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“The most exciting phrase to hear in science, the one that heralds the 

most discoveries, is not 'Eureka!' but 'That's funny'” 
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Abstract 

The optimal design of power generating microsystems requires accurate 

knowledge of the thermal properties of their constituent materials at the 

appropriate length scale. The goal of this thesis was to build an apparatus for 

measuring the thermal conductivity of thermally-insulating dielectric materials 

using the so-called 3-omega technique. This technique utilizes a microfabricated 

metal line deposited on the specimen to act as a resistive heater. When an 

alternating current (AC) voltage signal is used to excite the heater at a frequency 

ω, the periodic heating generates oscillations in the electrical resistance of the 

metal line at a frequency of 2ω. In turn, this leads to a third harmonic (3ω) in the 

voltage signal, which is used to infer the magnitude of the temperature 

oscillations. The frequency dependence of these oscillations can be analyzed to 

obtain the thermal properties of the specimen. 

The device consisted of a voltage source, a custom-built analog circuit and 

sample mount, a lock-in amplifier. The sample was placed within a vacuum 

chamber and evacuated using a made-to-order vacuum system. Personalised 

LabVIEW and MATLAB programs were created for autonomous data acquisition 

and analysis.  

The 3ω technique is simple, quick and accurate; tests using a standard 

fused quartz specimen (k = 1.38±0.04 W/m·K) yielded a measured thermal 

conductivity of 1.47±0.16 W/m·K. Subsequently, the technique was used to 

measure the thermal conductivity of Lead Zirconate Titanate (PZT-5A4E), which 

is a piezoelectric ceramic of interest for integration with microfabricated vibration 

energy harvesters. This material was found to exhibit a low thermal conductivity 

of 1.38±0.10 W/m·K. 
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Résumé 

Le design optimal de microsystèmes pour la génération d’énergie 

demande une connaissance précise des propriétés thermiques des matériaux 

utilisés, à la bonne échelle. Le but de ce projet fut de créer un instrument pour 

mesurer la conductivité thermique des matériaux fonctionnels pour ces 

microsystèmes en utilisant la méthode 3-oméga. Cette méthode se sert d’une ligne 

métallique déposée en surface qui agit comme élément chauffant. Quand le 

filament métallique est alimenté par un courant alternatif (CA) à une fréquence ω, 

la puissance dissipée par effet Joule génère une oscillation sinusoïdale dans la 

résistance électrique à une fréquence 2ω. Cette résistance électrique sinusoïdale à 

son tour crée une harmonique de rang 3 (3ω) dans la tension électrique de 

l’élément chauffant. Cette harmonique est utilisée pour déduire l’amplitude des 

oscillations de température dans le spécimen. La variation de ces oscillations 

thermiques en fonction de la fréquence d’excitation nous permet d’obtenir la 

conductivité thermique de l’échantillon. 

L’instrument consiste d’une source de tension, un « lock-in amplifier », un 

circuit analogique et une monture à échantillon personnalisés. L’échantillon fut 

placé dans une chambre à vide et évacué à l’aide d’un système à vide fait sur 

mesure. Des programmes LabVIEW et MATLAB fut écrits pour réaliser 

l’acquisition et l’analyse de donnés automatisées. 

La méthode 3ω est facile à réaliser et donne des résultats précis : des tests 

avec des échantillons de quartz amorphe (k = 1.38±0.04 W/m·K) ont donné une 

conductivité thermique de 1.47±0.16 W/m·K. Le quartz amorphe fut utilisé 

comme référence pour valider l’instrument. Par la suite, l’appareil fut utilisé pour 

caractériser une céramique PZT (Titano-Zirconate de Plomb), un matériau 

piézoélectrique souvent utilisé dans la fabrication de microgénérateurs pour la 
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récupération d’énergie vibratoire. Une conductivité thermique de 1.38±0.10 

W/m·K fut mesuré pour le PZT-5A4E. 
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Chapter 1: Introduction 

Microsystems are small integrated devices that contain components which 

range in size from the sub-micrometer to the millimeter level. Such systems are 

made using fabrication techniques borrowed from the microelectronics industry. 

As such, the primary building material for microsystems remains single-crystal 

silicon. Historically, microsystems have combined electronic devices with 

miniaturized mechanical components—such as beams, diaphragms and springs—

to form micro-electro-mechanical systems, or MEMS. Today, a plethora of new 

microsystems are being developed incorporating a variety of functional ceramic 

materials with unique properties. Of particular interest in this thesis are 

piezoelectric ceramics, which can convert mechanical strain into an electrical 

potential difference. Such materials are being incorporated into microsystems in 

order to generate electrical power from ambient mechanical vibrations (Priya 

2007). 

 

1.1 Power Harvesting Microsystems 
 

Power harvesting microsystems encompass a variety of different power 

generating MEMS, each tailor-made to convert a different type of ambient 

energy, such as vibrations, light or waste heat (Roundy et al. 2004). Power 

harvesting is a particularly appealing approach for meeting the energy demands of 

wireless sensor networks that are currently being developed for applications in 

environmental monitoring, structural health monitoring and patient monitoring. 

Coupling power harvesting microsystems with wireless sensor nodes 

would thus enable completely autonomous operation of such networks, without 

the need for manual recharging or replacement of electrochemical batteries. 
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However, the performance of the state-of-the-art power harvesting 

microsystems is far from optimal. Optimizing these devices will require advances 

in many areas of science and engineering, such as access to accurate material 

property data, including thermal properties, at the appropriate length scale. In 

particular, accurate characterization of the thermal conductivity (k) of insulating 

ceramic materials as functions of processing conditions and length scale is 

essential for the design of micro engines, micro fuel cells, and vibration energy 

harvesters. This area of research has been largely ignored to-date, which 

motivates the work presented here to characterize low-k piezoelectric materials. 

 

1.2 Techniques for Measuring Thermal Conductivity 
 

In this section, we will describe the most popular methods used to measure 

the thermal conductivity of low thermal conductivity ceramic materials at both 

large and small scales. 

 

1.2.1 Absolute Plate Method 
 

The absolute plate method is the conventional technique for measuring the 

thermal conductivity of thermally insulating solid specimens (Touloukian 1973). 

A constant power source is applied to one side of a thin specimen of a known 

geometry. If the lateral dimensions of the specimen are much larger than its 

thickness, then the temperature profile within the specimen is quasi-one-

dimensional (quasi-1D) near the centre. Using thermocouples on either side of the 

specimen, the equilibrium normal temperature difference is measured. Finally, 

Fourier’s Law of heat conduction is used to extrapolate the normal thermal 

conductivity of the material as 

 
TA

tQ
k

s,xs

s
// Δ⋅

⋅
−= , (1.1) 
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where Q is the input power, TΔ  is the normal temperature difference, and st  and 

s,xsA  are the thickness and cross-sectional area of the specimen, respectively.  

There are a number of difficulties involved with this measurement 

technique. First, a low thermal conductivity material inherently requires more 

time to reach thermal equilibrium, sometimes requiring several hours to several 

days. This equilibration time can be reduced by applying a smaller input power 

and by reducing the thickness of the specimen. 

Second, low thermal conductivity materials naturally resist the transport of 

heat; therefore, a large portion of the applied power can be lost from the surface 

of the material via radiation or convection. To mitigate these losses, the input 

power and specimen surface area are reduced. 

In the end, we need to reduce all of the parameters in (1.1); therefore, the 

thermal conductivity obtained using the conventional technique tends to be 

dominated by measurement errors. 

All of these difficulties can be traced back to the fact that the entire 

specimen is heated to setup a steady, quasi-1D temperature profile. The 3-omega 

technique overcomes these difficulties by limiting the heat-affected region within 

the specimen. 

 

1.2.2 3-Omega Technique 
 

Originally, the 3-omega (3ω) technique was developed to measure the 

thermal diffusivity of metal filaments used in incandescent light bulbs (Corbino 

1912). The goal was to understand the short observed lifetimes of metal filament 

lamps compared to carbon filament ones due to burnout (Ebeling 1908). Later, the 

method was applied to measure the thermal diffusivity of liquids (Birge and Nagel 

1987) and dielectric solids (Moon et al. 1996) by indirectly heating the specimen 

using a thin planar metal filament as both a heater and thermometer in thermal 

contact with the solid of interest. 
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The first reported use of the 3ω method to measure the thermal 

conductivity of solids was by Cahill (Cahill and Pohl 1987). Cahill’s 3ω 

technique—from now on simply referred to as the 3ω technique—utilizes a 

microfabricated metal line deposited on the specimen to act as a 

heater/thermometer. When an alternating current (AC) voltage signal is used to 

excite the heater at a frequency ω, the periodic heating generates oscillations in 

the electrical resistance of the metal line at a frequency of 2ω. In turn, this leads to 

a third harmonic (3ω) in the voltage signal, which is used to infer the magnitude 

of the temperature oscillations (Corbino 1911). The frequency dependence of the 

oscillation amplitude and phase can be analyzed to obtain the thermal 

conductivity of the specimen. 

The 3ω technique greatly reduces the heat-affected region since the 

magnitude of the temperature oscillations decay exponentially away from the 

resistive line heater (Cahill and Pohl 1987). Furthermore, equilibration times are 

drastically reduced because the magnitude of the temperature oscillations reaches 

dynamic equilibrium within a few cycles of oscillation. 

This technique has previously been used to measure the thermal 

conductivity of a wide variety of materials, including various dielectrics  (Cahill 

1990; Lee and Cahill 1997), porous specimens (Gesele et al. 1997) and 

nanostructured materials, such as carbon nanotubes (Hu et al. 2006), and is well 

suited for characterising low-k materials used in MEMS. 

 

1.2.3 Time Domain Thermo-Reflectance 
 

Another technique that is commonly used is time-domain 

thermoreflectance (TDTR). TDTR uses picosecond laser pulses to locally heat the 

surface of the specimen (Paddock and Eesley 1986; Chu et al. 2001). The short 

pulses locally deposit a small amount of energy in the specimen. The surface 

temperature of the specimen is inferred from the change in reflectance of the 

surface, which—in the limit of small temperature changes—is linearly dependent 
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on the temperature of the specimen. A second, low power probe laser is used to 

detect changes in the reflectivity of the material. 

The advantage of this technique is that the thermal penetration depth can 

be limited to tens of nanometers, given a short enough heating pulse, thus 

enabling direct measurement of thin-film specimens commonly used in 

microsystems. On the other hand, TDTR measures the thermal diffusivity of the 

specimen; the thermal conductivity can be inferred given the volumetric heat 

capacity of the specimen. Furthermore, the laser and optical equipment required 

for TDTR make this a relatively costly technique. For these reasons, the TDTR 

technique was not pursued further. 

 

1.3 Goal and Structure of Thesis 
 

The goal of this thesis is to design, instrument, and validate an apparatus 

for measuring the thermal conductivity of low-k materials using the 3ω technique, 

and to demonstrate the utility of this method by measuring the thermal 

conductivity of one specific piezoelectric ceramic, namely, Lead Zirconate 

Titanate (PZT), used in vibration energy harvesters. 

This thesis is organized as follows. Chapter 2 provides a detailed 

discussion of the theoretical considerations underlying the 3ω method and 

presents the analytical relations used to deduce the thermal conductivity of the 

specimen. Chapter 3 outlines the different processing steps used to create the 

microfabricated line heaters as well as the electrical interface between the 

specimen and the electronic measurement equipment. Chapter 4 presents the 

experimental apparatus and the details of the experimental procedure. Next, the 

apparatus was validated using a fused quartz reference specimen. Chapter 5 also 

presents the details of the data and error analyses. Chapter 6 outlines the results 

for Lead Zirconate Titanate (PZT-5A4E) and compares the measured thermal 

conductivity with data found in the literature. Finally, Chapter 7 summarises the 

findings of this work and elaborates on pertinent future work. 
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Chapter 2: Theoretical Considerations 

The 3ω measurement technique uses a metal filament deposited on a 

specimen (Figure 2.1) which acts simultaneously as a resistance heater and 

resistance thermometer detector (RTD) by passing an alternating current (AC) 

signal through it  (Cahill 1990). 

 

 
Figure 2.1: Schematic of the metal line filament deposited on a specimen 
(grey shaped region) used for the 3ω measurements. lh and bh denote the 
heater length and half-width respectively. The contact pads are used to 
make electrical contact with the microfabricated heater. 

 

An RTD determines the equilibrium temperature of a specimen by 

measuring the change in resistance of a metal filament in thermal contact with the 

specimen (Michalski et al. 2001). For small temperature changes, the resistance of 

the filament varies with temperature as 

 ( )TRR Δ+= β10 , (2.1) 

where β  is the temperature coefficient of resistance (TCR), and 0R  and R  are 

the resistances at temperatures 0T  and TT Δ+0 , respectively. Since the TCR for 

most metals is on the order of 10−3 K−1, a Wheatstone bridge is used to measure 

the minute changes in resistance by passing a direct current (DC) signal through 
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the RTD. The amplitude of the DC signal is kept small to minimize any spurious 

heating from the RTD itself. Alternatively, the RTD can be used as a both a 

resistive heater and a temperature sensor if a large amplitude signal is used—

which will be the strategy pursued in this work. 

