
0

THE REUSE-ORIENTED APPROACH AND ITS CASE STUDY

by

ZhiyiLou

School of Computer Science

McGill University, Montreal

November 1993

Copyright © 1993 by Zhiyi Lou

0

c

c

ABSTRACT

Reuse is widely believed to be a key to achieving the dramatic improvement in

productivity and quality the software industry requires. Although experience shows that

certain kinds of reuse can be successful, general success has been elusive. From the

technical aspect, three kinds of problems inhibit the advance of reusable software

engineering: organizational problems, representational problems and operational problems.

Our study aims at removing these barriers by introducing a reuse-oriented approach to

software development in general and systematic reuse in particular. On the basis of the

object-oriented methodology, this approach presents an incremental development

paradigm that coordinates the interaction between development process and reuse process

with two parallel organizations, and incorporates four technical issues that support the

development paradigm: broad-spectrum reuse, domain-oriented software life cycle, multi­

organization development process model and experience factory. The final product is a

reuse-enabling software system within an application domain. The reuse-oriented

approach is demonstrated with the RECP AM system, a statistical application that includes

a family of projects. The development of the RECP AM system is arranged in two steps:

the creation of the reuse-enabling system and the development of the reuse-enabling

system. In the first step, we focus on developing a general RECP AM system for reuse to

demonstrate how a starter reusable system can be achieved. In the second step, we focus

on developing concrete projects with reuse to illustrate how development can be improved

by applying the general system to different sorts of projects within the RECP AM domain.

0

RESUME

La reutilisation est consideree comme essentielle pour ameliorer la productivite et la

qualite, primordiales dans l'industrie du logiciel. Bien que l'experience a montre que

certains types de reutilisation peuvent bien reussir, une reussite generalisee, but ultime n'a

pas encore ete obtenue. Les techniques de logiciels reutilisables font face a trois sortes de

problemes majeurs qui sont: les problemes d'organisation, de representation et d'operation.

Le but de notre etude est de parvenir a surmonter ces obstacles en adoptant une approche

orientee vers la reutilisation de logiciels en general et une reutilisation systematique dans

des cas particuliers. Cette approche de reutilisation de logiciels presente un exemple de

methode amelioree qui coordonne l'interaction entre le processus de developpement et

celui de reutilisation avec deux organisations paralleles, tout en incluant quatre aspects

techniques: reutilisation a grande echelle, cycle de vie du logiciel oriente-domaine, modele

de developpement d'un processus a organisation multiple et usine d'experience. Le produit

final est un systeme susceptible d'etre utilise dans le cadre d'un domaine d'application

donne. L'approche orientee vers la reutilisation est mise en reuvre dans le developpement

du systeme RECP AM, une application statistique incluant une famille de projets similaires.

Le developpement du systeme RECP AM a ete effectue en deux etapes: creation d'une

base abstraite rendant possible la reutilisation et developpement dun systeme concret

reutilisable. La premiere etape est consacree au developpement general du systeme

RECP AM avec pour objectif de rendre le processus de reutilisation de logiciel plus facile.

La seconde etape est consacree au developpement de projets de reutilisations specifiques,

dans le but de prouver que le developpement peut etre grandement facilite par l'application

du systeme general a differentes sortes de projets dans le domaine RECP AM.

ii

0

0

ACKNOWLEDGMENTS

I am greatly indebted to Dr. M. Newborn for his valuable advice, encouragement and

assistance during the course of this study.

I wish to express my sincere appreciation to Dr. A. Ciampi for his guidance, consistent

support and constructive suggestion, and for providing financial support from his MRC

(the Medical Research Council of Canada) research grant. I acknowledge the Montreal

Children's Hospital Research Institute for supplying a conducive environment.

Many thanks are extended to Mr. A. Negassa, Ms. L. Hendricks and Mr. Q. Yu, for

their technical assistance and participation during the development and testing of the

RECP AM system. My special thanks also go to Prof A. Godfrey for his enthusiastic help

in preparing this manuscript.

Finally, my deepest gratitude is extended to my dear wife Tian for her love, patience

and understanding, to my lovely daughter Meng, and to my parents and parents-in-law for

their moral support.

iii

CONTENTS

ABSTRACT ... i

RESUME ... ii

ACKNOWLEDGMENTS ... iii

CONTENTS ... iv

LIST OF FIGURES ... vi

LIST OF TABLES ... vii

CHAPTER 1 INTRODUCTION .. 1

1.1 Software Reuse Concept ... 1

1.2 Software Reuse Review .. 3

c CHAPTER 2 THE REUSE-ORIENTED APPROACH ... ll

2.1 Motivations .. 11

2.2 Development Process and Reuse Process .. 15

2.2.1 Software Development Process ... 16

2.2.2 Software Reuse Process .. 19

2.2.3 Integrating Reuse Process into Development Process 21

2.3 Technical Issues for Reuse-Oriented Approach ... 23

2.3 .1 Broad-Spectrum Reuse ... 23

2.3 .2 Domain-Oriented Software Life Cycle ... 26

2.3.3 Multi-Organization Development Process Model .. 27

2.3.4 Experience Factory ... 28

2.4 Reuse-Oriented Development Paradigm .. 31

2.4.1 Experience-Packaging Organization .. 33

2.4.1.1 Domain Analysis ... 33

2.4.1.2 Experience Abstraction ... 34

2.4.1.3 Experience Cataloging .. 37

2.4.2 Project-Generating Organization ... 38

2.4.2.1 Project Recognition ... 39

iv

0 2.4.2.2 Experience Customizing .. 40

2.4.2.3 Project Integration .. 41

CHAPTER 3 CASE STUDY: RECPAM SYSTEM ... 43

3.1 Application Background ... 43

3.2 Objectives ofRECPAM System .. 49

3.3 Development ofRECPAM System .. 53

3.3.1 Object Modeling Technique .. 53

3.3.2 Creation Step of the Reuse-Enabling RECPAM System 56

3.3.3 Development Step of the Reuse-Enabling RECPAM System 77

3.3.3.1 Bringing New Statistical Models into the RECPAM Analysis Family 77

3.3.3.2 Extending the Local Confounders to the Prediction Model 81

3.3.3.3 Adding A User-Defined Alternative ofPruning procedure 83

3.3 .3 .4 Developing A Cross-Validation System on the Basis of the

RECPAM System ... 85

CHAPTER 4 CONCLUSIONS AND FUTURE WORKS 87

0 4.1 Conclusions .. 87

4.2 Future Work ... 89

REFERENCES .. 91

APPENDIX RECP AM Reuse-Enabling System Source Codes

c
V

0
LIST OF FIGURES

Figure I Software life cycle .. 17

Figure 2 Software reuse life cycle .. 19

Figure 3 (a) Pre-reuse phase; (b) Reuse phase; (c) Post-reuse phase 21

Figure 4 Integrating reuse process into development process 22

Figure 5 Reuse-oriented software development paradigm ... 32

Figure 6 illustration of the RECP AM methodology .. 46

Figure 7 Outcome classification for nasal sinus cancer (outcome = death} 48

Figure 8 RECP AM object diagram for object model ... 60

Figure 9 RECPAM state diagram for dynamic model .. 61

Figure 10 RECP AM data flow diagram for functional model 62

Figure 11 RECPAM system architecture .. 67

Figure 12 RECPAM statistical models instance structure ... 79

Figure 13 RECP AM prediction models instance structure with local confounders 82

c
vi

0

LIST OF TABLES

Table 1 Nasal Cancer Data Set. .. 47

Table 2 Categories of the four classification variables ... 48

Table 3 Example of Application Goals for the General RECP AM System 65

Table 4 Example of Data Abstraction ... 72

c

vii

0

0

CHAPTER 1. INTRODUCTION

1.1 Software Reuse Concept

As the demand for software continues to grow, software developers are searching for

ways to develop software more quickly and efficiently. One of them is to reuse software

already written. Reuse is a general engineering principle whose importance derives from

the desire to avoid duplication and to capture commonality among inherently similar

situations. It provides both an intellectual justification for research that simplifies and

unifies our understanding of phenomena and an economic justification for production that

increases productivity and quality [Wegner 1984]. In well-established disciplines, like civil

engineering or electrical engineering, reusability is a standard part of development.

Electrical engineers, for example, consult component catalogs continuously during the

design process to check what available part best fits the design constraints. In many cases,

the original design requirements are modified to take advantage of existing components.

However, it has for a long time been recognized that one fundamental weakness of the

software industry is the fact that new software systems are usually constructed "from

scratch" [Horowitz and Munson 1984]. During initial software development, reuse may be

totally absent, but more often it manifests itself as the informal reuse of in-head knowledge

about older, similar systems. In most cases, reuse is merely the sharing of a set of routines

in a run-time library that is designed to be common to both existing and planned systems.

During maintenance, reuse is sometimes formalized through a number of project specific

support tools. Why isn't software more like hardware? Why must every new development

start from scratch? There should be catalogs of software modules as there are catalogs of

1

0

0

c

0

0

VLSI devices: When we build a new system, we should be ordering modules from these

catalogs and assembling them, rather than reinventing the wheel every time.

Software reuse can be extensively defined as the reapplication of a variety of kinds of

software-related materials about one system to another similar system in order to reduce

the effort of development and maintenance of that other system. The reused materials

include all forms of artifacts during software development such as domain knowledge,

development experience, design decisions, architectural structures, requirements, designs,

codes, documentation, and so forth. This expensive definition breaks the limitations of

traditional views of reuse which center on the reapplication of code components. It results

in the ampler exploitation of software reuse and thereby earns the maximum benefits on its

investment. The software reuse will amplify the programming capabilities, reduce the

amount of work needed on new systems, and achieve a better overall control over the

production process and the quality of its products. The benefits offered by successful

software reuse can be summarized as follows:

• Productivity - Use existing components. Increased reuse helps reduce the efforts

needed to develop software systems.

• Reliability - Use proven components. Developing reliable software is difficult,

especially for large, complex systems. Software reuse helps by providing

components whose reliability is already demonstrated.

• Consistency- Use the same components in many places. Through a set of widely

useful components, software reuse helps reduce the need for fresh, and possibly

idiosyncratic, design.

• Manageability - Use well-understood components. Increased reuse helps lessen the

likelihood of cost and schedule overruns by providing already developed

components whose behavior is understood.

• Standardization - Use standard components. With reuse, software components are in

place early to help users and developers with specification and implementation.

2

0

0

• Knowledge capture - Use encapsulated components. The application domain

expertise and development process knowledge hidden in components are easily

captured with reuse process.

Reusing software is a simple and straight-forward concept that is behind almost every

software development. It manifests itself in many forms. The following popular

mechanisms can be considered simple examples: utilizing a set of library routines;

connecting programs with a UNIX pipe; utilizing operating system services calls; and

salvaging components from previously written systems.

1.2 Software Reuse Review

The concept of software reuse is not new. It has been part of the programming

heritage since the origins of the stored program computer EDSAC at the University of

Cambridge in 1949. Maurice Wilkes first recognized the need for avoiding redundant

effort in writing scientific subroutines, and recommended a library of routines be kept for

general use [Tracz 1987]. A specialized form of software reuse, libraries of standard

functions, has been in widespread use. Various technical developments in this area are all

relevant to reuse of code but were not developed with reuse particularly in mind.

In 1969, Mcl1roy reformulated this concept and proposed the idea of a software

components catalog from which software parts could be assembled, much as is done with

mechanical and electronic components [Mcllroy 1969]. Programmers began efforts to

introduce reusability into their software development processes at this time. In the late

70s, this idea was applied in a limited domain by Lanergan and Poynton with excellent

results. They identified and classified a lot of code and standard structures that could be

used in many of their applications [Lanergan and Poynton 1979]. Since then, Japanese

software factories have reported great improvements in programmer productivity through

reusability by integrating known techniques from different disciplines like resource

management, production engineering, quality control, software engineering, and industrial

3

c

0

psychology [Matsumoto 1981] [Kim 1983] [Tajima and Matsubara 1984]. Software

development started concerning both intentionally producing reusable software

components and explicitly utilizing them.

Interest in reuse burst onto the software scene in 1983 with the landmark ITT

Workshop on Reusability in Programming. Biggerstaff and Perilis succeeded in attracting

a critical mass of leading researchers and industry representatives to this meeting. A

varieties of approaches were proposed, and more and more technologies emerged.

Massive research on reusability focused on methods and mechanisms to perform reuse, on

the presentation of reusable components, and on the organization of repositories of

components. Freeman introduced software reuse as a topic of software engineering

research, so that the construction of software became an engineering task [Freeman 1983].

He emphasized the reuse of all information generated during the software development

process and proposed a set of long·term research directions relevant to effective software

reuse. Matsumoto formally proposed the software factory, in which paradigms of

industrial production are adopted for software production, in terms of software reusability

[Matsumoto, et al. 1981] [Matsumoto 1984]. Weger suggested that software production

is a capital-intensive process. The reusable software is seen as capital goods whose

development cost may be recovered from its set of uses. Thus, technologies which identifY

capital goods with reusable resources, and capital with reusability, are becoming more

powerful and expensive, and it requires greater early investment to reduce later

expenditures [W eger 1984].

More recently, Basili introduced a systematic reuse approach for supporting

comprehensive reuse. He presented a comprehensive framework for reuse consisting of a

reuse model, model-based characterization schemes, the TAME environment model

supporting the integration of reuse into software development, and ongoing research and

development efforts toward a TAME environment prototype [Basili, et al. 1991] [Basili

and Rombach 1988]. Today, many organizations view software reusability as an

4

0

0

indispensable technology that must be developed to ensure future competitiveness [Prieto­

Diaz and Jones 1988].

There is a great variety of possible approaches to software reusability. The two

primary groups are the composition-based approach and the generation-based approach.

The differences between then depend on the nature of the components being reused and

on the technologies applied to the reuse process [Biggerstaff and Richter 1987]

[Biggerstaff and Perlis 1984].

Composition-based approach: The reusable components, which are called building

blocks, are largely atomic, almost immutable and passive elements operated on by external

agent. They are reused through composition.

Reusable building blocks can span all levels of software, including specification,

design, and code. They may range in size from complete subsystems down to individual

modules or fragments. Both application-specific components and general purpose

components are important. Some components can be reused "as-is" while others may have

to be customized for each application [Lenz, et al. 1987] [Burton, et al. 1987] [Korson

1992] [Lubars 1987]. There are two typical approaches currently used in this group: the

standard component approach and the common utility approach.

(1) Standard component approach

The standard component approach standardizes the application-dependent function

groups and provides them as standard components. The programmer develops his

software while combining these components and creating functions that are lacking.

(2) Common utility approach

The common utility approach aims only at standardizing low-level functions and

providing them as common utilities.

There are many important issues - technical and managerial - related to

implementing a successful reuse in this group. We discuss only two of them, software

factory and domain analysis, because they are directly invoked in our approach.

5

0

c

0

(i) Software factory

The software factory concept was originally proposed to improve software

development productivity through standardized tools, methods and component reuse. As

the earliest proponent, Bemer gave the first working definition of what might constitute a

software factory: "A software factory should be a programming environment residing

upon and controlled by a computer. Program construction, checkout, and usage should be

done entirely within this environment and by using the tools contained in the environment"

[Bemer 1969]. He focused on standardized tools and controls. Mcllroy emphasized

another factory-like concept: systematic reusability of code when constructing new

programs. He used the term "factory" in the context of facilities dedicated to producing

parameterized families of software parts or routines that would serve as building blocks

for tailored programs reusable across different computers [Mcllroy 1969]. The first

company in the world to adopt the term "factory" to label a software facility was Hitachi,

which founded the Hitachi Software Works in 1969. By the late 1960s, the term" factory"

had arrived in software engineering considering more efficient software development

approaches. This label became especially popular in Japan during mid-1970 and 1980s

[Cusumano 1989]. In order to support a comprehensive framework for the reuse he

proposed, Basili defined the term "experience factory" as a logical or physical organization

that supports project development by analyzing all kinds of experience, acting as a

repository for such experience, and supplying that experience to various projects on

demand. His experience factory can be divided into two independent sub-organizations:

domain factory and component factory. Domain factory defines the process for producing

applications within the domain, implements the environment needed to support that

process, and monitors and improves that environment and process. The component

supplies factory software components to projects upon demand, and creates and

maintains a repository of chosen components for future use. Basili presented the

architecture of the component factory at three levels of abstraction: reference level,

6

0

0

conceptual level and implementation level, and defined a reference architecture from which

specific architectures can be derived by instantiation [Basili, et al. 1991].

(ii) Domain Analysis

Domain analysis was first introduced by Neighbors as "the activity of identifying the

objects and operations of a class of similar systems in a particular problem domain"

[Neighbors 1980]. He draws the analogy of domain analysis to system analysis. The

difference is that system analysis is concerned with specific actions in a specific system,

while domain analysis is concerned with actions and objects in all systems in an application

area. During his research with Draco, a code generator system that works by integrating

reusable components, he pointed out "the key to reusable software is captured in domain

analysis in that it stresses the reusability of analysis and design, not code". The Common

Ada Missile Packages (CAMP) Project took Neighbors' ideas into practice. The CAMP

Project is the first explicitly reported domain analysis experience [CAMP 1987]. McCain

makes an initial attempt at addressing this issue by integrating the concept of domain

analysis into the software development process. He proposes a "conventional product

development moder• as the basis for a methodology to construct reusable components

[McCain 1985]. There are many approaches. Prieto-Diaz proposed a more cohesive

procedural model for domain analysis. He extended the methodology for deriving

specialized classification schemes in library science to domain analysis as a procedural

model in a series of data flow diagrams. He defined specific activities and intermediate

products. A project at GTE Laboratories is currently underway using this model [Prieto­

Diaz 1987]. Shlaer presented an object-oriented approach to domain analysis that is

fundamentally based on objects. His approach is based on building three types of formal

models: an information model, a set of state models, and a set of process models and

boundary statement [Shlaer and Melior 1989]. Arango focused on this concern and

proposed a different approach to domain analysis. The basic premise in this approach is to

see reuse as a learning system. The software development process is seen as a self-

7

0

0

improving system that draws from a reuse infrastructure" as the knowledge source.

