfied. On the other hand,

a quantitative investigation should account for the larger phase space once the ā

directions have grown large, thus decreasing the probability of annihilation, and

perhaps leaving some extended objects with p > n
2
. As well, such an analysis

should be carried out within the product space T4 × T2 × T3 argued for by [3], not

the Tn × T3 topology we have considered. We do note though that, as long as the

shape moduli is frozen, the exact shape of the tori does not matter and our stability

analysis for the volume still applies.

2.3 No-Go Result in Type II String Theory

In the previous section we saw that the radion can be stabilized by a brane gas

when the dilaton is assumed to be fixed; similarly one can show the corresponding

result when the roles of the dilaton and radion are interchanged. One may naturally

wonder whether both of these moduli can be simultaneously stabilized using the

most general combination of string and brane sources. As we now show, this is
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impossible to do with the conventional (winding, momentum or oscillator) string

and brane excitations. The argument is made in two steps, starting first with

gases where each string or brane has only one kind of excitation (“simple states”),

although different species of strings or branes are allowed to co-exist. We then

extend the argument to the more general case where individual components of the

gas have more than one kind of excitation (“mixed states”).

2.3.1 “Simple States”

We consider the situation when the strings/branes have nontrivial wrapping

of only some extra dimensions, i.e. it doesn’t wrap the large dimensions. They

thus appear point-like to 4D observers and redshift like nonrelativistic dust, ā−3,

corresponding to d = 3, ω = 0 in (2.14). The equations of motion for the radion and

the dilaton in the presence of such sources are

ϕ̈+ 3Hϕ̇ = −∂Veff(ϕ, ψ)

∂ϕ
(2.19)

ψ̈ + 3Hψ̇ = −∂Veff(ϕ, ψ)

∂ψ
(2.20)

with

Veff(ϕ, ψ) = ā−3
∑
i

ρie
2µiϕ+2νiψ (2.21)

where the sum runs over all possible string and brane states. As summarized in

Appendix 2.6, the exponents µi, νi depend only on the effective equation of state

parameter ω̂ along the extra dimensions (2.14), and the coupling exponent α of

these states to the dilaton in the string frame:

Sgas,i = −
∫
dDx

√
−g e−αiφ ρi b−n(1+ω̂i) a−3 . (2.22)
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where α = 0, for the fundamental strings since the Nambu-Goto action does not

contain any dilaton coupling, while for branes α = 1, originating from the dilaton

coupling in the DBI action.

After performing the conformal transformations involving the radion and the

dilaton (see Appendix 2.6) the above action gives rise to the effective potential

(2.14) in the 4D Einstein frame with

µi =
1

2
√
n+ 2

[
1− αi − n(ω̂i +

αi
2

)
]

; νi = −
√

n

2(n+ 2)

(
ω̂i +

1

2

)
(2.23)

As noted earlier, the value of ω̂ depends upon whether the mode in ques-

tion has winding, momentum or string oscillations. To analyze the stability of a

potential which is a sum over such modes, we will use the technique of [22]: we

identify the directions in the ϕ-ψ plane in which there exists a rising exponential

contribution. If such directions are sufficiently numerous, the system is completely

stabilized. An exponential of the form ρie
2µiϕ+2νiψ rises most steeply along the

direction cos θiϕ̂+ sin θiψ̂ where tan θi = νi/µi. In the range

θ = (θi − π/2, θi + π/2) (2.24)

there is a rising potential (wall) while along the other half-plane the potential

asymptotically falls to zero. Since our potential is a sum of exponentials, it is clear

that:

(I) There can be at most a single local minimum and no local maxima.

(II) Such a minimum exists only if the potential grows in any direction away

from the minimum. Thus there must exist angles θi for which the ranges of angles

in (2.24) cover the entire plane.
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By looking at the different directions of steepest ascent of the exponentials it is

easy to verify whether (II) is satisfied. Curiously, for brane sources (αi = 1) we find

a result that is specific to d = 3 large dimensions: the direction of steepest ascent is

the same (modulo π) for winding, momentum or any other modes. For the winding

modes, it is given by

tan θ =
νi
µi

=

√
2

n
⇒ θ =

π

6
+

 0, p > 3

π, p < 3
(2.25)

while for momentum modes

θ =
π

6
(2.26)

for all p, as illustrated in figure 2–1. Thus using, say, a gas of 2- and 6-branes in

type IIA theory, or a gas of 1 and 5-branes in IIB theory, one could stabilize all

directions of the ϕ-ψ plane except for those orthogonal to the direction of steepest

ascents, that is, θ = π
6
± π

2
(see figure). Along these directions the potential is flat,

and there is a zero mode.

To lift the flat direction, one has to incorporate fundamental string sources,

with αi = 0. According to Table 2–1 for F-strings, the angle

tan θ =
νi
µi

=

√
2

n

ω̂i + 1
2

ω̂i + 1
n

(2.27)

depends on ω̂i, and so the analysis has to be done separately for each case. For

the string momentum, oscillatory and winding modes, ω̂ = 1/n, 0 and −1/n

respectively. From (2.23) one then finds

θmom = −π
2
, θosc = −π

3
, θwind = −π

6
(2.28)
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Figure 2–1: Directions of steepest ascent in the φ-ψ plane for contributions from
different brane gas sources, described in the text. Long dashed lines are for the hy-
pothetical F-string sources with ω̂ = ±1. All marked angles are 30◦. Short dashed
lines are for the sources described in section 2.3.3.

All of these modes provide an ascending potential in the direction of θ = −π
3
, which

is the flat direction when only brane sources are present, but not along the opposite

direction (see figure 2–1). Thus after including the string modes, there is no longer

a zero mode, but there is a runaway direction along θrun = 2π
3

.

In fact we can make an even stronger statement. Suppose that there are other

string sources we may be unaware of; nevertheless their equations of state should

satisfy the weak energy condition −1 ≤ ω̂ ≤ 1. Using the Table 1 entries for general

string sources and varying ω̂ over this range gives an angle of steepest ascent in the

range

π − tan−1 3
√

6

5
≤ θ ≤ tan−1

√
6

7
→ −124◦ <∼ θ <∼ 19◦ (2.29)

which again fails to lift the θrun direction, as shown in figure 2–1.
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An alternative understanding of the moduli instability can be directly inferred

by a reparametrization of the effective potential (2.14) in terms of new fields

χ =
√
Bψ +

√
A
2
ϕ and η =

√
A
2
ψ −
√
Bϕ. The result for an arbitrary string and

brane gas with three large directions and ω = 0 is

Veff,i(α = 0) = ρi e
(−n(ω̂+ 1

4
)+ 1

2)χ e−(n
2

+1) η
2 ā−3 (string) (2.30)

Veff,i(α = 1) = ρi e
−n(ω̂i+

1
2

)χ ā−3 (brane) (2.31)

Through a combination of sources it is possible to to stabilize the χ mode; however

string sources will only cause η to grow, and a brane gas does not couple to η. Thus

η̂ =
√

A
2
ψ̂ −

√
Bϕ̂ is the unstable direction in field space, in terms of the unit

vectors ϕ̂, ψ̂. This direction corresponds to the line

ψ = −
√

A

2B
ϕ = −

√
n

2
ϕ , (2.32)

which coincides precisely with the principal runaway direction identified previously.

The above result is consistent with ref. [18], which used a perturbation analysis

in the BGC scenario to show that the inclusion of branes alone is not enough to

stabilize both the dilaton and moduli fields. Thus some other potential is needed to

stabilize one of the moduli. Given such a potential, BGC does provide a mechanism

of stabilizing the other degree of freedom provided that branes with p > n
2

are

present.

The factorization of the effective potential is a coincidence of having d = 3

large dimensions, as can be seen from the nontrivial dependence on d in eq. (2.14).

For scenarios other than d = 3, the gas of strings and branes is able to stabilize

both fields.
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Finally, we note that in the above analysis we did not consider branes or

strings which wrap some of the large three dimensions (ω < 0); these do not give

any additional leverage for stabilizing the radion.

2.3.2 “Mixed States” and Massless Modes

So far we have only considered states which are purely oscillatory, winding

or momentum modes. More generally, strings could have a combination of such

excitations. Can such mixed modes help in stabilizing the moduli? The answer,

unfortunately is no. For massive modes the reasons are similar to the case of the

simple states. The massless modes2 have to be analyzed separately but they do not

alter the conclusions.

In the string frame, the string spectrum is

m2
F =

m2

b2
+NoscM

2
s + w2b2M4

s (2.33)

where Ms is the string scale and the three terms on the right hand side correspond

to the momentum, oscillatory and winding pieces respectively. The source action for

the strings (2.22) then becomes

Sstr =

∫
dDx

√
−g a−3 b−n

√
m2
F (b) + p2 (2.34)

where p is the momentum along the non-compact directions. After performing

the dimensional reduction and conformal redefinitions, as usual we find that the

effective potential for the canonical radion and dilaton coming from a gas of such

2 Although, in the type II theory these are excitations of the tachyon which are
removed by the GSO projection, such massless winding states are allowed in the
heterotic string theory.
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states is given by

Veff(ϕ, ψ) = ρ = nE(ϕ, ψ) (2.35)

where n is the number density, and E(ψ, φ) is the energy of these states which

depends on both the dilaton and the radion. Since we already know how the

exponents look like for individual momentum, winding and oscillatory modes, it is

easy to see that for the more general case the energy is just given by

E(ψ, ϕ) =
√
M2

s [m2e4(µmϕ+νmψ) + w2e4(µwϕ+νwψ) +Nosce4(µoϕ+νoψ)] + p2

≡
√
m2
F + p2 (2.36)

with

µm = 0 ; µo =
1

2
√

8
and µw =

1√
8

and

νm = − 1√
6

; νo =

√
3

2
√

8
and νw = − 1

2
√

6
(2.37)

First let us focus on the massive modes, for which one can ignore the momen-

tum p. The key observation is that since Nosc ≥ 0 for massive modes, the effective

potential obtained in the Einstein frame must still satisfy conditions (I) and (II)

above in order to have a local minimum. Since again such potentials can have at

most one minimum and no maximum, if there exists a minimum, the potential has

to keep rising along any direction as one tends towards infinity. Thus to determine

whether there is a minimum, it suffices to investigate the behaviour at infinity in

the ϕ-ψ plane. Going far enough toward ∞ along a generic direction, one of the

three terms in (2.33) will dominate, and then our previous analysis applies, which

assumed the presence of only one term in a given source. In the special direction

where b remains constant, no one term dominates, but they all remain proportional
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to each other, behaving like a single term, so again the previous analysis remains

valid.

Next let us focus on the massless modes, for example, the ones considered

in [21]. In this case Nosc < 0; and depending on the winding and momentum

quantum numbers one could have m2
F ∼ (m/b − wbM2

s )2 leading to a minimum

at b2 = (m/w)M−2
s (which is the self-dual radius when m/w = 1) [21]. For these

modes one can easily verify that the mass function can be cast as

m2
F (ϕ, ψ) ∼ e

√
2ϕ′
(
e
ψ′√

6 − e−
ψ′√

6

)2

(2.38)

where

ψ′ =

√
3

2
ϕ+

1

2
ψ (2.39)

(as one can find by carefully tracing back the conformal transformations) is really

the string frame radion and

ϕ′ =
1

2
ϕ−
√

3

2
ψ (2.40)

is the orthogonal direction. As one can see, the mass (2.38) and the potential have

a minimum at ψ′ = 0 and hence the massless states stabilize the ψ′ direction, as

argued in [21]. However, ψ′ also precisely coincides with the direction that could be

fixed just with winding branes. Thus we are still left with the orthogonal runaway

direction (ϕ′ → −∞) that we found earlier.

2.3.3 Exotic States

We have seen so far that ordinary D-brane and string states are unable to

stabilize both the radion and the dilaton simultaneously. We now briefly discuss

how stabilization might be achieved using some less conventional kinds of branes.

One kind of exotic state which has been considered [21] are quantized D-

string modes. Whether it is justified to derive these from the Nambu-Goto action
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like for F-strings seems doubtful, since the D-string is a solitonic object, but for

completeness we have derived the exponents corresponding to the different D-string

modes3 . Although oscillator excitations do provide a new direction in field space

whose potential has a steep direction, this direction overlaps with ones from other

more conventional sources, and do not affect our no-go result. The direction of

steepest ascent for the D-string oscillator modes is derived in Appendix 2.6, and

is shown in figure 2–1. However if massless D-string modes are also allowed in the

string theory spectrum, they can lift the runaway direction in conjunction with

other modes, as has been argued in [21].

Another possible source that provides an effective potential is the NS5-brane.4

Its tension behaves as T F5 ∝ g−2
s , so an NS5-brane wrapping the internal manifold

corresponds to α = 2, ω̂ = −5
n
, ω = 0; this results in the coupling coefficients

µF5 = −(
n

2
− 2)

1√
n+ 2

and νF5 = (10− n)

√
2

n(n+ 2)
(2.41)

Thus, for the case n = 6, the potential rises maximally in the direction ψ = − 1√
3
φ,

corresponding to the angle θF5 = 150◦ in figure 2–1. This does not coincide with the

runaway direction identified in figure (2–1), but is close enough so that NS5-branes

in conjunction with strings or D-branes can stabilize all the moduli.

3 See Appendix 2.6 for details.

4 We thank Ali Kaya for pointing this out to us.
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2.4 Adding Superpotentials

Since it is not possible to fully stabilize all moduli using the D-brane/string

gas, we investigate the dynamics of a system in which the brane gas is present

simultaneously with an external stabilization mechanism. A typical potential

which could arise in string-motivated supergravity theories is the one which is

generated by gaugino condensation in an SU(N) gauge sector. Although it might

seem redundant to consider partial modulus stabilization by a brane gas when there

is already a potential at zero density, there could actually be several benefits: for

example, the brane gas can prevent the problem of the moduli overshooting the

desired minimum [13], as we investigate in this section.

2.4.1 Gaugino Condensation Potential

We briefly review the derivation of the nonperturbative gaugino condensate

potential in low-energy effective supergravity, starting with the 10 dimensional

spacetime which is assumed to be a product of 4D noncompact external spacetime

and a 6D compact internal manifold. We limit our present discussion to the

dynamics of the radion, ψ(x). A similar discussion should apply for more than

one moduli field, but for simplicity we assume that all other moduli (i.e., complex

structure and dilaton) have been stabilized. The radion appears in the full metric as

ds2 = gµνdx
µdxν + e2ψgmndy

mdyn (2.42)

In supergravity, the radion is the real part of a chiral field,

T = X + iY ≡ e4ψ + iY (2.43)
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Dimensional reduction of the supergravity action yields an effective four dimen-

sional theory of gravity coupled to the complex scalar field T (x)

S = M2
p

∫
d 4x
√
−g
[
R

2
+KT T̄ ∂µT ∂µT̄ − eK(KT T̄DTW DTW − 3|W|2)

]
(2.44)

where K(T, T̄ ) and W(T, T̄ ) are the Kähler potential and superpotential respec-

tively, while KT T̄ is the Kähler metric given by

KT T̄ =
∂2K
∂T∂T̄

(2.45)

We have also performed a conformal transformation of the four dimensional metric:

gµν → enψgµν = e6ψgµν (2.46)

The kinetic and potential terms for T are computed from K(T, T̄ ) and

W(T, T̄ ), where the Kähler potential for T is K = −3 ln[T + T̄ ] while as in [14]

we use the superpotential

W =W0 + Ae−aT (2.47)

which would be obtained through gaugino condensation in a theory with a simple

gauge group. For instance, for SU(N), a = 2π/N . The constant term W0 represents

the effective superpotential due to any fields that have been fixed already [23], such

as the dilaton and complex structure moduli.5

5 Although recent authors have pointed out that a proper construction of the
KKLT mechanism includes other non-perturbative contributions to the Kähler po-
tential, we are primarily concerned with addressing the overshoot problem which
still exists despite their inclusion [24, 25]. That is, the mechanism proposed still
provides an attractor solution despite changes to the form of the Kähler potential.
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The scalar-tensor action then reads

S = M2
p

∫
d4x
√
−g
[
R

2
+K − V

]
(2.48)

where the kinetic (K) and potential (V ) terms are given by

K = −3
∂µT ∂

µT̄

|T + T̄ |2
= −12 ∂µψ ∂

µψ − 3

4
e−8ψ ∂µY ∂

µY

and

V =
E

Xα
+

1

6X2

[
aA2(aX + 3)e−2aX + 3W0Aae

−aX cos(aY )
]

(2.49)

To arrive at the potential (2.49)) we have also included the potential energy coming

from an anti-D3 brane (first term) as in [14], which is needed in order to have a

nonnegative vacuum energy density. The coefficient E is a function of the tension of

the brane T3 and of the warp factor, if there are warped throats [26] on the Calabi-

Yau manifold. The exponent α is either α = 2 if the anti-D3 branes are sitting at

the end of a warped throat. Otherwise α = 3 corresponding to the unwarped region.