Given that steady-state temperature measurements of low thermal 

conductivity specimens are plagued with long equilibration times and large 

radiation losses, it is preferable to conduct a transient measurement using an 

alternating current (AC) excitation signal. As such, an AC signal is passed 

through the RTD, which acts as both a heater and a thermometer. The power 

dissipated by the heater/RTD—from now on referred to simply as the heater—due 

to Joule heating is defined as 

 hh RIP 2= , (2.2) 

where hI  and hR  are the heater current and resistance respectively. The 

alternating current passing through the heater is given as 

 ( ) ( )tItI ,hh ωcos0= , (2.3) 

where 0,hI  is the peak amplitude of the nominal heater current at a frequency ω . 

Assuming that the change in resistance is negligible compared to the amplitude of 

the current, the instantaneous power can be written as 

 ( ) ( )( )tRItP ,h,h ω2cos10
2

02
1 += . (2.4) 

where 0,hR  is the nominal heater resistance. As such, the power can be separated 

into two components: a constant component independent of time and an 

oscillating component: 

 0
2

02
1

,h,hDC RIP =  (2.5) 

 ( ) ( )tRItP ,h,hAC ω2cos0
2

02
1= . (2.6) 

From (DeCarlo and Lin 1995), the average power dissipated by the heater over 

one cycle is defined as  

 ( ) ( )( ) DC,h,h,h,h PRIdttRIdttPP ==⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+== ∫∫ 0

2
02

1
2

0
0

2
02

1

0

2cos1
2

1 ωπτ

ω
π

ω
τ

. (2.7) 
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The average power dissipated by the heater is also called the root mean square 

(rms) power, which is half of the power dissipated by a DC current of the same 

amplitude. Notice that the oscillating component of the instantaneous power does 

not dissipate any average power over one cycle. This will be important later when 

we discuss the frequency response of the 3ω voltage. 

The rms power can also be defined as 

 0
2

,hrms,hrms RIP = , (2.8) 

where the rms heater current is given by 

 ( ) ( )
2

cos
2

1 0
2

0

2
0

0

2 ,h
,hhrms,h

I
dttIdttII === ∫∫

ωπτ

ω
π

ω
τ

. (2.9) 

Assuming that the heater circuit is stable, i.e., that all the transient 

perturbations decay over time, the steady-state harmonic temperature oscillations 

in the metal filament produce harmonic variations in the resistance given by 

(Banerjee et al. 1999) as 

 ( ) ( )( )φωββ +Δ+Δ+= tTTRtR AChDChhh 2cos10,  (2.10) 

where 0,hR  is the nominal (room temperature) resistance of the heater, DCTΔ  is 

the steady-state temperature increase due to the rms power dissipated by the 

filament, ACTΔ  is the magnitude of the steady-state temperature oscillations due 

to the sinusoidal component of the power and φ  is the phase angle between the 

temperature oscillations and the excitation current. The resulting voltage across 

the sensor is obtained by multiplying the input current be the heater resistance 

yielding 

 ( )
( ) ( ) ( )

( ) ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+Δ+

+Δ+Δ+
=

φωβ

φωβωβ

tT

tTtT
RItV

ACh

AChDCh
hhh 3cos

coscos1

2
1

2
1

0,0, . (2.11) 

The voltage component at 3ω results from the multiplication of the oscillating 

current with the periodic portion of the heater resistance at 2ω. From (2.11), one 

is able to infer the in-phase and out-of-phase components of the temperature 

oscillations by measuring the voltage signal at the 3ω frequency (Cahill 1990; 

Cahill 2002): 



   
 

   
 

2-4

 ACh,h,h TVV Δβω 02
1

3 = , (2.12) 

where 

y,ACx,ACAC

y,,hx,,h,h

,h,h,h

TiTT
iVVV

RIV

ΔΔΔ
ωωω

+=

+=

=

333

000

 

and 

( )
( )φΔΔ

φΔΔ

sin

cos

ACy,AC

ACx,AC

TT

TT

=

=
. 

Both the magnitude and phase of the temperature oscillations vary with 

excitation frequency, due to the finite thermal-diffusion time ( )Dτ  of the 

specimen. The thermal-diffusion time required for a thermal wave to propagate a 

distance L  is given by (Birge 1986) as 

 ατ 2LD = , (2.13) 

where α  is the thermal diffusivity, which is defined as the ratio of thermal 

conductivity ( )k  to volumetric heat capacity ( )pC . In turn, the thermal-diffusion 

angular frequency is 

 απα
τ

πω ∝== 2

22
LD

D . (2.14) 

In the limit of infinite thermal diffusivity (i.e., infinite thermal 

conductivity), heat propagates with infinite velocity such that the temperature is 

constant throughout the specimen. This leads to undamped temperature 

oscillations with zero phase lag. Conversely, zero thermal diffusivity (i.e., infinite 

volumetric heat capacity), results in no heat propagation, zero oscillation 

amplitude, and large phase lag. Note that the dissipation of the rms power is 

independent of the frequency response of the specimen since it is constant with 

time. 

Next, the heat equation will be solved to determine the values of DCTΔ , 

ACTΔ  and φ  for a given input power. In order to construct a mathematical model 

for a finite width line heater deposited on the surface of the specimen, it is useful 
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to begin with a simplified geometry—i.e., a one-dimensional line heater—and 

develop the solution in steps. 

 

2.1 One-Dimensional Line Heater 
 

2.1.1 Heater inside the Solid 
 

We begin by considering the temperature field within an infinite circular 

cylinder with a periodic heat flux at the interior boundary (Carslaw and Jaeger 

1959), akin to a 1D heater encased inside an infinite solid (Figure 2.2). 

The governing equation for the steady-state temperature in the cylinder 

( )Φ , assuming no circumferential or axial temperature gradients is 

 ( ) ( ) ( ) 011
2

2

=
∂

∂
−

∂
∂

+
∂

∂
t

t,r
r

t,r
rr

t,r Φ
α

ΦΦ . (2.15) 

 

a

r

a

r

a

r

a

r

 
Figure 2.2: Schematic illustration of the cross-section for the geometry for 
the infinite circular cylinder specimen. 

 

In order to simplify the boundary conditions, the following substitutions are 

carried out: 

 ( ) ( ) ( )( )rt,rt,r DCAC ΔΦΦΦΔΦ +−= 0 , (2.16) 

 ( ) ( ) 0ΦΦΔΦ −= rr DCDC , (2.17) 
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where ( )t,rACΔΦ  is the steady-state oscillating temperature difference with 

respect to ( )rDCΔΦΦ +0 —the ambient temperature ( )0Φ  corrected by the DC 

temperature rise ( )( )rDCΔΦ . Substituting (2.16) and (2.17) into (2.15) yields 

 ( ) ( ) ( ) ( ) 011
2

2

=⎟
⎠
⎞

⎜
⎝
⎛=

∂
∂

−
∂

∂
+

∂
∂

dr
rdr

dr
d

t
t,r

r
t,r

rr
t,r DCACACAC ΔΦΔΦ

α
ΔΦΔΦ .(2.18) 

(2.18) confirms the implicit assumption made in (2.10) that the DC and AC 

temperature amplitudes are independent of one another. Since the thermal 

properties of the specimen are extracted from the steady-state temperature 

oscillations, we will concern ourselves only with solving the left-hand side of 

equation (2.18). Using separation of variables, we define 

 ( ) ( ) ( )trTt,r ACAC ΘΔΔΦ = , (2.19) 

where ( )rTACΔ  is the spatial evolution of the temperature oscillations and ( )tΘ  

gives its temporal evolution. From (2.10), we know that the oscillating 

temperature field will be a harmonic function at twice the excitation frequency; 

therefore, 

 ( ) ( ) ( )( )titt ωωΘ 2exp2cos ℜ≡= . (2.20) 

Substituting (2.19) and (2.20) into the left-hand side of (2.18) we obtain 

 ( ) ( ) ( ) 01 2
2

2

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+ℜ rTq

dr
rTd

rdr
rTd

AC
ACAC Δ

ΔΔ , (2.21) 

where q  is defined as the wavenumber of the thermal wave given by 

 αω2iq = . (2.22) 

Equation (2.21) is simply the real part of the modified Bessel equation of order 

zero whose argument is qr. Therefore, the general solution to this equation is 

given by 

 ( ) ( ) ( )[ ] ( ){ }tiqrKcqrIct,rAC ωΔΦ 2exp0201 +ℜ= , (2.23) 

where 0Ι  and 0Κ  are the zero-order modified Bessel functions of the first and 

second kind, respectively. The constants 1c  and 2c  are determined from the 

boundary conditions: at the inner radius, the oscillating heat flux due to the 

harmonic Joule heating in the heater is given by (2.6) as: 
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0→= ar@  ( )( ) ( )
ar

AC
Sarms r

t,rkAlimtiPQ
=

→ ⎥⎦
⎤

⎢⎣
⎡

∂
∂

−=ℜ=
ΔΦ

ω
0

2exp , (2.24) 

where k  is the specimen thermal conductivity and SA  is the surface area of 

cylinder at the inner radius given by 

 hS rlA π2= . (2.25) 

The second boundary condition requires the temperature oscillations to decay to 

zero as the radius approaches infinity: 

∞→r@  ( ) 0=∞ t,ACΔΦ . (2.26) 

Since the outer radius extends to infinity, we require 01 =c  for the solution to 

remain bounded. 2c  is obtained by solving (2.24); therefore, (2.23) reduces to 

 ( ) ( ) ( ) ( ) ( )φωΔω
π

ΔΦ +=⎟
⎠

⎞
⎜
⎝

⎛ℜ= trTtiqrK
k

p
t,r AC

rms
AC 2cos2exp

2 0 , (2.27) 

where rmsp  is the rms power per unit heater length given by 

 
0

2
00

2
00

2

22 ,hh

,h

h

,h,h

h

,hrms,h
rms Rl

V
l
RI

l
RI

p ===  (2.28) 

and 

 ( ) ( )qrK
k

p
rT rms

AC 02π
Δ = . (2.29) 

Note (2.29) is the same expression originally used in (2.10). Equivalently, the 

magnitude of the oscillation can be written in rectangular form as 

 ( ) ( ) ( ) ( )rTirTqrK
k

p
rT y,ACx,AC

rms
AC ΔΔ

π
Δ +== 02

, (2.30) 

where 

( ) ( )

( ) ( )⎟
⎠

⎞
⎜
⎝

⎛ℑ=

⎟
⎠

⎞
⎜
⎝

⎛ℜ=

qrK
k

p
rT

qrK
k

p
rT

rms
y,AC

rms
x,AC

0

0

2

2

π
Δ

π
Δ

. 

We are not so much interested in determining the temporal evolution of the 

temperature oscillations ( )( )t,rACΔΦ  as in the spatial evolution of the waves 

which are in-phase ( )( )rT x,ACΔ  and out-of-phase ( )( )rT y,ACΔ  with respect to the 
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excitation current as a function of excitation frequency. Therefore, we will restrict 

the forthcoming discussions to the spatial evolution of the thermal oscillations 

( )( )rTACΔ , remembering that the temporal evolution can easily be obtained from 

(2.27). 

 

2.1.2 Heater at the Surface 
 

Now, (2.30) was obtained for a 1D line heater buried within an infinite 

solid. In our case however, we are dealing with a heater deposited on the surface 

of the specimen. In order to correct our mathematical model, we simply cut the 

infinite cylinder along a plane perpendicular to the radial direction (Figure 2.3). 

 

a

r

a

r

 
Figure 2.3: Schematic illustration of the cross-section for the geometry for 
the semi-infinite half-cylinder specimen. 

 

Since the temperature gradients are all in the radial direction, this radial cut does 

not affect the temperature field other than doubling the heat flux from the heater 

(since the input power is fixed and the surface area is halved). Therefore, (2.30) 

becomes 

 ( ) ( )qrK
k

p
rT rms

AC 0π
Δ = . (2.31) 

Experimentally, this requires zero heat flux across the specimen surface (i.e., no 

conduction, convection or radiation losses to the environment). For this reason, 

the specimen is placed in a vacuum chamber to minimize conduction and 

convection heat transfer to the environment. Radiation losses are minimal due to 

the rapid decay of the temperature oscillations, which in turn minimises the 

heated area on the surface of the specimen. 
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In addition, the physical specimen is not a semi-infinite solid, but rather 

has a finite thickness. Since the thermal waves decay rapidly away from the heat 

source—following a modified Bessel function of the second kind—we must 

simply ensure that the penetration depth of the thermal wave is much less than the 

thickness of the specimen ( )st<<λ , where the thermal penetration depth is 

defined as 

 
ω

αλ
2

1
==

q
. (2.32) 

 

 
Figure 2.4: Comparison of the decaying amplitudes of the exponential and 
modified Bessel function of the second kind for a unit length constant. The 
dotted line indicates five length constants. 

 

Now, given that the physical specimens are not semi-infinite solids and the 

amplitude of the thermal oscillations decay rapidly away from the heater, it is 

useful to determine an upper bound on the depth of the heat affected region to 

ensure the mathematical model is applicable. Since the amplitude of an 
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exponentially decaying function reduces to approximately 1% of its initial 

magnitude after 5 “length constants”, one expects that the magnitude of the 

thermal oscillations will decrease below 1% of its initial amplitude after 5 thermal 

penetration depths— as the Bessel function decays faster than an exponential 

function (Figure 2.4). As such, we state that the specimen thickness must exceed 5 

times the thermal penetration depth to be considered semi-infinite ( )λ5>st . 

