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Abstract

Using electronic spin rather than charge to replace existing microelectronic sys-

tems has been a well studied area of research in the last ten years. More recently,

research has focused on using the nuclear spin of GaAs rather than the electron spin.

This work has demonstrated that GaAs nuclear spins have many desirable properties

and show great potential as quantum information carriers. The challenge in the im-

plementation of nuclear spins lies in the ability to control and retrieve the information

that they carry. One proposed method is to dynamically polarize the GaAs nuclear

spins using circularly polarized photoexcitation. If successful, this could open new

horizons in the field of quantum information processing.

This thesis details an investigation into the use of polarized light to manipulate

the properties of a GaAs/AlGaAs quantum well sample. The three main topics ex-

plored in this thesis are: 1) the design and operation of a polarization controller that

is able to shine well-defined and tunable polarized light on to a sample contained

in a cryogenic environment at T = 0.27 K; 2) the manipulation of the nuclear po-

larization in GaAs using low power laser light with tunable polarization; and 3) a

preliminary investigation into illuminating a quantum Hall sample with unfocused,

low power laser light and the transport properties modifications that occur in the

quantum Hall regime.
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Résumé

L’utilisation du spin électronique plutôt que la charge électronique pour rem-

placer les systèmes microélectroniques a été un domaine bien étudié de la recherche au

cours des dix dernières années. Plus récemment, la recherche a porté sur l’utilisation

du spin nucléaire du GaAs plutôt que le spin électronique. Ce travail a démontré

que les spins nucléaires du GaAs ont de nombreuses propriétés désirables et mon-

trent un grand potentiel en tant que transporteurs de l’information quantique. Le

défi dans la mise en œuvre des spins nucléaires réside dans la capacité de contrôler et

de récupérer les informations qu’elles transportent. Une méthode proposée consiste à

polariser dynamiquement les spins nucléaires du GaAs en utilisant la photoexcitation

polarisée circulairement. Ceci pourrait ouvrir de nouveaux horizons dans le domaine

du traitement de l’information quantique.

Cette thèse expose en détails une enquête sur l’utilisation de la lumière polarisée

pour manipuler les propriétés d’un échantillon puit quantique de GaAs/AlGaAs. Les

trois principaux sujets abordés dans cette thèse sont les suivants: 1) la conception

et le fonctionnement d’un contrôleur de polarisation qui est capable d’émettre une

lumière polarisée bien définie et ajustable sur un échantillon dans un environnement

cryogénique à T = 0.27 K, 2) la manipulation de la polarisation nucléaire dans le

GaAs en utilisant un laser à faible puissance avec une polarisation ajustable, et 3)

une enquête préliminaire sur l’illumination d’un échantillon de Hall quantique avec
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un laser non-focalisé à faible puissance et les modifications des propriétés de transport

qui se produisent dans le régime de Hall quantique.
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CHAPTER 1

Introduction

1.1 Motivation

T
echnological advancements in crystal growth, lithography and de-

velopment processes over the last 30 years have allowed for great strides in the

development of semiconductor devices. The most prevalent of these was the devel-

opment of Silicon Metal-Oxide Semiconductor Field Effect Transistors (MOSFETs)

which has revolutionized the technology industry worldwide. As these technologies

have advanced and the feature sizes have reached the nanometer scale, the number

of devices present on each integrated circuit has followed Moore’s law, approximately

doubling each year. As we begin to reach the limits of current fabrication techniques,

new research has started to focus on the development of nanostructured devices that

use an electron’s spin rather than its charge for modern device applications [1].

The behaviour of these new “spintronic” devices is primarily dictated by the

quantum mechanical interaction of electron charge and spin which show potential for

the realization of an architecture for quantum information processing. This work is

primarily motivated by the greater degree of freedom provided by spins and also their

higher level of isolation from the environment which makes the quantum mechanical

1



1.1 Motivation 2

states less prone to decoherence [2]. In comparison to electronic spin, the nuclear

spins of GaAs offer even greater isolation from the environment and show great

potential as quantum information carriers if one can find a way to effectively initialize,

control and read out their quantum mechanical states [3].

An important property of GaAs is the relatively strong hyperfine coupling that

exists between the electron and the nuclear spin degrees of freedom which recently

enabled the local study of multiple coherence of the nuclear spins by resistive meth-

ods [4]. These properties, in addition to the long nuclear spin coherence time (≈ ms),

make GaAs an appealing candidate for the implementation of quantum electronic

devices based on hyperfine-coupled nuclear spins.

One potential route toward the addressing and efficient manipulation of the

GaAs nuclear spins is through dynamic nuclear polarization and the optical Over-

hauser effect [5–7] where light in the near infrared spectrum with a well-defined

circular polarization is used to create a large out-of-equilibrium nuclear spin polar-

ization. Pumping nuclear spins via the optical Overhauser effect is more efficient

with circular polarized illumination than with linear polarized light [8, 9]. The abil-

ity to control the polarization of the light in situ at the active device region offers,

in principle, a means to manipulate the polarization of a small ensemble of nuclear

spins.

This thesis presents an investigation into the the use of polarized light to ma-

nipulate the nuclear spins of GaAs along with an analysis of the custom built polar-

ization controller used throughout the course of this research. In the remainder of

this chapter, references will be made to several key areas of research which motivated

this work.
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1.1.1 GaAs/AlGaAs Quantum Wells

Advanced growth techniques such as molecular beam epitaxy (MBE) [10] can be

used to grow crystal structures with mono-atomic layer precision and allow for the

production of high purity GaAs/AlGaAs heterostructures. The lattice constants for

GaAs and AlGaAs are very close providing an extremely low stress interface between

the two materials. This produces systems with very long mean free path (> 10µm)

and extremely high mobility [11, 12].

When two different semiconductors materials are grown together, they form a

heterojunction. The material on each side of the junction is composed of different

energy bandgaps resulting in an energy discontinuity at the junction interface. If the

material boundary is an abrupt change, there will be a sharp energy discontinuity.

Alternatively, if the material transition is gradual, the energy bandgap at the junction

can be customized for different applications. In the case of a GaAs/AlxGa1−xAs

heterojunction, shown in Fig. 1–1, the fraction x can be varied over a number of

monolayers using advanced growth techniques to tune the slopes of the energy band.

The main difference between GaAs and AlxGa1−xAs is the conduction band

energy. For example, if x = 0.3, the conduction band of the Al0.3Ga0.7As will be

300 meV greater than that of GaAs. In this case, the electrons will flow from the

wide-bandgap AlxGa1−xAs into the GaAs side of the junction to gain energy, and

the junction will reach thermal equilibrium. For a pure semiconductor system at

extremely low temperatures (T ≈ 0 K) there will be no free carriers because the

electrons follow the Fermi-Dirac probability distribution. Silicon dopants added into

the AlGaAs side of the junction will provide free electrons that will move to the

GaAs, taking advantage of the energy gain.
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Figure 1–1: Example energy band diagram for a GaAs/AlGaAs hetero-
junction in thermal equilibrium. A mismatch of the conduction and valence
band energies (Ec and Ev) of the two materials creates a potential barrier at
the junction interface.

This movement of charge creates an accumulation layer of electrons in the po-

tential well at the junction interface and a sharp discontinuity at the interface con-

fines the electrons in the z-direction (perpendicular to the interface) but allows for

their free movement in the x-y plane. This produces a condition known as a two-

dimensional electron gas (2DEG) where the energy levels of the electrons become

quantized in the z -direction. In the case of a single heterojunction, the quantum

well at the interface can be approximated by a triangular potential well and the

approximate energy levels of the well are depicted in Fig. 1–2 [12–15].

1.1.2 Classical Hall Effect

First discovered in 1879 [16], the Hall effect describes the motion of electrons

flowing through a conducting material when placed in a perpendicular magnetic

field. As each electron of charge q flows through the conductor at some velocity v,

the magnetic field B will exert a Lorentz force on it according to

Fm = qv × B. (1.1)



1.1 Motivation 5

Figure 1–2: Triangular potential well formed by a GaAs/AlGaAs hetero-
junction. The resulting 2-DEG has quantized energy levels in the z -direction.

Fig. 1–3 illustrates the Hall effect in a n-type semiconductor in a uniform mag-

netic field B = ẑBz with current Ix flowing in the x-direction. The electrons (or holes

for p-type semiconductors) flowing through the semiconductor will undergo a force

in the negative y-direction due to Eq. 1.1. The force on the carriers creates a net

buildup of charge carriers on the y = 0 surface of the semiconductor. This buildup

generates a transverse electric field in the y-direction which continues to increase

until the induced field is strong enough to stop the drift of the charge carriers. Once

a steady state is reached, the Lorentz force from the magnetic field will be exactly

balanced by the force of the induced electric field and the net force on the charge

carriers is zero.

F = q [E + (v × B)] = 0 (1.2a)

which leads to

qEy = qvxBz. (1.2b)
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Figure 1–3: Illustration of the geometry used to measure the Hall effect in
a n-type semiconductor.

The electric field induced in the y-direction EH is known as the Hall field which

produces a potential difference across the width of the semiconductor known as the

Hall voltage. The Hall voltage in a conductor of width W is given by

VH = +EHW. (1.3)

For metals and n-type semiconductors where electrons are the majority carrier,

the induced Hall field will be in the negative y-direction and the resulting Hall

voltage will be negative with the given geometry of Fig. 1–3. For the same geometry

of p-type semiconductors, the induced field will be in the opposite direction and

the Hall voltage will be positive. As a result, the majority carrier of an extrinsic

semiconductor can be determined (either n-type or p-type) by measuring the polarity

of the Hall voltage.
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Combining Eq. 1.2 and Eq. 1.3, and substituting the drift velocity for electrons

in a n-type semiconductor,

vx =
−Jx
en

=
−Ix

(en) (Wd)
(1.4)

results in a Hall voltage given by

VH = −IxBz

ned
. (1.5)

Rearranging Eq. 1.5 forms a ratio known as the Hall resistance (also called the Hall

coefficient).

RH =
VH
Ix

= − Bz

ned
(1.6)

The Hall resistance which is linear with B, proves to be a very useful tool in deter-

mining the electron density of the conducting sample [13–15,17].

1.1.3 Integer Quantum Hall Effect

A very interesting phenomenon occurs when the Hall effect is observed in two

dimensional systems held at low temperatures. When a magnetic field is applied

perpendicular to the conduction plane, the in-plane motion of the carriers becomes

quantized into Landau levels with energies given by

Ei =

(

i+
1

2

)

~ωc, (1.7)

where ωc = eB
m∗ is the cyclotron frequency, B is the magnetic field, e is the charge of

an electron and m∗ is its effective mass. The number of available states per cm2 in

each Landau level,

d =
2eB

h
, (1.8)
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is linearly proportional to the magnetic field. At low temperatures, the Landau levels

are split in two according to electron spins with each level having a degeneracy of

eB
h

. In this case, the electron distribution in the 2DEG is given by the Landau level

filling factor

ν =
n

d
= n

(

h

eB

)

. (1.9)

A typical transport measurement demonstrating the quantized Hall effect is

shown in Fig. 1–4. As first discovered by von Klitzing, the trace exhibits the distinct

plateaus in the Hall resistance and corresponding minima in magnetoresistance when

the Landau level filling factor reaches integer values [18].

ν = n

(

h

eBi

)

= i (1.10)

Figure 1–4: Example of a typical magnetotransport measurement (Rxx

and Rxy vs. B) demonstrating the quantum Hall effect in a GaAs/AlGaAs
2DEG at T ≈ 270 mK. The labelled arrows denote the Landau level filling
factors ν at certain magnetic fields.
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When ν = i is an integer, the Fermi energy of the system is located within one

of the energy gaps and an exact number of these Landau level energy states is filled,

as demonstrated in Fig. 1–5. When EF resides within an energy gap, there are no

available states for the electron to move to within the energy range of the system.

The Pauli principle prohibits elastic collisions and, although inelastic collisions with

phonons are possible, there are few (if any) phonons in the system with energy greater

than the gap spacing. This is due to the assumption that, when a strong magnetic

field is applied to the system, the energy separation will be ~ωc ≫ kBT , which holds

true at these low temperatures. When no other energy states are available, the

transport parameters (Rxx, Rxy) will assume quantized values.

(a) (b)

Figure 1–5: Density of states in a 2DEG in a strong perpendicular magnetic
field. (a) An ideal 2D crystal with no disorder broadening. (b) A realistic
2D crystal where the shaded regions represent the localized states that form
in the tails of each Landau level as a result of the disorder due to defects and
impurities [19–21].

According to Eq. 1.10, an ideal 2D system would become quantized at exact

values of Bi forming sharp δ-functions in the density of states, as illustrated in Fig. 1–

5(a). For realistic systems containing impurities and disorder, the Landau levels

become broadened and localized states form as a result of the residual disorder, shown

in Fig. 1–5(b). As a consequence, the quantization of the transport extends over a

finite range of B forming the characteristic plateaus in Rxy and valleys in Rxx [15,
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19–21]. The description presented here focuses exclusively on the Integer Quantum

Hall Effect (IQHE) which is the regime of most importance to the investigations in

this thesis. There also exists systems that exhibit quantization when the Landau

level filling factor equals rational fraction values, known as the Fractional Quantum

Hall Effect (FQHE), as can be observed at ν = 5
3

in Fig. 1–4 [20–22].

1.1.4 Resistively Detected Nuclear Magnetic Resonance

Since its discovery by Bloch [23] and Purcell [24] in the 1940s, nuclear magnetic

resonance (NMR) has grown to become a powerful scientific tool with many appli-

cations including spectroscopy and medical imaging. In essence, nuclear magnetic

resonance is a technique used to observe the transition of nuclei between two spin

states. Fig. 1–6 shows an example of a typical NMR experiment, where a sample is

placed into a uniform d.c. magnetic field. A coil attached to a radio-frequency oscil-

lator is also wrapped around the sample providing a relatively weak second magnetic

field B1 oriented perpendicular to B.

Figure 1–6: Illustration of a typical NMR experiment where the sample
is placed in a uniform external magnetic field B and the in-plane magnetic
field (perpendicular to B) created by the coil is B1..

When the sample is exposed to an external magnetic field, the nuclear magnetic

moments µ of the nuclei will precess at the Larmor precessional frequency

νL = γnB, (1.11)
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where γn is the gyromagnetic ratio of the nuclei and B is the magnetic field.

The potential of a nuclear magnetic dipole in an external magnetic field is E =

−µ · B, which is at its minimum when projection of the magnetic dipole is aligned

with B and maximum when oriented opposite to B. Fig. 1–7(b) demonstrates an

example energy level diagram for a spin 1
2

system.

(a) (b)

Figure 1–7: (a) When placed in an external magnetic field, the magnetic
moment of the nuclei will precess with frequency νL. (b) Energy level diagram
for spin 1

2
nucleus. When the spin is aligned with the magnetic field, it resides

in its lowest energy state E1 and in the higher energy state E2 when the spin
is oriented opposite to the field.

When the frequency of the oscillator driving the coil reaches the Larmor fre-

quency, a torque will be generated on the precessing magnetic moments causing

them to transition between two spin states. The spin state transitions cause energy

to be absorbed by the system which can be detected inductively by an antenna.

Since it probes the bulk of the sample, the major limitation of classical NMR is

when the number of nuclei becomes too small for detection. Using modern techniques,

the minimum number of spins required for detection is approximately 1016. For

systems with smaller scales such as quantum dots (106−1010 spins), carbon nanotubes
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(< 103 spins per tube) and GaAs/AlGaAs 2DEGs (< 1015 spins for a 30 nm well),

the number of spins is too low to be detected using traditional NMR methods.