Domain analysis is then a continuing process of creating and maintaining the reuse

infrastructure[Arango 1988, 1989].

Generation-based approach: The reusable components, which are called patterns, are

diffuse, malleable and active. They are often patterns woven into the fabric of a generator

program. The reusability is achieved by program generators. It is a natural extension of the

composition-based approach and has the potential of much greater payoff. We distinguish

three subclasses of generation-based approaches based on the properties of reusable

patterns that are emphasized: the language-based approach, the application generators

approach, and the transformation system approach.

(1) Language-based approach

Language-based generation approach is an approach in which the specification

language is well defined, truly represents a problem domain, and hides the details of

implementation from its user. Reuse is enhanced by such language specifically because it

does hide the details of implementation and raises the level of discourse to the application

domain level rather than the implementation level. The reusable patterns are integrated

with the compiler of a specific language. Language-based approach includes very high­

level languages and problem-oriented languages.

The paper by Dubinsky et al. describes using the SETL, a language based on the

notion of representing computations as operations on mathematical sets, to specify a large

program, and then transforming that specification into efficient implementation. For many

problems, this significantly simplifies the expression of the computation, although it often

makes the generation of efficient code a challenge [Dubinsky, et al. 1989].

(2) Application generator approach

Application generators embed in their design the architectural pattern that will be

reused in the course of generating specific instances of target systems. Thus the instances

generated have that architectural pattern in common.

8

0

0

Darco system is typical of this class. Draco could be put in any one of the three

generation categories. It requires the development of a domain-specific language in which

the user can specifY his or her problem, it generates target programs from domain-specific

specifications, and it uses a set of user-defined transformations to accomplish this

generation [Neighbors 1989, 1984].

(3) Transformation-based approach

The transformation-based approach focuses upon the role, structure, and operation of

transformations in the evolution of high-level specifications into operational programs.

Transformation systems are based on the idea of describing the target system in an easy to

understand, easy-to-use language, and then refining it into an executable, efficient target

program. The reusable patterns are most often embedded into transformation rules.

Arango et al. have used a transformational reusability support system to port the

system itself into another target environment - they claim that the approach is a very

powerful transformation-based maintenance model that allows an undocumented source

program to be ported without any modifications into another environment, where it can be

reused [Arango, et al. 1986]. Boyle and Muralidharan present a system transforming pure

Lisp programs into Fortran code, where the Lisp program is seen as an abstract

specification for the Fortran version. Transformation rules include many reusable patterns

for LISP to FORTRAN translations, but no broader reusable information for the software

development process [Boyle and Muralidharan 1984]. Cheatham, on the other hand,

suggests transformation systems for a software engineering paradigm. An environment

supporting the methodology that facilitates the reuse of abstract programs written in a

domain-dependent language, which is extended from a base language, has been developed

by his group. The abstract programs are transformed into their concrete counterparts by

using transformation rules [Cheatham 1984].

Unfortunately, over the broad span of systems, reuse is exploited only to a very limited

extent today. Although experience shows that certain kinds of reuse can be successful,

9

0

0

general success has been elusive. Reuse still is a great promise which has been largely

unfulfilled [Biggerstaffand Richter 1987] [Tracz 1987, 1988] [Basili and Rombach 1991].

From a nontechnical perspective, Meyer identified the following reasons: 11(i)

Economic incentives tend to work against reusability. If you, as a contractor, deliver

software that is too general and too reusable, you won't get the next job-your client

won't need a next job! (ii) The famous not-invented-here complex also works against

reusability. (iii) Reusable software must be retrievable, which means we need libraries of

reusable modules and good database-searching tools so client programmers can find

appropriate modules easily." [Meyer 1987]

From a technical perspective, this is due to the difficulties both in implementing true

production environments for reusable modules that could successfully support

classification, storage and retrieval of reusable components [Prieto-Diaz 1985] and in

constructing production-quality versions of new software engineering paradigms that

support active reusable patterns of the production process rather than passive reusable

building blocks [Neighbors 1980]. More illustrations will be given in the next chapter.

10

0

CHAPTER 2. THE REUSE-ORIENTED APPROACH

2.1 Motivations

The existing gap between demand and our ability to produce high-quality software at a

high level of productivity and in a short period of time cost-effectively calls for the

evolution of modem software development methodologies. A reuse-based software

development approach could fill the gap by synthesizing the three goals: improve the

effectiveness of the process, reduce the amount of rework, and reuse life cycle products.

This approach encourages systematically adopting an incremental development style which

provides opportunities for economies in software development. It has been observed that

reuse has been practiced in software development for many decades and is behind every

software system. Unfortunately, it is insufficiently taken into account in most software

development methodology. Although experience shows that certain kinds of reuse can be

successful, general success still has been elusive [Basili and Rombach 1991]. Perhaps we

reuse unconsciously, informally, and inefficiently. Is it possible to assume that any new

software development is first based on reusing all kinds of software-related efforts from

prior developments and then offers its own current efforts to be reused in other system

developments? The primary goal of our research is to derive a software development

approach, that minimizes the amount of each new system that has to be developed from

scratch, by systematically employing reuse as a major strategy of improving the

development process. Based on the implicit inheritance of software development processes

and the natural sharing of all kinds of software-related artifacts between similar systems, a

reuse intensive software development approach can be evolved by effectively and

efficiently integrating the software reuse process into a convenient software development

11

0

0

0

process. Reuse will be the key to enabling the evolutional approach to achieve the

dramatic improvement in productivity and quality required to satisfY anticipated growing

demands. Quality should improve by reusing all forms of proven experience including

products, processes, as well as quality and productivity models. Productivity should

increase by using existing experience rather than creating everything from scratch. From

the following considerations regarding software development in general and reuse in

particular, we propose the reuse-oriented software development approach to guide the

process of developing a family of similar systems within an application domain.

First, reusing is a key ingredient to progress in any discipline. Without reuse

everything must be relearned and recreated; progress in an economical fashion is unlikely.

Reuse is less institutionalized in software engineering than in other engineering disciplines

because of the following unsolved technical problems in the software industry described

below. As reuse intensive process, the reuse-oriented approach is intended to resolve them

in order to make reuse more attractive in software development.

Organizational problem

Most reuse occurs in an ad-hoc fashion rather than as result of planning and support.

Present software systems are often not initially designed for future reuse. A project's focus

is system delivery. Packaging software-related experience for reuse is at best a secondary

concern. Therefore, it is rarely feasible to decompose an existing software system into

reusable modules that can be then used to construct other similar systems or to formalize

specific system development process in reusable forms. Also, existing process models,

which tend to be rigidly deterministic, are not defined to take advantage of reuse, much

less to create reusable artifacts. In order to achieve effective and efficient reuse, reusability

must be engineered from the start, and be treated as an integral part of system

development rather than an afterthought of the implementation. This requires that a

software development process deal with two goals concurrently: how to produce

software-related resources with maximum potential for reuse {development for reuse) and

12

0

c

0

how to develop new systems making the most effective use of these resources

(development with reuse). Each goal results in different major concerns to be emphasized

and different process models to be supported, but the two goals are highly correlated in

some content, such as operated objects, time sequence and so on. The problem is how to

unify two different goals in the same process. A multiorganization framework will provide

the best solution.

Representational problem

There exists a wide gap between the kinds and forms of knowledge available about

problem domains or development processes and the content and form of the artifacts that

can be reused in software construction. For instance, knowledge about an application

domain or development is often implicit and nonformal, while reusable artifacts must

usually be represented explicitly and formally. The real knowledge is normally a contextual

and complex entity, while the reusable artifacts must be recorded as context-free and

factored modules. The reuse process involves two transformations with opposite

directions: a software development is packaged as a collection of reusable artifacts, and a

collection of reusable artifacts is reused as the basic units of new software development.

The problem is how to define an appropriate representation which supports both

transformations: packaging reusable objects (including identify, extract, record and

catalog) and reusing reusable artifacts (including recognize, retrieve, customize and

compose). Moreover, the representation must at least reveal the reusability with the higher

pontentiat payoff, the generality for a broader range of applications, the cheaper

modification for transferability and less integration effort. There are a number of dilemmas

among these requirements [Biggerstaff and Richter 1987].

Operational problem

Software reuse is not a specific technique, algorithm, heuristic or set of guidelines. It is

many different mixtures of technologies, process modules and cultures. This demands a

radical departure from the operational styles prevalent in current programming. Software

13

0

0

reuse involves many operations and is applied to various phases across the development

process, and reusable objects are capable of capturing all kinds of software-related

information. However, much current work tends to focus on a few phases in the

development process, and on a particular phase without addressing the transition and

traceability between phases. Most existing systems are limited to only reuse resource code,

the lowest level of reusable object. Synthesis of a variety of technologies, process modules

and cultures is lacking. The problem is how to comprehensively perform each operation of

reuse process and how to systematically blend the reuse process with the development

process to make reuse cost-effective.

Secondly, software reuse comes in many flavors and does not, by itself, provide a

comprehensive approach to software development. For that reason, the reuse-oriented

approach attempts to center around the reuse and incorporate other supporting technical

issues to propose a systematic development paradigm and guidelines, which will be

combined with an appropriate method to derive a practical reuse-based methodology. As a

major means to improve system development process, the reuse-oriented approach seeks

to make the reuse:

• More systematic, across various phases of a system development and across various

project developments within an application domain.

• More comprehensive, mixing many different technologies, process models and

cultures in appropriate phases of development process for fostering reuse.

• More dynamic, with new reusable experience accumulating over time as a by­

product of project development, and continuously refining existing experience as the

feedback of reuse process. It presents a truly incremental development environment.

• More extensive, encompassing not only code and design but also specifications,

analysis, knowledge, testing and so on. It is expected to reuse all kinds of software­

related artifacts.

14

0

c

Finally, the object-oriented methodology, which includes object-oriented analysis,

object-oriented design and object-oriented programming, is considered the best one for

reuse because it fosters the successful reuse of multiple aspects. Essential to the object­

oriented methodology is the view of "objects", which are encapsulated units, akin to

modules, and which permit the abstraction of real-world entities into software terms. This

leads to the perspicuity of the representation and its tendency to promote larger and more

abstract reusable objects [Frakes et al. 1991]. Object orientation has a high degree of

continuity from one phase of the life cycle to the next. It allows the integration of the

various phases of software development within a single framework using common

concepts and (often) notations. This opens the way to make reuse possible at all phases,

such as reuse of design models, or architectures [Wirfs-Brock and Johnson 1990], and

even analysis models from relevant problem domain [Champeaux and Faure 1992]. In

addition, object-oriented development introduces a number of advanced techniques and

mechanisms for emphasizing and facilitating reuse operations. For example, encapsulation,

inheritance, polymorphism, and dynamic binding certainly overcome many technical

barriers to large scale reuse. For these reasons we invoke object-oriented methodology as

the conceptual foundation for proposing the new approach.

2.2 Development Process and Reuse Process

Reuse, the fundamental goal of our research, will be explicitly addressed by integrating

the reuse process into the software development process due to the following two facts.

At each phase in the development process, we should be considering how previously

completed work can be used to reduce the effort needed for the current task. It is obvious

that the reuse process is neither an additional phase, nor an alternative to any one phase,

nor a part of any one phase in the development process. And we do not want to limit

consideration of reuse to any one specific phase of the development process. The reuse of

an object from some earlier phase will probably cause the reuse on a large scale of objects

15

c

1981] [Bauer 1982] [Cheatham 1984]. For instance, in the operational-transformational

model, software development proceeds from an executable problem-oriented specification

through a sequence of transformations to a more efficient implementation-oriented

realization. Early phases are independent of computational resources. Transformations

from the problem-oriented specification to an efficient implementation are automatic

wherever possible. Maintenance and enhancement changes are performed on the problem­

oriented specification, which is then optimized.

Requirements
Analysis I---.

Functional
Specification

Architectural
Design

Software Development Cycle

Implementation 1-----.

Test

Maintenance

Figure 1. Software life cycle

17

c

0

These models are not at all independent. They each derive from systems engineering

research in the 1960s. Each model type introduces different notations of phases through

which sequenced progress is made in the development of the final deliverable product.

The phases have been modified from their initial systems engineering origins to serve the

particular needs of the software development process. The names, boundaries and order of

progression may differ from model to model. However, each model follows a progression

from requirements through analysis, function specification, architectural design,

implementation, test, and maintenance. It can be formalized to six qualitatively different

phases in linear sequence. Certain tasks are assigned to each phase in the life cycle. A

model allows effective division of the work involved in developing the system. Figure 1 is

a high-level view of software life cycle which can be specialized to any particular life cycle

model. We only focus on the front portion of the software life cycle: requirement analysis,

functional specification, architectural design, and implementation, and refer to the first

four phases as software development cycle.

(1) Requirements analysis: Requirements analysis is the process of determining and

documenting the customer's purposes and the constraints on its development. It can

be viewed as the design of a set of goals for the proposed system.

(2) Functional specification: Functional specification is the process of developing and

formalizing a proposed systems interface for meeting the customer's needs. It can be

viewed as the design of external interfaces.

(3) Architectural design: Architectural design is the process of decomposing the system

into modules and defining internal interfaces. It can be viewed as the design of

internal interfaces.

(4) Implementation: Implementation is the process of coding a program that correctly

realizes the specified interface for each module identified during architectural design,

and that meets the associated performance requirements. It consists of three main

activities: choosing data structures and algorithms, working out the details of the

18

0

code, and checking the correspondence between implementation and the specified

interface. It can be view as the design of data structures and algorithms.

2.2.2 Software Reuse Process

Complete software reuse involves two opposite directions of transformation

processes: learning and reusing. The learning process is generalizing software-related

experience extracted from a particular system development in reusable form. In contrast,

the reusing process is specializing the general reusable forms to adapt it to new system

development. In a similar way, we can use the concept of the life cycle to organize and

manage the reuse process. Certain operations are performed in each phase in the reuse life

cycle [Boldyreff 1989]. A reuse life cycle can be divided into three separate phases along a

time dimension. They are pre-reuse, reuse and post-reuse, shown in Figure 2.

feedback

,---------, learning reusing

Pre-Reuse Reuse f----11"1 Post-Reuse

Reuse Process Cycle

Figure 2. Software reuse life cycle

(1) Pre-reuse: Pre-reuse is the process of acquiring all kinds of software-related

experience from any software development process in reusable form. It can be viewed as

learning new experience. This phase can be divided into four activities, shown as Figure

3(a):

19

c

• Identification: identifying new potentially reusable objects from any one application

development process.

• Extraction: extracting these identified objects from their context of development and

from the context of the application system.

• Recording: representing these extracted objects as reusable modules in generalized

descriptive forms.

• Cataloging: classifying and cataloging the large collections of reusable modules in a

readily available way.

(2) Reuse: Reuse is the process of identifying the appropriate experience from a experience

base and customizing it to fit the given specific requirements. It can be viewed as

iteratively reusing prior experience. This phase also comprises four activitiess, shown as

Figure 3(b).

• Recognition: recognizing what parts of the current system can use previously existing

reusable objects.

• Finding: searching the best match reusable candidate from the large collection of

reusable modules according to the outcome of recognition operation.

• Customizing: making the reusable candidate to fit the specific requirements of the

new application development by modification.

• Integration: embedding the customized object into the context of the current

development process and the context of new application system.

(3) Post-reuse: Post-reuse is the process of feeding back any necessary refinement to

existing experience. It can be viewed as updating existing experience. This is the special

form oflearning, shown as Figure 3(c).

• Evaluation: after reusing the existing expenence, determining whether it needs

improvement in quality or reusablility.

• Updating: improving the existing reusable objects according to previous evaluation.

20

c

- Identification Extraction Recording Cataloging --
(a) Pre-Reuse Phase

- Recognition Finding Customizing Integration r----

(b) Reuse Phase

_ _,.1 Evaluation I ·I Updating •

(c) Post-Reuse Phase

Figure 3. (a) Pre-reuse phase; (b) Reuse phase; (c) Post-reuse phase

2.2.3 Integrating Reuse Process into Development Process

The software development process and the software reuse process are highly

correlated. The software reuse process can learn reusable experience from the software

development process and reuse it during other software development processes. And the

software development process can take advantage of the outcome of the reuse process

rather than always starting from scratch, and offers its own experience as a source of the

reuse process. It is possible to integrate the software development process with the reuse

process to derive an incremental development process model. However, there exist some

conflicts between the two processes. First, the software development process is based on

perspective of single project, while the reuse process deals with more than one project,

and requires a perspective that looks beyond an individual project. Second, although both

21

c

processes can be viewed as a transformation process, the software development process

emphasizes the vertical transformation which refines specifications from a higher abstract

level to a lower abstract level, while the reuse process emphasizes the horizontal

transformation which generalizes and specializes the same abstract level of specification.

Two technical strategies are adopted to obviate these two conflicts. One of them is to

introduce the domain-oriented software life cycle, and add two specific stages of

development: domain analysis and project recognition to support it. Domain analysis is

intended to identify for producing software-related experience, while project recognition is

intended to recognize for reusing existing software-related experience. The second

strategy is to embed reuse processes into each phases across the whole software

development process. It implies that the reuse-oriented approach can learn all levels of

abstraction and reuse them at different phases.

i

I

r:::===t------··--·········-·-··-····-·----··---------·-·---- ----·······-····-···············-·-·-·-··················- ·-···············-···----······················-·······-·······+-·-···--··········-·-----.. ··· ...