Lastly, the temperature being measured is the heater temperature, which is 

the same as the specimen surface temperature under the heater, assuming good 

thermal contact and small heater height. As such, let y = 0 and r = x: 

 ( ) ( )qxK
k

p
xT rms

AC 0π
Δ = . (2.33) 

Figure 2.5 shows the temporal evolution of the surface temperature oscillations: 

 ( ) ( ) ( )⎟
⎠

⎞
⎜
⎝

⎛ℜ= tiqxK
k

p
t,qx rms

AC ω
π

ωΔΦ 2exp0 . (2.34) 

 
Figure 2.5: 3D surface showing the time evolution of the non-dimensional 
surface temperature oscillations as a function of distance away from the 
heater. 
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2.2 Effects of Finite Width of the Heater 
 

In order to generalise the 1D line solution (i.e., equation (2.33)) to one 

with a finite-width, one needs to superimpose an infinite number of 1D line 

sources over the width of the heater (Cahill 1990). 

 

 
Figure 2.6: Schematic of a finite-width line heater showing the temperature 
contributions from the extremities of the heater to a point in the specimen. 
 

This leads to a convolution integral, since the temperature at any arbitrary set of 

coordinates ( )y,x  within the specimen depends on its relative position to all the 

line sources (Figure 2.6). A solution to this convolution integral can be easily 

obtained by performing the following Fourier (wavenumber) transformation: 

 ( ) ( ) ( )∫
∞

∞−

−= dxxix ηψηΨ exp
2
1 , (2.35) 

 ( ) ( ) ( )∫
∞

∞−

= ηηηΨ
π

ψ dxix exp1 , (2.36) 

where η is the wavenumber. Since the temperature field is an even function, the 

Fourier transform pair reduces to the Cosine Fourier transform pair: 

 ( ) ( ) ( )∫
∞

=
0

cos dxxx ηψηΨ , (2.37) 

 ( ) ( ) ( )∫
∞

=
0

cos2 ηηηΨ
π

ψ dxx . (2.38) 
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From (Erdélyi 1954), the Fourier transform of a modified Bessel function of order 

zero is given as 

 ( )
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+
=

22

1
2 qk
p

T rms
AC

η
ηΔ . (2.39) 

For a finite heater width, the temperature difference in Fourier space is multiplied 

by the Fourier transform of a single square wave ( )( )xrect  from 0=x  to bh: 

 ( ) ( ) ( ) ( )
22

0
22

sin
2

cosrect1
2 qb

b
k

p
dxxx

qk
p

T
h

hrms
b

rms
AC

h

+
=

+
= ∫

ηη

η
η

η
ηΔ . (2.40) 

Use the inverse Fourier transform (2.38) to convert (2.40) back to real space: 

 ( ) ( ) ( ) ( ) ( )∫∫
∞∞

+
==

0
22

0

cos
sin

cos1 ηη
ηη

η
π

ηηηΔ
π

Δ dx
qb

b
k

p
dxTxT

h

hrms
AC . (2.41) 

Since the heater measures the average temperature over the width of the heater, 

the magnitude of the temperature oscillations measured is average heater 

temperature: 

 ( ) ( )
( )∫∫

∞

− +
==

0
222

2sin
2
1 η

ηη

η
π

ΔΔ d
qb

b
k

p
dxxT

b
T

h

hrms
b

b
AC

h
AC

h

h

. (2.42) 

And so, the measured oscillation magnitude for a finite width heater deposited on 

the surface of the specimen is 

 
( )

( ) ( )
y,ACx,AC

h

hrms
AC TiTd

qb

b
k

p
T ΔΔη

ωηη

η
π

Δ +=
+

= ∫
∞

0
222

2sin
. (2.43) 

There is no closed-form solution to the above integral; rather, asymptotic 

solutions can be obtained in the limit of small and large thermal penetration 

depths. 

 

2.3 Approximate Solutions to the Exact Equation 
 

Equation (2.43) for the magnitude of temperature oscillations for a heater 

with finite width was solved numerically using an adaptive Simpson quadrature 

algorithm in Matlab® (Figure 2.7). The numerical integration was carried out 
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over the interval [ ]1010 10 10 ,− . Increasing the limits of wavenumber changed the 

temperature amplitude by less than 1%. 

 

 
Figure 2.7: In-phase (black line) and out-of-phase (red line) components of 
the temperature oscillations vs. thermal excitation frequency (2ω) and 
thermal penetration depth (λ). The rms power per unit length (prms) is 1 
W/m, the heater half-width (bh) is 10 μm, the thermal conductivity (k) is 1 
W/m·K and the thermal diffusivity (α) is 1 mm2/s. The linear regime (light 
blue shade region) is used to determine the thermal conductivity of the 
specimen. 

 

Figure 2.7 shows the real (in-phase) and imaginary (out-of-phase) components of 

the temperature oscillations as a function of thermal excitation frequency ( )ω2  

and thermal penetration depth ( )λ . One can see two distinct regimes in the 

behaviour of the temperature oscillations. For “large” thermal penetration depths, 

the in-phase temperature decays logarithmically—linearly in a semilog plot—and 

we call this frequency range the linear regime (light blue shaded region). The 

linear regime is also characterised by a constant negative out-of-phase 
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temperature leading to zero phase lag in the limit of zero frequency. For “small” 

thermal penetration depths, the in-phase and out-of-phase temperature magnitudes 

are equal, but opposite in sign—leading to a 45° phase lag between the 

temperature and current—and the in-phase magnitude decays more slowly than in 

the linear regime. This is the so-called planar regime (violet shaded region). 

Between these two extremes, there is a transition regime (un-shaded region). 

Using such qualifiers as “large” and “small” for the thermal penetration 

depth requires an appropriate length scale with which to compare. The only other 

length scale in the heat equation is the half-width of the heater ( )hb . Therefore, 

the linear regime is defined as the domain in which the thermal penetration depth 

is “much larger” than the heater half-width, and conversely for the planar regime. 

Furthermore, by taking the limit of small and large heater half-width, one 

can obtain closed form solutions for each regime. First consider the planar regime, 

for which the heater half-width is much larger than the thermal penetration depth 

( )λ>>hb , such that 

 
( )
( ) ( )ηδ
η
η

π
=⎥

⎦

⎤
⎢
⎣

⎡
∞→

2

sin
sin1lim h

h
b

b
bh

. (2.44) 

Substitute (2.44) into (2.43) to obtain 

 ( ) ( )
( ) ( ) kq

p~
d

qkb
p

T rms

h

rms
AC ≈

+
= ∫

∞

0
222

2sin η
ωηη

ηδηΔ , (2.45) 

where rmsp~  is the rms power per unit heater area given by 

 
0

2
0

422 Rlb
V

lb
P

b
p

p~
hhhh

rms

h

rms
rms === . (2.46) 

Equivalently, (2.45) can be written as 

 ( ) ( )4exp
2

2 π
ω

ωΔ i
e
p~

T rms
AC −≈ , (2.47) 

where e is the specimen thermal effusivity defined as 

pkCe = . 

The constant phase shift of -45° in (2.47) is consistent with the equal magnitude 

temperature components in the planar regime in Figure 2.7. Equation (2.47) is 
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approximately equal to the solution for one-dimensional heat conduction in a 

semi-infinite solid with a harmonic heat flux at the surface (Carslaw and Jaeger 

1959). 

Conversely in the linear regime, the heater half-width is much smaller than 

the thermal penetration depth ( )λ<<hb , such that 

 
( )

( ) 1
sin

lim
0

=
→ η

η

h

h

b b
b

h

. (2.48) 

In addition, since large wavenumber oscillations have relatively negligible 

amplitude and decay quickly, the integral is dominated by wavenumbers between 

hb11 <<ηλ . Substituting (2.48) into (2.43) and setting the upper integration 

bound to hb1  we obtain 
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where ξ  is a fitting constant having a value of roughly 0.922. Re-writing (2.49) in 

terms of thermal excitation frequency, one obtains 
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(2.50) can also be written in terms of measurable quantities, such as voltages and 

resistances using (2.12) and (2.28) 
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As predicted in Figure 2.7, the in-phase temperature decays logarithmically with 

respect to the thermal excitation frequency ( )ω2 , and the out-of-phase component 

is constant. 

Now that approximate analytical solutions for the linear and planar 

regimes have been found, they can be compared to the exact numerical solution in 

order to quantify appropriate boundaries of applicability for these approximations 

in terms of  ratios of thermal penetration depth to heater half-width (Figure 2.8).  
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Figure 2.8: Comparison of the exact solution (solid lines) with 
approximations for the linear (dashed lines) and planar regimes (dotted 
lines) for the temperature oscillations of the heater. The in-phase 
component is coloured black while the out-of-phase signal is red. The 
parameters (i.e., prms, bh, k and α) are the same as in Figure 2.7. 

 

The precise boundaries for the different regimes are somewhat arbitrary 

and depend on our acceptable level of error in the results (Figure 2.9). By 

convention, the boundary on the linear regime is set as hb5>λ , yielding a 

maximum rms error of 0.25%. Similarly, for the boundary for the planar regime is 

5hb>λ  for a discrepancy of 0.15%. However, given that the specimens have 

finite thickness, the boundaries of the linear regime become 

 hs bt 55 >> λ . (2.52) 

Equation (2.52) is useful in the design of experiments because it provides an 

estimate of the minimum specimen thickness required for a given heater width in 

order to obtain a linear regime: 

 hs bt 25> . (2.53) 
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Figure 2.9: In-phase temperature magnitude %rms error vs. the ratio of 
thermal penetration depth to heater half-width (λ/bh). Both the discrepancy 
between the exact solution and the linear approximation (dashed line) and 
that of the planar approximation (dotted line) are given shown. The 
conventional cut-off points are indicated by the solid lines. The parameters 
(i.e., prms, bh, k and α) are the same as in Figure 2.7. 

 

2.4 Conclusion 
 

Equation (2.51) is extremely powerful: it indicates that the thermal 

conductivity can be obtained directly—without any fitting parameters—from 

either the slope of the in-phase magnitude or the magnitude of the out-of-phase 

temperature oscillations. This is rare for transient thermal measurement 

techniques: normally independent measurements of the thermal diffusivity and 

volumetric heat capacity are required to obtain the thermal conductivity. 

The most important aspect of any 3ω measurement apparatus is a precise 

measurement of the minute third harmonic signal across the specimen heater. As 
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such, effort has been expended to identify and eliminate any spurious signals at 

3ω. However, one must also ensure that the output from the heater itself is an 

accurate indicator of the temperature fluctuations in the specimen. Above, we 

assumed negligible thermal resistance between the heater and the specimen. This 

crucial assumption rests on our ability to fabricate heaters which are in intimate 

thermal contact with the specimen surface. In the next chapter, we will address 

these issues by examining the heater fabrication process as well as the electrical 

interface between it and the 3ω apparatus. 
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Chapter 3: Specimen Preparation 

In Chapter 2, we found that the heater/RTD required a large temperature 

coefficient of resistance (TCR) in order to generate a measurable resistance 

change as a function of temperature. In general, platinum is the material of choice 

for RTDs, due to the linearity of its TCR over a wide range of temperatures and 

its stability at high temperatures. However, since the amplitude of the temperature 

oscillations is small, platinum is not required. Instead, Gold was chosen for its 

large TCR and lower cost. Unfortunately, both Gold and platinum do not adhere 

well to ceramic substrates; therefore a 10 nm Chrome “adhesion” layer was first 

deposited on the substrate to increase adhesion of the heater (Huang et al. 2003). 

This section will describe the different methods used in this work to 

deposit the Gold/Chrome thin film heaters. The process involves 3 major steps: 

• surface cleaning; 

• deposition, and; 

• patterning. 

 

3.1 Surface Cleaning 
 

In order to minimize thermal interface resistance and ensure adhesion of 

the metal film to the specimen, a clean surface free of particulate matter and 

solvents is required. This was accomplished with a simple 4 step process. 

The specimen was immersed in an acetone bath and sonicated at 40°C for 

10 minutes to remove the surface contaminants. Since acetone leaves its own 

residue, it must be removed by a similar treatment using isopropyl alcohol 

followed by deionised water. Finally, the specimen is blown dry with compressed 

nitrogen, to prevent any residues in suspension from re-depositing on the surface. 
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For water-soluble or extremely brittle specimens, a dry cleaning process, 

such as a plasma asher can be used to remove impurities and trace solvents from 

the surface of the specimen. The process uses energetic plasma derived from 

argon or oxygen gas. 

 

3.2 Heater Deposition 
 

Deposition techniques generally fall in two different categories: physical 

vapour deposition (PVD) and chemical vapour deposition (CVD). CVD 

techniques grow thin films on the substrate via chemical reactions of precursor 

compounds. For example, silane gas (SiH4) is used as a precursor for silicon 

deposition. These reactions take place in a controlled environment above the 

substrate and the products precipitate to form a coating. 

Conversely, PVD creates coatings by physically removing atoms from a 

piece of the desired material (the target) and transporting the ejected material to 

the specimen (the substrate). This can be accomplished by heating the target 

above its boiling point (evaporation) or bombarding it with energetic ions 

(sputtering). 

