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Abstract

Modern embedded real-time systems are increasingly interconnected with a multitude of

sensory devices, other embedded systems, and the cloud. The adoption of high-end embed-

ded single core processors and multiprocessors emanates from complex application processing

requirements. Timeliness, safety, and deterministic systems are long-standing design and op-

erational requirements of embedded systems. Recently, mobility, energy-efficiency, and heat

dissipation are equally crucial design requirements in applications including autonomous mo-

bile robots, wearable devices, and sensor networks. High-end embedded processors employ

energy-reduction techniques like Dynamic Voltage and Frequency Scaling (DVFS) and Dy-

namic Power Management (DPM). An effective energy-management strategy simultaneously

exploits hardware- and software-level energy-reduction techniques.

Initially, this thesis addresses the issue of energy-reduction on DVFS-capable single core

systems with peripheral devices. We consider a system-wide minimization problem where

we concurrently consider DVFS and DPM. Given that the frequency to task assignment

is an NP-hard problem, we appropriate and adapt two metaheuristics in our approach to

frequency assignment; namely the differential evolution and genetic algorithms. We ana-

lyze the performance of the metaheuristics given various initial conditions and show in our

simulations that our approach yields better results than two well-known heuristics.

Further, even though discrete-time simulators are sufficient for analyzing real-time sched-

ule feasibility, they fall short when evaluating energy-efficient scheduling. This is due to

incorrect processor modeling (i.e. due to IP rights, complex processor designs) and the in-

ability to capture realistic task behavior. The literature often presents case studies on real

hardware to corroborate simulations. However, these approaches are often ambiguous. We

propose a methodology that facilitates evaluating real-time systems on real hardware using

available embedded benchmarks as system tasks at various system load points. Similar to

software simulations, our methodology tackles the issue of examining the system at different

utilization points. We build on previous work that estimates task WCET, generates task

periods, and assigns task utilizations. The three parameters are interlocked, which limits the

flexibility of changing one without affecting the others. We propose a set of efficient algo-

rithms that pair tasks with bounded or discrete periods to meet the total system utilization

with minimal relative errors.

Finally, we address the issue of energy-efficient scheduling on clustered heterogeneous

platforms. We focus on energy-efficient partitioning where task allocation to heterogeneous

clusters directly impacts the total system energy. In this thesis, we couple the problem of
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energy-efficient partitioning on single-ISA heterogeneous platforms with task-aware schedul-

ing. Tasks differ in their instruction mix, cache behavior, memory and I/O access, execution

path, and active processing and SoC circuitry. This affects their power demand. We make

further use of underlying frequency scaling hardware and sleep states to minimize the system

energy. We propose two variants of our Task and Cluster Heterogeneity Aware Partition-

ing (TCHAP) algorithm targeting ARM big.LITTLE platforms. Based on our methodology

for simulation on real hardware, we show that our algorithms achieve between 13% to 23%

energy-reduction on average compared to a state-of-the-art schemes.
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Abrégé

Les systèmes temps-réel embarqués modernes sont de plus en plus interconnectés avec une

multitude d’appareils sensoriels, d’autres systèmes embarqués et du “cloud”. L’adoption

de processeurs monocœurs et multicœurs haut de gamme dans les applications embarquées

émane des exigences de traitement d’applications complexes. La pérennité, la sécurité et les

systèmes déterministes sont des obligations de conception et de fonctionnement de longue

date des systèmes embarqués. Récemment, la mobilité, l’efficacité énergétique et la dissipa-

tion de chaleur sont des exigences de conception tout aussi cruciales dans les applications

comprenant les robots mobiles autonomes, les appareils portables et les réseaux sensoriels.

Les processeurs embarqués haut de gamme utilisent des techniques de réduction d’énergie

telles que le voltage dynamique, la mise à l’échelle de la fréquence (DVFS) et la gestion

dynamique de la puissance (DPM). Une stratégie efficace de gestion de l’énergie exploite

simultanément les techniques de réduction de l’énergie au niveau matériel et logiciel.

Initialement, cette thèse aborde le problème de la réduction de la consommation d’énergie

sur les systèmes monocœurs avec matériel DVFS et périphériques. Nous considérons un

problème de minimisation à l’échelle du système où nous examinerons simultanément DVFS

et DPM. Étant donné que l’affectation de fréquence à la tâche est un problème NP-difficile,

nous avons adaptés deux métaheuristiques à notre approche d’affectation de fréquence:

l’évolution différentielle et l’algorithme génétique. Nous analyserons les performances des

métaheuristiques en fonction de diverses conditions initiales. Nous montrerons dans nos

simulations que notre approche donne de meilleurs résultats que deux heuristiques bien con-

nues.

En outre, bien que les simulateurs à temps-discret sont suffisants pour analyser la fais-

abilité des emplois du temps en temps réel, ils sont insuffisants pour évaluer des emplois du

temps qui économisent l’énergie. Cela est dû à une modélisation incorrecte de processeurs

(en raison des droits de propriétés intellectuelles, conceptions de processeurs complexes) et à

l’incapacité de capturer un comportement réaliste des tâches. La littérature présente souvent

des études de cas de “real-hardware” pour corroborer des simulations. Cependant, ces ap-

proches sont souvent ambiguës. Nous proposons une méthodologie qui facilite le portage de

simulations sur la ”real-hardware” a l’aide des ”benchmarks” embarqués en tant que tâches

système.

Comme pour les simulations logicielles, notre méthodologie aborde la question de l’examen

du système à différents points d’utilisation. Nous nous appuyons sur des travaux antérieurs

qui évaluent la WCET des tâches, génèrent des périodes des tâches et attribuent des utilisa-
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tions des tâches.

Les trois paramètres sont interconnectés, ce qui limite la possibilité de modifier l’un sans

affecter les autres. Nous proposons un ensemble d’algorithmes efficaces qui associent des

tâches à des périodes délimitées pour répondre à l’utilisation totale du système avec un

minimum d’erreurs relatives.

Enfin, nous abordons la question de l’ordonnancement optimal énergétique sur des plate-

formes hétérogènes groupées. Nous nous concentrons sur la répartition énergétique efficace

des tâches à des groupes hétérogènes ayant un impact direct sur l’énergie totale du système.

Dans cette thèse, nous associerons le problème de répartition énergétique efficace sur des

plateformes hétérogènes mono-ISA à un ordonnancement conscient de la tâche. Les tâches

diffèrent dans la combinaison d’instructions, le comportement du cache, l’accès à la mémoire

et aux I/O, la route d’exécution, et le circuit actif de SoC. Cela affecte leur demande de

puissance. Nous utilisons davantage les fréquences de “l’hardware” et les états de veille

pour minimiser l’énergie du système. Nous proposons deux variantes de notre algorithme de

répartition conscient de l’hétérogénéité de tâches et de cluster (TCHAP) ciblant les plate-

formes ARM big.LITTLE. Nous montrons que nos algorithmes permettent de réduire de

13% à 23% la consommation moyenne d’énergie par rapport à des systèmes à la pointe de

la technologie.
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Chapter 1

Introduction

Real-time embedded systems are pervasive in industrial, automotive, avionics, and consumer

applications. Meeting timing constraints is a top priority in real-time embedded systems.

System reliability, safety, determinism, and operational predictability dominate throughout

all design stages and decisions. During the past couple of decades, there has been numer-

ous breakthroughs and advancements in material design, lithography, transistor design and

miniaturization. This enabled packing more cores and peripheral devices into system-on-chip

(SoC) integrated circuits (ICs) reducing the amount of physical space required in designing

circuit boards. The manufacturing of portable devices relies heavily on our ability to build

devices in small form factors. As such, mobility, energy-efficiency, and heat dissipation have

equally become crucial design considerations. For example, portable embedded systems im-

pose limitations on the ability to use passive or active heat management approaches (e.g.

heat-sinks or cooling fans). Furthermore, system mobility necessitates the use of smaller size

power supplies and allows for the use of battery-powered systems or systems with limited

power supply (e.g., solar powered). This is quite a common design practice in applications

including autonomous mobile robots (e.g., drones), wearable devices, and sensor networks.

Autonomous robots and drones have seen wide adoption in search and rescue applications

in war-torn or catastrophe-struck areas around the world as well as civil applications. Wear-

able and sensory devices take a primary lead in health-care applications. Given the central

and essential role these systems play in wide array of life-saving applications, the longevity,

reliability of the system, and continued uninterrupted operation is of vast importance. This

is especially true when it is difficult to access the system or replace the power source due to

operational and environmental constraints. Higher energy consumption increases the over-

all system heat and the occurrence of thermal hot-spots. This adversely affects the system
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reliability and decreases battery life. For example, system failure rates can rise by a factor

of two with each 15 degree Celsius rise in temperature [5]. Consequently, safe operation in

critical embedded systems benefits from lower total system energy-consumption and further

elicits the need for developing fault-tolerant, energy- (and thermally) aware schedulers that

meet the system timing constraints. Despite the low energy of embedded systems in general,

their proliferation and expansive use in billions of devices would collectively add up to a

high energy footprint . This holds for either mobile embedded systems or those connected

to the power grid. As a result, power management in embedded and real-time systems en-

ables green computing and indirectly reduces carbon emissions and potentially has a positive

environmental impact.

General-purpose processors, graphic units, configurable FPGA units or custom ASICs

have a power budget that ranges between dozens of watts up to hundreds of Watts. This

renders them effectively unsuitable for deployment in real-time embedded systems where

portability and long system operational life is essential. Due to the stringent power con-

straints of modern embedded systems, specialized processors have been developed to meet

functional, operational, timing, and power requirements. Low power embedded processors

have a typical power budget of 1 - 2 Watts (e.g. TI AM437x Sitara Cortex-A9 processors

[6]). On another hand, ultra-low power embedded processors have power ratings in the range

of milliwatts (e.g. the STM32L5 series have a rating of 60µA/MHz in active mode running

at 3.3V (typical 60mW) [7]). For high-performance multi-core embedded processors such as

Samsung’s Exynos 5422 ARM’s big.little in Odroid-XU3 single board computers (SBC),

they boast a power rating of merely 5 Watts. Figure 1.1 presents the Odroid-XU3 board

which we use in this thesis. Such low-power embedded processors simplify heat dissipation

management, and by extension maintain system reliability.

To improve the energy-efficiency of processors, dynamic power management techniques

were among the first to make use of multiple sleep modes incorporated in processor designs.

Sleep modes turn off inactive processor components and reduce static power; that is, power

related to leakage current whenever logic components are active. As performance demands

increased, both architectural innovations and a steady increase of processor frequency con-

stituted a trend that dominated the market. This trend came at the cost of increased power

consumption and power density. Dynamic power which is directly proportional to proces-

sors run-time voltage and frequency overcame static power in the total share of processor

power. To mitigate this, frequency and voltage controller blocks were added to allow for

run-time alteration of processor frequency. In general purpose computing, Intel and AMD

introduced Intel SpeedStep and PowerNow! (later known as Optimized Power Management)
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Figure 1.1 The Odroid-XU3 board featuring Samsung’s Exynos 5422 ARM
big.little processor

technologies, respectively. Both technologies allow for direct control of the system opera-

tional frequency by software. Each processor has a set of discrete set of frequencies and a

firmware interface that allows for the selection of appropriate frequencies to balance between

application performance demands and system energy-reduction. Hardware controllers also

throttle run-time frequencies when overloaded cores reach high thermal levels at the risk of

inability to dissipate heat efficiently.

The steady increase of processor frequencies led to processor designs reaching the speed

wall due to overheating issues. As the power density increased, it has become difficult to

dissipate the processor heat by conventional means. Instead, to sustain the demand for

higher performance power, designs shifted towards packing multiple cores on the same chip.

With continuous advancement in lithography, transistors designs, and transistor scaling,

successive processor generations boasted an increase in core count over time. However, this

new design trend tilted the share of total processor power consumption towards leakage

current. This is due to the increased number of transistor count in many core designs, as

well scaling down maximum processor frequency. As a result, dynamic power management

techniques (i.e. sleep modes) had a surge of renewed interest. However, this time, power

reduction techniques make concurrent use of both voltage and frequency scaling and sleep

modes.

Within the context of real-time systems and real-time scheduling, the appropriation of

sleep modes and frequency scaling is not as straightforward as in general purpose applica-

tions. Real-time workloads must never violate their deadlines. Coarse-grained (processor

level) and fine-grained (task level) scaling down of processor frequency extends the task(s)
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execution times with higher probability of invalidating system feasibility. Furthermore, even

though the prolonged task execution time decreases the dynamic energy consumption, it

jointly increases the task leakage power. Homogeneous and heterogeneous multiprocessors

and multicores add extra optimization dimensions to an already complex problem: task

partitioning and the number of active cores. Energy-aware scheduling literature adapts to

the advancements in the underlying hardware and offers new solutions to these challenging

problems.

1.1 Problem Definition

Single core processors have for long dominated the embedded market. In 2016 and 2017, one

market study [8] shows that single core microprocessors make for around 57% of all embedded

projects. For example, over 200 companies have licensed the Cortex-M family of single core

processors to date and shipped over 12.1 billion units [9]. Whereas low-power single core

microcontrollers highly depend on sleep modes and lack the means to reduce dynamic energy

at run-time, high-end single core embedded processors provide system designers with the

necessary hardware and OS interfaces for tight control over the power budget. Furthermore,

embedded systems are evolving into cyber-physical systems; that is, highly interconnected,

tightly coupled systems with the physical world. The consolidation of the physical world into

the interconnected embedded processing world requires the use of many SoC peripherals and

external devices. Cyber-physical systems heavily rely on sensors, communication devices (e.g.

bluetooth, Wi-Fi), and recently the cloud. These peripherals and devices claim significant

portion of the system power profile and their share can no longer be excluded in energy

minimization. As a result, system-wide power reduction becomes a significant challenge.

Within this context, few outstanding problems are apparent. In these systems, both leak-

age current dissipation and dynamic power energy consumption constitute almost equally

high share of the total power consumption. It is not always clear how to effectively con-

solidate and couple the two main energy reduction approaches for maximum reduction of

total system energy consumption. There is an intricate interplay between both techniques.

Extensive use of dynamic frequency scaling reduces the available time of potential idle in-

tervals which can be necessary to offset the increase of static power due to prolonged task

execution. Conversely, extensive use of sleep modes imply that tasks will be running at

higher frequencies where the effects of dynamic energy consumption can outweigh the ben-

efits of deactivating the processing circuitry. Furthermore, the wake-up overhead due to

“data destructive” sleep modes trigger successive operations in the underlying cache, bus,
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and memory subsystems in order to restore the lost system state. This induces further en-

ergy consumption. Additionally, in interconnected embedded systems, many tasks heavily

rely on SoC peripherals and external devices to collect and store data, interact with the

external word, or visualize system state to provide meaningful user data. In many systems,

the energy profile of these devices is non-negligible. The literature is based on device models

where the associated devices of system tasks are expected to be ready and available at all

times the associated task is executing. Therefore, the use of task frequency scaling will lead

to an increase of the power consumption of the device set. In this context, we can define the

first problem as:

• How can we assign frequency scales to individual system tasks to attempt to mini-

mize the overall system consumption taking into consideration the associated system

devices? And how can we effectively integrate DPM/DFVS to achieve better energy

reductions given the intricate interplay between the two techniques?

Secondly, a major issue in energy-aware scheduling problems is the efficacy of evaluation

tools. These tools include in-house time-driven simulators, advanced community-supported

open-source or proprietary simulators, and actual hardware. We present an abstract usage

flow of these tools in Figure 1.2. Literature actively relies on simulation tools or mathe-

matical formulations to evaluate real-time scheduling feasibility. These tools are developed

by typical programming languages with the aid of extended classes and macros that enable

event-driven simulation (e.g. SystemC). Such simulators are sufficient for capturing the tem-

poral behaviour of system tasks and scheduling anomalies. However, these tools are limited

in their capacity to faithfully model the energy-consumption of system tasks. Another pop-

ular approach in academia relies on far more sophisticated event driven or cycle-accurate

simulators that present abstract functional and descriptive blocks of the complex hardware.

Many also run operating system images and allow to run user tasks in emulation mode. One

such popular tool is GEM5 [10]. GEM5 can also be interfaced with McPAT [11], which is

another popular tool for power, area, and timing estimation. Despite the popularity of these

tools and wide community support, the hardware models they employ remain not rigorously

tested or validated against the hardware they represent. Recent studies show that these

tools might be harmful to the research community and lead to results and conclusions which

are based on complex models that most users do not understand fully [12, 13]. Many of

these models are erroneous and inconsistent. For example, two models developed for ARM

big.little had a timing discrepancy of -51% and 10% when validated against the hardware

[12]. In another study, McPAT power estimates deviated considerably from actual power
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consumption due to abstraction error, modeling assumption error, input error, and coding

error with the majority of errors attributed the first two sources [14]. Abstraction errors

are due to only modelling common components across various supported architectures and

disregarding the rest. Modeling assumption error is due to the inherent inability to faith-

fully model all various micro-architectural components in detail. Input errors are due to the

vagueness of configuring architectural parameters whereas coding errors are attributed to

human mistakes when coding the models.

Figure 1.2 Evaluation platforms for embedded systems

As a result, direct evaluation on hardware remains the ideal option. This is quite common

in general purpose computing or non-real time embedded systems research. However, direct

evaluation on hardware is limited in real-time research to few case studies at certain points

of the design and evaluation space. This is due to the arising challenges in constructing

real tasksets for evaluation on hardware, especially when full-fledged evaluation at various

system load points is desired.

The available taskset generation tools use timed loops, matrix operations, or employ

functional code blocks to produce tasks that run up to a desired task worst-case execution

time. This approach has the downside that the generated taskset might not be representative

of real-life tasks. Additionally, given the reliance on code blocks and loops as building blocks,

the generated tasks risk being repetitive in functionality and behaviour. Most importantly,

these approaches mostly target single-core processors due to their simpler timing analysis.

These tools strictly dictate that they do not work for multicore platforms [15].

Another alternative in generating tasksets is to rely on embedded benchmarks suites.

These benchmarks arguably reflect some functionality of tasks found in industrial and com-
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mercial applications. Due to intellectual property constraints, the number of available bench-

mark suites is limited. Additionally, some researchers targeting specific platforms can infuse

their own custom-designed in-house codes that take advantage of chipset features and levy

up some embedded task functionality and realistic behaviour. In this case, we need to rely

on the burdensome task of estimating task WCETs. Moreover, many use discrete bounded

period sets either to limit system simulation time or to expose certain favourable character-

istics (e.g. RM scheduling using harmonic periods reaches 100% utilization instead of less

than 70% for non-harmonic periods [16]).

To reach solid conclusions about the algorithms under test, one needs to carry a com-

prehensive system evaluation across many points in the system design space. In real-time

systems, one such evaluation criteria is the total system utilization (i.e. percentage of time

the tasks occupy the processing elements). Real-time research tests the system under var-

ious load points ranging from low, to medium, to high utilization as system behaviour is

influenced by the current task load.

The challenge is once we use discrete bounded or unbounded period sets, and tasks with

estimated WCETs, it becomes apparent that the pairing problem between task WCETs,

periods, and individual task utilization to meet total utilization becomes difficult. This is

due to the fact that the three variables are interlocked. In real-time literature, when limited

case studies on real hardware present results to corroborate the theoretical simulation results,

in most cases, the methodology carried out for evaluation on hardware is ambiguous and

restricted to a demonstrative case-study at an arbitrarily chosen load point. To the best

of our knowledge, a methodology for the evaluation of embedded tasks on real hardware is

missing. This thesis addresses the following questions pertaining to this issue:

• For any target single-core or multicore platform with either time-deterministic or time-

randomized hardware features, what methodology should one follow in order to con-

struct real-time tasksets that can be used to evaluate the system at different task load

points?

• For a set of embedded tasks with estimated WCETs, and given a set of task utilizations

that add up to the desired system load, how to find pairs of WCETs and periods

from a discrete set to satisfy the task utilizations? In other words, how to pair these

utilizations with any WCET such that the computed period is as close as possible to

one of the periods in the discrete set?

• How can we generate taskset parameters pairings that respect the desired total system

load?
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Finally, embedded systems also harness the power of multiprocessor computing in de-

manding embedded applications. Homogeneous and heterogeneous platforms are ubiquitous.

In 2015, they represented 30% of market share of embedded projects [8]. In these platforms,

the energy-aware optimization problem takes extra optimization dimensions. In addition to

the conventional problems of single core energy reduction, new challenges present themselves.

The first challenge is task-to-core affinity assignment. Different partitioning schemes af-

fect both feasibility and energy consumption. The allocation of different tasks into different

cores results in different partitioned schedules, task interactions, and thus different idle in-

tervals. This directly affects the length of time a processor/core remains in a low-power sleep

mode, or the available time that can be exploited for further down-scaling of processor/core

frequency. The second challenge is the number of active cores. The system designer has

multiple design choices. A possible approach is to run tasks on fewer cores at high frequen-

cies and shutdown down inactive cores. This approach favors the reduction of the prominent

effects of leakage current at the cost of higher dynamic energy consumption on fewer active

cores. The second approach exploits all cores and extends task execution times as long as the

schedule remains feasible. This approach favors reducing dynamic power consumption but

increases the share of static power. There is no easy answer towards this problem. It highly

depends on various factors. These factors include the partitioned scheduling policy under

use, the taskset characteristics and interactions, the processor power profile, and shared

resources.

When heterogeneous cores are considered, the power and performance profiles of the

different cores or processors present another optimization parameter. In one scenario, heavy

duty tasks can run on high-end processors at high frequencies resulting in bursts of execution

with possibly ample idle time. This benefits in switching power-hungry processors into sleep

modes for longer duration. Another scenario assigns heavy duty tasks onto energy-efficient

cores. This scenario assumes that since the tasks utilize higher share than other system tasks,

it is better to run them on energy-efficient processors. Frequency to task assignment further

exacerbates the partitioning issue in heterogeneous systems. Performance-oriented cores

running at lower speeds could potentially be more energy-efficient than low-end cores running

at high frequencies. This class of scheduling problems is already known to be NP-Hard [17].

While real-time heterogeneous systems can use processing nodes of different architectures

(e.g., different ISAs, GPUs, ASIC, and FPGAs), in embedded real-time computing, they

mostly rely on single-ISA clustered heterogeneity in SoC form (e.g., ARM big.LITTLE SoCs).

For embedded heterogeneous platforms, this thesis tries to answer these problems:
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• In a single-ISA clustered heterogeneous multicore system, how to partition system tasks

such that the overall processor power is reduced and the system remains feasible?

• How to couple task-awareness with cluster frequency selection and energy-efficient task

partitioning?

1.2 Thesis Contributions and Collaborations

This section presents a summary of the contributions that we made in this research. We

organize these contributions by the presented topics within this thesis. Most importantly, we

highlight how we addressed the research questions and challenges that we presented in the

previous section. We highlight the body of work that we have either previously published,

or is at various points in the process of being considered for future publication.

• For the problem of frequency assignment of tasks with an associated device set, we pro-

pose utilizing two evolutionary-based algorithms based on the genetic algorithm GAFS

and differential evolution DEFS. Given that the DVFS levels are discrete in all capable

real-life processors, we implement the genetic algorithm and differential evolution algo-

rithm as a discrete optimization problem to assign task frequencies. In lieu with other

works, we have developed an in-house discrete time simulator based on transaction-level

modelling in SystemC and C++. Our simulator includes modules for task generation

and device association, the genetic and differential evolution algorithms, a scheduling

module with feasibility checks, and energy reduction and computation. The simulator

is able to compute the energy-consumption of any feasible taskset schedule and feeds

it to the metaheuristic algorithms to use in the optimization problem. This work has

resulted in the following publications:

– A. Suyyagh, J. G. Tong and Z. Zilic, ”Analysis of meta-heuristics performance

in energy aware scheduling of real-time embedded systems,” 2015 IEEE Confer-

ence on Applied Electrical Engineering and Computing Technologies (AEECT),

Amman, 2015, pp. 1-6.

– A. Suyyagh, J. G. Tong and Z. Zilic, Performance Evaluation of Meta-heuristics

in Energy-Aware Real-Time Scheduling Problems,” Jordanian Journal of Com-

puters and Information Technology, vol. 2, no. 1, pp. 68–85, 2016.

• Our first novel contribution is that we have developed a methodology that facilitates

porting real-time simulations onto real hardware using available embedded benchmarks
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(or if desired, in-house developed codes) as system tasks. Our methodology allows

for the evaluation of real-time tasks on real-hardware at various system utilization

points. Our methodology builds on previous work in estimating task WCETs, gener-

ating taskset utilizations, and generating task periods. The second innovative contribu-

tion is a set of algorithms that efficiently pair and assign the tasks temporal properties

to the benchmarks set and in-house codes (if any). The generated tasksets satisfy a

desired total system utilization with minimal errors. Our methodology for generat-

ing tasksets is more realistic as opposed to taskset generators that construct tasks by

burning processor cycles through loops, matrix operations, or functional code blocks.