If a warped region exists, it is energetically preferred.

The imaginary part of the Kähler modulus, the axion Y , has stable minima

at Y = (2n + 1)π/a (assuming W0Aa > 0). We will integrate this field out and

focus on the dynamics of the radion, whose kinetic term is6 12M2
p (∂ψ)2, and whose

6 The kinetic part of the action for the radion can also be derived directly from
the Einstein-Hilbert action S10 =

∫
d10x
√
−ĝR̂ contained in the full 10D supergrav-

ity action. Using a consistent dimensional reduction ansatz for the metric of the
form (2.42) one obtains S4 =

∫
d4x
√
−genψ[R − n(n − 1)(∂ψ)2 + . . . ]. A conformal

transformation precisely of the form (2.46) is needed to convert the action S4 to
Einstein frame, from which one recovers the kinetic piece of the radion given here.
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potential becomes

V = Ee−4αψ − 1

2

(
W0Aae

−aX − aA2e−2aX
)
e−8ψ +

1

6
a2A2e−2aXe−4ψ (2.50)

It is convenient to rescale ψ → ψ/
√

24 so that the kinetic term is canonically

normalized. The action becomes

S = M2
p

∫
d4x
√
−g
[
R

2
− (∂ψ)2

2

−
(
Ee−2α1ψ − 1

2

(
W0Aae

−aX − aA2e−2aX
)
e−2α2ψ +

1

6
a2A2e−2aXe−2α3ψ

)]
(2.51)

where

α1 =
α√
6
, α2 =

2√
6
, α3 =

1√
6
, X = e2α3ψ (2.52)

The potential has three distinct regions (see figure 2–2, solid curve). (1) For ψ large

and negative V (ψ) is dominated by the antibrane contribution, if α = 3, or by a

combination of the antibrane term and the term proportional to e−2α2ψ if α = 2. In

either case, the potential is to a good approximation a pure exponential in ψ, which

will be relevant for the analytic solutions we discuss in the next subrection. (2) For

ψ ∼ 1, the different terms in the potential are comparable, creating a minimum at

ψmin, followed by a potential barrier at ψmax. (3) For ψ � 1 the antibrane term

again dominates, since the other terms are exponentially suppressed by e−aX .

2.4.2 Attractor solution with brane gases

We now consider the effect of augmenting the vacuum potential in (2.51) with

the contribution from a brane gas. Without the brane gas, the dynamics of the

radion depend sensitively on the initial conditions. If we start with ψ > ψmax

(the position of the bump in the potential), ψ runs to infinity, where the extra

dimensions are decompactified.
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Figure 2–2: Radion potential with vacuum gaugino condensate potential (solid line)
and potential at nonzero brane gas density.

Generically one might expect the radion to start closer to the Planck size with

ψ < 0, so that there is a possibility of reaching the stable minimum at ψ = ψmax.

Since the vacuum potential in the region ψ < 0 is well approximated by an

exponential, the radion quickly reaches the attractor solution discussed in [27]; it

tracks the minimum formed between the exponential potential and the rising part

of the “brane-gas potential,” shown as the dashed line in figure 2–2. This attractor

behavior washes out the effect of initial conditions. As long as the attractor is

reached before the field has passed the position of the minimum, this will allow ψ to

settle into the minimum and avoid the overshoot problem.

Let us recapitulate the details of the attractor solution. The rising part of the

brane-gas potential originates from the winding modes of p-branes with p > 3.

In this region the Friedmann equation and the equation of motion for ψ read (in

Mp = 1 units)

H2 ∼= 1
3

(
1
2
ψ̇2 + Ee−2α1ψ + ρpe

2νpψ
)

(2.53)
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with ρp = ρ0
p

(
a
a0

)−3

and

ψ̈ + 3Hψ̇ ∼= 2
(
α1Ee

−2α1ψ + νpρpe
2νpψ

)
(2.54)

respectively. The exponents νp for p-branes’ coupling to the canonically normalized

radion were derived in the previous section,

2νp =

√
2

n(n+ 2)

(
p− n

2

)
=

√
1

24
(p− 3) (2.55)

where n = 6 is the number of extra dimensions. This kind of system was studied in

[28], where it was shown that there exist tracking solutions in which the energy of

the scalar field tracks that of the branes:

eψ =

[
E

ρp

(
α1(α1 + νp)− 3/4

νp(νp + α1) + 3/8

)] 1
2(α1+νp)

≡
[
E

ρp
r

] 1
2(α1+νp)

(2.56)

This relation implies that both the potential and kinetic energy of the radion

remain proportional to the energy density of the branes,

V (ψ) = r−1ρp e
2νpψ =

8(νp + α1)2 − 3

3(1 + r)
K (2.57)

The steepest brane-induced effective potential occurs for the maximal value of p,

p = 6; this provides the greatest resistance to expansion of the internal manifold

and will be the most effective case for avoiding the overshoot problem. Eq. (2.57)

also shows that for p = 6 the ratio of kinetic to potential energy is minimized.

For example, if α = 2 and p = 6 we have α1 =
√

2/3, 2ν6 =
√

3/8, leading to

K/V = 12/23.
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In passing we note that such tracking solutions correspond to a power law

expansion of the universe

a(t) = a0

(
t

t0

)(2/3)(1+νp/α1)

= a0

(
t

t0

)11/12

(2.58)

The universe does not accelerate during this phase. However, as was found in [28],

when the analysis is carried out including the dilaton, acceleration can be obtained.

2.4.3 Addressing the Overshoot Problem

The above discussion implies that the overshoot problem will be avoided in

the presence of a brane gas so long as the attractor solution can be reached. This

means that for a given initial value of ψ, the initial energy density in the brane gas,

ρpe
2νpψ, must be sufficiently large. If not, the brane density is diluted too quickly

by the expansion of the universe and the system evolves according to the vacuum

potential.

We have confirmed these expectations by numerically integrating the coupled

system of Friedmann and radion equations, which we illustrate with a specific

example. In the potential (2.49) we consider an antibrane in a warped throat, with

α = 2. Its tension is tuned to give a Minkowski minimum as shown in figure 2–2,

which illustrates the case where E = 0.00889, a = 2.1, A = 0.9, and W0 = 0.25. We

first verified that indeed this potential suffers from an overshoot problem, shown in

figure 2–3. Starting from an initial condition ψ <∼ − 0.17, the field runs away to ∞.

Interestingly, overshooting can be prevented by initial brane densities which are

many orders of magnitude smaller than the initial potential energy of the radion.

Figure 2–3 shows the evolution starting from exponentially large initial radion

potential energy, with ψ0 = −100 and p = 6, for several initial brane densities,

parametrized by ζ = ρpe
2νpψ/V0(ψ0), where V0 is the potential of the radion alone,
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excluding the brane gas contribution. The result shows that even for initial brane

gas energy densities which are only 10−18 V0(ψ0), overshoot can be prevented. For

different initial values, the exponent log10(ζ) scales linearly with ψ0. This behavior

can be understood analytically, as shown in Appendix D. The minimum required

value of ζ is given by

log10 ζ ≈ −0.43

[
2α1ψ0

(
1− 3− 4νpα1

4α2
1

)]
(2.59)

The intuitive explanation for this result is that the radion energy initially falls more

quickly than that of the brane gas. What counts is not the initial ratio of brane

gas to potential energy; rather it is the ratio at the time when ψ is close to its

nontrivial minimum. This mechanism has been pointed out in [29] (see also [30, 31])

as a generic way of solving the overshoot problem, using general sources of energy

density. Brane gas cosmology provides a concrete setting where this idea can be

used advantageously.

Figure 2–3:
(Left:) Evolution of ψ without brane gas, for several initial values ψ0 = −0.15,
−0.16, · · · ,−0.2, illustrating overshoot.
(Right:) Solutions with ψ0 = −100 and different initial densities of brane gas, near

the borderline of overshooting.

When the modulus has reached its stable minimum, we are still left with a

gas of branes, whose energy density is comparable to the energy density in the
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scalar fields; otherwise the brane gas would not be effective in slowing the rolling

of the modulus. At the bottom of its potential, the scalar field oscillates and and

its energy density redshifts as a−3 just like the brane gas. The result is a matter

dominated universe. We must assume that inflation begins some time after this in

order to dilute the branes and reheat the universe. Work on smoothly connecting

the modulus stabilization with the beginning of inflation is in progress.

2.5 Conclusions

In this paper we used dimensional reduction to derive the effective action

for a gas of strings and p-branes, giving a contribution to the effective potential

for the radion and dilaton. In a gas of strings only, this potential could stabilize

the radion provided there was only one extra dimension, but not the dilaton.

dilaton. Including p-branes allows for the stabilization of either the dilaton or

radion if p > d
2
. However, the brane gas is insufficient for stabilizing both moduli

simultaneously, for the type II strings we consider, which have no massless winding

modes. Rather, only a linear combination of the moduli can be stabilized by the

brane gas.

It thus seems likely that external potentials are needed for modulus stabiliza-

tion. However the brane gas can still play an interesting role in helping the moduli

settle into their typically shallow minima, avoiding the overshoot problem. An at-

tractive feature of this mechanism is that the brane gas can initially be many orders

of magnitude smaller in energy density than the potential energy of the moduli and

still be effective in slowing the rolling of the moduli, since the brane gas energy

redshifts more slowly. There is therefore no need for finely-tuned initial conditions.
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In this work we have ignored quantum corrections, as well as higher-derivative

corrections to the dilaton gravity action. The first approximation is justified for

weak string coupling, gs = eφ << 1. In this regard, the runaway direction found in

Section 2.2 corresponds to φ → −∞, showing that quantum corrections cannot lift

this flat direction at large field values. Of course it is possible that such corrections

could lead to a metastable minimum along the flat direction, which would be a

loophole in our no-go result.
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2.6 Appendices

Appendix 1: Dimensional Reduction

We provide here a brief review of the standard dimensional-reduction pro-

cedure, following the procedure of [11, 33]. Our starting point is D-dimensional

dilaton-gravity together with a generic contribution of gas. This system is described

by

SII =
1

2κ2

∫
dDx
√
−Ge−2φ

(
R + 4GMN∇Mφ∇Nφ−

1

12
HµναH

µνα

)
(2.60)

Sm =

∫
dDx
√
−Ge−αφρ , ρ =

∑
i

ρia
−d(1+ωi)b−n(1+ω̂i) , (2.61)

for some initial density ρi. The dimensional reduction procedure will focus on the

string action (2.60); but, by tracking the transformation rules, we can later also

reduce the matter components. We obtain an effective theory of BGC by first

transforming the string action (2.60) to the Einstein frame through the conformal

transformations [34]

GMN → G̃MN = Ω2GMN , Ω = e−Aφ , A =
2

D − 2

R→ R̃ : R = e−2AφR̃− 2(D − 1)e−Aφ
(
e−Aφ

)
;MN

G̃MN

−(D − 1)(D − 4)
(
e−Aφ

)
;M

(
e−Aφ

)
;N
G̃MN

φ→ φ̃ =
√

2Aφ (2.62)
to obtain

S → S̃ =
1

2κ2

∫
dDx

√
G̃
{
R̃− G̃MN∇M φ̃∇N φ̃

}
, (2.63)

where φ̃ is the canonically-normalized dilaton, and we have ignored flux contri-

butions. We dimensionally reduce the action by integrating out the extra dimen-

sions [11, 33]. To perform this last step we consider a string-frame metric of the
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form (2.3), split into d large directions described by gµν and n compact directions

described by γmn. For simplicity, we consider the geometry of the extra dimensions

to be that of a torus, thus R[γmn] = 0. We use the following relations to isolate the

scale-factor dependence on the extra-dimensions [11, 33, 34]

√
−G̃ = b̃n

√
−g̃ (2.64)

R̃ = R̃[G̃MN ] = R̃[g̃µν ]− 2nb̃−1g̃µν∇̃µ∇̃µb̃− n(n− 1)b̃−2g̃µν∇̃µb̃∇̃ν b̃, (2.65)

where, again, R[γmn] = 0, n and b̃(xµ) are the number and scale factor correspond-

ing to the extra dimensions, and g̃µν is the metric of the non-compact directions.

Since none of the terms in the action depend explicitly on the coordinates from the

n extra dimensions, we integrate over these directions to get the low energy effective

action of the d+ 1-dimensional theory

Seff =
Vn
2κ2

∫
dd+1x

√
−g̃
[
b̃ndR̃[g̃µν ]− 2nb̃n−1g̃µν∇̃µ∇̃µb̃

−n(n− 1)b̃n−2g̃µν∇̃µb̃∇̃ν b̃− b̃ng̃µν∇̃µφ̃∇̃νφ̃
]
, (2.66)

where Vn ≡
∫
dny
√
γ is the spatial volume of the n extra dimensions under unit

scaling (b̃ = 1).

A second conformal transformation and field redefinition of the action (2.66)

is necessary to obtain the canonical form of the Einstein-Hilbert action. The

conformal transformation reuses the identities (2.62) with

ḡµν = b̃ng̃µν ≡ e
√
Bψ̃g̃µν , (2.67)

resulting in

Seff =
Vn
2κ2

∫
dd+1x

√
−ḡ
(
R[ḡµν ]− ḡµν∇̄µψ̃∇̄νψ̃ − ḡµν∇̄µφ̃∇̄νφ̃

)
, (2.68)
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where B = d−1
n(d+n−1)

. Finally, the system is canonically normalized by identifying the

4D Planck mass as M2
p ≡ Vn

κ2 , and by rescaling the fields as

ψ = Mpψ̃ , ϕ = Mp φ̃ (2.69)

⇒ Seff =

∫
dd+1x

√
−ḡ
(
M2

p

2
R[ḡµν ]−

1

2
ḡµν∇̄µψ∇̄νψ −

1

2
ḡµν∇̄µϕ∇̄νϕ

)
.(2.70)

The net effect of these transformations is to rescale the scale factors and

dilaton as

√
−G →

√
−ḡ eD

√
A
2

ϕ
Mp e

n
√
B ψ
Mp

a(t) → ā(t) = e
n
d−1

√
B ψ
Mp e

−
√
A/2 ϕ

Mp a(t)

b(t) → b̃(t) = e
√
B ψ
Mp e

−
√
A/2 ϕ

Mp b(t)

φ(t) → ϕ(t) =
√

2AMp φ(t), (2.71)

Employing the above expressions, we may now express the contribution of a source

behaving as

ρ = ρia
−d(1+ωi)b−n(1+ω̂i) (2.72)

in the D dimensional string frame, through the effective matter-action

Seffm =

∫
dd+1x

√
−ḡe−α

√
1

2A
ϕρ̄

=

∫
dd+1x

√
−ḡρi · e(−ω̂i+

d
d−1(ωi− 1

d))
q

(d−1)n
(d+n−1)

ψ

· e(−dωi−nω̂i+1−αi d+n−1
2 )
√

1
d+n−1

ϕ ā−d(1+ωi)

≡
∫
dd+1x

√
−ḡρi e2(µiϕ+νiψ) (2.73)

with Mp = 1. The original theory of dilaton gravity together with string and

brane sources can now be interpreted as a theory of Einstein gravity together with
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sources, plus two scalar fields corresponding to the dilaton (ϕ) and the moduli field

(ψ), this is the action of equation (2.70). As well, the source term (equation 2.61)

now acts like an effective potential for the two scalar fields. The inclusion of

different excited states will provide different effective potentials, and this freedom

can be exploited in the search for a moduli-stabilizing potential.

Appendix 2: Equations of state

In this section we derive the equations of state and the resultant coefficients for

the brane-gas effective potential. Using the metric-ansatz (2.3), we derive the gas

pressure from the thermodynamic relation.

Pa = − δE

δV

∣∣∣∣
b=const.