I

Requirements
Analysis

FWlCtional r--- Architectural
Specification Design

Software Developrr ent Process

r--~ Implementation r--

···-----·--··-········1-····-·-·-·---··-······-·-···-················-······· ··················-····--·······--·--············--···--·--···--·-· ·-·-···············-·····---·-------·---····--······-·-····i:::::::::::::::.::::::::::.::::;

~-----____,, I
I

I ------· ---· ··--. (_j-··

' Reusable -
! Pre-Reuse Reuse Information

base -

Software Reuse Process Post-Reuse

Figure 4. Integrating reuse process into development process

22

c

2.3 Technical Issues for Reuse-Oriented Approach

The reuse-oriented approach is a systematic development procedure with

comprehensive reuse. It is essential to mix many technologies, process models and

cultures for supporting it. The following technical issues that supports effective reuse are

addressed by the reuse-oriented approach.

2.3.1 Broad-Spectrum Reuse

Reuse is a very simple concept: it means using the same thing more than once. But as

far as software is concerned, it is difficult to define what is an object by itself in isolation

from its context [Freeman 1983]. We have programs, designs, architecture, specifications,

requirements and test cases, all related to each other. Reuse of each software object

implies the concurrent reuse of the objects associated with it, with a fair amount of

informal information traveling with the objects. This means we need to reuse more than

code.

Traditionally, the emphasis has been on reusing code (the reusable building block) and

reusing partial design (the reusable pattern). Reuse process has been limited to occurre

only in the implementation phase and/or part of the architectural design phase, and ignores

the importance of reuse in other phases, specially in the early phases such as the

requirement analysis phase and the functional specification phase, of the software

development cycle. The reuse payoff quickly reaches a ceiling that is difficult to surpass,

because the reuse in earlier phases is believed to promote reuse on a large scale and at a

high level.

As one of fundamental strategies, the reuse-oriented approach attempts to support the

reuse process through all phases of the software development cycle. It implies that any

reusable effort which is made from various phases of the software development cycle can

be packaged as reusable objects, and that each phase across the software development

cycle can take advantage of the most matching objects from corresponding phases. This

23

c

results in broad-spectrum reuse. We use a broad term "software-related experience" in a

very generic sense to replace the traditional terms "building blocks" and "patterns" as

reusable objects. The term "software-related experience" delineates two principal

categories of reusable objects: software products and development processes. Software

products include all forms of reusable sources, either concrete artifacts or documents

produced during various phases of full software development cycle, or product models

describing a class of concrete artifacts and documents. They bring about constructive

reusability. Development processes involve all kinds of reusable information, either

concrete activities of action {performed by human being or a machine) or knowledges

aimed at creating some software product, or a process model describing a class of

activities or knowledge with common characteristics. They lead to generative reusability.

In order to achieve the objective of broad-spectrum reuse, the key is to capture all

kinds of software-related experience through the whole development cycle in appropriate

reusable. Abstraction and modularity provide competent means for this task. An

abstraction characterizes a class of phenomena by their common (invariant) attributes, and

hides (ignores) distinguishing attributes of instances that are not common to the complete

class. It allows developers to deal with different levels of macroscopic concepts for

identifying various layers of reusable objects, and to understand their commonality, before

going on to consider the more detailed fine-grain structures of the problem domain

[Walker 1992]. Software development is considered as an iterative refinement process in

which the highest abstraction (requirements specified in a problem domain) is gradually

transformed into the lowest abstraction (programs to be executed on a target computer).

Dijkstra described the concept of an abstract machine M(i) and program P(i) on abstract

level i such that execution of P(i) on M(i) satisfies the purpose of a real program P that is

to be executed on a target machine M. At the next lower level, level (i + 1), P(i + I) can

be executed on M(i + 1). If level Lis the lowest level, M(L) is the target machine M, P(L)

ts the real program [Dijkstra 1972]. Thus we can extensively treat any valuable

24

c information generated in a phase of the development cycle as an abstract level of reuse

experience. The modularity decomposes a large and complex system into a set of small

and simple self-contained mdoules. A module is a basic building block of the software

system which corresponds to a single coherent abstraction. It simplifies a sophisticated

system by enabling independent analysis, design and implementation of individual modules,

and formularizes the construction of the system by integrating well-defined modules. In

the reuse process, a module also serves as a reusable unit which encapsulates at least some

valuable information for reuse. But in broad-spectrum reuse, there are many different

granularities of modules associated with different levels of abstractions and various forms

of modules corresponding to different reusable objects.

Reusing all kinds of software-related experience improves the reuse process in three

ways. First, it extends the reuse process from a too-restrictive focus on the implementation

phase to the full software life cycle incorporating the requirement analysis phase, the

functional specification phase and the architectural design phase, and makes the reuse

process occur in early phases so that reusable experience becomes large scale and high

level. Reusing an early experience can greatly increase the likelihood of the reuse of later

experiences developed from it. For example, although reusing code modules from the

experience factory can certainly reduce costs, reusing the system's overall functional

specification could lead to the reuse of the entire set of designs, code modules,

documentation, test data, and associated user experience that was developed from that

specification. The chances of cost-effective reuse are much higher, both because more

experiences are reused and because the effort needed to customize and integrate those

experiences into a new environment is greatly diminished. Curiously, informal reuse of

early experience is actually very common, but it is often not recognized because it

masquerades as code-level reuse. Informal reuse of early experience occurs primarily when

highly experienced developers use their familiarity with the functionality and design of a

code module set to adapt those modules to new, similar systems. Second, assembling all

25

c

c

kinds of experience into a special experience base actually provides existing relationships

among various types of experience or among different phases. These strong relationships

can assist in understanding packaged experience and identifYing reusable candidates, and

cut cost of tailoring selected experience and integrating experience.

2.3.2 Domain-Oriented Software Life Cycle

Reuse is the repeat use of previously acquired experience in a new situation: it consists

of two subprocesses, learning and reusing, which usually don't occur in the same system

development cycle. Logically, reusable experience is learnt in development of some

specific system, and it is repeatedly used in development of many other similar systems.

Transforming informal reuse concepts into a systematic approach requires a perspective

that looks beyond the single project life cycle.

The classic software life cycle narrowly focuses on a particular project. It is not

feasible to generate high-quality experience with high reusability and great reusable payoff;

because it is difficult to find an appropriate reuse scope for generalizing it. It is also hard

to largely reuse former efforts in developing new systems, because reuse process emerges

only by accident. In order to make reuse more attractive, we need to define the applicable

range of reusable objects before generating them, and to arrange later reuse locations and

methods during their initial generating process. The domain-oriented life cycle seems to

give the best solution.

The term "domain" refers to a designed collection of existing applications and

anticipated opportunities for future applications with common functionality in one or more

areas. AJso the single project life cycle is considerably evolved to multi-project life cycle

so that we refer to this multi-project evolutionary pattern as the domain-oriented software

life cycle. The quality and form of reusable resources available to an individual project

within a domain, and the new resources contributed as a by-product of project

development alter the individual project life cycle both quantitatively and qualitatively. A

26

c

c

domain life cycle model formalizes typical patterns in the development of related series of

application and the persistence of information from one application to the next.

The perspective of the full software life cycle reveals problems stemming from a

breakdown of information traceability across individual development phases. In a similar

way, viewing a series of related applications within a domain as a larger evolutionary cycle

reveals problems stemming from the lack of system transition across individual system

developments.

2.3.3 Multi-Organization Development Process Model

Reuse is a straightforward way of improving the software development: it can be

conducted as an alternative way for development process to eliminate many duplicate and

redundant works by using prior efforts. In the reuse-oriented approach, the integrated

process is assumed to be based on the concept of what may be called "component

engineering", in which new software system are developed by assembling "reusable

components" chosen from a large, carefully designed and tested component base. It is

naturally divided into distinct considerations: how to produce software components with

maximum potential for reuse (development for reuse) and how to develop new systems

making the most effective use of such components (development with reuse). A system

development deals with two parallel goals: delivering an executable system for users and

offering its new reusable resources for development of other related systems. Thus, the

whole development process can be split two organizations: an experience-packaging

organization and a project-generating organization. First of all, the dual organization

emphasizes the reuse at beginning. Secondly, after separating these two organizations, it

becomes easy to concentrate on the goals of each, and to define the best process models

suitable to each organization. The experience-packaging process model consists of three

stages: domain analysis, experience abstraction and experience cataloging. The project­

generating process model also consists of three stages: project recognition, experience

27

c

c

customizing and project-integration. Finally, the separate organization simplifies the

relationships between the two goals and facilitates the division of work and cooperation

between phases in the domain-oriented life cycle. The primary goal of the experience­

packaging organization is to package all kinds of reusable experiences as to supply them

to the project-generating organization upon demand. The primary goal of the project­

generating is to develop software systems by taking advantage of reusable experience

provided by the experience-packaging organization. The details of each stage and their

relationships will be discussed later.

2.3.4 Experience Factory

Reuse is as common as in everyday life: it is an informal sharing of software-related

information among people working on the same or similar projects The informal sharing

essentially needs an information base to save and manage a collection of the large amount

of software-related reusable information. We borrow the term "experience factory" to

refer to the information base in the reuse-oriented approach because we wish that the

concept will lead to industrialization of software development and comprehensive reuse.

The term draws from "software factory" and "component factory", and covers two aspects

of meaning. "Experience" is intended to extend the basic reusable units in the information

base from the traditional development end-products to domain or development

knowledge, development process and other forms of reusable information. And "factory"

is expected that the information base should act not only as a reusable experience

repository for storing reusable experience, but also as a logical and physical experience

organization for managing reusable experience.

As a experience repository, the experience factory is able to store all kinds of

software-related reusable experiences in a readily available way. It implies that a

experience factory plays dual roles during the development process. When developing for

reuse, it gathers new reusable objects from current development; when developing with

28

c

reuse, it supplies prior reusable objects to current development on demands. Experiences

manipulated by a experience factory include reusable objects from different phases across

a project development and from different projects development within an application

domain in varities of forms. Normally, its collection is domain-specific. We can classifY a

generic experience factory into three categories: general experience, domain-specific

experience and project-specific experience, depending on their reuse scopes; and four

levels: from analysis level to specification level to design level to implementation level,

depending on their abstractions and reuse locations. The implementation level is source

code, the lowest level of abstraction, and is considered the most detailed representation of

a software system. In addition, complementary key information is also generated as a part

of experience. Code documentation, history of design decisions, testing plans and user

manuals are all essential to convey a better understanding of the whole domain.

As a logical and physical organization, the experience factory is responsible for

identifying, qualifYing, and classifying reusable objects for subsequent customizing and

integration - by reusers - into ongoing applications development projects. It packages

experiences by building informal, formal or schematized, and productized models and

measures of various software process, products, and other forms of knowledge. The

organization supports accumulating new experience (learning) via recording and analysis

of experience, as well off-line generalizing and tailoring of experience, improving existing

experience via on-line monitoring and evaluating of reusable candidates before reusing

them, and retrieving the best match experience (reusing) via cataloging of experience and

storing experience models in a variety of modeling notations that are tailorable, extendible,

understandable, flexible and accessible.

In order to set up an actual experience factory, we should make efforts at least

advancing the following basic groundwork.

First, we must determine the most suitable domain boundaries and right domain

standards because the experience factory design is based on the domain-oriented life cycle.

29

0

0

Domain boundaries are used to control reuse scope of experience in general, and to set up

a development baseline for all particular projects in advance. Domain standards are used

to standardize operations on experience factory and to establish communication protocol.

Secondly, we must define a complete set of representations in order to capture all

kinds of software-related reusable objects in richly machine-processible forms. The

representation we are looking for must exhibit the following properties:

• the ability to represent knowledge about development process in factored form and

work products from every phase of development in generalized form.

• the ability to create partial part of experience that can be incrementally extended or

locally upgraded.

• the ability to allow flexible couplings between instances of experience and various

interpretation they can have.

• the ability to express controlled degrees of abstraction and precision.

• the ability to represent composite structures as independent entities with well-defined

computational characteristics and for these composite structures to be further

composed into new computational structures with a different set of computational

characteristics.

Thirdly, it is necessary to determine a classification scheme and classification rules for

cataloging a large amount of reusable experience. They reflect inherent relationships

among reusable individuals and imply the development context from which experience is

extracted. A experience catalog will give an additional dimension for understanding

reusable objects and identifying required reusable candidate without pre-training. It will

also make the tracing of earlier phase or transition among projects much easier and more

accurate. The main features to be sought in a classification scheme are:

expandability: It means that new classes can be added with minimal disturbance to the

present collection, that is, with a minimum of reclassification problems.

adaptability: It means that the scheme can be customized to a particular environment.

30

0

c

consistency: It means that experience from different collections in the same class share

the same attributes.

Finally, . it is important to supply a series of domain-related supporting tools for

facilitating or automating some operations. Tools can significantly enhance the reuse

operations.

Typically, experience factory for an application domain evolves naturally over time

until enough experience has been accumulated and several projects have been implemented

that generic abstractions can be isolated and reused.

2.4 Reuse-Oriented Development Paradigm

Webster's say a paradigm is a pattern. From our perspective in software development,

a paradigm is a pattern for a problem-solving technique. In particular, a software

development paradigm specifies the steps to be followed in developing a problem into a

software application. The paradigm selected determines the types of pieces that are used

to present the problem and its solution, such as procedural abstractions for a procedural

paradigm, entities (problem domain objects) for an object-oriented paradigm, process

modules for a process-oriented paradigm, It affects the complete software development

life cycle. That is, it directs the selection of analysis modeling, design methodologies,

coding languages and test techniques.

A number of paradigms are in active use. They provide system developers with a large

number of approaches to system decomposition. However, there is seldom an approach in

which the paradigm systematically emphasizes system development for reuse and system

development with reuse. We will propose a new development paradigm, reuse-oriented, in

which we assumes that any system development can be resolved into a set of variable

granularities of reusable modules, which we call reusable experience, and a specific set of

reusable modules that can be retrieved to be integrated into a new target system. Hence it

radically changes the conventional system development process. The system development

31

0

c

intend to successively refine the problem to the solution as well as to make the comparison

ofthe similarities and differences between required pieces and existing reusable pieces. For

the similarities we can directly reuse existing pieces . For the differences, we need to

create them as new reusable experience first, then use them.

Applicat
Domai

ion
!!..__

I -
2
-

Project

Project

Project . .!__

f-

1--
1--
1--

Experience-Packaging Organization
'
'

Domain Experience Experience ' i
Analysis ,------.. Abstraction Cataloging

~..._.

Project 1- Experience Project
i Recognition Customizing Integration
!
!

Project-Generating Organization I
!
\

Figure 5. Reuse-oriented software development paradigm

.,. .. -................. ·-····-··--·"·'"""'"' ...

Experience
Factory

r

\\ Project k

Reuse-Enablin
System

····-·<>•••• .. "''"""""""'""'~, ••.••••

Figure 5 shows the reuse-oriented paradigm m terms of a multi-organization

framework. The reuse-based development process is separated into two interrelated

organizations with best fit process models that support each organization: experience­

packaging organization and project-generating organization. The experience-packaging

organization specializes in producing all granularities of reusable modules from the

abstract system development or a concrete project development. The project-generating

organization specializes in developing a particular project by integrating the reusable

modules from the experience-packaging organization.

32

0

c

0

The output ofboth the experience-packaging organization (experience factory) and the

the project-generating organization (set of particular projects) are put together to

construct a reuse-enabling system. The experience factory provides a complete reuse

infrastructure for developing a new project. The set of particular projects provides

examples for demonstrating how to reuse it.

2.4.1 Experience-Packaging Organization

The experience-packaging organization aims at producing new experience for current

development and future reuse. It starts with a given application domain and progresses

constantly with any particular project development. It includes the following three stages:

domain analysis, experience abstraction, and experience cataloging.

2.4.1.1 Domain Analysis

The objective of the domain analysis stage is to identify common characteristics and

similar functionalities from restricted classes of projects in an application domain with the

purpose of making them reusable before developing these projects. Domain analysis plays

the leading roles in packaging the high quality reusable resources with the maximum

potential for reuse and the best payoff from reuse. It also facilitates the understanding,

customizing and integration of packaged reusable resources during the reuse process.

Domain analysis is an indispensable stage of the domain-oriented software life cycle.

In domain analysis, we try to generalize all particular projects within the domain by

means of a domain model that transcends specific projects. Domain modeling is based on

two aspects of domain analysis: conceptual analysis and constructive analysis, in order to

capture two rather different types of information: application domain knowledge and

development knowledge. Conceptual analysis focuses on identification and acquisition to

specify systems in the domain. It is formualized by an explicit application domain model.

Constructive· analysis, on the other hand, focuses on the identification and acquisition of

33

0

c

0

the information required to implement these specifications. It is formualized by an implicit

general system prototype. The domain model should be general enough to be instantiated

to a broad range of target projects in project-recognition stage and expressive enough to

formulate a typical solution patterns later on which can be used to produce the domain­

specific reusable experience in experience abstraction stage. It should be formally

represented as the top abstract level of reusable experience. After completing the creation

of the underlying model, a typical solution pattern, i.e. a general system prototype, will be

formulated in enough detail to advance the groundworks for all anticipated projects. The

general system prototype actually is the abstraction of a broad range of particular projects.

It exposes the essential functionalities required in the domain and processes common to

projects to be provided experience abstraction stage for producing domain-specific

reusable experience as a baseline of particular project development. And it hides the

distinctions and particularities among projects to be left to project-generating organization

for specializing them. In addition, this stage also accompanies other related activities:

defining domain terminology, specifying the domain boundary, and establishing domain

standards in order to advocate reusability in various fashions or at different stages of the

development process.

2.4.1.2 Experience Abstraction

The objective of the experience abstraction stage is to prepare all kinds of software­

related reusable experiences from different projects within an application domain, or form

different phases within a particular project for reuse. A precondition for reusability in

software development is the existence of reusable resources. This stage specializes in

constructing reusable resources within a given domain and incrementally expanding them

as new particular projects are continually developed. This stage is considered as a learning

process, because the development process aims at recording all kinds of new experience

for reuse instead of delivering a particular project; and its end product is a collection of

34

c

0

0

massive reusable experience rather than a executable system. There are two sources to

experience abstraction stage. One is the general system prototype development from the

domain analysis stage, which mainly contributes general experience and domain-specific

experience. The other is particular projects development from the project recognition

stage, which mainly contributes project-specific experience.