The added realism is fundamental for faithful evaluation of energy-aware scheduling

algorithms. This work has resulted in the following publications:

– A. Suyyagh and Z. Zilic, ”A Methodology for Constructing Tasksets for the Eval-

uation of Real-Time Workloads on Embedded Hardware”, ACM Transactions on

Embedded Computing Systems, (Submitted May 2018 - Currently being revised

by the authors)

– A. Suyyagh and Z. Zilic, ”Real-time benchmark set synthesis based on pWCET

estimation and bounded hyper-periods,” 2017 International Conference on Cir-

cuits, System and Simulation (ICCSS), London, 2017, pp. 129-133.

• We propose heuristics for partitioning embedded workloads on single-ISA clustered het-

erogeneous platforms. We designed two versions of our TCHAP algorithm to consider

two cases. The first case is when the system is able to transition into low-power mode

where the transition overhead does not affect the system timeliness. The second vari-

ant is when the system stays in idle mode and does not transition into sleep mode. The

TCHAP algorithm relies on two other proposed algorithms: T-CAFE, and ACIF. The

former adds task-awareness to the problem of heterogeneous task allocation, whereas

the latter selects initial cluster frequencies that satisfy initial schedule feasibility. We

target ARM’s big.LITTLE architecture which to our knowledge is the most successful

and pervasive clustered single-ISA heterogeneous architecture. This work has resulted

in the following publication:

– A. Suyyagh and Z. Zilic, ”Energy and Task-Aware Partitioning on Single-ISA

Clustered Heterogeneous Processors”, IEEE Transactions on Parallel and Dis-

tributed Systems, (In Submission - September 2018)
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Our extensive work, practical, and teaching experience based on ARM Cortex-M pro-

cessors family partially influenced parts of this thesis. The working knowledge of industrial

RTOS (CMSIS based on RTX5) assisted in the development and analysis of the scheduling

algorithms used in this thesis. The academic experience in teaching real-time embedded

systems culminated in the following publication:

• A. Suyyagh, B. Nahill, A. Courtemanche, E. Kirshin, Z. Zilic and B. Karajica, ”Man-

aging the microprocessor course scope expansion,” 2013 IEEE International Conference

on Microelectronic Systems Education (MSE), Austin, TX, 2013, pp. 36-39.

Lastly, as the single author of this thesis, I declare that I solely conducted the collection of

measurements and analysis of the generated data. That the methodology and all algorithms

presented in this thesis are novel ideas that the I designed, implemented, analyzed, and

evaluated on my own. I claim the sole authorship of this thesis and the first authorship of

all published works and all works in submission pertaining to this thesis. I acknowledge that

Prof. Zeljko Zilic in his role as an academic supervisor has offered many suggestions and

helped in editing all manuscripts submitted including this thesis. I also acknowledge that

Dr. Jason Tong helped in editing the published manuscripts related to Chapter 3.

1.3 Thesis Organization

The organization of the entire thesis is as follows: Chapter 2 presents the necessary back-

ground, terminology, and definitions used throughout this thesis. Sections 2.4 through 2.6

present a brief survey of the previous work related to energy-aware scheduling on unipro-

cessor and multiprocessor platforms, the use of metaheuristics in scheduling problems, and

the approaches of constructing tasksets for real-time systems simulation and evaluation.

Chapter 3 covers the implementation and evaluation of a discrete genetic algorithm-based

approach GAFS and a discrete differential evolution based-algorithm DEFS in frequency to

task assignment in DVFS-capable uniprocessors with DPM support. Chapter 4 presents the

proposed methodology for porting real-time simulations onto real hardware. It also presents

the CPA family of algorithms that pair the taskset temporal properties and assigns them to

the system tasks. Chapter 5 presents a comprehensive description and model of clustered

single-ISA heterogeneous processors. It further proposes two versions of the TCHAP algo-

rithm used for energy-aware partitioning on ARM big.LITTLE platforms. Finally, Chapter

6 summarizes the thesis and presents venues for future research that extends the themes and

ideas presented in this work.



12

Chapter 2

Background and Literature Review

This chapter begins with a brief background on real-time systems and real-time scheduling

theory. It introduces concepts and definitions which are used throughout this thesis. Subse-

quently, this chapter overviews the processor power model commonly used in literature. It

further covers the major hierarchical techniques employed by both industry and literature

to reduce power consumption. Essentially, the chapter presents a survey of the most im-

portant research pertaining to energy-aware scheduling on unipocessors, homogeneous and

heterogeneous multiprocessor systems. The chapter provides a brief overview on the use of

metaheuristics in scheduling theory, and on the different techniques that construct real-time

tasksets. Finally, the chapter concludes with a discussion of Performance Monitoring Units

and associated tools.

2.1 Real-Time Systems Concepts

A real-time system is a system that not only depends on the correct functional output of

its underlying tasks, but crucially on the timeliness of the tasks. That is, tasks should start

at specific times and deliver their output within specific time frames called task deadlines.

Real-time systems must be highly responsive to external stimuli, predictable, and have a

deterministic behavior for safe operation. Given that the timing latitude to react in response

to external triggers is limited, both the physical components (i.e. real-time processors) and

software components (i.e. Real-Time Operating System) must provide for the means to

conform to the timing constraints of the system. For example, a real-time processor must

have short interrupt latencies and real-time schedulers must schedule tasks such that none

of the tasks misses a deadline.

Real-time systems can be classified according to their deadlines as hard, firm, or soft real-
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time systems. Hard real-time systems have serious consequences should deadlines be missed

often resulting in fatalities, injuries, physical damage, or economic and ecological disaster.

Hard real-time systems comprise most of automotive systems, avionics, defense and nuclear

systems, or any system with safety critical applications.

Firm and soft real-time systems, on the other hand, can usually accommodate deadline

misses. The repercussions manifest in the loss of quality rather than severe injuries or total

system failure. In firm real-time systems, the system survives complete failure as long as

the deadline misses are infrequent. For example, multimedia applications with firm timing

constraints on processing video frames still run adequately if the system is not able to

process some frames within the deadline. This would result in jittering or loss of video

quality. However, the system will not fail unless most or all frames are not processed in

time. Soft real-time systems allow for frequent deadline misses as long as tasks do present

correct results after the deadline has passed even though the usefulness of the result degrades

after the deadline. Some home-automation and IoT applications fall into this category. For

example, a system that collects room temperature readings and adjusts the air conditioning

level falls into this category. A lag in acquiring and processing temperature sensor readings

would not incur a system failure.

2.1.1 Task Models, Parameter Definitions, and Characteristics

Real-time systems have been designed with various task models. However, regardless of the

model, each task τi in the set of N real-time tasks Γ = {τ1, τ2 . . . τN} is specified by a set of

timing parameters which are illustrated in Figure. 2.1:

1. Task release time or arrival time (ri) parameter denotes the triggering time for

the task execution request. That is, when a task arrives and becomes known to the

scheduler. The task release time should not be confused with the task execution start

time (activation time) which is decided by the scheduler. When all system tasks have

the same release time, this model is called simultaneous triggering. The tasks are said

to be in-phase. When tasks first arrive to the system at different times, the model is

therefore called progressive triggering.

2. Task activation or start time denotes the time at which the scheduler selects the

task from the ready queue and releases it onto the processor to begin execution.

3. Task finish time is the time at which the task completely finishes execution and

yields the processor back to the scheduler.
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Figure 2.1 Summary of times associated with task execution [1]

4. Task worst-case execution time (WCET) parameter (ci) denotes the task worst-

case computation time required when the processor is fully allocated to its execution.

This time does not necessarily equal the task finish time since the task might be

interrupted and preempted few times during the course of its execution. The WCET

only relates to the actual time spent on executing the task instructions and does not

include the time when the task may be blocked or preempted. The notion of worst-case

execution time stems from the fact that job releases will differ in their execution time.

Tasks go through different computational flow paths in response to varying run-time

inputs. The response to conditional statements and the length of loops might differ

between task instances. The processor architecture and topology further affects the

execution time (e.g. cache misses, no. of cache levels).

5. Task period (Ti): In the periodic task model, the task period denotes the regular

interval between the arrival of the jobs of task τi.

6. Task minimum inter-arrival time (also Ti): In the sporadic model, this parameter

denotes the minimum time interval between job releases of task τi.

7. Task deadline (di) denotes the maximum acceptable delay for task processing and

providing correct results. In real-time systems, the task deadline is the most important

parameter. It is worth mentioning that deadlines do not necessarily need to be short

or enforce a sense of urgency. To clarify, the notion of a deadline is application depen-

dant. Some deadlines are associated with fast response (e.g. car airbag controllers).
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Others, for instance, can extend to minutes (e.g. some industrial temperature control

applications). Task deadlines can be implicit, constrained, or unconstrained. In the

implicit deadline model, task deadlines equal their periods or minimum inter-arrival

time (di = Ti). An executing task instance must finish before the release of the next

instance. A constrained deadline task has a deadline that is less or equal to its period

or minimum inter-arrival time (di ≤ Ti). The deadlines must be explicitly specified and

known for each task τn. Implicit deadlines are therefore a special case of constrained

deadlines. Unconstrained deadlines basically represent the general case where deadlines

can be either less than, equal, or greater than task periods or minimum inter-arrival

time (di ≤ Ti or di > Ti). Similar to the constrained deadline model, unconstrained

deadlines must be explicitly specified.

8. Task response time is the time elapsed between the task release (arrival) time and

its termination. The worst-case response time (WCRT) is the longest observed time

from a job arrival to its completion.

9. Task lateness is the time difference between a finish time of a task and its deadline. In

hard real-time systems, tasks that meet their deadline will have either zero or negative

lateness. In soft-real-time system, it is possible to have positive lateness. Lateness

is one criterion used to compare between scheduling algorithms. Many schedulers

attempt to lower the maximum lateness of any taskset.

In real-time systems, the least common multiple of all task periods is called the hyper-

period(H). In mathematical notation, it is represented by Equation. 2.1:

H = lcm( ∀τn ∈ Γ ) (2.1)

The quality and correctness of the scheduling depends on the exactness of these parame-

ters. This is crucial for the determinism and safety of real-time systems. Furthermore, task

switching (context switching), the scheduling overhead, and interrupt processing must not

be neglected. During the design stage, these overheads must be analyzed and added to the

task computation time.

In real-time systems, a task set has properties defined by one of these main task models:

1. Periodic: A periodic task is an infinite sequence of task instances (a.k.a jobs) whose

arrival time is fixed in regular periods. The notation τn,m denotes the mth instance

(job) of task τn. In this model, tasks can be initially released at the same time (simul-

taneously triggered) or at different times (progressively triggered).
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2. Frame-based: This model is a special case of the periodic task model where a set of

tasks share the share the same release time (t = 0), the same period (called the frame),

and the same deadline which is equal to the period. The length of the period is hence-

forth called the frame length. In each frame, tasks are executed in a predetermined

fixed order.

3. Sporadic: This model is similar to the periodic task model with the main difference

that task instances do not necessarily arrive at regular intervals. In this case, instead

of periods, tasks have a minimum inter-arrival time parameter between task instances.

Periodic tasks are a special case of sporadic tasks.

4. Aperiodic: This model is considered the hardest to schedule in real-time systems sim-

ply because tasks have no regular period or minimum inter-arrival time. Consequently,

with no understanding of the job release behavior, the scheduling problem becomes a

best-effort policy. That is; tasks are scheduled when there is time.

Tasks can be further classified as independent or dependent tasks. As opposed to de-

pendant tasks, independent tasks have no precedence constraints nor a sequential order of

execution to adhere to. For example, the process of acquiring a sensor’s data, filtering the

data stream, and processing it can be modeled by a set of small successive dependent tasks

that must execute in a timely order. Alternatively, the whole process can be contained in

one larger task that is independent of other system tasks.

In a real-time system, Equation 2.2 computes the processor utilization of any task:

ui =
ci
Ti

(2.2)

where ui is the task utilization, ci is the worst-case execution time, and Ti the task period.

For N periodic tasks, the total system utilization is given by Equation 2.3:

U =
N∑
i=1

ci
Ti

=
N∑
i=1

ui (2.3)

The processor load factor UL (a.k.a density) is given by Equation 2.4. In implicit deadline

periodic systems, the processor load and utilization are the same:

UL =
N∑
i=1

ci
di

(2.4)
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For a system with support for frequency scaling and with a discrete frequency set f =

f1, f2, . . . fmax, the set λ = λ1, λ2, . . . λmax denotes the scaling factors corresponding to the

discrete frequency set f . The sets f and λ are of equal size. Equation 2.5 defines the

frequency scaling factor as:

λi =
fmax
fi

(2.5)

When task execution times are assumed to scale linearly with frequency, the task uti-

lization is updated to reflect this change in execution time. Equation 2.6 expresses the new

utilization as:

ui =
λi.ci
Ti

(2.6)

2.1.2 WCET Estimation

Estimating Worst-Case Execution Times (WCET) of real-time tasks is an arduous endeavour

of extreme importance in time-critical and real-time systems. Given the different system

initial conditions and the different task inputs throughout the system life-time, the execution

time of any task varies. Figure 2.2 shows a distribution of task execution times for one

possible task and the associated terminology. Most of the time, the task will run for shorter

lengths than its WCET. Given the possibly large space of possible execution times of a

task, there are no guarantees that one can observe the best-case execution time (BCET) or

worst-case execution time (WCET) of any task under consideration.

Figure 2.2 Timing analysis terminology of a task [2]
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Various techniques exist that attempt to place lower and upper-bounds for the execution

time of any task. The devised techniques largely fall under three approaches: static-based,

measurement-based, and hybrid analysis. Each of the approaches can be carried in either

deterministic or probabilistic fashion. Abella et al. [18] provides a survey of WCET analysis

methods. Regardless of the method used to perform the timing analysis of system tasks, two

criteria are essential in the of evaluation WCET estimation methods: safety and precision.

Safety means that the obtained estimate must be higher than the WCET. Precision considers

the closeness to the exact value of the WCET. The following sections briefly summarize the

main approaches, their pitfalls, and strengths.

2.1.2.1 Static Timing Analysis (STA)

Static WCET analysis is based on analyzing the assembler code or machine level of the pro-

gram and constructing a path-flow model. This requires user understanding and annotation

of the code (e.g. specify number of loop iterations). Static techniques require an exhaustive

analysis of all input values to the task, or a reduced set of values based on safe abstraction.

Static WCET Analysis uses the path flow model in conjunction with a timing model of

the target hardware platform. The accuracy of the timing model is fundamental. Recent

advances in modern hardware and the introduction of complex features to levy up perfor-

mance has complicated the low-level timing analysis procedure. Building accurate static

analysis tools which incorporate knowledge of system-wide timing interaction (i.e. between

processors, memory and I/O) has been increasingly challenging, especially that the hardware

description in the abstract processor model must be highly detailed. The limited disclosure of

technical and timing specifications has vastly exacerbated the issue. Common static WCET

analysis tools include OTAWA [19], aiT [20], Heptane [21] and Bound-T [22]. However; the

lack of support for many modern and multicore architectures (an open challenge), the cost

of some of these tools, and the lengthy analysis time for numerous tasks makes them less of

an option for a timely setup of a simulation platform. Yet, these tools provide tight and safe

bounds on WCET and remain standard tools in industry.

2.1.2.2 Measurement-Based Timing Analysis (MBTA)

Measurement-based WCET estimation demands understanding of the task source code and

potentially a large set of various inputs and initial conditions of the hardware (e.g cache

state) that include the path which leads to the WCET. This is practically unfeasible for

large systems. This approach requires accurate measurement procedures in the sense that
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the tools used to measure the time are not intrusive and should not introduce measurement

errors. Despite the ability of Performance Monitoring Counters (PMCs) (refer to Section

2.6.1) to count the task execution cycles, they inherently pollute the measurements with

the overhead used by the driver API that accesses them. The effect of the overhead on

the measurement highly depends on the hardware and driver API, though it is often quite

minimal. Underestimating the time affects the trustworthiness of the measurements, while

overestimating the running time affects the tightness of the WCET bound. To measure

execution times on embedded processors not equipped with performance counters, users rely

on setting up a couple of flags. The first at the start of execution of the task, and the other

right before the termination point. The flag signal goes through GPIO pins to oscilloscopes

or logic analyzers where the measured time between the two flags denotes the execution

time. Given the collected measurements, there is no clear consensus on how the WCET is

determined. The maximum observed execution time does not necessarily suggest that it is

the actual WCET. A practical approach is to add a safety margin that should be pessimistic

yet tight. Typically, a certain percentage is added to the highest measured execution time

(e.g. 10% to 20%). There is no scientific justification behind the criteria to select these

percentage margins except that they work in most-cases!

2.1.2.3 Probabilistic Timing Analysis (PTA)

STA, MBTA, and their hybrid approaches can be either deterministic (DTA) or probabilistic

(PTA). Deterministic approaches always provide a single WCET estimate for a set of given

inputs and initial hardware conditions. They highly rely on determinism in the hardware

design (e.g. fixed number of cycles for bus arbitration, fixed number of cycles to service inter-

rupts ... etc). However, modern complex hardware designs are not inherently deterministic

(e.g. shared caches and resources adds further interaction complexity). Probabilistic Tim-

ing Analysis (PTA) applies to both time-deterministic and time-randomized software and

hardware resources. In contrast to a single WCET estimate, PTA computes a probability

distribution function (pda) that encompasses a range of WCETs. The distribution features

a prominent tail that extends towards long execution times. A single WCET is derived

from the distribution at a certain probability which corresponds to the overall probability of

failure according to a certain safety standard. As such, the WCET value is called pWCET

to denote that it has been derived through probabilistic means.

When constructing the distribution function for pWCET estimation, the timing vari-

able must be independent and identically distributed (IID). As such, a main requirement
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prior to using PTA approaches is randomization to ensure the IID property. For example,

processors with caches that employ least recently used (LRU) replacement policy break the

independence property as successive runs of the program are history dependent and blocks of

code will always be placed/found at the same cache blocks addresses. In this case, software

randomization is needed prior to using PTA approaches. Before each run, the task objects

are randomly placed in memory in such a way that they would be mapped to different cache

blocks during successive runs. On the other hand, a notable example of hardware random-

ization is using caches with Random Replacement policy (RR). These caches randomly map

memory blocks to cache blocks eliminating the setup overhead of random object placement

in memory. ARM Cortex-R and Cortex-A processors employ last level caches (LLC) that

use random replacement policy.

PTA has been applied to both static timing analysis (SPTA) [23, 24] and measurement-

based timing analysis (MBPTA) [25, 26, 27, 28]. The rationale behind adopting probabilis-

tic WCET estimation (pWCET) is mainly the challenges of static WCET tools. Further,

measurement-based techniques require extensive exploration time and initial test patterns

than their probabilistic counterparts. Extreme Value Theory (EVT) is often used to con-

duct MBPTA. In contrast to central limit theorem where the focus is towards the mean of

the distribution, EVT is concerned with the extremes of the distribution. Various applica-

tions employ EVT such as meteorology [29], finance [30], and astronomy [31]. Literature

has covered few models to apply EVT for probabilistic WCET estimation. The Generalized

Extreme Value (GEV) and the Gumbel distributions are notable examples [32, 33, 34, 35].

The Gumbel model is one of the models that are included in the GEV which also considers

Weibull and Fréchet models.

2.1.3 Real-Time Scheduling

Scheduling is the core of any real-time operating systems. A scheduling decision comprises

three main decision parts: timing, ordering, and assignment. Timing relates to the time at

which a task executes. Ordering relates to which order any processor should execute the set

of tasks in its scheduling queue. In multiprocessor and multicore platform, assignment is

concerned by which processor runs which task. It is essential that we define the concept of

a feasible schedule within the context of real-time scheduling:

Definition 2.1.1. Feasibility: A feasible schedule of taskset Γ is a timing schedule in which

all tasks τn ∈ Γ meet their respective deadlines.

The notion of feasibility of a taskset Γ is independent of any particular scheduling algo-
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rithm. In contrast, the notion of taskset schedulability and schedulability test are defined

relative to a scheduling algorithm:

Definition 2.1.2. Schedulability: A task set Γ is said to be schedulable by a given scheduling

algorithm if the schedule generated by the scheduling algorithm respects all the deadlines of

the tasks in Γ.

Definition 2.1.3. Schedulability test: For a taskset Γ scheduled by a real-time scheduling

algorithm on platform Π, a schedulability test is a test on Γ determining if Γ is schedulable

by the scheduling algorithm on Π.

A real-time schedule optimality is defined by the notions of feasibility and schedulability.

In simple terms, an optimal scheduling algorithm is an algorithm which respects all task

deadlines for any taskset for which a scheduling solution exists.

Definition 2.1.4. Scheduler optimality: A scheduler that yields a feasible schedule for any

task set under a set of constraints (i.e. task model) for which there is a feasible schedule is

said to be optimal with respect to feasibility.

Therefore, the comparison and analytical study of any scheduling algorithm comprises

two parts:

• “The optimality of the algorithm in the sense that no other algorithm of the same

class (e.g. fixed or variable priority, refer to Section 2.1.3.3) can schedule a task set

that cannot be scheduled by the studied algorithm [36]”. “A scheduling algorithm

that delivers a feasible schedule whenever processor utilization is less than or equal to

100% is obviously optimal with respect to feasibility. It only fails to deliver a feasible

schedule in circumstances where all scheduling algorithms will fail to deliver a feasible

schedule. [1]”.

• “The off-line schedulability test associated with an algorithm, allowing a check of

whether a task set is schedulable without building the entire execution sequence over

the scheduling period [36]”

There are different ways to group and classify scheduling algorithms. For instance, sched-

ulers can be offline or online schedulers, fixed-priority or dynamic-priority schedulers, non-

preemptive, limited- or fully-preemptive. The following sections present a brief discussion

on each.
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2.1.3.1 Offline and Online Schedulers

Schedulers are classified as online or offline depending on the time the scheduler makes it

decisions:

• Offline scheduling: In offline scheduling, the taskset is fixed and known a priori in or-

der to be able to calculate task activation times at design time. The scheduler executes

over the entire taskset without actual task activation. The resulting schedule is stored

in an activation table. At run time, instead of a scheduler, a task dispatcher consults

the task activation table to decide which task to execute next given the pre-generated

task schedule. This fully-static scheduling approach makes the three scheduling deci-

sions at design time. Even though this approach reduces the scheduling overhead and is

independent of the scheduling algorithm complexity, it is quite inflexible to operational

changes. Furthermore, it is hard to realize on most modern microprocessor systems

due to the difficulty in precisely predicting task execution times. Execution times are

data-dependent and task behavior can be affected by the interaction with other tasks

in the system. Another version of offline scheduling is a static order scheduler that

decides processor-task affinity and task ordering at design time, yet decides the precise

task activation time at run-time.

• Online scheduling: Online scheduling is a fully dynamic scheduling where all schedul-

ing decisions take place at run-time. The scheduler runs whenever a new task enters the

processor task ready queue, or a running task terminates, or when it blocks on waiting

for a mutex to be released or an I/O operation to complete. However; it is worth not-

ing that a static assignment scheduler where only task to processor assignment takes

place offline, yet task ordering and activation at run time is also considered online

scheduling. In online scheduling, tasks have either fixed priorities that are assigned

to the tasks before their activation and never change throughout the system run-time,

or dynamic priorities that change depending on tasks timing parameters through the

course of system execution.

2.1.3.2 Real-Time Scheduling Preemption Levels

Schedulers can be non-preemptive, fully-preemptive, or have limited preemption capability.

Non-preemptive schedulers allow every task to run to completion without any interruptions

despite the fact that higher priority tasks are available in the task ready queue, or that
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the task is waiting on mutexes or I/O. The simplicity of the approach though appealing

introduces higher risks of task deadline misses due to delayed task response time.

Fully preemptive schedulers can make scheduling decisions during the run time of any

given task. It does not necessarily wait until executing tasks terminate or block. The sched-

uler can run periodically at specified intervals to make new scheduling decisions. It can

be further triggered by new task arrivals in the task queue. Preemptive schedulers sus-

pend currently running tasks in favor of higher priority tasks. Compared to non-preemptive

scheduling, preemptive schedulers are highly responsive and reduce the possibility of miss-

ing deadlines. However, they incur scheduling and context switching overheads. Frequent

context switching increases the traffic in the underlying memory and bus subsystems and

consequently the energy consumption. For example, some data blocks related to the pre-

empted and preempting tasks could possibly map to the same cache lines resulting in cache

misses. Cache block replacement and fetching data and/or instructions from main memory

often entails large energy and timing overheads. The work of [37] studied the relationship

between preemption and cache behavior under fixed priority scheduling. Furthermore, the

work of [38, 39] shows that the incorporation of DVFS hardware (see Section 2.3.3) increased

the number of task preemptions by 500% and memory access by 55% in the worst case.