Few CVD techniques have been developed for depositing metals since it is 

much easier and more cost-effective to use PVD. As such, we will concentrate our 

attention to physical vapour deposition techniques. The choice of deposition 

technique affects the geometry, kinetics, chemistry and microstructure of the thin 

film and can impact subsequent processing steps. 

 

3.2.1 Evaporation 
 

As the name implies, evaporation deposition seeks to create thin films by 

evaporating the target material onto the substrate. The target is placed inside an 

evacuated chamber and the evaporated atoms condense onto the substrate. Thin 

films created using evaporation tend to be non-conformal, meaning that the 
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coverage is line-of-sight only. Non-conformal coatings are used with patterning 

techniques such as lift-off and shadowmask patterning (see below). 

The evaporator used in this work was a BOC Edwards Auto 306 electron-

gun deposition system. The base pressure of the chamber prior to deposition was 

below 1 µTorr. Typical deposition rates were 0.2 nm/s and 0.5 nm/s for chrome 

and gold, respectively. 

 

3.2.2 Sputtering 
 

For sputtering, the material is released from the target by bombarding it 

with plasma. As such, processing temperatures are much lower than in 

evaporation. The ejected material reaches the substrate via diffusive transport 

through the plasma, thus yielding a conformal coating. As such, sputtering is 

normally used in conjunction with etching techniques (see below). The adhesion 

of sputtered films tends to be better than evaporated coatings. Due to the physical 

nature of the ejection process, a wide range of materials can be sputter deposited. 

Using the Denton Explorer 14 sputter deposition instrument at McGill 

University’s Nanotools Microfab laboratory, chrome/gold thin films were 

deposited onto the substrates. Applying a direct current of 0.2 A onto the gold 

target under an argon atmosphere at 8 mTorr yielded a deposition rate of 0.35 

nm/s. Similarly for the chrome deposition, a sputter rate of 0.2 nm/s was achieved 

at 0.6 A and 8 mTorr of argon. 

 

3.3 Patterning 
 

Functional elements of microsystems are created by patterning and etching 

thin films deposited onto the substrate. Photolithography is the usual method used 

to pattern features for microelectronics and microsystems. However, there are a 

growing number of applications, principally microsystems, which do not require 

the full resolution of photolithography. For these applications, simpler low-cost 
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approaches such as soft lithography (stamping) and shadowmask deposition can 

be used for patterning. 

 

3.3.1 Photolithography 
 

Photolithography—writing with light—creates patterns in a UV-sensitive 

material (called photoresist), which serves as an etch mask for a subsequent 

etching process (Figure 3.1). First, a drop of photoresist is placed at the center of 

the substrate and spin coated on the substrate. Second, a positive photomask, 

containing the features one wishes to transfer to the photoresist, is placed above 

the substrate. By exposing the substrate to UV radiation, the exposed portion of 

the photoresist will become soluble. The photoresist is then developed, leaving 

behind the desired pattern of unexposed resist. The patterned photoresist can be 

used in two different ways to achieve the final with the desired material: etching 

or lift-off. 

 

 
Figure 3.1: Basic photolithography process flow using positive photoresist 
and mask. The sky blue rectangle represents the substrate and the red 
material symbolizes the photoresist film. Note: dimensions not to scale. 
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3.3.1.a Etching 
 

If etching is used, then a uniform thin film is deposited on the substrate 

prior to photolithography (Figure 3.2). Then, the developed photoresist serves as 

an etch mask for the subsequent etch process. Following the etching process, the 

resist is stripped off the substrate resulting in the desired pattern in the deposited 

thin film. In the case of etching metals, such as Gold and Chrome, the etchants are 

concentrated acids. Non-withstanding the safety precautions needed to handle 

concentrated acidic solutions, the main difficulty with wet etch processes is the 

precision required to transfer the photoresist pattern to the metal with high 

fidelity. Wet etching operates on the basis of differential selectivity, that is, the 

etchant will etch through the metal faster than through the photoresist or substrate, 

therefore precise timing is important to obtain the desired pattern. It was rather 

difficult to produce thin lines of uniform width using this technique (Figure 3.3). 

In fact, most of the lines made contained complete breaks, rendering them useless. 

 

 
Figure 3.2: Wet etching schematic process flow. The sky blue rectangle 
represents the substrate, while the yellow and red materials symbolize the 
deposited film and photoresist, respectively. Note: dimensions not to scale. 
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Figure 3.3: Optical micrograph of a wet-etched Gold film (orange region) 
overtop a Chrome adhesion layer (grey region). The Chrome layer 
measured 10 nm in thickness while the Gold thin film was 200 nm thick. 
Since the two layers were etched independently using a timed etch stop, it 
was difficult to obtain lines of uniform width. 

 

3.3.1.b Lift-Off 
 

On the other hand, the lift-off technique functions in the opposite way to 

the etching process: rather than deposit the thin film prior to photolithography, the 

metal is deposited afterward (Figure 3.4). Instead of using a positive photomask, 

lift-off makes use of a negative mask. Also, the intensity of the UV radiation is 

increased in order to undercut the sidewalls in the resist mask to facilitate the lift-

off process. When the photoresist is dissolved, the metal above it is removed as 

well, leaving behind the patterned metal film. This process was never 

implemented, due to the lack of an evaporator at McGill University. Instead, we 

decided to go directly for shadowmask deposition, removing the need to purchase 

a negative photomask. 

 

100 μm

CrAu
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Figure 3.4: Lift-off process flow. The sky blue rectangle represents the 
substrate, while the yellow and red materials symbolize the deposited film 
and photoresist, respectively. Note: dimensions not to scale. 

 

3.3.2 Shadowmask 
 

As an alternative to photolithography, shadowmask deposition is 

essentially “micro-stencilling”, using evaporated metal films rather than paint 

(Figure 3.5). It is very similar to lift-off, however you by-pass the expensive 

photolithography step while sacrificing feature size resolution. Given that our 

smallest feature size (the line width) is relatively large by photolithography 

standards, we opted to forgo lift-off and attempt shadowmask deposition directly. 

One takes a thin steel foil (i.e., shadowmask) and laser cuts the desired pattern 

into it. The foil is then clamped onto the surface of the substrate and placed in the 

evaporator. The chrome and Gold films are subsequently deposited through the 

holes in the shadowmask. The mask is removed leaving behind a faithful negative 

reproduction of the patterned shadowmask. Due to the non-conformality of 

evaporation, the edges of the patterned metal films are nearly identical to those on 

the mask (Figure 3.6). In fact, any debris in the shadowmask opening was 

faithfully transferred onto the heater (Figure 3.7). The shape and spacing of the 

gaps and holes on different specimens were constant and unique for a given mask; 

such that the mask used to create the heater could be identified based on a 

micrograph of the line. Therefore, the “bad” shadowmasks with gaps or holes 

could be identified and discarded. This method was extremely successful in 
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creating uniform lines with widths of 40 microns or larger. The minimum feature 

sizes were limited by our ability to create steel shadowmasks with smaller 

features. 

Any impurities in the Gold heater would dramatically lower its 

temperature coefficient of resistance (Pollock 1982). Therefore, the binary films 

could not be annealed after the deposition in order to prevent diffusion of chrome 

atoms into the Gold layer (Huang et al. 2003). It is assumed that the diffusion 

during the 3ω measurements themselves is negligible since the maximum DC 

temperature increase was less than 15 K and the amplitude of the temperature 

oscillations was roughly 1 K.  

 

 
Figure 3.5: Shadowmask deposition process flow. The sky blue rectangle 
represents the substrate, while the yellow and grey materials symbolize the 
deposited film and steel shadowmask, respectively. Note: dimensions not to 
scale. 

 

 
Figure 3.6: Optical micrograph of a shadowmask deposited heater on a 
fused quartz specimen. The heater was created with shadowmask “A” 
giving a uniform line, free of holes or gaps. 

 



   
 

   
 

3-9

 
Figure 3.7: Optical micrograph of a shadowmask deposited heater on a 
fused quartz specimen. The heater was created with Shadowmask “C” 
yielding poor uniformity. 

 

3.4 Electrical Interface 
 

In order to interface the metal heater to the measurement circuit, contact 

pads were patterned at both ends of the heater. Contact pads are used in 

microelectronics and microsystems to bridge the length-scale gap between on-

chip microscale interconnects and macro-sized PC board components. There are 

three different ways of connecting on-chip elements with electronics circuits: 

wire-bonding, micro-probes and spring-loaded “pogo pins”. 

 

3.4.1 Wire-Bonding 
 

Packaging and wire-bonding is the most widely used method for 

interfacing microfabricated elements with electronic circuits. It is used where 

permanent connections are wanted. 

A package is a plastic receptacle surrounded by a number of contact pads 

(thin metal pads, usually made of Gold or Aluminium) linked to metal pins. The 

chip is bonded to the receptacle and thin wires are bonded between the contact 

pads on the chip and the package. 
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Figure 8: Optical micrograph of a wire bonder testing substrate (ProtoConnect 2006). 

 

 
Figure 3.9: Scanning electron micrograph of a wire bond. Shown in this 
picture is the package-end of the bond wire. 

 

Placing the package into a socket soldered onto a PC board completes the process 

and the chip is now connected to the rest of the circuit. 

This method is great when many electrical connections need to be made in 

a tight space. Unfortunately, due to the ever shrinking size of electronics, the 

largest packages readily available can only accommodate a 1.5 cm2 substrate, thus 

limiting the length of the heater. 
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3.4.2 Micro-Probes 
 

Micro-probes are commonly used in the electronics industry for device 

testing at the prototyping level. It enables easy temporary on-chip electrical 

connections electrical test equipment. Micro-probes are simply small metal pins 

mounted on the end of metal rod (the probe holder) (Figure 3.10). Precise 

placement of the micro-probes onto the small contact pads (generally on the order 

of 100 μm) is done using 3-axis positioners with micrometer-level precision under 

a microscope. Although micro-probes become burdensome when a large number 

of connections need to be made, they are a great alternative to wire-bonding when 

a few temporary contacts are needed for device testing. Unfortunately, using 

microprobes within a vacuum environment requires a custom-made vacuum 

chamber to accommodate the feedthroughs for the 3-axis positioners. 

 

  
Figure 3.10: Micro-probes used for wafer testing (Karl_Suss 2007). 

 

2 cm

Micro-positioner
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3.4.3 Pogo Pins 
 

The last alternative is another common device testing interface used in the 

electronics industry at the manufacturing level. They are also commonly used 

when reliable temporary electrical connections are needed, such as battery packs 

for portable electronic devices. As the name implies, pogo pins are linear spring-

loaded pins that are pressed onto the on-chip contact pads. They are mounted 

directly on a PC board (so-called surface mount) or press-fit into a plastic fixture 

with a lead wire soldered to the end of the pin (through-hole). 

 

 
Figure 3.11: 6-point push pogo pin (Solarbotics 2008). 

 

The pogo pins are a great low cost alternative to micro-probes for a fixed 

probing geometry. They also have the advantage of requiring a very small 

footprint, which is advantageous within the confines of a vacuum chamber. For 

these reasons I have chosen to use pogo pins. 

 

3.5 Specimen Mount 
 

In order to use through-hole pogo pins (6-point push pogo pin by 

Solarbotics (Figure 3.11)), a custom-made mounting system was designed and 
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built in-house (Figure 3.12). The system consists of a large Aluminium base, 

guide pins and a Delrin® cross-beam. The base provided stability and rigidity to 

the system as well as a large thermal reservoir to maintain a constant specimen 

temperature. Two Aluminium rods were press-fit into the base to act as vertical 

guide pins for the mount. The sleeves of the pogo pins were press-fit into the 

Delrin® cross-beam. The electrical connection is made by placing the specimen 

on the base and sliding the cross-beam down on along guide pins until the 

measured electrical resistance across the specimen has stabilized (~90% of the 

pogo pin travel). 

 

 
Figure 3.12: Photograph of the pogo pin mount. 

 

The cross-beam maintains the pressure of the spring-loaded pins due to 

static friction between the plastic cross-beam and the metal guide pins. Contact 

resistance is minimized by coating the ends of the pins with silver paint (High 

purity silver paint by SPI). Vacuum compatible wires (30 AWG Single strand, 

Kapton® insulation by Insulator Seal) were soldered onto the ends of the pogo 
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Delrin® cross-beam

Sample 

Pogo Pins 

Vacuum Compatible 
Lead Wires 

2.5 cm 
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pin sleeves. The other end is connected to the vacuum-side of BNC electrical 

feedthroughs (Grounded shield, 2-pin BNC feedthrough by Insulator Seal) via 

push-on pins (Figure 3.13). A ball of solder (1a) is applied to the exposed end of 

the vacuum wire (1) and fastened into the push-on pin (2) by tightening a 

clamping screw (2a). The push-on pin is pressed onto the vacuum-side 

feedthrough pin (3) which is coupled to an air-side BNC connector (4). The flange 

(5) is attached to a vacuum chamber port (Figure 3.14) and the vacuum seal is 

maintained by an elastomer O-ring (6). 

 

 
Figure 3.13: Photograph of the electrical feedthrough assembly (a) and a 
close up of the push-on pin (b). See the text for a description of each 
element. 