(2.74)

The volume is given by V =
√
−Gs = adbn, while energy contributions are

generically of the form E = ajbk =
(
ad
) j
d (bn)

k
n , so that

δV = bnδ(ad) + adδ(bn) (2.75)

δE =
j

d

ajbk

ad
δ(ad) +

k

n

ajbk

bn
δ(bn) (2.76)

⇒ Pa = − δE

δV

∣∣∣∣
b=const

= − j
d

ajbk

adbn
δ(ad)

δ(ad)
= ω

E

V
= ωρ (2.77)

⇒ Pb = − δE

δV

∣∣∣∣
a=const

= −k
n

ajbk

adbn
δ(bn)

δ(bn)
= ω̂

E

V
= ω̂ρ , (2.78)

where we have made the identifications ω = − j
d

and ω̂ = − k
n
. Thus E = ajbk =

a−dωb−nω̂. The existence of winding and momentum modes for strings is a well-

known result, and is the reason for the T–duality invariant spectrum of closed

strings. Finding an embedding with quantized momentum modes of branes is less

subtle because the T-dual of a wrapped brane results in a wrapped brane, not a

momentum mode. However, we use the embedding described by Kaya [16], which
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results in momentum modes in the compact direction with energy given by

En =
λn
b(t)

, (2.79)

where λn is an unknown eigenvalue for the n’th momentum mode (we choose

λn > 0). The corresponding pressure due to this brane momentum-mode is

Pn =
λn
b(t)

, (2.80)

which is a positive quantity.

Appendix 3: D-string oscillator modes

For completeness we consider the naive quantization of D-strings, in case these

modes could affect the no-go result for simultaneous stabilization of the dilaton and

radion. Ignoring the 2-form gauge field that couples to the D-string, the spectrum

of the D-strings looks identical to that of F-strings except for the replacement

Ms −→M ′
s = e−ϕ/2Ms (2.81)

The rescaling is again due to the dilaton coupling present in the DBI action for

the D-strings. Provided we ignore Nosc < 0 modes, again it is sufficient to consider

only the “pure” modes. A straight forward computation yields the following source

actions

SD,mom =

∫
dDx

√
−ĝa−3b−(n+1) (2.82)

SD,osc =

∫
dDx

√
−ĝe−ϕ/2a−3b−n (2.83)

and

SD,wind =

∫
dDx

√
−ĝe−ϕa−3b−(n−1) . (2.84)
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The D-string momentum modes looks identical to those of the F-string mo-

mentum modes, and yield no new effect. The winding modes are the same as those

obtained for D1-branes, which have already been considered. The only qualitatively

new contribution comes from the oscillatory D-string modes. Substituting α = 1/2

and ω̂ = 0 in (2.23) one finds

θD,osc = −π
2
− π

6
(2.85)

Again, this fails to stabilize the runaway direction.

Appendix 4: Solving the overshoot problem

One can analytically estimate of what must be the initial ratio of energy

densities in the brane gas and radion in order to solve the overshoot problem. If

the initial energy density of branes is much smaller than the potential energy of the

radion, the dynamical equations will be given by

H2 ∼= 1
3

(
1
2
ψ̇2 + Ee−2α1ψ

)
(2.86)

and

ψ̈ + 3Hψ̇ ∼= 2α1Ee
−2α1ψ (2.87)

The radion rolls freely down the exponential potential and exact solutions are

known [35]:

a ∼ t1/2α
2
1 and eψ ∼ t1/α1 ∼ a2α1 (2.88)

Thus the energy densities of the brane and the radion redshift in this non-tracking

phase as

ρpe
2νpψ ∼ a−(3−4νpα1) while V (ψ) ∼ a−4α2

1 (2.89)

Thus as long as

3− 4νpα1 < 4α2
1 (2.90)
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the brane energy density will catch up with the potential energy of the radion. We

can calculate when this happens. The ratio of brane energy to radion potential

energy is

ρpe
2νpψ

V (ψ)
∼ a4νpα1+4α2

1−3 (2.91)

and we want that this ratio to be O(1), by the time the radion rolls to the mini-

mum. Hence we need to start with an initial ratio such that

ζ ≡ ρp0e
2νpψ0

V (ψ0)
=

(
a0

amin

)4νpα1+4α2
1−3

(2.92)

where

V (ψ0)

V (ψmin)
= e−2α1ψ0 =

(
a0

amin

)−4α2
1

(2.93)

From (2.92) and (2.93) we find

ζ = exp

[
2α1ψ0

(
1− 3− 4νpα1

4α2
1

)]
⇒ log10 ζ ≈ −0.43

[
2α1ψ0

(
1− 3− 4νpα1

4α2
1

)]
(2.94)
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CHAPTER 3
Warped Reheating

If one could conclude as to the nature of the Creator from a study of his

creation it would appear that God has a special fondness for stars and beetles.

— J. B. S. Haldane

FOREWORD: Although the following chapter is a departure from String

Gas Cosmology, the research presented also resides in the (very) early universe and

attempts to reconcile the framework of string theory with our observable universe.

This work-in-progress has yet to be published, but it is worthy of inclusion because

the working draft is close to completion. What remains is the explicit evaluation

of integrals involving the harmonic expansion of higher-rank objects over a T 1,1

background. For several cases the exact answer has yet to be found, but the

answer is known to be either vanishing or of the string-scale, and we draw several

conclusions based on this input.
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Abstract

It has been suggested that after brane-antibrane inflation in a Klebanov-Strassler

(KS) warped throat, metastable Kaluza-Klein excitations can be formed due to

nearly-conserved angular momenta along isometric directions in the throat. If

sufficiently long-lived, these relics could conflict with big bang nucleosynthesis or

baryogenesis by dominating the energy density of the universe. We make a detailed

estimate of the decay rate of such relics using the low energy effective action of type

IIB string theory compactified on the throat geometry, with attention to powers

of the warp factor. We find that in the KS background it is necessary to turn on

SUSY-breaking deformations of the background in order to ensure that the most

dangerous relics will decay. However, the decay rate is much larger than the naive

guess based on the dimension of the operators which break the angular isometries

of the throat. Thus KK relics do not pose a problem for the KS geometry, although

they could perhaps do so for other warped compactifications. We derive constraints

on the warp factor and the 5D mass of the lightest KK relic in more-general

backgrounds; these constraints may come from nucleosynthesis or baryogenesis, and

if the decay can only be mediated by a SUSY-breaking operator, one may obtain a

constraint on the SUSY-breaking scale.

3-2



3− 3

3.1 Introduction

The success of the inflationary paradigm in providing a natural resolution

for the flatness and homogeneity problems of Standard Big Bang cosmology has

made inflation an essential part of early-universe cosmology. This success has led

to intense efforts in realizing inflation within string theory, resulting in several

new scenarios including brane-antibrane inflation, where the interbrane separation

plays the role of the inflaton. These constructions provide new possibilities for

constraining the parameters of string theory, within compactifications that could be

compatible with the Standard Model.

A potential source of new phenomenological constraints, distinct from those

arising in generic field theory models of inflation, is the reheating process at the

end of inflation. If inflation occurs in one warped throat, while the standard

model (SM) is localized in another throat, there can be a difficulty in transferring

the energy from brane-antibrane annihilation to the standard model degrees of

freedom since the warp factor provides a gravitational potential barrier between the

throats. If the barrier cannot be penetrated, “reheating” will be predominantly into

invisible gravitons [1]-[3], an unacceptable outcome. In ref. [4] it was argued that

the suppression due to the barrier can be counteracted by the enhanced coupling of

the Kaluza-Klein (KK) modes to the deeply–warped SM throat; this scenario has

been further studied in [5]-[7]. Another interesting possibility is that inflation could

deform the SM throat in such a way that its oscillations at the end of inflation

efficiently reheat the SM degrees of freedom [8].

A further challenge was recently pointed out in ref. [9], whose authors high-

lighted the possibility of producing long-lived, heavy KK modes, which could

conflict with standard cosmology. In previous studies of reheating in a warped
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throat, the throat was modelled by a single extra dimension, leading to an AdS5 ge-

ometry. Massive states are strongly peaked in the infrared (IR) region of the throat,

so integrating them out by dimensional reduction (DR) resulted in large effective

couplings, and hence efficient decay. Ref. [9] emphasized that the actual background

solution, the Klebanov-Strassler (KS) solution, contains an additional 5D internal

space M5 with isometries along which non-radial KK excitations can occur. For

realistic particle phenomenology M5 is usually taken as T 1,1, the Einstein-Sasaski

manifold for the group SU(2)× SU(2)/U(1). These isometries, as we shall review,

result in approximately conserved angular momenta which constrain the possi-

ble decay channels and result in a long-lived relic corresponding to the lightest

“charged” state, i.e., the lightest state with angular momentum in the T 1,1. We

shall refer to this candidate relic as the lightest massive charged state (LMCS).

If the KS throat was the entire compactification manifold, the angular isome-

tries would be exact and the LMCS would be stable. However it is necessary to cut

off the throat in the ultraviolet (UV) region, joining it to a larger Calabi-Yau (CY)

manifold which does not globally preserve the isometries. The process of gluing

together the KS throat to the CY thus perturbs the KS geometry in the UV region,

and this information propagates down the throat into the IR. We will assume that

a mode of the metric which was zero due to the isometry will be sourced in the UV

region, and that its radial profile decays exponentially toward the IR region, so that

the symmetry breaking is a weak effect in the IR. In the CFT description, via the

AdS/CFT correspondence, this corresponds to turning on an irrelevant operator

that breaks the symmetry. Of course, if the operator is relevant the symmetry-

breaking is strong in the IR, there is no problem of long-lived relics, and the throat

geometry is not close to the KS solution.
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Since the symmetry-breaking effect is suppressed in the IR, while the radial

profile of the LMCS is strongly peaked in the IR, the operators induced in the

low-energy effective theory that describe the decay of the LMCS will be suppressed

by powers of the warp factor w, which determines the hierarchy of scales between

the bottom and top of the throat. If this suppression is too strong, the heavy KK

relics are long-lived and can come to dominate the energy density of the universe

at unacceptably high temperatures. In particular, they should decay before the

era of big bang nucleosynthesis at T ∼ 1MeV, at the very least, and most likely

also before baryogenesis, since otherwise the entropy produced by their decays will

greatly dilute the baryon asymmetry. Assuming that baryogenesis could not have

happened later than the electroweak phase transition requires the KK relics to

decay at temperatures greater than 100 GeV.

In ref. [9], it was assumed that the suppression of the LMCS decay amplitude

was of the form wp, where p + 4 was the dimension of the most relevant charge-

violating (but 5D Lorentz and SUSY preserving) operator in the CFT. However,

there was no detailed justification for this assumption, and it is not obvious that

it should give the same answer as actually computing the decay rate from the

effective theory. Our goal in this paper is to make an accurate estimate of the decay

rate of the potentially dangerous relics in the AdS5 × T 1,1 type IIB supergravity

background. We will find a different result than that of ref. [9], showing that the

decay rate is less suppressed than indicated by their estimate. Moreover, we will

show that the CFT operator considered in ref. [9] is not sufficient to destabilize

the LMCS in the KS background: one must turn on, in addition, an irrelevant

SUSY-breaking operator for this purpose.
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In the remainder of the paper we examine the constraints on the warp factor

and the mass of the LMCS resulting from considerations of BBN and baryogenesis,

both for the KS background, and for more general warped compactifications.

Details of the analysis specific to the T 1,1 background are given in the appendices,

while more general considerations are given in main body of this text. Appendix 1

provides a comprehensive review of the steps required to analyze the decay of the

LMCS. Appendix 2 reviews all possible decay channels of the LMCS involving

one background correction to the KS throat; though this section is useful for

analysis in other backgrounds because it provides several simple arguments to help

identify viable decay channels. Appendix 3 calculates the decay rate for a generic

background. Finally, Appendix 4 provides information necessary to evaluate the

T 1,1 harmonics for the possible decay channels. The appendices may be referred

to for more detail, but the main text provides enough information to conclude the

LMCS of the KS background has a decay rate large enough to avoid BBN and

baryogenesis constraints.

3.2 Background Deformations and KK Mode Decay

In this section we will describe in greater detail the origin of the symmetry

breaking for the approximate angular isometries, and we will illustrate the approach

we are going to take using a simplified toy model. Appendix 1 provides a similar

discussion, but with more detail.

The problem of relic angular KK modes is closely related to a moduli prob-

lem associated with having an anti-D3 brane
(
D3
)

placed at the bottom of the

deformed conifold geometry, as one might wish to do in order to uplift the AdS

vacuum from Kähler modulus stabilization to dS or Minkowski space, in the manner

of KKLT [10]. The energy of the D3 is minimized at the bottom of the throat, but,
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as pointed out in ref. [11] the base of the deformed conifold has an S2×S3 topology,

whose S2 shrinks to vanishing size at the location of the D3. The D3 can move

freely inside the S3, whose coordinates thus correspond to 3 massless moduli. In

order to stabilize these moduli one needs to break the isometries of the S3.

In ref. [11] this was achieved by considering the dual field theory to the KS

background and turning on an irrelevant operator that gives a mass to the fields

describing the D3 position. Precisely the same mechanism can destabilize the

would-be angular KK relics since the operator provides a background correction

which perturbs the geometry. To analyze this process we choose to work in the

gravity side of the gauge/gravity correspondence. Since a renormalization group

(RG) flow in the field theory dual corresponds to movement along the radial

direction of the AdS space, turning on an operator in the ultraviolet (UV) of the

field theory and performing the RG flow corresponds to turning on a source for the

bulk classical field dual to that operator and following its effect along the radial

direction to the bottom of the throat.

In the AdS background geometry the fields have an exponential dependence on

the radial direction, and the profile of the symmetry-breaking perturbation will be

related to the warping of the background geometry. This perturbation is sourced by

the CY, which generically does not preserve the symmetries of the throat; hence we

consider a source in the UV which depends non-trivially on the angular coordinates

of the S3 cycle, and thus breaks the corresponding isometries of the S3. As a

consequence, the KK modes of fields that couple to the source will become unstable

since the KK quantum numbers are no longer conserved quantities; this is just the

gravitational dual of the mechanism that made the D3 position moduli massive in

[11].
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3.2.1 A simplified model

Our basic approach will be to compute the 4D effective Lagrangian for KK

relics in the presence of a perturbation to the background geometry. The pertur-

bation leads to symmetry-breaking terms in the effective Lagrangian, including

vertices for the decay of the relic. It is useful to illustrate this procedure on a

simpler model before tackling the full 10D supergravity theory—a similar, more-

comprehensive, description is provided in Appendix 1.

We therefore consider a massless scalar field φ in 6D, where one of the compact

dimensions corresponds to the angular direction which is an isometry of the

unperturbed throat and the other is the radial direction along the AdS. Its

Lagrangian is

L =
1

2

∫
d 4x dr dθ

√
−g gAB∂Aφ ∂Bφ (3.1)

and the original throat geometry is described by the line element

ds2 = a2(r) ηµνdx
µdxν + dr2 + L2dθ2 (3.2)

between r = 0 and r = r0. In Randall-Sundrum coordinates, the warp factor takes

the form a = e−kr, so r = 0 corresponds to the top of the throat (the UV), where

it joins to the CY, and r = r0 is the bottom of the throat (the IR). To model the

symmetry-breaking effect of the CY, we will assume that (3.2) gets perturbed by

the metric functions

∆ds2 = sin(θ)
[
a2(r)α(r)dx2 + β(r)dr2 + L2γ(r)dθ2

]
(3.3)

corresponding to the lowest KK excitation of the angular direction. These can be

thought of as solutions to the vacuum Einstein equations in the throat, sourced by

some boundary conditions at the CY, r = 0. The linearized Einstein equations have
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solutions of the form

α(r) = α1e
−zkr, β(r) = β1e

−zkr, γ(r) = γ1e
−zkr (3.4)

where z can take any of the four values

z±± = −2±

√√√√14±

√
5

3

(
60− 12

(kL)2
− 1

(kL)4

)
(3.5)

and the relative amplitudes α1, β1, γ1 depend on z.

In the CFT language, these four solutions correspond to two different operators

O± whose dimensions ∆± are related to z±± via

∆± = −z−±, 4−∆± = −z+± . (3.6)

In the limit of large kL, the values of the conformal dimensions are

∆+
∼= 2 + 2

√
6 ∼= 6.9, ∆− ∼= 4 . (3.7)

As explained in ref. [11], we should turn on an irrelevant symmetry-breaking

operator in the CFT, O+, to produce a perturbation which is weak in the IR. This

corresponds to linear combinations of the form

α(r) = Ae−z−+kr +Be−z++kr = Ae∆+kr +Be(4−∆+)kr (3.8)

and in the limit kL → ∞, β = −1
3
γ = α. The relative sizes of the coefficients A,B

are determined by boundary conditions at r = r0, for example α′(r0) = 0, so that

B = ∆+/(∆+ − 4)w4−2∆+A. The two solutions are of comparable magnitude at the

bottom of the throat, but the second one quickly comes to dominate as one moves
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toward r = 0, so it is a good approximation to simply take

α(r) ∼= α1e
(4−∆+)kr = α1e

−z++kr (3.9)

where α1 characterizes the magnitude of the symmetry breaking in the UV, and

thus could be O(1).