A number of techniques have been developed to increase the detection resolu-

tion in systems with small number of spins, including optically pumped NMR (OP-

NMR) [25, 26], magnetic resonance force microscopy [27], and resistively detected

NMR (RDNMR) [28]. RDNMR, which was first discovered by von Klitzing’s group

in 1988, has become a powerful tool in studying quantum Hall systems by utilizing

the coupling between the electrons and nuclei that is a result of the strong hyperfine

interaction, AI · S, in a GaAs/AlGaAs heterostructure [29, 30].

In an external magnetic field B = Bz, the total electronic Zeeman energy can

be written as

Ez = g∗µBBSz + A 〈Iz〉Sz (1.12)

where g∗ is the effective electronic g factor, Sz is the electron spin parallel to the

magnetic field, A is the hyperfine coupling constant, and 〈Iz〉 is the nuclear spin

polarization. The Zeeman energy in Eq. 1.12 can be rewritten as

Ez = g∗µB (B +BN )Sz (1.13)

where the finite nuclear polarization creates an effective magnetic field known as the

Overhauser shift BN = A 〈Iz〉 /g∗µB. In quantum Hall systems, the magnetoresis-

tance in the thermally activated region near the zero resistance states,

Rxx ∝ e−∆/2kBT , (1.14)

is a function of the energy gap ∆ which, in turn, is dependent on the Zeeman energy.

This relation demonstrates that Rxx is in fact sensitive to changes is nuclear spin

since its value is determined to some extent by the hyperfine coupling.
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In GaAs, the induced effective magnetic field BN will be in opposition to the

external magnetic field since the effective g factor is negative (g∗ = −0.44), which

will lower the total Zeeman energy in Eq. 1.13. Depolarizing the nuclear spins in

the sample by applying transverse radio frequency (RF) radiation at the isotope’s

NMR resonance will increase the Zeeman gap as BN → 0. In quantum Hall systems

at odd Landau level filling factors (i.e. ν = 1) the gap energy ∆ varies directly

with the Zeeman gap. Therefore, a change in the nuclear polarization will result

in a measurable change in Rxx providing the detection mechanism for the nuclear

magnetic resonance [31, 32].

1.1.5 Light-Matter Interactions and Optical Pumping

In semiconductors, there are a number of possible pathways for photon interac-

tion to occur. Photons can interact with the crystal lattice and convert their energy

into heat by interacting with impurity atoms or with defects in the semiconductor

crystal. The most important interaction is that between a photon and valence band

electron, as depicted in Fig. 1–8, where the photon has energy E = hν = hc
λ

and the

semiconductor’s bandgap energy is Eg = Ec − Ev.

If the photon has energy E = hν < Eg it will be unable to elevate the valence

electrons to the conduction band. The semiconductor will be transparent to photons

in this energy range and they will not be absorbed. If hν > Eg, the photon has

enough energy to interact with a valence band electron and provides enough energy

to elevate it into the conduction band leaving a hole in the valence band. This

process is known as electron-hole pair generation.

After the electron is elevated to a higher energy level, the system will eventually

return to thermal-equilibrium and the electron will recombine with the hole in the

conduction band to release the excess energy through numerous pathways including,
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(a) (b)

Figure 1–8: (a) A photon with energy E = hν > Eg is absorbed by
a conduction band electron. (b) The electron is elevated into the valence
band, creating an electron-hole pair.

but not limited to, photon emission, lattice vibrations (phonons) and the generation

of Auger electrons.

1.1.6 Double Resonance & Dynamic Nuclear Polarization

The discovery of double resonance, where one excites a single resonant transition

in a system while simultaneously monitoring a second transition, has been one of the

most important developments of magnetic resonance. The reasons for utilizing double

resonance are vast and plentiful including polarizing nuclei, enhancing sensitivity,

simplifying complex spectra and generating coherent radiation (lasers and masers).

The Pound-Overhauser double resonance method makes use of spin-lattice re-

laxation mechanisms and involves a family of energy levels whose populations are

ordinarily held in thermal equilibrium by thermal relaxation processes. Saturating

one of the energy level transitions binds them together, forcing the two populations

to be equal. The thermal relaxation processes will then redistribute the populations

of all the remaining levels. This redistribution can produce unusual population dif-

ferences that may lead to interesting properties, such as the upper of two energy

levels having a larger population than the lower, or a small population difference

may be enhanced to become much larger [33].
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This effect was first theorized by Overhauser [34] who predicted that, if one

saturated the conduction electron spin resonance in a metal, the nuclear spins would

be polarized 1000 times more strongly than their normal polarization in the absence

of electron saturation. The first double resonance experiment was conducted by

Pound on the 23Na nuclear resonance of NaNO3 where a 5
3

factor enhancement of

the +1
2

to −1
2

transition was seen after he saturated the 3
2

to 1
2

transition [35]. The

second double resonance experiment was conducted by Carver who was the first to

demonstrate dynamic nuclear polarization and to validate Overhauser’s revolutionary

prediction [5].

A Model System

As an example, one can look at the energy levels of a simple system with nuclear

spin I = 1
2

that is coupled to an electron of spin S = 1
2
, and acted on by an external

magnetic field B0. The system can be described by the Hamiltonian

H = γe~B0Sz + AI · S− γn~B0Iz (1.15)

where the subscripts e and n denote electrons and nuclei. This model assumes in the

strong field approximation that γe~B0 ≫ A. The result is that Sz nearly commutes

with H so its eigenvalue mS can be considered a good quantum number. Since now

only AIzSz has diagonal terms, the effective Hamiltonian is

H = γe~B0Sz + AIzSz − γn~B0Iz (1.16)

If we take the quantum number of Iz (mI) as another good quantum number, the

energy eigenvalues of the system will be

E = γe~B0mS + AmImS − γn~B0mI (1.17)
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where mS = ±1
2

and mI = ±1
2
. For an applied alternating field, the selection rules

for induced transitions will be ∆mS = ±1, ∆mI = 0 for electron spin resonance,

and ∆mS = 0, ∆mI = ±1 for nuclear resonance. The system will have four allowed

resonance transitions, shown in Fig. 1–9, with resonance frequencies

ωe = γeB0 +
A

~
mI (1.18a)

ωn = γnB0 −
A

~
mS. (1.18b)

(a) Nuclear resonance transitions (b) Electron resonance transitions

Figure 1–9: Energy level diagram for the allowed transitions of a simple
system with S = 1

2
and I = 1

2
in an applied magnetic field B0. Each state is

denoted in a simplified form where, for example, |+−〉 represents mS = +1
2
,

mI = −1
2
. γn is assumed to be negative in this figure [33].

If we assume a less simplistic view of the electron spin-nuclear spin coupling and

include the effects of dipolar coupling, the resulting Hamiltonian will be

H = γe~B0Sz + Ax′x′Sx′Ix′ + Ay′y′Sy′Iy′ + Az′z′Sz′Iz′ − γn~B0In (1.19)

where x′, y′ and z′ are a set of principal axes [33].

The solution to the general Hamiltonian in Eq. 1.19 leads to an energy level

diagram that is similar to Fig. 1–9 as long as γe~B0 ≫ |Ax′x′ |, |Ay′y′ | and |Az′z′|. If
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these assumptions are true, then mS is still a good quantum number, but mI may

not be. In this case, the lowest order wave functions ψi will no longer be

ψi = |mSmI〉 , (1.20)

but rather a linear combination of such states

ψi =
∑

mS ,mI

cimSmI
|mSmI〉 . (1.21)

The result of using the more general Hamiltonian in Eq. 1.19 over that in Eq. 1.15 is

that through the application of an alternating field, resonance transitions other than

those shown in Fig. 1–9 become possible. These additional transitions are known by

convention as forbidden transitions [8, 9, 33, 36].

The Overhauser Effect

Although Overhauser’s original prediction was focused on the polarization of

nuclei in a metal, one can use the simplified model presented in the previous section

to illustrate the process he proposed. This example assumes that the principal relax-

ation mechanisms are electron spin relaxations (W12,W21,W34,W43) and a combined

nuclear-electron spin flip (W23,W32) as demonstrated in Fig. 1–10.

An alternating field is applied to induce transitions between the ψ1 and ψ2 states

at a rateWe, whereWe corresponds to an electron spin resonance. In this case, we will

define pi as the probability of occupying the state ψi. A series of differential equations

results, (full details provided by Slichter [33]), and the steady state solution results
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Figure 1–10: Energy band diagram for the Overhauser effect. Wij rep-
resent the thermally induced transitions that try to maintain thermal equi-
librium. Electron spin transitions are shown in blue and combined nucleus-
electron spin flips are shown in red. An applied alternating field induces spin
transitions at a rate We shown in green [33].

are found to be

p1 = p2 (1.22)

p3 = p4
W43

W34

(1.23)

p3 = p2
W23

W32

(1.24)

where Eq. 1.22 is the due to the clamped populations, and Eq. 1.23 and Eq. 1.24 are

the normal thermal equilibrium population ratios for the pairs of states (ψ3, ψ4) and

(ψ2, ψ3) respectively.

Since the pairs (p3, p4) and (p2, p3) are in thermal equilibrium, the ratio of p4 to

p2 must also be in thermal equilibrium. For a pair of levels in thermal equilibrium,

they can be defined by the Boltzmann ratio Bij where

pj = pie
(Ei−Ej)/kBT

≡ piBij (1.25)
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This leads us to rewrite the probabilities as

p1 = p2 =
1

2 +B23 +B24

(1.26)

p3 =
B23

2 +B23 +B24

(1.27)

p4 =
B24

2 +B23 +B24

, (1.28)

which gives an average nuclear spin polarization of

〈Iz〉 =
∑

i

pi 〈i| Iz |i〉

=
1

2
(p1 + p2 − p3 − p4)

=
1

2

2 − B23 −B24

2 +B23 +B24
. (1.29)

To look at the significance of this expression, one can look at the high temperature

limit where Bij
∼= 1 +

Ei−Ej

kBT
, which results in

〈Iz〉 =
1

2

γe~B0 +
(

A

2

)

+ 2γn~B0

4kBT

∼= 1

2

γe~B0

4kBT
(1.30)

If the sample was not being saturated by an external field, the expectation value of

the nuclear spin in thermal equilibrium would be

〈Iz〉therm =
1

2

γn~B0

2kBT
. (1.31)

Comparing Eq. 1.30 and Eq. 1.31, we find that by saturating the electron spin reso-

nance We the mean nuclear spin has increased by

〈Iz〉
〈Iz〉therm

=
γe
2γn

. (1.32)
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In the case of a metal, as originally proposed by Overhauser, each electron

couples to a number of nuclei so there is only a single electron resonance. This would

be equivalent to saturating both electron resonances in our model, so the resulting

mean nuclear spin polarization is

〈Iz〉
〈Iz〉therm

=
γe
γn
. (1.33)

as originally predicted by Overhauser [8, 9, 33, 36].

Polarization by Forbidden Transitions

It was Abragam [37] and Jeffries [38] who independently recognized that these

forbidden transitions were not strictly forbidden, and in some circumstances they

could be used to a great advantage in achieving nuclear polarization. The two possible

forbidden transitions for our model system are illustrated in Fig. 1–11.

(a) (b)

Figure 1–11: Energy level diagrams describing the use of forbidden tran-
sitions which flip both the electron and nucleus simultaneously to produce
nuclear polarization. The transitions Wen illustrated in (a) and (b) will pro-
duce nuclear polarization of opposite signs. In this model it is assumed that
transitions involving and electron spin-flip are the only significant thermal
processes [33].
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The transitions in Fig. 1–11 can be induced by alternating fields perpendicular

to B0 when the general Hamiltonian in Eq. 1.19 is solved to adequate precision.

Although the transition probability Wen is often small, it can produce effective pop-

ulation equalization if Wen is made larger than the thermal transition rate at which

a nucleus flips. To further illustrate this point, we will analyze the saturation of the

forbidden transition illustrated in Fig. 1–11(b).

Assuming that the only possible thermal transitions are those shown in the

figure, we can immediately see that

p1 = p4 (1.34a)

p2 = p1e
(E1−E2)/kBT = p1B12 (1.34b)

p3 = p4e
(E4−E3)/kBT = p4B43 (1.34c)

and can therefore see that

p1 = p4 =
1

2 +B12 +B43
(1.35a)

p2 =
B12

2 +B12 +B43
(1.35b)

p3 =
B43

2 +B12 +B43
. (1.35c)

The average expectation value of nuclear spin Iz is given by

〈Iz〉 =
∑

i

pi 〈i| Iz |i〉

=
1

2
(p1 + p2 − p3 − p4)

=
1

2

B12 −B34

2 +B12 +B43
(1.36)
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To look at the significance of this expression, we once again can look at the mean

nuclear spin polarization in the high temperature limit

〈Iz〉 =
1

2

γe~B0

2kBT
. (1.37)

This leads to an enhancement over the normal polarization of

〈Iz〉
〈Iz〉therm

=
γe
γn

(1.38)

which is once again the result originally predicted by Overhauser [8, 9, 33, 34, 36].

Dynamic Nuclear Polarization through Optical Methods

The first example of this dynamic nuclear polarization (DNP) by photoelectrons

was observed in 29Si by Lampel who found that, under excitation in circularly polar-

ized light, the NMR signal was much larger than what was observed without optical

pumping [39]. The mechanism of the strong influence of the excitation light polar-

ization on the nuclear spins has been well studied [40]. The effect of polarization

at nuclear resonance is due to the change of the hyperfine magnetic field BN (see

Eq. 1.13) experienced by the photoelectrons as a result of the dynamically polarized

nuclei. A comprehensive review of this effect is presented by Paget and Burkovitz [9].

In order to determine the dependence of the nuclear spin polarization on the

handedness of the polarized light, one must first look at the interactions of the

photons and the electron spin system. The degree of circular polarization P of the

luminescence light can be defined as

P =
L+ − L−

L+ + L−
, (1.39)
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where L± is the intensity of the σ±-polarized component of the total luminescence [9,

41]. Here we define σ+ and σ− respectively as right and left handed circularly

polarized light.

Under optical pumping conditions, the same selection rules describe the ab-

sorption of a circularly polarized photon and the radiative recombination of a spin-

polarized electron. As a result, we find that the mean electronic spin is related to

the degree of circular polarization by

〈S〉 = −P. (1.40)

In these systems the interaction between a single electron of spin S and a nucleus

of spin I is described by the Fermi contact Hamiltonian HF [8]. Since this Hamilto-

nian is of the form AI · S = A
[

1
2
(I+S− + I−S+) + IzSz

]

, the nuclei are dynamically

polarized allowing for the simultaneous reversal of a nuclear spin and an electronic

spin. The value of the mean nuclear spin is then

〈I〉 =
I (I + 1)

S (S + 1)
[〈S〉 − 〈ST 〉] , (1.41)

where I and S are the nuclear and electronic spins respectively, 〈S〉 is the optical

pumping mean electronic spin and 〈ST 〉 is the electronic mean spin in the exter-

nal magnetic field. This equation holds true for 〈I〉 ≪ 1 and, in most cases, the

thermodynamic mean 〈ST 〉 is negligible compared to 〈S〉 and 〈I〉 is simply propor-

tional to 〈S〉 [9]. Therefore, we find the resulting relationship between luminescence

polarization and nuclear spin polarization to be

〈I〉 ∝ −P. (1.42)
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It has also been shown that only localized electrons (see Fig. 1–5) are efficient

at dynamically polarizing nuclear spins [9]. These localized electrons are found in

all practical cases, and can be trapped on shallow donors [42] or in the spatial

fluctuations within the conduction band minima of doped semiconductors [41]. This

is significant for these studies, as experiments were conducted on the flank of ν = 1

in the region of the localized states.