 

 
Figure 3.14: Photograph showing the vacuum chamber and rotary vane 
vacuum pump. 
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3.6 Conclusions 
 

The most important concern with respect to specimen preparation is 

repeatability: effort has been expanded to ensure that the specimen heaters are 

constructed in a controlled and uniform manner. For this reason we chose the 

shadowmask deposition technique, as it yielded the most consistent results, at the 

expense of larger line widths. This limits the minimum thickness of the specimens 

that can be analysed. 

In the next section, we will describe the experimental apparatus used to 

implement the 3ω technique. 
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Chapter 4: Implementation of the 3ω 
Technique 

In order to implement the 3ω technique, a low noise, low distortion AC 

signal is created by a function generator and fed through the microfabricated 

metal film deposited on the specimen surface (Figure 4.1). The metal film 

behaves both as a resistive heater and resistance thermometer detector (RTD). The 

heater is connected to Wheatstone bridge in order to detect the weak 3ω voltage. 

Lastly, the output from the bridge is measured using a lock-in amplifier. The 

whole system is controlled by a personal computer using a custom LabVIEW 

virtual instrument. 

 

 
Figure 4.1: Schematic diagram of the 3ω apparatus. 
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The main objective in the design of the 3ω apparatus is to precisely and 

accurately measure the in-phase and out-of-phase components of the 3ω voltage. 

This requires attenuation of any stray third harmonic signals. The largest sources 

of spurious 3ω voltages were identified as the harmonic noise of the function 

generator and the Joule heating within the other resistive elements of the 

Wheatstone bridge (Moon et al. 1996). 

 

4.1 Function Generator 
 

Any function generator used to create a sinusoidal voltage signal will 

invariably generate noise. Of special concern to us is the harmonic distortion 

created by the function generator, particularly the noise at the 3rd harmonic. If not 

properly controlled, harmonic distortion can be a major source of error in the 

experimental results. 

The sinewave is generated using a direct digital synthesis function 

generator (Agilent 33220A), which converts values from a stored look-up table to 

an analog signal using a digital-to-analog converter (DAC). Harmonic distortion 

is generated due to integral (overall) nonlinearities in the DAC transfer function—

which relates the input and output of a linear time-invariant function (Figure 4.2). 

For example, the transfer function for an ideal resistor—with zero temperature 

coefficient of resistance (TCR)—is a straight line: the current (input) is linearly 

proportional to the voltage (output); however, for a real resistor, the resistance 

will increase for larger inputs, generating larger relative voltages. Therefore, the 

3ω voltage due to Joule heating can be understood as being the result of a non-

linearity in the resistive element’s transfer function. 

Total harmonic distortion (THD) is a parameter used to quantify the 

importance of the harmonic noise electronic equipment. It is defined as 
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where ωV  is the peak voltage amplitude of the fundamental signal and the ωnV  is 

the peak voltage amplitude of the nth harmonic (Wilson et al. 2004). Only the first 

five harmonics are used to calculate the THD since the amplitude of the higher 

harmonics decays rapidly with increasing harmonic number. In our case, the THD 

of the function generator is quoted as 0.04% of the output signal, or 2500 times 

smaller than the fundamental signal, which is on the same order of magnitude as 

the 3ω voltage. Therefore, additional measures must be taken to remove these 

spurious signals. This is accomplished using common-mode cancellation 

techniques. 

 

 
Figure 4.2: Sketch of a linear (black dashed line) and non-linear (red solid 
line) transfer function. In general, a non-linearity in a transfer function is 
any deviation from a straight line. 
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4.2 Wheatstone Bridge 
 

Common-mode cancellation refers to techniques by which joint frequency 

components of two different signals are attenuated. As such, certain frequency 

components of a given signal can be filtered out by comparing the signal to a 

reference signal containing the same frequencies. 

The cancellation can be achieved using a Wheatstone bridge coupled to 

the differential input of the lock-in amplifier with a high common mode rejection 

ratio (CMRR) of 100 dB (Figure 4.3). If the heater is the only element in the 

bridge which generates a third harmonic voltage, then balancing the bridge will 

attenuate the fundamental signal to −100 dB (10 ppm) without affecting the 3ω 

frequency component. It can be shown that the third harmonic of the Wheatstone 

bridge output ( )ω3W  is related to the 3ω voltage ( )ω3,hV  as 

 ωω 3
10

1
3 ,h

,h

V
RR

RW
+

= , (3.2) 

where 0,hR  is the room temperature resistance of the specimen heater and 1R  is 

the value of the in-series resistor in Figure 4.3. Therefore, from (2.49), the in-

phase 3ω Wheatstone bridge output can be related to the thermal excitation 

frequency as 
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Figure 4.3: Schematic diagram of the Wheatstone bridge common-mode 
cancellation method. Rh is the heater, Rv is the variable resistor, V0 is the 
fundamental signal from the function generator and W3ω is the differential 
output voltage sent to the lock-in amplifier. 
 

In order to satisfy the assumption of zero stray 3ω voltage, the resistors in 

the bridge are selected to have a TCR of less than 1% (−40 dB) of that of the 

heater. In addition, with the Wheatstone bridge one is able to control the amount 

of current passing in each arm of the bridge. By selecting the resistance of 1R  to 

be 100 times smaller than 2R , it is possible to direct 99% of the current through 

specimen arm of the bridge—points ADC in Figure 4.3—thus generating a 

relatively large 3ω voltage signal across the heater, while further minimizing any 

spurious third harmonic generation in the variable resistor by −40 dB (since 
2

3 h,h IV ∝ω ). As such, the error in the third harmonic signal due to spurious signals 

produced by the elements of the bridge is on the order of −80 dB or 100 ppm. 

 

4.3 Lock-In Amplifier 
 

The 3ω voltage signal was measured using a lock-in amplifier (Stanford 

Research Systems SRS830), which is a device that can accurately measure the 

amplitude and phase of very small voltage or current signals. By using a 



   
 

   
 

4-6

technique called phase-sensitive detection, extremely narrow bandwidth filtering 

can be achieved, which enables very weak signals to be measured despite large 

amounts of noise. In our case, the “noise” is the fundamental signal itself, whose 

amplitude is roughly 3 orders of magnitude larger than the 3rd harmonic of the 

heater voltage. 

 

4.3.1 Phase-Sensitive Detector 
 

Phase-sensitive detectors (PSD) require a frequency reference to which it 

“locks-in” on, hence the name: lock-in amplifier. Due to the orthogonality of 

sinusoidal signals, the average product of two signal components is zero unless 

their frequencies are the same. Thus, by multiplying a noisy signal by a reference 

signal at a given frequency, one obtains a signal that is proportional to the noisy 

signal at that frequency. Using product-to-sum trigonometric identities, the 

product can be rewritten as a DC signal and an AC signal at twice the reference 

frequency. Given 
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If the DSP output is passed through a low-pass filter, the AC signals are removed. 

Given an arbitrarily low cut-off frequency, the only signal that will pass 

unattenuated will be the difference term of the signal component with the same 

frequency as the reference frequency—i.e., ( )( )nrefnrefrefn tVV φφωωω −+−cos  for 

nref ωω = . The AC signal is then removed using a low-pass filter and the 

reference voltage is divided out. As a result, the output of the DSP is a DC signal 
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proportional to the magnitude of the noisy signal at the reference frequency given 

by 

 ( )refnnDSP VV φφω −= cos1 . (3.6) 

However, the output of a single phase-sensitive detector will measure the in-phase 

component of the signal with the reference. In order to determine the magnitude 

of the signal, a second DSP is used with a reference signal phase angle of 90° 

from the first, yielding the out-of-phase component. Combining the two, the 

magnitude and phase angle can be obtained 

 

( )[ ] ( )

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=−

+=

−=+−=

−

1

21
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2

2
1

2

tan

sin2cos

DSP

DSP
refn

DSPDSP

refnnrefnnDSP

V
V

VVR

VVV

φφ

φφπφφ ωω

 (3.7) 

where 

 
YDSP

XDSP

VV
VV

≡
≡

2

1  

 

4.3.2 Low-Pass Filter  
 

As mentioned above, a low-pass filter is used to eliminate the AC 

components from the lock-in amplifier output. Ideally, a low-pass filter would 

behave like a downward step function, completely attenuating the AC signals 

while passing the DC signal untouched; unfortunately this is not physically 

achievable. There are two parameters which dictate the performance of low-pass 

filters: roll-off rate (ROR) and cut-off frequency ( )cf  (Figure 4.4). 

Roll-off rate represents the rate at which the power of the filtered signal 

decays above the cut-off frequency. High roll-off rates are needed especially at 

low excitation frequencies, as the AC signals become difficult to discriminate 

from the DC signal. The filter in the lock-in amplifier has a programmable roll-off 

rate of −20, −40, −60 or −80 dB/decade (One decade represents a tenfold increase 

in the frequency). The different roll-off rates are achieved by cascading (placing 
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in series) up to four stages of filtering. For all the data collected in this work, the 

maximum roll-off rate of −80 dB/decade was used, representing an attenuation of 

~16 times at cf2 . 

 

 
Figure 4.4: Bode plot of a low-pass filter (blue line), its straight line 
approximation (black line) and an ideal low-pass filter with an infinite roll-
off rate (red line).  The cut-off frequency is defined as the point where the 
attenuation is −3 dB, i.e., 1Hz in this case. The roll-off rate (ROR) is 
−20dB/decade. 

 

The other important filter parameter is the cut-off frequency ( )cf  of the 

filter. The cut-off frequency is defined as the point where the signal has been 

attenuated by −3 dB (i.e., ~29% attenuation). Ideally, the lowest possible cut-off 

frequency is desired, to increase the attenuation of the 2ω signal; however, there 

is a trade-off between low cut-off frequency and the filter settling time. The low 

cut-off frequencies require a long time to reach steady-state (Figure 4.5), while a 

high cf  may not completely attenuate the AC signal lead to error in the 

measurement (Figure 4.6). The cut-off frequency is defined as 

cf  

ROR = -20 dB/dec 

−20 dB 
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F

cf
πτ2
1

= , (3.8) 

where Fτ  is the filter time constant. 

 

 
Figure 4.5: Time domain response of the in-phase lock-in amplifier output 
(black line) for different time constants. The red line represents the average 
stabilized voltage output. The excitation frequency is 1 Hz (2ω = 4π rad/s). 
As the time constant increases, the stabilization time and accuracy of the 
output increase. 

 

The minimum time constant min,Fτ  needed for a given attenuation (x, in 

dB) of the 2ω signal and a given roll-off rate (ROR), assuming straight-line 

approximation is 

 
ωω

τ
2

10
2

10 80
x

ROR
x

min,F

−

== . (3.9) 

In order to maximize the accuracy of the output, a time constant of 10 seconds 

was chosen, such that the amplitude of the largest AC signal was less than the 

noise floor for the lowest signal frequency sampled (~1 rad/s). This represents a 



   
 

   
 

4-10

settling time of roughly 4 minutes. Given that the measurements were automated, 

these long testing times were not an issue. In addition, the long testing times do 

not seem to add any error due to drift. Experiments run over several days did not 

show any measurable change in the amplitude or phase angle of the 3ω voltage 

signal.  

 

 
Figure 4.6: Frequency domain response of the lock-in amplifier output for 
different time constants. The excitation frequency is 1 Hz (2ω = 4π rad/s). 
As the time constant increases, the superfluous AC signal components are 
attenuated. 

 

Even though the lock-in amplifier is designed to pick out small signals 

buried within large amounts of noise, the fundamental signal still required pre-

attenuation prior to entering the lock-in amplifier. This is accomplished using the 

common-mode cancellation techniques presented above. 
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4.4 Experimental Procedure 
 

In this section, we will describe the details of the experimental procedure 

used to conduct the 3ω measurements. 

 

4.4.1 Specimen Mount 
 

First, the specimen was placed on the mount base and silver paint was 

applied to the ends of the pogo pins. The pogo pins were carefully aligned above 

the heater contact pads. The Delrin® cross-beam was lowered until roughly 1 mm 

of spring travel remained—such that the spring was nearly fully compressed. The 

silver paint was left to dry in air for a period of no less than 30 minutes to ensure 

good electrical contact between the specimen heater and the pogo pins. The 

mount was then placed inside the vacuum chamber (Laco Technologies VHE 

Series), which was evacuated by a rotary vane vacuum pump (Adixen Pascal 

2005 SD). 

 

4.4.2 Wheatstone Bridge Balance 
 

Next, an AC signal with a frequency of 1 kHz and the appropriate voltage 

amplitude was turned on and the Wheatstone bridge was balanced by adjusting 

the resistance of the variable resistor such that the differential ω Wheatstone 

bridge voltage was zero. This high balancing frequency was chosen so that the 

response time of the lock-in amplifier was kept short (i.e., short time constant) 

while maintaining an accurate reading. Due to the small DC temperature change, 

the Wheatstone bridge tends to drift out of balance. It was found that the drift in 

the differential Wheatstone bridge voltage fell to a negligible level after 

approximately 6 hours—such that the 3ω voltage is stable. 
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4.4.3 3ω Measurement 
 

After the specimen reached thermal equilibrium and the Wheatstone 

bridge was balanced, the lock-in amplifier reference frequency was switched to 

monitor the 3rd harmonic. The function generator then iterated through a series of 

pre-programmed frequencies as the lock-in amplifier records the in-phase ( )x,W ω3  

and out-of-phase ( )y,W ω3  voltages as well as the voltage magnitude ( )ω3W  and 

phase lag ( )φ . 