Next consider the scalar field, which can be expanded in radial (n) and angular

(m) KK mode as

φ =
1√
2πL

∑
n,m

Rnm(r)eimθψnm(xµ) . (3.10)

In the absence of the metric perturbation, the interactions of the angular excited

states with n = 0, m 6= 0 conserve the total angular momentum, so there is no way

for the massive states ψ0,±1 to decay. These, then, represent the lightest massive

charged states (LMCS) in the toy model.

In the perturbed metric, angular momentum is no longer conserved, and we

can construct an interaction from the kinetric term for the decay ψ0±1 → ψ00hµν ,

where hµν is a massless graviton which is a perturbation about the Minkowski

metric factor in (3.2): ηµν → ηµν + hµν/Mp. The 4D effective interaction is

Ldecay = hµν ∂µψ0±1 ∂νψ00

[
− α1

4πMp

∫
dθ sin θe±iθ

∫
dr e−(2+z++)kr R01(r)R00(r)

]
(3.11)

where we note that R00(r) is just a constant. To evaluate the radial integral, we

must find the radial wave functions, which obey the equation of motion (eq. 3.55)

with 4D mass mmn

e2kr∂r
(
e−4kr∂rRnm

)
− m2

k2L2
e−2krRnm +m2

nmRnm = 0 . (3.12)
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Defining the warp factor at the bottom of the throat

w = e−kr0 , (3.13)

the solutions have the form

Rnm(r) ' w
√
ke2kr

Jνm(xnm)

[
Jνm

(
xnmwe

kr
)

+ w2νmYνm
(
xnmwe

kr
) ]

νm =
√

4 + (m/kL)2 , (3.14)

where xnm ∼ 1 is determined by the boundary conditions, and the 4D mass of

the excitation is given by mnm = kwxnm. The radial behaviour for excited modes

is dominated by the Jν solution, which is strongly peaked in the IR. The zero-

mode solution R00
∼=
√

2k is just a constant, whose value is determined by the

normalization condition ∫
dre−2krR2

nm = 1 . (3.15)

We can estimate the integral determining the coefficient of the decay-mediating

operator in (3.11) using the small- and large-r asymptotics of the Bessel function.

Near r = 0, the argument of Jν is exponentially small and Jν(x) ∼ (x/2)ν/Γ(1 + ν),

while near r = r0, the argument is of order unity. Both behaviours are consistently

approximated by R01 ∼ w1+ν
√
ke(2+ν)kr, leading to the estimate

Ldecay
∼=
α1w

1+ν

Mp

hµν ∂µψ0±1 ∂νψ00 . (3.16)

In this estimate, the exponential dependence on z++ drops out because the integral∫
dre(ν−z++)kr converges as r → ∞. In other words, the radial integral is dominated

by the UV behaviour of the LMCS, not the IR overlap of the wavefunctions (see

Appendix 3 for the generic behaviour of the radial integral).
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Let us contrast this with the estimate made in ref. [9]. There it was assumed

that the operator O+ (corresponding to a background correction to the metric)

directly mediates the decay in the 4D effective theory, and its degree of irrelevance

controlled the amount of warp factor suppression, so that

Ldecay ∼ w∆+−4 = wz++ . (3.17)

On the other hand our explicit calculation indicates that the warp factor depen-

dence in Ldecay ∼ w1+ν is controlled by the mass of the LMCS through ν, not

O+.

3.2.2 Multiple Tadpole Insertions and Mixing

In the full 10D SUGRA model we want to consider, the simple decay process

illustrated above will turn out to vanish. This can be overcome by turning on

additional symmetry-breaking operators in the CFT. There is no reason not to do

so, since all such irrelevant operators are expected to get induced by the lack of

symmetry of the CY in the UV region. Here we show how this will allow a decay of

the LMCS to two massless states in the toy 6D model.

The basic idea is to generate a mixing of the LMCS with a massless uncharged

field which, in turn, is coupled to two other massless fields and thus allows the

LMCS to decay. This is illustrated in Fig. 3–1. For example we can obtain mixing

of the ψ0±1 modes of the scalar with the graviphoton hrµ by turning on a VEV

for some higher mode ψ0m which corresponds to another irrelevant operator in the

CFT, in addition to the one considered above for the metric, O+. The equation

of motion for the corresponding radial wave function will be the same as (3.12),

except with the 4D mass m2
mn set to zero, since the VEV must not have any xµ
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dependence. The solution is

RT
m(r) = Ae−z−kr +Be−z+kr (3.18)

where the superscript T indicates that this is a tadpole solution rather than a

propagating fluctuation. z± is given by

z± = −2±
√

4 + (m/kL)2 = −2± νm , (3.19)

where m is the quantized momentum along the θ-direction. In the CFT language

this corresponds to an operator with conformal dimension ∆ = −z− = 2 + νm.

Although all such operators are marginal in the limit kL → ∞, for any finite kL,

they are irrelevant except for m = 0. Similarly to the background perturbation

(3.8), we impose Neumann boundary conditions at the bottom of the throat, giving

A = νm−2
νm+2

w2νmB so both terms are of the same order near r0. Again the z+ solution

dominates in the UV, so one can approximate RT
m(r) ∼= Ae−z+kr with A of order

Ms

√
k, by dimensional analysis. (The factor of Ms takes the place of the 4D wave

function ψ which has been set to a constant in the tadpole. Since the physics which

breaks the U(1) isometry is in the UV, it is natural to use Ms rather than the

warped string scale wMs.)

Figure 3–1: Decay of the LMCS (ψ) into massless particles hµν via mixing with the
radial graviphoton hrµ
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In this toy model we could turn on a VEV for the LMCS itself, taking m = 1,

and omit the perturbation (3.3) of the metric which we used previously. However

this choice will not work in the 10D model because the LMCS corresponds to a

relevant operator in that case. To more closely illustrate the 10D situation, we

instead turn on VEVs for the m = ±2 states of the scalar, in addition to the metric

perturbation (3.3). These together with the LMCS have the correct total angular

momenta to give a non-vanishing angular integral when dimensionally reducing to

4D.

The Lagrangian (3.1) when dimensionally reduced using the background

perturbations (3.3) and (3.18) leads to a mixing between the LMCS and the

graviphoton hrµ. Inserting the metric perturbation in the determinant factor
√
−g

and the φ perturbation δφ = e±2iθRT
2 (r) in

√
−g(hrµ/Mp)∂rφ∂µφ, we obtain

Lmixing =

(
α1

∫
dr e−(2+z++)kr R01 ∂rR

T
2

)
[hrµ∂µψ0±1]

∼ w1+ν1
Ms

Mp

r0k
2 [hrµ∂µψ0±1] (3.20)

where again the warp factor dependence comes from the normalization of the radial

wave function of the LMCS R01. This particular dependence on the warpfactor is a

robust result. The radial integral receives UV and IR contributions, but the LMCS

is normalized to the IR and the tadpole corrections are normalized to the UV so

they contribute, respectively, of order unity in these regions.

The mixing term (3.20) can be combined with a typical gravitational interac-

tion for the graviphoton, like

M−1
p hµν∂αhµr∂

αhνr (3.21)
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to obtain an effective interaction

Lint ∼ w1+ν1
Ms

M2
pm

2
ψ

r0k
2 hµν(∂α∂µψ)∂αhνr (3.22)

The important thing to notice, for our argument, is that the powers of the warp

factor come out the same as in the simpler mechanism for decays which gave

rise to (3.16)—this despite the increased complexity of tracking two background

deformations in order to accommodate the decay.

3.3 KK decay in Type IIB Supergravity

We now want to apply the methods illustrated in the 6D model to the KS

geometry sourced by a stack of D3-branes in the 10D theory. The line element is

ds2 = H−1/2ηµνdx
µdxν +H1/2

(
dR2 +R2ds2

T 1,1

)
, (3.23)

where

H(R) =
27π

4R4
α′

2
gsM

[
K + gsM

(
3

8π
+

3

2π
ln

(
R

Rmax

))]
(3.24)

is in terms of the flux quantum numbers K and M . Far from the tip R < Rmax

we neglect the logarithmic contributions to H(R) and further ignore the small

contribution from the second term on the right to obtain the metric of an AdS5 ×

T 1,1 throat. Using the coordinate transformation R = k−1e−kr, the metric becomes

ds2 = e−2krηµνdx
µdxν + dr2 +

1

k2
ds2

T 1,1 (3.25)
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The corresponding low-energy effective theory is type IIB supergravity on an

approximate AdS5 × T 1,1 background [14]:

SIIB =
1

2κ2
0

∫
d10x
√
−G

{
e−2φ

[
R + 4(∇φ)2 − 1

12

(
H(3)

)2
]

− 1

12

(
F (3) + A(0) ∧H(3)

)2 − 1

2

(
dA(0)

)2 − 1

480

(
F (5)

)2
}

+
1

4κ2
0

∫ (
A(4) +

1

2
B(2) ∧ A(2)

)
∧ F (3) ∧H(3) . (3.26)

As usual, H(3) is the field strength of the NS 2-form B(2), F (n+1) is the field

strength for the RR n-form A(n), 2κ2
0 = (2π)7α′4,

√
α′ = ls = M−1

s , where Ms is the

string scale. In our subsequent analysis, we will refer to several other mass scales.

The AdS curvature scale k is determined by the flux quantum numbers M and K

through the relation k−4 ≡ 27π
4
α′2gsMK. The warped string scale, wMs, is also

determined by the fluxes, through w = e−2πK/(3gsM). Finally, the Planck scale is

given by M2
p = 2V6

g2sκ0
where V6 is the compactification volume. From eq. (3.25) it is

apparent V6 ' R6
AdS = k−6, so with gs < 1 and k < Ms we find the 4D Planck scale

is greater than the string scale.

3.3.1 Identifying the LMCS

The first step is to discover which angular KK excitation, among the many

fields that result from dimensionally reducing the action (3.26), is the potentially

dangerous relic, the LMCS. Fortunately, the masses and quantum numbers of all

the lowest-lying KK excitations in the KS background have been tabulated in refs.

[11, 12]. The correspondence between 10D and 5D fields from integrating over the

T 1,1 directions is indicated in Table 3–1, taken from [12].
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Table 3–1: The harmonic expansion of the 10D fields. hMN is the 10D metric,
AMNOP the 10D four-form, B the complex 0-form, and AMN the 10D complex 2-
form. We have not included the NS 2-form. The different polarizations of the fields
appear as 5D scalars, vectors, and tensors. (Adapted from ref. [12])

Dim fields harmonic

10D hµν(x, y) haa(x, y) Aabcd(x, y) B(x, y) Aµν(x, y)
5D Hµν(x) π(x) b(x) B(x) aµν(x) Y (y)
10D haµ(x, y) Aµabc(x, y) Aµa(x, y)
5D Bµ(x) φµ(x) aµ(x) Ya(y)
10D Aµνab(x, y) Aab(x, y)
5D b±µν a(x)

10D hab(x, y)
5D φ(x) Y(ab)(x, y)

10D λ(x, y) ψ(a)(x, y) ψµ(x, y)
5D λ(x) ψ(L)(x) ψµ(x) Ξ(y)
10D ψa(x, y)
5D ψ(T )(x) Ξa(y)

The corresponding expansions of the fields in terms of scalar (Y {ν}), vector

(Y
{ν}
a ) and tensor (Y

{ν}
ab ) harmonics of the T 1,1 are given by expressions like

hµν(x, y) =
∑
{ν}

H{ν}µν (x)Y {ν}(y) (3.27)

hµa(x, y) =
∑
{ν}

B{ν}µ (x)Y {ν}a (y) (3.28)

h(ab)(x, y) =
∑
{ν}

φ{ν}(x)Y
{ν}

(ab) (y) (3.29)

haa(x, y) =
∑
{ν}

π{ν}(x)Y {ν}(y) (3.30)

Aabcd(x, y) =
∑
{ν}

b{ν}εabcd
eDeY {ν} (3.31)

Aµbcd(x, y) =
∑
{ν}

φ{ν}µ εbcd
efDeY {ν}f . (3.32)

where x = (xµ, r), and {ν} = (j, l, r) are the quantum numbers identifying

the T 1,1 = SU(2) × SU(2)/U(1) representation. j and l are the usual angular
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momentum quantum numbers corresponding to the two SU(2) factors. Higher-rank

fields are given in terms of their dual representation. For the scalar harmonics

which will be of most interest to us, r = 2j3 = −2l3 (where j3, l3 are the respective

eigenvalues of the T3 generators of the first and second SU(2)’s), and so is restricted

to the range |r| < min(2j, 2l).

Ref. [12] has computed the 5D masses of all the states in the theory as func-

tions of their (j, l, r) quantum numbers, and organized them into supermultiplets of

the N = 1 5D SUGRA theory. By going through these results and computing the

masses of all particles which have nontrivial (j, l, r) values, we find that the field

b(x) in vector multiplet I is the LMCS, with (j, l, r) ∈ {(1, 0, 0), (0, 1, 0)}. Thus

there are two species of LMCS, depending on whether j or l is nonzero. The 5D

masses are defined in terms of the ubiquitously appearing function

H0(j, l, r) = 6

(
j(j + 1) + l(l + 1)− r2

8

)
(3.33)

which takes the value H0(1, 0, 0) = 12 for the LMCS. Its 5D mass is given by

m2
b = H0 + 16− 8

√
H0 + 4 = −4 (3.34)

in units of the AdS curvature, k2. As is well known, squared masses can be negative

on an AdS background without leading to instabilities, down to the Breitenlohner-

Freedman bound m2 ≥ −4, which is saturated by (3.34). To find the corresponding

mass in 4D, one must do the final dimensional reduction on r by solving for the

radial wave functions. These are identical to the 6D case (3.14) (assuming that we

approximate the throat geometry by AdS5), except for the replacement of the 5D

mass, m2
b , in the index of the Bessel function

ν =
√

4 +m2
b . (3.35)
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We have carried out this calculation to find the 4D mass as a function of the 5D

one, using the boundary conditions of the RS model, as in ref. [16]. The result,

shown in Fig. 3–2(a) shows that the 4D LMCS mass is approximately m4D = 1.7wk.

Fig. 3–2(b) shows this value is quite insensitive to the details of the boundary

conditions in the UV (whether they are Neumann, Dirichlet, or mixed), or the

method of gluing the throat to the CY. Fig 3–2 extends the result found in ref. [16]

from m2
5d ≥ 0 to include the Breitenlohner-Freedman bound m2

5d ≥ −4. It indicates

that finding the LMCS in 5D corresponds to finding the 4D LMCS as well, i.e.,

m2
4D is a monotonically increasing function of m2

5D.. Note, these results are just the

lowest state in the radial KK tower.

Figure 3–2: (a) Left: 4D mass of the first KK state as a function of the 5D mass
(squared). The result is presented for both 5d scalars and vectors. (b) Right: de-
pendence of the 4D mass on the UV boundary conditions, for two different values of
the warp factor.
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Table 3–2: The lightest states in the KS background: we list the 5D field, its super-
multiplet, bulk mass, conformal dimension, and T 1,1 quantum numbers. Notably,
most of the light, charged states correspond to the four form polarized along the
T 1,1, A

(4)
abcd

Properties of states corresponding to relevant operators.
Field Multiplet (5d) Mass ∆ QN’s
a VM III -4 2 (0,0,0)
a VM IV -4 2 (0,0,0)
b VM I -4 2 (0,1,0), (1,0,0)
φ3 VM I -4 2 (0,0,0)
b VM I -3 3 (1,1,±2)

B, φ VM IV -3 2 (0,0,0)
φ1, φ2 VM I -3 1 (0,0,0)
φ1, φ2 VM I -3 3 (1,0,0)
b VM I -2.33 3.29 (1,1,0)

Properties of states corresponding to marginal and irrelevant operators.
Field Multiplet (5d) Mass ∆ QN’s
hµν GM 0 4 (0,0,0)
B GM 0 4 (0,0,0)
φµ VM I 0 3 (1,0,0), (0,1,0)
a2 VM III/IV 0 4 (0,0,0)
b VM I 0 0 (0,0,0)

φ1/φ2 VM I 0 4 (1,1,±2)
φ3 VM I 0 4 (1,0,0), (0,1,0)

φ1/φ2 VM I 1.25 4.29 (1,1,0)
b VM I 1.40 4.32 (2,0,0), (0,2,0)
a1 VM III/IV 2.79 4.61 (1,0,0), (0,1,0)

Table 3–2 lists the least-massive states in the system; notably several saturate

the Breitenlohner-Freedman bound, and the field b(x) from the 4-form is the

lightest charged state. Interestingly, most of the lightest charged states come from

the 4-form, or the 10D graviton. This table is useful for quick identification of the

LMCS and possible irrelevant operators that may be turned on in the background

to accomodate the decay.
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3.3.2 Interactions of the LMCS

We have seen that in terms of the 10D fields, the LMCS is contained in the

RR 4-form A
(4)
abcd polarized along the internal T 1,1 directions, resulting in a massive

scalar field b(xµ, r) from the 5D point of view.1 Therefore the relevant terms in the

action for type IIB supergravity (3.26) are

SIIB(A(4)) =
1

2κ2
0

∫
d10x
√
−G

[
− 1

240

(
F (5)

)2
]

+
1

2κ2
0

∫
A(4) ∧ F (3) ∧H(3) .