Experience abstraction is a complex combination of many activities, following a

conventional software development process. First, all potentially reusable ingredients of a

system development process are identified and extracted from the context of a

development process or from the context of a system. Then they are generalized for

application to a class of related projects. Finally the generalized reusable objects are

records in formal reusable forms. Its two most important tools are abstraction and

modularity, which effectively unify these activities and run through the entire stage.

Abstraction is one powerful tool that human beings possess for managing complexity

and capturing generality. It arises from a recognition of similarities between certain

objects, situations, or processes in the real world, and the decision to concentrate on these

similarities and to ignore, for the time being, their differences [Hoare 1974]. In the context

of software development the abstraction concerns stratification. There are principally two

important forms of stratification: first, the stratification of the application domain entities

into layers of complexity and compositeness; and secondly, the stratification of classes

through the generalization/specialization axis [Walker 1992]. The first of these is often

referred to as the aggregation, partitioning, composition or "has-a" hierarchy. It simplifies

the task of understanding each development phase by partitioning it into readily assimilable

chunks, by suppressing unnecessary or confusing details. This enables software

development to be viewed as a iterative refinement process of abstraction. The second

form of stratification is commonly referred to as the inheritance, class or "is-a-kind-of''

hierarchy. It can lead generalization process which takes a solution to a specific problem

and making it applicable to a class of problems.

35

0

0

c

Modularity is another tool developers possess for simplifYing complexity and

decomposing a large system. It already spread software engineering. Concerning the

software reuse it plays a special roles because a module can serve as a basic reusable

element during software development. Due to their broad spectrum of reuse, the

granularity of reusable modules varies with the levels of abstraction. Each module will

exhibit the following characteristics:

• Modules should. have conceptual integrity: a module is a conceptual unit in the

software development process or software system which contains at least a complete

object valuable for reuse.

• Modules should be highly cohesive: each module should have a central idea or

purpose. The components that constitute the module should then all be related to

carrying out this one central purpose. This concept is called cohesion. Cohesion refers

to the degree to which the internal elements of a module are bound to or related to

each other.

• Modules should be loosely coupled: modules should be as independent of each other

as possible. Ideally, each module should be self-contained, and have as few references

as possible to other modules. This is called coupling which refers to the degree of

interconnectedness between modules [Yourdon and Constantine 1979].

• Modules should be black boxes: a black box is a system with known input and

predictable output, but whose inner working are unknown or irrelevant to the users.

The user's goal is to be able to perform some function with the black box, without

having to understand how the box operates.

• Modules should be well documented.

In order to make each individuals higher potential reuse and less expensive

modification, the following four specific features are considered during the process.

• Project independence: the reusable module should be as independent as possible of

any particular project.

36

0

c

0

• Complete functionality: the reusable module should provide the complete behavior

expected of instances of the concept being modeled.

• Multiple implementations: the reusable module should have multiple implementations

that provide different run-time characteristics to allow designers a choice.

• Generality: A generic module specifics an algorithm without regard to a specific data

type and its context.

Two additional activities are considered to facilitate producing high quality reusable

experience.

• Variants analysis: Variants analysis is to reusable experience what requirements

analysis is to traditional once-only software. Its objective is to quantify requirements for

reusability up front, just as requirements analysis attempts to quantify requirements for

functionality up front. Estimating reuse instances is the simplest form which consists of

simply of asking questions- explicitly examining how further development or modifying

efforts may be used. More elaborate forms of variants analysis require a structured format

to record such information.

• Variants specifications: A variants specification is a requirements specification

extended to include the best available information on how the activity's work products are

likely to be reused. To help reusers translate these specifications into reusable experience,

they are stated in terms of experience variants - functional variations of the primary

experience. Experience variants can be described in many ways, ranging from explicit

descriptions of multiple objects to parameterized, generic requirements.

2.4.1.3 Experience Cataloging

The objective of the experience cataloging stage is to organize effectively the large

collection of reusable experiences produced during the experience abstraction stage in a

readily accessible way. By making this accessible way, reusers have a leverage for ensuring

reuse process cost-effective. The leverage is keeping the inherent relationships among

37

0

0

0

reusable individuals in terms of classification and cataloging. Classification displays the

relationships among things and among classes of things by grouping like things together.

All members of a group, or class, produced by classification share at least one

characteristic that members of other classes do not. The final result is a network or

structure of relationships. There are two aspects of relationships to consider: i)

relationships among reusable individuals modeling a problem in the real world for

capturing their natural interrelations~ ii) relationships among reusable modules from

different phases in a development process or from different projects in an application

domain for capturing their traceability and transitions. Cataloging is locating an individual

in an appropriate location within structure relationships. Sometimes, it is necessary to

append more information indicating the module's external relationships. A classification

scheme is a useful tool to produce systematic order based on a controlled and structured

index vocabulary. It supports the archiving and retrieval of reusable experience in much

the same way as the library does. Classification schemes can be either enumerative or

faceted. The classification in the faceted scheme proposed by Prieto-Diaz is believed the

ideal one for the reuse-oriented approach, because it is based on the assumptions that

collections of reusable components are very large and growing continuously, and that

there are large groups of similar components - even in very specific classes. The scheme

has a component description format based on a standard vocabulary of terms, and imposes

a citation order for the facet [Prieto-Diaz 1991].

2.4.2 Project-Generating Organization

Project-generating organization aims at developing a specific project by . It starts with

the some particular project. Its product is a executable software system within the given

domain and offer its own new experience to experience-packaging organization. It has the

following three stages: project recognition, experience customizing, and project

integration.

38

0

c

0

2.4.2.1 Project Recognition

The project recognition stage deals with two distinct objectives. One objective is

recognizing how a new particular project can be developed by taking full advantage of

reusable experiences from prior and current developments. Its output provides the later

two stages of project-generating organization for reusing the pre-existing experience to

current project development. Another objective is recognizing what experiences are new

for current project development. Its output offers the later two stages of experience­

generating organization for generating and packaging the new experiences from current

project development. The reuse-oriented approach assumes that a particular projects can

be constructed by integrating both prior existing reusable experience and current

generating reusable experience. Project recognition plays the leading role in developing a

particular project with maximal payoff of reuse, because the more effort spent in

recognizing where can take reuse, what will be reused, and how it can be reused, the more

likely it is to be reused, and the more costs on reusing it can be reduced. This stage starts

with understanding the specific requirements of a project and instantiating the domain

model generalized in the domain analysis stage to derive a specific model for the particular

project. In this sense, it can be considered as a reuse process in which the reusable

experience is the domain model, the top level of abstraction. The specific model will

provide a means for comparison of the similarities and differences between new project

and meta-system or similar projects. The recognition process results in two sorts of

proceeding: direct reuse it and generate it before reuse. In order to reuse it, we need to

identify the best match reusable candidate and understand it for specialization. While in

order to generate it, we need to extract the reusable information and understand it for

generalization.

39

0 2.4.2.2 Experience Customizing

The objective of the experience customizing stage is to bridge the gap between a given

set of requirements and identified reuse candidates. Normally, the reusable experience is in

general form, while This requires a precise characterization of the reuse requirements and

effective mechanisms for tailoring. In addition, some refinements can be fed back to

improve the quality and potential reuse of existing experience. Experience customizing is

the lifeblood of reusability [Biggerstaff and Richter 1987]. It changes a static experience

base to a living system of experience that spawns or evolves new experience as the

requirements of the project change.

It includes four different methods: specialization, generalization, customization and

enhancement. Specialization is taking a general solution and adapting it to a specific

situation. It involves removing unneeded functionality, taking subset of interface data

types and inputs, specializing implementation to environment and adding new properties

or operations. Generalization is adopting a solution to a specific problem and making it

applicable to a class of problems. It involves factoring out common characteristics,

accepting more general inputs with alternative implementations selectable, and expanding

to a variety of situations. Customization is creation of a specific solution from a general

solution in a manner envisaged by the original design. It involves replacing abstract data

types by concrete, selecting required implementation alternatives, and constraining

behavior to conform to system rules. Enhancement is expanding new artifacts to the

existing collections or upgrading some modules for extra functionality, better performance

and tighter adherence to constraints. It is a form of elaboration [Firth 1989].

Three kinds of popular tailoring mechanisms can be applied to customizing identified

experience: instantiation, modification and analogy. To an extent, the developer has

anticipated instantiation by associating with the component some parameters that make it

suit different contexts. Modification is an unanticipated tailoring process in which contents

are changed, added, or deleted to adapt the experience to a request. Analogy is analogical

40

0

problem solving consisting of transferring knowledge from past problem solving episodes

to new target problem that share significant aspects with corresponding past experience -

and using the transferred knowledge to construct solutions to the target problems

[Carbonell 1985]. Analogy is the most effective means of reusing the conceptual level of

experience [Maiden 1991].

2.4.2.3 Project Integration

The objective of the project integration stage is to construct a particular project by

integrating a set of customized reusable objects from the experience customizing stage

into the context of the project development. In this stage, customized reusable objects

serve as building blocks of a large system or templates of project design. This integration

requires that the customized experience be embedded into the appropriate phase of the

project development or assembled in the right place in the project system. After

constructing the project, it continues as usual with product quality control, which includes

system testing and reliability analysis, and release.

There are many alternative approaches to incremental integration. Here are three

major ones:

Threads: In general, the best approach to integration is to begin by selecting a minimal

set of modules that perform some central processing capability or function, called a

thread. The modules selected will usually come from different levels of abstraction.

Once the thread has been built in its initial form, other models can be added on to

complete the thread. An advantage of this approach is that other threads from the

system can be integrated in parallel and separately from the initial thread. The

separately developed threads can then be integrated to construct the entire system.

Top down: The higher level of modules are integrated first, then modules from

successively lower levels are added on.

41

0 Bottom up: The lower level of modules are integrated first, then modules from

sucessively higher level are added on.

In practice, integration synthesizes the above three approaches. The first approach is

chosen as the base of integration, and the last two approaches can complement the first

approach. The best order for a particular project depends on existing reusable modules.

42

0

CHAPTER 3. CASE STUDY: RECPAM SYSTEM

3.1 Application Background

RECP AM is an acronym for Recursive Partitioning and Amalgamation. It is a tree­

based modeling methodology, which provides an exploratory technique for uncovering

structure in data, in statistics data analysis. RECP AM proposed by Ciampi, et al. is a

generalization of CART, a tree-building methodology for Classification and Regression

Tree (CART) [Breiman, et al. 1984], and its variants. In this section we will outline the

basic ideals of the RECPAM methodology. The more theoretical details were fully

described in [Ciampi 1991] [Ciampi et al. 1991, 1992].

RECP AM constructs tree models from data set of the form D = [U I Z], a matrix of

measurements of the variable vectors (u, z) on a population lP (N individuals). The D

denotes a data matrix with rows representing observational units (OU) and columns

consisting of two categories of variables U and Z. We suppose D to be partitioned along

its columns as [U I Z]. The variables of U, denoted by u and termed criterion variables,

are measured in order to gather information on a parameter y, termed the 'criterion'. The

variables of Z, denoted by z and termed predictors, are measured to contain some

predictive information on y.

The objective of a RECP AM analysis is to determine a classification of lP into

subpopulations described by statements on z, and homogeneous and distinct with respect

to y. This classification is constructed by a RECursive Partition algorithm which finds

homogeneous subpopulations, followed by an AMalgamation algorithm which groups the

homogeneous subpopulations into distinct classes. The general RECP AM method

proceeds in three steps, illustrated in Figure 6. The first step grows a prediction tree by

43

0

0

recursively implementing binary split to locally construct a partition with maximal local

information content. It results in a set of hierarchically structured binary questions, with a

prediction for y attached to any complete set of answers. Each question defines a split of

an internal node of the tree, and each complete set of answers defines a terminal node or

leaf of the tree. The set of the leaves of T constitutes a partition. The next two steps

simplifY the tree structure separately by successively cutting internal nodes of the tree and

combining leaves of the tree to globally eliminate the 'negligible' information. The resulting

classes are described by conjunctive and disjunctive statements involving the predictors.

Step I : Growing of a large tree

RECP AM starts from the original population, which is identified as the root node, and

searches among all admissible questions of a specified class, known as the SDQ family

(family of split-defining questions). Admissibility is a local, data based restriction: a

question is admissible at a node if the data at the node satisfY a certain specified condition.

the question with the largest information content is selected out of the admissible SDQ's.

This defines the first branching of the tree, the left branch being identified with the 'yes'

answer and right one with the 'no' answer. Two children nodes are created, issuing from

the two branches. The same operation is repeated recursively on the descendants, defined

by subpopulations, of the root node, until nodes are reached with no admissible question:

these nodes are the leaves of the large tree T max· This step is terminated when all terminal

nodes become leaves.

Step 2: Pruning of the large tree and selection of the honest tree

RECPAM builds a sequence of rooted subtrees (i.e. subtrees containing the root node)

of the large tree, beginning with Tmax, and ending with the trivial tree (i.e. the tree

consisting of the root node only). Each subtree is obtained from the proceeding one by

removing the branch with the smallest information content among those having two leaves

as children. This process is known as pruning. The pruning sequence is determined in

order of increasing information weight. It results in a sequence of nested subtrees of

44

0 increasing information loss with respect to T max.· Out of this sequence, the honest tree is

chosen, according to a criterion that combines goodness-of-fit and economy. The 'honest

tree' implies that the simplest subtree whose information loss with respect to Tmax is small

enough to be negligible. Although such criterion should be based on cross-validation,

there are two simpler, computationally cheaper alternatives: the minimum Ak:aike

Information Criterion (AIC) and Significance Level (SL) approaches. The AIC approach

consists of taking as honest tree the one such that the associated statistical model has the

smallest AIC. The SL approach consists of choosing the honest tree of the pruning

sequence such that its information loss respect to T max. is not significant at a pre­

established level.

Step 3: Construction of amalgamation tree and selection of the RECP AM classification

This step is useful when the goal of data analysis is the identification of classes which

are homogeneous in the same group and distinct among groups as far as the prediction is

concerned. In order to obtain distinct predictions, RECP AM amalgamates the leaves of

the honest tree successively, joining, at each step, the two subpopulations for which

minimum information loss results in. This process is continued until the original population

is reconstructed. An 'ascending' tree is thus built, similar to the trees of classical

hierarchical classifications, the amalgamation tree. It results in a sequence of nested

partitions of increasing information loss with respect to the honest tree. As in step 2, a

honest partition is chosen from the amalgamation sequence in terms of the AIC and the

SL approaches same as above. The classes of this honest partition constitute the RECP AM

classification.

In the RECP AM user's manual, we presented a number of real examples which show

how to do RECP AM analysis with the three steps [Hendricks and Lou 1993]. Here we

only present a simple example to show these procedure. The real data, which is taken from

Appendix VII [Breslow and Day 1987], describes nasal sinus cancer mortality in a cohort

of Welsh nickel refinery workers, see Table 1. The OUs are groups of workers. The

45

HONEST TREE

BIG TREE

J RECPAM CLASSIFICATION

0 -Internal node

D -Leafnode

0 -RECPAM group

Figure 6. Dlustration ofRECPAM methodology

46

column variables include criterion variables: number of death (n) and person-years (PY),

the predictor variables: age at first employment (AFE), year of first employment (YFE),

exposure level (EXP), and time of first employment (TFE). Table 2 gives the categories of

the variables AFE, YFE, EXP and TFE which are given in the data.

Table 1. Nasal Cancer Data Set

Nasal cancer py Weight AFE YFE EXP TFE

0 1.8302 1 I 1 2 2

0 10.0 1 1 1 2 3

0 0.8739 1 1 1 2 4

0 7.1989 1 1 1 3 2

1 23.0416 1 4 4 3 2

0 0.219 1 4 4 3 3

The goal of the analysis is to give a predictive classification for the mortality rate

(number of deaths per person-year). It is natural to assume that outcome n is Poisson with

mean PY eY, where y is the criterion, and PY as offset. In Figure 10 we give the outcome

classification tree obtained from the data. It coherently organize the useful information

concerning the risk of developing nasal cancel, which is contained the predictors AFE,

YFE, EXP and TFE. It is obvious that the exposure level plays a crucial role, and the most

left group has the highest risk, in contrast, the most right group has the lowest risk, The

middle two groups share the same risks.

47

0

0

0

Table 2. Categories of the four classification variables

AFE

1 s; 20.0

2 = 20.0- 27.4

3 = 27.5- 34.9

4 35.0-54.4

18

46

r= 0.019

YFE

1 = 1902- 1909

2 = 1910- 1914

3 1915- 1919

4 = 1920- 1924

11

61

EXP

1 =0.0

2 = 0.5-4.0

3 = 4.5-8.0

4 = 8.5- 12.0

13

59

r 0.005

TFE

1 = 0.0- 19.9

2 = 20.0- 29.9

3 = 30.0- 39.9

4 = 40.0- 49.9

14
76

r=O.OOI

Figure 7. Outcome classification for nasal sinus cancer (outcome= death)

48

0

0

In Figure 7 we give the outcome classification tree obtained from the data set. The

admissibility condition is specified as a minimum number of OU's (15) and a minimum

number of events (1 0) for the leaves of the large tree. The minimum AIC rule was used for

pruning and amalgamation respectively.

In order to implement above three steps, the RECP AM system also needs to

supplement other three functions.

(1) Statistics model regression computation: In RECPAM, growing of a large tree

needs the information content; pruning needs the information weight and AIC; and

amalgamation needs the information loss and AIC. All of them originate from the same

concept, information measure, which is calculated based on the statistics model regression

computation. The information measure is the core ofRECP AM methodology.