A Qualitative Illustration

This complex relationship can be clarified in a simple illustrative argument using

conservation of spin angular momentum and the model described in the previous

section. Here an attempt will be made to qualitatively describe the interaction of

the circularly polarized photons with the system. Although presented for a two level

system, this model should also hold true for systems with spins I > 1
2

and S > 1
2
.

First, it should be noted that the spin angular momentum of a circularly polar-

ized photon is −~ for σ+ and +~ for σ−. One of the finer points of detail is that we

cannot define a spin for linearly polarized light but rather, since all the photons are

identical, each will have an equal probability of being in an −~ or +~ state. There-

fore, there will be no overall angular momentum imparted by a linearly polarized

beam of light. In the case of elliptically polarized light, there is an unequal proba-

bility of each being in either spin state so a net angular moment will be imparted to

the target [43].

In Fig. 1–12, an example four state system is used, but in this case the system

is under excitation by circularly polarized photons. In Fig. 1–12(a) a σ+ photon

interacts with the mS = +1
2

due to conservation of spin angular momentum, and the

photoexcited electron’s spin flips to become mS = −1
2
. This will create an excess

of electrons in states ψ2 = |−+〉 and ψ4 = |−−〉. This population increase in ψ2
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and ψ4 will cause a redistribution of the other state’s populations. Specifically, the

excess electrons in ψ2 can relax through the hyperfine pathway W23 and repopulate

ψ3. This will result is an overall 〈Iz〉 > 0. We note that rather than a full saturation

of the transition as described previously for the Overhauser effect, it is suggested

that a steady state population inversion will result from the photoexcitation.

For the opposite case in Fig. 1–12(b), one sees that the σ− photons interact

with the mS = −1
2

increasing the populations of ψ1 and ψ3 through conservation

of spin momentum. Here the hyperfine relaxation pathway W32 will restore some

of the population to ψ2. The populations in (ψ3, ψ4) will be greater than (ψ1, ψ2),

producing in an overall 〈Iz〉 < 0.

(a) (b)

Figure 1–12: Illustration of the optical Overhauser effect in a simple four
state system under photoexcitation by (a) right handed and (b) left handed
circularly polarized light.

Although Paget’s mechanism presented here for the dynamic nuclear polariza-

tion in GaAs has been well studied in the literature, it should be noted that con-

tradictory results have been found. In the work by Barrett, results following this

relationship as found in Eq. 1.42 were not observed. It was noted that this may

have been the result of the the high magnetic fields in their experiments affecting

the selection rules, equilibrium polarization of electrons and holes, or the relaxation
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processes which can affect the resulting nuclear polarization [25]. This observation

hints that, under certain conditions, the dynamic nuclear polarization process may

not be as straightforward as previously thought.

1.2 Thesis Objectives & Organization

The main objectives of this thesis is to experimentally investigate the effect of

illuminating a GaAs/AlGaAs quantum well in the integer quantum Hall regime with

different polarizations of near infrared laser light. Each chapter of this thesis will

focus on a different set of experiments performed on the system.

Chapter 2 will present the design and implementation of the polarization con-

troller system used to illuminate the sample during the transport measurements. A

numerical model will be presented along with supporting experimental data. In addi-

tion, the complications that arise when the controller is used in a system containing

a superconducting magnet are explored.

In Chapter 3 the results of magneto-optical transport measurements performed

using the polarization controller and a single GaAs/AlGaAs quantum well sample are

discussed. The dependence of the ν = 1 quantum Hall state on the polarization of the

light used for excitation was investigated using resistively detected NMR techniques.

In addition, dynamics experiments were conducted to determine the relaxation rate

of the system under different polarizations of light.

Chapter 4 presents an examination of different phenomena found to occur in

a quantum Hall system under photoexcitation by low power infrared laser light.

A thorough investigation of these phenomena’s dependence on contact geometry,

temperature and laser power is presented.



CHAPTER 2

Polarization Controller

T
he ability to actively control the polarization of light is a vital neces-

sity to utilize dynamic nuclear polarization to manipulate nuclear spins. In

this chapter we introduce the design and operation of a polarization controller for

laser-light in the near infrared spectrum with an optical fiber held at low tempera-

tures where all of the optical components are kept outside of the cryogenic system.

A complete analysis of the polarization controller is presented in the case where the

optical fiber is enclosed inside a large magnet, and it is shown that the scheme can be

used to produce well-defined light polarizations even in the presence of a relatively

strong magnetic field.

2.1 Controller Operation

The polarization controller presented builds upon the work of Heismann et al.

and consists of three birefringent waveplates, two λ/4 separated by one λ/2 [44],

as depicted in Fig. 2–1. This combination of waveplates is capable of transmitting

any arbitrary state of polarization (SOP) into the optical fiber by simply varying

the waveplate angles [44]. The polarization axes of the two λ/4 waveplates in the

apparatus are separated by 90° with respect to each other. The angles α and β

27
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represent the amount of clockwise rotation of the slow axis from the vertical for each

of the λ/4 and λ/2 waveplates respectively. These waveplate angles were initialized

with a computer camera to an accuracy of 0.2°. The controller uses a 5 mW near

infrared diode laser of wavelength λ ≈ 800 nm along with a single-mode optical fiber

(SM800, 125µm cladding diameter) to transmit the polarized light onto a sample

mounted inside of a commercial 3He cryostat (Janis HE-3-SSV) containing a 9 T

superconducting magnet. In order to deflect the back-reflected signal of the light

entering the fiber, the injector end was cleaved at an angle of ∼ 8°. Neglecting

losses, it is assumed that the optical fiber acts as a birefringent transformation on

the light [45], and as such, the backward propagating light undergoes the inverse

polarization change as the light propagating in the forward direction. Therefore, the

birefringent fiber and waveplates are known as reciprocal media [46]. There exists

a natural birefringence of the optical fiber which is primarily due to mechanical

deformation such as twisting and stress inside the fiber [47]. These properties may

vary with each experiment so each time the cryostat is placed in the Dewar the fiber

at room temperature is fixed in place for the remainder of the experiment.

The novelty of the polarization controller presented is based on the isolation and

measurement of the small amount of light reflected back from the interface at the

end of the fiber. In order to provide information about the light exiting the fiber,

the back-reflected signal is isolated using a polarizing cube beam splitter located

between the laser source and the first waveplate. The purpose of the cube is twofold,

it first acts as a vertical polarizer for the source laser light before it interacts with

the retarding waveplates. Secondly, it acts as a horizontal polarization filter and a

45° mirror for the back-reflected light.



2.1 Controller Operation 29

Figure 2–1: Illustration of the polarization controller apparatus. The red
path shows the forward propagating light and the blue denotes the path of the
back-reflected light. All of the optical components are at room temperature
while the light is transmitted onto a sample at T ≈ 270 mK.

The usefulness of the polarization controller is best described by an example as

follows. For the case of transmitting right hand circularly polarized light (σ+) on

to the sample, the overall transformation of the light travelling through the three

waveplates and the optical fiber will be equivalent to that of a single λ/4 waveplate

at 45°. At the end of the fiber, a small percentage of the light is not transmitted.

This back-reflected light undergoes a transformation at the interface due to the

transition from a higher to a lower index of refraction. The reflection does not

affect linear polarized light but changes the handedness of the circularly polarized

light, e.g. σ+ becomes σ−. In this case, the back-reflected σ− light will travel in

the reverse direction through the fiber and waveplates and it will experience the

inverse transformation (equivalent to a λ/4 waveplate at −45°). This results in a net

polarization of horizontally linear light that interacts with the polarizing cube such

that a maximum signal is transmitted to the back-reflection detector. A maximum
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intensity in the back-reflected signal implies transmission of circularly polarized light

(σ+ or σ−) onto the sample. Although the output is known to be circularly polarized,

its handedness remains ambiguous. This limitation of the back-reflection technique

is a result of using the intensity where all of the phase information is lost.

In the case of transmitting linear polarized light along the vertical axis, no polar-

ization changes occur due to the reflection at the end of the fiber. The back-reflected

signal will maintain its original linearly polarized state which will be cancelled out

by the horizontal polarizing axis of the beamsplitting cube resulting in a minimum

intensity in the back-reflected signal. Therefore a minimum intensity in the back-

reflected signal implies transmission of linearly polarized light onto the sample.

The intensity of the back-reflected signal is measured as a function of the wave-

plate angles α and β, and is used to produce a two dimensional map of the trans-

mitted light’s polarization. These α − β maps are produced by setting a desired α

and sweeping through various β angles in 2° increments with a computer controlled

stepper motor, defining the waveplate angles necessary to transmit any arbitrary

polarization of light onto the sample mounted inside of the 3He cryostat.

2.2 Simulation Without A Magnetic Field

Using Jones matrix transformations, a simulation can be made of the back-

reflected signal intensity detected in the experiment [48]. The λ/4 and λ/2 waveplates

are represented by the matrices Q(α) and H(β) respectively and the optical fiber by
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the general birefringent transformation matrix F (φ, ψ, θ),

Q (α) =
1√
2







1 − i cos 2α −i sin 2α

−i sin 2α 1 + i cos 2α






(2.1)

H (β) =







−i cos 2β −i sin 2β

−i sin 2β i cos 2β






(2.2)

F (φ, ψ, θ) =







eiφ cos θ −e−iψ sin θ

eiψ sin θ e−iφ cos θ






(2.3)

where the angles of the waveplates α and β were defined previously and the angles

{φ, ψ, θ} describe the physical birefringent properties of the optical fiber. Here φ and

θ describe the ellipticity of birefringence and rotation of the birefringence axes and

ψ is representative of the phase shift that occurs along the fiber [49].

The first step in the simulation is to calculate the light’s state of polarization

as it exits the end of the fiber onto the sample. The Jones matrix transformations,

shown in Eq. 2.4, starts (reading from right to left) with vertical linear polarized light

exiting the polarizing cube [ 0 1 ]T and then proceeds through the three retarding

waveplates (Q,H,Q) and the optical fiber (F ).

Ssample = F (φ, ψ, θ)Q (α + 90◦)H (β)Q (α)







0

1






(2.4)

The calculation for the back-reflected signal, shown in Eq. 2.5, starts with the light

that is reflected at the end of the optical fiber which is described as the complex

conjugate of Ssample,

Sback =







1 0

0 0






Q (α)−1H (β)−1Q (α + 90◦)−1 F (φ, ψ, θ)−1 (Ssample)

∗ . (2.5)
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The light travelling in the backward direction undergoes the inverse of each trans-

formation it experienced while travelling through the waveplates and fiber in the

forward direction. The light then interacts with the polarizing beam splitter cube

which acts as a horizontal linear polarization filter and reflects the light onto the

detector. The intensity measured by the back-reflection detector is proportional to

Idetector ∝ |Sback|2.

Fig. 2–2 shows a comparison between experimental and simulated α− β maps.

The simulation matches up qualitatively well with the experimental data in both

shape and position, albeit with some small variations in measured intensity. This

may be due to physical effects not taken into account in the Jones matrix model,

such as the sharp temperature gradient of the fiber (room temperature to ≤ 4 K).

(a) Experiment (b) Simulation

Figure 2–2: Contour maps of the back-reflection intensity at zero magnetic
field as a function of waveplate angles α and β. (a) Typical experimental
data taken at low temperature, T ≈ 270 mK. (b) Jones matrix simulation
using Eq. 2.4 and Eq. 2.5 with fitting parameters φ = 1.3π, ψ = 0.64π and
θ = 1.26π for the optical fiber.

2.3 Magnetic Field Effects

When light travelling through a medium of minimal birefringence interacts with

a magnetic field B, the linear polarization plane is rotated by an angle Γ. This is
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known as the Faraday effect [50]. In an ideal fiber, the Faraday rotation angle is

given by

Γ = V

∫

L

B · dl (2.6)

where V is the Verdet constant, L is the interaction length, and B is the magnetic

field. The Verdet constant is a physical property of the fiber and is dependent on

the wavelength of the propagating light [51] as well as thermal coefficients of the

fiber [52]. As a result, there will be an additional rotation to the polarization of the

light travelling through the optical fiber as the strength of the magnetic field inside

the cryostat is increased.

Adding a further complication to the back-reflection measurement scheme, the

media in which Faraday rotations occur are termed non-reciprocal : light travelling in

the reverse direction does not undergo the inverse of the transformation it experienced

while propagating in the forward direction. For example, if light travelling in the +z

direction through a length of fiber L in a magnetic field is rotated by an angle +Γ, a

wave travelling in the opposite direction will undergo a rotation of angle −Γ about

the new direction of propagation (−z). The net effect of a round trip through the

medium is that the polarization plane will have a total rotation of 2Γ with respect

to the original polarization at z = 0 [46]. In the experiment presented, the measured

back-reflected light will undergo twice the Faraday rotation as the light shining on

the sample.

In order to accommodate for this, the Jones matrix simulation model was ex-

tended to include a Faraday rotation transformation [53].

R (Γ) =







eiΓ 0

0 e−iΓ






(2.7)
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Where Γ was previously defined in Eq. 2.6. In this model, it is assumed that no

birefringent transformations occur in the region at the end of the fiber where the

Faraday rotation occurs. To minimize these effects in the experiment, the small

length of fiber exposed to the magnetic field is fixed in place without any bends to

limit physical stresses to the fiber. The light exiting the fiber in a magnetic field can

now be approximated by the Jones matrix transformations

Ssample = R (Γ)F (φ, ψ, θ)Q (α+ 90◦)H (β)Q (α)







0

1






. (2.8)

The back-reflected signal then undergoes the following transformation,

Sback =







1 0

0 0






Q (α)−1H (β)−1Q (α + 90◦)−1 F (φ, ψ, θ)−1R (Γ)† (Ssample)

∗ (2.9)

where R (Γ)† denotes the Hermitian conjugate of the Faraday rotation matrix.

The field gradient curve, shown in Fig. 2–3, was provided by the manufacturer of

the superconducting magnet. It describes the magnetic field strength as a function

of position along the z-axis of the cryostat. The provided curve was derived for

the maximum field strength of the magnet, 9 T, where
∫

L
B · dl ≈ 1.08 m T was

found by numerical integration of the field gradient. The gradient shows a fairly

sharp cutoff; therefore the integral in Eq. 2.6 can be reasonably approximated by a

uniform magnetic field B over a fixed length l, as shown in Fig. 2–3.

Γ = V

∫

L

B(l) · dl ≈ V Bl (2.10)

To compare the experimental data with the simulations, the initial fitting parameters

{φ, ψ, θ} were found for the α−β map acquired at B = 0 T. Fixing these parameters,

two other α− β maps were produced at different magnetic field strengths.
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Figure 2–3: Magnetic field gradient along the z-axis inside the cryostat
where z = 0 corresponds to the centre of the superconducting magnet. The
shaded region denotes the area of the field where the optical fiber is present
starting at z = 0.019 m. The box shows the approximation of a uniform
magnetic field B over a length l = 0.12 m. The area enclosed by the rectangle
is equal to the area under the curve in the field profile.

Using this approximation, the amount of Faraday rotation per Tesla can be

used as a fitting parameter for the simulation, where Γ/B = V l. A result of this

approximation is that changes in V and l are indistinguishable, so the collective term

V l is used. This makes it possible to match the changes in the polarization maps as

a function of magnetic field, as illustrated in Fig. 2–4.