(3.36)

Let us now try to follow the example of subsection 3.2.1 by turning on the

CFT operator used by ref. [11] to stabilize the D3 moduli. As shown there, this

operator corresponds to a KK mode of the warped metric on the T 1,1 with quantum

numbers (1, 1, 0), call it δg
(1,1,0)
ab . In combining this operator with the LMCS in the

kinetic term for Aabcd, the way to make a T 1,1 singlet combination which is closest

to the 6D example is to choose the two different species of LMCS for the Aabcd

factors:

Ldecay =

∫
dr d 5y

√
g6 δg

aa′

(1,1,0) h
µν ∂µA

(0,1,0)
abcd ∂νA

(1,0,0)
a′b′c′d′ g

bb′gcc
′
gdd

′
(3.37)

where ya are the coordinates of T 1,1 and hµν is a massless graviton. Notice that the

T 1,1 quantum numbers of the various factors are such that their product contains a

singlet (since j, l are angular momentum quantum numbers for the SU(2) factors,

1 ⊗ 1 = 0 ⊕ 1 ⊕ 2), so the integral over ya should not vanish. However, this

1 Our conventions for indices are: capital Latin letters {M,N, . . .} run over all
directions, small Latin letters {a, b, . . .} run over internal directions, small Greek
letters {µ, ν, . . .} run over the four noncompact dimensions
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vertex involves the two different LMCS species, rather than just one of them and

a massless mode of Aabcd, so it does not provide phase space for the decay of the

LMCS.

It is natural then to turn to the Chern-Simons part of the action (3.36) since it

contains a single A(4) factor. However, the Chern-Simons action contains terms of

the form ∫
d 5x d 5y εabcdeεαβγδεA

(4)
abcd ∂eA

(2)
αβ ∂γB

(2)
δε (3.38)

with no appearance at all of the metric. Therefore the operator δg
(1,1,0)
ab cannot

induce decay of the LMCS through this term. These two observations prove that

we must consider other operators in addition to the one invoked by ref. [11] for the

decay of the LMCS to proceed.

There is no a priori reason to expect that just one operator should both give

masses to the D3 moduli and mediate the decay of the LMCS. We are free to turn

on any irrelevant operator which breaks the symmetries of T 1,1 (while preserving

other desirable symmetries) since the CY will generically not respect the isometries

of T 1,1. We will use the strategy of subsection 3.2.2, and show that two operators

suffice to cause mixing of the LMCS with a massless graviphoton, which can then

mediate the decay into massless uncharged particles.

The remainder of this section describes a viable decay channel resulting from

the insertion of two operators, while the subsections of Appendix 2 go over all

possible vertices involving the LMCS and one symmetry-breaking operator—this

is similar to the implementation in ref. [9] which considered the correction due

to the single operator δg(1,1,0). Several vertices are identified as possible decay

channels, but the corresponding T 1,1 integrals have yet to be evaluated and shown
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non-vanishing. Some progress towards evaluating these integrals is presented in

Appendix 4.

The possible decay channels presented in Appendix 2 will only increase the

LMCS decay rate, but since the vertex presented in the remainder of this section

(involving background-corrections to both the metric δg(1,1,0) and δA(2,1,0)) already

avoids BBN constraints, it is not necessary to evaluate these integrals to avoid the

long-lived relic problem. The usefulness of Appendix 2 is to provide the reader

with a set of tools to help rule out, or identify, possible decay channels. Guiding

principles are considerations of phase space and 4D Lorentz invariance. Whether

the angular wavefunctions form a singlet also helps discriminate between viable

decay channels.

3.3.3 A viable decay channel

Ideally, one would like to preserve 5D supersymmetry in the process of mod-

eling the effects of the CY. This was a criterion that was used by ref. [11] in

identifying δg
(1,1,0)
ab as the most relevant (though still irrelevant) T 1,1-breaking

operator. However, by considering the tables of multiplets in ref. [12] it is easy to

see that no Lorentz- and SUSY-invariant operator can help us. We are interested

in the fields whose top (highest conformal dimension, E0) components are scalar

fields, which occurs only for the vector multiplets. These have top components

corresponding to the fields φ, π and a in the harmonic expansions (3.27-3.32).

None of these fields appear in the Chern-Simons action, nor do they appear in the

expansion of the A(4) field which contains the LMCS. Therefore these operators

are all equally incapable as the original δg
(1,1,0)
ab operator of inducing decay of the

LMCS. Somewhat surprisingly, we are forced to break either 5D Lorentz symmetry

or SUSY to destabilize the LMCS.
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To preserve SUSY, one might like to give up 5D Lorentz invariance while

maintaining it in 4D by turning on the r component of a vector field. The field

φµ which appears in A(4), eq. (3.32), is a candidate. It is found in the graviton

multiplet and gravitino I and III multiplets of [12]; however it is not the top

component of these multiplets, and thus its VEV would not preserve SUSY. Rather,

the field Bµ ∼ hµa, eq. (3.28), is the top component. But being a mode of the

metric rather than A(4), it is subject to the same arguments as δg
(1,1,0)
ab .

We are thus inevitably led to turn on a SUSY-breaking operator. As in the

6D model, it will be sufficient to use a higher KK mode of Aabcd, namely A
(2,1,0)
abcd .

This together with δg
(1,1,0)
ab has the right quantum numbers to neutralize the charge

of the LMCS b(1,0,0), using the representation theory of SU(2). In the same way,

b(1,0,0) gets its mixing from the metric perturbation δg
(1,1,0)
ab combined with A

(2,1,0)
abcd .

As shown in ref. [12], the conformal dimension of the operators corresponding to the

KK modes of Aabcd (in vector multiplet I) is given by

∆ = E0 =
√
H0 + 4− 2 . (3.39)

Since the state A
(2,1,0)
abcd has H0 = 48, its dimension is

∆210 = 4.93 > 4, (3.40)

and therefore turning on a small background for this state results in an exponen-

tially decaying perturbation in the throat. For reference, we note that the operator

corresponding to the δg
(1,1,0)
ab background used by [11] to give masses to the D3

moduli is the top component of vector multiplet I whose conformal dimension is

∆ = E0 + 2, hence

∆110 =
√

28 ∼= 5.29 . (3.41)
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In this way, we obtain mixing between b and the graviphoton hrµ in close

analogy to the 6D model. The angular integrals from the T 1,1 in the mixing

amplitude are proportional to (see Appendix 4 for some guidance in evaluating this

integral)∫
d cos θ1d cos θ2 Y1,0,0 Y1,1,0 Y2,1,0 ∝

∫
d cos θ1d cos θ2 Feven(θ1, θ2) 6= 0 . (3.42)

The integral does not vanish because we are integrating an even function over an

even domain, so this proves that the mixing amplitude is allowed by the T 1,1 group

theory. The radial integral is similar to that of the 6D model, eq. (3.20), except z++

is replaced by −4 + ∆(1,1,0), and the U(1) quantum number m is replaced by the

T 1,1 quantum numbers (j, l, r):∫
dr e−(∆110−2)krR0(1,0,0) ∂rR

T
(2,1,0) ∼ wk . (3.43)

Here we used that RT
(2,1,0) ∼ e(4−∆210)kr, similarly to eqs. (3.18, 3.19), and R0(1,0,0) ∼

w1+ν
√
k e(2+ν)kr (see above eq. (3.16)), where ν =

√
4 +m2

b = 0 (eq. (3.34)).

Moreover since the tadpole breaks SUSY, it should come with a factor of the SUSY-

breaking scale M3/2 rather than Ms. Following the 6D example, we then estimate

the effective interaction induced by LMCS-graviphoton (ψ-hµr) mixing to be

Lint ∼ w
M3/2

M2
pm

2
ψ

r0k
2 hµν(∂α∂µψ)∂αhνr . (3.44)

Ignoring the moderate hierarchies between Ms, k, Mp and 1/r0, and taking mψ ∼

wMs, we find that the decay rate is of order Γ ∼ w3M2
3/2/Ms, and the decay

temperature is of order T ∼ w3/2Ms. Since the inflationary scale is of order 1014

GeV, w ∼ 10−4, and T ∼ 10−6M3/2. For electroweak baryogenesis to work,

the relics should decay before T ∼ 100 GeV, which leads to a constraint on the
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SUSY-breaking scale,

M3/2 > 108 GeV . (3.45)

Most models of string inflation based on the KKLT construction predict an

extremely small ratio of tensor to scalar fluctuations r. As was pointed out in [21],

if the SUSY breaking scale is M3/2 < 1TeV, r < 10−24 in these constructions,

so a detection of tensor modes would contradict these models of string cosmol-

ogy. Future observations of the CMB are thought to be limited to the domain

r > 10−3 [22], but the KKLT construction can breach this domain in the case of

superheavy gravitinos, M3/2 > 1013GeV. This compromise has important implica-

tions for particle phenomenology based on string theory since this is many orders

of magnitude greater than the usual gravitino mass range considered by particle

phenomenologists. We find that in order for the LMCS to decay before the epoch of

baryogenesis we are forced to conclude the SUSY breaking scale is extremely high;

so one may expect a large tensor to scalar ratio in these constructions at the cost of

a large scale of SUSY breaking.

3.4 Discussions

In this paper we have studied the problem of potentially long-lived KK

relics localized in a KS throat following brane-antibrane inflation. We found

that accidental symmetries prevent the lightest mass charged state (LMCS) from

decaying, even if the angular isometries giving rise to the conserved KK quantum

numbers are broken by the Calabi-Yau manifold to which the throat is glued.

In ref. [9], it was assumed the isometry-breaking effects of the operator δg
(1,1,0)
ab

provided a decay channel for the LMCS; however, this state either doesn’t produce

a T 1,1 singlet (so the harmonic-integral vanishes), or it doesn’t couple to states with

light decay products, so there is no phase space. Instead, for the KS background
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one must consider deformations of the throat geometry which break not only the

isometries but also supersymmetry. Such a term was used to derive the viable

interaction in eq. (3.44).

In that estimate, we omitted factors of order unity, like 1/(∆110 + ∆210 − 8).

The important point is that even if the T 1,1-breaking operators have a very high

dimension, this only mildly suppresses the strength of the interaction, since one

integrates the radial profiles over the length of the throat. The 4D effective

coupling receives UV and IR contributions, with suppression in the IR controlled

by the effects of the CY and the UV controlled by the behaviour of the LMCS (see

Appendix 3 for more details). The significant source of suppression is the factor

w1+ν , which only depends upon the 5D mass of the decaying particle through

ν =
√

4 +m2
5D. Although it is easy to find high-dimension, massive states for

which w1+ν could be a significant suppression, these will generally have fast, T 1,1-

conserving decays down to the LMCS. Appendix 2 serves to show how hard it is

to find viable decay channels, and, in the case of the T 1,1 background, indicates

the necessary isometry-breaking operator also breaks SUSY. Having found a viable

channel, we reiterate that regardless of the operator, the decay rate is set by the

UV behaviour of the LMCS, not the dimension of the symmetry-breaking operator;

thus, decay rates are much greater than in previous estimates.

The decay of the LMCS in other backgrounds should follow a similar pattern

since all fields have a kinetic term which couples to a massless graviton. Thus, by

inserting background corrections we can produce a mixing vertex like Fig. 3–1,

provided that the irrelevant operators combine to form a group singlet. From the

vertex presented in eq. (3.43) and the discussions in Appendix 3, we have seen that
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the decay rate generically behaves as

Γ ' M3
s

M2
pl

w2νL+3 , νL =


√

4 +m2
5d scalar√

1 +m2
5d vector

, (3.46)

where νL depends on the mass of the LMCS m5D, w is the amount of warping, and

we have ignored small differences between the AdS, string, and Planck scale. In the

case that the LMCS corresponds to a 5D vector field the radial behaviour changes

according to the change in νL shown—this result is presented in the appendices, but

is not relevant to the discussion of the KS background where the LMCS corresponds

to a scalar field.

In deriving eq. (3.46), the internal angular integrals enforce momentum

conservation and the radial integration of the dimensional reduction procedure

determines the overall strength of the decay. If, in some background, the LMCS has

νL > 0, the decay rate falls below the inflationary scale Msw, and observational

consequences may arise. This is not the case for the T 1,1 background since νL = 0;

but, generally, demanding decay before the onset of BBN (Γ ≥ HBBN ∝ T 2
BBN '

(1MeV)2) rules out theories whose lightest charged state does not satisfy√
4 +m2

5d ≥
[

log (MplT
2
BBN/M

3
s )

2 log (w)
− 3

2

]
. (3.47)

Alternatively, the constraint Γ ≥ ΓBBN can be viewed as a constraint on the

warp factor w. Given some LMCS with mass m2
5d, the warp factor must satisfy the

bound

w ≥
[
HBBN

Mpl

]1/(2νL+3)

, (3.48)

so we can place constraints on the inflationary scale, Mw. Fig. (3–3) indicates the

allowed parameter space for warping and the bulk mass of the tadpole for different
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backgrounds resulting from these constraints. We observe that as the inflationary

scale decreases (corresponding to increased warping, w), the LMCS decay is further

suppressed and we can rule out backgrounds whose LMCS are too massive. The

different lines in Fig. 3–3 result from changing the AdS scale. Fig. 3–4 indicates the

differences between demanding the decay rate of the LMCS be greater than either

the baryogenesis, or the BBN epochs. The baryogenesis epoch is much sooner than

the BBN epoch, and this results in tighter constraints on the allowed mass for the

LMCS for a given warped throat. For a given background and known 5D mass of

the LMCS, one may refer to these figures to determine if the particle may become a

long-lived relic, or if it can decay quickly enough.
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Figure 3–3: The remaining parameter space resulting from the condition that the
LMCS decay before the onset of BBN. The different lines correspond to different
string scales M .

Figure 3–4: The allowed parameter space resulting from the condition that the
LMCS decay before the onset of baryogenesis.
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3.5 Appendices

These appendices present a detailed investigation into various calculations

and results presented in the body of the paper, they are laid out sequentially with

the steps required in analyzing the long-lived relic problem. We focus particularly

on the AdS5 × T 1,1 KS solution, but aim to point out generalizations to different

backgrounds and specify results associated with this background.

To investigate the possibility of long-lived relics in some background, the

general procedure will consist, firstly, of identifying the least-massive charged state.

In this case, charge refers to a state carrying non-zero momentum along the internal

directions. The next step is to identify the various couplings of the field. This

can be cumbersome in higher-dimensional theories because the decomposition of

vertices into various polarizations over our four spacetime directions can result in

numerous possibilities. This step is aided by phase space considerations since the

LMCS can only decay into massless particles, as well as Lorentz violations and

group theory considerations. Additionally, at least one member of the vertex must

encode the isometry-violating information induced by the CY on the finite throat

since the isometries are preserved otherwise. Not all states are sourced however,

since they must not disrupt the background behaviour and they should preserve

4D Lorentz invariance; this restricts the deformations to states which correspond

to irrelevant operators in the dual CFT description (this will impose the constraint

that the conformal dimension of the source satisfies ∆ > 4). In the warped-

reheating scenarios the deformations are induced by propagating the effects of the

complicated geometry of the CY in the UV down the finite throat. This source

introduces a tadpole correction to the background which catalyzes the charge-

violating decay of the LMCS. Finally, we are interested in the resultant 4D vertex
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so we must dimensionally reduce the system. This will require explicit knowledge of

the radial behaviour of the LMCS and the source since these wavefunctions bring in

powers of the warpfactor, setting the overall scale of the decay.

Appendix 1: Identifying the LMCS

This section seeks to identify the lightest-mass charged-state (LMCS), plus

lays out some of the notational conventions used within the article. We focus on

the LMCS because heavier states can shed their charge via couplings to massless

gravitons or lighter charged states and thus are not long lived. Thus, the possible

long-lived relics corresponds to the lightest charged state. A simple example of

this would be a five-dimensional theory with a U(1) isometry group along x5.