 

4.4.4 TCR Measurement 
 

The TCR measurement was accomplished following the 3ω measurement. 

First, the specimen was removed from the mount to have freer access to the 

heater. A piece of adhesive tape was placed overtop the heater without covering 

the contact pads. Then, a type K thermocouple (National Instruments 9211) 

positioned above the heater and secured in place with more adhesive. The 

specimen was then re-mounted as above. Once the silver paint was dry, the mount 

was placed on a hot plate. The resistance of the heater was recorded using a 

digital multimeter (Agilent 34410A). Measurements were recorded when both the 

temperature and resistance measurements appeared stable for at least 5 minutes. 

This took on average 30 minutes for a 2 K temperature increase. 

 

4.5 Conclusions 
 

In the next chapter, we will conduct 3ω measurements on a well 

characterised reference specimen to validate the theoretical approach developed in 

Chapter 2. Statistical error analysis will also be performed to explore the 

accuracy, precision and repeatability of the 3ω apparatus. 
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Chapter 5: Validation of the 3ω 
Apparatus 

In order to validate the mathematical model developed in Chapter 2, and 

the instrumented apparatus described in Chapter 3, a specimen with a well-

known, low value of thermal conductivity was investigated. The material chosen 

was a monolithic fused quartz specimen measuring 1 mm in thickness.  

 

 
Figure 5.1: Thermal conductivity as a function of temperature for fused 
quartz from (Touloukian 1973). The uncertainty in the curve is indicated by 
the greyed region. Inset is a magnification of the temperatures in the 
neighbourhood of 300 K. 
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Fused quartz is commonly used to validate thermal conductivity 

measurement apparatus (Abdulagatov et al. 2000). It is an extremely pure 

amorphous polymorph of silicon dioxide (commercially available at >99.997% 

purity) with a well characterized thermal conductivity of 1.38±0.04 W/m·K at 

300K (Touloukian 1973) (Figure 5.1). Due to the small amount of well defined 

trace impurities and well documented thermal properties, fused quartz makes for 

an excellent reference specimen to validate the accuracy of the experimental 

setup. 

 

5.1 Linear Regression Analysis 
 

Assuming that the approximate solution developed in Chapter 2 is correct, 

we hypothesise that the in-phase component of the Wheatstone bridge output 

( )x,W ω3  is proportional to the logarithm of the thermal excitation frequency ( )ω2  

over a restricted frequency domain—the linear regime. This relationship is given 

by the real part of (3.3) 

 ( ) ( ) ( )( )ξαω
π

β
ωω 2ln2ln
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which is of the form 

 BxAy += , (5.2) 

where 
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 (5.3) 

In Chapter 2, the linear regime boundaries were given as functions of the 

thermal penetration ( )hs bt 55 >> λ . However, the thermal diffusivity of the 

specimen is unknown in general; therefore the thermal penetration depth 
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( )ωαλ 2=  cannot be determined. As such, we require an alternative approach 

for estimating the boundaries of the linear regime. In this work, the boundaries of 

the linear regime were approximated—by inspection—as the constant region of 

the out-of-phase Wheatstone bridge data (Figure 5.2). 

 

 
Figure 5.2: 3ω Wheatstone bridge outputs vs. thermal excitation frequency 
for fused quartz (specimen #5, prms ≈ 0.75 W/m, bh = 20 um). The linear 
regime (light blue shaded region) is determined from the range of constant 
out-of-phase outputs (red circles). The linear fit (blue line) is made from the 
in-phase data (black squares) within this linear regime. 

 

Given the paired, sampled data ( )ii y,x , we use the method of least 

squares to obtain estimates ( )B̂,Â   on the unknown coefficients A and B. These 

estimates are then used to determine the thermal conductivity ( k ) and thermal 

diffusivity (α ) of the specimen using (5.3). The best fit will be one that 

minimizes the variance of the error ( )εσ  between the fit ( )ii xB̂Âŷ +=  and the 
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sampled data ( )iy —thus the name least squares. From (Miller and Miller 1999), 

the coefficients are given by 
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 xB̂yÂ ⋅−= , (5.5) 

where N  is the total number of sampled data points in the regression. The mean 

values are defined as 
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The uncertainty in the coefficients is given by their sample standard deviation—

which measures the average root mean square discrepancy between the data and 

the mean: 
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where ( )εs  is the error sample standard deviation: 
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A closer look at (5.8) and (5.9) reveals their meaning. Equation (5.9) states 

the uncertainty in the slope is proportional to the scatter in the data about the 

regression line, divided by the square root of the variance in x. As such, the 

estimate of slope will improve if the scatter in the data decreases or if we sample 
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the data points farther apart. In addition, the estimate of the y-intercept will also 

improve if the data points are taken closer to the origin. 

Lastly, the “goodness” of the fit is evaluated with the coefficient of 

determination ( )2
xyρ , which is given by the ratio of the sample variance over the 

fit variance: 
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where the best fit mean ( )ŷ  is given by 

 yxB̂ÂxB̂Â
N

ŷ
N

i
i =⋅+=+= ∑

=1

1 . (5.12) 

 

 
Figure 5.3: Sketch of linearly correlated paired data (black squares) along 
with the least squares best fit and mean value. The coefficient of 
determination indicates how much of the variation in y (represented by the 
green arrow) is accounted for by the regression line (blue arrow). The 
magenta arrow represents the unaccounted for variation. 
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Thus, the coefficient of determination measures how much of the total variation in 

y (green arrow) is accounted for by the fit (blue arrow) (Figure 5.3). A 2
xyρ  value 

of 100% means there is no unaccounted for error—the length of the magenta 

arrow reduces to zero for all data points—and we are able to exactly predict the 

value of y  for any unknown x  within the interval [ ]Nx,x1 . The coefficient of 

determination for the linear fit in Figure 5.2 is 99.91%, indicating a very good fit 

to a straight line within the frequency range of constant out-of-phase outputs. 

Similar results were obtained for all of the fused quartz specimens (Table 5.1). 

Therefore, we assert that the frequency range of constant out-of-phase 3ω 

Wheatstone bridge output is a good indicator of the linear regime.  

 
Table 5.1: Summary of the linear least squares curve fitting results for 
fused quartz for prms ≈ 0.75 W/m. N is the number of data points used to fit 
the regression line. 

 
Specimen 

# 
N  2

xyρ  
( )μV

Â  ( )μV
As

 
( )( )sradlnμV
B̂

( )( )sradlnμV
Bs

1 72 99.93 408.6 0.5 -43.0 0.1 

2 35 99.91 404.9 0.9 -42.7 0.2 

3 51 99.93 372.0 1.1 -40.0 0.4 

4 60 99.94 378.2 0.5 -40.7 0.1 

5 51 99.94 399.7 0.6 -43.2 0.2 

6 55 99.94 362.5 0.5 -39.8 0.1 

 

5.2 Additional Measurements 
 

In order to deduce the thermal conductivity and thermal diffusivity from 

the estimates for slope and y-intercept in the linear regime, we must measure 

other physical parameters as indicated in equation (5.3). Unfortunately, not all of 

these parameters could be measured directly, such as the fundamental heater 
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voltage, the heater resistance and TCR. In this section, we will describe the 

procedures used for these non-trivial property measurements. 

 

5.2.1 Fundamental Voltage 
 

In determining the thermal conductivity of the specimen, we require the 

peak amplitude of the nominal heater voltage ( )0,hV . This quantity can be 

measured using either a voltmeter or the lock-in amplifier. The advantage of the 

lock-in amplifier is that it is able to discriminate between different harmonics, 

thus eliminating the contributions at higher harmonics due to heating and noise. 

Unfortunately, its maximum range is limited to 1 Vrms. A simpler approach would 

be to use a voltmeter (Agilent 34410A multimeter) to measure the total rms heater 

voltage ( )rms,hV , which is given by 

( )∫=
τ

τ 0

21 dttVV hrms,h , 

where  
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and ωnV  is the voltage amplitude of the nth harmonic generated by the function 

generator. 

 

5.2.1.a Total Heater Voltage Error Estimation 
 

In order to simplify the measurement process, the fundamental voltage 

across the heater is estimated using the rms heater voltage measured by a digital 

multimeter. Discrepancies between the rms voltage and the fundamental voltage 

arise due to higher harmonic voltage contributions from the Joule heating in the 

heater and the harmonic noise produced by the function generator. 
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In order to mitigate the effects of the Joule heating, the rms voltage was 

measured at an excitation frequency of 1 kHz (~104 rad/s)—where the magnitude 

of the 3ω Wheatstone bridge output is small (Figure 5.2). Integrating, one obtains 
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⎠
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0 1
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Since the TCR of Gold is ~ ( )310−O  and the temperature change was always less 

than 1K, the rms voltage due to the heating effects is negligible: 
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Given that the nominal heater voltage is a sinusoidal waveform, it is possible to 

define an rms nominal heater voltage as 
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From (3.1), we recognise the second term under the square root in (5.11) as 

simply the total harmonic distortion (THD) of the function generator—given as 

0.04% in the product data sheet—such that (5.15) can be expressed as 

 THD1
0

+=
rms,,h

rms,h

V
V

. (5.15) 

Therefore, the overestimation error introduced by using the total voltage rather 

than the nominal voltage is 
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rms,,hrms,h 0201001THD1100%error
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0 =×−+=×
−

= . (5.16) 

As such, the error is negligible and we can consider the total heater voltage to be a 

perfect sinusoidal wave with a peak voltage given by 

 20 rms,h,h VV ≈ . (5.17) 

Comparative measurements using both the digital multimeter and the lock-

in amplifier have shown that the actual difference between the two measurements 

is approximately 0.1% at an excitation frequency of 1 kHz. 
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5.2.2 Specimen Heater Resistance 
 

In Chapter 2, we approximated the oscillating component of the power 

dissipated by the specimen heater via Joule heating as 

 ( ) ( ) ( )t
R

V
tRItP

,h

,h
,h,hAC ωω 2cos

2
2cos

0

2
0

0
2

02
1 == . (5.18) 

However, the room temperature resistance does not take into account the small 

shift in resistance due to the DC heating. A better estimate of the power dissipated 

by the heater can be obtained using the rms resistance of the heater when the 

current is on ( )hR . Unfortunately, resistance cannot be measured when an 

external potential difference is applied to the resistor. When the function 

generator is shut off, the resistance decays as the heater cools, making an accurate 

measurement difficult. Instead, the resistance of the parallel variable resistor—

whose TCR is negligible—is measured with the digital multimeter and the heater 

resistance is deduced from Kirchhoff’s voltage law applied to the balanced 

Wheatstone bridge: 

 
2

1

R
RRR vh = , (5.19) 

where 1R  and 2R  are the in-series resistors whose resistances were measured 

before hand. 

 

5.2.3 Temperature Coefficient of Resistance 
 

In order to deduce the thermal conductivity from the slope of the linear 

regression curve ( )B̂ , we require the temperature coefficient of resistance (TCR) 

of the heater ( )hβ . TCR is defined as the fractional rate of change in resistance of 

the heater as a function of temperature: 
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Figure 5.4 shows a representative output from a TCR measurement of a 

Gold/chrome heater on a fused quartz specimen. Typical TCR measurement 

uncertainties were found to be approximately 1-6%. However, it is the systematic 

errors that are more of a concern, since they are difficult to quantify. Recall that 

the TCR measurement was accomplished by heating the Gold/chrome heater from 

below using a hot plate, while the temperature was monitored using a 

thermocouple placed overtop the line using adhesive tape. There are a number of 

problems with this setup. 

 

 
Figure 5.4: Resistance as a function of temperature of a Gold/chrome 
heater on a fused quartz specimen. The solid red line represents the linear 
regression curve using linear least squares. 

 

First, it was found that the adhesive tape used to secure the thermocouple 

in place tended to lose tack at elevated temperatures, causing the thermocouple to 

lift off the surface. This would lead to downward drift in the temperature 

measurements and an overestimate of the TCR. 
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Second, for the heat to reach the metal line it must pass through the low 

thermal conductivity specimen. From the Wheatstone bridge balancing, it is 

known that it can take many hours for the specimen to reach thermal equilibrium, 

even for the small input power levels used for the 3ω measurements. Therefore it 

is possible that the heater is not in thermal equilibrium when the resistance 

measurements are recorded, leading to a systematic overestimation of the TCR. 

Third, the specimen needed to be dismounted in order to fix the 

thermocouple on the heater. Therefore, the contact resistance between the pogo 

pins and the contact pads was different for the TCR measurements than for the 3ω 

measurements. Since the resistance was obtained via 2-wire resistance 

measurements, we were actually measuring the resistance of the heater and the 

leads, which include the lead wires, pogo pins, silver paint and contact pads. It is 

possible that the change in silver paint content had an effect on the recorded TCR. 