The experimental data and simulations match up well in both location and shape

at each of the magnetic fields tested for fiber parameters {φ, ψ, θ} = {0.28π, 0.2π, 1.1π}

and V l = 0.06 ± 0.005 radT−1. These values were found by fitting the parameters

by inspection to match up with the corresponding experimental maps. The error in

V l comes from the qualitative analysis where the values within that range produce

reasonable agreement with the experimental data. It should be noted that the exper-

imental data shows a decrease in the peak to peak signal amplitude as the magnetic
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(a) Experiment

(b) Simulation

Figure 2–4: Contour maps showing the polarization controller output in
different magnetic fields. (a) Maps of experimental data (T ≈ 270 mK) and
(b) the corresponding Jones matrix simulations. As the magnetic field is
increased, the regions of circularly polarized light begin to rotate counter-
clockwise and become distorted.

field strength is increased. The origin of this behaviour is not well understood at this

time, however, it is speculated that the efficiency of the controller may be related to

the non-uniformity and non-linearity of the magnetic field along the optical fiber.

A search of the literature was conducted to find comparative results but no re-

sults were found in a similar temperature regime. The work by Williams et al. showed

that the Verdet constant of SiO2 optical fibers has a positive linear relationship with
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temperature in the range of 293−423 K, but no work was conducted at lower temper-

atures [52]. There was no indication in the literature that using Becquerel’s formula

to approximate the Verdet constant at the extreme temperatures of the apparatus

is valid. As a result, using the same numerical estimation was unfeasible. Although

a direct comparison of these results are not possible at this time, the value from the

Jones matrix model agrees with the trend that a smaller value of V l will result at

low-temperatures.

2.4 Conclusions

In this chapter the design and operation of our cryogenic polarization controller

for near infrared laser light using a back-reflection measurement technique was de-

scribed. A Jones matrix model was presented to verify the operation of the controller

with and without exposure to a strong magnetic field. When operating in a mag-

netic field, the light travelling through the optical fiber undergoes a Faraday rotation

that produces an offset in the polarization measured with the back-reflected signal

in comparison to the output at the end of the fiber. This understanding will prove

invaluable when using the controller to conduct magneto-optical transport measure-

ments in quantum Hall samples, which will be discussed in Chapter 3.



CHAPTER 3

Magneto-optical Quantum Transport
Measurements

T
he nuclear spins of GaAs have showed great promise as quantum infor-

mation carriers [4], but the main hindrance to their implementation lies in

the ability to control and retrieve the information from their quantum mechanical

states. In this chapter an investigation will be conducted on the use of the cryo-

genic polarization controller presented in Chapter 2 to manipulate the properties of

a GaAs/AlGaAs quantum well in the first Landau level of the integer quantum Hall

state.

3.1 Experiment

3.1.1 Apparatus

In order to reach the low temperatures required to perform the transport mea-

surements, a commercial 3He refrigerator (Janis HE-3-SSV) was used to work at a

base temperature of T ≈ 270 mK. A copper bar was thermally attached to the 3He

chamber of the fridge and a sample mount was constructed out of G10 to place the

sample in the centre of the magnetic field profile. To thermally link the sample to
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the fridge, it was placed on top of a copper plate that is directly connected to the

copper bar below the 3He pot.

As described in Chapter 2, the light from the polarization controller is directed

into the sample through an optical fiber. The fiber is fed into the cryostat using a

vacuum feedthrough and sealed using epoxy to preserve the integrity of the vacuum

space. The remainder of the fiber was passed down into the chamber of the vacuum

can. In order to accommodate any accidental breakages that may occur at the end

of the fiber, an extra length of approximately 0.5 m was looped and loosely fixed

to the exterior of the charcoal sorb. The loop was maintained with a diameter of

approximately 8 cm to prevent any losses that could occur if the fiber was bent past

its critical angle. The charcoal sorb’s position outside of the magnetic field gradient,

as in Fig. 3–1, makes it ideal for mounting the loop. Since it is outside of the B

field, no Faraday rotation occurs in this portion of the fiber. The balance of the fiber

was then passed through the magnetic shield and held approximately 1 cm above the

sample surface. The light emanating from the end of the fiber is unfocused and, as

a result, this position above the sample provides a beam spot that covers as much of

the surface as possible.

3.1.2 Optics Calibration

In these experiments, the laser used was a 10 mW diode (L808P010) with a

wavelength λ ≈ 800 nm. Barrett showed that this was an ideal wavelength for

dynamically polarizing GaAs nuclei [25]. Prior to cooling, the optical system was

aligned and the output power calibrated to the laser diode driving current. A power

meter (Newport model 815) was placed in front of the fiber’s output. A small guide,

illustrated in Fig. 3–2, was constructed from heavy stock paper and placed over the

sensor to maintain the fiber’s alignment with the detector and to block out a majority
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Figure 3–1: Illustration of the cryogenic environment in the Janis HE-
3-SSV system. The inset on the left demonstrates how the optical fiber
(shown in red) is fixed above the sample surface. The vertical magnetic field
gradient provided by Janis is shown along the length of the cryostat. This
helps demonstrate that the loop of fiber attached to the charcoal sorb is out
of the B field.
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of the ambient light. Once the output of the fiber was optimized, a calibration curve

of the transmitted power was recorded as a function of the laser diode’s driving

current, shown in Fig. 3–3.

Figure 3–2: The configuration used for aligning the optics. The fiber is
passed through the guide and aligned with the photosensor inside the power
detector.

Figure 3–3: Example of a typical power calibration curve for the output
of the optical fiber with a sharp turn-on current of ID ≈ 43 mA.

In order to determine if the output power was independent of the polarization,

a set of α−β maps was produced to compare the intensity of the back-reflection and
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transmission signals. From the maps in Fig. 3–4, one notes that the power fluctuates

by approximately 8% as the waveplates are rotated. However, there does not appear

to be a direct correlation between power and polarization.1

(a) Back-reflection (b) Transmission

Figure 3–4: Room temperature α− β maps of (a) back-reflection and (b)
transmission intensity. In certain map regions, there is a fluctuation in power
of approximately 8%.

3.1.3 GaAs/AlGaAs Quantum Well

For the entirety of the experiments presented, a small sample (approximately

5 mm × 5 mm) cut from a GaAs/AlGaAs wafer prepared by our collaborators was

used.2 The wafer was grown using molecular beam epitaxy to form a 30 nm wide

well according to the procedure outlined in Fig. A–2 in Appendix A. The full band

1 After this work was completed, more recent measurements have demonstrated
that there may in fact be a correlation between polarization and transmission power,
although the source of this is unknown at the time of publishing. Further investiga-
tion into this relationship is ongoing.

2 J. L. Reno and M. P. Lilly at Sandia National Laboratories, Center for Integrated
Nanotechnologies (CINT), in Albuquerque, NM, USA
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structure of the GaAs/AlGaAs quantum well is shown in Fig. 3–5, calculated using

the Poisson 1D software.3

Figure 3–5: Calculation of the approximate band structure of sample ac-
cording to the growth recipe. Note that the region from 425 nm−500 nm may
not be completely flat. This error is due to improper boundary conditions in
the software used to generate the band structure. We believe the structure
has some curvature demonstrated as dashed lines in the figure.

One should note that the band structure in Fig. 3–5 is much more complicated

than the simple heterojunction example presented in Fig. 1–1. Using a more intricate

growth process enables the properties of the quantum well to be tuned for this

application. One particular aspect of an advanced growth technique in this wafer is

that the silicon δ-dopants are embedded in very narrow additional wells on either

side of the main 30 nm well structure. The result is a sample with high mobility

3 Poisson 1D software by G. L. Snider, Department of Electrical Engineering,
University of Notre Dame, Notre Dame, IN 46556, USA
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(µ ≈ 6 × 106 cm/V s) and an approximate electron density n ≈ 3 × 1011 cm−2 when

cooled in the dark.

In order to conduct the quantum transport measurements, indium was used to

form ohmic contact with the 2DEG located 200 nm below the sample surface. Small

vertical columns of pure indium were placed along the edge of the sample using a

finely tipped soldering iron. The sample was placed under vacuum and heated in

a 400 °C oven for 25 min, and allowed to cool to room temperature for 2 hr. The

diffused indium contacts were connected to a 16-pin header using a wire bonder

and indium solder. The layout of the contacts on the sample surface is illustrated

in Fig. 3–6(a) and Fig. 3–6(b) gives the standard geometry used for the transport

measurements.

(a) (b)

Figure 3–6: (a) Approximate configuration of the ohmic contacts located
on sample. The red gradient represents the beamspot of the unfocused light
emanating from the end of the fiber showing its approximate coverage of
the sample. (b) Standard measurement geometry for a quantum transport
experiments conducted. Ix represents the sourcing current, Rxx the magne-
toresistance and Rxy the Hall resistance.

During the initial cool down, the samples were maintained in a dark state and

not exposed to any external sources of energy. Once at liquid helium temperature

(T = 4.2 K), the sample was illuminated with red light from a light emitting diode

(LED) to reduce the electron density of the quantum well, as shown in Fig. 3–7(a).
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Typically, illuminating a 2DEG sample with photons of near bandgap energy

results in an increase in the well’s electron density. This is generally due to the

photoexcitation of the DX centres of the AlxGa1−xAs layer, or through electron-hole

generation in the bulk GaAs with a charge separation at the interface. At liquid

helium temperatures this positive density change is stable and can only be decreased

by significant heating [54]. This is known as Positive Persistent Photoconductivity

(PPPC).

In this sample, a permanent decrease in the quantum well’s electron density

was observed after it has been illuminated with red light from a LED. Negative

Photoconductivity (NPC) has been reported previously but normally the density

was found to increase again after the photoexcitation was removed [54, 55]. Chaves

proposed an explanation for NPC and argues that it originates from the optical

excitation of electron-hole pairs in the large gap layer and their spatial separation due

to the heterojunction’s inherent electric field. For quantum well structures with large

undoped spacer regions (Ls ≥ 40 nm), such as those found in this sample, the negative

photoconductivity can persist for minutes or much longer [56]. This model could

account for the Negative Persistent Photoconductivity (NPPC) that was observed

in our sample.

It was observed that the density shift remains after a cycle in temperature from

T ≈ 0.27 K − 4.2 K but returns to an electron density near that of the dark state

after the sample was allowed to warm to T ≈ 40 K, as shown in Fig. 3–7(b).
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(a) (b)

Figure 3–7: (a) Trace of the magnetoresistance as a function of magnetic
field before and after the sample was illuminated by the LED. Exposing the
sample to 225µAs (2×1.5µA for 75 s) was usually enough to bring the ν = 1
quantum Hall state within the range of the system’s magnet. (b) Density
returns to near that of the dark state after the sample is warmed to T ≈ 40 K.
Both traces were taken at base temperature T ≈ 270 mK.

3.2 Polarization Dependence Sweeps

Once the sample reached an electron density where the valley of ν = 1 was

located near B ≈ 6.5 T − 7 T, the laser was turned on and the driving current

was slowly increased while the sample was grounded. In order to avoid shocking

the electrons in the 2DEG, the current was slowly increased until reaching ID ≈

42 mA. This produces a transmission power of approximately 30µW according to

the calibration curve for this specific cooldown, shown in Fig. 3–3.

After the sample was cooled to base temperature, the quality of each of the

contacts was determined using the circuit shown in Fig. A–1 of Appendix A. After

determining the quality of the contacts, B field sweeps were performed on numerous

permutations of I+
x ,I−x , V +

xx and V −
xx to find the configuration that produced the best

measurement of the quantum Hall state. For all experiments, a sourcing current

Ix = 100 nA was used and measurements of Vxx and Vxy were performed by standard
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lock-in techniques using either a digital (Stanford SRS-830) or an analog (PAR 124)

amplifier.

Once the best contact configuration was ascertained, the magnetic field was

moved to the flank of the ν = 1 quantum Hall state, as shown in Fig. 3–8(a). After

changing the magnetic field, the sample was left to stabilize for 10 − 15 minutes to

accommodate for any temperature fluctuations that may have occurred due to eddy

currents. Normally, a α− β map would be produced after any significant change in

B due to the considerations discussed in Chapter 2, but in this case the experiment

was conducted before the effect of Faraday rotation was completed and therefore

no map at the exact measurement field is available. The map of the back-reflection

signal in Fig. 3–8(b) was produced at B = 5.6 T. It is known from Chapter 2 that

the Faraday rotation due to 1 T will not significantly change the map and this should

be a good representation of the map at B = 6.77 T.

(a) (b)

Figure 3–8: (a) ν = 1 quantum Hall state of the 2DEG. The red circle
highlights the approximate location of the optical transport measurements.
(b) A contour map of back-reflection intensity measuring the output polar-
ization at B = 5.6 T.

Ideally, a slice along the vertical of the α − β map would be chosen such that

the output would cycle through regions of circular (σ+ and σ−) and linearly (||)
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polarized light. For each measurement point, the λ/2 waveplate was rotated by 2°
and the data was acquired for 500 s at each point approximately equal to or longer

than the expected nuclear spin relaxation time T1 [30]. The overall results, shown

in Fig. 3–9, demonstrate a clear relationship between changes in magnetoresistance

and the polarization of light illuminating the sample. We see that the peaks in

back-reflection (denoting σ transmission) correlate well with the peak changes in

∆Rxx/Rxx, up to ±40%.

Figure 3–9: Changes in magnetoresistance versus light polarization of a
GaAs/AlGaAs 2DEG at T ≈ 270 mK, B = 6.77 T and the base Rxx = 450 Ω.
A small phase offset is found in the back-reflection signal with respect to the
resistance oscillations, which is attributed to the additional Faraday rotation
that the back-reflected light undergoes in comparison to the light illuminating
the sample, as discussed in Chapter 2 [57].

In Chapter 2 we stated the major limitation of this back-reflection technique as

its inability to determine the handedness of the transmitted circularly polarized light.

Although the absolute handedness of the transmitted light is ambiguous, previous

work by Mack et al. has demonstrated that adjacent areas of σ light on the α − β

maps are of opposite handedness [58], labelled hereafter as σ and σ′. In Fig. 3–9, we
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see that adjacent peaks in back-reflection correspond to changes of Rxx in opposite

directions.

3.3 2D Maps of Resistance and Polarization

The observations presented in the previous section demonstrate that a clear

relationship exists between Rxx and the polarization of the light incident on the

2DEG. In an attempt to make these results more robust, similar experiments were

repeated through a number of slices along the α−β map to produce a two-dimensional

picture of the relationship between resistance and polarization.

For these experiments, the same procedure outlined in Section 3.2 was used.

The B field was set on the right flank of ν = 1 with a base resistance of Rxx ≈ 360 Ω.

For measurements along the vertical cuts of the α−β map, the λ/4 waveplates were

set to a fixed value and the λ/2 waveplate was rotated in 2° steps. The angles of

the λ/4 waveplates were then rotated by 5° and the measurements were repeated

along a new β slice. In Fig. 3–10 we see the results as two dimensional maps of the

back-reflection signal and corresponding changes in magnetoresistance.

The correlation between illuminating the sample with circularly polarization and

changes in Rxx are even more apparent in the 2D maps. The regions of circularly

polarized transmission on the back-reflection map correspond directly with changes

in ∆Rxx/Rxx. The regions labelled σ both have the same handedness and correspond

a positive change in resistance. Conversely, the regions labelled σ′ correspond to a

negative change in resistance.

If one looks closer at the Zeeman energy model given by Eq. 1.13, one can see

that a change in the mean nuclear spin polarization 〈I〉 can be detected using the

magnetoresistance Rxx. If one follows Paget’s result in Eq. 1.42 where 〈I〉 ∝ −P, it
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(a) Back-reflection (b) Magnetoresistance

Figure 3–10: Two α − β maps of (a) back-reflection and (b) ∆Rxx/Rxx.
The regions labelled σ and σ′ represent transmission of a different handedness
of circularly polarized light. T ≈ 270 mK, B = 6.770 T, P ≈ 72µW power
output from the fiber .

can be seen that pumping the sample with σ+ should result in 〈I〉 < 0 and pumping

with σ− should result in 〈I〉 > 0.