Separation of variables gives an internal wavefunction behaving as ei2πnx
5

with n

quantized. In this case the LMCS corresponds to n = 1, and any couplings to

massless particles will give, upon dimensional reduction, integrals behaving as∫ √
G55 dx

5ei2πnx
5 ' δn,0 , (3.49)

indicating that the decay may proceed only in the case n = 0, and that the LMCS

(n = 1) has no direct decay channel. The story is more complicated mathematically

for realistic supergravity backgrounds, but the qualitative understanding is the

same.

Although the details for this analysis can be applied to other background

geometries and other theories, we proceed in the T 1,1 case. In what follows we

tabulate the lowest-mass states for the 5D scalar fields amongst the various multi-

plets of Ceresole et al. [12]. Starting from the action of 10d type IIB supergravity

on AdS5 × T 1,1, they perform the dimensional reduction to five dimensions using
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the harmonic expansions listed in Table 3–1. The field content includes the com-

plex 0-form and 2-form B and A(2) respectively, the real self-dual four-form A(4),

the 10D metric GMN(x, y), and ψM and χ are fermionic fields which are zero in

this background. We use the conventions that capital Latin letters {M,N, . . .}

run over all directions, small Latin letters {a, b, . . .} run over the internal direc-

tions {y1, y2, y3, y4, y5} of T 1,1, latter-alphabet Greek letters {µ, ν, . . .} run over

our four dimensions, early-alphabet Greek letters {α, β, . . .} run over the AdS

with r denoting the radial AdS coordinate. We use the collective coordinates

x ∈ {x0, x1, x2, x3, r}, y ∈ {y1, y2, y3, y4, y5}, and xµ ∈ {x0, x1, x2, x3}.

Anticipating the scalar polarization of the 4-form as the LMCS and its impor-

tant couplings to the graviton, we write out explicitly their harmonic expansions.

These are in terms of internal T 1,1 quantum number {ν} ∈ {(j, l, r)} and polariza-

tion tensors ε:

hµa(x, y) =
∑
{ν}

B{ν}µ (x)Y {ν}a (y)

h(ab)(x, y) =
∑
{ν}

φ{ν}(x)Y
{ν}

(ab) (y)

haa(x, y) =
∑
{ν}

π{ν}(x)Y {ν}(y)

Aabcd(x, y) =
∑
{ν}

b{ν}εabcd
eDeY {ν}

Aµbcd(x, y) =
∑
{ν}

φ{ν}µ εbcd
efDeY {ν}f . (3.50)

Having defined our notation, we now refer to the tables of Appendix C of

Ceresole et al. [12] and compute the KK mass states for the various multiplets;

these tables give the mass formula for all 5D fields. A list of the lightest states is

given in Table 3–2, and we observe that most of the lightest states are uncharged
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in the T 1,1, except for the field b(x) in vector multiplet I. This is our possible long-

lived relic, corresponding to the 4-form polarized along the T 1,1 directions, with

quantum numbers (j, l, r) ∈ {(1, 0, 0), (0, 1, 0)} and m2
5d = −4 (in AdS units).

We also see that the five lightest charged states correspond to b(x), and the first

state corresponding to an irrelevant operator also belongs to the b-field. Another

important observation is the limited number of massless modes which, in turn,

limits the number of possible decay channels of the LMCS since there is only phase

space to decay into massless states.

Appendix 1.1: Background Behaviour

Having identified b(x) as the lightest charged field we now focus on its cou-

plings in the type IIB action in order to determine its decay channels and decay

rate. Recalling that this state is the 4-form polarized along the T 1,1 direction,

we rewrite the IIB supergravity action with terms involving A(4). The relevant

couplings for this RR field are:

SIIB(A(4)) =
1

2κ2
0

∫
d10x
√
−G

[
− 1

240

(
F (5)

)2
]

+
1

2κ2
0

∫
A(4) ∧ F (3) ∧H(3) .

(3.51)

In this expression κ0 is related to the 10D Newton constant, F (n+1) = dA(n) is the

field strength of the RR n-form, and H(3) is the field strength of the NS 2-form

B(2). The Chern-Simons term, though providing a coupling between different fields,

does not provide a channel to shed the lightest charge since A(2) and B(2) have no

massless states. The term could provide a mixing between the RR or NS 2-forms

for the terms involving a tadpole shift, but these process are also kinematically

ruled out; this leaves the 4-form kinetic term as the only source of interactions.
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Since we are interested in the decay of the lightest charged field b(x), we fix one of

the 4-forms A(4) to have all indices in the internal directions

SIIB(A(4)) =
−1

480κ2
0

∫
d10x
√
−GGA1B1Ga2B2Ga3B3Ga4B4Ga5B5∂A1 Aa2a3a4a5︸ ︷︷ ︸

LMCS

·∂[B1AB2B3B4B5] . (3.52)

From a 4D observer’s perspective, this term still represents many possible inter-

actions due to the numerous polarizations of the 4-form and the metric; though

this can be simplified further. The fact that the background is a product space

(AdS5 × T 1,1) means there are no (5D) vector polarizations of the background

graviton, and all 5D vector fluctuations are massive in the T 1,1 background so

phase space rules out interactions with 5D graviphotons as decay products. This

imparts the general rule that metric indices must always be in the same subspace

(Ai, Bi ∈ T 1,1, or Ai, Bi ∈ AdS5), or the graviphoton must be sourced by some

deformation, giving a correction to its background behaviour. In the former case,

this leaves the following possible interactions:

⇒ SIIB(A(4)) =
−1

480gsκ2
0

∫
d4x dr d5y

√
−|GAdS5 |

√
|GT 1,1|Ga2b2Ga3b3Ga4b4Ga5b5

·
[
Ga1b1∂a1Aa2a3a4a5∂[b1Ab2b3b4b5] +Grr∂rAa2a3a4a5∂[rAb2b3b4b5]

+Gµν∂µAa2a3a4a5∂νAb2b3b4b5 ] . (3.53)

Note that the third term does not include the anti-symmetrized terms in order to

preserve 4D Lorentz invariance. To complete the dimensional reduction we expand

about background values

GMN = GMN
(0) + hMN , Aabcd = A

(0)
abcd + A

(1)
abcd , (3.54)
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using the harmonic expansions in eq. (3.50), and isolate the 4D scalar component

of the LMCS b(x) = b̂(xµ)R(r). Expanding eq. (3.53) to zeroth order and recalling

that the background is a product-space facilitates the identification of the (internal)

equations of motion and the conditions for a canonically–normalized 4D scalar field

in the action (3.53):

1√
|GT 1,1|

∂a

[√
|GT 1,1|Gbn

(0)G
cq
(0)G

ds
(0)G

et
(0)G

ap
(0)εbcde

fεnqst
g∂p
(
DfDgY{ν}

)]
= −H{ν}Y{ν}

�rRn −m2
5de
−4krRn = −m2

ne
−2krRn

−1

240

∫
d5y
√
|GT 1,1|Gbn

(0)G
cq
(0)G

ds
(0)G

et
(0)εbcde

fεnqst
gDfY{ν}DgY{µ} = δ{µ},{ν}∫

dr e−2kr RmRn = δm,n . (3.55)

The first two equations are the equations of motion along the T 1,1 and radial

directions respectively, and the last two equations are normalization and orthog-

onality conditions. H{ν} comes from the T 1,1 eigenvalues of the state and relates

to the 5D bulk mass-squared m2
5d, and mn is the 4D mass. The 5D mass was

calculated for all the supergravity fields in ref. [12], which for the LMCS b(x) is

H{ν} = 6 [j(j + 1) + l(l + 1)− r2/8], m2
5d = H{ν} + 16− 8

√
H{ν} + 4. {ν} is the set

of quantum numbers denoting the charge in the SU(2) × SU(2)/U(1) isometries of

the T 1,1. Although the T 1,1 harmonics give a bulk mass to the particles, the radial

equation is physically more important since it depends on the warped, or AdS,

coordinate r. The radial equation is similar to that of Randall-Sundrum [13] but

with a realistic mass spectrum; it results in massive modes (in both the 4D and

bulk sense) to be heavily peaked at the bottom of the throat, the IR. The radial
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solutions for 5D scalars is found to behave as

Rn(r) =

√
k we2kr

Jν(xn)

[
Jν
(
xnwe

kr
)

+ bnνYν
(
xnwe

kr
)]
, ν =

√
4 +H{ν} , (3.56)

where w = e−krc is the warping, and xn ≡ mnekrc

k
∼ O(1); that is, mn is at

the inflationary scale, while mne
krc is the AdS scale. For massive states, the

asymptotic behaviour of the radial solution is dominated by the Jν solution which

peaks in the IR, while both solutions are of the same order in the UV. Through

a careful limiting procedure one can recover the massless solution of a constant

wavefunction in the bulk, normalized at the string scale. With this semi-qualitative

understanding of the radial wavefunction we gain the naive insight that if more

massive modes enter a vertex the radial integration is more weighted, so we expect

a larger effective 4D coupling between massive states. This may further dampen our

optimism since the LMCS can only decay into massless states, but it also confirms

our intuition that very massive states can easily decay into several lighter states.

This insight was the basis of claims for initial investigations of warped reheating,

where only the radial behaviour was tracked [2, 3, 4, 5], and reheating was found to

be extremely quick.

As will be seen, there are numerous couplings of the LMCS to 5D vector fields

in addition to scalar couplings. Additionally, in other backgrounds the LMCS may

correspond to a 5D vector itself. They will turn out to have a slightly different

radial behaviour which can effect conclusions meant to apply to scalar fields. For

these reasons, we present the dimensional reduction and analysis of spin 1 fields to

add to the base of literature dealing with 1-forms, and to remind readers of previous

results [20]. Following the notation of Ceresole et al. [12] (eq. 3.51d), we expand the
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5D vector fluctuation of the 4-form as

Aµabc(x, r) =
∑
{ν}

φ{ν}µ (x)Y
{ν}
abc (y) . (3.57)

Note we temporarily use the notation α , β , γ , δ ∈ {xµ, r} for the AdS5 directions,

while µ , ν ∈ {xµ} denote our 4-brane. From the kinetic term

Skin(φr) =
−1

480κ2
0

∫
d10x
√
−GGcqGdsGet

[
GαβGγδ∂[αAγ]cde∂[βAδ]qst

]
=
−1

480κ2
0

∑
{µ} {ν}

∫
d5x
√
−|GAdS5 |GαβGγδ∂[αφ

{µ}
γ] ∂[βφ

{ν}
δ]

·
∫
d5y
√
|GT 1,1|GcqGdsGetY

{µ}
cde Y

{ν}
qst (3.58)

we identify the canonical-normalization constraint

1

120

∫
d5y
√
|GT 1,1|Gcq

(0)G
ds
(0)G

et
(0)Y

{ν}
cde Y

{µ}
qst = δ{µ},{ν} (3.59)

which leaves a canonically normalized action for a vector field φγ:

Skin(φr) =
−1

4κ2
0

∫
d5x
√
−|GAdS5 |GαβGγδ∂[αφγ]∂[βφδ] . (3.60)

From this point on the discussion may be applied to any 5D vector field, the

difference coming from the orthogonality conditions over the internal directions and

the bulk mass generated by the harmonics over these directions. Variation of the

above, together with a mass term m2
5dφ

αφα (which comes from derivatives over the

T 1,1 directions) gives

δS = − 1

2κ2
0

∫
d5x

[
−∂α

(√
−|GAdS5|GαβGγδFβδ

)
−m2

5dG
γδφδ

]
δφγ , (3.61)
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where Fβδ = ∂[βφδ]. From the previous equations of motion one finds the radial

profile for each component of the 5D vector satisfies Bessel’s equation, behaving as

R1−form(r) '
√
k wekr

[
Jν
(
xnwe

kr
)

+ bnνYν
(
xnwe

ky
)]
, ν =

√
1 +m2

5d . (3.62)

In comparison with the scalar field behaviour of eq. (3.56), the important differ-

ences are the single power of the warpfactor in front of the Bessel functions and

the different index on the Bessel functions; these differences affect the behaviour at

the bottom and top of the throat respectively. In the asymptotic limit the radial

wavefunction behaves as R(r) ∝ exp
(

1
2
kr
)
, which is much less peaked than the

scalar behaviour R(r) ∝ exp
(

3
2
kr
)
. This may cause some concern because the ra-

dial overlap with a 1-form seems suppressed, so one naively expects decays involving

5D vectors to be subdominant with similar decays involving scalars. In the context

of turning on a source for this field though, we actually gain an advantage. As will

be shown in the next section, the 4D effective vertex receives contributions from the

UV and IR regions of the AdS coordinate, r. Background corrections are suppressed

in the IR while massive fluctuations are suppressed in the UV, and the scale of the

4D coupling is determined by the dominant contribution. For a vertex involving

massive fluctuations, the wavefunction evaluated at the top of the throat behaves

as R(w) ' w
√
k Jν(w) ∼ w1+ν for both scalars and vectors. However since vector

fields have ν =
√

1 +m2
5d and scalars ν =

√
4 +m2

5d, a scalar with the same bulk

mass will be more suppressed. So one may conclude that isometry-breaking decays

in backgrounds with a vector LMCS decay faster than a background with a scalar

LMCS.

3− 39



3− 40

Appendix 1.2: Background Affects: introducing a UV source

In the previous section we determined the radial behaviour of 5D scalar and

vector fields. We found two Bessel-function solutions that were constrained by

a Z2 symmetry imposed in both the UV and IR, analogous to the RSII setup.

Qualitatively, both vector and scalars were peaked in the IR and suppressed in

the UV, but scalars were seen to be more peaked and vectors less-suppressed.

Although we have belaboured it, this is an important result because the LMCS is

forbidden to decay in the T 1,1 background, but the Calabi-Yau (CY) region induces

deformations of the background. As will be shown, these deformations are also

suppressed by the radial behaviour of the mode being perturbed, but they also

allow for momenta-violating decays since the geometry is being deformed.

To track the Calabi-Yau affects on the AdS background we introduce a source

term localized in the UV or CY region that can support the long-lived relic. Owing

to the complicated nature of the Calabi-Yau space we should include source terms

for all possible modes perturbed by the UV geometry, but we only need to track

UV sources which can accommodate the decay of the LMCS. At the level of the

action, the presence of the CY introduces a source located at the top of the throat;

we track a source Sabcd{ν} supporting the b-field with quantum numbers {ν}:

S{ν} =

∫
d10x
√
−GSabcd{ν} Aabcd

=

∫
d10x
√
−G φ̃M4

s δ(r)G
an
(0)G

bq
(0)G

cs
(0)G

dt
(0)G

ap
(0)εnqst

fDfY{ν}︸ ︷︷ ︸
source

·
∑
{ν′}

b{ν′}(x)εabcd
gDgY{ν′}(y)︸ ︷︷ ︸

field

. (3.63)
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The source introduces a defect supported in the UV by δ(r), and carries T 1,1

charge in the harmonic Y{ν}. The strength of the source is parameterized by φ̃, and

is naturally the string scale. The contribution of φ̃ parametrizes the strength of

the UV source and carries a constant profile along our four directions in order to

preserve Lorentz invariance. One may propagate the deformation down the throat

using Green’s function solutions expanded in terms of the radial eigenmodes; or

alternatively, one may directly solve the radial EOM (3.55). In the latter case, the

source acts like a UV boundary condition, so the correction to massless bosons

induced by the finite throat satisfies

�rR0,{ν} −m2
5de
−4krR0,{ν} = φ̃δ(r) . (3.64)

This gives two particular solutions, though one is subdominant over the entire

domain so we are left with (the tadpole shift)

⇒ R0,{ν}(r) =
√
kφ̃e(2−ν)kr =

√
k φ̃ e(4−∆{ν})kr , ν =

√
4 +m2

5d , ∆ = ν + 2 ,

(3.65)

where ∆ is the conformal dimension of the operator. This is one of the more

important results of this paper, representing the effect of propagating an isometry-

breaking source (parameterized by φ̃) down the throat. In order to preserve the

background solution we demand that this solution decay in the IR, giving the

constraint that only sources with conformal dimension ∆ > 4 are turned on.2

2 Note that the same procedure indicates that corrections to AdS5 vectors must
satisfy ∆ > 2, while even higher-spin objects cannot be sourced in the AdS5 with-
out ruining Lorentz invariance. In this paper we are only concerned with corrections
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Ultimately we are interested in the 4D effective coupling for a vertex which

will allow the LMCS to decay. A possible vertex will contain, at least, contributions

to the radial integral coming from the LMCS and from the background correction.