Lastly, it is unknown whether the adhesive tape placed on the heater will 

affect future 3ω measurements with that specimen. Leaving the tape in place may 

affect the temperature field at the specimen surface while removing it may 

damage the heater. Therefore, the 3ω measurements were carried out first and the 

TCR experiments were treated as destructive tests—in that the specimens were no 

longer used afterwards. 

 

5.2.3.a Alternative TCR Measurement Method 
 

We have identified a number of issues related to the TCR measurement 

method which lead to an overestimate of the TCR and thus the thermal 

conductivity. In this section, we will describe an alternative method which would 

address these issues and decrease the systematic measurement errors. 

All of these items were found to be related to the heating method—the hot 

plate. If instead, the metal heater is heated in a precise temperature-controlled 

oven—such that the heater is heated directly by the surrounding air, rather than 

through the specimen—then all of these problems can be minimized or avoided 
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because the thermocouple no longer needs to be in direct contact with the heater. 

Therefore, 

• The specimen heater will reach thermal equilibrium much quicker; 

• No adhesive needs to be applied to the specimen heater, and; 

• No drift in temperature due to movement of the thermocouple relative to 

the specimen heater. 

 

 

5.3 Thermal Conductivity Results 
 

Given the slope of the regression line and the other physical properties, we 

are now in a position to estimate the thermal conductivity of the fused quartz 

specimens. Figure 5.5 shows the best estimates of thermal conductivity for 

different quartz specimens (black squares) and their associated 95% confidence 

intervals (error bars). The black error bars represent the combined error from the 

3ω and TCR measurements, while the blue error bars denote the 3ω measurement 

errors alone. The confidence interval represents the interval over which we are 

95% certain that the thermal conductivity will lie (Miller and Miller 1999). The 

average measured value for the thermal conductivity of fused quartz using the 3ω 

apparatus was found to be 1.47±0.16 W/m·K—a 6% overestimation of the 

accepted value of 1.38 W/m·K. However, since each confidence interval for each 

measurement encompasses the accepted value, then the difference between each 

individual measurements and the benchmark is not statistically significant with 

95% certainty. 

 

 



   
 

   
 

5-13

 
Figure 5.5: Measured thermal conductivity of fused quartz plates (prms ≈ 
0.75 W/m, ts = 1 mm, bh = 20 μm, lh = 8 mm). The best estimates (black 
squares) are compared to the accepted value (red region) given in 
(Touloukian 1973). The black error bars represent the combined 
uncertainty (95% CI) from 3ω and TCR measurements, while the blue 
error bars denote the 3ω measurement errors alone. 

 

However, a simple propagation of uncertainties analysis shows that 

roughly 97% of the error in thermal conductivity is due to uncertainty in the TCR 

of the Gold/chrome heater. If one disregards the TCR error, we find that the error 

in the slope of the regression line accounts for virtually 100% of the remaining 

total uncertainty in the thermal conductivity—i.e., the error from the other 

measurements is negligible. Since the 3ω measurements are independent of the 

TCR experiments, it is useful to perform a separate regression analysis without 

taking into account the TCR error (see section 5.4). 

Given the estimates thermal conductivity and thermal diffusivity, the exact 

solution to the heat equation can be computed from (2.40) 
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Figure 5.6: Amplitude of the temperature oscillations vs. thermal angular 
frequency. The discrete symbols represent the experimental data, while the 
lines are obtained from the exact analytical expression, i.e., equation (2.40). 

 

The coefficients of determination for the in-phase and out-of-phase fits for 

specimen #5 are 99.97% and 76.38%, respectively (Figure 5.6). This close 

agreement validates the theoretical derivation outlined in Chapter 2. In addition, 

Figure 5.6 indicates that the magnitude of the out-of-phase response is not an 

accurate indicator of the specimen thermal conductivity compared to the slope of 
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the in-phase response. This discrepancy seems to be systemic of the 3ω 

measurement technique (Cahill 1990). 

 

5.4 Error Analysis 
 

In this section we will attempt to identify and quantify the different 

sources of random and systematic error that affect the thermal property 

measurements using the 3ω apparatus. 

 

5.4.1 Repeatability and Thermal Diffusivity Measurements 
 

First, we would like to analyse the repeatability of the measurements for a 

given specimen at a fixed power level. Given that the amplitude of the 

temperature oscillations is a function of power level, we must rescale equation 

(2.47) as 

 ( ) ( ) ( ) ( )( )ξαω
π

ωΔ
ωΔ 2ln2ln

2
12

2 2 −+−== h
rms

x,AC
x,AC b

kp
T

T̂ . (5.21) 

Therefore, x,ACT̂Δ  should be invariant for a given heater geometry. The most 

important contributing factor to the repeatability of the 3ω measurements is the 

value of the electrical interface resistance between the pogo pins and the contact 

pads. The electrical interface resistance is a function of the amount of silver paint 

applied to the pogo pins and the contact pressure applied by the mount—both of 

which are loosely controlled by visual inspection. 

In order to determine if there is a statistically significant difference 

between the slope and y-intercept of the different regression lines, we perform an 

analysis of variance (Neter and Wasserman 1974). Basically, we compare the 

variance of the sum of the individual regression residuals to that of the pooled 

residuals: if the variances are similar—compared to an appropriate statistical 

distribution (i.e., F-distribution)—than the discrepancies in the regression lines 

are statistically insignificant. If the similarity hypothesis is false, then a 
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covariance analysis (Neter and Wasserman 1974) is used to determine if the 

difference lies in the regression slopes or intercepts, or both. For both the variance 

and covariance analyses, we make the following reasonable assumption: 

• Normality of error terms; 

• Equality of error variances for measurements; 

• Linearity of the regression. 

The repeatability of the 3ω measurements was investigated by taking 3 

separate measurements of specimen #2—completely dismounting each time—at 

an input power level of ~0.75 W/m (Figure 5.7). 

 

 
Figure 5.7: Rescaled in-phase temperature oscillations vs. the logarithm of 
the thermal excitation frequency. The different data sets denote separate 
measurements of the same specimen (specimen #2). The solid lines of the 
appropriate color represent the regression lines for the different 
measurements 

 

Visual inspection of Figure 5.7 indicates that the y-intercept of the 

regression lines appear different. The covariance analyses confirmed that the 
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differences in the y-intercepts were statistically significant 

( )1202950073114 ,,.F.F =>=∗ , while the slopes (i.e., thermal conductivities) were 

equivalent with a confidence of 95% ( )120,3,95.007.369.1 FF =<=∗ . This seems to 

indicate that the thermal conductivity measurements are immune to any 

repeatability issues with respect to the mounting of specimens for the 3ω 

apparatus. The same cannot be said for the thermal diffusivity (y-intercept). 

Therefore, the 3ω apparatus is not appropriate for the measurement of the 

thermal diffusivity of the specimen. 

 

5.4.2 Specimen Variability 
 

In section 5.3, we compared the measured thermal conductivities to a 

known benchmark, but we are also interested in determining the level of 

significance of the variations between the specimens themselves. Measuring the 

variability between specimens is done following the same procedure as in section 

5.4.1 using the analysis of covariance. The measured data points (points) and their 

respective regression lines (solid lines) for the different fused quartz specimens 

are shown in Figure 5.8. 
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Figure 5.8: Linear regime data for the various fused quartz specimens 
along with their best fit regression lines (prms ≈ 0.75 W/m). 

 

The covariance analysis found that differences in the slope of the various 

measurements were statistically significant (Table 5.2). This can also be seen 

from the discrepancies in the confidence intervals (blue error bars) for the various 

thermal conductivity estimates in Figure 5.5. This may be due to variations in the 

individual heater TCRs or some other factor. Additional measurements confirmed 

that the gradual upward trend in measured thermal conductivity (Figure 5.5) is not 

due to drift with time. 

 
Table 5.2: P-values for different fused quartz specimens 

 
 ∗F  ∞,,.F 5950  

Slope 155 2.21 

Y-Intercept 3064 2.21 
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5.4.3 Low Frequency Divergence 
 

The gradual divergence from the exact equation in both the in-phase and 

out-of-phase responses at low frequencies (Figure 5.6) is thought to be caused by 

the finite thickness of the specimen. Recall that the exact solution derived in 

Chapter 2 was for a semi-infinite solid and is valid only for thermal penetration 

depths much smaller than the thickness of the specimen. If we compute the 

thermal penetration depth ( λ ) for the different frequencies at an input power of 

~0.75 W/m, we find that the lower bound for the linear regime is roughly 0.2 mm, 

or 5
1  of the specimen thickness. Given that the heat decays exponentially through 

the specimen, one expects that the thermal wave will decay below 1% of its initial 

amplitude after 5 “length constants”, i.e., 5 times the thermal penetration depth. 

This divergence from the exact equation is due to interference with reflected 

waves from the interface between the specimen and the mount. 

 

5.4.4 Out-of-Phase Signal 
 

Inspection of Figure 5.6—as well as the coefficient of determination—

reveals that the fit of the exact equation to the out-of-phase temperature 

oscillations is not as good as for the in-phase response. One possible cause for this 

was the presence of stray reactance in the custom-built Wheatstone bridge circuit. 

While balancing the Wheatstone bridge, a positive out-of-phase voltage 

signal was detected at the fundamental excitation frequency ( )ω . Given that a 

Wheatstone bridge contains only resistive elements, there should not be any out-

of-phase fundamental voltage signal in the circuit at all. Therefore, any out-of-

phase signal must be due to stray reactance, either capacitive or inductive. The 

positive stray reactance was found to increase linearly with frequency (Figure 

5.9), indicating it was stray inductance.  
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Figure 5.9: Amplitude of the out-of-phase fundamental voltage signal vs. 
excitation frequency due to stray inductance in the specimen arm of the 
Wheatstone bridge. Given the magnitude of the current in the specimen 
arm, the inductance was found to be 73.2±0.1 mH. 

 

Since the differential output was wired such that the potentiometer arm voltage 

was subtracted from specimen arm voltage, we know that a net positive 

inductance was coming from the specimen arm of the bridge, since one cannot 

have negative inductance (just like one cannot have negative resistance). Given 

the current passing through the heater and the frequency response of the out-of-

phase voltage at ω, it was possible to deduce the impedance of the specimen arm 

as 73.2±0.1 mH. The stray inductance was systemic and probably due to either the 

vacuum chamber lead wires or the unshielded pogo pins used to make the 

electrical connections to the specimen. We wished to estimate the contribution of 

the stray out-of-phase voltage signal at ω on the out-of-phase 3ω voltage. 

Combining (2.10) and (3.2) 
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Now, we correct the fundamental voltage to take into account the stray out-of-

phase voltage yielding 
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⎛ +
+≈+=′

1

10
000 R
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Therefore, (5.7) gives 
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resulting in a maximum error of 0.25 μV at a frequency of 9 kHz (or 2ω ≈ 105 

rad/s). Therefore, the contribution from the stray inductance on the amplitude of 

the out-of-phase 3ω voltage was negligible. 

 

5.4.5 Effect of Input Power 
 

In Chapter 2, we defined the linear regime as a range of frequencies for 

which the associated thermal penetration depth is less than 5
1  the thickness of the 

specimen, but greater than 5 times the half-width of the heater ( )hs bt 55 >> λ . 

The lower limit is rather straightforward: if the thermal wave exceeds the 

thickness of the specimen, than the resultant thermal properties will be a 

composite of the specimen and the mount. The upper limit is more arbitrary: when 

the thermal penetration depth decreases beyond a certain point (i.e., the frequency 
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increases), the frequency response of the temperature oscillations (i.e., the Bessel 

function) deviates from linearity (Figure 5.2). This deviation is gradual, but a 

clear function of the heater half-width; as such we arbitrarily set an upper limit on 

the linear regime as 5b, resulting in a maximum error in the slope of the linear 

regime of less than 1%. It was found that the observed plateau in the out-of-phase 

3ω voltage did not always coincide with these limits. For example, in Figure 5.2, 

the upper limit of the constant domain occurs at a thermal penetration depth of 56 

μm, well beyond 5b (100 μm). The correspondence of the lower limit with 5
1  of 

the specimen thickness was found to be pure chance. Rather, the extent of the 

constant plateau depends on the amount of power dissipated by the heater ( 0P ), 

such that the constant domain extends for lower power levels and disappeared 

completely at high power levels (i.e., mW 28=rmsp ) (Figure 5.10). 

For low input powers, the initial amplitude of the temperature wave is 

proportionally smaller, such that the effect of the reflected waves will only be felt 

by the heater if they are larger than the resolution of the lock-in amplifier. 

Therefore, at lower input powers, the finite thickness effects will only be recorded 

at larger thermal penetration depths—although the oscillations still decay at the 

same rate. Although there is a large amount of uncertainty in the data and the 

frequency step sizes are not uniform for all the data, Figure 5.10 seems to agree 

with this trend of shrinking linear regime with increasing power. 
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Figure 5.10: Linear regime boundaries as a function of input power level. 
The lower limit (with respect to thermal excitation frequency, 2ω) is shown 
in black squares and the upper limit is given red. The specimen thickness 
(ts) is 1 mm and the heater half width  (bh) is 20 μm. The dotted lines 
indicate the boundaries based on the theory developed in Chapter 2 
(ts/5>λ>bh). 