(2) Missing data handling: This enables the tree growing step to process the missing

predictors in a data set by employing the surrogate approach ofBreiman et al [Breiman et

al 1984]. The approach is a strategy specific to tree construction that has much less

intrinsic bias than the missing data strategies developed in the ordinary regression context.

(3) Entering tree: This is an alternative for tree growing step. A tree is constructed by

recursively entering a given binary partition with prior known knowledge, instead of by

recursively computing a best binary partition with maximal information content (the tree

growing algorithm). It gives RECPAM methodology greater flexibility.

3.2. Objectives ofRECPAM System

Owing to the increasingly important role played by computing in both theoretical and

applied statistics, more and more statistics software systems have been delivered, and

much more ones are expected to be quickly developed. Thus various ways to improve the

productivity and quality of current statistics software development are constantly

emerging. The most prevalent way is using statistics-oriented languages, such as SAS, S­

PLUS, SYSTAT, to make developers to develop a software system under an high-level

49

0

0

integrated environment. It archives the objective in terms of statistics-specific

programming capabilities hidden in the language compiler and numerous general statistical

functions pre-built in the development environment. However, it still has some fatal

weaknesses. First, a statistics-oriented language has adopted the reuse concept, but the

reuse is bounded at low-level language primitives and code-level standard functions. There

is very limited payoff from them. It doesn't support reusing at system level or subsystem

level. Everything still has to be re-learnt and re-created from scratch, even though a large

amount of work has been done in prior similar systems or in previous versions of the same

system. Secondly, it is infeasible to produce a "open-ended" system in which system

developers advance the groundworks common to the application domain and the

establishment of development baseline to all designated projects, and reserve a large

development space and possibility for further development. For example, a "open-ended"

system allows users who are neither domain experts nor software engineers, but who are

familiar with the domain and programming, to declaratively specifY, implement, and

modifY their own applications within the domain. Thirdly, it is hard to establish a self­

learning development environment in which it not only provides the initial functions, but

also constantly cumulates new ones or improve existing ones. There is a belief that the

reuse-oriented approach provides a best solution to these weaknesses. This belief is based

on the great promises from reuse which are enumerated before.

RECP AM system is a statistics software package which implements RECP AM

methodology. The following two factors motivate us to develop a reuse-enabling

RECP AM system using the reuse-oriented approach propsed above.

1. RECP AM is such a general data analysis methodology that it can generate a variety of

implementations which vary with statistical models, prediction models and algorithms

applied to its three steps, and it can be combined with other statistics methodology, such

as cross validation and bootstrap, for specific purposes. RECP AM system will deal with a

large number of concrete projects which are stemmed from the general RECP AM

50

0

0

methodology, but give different implementation content. RECP AM system may need to be

integrated with other systems. Reuse is ideally suitable for RECP AM system development,

because it provides an economic and productive approach to a series of highly related

projects within the same application domain, and it can remedy the defects of statistics­

oriented languages. The reuse-enabling system encourages developers to constitute their

own projects based on prior effort as much as possible [Lou and Ciampi 1992].

2. RECP AM is a statistics application system which roots from mathematics domain. As a

domain of reuse-enabling system, RECP AM system possesses several factors which are

believed to foster successful software reuse: i) the domain is relatively narrow (it contains

a fairly small number of data types); ii) the domain is well understood (it has evolved over

hundreds of years); iii) the underlying technology is quite static (it has reached a high level

of maturity). It can be chosen as the optimum starting points to practice the reuse-oriented

approach.

The reuse-enabling RECPAM system is supposed to provide two-fold functionalities:

• It functions as a regular executable software package for users to do RECP AM analysis

using projects provided.

• It functions as a software reuse infrastructure for developers to develop their own new

projects within RECP AM domain.

The desirable RECP AM system consists of two parts: a RECP AM project family,

which collects a set of particular projects underlying RECP AM domain, and a RECP AM

experience factory, which packages all kinds of software-related reusable experiences from

prior development and allows new experiences from current development to continue

adding in.

With the reuse-oriented approach, the development of the RECP AM system is

arranged in two steps. In the first step, domain experts and software engineers cooperate

to create a starter reuse-enabling RECP AM system through the development of a

generalized RECP AM system that transcends any particular RECP AM application and is

51

0

0

0

called the general RECP AM system. The reuse-enabling system is well established and

provides a prototype RECP AM system in terms of reusable experience. In the second

step, a number of programmers who are familiar with the RECP AM domain are able to

effectively and efficiently develop their own RECP AM applications on demands through

the reuse of the reuse-enabling RECP AM system, in turn contribute new reusable

experience in the current development to the reusable-enabling RECP AM system for

future RECP AM applications. Thus the reuse-enabling system continues to grow with the

development of new projects.

The RECP AM system was written in C and run under the mM PC DOS mode. The

first version of RECP AM system was compiled on Microsoft C 5.1, and the updated one

was compiled on Microsoft Visual C/C++ and used the Phar-Lap's 286 DOS extender as a

compiler option which can make the RECP AM system run on the DOS protected mode

(up to 16MB RAM). The source codes ofRECPAM system are listed in Appendix A.

The starter RECP AM system only supported a statistical model, Cox model, which

presents an example for demonstration, and contained about 8K programming lines, but

the present one was expanded up to 15K programming lines and added other four

statistical models, Exponential model, Multi-Nomial model, Multi-Normal model and

Generalized Linear Model (GLIM), as well extended local confounders into the general

prediction model. From the viewpoint of users, the system is designed the menu-driven

operation mode in which each menu item drives an corresponding executable program for

a required function or option. RECP AM analysis uses the data-oriented form in which the

statistics model and prediction model of RECP AM analysis are determined by the input

data file specifications. From the viewpoint of developers, the system is designed to be

reusable, domain-specific and extensible. Developers can economically add new RECP AM

application projects, modify pre-existing RECP AM projects or integrate the RECP AM

domain with other application domains. The starter RECP AM system, which generalized

an abstract RECP AM implementation from different statistical models, various prediction

52

0

0

c

models and variant information measures, and advanced groundwork common to a

designated class of RECP AM application projects, was created by a team in which

members are either domain expert or software engineer. After that, the reusable system

system allows a number of persons who are neither domain experts nor software

engineers, but who are familiar with the RECP AM methodology and are experienced

programmers, to develop concrete RECP AM application projects with their own interest.

For the RECPAM system, a experienced programmer means that a person has to know

how to program in C and understand the object-oriented technology and basic software

engineering principles.

3.3. Development of RECP AM System

Reuse-oriented approach only provides a paradigm and several guidelines for the

development of reuse-enabling system. In practice, we will also integrate an appropriate

object-oriented methodology into the reuse-oriented approach to make it reality. In

development of the RECP AM system, the object modeling technique proposed by

Rumbaugh et al. [Rumbaugh 1991] is chosen as the best candidate. In this section, first of

all, the object modeling technique is outlined. Then how the reuse-enabling RECP AM

system is achieved by the reuse-oriented approach blending with the object modeling

technique is briefly described. Finally how the development of a series of concrete

RECP AM projects are improved by the reuse-oriented approach with the prior reuse­

enabling RECP AM system is illustrated.

3.3.1. Object Modeling Technique

The Object Modeling Technique (OMT) is an object-oriented approach to software

development based on modeling objects from the real world, then using the models to

build a language-independent design organized around those objects, and gradually adding

detail to transform the models into an implementation. It integrates the techniques of

53

0

0

0

object-oriented analysis (OOA), object-oriented design (OOD), and object-oriented

programming (OOP) into the appropriate phases of software development cycle. An

object-oriented approach is a new way of building a system around objects rather than

around functionality. Objects, which combine both data structures and behaviors in a

single entity, serve two purposes: They promote understanding of the real world and

provide a practical basis for computer implementation. Besides these, they also can be

served as the reusable elements in reuse-oriented approach. Object orientation facilitates

the implementation of reuse-oriented approach through encapsulation which accomplishes

three key things: (i) it hides complexity in two ways: by concealing internal data structures

and functions, and by providing a programmer interface that does not require knowledge

of a object's internal workings. (ii) it discourages from unnecessarily tempering with data

structures and functions that are already functional, and provides, in a roundabout way,

shortcuts to manipulating data structures. (iii) the self-contained nature of encapsulated

objects encourages the use and reuse of already developed modules.

The fundamental concept of OMT is the model. A model is an abstraction of

something for the purpose of understanding it before building it. Because a model focuses

on the essential, inherent aspects of an entity and ignoring its accidental properties and

nonessential details. It is easier to manipulate than the original entity. The model has two

dimensions of prospects: a prospect of a system and a prospect of development cycle.

From the prospect of a system, the OMT methodology combines three kinds of formal

models to describe an application system from different views: the object model,

describing the objects in the system and their relationships; the dynamic model, describing

the interactions among objects in the system; and the functional model, describing the data

transformation of the system.

1. Object model: The goal of object model is to capture those concepts from the real

world that are important to an application. It describes the structure of the objects in a

54

0

0

system-their identity, their relationships to other objects, their attributes, and their

operations.

2. Dynamic Model: The goal of dynamic model is to capture control that describes the

sequences of operations that occur, without regard for what the operations do, what

they operate on, or how they are implemented. It describes those aspects of a system

concerned with time and the sequencing of operations--events that mark changes,

sequences of events, states that define the context for events, and the organization of

events and states.

3. Functional Model: The goal of functional model is to capture what a system does,

without regard for how or when it is done. It describes those aspects of a system

concerned with transformations of values-functions, mappings, constraints, and

functional dependencies.

The three models are orthogonal parts of the description of a complete system and are

cross-linked. Each model describes one aspect of the system but contains references to the

other models. The object model describes data structure that the dynamic and functional

models operate on. The operations in the object model correspond to events in the

dynamic model and functions in the functional model. The dynamic model describes the

control structure of objects of objects. it shows decisions which depend on object values

and which cause actions that change object values and invoke functions. The functional

model describes functions invoked by operations in the object model and actions in the

dynamic model. functions operate on data values specified by the object model. The

functional model also shows constraints of object values.

From the prospect of a development cycle, the OMT methodology consists of four

phases: analysis, system design, object design and implementation. Three models of the

system are developed initially and then gradually refined in all these phases. At each phase,

they provide the different levels of abstraction for the system.

55

1. Analysis: the building of a model of real-world situation, based on a statement of the

problem or user requirements.

2. System design: the partitioning of the target system into subsystems, based on a

combination of knowledge of the problem domain and the proposed architecture of the

target system.

3. Object design: construction of a design, based on the analysis model enriched with

implementation detail, including the computer domain infrastructure classes.

4. Implementation: translation of the design into a particular language or hardware

instantiation, with particular emphasis on traceability and retaining flexibility and

extendibility.

3.3.2 Creation Step of the Reuse-Enabling RECPAM System

A complete development cycle of the RECP AM system is divided two steps: the

creation step of the reuse-enabling RECP AM system and the development step of the

reuse-enabling system. In the first step, the considerations of reusability m the

development of the general RECP AM system are exploited with emphasis on the

experience-packaging organization instead of the project-generating organization. In order

to facilitate developing the general RECP AM system, a particular project, RECP AM

implementation for the Cox model, was selected as an illustrative example.

Domain Analysis

Domain analysis stage is the heart of experience-packaging organization. It also

provides the basis of project-generating organization. The stage starts from bounding the

domain, follows by modeling the domain, and concludes with establishing the domain

standards.

(1) Bounding the domain

The first substage is specifying boundaries of the domain in order to limit the type and

amount of information to be treated in an application domain. These boundaries determine

56

0

reuse scopes of the domain, which control applicability and potential reusability of

reusable experience generated in next stage. They highly depend upon the understanding

of the domain characteristics and the requests common to anticipated applications.

Normally the activity needs the trade-off between domain generality and reusability as to

define the most proper domain boundaries. Here we listed three of RECP AM domain

boundaries as examples. Tree structure in the RECP AM is confined to a strictly binary

tree pattern in which each node has either a binary aprtition (internal node) or no partition

(leaf node). There are only two types of prediction trees constructed from the data using

RECP AM methodology: the classification tree that predicts a categorical response, and

the regression tree that predicts a continuous response. the RECP AM tree-modeling

method can be applied to two categories of data analysis: outcome classification that

constructs homogeneous strata with respect to response and subgroup analysis that

constructs homogeneous groups for which the effect of a given factor vary systematically

from one group to the other. With .new projects grow in number, RECP AM domain

boundaries are able to continue being extended for striking a new optimum balance

between domain applicability and reuse payoff

(2) Modeling the domain

This substage is the central activity in domain analysis. A modeling domain is not a

complete application but the encapsulation of the domain knowledge and engineering

knowledge necessary to generalize the community common to all anticipated projects in

the domain. In OMT, by collecting standard examples of implementations in the RECPAM

methodology and performing system analysis of each, common characteristics from similar

systems are generalized, the conceptual entities and associated behaviors common to all

systems within the same domain are identified and formalized in objects and attributes, and

a domain model that transcends specific applications is defined to described their

relationships. We start out with four definitions for guidance in making the required

conceptualization and formalization.

57

0

0

0

Object: An object is an abstraction of a set of real·world entities such that all of entities

in the set-the instances-have the same characteristics; and all instances are subject to

and conform to the same set of rules and policies.

Attribute: An attribute is an abstraction of a single characteristic possessed by all

entities that were themselves abstracted as an object.

Identifier: An identifier is a set of one or more attributes whose values uniquely

distinguish each instance of an object.

Relationship: A relationship is an abstraction of a systematic pattern of association that

holds between real· world entities that were themselves abstracted as objects.

In order to capture the semantics ofRECP AM domain, a description must be provided

for all modeling entities. The description lists a set of short informative statements that

describe the scope of the object class within the current domain, including any

assumptions or restrictions on its membership or use, and describe its associations,

attributes, and operations. A data dictionary is a repository of all textual descriptions for

RECP AM domain model. In RECP AM domain, three fundamental object classes, data

matrix, tree and partition, are identified first, and then more associated objects are

instantiated from them. All of them can transcend a broad spectrum of statistical models

and a variety of pediction models.

In order to capture the relationships between objects in RECP AM domain, three types

of formal models: object model, dynamic model and functional model, must be provided

for describing different aspects of relationships between objects in RECP AM domain. The

object model represents the static, structural, "data" aspects of an application domain. The

dynamic model represents the temporal, behavioral, "control" aspects of an application

domain. The functional model represents the transformational, "function" aspects of an

application domain. A typical software project incorporates all three aspects: It uses data

structures (object model), it sequences operations in time (dynamic model), and it

transforms values (functional model). Each model contains references to entities in other

58

0

0

models. The three kinds of models are depicted the generic RECP AM system modeling in

graphic forms. They provide a prototype of the general RECP AM methodology

implementation.

Object model is represented graphically with object diagrams whose nodes are states

and whose arcs are relationships among objects. The object diagram is based around an

extended form ofChen's entity relationship modeling [Chen 1976]. It provides an intuitive

graphic notation for modeling objects, classes, and their relationships to one another. It is

valuable for communicating with customers and documenting the structure of a system.

Figure 8 shows a object diagram exhibiting the static structure of the general RECP AM

system. There are three primitive objects: data matrix, tree and partition.

Dynamic model is represented graphically with state diagrams whose nodes are states

and whose arcs are transitions between states caused events. The state diagram are

specified using Harel's state diagram notation [Harel 1987]. They specify the flow of

control, interactions, and sequencing of operations in a system that occur in response to

external stimuli, and the states represent values of objects. Figure 9 shows a state diagram

describing the behavior of the general RECP AM system. It describes the object life cycle

in the RECP AM implementation.

Functional model is represented graphically with data flow diagrams whose nodes are

processes and whose arcs are data flow. The data flow diagrams show the flow of values

from external inputs, through operations and internal data stores, to external outputs. The

DeMarco form of data flow diagrams is used [DeMarco 1978]. Figure 10 shows a overall

data flow diagram presenting the functional derivation of values, without regard for when

they are computed, in the RECP AM implementation.

The extensive guidelines for preparing them are given in [Rumbaugh et al. 1991].

59

0 () 0

1--Dala Ftle Dam Matrix

- dolat« -llllli-model --!,..,.. - pnldi<timmodel

-~ ... ·--prod!--
---~ ..

l 1
BinarvTne Partition

- dolamm'ix

V
·dolamm'ix --- -plltitiat-

Tree Parameters ·AIC ·AIC Partition
- --ol'l- Admissibility --ol- Paral'llda's ---................ Condition in!: -l""i'im-

l
............... -uetol-inl:
-lelfmra.tze

~
~ I 1 I

~ Large Tree HooestTree Binary Partition Tree Leaf RECPAM:
~~ \) Partition y Classification -----llibilitp - --odmillibilitp

--c£plltitill0•2 -llolplltitiat•llol
<Ondillonanly --- -ini:-(IC) -llolplltitiat<llol -- -oplit io£ - --(lnlllial&-inl: -ia£-(IC) - int Iota (tU --- _.,._ill(_

0 Honest Tree CJ.assification
Omdition --='--- Coo.dition

·-AIC
·SL<O.~

-miniouaAIC .
-b;.,..JL ·SL<0.05

-b;.,..lL

/'-. Surrogate /'-..

I I I Coefficient r I - uotoloplit

Tree Printout Inlemal Nodes - Partition Partition Tree Drawing I.cafNodes ------·NULl. ----NULl. Printout Drawing

-·"'*-NULl. ~-NULl.
c--- ~ _-:--==--

·iat£woljjlt(lW) ------~ -

Figure 8. RECPAM object diagram for object model

() 0 ()

Print Draw
Partition Partition

Draw Tree Draw'Ii

Grow l D~File) ·0~Mabix) :(~T= Jl " F

0\
Enter Honest Tree L r===t RECPAM

. Classification
.......