Integrating over the radial dimension gives the overlap of these wavefunctions; but

since the tadpole and LMCS peak in different regimes the effective coupling will

typically be small. One may try searching for vertices with more overlap but one

is restricted by phase space to massless modes which are constant in the radial

direction. So, the best-case scenario should generically be a vertex involving only

one LMCS and one insertion of the background correction, other contributions to

the radial integral will correspond to massless modes which are constant at the

string scale. Before quantifying these statements (see Appendix 3), we first attempt

to find a vertex which can form a T 1,1 singlet involving the LMCS and one insertion

of a background correction, and which can proceed kinematically.

Appendix 2: Tadpole Decay—possible decay channels

In this section we consider each coupling of the LMCS, and the resultant

4D coupling coming from the possible vertices in eq. (3.53). The 4D interaction

is obtained by integrating out the T 1,1 and AdS directions to obtain an effective

coupling. The explicit evaluation of the internal angular-integrals is left for a

separate section because they are often complicated in nature.

Owing to the countably-large number of polarizations of the 5-form field

strength, the number of possible decay channels is quite overwhelming. To proceed

we break up the search by exhausting the various cases in a methodical fashion;

to the scalar background, not sources effecting vectors. The understanding of this
radial behaviour is still important for vector fluctuations.
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Table 3–3: The conformal dimension for possible sources supporting the tadpole
shift. Also listed are the masses of the uncharged state; this is important in phase-
space considerations of possible decay channels.

5D field (j, l, r) ∆ (j, l, r) of m2
5D = 0

b(x) (1,0,0) VMI: 2 (0,0,0)
b(x) (1,1,0) VMI: 3.29
φ(x) (1,0,0) VMI: ≤ 4 (1,0,0)
Bµ(x) (1,0,0) GM: 7 NA
φµ(x) (1,0,0) GM: 5 (0,0,0), (1,0,0)
π(x) (1,0,0) VMII: 10 NA
b±µν(x) (1,0,0) GM: 6 NA

starting from the action (3.53) we consider each polarization of the second 4-form

separately. The search is aided by the harmonic expansion for the various fields

given in Table 3–1, and many possibilities may be ruled out by the fact that we

can only turn on a source for states corresponding to irrelevant operators. The

search is further aided by kinematic considerations, and we will disregard couplings

with fluctuations of particles that aren’t massless in the T 1,1 background. The

relevant tadpoles and their conformal dimension are listed in Table 3–3. Also listed

is the T 1,1 charge giving rise to a massless bulk state, which shows we can only

couple to Aabcd, Hab, Aµbcd, and hµν since other fields don’t have massless states.

The interaction vertices analyzed here include only one insertion of a background

correction. This is similar to the attempts in ref. [9], which assumed the least

irrelevant operator preserving SUSY would allow the LMCS to decay. In this

section we will see that such a term will not suffice. Furthermore, we will show

in the next section that the behaviour of the LMCS sets the decay scale, not the

symmetry-breaking operator. This leads to a faster decay rate than previously

reported.
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Returning to the IIB supergravity with one of the 4-forms to correspond to the

LMCS Aabcd(X
M) =

∑
{ν} b(x)εabcd

fDfY {ν}(y) leaves

SIIB(AABCD) =
−1

480κ2
0

∫
d10x
√
−G

[
GA1B1Ga2B2Ga3B3Ga4B4Ga5B5

·∂A1Aa2a3a4a5∂[B1AB2B3B4B5]

]
. (3.66)

In the following subsections we go over the possible tadpoles that may be turned

on, discussing the origin of the coupling, the possible decay channel, and the

resultant angular integral. The sections are divided according to the polarization of

the second 4-form in eq. (3.66). The first scenario is described in the greatest detail

to acquaint the reader with the possible arguments used to exclude decay channels.

Appendix 2.1: {B2, B3, B4, B5} ∈ T 1,1:

√
−G

[
GA1B1Ga2b2Ga3b3Ga4b4Ga5b5∂A1Aa2a3a4a5∂B1Ab2b3b4b5

]
(3.67)

In this case both 4-forms are polarized along the T 1,1. The first 4-form is fixed to be

the LMCS while the second can be thought of as a sum over all possible states. In

order for the decay to proceed one of the fields in eq. (3.66) must be taken as the

background correction; this could either be a graviton or the other 4-form.

First let’s consider the LMCS decay proceeding through the tadpole of a

background metric Ga2b2 , so we take all other fields to be massless fluctuations

or background values. The 4-form is massless when it is a T 1,1 singlet, while the

massless graviton corresponds to a state singly-charged in one the SU(2)’s of T 1,1,
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Gab = φ{1,0,0}(x)Y
(ab)
{1,0,0}(y)

I =
−1

480κ2
0

∫
d10x
√
−G

GA1B1 Ga2b2︸ ︷︷ ︸
tadpole

Ga3b3Ga4b4Ga5b5∂A1 Aa2a3a4a5︸ ︷︷ ︸
LMCS

∂B1 Ab2b3b4b5︸ ︷︷ ︸
(0,0,0)−fluct.

 .

(3.68)

The next step would be to identify the background correction which has nonzero

angular overlap; but before finding this state we note this interaction disappears for

a simple reason. For kinematic reasons we must take a massless 4-form fluctuation,

resulting in a state which is constant in the T 1,1. The 4-form, however, is expanded

in derivatives over the scalar harmonics, so this possibility will always vanish.

This leaves the possibility of turning on a tadpole for the 4-form, and leaving

massless fluctuations of the metric. The correction must correspond to an irrelevant

operator, so the dominant correction has T 1,1-charge {ν} = {1, 0, 0}, A{ν}abcd =

b{ν}(r)εabcd
eDeY {ν}(y).

I =
−1

480κ2
0

∫
d10x
√
−G

GA1B1 Ga2b2Ga3b3Ga4b4Ga5b5︸ ︷︷ ︸
massless−fluct

∂A1 Aa2a3a4a5︸ ︷︷ ︸
LMCS

∂B1 Ab2b3b4b5︸ ︷︷ ︸
tadpole

 .

(3.69)

The expression simplifies by recognizing the tadpole is constant in M4, so B1 ∈

{r, T 1,1}, and four combinations for the GA1B1 remain:

• A1 = r, B1 ∈ T 1,1 or B1 = r, A1 ∈ T 1,1. In this case we must take GA1B1

as a fluctuation since it vanishes in the background. This is always a massive

fluctuation though, so the decay cannot proceed.

• A1 = r, B1 = r. Then GA1B1 can be a background value, or a massless

fluctuation Grr = π{ν}(x)Y
(ab)
{ν} with ν = (j, l, r) = (0, 0, 0).
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• A1, B1 ∈ T 1,1. Then GA1B1 can be a background value, or a massless

fluctuation Ga1b1 = φ{ν}(x)Y
(a1b1)
{ν} (y) with ν = (j, l, r) = (1, 0, 0).

Thus it remains to check the angular integrals coming from the last two items

above, giving a decay into two massless gravitons with the following 5D coupling

and angular integral F̂ (Ψ):

• 5D coupling:

√
|GAdS|
2κ2

0

Grr φ2
(1,0,0)︸ ︷︷ ︸

(1,0,0)−fluct.

∂r

b(1,0,0)(x)︸ ︷︷ ︸
LMCS

 ∂r

b(1,1,0)(r)︸ ︷︷ ︸
tadpole

 · F̂ (Ψ) (3.70)

F̂ (Ψ) =

∫ √
|GT 1,1| d5y Y

(a2b2)
(1,0,0) Y

(a3b3)
(1,0,0)G

a4b4Ga5b5εa2a3a4a5

fDfY(1,0,0)εb2b3b4b5
fDfY(1,1,0)

(3.71)

• 5D coupling: √
|GAdS|
2κ2

0

φ2
(1,0,0)︸ ︷︷ ︸

(1,0,0)−fluct.

b(1,0,0)(x)︸ ︷︷ ︸
LMCS

b(1,1,0)(r)︸ ︷︷ ︸
tadpole

·F̂ (Ψ) (3.72)

F̂ (Ψ) =

∫ √
|GT 1,1| d5y Y

(a1b1)
(1,0,0) Y

(a2b2)
(1,0,0)G

a3b3Ga4b4Ga5b5 ·

∂a1

(
εa2a3a4a5

fDfY(1,0,0)

)
∂b1
(
εb2b3b4b5

fDfY(1,1,0)

)
. (3.73)

Without explicitly evaluating the above angular integrals F̂ , we expect these

terms to disappear owing to the even/odd behaviour of the integrand, though this

needs to be verified. One could also look for overlap with more-irrelevant tadpoles

corresponding to states like ν = (2, 2, 0), but this results in a more massive source

and greater suppression factor in the effective coupling. The final step of integrating

out the radial behaviour is saved for Section 3.5, but assuming a nonzero overlap
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of the angular wavefunctions we can read off the 5D coupling from the first line in

eqs. (3.71) and (3.73).

Appendix 2.2: {B2} ∈ AdS5 , {B3, B4, B5} ∈ T 1,1:

√
−G

[
GA1B1Ga2µGa3b3Ga4b4Ga5b5∂A1Aa2a3a4a5∂B1Aµb3b4b5

]
(3.74)

In this case the second 4-form is polarized as a 5D vector. An immediate simplifica-

tion of the above Ga2µ = Bµ(x)Y a2(y) cannot take its background value since it is

a product space, resulting in trivial cross-terms otherwise. Furthermore, since this

(5D) particle Bµ(x) is always massive we must use it as the tadpole instead of a

fluctuation. With the harmonic expansion

Aµabc =
∑
{ν}

φ{ν}µ (x)Y
{ν}
abc (y) =

∑
{ν}

φ{ν}µ (x)εabc
deDdY {ν}e (y) (3.75)

and the vector representation [12]

Y {ν}e =



Y
(j,l,r+1)

+1

Y
(j,l,r−1)
−1

Y
(j,l,r−1)

+1

Y
(j,l,r+1)
−1

Y
(j,l,r)

0


(3.76)

we see that there is, in principle, the possibility of overlap with the LMCS since

the e = 5 component is the same scalar harmonic as the LMCS. Additionally the

second 4-form must be in the massless (though charged) ν = (1, 0, 0) state since the

vector-polarization of the 4-form Aµabc is constant in the background and massive
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otherwise. Finally, any scalar metric-fluctuations must carry charge (1, 0, 0) to be

massless in the bulk.

With Ga2µ = Bµ(x)Y a2

(1,0,0) and Bµ = φ̃εµ(r)e(1−ν)kr as a (vector) background

correction carrying strength φ̃, we are left with two possible decay channels

(corresponding to A1 = B1 = r, and A1 , B1 ∈ T 1,1).

• 5D coupling:

√
−|GAdS5 |

2κ2
0

Grr Bµ(r)︸ ︷︷ ︸
tadpole

φ(1,0,0)(x)︸ ︷︷ ︸
met.−fluct

∂r

b(1,0,0)(x)︸ ︷︷ ︸
LMCS

 ∂r

φ(1,0,0)
µ (x)︸ ︷︷ ︸

vect.−fluct.

 · F̂ (y)

F̂ (y) =

∫
d5y
√
GT 1,1 Y a2

(1,0,0)︸ ︷︷ ︸
tadpole

Y
(a3b3)

(1,0,0) G
a4b4Ga5b5︸ ︷︷ ︸
background

εa2a3a4a5

eDe Y(1,0,0)︸ ︷︷ ︸
LMCS

εb3b4b5
fgDf Y (1,0,0)

g︸ ︷︷ ︸
mφµ=0

(3.77)

• 5D coupling:

√
−|GAdS5 |

2κ2
0

Bµ(r)︸ ︷︷ ︸
tadpole

φ(1,0,0)(x)︸ ︷︷ ︸
met.−fluct

b(1,0,0)(x)︸ ︷︷ ︸
LMCS


φ(1,0,0)

µ (x)︸ ︷︷ ︸
vect.−fluct.

 · F̂ (y)

F̂ (y) =

∫
d5y
√
GT 1,1 Y a2

(1,0,0)︸ ︷︷ ︸
tadpole

Y
(a1b1)

(1,0,0) G
a3b3Ga4b4Ga5b5︸ ︷︷ ︸
background

∂a1

εa2a3a4a5

eDe Y(1,0,0)︸ ︷︷ ︸
LMCS



·∂b1

εb3b4b5fgDf Y (1,0,0)
g︸ ︷︷ ︸
mφµ=0

 (3.78)

To evaluate F̂ (y) we need the vector harmonics for Y
(1,0,0)
a and the tensor harmonics

for Y
(1,0,0)

(ab) . If F̂ (y) 6= 0 then we have found a viable decay channel. Of all the

vertices we have identified this seems like the most-likely candidate.
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A possible pitfall for these two interaction terms is that they can give rise to

4D effective vertices of the type:

geff =

∫
d4x

√
|η|2εαφ(1,0,0)

α (x)b(1,0,0)(x)φ(1,0,0)(x) . (3.79)

The polarization tensor of the background correction εα picks a preferred direction

in spacetime and breaks Lorentz invariance or 3D rotational invariance. This

imposes constraints on the magnitude of the time component of εα, and can modify

the dispersion relation for 4D gravitons [25]. One must be careful to use only the

radial polarization of the background εµ, which also picks out the scalar fluctuation

of 5D vector αµ.

Appendix 2.3: {B2, B3} ∈ AdS5, {B4B5} ∈ T 1,1:

√
−G

[
GA1B1Ga2µGa3νGa4b4Ga5b5∂A1Aa2a3a4a5∂B1Aµνb4b5

]
(3.80)

We expand the fields as

Aµνcd =
∑
{ν}

b±µν(x)Y
{ν}
cd (y)

Gaµ =
∑
{ν}

B{ν}µ (x)Y {ν}a . (3.81)

Employing phase-space considerations and recalling the background is a product

space we must have, in this case, both Ga2µ and Ga3ν as tadpole insertions. This

will bring twice the warpfactor suppression in the decay channel making this a

sub-dominant process. Ignoring the kinematics for a moment, we will find a second

reason to believe this process does not contribute to the decay width.
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If we insert a tadpole for b±µν(x), it is constant in 4D to preserve Lorentz-

invariance, we are left with b±µν(x) = b±µν(r), so that A1 = B1 = r or A1 , B1 ∈ T 1,1,

and this interaction reduces to

√
−G

[
GA1B1Bµεa2Bνεa3Ga4b4Ga5b5∂A1

(
bεa2a3a4a5

eDeY(1,0,0)

)
∂B1

(
εµνY

(1,0,0)
b4b5

)]
.(3.82)

In this form it is evident that in order to preserve 4D Lorentz invariance we require

µ = ν = r for the background polarization εµν , otherwise we pick a preferred

direction. However, owing to the antisymmetric nature of the 4-form εµµ = 0∀µ so

this process cannot proceed.

Again, switching on two graviphoton tadpoles instead does not help the

situation because b±µν always carries a 5D mass in the T 1,1 background, so we are

still kinematically suppressed.

Appendix 2.4: {B2, B3, B4} ∈ AdS5, {B5} ∈ T 1,1:

√
−G

[
GA1B1Ga2µGa3νGρb4Ga5b5∂A1Aa2a3a4a5∂B1Aµνρb5

]
(3.83)

Now we must turn on at least three graviphoton fluctuations. The arguments of last

section apply here again: all graviphotons must be tadpoles to accommodate the

LMCS decay, thus introducing a large warpfactor suppression in the IR.

Ignoring phase space considerations and instead taking aµνρ as the tadpole

introduces a polarization tensor which breaks 4D Lorentz invariance so this channel

is not viable as well.
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Appendix 2.5: {B2, B3, B4, B5} ∈ AdS5:

√
−G

[
GA1B1Ga2µGa3νGρb4Ga5α∂A1Aa2a3a4a5∂B1Aµνρα

]
(3.84)

As with the previous two subsections we must use tadpole fluctuations for each

radial graviton, making this a very suppressed decay. Or, we could take Aµνρα =

εµνρα
δ∂δ (b(x))Y ν(y) as the tadpole, but this violates 4D Lorentz-invariance and is

kinematically forbidden.