Preempting a lower priority task might not be always necessary in order retain schedule

feasibility. Limited preemption is a hybrid implementation between fully-preemptive and

non-preemptive scheduling. In some cases, the limited preemption model is able to sched-

ule tasks sets which are deemed unfeasible under both non-preemptive and fully-preemptive

scheduling [40]. Furthermore, limited preemption could reduce the number of preemptions

by up to 90% while retaining schedule feasibility[41]. This effectively reduces task synchro-

nization overhead and the required stack memory; a critical resource in memory constrained

embedded systems[42].

A popular and simple approach to limited preemption scheduling is Preemption Thresh-

old Scheduling (PTS) [40, 43]. In PTS, tasks have preemption levels and preemption thresh-

olds. It is no longer sufficient for a task to have higher priority than another task in order

to preempt it, but also it should have a preemption level that is higher than the running

task preemption threshold. When preemption thresholds are set to the maximum, no task

preempts another effectively rendering PTS to be non-preemptive. In contrast, when pre-

emption threshold are set to the lowest possible threshold, PTS becomes fully-preemptive

scheduling. As such, both non-preemptive and fully-preemptive scheduling are special cases

of the PTS limited-preemption model. The survey of Buttazzo et al. [41] covers other tech-

niques to implement limited preemption models and provides a comparative performance
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analysis. ThreadX [44] is one commercial RTOS that implements the PTS form of limited

preemption.

2.1.3.3 Fixed and Dynamic Priority Schedulers

Priority-based scheduling assigns numbers to the tasks called task priorities. A real-time

scheduler will choose the task with the highest priority to execute first. Priorities can be

either fixed and remain constant for all task instances throughout the system operational time

or can change dynamically. In some scheduling algorithms, system designers must specify

the task priority levels at design time and ensure that the system demonstrates correct and

safe behavior all the time for all possible cases. For example, this approach is used when the

scheduler uses Round-Robin scheduling where tasks alternate in filling execution time slots.

The most prominent fixed-priority scheduling algorithms are the Rate Monotonic (RM)

and Deadline Monotonic (DM, a.k.a inverse deadline) algorithms. In a periodic and fully-

preemptive model with independent tasks, the RM algorithm schedules tasks according to

their arrival rate. Tasks with the shortest periods are given the highest priority. To demon-

strate, a simple form of the RM scheduling problem considers two tasks Γ = {τ1, τ2}, with

worst-case execution times {c1, c2}, and periods {T1, T2}. The execution time c2 of task

τ2 is longer than the period T1 of task τ1. Thus, if these two tasks are to execute on the

same processor/core, then it is obvious that a non-preemptive scheduler will not result in a

feasible schedule. However, a fully-preemptive RM scheduler will. Task τ1 will be assigned

higher priority since T1 < T2 and is able to preempt τ2 whenever it is executing. Figure 2.3

illustrates the preceding example.

The rate monotonic scheduler is optimal with respect to feasibility for the above model

among all fixed-priority uniprocssor schedulers [45]. It is worth noting that the RM algorithm

cannot achieve 100% utilization. The Liu and Layland bound [45] given in Equation 2.7

provides a sufficient schedulability condition for RM scheduling:

U =
N∑
i=1

ci
Ti
≤ N.(2

1
N − 1) (2.7)

where U is the processor utilization, N is the number of tasks in the taskset, ci and Ti are

the task WCET and period, respectively. For a system with a large number of tasks N , the

upper bound converges to ln(2) = 0.6931. That is, for a schedule to remain feasible under

RM scheduling, the processor must remain idle for about 31% of the time when the number

of tasks is large enough.
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Figure 2.3 RM scheduling of two tasks τ1, τ2 where task periods T1 < T2 [1]

Rate Monotonic scheduling only works for an implicit deadline model. For an explicit

deadline model where the condition that tasks deadlines equal their periods is relaxed, the

deadline monotonic scheduling must be used instead. In a similar fashion to RM schedul-

ing, deadline monotonic assigns task priorities to tasks according to their relative deadline.

Tasks with the shortest relative deadlines are assigned higher priorities. Within the set of

scheduling algorithms that target tasksets where tasks have deadlines shorter than their

respective periods, deadline monotonic scheduling is optimal with respect to feasibility. A

sufficient schedulability condition for the inverse deadline scheduling algorithm is given by

Equation 2.8:

U =
N∑
i=1

ci
di
≤ N.(2

1
N − 1) (2.8)

where U is the processor utilization, N is the number of tasks in the taskset, ci and di are

the task WCET and deadline, respectively.

In dynamic priority class of scheduling algorithms, the Earliest Deadline First (EDF) is

the most important algorithm. The EDF algorithm applies to both independent periodic and
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sporadic tasks under the fully-preemptive model. The EDF strategy is based on absolute task

deadlines. From a set of available in the ready queue, EDF assigns the task with the earliest

deadline the highest priority and selects it for execution. Given that the set of tasks in the

task ready queue varies during the system operation, so does the absolute deadlines, and

consequently the task priorities will vary accordingly. That is, the task instances τn,1, τn,2, . . .

will not necessarily have the same priority. If two tasks have the same deadline, their relative

order is of no consequence. EDF is optimal with respect to feasibility. Equation 2.9 sets a

necessary and sufficient condition for EDF schedulability for tasks with implicit deadlines:

N∑
i=1

ci
Ti
≤ 1 (2.9)

where N is the number of tasks in the taskset, ci and Ti are the task WCET and period,

respectively.

Aside from its optimality, a major advantage of EDF is that it allows for full utilization

of the processor time towards useful computation. It further reduces the taskset maximum

lateness compared to RM scheduling.

2.1.3.4 Real-Time Scheduling in Multiprocessor Systems

Traditionally, there are two main approaches for multiprocessor scheduling with a third

hybrid approach that combines between the two. Figure 2.4 illustrates the different multi-

processor scheduling techniques.

• Global scheduling: This approach utilizes one global scheduler and one shared task

queue for all tasks in the system. The scheduler decides the job-to-processor assignment

at run-time. Task instances can be run on any core depending on global scheduling

priorities at the scheduling instance. As such, tasks freely migrate between the cores

or processors. Due to task migration, global scheduling can better achieve online load

balancing and offers lower average response time than partitioned global scheduling.

However, task migration comes with overhead costs and the loss of cache affinity.

• Partitioned scheduling: In this approach, each core or processor has its own sched-

uler and independent task queue. Task to processor affinity decisions are a design

time parameter and thus determined a priori. Despite the extra cost in implementing

separate schedulers, partitioned scheduling allows the treatment of each core or pro-

cessor as a uniprocessor core. Hence, uniprocessor scheduling algorithms such as RM
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Figure 2.4 The different approaches for scheduling on multiprocessor systems

and EDF are readily applicable. Each scheduler runs on the subset of tasks associated

with the core/processor. Partitioning further allows for the use of well-known single

processor feasibility checks and analysis. However; task migration is not allowed. Task

to processor affinity remains unaltered throughout the system run-time.

• Hybrid Approaches: One hybrid approach called Semi-partitioned scheduling offers

a trade-off between partitioned and global scheduling. It relaxes the constraint that

no tasks or jobs migrate after partitioning therefore enabling limited task migration

with the goal of improving system utilization. In another approach called Hierarchical

scheduling, tasks are partitioned among different processing groups (i.e. multiproces-

sors, clusters .. etc) and each group has a global scheduler.

Optimal scheduling algorithms for uniprocessor systems do not readily extend to global

multiprocessor scheduling. In a result known as the “Dhall’s effect” [46], Dhall and Liu

demonstrated that global RM (G-RM) and global EDF (G-EDF) schedulers are not optimal

with respect to feasibility in global multiprocessor scheduling. However, this is an issue

directly related to high utilization [47]. Compared to single processor scheduling, and in the

general case, no online global scheduling algorithm exists that is optimal with respect to

feasibility. This result is stated in Theorem 1 [36, 48].

Theorem 1. An online algorithm which builds a feasible schedule for any set of tasks with

deadlines with m processors (m ≥ 2) cannot exist. [1]
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A necessary condition for multiprocessor schedulability is given by Equation 2.10. This

simply means that the total utilization must not exceed the system capacity:

m∑
j=1

N∑
i=1

ci
Ti
≤ m (2.10)

where m is the number of multiprocessors/cores in the system, N is the number of tasks in

the taskset, ci and Ti are the task WCET and period, respectively.

In consequence of the above findings, the research community has for long favored the

partitioning scheme. Unfortunately, the partitioning scheme is limited by the performance

of the allocation algorithm. Task partitioning is considered a bin packing problem. The

problem of bin packing is concerned with filling a finite number of bins of a given capacity

by a set of objects of different volumes to minimize number of bins used (or other criteria).

This problem is known to be NP-Hard [49]. However, there exists a set of efficient bin-packing

heuristics:

1. Worst-Fit assigns each task to the processor with the highest unused utilization (most

remaining capacity).

2. Best-Fit attempts to assign the task to the most loaded processor as long as it has

remaining capacity. Otherwise, it moves to the next loaded processor and so on.

3. Next-Fit starts assigning tasks to processors in sequential order of processors. It

begins with the first processor until it is full or if the task does not fit in the remaining

capacity of the processor. In this case, this processor is considered “closed”. The

heuristic proceeds with assigning tasks to the next sequential processor. The next-

fit heuristic never revisits “closed” processors even if there exists tasks that fit their

remaining capacity. This heuristic only has to keep track of the remaining capacity

of the currently “open” processor. However, it is clear that the next-fit heuristic is

inefficient in term of maximizing utilization.

4. First-Fit is similar to the next-fit heuristic with the main difference that it does

not “close” processors. It attempts to fill the processors in sequential order from the

beginning thus capitalizing on any remaining capacity that fits the task.

A minor variation of the above bin-packing heuristics orders the tasks in descending order

of task utilization. These are commonly known as Worst-Fit-Decreasing (WFD), Best-Fit-

Decreasing (BFD), Next-Fit-Decreasing (NFD), and First-Fit-Decreasing (FFD).
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2.1.4 Commercial Real-Time Operating Systems and Real-Time Linux

Numerous RTOSes are available for deployment in industrial and commercial applications

either under proprietary or free public license. Notable mentions are Windows CE [50],

ThreadX [44], ARM’s RTX Keil [51], MicroC/OS-II [52], FreeRTOS and SafeRTOS [53].

In automotive industry and under the AUTomotive Open System ARchitecture AUTOSAR

standard, the real-time scheduler assigns higher task priorities to high-rate tasks. This

approach is similar to the Rate Monotonic (RM) scheduling algorithm. VxWorks [54] is a

proprietary RTOS that features a priority-based preemptive scheduler and a fully-preemptive

round-robin scheduler. VxWorks is heavily used in spacecrafts and avionics. Notable de-

ployments include the Curiosity rover, Phoenix Mars lander, SpaceX Dragon, James Webb

Space Telescope, and Boeing 787 Dreamliner.

Mainstream Linux distributions has no native support for real-time scheduling. The

Linux RT PREEMPT patch enables kernel preemption and real-time API to allow for real-

time support. Linux introduced a scheduler SCHED DEADLINE based on Earliest Deadline

First and Constant Bandwidth Server (CBS) starting with kernel version 3.14 [55]. Commer-

cial Real-Time Linux or Unix-like examples include LynxOS [56] and RTLinux [57]. Similar

to the non-linux based RTOSes, RTLinux is based on first come first serve (FIFO) scheduler

with support for priority. LynxOS scheduler features four scheduling policies, FIFO, Priority

Quantum, Round-Robin, and non-preemptive. These RTOS solutions provide predictable

and deterministic behavior rather than optimal scheduling. The underlying schedulers do

not guarantee hard-real time operation. It is the responsibility of the designer to analyze

the schedules through offline timing tools to ensure feasibility.

In literature, given that the focus is on optimal scheduling algorithms, the Linux Test-bed

for Multiprocessor Scheduling in Real-Time Systems (LITMUSRT ) [58, 59] provides a useful

experimental platform for applied real-time systems research. It modifies the Linux kernel

through patches to add support for periodic and sporadic task models as well as the numerous

scheduling algorithms used by the research community. These include Partitioned EDF

with synchronization support (PSN-EDF), Global EDF with synchronization support (GSN-

EDF), Clustered EDF (C-EDF), and Partitioned Fixed-Priority (P-FP) among few others.

LITMUSRT is actively maintained, widely used in literature, and offers the opportunity for

reproducing and comparing results [60, 61, 62, 63, 64, 65].
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2.2 Processor Power Modelling

Modern processors have three modes of operation: active, idle, and at least one sleep mode

level. Active mode is the mode in which the processor is executing system tasks. In this

mode, the frequency of the processor is assumed to not vary throughout the run-time of the

task. In the idle mode, the processor is powered on but no tasks are running. Sleep modes

denote various states where the processor (its various internal components) are powered off.

Processors could have multiple sleep modes which offer different power savings by powering

off various components in the microprocessor. The deeper the sleep mode is, the more

internal processor components are powered down. Depending on the depth of the sleep

mode, the internal state of the inactive components can be either retained (drowsy state),

or be lost (destructive). Waking up from deeper sleep mode states where internal state and

register data has been lost incurs timing and power overheads.

Processor power consumption is modelled by a set of equations which have been repeat-

edly verified by SPICE simulation and adopted in literature [66, 67]. In the active mode,

Equation 2.11 gives the total processor power as:

Pactive = PDynamic + PStatic + PIndependent (2.11)

where PDynamic is the power consumed by the transistors during switching activity and is

proportional to the run-time voltage and frequency. PStatic is the power consumed due to

leakage current, and PIndependent is the power consumed by various processor components not

directly related to task processing (i.e. power regulators and Phased Locked Loops (PLLs)).

The dynamic power for a given frequency and voltage level is given by Equation 2.12:

PDynamic = CeffV
2
ddf (2.12)

where Ceff is the effective transistor switching capacitance, Vdd is the supply voltage and f

is the clock frequency. Equation 2.13 demonstrates the relationship between the operating

frequency, supply voltage, and threshold voltage :

f =
(Vdd − Vth)γ

LdK6

(2.13)

where Ld is an estimated parameter related to the average logic depth of the critical path

for all instructions supported by the processor, K6 is a technology constant, and Vth is given

by Equation 2.14:
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Vth = Vth1 −K1.Vdd −K2.Vbs (2.14)

where Vth1, K1, and K2 are platform-specific technology constants and Vbs is the body bias

voltage (i.e. voltage between transistor’s body and source).

The static power is largely dominated by the effects of the subthreshold leakage current

Isubn and the reverse bias junction current Ij. Sub-threshold leakage current results from

current flow between source and drain terminals of circuit transistors. Equation 2.15 provides

the means to compute the static power:

PStatic = Lg.(VddIsubn + |VbsIj|) (2.15)

where Lg is the number of devices in the circuit. The subthreshold leakage current Isubn is

given by Equation 2.16:

Isubn = K3e
K4VddeK5Vbs (2.16)

where K3, K4 and K5 are technology constants. Vbs is constrained to have a value between

0 and -1V such that the junction leakage power would not override gains in lowering Isubn.

In the idle mode, the processor consumes considerable power yet much less than the

active mode. Sleep modes consume much less power than the idle mode to virtually no

power in a complete shutdown state.

Processors and devices should be transitioned from their idle states to a lower power

state only when the transition is power-efficient. The decision to switch a processor or any

peripheral device to a lower power sleep state is based on the break-even time tBET parameter.

The tBET represents the minimum sleep time length that the processor is required to stay

in at sleep mode in order to make the switch to a lower power sleep state power-efficient.

Equation 2.17 computes the break even time for a processor [68]:

tBET (CPU) = max(tCPUsw ,
ECPU
sw − PCPU

sleep × tCPUsw

PCPU
idle − PCPU

sleep

) (2.17)

where tCPUsw and ECPU
sw are the processor time and energy switching overhead from idle to

sleep state, respectively. PCPU
sleep and PCPU

idle denote the processor power consumed in the sleep

and idle states and PCPU
idle > PCPU

sleep .
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Similarly, Equation 2.18 computes the break even time for any device devk.

tBET (devk) = max(tdevksw ,
Edevk
sw − P devk

sleep × tdevksw

P devk
idle − P

devk
sleep

) (2.18)

where tdevksw and Edevk
sw are the device time and energy switching overhead from idle to sleep

state, respectively. P devk
sleep and P devk

idle denote the device power consumed in the sleep and idle

states and P devk
idle > P devk

sleep

2.3 Power Reduction Techniques

In this section, we present some of the major approaches in the past few years that aim

to reduce power consumption in modern processors. These approaches are hierarchical and

span from transistor manufacturing technologies at the lowest level, through architectural

innovations, to chipset technologies, and finally software-level approaches (e.g. energy-aware

scheduling, compiler optimizations). Section 2.4 presents Energy-aware scheduling in more

detail.

2.3.1 Silicon-Level Power Reduction

As CMOS technology keeps scaling down, the leakage current increases substantially, and by

extension the static power. To curb the effects of static power, both industry and literature

have brought forward recent innovations at the silicon level. In the past few years, newer

transistor designs replaced the traditional planar FET transistors in CMOS circuits. Tech-

nically and commercially known as multigate and Tri-Gate (3D) transistors (a.k.a FinFET

technology), these newer technologies reduced leakage current up to 90% and cut switching

power by 50% [69]. Major foundries like TSMC, Samsung, and Intel produce chipsets with

FinFet technology [70]. Figure 2.5 illustrates how the introduction of FinFET transistor

technology has reversed the trend of leakage current taking a larger share of total circuit

power as the process technology continues to shrink.

The International Roadmap for Devices and Systems (IRDS) expects CMOS technology

to be nearing its scaling limit by mid 2020s (5nm and 3nm for FinFET) [71], and suggests

future chips will use chip stacks and monolithic 3D technologies to maintain performance

and power gains. Concurrently, research for candidate technologies continues. Examples

include carbon nanotubes [72, 73, 74, 75], Tunnel FETs (TFET), nanosheet FET [76], and

graphene based technologies [77].
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Figure 2.5 SoC Power Consumption Trends [3]

2.3.2 Architecture-Level Power Reduction

Architecture-level power reduction revisits traditional block designs in processor cores with

the aim of reducing circuit power. The work of Mittal [78] surveys techniques for designing

and managing CPU register files in modern processors, some of which cover power reduction

techniques. Similar works address energy-efficient register file architecture in GPUs [79, 80].

Branch prediction (speculation) minimizes power by avoiding the impact of flushing pipelines

executing the wrong execution sequence. Improvements to the design of branch predictors

offer further power reductions [81]. Yet, these approaches remain in limited use.

Recently, single-ISA heterogeneous clustered multicore processors represent the major in-

novation in architecture-level power reduction. ARM’s big.LITTLE [82, 83, 84] is the most

successful commercial implementation of the clustered heterogeneous architecture. The tra-

ditional ARM’s big.LITTLE architecture specifies two clusters. The first, termed big, has

either two or four out-of-order high-end speculative cores aimed to deliver high application

performance. The second cluster, termed little, has four in-order smaller cores which are

energy-efficient compared to the big cluster. Each cluster has its own power and frequency

controllers. In general-purpose computing scheduling, tasks migrate between clusters de-

pending on application performance and power needs.

Some literature proposed pushing heterogeneity from processor level into the core level

[85]. That is, instead of having separate big and little cores with separate caches and archi-

tectural components, each core will have two µEngines, one big and another little µEngine.

The µEngines share the same cache and fetch units. This proposal allows for fine-grain

task switching. That is, tasks could switch between µEngines at a granularity of hundreds
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and thousands of instructions instead of hundreds of thousands or millions of instructions.

Since the µEngines are within the core and share processor blocks, such design consumes

less switching overhead in terms of both time and energy.

2.3.3 Chipset-Level Power Reduction

Processor designs have taken advantage of Moore’s law and the increased transistor density in

many ways. These range from architectural innovations within the core design, to increasing

the core count, and complete System on Chips (SoCs). SoCs are widely used in embedded

systems [86, 87] and mobile devices. SoCs pack processors, peripherals (e.g. timers, ADCs,

DACs), and various connectivity interfaces (e.g. SPI, USB, I2C) on the same die. However,

in a typical embedded application, some of these peripherals might go unused. Since it is

necessary to curtail the overall system energy consumption, chipset designers utilize two

major techniques for power reduction: power gating and clock gating.

In power gating [88, 89], processor cores, clusters, and peripherals have separate power

regulators or power planes (voltage islands). This allows for turning off inactive cores or

shut down unused or idle peripherals completely (e.g. ADCs). Power gating reduces leakage

current yet introduces wake up latencies when these cores and peripherals activate[90]. In

a typical SoC, clock generation, distribution, and clock buffers consume a large proportion

of system power (15% - 45%) [91, 92]. To lower the power consumption of the clock-tree,

clock gating enables system programmers to cut off the clock from inactive and unused SoC

components (e.g. SoC timers).

A revolutionary step in power reduction is the incorporation of specialized hardware that

dynamically controls the voltage and/or frequency of active cores at run-time. Operating

systems can directly handle the DVFS-capable hardware through specialized drivers. Ideal

DVFS processors expose an unrestricted continuous range of voltages and frequencies, a well-

defined power-frequency relationship, and no speed change overhead. However, due to the

extreme cost, complexity, and impracticality of ideal DVFS hardware, real-life implementa-

tions provide a limited set of voltages and frequencies and incur speed alteration cost. These

systems are known as non-deal DVFS systems. In multicore processors, if the cores share the

same power regulator, then their voltage and frequency scale globally. This model is called

a dependent DVFS system. In independent DVFS multicore systems, each processor would

have its own power regulator. In practice; however, in the majority of commercial multicore

implementations, the cores within the same cluster share the power and DVFS hardware.

Incorporation of independent voltage regulators and per-core DVFS hardware is restricted
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due to design complexity and increased chipset area. As the core count increases, per-core

DVFS hardware introduces scalability and thermal dissipation issues [93].

2.4 Related Work to Energy-Aware Scheduling

Energy-Aware Scheduling couples the schedulability problem with that of energy-reduction.

At its core, energy-aware scheduling is an optimization problem. Energy-Aware Scheduling is

a software level approach to energy-reduction. Most commercial products attempt to offer so-

lutions for non real-time schedulers, that is for the mainstream general computing platforms

that power desktop and mobile devices. ARM and Linaro introduced EAS as a Linux Kernel

enhancement to Linux power management. “EAS extends the Linux kernel scheduler to make

it fully aware of the power/performance capabilities of the CPUs in the system, to optimize

energy consumption for advanced multi-core SoCs including big.LITTLE” [94]. Whereas

some commercial solutions are available for energy-aware schedulers for general purpose

computing, energy-aware scheduling for real-time systems remains largely confined within

the research community. In this section, we summarize the main energy-aware scheduling

techniques for real-time uniprocessor and multiprocessor systems.

2.4.1 Energy-Aware Scheduling on Single Core Processors

Low power non-DVFS single core embedded processors mainly depend on utilizing the mul-

tiple sleep modes available to reduce power. High-end DVFS-capable processors highly rely

on DVFS to amortize on energy costs. Integrated DVFS and DPM scheduling is an al-

ternative to two phased approaches that start with task frequency assignment followed by

DPM. Figure 2.6 illustrates the taxonomy of energy-aware scheduling on uniprocessors. Of-

fline solutions make frequency assignment and sleep decisions at design time after thorough

investigation of the task schedule while online solutions defer these decisions to execution

time.

Early scheduling literature considered both ideal and non-ideal DVFS-enabled hardware

[95, 96, 97, 98, 99]; however, these works discarded the effect of leakage power in the opti-

mization problem. When leakage power is factored in, the work of Jejurikar and Gupta [100]

showed that lower frequencies do not result in energy reductions. When both dynamic power

and leakage power effects are simultaneously considered, they illustrated that the processor’s

energy-per-cycle metric takes a concave shape over the available DVFS supported frequen-

cies. They introduced the concept of critical frequency at which both leakage power and

dynamic power (i.e. energy-per-cycle) is minimum. However, despite the energy reduction
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Figure 2.6 Taxonomy of Energy-Aware Scheduling on Uniprocessors

advantages at running the taskset at the critical speed, the schedule feasibility constraints

might necessitate running the tasks at subsequent higher frequencies to meet task deadlines.

In any task schedule, the slack time is the time during which the processor is idle. The

slack time can be used to reduce energy. The most common way is to stretch the execution

time of tasks onto the slack by lowering the processor frequency. In such case, the slack is

said to be reclaimed. Task reclamation algorithms can be static or dynamic.