Looking closer at the Zeeman energy Ez = g∗µB (B +BN )Sz, where BN =

A 〈Iz〉 /g∗µB, one can see that a change in 〈I〉 will affect the magnitude and sign

of the Overhauser shift BN . If 〈I〉 > 0, the Zeeman energy will decrease because

BN will be in opposition to B. If 〈I〉 < 0, the result is an increase in the Zeeman

energy gap because B and BN are in the same direction. In the thermally activated

region of ν = 1, this change in the Zeeman gap energy ∆ should be detectable as a

change in magnetoresistance where Rxx ∝ e−∆/2kBT (see Eq. 1.14). Therefore, the

changes in Rxx that are seen as a result of different polarizations may be indicative

of polarized nuclei.

3.4 Dynamics Experiments

In the previous two sections, it has been demonstrated that a link exists be-

tween the polarization of light used to illuminate the GaAs/AlGaAs 2DEG and the
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magnetoresistance Rxx of the ν = 1 Landau level of the quantum Hall system. The

following section describes a series of dynamics experiments that were conducted to

probe the origins of this relationship.

To perform these measurements, the system was set up in a similar fashion to

the optical sweeps described previously. A α − β map of the back-reflection signal

was produced after the B field was set on the flank of ν = 1. Using the map in

Fig. 3–11(a) as a guide, a vertical slice of β was found that traverses through regions

of both σ and || output. The waveplates were then set to a σ region and allowed

to stabilize for a minimum of 500 s. While recording the magnetoresistance, the λ/2

waveplate was quickly rotated (< 1 s) using the computer controlled stepper motor

to change the output to a region of linear polarization. In Fig. 3–11(b), the results

of the first such dynamics measurement are seen. The fiber’s output polarization

was changed to a linear state at t = 0 s resulting in a behaviour that clearly follows

an exponential decay, with an overall ∆Rxx ≈ −95 Ω and a decay time constant of

τ1 = 340 ± 10 s.

(a) (b)

Figure 3–11: (a) α − β map of back-reflection at B = 7.1561 T. (b)
A measurement of the magnetoresistance decay as the polarization of light
illuminated on the sample was changed from σ to || at t = 0 s.
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In subsequent measurements, the same process was repeated but the polarization

was changed in the opposite direction. In this case, the sample was stabilized under

|| illumination and then the output was quickly changed to σ. Fig. 3–12 depicts

an example result from these experiments. The change in polarization from || → σ

in Fig. 3–12(a) results in a magnetoresistance change of ∆Rxx ≈ +75 Ω and an

exponential behaviour with a time constant of τ ′1 = 360± 20 s. After the sample had

stabilized, the process was reversed and measurements were taken of the transition

from σ → ||, shown in Fig. 3–12(b). Again, one sees an exponential decay with a

time constant of τ1 = 440 ± 20 s and an overall ∆Rxx ≈ −80 Ω. In general, the

process appears to be very reversible and the equilibrium magnetoresistance under

each pumping condition remains the same.

(a) (b)

Figure 3–12: Decay of magnetoresistance near ν = 1 as the polarization
of light shining on the sample is changed at t = 0 s from (a) || → σ and (b)
σ → ||.

It should be noted that in the previous experiments, all of the measurements

were performed using σ regions having the same handedness of circularly polarized

light. An additional measurement was taken using a circularly polarized region of

the opposite handedness labelled as σ′ in Fig. 3–11(a). Fig. 3–13 shows the results
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from a measurement of the transition of output polarization from σ′ → ||. Although

the change in resistance is not as well behaved as the previous examples, one should

recognize that, as expected, this transition (σ′ → ||) results in a positive change

in Rxx whereas the previous transitions (σ → ||) all result in a negative change in

Rxx [9]. The relatively small change in resistance, compared to ∆Rxx ≈ ±90 Ω found

above, may possibly be due to an offset due to Faraday rotation. If the transmitted

polarization output was significantly offset from the measured back-reflection α− β

map, the waveplate position may not be on the peak of the local maximum. This

could significantly reduce the efficiency of the optical pumping mechanism.

Figure 3–13: Decay curve of magnetoresistance with a time constant of
τ1 = 380 ± 110 s as the polarization is changed from σ′ → || at t = 0 s.

3.5 Conclusions

This chapter has presented the results of magneto-optical transport measure-

ments performed to examine the interconnection between the magnetoresistance near

the ν = 1 quantum Hall state of a GaAs/AlGaAs 2DEG and the polarization of

light shining on the sample surface. Measurements in both 1D and 2D were found to

demonstrate a clear connection between the handedness of the circularly polarized
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light shining on the sample and the resulting change in Rxx of up to 40%. This

result is significant because although nuclear polarizations of only 1% are required

to detect a change in resistance [30], it has been reported that nuclear polarizations

as high as 40% have been achieved with optical pumping in GaAs samples [59].

Dynamics experiments were also used to further probe the origins of this re-

lationship. An exponential behaviour was found for the decay from a circularly

pumped state to an unpumped state under illumination of linearly polarized light.

The time constants τ1 for these decays were all in the range of 300 s − 400 s which

is consistent with the order expected for the decay time constant T1 of polarized nu-

clear spins in GaAs on the flank of ν = 1 [30]. These experiments also demonstrated

that the transitions from different handedness of σ to || result in opposite changes

in magnetoresistance, consistent with the magneto-optical transport measurements.

The results presented reinforce the hypothesis that the nuclear spins of the GaAs

are being polarized through dynamic nuclear polarization under illumination of near

infrared laser light. Although the evidence is supportive, future experiments will

need to be performed using traditional NMR methods to provide conclusive proof

that the relationship found is truly a result of the nuclear spin polarization in GaAs.



CHAPTER 4

Laser Induced Phenomena in
GaAs/AlGaAs Quatum Wells

D
uring the course of the investigations presented in this thesis, an inter-

esting behaviour was observed in the quantum Hall traces of GaAs/AlGaAs

quantum wells exposed to low power near infrared laser light (λ ≈ 800 nm). Under

illumination, a series of unexplained features were found in the Rxx valleys, includ-

ing but not limited to, ν = 1. This chapter presents the preliminary results of an

investigation to uncover the origin of these phenomena.

4.1 Zero Resistance States Under Laser Illumination

While conducting a series of transport measurements to determine the best

set of contacts for a quantum Hall trace, an unexplained series of zero resistance

states was discovered in a magnetic field trace of Rxx. This startling observation

is an immediate reminder of the microwave induced zero resistance states found

in GaAs/AlGaAs 2DEGs by Mani et al. [60]. Although similar in nature, these

experiments were performed in a much different energy regime that in the system

presented here.

55
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The measurements were repeated recording both Rxx and Rxy to determine the

Landau level filling factor ν of all the zero resistance states in the trace, shown

in Fig. 4–1. It is noted that the features present in Rxx show a strong hysteretic

behaviour with the B field sweep direction. Upon close inspection, it is noted that the

slope of the Hall resistance is not uniform and actually increases at higher magnetic

fields (B > 4 T). Perhaps the most startling result of Fig. 4–1 is that a number of

these zero resistance states do not coincide with plateaus in Rxy as one would expect

in a quantum Hall system (integer or fractional). The Rxy plateaus that do coincide

with a zero resistance state are offset from the centre of the valley. These observations

may suggest an inhomogeneity in the quantum well and that the geometry of the

sample contacts may play an important role in the understanding of these features.

(a) (b)

Figure 4–1: Transport sweeps of Rxx and Rxy with B (a) increasing and
(b) decreasing. The dashed red line is a linear fit to the Hall resistance for
B < 2 T and extrapolated to show the change in curvature of Rxy at higher
magnetic fields.

4.2 Contact Dependence

In order to examine the effects of geometry, the same transport measurements

were repeated using different contact configurations, as shown in Fig. 4–2. The con-

tact maps in the inset of each figure show that each configuration probes a different
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region of the electron gas. In Fig. 4–2(a) and Fig. 4–2(b), the contacts used for the

source current were switched from the centre of the sample to the left edge, resulting

in a significant difference in slope of the Hall resistance between the two configu-

rations. Overall, this would suggest that the electron density in the centre of the

2DEG is much lower than the density of the left side.

Some of these results are similar to those found by Shields who studied below

bandgap laser excitation in a GaAs/AlGaAs quantum well [61]. While illuminating

different regions of the sample, the Hall resistance was measured to determine the

electron density of the 2DEG and it was found that the local electron density was

reduced in the locality of the laser spot. A significant change in density was observed

with both focused and unfocused light. Although the same curvature in Rxy that

was found in Fig. 4–2 was not seen, only data in the range B = 0 T−4 T is available.

This however is still in the linear range of the data in this experiment.

Shields proposed that for excitation light with energy below the bandgap, the

reduction of the quantum well’s electron density was due to photoexcitation of the

thick GaAs buffer layer. Under illumination, the photoexcited electrons in the buffer

would be swept to the front of the sample and collect at the GaAs/AlGaAs interface

at the top of the buffer layer, whereas the holes would be swept towards the growth

initiation surface.

This process continues until a sufficient amount of charge builds up at the op-

posite ends of the buffer layer to reduce the electric field across the buffer layer,

thereby creating an equilibrium that is dependent on the intensity of illumination.

The resulting photovoltage will act like a depleting back gate bias on the quantum

well by raising the potential of the GaAs/AlxGa1−xAs interface at the top of the
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(a) (b)

(c)

Figure 4–2: Comparison of transport measurements taken using different
contact configurations on the GaAs/AlGaAs sample. The only difference
between (a) and (b) is that the source current is moved from the centre of
the sample to the left side. In (c) the left side of the sample is probed showing
only a single density.
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Figure 4–3: Illustration of the band structure modifications that result
from photoexcitation with energy below that of the bandgap. In the illumi-
nated region, the build up of charge raises the potential at the GaAs/AlGaAs
interface which acts like a depleting back gate bias and reduces the local elec-
tron density in the 2DEG [61].

buffer layer. The electrons will flow away from illuminated regions within the plane

of quantum well, reducing the local density [61].

In terms of magnetoresistance, the critical factor appears to be the geometry

of the four terminal measurement. In Fig. 4–2(a) and Fig. 4–2(b), the contacts for

Ix and Vxx are not physically close to each other and the additional zero resistance

minimas are observed. In Fig. 4–2(c), where the contacts are located closer together,

there appears to be only one clear density present and the trace is more representative

of a traditional quantum Hall sample. These observations appear to point to an

inhomogeneity in the quantum well as a result of laser illumination.

4.3 Temperature Dependence

In order to further understand the origins of these zero resistance states, it is

important to understand the energy scales in which they occur. To accomplish this, a

full series of temperature dependence measurements of the quantum Hall states were
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performed up to T ≈ 2.3 K. For each data set, the sample temperature was fixed us-

ing a Lakeshore 340 temperature controller and allowed to reach equilibrium and sta-

bilize for 30 min before sweeping the magnetic field. In each case, the magnetic field

was swept up and down from B = 0 T− 8.5 T at a rate of dB/dt = 0.09376 T min−1.

The sample was allowed to restabilize before sweeping in the opposite direction to re-

duce any heating effects from eddy currents. All measurements were were conducted

at a constant laser driving current ID = 40.05 mA which corresponds to an power

of P ≈ 12µW illuminating the sample. For the remainder of the experiments, the

contact configuration shown in Fig. 4–2(a) was used. The results of the temperature

dependence are shown in Fig. 4–4.

The most apparent feature in Fig. 4–4(a) and Fig. 4–4(b) is that the electron

density of the 2DEG has a very strong dependence on temperature. This is demon-

strated by the gradual shift right of the Rxx valleys as the temperature is increased.

In order to further demonstrate the temperature dependence of the electron density,

the mean density of each sweep was calculated using the location of each Hall plateau

centres even though the slope of Rxy changes with B. The temperature dependence

in Fig. 4–5 indicates that there is a saturation of the electron density in the low and

high temperature ranges.

A simple Boltzmann model can be used extract an energy scale from this tem-

perature dependence data. The optical excitation of the laser will create a steady

state density of holes in the valence band and electrons in the conduction band (exci-

tons) which are in addition to the electrons present in the well prior to illumination.

Assuming that the system is near thermal equilibrium, it is expected that the ratio

of free electrons to excitons will be that of a Boltzmann factor. Using this model, a
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(a) B increasing

(b) B decreasing

Figure 4–4: Magnetic field sweeps (a) up (b) down showing the tempera-
ture dependence of a GaAs/AlGaAs quantum well under constant illumina-
tion from near infrared laser light. A clear change in the electron density of
the quantum well is evident by the shift of the Rxx valleys as the tempera-
ture increases. The step-like nature in the plots is due to the interpolation
method used to generate the contour.
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crude prediction for the expected density is of the form

n = n0 + nL





e
−Eb
kBT

1 + e
−Eb
kBT



 , (4.1)

where n0 is the electron density prior to illumination, nL is the optically generated

total electron density (free electrons and electrons bound to excitons) and Eb is

the binding energy of an exciton. The model in Eq. 4.1 has been applied to the

data in Fig. 4–5 and demonstrates good qualitative agreement to the behaviour of

the electron density over this range of temperatures. Using nL and Eb as fitting

parameters, we can see find a binding energy of Eb ≈ 1.6 K, corresponding to an

energy scale of Eb ≈ 0.34 meV.

The energy scale found as a result of fitting this data to the model in Eq. 4.1 is

not realistic for the exciton binding energy, as it is well below the 5 meV − 20 meV

range expected for excitons in GaAs [62]. In addition to the binding energy, the fit

value for nL is much larger than expected for such a low power laser. It is unlikely

that such a large number of electron hole pairs could be generated by such low power

excitation, due to the short recombination time for excitons.

In Fig. 4–6, it is noted that at high temperatures (T ≈ 2 K) an almost “normal”

quantum Hall trace returns. The Hall resistance once again has a linear slope in Rxy,

without any curvature at high magnetic fields. Although the Landau level valleys

are well defined, the Hall plateaus are still offset from their centre.

The transport measurements in Fig. 4–4 can be adjusted to remove the effect

of the electron density’s temperature dependence. Using the data in Fig. 4–5, the

magnetic field is rescaled by

B′ =
n0

n (T )
× B (4.2)
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Figure 4–5: Demonstration of the temperature dependence of the quantum
well’s electron density. The solid lines are fits to the Boltzmann approxima-
tion in Eq. 4.1 with the given fitting parameters.

where n0 is the electron density at the lowest temperature and n (T ) is the mean

density for each sweep. In Fig. 4–7 one sees a much clearer picture of the temperature

dependence of the additional for zero resistance states. This correction brings forth

some subtle features present in the temperature dependence data.

Upon closer inspection of Fig. 4–7, one sees a very complex crossing behaviour

of these additional zero resistance states in the temperature range from T = 0.6 K−

1.4 K. This behaviour appears to be present in the additional zero resistance states

located near the Landau levels with odd filling factors. At high temperatures it is

observed that, as expected, the odd filling factor Landau levels will close due to the

loss of spin splitting. The interesting behaviour is that the additional states shift as

the temperature evolution progresses which is not a result of the main density shift.

The arrow labelled (1) follows the path of a zero resistance state that begins

near ν = 3 and shows that as the temperature increases, the zero resistance gap

crosses over into the ν = 2 valley. A similar behaviour is found along the path of
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Figure 4–6: The offset in Rxx and Rxy is still present at higher tempera-
tures. Only even number filling factors are present as the states due to spin
splitting have closed at T = 2.2 K.

arrow (2), where the state transitions from ν = 5 into ν = 4. To take a closer look

at this crossing over behaviour, Fig. 4–8 follows the temperature evolution of the

structures on each side of arrow (1), which are labelled (γ) and (δ) in Fig. 4–7.