Appendix 2.6: Higher-Order in
√
− det |G|:

At this point all possible interactions to zeroth order in det |G| have been

exhausted. This led to the identification of four possible decay channels expressed

in eqs. (3.71, 3.73, 3.77, 3.78). In this section we look at couplings coming in at

higher order in det |G| with the hopes of identifying more possible channels. The

tables of Ceresole et al. [12] give the 5D mass spectrum for each polarization of the

graviton so we first look at fluctuations from the 5D point of view. In general the

expansion can be performed as follows:

det (A+ εB) = detA det
(
1 + εA−1B

)
= detAelog det(1+εA−1B) =

detAeTr log(1+εA−1B) = detAeTr (εA−1B− 1
2
ε2A−1BA−1B+... ) =

detA

[
1 + εTr A−1B +

ε2

2

[(
Tr A−1B

)2 − Tr A−1BA−1B
]

+O
(
ε3
)]

.(3.85)

Applying the above result to the metric fluctuations, but with

A =

 GAdS5
µν 0

0 GT 1,1

ab

 , B =

 Hµν Hµa

Hµa Hab

 (3.86)
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we obtain:

√
−G =

√
−GAdS5

√
GT 1,1

[
1 +Gµν

AdSHµν +Gab
T 1,1Hab

+
[
GµνGabHµνHab −GµνGabHµaHνb

]
+O

(
ε3
)]
. (3.87)

The couplings involving the graviphoton Hµa and the scalar polarization Hab

do not provide couplings not considered in the previous subsections. As before,

Hµa has no massless fluctuations so the last term above is kinematically forbidden.

The first-order coupling to Hµν is a new interaction, providing couplings to the 4D

graviton and the scalar polarization Hrr, which both have massless fluctuations

when they carry no internal momenta.

To isolate the 4D couplings we write the fluctuations of the AdS5 metric as

Hµν =

 e−2kr (ηµν + hµν) 0

0 1 + hrr

 (3.88)

and repeat the expansion (3.85) with

A =

 e−2krηµν 0

0 1

 , B =

 e−2krhµν 0

0 hrr

 . (3.89)

This particular parametrization is convenient since the zero mode of the graviton

is constant along the radial direction. Then we expand the AdS5 determinant to

second order in the fluctuations:

√
−GAdS5 = e−4kr

[
1 + ηµνhµν + hrr +

1

2

[
(ηµνhµν + hrr)

2 − ηµβηναhαβhµν − h2
rr

]]
(3.90)

The only new possibility is the coupling to the 4D graviphoton. We can derive

the vertex responsible for the decay of the b-particles into massless gravitons by

3− 52



3− 53

considering the term in the action providing this coupling:

−1

480κ2
0

∫
d10x
√
−GGbnGcqGdsGetGap∂a Abcde︸ ︷︷ ︸

LMCS

∂[pAnqst]︸ ︷︷ ︸
tadpole

. (3.91)

Choosing one of the A’s to be a tadpole and the other to be a fluctuation mode we

obtain the KK number violating vertex involving the b-field and two massless 4D

gravitons. The factors of the metric that are contracted with the field-strength F5

are all coming from the T 1,1 metric and they do not bring any additional powers of

the warp factor. We can see this by looking at the full 10D metric, eq.(31) of [18]:

ds2
10 = h−1/2 (z) ds2

4 + h1/2 (z)
(
dz2 + z2ds2

T 1,1

)
(3.92)

h (z) = b0 + 4π
gsN + a (gsM)2 ln (z/z0) + a (gsM)2 /4

z4
(3.93)

In the near-horizon limit we can approximate h (z) ∼ C4/z4 and the metric takes

the form:

ds2
10 =

z2

C2
ds2

4 +
C2

z2
dr2 + C2ds2

T 1,1 (3.94)

Finally, defining C2

z2
dz2 = dr2 the metric can be brought to the usual Randall-

Sundrum form. Taking into account that the massless gravitons have a constant

profile along the radial direction, the interaction vertex is then:

Sint =
−1

480κ2
0

∫ √
−ηd4x b̂ (x)

ηµνηαβ − ηναηµβ

2
hµνhαβ

∫
dre−4kr Rtadpole (r)Rb (r)

·
∫ √

−gT 1,1dV olT 1,1GapGbnGcqGdsGet∂aε
f

bcde DfY
(1,1,0)

(0) ∂pε
u

nqst DuY
(1,1,0)

(0) (3.95)

To complete the dimensional reduction we fold the T 1,1 integral into some unknown

function F̂ (y) ' O(1), and refer to eq. (3.98) for the radial integration:

Sint =
−F̂ (y)V6φ̃w

νL+1

480κ2
0

·
∫
d4x
√
−η b̂(x)

ηµνηαβ − ηναηµβ

2
hµνhαβ . (3.96)
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The result is a similar warpfactor dependence to the scalar polarizations of the

graviton found in the previous sections. So the conclusion is that higher orders

in the determinant expansion due not provide a faster decay channel. This is

consistent with the understanding the any overall scaling of the 4D coupling is

coming from the LMCS’s contribution to the radial integral and that, provided the

decay products are massless, they do not bring in any powers of the warpfactor.

Appendix 3: Effective Couplings and Decay Rates

We have seen there is no direct route for the LMCS to decay in the KS

throat but, also, a finite throat feels the presence of UV sources. This results in

a correction to the background and introduces a tadpole shift for states being

sourced. This shift accommodates the decay because it carries internal quantum

numbers, the drawback being the introduction of warpfactor suppression in the

effective coupling. To utilize the tadpole shift we require, at least, either quartic

vertices which are quadratic in A(4) so that couplings to the tadpole result in

trilinear vertices, or we require cubic interactions of the LMCS so that couplings to

the tadpole will introduce kinetic or mass-term mixing. Referring to the the type

IIB action eq. (3.26) (or eq. (3.51)) we see that all fields satisfy the mode-mixing

requirement through their kinetic term coupling to the graviton. For this particular

setup, then, the quartic interactions will be the only means to shed charge; but this

does not preclude the other mechanism from being important in other theories.

We can now go back to the various terms in the action (3.53) and characterize

the allowed decays of the charged LMCS to massless gravitons. The possibilities

were discovered in Section 3.5 and resulted in four contributions at 0th order in√
det|G| (refer to eqs. (3.71, 3.73, 3.77, 3.78)), plus one new vertex coming in

at second order in
√
det|G|. Additionally, a vertex involving insertions of two
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background corrections was discussed in Section 3.3.2 of the main text. Going back

to these vertices, we must now separate the radial behaviour from the 4D fields to

(finally) obtain the 4D vertex, including the effective coupling. In two cases the

decay product is into scalar-polarizations of the graviton and is mediated by the

background correction to the 4-form. Two other possibilities are mediated by a

correction to 5D vector-polarizations of the graviton and the decay is into gravitons

plus a massless mode of the 4-form, polarized as a 5D scalar. The final case results

in decay directly to the 4D graviton, and is mediated by the correction induced by

a source supporting the 4-form. Coincidentally, these five vertices have the same 4D

coupling strength, so we present only one contribution to the decay with below.

This final step involves inserting the radial profile of the LMCS (eq. (3.56))

plus insertions of the background correction (eq. (3.65)). The easiest vertex to

evaluate is eq. (3.73), and we proceed by separation of variables into 4D wave-

functions (hatted) and the radial wavefunction as b{ν}(x) = b̂{ν}(x
µ)R{ν}(r),

φ0(x) = φ̂0(xµ)R0(r) ∝ φ̂0(xµ) (since the massless graviton is constant along the

throat)

⇒ Sint =
−1

480κ2
0

∫
d4x
√
−|ηµν(x)| b̂{ν}φ̂0φ̂0 ·

∫
dr e−4kr Rb̂Rtadpole(r)

·Msw
ν−1

∫
d5y
√
−|Gab|Gbn

(0)G
cq
(0)G

ds
(0)G

(et)
(0) G

(ap)
(0) εbcde

fεnqst
g∂a (DfYb̂) ∂p (DgYtadpole)

=
wνL−1F̂ (y)

480κ2
0

∫
d4x
√
−|ηµν(x)| b̂φ̂0φ̂0 ·

∫
dre−4kr Rb̂Rtadpole(r) (3.97)

where F̂ (y) is the O(1) value of the integral over the T 1,1.

The radial wavefunctions for all scalars (including the b-field and KK gravi-

tons) is given by eq. (3.56), while the background correction for 5D scalars is given

by eq. (3.65). Although all the vertices we have identified involve the LMCS plus
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one tadpole correction, the radial integral R can easily be generalized for a 10D

vertex with Nm massive modes, N0 massless modes, and Nt tadpoles (with ∆ > 4):

R '
∫
dre−4kr

[
ΠNm
i=1 R{νLi}(r)

]
R1(r)N0

[
ΠNt
i=1Rti(r)

]
' wNm

∫
dre−4kr

[
ΠNm
i=1e

2krJνi
(
xnwe

kr
)] [

ΠNt
i=1φ̃ie

(4−∆i)kr
]

∼
[
ΠNt
i=1 φ̃i

] [
ΠNm
i=1 w

νLi+1
]︸ ︷︷ ︸

UV−contrib

+w4−Nm
[
ΠNt
i=1w

∆i−4
]︸ ︷︷ ︸

IR−contrib

(3.98)

The integral is evaluated by splitting the domain into a small-argument behaviour

of J{ν}
(
xnwe

kr
)

(the UV) and a large-argument region (the IR), and φ̃ is the

strength of the UV symmetry breaking. With the understanding that massive

modes are heavily suppressed in the UV but normalized in the IR, while the

tadpole is suppressed in the IR and of the symmetry-breaking strength in the

UV, one can make sense of the differing contributions of eq. (3.98). We see that

the radial overlap is strongly enhanced in the IR as the number of massive modes

entering the vertex is increased. This is why the decay of heavier states is not

a problem. For the LMCS however, phase space considerations will rule out the

LMCS decay involving more than one massive mode in the vertex, and one is forced

to take Nm = 1. This fixes the UV contributions of the radial integral. Multiple

insertions of background corrections further suppress the IR contributions, but

simply add O(1) effects to the UV through the symmetry-breaking parameter φ̃.

Returning to the case of b̂(xµ) → φ̂0(xµ) + φ̂0(xµ), Nm = 1, Nt = 1, and the

interaction reduces to

Sint =
[wνL+1 + wνtad+1] F̂ (y)φ̃V6

480κ2
0

∫
d4x
√
−|ηµν | b̂φ̂φ̂ . (3.99)
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For the T 1,1 background νL = 0 < νtad so the UV behaviour dominates over the

IR contribution, and we can read off the effective coupling from above. Employing

the generic formula for decay into two massless modes (mb → m0 + m0) [17], the

relation (gsMpl)
2 = V6

2κ2
0

and recalling mb = Msxbw, xa ' 1, we find:

Γmb→0+0 =
1

16πmb

(gsMpl)
2w2νL+2F̂ (y)2φ̃2

2402
=

(gsMpl)
2w2νL+1F̂ (y)2φ̃2

16π xbMs 2402
.(3.100)

Recall that ν =
√

4 +H0 , H0 = 6(j(j + 1) + l(l + 1) − r2

8
) for the b-field in the

T 1,1 background. The factor 2402 in the denominator is largely compensated by

the 5! polarizations of the b-field in the T 1,1 in the scattering amplitude and the

orthonormality of the T 1,1 wavefunction. This is the other important result of this

work: it indicates that the LMCS decay rate is generically at the scale Mplw
2νL+1.

For the T 1,1 background νL = 0 so we find Γ ' Mplw, which is the inflationary

scale. Thus, there is little concern in this step of the reheating process.

To extend this analysis to other backgrounds we keep the conformal dimension

∆ = ∆(ν) of the LMCS as a free parameter. Then, demanding ΓLMCS > HBBN

gives constraints on either w, the scale of inflation, or we can rule out theories

whose LMCS is too massive. These ideas are elaborated in the discussions, Sec-

tion 3.4.

Appendix 4: Evaluating the Angular Integrals

The success of each decay channel requires evaluating the overlap of the

T 1,1 harmonics for the different couplings. In many cases we could not explicitly

evaluate the integrals, though we could verify that the vertex forms a group singlet.

This section describes the scalar harmonics and provides some general information

necessary for evaluating the internal integrals. The scalar harmonics have been
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calculated in ref. [23, 24] and have the expressions:

YL (Ψ) = Jl1,m1,R (θ1) Jl2,m2,R (θ2) eim1φ1+im1φ1e
i

2
Rψ , (3.101)

where the functions J are, in turn, given by hyper-geometric functions:

JΥ
l,m,R (θ) = NΥ

L (sin θ)m
(

cot
θ

2

)R
2

2F1

(
−l +m, 1 + l +m, 1 +m− R

2
; sin2 θ

2

)
JΩ
l,m,R (θ) = NΩ

L (sin θ)m
(

cot
θ

2

)R
2

2F1

(
−l +

R

2
, 1 + l +

R

2
, 1−m+

R

2
; sin2 θ

2

)
(3.102)

where JΥ is non-singular for m ≥ R/2 and JΩ is non-singular for m ≤ R/2. The

particular scalar harmonics that come into play for the states we are interested

in correspond to l = 1, m = 0, R = 0. The value of m can be inferred following

the calculation of ref. [12] where the parameters r and q were defined in terms

of the m1 and m2 “magnetic” quantum numbers for each of the SU (2) groups.

[r = m1 −m2, q = m1 + m2]. q = 0 for scalars, so for the state (j, l, r) = (1, 0, 0)

we have m1 = m2 = 0 and the scalar harmonic (we also list some other common

harmonics)

Y(1,0,0) (y) = J1,0,0 (θ1) J0,0,0 (θ2) = N2
L cos θ1

Y(0,1,0) (y) = N2
L cos θ2

Y(1,1,0) (y) = N2
L cos θ1 cos θ2

Y(2,1,0) (y) = N2
L

[
cos θ2 +

3

2
cos(2θ1 + θ2) +

3

2
cos(2θ1 + θ2)

]
/4 . (3.103)

To evaluate the various integrals we also require the expression of
√
g where g

is the metric on the T 11. If each SU(2) has Euler-angle coordinatization (θi, φi, γi),

and the left-coset acts to mod-out the γi’s (ψ = 1√
2

(γ1 − γ2)), the metric has the
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expression [ψ, θ1, θ2, φ1, φ2]:

gab =



1
9

0 0 cos θ1
9

cos θ2
9

0 1
6

0 0 0

0 0 1
6

0 0

cos θ1
9

0 0 1
9

(
1 + sin2 θ1

2

)
cos θ1 cos θ2

9

cos θ2
9

0 0 cos θ1 cos θ2
9

1
9

(
1 + sin2 θ2

2

)


(3.104)

with the determinant

√
g =
|sin θ1| |sin θ2|√

11664
, (3.105)

and coordinate ranges

θi ∈ (0, 2π) , βi ∈ (0, π) , γi ∈ (0, 4π) . (3.106)

Appendix 4.1: The vector harmonics

Many of the possible decay channels found in Appendix 2 involved vector

harmonics. Let us look here in more detail at the vector harmonics for the quantum

numbers (1, 0, 0). The expression is:

Y {(1,0,0)}
e =



Y
(j,l,r+1)

+1

Y
(j,l,r−1)
−1

Y
(j,l,r−1)

+1

Y
(j,l,r+1)
−1

Y
(j,l,r)

0


⇒



Y
(1,0,+1)

+1

Y
(1,0,−1)
−1

Y
(1,0,−1)

+1

Y
(1,0,+1)
−1

Y
(1,0,0)

0


(3.107)

The relationship between the q, r and the j3, l3 quantum number is given in eq.

(3.15) of ref. [12]:

j3 =
q + r

2
l3 =

q − r
2

. (3.108)
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These are also the m1,m2 magnetic quantum numbers needed to find the explicit

forms of each component of the vector harmonic.
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CHAPTER 4
Conclusions

It requires a very unusual mind to undertake the analysis of the obvious.—

Alfred North Whitehead.

Several recent observational results have indicated shortcomings in our views

of particle physics and cosmology. Super-Kamiokande and SNO have provided

independent evidence for the existence of neutrino mass, observations of type Ia

supernovae show a present-day acceleration indicating the presence of dark energy,

and CMB experiments give independent evidence for dark matter. These results

provide ample motivation to explore models beyond the Standard Model of particle

physics. The Standard Model is a beautiful theory, based on two remarkable,

simplifying principles of local gauge invariance and renormalizability. Despite

these simplifying notions, we now understand that the SM only describes a small

percentage of the energy density comprising this universe. Figure 4–1 shows the

percent composition of our universe. The small grey area represents particles that

behave according to our knowledge of the Standard Model; the rest of the pie

chart is dominated by Dark Energy followed by Dark Matter—in both cases we

understand their properties, but we do not know their origins.
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String theory is providing explanations for many of the problems at hand. In

the realm of cosmology, we have seen that string theory is providing complete pic-

tures of the early universe and, in return, cosmology is constraining the parameter

space of string theory. This thesis explored two models of the (very) early universe

and has shown, directly, how cosmological constraints do place restrictions on these

constructions.
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Figure 4–1: A pie-chart representation of the energy budget of the Universe.
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