Static algorithms are design time solutions. They are unaware of the actual task execution

time. The slack reclamation is based on WCET. Therefore, the extra slack difference between

the task actual execution time and its WCET goes unclaimed. In this category, Bini et

al. [101] introduced the BBL algorithm for static slack reclamation for discrete frequency

processors running EDF/RM schedulers and periodic and sporadic tasksets. Dynamic slack

reclamation is an online algorithm. Therefore, it is able to capitalize on the extra slack

generated when tasks finish early. The Bonus Sharing algorithm (BSDVFS) and its variant

(BSDVFS*) [102] are prime examples of dynamic slack reclamation algorithms. The authors

integrated their algorithms into the Erika RTOS [103].

A recent study by Bambagini et al. [104] showed that DPM algorithms work generally

better than DVFS on actual hardware (due to the rise of static power share of the total

power). As such, it might be beneficial to have as much slack as possible. This allows for

keeping the processor in sleep mode for a longer time. Also, it potentially increases the idle

interval such that it might exceed the break-even time (see Equation 2.17) thus making the
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switch to sleep mode energy-efficient.

To extend the slack time, whenever the processor is idling or in sleep mode, task procras-

tination techniques delay arriving tasks as much as possible without jeopardizing missing

deadlines. Lee et al [105] were the first to introduce the concept of task procrastination. But

their approach solely targets leakage power reduction on non-DVFS platforms. Jejurikar and

Gupta [106] were the first to compute the procrastination delay for every system task based

on task set utilization and EDF feasibility in a DVFS platform. The procrastination delay

remains constant for every future task instance. The same authors extended their method

in [100] by coupling it with slack reclamation for further energy reduction. Chen and Kuo

[107] presented a similar approach for the rate monotonic scheduling policy.

The work of Niu and Quan [108] consider procrastination at the job level. Their DVSLK

algorithm considers all job instances over the entire schedule. Their approach is computation-

ally extensive. Pan and Lin [109] extended the DVSLK algorithm to take into account slack

reclamation. Chen and Kuo [110] showed that many procrastination algorithms [106, 108]

are greedy in the sense that they could sacrifice better energy reductions in the future in

favour for less than optimal early savings. As a solution, they propose an algorithm called

P-Procrastination that decides whether to procrastinate tasks early or in the future based

on a threshold variable P . The above-mentioned works consider the periodic task model.

Awan et al. [111] addressed the calculation of the procrastination interval for the sporadic

task model.

System-level power-aware scheduling also received much attention especially in embedded

systems applications with heavy peripheral devices use. As real-time tasks might use one

or more devices, the literature assumes that these devices are ready at task start time and

remain in an active state for the whole duration while the associated task is executing. This

follows from the need to minimize blocking or waiting time of the tasks on devices to switch

on. As task execution time is slowed down, then the expected time the associated devices

remain in the active state is equally extended, thus consuming more energy. Consequently,

system-level energy-aware scheduling algorithms attempt to minimize power across all sys-

tem components. The work in [112] is the first to consider combined processor DVFS and

devices Dynamic Power Management (DPM). Based on the notion of critical speed, they

develop the CS-DVS algorithm which reduces total system power. This algorithm remains

the most popular within the same class of algorithms. Similarly, [113] proposes a system-

wide power-aware algorithm which assumes that some tasks have uninterruptable I/O access

and therefore are non-preemptible. They further take device switching time into account.

Their algorithm called SYS-EDF selects task slow-down factors that reduce system energy.
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However, this works ignore the processor’s leakage power.

Aydin et al. [114] present a system-wide solution that considers leakage power in an

ideal DVFS-capable system. However, this model unrealistically assumes continuous voltage

and frequency scales. For the rate monotonic policy, Niu [115] introduces a solution which

couples the techniques of critical speed, dynamic slack reclamation, and DVS and DPM to

minimize the system-wide energy of processor and peripheral devices. Their approach uses

a two-phase DVFS/DPM approach instead of an integrated approach. In [116], the author

shows that running tasks lower than the critical speed could possibly introduce energy saving

in system-level scheduling. Soft real-time system-level scheduling is addressed in [117].

Devadas and Aydin [118] argue that the previous approaches which consider adjusting

voltage scales in one phase followed by DPM optimization in the next phaze may not lead to

optimal energy savings. Instead, they investigate the interplay between DVFS and DPM and

propose a combined DVFS/DPM algorithm. The before-mentioned solutions [112, 113, 114,

116, 117, 118, 119, 120, 121, 122] are based on offline or semi-online energy-aware scheduling

approaches and assume fixed task sets. The work of [123] is the first to implement an

online system-level energy-aware scheduling. Their work is based on the simulated annealing

metaheuristic. However, metaheuristics require a lengthy time to find a solution. In online

scheduling, this increases the scheduling overhead to possibly a point that affects schedule

feasibility.

2.4.2 Energy-Aware Scheduling on Homogeneous Multiprocessors

Energy-aware scheduling on multiprocessors considers additional optimization variables.

These variables include task partitioning, the number of active cores, and processor het-

erogeneity. The majority of research considers homogeneous multiprocessors while some

efforts attempt to generalize some solutions onto heterogeneous platforms. In general, the

taxonomy of energy-aware scheduling on multiprocessors systems is based on the frequency

scaling controllers. Figure 2.7 illustrates that research has divided energy-aware multiproces-

sor scheduling approaches into per-task DVFS, per-CPU DVFS, and clustered cores (a.k.a

voltage islands). Per-task DVFS assigns frequencies at the granularity of tasks. Per-CPU

DVFS assigns a fixed frequency for each processor/core in the platform. This frequency

remains constant for all tasks. Lastly, in clustered multicore systems, a group of cores share

the same DVFS hardware. In effect, the frequency scales globally for all cores.

The authors in [124] target frame-based tasks in a platform where all the cores share

continuous voltage and frequency levels and ignore the effects of leakage power. Their work
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Figure 2.7 Taxonomy of Energy-Aware Scheduling on Multiprocessors

uses the Largest-Task-First (LTF) for task assignment. No task migration is allowed. They

prove that the problem is NP-hard and show that balancing the loads across the homogeneous

cores yields the most energy-efficient schedule. For the same task model, the authors in [125]

consider both dynamic and static energy on partitioned multicore platform. They find the

critical speed which minimizes both dynamic and static energy then proceed with a binary

search algorithms to determine the optimal number of active cores needed to schedule the

taskset.

For periodic task systems, Aydin et al. [126] investigate the energy-aware partitioning

using the First-Fit (FF), Best-Fit (BF), Next-Fit(NF), and Worst-Fit (WF) heuristics. They

prove that the energy-aware partitioning problem under real-time constraints is NP-hard.

They demonstrate that the Worst Fit algorithm achieves a balanced load and consequently

minimum energy consumption when the task utilizations are known a priori and the fre-

quency scale is continuous. Under discrete frequency scales, the authors in [127] show that

the Worst Fit algorithm no longer provides a balanced workload. Instead they propose an

Adaptive Minimal Bound First-Fit (AMBFF) algorithm which uses the First-Fit algorithm

to balance the schedule.

The work of [128] considers Worst Fit heuristic for task partitioning. They further inves-

tigate the number of active cores needed through three proposed algorithms: an exhaustive

search algorithm, a Greedy Load Balancing (GLB) algorithm which attempts to move tasks

from the least loaded core to the second least loaded core as long as feasibility is maintained

and expected energy is minimized, and a threshold-based algorithm that is similar to GLB

but only moves tasks whenever the least loaded core is utilized under a certain predefined

threshold. The authors further use the concept of instantaneous load to dynamically change

the shared frequency. That is they reclaim the slack for the purpose of further scaling down

task frequencies.
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The above solutions in [126, 128] balance the load based on task WCETs. Given that

the tasks will terminate earlier than their respective WCETs, the load partitioning will

be rendered imbalanced. To reduce temporal imbalance, the author in [129] proposes an

algorithm to migrate tasks during run-time. Furthermore, they propose a dynamic core

activation algorithm that varies the number of active cores at run-time.

In global multiprocessor scheduling, the authors in [130] present LRE-TL, an algorithm

based on LLREF [131] that considers static voltage and frequency assignments and attempts

to minimize unnecessary migrations and preemptions. The authors in [132] use mathematical

optimization to solve a periodic hard real-time task scheduling problem on homogeneous

multiprocessor systems with DVFS capabilities. Their formulations address tasksets with

implicit, constrained and arbitrary deadlines.

2.4.3 Energy-Aware Scheduling on Heterogeneous Multiprocessors

Energy-Aware task partitioning on heterogeneous platforms is an active field of research. Lit-

erature considers various platforms which includes different-ISA multiprocessors (e.g. AR-

M/Alpha, ARM/Intel or ARM/FPGA), single-ISA multiprocessors with different energy

profiles (e.g. ARM Cortex-A/Cortex-M), and single-ISA clustered multi-core heterogeneous

SoCs (ARM big.LITTLE).

For frame-based tasks where all real-time tasks share the same deadline, the work in [133]

minimizes simultaneously the taskset make-span and energy consumption. They considered

the min-max heuristic for the case of a processor supporting continuous voltage levels, and

integer linear programming solution when it supports discrete voltage levels. However, they

assumed all heterogeneous multiprocessors support the same voltage and frequency levels

which is hard to enforce in practical systems. The work in [134] undertakes a similar ap-

proach. For periodic tasks, and for a system with unique multiprocessors (a set of multi-

processors with one of each type), [135] provides an approximation scheme using a dynamic

programming solution. The authors extend their work by relaxing the processor uniquness

restriction and allow for multiple processors of the same type in [136].

The paper [137] considers a load balancing algorithm to allocate non real-time jobs on

heterogeneous nodes. In their work, the frequency of a processing node is a function of

the total cycles of all jobs assigned to it. Petrucci et al. [138] present an ILP-based thread

assignment that takes input from hardware performance counters that determine the perfor-

mance characteristics of the running thread. They use the instructions per second and Last

Level Cache misses as a measure of CPU load and memory bandwidth. They use them to



2 Background and Literature Review 41

optimize global thread to core assignment. However, their approach might not be suited for

real-time systems and requires solving an ILP problem periodically, thus incurring significant

scheduling overhead.

For periodic real-time systems, Alhamad and Gopalakrishnan [139] employ the dynamic

programming approach to minimize the total system energy under QoS requirements. Kuo

and Lu [140] propose a Best-Fit Descending algorithm to allocate tasks to multiprocessors.

However, they consider a non-DVFS platform consisting of a set of unique and different

heterogeneous multiprocessors. Zahaf et al. [141] propose a heuristic for parallelizing and

allocating real-time threads on heterogeneous ARM big.LITTLE platforms. They consider

partitioned Earliest Deadline Scheduling EDF and select a single frequency per cluster.

Awan et al. [142] map tasks onto heterogeneous platforms using Least Loss Energy Density

LLED algorithm. In LLED, tasks have favorite processors on which they are most energy-

efficient to run. When tasks can not be assigned to their favorite processors, LLED maps

tasks to less energy-efficient processors based on the difference of energy between lower to

higher power processors. However, they consider non-DVFS cores. They further improve

their work by proposing two-phase algorithms that assign sporadic real-time and best effort

tasks onto a set of distinct heterogeneous multiprocessors with DVFS support [143]. The

initial phase deals with assigning processor frequencies and minimizing active energy. The

second phase attempts to enhance the ability of cores to go into energy efficient sleep states.

Metaheuristics for reducing energy consumption have been claimed to produce a near-

optimal solution. For a partitioned scheduling on heterogeneous multiprocessors, [144] uses

modified binary particle swarm optimization and ant colony optimization. In [145], the

authors formulate a heterogeneous multi-core system as a Multilevel Generalized Assignment

Problem (MGAP). They use an evolutionary algorithm based on the genetic algorithm to

solve the energy minimization problem for their model.

In this thesis, we consider single-ISA clustered heterogeneous multi-core processors where

each cluster constitutes a single voltage frequency island, using ARM’s big.LITTLE is a prime

example. Few works consider this model. The work in [146] proposes three mathematical

optimization formulations based on a global scheduling scheme and a fluid model. They

assume both ideal systems where a processor has a continuous frequency scale, and practical

systems with discrete voltage and frequency levels. Colin et al. [4] show that aggressively

assigning tasks to the more efficient cores is not optimal unless these cores are ”negligibly

cheap”. Instead, they present a load distribution algorithm that caps task allotment on

energy-efficient cores and attempts to balance the workload within a cluster. A similar work

in [147] introduces the Equally Worst-Fit Decreasing Algorithm (EWFD) which aims to
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balance the workload within each island. However, both [4, 147] neglect that tasks do not

consume the same power even if they run on the same core at the same voltage/frequency.

Pagani et al. [148] mitigate this simplified assumption of the task power and energy models

and introduce the Heterogeneous Island- and Task-Aware Largest Task First algorithm (HIT-

LTF). This algorithm maps tasks to heterogeneous clusters according to the task power at

the highest frequency supported by each cluster. Then it scales down the cluster frequency

as long as feasibility is maintained. The energy-minimization technique they employ depends

on the remaining capacity of the most loaded core within the cluster. HIT-LTF is the most

recent work that we are aware of that uses the same model and platform as the work we

present in Chapter 5.

2.5 Related Work on the Use of Metaheuristics in Scheduling

Problems

Literature shows that many scheduling problems are NP-Hard [124, 126, 149] and are strongly

believed that they cannot be solved to optimality within a polynomially bounded computa-

tion time. Since it is inefficient to use exact algorithms for this class of problems, literature

trades optimality for efficiency. These efficient algorithms seek to obtain near optimal solu-

tions within reasonable computation time. However, they do not guarantee optimal solutions.

When these algorithms make use of observations, knowledge, and assumptions pertaining to

the specific problem, they are called heuristics. On the other hand, metaheuristics are a

generic class of heuristic algorithms. They can be adapted with few modifications and ap-

plied to a wide set of difficult optimization problems.

Scheduling literature employed metaheurisitcs for difficult optimization problems. The

work of [150, 151, 152, 153] use the genetic algorithm (GA), while [154] apply ant colony

optimization. Braun et al. [155] present a comparative study between different metaheurisitc

and well-known partitioning heuristics for makespan minimization. In their work, the genetic

algorithm and the min-min heuristic perform well among eleven algorithms. However, none

of these works consider the energy-minimization problem. For energy-reduction through fre-

quency assignment in DVFS-capabale uniprocessors, He and Mueller [123] use the simulated

annealing algorithm. For complex large chip multiprocessors with multiple pre-defined volt-

age islands, the authors in [156] propose an approach to static task mapping based on the

Extremal Optimization metaheurisitc. For energy-aware partitioning of tasks onto heteroge-

neous multiprocessors, Zhang et al. [157] use the particle swarm optimization and show that

their approach consumes 40% - 50% energy less than a genetic algorithm and shuffled frog
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leaping partitioning schemes.

2.6 Related Work on Constructing Real-Time Tasksets

In preparing tasksets for the evaluation of real-time scheduling algorithms, most literature

adopted a methodology that starts with computing task utilizations. To achieve a desired

total system utilization, efficient statistical tools generate unbiased individual task utiliza-

tions. Uniprocessor systems use the UUniFast algorithm [158]. In the multiprocessor domain,

the UUniFast-Discard algorithm extends the UUniFast algorithm [159]. UUniFast-Discard

basically applies UUniFast algorithm and discards any unfeasible solutions. For a certain

number of tasks and desired total utilization, the high discard ratio renders the algorithm in-

efficient. The randfixedsum algorithm [160] addresses the shortcomings of UUniFast-Discard

and works for any number of tasks n and total utilization U . The work of [62, 161, 162]

generates task periods from statistical distributions (e.g. uniform, log-uniform, bi-modal,

exponential). Once task utilizations and periods are available, Equation 2.2 computes task

worst case execution times.

Recent works use the above mentioned procedure in task set generation. For example,

for General Purpose and Real-Time Multi-Agent Systems (MAS), the work of [163] presents

a generator of task-sets and scenarios. Their work adds configurable parameters specific to

MAS, and defines lower and upper bounds for tasks timing parameters. MCRTsim [164], an

open source task scheduling simulator for real-time systems with uniprocessors, multiproces-

sors, and multi-core processors also uses the classical approach at the core of their task set

generator.

In the case where researchers want to deploy the tasksets on a hardware platform, they

synthetically construct the tasks to satisfy the task WCET parameter. In one approach,

[165, 166, 167, 168], each task simply burns processor cycles through timed loops until the

task reaches its assigned WCET. Vulgarakis et al. [169] use a similar approach for control

applications on multi-core platforms. When simulating memory and cache access behavior,

Lindsay et al. [170] construct tasks using matrix operations. Each task executes as one

thread and has its own address space. This approach is direct and simple; however, an

underlying taskset might not capture the realistic behavior of industrial and commercial

workloads.

The COBRA framework [171] generates taskset parameters and synthesizes executables

based on ten benchmarking codes from TACLeBench suite. However, their approach does

not place bounds on task periods. This potentially leads to high simulation intervals. Ad-
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ditionally, their framework runs a selected subset of the ten core benchmarks inside loops

until the task reaches a value close to its desired WCET. One downside of this approach is

that each task in the final taskset (regardless of the task set size) is built from the same core

codes. Therefore, there is no variance in the nature of the tasks.

The authors of [15] introduce TASKers: a whole-system generator for benchmarking real-

time–systems. Their approach is similar to the COBRA framework in that they build tasks

from synthetic building blocks. They use an iterative approach to reach to within 0.1% of the

target WCET for the process to terminate. However, the TASKers generator only targets

single core processors and operating systems that comply with the OSEK standard (i.e. uses

fixed-priority scheduling). The tasks are assumed to run-to-completion in the absence of

asynchronous interrupts and events.

2.6.1 Performance Monitoring Units (PMUs)

Most high-end processors are equipped with specialized hardware blocks dedicated to col-

lecting run-time performance parameters. The PMU, not to be confused with Power Man-

agement Unit, has a set of registers that are used to count processor events. In multicore

systems, each core has its own performance monitoring unit. Most processors report the cy-

cles event which counts the number of cycles that the processor has executed. However, they

differ in what other events they report. Commonly, this includes cache related events such

as cache miss rates, cache write-backs, and cache refills, number of branch mispredictions,

number of bus accesses or memory accesses. The PMU hardware is usually non-invasive with

low overhead. However, the driver firmware which controls and accesses these registers does

incur slight overhead at the software or OS level.

The number of dedicated monitoring registers is usually limited compared to the number

of events supported. For example, ARM Cortex-A15 PMU provides six event counters

in addition to the dedicated cycles counter. The Cortex-A15 PMU supports 67 events.

Meanwhile, the Cortex-A7 PMU provides four counters in addition to the cycles counter. It

supports 42 events [172]. User-configurable control registers specify which events to monitor

at any time. Many PMU drivers (software) provide two means to profile the system. Say

one wants to profile a schedule that runs with a hyper-period H of 5 seconds on a Cortex-A7

processor. Given that the Cortex-A7 dedicated PMU registers can be loaded four at a time,

the first approach requires running the system for 55 seconds. In each hyper-period, the

control registers are configured to monitor four new events. This approach provides accurate

results for a given event. However, it is susceptible to variance between system runs between



2 Background and Literature Review 45

hyper-periods. The second approach supports event multiplexing. In one hyper-period, the

PMU driver multiplexes the 42 events and relies on interpolation to fill the gap. Despite the

efficiency of this approach, it is highly unreliable.

Under Windows operating system, Intel provides a tool called Intel ® Performance

Counter Monitor for reporting processor events. In Linux, the perf tool is one of the most

commonly used profiling tools and is natively supported by many Linux distributions. It

supports many architectures including x86, PowerPC64, UltraSPARC (III and IV), ARM

(v5, v6, v7) among others. However, this tools has few shortcomings. The documentation

is lacking and does not document all events or explain their aliases. Secondly, the tool only

runs from userspace. Finally, as of the time of writing this thesis, it has minimal support for

heterogeneous processors such as big.LITTLE processors (can be only active for one clus-

ter). The PMCTrack tool addresses the shortcomings of perf. “PMCTrack is an open-source

OS-oriented performance monitoring tool for GNU/Linux. This performance tool has been

specifically designed to aid kernel developers in implementing scheduling algorithms in Linux

that leverage data from performance monitoring counters (PMCs) to perform optimization

at run time. Despite being an OS-oriented tool, PMCTrack still allows gathering PMC val-

ues from user space, enabling kernel developers to carry out the necessary offline analysis

and debugging to assist them during the scheduler design process. [173, 174]”. PMCTrack

supports ARM big.LITTLE platforms and provides specific Linux patches and drivers to the

Odroid-XU3/XU4 evaluation boards we use in this thesis.
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Chapter 3

Evaluation of Meta-Heuristics in

Energy-Aware Real-Time Scheduling

3.1 Introduction

This chapter addresses the problem of DVFS and DPM assignment in a real-time system

utilizing a non-ideal DVFS-enabled single core processor and where tasks are associated with

a set of system devices. The chapter presents the motivation behind the work set forth herein

and lists our main contributions. It follows by presenting the system task and power models.

The chapter then provides a brief background on the metaheuristics we use followed by how

we adapt and configure these algorithms to solve the system-wide reduction problem. The

chapter presents the simulation methodology and discuses the results and observations we

obtain from simulations. The chapter concludes with a brief summary.

3.2 Chapter Motivation and Contributions

The problem of optimal DVFS and DPM assignment is NP-hard [126]. As we mentioned

in Section 2.4.1, many works approach the problem with mathematical optimization and

heuristics. While the majority of literature focus on reducing processor power, fewer works

consider system-wide energy reduction when devices are involved. Given the complexity of

the problem, appropriating metaheuristics is appealing. For example, Hu and Mueller [175]

applied the Simulated Annealing metaheuristic. To the best of our knowledge, while meta-

heuristics have been widely used in solving different scheduling problems as we mentioned in

Section 2.5, no other work employed other metaheuristics for the system-wide energy reduc-

tion problem. For this reason, we propose using evolutionary algorithms for the problem of
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task frequency assignment and system energy reduction. We summarize our contributions

in this chapter as follows:

1. We propose using discrete versions of the genetic algorithm and the differential evolu-

tion algorithm for finding a DVFS configuration that attempts to bring the system-wide

energy to a value close enough to the optimal.

2. We offer a comparative study against the Simulated Annealing metaheuristic used by

Hu and Mueller [175] and the CS-DVS algorithm [176] under the same system and task

models.

3. Given that evolutionary algorithms are sensitive to initial conditions, we investigate

the effects of varying the values of initialization variables on producing good enough

energy savings. We present our rationalizations behind selecting the values for these

parameters given the constraints of the problem and the experimental platform.

The chapter organization is as follows: Section 3.3 presents the system power and task

models. Section 3.4 introduces the general concepts of the genetic algorithm, differential

evolution, and simulated annealing metaheuristics. It proceeds with presenting the adapta-

tions of these algorithms towards reducing overall system energy. The chapter presents the

simulation platform in Section 3.6. The analysis and discussion of results follow in Section

3.7. A brief summary concludes the chapter in Section 3.8.

3.3 System Model

In this section, we present the processor, device, and real-time task model we use throughout

this chapter.

3.3.1 System Power Model

We consider a DVFS-capable processor with active, idle, and low-power states. We further

consider a set of devices devk where each device has an active and a sleep state. For both the

processor and devices, we only assume one sleep state to keep the design space exploration

manageable. In the active state, the processor is capable of executing tasks at any of the

supported n-discrete frequencies fi where fi < fi+1 < · · · < fn. We normalize the frequency

scales λi corresponding to fi according to the highest system frequency fn as in Equation 2.5.

Switching from the processor active state to the lower power state s entails switching time
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and energy overheads, defined as tCPUSW and ECPU
SW , respectively. The switching overheads

represent both the switching overheads from active-to-low power state and vice versa. The

power consumed while the processor is in the active state depends on the currently selected

frequency which we denote as PCPU
fi

. Similarly, the power consumed while the processor is

in the idle state also depends on the currently selected frequency which we denote as PCPU
idlefi

.

We denote the power consumed while the processor is in deep sleep state s as PCPU
sleep . Similar

to the processor model, we denote the device power consumed in active and low power states

as P devk
active and P devk

sleep , respectively. We represent device time and energy switching overheads

from the device active to low power state (switching down) by tdevksd and Edevk
sd , respectively.

Similarly, we represent device time and energy switching overheads from the device low

power to active state (switching up) by tdevksu and Edevk
su , respectively.