In Fig. 4–8(a), it is noted that the height of δ has a quite gradual decline with

a small local maxima at T ≈ 0.8 K. This follows the behaviour observed in the

resistance map in Fig. 4–7, where δ declines into the ν = 2 valley. In Fig. 4–8(b) the

γ peak has a sharp incline at T = 0.7 K and quickly saturates at T ≈ 0.8 K. At this

time, the origin of this crossing behaviour remains unclear and it will be the focus

of future investigations.
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(a) B increasing

(b) B decreasing

Figure 4–7: B field sweeps (a) up and (b) down of the magnetoresistance’s
temperature dependence. The data in has been adjusted to compensate for
changes in the well’s electron density.
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(a) Structure δ (b) Structure γ

Figure 4–8: Temperature dependence of the peak height of the structures
(γ and δ) on either side of the crossing over gap. In (a) δ shows a slow decline
with temperature, whereas in (b) γ demonstrates a sharp turn behaviour at
T = 0.7 K.

4.4 Laser Power Dependence

In the previous section it was found that the behaviour of the GaAs/AlGaAs

quantum well was heavily dependent on the temperature of the sample. One of

the more complicated aspects of these experiments is that the light illuminating the

sample, although very low power, is also heating the electrons in the 2DEG. In this

section, an investigation will be conducted into the effect of changing the output

power of the laser illuminating the sample while maintaining the sample as close to

base temperature as possible. Although the temperature of the bulk sample will be

near that of the base, the electrons in the quantum well are expected to undergo

heating due to photoexcitation.

4.4.1 Reduced Laser Power

In the first part of this experiment, transport measurements were recorded for

each step as the the laser driving current ID was reduced from 40.05 mA to 20 mA.

The procedure for acquiring these measurements was the same as for the temperature
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dependence except that at each driving current value the sample was maintained at

low temperature. Fig. 4–9 shows that as the laser’s power was reduced, the unknown

zero resistance states begin to clear up, the slope of the Hall resistance returns to

being constant and the density decreases to n ≈ 1.8 × 1011 cm−2 at ID = 20 mA

(P ≈ 1.2µW).

(a) ID = 37 mA, P ≈ 8.6 µW (b) ID = 20 mA, P ≈ 1.2 µW

Figure 4–9: Transport measurements acquired as the illumination power
was decreased. As the power was lowered, the structures of the unknown
zero resistance states begins to degrade. At low power, the curvature of the
Hall resistance has subsided.

4.4.2 No Illumination

At this point, a scheduled power outage required that the laser be turned off.

A single transport measurement was completed before the power outage, but only

in the low field range (B < 4 T), shown in Fig. 4–10(a). During the power outage,

the sample warmed to T ≈ 5 K over a period of 12 h. After power had returned, the

sample was cooled to base temperature (T ≈ 270 mK) and a transport sweep was

taken with the laser still off. Fig. 4–10 shows a comparison of the measurements

taken before and after the sample was allowed to warm to T ≈ 5 K.
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(a) (b)

Figure 4–10: Measurements of the sample’s transport properties with no
laser illumination. One can compare the state of the sample (a) before and
(b) after it was allowed to warm to T ≈ 5 K. The sample shows a very
poor quality trace before the thermal cycle. After the sample was warmed, it
appears to have had a complete recovery and all of the zero resistance states
correspond to plateaus in the Hall resistance.

In Fig. 4–10(a), it is noted that the Rxy plateaus still do not coincide with

the Rxx valleys. Remarkably, in Fig. 4–10(b) the sample appears to have had a

complete recovery. The Hall resistance is once again linear and the plateaus fully

coincide with the zero resistance states in Rxx and the system no longer exhibits a

hysteretic behaviour. There are no unexplained zero resistance states present in the

magnetoresistance. The electron density of the 2DEG has risen to n ≈ 3.3×1011 cm−2

which is actually greater than the density of the sample in its dark state (n ≈

2.74 × 1011 cm−2).

4.4.3 Increased Laser Power

After this, the laser was turned on and the current was slowly increased to

ID = 42 mA and measurements were acquired every 2 mA from ID = 42 mA−50 mA.

At 42 mA, the sample has returned to a state almost identical to the one taken at

40 mA. As seen in Fig. 4–11(a), the zero resistance states in Rxx have returned along
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with the hysteretic behaviour in electron density and the offset between the Rxy

plateaus and their coinciding Rxx valleys. As the current was increased to 48 mA,

it is seen in Fig. 4–11(b) that the features of the transport measurements start

to degrade in a similar fashion to those found at the high end of the temperature

dependence data. The height of the gaps separating the zero resistance states begin

to reduce and the spin split Rxx states (odd values of ν) start to close. This is strong

evidence that the laser is causing significant electron heating in the 2DEG.

(a) ID = 42 mA, P ≈ 16 µW (b) ID = 48 mA, P ≈ 58 µW

Figure 4–11: Demonstration of the effect that illumination power has on
the quantum Hall system. At higher power, the zero resistance states be-
gin to degrade as the electron heating becomes significant. Unlike the high
temperature data in Fig. 4–6, even at high power there is still considerable
curvature in the Hall resistance at high magnetic fields.

4.4.4 Electron Density

Similar to the temperature dependence experiments, a strong change in the

electron density of the 2DEG was found as the power of the laser was varied. The

mean electron density was again calculated using the centre of the Hall resistance

plateaus. Fig. 4–12 summarizes the results of the laser power dependence discussed

above.
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Figure 4–12: Electron density as a function of illumination power shining
onto the surface of the GaAs/AlGaAs sample. Due to constraints beyond
control, the data was acquired in the following order: (1) Laser power de-
creased. (2) Laser turned off. (3) Thermal cycle to T ≈ 5 K. (4) Laser turned
on. (5) Power increased to 100µW. After step (4) the data clearly follows
the same trend as (1), suggesting the effect of the laser is well mastered.

In Fig. 4–12, a complex relationship emerges as a result of the laser illuminating

the sample surface and interacting with the electrons in the quantum well. Under

low power illumination, the sample density is depressed significantly lower than its

dark state. As the power of the laser was increased, the density begins to rise as the

electrons undergo heating which is consistent with the behaviour found in Fig. 4–5.

As the power is further increased, the density begins to level off near that of its dark

state. One of the most remarkable observations is that when the laser was turned off,

the quantum Hall system was fully recovered after the sample was thermally cycled to

T ≈ 5 K. When the sample was once again illuminated, the electron density lowered

along the same trend as discovered previously. The physical mechanism associated

with this low energy scale remains to be further investigated.
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4.5 Conclusions

This chapter presents the preliminary results of an investigation into the zero

resistance state phenomena in the quantum Hall structure of a GaAs/AlGaAs quan-

tum well under laser illumination. Under photoexcitation, it was observed that these

states appear to be dependent on contact geometry used for conducting the mea-

surements as the laser appears to locally modify the electron density of the quantum

well [61]. A temperature dependence of the transport properties revealed that under

constant illumination, the electron density of the 2DEG increases as a function of

temperature following the behaviour of a Boltzmann two level system with energy

gap Eb ≈ 1.6 K. Normalizing the magnetoresistance curves to account for the den-

sity change reveals that some of the additional zero resistance states demonstrate a

crossing over behaviour as the system’s temperature was increased.

A complex behaviour in the sample’s electron density also developed when the

power of the light shining on the sample was varied. Under low power illumination,

the density of 2DEG was significantly depressed in comparison to its dark state. As

the power was increased, the electron density began to accrue, tending towards a

saturation point near that of the dark state. The modifications caused by the laser

to the quantum Hall state were found to be almost completely reversible under the

thermal cycle conditions of T ≈ 5 K.



CHAPTER 5

Conclusions

5.1 Summary

T
the potential of using the nuclear spins of GaAs as quantum infor-

mation carriers was introduced in Chapter 1 and a number of topics related

to their implementation were reviewed: GaAs/AlGaAs quantum well structures,

the classical and integer quantum Hall effects, resistively detected nuclear magnetic

resonance and dynamic nuclear polarization through optical pumping methods. In

Chapter 2 the design and implementation of a cryogenic polarization controller that

can output different polarization of light at the end of a standard single mode op-

tical fiber was demonstrated. A model was devised to describe its operation with

and without the presence of a magnetic field. In Chapter 3 the results of magneto-

optical transport measurements show evidence of a direct relationship that exists

between the polarization of the light illuminating the sample and the magnetoresis-

tance of the ν = 1 flank in a GaAs/AlGaAs quantum Hall system were reported.

Dynamics experiments to determine the decay rates of the pumped states were also

performed demonstrating evidence that this behaviour may be due to the dynamic

72



5.2 Future Research 73

polarization of the GaAs nuclear spins as a result of the circularly polarized photoex-

citation. Chapter 4 reports on the observation of a complex series of zero resistance

states in the quantum Hall structure under low power laser illumination. A thor-

ough investigation into the sample’s dependence on contact geometry, temperature

and illumination power was presented and possible explanations were discussed.

5.2 Future Research

Although many of the results presented here show great progress towards the

realization of GaAs as a quantum information carrier, further work is required to

verify (i) that the power of the light exiting the fiber remains constant under all

polarization conditions at low temperatures; (ii) that the nuclear spins are, in fact,

being influenced by polarized photoexcitation; and (iii) the reproducibility of the

laser induced zero resistance states. The following sections briefly explore each of

these future research directions.

5.2.1 Nuclear Magnetic Resonance

In Chapter 3, a strong correlation was found between the ∆Rxx and the light’s

polarization [57]. In addition, the dynamics experiments found that the decay rates

of these pumped states were in good agreement with those expected for the nuclear

spin-lattice relaxation time of GaAs at T ≈ 270 mK. To fully verify that these

observations are a result of nuclear spin polarization, a coil must be installed around

the sample to perform traditional resistively detected NMR experiments. While

maintaining the sample in a circularly pumped state, the frequency of the radio-

frequency oscillations applied to the NMR coil should be swept through the Larmor

frequencies of the isotopes present in GaAs. If the nuclei are in fact polarized,

sweeping through the Larmor resonance frequencies will destroy the induced nuclear
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polarization, resulting in a measurable change in Rxx. This would provide irrefutable

proof that the system presented is dynamically polarizing the nuclear spins of the

GaAs quantum well.

5.2.2 Polarization Controller

In order to validate the correlation between ∆Rxx and polarization, the effect of

thermal changes on the system must be further investigated. A thorough character-

ization of the polarization controller’s output at low temperatures will be required

to ensure that the power of the light shining on to the sample is independent of po-

larization. The sensitivity of the quantum Hall state to small changes in the output

power should also be investigated to determine the extent that could influence the

system.

One of the key limitations to the current polarization controller design is its

inability to measure the output power of the light shining on the sample. Although

the intensity of the back-reflected light is directly proportional to the intensity of the

fiber’s output, it cannot provide an absolute measure of the output power because it

is dependent on a number of other variables. One proposed solution is to install near

the sample surface a bolometer that is exposed to some of the light originating from

the fiber. A bolometer is typically a temperature sensitive resistor that is heated

by incoming radiation and cooled by the thermal conduction of its electrical wires

[63–68]. Once calibrated, a bolometer mounted near the sample would provide an in

situ method of measuring the absolute output power of the light exiting the fiber.

Additionally, this could act as a means of correcting small misalignment of the optical

system without requiring the system to be warmed to room temperature.
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5.2.3 Laser Induced Phenomena

Although the investigation presented in Chapter 4 has resulted in a number of

interesting and astonishing observations, the true origin of these laser induced zero

resistance states presently remains unclear. Future experiments are planned using a

small Hall bar sample made from the same wafer as that used in these experiments,

as shown in Fig. 5–1.

Figure 5–1: Illustration of a Hall bar sample with a width of 100µm. The
contact arms, shown in blue, are patterned using standard photolithography
techniques.

Using the Hall bar should help to eliminate some of the uncertainty related to

the size of the quantum well sample. The smaller area Hall bar may help reduce,

to some extent, the inhomogeneity of the quantum well’s electron density while

under illumination. Similar measurements to those presented here will be conducted

to determine the reproducibility of the behaviour demonstrated by additional zero

resistance states as a function temperature and of illumination power. It is hoped

that these future endeavours will help unravel the origins of these laser induced zero

resistance phenomena.



APPENDIX A

Further Details

A.1 Contact Quality Circuit

The circuit shown in Fig. A–1 was used to verify the quality of each contact

on the sample once it was cooled to liquid Helium temperatures (T = 4.2 K). Each

contact was connected as shown and the differential voltage was measured across the

10 kΩ resistor to determine the current flowing through the contact on the sample.

A “good” contact will have current flow of I ≈ 60 nA − 70 nA.

Figure A–1: Diagram of the circuit used to test the quality of the sample
contacts.
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A.2 Sample Growth Data

Figure A–2: Molecular beam epitaxy growth data sheet for the wafer
EA0746. The GaAs/AlGaAs quantum well sample used for all experiments
described in this thesis was from this wafer.



APPENDIX B

Software Source Code

B.1 Experimental Analysis of α− β Maps
AlphaBetaImport.m

� �
1 % This program takes the output f i l e s from BackMotorOptics . v i v2 .0 and parse s

% them for the necessary informat ion to generat e a contour p l o t . I t r e l i e s
3 % on a s tandard i zed naming scheme f o r the f i l e s t ha t the so f tware uses .

% Format : (QWP1) (QWP2) . lvm
5 % Example : 50 142 . lvm

% Also requ i red i s a constant QWP change d i f f e r e n c e between each of the
7 % f i l e s l i c e s ( ’ degree ’ v a r i a b l e ) . The d e f au l t i s 5 degrees .

9 % Simply wr i t e in the d i r e c t o r y conta in ing the data f i l e s , change the date
% and f i e l d values , and s e t the QWP l im i t s / increment va lue .

11 clc ;
clear ;

13

%%%%%%%%%%%%%% START OF CONFIGURATION %%%%%%%%%%%%%%
15 Directory = ’ /Data/2007−03−07/ ba ck r e f l e c t i o n / ’ ; % Data f i l e s .

Date = ’March 7 , 2007 ’ ; % Date o f sweep , f o r p l o t t i t l e .
17 f i e l d = 0 ; % B f i e l d , f o r p l o t t i t l e .

f o n t s i z e = 12 ; % Fonts i ze f o r the p l o t axes
19 s a v e f i l e s = 1 ; % Save the p l o t s and analyzed data ? (YES=1, NO=0)

QWP1 = [ 70 1 2 5 ] ; % Range of the f i r s t QWP. (Format : [ s t a r t end ] )
21 %%%%%%%%%%%%%%% END OF CONFIGURATION %%%%%%%%%%%%%%%

23 degree = 5 ; %Number o f degrees between each data s e t .