I
Prune

Amalgamation

Default I Default I Default

Figure 9. RECP AM state diagram for dynamic model

0'\
1'-l

() 0

Data Matrix

~,~····-··· ~\ .• 1 .. •

Figure 10. RECP AM data flow diagram for functional model

()

Partition
Printout -
Partition

~

~
~

0

0

The data dictionary and three types of diagrams can be put together as the top abstract

level of reusable experience. As the RECP AM domain model, they can be instantiated to a

specific model for some particular project in the project recognition stage in project­

generating organization as to recognize how to develop the project with reuse. As the

general solution to RECP AM methodology implementation, they can be gradually

transformed to a set of generic modules in the experience abstraction stage as to be

developed in advance and set up a development baseline for a series of RECP AM related

projects. As the concept-level system modeling, they can be generated a RECP AM

domain specific classification scheme in the expaerice cataloging stage as to capture

relationships among all kinds of software related experiences.

Based on the outcome of domain model, we attempt to formalize a typical template of

RECP AM implementation, a general RECP AM system, which captures the generalities

and hides the differences at different levels of abstractions. The general RECP AM system

is developed before all concrete projects so that advance the basic groundwork for them

by generating the domain-specific experience. It provides a development prototype of

RECP AM system at implementation level instead of an executable system. In this stage,

the general RECP AM system doesn't have any explicit work products, whereas it is sent

to later two stages to be implicitly represented as a well-organized set of reusable

experience in experience factory.

(3) Establishing the domain standards.

This substage is one of important objectives of domain analysis which enhances

interconnectability and transferability of reusable individuals, as well as traceability

between different phases of development or transition among different projects. The

domain standards includes domain-related representations and regulations for recording all

kinds of software related reusable objects, such as formats, interfaces and interconnection

protocol of reusable modules, definition of domain frames and domain taxonomy for

cataloging or identifying a large collection of reusable experience, and guidelines to

63

c

customize and integrate reusable candidates. They are inferred from the domain model and

lay the foundations of experience factory. The most work on it coincides with generalizing

domain-specific experience.

Experience Abstraction

Experience abstraction ts extracting, generalizing and representing all potential

reusable materials in terms of both different levels of abstractions and different

granularities of modules with any system development process. In reuse-oriented

approach, reusable experience stems from two types of system development: the general

RECP AM system, which generates from the domain analysis stage and majors in

producing domain-specific and general experiences, and a series of RECP AM related

projects, which originate from the project recognition stage and major in producing

project-specific and general experience.

In OMT, a development process is divided into four phases: analysis, system design,

object design and implementation, which have been introduced above. Correspondingly

we adopted four levels of abstraction for capturing different reusable objects from each

phase across development process. Also, a development process is viewed as refinement

process of system modeling, thus we can decompose the system into a number of

granularities of reusable modules for satisfying different purposes of reuse.

(1) Analysis phase:

The most of works in this phase has already been done in domain analysis stage or

project recognition stage. It is only left formalizing and completing problem requirements

which composes of goals and constraints, in consultation with requires, users and domain

experts. This is a knowledge intensive activity. Goals consists of a set of formal statements

which a system must perform. They can be classified two groups: application goals and

service goals. Constraints consist of a set of formal limitations which restrict the choices

available to the developers. They can be classified three groups: implementation

constraints, performance constraints and resource constraints.

64

c

0

In RECP AM system, goals and constraints both are factored into independent

statements and organized into multi-level hierarchy using the formats proposed by Berzins

and Luqi [Berzins and Luqi 1991]. The Table 3 shows a example which states the

application goals for RECP AM meta-system. The goals and constraints identified from the

meta-system should be common to all anticipated projects. A particular project can reuse

them and adds more details or additional ones specific to the project. The lower level

goals or constraints specify in more detail how the system is supposed to realize the higher

level goals or constraints. The hierarchic structure of goals should be consistent with the

customer organization and is used as reference to system organization.

Table 3. Example of Application Goals for General RECPAM System

Goal 1: Constructing prediction tree from data.

G1.1: Construction of a large tree.

G1.1.1: System can grow tree structure using recursive binary partition.

G1.1.2: System can output selected admissible questions, local information content (IC) and

other related parameters for each binary partition.

G1.1.3: System can specify the admissibility conditions for stopping rule of the large tree

growing.

G1.1.4: System can handle the missing predictors using surrogate variable approach of

Breiman et a/ [Brei man et al. 1984].

G1.1.5: System can calculate the variable importance for all predictors.

G1.2: Pruning of the large tree and selection of the honest tree.

G1.2.1: System can compute the lW (Information Weight) for all internal nodes.

G1.2.2: System can prune repeatedly in order of increasing information weight (lW) of

nodes from large the tree to the trivial tree.

G1.2.3: System can specify the condition of honest tree in one of AIC, SL, and User

approaches.

G1.2.4: System can calculate a group of pruning parameters at each pruning step.

G1.2.4.1: Compute parameters' estimation and standard error of a tree model

G1.2.4.2: Calculate AIC (Akaike Information Criterion).

G1.2.4.3: Calculate globaiiC (Information Content).

65

c

G1.2.4.4: Calculate SL (Significance Level).

G1.3: Construction of the amalgamation tree and selection of the RECPAM classification.

G1.3.1: System can amalgamates the leaves of the honest tree successively by joining

at each step the two subpopulations for which a minimum information loss

results from the leaves of honest tree to root node.

G1.3.2: System can specify the condition of RECPAM classification in one of AIC,

SL, and User approaches.

G1.3.3: System can calculate amalgamation parameters at each amalgamation step.

G1.3.3.1: Compute parameters' estimation and standard error of partition model.

G1.3.3.2: Calculate AIC (Akaike Information Criterion).

G1.3.3.3: Calculate IL (Information Loss).

G1.3.3.4: Calculate SL (Significance Level).

(2) System design phase:

This phase determines the overall organization of the system into subsystems, the

external specifications of subsystems and major conceptual and policy decisions that form

the prototypical framework for detailed design. It is the high-level strategy for solving the

problem and building a solution. During this phase, first of all, a complex system can be

successively decomposed into several simpler and smaller subsystems which encompass

aspects of the system similar functionality. These subsystems are organized as a sequence

of horizontal layers or vertical partitions. A subsystem is not an object nor a function but a

package of classes, associations, operations, events and constraints that are interrelated

(high cohesion) and that have a reasonably well-defmed and small interface with other

subsystems (low coupling). Each subsystem represents a sub-domain which can be

developed in isolation without undue complications of having to deal with other

subsystems and has its own life cycles. The conductivity of the object model can be used

as the guide for the partition. The RECP AM system is broken into four principal

subsystems: tree growing, tree entering, pruning and amalgamation, and four assistant

subsystems: data handling, missing data handling, output handling and regression, shown

66

c

0

as Figure 11. Each of them can be chosen as the largest reusable end product which can be

compiled independently.

t
Output

Handling

Data - Handling

Tree ---Entering

I Pnming
~

Amalgamation

I Tree
Growing r--

Missing Data Regression
Handling

Figure 11. RECP AM system architecture

Afterwards, we separately declare each subsystem's external specifications and

prototypical skeleton of detailed design using subsystem notebook. A subsystem notebook

involves at least the following five kinds of information:

(i) Service: A service is a group of related functions that share some common purpose.

It indicates the external functions of the subsystem.

(ii) Interface: The interface specifies the form of all interactions and the information

flow across subsystem boundaries but does not specify how the subsystem is

67

-

c

implemented internally. It involves three types of forms: a) INPUT; b) OUTPUT;

and c) CONNECT.

(iii) Control Thread: A thread of control is a path through a set of state diagrams on

which only a single object at a time is active.

(iv)Handling Boundary Conditions: Three types of conditions should be considered: a)

INITIALIZATION; b) TERMINATION; and c) FAILURE (Failure is the unplanned

termination of a system).

(v) Prototypical Architectural Framework:

In RECP AM development, the subsystem notebook is simplified two items: pseudo­

code algorithm and refined data flow diagram, for each subsystem, because it deals with

computation objects to a great content. More details can see [Lou 1992].

(3) Object design phase:

The analysis phase determines what the implementation must do, and the system

design phase determines the plan of attack. The object design phase determines the full

definitions of the classes and associations used in the implementation, as well as the

interfaces and algorithms of the methods used to implement operations. It adds internal

objects for implementation and optimize data structures and algorithm. Object design is

analogous to the preliminary phase of the traditional software development life cycle.

During this phase, developers carry out the strategy chosen during system design and

fleshes out the details. There is a shift in emphasis from the real-world orientation of the

analysis models towards the computer orientation required for a particle implementation

without descending into an individual language and a particular machine. In practice, the

objects and their relationships from object model serve as the skeleton of the design. The

operations identified during analysis must be expressed as algorithms, with complex

operations decomposed into simpler internal operations. The classes, attributes, and

associations from analysis must be implemented as specific data structures. New object

classes must be introduced to store intermediate results during program execution and to

68

0 avoid the need for recomputation. After analysis we have the object, dynamic, and

functional models. The object model describes the classes of objects in the system,

including their attributes and the operations that they support, but it may not show some

operations. We must convert the actions and activities of the dynamic model and the

processes of the functional model into operations attached to classes in the object model.

We use three types of primitive modules to formalize all work products at this phase: data

abstraction, function abstraction, and algorithm abstraction, based on DODAN (Design

Object Descriptive Attribute Notation) proposed by Yin et a/ [Yin et a/1988].

0 Representation of data abstraction:

The data abstraction is based on the state machine model developed by Parnas [Parnas

1972] in which the meaning of the data is expressed by the states of an abstract machine.

In this approach each valid state machine is identified with a representative data object,

and the expressions in the equation calculus or predicate calculus form the specifications

describing how the state of data changes as a result of applying the operations.

A data abstraction consists of a data attribute and a set of operation attributes [Tanik

and Chan 1991]. A data attributes has the following four kinds of attributes:

(i) Composition attributes:

a. DATA is the unique name by which the data abstraction will be instantiated.

b. FORMAT defines the structure of a data item, analogous to a component data

type in Ada.

c. CONSTRAINT records the size, value range, and value properties, analogous to

a range constraint or index constraint in Ada.

(ii) Storage attributes:

a. DEVICE is used to specifY whether the data is stored in memory, disk, or on a

tape.

b. STORAGE specifies whether the different data are stored in a linked style or a

sequence.

69

0

c

(iii) Operation attributes:

a. OPS lists the operations that manipulate the data abstraction. Accessing a data

item or a predicate of the data state is allowed only by the application of the

operations listed inOPS.

(iv) Similarity attributes:

Similarity attributes denote that two data abstractions are similar with respect to

certain specified criteria.

A operation attribute has the following attributes:

(i) Invocation attributes:

a. F-OP or V-OP is a unique name by which the data operation can be invoked. F­

OP indicates that the operation changes the state of the data. V -OP indicates that

the operation simply give information about the data.

(ii) Data attributes:

a. OPERAND specifies the objects of the data operation. The values of this

attribute might not be defined in the same data abstraction.

b. RETURN specifies the results returned by the data operation. Some v-ops may

produce a RETURN whose values are not defined in the data abstraction;

usually such values are the predicate descriptions of data states.

(iii) Operation attributes:

a. PRECONDITION specifies the assumptions for executing the data operation.

b. EFFECT is only useful for f-ops. It specifies the postcondition of the data

operation.

c. OPERATION specifies the specific algorithms or constraints for the data

operations.

(iv) Exception attributes:

a. EXCEPTIONS lists the abnormal situations that may occur during the

execution of the data operation and prescribes how to handle these situations.

70

0

c

(v) Similarity attributes:

Similarity attributes indicate how a previously designed data operation can be

reused.

0 Representation of function abstraction:

A function abstraction is a data transformation black box whose output is determined

by some abstract operations performed on its inputs. The inputs and outputs must fall

within the domain and range, respectively, of the function abstraction.

A function abstraction has the following attributes [Tanik and Chan 1991]:

(i) Invocation attributes:

a. FUNCTION is the name by which the function abstraction will be invoked.

(ii) Data attributes:

a. CONSUME lists the data abstractions in the input domain of the function

abstraction.

b. PRODUCE lists the data abstractions in the output range different data are

stored in a linked style or a sequence.

(iii) Operation attributes:

a. PRECONDITION is used to specifY the assumption for executing the function

abstraction.

b. EFFECT is used to indicate the postcondition of the function abstraction.

c. FUNCTION is used to specify the algorithms employed to implement the data

transformation.

(iv) Exception attributes:

a. EXCEPTIONS lists the abnormal conditions. If any of the exceptional

conditions becomes true, then a specified action is to be taken.

(v) Similarity attributes:

Table 4 is an example a data abstraction, namely, a tree.

71

0

0

Table 4. Example ofData Abstraction

DATA
FORMAT
CONSTRAINT

DEVICE
STORAGE
OPS

F-OP
OPERAND
RETURN
PRECONDITION

EFFECT

OPERATION

EXCEPTIONS

F-OP
OPERAND
RETURN
PRECONDITION

EFFECT

OPERATION

tree
tree_structure
num_leaf~ 0
num_intemal ~ 0
num_leaf = num_intemal + 1 r strictly binary tree */
main_ memory
DOUBLE_ LINKED
grow_tree, read_tree, prune_tree, is_root,

grow_tree
binary_partition, tree
ttree_node(root)
num_leaf = 0, num_intemal = 0
tree = {NULL}
tree (large tree)
is_leaf = FALSE
new(tree_node)
tree u {tree_node} ~tree
if (binary_partition->split == TRUE) {

num_intemal = num_intemal + 1
tree_node->leaf = FALSE

}

tree_node->information = read_split(binary_partition->information)
tree_node->left = grow_tree(left(binary_partition), tree)
tree_node->right = grow_tree(right(binary_partition), tree)

else {

}

num_leaf = num_leaf + 1
tree_node->leaf = TRUE
tree_node->left = NULL
tree_node->right = NULL
return ftree_node

if (memory_overflow == TRUE) messagef'overflow")

read_tree
tinfile, tree
ftree_node(root)
num_leaf = o, num_intemal = 0
tree = {NULL}
tree (large tree or pruned tree)
is_leaf = FALSE
new(tree_node)
tree u {tree_node} ~tree
tree_node->information = read_node(infile)
if (tree_node->leaf ==FALSE) {
tree_node->left = read_tree(infile, tree)
tree_node->right = read_tree(infile, tree)

}
else {
tree_node->left = NULL

72

c

0

EXCEPTIONS

F-OP
OPERAND
RETURN
PRECONDITION
OPERATION

V-OP
OPERAND
PRECONDITION

RETURN
OPERATION

)

tree_node->right = NULL
return itree_node

if (memory_ overflow== TRUE) message('overflow'1
if (EOF == TRUE) message('tree file error")

prune_tree
information_weight, tree_node
Boolean
tree_node =root
if (tree_node->leaf ==FALSE) {

)

if (root->iw == information_weight) {
tree_node->leaf = TRUE
tree_node->left = NULL
tree_node->right =NULL
return TRUE

}
else {
prune_tree(information_weight, tree_node->left)
prune_tree(information_weight, tree_node->right)

}

return FALSE

is_leaf
tree_node
is_leaf = FALSE
tree_node = root
Boolean
if (root->leaf == TRUE)
return TRUE

(4) Implementation Phase:

The implementation phase translates the object classes and relationships developed

during object design into a particular programming language codes. During this phase,

there are two kinds of reuse: sharing of newly-written code within a project and reuse of

previously-written code on new projects. It is important to follow good software

engineering practice so that implemented systems remain reusability.

In RECP AM system, the following style rules for code fragment reusability are

highlighted:

73

c

0

• Keep method coherent. A method is coherent if it performs a single function or a

group of closely related functions. If a method does two or more unrelated things,

break it apart into smaller methods.

• Keep methods small. If a method is large, break it into smaller methods. By breaking a

method into smaller parts, you may be able to reuse some parts even when the entire

method is not reusable.

• Keep methods consistent. Similar methods should use the same names, conditions,

argument order, data types, return value, and error conditions. For instance, when an

operation has methods on several classes, such as computing information content in

the tree growing, the pruning and the amalgamation, it is important that the methods

all have the same signature- the number, types and order of arguments and type of

result value.

• Separate policy and implementation. Policy methods make decisions, shuftle

arguments, and gather global context. Policy methods switch control among

implementation methods. Implementation methods perform specific detailed

operations, without deciding whether or why to do them. Implementation methods do

not access global context, make decisions, contain defaults, or switch flow of control.

Do not combine policy and implementation in a single method. Isolate the core of the

algorithm into a distinct, fully-specified implementation method. This requires

abstracting out the particular parameters of the policy method as arguments in a call to

the implementation method.

• Provide uniform coverage. If input conditions can occur in various combinations, write

methods for all combinations, not just the ones that you currently need. For example, a

method family corresponds with a variety of input data object. In the general

RECP AM system, the tree growing, the pruning and the amalgamation can provide a

class of data objects, which are from different statistical models, with variant

implementation of information measure.

74

0

c

0

• Broaden the method as much as possible. Try to generalize argument types,

preconditions and constraints, assumptions about how the method works, and the

context in which the method operates. Often a method can be made more general with

a slight increase in code. The simplest way is to includes some parameters in a method

which make the method apply to a range of similar situations.

• Avoid global information. Referring to a global object imposes required context on the

use of a method. Minimize external references. Often the information can be passed in

as an argument. Otherwise store global information as part of the target object so that

other methods can access it uniformly.

• Avoid modes. Functions that drastically change behavior depending on current context

are hard to reuse. Try to replace them with models functions.

• Improve the chance of inheriting shared code. The simplest approach is to factor out

the common code into a single method that is called by each method. The common

method can be assigned to an ancestor class. This is effectively a subroutine call.

Another approach is to factor out the differences between the methods of different

classes, leaving the remainder of the code as a shared method. It is effective when the

differences between method are small and the similarities are great.

• Encapsulate external code. Often you will want to reuse code that may have been

developed for an application with different interfacing conventions. Rather than

inserting a direct call to the external code, it is safer to encapsulate its behavior within

an operation or a class.