3.3.2 Task Model

We assume a hard real-time system which consists of a taskset Γ of N tasks τi where Γ =

{τ1, τ2, . . . τN}. We assume independent and periodic tasks τi with implicit deadlines. We

represent each task τi by the tuple ( ci , di , Ti ) denoting task worst-case execution time,

deadline, and period, respectively. We assume an inter-task DVFS model where we assign

each task a frequency fi to execute at. We compute the hyper-period H of taskset Γ according

to Equation 2.1. For each task τi, we assign a number of unique devices devk. Similar to

previous work [175, 177], we assume an inter-task device scheduling model where devices

are available (not shared), in active mode (already powered on), and run throughout the

associated task run-time (consume power). We power down devices only when the associated

task terminates on condition that it is not used by the subsequent task, and only when the

transition to low power mode is energy-efficient (refer to Equation 2.18). We use a fully-

preemptive EDF scheduler. We only consider task schedules which are already feasible under

EDF when no frequency or voltage scaling techniques are employed. We start with this

assumption because if the schedule is not feasible when tasks run at the highest processor

supported speed and shortest execution times, they will not be feasible under any DVFS

policy. We compute task utilization and scaled utilization under DVFS according to Equation

2.2 and Equation 2.6, respectively. Under EDF, a feasible schedule must satisfy Equation

2.9. In accordance with previous research [175, 176, 178], we assume a linear relationship

between task execution time and frequency.

We present few definitions that we use throughout the remainder of the chapter:

Definition 3.3.1. A DVFS configuration is a configuration that includes a permutation of
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DVFS frequency assignments of dimension N corresponding to the size of taskset Γ, and

includes an energy cost variable as well as a set of status flags.

The flags in a DVFS configuration convey information on the feasibility of the configura-

tion or control decision paths within the algorithm. The feasibility flag denotes if the scaled

tasks violate EDF schedulability conditions under certain frequency assignments.

Definition 3.3.2. A feasible DVFS configuration is a configuration which satisfies EDF

schedulability condition when we use DVFS frequency assignments.

Definition 3.3.3. We define a good-enough solution as a solution that is within 1% of the

optimal value obtained through an exhaustive approach.

Definition 3.3.4. A Gengh configuration is a configuration which yields a good-enough

solution.

3.4 Background

In this section, we provide an abstract introduction of the metaheuristics that we use or

reference in this chapter. We discuss the Genetic Algorithm (GA), Differential Evolution

(DE), and Simulated Annealing (SA).

3.4.1 Genetic Algorithm (GA)

The genetic algorithm (GA) is an optimization algorithm based on the principles of genetics.

It mimics the process of natural selection and the survival of the fittest. The algorithm starts

with a population of random solutions that evolve through time towards the global optimum.

Each member in this population is called a chromosome. Each chromosome consists of a set

of variables called genes. The number of genes (i.e. length of the chromosome) corresponds

to the number of variables that need to be optimized.

The genetic algorithm passes through multiple iterations (a.k.a generations). In each it-

eration, the genetic algorithm evaluates the cost of each chromosome within the population

by applying the chromosome genes (variables) into the objective function. The objective

function (a.k.a fitness function) represents the problem which we aim to minimize or max-

imize. The algorithm sorts the chromosomes in terms of their cost either in ascending or

descending order depending if the optimum it seeks is a global minimum or maximum, re-

spectively. In one approach, the algorithm keeps half the chromosomes that have costs closer

to the optimum and discards the other half.
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The chromosomes that survive are called parent chromosomes. The genetic algorithm

uses parent chromosomes to generate the other half of the population appropriately called

the offspring, or children. The genetic algorithm selects pairs of parent chromosomes either

randomly, or sequentially, or any other mechanism [179]. The algorithm applies an operation

called crossover at which it exchanges genes between parents at pre-selected points. Each

parent pair produces two new child chromosomes, each has part of one parent, and part

of the other. Consequently, the populations size remains unchanged across all generations.

The genetic algorithm mimics nature by introducing the mutation operation. It randomly

chooses a certain percentage of genes from the population pool and assigns them new values

(from within the accepted range the variable can take). This procedure helps in pushing the

algorithm away from converging towards a local maxima or minima. The mutated set of

parent and child chromosomes constitute a new population. The genetic algorithm repeats

this procedure in every iteration over new populations. The algorithm executes either up

to a desired number of iterations or when it stops producing better solutions. Figure 3.1

illustrates the genetic algorithm stages. There is no guarantee that the genetic algorithm

will ever give the global optimum, but it can provide near-optimal solutions.

3.4.2 Differential Evolution (DE)

Differential evolution is an optimization algorithm which belongs to the same group of evo-

lutionary algorithms as that of the genetic algorithm. However, differential evolution is

founded on stochastic principles to find a solution. Similar to the genetic algorithm, the al-

gorithm maintains a set of solutions called candidate vectors which evolve through iterative

operations. Each vector is comprised of a set of variables that it applies into the objective

function to calculate the cost of a solution. The length of the vector corresponds to the

number of variables that need to be optimized.

The differential evolution algorithm passes through multiple iterations. In each iteration,

for each vector in the population (called base or parent vector), a new vector is created.

Differential evolution generates this new new vector from the addition of a scaled difference

of two different candidates to another third candidate. The set of new candidates are called

donor vectors. The algorithm generates a new vector called the trial vector from each base

vector and its corresponding donor vector based on a certain probability. It measures the

cost of the trial vector. The trial vector replaces its corresponding base vector only if it is

closer to the optimum. Otherwise, the algorithm discards it.
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Figure 3.1 Stages of the genetic algorithm

3.4.3 Simulated Annealing (SA)

Simulated Annealing is based on an analogy to the heat-treatment of metals (a.k.a anneal-

ing). Annealing is a technique that involves the initial heating and then controlled cooling

of a material to increase the size of its crystals and reduce their defects. Within this process,

desirable properties possibly emerge such as hardness or flexibility. In simulated annealing

optimization, when the “temperature” parameter is initially high, the algorithm has more

freedom of random movement towards a solution. This allows the algorithm to sample the

solution space widely. This further minimizes the possibility of getting stuck in a local

optima (but not necessarily guarantees escaping it).

Simulated annealing starts with one solution and explores neighbouring solutions that

move towards a global optimum. A neighbouring configuration is a configuration that differs
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from the current configuration by the value of one variable. A neighbouring solution that is

closer to the global optimum always replaces the current solution. To avoid falling into a local

minimum, the algorithm accepts a worse solution based on a certain acceptance probability.

The rationale behind this is that worse solutions can potentially move the algorithm toward

the global optimum.

3.5 Algorithms

In this section, we present our discrete implementation of the genetic algorithm and differen-

tial evolution for the frequency to task assignment problem. For the sake of completeness, we

summarize the simulated annealing algorithm presented by Mueller [175] and the CS-DVS

[112] at the end of this section.

3.5.1 Genetic Algorithm Frequency Scaling (GAFS)

Given our task and processor models, the total number of possible frequency to task per-

mutations is nN . The DVFS configuration comprises the chromosome that represents the

frequency to task assignment to be solved. It also has a set of configuration flags. We denote

the chromosome as C and its length of N genes corresponds to each system task τi. The

value each gene takes is the index i of supported frequencies fi with a possible range of [1, n].

This renders our algorithm a discrete integer genetic algorithm. Besides the feasibility flag

and the chromosome, the DVFS configuration has two other flags. The first denotes if the

chromosome is a parent chromosome. The second if any of its genes has been altered by

the mutation operation. It also has a variable which holds the cost of the configuration.

Algorithm 1 illustrates the steps of the GAFS algorithm.

The population pool has a size of NP DVFS configurations. To initialize the pool, we

use the output of the CS-DVS algorithm to initialize the first chromosome. We randomly

initialize the remainder of the NP−1 chromosomes by strictly feasible DVFS configurations.

We set the parent flags for the initial population and reset the mutation flags. We run each

initial DVFS configuration for one hyper-period in our scheduler. After the end of the

simulation, the simulator returns the total energy consumed by a configuration. Finally, we

store the energy consumption value into the DVFS configuration cost variable (Lines 1-9).

We select the lowest energy NP/2 chromosomes as parents and sort them in ascending order

according to their cost variable. We employ a top-bottom pairing approach to pair parents

from the parent pool.
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We perform one point crossover operation with a minimum of 25% and a maximum of

40% of gene exchange. The location of the cross over point is fixed (Lines 11-15). Once

we generate the offspring, we apply a mutation operator on the whole population except for

the elite chromosome. The elite chromosome is the chromosome in the DVFS configuration

that holds the lowest overall system energy within the population. We use this approach to

conserve the DVFS configuration with the best result. As the algorithm proceeds, the elite

chromosome designation goes to any DVFS configuration which yields better energy savings.

We compute the number of mutations according to Equation 3.1.

Mutations = µ× (NP − 1)×N (3.1)

where NP and µ are the population size and the mutation factor, respectively. The mutation

flag for any parent chromosomes that has been affected by the mutation is set (Lines 16-21).

We test each one of the offspring and mutated parent DVFS configurations for feasibility. If

it fails, then we set its cost variable to ∞ and invalidate its feasibility flag. This saves time

from running unfeasible schedules inside our simulator (Lines 22-26). Consequently, in the

new population, we only run feasible child and modified parent configurations in subsequent

hyper-periods (Lines 27-30, 34-37). Since we are looking for good enough configurations,

we terminate the algorithm at any of these points: we find a Genph (early termination),

or the algorithm generates unfeasible offspring, or it reaches the maximum specified runs

(Lines 31-33, 38-40, 10). In this case, the number of generations is
⌈
HP
NP

⌉
, where HP is

the number of test hyper-periods H.

3.5.2 Differential Evolution Frequency Scaling (DEFS)

In our adaptation of the differential evolution algorithm, a DVFS configuration comprises

an N -dimensional vector v, a feasibility flag, and a cost variable. In a population of size

NP configurations, we follow the same initialization approach as we did for the GAFS

algorithm. We initialize one configuration with the output of the CS-DVS. We initialize the

remainder NP − 1 configurations with random and feasible frequency scales (i.e., the index

i of the frequency scale level fi. We run each DVFS configuration of the initial population

in our simulator for one hyperperiod. We store the total energy consumption of the initial

configurations in the cost variable (Lines 1-9).

To produce the next set of candidate configurations, for each one of the ith base vector

in the population, we randomly choose three different vectors vi1 , vi2 and vi3 . We compute

a donor vector tvi from these three vectors on an element-by-element basis using a scaling
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Algorithm 1 GAFS

1: Initialization:
2: C1 ← CS-DVS configuration. C1 is parent, feasible, and unmodified
3: iteration ← 0
4: for i← 2, NP do . NP: Population Size
5: Ci ← Random and feasible frequency scales
6: Set Ci as parent, feasible, and unmodified
7: Run Ci in scheduler - measure and store system energy
8: iteration ← iteration + 1
9: end for

10: while iteration < max hp do
11: Produce Next Generation:
12: Sort NP configurations in ascending order of total system energy consumption
13: Pair best NP

2 configurations in top-down approach
14: Perform one point cross over and generate offspring
15: Set state for new configurations as child
16: for i← 1,#mutations do
17: Randomly choose a gene and mutate from the new population (exclude elite chromosome)
18: if chosen configuration is parent then
19: Change parent state to modified
20: end if
21: end for
22: for i← 1, NP do
23: if new Ci is unfeasible then
24: Set power of unfeasible configuration to ∞, reset feasible flag
25: end if
26: end for
27: for i← 1, NP do
28: if new Ci is feasible configuration then
29: if new Ci is child or modified parent then
30: Run new configuration Ci in scheduler for one HP, measure total system energy
31: if Ci results in Gengh then
32: Select Ci as solution and exit GAFS
33: end if
34: iteration ← iteration + 1
35: end if
36: end if
37: end for
38: if No configuration is feasible in current generation then
39: Terminate. Choose elite chromosome as solution
40: end if
41: end while

formula that we show in Equation 3.2:

tvi = round(vi1 + φ · (vi2 − vi3)) (3.2)
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where i 6= i1 6= i2 6= i3 and φ is the vector difference scaling factor (Line 13). The term

difference scaling factor should not be confused with frequency scaling factors. Rounding to

integer is one form of discretizing the continuous version of DE algorithm. A boundary check

follows to constrain the frequency scales to fall within the supported processor frequency

levels according to Equation 3.3. We apply this formula on each element of vector tvi :

tvi(j) = min(fmaxi ,max(fmini , tvi(j))) (3.3)

where j is the element index of vector tvi and j ∈ [1, N ], fmini and fmaxi are the lowest and

highest frequency scales indices supported by the processor, respectively (Line 14). Finally,

the trial vector tvi is crossed over on an element by element basis with its parent vi, the ith

vector of the population using Eq. 3.4:

ui[j] =

tvi [j] if rj > CR

vi[j] otherwise
(3.4)

where j is the jth element of vectors vi, tvi and j ∈ [1, N ]. rj is a randomly generated number

for each element j where rj ∈ [0, 1]. CR is the crossover probability used as a control element

for the differential evolution algorithm, CR ∈ [0, 1] (Line 15).

Each of the candidate vectors undergoes a schedulability check and we set its feasibility

flag accordingly. If the vector is unfeasible, then we set its cost to ∞ ensuring it will never

replace its parent. We only allow feasible configurations to execute in the next hyper-period

(Lines 16-21). We compute the total system energy with the DVFS configuration of the

candidate vector. We conduct a replacement check according to: Equation 3.5:

vi =

ui if Energy(ui) < Energy(vi)

vi otherwise
(3.5)

where Energy(ui) is total system energy of the DVFS configuration of the candidate vector

during one hyper-period, and Energy(vi) is the energy of the DVFS configuration of the par-

ent configuration. The algorithm generates candidate configurations until we reach a “good

enough” configuration Genph or the algorithm reaches the maximum number of iterations

(Lines 22-28).
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Algorithm 2 DEFS

1: Initialization:
2: v1 ← CS-DVS configuration, set v1 as feasible
3: iteration ← 0
4: for i← 2, NP do . NP: Population Size
5: vi ← Random and feasible frequency scaling configuration
6: Set vi as feasible
7: Run vi in next HP - measure and store system-wide energy
8: iteration ← iteration + 1
9: end for

10: while iteration < max hp do
11: Produce Next Generation:
12: for i ← 1, NP do
13: Get mutant vector tvi for parent vi
14: Perform boundary checking and correction on tvi
15: ui ← crossover between mutant vector tvi and vi
16: if ui is feasible then
17: Run candidate ui in next HP and measure system-wide energy
18: iteration ← iteration + 1
19: else
20: Set power of ui to ∞
21: end if
22: if Energy(ui) < Energy(vi) then
23: if Energy(ui) is within 1% of optimal then
24: Select ui as solution and exit DEFS
25: end if
26: Replace vi with new candidate configuration ui
27: end if
28: end for
29: end while

3.5.3 Critical Speed – Dynamic Voltage Scaling (CS-DVS)

In this section, we go briefly over the CS-DVS algorithm [176] which is a popular heuristic for

this problem. We present CS-DVS in Algorithm 3. The algorithm runs in two straightforward

stages. Initially, it computes the critical speed of each system task (Lines 1-3). Then, to

maintain feasibility, it determines which tasks and to which supported frequency it needs

to increase their frequency to have a feasible schedule while maintaining lowest system-

energy. In CS-DVS, any task that is not already assigned the maximum supported frequency

fn remains within the set of tasks under consideration in each iteration. At the core of

CS-DVS, it basically computes the power difference between having the task run at its

current frequency and the next frequency. It only adjusts the frequency for the task with
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the minimum power consumption penalty. The algorithm runs as long as the schedule is

unfeasible or all tasks are set to maximum speed and no feasible schedule exists.

Algorithm 3 CS-DVS [176]

1: Initialisation:
2: Compute critical speed of each task τi
3: Set frequency scale fi of task τi to that of the critical speed of the task
4: while (DVFS configuration unfeasible) do
5: for All tasks not running at max processor speed fn do
6: Compute task associated power at next higher frequency scale
7: Compute task power consumption difference between current and next

higher frequency scale
8: end for
9: Choose task with lowest increase in power

10: Set chosen task frequency scale fi to fi+1

11: end while

3.5.4 Simulated Annealing Frequency Scaling (SAFS)

In this chapter, we follow the adaptation of simulated annealing meta-heuristic for system-

wide energy reduction as presented in [175] with minor modifications. Similar to our proposed

algorithms, SA starts with a feasible configuration J which is a vector of size N tasks. The

initial vector has a DVFS configuration that matches CS-DVS output. It executes the

initial configuration in one hyper-period and computes the system energy consumption. It

randomly changes one frequency scale in the current configuration J to another supported

scale to generate a neighbouring configuration J∗. It checks J∗ for feasibility. If feasible, it

runs and measures the energy cost of this neighbour configuration; otherwise, it generates

another neighbour J∗ from J and repeats the procedure until it finds a feasible neighbour. If

the newly found neighbour configuration reduces the system energy compared to the current

configuration, the better configuration replaces the current configuration J . However, if the

neighbouring configuration results in more system energy consumption, it can still replace the

current configuration J . However, it does so on a probabilistic basis. It generates a random

probability ρ ∈ [0, 1] and computes an acceptance probability α according to Equation 3.6

α = e
Energy(J)−Energy(J∗)

K.Energy(J) (3.6)

where K is the annealing factor to be decided through experimentation. If α > ρ, then

the worst solution replaces the current solution. The algorithm stops when it reaches the
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number of test hyperperiods or the current configuration is a Gengh configuration. We list

the SA algorithm in Algorithm 4.

Algorithm 4 Simulated Annealing

1: Initialization:
2: Set initial configuration J to the output of CS-DVS
3: Run J in next HP - measure and store system energy
4: iteration ← iteration + 1
5: Produce Next Neighbour:
6: while iteration < max hp do
7: Generate neighbouring configuration J∗
8: if J∗ is feasible then
9: Run J in next HP - measure and store system energy

10: if Energy (J∗) < Energy (J) then
11: J = J∗
12: else
13: Generate random probability ρ
14: Compute acceptance probability α
15: if α > ρ then
16: J = J∗
17: end if
18: end if
19: iteration ← iteration + 1
20: end if
21: end while

3.6 Experimental Platform and Simulation

To analyze the performance of the proposed algorithms for frequency scaling and system-

wide energy reduction, we first developed an event-driven simulator using SystemC 2.3.0 and

Transaction Level Modelling (TLM). Our simulator encompasses many modules necessary

for real-time scheduling. At the core of our simulator, we developed a real-time taskset

generator and an EDF scheduler modules. Supporting functionality includes both run-time

feasibility checks and offline schedulability analysis . We enable frequency affinities for the

tasks to support per-Task DVFS. We have modules that specify the processor and device

power models. We equip our scheduler with the ability to track task arrivals such that it

has the necessary means to know if it should trigger a sleep signal or it is energy-inefficient

to transition to low-power mode. We also equip or scheduler module with a built-in energy

computation sub-module which keeps track of processor and devices energy-consumption.
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Table 3.1 Intel XScale processor power model

Frequency Steps fi (MHz) 1000 800 600 400 150

PCPUfi
(Watt) 1.6 0.9 0.4 0.17 0.08

PCPUidlefi
(Watt) 0.260 0.222 0.186 0.159 0.064

Voltage Vi (Volts) 1.55 1.45 1.35 1.25 1.15

ECPUsw = 0.5 mJ tCPUsw = 85ms

Table 3.2 Devices power model

Device P
devk
active P

devk
sleep P

devk
su P

devk
sd t

devk
su t

devk
sd

(W) (W) (W) (W) (ms) (ms)

Realtek Ethernet Chip 0.187 0.085 0.125 0.125 0.01 0.01

IBM Microdrive 1.3 0.1 0.5 0.5 0.12 0.12

SST Flash SST39LF020 0.125 0.001 0.05 0.05 0.001 0.001

SimpleTech Flash Card 0.225 0.02 0.1 0.1 0.002 0.002

MaxStream Wireless Module 0.75 0.005 0.1 0.1 0.04 0.04

When any taskset initialized with DVFS scales runs through the scheduler, the computed

energy-costs will represent an integrated DVS-DPM cost. Finally, for each of the algorithms

we present in each chapter, we build a dedicated module. The modules interact online with

the scheduler and feed it feasible DVFS configurations. In return, as the scheduler runs the

taskset for the entire hyper-period, it evaluates the system-wide energy consumption which

represents the result of the objective function.

We use processor and device power models that are consistent with previous work [68,

175]. The processor model is based on the Intel XScale processor power profile which has

five frequency levels. Intel XScale is based on armv5 architecture. We show the processor

and device set power profiles in Table 3.1 and Table 3.2, respectively.

We consider small taskset Γ of size N , where N ∈ [5,7,9]. For each taskset size, we

generate 500 random and unique task sets. We associate each task τi with a randomly

assigned set of unique devices where the number of different devices per task ∈ [0 , 2]. To

bound the hyper-period and simulation time, we apply the algorithm from [180] to generate

periods within the range of [0.5 - 100] ms. We generate WCETs that are randomly selected

to be between 2% and 40% of the task period. We evaluate each unique taskset 10 times to

average the results due to the randomization of the algorithm. As such, each experiment for

a taskset size N has 5000 simulations. We limit our investigation to nine tasks due to the

high timing cost of running a taskset with a DVFS configuration through the scheduler for
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the duration of the hyper-period. This is especially true for the exhaustive search to find an

optimal solution that we use as a reference in evaluating the results of our algorithms.

We select and initialize the metaheuristics parameters; namely, population size, mutation

factors and crossover probabilities. Arguably, there is no clear consensus on how to set some

of these parameters as they can be problem specific. Whereas literature concerning large

search space favors large initial populations, we favor the approaches used in micro genetic

algorithms (µGA) where they start with much smaller population size [181, 182, 183]. Our

approach of starting with one population member initialized with the DVFS configuration

of the CS-DVS algorithm, and using elitism to secure the best reached DVFS configuration

aids in faster convergence similar to the approach taken in [184]. We consider population

sizes of 8, 16, 24, and 32. General recommendations for the mutation rate is to keep it low (≤
0.05). However, this recommendation is generally given for binary genetic algorithms with

large populations and large problem dimensions. Instead, we follow the recommendation

in [179] and test the algorithms at the mutation rates 0.1 - 0.2. Larger mutation rates

could in theory make it harder for the algorithm to converge as the algorithm will keep

jumping between search points. Lower values could possibly lead to premature convergence

and produce non-optimal results.

For DEFS, as in GAFS, we use the same range of small population size similar to the

work of [185, 186]. We test our algorithms with crossover probabilities CR of 0.3, 0.5 and

0.7. We also choose the scaling factors from uniform probability samples in the range [0 ,

1]. For the smaller taskset size of N = 5, we explore the effect of varying the maximum

number of simulations (i.e. hyper-periods) from a set of [50, 100, 200 and 400]. We use two

additional hyper-periods 1000 and 2500 for task sizes of 7 and 9. We assume the scheduling

overhead to be low and therefore neglected. For SAFS, we compare our work to the version

with annealing factor of 0.005 which our preliminary tests showed it was the best factor.

3.7 Results and Discussion

In this section, we report the effects of different configuration parameters on the performance

of the evolutionary algorithms we proposed in the last section. Initially, we show the reference

energy savings from DVFS assignments according to the CS-DVS heuristic and optimal

search in Figure 3.2. Given that we run our algorithms over 500 unique tasksets for each

taskset size and repeat each 10 times, we compare the performance of our algorithms to the

reference algorithms as follows: first by reporting the percentage of the 5000 simulations that

provided results within 1% of the optimal, and secondly by the percentage of simulations
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Figure 3.2 Average CS-DVS and optimal DVFS configuration energy savings
over 500 unique sets

that provided configurations that performed better than CS-DVS.

3.7.1 Sensitivity Analysis

In the search for the best values for our parameters to yield better results, we fix the values of

parameters that are not under investigation. Our experiments include varying the number

of maximum hyperperiod iterations for which the algorithm is simulated. We also vary

mutation rates (in GAFS) and crossover probabilities and scaling factors (in DEFS) and

report our findings. The results in Table 3.3 through Table 3.6 show the cases where one

variable is studied, while the others are fixed at the values which gave the best overall results.

We show the effects of running the algorithms over more hyper-periods (generations) in

Table 3.3 for both GAFS and DEFS algorithms. We expect that longer simulations time

will yield higher percentage of DVFS configurations that are Gengh configurations. For the

smaller taskset size of N = 5, GAFS performs better than DEFS. However, for N = 7 and

N = 9, DEFS performs better than GAFS. In all cases, 85% of DVFS-configurations can

reach energy-reduction that is 1% near the optimal. This is important given the very small

search space that the algorithm has gone through.