25 QWP2 = QWP1+92;
numf i l e = (QWP1(2) − QWP1(1) ) / degree ; %Number o f f i l e s to import

27

for j = 1 : numf i l e+1
29 f i l ename = f u l l f i l e ( Directory , s t r c a t (num2str(QWP1(1)+(j −1)* degree ) , ’ ’ ,ց

→num2str(QWP2(1)+(j −1)* degree ) , ’ . lvm ’ ) ) ;
f i d = fopen ( f i l ename ) ;

31 Data ( : , : , j ) = texts can ( f i d , ’%f %f %f ’ , ’ h eade r l i n e s ’ , 21) ;
fc lose ( f i d ) ;

33 Z ( : , j ) = ce l l 2mat (Data ( : , 2 , j ) ) ;
end

35 % Extrac t the axes l a b e l s
Y = ce l l 2mat (Data ( : , 1 , 2 ) ) /64 ;
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37 X= QWP1(1) : degree :QWP1(2) ;

39 f igure (1)
contour f (X,Y, Z , 20 , ’ L ineSty l e ’ , ’ none ’ )

41 xlabel ( ’ \ alpha ( Degrees ) ’ , ’ FontSize ’ , f o n t s i z e )
ylabel ( ’ \beta ( Degrees ) ’ , ’ FontSize ’ , f o n t s i z e )

43 t i t l e ( [ ’ Back r e f l e c t i on \ alpha − \beta Map, ’ , Date , ’ , F i e ld = ’ , num2str(ց
→ f i e l d ) , ’ T ’ ] , ’ FontSize ’ , f o n t s i z e )
colorbar

45 grid on

47 % Force proper t i c k l o c a t i on s on the p l o t s .
set (gca , ’ XTick ’ ,QWP1(1) : 1 0 :QWP1(2) , ’ XTickLabel ’ ,QWP1(1) : 1 0 :QWP1(2) )

49 set (gca , ’ YTick ’ , 0 : 20 : 180 , ’ YTickLabel ’ , 0 : 20 : 180 )

51 % Format the data in to a s i n g l e matrix which can be e a s i l y imported in to
% Orig in i f you pr e f e r to use or i g i n to p l o t t he contour .

53 % Simply uncomment the f o l l ow i n g and run :
i f s a v e f i l e s == 1

55 OriginOut ( 2 : length (Y) +1 ,1) = Y;
OriginOut ( 1 , 2 : numf i l e+2) = X;

57 OriginOut ( 2 : length (Y) +1 ,2: numf i l e +2) = Z ;
csvwrite ( s t r c a t ( Directory , ’AlphaBetaMap− ’ , Date , ’ . csv ’ ) , OriginOut )

59

% Generate and save images in 3 convenient formats .
61 [ f i l e p a t h , f i l ename , ext , versn ] = f i l e p a r t s ( D i r ectory ) ;

saveas ( gcf , f u l l f i l e ( f i l e p a t h , s t r c a t ( f i l ename , ’AB Map . pdf ’ ) ) ) ;
63 saveas ( gcf , f u l l f i l e ( f i l e p a t h , s t r c a t ( f i l ename , ’AB Map . f i g ’ ) ) ) ;

saveas ( gcf , f u l l f i l e ( f i l e p a t h , s t r c a t ( f i l ename , ’AB Map . png ’ ) ) ) ;
65 end

�

B.2 Simulation of α− β Maps and Faraday Rotation

simulate.m
� �

1 % This func t ion i s used to generat e s the s imula t ion of the po l a r i z a t i on
% con t ro l l e r ’ s back−r e f l e c t i o n i n t e n s i t y .

3 %
% Syntax : s imu la t e ( p la t e , faraday , f i b e r , b f i e l d )

5 %
% where b f i e l d = magnetic f i e l d s t r eng t h

7 % p l a t e = s t r u c t ( ’HWPmin’ ,HWPmin, ’HWPmax’ ,HWPmax, ’QWPmin’ ,QWPmin, ’ց
→QWPmax’ ,QWPmax) ;
% faraday = s t r u c t ( ’ lambda0 ’ , lambda0 ’ , ’ l eng th ’ , Blength ) ;

9 % f i b e r = s t r u c t ( ’ t he t ’ , t he t , ’ phi ’ , phi , ’ t h i ’ , t h i ) ;
%

11 % Last modi f ied : October 2007
% Copyright 2007 Jonathan M. Buset

13 function SimOut=s imulate ( plate , faraday , f i b e r , b f i e l d )
% Loop over the HWP ( be ta )

15 for e = p l a t e .HWPmin: 5 : p l a t e .HWPmax
% Loop over the f i r s t QWP ( alpha )

17 for f = p l a t e .QWPmin : 5 : p l a t e .QWPmax
a=1* f *pi /180;

19 b=−1*(e ) *pi /180;
c=1*( f +180)*pi /180;

21

% Generate p o l a r i z a t i on
23 amplitude = jones (a , b , c , p late , faraday , f i b e r , b f i e l d ) ;

% Calcu la t e the i n t e n s i t y
25 Output ( ( e /5)−(p l a t e .HWPmin/5) +1 ,( f /5)−(p l a t e .QWPmin/5)+1)= amplitude ’ *ց

→amplitude ;
end %f (QWP)
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27 end % e (HWP)
SimOut = Output ;

�

jones.m
� �
% This func t ion performs the Jones matrix c a l c u l a t i on s o f the l i g h t ’ s

2 % po l a r i z a t i on as i t t r a v e l s through the po l a r i z a t i on c o n t r o l l e r .
%

4 % Syntax : jones (a , b , c , p la t e , faraday , f i b e r , b f i e l d )
%

6 % where a , b , c = waveplate ang le s
% faraday = faraday ro t a t i on parameters

8 % f i b e r = o p t i c a l f i b e r parameters
% b f i e l d = magnetic f i e l d s t r eng t h (T)

10 %
% Last modi f ied : October 2007

12 % Copyright 2007 Jonathan M. Buset
function j ones ampl i tude = jones (a , b , c , p late , faraday , f i b e r , b f i e l d )

14 % Fi r s t 1/4 waveplate
Q = 1/( sqrt (2) ) *[1− i *cos (2* a ) − i * sin (2* a ) ;

16 − i * sin (2* a ) 1+ i *cos (2* a ) ] ;
% Half waveplate

18 H = [− i *cos (2*b) − i * sin (2*b) ;
− i * sin (2*b) i *cos (2*b) ] ;

20 % Second 1/4 waveplate
Q2 = 1/( sqrt (2) ) *[1− i *cos (2* c ) − i * sin (2* c ) ;

22 − i * sin (2* c ) 1+ i *cos (2* c ) ] ;
% Standard 90 degrees quar t e r waveplate

24 QWP = 1/( sqrt (2) ) *[1− i *cos(−(pi /2) ) − i * sin (−(pi /2) ) ;
− i * sin (−(pi /2) ) 1+ i *cos(−(pi /2) ) ] ;

26

% For the b a c k r e f l e c t e d s i gna l s , t he t rans format ion matrices are simply in
28 % inve r s e matrices o f the forward t rans format ions .

Qi=inv (Q) ;
30 Hi=inv (H) ;

Q2i=inv (Q2) ;
32 % I n i t i a l s i gna l , c o n s i s i t i n g o f v e r t i c a l l y l i n e a r l y po l a r i z e d l i g h t .

Signa l = [ 0 ; 1 ] ;
34

% Faraday e f f e c t due to the magnetic f i e l d a f f e c t i n g the l a s e r l i g h t as
36 % i t t r a v e l s through the B− f i e l d . This changes the r e s u l t i n g

% po l a r i z a t i on .
38 Gamma = faraday . verdetL * b f i e l d ;

R=[exp ( i *Gamma) 0 ; 0 exp(− i *Gamma) ] ;
40

% The f o l l ow i n g i s the Transformation matrix o f t he f i b e r
42 F=[exp ( i * f i b e r . phi ) *cos ( f i b e r . thet ) −exp(− i * f i b e r . p s i ) * sin ( f i b e r . thet ) ;

exp ( i * f i b e r . p s i ) * sin ( f i b e r . thet ) exp(− i * f i b e r . phi ) *cos ( f i b e r . thet ) ] ;
44

% D3 i s the l i g h t e x i t i n g the f i b e r .
46 D3= R * F * Q2 * H * Q * Signa l ;

48 % Assumption : The faraday e f f e c t par t happens at the end of the l a s e r
% where there are no bends so the Jones matrix may j u s t be tacked on

50 j ones ampl i tude =[1 0 ; 0 0 ] * Qi * Hi * Q2i * inv (F) * R’ * conj (D3) ;
�

B.3 Analysis of B Field Sweeps

BFieldSweep3.m
� �
% This program takes the data output by ”NML Acqu i s i t i on Sof tware ” , parse s

2 % i t , s c a l e s the va lues according to the provided parameters below ,
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% d i s p l a y s a p lo t , and output s an analyzed data f i l e and parameter l i s t .
4 %

% Last modi f ied : May 2008
6 % Copyright 2008 Jonathan M. Buset

clc ;
8 clear ;

10 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%% DEFINE EXPERIMENT PARAMETERS %%%%%%%%%%%%%%%%%%%%%%

12 f i l ename = ’ /Data/2008−04−05/YbPTgB l a s e r =48mAup.001 ’ ;
num skip = 17 ; % The number o f header l i n e s to s k i p

14 preamp = 1 ; % Pre−amp l i f i e r Gain
LIsens1 = 10 ; % (V)

16 LIsens2 = 5000e−6; % (V)
I app l i ed = 100e−9; % (A)

18 s a v e f i l e s = 0 ; % Save p l o t s and data f i l e s ?
s a v e p l o t s = 0 ;

20 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%% DO NOT EDIT BELOW THIS LINE %%%%%%%%%%%%%%%%%%%%%%%

22 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

24 % Format a nice t i t l e / date s t r i n g from the f i lename .
[ t i t l e s t r i n g da t e s t r i ng ] = f i l ename format ( f i l ename ) ;

26 [PATHSTR,NAME,EXT] = f i l e p a r t s ( f i l ename ) ;
% Extrac t contac t s as f i r s t par t o f f i lename

28 contacts = strtok (NAME, ’ ’ ) ;

30 % Bui ld s t ruc t u r e f o r a l l t he experiment parameters
param = s t r uc t ( ’ f i l ename ’ , f i l ename , ’ preamp ’ , preamp , ’ LIsens1 ’ , LIsens1 , ’ LIsens2 ’ ,ց
→LIsens2 , ’ I app l i ed ’ , Iapp l i ed , ’ contacts ’ , contacts ) ;

32

% Load the raw data from the t e x t f i l e .
34 Data = load data ( f i l ename , 6 , num skip ) ; % load the data f i l e

% Perform s c a l i n g and c a l c u l a t i on s
36 FinalData= dataB f i e l d (Data , param) ;

clear Data ;
38

% Fi t the low f i e l d data o f the h a l l r e s i s t anc e . (B<2T)
40 he2 = 6.626068*10ˆ( −34) / (1.60217646*10ˆ( −19) ) ˆ2 ;

B f i t = find ( FinalData ( : , 1 ) < 2) ;
42 f i t = polyf it ( FinalData ( B f i t , 1 ) , FinalData ( B f i t , 3 ) .* he2 ˆ(−1) , 1 ) ;

44 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%% FORMAT PLOTS FOR DISPLAY %%%%%%%%%%%%%%%%%%%%%%%%

46 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Rxx and Rxy p l o t s t og e t he r :

48 f (1 ) = f igure (2) ;
[A H] = p l o tB f i e l d ({ ’B ’ , ’ rxxO in ’ , ’B ’ , ’ rxy2 ’ } , FinalData , ’ p lotyy ’ ) ;

50 t i t l e ( t i t l e s t r i n g )
hold on

52 % Add a f i t l i n e to the Hal l r e s i s t anc e
l ine ( FinalData ( : , 1 ) ,polyval ( f i t , FinalData ( : , 1 ) ) , ’ Color ’ , ’ r ’ , ’ L ineSty l e ’ , ’−− ’ , ’ց
→Parent ’ ,A(2) , ’ LineWidth ’ , 1 ) ;

54 hold o f f

56 % Rxx j u s t p l o t :
% f (1) = f i g u r e (1) ;

58 p l o tB f i e l d ({ ’B ’ , ’ rxxO in ’ } , FinalData , ’ p l o t ’ )
t i t l e ( t i t l e s t r i n g )

60 xl im ( [ 0 9 ] )
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

62 %%%%%%%%%%%%%%%%%%%%%%% WRITE ANALYZED DATA TO FILE %%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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64 s a v e d i r = f u l l f i l e (PATHSTR, s t r c a t (NAME,EXT, ’ ( analyzed ) / ’ ) ) ;
i f s a v e f i l e s == 1

66 i f i s d i r ( s a v e d i r ) == 0
mkdir ( s a v e d i r ) ;

68 end

70 f 1 = f u l l f i l e ( s ave d i r , s t r c a t (NAME,EXT, ’ ana lyzed . csv ’ ) ) ;
f i d 1 = fopen ( f1 , ’w ’ ) ;

72 fpr int f ( f i d1 , ’%s \n ’ , ’ ***** Header ***** ’ ) ;
fpr int f ( f i d1 , ’%s ,%s \n ’ , ’ Date o f Ana lys i s ’ ,date ) ;

74 fpr int f ( f i d1 , ’%s ,%s \n ’ , ’ Data Filename ’ , f i l ename ) ;
fpr int f ( f i d1 , ’%s ,%s \n ’ , ’ Contacts ’ , contacts ) ;

76 fpr int f ( f i d1 , ’%s ,%.0 f \n ’ , ’Preamp Gain ’ , preamp ) ;
fpr int f ( f i d1 , ’%s ,%.0 f \n ’ , ’ Lock−i n S e n s i t i v i t y (uV) CH1 ’ , LIsens1 /1e−6) ;

78 fpr int f ( f i d1 , ’%s ,%.0 f \n ’ , ’ Lock−i n S e n s i t i v i t y (uV) CH2 ’ , LIsens2 /1e−6) ;
fpr int f ( f i d1 , ’%s ,%.0 f \n ’ , ’ Appl ied Current (nA) ’ , I app l i ed /1e−9) ;

80 fpr int f ( f i d1 , ’%s \n ’ , ’ ***** End of Header ***** ’ ) ;
fpr int f ( f i d1 , ’%s ,%s ,%s ,%s ,%s ,%s ,%s \n ’ , ’ F i e ld (T) ’ , ’ R 1 (Ohm) ’ , ’R 2 (Ohm) ’ , ’ R 1ց

→(V) ’ , ’R 2 (V) ’ , ’Temp(K) ’ , ’ Timestamp ( s ) ’ ) ;
82 fpr int f ( f i d1 , ’%f ,%f ,%f ,%e ,%e ,%f ,% f \n ’ , FinalData ( : , [ 1 2 3 6 7 9 10 ] ) ’ ) ;

fc lose ( f i d 1 ) ;
84 end

86 i f s a v e p l o t s == 1 ;
i f i s d i r ( s a v e d i r ) == 0

88 mkdir ( s a v e d i r ) ;
end

90 for K = 1 : length ( f )
saveas ( f (K) , f u l l f i l e ( s ave d i r , s t r c a t (NAME,EXT, ’ ’ ,num2str( f (K) ) , ’ . png ’ ) ) ) ;

92 saveas ( f (K) , f u l l f i l e ( s ave d i r , s t r c a t (NAME,EXT, ’ ’ ,num2str( f (K) ) , ’ . f i g ’ ) ) ) ;
end

94 end
�

dataBfield.m
� �
% Sca le s the input data according to the experiment parameters and output

2 % in a number o f d i f f e r e n t convenient formats f o r p l o t t i n g .
%

4 % Syntax : da t aB f i e l d (Data , parameters )
%

6 % Last modi f ied : Apr i l 2008
% Copyright 2008 Jonathan M. Buset

8 function DataOut = dataB f i e l d (Data , p )

10 % Do s c a l i n g c a l c u l a t i on s
B=Data ( : , 1 ) ;

12 R1 V = (Data ( : , 2 ) . * ( p . LIsens1 /10) ) . / p . preamp ;
R2 V = (Data ( : , 3 ) . * ( p . LIsens2 /10) ) . / p . preamp ;

14

% Convert R to Ohms
16 R1 Ohm = R1 V/p . I app l i ed ;