Experience Cataloging

Experience cataloging is a indispensable stage to achieve more effective search and

retrieval of reusable objects. It attempts to weH organize collections of all kinds of

software-related reusable objects, which are large and are growing continuously, for

exposing inherent relationships among them individuals. There are two levels of

75

0

relationships to be identified in OMT: application-level relationship and implementation­

level relationship.

Application-level relationship: it captures the conceptual model of application domain,

such as RECP AM domain, and corresponds to interrelations of reusable objects which are

from the analysis phase and the system design phase. These relationships are described in

terms of the concrete problems. They provide assistance in recognizing the interactions

between individual problems in the RECP AM domain.

(1) Generalization/Specialization allows abstractions to be defined in layers of increasing

specificity. This hierarchy of abstractions provides a structuring element when we attempt

to model a problem.

(2) Aggregation supports the development of the representation of an abstraction from

several smaller and presumably simpler elements.

(3) Classification relates an abstraction to the instantiations of that abstraction.

(4) Association indicates that one abstraction serves as a holder of instances of other

abstractions.

Implementation-level relationship: it captures the physical model of implementation

solution, such as an executable RECP AM system, and reflects the natural position of

reusable entities, which are from the object phase and the implementation phase, and their

relationship to other member. The facet classification scheme is adopted to classify

collections of reusable modules which are from object design phase and implementation

phase of RECP AM development. In this creation step, a basic domain-oriented facet

classification scheme is generated and allows to expand later as needed. Our facet scheme

consists of three facets, each facet is a viewpoint toward software components:

(1) Function refers to the function performed. It works like a conventional library.

(2) Object Type refers to the template of objects to which the method belongs. In

RECP AM system, it consists of three terms, each of them corresponds to a basic object of

RECP AM system.

76

0

0

(3) System Type refers to subdomain which are functionally identifiable, project­

independent and self-contained. In RECP AM system, it consists of eight terms, each of

them corresponds to a subsystem ofRECPAM system.

3.3.3 Development Step of the Reuse-Enabling RECPAM System

This step involves two parallel threads through the same development cycle of

concrete projects for two highly correlated objectives. The dominant one of them is to

develop new RECP AM related application products at high productivity and quality,

through the project-generating organization, by taking full advantage of all forms of

reusable experience packaged in the experience factory of system. It manifests great

payback from the reuse-enabling RECP AM system. Another one is to contribute its own

new reusable experience to the built-in experience factory for other projects, through the

experience-packaging organization, as the by-products of development. It shows new

investment on the reuse-enabling RECP AM system. It is obvious that the second one

ensures the achievement of the first one's objective that makes a development procedure

more effective and efficient. In this step, the roles of reusability in the application of

RECP AM system is examined by illustrating the development of a series of actual

RECP AM projects. These projects involve four different sorts of RECP AM application

areas.

3.3.3.1 Bringing New Statistical Models into the RECPAM Analysis Family

The most common applications within the RECP AM domain are to make RECP AM

methodology applicable to a broader spectrum of statistical models for growing a variety of

classification or regression trees. RECP AM tree-modeling methodology is so general that it

can be widely applied to a number of statistical models with the same tree-modeling

algorithms such as the tree growing algorithm, the pruning algorithm and the amalgamation

algorithm, and with the varied information measures only. Thus this sort of application just

77

generates statistical model specific instances of the general RECP AM methodology

implementation. The reuse-oriented approach is ideally suitable for their development,

because they share the greater part of the software-related experience that stems from the

generality of RECP AM methodology implementation. In the reuse-oriented approach, the

generalized solution to RECP AM methodology implementation has been developed in

advance and has been packaged as a general RECP AM system, which can serve as the

development prototype of other statistical model specific implementations, in terms of

reusable forms at different abstract level during the creation step of the reuse-enabling

RECP AM system. In this development step, developers can repeatedly specialize the

general RECP AM system to derive many concrete implementation corresponding to

particular statistical models, in a manner envisaged by the original design. This procedure

involves a large amount of potential reuse opportunity, from domain model to source codes

and from RECP AM expertise to development knowledge. Four statistical models: the

Exponential model, the Multi-Nomial model, the Multivariate Normal model, the GLIM

model are added RECP AM analysis family one by one on demand, following the initial Cox

model.

In order to recognize how to specialize the general RECP AM system for a particular

statistical model, development of a project should start with instantiating the RECP AM

domain model. A specific model for the particular statistical model can be created as an

instance of the RECP AM domain model, because the domain model was generalized to

transcend all specific statistical models. Figure 12 shows the general instance hierarchy for

statistical models now available. Objects and operations specific to the statistical model

and their relationships are identified. It results in concept-level reuse, the highest abstract

level of reuse, which can be traced to appropriate modules at lower abstract levels where

instance reuse occurs and then finally be transformed to related groups of source codes, at

programming-level.

78

c Considering instanting the general RECP AM system with reuse, the development of

the particular RECP AM implementation for a new statistical model in the reuse-oriented

approach may actually combine three possible ways. Based on the prototype of general

RECP AM implementation,

GLIM

Normal

Poisson

Inverse Gaussian

Gamma

Scaled Binomial

Data Matrix

Univariate Models

Multi-Nomial Survival

cox
Exponential

Figure 12. RECPAM statistical models instance structure

1. If the required module is not statistical model specific and dependent, we should

identify it from the general RECP AM system and directly reuse it in the context of current

development without any change or knowledge of its internal design. There is a large set

of modules, such as the tree structure object and most methods associated it, the partition

object and most methods associated it, the missing data handling subsystem, etc. which are

common to all statistical models. These modules in the general RECP AM system can be

transfered to the specific system. When programming in C, they can be combined in the

specific system by using external functions or by including file mechanism.

79

0

2. If the required module is statistical model dependent, but it was generalized in generic

forms, which unify all particular statistical models, within the general RECP AM system,

reusers can specialize the generic form of module to derive its specific instance for the

particular statistical model implementation. The specialization method depends strongly on

the its generic form. A parameterized module is perhaps the most conventional generic

form, in which each parameter provides an extra degree of freedom for increasing the

module's range of pontential uses and can be selected by reusers at the time of reuse. The

statistical model specific instance of the module can be configurated by declaring local

parameters and messsage passing. For example, a generic class, partially describing the

common data structure and parameterizing the unknowns, was defined for the data object

to be analyzed. The generic class is described by a data matrix which consists of four

submatrixes, respectively termed respones, confounders, determinants and predictors, and

an index vector which indicates observation unit. The appearance, size and properties of

these four submatrixes depend upon the particular statistical model and prediction model,

and are controlled by parameters. When deriving the specific object class for an new

statistical model from it, reusers can predefine parameters such as response variables, or

their ranges which are statistical model specific and specialize methods assoiated with the

data object, such as counting events and counting number of estimated parameters.

Another generic form in common use is adopting partial specification which separates

from any concrete implementation and of which implementation details can be filled in

later by reusers according to their own requirements. The statistical model specific module

can be completed by adding private methods for its generic specifications in terms of

polymorphism and overloading mechanisms. For example, the tree growing algorthim,

pruning algorithm and amalgamation algorithm all depend on the measurement of

information content which is completely statistical model specific, but we have used a

generalized specification to hide the different implementations in their modules. Thus they

transcended a broad range of particular statistical models. When adding a new statistical

80

0

0

model, reusers only need to create the new statistical model specifc information content

methods without repeating development of these three algorithms.

3. If the required module is statistical model specific, and it can not be generalized in

generic forms, we have to generate the system specific module from more elementary

modules. And this procedure can still take advantage of partial reuses. For example,

regression subsystem is the basis of computating information measure, but it is completely

statistical model specific. There is no module to generalize it. Thus we have to develop a

particular statistical model regression subsystem for the specific system. This became the

major work of each specific system development. During development of the regression

subsystem, we should take the reuse of more elementary module into full account, such as

Newton-Raphson method module rused in Cox model and GLIM model as a general

solution to maximum likelihood estimation (MLE).

3.3.3.2 Extending the Local Confounders to the Prediction Model

Another sort of RECP AM application is to constantly update the present general

RECP AM system or existing concrete projects along with the evolution of RECP AM

methodology itself for amplifying its analysis capability and diversity. The reuse-oriented

approach with reuse-enabling RECP AM system is believed to provide the best shortcut to

their development. This belief is grounded on the fact that a required evolution can start

from the basis of the general RECP AM system or closely related projects rather than

always from very beginning, just like that we should stand on each other's shoulders rather

than on each other's feet. Here the evolutionary reuse presents an incremental software

development style which takes advantages of the inheritance relationships among requred

development and pre-existing experience. The project in which the local confounders are

extended to the prediction model for the measure of information content as a part of

estimated parameters gave a good examples. A local confounder is a parameter assumed

to be highly dependent on the predictors and should be allowed to vary "as finely as

81

possible" across the predictor space. In contrast, the previous confounders are referred to

global confounders which don't depend on predictors and are the same for whole

population. We have successfully introduced the local confounder concept into the general

RECP AM system, and applied local confounders to pre-existing GLIM model and, Multi­

Normal model.

I Criterion Variable I
I

I I

I Outcome Classification I Subgroup Analysis I
I

I I I I

witb Confoundm I I without Confounders witb Confounders I I witbout Confuunden

'- Local Confounders - Local Confounders

'- Global Confoundcrs - Global Confounden

Figure 13. RECPAM prediction models instance structure with local confounders

The development of adding local confounders projects can not simply instantiate the

existing generalized domain model, because the concept of local confounders go beyond

its initial domain boundaries which are prescribed in domain analysis stage. But

considering the reuse of previous products and knowledge, we can extend the present

domain model with local confounders. A new broader domain model is evolved in terms of

generalization process in which the pervious domain model is conceived of as a special

instance without local confounders. Figure 13. shows the new prediction models instance

hierarchy. In the new domain model, a general prediction model still involves two classes

82

of RECP AM analyses: outcome classification and subgroup analysis, and each of them

may or may not include confounders, but the confounders can be divided into two

different parts: local confounders and global confounders.

Considering evolving from the pre-existing general RECP AM system with reuse, the

development of the more general RECP AM system in which the prediction model may

contain local confounder(s) actually may refer to three possible ways:

1. When the required module in the new system is identical with one in the pre-existing

one, we should keep the matching module of pre-existing system in the new system to

inherit experience from the pre-existing system. For example, the most parts of pruning

subsystem, except the method which computes the information content, can be dirctly

reused in the new system without repeating previous works.

2. When the required module corresponds to one in pre-existing system, but is more

general than the corresponding one, we can override it with the more general module. It

implies that user can partially inherit software-related experience. For example, we

extended the prior generic class of data object by separting the previous confounder

matrix into two submatrixes for local confounders and global confounders. A more

general class of data object was created in the same way as before. In turn, we rewrited all

methods which are related to internal structure of the generic class.

3. When the required module is completely new with respect to pre-existing system, we

have to develop it and then add it into new system. It can be conceived of as a unbounded

generalization. For example, we added two local confounders concerned methods into

pruning step. One is to obtain a finest partition from the reference tree. Another one is to

transfer the finest partition to a indicator vector for computing the information content.

3.3.3.3 Adding A User-Defined Alternative of Pruning Procedure

As one of tree-modeling approaches, RECP AM is often demanded to customize its

performance content with user's special concerns. For instance, user attempt to define

83

c

their own algorithms as alternatives of the original algorithm, to derive variants of current

methods or to introduce some new techniques on the RECPAM methodology philosophy.

The reuse-enabling RECP AM system offers a experienmental ground which encourages

the practice of customizing RECP AM's performance. The reuse-oriented approach makes

this sort of applications in economic fashion.

How to develop is discussed by a practical project which adds a user-defined pruning

algorithm as an option in pruning step. In the original pruning algorithm, pruning sequence

is obtained by the sorted list of information weights, which are globally calculated from the

difference of information content at a tree with cutting the internal node with respect to

large tree, for all internal nodes. While in the user-defined pruning algorithm, the pruning

order is determined by globally comparing the local information contents, which are

calculated at each split point during the tree growing, among all internal nodes eligible for

being pruned. The rest pruning operations keep the same as original ones. Obviously,

there are a large partition of overlap in the new project. The appropriate reuse will

significantly improve its development. In the project recognition stage, an intersection

process is first applied to realize its similarities and difference . It results in the following

arrangements:

1. According to the natural feature of the project, all likely changes can be constrained

only on the pruning subsystem. It means that whole project development is shrunk to a

subsystem modification without knowledge of implementation of other subsystems and

without affecting the behavior of other subsystems.

2. In order to make new pruning algorithm as alternative without bothering previous

subsystem, we created another parallel pruning subsystem by copying the previous one.

The previous pruning subsystem was used to form the basis of the new pruning subsystem

which can inherit privious products for similarities, override certain methods for

difference, and add any new behaviors that are required. It can be modified with far less

effort than developing from scratch.

84

3. we can make likely changes in pruning subsystem without involving the interface

modification, It can directly linked to other subsystem without recompiling other

subsystem, and it make the new pruning automatically to all existing statistics model

without any extra work.

3.3.3.4 Developing A Cross-Validation System on the Basis ofRECPAM System

The reuse-enabling RECPAM system essentially is an elementary "open-end" system

which not only supports the development of different sorts of RECP AM applications

within RECP AM domain but also facilitates the creation of new systems of which domain

is not constrained in RECP AM domain, but is associated with it. Sometimes, RECP AM

domain is asked to be integrated with other domain or be embedded into another larger

domain for study purposes. For example, in order to correct the overfit bias inherent in

data-driven modeling analysis, such as RECP AM tree-modeling analysis, a cross­

validation system is requested to be developed for RECP AM methodology. In the

particular cross-validation system, the RECP AM methodology can be conceived of as a

subdomain in the cross-validation domain in view of intentionally reusing the readily

available RECPAM system in its development procedure. We have completed the

development of the cross-validation system for Cox model on the basis of RECP AM

system. The new system is totally separated from the RECP AM system. It is also written

in C, but run under UNIX system Workstation, considering the memory limitation of DOS

system. Another similar system, bootstrap system, is under the way.

Since RECP AM methodology is the major ingredient of concerned cross-validation

system and acts as operating objects of cross-validation processing, reusing the readily

available RECP AM system gained great benefits recognized from three aspects. First of

all, it significantly reduced the amount of programming work needed on the cross­

validation system. The redundant work for developing RECP AM methodology and the

ground work common to both systems is eliminated by directly taking final source codes

85

0

of required subsystems or functions from RECP AM system and adapt them to the new

system and new work platform. For example, total source code of cross-validation system

has around 5,000 lines. More than 75% of it is based on reusing the RECPAM system.

And about 50% of it is directly duplicated from the source code of RECP AM system

without any modification. Five subsystems of RECP AM system are included as demand.

Secondly, it enhances the development level of cross-validation system by encapsulating

all functions related to RECPAM methodology as a entirety. The encapsulated entirety

can separate the RECP AM subdomain from cross-validation domain, and can constitute a

RECP AM subsystem of cross-validation system. The RECP AM domain and subsystem

can use the readily available RECP AM system. Thus we only need to understand the

responsibility of the subsystem (interface) without understanding the subsystem's internal

knowledge and design. And thirdly, it ensures the inheritance of RECP AM domain

knowledge and development knowledge. For example, the missing data handling algorithm

as well its implementation method can be automatically brought to the cross-validation

system from the RECP AM system without knowledge of its implementation as a

consequence of reusing the RECP AM system. Another good example is the structure of

the data object for RECP AM analysis. With reusing the RECP AM system, the generic

class definition in RECP AM is introduced to the cross-validation system. The data object

for cross-validation is defined as the same structure as the RECP AM system and an

additional index vector for group indicator. Besides its original functions, this makes the

whole data handling subsystem ofRECPAM system be reused in cross-validation.

86

CHAPTER 4. CONCLUSIONS AND FUTURE WORK

4.1 Conclusions

The great benefits from reuse motivate us to adopt comprehensive reuse as the major

means to improve present software development methodologies. The reuse-oriented

approach is intended to present a general incremental development paradigm with

systematic reuse. It is derived on the basis of object-oriented methodology and

incorporates several outstanding technical issues. As a case study, the development of

RECP AM system has demonstrated the reuse-oriented approach. The well-established

starter reuse-enabling RECP AM system is created first by both domain experts and

software engineers for providing a baseline to development of all concrete projects within

the RECP AM domain. Then as it is repeatedly applied to the basis of development of a

series of RECP AM applications by programmers who are just familiar with RECP AM

domain, the reuse-enabling RECPAM system continuous to grow. We can summarize the

following points:

1. The RECP AM system development confirms the rich harvest to be reaped from the

reuse-oriented approach. In the short term, the reuse-oriented approach is generally

more expensive than conventional approaches, because of the extra effort of producing

reusable resources and managing them. But it has a long-term economic gain,

especially when there are numerous anticipated projects within a mature application

domain, or when applications must be continuously upgraded. For example, we

attempt to implement a general statistical methodology. As the target projects increase

in number, the payoff of the reuse-oriented approach will be greater. The reuse­

oriented approach would be cost-effective for those application domains where a large

87

0 number of similar projects are manufactured repeatedly, such as the RECP AM

domain.

2. The reuse-oriented approach introduces a new form of software product, the reuse­

enabling system, which can provide users not only an executable software system, but

also a domain-specific integrated development environment. A reuse-enabling system

is best suitable for neither software engineers nor domain experts, but experienced

programmers who are familiar with the domain, to develop their own projects on the

pre-established development baseline. It ensures the incremental development and the

parallel development in the form of reusable experience.

3. Making reuse attractive in the reuse-oriented approach is largely an intellectual activity

of finding the right technical culture, the appropriate domain boundaries and domain

standards, the right representation of reusable experience and other frastructure. It is

not simply a matter of following the development paradigm with the several

supporting guidlines. The details of sucess are defined by comprehensive technical

analysis and a strong focus on the application domain.