In the next step, we conduct analysis on varying the initial population size. That is, we

change the number of initial feasible chromosomes for the GAFS algorithm, as well as the

initial candidate vector pool for DEFS. In Table 3.4, we observe that larger population sizes

in GAFS yield better results with a clear margin for larger task sets. However, the effects
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Table 3.3 GAFS and DEFS sensitivity to HP represented by the percentage
of Gengh configurations over 5000 simulations

Tasks Algorithm Hyper-period

N 50 100 200 400 1000 2500

5 GAFS 22.9% 36.2% 67.7% 84.6% - -

DEFS 19.5% 22.6% 33.4% 67.1% - -

7 GAFS 13.2% 17.7% 32.8% 57.5% 70.1% 78.0%

DEFS 12.2% 13.1% 17.1% 36.0% 70.9% 82.8%

9 GAFS 13.9% 17.0% 27.0% 46.9% 68.6% 85.3%

DEFS 12.5% 13.1% 16.5% 28.8% 62.4% 86.5%

Notes: GAFS: population size = 32, µ = 0.1

DEFS: population size = 24, CR = 0.3 and µ = 0.5

Table 3.4 GAFS sensitivity to population size represented by the percentage
of Gengh configurations over 5000 simulations

Task No. HP 8 16 24 32

Percentage of Gengh configurations

T5 400 78.3% 82.1% 84.6% 84.6%

T7
2500

67.7% 75.3% 78.0% 78.0%

T9 77.1% 82.4% 84.6% 85.3%

Better than CS-DVS

T5 400 94.8% 96.7% 97.6% 98.0%

T7
2500

95.8% 97.5% 98.2% 98.0%

T9 97.4% 98.3% 98.4% 98.7%

Notes: µ = 0.1

of population size diminishes between the NP = 24 and NP = 32.

Table 3.5 shows energy savings sensitivity to GAFS mutation rates and task set size when

the population size is fixed at 32. We observe that a lower µ= 0.1 gives overall better results

and only in a few cases that µ = 0.2 results in marginal gains. Given the population size and

the chromosome size of our problem, we expected the lower mutation rate µ= 0.1 to give

better results. Higher mutation rates would entail exploring further away from our current

best results. As µ increases, the closer the genetic algorithm gets to a random search. We

observe that GAFS outperforms CS-DVS in most cases, especially with larger task set sizes.

Table 3.6 shows the results of varying the population size for the DEFS algorithm when

CR = 0.3 and the mutation rate (scaling factor) φ = 0.5. We see that a population size of

16 provides slightly better results for the small task set of size N = 5; whereas a population

size of 24 gives better results for larger task sets N = 7 and N = 9. Similar to GAFS, large

population sizes allow for richer selection of candidate vectors, as well as for more variance

in the crossover operations.

We summarize the sensitivity analysis findings of DEFS crossover probability (CR) and
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Table 3.5 GAFS sensitivity to mutation factors represented by the percentage
of Gengh configurations over 5000 simulations

Percentage of Gengh configurations Percentage of configurations

better than CS-DVS

Task No. HP µ = 0.1 µ = 0.2 µ = 0.1 µ = 0.2

T5 400 84.6% 78.6% 94.9% 95.7%

T7
2500

78.0% 81.8% 98.0% 99.0%

T9 85.3% 73.2% 98.7% 97.3%

Notes: population size = 32

Table 3.6 DEFS sensitivity to population size represented by the percentage
of Gengh configurations over 5000 simulations

Percentage of Gengh configurations Percentage of configurations

saving configurations better than CS-DVS

Tasks HP Population Size

8 16 24 8 16 24

T5 71.2% 80.4% 67.1% 90.5% 96.7% 94.6%

T7
2500

34.3% 77.9% 82.8% 86.8% 97.4% 98.8%

T9 40.6% 81.4% 86.5% 88.1% 98% 98.6%

Notes: CR = 0.3 and φ = 0.5

mutation (scaling) factor φ parameters in Table 3.7. For larger task sizes of 7 and 9, we

find that crossover probability and mutation factor carry no statistical differences in yielding

better results across different combinations of CR and φ. However, for smaller task sizes,

a CR of 0.3 and φ = 0.5 provide better results by a wide margin (i.e., up to 14% better

results than those at CR = 0.7 and φ = 0.7 for a system with five tasks). For task sizes of

N = 7 and N = 9, scaling factors of 0.5 and 0.7 provide slightly more Gengh configurations

in general across all CR factors. However, the effects of CR factors are less pronounced and

within about 1.5% of each other.

We summarize the reference values for the simulated annealing (SA) algorithm imple-

mentation in Table 3.8 and Table 3.9. One major observation is that the results of the SA

algorithm do not provide substantial gains as the number of hyper-periods is increased when

it comes to Gengh results. This is more obvious at the larger task set size of N = 9. In fact,

lower number of hyper-periods could provide better results. This is due to the algorithm de-

sign as implemented by [175], where even though the algorithm can escape a local minimum,

there is no guarantee that it will converge to a better solution.



3 Evaluation of Meta-Heuristics in Energy-Aware Real-Time Scheduling 64

Table 3.7 DEFS sensitivity to crossover and scaling factor φ represented by
the percentage of Gengh configurations over 5000 simulations

Population Size 16 24

Hyper-period 400 2500

CR φ 5 7 9

0.3

0.3 76.1% 77.1% 81.8%

0.5 80.4% 82.8% 86.5%

0.7 78.2% 83.3% 85.6%

0.5

0.3 75.2% 80.7% 84.9%

0.5 78.2% 84% 87%

0.7 76.3% 83.7% 87.0%

0.7

0.3 68.0% 80.1% 83.8%

0.5 69.2% 82.5% 84.8%

0.7 66.4% 82.6% 83.9%

Table 3.8 SAFS sensitivity to the number of hyperperiods represented by the
percentage of Gengh configurations over 5000 simulations

N Hyperperiod

50 100 200 400 1000 2500

5 21.5% 23.3% 26.5% 32.3% - -

7 13.9% 14.7% 15.6% 17.3% 19.6% 31.5%

9 20.6% 23.0% 25.3% 27.9% 17.3% 25.6%

3.7.2 Algorithm Comparison and Discussion

Figure 3.3 provides a performance summary of our algorithms and the SAFS reference algo-

rithm. We observe that both GAFS and DEFS outperform the SAFS algorithm in terms of

their ability to consistently provide Gengh configurations. As the task set size increases, the

performance of SAFS decreases, while GAFS and DEFS consistently maintain their perfor-

mance. Figure 3.3 shows that the SAFS algorithm fails on average 25% of the time to yield

DVFS configurations better than CS-DVS across all taskset sizes. In effect, this could lead

to high system-wide energy consumption. Both GAFS and DEFS are superior to SAFS in

this regard, as they almost always deliver better DVFS configurations than CS-DVS where

83.5% of the time, these configurations are Gengh configurations.

GAFS slightly outperforms DEFS for task sets with N = 5 and the converse is true for

larger task sets. The weakness point of GAFS is that a new generation of test DVFS config-

urations can only be generated when the current population has been fully examined. DEFS

does not suffer from this issue, as we generate candidate DVFS configurations randomly from

a list of the so-far best found DVFS configurations that are readily available. The SAFS

algorithm suffers from the possibility of replacing an elite solution by a non-optimal one.
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Table 3.9 Percentage of SAFS DVFS configurations that yield more energy
reductions than CS-DVS over 5000 simulations

N Hyperperiod

50 100 200 400 1000 2500

5 54.7% 60.8% 65.9% 72.8% - -

7 48.1% 54.4% 59.8% 66.5% 70.3% 78.6%

9 40.5% 44.9% 48.1% 52.0% 63.4% 72.6%

Figure 3.3 Percentage of Gengh configurations of the three meta-heuristics
over 500 unique sets repeated 10 times

This is due to the inherent design of the algorithm, where it stochastically accepts worse

solutions as means to escape a local minimum.

Even though GAFS maintains an elite solution through the generations (which only gets

updated if better solution is found), GAFS suffers from the possibility of producing a whole

generation of non-feasible solutions aside from the elite. DEFS, on the other hand, does not

suffer from these issues as it maintains a population of best found feasible solutions at any

time.

3.8 Chapter Summary

System-wide energy minimization is of paramount importance in modern embedded system

design. We specifically adapted the use of genetic (GAFS) and evolutionary (DEFS) algo-

rithms with the goal of reducing the overall energy consumption. We have investigated the
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Figure 3.4 Percentage of the three meta-heuristics DVFS configurations that
are better than the CS-DVS heuristic over 500 unique sets repeated 10 times

performance of our developed meta-heuristic algorithms that assign frequency scales to tasks

in a hard-real-time system. We measure energy consumption at the system level; that is that

of the processor and the devices. We have conducted a sensitivity analysis over a range of

initial values of the proposed algorithms. We have found that within a very small search

space guided by an initial solution of CS-DVS and the concept of preserving elite solutions,

the algorithms were able to find a high number of Gengh configurations.

Our algorithms outperformed the simulating annealing (SAFS) algorithm by an average

factor of 2.82 to 1 for finding a Gengh configuration when the system task set is comprised

of 5 to 9 tasks. Furthermore, based on 500 unique sets of tasks, our algorithms deliver

Gengh configurations in over 95% of the cases compared to the CS-DVS algorithm. Simulated

annealing is better than CS-DVS by an average of 75% of the time. The proposed techniques

allow for energy optimizations in small low-power embedded systems.
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Chapter 4

A Methodology for Constructing

Tasksets for Evaluation on Embedded

Hardware

4.1 Introduction

To evaluate the performance of scheduling algorithms, most of the literature has relied on

simulators that have a priori knowledge of the processor model. These processor models

are often simplified due to the inherent complexity of the hardware or lack of disclosure

of design and timing specifications. Moreover, the simulation faithfulness in representing

real-world applications is dependent on the taskset properties. A taskset represented by the

timing parameters of its individual tasks is sufficient to test the feasibility of scheduling al-

gorithms. However, representing tasksets with only timing parameters offers no insights into

the instruction mix of each task, and consequently its cache access behavior, I/O blocking or

interaction with other tasks in the system. These insights are consequential to the assessment

of reliability and energy-efficiency of real-time algorithms. For example, the work of Saha

and Ravindran [168] revealed numerous inconsistencies between reported energy savings in

literature simulations and those carried on real hardware platforms. However, to the best of

our knowledge, there exists no standard methodology to port simulations from software onto

real hardware to gain real insights into the performance and efficiency of the proposed algo-

rithms in literature. Recent frameworks synthesize tasks from time loops, matrix operations

or functional code blocks to meet a certain WCET. These approaches have limitations, first

all tasks are composed of the same functional blocks or loops and therefore are repetitive
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in nature. Secondly, some tools are restricted by their ability to generate tasks for single

core deterministic platforms where they can build on this determinism to synthesize tasks

that meet a desired WCET. Finally, they offer no flexibility of adding any in-house devel-

oped tasks to the generated taskset. In this chapter, we try to address these limitations by

offering a generic approach that allows the research community to run real-time tasks on

real hardware. We also present and compare between algorithms that solve an arising issue

related to pairing the real-time properties of the taskset.

4.2 Chapter Contributions

The contributions of this chapter are as follows:

• This chapter presents a methodology that facilitates evaluating real-time systems on

real hardware and allows for testing the system at various load points, an important

consideration in real-time research. Testing real-time algorithms directly on hardware

will provide valuable insights and overcome the limitations of simulator-based platforms

and any model simplifications.

• In our methodology, we do not synthesize tasks as most taskset generators do. Instead,

we offer the ability of using tasks from publicly or commercially available embedded

benchmarks, or any “in-house” programs that the research community develops. The

advantages of this approach is the flexibility of choice and that tasks differ functionally

from each other. Moreover, the tasks are not restricted to any platform in order to

behave in certain desired way.

• In this work, the task WCET must be estimated, and once known, be paired with

a task utilization and period to meet the total desired system load. This chapter

shows that any direct pairing approach between elements of the estimated WCETs

and discrete periods sets (using exhaustive approaches) will result in a total utilization

that diverges from the desired utilization.

• This chapter proposes a set of feedback-based algorithms that pair the estimated

WCETs with discrete bounded or unbounded periods. The algorithms produce tasksets

whose total utilization converges to the target utilization with minimal errors. The

chapter focuses on bounded periods because they provide reasonable simulation times.

The chapter also analyzes the percentage of unique periods assigned in every taskset.
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The remainder of the chapter is organized as follows: we present the system model in

Section 4.3. We provide a background on the bounds on simulation time, available benchmark

suites, and a summary of techniques for estimating WCET in Section 4.4. Our algorithms

follow in Section 4.5. We detail the experimental setup in Section 4.6. A detailed discussion

of the results of our algorithms is presented in Section 4.7. We conclude with a brief overview

of the methodology and results in Section 4.8.

4.3 System Model

We assume a real-time system that runs on either a unicore processor or a multicore pro-

cessor. The system runs a set of tasks τ = {τ1, τ2, ... τn}. We represent each task τi as a

tuple < ci, Ti > where ci is the WCET for task τi and Ti its associated period (for periodic

systems), or minimum inter-arrival time (for sporadic systems). Each task might have an

offset oi at which it starts. Each task has a utilization as described in Equation 2.2 and the

system has a total utilization as described by Equation 2.3. Each one of these tasks repre-

sents one application selected from either publicly or commercially available benchmarks sets

or any developed “in-house” codes. Task WCETs are estimated by any convenient means

as described in Section 2.1.2. We emphasize that the algorithms we present in this chapter

are independent from any task WCET estimation technique employed. That is, WCET es-

timation is a preliminary step used to generate a vector of task WCETs estimates as inputs

to the algorithms presented in this chapter. The periods can be discrete unbounded periods

taken from a uniform or log-uniform range, or discrete bounded periods. Given that un-

bounded periods result in longer simulation intervals, we focus in this chapter on bounded

periods. Yet, we also emphasize that our algorithms are independent from the technique

used to generate the periods. That is, the periods vector is generated in a preliminary step

and used as input to the algorithms presented in this chapter. This chapter uses the rand-

fixedsum algorithm [160] to generate task utilizations. In this chapter, we use capital letters

to denote a complete set/vector/matrix while the small letter notation denotes individual

set/vector/matrix elements. So if A is a vector, ai denotes a vector element. If A is a matrix,

aij denotes a matrix element. One exception is the notation for the task periods where Ti or

Tij represent individual task periods to maintain notation consistency throughout the thesis.

This is because the small notation t is universally acknowledged to represent time.
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4.4 Background

In this section, we present a brief background on the techniques used in bounding task

periods that we use in this chapter with minor modification. We also present some of the

well-known embedded benchmarking suits that we rely on in constructing the tasksets.

4.4.1 Bounds on Simulation Time

Comprehensive and faithful modelling and simulation of embedded systems are necessary

for evaluating system performance, reliability, power metrics, and assessing the feasibility of

scheduling algorithms. It is therefore necessary to run the simulation for an interval that

captures the properties and behavior of the system in a representative manner. This gives

credence to the results of the system assessment. Numerous works have explored the period-

icity of the time schedule for different task and processor models running various scheduling

algorithms. The work of Goossens et al. [187] provides a summary of some of these time

bounds. The scheduling pattern is cyclic after the established bound on the time schedule.

As such, the bound on the time schedule is used as the bound on simulation interval. These

bounds depend highly on the hyper-period H of the taskset under consideration. For ex-

ample, the work of [188, 189] shows that the upper bound for the simulation interval for

fixed-priority schedulers running independent tasks with either arbitrary or implicit dead-

lines is Omax+2H where Omax is the largest offset of any task in the system. This result holds

true for both uni-processor and partitioned-scheduling multiprocessors. More recent works

explore the time periodicity for global schedulers on multiprocessor platforms [190, 191, 192].

Consequently, arbitrary task periods lead to significantly large hyper-periods and undesirable

large simulation times.

4.4.2 Approaches to Bounding the Simulation Interval

One popular approach to minimize simulation times is the assignment of harmonic periods

[193, 194, 195, 196, 197].

Definition 4.4.1. A set of periods is considered harmonic if any two pairs in the set divide

each other. In mathematical terms, for a set of periods T = {T1, T2, ... Tn}, for every Ti and

Tj and (i 6= j), either Ti/Tj ∈ N, or Tj/Ti ∈ N.

Harmonic periods simplify schedulability analysis and naturally limit the simulation du-

ration. Despite the apparent advantages of harmonic periods, the available range of periods

to select from is limited. In a practical implementation, this will force some tasks to run
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unnecessarily at shorter successive intervals simply to maintain the harmonic relationship

among the periods.

Other approaches minimize the hyper-period by building a sorted list of reference periods

which are multiples of a selected set of prime numbers [198, 199]. The list is capped at a

user defined maximum. Original task periods are adjusted to the closest reference period.

Numerous recent works use this approach that is based on integer factorization and base

prime numbers [141, 200, 201, 202, 203, 204]. In this work, we adopt this approach by

building a period set from the factors of highly composite numbers (HCN) (a.k.a. an anti-

prime). We set the hyper-period H to equal the HCN.

Definition 4.4.2. A Highly Composite Number (HCN) is defined as a positive integer

with more divisors than any smaller positive integer: divisors(n) > divisors(m) ∀ m <

n, m, n ∈ N. For a number to be highly composite, it has to have prime factors as small

as possible, but not too many of the same.

As an example, choosing the 31st HCN for a hyper-period of 166,320 yields 160 unique

periods. In comparison, using the technique in [199] for a hyper-period of 155,520 built with

factors 27, 35, 51 generates a total of 96 unique periods. We list the set of HCNs used in this

chapter in Table 4.1. We provide the rationale behind selecting these HCNs in Section 4.6.3.

Table 4.1 A subset of Highly Composite Numbers (HCN)

HCN order HCN Factors No. of Periods Used in this chapter

30th 110,880 25.32.5.7.11 144 No (Chapter 5)

31st 166,320 24.33.5.7.11 160 Yes

32nd 221,760 26.32.5.7.11 168 Yes

33rd 277,200 24.32.52.7.11 180 Yes

34th 332,640 25.33.5.7.11 192 Yes

4.4.3 Embedded Workloads

When evaluating embedded hardware, the literature uses existing benchmark suites. MiBench

[205], EEMBC [206], BEEBS [207], and the IP-free automotive benchmarks [208] are some

examples. Of these, MiBench remains one of the mostly widely used. MiBench includes
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benchmarks that represent realistic workloads from automotive, networking, security, and

consumer embedded applications. For example, the sha benchmark is a secure hashing al-

gorithm used for fingerprinting and data verification. The 2dfir is used in digital imaging

while fdct is used in video decoding in embedded consumer devices. While building their

benchmarks suite that is geared towards energy measurements, [207] analyzed a wide range

of benchmarks suites. Their evaluation criteria included the benchmark memory footprint,

portability to bare-metal embedded platforms, and their applicability in a real embedded

system. They assigned a suitability rating for each benchmark ranging from very low to

very high. The suitable benchmarks were collected under the BEEBS suite. In this chapter,

we prioritize and select benchmarks with suitability between medium and very high from

MiBench and BEEBS, whenever possible. Users can also add their own production codes

that can possibly make use of embedded SoC components to either create more realistic

tasks or provide tasks with desirable properties pertaining to their research.

4.5 Proposed Algorithms to Pair Real-Time Tasksets Parameters

In this section, we present a reference algorithm and our CPA family of algorithms that pair

actual real-time tasks (i.e. compiled binaries) with real-time task properties. All algorithms

take as input vectors of estimated WCETs, periods (either bounded or unbounded), and a

set of utilizations that add up to a total system load. Our algorithms do not generate any

of the above real-time task properties but merely handles them and pairs them together to

generate a taskset that can be run on real hardware. Generating the three input vectors is

a preliminary step that can take advantage of future advancements by the research commu-

nity. Given that estimating WCETs for real-time tasks is an open challenge (in particular

for multicores), we note and emphasize that our pairing algorithms are independent from

the technique employed in estimating WCETs. In Section 4.6.2, we discuss one recent ap-

proach in WCET estimation for multicore platforms and the rationale behind using it in the

experimental part in this chapter. We use the randfixedsum algorithm [160] to generate ran-

dom individual task utilizations vector U that adds up to a desired total system utilization.

Finally, given that these algorithms aim to produce tasksets to facilitate simulation on real

hardware, we do not impose certain restrictions or requirements on the tasks besides having

a feasible taskset.
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Algorithm 5 (PU): Permuted Utilizations

1: Input:
2: H: Vector of discrete periods in ascending order(size m)
3: C: Vector of estimated WCETs (size N , N < m)
4: U: Vector of task utilizations (by randfixedsum algorithm) which sum up to a desired total

utilization U (size N)
5: Output:
6: O: Vector of N pairs pairs (c, T ) (WCET, period)
7: BEGIN:
8: O← {}
9: E← {} . Vector of final utilization errors corresponding to each total utilization

10: Matrix V is all permutations of U , size of V is (l, N), where l← N !
11: for i← 1, l do . Compute periods for each possible permutation
12: for j ← 1, |C| do
13: Tij ← cj/vij
14: Tij ← hk for which |hk − Tij | is minimal ∀hk ∈ H, k ∈ [1,m] . find closest period

from H to the computed period Tij
15: ũij ← cj/Tij . Recompute task utilization
16: end for
17: end for
18: for i← 1, l do

19: si ←
∑|U |

j←1 ũij . Compute new total utilization for each permutation

20: ei ← |(si−U)/U| . Error between final and initial utilization, ei is the ith element in E
21: end for
22: Retrieve i for min(E) . Retrieve index of the permutation that results in the minimum error
23: O = {(c1, Ti,1), (c2, Ti,2), . . . (cn, Ti,n)}

4.5.1 Permuted Utilization Algorithm - An Exhaustive Approach

The Permuted Utilization (PU) algorithm utilizes a brute force technique. We outline the

pseudo-code of PU in Algorithm 5. Given the individual task utilizations vector U of size

N corresponding to the number of tasks in the system, the total possible permutations

of utilization assignments is the factorial of the number of system tasks N !. We generate

all possible orderings of the individual task utilizations. Each ordering denotes a possible

mapping to the tasks. We store the resulting permutation in Matrix V where each row

corresponds to one mapping (Step 10). Given the permuted utilization matrix V and the

input WCETs vector C, we compute the initial task periods by applying Equation 2.2 on

each of the elements of V . We store the results in the period matrix T (Step 13). We

replace the periods by their closest periods from the discrete period set H (Step 14). Now

that the periods have changed, the individual task utilizations have changed as well. We

compute the new utilizations and store them into Matrix Ũ (Step 15). The vector S
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represent the new total system utilization for each permutation (row) in Ũ (Step 19). We

compute the relative difference error between the target system utilization and the final

computed utilization (Step 20). We look for and select the task utilization permutation

that when paired with the WCET vector results in the minimal error (Step 21). We pair

the permutation of task utilizations with the task WCETs and store the result in the output

vector O (Step 23). If we require multiple tasksets for a simulation at a given target system

utilization, we use the randfixedsum algorithm to generate a new utilizations vector and

apply the PU algorithm again for each required taskset.

4.5.2 Compute Propagate and Adjust Algorithms (CPA)

The CPA algorithm is a heuristic which pairs task WCETs with a set of discrete periods.

At its core, it continuously modifies individual task utilizations such that the WCET and

discrete period pair results in negligible or zero errors. The modifications has yet to satisfy

the target total system load and be as close as possible to the original individual utilization.

A feedback step provides the basis for successive adjustments. We define few supporting

functions in Algorithm 6. These supporting functions return the minimum or maximum

value and the associated index in a vector or an array. We leave the implementation of these

supporting functions to the reader as they are quite common. We list the pseudo-code of

the CPA algorithm in Algorithm 7 and we explain the algorithm through an example in

subsection 4.5.3.

The CPA algorithm takes in a vector of discrete periods H, a WCETs vector C, and

an equal-size vector of task utilizations U that is randomly generated by the randfixedsum

algorithm. The ordering of the utilizations vector corresponds to a variant of the CPA

algorithm. We investigate ordering the utilizations in either ascending (CPA-AU), random

(CPA-RU), or descending order (CPA-DU).

The CPA algorithm starts the Compute Phase by calling the “compute function” (Step

11). This function computes the initial period matrix T per Equation 2.2. That is, we

divide each task’s WCET ci by each element in the utilization vector uj to get each element

period Tij. We replace each resulting period Tij by the closest period h ∈ H to form a new

matrix T̃ . We derive the error (deviation) matrix E between the initial periods T and T̃

on an element by element basis. The function returns the calculated errors eij and the new

periods T̃ij in the matrices T̃ and E, respectively (Step 34-42).

We traverse matrix E column-by-column to find the WCET/utilization pair with the

least error emin in each column. We save the value of the least error emin into the vector
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ε. We save the row index imin of the least error element into vector I. We save the matrix

indices of the least error element into vector V . However, as we move forward to determine

min(eij) in the next columns, we exclude elements of rows i stored in vector I from being

considered as the column minimum (Steps 12-17).

We locate the matrix indices (i, j) for the entry in the error vector ε that has the largest

error emax (Steps 18-19). The indices represent the selected WCET and period pair. We

add the pair (ci, T̃ij) to the output vector O (Step 20). Though it might seem counter-

intuitive at first glance to choose the pair with the highest error, the rationale behind this

selection is straightforward. We eliminate this error completely in the propagate and adjust

phase. We proceed by computing the new utilization ũij (based on the assigned discrete

period) (Step 21) before excluding the pair from further consideration for the remainder

of the algorithm (Step 22). We measure the difference δ between the old and the new

utilization for the selected pair (Step 23).