R2 Ohm = R2 V/p . I app l i ed ;
18

% Sca le temperature according to g i ven r e s i s t o r c a l i b r a t i on
20 TempK = TempC K(Data ( : , 4 ) ) ;

meanTemp = mean(TempK)
22

% Fi r s t d e r i v a t i v e o f R
24 dR1 = di f f ( moving avg (R1 Ohm, 9 ) ) ;

dR2 = di f f ( moving avg (R2 Ohm, 9 ) ) ;
26

R1 Ohm = moving avg (R1 Ohm,9 ) ;
28 % Make the l a s t va lue the same as second l a s t , so the vec tor i s the same
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% leng t h as the others . This i s a decent approximation , as the l a s t po in t s
30 % aren ’ t u sua l l y used f o r anything .

dR1( length (dR1)+1) = dR1( length (dR1) ) ;
32 dR2( length (dR2)+1) = dR2( length (dR2) ) ;

34 % Calcu la t e the f i l l i n g f ac t o r (nu)
h=6.62606876E−34;

36 e=1.602176462E−19;
nu = 1 . / (R1 Ohm . * ( ( e ˆ2) /h ) ) ;

38

% Group analyzed data f o r output to f i l e .
40 DataOut = [ B R1 Ohm R2 Ohm dR1 dR2 R1 V R2 V nu TempK Dataց

→ ( : , 6 ) ] ;
�

plotBfield.m
� �
function [AX H] = p l o tB f i e l d (xy , Data , p l ot type )

2 % This func t ion takes the d e s c r i p t o r s o f t he data s e t s to be p l o t t e d as
% s t r i n g s , a long with opt ions to p l o t e rror bars . I t customizes the output

4 % p l o t depending on the type o f data requ i red .
%

6 % Syntax : p l o t B f i e l d ( xy , Data , p l o t t y p e )
%

8 % where y = { ’B’ , ’ rxxO in ’ , ’ 1/B’ , ’ rxyO ’}
% xparams = s t r u c t i on creat ed in c a l l i n g code

10 % Data = pre−analyzed data , f o r p l o t t i n g
%

12 % Last modi f ied : February 2008
% Copyright 2008 Jonathan M. Buset

14 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
r x x i n c o l o u r = ’ k ’ ; % Color o f Rxx data ( in phase )

16 r xx ou t co l ou r = ’b ’ ; % Color o f Rxx data ( out o f phase )
r xy co l ou r = ’ r ’ ;

18 drxy co l our = ’b ’ ;
temp colour = ’ r ’ ; % Color o f Temperature data

20 nu co lour = ’m’ ;
l e g e nd l o c a t i o n = ’ Best ’ ; % Location of the l egend on a l l o f t he p l o t s

22 f o n t s i z e = 12 ;
p l o t y d i v i s i o n s = 4 ; % Number o f d i v i s i o n s o f the y−axes .

24 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%% END OF VARIABLES, DO NOT EDIT BELOW THIS LINE %%%%%%%%%%%%%%%%

26 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
he2 = 6.626068*10ˆ( −34) / (1.60217646*10ˆ( −19) ) ˆ2 ;

28

% Force a d e f a u l t p l o t type .
30 i f nargin == 2

plottype = ’ plotyy ’ ;
32 end

34 i f length ( xy ) == 2
numplots = 1 ;

36 x (1) = xy (1) ;
y (1) = xy (2) ;

38 plottype = ’ p l o t ’ ; % Force a s i n g l e y−ax i s p l o t
e l s e i f length ( xy ) == 4

40 numplots = 2 ;
x ( 1 : 2 ) = xy ( 1 : 2 : 3 ) ;

42 y ( 1 : 2 ) = xy ( 2 : 2 : 4 ) ;
% Determine i f t he two x−axes are the same .

44 i f strcmp( x (1) , x (2) )
same x = 1 ;

46 else

same x = 0 ;
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48 end

else

50 error ( ’Wrong number o f x−y inputs . ’ )
end

52 % Don’ t muck with the y−ax i s l im i t s ( De fau l t un le s s temperature or dR/ dt )
l im i t y = 0 ;

54

% Define s t r u c t u r e s f o r p l o t s t y l e s
56 rxxO in = s t r uc t ( ’ ydata ’ , 2 , ’ y s ca l e ’ , 1 , ’ s t r i n g ’ , ’R {xx} (\Omega) [ In ] ’ , ’ց

→co l our ’ , r xx i n co l ou r , ’ l i n e s t y l e ’ , ’− ’ ) ;
rxxO out = s t r uc t ( ’ ydata ’ , 3 , ’ y s ca l e ’ , 1 , ’ s t r i n g ’ , ’R {xx} (\Omega) [ Out ] ’ , ’ց
→co l our ’ , r xx out co l our , ’ l i n e s t y l e ’ , ’− ’ ) ;

58 rxy1 = s t r uc t ( ’ ydata ’ , 2 , ’ y s ca l e ’ , 1e−3, ’ s t r i n g ’ , ’R {xy} (k\Omega) [ Hal l ց

→Res i s tance ] ’ , ’ co l our ’ , r xy co l our , ’ l i n e s t y l e ’ , ’− ’ ) ;
rxy2 = s t r uc t ( ’ ydata ’ , 3 , ’ y s ca l e ’ , he2 ˆ(−1) , ’ s t r i n g ’ , ’R {xy} ( e ˆ2/h) ’ , ’ց
→co l our ’ , r xy co l our , ’ l i n e s t y l e ’ , ’− ’ ) ;

60 drxy1 = s t r uc t ( ’ ydata ’ , 4 , ’ y s ca l e ’ , 1 , ’ s t r i n g ’ , ’ dR {xy}/dt (\Omega/ s ) ’ , ’ց
→co l our ’ , d rxy co l our , ’ l i n e s t y l e ’ , ’− ’ ) ;
drxy2 = s t r uc t ( ’ ydata ’ , 5 , ’ y s ca l e ’ , 1 , ’ s t r i n g ’ , ’ dR {xy}/dt (\Omega/ s ) ’ , ’ց
→co l our ’ , d rxy co l our , ’ l i n e s t y l e ’ , ’− ’ ) ;

62 rxxV in = s t r uc t ( ’ ydata ’ , 6 , ’ y s ca l e ’ , 1e6 , ’ s t r i n g ’ , ’R {xx} (\muV) [ In ] ’ , ’ց
→co l our ’ , r xx i n co l ou r , ’ l i n e s t y l e ’ , ’− ’ ) ;
rxxV out = s t r uc t ( ’ ydata ’ , 7 , ’ y s ca l e ’ , 1e6 , ’ s t r i n g ’ , ’R {xx} (\muV) [ Out ] ’ , ’ց
→co l our ’ , r xx out co l our , ’ l i n e s t y l e ’ , ’− ’ ) ;

64 nu = s t r uc t ( ’ ydata ’ , 8 , ’ y s ca l e ’ , 1 , ’ s t r i n g ’ , ’ \nu [ F i l l i n g Factor ] ’ , ’ co l our ’ց
→ , nu colour , ’ l i n e s t y l e ’ , ’− ’ ) ;
temp = s t r uc t ( ’ ydata ’ , 9 , ’ y s ca l e ’ , 1e3 , ’ s t r i n g ’ , ’ Temperature (mK) ’ , ’ co l our ’ց
→ , temp colour , ’ l i n e s t y l e ’ , ’− ’ ) ;

66

for k = 1 : numplots
68 % match the y−ax i s data s t ruc t u r e with the input data type

i f strcmp( y ( k ) , ’ rxxO in ’ )
70 ax ( k ) = rxxO in ;

e l s e i f strcmp (y ( k ) , ’ rxxO out ’ )
72 ax ( k ) = rxxO out ;

e l s e i f strcmp (y ( k ) , ’ rxxV in ’ )
74 ax ( k ) = rxxV in ;

e l s e i f strcmp (y ( k ) , ’ rxxV out ’ )
76 ax ( k ) = rxxV out ;

e l s e i f strcmp (y ( k ) , ’ rxy1 ’ )
78 ax ( k ) = rxy1 ;

e l s e i f strcmp (y ( k ) , ’ rxy2 ’ )
80 ax ( k ) = rxy2 ;

l im i t y = [ k k ] ;
82 e l s e i f strcmp (y ( k ) , ’ drxy1 ’ )

ax ( k ) = drxy1 ;
84 l im i t y = [ 1 k ] ;

e l s e i f strcmp (y ( k ) , ’ drxy2 ’ )
86 ax ( k ) = drxy2 ;

l im i t y = [ 1 k ] ;
88 e l s e i f strcmp (y ( k ) , ’ nu ’ )

ax ( k ) = nu ;
90 e l s e i f strcmp (y ( k ) , ’ temp ’ )

ax ( k ) = temp ;
92 l im i t y = [ 2 k ] ;

else

94 error ( ’ I nva l i d p l o t input data type (%s ) . ’ , y ( k ) )
end

96 % Calcau la t e / generat e the cor r e c t x−ax i s s t u f f
i f strcmp( x ( k ) , ’B ’ )

98 xdata ( : , k ) = Data ( : , 1 ) ;
xparams ( k ) = s t r uc t ( ’ l a b e l ’ , ’ Magnetic F i e ld ( Tes la ) ’ , ’ l im i t s ’ , [min(ց
→xdata ( : , k ) ) max( xdata ( : , k ) ) ] ) ;
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100 % xparams( k ) = s t r u c t ( ’ l a b e l ’ , ’Magnetic Fie ld ( Tesla ) ’ , ’ l im i t s ’ , [ 3 ց

→5 ] ) ;
e l s e i f strcmp (x ( k ) , ’ 1/B ’ )

102 xdata ( : , k ) = 1 ./ Data ( : , 1 ) ;
xparams ( k ) = s t r uc t ( ’ l a b e l ’ , ’Bˆ{−1} (1/ Tes la ) ’ , ’ l im i t s ’ , [min( xdata ( : , ց
→k ) ) 1 ] ) ;

104 e l s e i f strcmp (x ( k ) , ’ time ’ )
xdata ( : , k ) = Data ( : , 1 0 ) ;

106 xparams ( k ) = s t r uc t ( ’ l a b e l ’ , ’Time ( s ) ’ , ’ l im i t s ’ , [min( xdata ( : , k ) ) max(ց
→xdata ( : , k ) ) ] ) ;

else

108 error ( ’ Error : xax i s ’ , ’Wrong input f o r xax i s data type . \nValid opt i ons : ց

→”B” , ”1/B” , ” time ” ’ ) ;
end

110 end

112 i f strcmp( plottype , ’ p lotyy ’ )
[AX,H(1) ,H(2) ] = plotyy ( xdata ( : , 1 ) , ax (1) . y s ca l e *Data ( : , ax (1) . ydata ) , xdataց

→ ( : , 2 ) , ax (2) . y s ca l e *Data ( : , ax (2) . ydata ) , ’ p l o t ’ ) ;
114 for j = 1 :2

set (get (AX( j ) , ’ YLabel ’ ) , ’ S t r ing ’ , ax ( j ) . s t r i ng , ’ Color ’ , ax ( j ) . co l our )
116 set (H( j ) , ’ Color ’ , ax ( j ) . co lour , ’ L ineSty l e ’ , ax ( j ) . l i n e s t y l e , ’ LineWidth ’ց

→ , 1 )
set (AX( j ) , ’ YColor ’ , ax ( j ) . co lour , ’XLim ’ , xparams ( j ) . l im i t s )

118

% Set the x− and y−ax i s t i c k s so t ha t they l i n e up
120 i f l im i t y (1) == 1 && j == l im i t y (2) ;

ymax = ce i l (max(Data (30 : length (Data ) −30,ax ( j ) . ydata ) ) *1) *ax ( j ) .ց
→ys ca l e /1 ;

122 ymin = f loor (min(Data ( 3 0 : ( length (Data )−30) , ax ( j ) . ydata ) ) *1) *ax ( j ) .ց
→ys ca l e /1 ;
y l im i t s = [ ymin ymax ] ;

124 set (AX( j ) , ’YLim ’ , y l im i t s ) ;
e l s e i f l im i t y (1) == 2 && j == l im i t y (2) ;

126 ymax = ce i l (max(Data ( : , ax ( j ) . ydata ) ) *ax ( j ) . y s ca l e ) ;
ymin = f loor (min(Data ( : , ax ( j ) . ydata ) ) *ax ( j ) . y s ca l e ) ;

128 y l im i t s = [ ymin ymax ] ;
set (AX( j ) , ’YLim ’ , y l im i t s ) ;

130 else

y l im i t s = get (AX( j ) , ’YLim ’ ) ;
132 end

yinc = ( y l im i t s (2)−y l im i t s (1) ) / p l o t y d i v i s i o n s ;
134 set (AX( j ) , ’YTick ’ , [ y l im i t s (1) : y inc : y l im i t s (2) ] ) ;

end

136

i f same x == 0
138 % Colour i ze the x−ax i s & l a b e l s i f they are not the same .

% Otherwise , they w i l l s t ay the d e f a u l t .
140 for k = 1:2

set (get (AX(k ) , ’ XLabel ’ ) , ’ S t r ing ’ , xparams (k ) . l abe l , ’ Color ’ , ax (k ) .ց
→colour , ’ FontSize ’ , f o n t s i z e )

142 end

set (AX(1) , ’ XAxisLocation ’ , ’ bottom ’ , ’ YAxisLocation ’ , ’ l e f t ’ , ’ XColor ’ , axց

→ (1) . co lour , ’ YColor ’ , ax (1) . co lour , ’ FontSize ’ , f o n t s i z e ) ;
144 set (AX(2) , ’ XAxisLocation ’ , ’ top ’ , ’ YAxisLocation ’ , ’ r i gh t ’ , ’ XColor ’ , ax (2)ց

→ . co lour , ’ YColor ’ , ax (2) . co lour , ’ FontSize ’ , f o n t s i z e ) ;
else

146 xlabel ( xparams (1) . l abe l , ’ FontSize ’ , f o n t s i z e )
end

148

% St u f f t ha t always g e t s se t , no matter what the data type i s
150 set ( get (AX(1) , ’ Ylabel ’ ) , ’ FontSize ’ , f o n t s i z e ) ;

set ( get (AX(2) , ’ Ylabel ’ ) , ’ FontSize ’ , f o n t s i z e ) ;
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152 % legend ( [H(1) H(2) ] , ax (1) . s t r i n g , ax (2) . s t r i n g , ’ Location ’ , l e g e n d l o c a t i on )

154 e l s e i f strcmp( plottype , ’ p l o t ’ )
i f numplots == 1

156 H = plot ( xdata , ax (1) . y s ca l e *Data ( : , ax (1) . ydata ) , s t r c a t ( ax (1) . co lour , axց

→ (1) . l i n e s t y l e ) ) ;
ylabel ( s t r c a t ( ax (1) . s t r i n g ) ) ;

158 else

H = plot ( xdata , ax (1) . y s ca l e *Data ( : , ax (1) . ydata ) , s t r c a t ( ax (1) . co lour , axց

→ (1) . l i n e s t y l e ) , . . .
160 xdata , ax (2) . y s ca l e *Data ( : , ax (2) . ydata ) , s t r c a t ( ax (2) . co lour , axց

→ (2) . l i n e s t y l e ) ) ;
ylabel ( s t r c a t ( ax (1) . s t r i ng , ’ / ’ , ax (2) . s t r i n g ) ) ;

162 legend ( ax (1) . s t r i ng , ax (2) . s t r i ng , ’ Locat ion ’ , l e g e nd l o c a t i o n ) ;
end

164 AX = gca ;

166 xl im ( xparams (1) . l im i t s ) ;
xlabel ( xparams (1) . l abe l , ’ FontSize ’ , f o n t s i z e ) ;

168 set ( get (AX, ’ Ylabel ’ ) , ’ FontSize ’ , f o n t s i z e ) ;
set ( get (AX, ’ Xlabel ’ ) , ’ FontSize ’ , f o n t s i z e ) ;

170 end

172 % St u f f t ha t always g e t s se t , no matter what the data type i s
grid on

�
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