4. Some of the key factors that foster successful reuse are realized:

• Narrow domain: Narrow domain allows the use of reusable objects on larger scale,

at high abstract level or in earlier phase, and increase the amount of the target

application that can be constructed from reused objects. The appropriate domain

boundaries dramatically increase the reuse ratio in development of new projects

and decrease the reuse cost of both development for reuse and development with

reuse. A successful application domain is narrower than expected. It is necessary

to narrow it down to a specific product family, rather than to cover a broader field.

• Well understood domain: Without a good model of the application domain it is

difficult to derive appropriate, widely applicable and high quality reusable

experience. Without a good understanding of domain, it is infeasible to take full

advantage of reuse to improve the development.

88

• Slowly changing domain technology: Reusable experience decays over time and

rapid changes in underlying domain technology force a reuse-enabling system to

decay and thereby, depreciate in value too rapidly to recapture, in savings, the cost

to construct the system in the first place.

• Well established experience factory: The more efforts we make on it, the much

more payoff they will return. The experience factory is a bridge between two

organizations of development in the reuse-oriented approach. It is the guarantee of

producing high-quality reusable experience. It also is pre-condition of making

reuse attractive.

• Economies of scale: Build reuse-enabling systems to service areas where there is

lots of opportunity to reuse the experience. It would deserve application if three or

more manufacturing cycles are expected for the product family.

5. Object-oriented methodology is essential. Its value lies in providing the conceptual

foundation for reuse-oriented approach and facilitating organization, representation and

operation of reuse. A practicable reuse-oriented approach is established on some particular

object-oriented methodology.

4.2 Future Work

Although the reuse-oriented approach has been formalized and practiced in real

software system development, many areas of this approach remain to be fully developed.

This is merely a good starting point. More research and practice works are expected to be

exerted.

First, we should ground on the current RECP AM reuse-enabling system to develop

more concrete projects within RECP AM domain for exploiting its potential reusability and

applicability. For the moment, there are two new sorts of application projects: (i) the data

object to be is not coned data matrix formats. for example, point process statistics model

has recurrent events for each observation units [Ciampi et al. 1992]; (ii) RECPAM system

89

works as a subdomain in a large system development. A project, bootstrap for RECP AM

tree-modelling approach, is under the way.

Second, we will continue practicing the reuse-oriented approach in more application

domain or spreading the reuse-enabling system for more developers to reuse as to

improve reuse-enabling system and reuse-oriented approach.

Finally, this paper focused on an overall development paradigm of reuse-oriented

approach and a set of guidelines of reuse operations, and identified related activities for

each stage in the framework. But no methodology or any kind of formalization for each

stage is yet available. This case study concentrated on the outcome, not on the process.

We have to formalize it to provide a complete reuse-oriented approach.

90

0

REFERENCE

Arango, G., Baxter, 1., Freeman, P., and Pidgeon, C., "TMM: Software Maintenance by
Transformation", IEEE Software, Vol. 3, No. 3, pp. 27-39, May 1986.

Arango, G., "Domain Engineering for Software Reuse", Ph. D. Thesis, Department of
Imformation and Computer Science, University of California, Irvine, 1988.

Arango, G., "Domain Analysis-From Art Form to Engineering Discipline", 5th
International Workshop on Software Specification and Design, ACM SIGSOFT Software
Engineering Notes, Vol. 14, No. 3, pp. 152-159, May 1989.

Basili, V.R. and Rombach, H.D., "Support for Comprehensive Reuse", Software
Engineering Journal, Vol. 6, No. 5, pp. 303-316, Sep. 1991.

Basili, V.R., Caldiera, G. and Cantone, G., "A Reference Architecture for the Component
Factory", Technical Report CS-TR-2607, Department of Computer Science, University of
Maryland, College Park, Maryland, Mar. 1991.

Basili, V.R. and Rombach, H.D., "Towards A Comprehensive Framework for Reuse: A
Reuse-Enabling Software Evolution Environment", Technical Report CS-TR-2158,
Department of Computer Science, University of Maryland, College Park, Maryland, Dec.
1988.

Bauer, F.L., "From Specifications to Machine Code: Program Construction through
Formal Reasoning", Proceedings, Sixth International Conference on Software
Engineering, pp. 84-91, 1982.

Bemer, R.W., "Position Papers for Panel Discussion: The Economics of Program
Production", in Information Procession 68, North-Holland, Amsterdam, pp. 1626-1627,
1969.

Berzins, V. and Luqi, "Software Engineering with Abstractions", Addision-Wesley
Publishing Company, 1991.

Biggerstatf, T.J. and Perlis, A.J., "Foward: Special Issue on Software Reusability". IEEE
Transactions on Software Engineering, Vol. 10, No. 5, pp. 474-476, Sep. 1984.

91

Biggerstaff, T.J. and Richter, C., "Reusability Framework, Assessment, and Directions",
IEEE Software, Vol. 4, pp. 41-49, Mar. 1987.

Boehm, B.W., "Software Engineering", IEEE Transactions on Computers, Vol. C-25, No.
12, pp. 1226-1241, Dec. 1976.

Boehm, B.W., "A Spiral Model of Software Development and Enhancement", ACM
SIGSOFT Software Engineering Notes, Vol. 11, No. 4, pp. 14-24, Aug. 1986.

Boldyreff, C., "Reuse, Software Concepts, Descriptive Methods and the Practitioner
Project", ACM SIGSOFT Software Engineering Notes, Vol. 14, No. 12, pp. 25-31, 1989.

Boyle, J.M. and Muralidharan, M.N., "Program Reusability through Program
Transformation", IEEE Transactions on Software Engineering, Vol. SE-10, No. 5, pp.
574-588, May 1984.

Breslow, N.E. and Day, N.E., Statistical Methods in Cancer Research, Heseltine, E. (ed.),
IARC Scientific Publications, Vol. 2, No. 82, Oxford University Press, 1987.

Breiman, L., Friedman, J.H., Olshen, RA. and Stone, C.J., "Classification and Regression
Trees", Waldworth International Group, Belmont, California, 1984.

Burton, B.A., Aragon, RW., Bailey, S.A., Koehler, K.D., and Mayes, L.A., "The
Reusable Software Library", IEEE Software, Vol. 4, No. 4, pp.25-33, Jul. 1987.

CAMP, Common Ada Missile Packages, Final Tecnical Report, Vols. 1, 2 and 3. AD-B-
102 654, 655, 656. Air Force Armament Laboratory, AFATL/FXG, Elgin AFB, FL, 1987.

Carbonell, J.G., "Derivational Analogy: A Theory ofReconstructive Problem Solving and
Expertise Acquisition", Tecnical Report CMU-CS-85-115, Computer Science
Department, Camegie-Mellon University, Mar. 1985.

Champeaux, D.D. and Faure, "A Comparative Study of Object-Oriented Analysis
Methods", Journal of Objected-Oriented Programming, Vol. 5, No.1, pp. 21-33, 1992.

Cheatham, T.E., Jr., "Reusability Through Program Transformations", IEEE Transactions
on Software Engineering, Vol. SE-10, No. 5, pp. 589-594, Sep. 1984.

Chen, P.P., "The entity-relationship model - toward a unified view of data", ACM
Transaction, Database System, Vol. 1, No. 1, pp. 9-36, 1976.

Ciampi, A., Lou, Z., Lin, Q. and Negassa, A., "Recursive Partition and Amalgamation
with the Exponential Family: Theory and Applications", Applied Stochastic Models and
Data Analysis, Vol. 7, No. 2, pp. 121-137, 1991.

92

0

0

Ciampi, A., "Generalized Regression Trees", Computational Statistics and Data Analysis,
Vol. 12, No. 1, PP. 57-78, 1991.

Ciampi, A., Hendricks, L., and Lou, Z., "Tree-Growing for the Multivariate Model: The
RECPAM Approach", Dodge, Y. and Whittaker, J. (eds.), in Computational Statistics,
COMPSTAT, Physica-Verlag, A Springer-Verlag Company, Vol. 1, pp. 131-136, Aug.
1992.

Ciampi, A., Negassa, A. and Lou, Z., "Tree-Structured Prediction for Censored Survival
Data and Cox Model", 1993. (submitted)

Ciampi, A., Hendricks, L. and Lou, Z., "Discriminant Analysis for Mixed Variables:
Integrating Trees and Regression Models", Cuadras, C.M. and Rao, C.R. (eds), in
Multivariate Analysis: Future Directions 2, Elsevier Science Publishers B. V., 1993.

Ciampi, A., Dougherty, Lou, Z., Negassa, A. and Grondin, J., "NHPPREG: a Computer
Program for the Analysis of Nonhomogeneous Poisson Process Data with Covariates",
Computer Methods and Programs in Biomedicine, Vol. 38, pp. 37-48, 1992.

Cusumano, M. A., "The Software Factory: A Historical Interpretation", IEEE Software,
pp. 23-30, Mar.1989.

DeMarco, T., "Structured Analysis and System Specification", Yourdon Press, New York,
1978.

Dijkstra, E.W. Notes on Structured programming. In Structured programming. New
York: Academic, 1972.

Dubinsky, E., Freudenberger, S., Schonberg, E. and Schwartz, J.T., "Reusability of
Design for Large Software Systems: An Experiment with the SETL Optimizer", in
Software Reusability: Volumn I, Concepts and Models, Biggerstaff, T. J. and Perlis, A. J.
(eds.), ACMPress, Addison-WesleyPublishing, pp. 275-293, 1989.

Firth, R., Software Design, Lecture Notes, Software Engineering Institute, Camegie
Mellon University, 1989.

Frakes, W.B., Biggerstaff, T.J., Prieto-Diaz, R., Matsumura, K. and Schaefer, W.,
"Software Reuse: Is It Delivering?", IEEE 13th Intemation Conference on Software
Engineering, pp. 52-59, 1991.

Freeman, P., "Reusable Software Engineering: Concepts and Research Directions. In
Proceeding of ITT Workshop on Reusability in Programming. ITT, Startford, Conn.,
pp.129-137, 1983.

93

0

0

Gladden, G.R., "Stop the Life Cycle, I want to Get Off'', ACM Software Engineering
Notes, Vol. 7, No. 2, pp. 35-39, 1982.

Gomaa, H., "A reuse-oriented approach for structuring and configuring distributed
applications", Software Engineering Journal, Vol. 8, No. 2, pp. 61-71, Mar. 1993.

Harel, D., "Statecarts: a visual formalism for complex systems", Science Computer
Program, Vol. 8, pp.231-274, 1987.

Hendricks, L. and Lou, Z., RECP AM User Manual, Montreal Children's Hospital
Research Institute, Montreal, 1993.

Hoare, C.A.R., "Monitors: An Operating System Structuring Concept", Comm. ACM,
Oct. 1974.

Horowitz, E. and Munson, J.B., "An Expansive View of Reusable Software", IEEE
Transaction on Software Engineering, Vol. SE-10, No. 5, pp. 477-487, Sep. 1984.

Kant, E. and Barstow, D.R., "The Refinement Paradigm: The Interaction of Coding and
Efficiency Knowledge in Programming Synthesis", IEEE Transactions on Software
Engineering, Vol. SE-7, No. 5, pp. 458-471, Sep. 1981.

Kim, K.H., "A Look at Japan's Development of Software Engineering Technology",
Computer, Vol. 16, No. 5, pp. 26-37, May 1983.

Korson, T. and McGregor, J.D., "Technical Criteria for the Specification and Evaluation
of Object-oriented Libraries", Software Engineering Journal, Vol. 7, No. 2, pp. 85-94,
Mar. 1992.

Lanergan, R.G. and Poynton, B.A., "Reusable Code: The Application Development
Technology oh the Future", In Proceedings of the mM SHARE/GUID Software
Symposium, Monterey, Calif.:mM, Oct. 1979.

Lenz, M., Schmid, H., and Wolf, P., "Software Reuse Through Building Blocks: Concepts
and Experience", IEEE Software, Vol. 4, No. 4, pp. 34-42, Jut. 1987.

Lou, Z., Appendices in "Contructing Prediction Trees from Data: RECP AM Approach",
Ciampi, A., in Computational Aspects of Model Choice, Physica-Verlag, A Springer­
Verlag Company, Vol. 1, pp. 144-150, 1992.

Lou, Z. and Ciampi, A., "Reuse-Oriented Approch in Developing Statistics Software", in
Proceedings of the 24th Symposium on the Interface, Computing Science and Statistics,
Newton, H.J. (ed), Vol24, pp. 40-44, Mar.l992.

94

0

0

Lubars, M.D., "Wild-Spectrum Support for Software Reusability", RMISE Workshop qn
Software Reuse, Rocky Mountain Institute of Software Engineering, Boulder, Cola., pp.
14-15, Oct. 1987.

Maiden, N.A.M., "Analogy as A Paradigm for Specification Reuse", Software Engineering
Journal, Vol. 6, No. 1, pp. 3-15, Jan. 1991.

Matsumoto, Y., "SWB system: A Software Factory", in Software Engineering
Envimments, Hunke, H.(ed.), New York: North-Holland, pp. 305-317, 1981.

Matsumoto, Y., "Some Experience in Promoting Resuable Software Presentation in
Higher Abstract Levels", IEEE Trans. on Software Engineering, Vol. SE-10, NO. 5, pp.
502-513, Sep. 1984.

Matsumoto, Y., "A Software Factory: An Overall Approach to Software Production", in
Software Resuability, Freeman, P. (ed), IEEE Computer Society Pree, Washington, D. C.,
pp.l55-178, 1987.

McCain, R., "Reusable Software Component Construction: A Product-oriented Paradigm.
In Proceedings of the 5th AIAA/ A CM/NASA/IEEE Computers in Aerospace Conference,
Long Beach, CA, pp. 125-135, 1985.

McCracken, D.D. and Jackson, M.A., "Life Cycle Concept Considered Harmful", ACM
Software Engineering Notes, Vol. 7, No. 2, pp. 29-32, 1982.

Mcllroy, M.D., "Mass-Produced Software Components", in Software Engineering
Reports on a Conference Sponsored by the NATO Science Committee, Naur, P. and
Randell, B. (eds.), Scientific Affairs Div., NATO, Brussels, pp.ISI-155, 1969.

Meyer, B., "Software Reusability: The Case for Object-oriented Design", IEEE Software,
Vol. 4, No. 2, pp. 50-64, Mar. 1987.

Neighbors, J.M., "The Draco Approach to Constructing Software from Reusable
Components•', IEEE Transactions on Software Engineering, Vol. SE-10, No. 5, pp. 564-
574, 1984.

Neighbors, J.M., "Software Construction using Components", Ph. D. Thesis University of
California, lrvine, Department oflnformation and Computer Science, p. 154, 1980.

Neighbors, J.M., "Draco: A Method for Engineering Reusable Software System", in
Software Reusability: Volumn I, Concepts and Models, Biggerstaff, T.J. and Perlis, A.J.,
(eds.), ACM Press, Addison-Wesley Publishing, pp. 295-319, 1989.

Pamas, D.L., "A Technique for the Specification of Software Modules with Examples",
Communications of ACM, Vol. 15, No. 5, pp. 330-336, 1972.

95

0

c

Prieto-Diaz, R., "Implementing Faceted Classification for Software Reuse",
Communications of the ACM, Vol.34, No. 5, pp. 89-97, May 1991.

Prieto-Diaz, R., "A Software Classification Scheme", Ph. D. Thesis, Thesis University of
California, Irvine, Department oflnformation and Computer Science, p. 194, 1985.

Prieto-Diaz, R., "Domain Analysis for Reusability", In Proceedings of COMPSAC'87,
Tokyo, Japan, 1987.

Prieto-Diaz, R. and Jones, G.A., "Breathing New Life into Old Software" in Software
Reuse: Emerging Technology, Trace, w. (ed), IEEE Computer Society Pree, Washington,
D.C., pp. 153-160, 1988.

Royce, W.W., "Managing the Development of Large Software Systems: Concepts and
Techniques", Proceedings WESCON, pp. 1-9, 1970.

Rumbaugh, I., Blaha, M, Premerlani, W., Eddy, F. and Lorensen, W., "Object-oriented
modeling and design", Prentice-Hall, 1991.

Shlaer, S. and Mellor, S.J., "An Object-oriented Approach to Domain Analysis", ACM
SIGSOFT Software Engineering Notes Vol. 14, No.5, pp.66-77, Jul. 1989.

Tajima, D. and Matsubara, T., "Inside the Japanese Software Indusstry", Computer, Vol.
17, No. 3, pp. 34-43, Mar. 1984.

Tanik, M.M. and Chan, E.S., "Fundamentals of Computing for Software Engineers", Van
Nostrand Reinhold, New York, 1991.

Tracz, W., "Software Reuse Myths", ACM SIGSOFT Software Engineering Notes, Vol.
13, No. 1, pp. 17-21, Jan. 1988,

Tracz, W., "Software Reuse: Motivators and Inhibitors", Proceedings ofCOMPCONS'87,
pp. 358-363, 1987.

Walker, I., "Requirements of an Object-oriented Design Method", Software Engineering
Journal, Vol. 7, No. 2, pp. 102-113, 1992.

Wegner, P., "Capital-Intensive Software Technology", IEEE Software, Vol. 1, No. 3, pp.
7-32, Jul. 1984.

Wirfs-Brock, R.J. and Johnson, RE., "Surveying Current Research in the Object-Oriented
Desgin", Communication ACM, Vol. 33, No. 9, pp.104-124, Sep. 1990.

96

0

0

Yin, W.P., Tanik, M.M., and Yun, D.Y.Y. Software Design Representation: Design
Object Descriptive Attribute Notation (DODAN), Proceedings of International
Conference on Computer Languages, 1988.

Zave, P., "The Operational Versus the Conventional Approach to Software
Development", Communications ofthe ACM, Vol. 27, No.2, pp. 104-118, Feb. 1984.

97