When we change utilization uj to equal the new utilization ũij, we effectively set the

error to zero. Yet, to keep close to the target system load, we must distribute the utilization

difference δ to one of the remaining utilizations in U . We start by making a copy of the

remaining utilizations U into a second copy Ü and adjust every üj ∈ Ü by δ (Steps 24-25).

Any negative utilization üj is out of range and not considered in the next steps (Steps

26-28). We recompute the T, T̃ij and E matrices in a similar fashion to the compute phase

with the main difference of using the adjusted utilization matrix Ü instead of U . In the

last step, the adjusted utilization üj which yields the minimum error in the error matrix E
replaces its counterpart uj in the vector U (Steps 29-31).

In each iteration, as we pair WCETs and periods, we remove the WCET and associated

utilization from the vectors C and U . The algorithm runs until we process all utilizations in

U and no tasks remain.

4.5.3 A Working example of CPA-AU

To help visualize the algorithm, we present a simple numeric example for the CPA-AU

algorithm. Table 4.2 shows a step by step output of the algorithm for the first iteration.

The first input to the CPA-AU algorithm is a 4-element vector of WCETs C with values

(20, 637, 621, 6). For a total utilization of 75%, a random utilization vector U could be

(0.0912, 0.1456, 0.157, 0.3562) which we sort in ascending order. In this example, we assume

a bounded period set. We generate all periods from the factors of the HCN 166,320 and sort

them into H in ascending order.
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Algorithm 6 Supporting functions

1: function {i, x} ← MIN1 (X)
2: function that gets vector X, and returns the index i of the minimum number and the
3: minimum number x in X, respectively.
4: end function

5: function {i, x} ← MAX1 (X)
6: function that gets vector X, and returns the index i of the maximum number and the
7: maximum number x in X, respectively.
8: end function

9: function {i, j, x} ← MIN2 (X)
10: function that gets matrix X, and returns the indices i, j of the minimum number and the
11: minimum number x in X, respectively.
12: end function

We compute the periods matrix T . We note that the values in Table 4.2 are rounded

from the actual data to fit in the table, so rounding errors are expected when you follow this

example. We select the closest periods in H to the computed periods and store them into

matrix T̃ . We proceed to calculate the relative errors between T and T̃ and store the results

into matrix E (Steps 11, 34-42).

We find the minimum error emin of the first column and store its corresponding E matrix

indices, in this case the first row and first column. To break a tie, we choose the lowest

ordered rows. Now, to find emin for the second column, we exclude the first row as its

index has been used before. This results in bypassing the value 1.7175% as a minimum and

reporting 1.9226% instead. Similarly, for the third column, we choose the minimum from

the remaining second and third rows (0.1050%) leaving us with 3.3409% for the last column

(Steps 12-17). Given that the fourth entry has the highest error in the vector of minimum

errors emin (Step 19), we pair the period 1848 with the WCET 637 (Step 20). The new

utilization of this pair is 0.3447. This differs from the old utilization 0.3562 by δ = −0.0115

(Step 21). We exclude the (637, 1848) pair from further consideration (Step 22).

A decrease of the utilization from 0.3562 to 0.3447 entails that one of the remaining

utilizations should be increased by the difference. We elect to add this difference to the

utilization for which this change has minimum impact on relative error rates. The remaining

utilizations (0.0912, 0.1459 and 0.157) are copied into the vector Ü and adjusted by adding

the difference 0.0115 to become (0.1027, 0.1571, 0.1685) (Steps 23-28). As in the compute

phase, we calculate the T, T̃ and E matrices (Step 29). We notice that the second adjusted

utilization has the lowest error rate in matrix E (Step 30). Therefore, the adjusted uti-
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Algorithm 7 (CPA): Compute Propagate Adjust

1: Input:
2: H: Vector of discrete periods in ascending order (size m)
3: C: Vector of estimated WCETs (size N , N < m)
4: U: Vector of ordered utilizations (by randfixedsum algorithm) which sum up to a desired total

utilization U (size N)
(CPA-AU: Ascending, CPA-DU: Descending, CPA-RU: Random)

5: Output:
6: O: Vector of N pairs (c, T ) (WCET, period)
7: BEGIN:
8: O ← {}
9: E ← {} . Error matrix, eij is individual element in E

10: while |U | > 0 do
11: {T̃ ,E} ← COMPUTE(C, U, H) . Compute Phase
12: I ← {}, ε ← {}, V ← {}
13: for j ← 1, |U | do
14: {imin, emin} ← MIN1(eij) ∀i /∈ I
15: ε← {ε, emin}, I ← {I, imin}
16: V ← {V, (imin, j)}
17: end for
18: {jmax, emax} ← MAX1(ε)
19: ∀ v ∈ V , find i for which j = jmax
20: O← {O, (ci, T̃ij)}
21: ũij ← cij

T̃ij

22: C ← C \ ci, U ← U \ uj
23: δ ← ũij − uij . Propagate Phase
24: Ü ← U
25: Ü ← Ü − δ
26: for k ← 1,

∣∣∣Ü ∣∣∣ do
27: If (ük < 0), then Ü \ ük end if . Remove negative elements
28: end for
29: {T̃ ,E} ← COMPUTE(C, Ü ,H)
30: {i, j, e} ← MIN2(E)
31: uj ← üj . Adjust Phase
32: T ← {}, T̃ ← {},E← {}
33: end while
34: function {T̃ ,E} ← compute (C, U, H)
35: for i← 1, |C| do
36: for j ← 1, |U | do
37: Tij ← ci

uj

38: T̃ij ← hk for which |hk − Tij | is minimal ∀hk ∈ H, k ∈ [1,m] . find closest period
from H to the computed period Tij

39: eij ←
∣∣∣ T̃ij−TijTij

∣∣∣
40: end for
41: end for
42: end function
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lization ü2 replaces its counterpart in vector U (Step 31). At the beginning of the second

iteration, the utilization vector has the values (0.0912, 0.1571, and 0.157). The algorithm

proceeds to pair these utilization with the remaining WCETs (20, 621, 6).

When the algorithm runs to completion, the output vector O has the following pairs

((637, 1848), (6, 40), (20, 220), (621, 3780)). The final total utilization is 74.99% with a

relative error of 0.013%.

4.5.4 Compute Propagate and Adjust Algorithms - Maximize Unique Periods

(CPA-MUPx)

The CPA algorithm imposes no limit on how many times it selects and pairs any period

with tasks. It is quite possible that a set of tasks shares the same period. In some scenarios,

a final set with unique periods assigned to each task might be preferable. The Compute

Propagate and Adjust - Maximize Unique Periods (CPA-MUPx) algorithm constrains the

number of times it shares a period among different tasks by allowing a period to be assigned

at most x times. It is worth noting; however, that assigning usage thresholds x applies to

all periods in the set except for the last element (which corresponds to the hyper-period

itself). We exclude the last element based on experimental analysis. Keeping the last period

minimizes the errors when the system has a large number of tasks at a low total utilization.

We base the CPA-MUPx on the CPA-AU algorithm. We list the pseudo-code of CPA-

MUPx in Algorithm 8. The main difference is that the CPA-MUPx utilizes a vector L equal

in length to the periods vector H (Input 3). The algorithm tracks the number of times it

assigns a certain period by incrementing the corresponding entry in L (Steps 24-25). Once

the number of times that the algorithms uses a period reaches the limit x, we remove the

period and its corresponding tracker from the vectors H,L, respectively (Steps 26-27).

4.6 Experimental Setup

The first stage of the experiment is to select a set of benchmarks to be used as real-time

tasks. Initially, we selected 80 benchmarks from MiBench [205] and BEEBS [207] suites.

We further reduced the selection to 60 benchmarks due to portability constraints onto the

target hardware and Linux OS (i.e. library dependencies, compilation issues). We statically

linked and compiled the benchmarks using the arm-linux-gnueabi-gcc compiler v.4.8 with

-O0 optimization flag. A precursory step to testing our algorithms is to provide a vector C

of WCETs. Should we execute the tasks on a single core platform, the WCET estimation

is straightforward and there exists many trustworthy tools and techniques. However, the
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Algorithm 8 (CPA-MUPx): Compute Propagate Adjust - Maximize Unique Periods

1: Input:
2: H: Vector of discrete periods in ascending order (size m)
3: L: Vector (zero initialized) of the number of times a period h ∈ H has been assigned (size m)
4: C: Vector of estimated WCETs (size N , N < m)
5: U: Vector of ordered utilizations in ascedning order (by randfixedsum algorithm) which sum up

to a desired total utilization U (size N)
6: Output:
7: O: Vector of N pairs (c, T ) (WCET, period)
8: BEGIN:
9: O ← {}

10: E ← {} . Error matrix, eij is individual element in E
11: while |U | > 0 do
12: {T̃ ,E} ← COMPUTE(C, U, H) . Compute Phase
13: I ← {}, ε ← {}, V ← {}
14: for j ← 1, |U | do
15: {imin, emin} ← MIN1(eij) ∀i /∈ I
16: ε← {ε, emin}, I ← {I, imin}
17: V ← {V, (imin, j)}
18: end for
19: {jmax, emax} ← MAX1(ε)
20: ∀ v ∈ V , find i for which j = jmax
21: O← {O, (ci, T̃ij)}
22: ũij ← cij

T̃ij

23: C ← C \ ci, U ← U \ uj
24: Find index k such that hk ∈ H | h = T̃ij , k ∈ [1,m] . Retrieve index of assigned period
25: Increment lk . Increment corresponding usage statistics in the L vector
26: if (lk = x & k 6= m) then, H \ hk, L \ lk . If period assignment reaches threshold,

exclude period from further use
27: end if
28: δ ← ũij − uij . Propagate Phase
29: Ü ← U
30: Ü ← Ü − δ
31: for k ← 1,

∣∣∣Ü ∣∣∣ do
32: If (ük < 0), then Ü \ ük end if . Remove negative elements
33: end for
34: {T̃ ,E} ← COMPUTE(C, Ü ,H)
35: {i, j, e} ← MIN2(E)
36: uj ← üj . Adjust Phase
37: T ← {}, T̃ ← {},E← {}
38: end while
39: Function T̃ ,E ← COMPUTE {C, U, H} . See Algorithm 7 Lines 33-41
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Table 4.2 Example of the CPA-AU algorithm,
1st iteration, 4 tasks at 75% utilization

Compute Phase

WCET/Utilization 0.0912 0.1456 0.157 0.3562

T

20 219.30 137.36 127.40 56.15

637 6,984.62 4,374.89 4,057.77 1,788.26

621 6,809.18 4,265.00 3,955.85 1,743.34

6 65.79 41.21 38.22 16.84

T̃

20 220 135 126 56

637 6930 4158 3960 1848

621 6930 4158 3960 1680

6 66 42 40 16

E

20 0.3205% 1.7175% 1.1008% 0.2603%

637 0.7820% 4.9576% 2.4094% 3.3409%

621 1.7744% 2.5088% 0.1050% 3.6332%

6 0.3205% 1.9226% 4.6552% 5.0098%

emin 0.3205% 1.9226% 0.1050% 3.3409%

Propagation and Adjust Phases

δ -0.0115

Ü 0.1027 0.1571 0.1685 *

WCET/Utilization 0.1027 0.1571 0.1685

T

20 194.71 127.29 118.70 *

* * * * *

621 6045.77 3952.40 3685.48 *

6 58.41 38.19 35.61 *

T̃

20 198 126 120 *

* * * * *

621 5940 3960 3696 *

6 60 40 36 *

E

20 1.69% 1.01% 1.10% *

* * * * *

621 1.75% 0.19% 0.29% *

6 2.72% 4.75% 1.10% *

WCET/Utilization 0.0912 0.1571 0.157

Note: numbers are rounded in this table. Rounding errors
might ensue

platform we use in this thesis is a multi-core single-ISA heterogeneous platform based on

ARM big.little architecture. We acknowledge that WCET estimation is an open challenge

in multicore platforms due to cache interference between multiple cores and the shared

resources. The tightness of the estimates does not affect our algorithms for they act as a
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black box that pairs the inputs regardless of the methods used to collect the WCET vectors,

or generate task periods and utilizations.

To the best of our knowledge, there is very limited or no support for static-based anal-

ysis on multicore systems due to the complexity of the hardware and memory subsystems.

Measurement-based approaches are equally unreliable. Recent works employ MBPTA tech-

niques based on EVT to estimate probabilistic WCETs on multicores. Slijepcevic et al. [209]

used MBPTA on a quad-core platform without cache-partitioning techniques using EEMBC

benchmarks that are run 1000 times. Wartel et al. [210] tested MBPTA on a real avionics

systems running atop a multicore system and show that it delivers tight estimates. Cros et

al. [211] also employ MBPTA for an Aerospace case study, they show that MBPTA provides

19.6% tighter WCET estimate than the industrial practice of adding 20% margin over the

maximum observed operation time (MOET). Fedotova applies MBPTA on ARM Cortex-A5

processor in [212]. Silva et al. [213] also show the adequacy and tightness of using EVT-

based MBPTA on complex processors running Linux. As such, MBPTA based on EVT looks

promising for WCET estimation on multicore platforms.

4.6.1 Measuring Task Execution Times

Given the initial taskset of 60 tasks, we generated a total of 5000 random taskset permuta-

tions in which we assigned the tasks random core affinities that span all eight cores of the

target hardware. The target hardware platform is an Odroid-XU3 (XU4) board equipped

with an ARM big.LITTLE Exynos 5422 chipset. The processor hosts two heterogeneous

quad core ARM Coretx-A15 and Cortex-A7 clusters. The board was running LUbuntu

12.04 based on the 3.10.y Linux kernel. We enabled the “performance” scaling governor in

the kernel configuration and set it as default. This effectively ensures that Dynamic Voltage

and Frequency Scaling (DVFS) is disabled. Therefore, the big (A15) and little (A7) clusters

run at their maximum speeds of 2000MHz and 1400MHz, respectively.

Each core in either the A15 cluster or the A7 cluster is equipped with a Performance

Monitoring Unit (PMU). Each PMU has a dedicated cycles counter. Though the Linux

kernel supports hardware event collection using the perf tool, the tool does not concurrently

support more than one cluster in heterogeneous platforms. To circumvent this limitation,

we use a 3rd party tool, PMCTrack [174]. PMCTrack is an open-source OS-oriented perfor-

mance monitoring tool for GNU/Linux. We patch the 3.10.y kernel and load the appropriate

drivers for the Odroid-XU3 (XU4) board. PMCTrack supports assigning core affinities to the

monitored tasks. We use this capability to distribute the tasks over the cores in conjunction
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Figure 4.1 Normalized histogram of the measured execution times of Task
46 (nsichneu) with both the EVT-Type-I and Generalized EVT fits

with logging task cycles. We run each taskset for one minute on all cores. Each core assigned

tasks keep cycling back to back until they reach the time threshold. Between each taskset

and the next, we run a small workload to load the caches with different data. For each of

the 5000 tasksets, we collected the total number of cycles of each workload. To measure the

execution time of the benchmarks, we divided the number of cycles over the frequency of

the core it was running on.

4.6.2 Estimating Worst Case Execution Times

We chose to estimate WCET from collected measurements using a probabilistic approach,

namely EVT. In MATLAB’s Distribution Fitter toolbox, we use both the Gumbel Distribu-

tion (EVT-Type I) and the Generalized EVT to fit and analyze the execution times. Of the

60 benchmarks, 55 had a good fit and we discarded the others. We used the probability den-

sity function of each benchmark to estimate its WCET. Similar to the approach in [26], and

given the guidelines for safety assessment in airborne systems [214] that set the failure rate

at 10−9 per hour of operation; we considered WCETs at probabilities [10−9, 10−12, 10−16].

When the probability is lower, the more pessimistic the estimation; yet the less probability

of failure. In this paper, we consider WCETs at 10−16 probability. Furthermore, in the final

set, we eliminate for practical purposes benchmarks with individual pWCET that exceeds

1500ms when executed on the ARM A15 cores (the fast performance core). This is to keep

our choice of periods small and limit the simulation time for any real-time schedule that will
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use this taskset. We list the estimated pWCETs for the final 50 benchmarks in Table 4.3.

We show a sample of EVT fitting for Task 46 “nsichneu” in Figure 4.1.

Table 4.3 Estimated pWCET (ms) for 50 Tasks on ARM Cortex-A15 and
Cortex-A7

Task No. Benchmark pWCET
(A15)

pWCET
(A7)

Task No. Benchmark pWCET
(A15)

pWCET
(A7)

1 basicmath large 403.2 822 26 bubblesort 460.8 1252

2 bitcnt 503 1502 27 cnt 12.5 39.5

3 qssort 5.1 14 28 compress 10.8 49.5

4 susan -c 47.6 132 29 cover 19.8 32

5 susan -e 115 322 30 duff 7.3 21

6 susan -s 348.1 992 31 edn 198 722

7 jpeg decode 20 92 32 expint 11.5 39.5

8 jpeg encode 90.1 222 33 fac 5.8 13

9 whetstone 705.1 1362 34 fdct 9 39.5

10 lout 932.9 1522 35 fibcall 3.6 5.8

11 aha-mont64 39.6 122 36 fir 621 2082

12 patricia 1134.7 1102 37 insertsort 6 14

13 nbody 1174.6 2127 38 janne complex 3.3 5.3

14 levenshtein 208.5 562 39 jfdctint 11 39.5

15 sha 134.6 432 40 lcdnum 4.2 5.3

16 sqrt 267 572 41 ludcmp 12.1 54.5

17 inverse fft 1215.7 1696 42 matmult-int 260.1 1182

18 fft 1299.6 1442 43 minver 10.3 39.5

19 raw audio pcm 510.5 1272 44 ndes 232.5 472

20 rawaudio adpcm 637 1592 45 ns 27.4 122

21 st 51.8 222 46 nsichneu 29.5 107

22 statemate 5.7 17 47 prime 81.4 232

23 string search 16.4 62 48 qurt 6.6 17

24 ud 14.7 54.5 49 recursion 8.9 32

25 matmult-float 62.2 282 50 select 6.6 20

4.6.3 Evaluation of the Algorithms

To evaluate the performance and compare between the PU, CPA, and MUP algorithms

variants, we created a test-bench which iterates over the total utilization range of [0.1 , 0.9]

in increments of 0.05 (17 total utilizations). In each iteration, we generated 500 random

utilization distributions. Each distribution sums up to the total utilization of the current

iteration. We generated our bounded periods set from the 31st HCN. Our rationale in

choosing the 31st HCN (166,320) as a starting point is to allow the task of highest pWCET

on the Cortex-A15 core to have a utilization as close as possible to 1%. The pWCET of
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Task 18: fft is 1299.6, resulting in utilization of 0.78%. Similarly, for the Cortex-A7 core,

the pWCET for Task 13: nbody is 2127 resulting in a utilization of 1.27%.

Subsequently, we pass the generated utilizations, bounded periods and task WCETs to

each of the algorithms under consideration. We vary the number of tasks in the system

between 4 and 50 (for a total of 47 simulation points per utilization). Yet, we cap the

taskset size for the PU algorithm at 10 due to computational limitations. In total, we ran

nearly 400,000 simulations for each algorithm (except for PU ≈ 60,000 simulations) and

collected statistical data.

4.7 Experimental Results

To avoid redundancy, we only show results related to the Big cluster (Cortex-A15 cores). We

analyze the results in terms of how the final system utilization of a paired taskset deviates

from the desired total system utilization. We start with the results of the PU algorithm

that we illustrate in Figure 4.2. For a system with varying number of tasks between four

and ten, we notice that the median relative errors of PU algorithm hover around 2.5% and

5.0% (surface plot) whereas they were around 0.3% for two variants of the CPA algorithm.

The minimum recorded values of the PU algorithm also designate error rates in the vicinity

of 1.0% - 3.0%. The PU exhaustive exploration does not necessarily yield a better solution

than what our algorithms provide. We observe that the minimum relative errors of the

PU algorithm were on average higher than the average errors of our algorithms. The CPA

algorithm has an order of magnitude less errors due to the continuous readjustment of the

individual utilizations, a feature that the PU algorithm lacks.

When we compare the average execution time of the main algorithms, the O(n!) com-

plexity of the PU algorithm is clearly visible in Figure 4.3. Increasing the taskset size by one

from nine to ten increases the execution time of the algorithm by a factor of ten. In contrast,

the CPA-AU algorithm, and the MUP variants are more efficient. Using curve fitting tools,

we find that for the CPA-AU, the algorithmic time can be expressed as polynomial of degree

three with coefficients (1.82e− 06, 1.507e− 05, 1.181e− 06, 0.0002625). For this model, the

R2 is 1, the SSE equalled 1.8335e − 06 and the RMSE 2.0649e0 − 4. Given this model, it

will take the algorithm 15 seconds to generate parameters for a taskset of size 200 on our

research machine.

In Figure 4.4, we compare the relative percentage errors of the CPA and MUP algorithms

when simulated for a hyper-period of 166,320. We notice that the CPA-AU, CPA-RU and

CPA-DU (Figs. 4.4a, 4.4b, 4.4c) perform well across much of the exploration space. The



4 A Methodology for Constructing RT-Tasksets for H/W Evaluation 85

Figure 4.2 Relative error (%) from target system utilization

only exception is when we simulate large tasksets ( > 30 tasks) at very low utilizations

(specifically a utilization of 10%). In this corner case, the CPA-AU algorithm outperforms

both the CPA-RU and CPA-DU with an average error rate of 2% for the case of 50 tasks,

compared to 6% and 18% for CPA-RU and CPA-DU, respectively.

When the total utilization is small, the individual task utilizations are even smaller.

Therefore, very large periods are required to satisfy the small utilizations. The first source

of error is due to the fact that the periods are farther apart when they get large and towards

the end of the period set. This means less large periods to select from. The other source of

error is capping the largest required period by the maximum available period of the set.

It is also important to report the variance values of our investigation across all simulated

tasksets. We show the variance for the best performing algorithm CPU-AU in Figure 4.5.

The small variance overall shows the consistent and solid performance of the algorithm.

Despite a slight increase in the variance for the corner case, it is still quite low (< 10−5).

The effect of imposing limits on the number of times the CPA-MUPx algorithm selects

a period is visible in Figures 4.4d, 4.4e and 4.4f. As expected, CPA-MUP1 shows the most

errors. This is due to the fact that requiring more unique periods reduces the size of the

periods set by at most the same number of system tasks. Relaxing the limits improves

the performance as evidenced in both the CPA-MUP2 and CPA-MUP3 results. If we take

the CPA-MUP2 algorithm as an example considering 50 tasks at 30% target utilization,
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Figure 4.3 Average execution time of the proposed algorithms vs. the task
set size

the algorithm is on average capable of constructing tasksets with 28.2% utilization. In

comparison, the CPU-AU almost matches the desired utilization at 29.97%. Imposing unique

periods in CPA-MUP1 yields a total system load of 22.5%, a 25% drop from the target.

Similar to CPU-AU algorithm, the CPA-MUPx algorithm suffers from poor performance

for the case of large tasksets at small utilizations. However, the errors are more noticeable

for CPA-MUPx because a major downside of discarding periods is limiting the number of

available periods to select from. One possible way to mitigate this issue is by starting with

a larger initial period set. In Figure 4.6, we show that using larger HCN numbers to build

our period set has a diminishing effect on the relative errors for the CPA-MUP1 algorithm.

An important criteria we use to compare the algorithms is how many unique periods they

can produce on average. Every point of the exploration space (17 utilizations × 47 possible

task sizes) has 500 simulations. For each one of these simulations, we count the number of

unique periods in the resulting taskset and divide it by the taskset size. We then average

these ratios at every point. We group the averaged uniqueness percentages and use them to

draw a histogram. We repeat this procedure for each one of the CPA-AU and CPA-MUPx

algorithms and across four different simulation intervals (166.32, 221.76, 277.20, 332.64) ms.

We group the individual histograms into a 3D histogram which we illustrate in Figure 4.7.
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(a) CPA-AU (b) CPA-RU

(c) CPA-DU (d) CPA-MUP3

(e) CPA-MUP2 (f) CPA-MUP1

Figure 4.4 The algorithms CPA-AU, CPA-DU, CPA-RU and CPA-MUPx
assign task periods from a bounded period set to set of N tasks with given
pWCETs. The mapping is to satisfy a certain utilization U. Figures (a) to
(f) show the relative error rates of the utilization after final mappings. All
algorithms use periods with HP = 166.32 seconds.



4 A Methodology for Constructing RT-Tasksets for H/W Evaluation 88

Figure 4.5 Variance of relative errors for CPA-AU algorithm at hyper-period
of 166,320ms

Predictably, when we use larger HCNs (Hyper-Periods) to generate the periods set, there

is less chance to select the same period multiple times. We notice that at a hyper-period

of 166.32 seconds, the majority of the tasksets generated by the CPA-AU, CPA-MUP2 and

CPA-MUP3 have between 70% and 100% unique periods. This rises to a majority that has

between 80% to 100% unique periods when the hyper-period increases to 332.64 seconds.