 

For all measurements below 0.2 W/m, anomalous staircase function 

behaviour appeared in the linear regime of the in-phase 3ω voltage amplitude 

(Figure 5.11). Such behaviour has never been reported in the literature. In each 

measurement where the steps are visible, the vertical separation between the steps 

is constant within ~1%. Furthermore, when the voltage signals were converted 

into temperatures, the step heights appeared roughly in integer multiples of 5 mK, 

with the step size tending to increase with increasing power (Figure 5.12). 
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Figure 5.11: 3ω Wheatstone bridge outputs vs. thermal excitation 
frequency for fused quartz (prms = 0.12 W/m, bh = 20 um). Staircase function 
behaviour was visible in the linear regime of the in-phase output for all 
input power levels below ~0.2 W/m. 

 

Although not clearly visible in Figure 5.11 at low frequencies, the 

staircase regime was found to be bounded on both sides by smoothly decaying 

regions. The sudden transition from a staircase-like behaviour in the linear regime 

to a smooth decay in the transition regime clearly indicates that this behaviour is 

not due to resolution limitations in the apparatus, frequency-dependent or 

otherwise. In addition, the frequency range where the staircase effect was visible 

coincided almost exactly with the constant region in the out-of-phase output, 

raising doubts about the nature of the constant out-of-phase region. 

One clue to the origin of the steps is the level of input power per unit 

heater length. The steps were visible in all measurements taken at power levels 

ranging from 30 to 800 mW/m. In contrast, most other groups reporting 3ω results 

used power levels roughly 3 orders of magnitude larger (30 to 800 W/m) (Kim et 
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al. 1999; Alvarez-Quintana and Rodríguez-Viejo 2008). For the high power 

measurement taken at 28 W/m, no steps or linear regime were observed. 

Nevertheless, the slope of the 3ω measurement regression lines showed no 

statistically significant difference with respect to the input power level—although 

this may simply be due to the larger error present at lower power levels (Figure 

5.13). 

 

 
Figure 5.12: Vertical step height in the in-phase component of the 
temperature oscillations as a function of input power. All three observed 
step sizes were approximately integer multiples of 5 mK. 

 

Indeed, the uncertainty in both the thermal conductivity and thermal 

diffusivity data was found to increase significantly with decreasing power. The 

correlation coefficients ( )xyρ —given by the square root of the coefficient of 

determination ( )2
xyρ —were found to be −0.76 and −0.82 for the thermal 

conductivity and thermal diffusivity, respectively, for 18 fused quartz experiments 

conducted with different specimens and power levels. The probability that these 
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correlations are incidental are less than 0.1% (Taylor 1997). However, one cannot 

increase the input power too high because the linear regime disappears completely 

at higher input power levels. 

 

 
Figure 5.13: Linear regime data for fused quartz specimen #2 at different 
input power levels along with their best fit regression lines. 

 

5.5 Conclusions 
 

Using the 3ω technique, we have obtained an average thermal 

conductivity for fused quartz of 1.47±0.16 W/m·K, compared to the accepted 

value of 1.38±0.04 W/m·K. This represents a precision uncertainty of 10% and an 

average systematic overestimate error of 6%. Both of these errors have been 

shown to be associated to the TCR measurements. Therefore, in order to improve 

the accuracy and precision of the 3ω apparatus, a more reliable method of 

determining the heater TCR is required. 
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In addition, anomalous staircase behaviour in the linear regime of in-phase 

3ω voltage response was observed. The size of the stairs was constant for a given 

measurement and was found to increase with decreasing input power. 

Furthermore, the step sizes were always found to be integer multiples of 

approximately 5 mK. Due to the large steps, the uncertainty in the slope of the 

linear regime—i.e., thermal conductivity—tended to increase with decreasing 

input power. This behaviour has never been reported before and casts doubts 

whether the 3ω measurements were conducted at too low input power. More 

measurements need to be taken at higher input power levels to confirm this. 

On the other hand, the thermal diffusivity measurements from the y-

intercept of the in-phase 3ω voltage response were found to be highly variable 

and unreliable. This was due to relatively large changes in the in-phase voltage 

response brought about by small changes in electrical interface resistance—due to 

changes in pogo pin clamping pressure and silver paint. Therefore, the thermal 

diffusivity measurements were not considered significant. 

Given the positive results for fused quartz, other materials of interest for 

power harvesting microsystems were evaluated, namely Lead Zirconate Titanate 

(or PZT)—a material commonly used in vibration harvesters. 
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Chapter 6: Thermal Conductivity of PZT 

In this section, we will present the initial thermal conductivity 

measurements for Lead Zirconate Titanate (PZT)—a piezoelectric ceramic 

material. Thermal conductivity data for PZT materials are of importance for the 

optimal design of microsystems for vibration energy harvesting. Specifically we 

investigated PZT-5A4E, a commercially available, polycrystalline sintered PZT. 

The only thermal conductivity information available from PZT material suppliers 

was a design value quoted as roughly 1.8 W/m·K—irrespective of composition. 

Only two studies on the thermal conductivity of PZT materials were found in the 

open literature (Yarlagadda et al. 1995; Kallaev et al. 2005). 

Yarlagadda et al. investigated the thermal conductivity of two different 

poled PZT compositions (PZT-4S and -5H) from 15-300K using an absolute 

longitudinal plate method similar to the one outlined in Chapter 1.  The thermal 

conductivity was measured in the poled direction. They found values of thermal 

conductivity of 0.14 and 0.18 W/m·K at 300K for PZT-5H and PZT-4S, 

respectively—more than one order of magnitude lower than the design value. 

However, they only measured one specimen of each material and no uncertainty 

estimates were reported. 

Kallaev et al. studied the unpoled thermal conductivity of yet another type 

of PZT (PZT-19) over the temperature range 290-800K. The details of the 

measurement apparatus were not disclosed. A value of 2.0±4% W/m·K at 300K 

was interpolated from their experimental data. 

Although the results reported by the above studies are not extensive, they 

seem to indicate a strong relationship between thermal conductivity and either 

PZT composition or poling. As a first step in investigating these possible 
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relations, the thermal conductivity of unpoled PZT-5A4E was measured at room 

temperature using the 3ω apparatus. 

 

6.1 Heater Fabrication 
 

Due to its sintered nature, the PZT specimens had a non-negligible surface 

roughness, which could impact the continuity of the thin film heater and render 

thickness measurements difficult. Using the profilometer at the University of 

Sherbrooke microfabrication facility (Tencor Alphastep), the peak surface 

roughness was measured as 3.5 μm—an order of magnitude larger than the 

thickness of the heater. 

The thickness of the metal films sputtered onto the PZT specimens was 

measured from a silicon witness specimen, patterned simultaneously with the PZT 

specimens. Optical microscopy indicated that the deposited heaters were 

continuous and electrical resistance measurements confirmed that no open circuits 

existed. However, the resistance of the heaters were almost three times higher 

than those deposited on the smooth fused quartz specimens. The increase in 

resistivity is believed to be due to increased electron boundary scattering from the 

rough surface (Namba 1970; Dubey et al. 1991). 

 

6.2 Temperature Coefficient of Resistance 
 

The change in resistivity of the Gold/chrome heaters motivated new 

measurements for the temperature coefficient of resistance (TCR) of the binary 

film on PZT (Warkusz 1987). The TCR of three randomly chosen PZT heaters 

were measured and found to be consistently smaller than on fused quartz by 

~20% (Table 6.1). Assuming these three values are representative of the different 

specimens, an average TCR is computed and used to determine the thermal 

conductivity of the PZT specimens. 
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Table 6.1: Temperature coefficient of resistance (TCR) of three randomly 
chosen PZT specimen heaters. 

 
Specimen # TCR (K-1) Uncertainty (95% CI) 

1 0.00202 0.00004 

6 0.00223 0.00016 

8 0.00209 0.00006 

Mean 0.00211 0.00012 

 

6.3 Thermal Conductivity 
 

Using the mean value of TCR from Table 6.1, the thermal conductivity of 

the different, unpoled PZT-5A4E specimens are given in Figure 6.1. The average 

thermal conductivity was found to be 1.38±0.10 W/m·K. 

The analysis of variance determined that the thermal conductivity of the 

different specimens—assuming an average TCR—were significantly different 

with 95% confidence. The covariance analysis on the difference specimens 

showed that both the y-intercepts and slopes were significantly different (Table 

6.2). 
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Figure 6.1: Measured thermal conductivity for PZT-5A4E. Total 
uncertainty (95% CI) is given by the black error bars, while the uncertainty 
without the TCR error is denoted by the blue error bars. 

 
Table 6.2: Covariance analysis results for different PZT specimens 

 
 ∗F  1207950 ,,.F  

Slope 8.73 2.39 

Y-Intercept 139 2.39 

 

6.4 Conclusion 
 

Using the 3ω technique, the thermal conductivity of PZT-5A4E was found 

to be 1.38±0.10 W/m·K. Given that the value of thermal conductivity of fused 

quartz obtained from the combined 3ω and TCR measurements yielded a 6% 

overestimate on the accepted value found in the literature, it is possible that the 

thermal conductivity of PZT-5A4E lie closer to 1.30 W/m·K. 
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It seems to be a coincidence that the thermal conductivity of PZT-5A4E is 

very close to that of the quartz glass, rather than instrument error, where the 

device systematically yields the same result for all materials. The latter 

interpretation can be dismissed since the thermal conductivity measurement is 

obtained from two independent measurements: the slope of the voltage-frequency 

response (i.e., the 3ω measurement) and the TCR measurement. Given that the 

TCR of the PZT sample heaters was roughly 20% smaller than the quartz heaters, 

the 3ω measurements also differ by the same amount to yield similar thermal 

conductivities.  

The thermal conductivity measurements of unpoled PZT-5A4E are on the 

same order of magnitude as the design value and that obtained by Kallaev et al. 

for unpoled PZT-19, but differ significantly from the values for poled PZT-4S and 

PZT-5H reported by Yarlagadda et al. This seems to indicate a particularly strong 

correlation between poling and thermal conductivity which warrants further 

investigation. 
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Chapter 7: Conclusion and Future Work 

In this thesis, a thermal conductivity measurement apparatus was 

successfully designed, built and validated for measuring functional materials for 

use in power harvesting microsystems. The system makes use of the 3ω 

technique, which has been previously used to characterise a wide variety of 

materials. The apparatus was validated using a fused quartz, yielding a mean 

thermal conductivity of 1.47±0.16 W/m·K, in agreement with the accepted value 

of 1.38 W/m·K. The discrepancies in the mean values represent an overestimation 

error of 6%—which is a reasonable level of uncertainty for thermal conductivity 

measurements (Yang 2008). 

Thermal conductivity is deduced by combining 3ω measurements with the 

temperature coefficient of resistance (TCR) measurements. It was found that a 

large majority of the uncertainty—97% for fused quartz—in the thermal 

conductivity results stem from the TCR measurements. 

Next, the thermal conductivity of unpoled Lead Zirconate Titanate (PZT-

5A4E) was investigated. It was found to have a thermal conductivity of 1.38±0.10 

W/m·K. This value is 30% less than the value reported by Kallaev et al. for 

unpoled PZT-19 and an order of magnitude larger than those for poled PZT-4S 

and PZT-5H, given by Yarlagadda et al. 

 

7.1 Conclusions 
 

The 3ω measurements themselves were found to be extremely precise—

with an error of less than 1%—whereas the TCR measurements had a mean 

uncertainty of roughly 6%. A major limitation in the TCR measurements was the 
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heating method. The heat was applied from below using a hot plate and the 

temperature was measured at the specimen heater using a thermocouple. It was 

found that the thermocouple reading was very sensitive to its location and that the 

adhesive used to fix the transducer in place tended to lose tack at higher 

temperatures. This could lead to an overestimation in the TCR and in turn, an 

overestimate in the thermal conductivity. This could explain the systematic 

overestimation error of 6% for the thermal conductivity for the fused quartz 

specimens.  

Furthermore, the discrepancy in the fused quartz thermal conductivity 

measurements could be due to the anomalous staircase behaviour which was 

observed in all of the 3ω measurements. The size of the "steps" was found to 

decrease with increasing input power level. This behaviour has never been 

reported before in the literature. 

 

7.2 Future Work 
 

First, in order to improve the accuracy and precision of the 3ω 

measurement apparatus, a better method of measuring the TCR is needed. This 

would be possible by using a precise temperature-controlled furnace. Not only 

would this homogenise the temperature of the heater and its surroundings, it 

would also reduce the time required to reach steady-state, since the heat no longer 

has to flow through the low thermal conductivity specimen to reach the heater. 

Additionally, the thermocouple would no longer need to be adhered to the heater; 

therefore, no tampering with the specimen would be required. 

Second, further investigation of the anomalous staircase effect is needed to 

ensure that the measurements are valid, given that this effect has never been 

reported in the literature. Therefore, further measurements over a wider range of 

input power levels and with different heater widths are suggested. 

Lastly, the initial results obtained for PZT-5A4E—taken in relation to 

those published in the literature—seem to indicate a correlation between poling, 

microstructure and thermal conductivity. We are currently investigating the effect 
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of poling on the thermal conductivity of PZT-5A4E. In addition, confirmation of 

the thermal conductivity measurements made by Yarlagadda et al. on PZT-4S and 

PZT-5H using the 3ω technique are warranted, given the extremely low values 

obtained. 
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