Even though the CPA-MUP1 algorithm generates the most unique periods, the percentage

of unique periods is never 100%. This is because the algorithm does not discard the largest

period in the set. For the corner case of large number of tasks at small utilizations, the

algorithm repeatedly selects this period degrading the uniqueness index.

It is worth noting that for any given hyper-period, the differences between CPA-MUP2,

CPA-MUP3, and CPA-AU are not that distinct. In fact, the three algorithms produce

tasksets with at least 70% unique periods. Weighing on this observation, and contrasting it

with the higher error rates the CPA-MUPx algorithms have, we conclude that the CPA-AU

algorithm outperforms the others.

4.8 Chapter Summary

This chapter proposed a set of algorithms to prepare tasksets for the purpose of evaluating

real-time algorithms on real hardware. As opposed to conventional approaches, our method-

ology does not build or synthesize tasks but instead is based on user supplied tasks either
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(a) HP=166,320ms (b) HP=221,760ms

(c) HP=277,200ms (d) HP=332,640ms

Figure 4.6 The relative errors of CPA-MUPx algorithm as HP increases
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Figure 4.7 A 3D histogram of unique periods for the main algorithms over
different simulation hyper-periods
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from embedded benchmark suites or “in-house” codes. Coupled with a set of discrete periods

and individual task utilizations, the proposed algorithms adjust the random individual task

utilizations and pair tasks to periods to satisfy total system utilization constraints.

The first set of algorithms CPA (AU, RU, DU) investigate the effects of initial utilization

ordering on the performance of the algorithms by computing and comparing relative error

rates. The CPA-AU algorithm outperformed the other CPA variants and delivered results

in polynomial time. The CPA-AU relative errors are at least an order of magnitude less

than any possible heuristic or exhaustive approach based on direct pairing and no utilization

adjustment. This chapter also introduced a set of algorithms based on the CPA-AU algorithm

which maximizes the number of unique periods assigned to each task in the taskset. The final

assessment showed that there is a trade-off between the number of unique periods assigned

in a taskset and overall accuracy. If unique periods are required, the algorithm will not

be able to satisfy the target utilization. A more relaxed CPA-MUPx uniqueness thresholds

or longer hyper-periods slightly mitigate the issue. However, the analysis shows that CPA-

AU algorithm achieves comparable results to the relaxed versions of the CPA-MUPx with

minimal errors.

In our methodology, generating the period set and individual task utilization vectors

as inputs to the algorithms is straightforward. However, estimating WCETs of a set of

real-world embedded benchmarks is not. Despite the fact that the CPA algorithms are

independent of the techniques used to derive the inputs to the algorithms, it is worth to

address the issue of estimating WCETs especially if the goal is to construct tasksets for

simulation on multicore platforms. Some preliminary research finds MBPTA approaches

based on EVT promising. As embedded processors keep incorporating MBPTA-friendly

features (e.g. random replacement cache policy), this will facilitate finding tight and safer

WCETs for complex systems.
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Chapter 5

Energy and Task-Aware Partitioning

on Single-ISA Clustered

Heterogeneous Processors (CHPs)

5.1 Introduction

Embedded heterogeneous multi-core processors combine cores of different performance and

energy consumption profiles on the same die. The varying performance and energy effi-

ciency between the heterogeneous cores add additional dimensions to an already complex

optimization problem. Recent heterogeneous chips include AMD’s heterogeneous architec-

ture [215] where the processing unit and the GPU share the same bus, memory, and tasks

with the aim of reducing communication latency. In embedded platforms, most offerings are

based on cores that share the same instruction set architecture ISA. Examples of single-ISA

heterogeneous SoCs include Nvidia Tegra3 [216], TI OMAP 5 [217], and ARMs traditional

big.LITTLE platforms [218]. Nvidia’s approach is to combine quad-core high-performance

cores alongside a fifth companion core of the same type. The fifth core is built using a

special low power silicon process that runs at lower frequencies in what Nvidia calls Variable

Symmetric Multiprocessing vSMP. TI OMAP 5 combines dual core Cortex-A15 with dual

core Cortex-M4 processors. Despite belonging to different ARM Cortex families, the cores

share the same armv7 ISA.

ARM’s big.LITTLE based SoCs feature dual clusters of different processors of the Cortex-

A family that share the same ISA. Processors within the same cluster share the same clock

frequency and are controlled by the same DVFS circuity. ARM big.LITTLE processors are
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ubiquitous in mobile systems and dominated by products from Samsung (Exynos 5 and 7

series), Qualcomm (Snapdragon 600 and 800 series), and Kirin (900 series). Hexa (2+4) and

Octa (4+4) core platforms are the two available configurations. These processors are either

based on 32-bit architecture (e.g. A15/A7 cores using armv7-a ISA), or 64-bit architecture

(e.g. A73/A53 cores using armv8-a ISA). Recently, ARM introduced a refined concept of

ARM big.LITTLE under the name big.LITTLE dynamIQ [219]. The first improvement is

having the ability to add more clusters with different energy profiles. (i.e. a cluster of a third

core type (medium core), or a cluster with the big core type but with different supported

frequencies). The second improvement allows for combining big and little processors in

new configurations (e.g 1 big + 7 little or 2 big + 6 little). A third design improvement

adds the potential for per-core DVFS (though recent products do not yet apply it due to its

cost). However, as of the time of writing this thesis, only one cluster is allowed to be active

at any time instant. This is be expected to change in the future.

The real-time literature adapts to the advancements in the underlying hardware and

offers new solutions to challenging problems. However, in most cases, it often simplifies

energy, power, and task models. For example, given the real-time system constraints and

processor overheads, it might not be possible to make use of the multi-level and deep sleep

states. Furthermore, many ignore the impact of the different mixes of the task instructions

on energy consumption. Relying on task execution time as the sole metric for the energy

consumption evaluation is misleading. Tasks exhibit different execution paths and inherently

distinct cache and I/O access behavior. As such, tasks do not necessarily consume the same

power if run on the same processor at the same frequency. For example, tasks with heavy

cache access would consume more energy. Moreover, tasks with hardware floating point or

SIMD instructions have different performance and energy characteristics given the specialized

circuity they use.

5.2 Chapter Contributions

Motivated by the ubiquitous proliferation of heterogeneous multicore systems, most notably

ARM big.LITTLE processors as an example of a successful single-ISA heterogeneous ar-

chitecture, the goal of this chapter is to present and analyze task allocation heuristics for

reducing the energy consumption on such platforms. Our work does not assume that tasks

consume the same power when run on the same core type at the same frequency. We con-

sider realistic cases where the task instruction mix and behavior dictate that tasks will have

different power profiles. Instead of relying on simulations, we directly evaluate and compare
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our algorithms on real-hardware. This reduces any discrepancies between simulation results

and real-world deployment. We summarize our contributions as follows:

• We provide a comprehensive analysis and profiling of the energy and performance effi-

ciency of real-world embedded benchmarks running on Samsung Exynos 5422 SoC fea-

turing an Octa-core single-ISA big.LITTLE platform based on ARM Cortex-A ARMv7

Architecture.

• We propose algorithms for task allocation across the heterogeneous cores for hard real-

time periodic task sets. Our algorithms are inspired by the analysis of the different

energy profiles of the tasks across the different supported cluster frequencies.

• Based on our methodology for facilitating task evaluation on real-hardware, we run our

algorithms and report results on Odroid XU3 boards. The boards run a customized

Linux kernel patched with Litmus-RT RTOS that supports partitioned EDF schedul-

ing. We test the performance of our algorithms under various system load points.

Running our tasksets on real-hardware allows us to report actual energy consump-

tion and takes into account effects that are often ignored in simulations due to their

complexity.

• We compare our results to the HIT-LTF algorithm [148], which, up to our best knowl-

edge, is the most recent work utilizing similar hardware, energy, and task models.

Our algorithms consider the allocation and frequency simultaneously, in contrast to

HIT-LTF.

The remainder of the chapter is organized as follows: Section 5.3 introduces the hardware

platform model, its associated power model, and the task and energy models used in this

chapter. The chapter proceeds with the proposed algorithms in Section 5.4. The experimen-

tal setup follows in Section 5.5. Section 5.6 illustrates and discusses the evaluation results

of the presented algorithm. The chapter concludes with a summary.

5.3 System Model

5.3.1 Hardware Platform Model

A heterogeneous platform Π is composed of M clusters κi. Each cluster κi can have a

different number Qκi of homogeneous processing elements (cores) πj. However, the platform

Π must consist of at least two different clusters that differ in terms of performance and
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energy efficiency. We use the notation πκi,j to denote core j of cluster κi. The total number

of cores in the system is equal to Q =
∑M

i=1Qκi .

All clusters κi implement the same instruction set architecture (ISA). Given that per-core-

DVFS is costly and complicated, we assume that all processing elements πj within cluster κi

share the same frequency and voltage domain. This assumption is corroborated by the fact

that modern embedded heterogeneous processors to date implement this model [217, 218].

Each cluster κi, and by extension, each core within the cluster πκi,j share a finite set fκi of

frequency scales fκi,1, fκi,2, . . . , fκi,nκi in increasing values. The notation fκi,k denotes the kth

frequency supported by cluster κi while nκi represents the number of available frequencies

supported by a cluster. The maximum frequency supported on a cluster is denoted as fmaxκi

which corresponds to the cluster frequency at index nκi .

5.3.1.1 Experimental Platform

In this chapter, we consider a single-ISA heterogeneous platform based on ARM’s big.little

architecture. We use the Odroid-XU3 board. This board features Samsung Exynos 5422 SoC

that boasts an octa-core configuration in two clusters (M = 2). Each cluster has a set of

quad-core processors (Q1 = Q2 = 4). The first cluster κ1 (big cluster, a.k.a κB) incorporates

four Cortex-A15 cores while the second cluster κ2 (little cluster, a.k.a κL) has four Cortex-

A7 processors. The Cortex-A15 processor is performance oriented while the Cortex-A7 is

more energy-efficient. Both processor types are based on ARM’s armv7a architecture. The

big cluster supports 19 frequency levels from fB,1 = 200 MHz to fB,19 = 2000 MHz. On

the other hand, the small cluster supports 13 frequency levels from fL,1 = 200 MHz to fL,13

= 1400 MHz. Each of the eight cores in both clusters has an 8-set associative 32KB L1

instruction and data caches. The quad processors in the little cluster share a 512KB L2

cache whereas the quad cores of the big cluster share a 2MB L2 cache. The two clusters

have a 128-bit coherent bus interface. Fig. 5.1 presents the general layout of the Exynos

5422 SoC. In Fig. 5.2, we show the speed-ups attained for running a selection of benchmarks

from the MiBench [205] and BEEBS Benchmarks [207] suites. We set our baseline to be the

results of running the benchmarks on the Cortex-A7 processor at the maximum frequency

of 1400MHz. We report speedups when the tasks are run on the Cortex-A15 processor at

both 1400MHz (the same as the maximum frequency of the Cortex-A7) and the maximum

A15 cluster frequency of 2000MHz.
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Figure 5.1 Architecture of the Samsung Exynos 5422 SoC featuring an octa-
core big.LITTLE heterogeneous clusters

Figure 5.2 Normalized performance speedup of running embedded bench-
marks on Cortex-A15 (at 1400 and 2000MHz) against Cortex-A7 (at 1400MHz)
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5.3.2 Task Model

We consider a hard-real-time system modeled by a set Γ of N independent periodic tasks

τn. We assume a synchronous release-time model where all tasks are released at the same

time t = 0. The system releases infinite number of task instances (jobs) with a period

Tn associated with each task τn. We further assume an implicit deadline model where

each task has a hard deadline dn equal to its period. A task needs a number of cycles to

complete that varies depending on different inputs, initial conditions, or the system state.

Each task has a worst-case execution cycles (WCEC) parameter c̊τnκi that depends on the

task instructions, processor architecture, and system state. We calculate the worst-case

execution time (WCET) by dividing the number of the worst-case execution cycles needed

to complete the task over the frequency of the cluster on which it is running cτnκi = c̊τnκi /fκi,k.

We initially estimate the WCECs and WCETs at the highest frequency of each cluster given

the procedure outlined in Section 4.6 based on EVT-based MBPTA. However, to analyze the

relationship between WCECs and cluster frequency, we conducted our tests on one active

core on each cluster because the interference from other cores will be difficult to isolate. In

this scenario, we find that WCEC varies with frequency by at most 1% for each task in our

taskset Γ. This might not be true for any other tasksets based on different benchmarks as

it depends on the size of the tasks, their nature (CPU bound or memory bound), and the

size of the data they handle. Given the small variation in WCECs that we measured, we

assume that the WCET scales linearly with the frequency in an approach similar to other

works [148]. We denote the utilization of the task running on cluster κi as uτnκi .

We consider partitioned multi-core scheduling in which we permanently assign a fixed

core for each task to execute on. All task instances execute on the assigned core and task

migration is not allowed between cores or clusters. For any taskset Γ, we denote the task

partitioning on all system cores by Θ, and on a specific cluster by Θκi . We denote the set

of tasks assigned to a core in a processor cluster by Θκi,j. For a task partitioning to be

considered feasible, all tasks must meet their deadlines. In this work, we use the Earliest

Deadline First (EDF) scheduler. Each core has its own task queues and separate EDF

scheduler that handles the set of tasks assigned to it. In EDF scheduling, a partitioning of

the tasks Θκi,j is schedulable when it satisfies the condition that the total task utilization

on each core must not exceed unity; that is Uj =
∑

τn∈Θκi,j
uτnκi ≤ 1.

The upper bound for the simulation interval for EDF schedulers running independent

tasks with implicit deadlines on uni-processors or partitioned multiprocessors is equal to the

hyper-period [188, 189]. The scheduling pattern is cyclic after the established bound on the
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Table 5.1 Latency (in ms) to deactivate/wake up the Exynos 5422
big.LITTLE cores [4]

Core Type Cortex-A7 Cortex-A15

Freq. (MHz)\Transition State On Off On Off

200 4.19 10.03 4.91 13.89

1400 1.82 2.17 4.52 6.30

1800 - - 4.54 5.40

time schedule.

5.3.3 Power Model

We consider the same power model introduced in Section 2.2 where processors consume

dynamic and static power. We denote the total power the task consumes when running at

cluster κi and cluster frequency fκi,k by P τn
fκi,k

.

We consider two cases. The first case is when we aggressively switch the cores to sleep

mode whenever no tasks are running such that the cores only consume negligible sleep

power P sleep
κi

. However, in this case the switching overhead to deep sleep and back to the

active state might be prohibitive in certain real-time applications. In the second case, the

processors never goes to sleep mode and instead consumes idle power P idle
κi

. Colin et al. [4]

have analyzed the switching overhead (in ms) for activating and deactivating the cores of

the Exynos 5422. We report their findings in Table 5.1.

5.3.3.1 Platform and Task Power Analysis

The average power dissipation varies between tasks even if they execute on the same fre-

quency on the same core. We profile the average power consumed by each task using the

built-in Texas Instruments INA231 on the Odroid-XU3 board. These sensors connect to each

of the quad core A15 and A7 clusters. We run each one of the 45 system tasks back-to-back

for 60 seconds on each of the heterogeneous clusters where one core was active at a time. We

take the readings at intervals of 200 ms. Similarly, we measure the idle power by invoking

the Linux sleep command similar to the approach taken in [220].

Fig. 5.3 and Fig. 5.4 illustrate how the total task power varies between tasks for a given

core at the same specified frequency. For the taskset in our experiment, the variation between

the maximum (fir2dim) and minimum power observed (edn) is 102% at 2000MHz, and 86.4%
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at 1400 MHz for the Cortex-A15. Whereas for the Cortex-A7 processor, the maximum

variation in power consumption between tasks at maximum frequency is 43.1%. We further

observe that the tasks that consumed the highest and lowest power on the Cortex-A15 are

not necessarily the same for Cortex-A7. The architectural differences between the two cores

entail different active circuits and behavior for the various task instructions which in turn

affect the power consumed.

Figure 5.3 Total power consumption for select tasks and the average power
for the entire taskset for the Cortex-A15 processor

5.3.4 Energy Model

Task energy is the integration of task power over the task execution time. We express the

energy consumption of a single instance of task τn running on a core of cluster κi at frequency

fκi,k as in Equation 5.1:

eτnfκi,k
= P τn

fκi,k
× cτnκi (5.1)

For any task τn, eτnκi denotes the vector of energy consumption of a single instance of

task τn at the various frequencies fκi of cluster κi. We further denote eΓ
κi

as the grouping of

vectors eτnκi for all τn ∈ Γ.
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Figure 5.4 Total power consumption for select tasks and the average power
for the entire taskset for the Cortex-A7 processor

Equation 5.2 expresses the total energy consumption of a task τn running on a core of

cluster κi at frequency fκi,k for the whole duration of a hyper-period as:

Eτn
fκi,k

=
H

Tn
× eτnfκi,k (5.2)

In case the processor remains idle when no tasks are running, we define the total energy

consumed by all tasks assigned to a processor cluster running at frequency fκi,k by Equation

5.3:

Efκi,k =

Qκi∑
j=1

∑
τn∈Θκi,j

(Eτn
fκi,k

+H(1− Uj)P idle
κi

) (5.3)

Similarly, if the processor is to be switched to sleep modes in between active tasks, we

define the total energy consumed within the cluster in Equation 5.4. Though, in most cases,

the sleep energy can be negligible.

Efκi,k =

Qκi∑
j=1

∑
τn∈Θκi,j

(Eτn
fκi,k

+H(1− Uj)P sleep
κi

) (5.4)
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Given the intricate interplay between dynamic and static energy consumption, lower

cluster frequencies do not necessarily translate to lower overall energy consumption. The

increased execution time and therefore increased leakage current might outweigh the reduc-

tions in dynamic energy consumption at lower frequencies. As such, there exists a subset of

low frequencies at which it is no longer energy-efficient to operate. The critical frequency

is defined as the cluster cut-off frequency below which it is energy-inefficient to assign tasks

to the cluster. We denote the cluster critical frequency as f critκi
. We profile the energy per-

formance of both the Cortex-A15 and Cortex-A7 clusters in Fig. 5.5. We report the results

in units of energy-per-cycle for the maximum, minimum and average of our 45 taskset. It

is evident that the critical frequency for the A15 cluster (f critB ) rests at the 700 MHz point.

The critical frequency of the A17 cluster (f critL ) sits at the 500 MHz frequency point.

Figure 5.5 Profiling the energy-per-cycle consumption for the Cortex-A15
and Cortex-A7. The critical frequency (dashed line) is shown to be 700MHz
for the A15 and 500MHz for the A7

5.4 Our Algorithms

In this section, we present our main algorithm, Task and Cluster Heterogeneity Aware Par-

titioning (TCHAP). Our algorithm tried to reduce overall system energy by leveraging the
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different energy profiles of the heterogeneous clusters of ARM big.LITTLE platforms. Fur-

thermore, the algorithm realizes the difference in power consumption between tasks running

on the same cluster. We present two variants of (TCHAP); the first algorithm, which we

denote as TCHAPI , targets systems where the overhead from switching into sleep modes

might affect the timeliness of certain real-time systems. In these systems, DPM is disabled

and the processor is kept idling when no tasks are running. We present this algorithm in

Section 5.4.3. The second variant, TCHAPS handles the case where the processor makes use

of available sleep states and optimizes the total energy consumption accordingly. We discuss

the variant algorithm in Section 5.4.4. The TCHAP algorithm invokes two algorithms, AICF

and T-CAFE. The former sets the initial clusters frequencies whereas the latter explores the

energy consumption of each task across all available frequencies on the heterogeneous clus-

ters. T-CAFE algorithm generates the set of frequencies for each task at which TCHAP

decides whether it is more energy-efficient to allocate the task to the little or big cluster.

5.4.1 Task-Aware Cluster Assignment Frequencies Exploration algorithm

(T-CAFE)

Tasks differ in their power profile based on their behavior dictated by their instruction make

up. To fully exploit the potential of energy-aware partitioning, it is vital not only to consider

the heterogeneous processors power profiles but also demonstrate awareness of the underlying

taskset power properties. Before invoking T-CAFE, we perform complete power profiling of

all tasks in the system across all clusters at all supported frequencies. We compute the task

energies given the scaled worst case execution times of the tasks at the specified frequencies.

We show an example of profiling two tasks bitcnts and bubblesort in Table 5.2. For each task,

we show the energy consumed when run on a processor of the little cluster eτ1L,k, and big

cluster eτ1B,k at a designated frequencies fL,k and fB,k. T-CAFE does not consider frequencies

below the critical frequencies. The critical frequencies are shaded in Table 5.2.

One can observe that energy efficiency partitioning on either cluster is dependent on the

frequency the cluster is running at. Even though the big cluster is generally less energy-

efficient, there are certain frequencies which are more energy-efficient especially when the

little cluster is running at high frequencies. For example, running bitcnts on the big

cluster at frequencies between 700-900 MHz costs less energy than running the same task on

the little cluster at frequencies larger than 1200. Yet, if the big cluster runs at 1000MHz,

it is more efficient to reallocate the task onto the little cluster.

Given the task energy parameters and cluster frequencies, the Task-Aware Cluster As-
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signment Frequencies Exploration algorithm (T-CAFE) traverses eτnL,k and eτnB,k in a zig-zag

fashion. It looks for a set of “cut-off” frequencies that if a cluster operates at, it will poten-

tially cost less energy to move the task to the next cluster. Our main algorithm TCHAP

subsequently uses these frequency sets to determine if reallocation is beneficial.

The T-CAFE algorithm which we present in Algorithm 9 takes as input the arrays eΓ
L and

eΓ
B. The arrays store the energy consumption of each task in the taskset Γ at all supported

cluster frequencies fL,k and fB,k (Lines 1-2). The array ΩLB holds the set of the little

cluster frequencies for each task τn at which it is more energy-efficient to switch to the big

cluster. Similarly, ΩBL holds the big cluster frequencies at which it is more energy-efficient to

switch back the allocation into the little cluster (Lines 3-4). We initialize the ΩLB, ΩBL

arrays to zero and their size is dictated by the number of tasks and supported frequencies of

each cluster (Line 6-7). We run the T-CAFE algorithm over all tasks (Line 8).

We point that not all tasks exhibit a similar energy-profile to the tasks in Table 5.2.

Some tasks are always energy-efficient when run on the little cluster. To determine this, we

search for any frequency of the little cluster at which the task’s energy consumption eτnL,k is

larger than that of the critical frequency of the big cluster eτn
B,fcritB

. If such frequency exists, we

store it into firstSwitchToBig and its associated index k into j (Line 9). The variable j tracks

the indices of cluster frequencies at which we make a switch between clusters. Subsequently,

we store this frequency as the first element of the vector in array ΩLB associated with task

τn (Lines 16-17). We conduct a similar search for the frequency of the big cluster fB,k

at which it is always more energy-efficient to allocate the task to the little cluster. This

condition holds when the task energy-consumption of the big cluster eτnB,k at frequency fB,k is

larger than that at the maximum frequency of the little cluster eτnL,fmaxL
. If such frequency

exists, we store it into lastSwitchToLittle (Line 10). The variables ηL and ηB are indexing

variables which we use to correctly store the frequencies into ΩLB and ΩBL arrays. We reset

those variables for each task (Lines 11).

If potential energy-efficient frequencies exist on the big cluster (Line 12), the exploration

and population of ΩLB and ΩBL commences. Once the first frequency is stored and the index

ηL updated, the algorithms looks for the frequency of the big cluster fB,k at which the task

energy eτnB,k is larger than that at which we decided to switch to the big cluster eτnL,j (Line

20). We store this frequency ωB as the first element of the vector in array ΩBL associated

with task τn (Lines 21-23) . We update ηB to correctly store subsequent frequencies in the

array. The algorithm proceeds similarly in a zig-zag fashion by finding and storing the next

frequency of the small cluster ωL at which we switch to the big cluster (Lines 24, 14-15,

19). The algorithm terminates once we reach the last frequency ωB at which we switch to
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the little cluster; this is satisfied when ωB reaches lastSwitchToLittle (Line 26).

To demonstrate, if we execute the T-CAFE algorithm over the tasks in Table 5.2, the

contents of ΩBL and ΩLB will be:

ΩLB =

1200 1300 1400

1300 1400 −

ΩBL =

1000 1100 1200

1000 1100 −


For the bitcnts task, once the little cluster reaches a frequency of 1200 MHz, we prefer

to alloacte it onto the big cluster as long as its operating frequency is below 1000 MHz. If it

is 1000 MHz or over, we prefer to allocate the task back onto the little cluster and so on.

Table 5.2 Energy Profiling of bitcnts and bubblesort on Samsung 5422 ARM
Big.LITTLE SoC

bitcnts bubblesort

fL,k eτ1L,k eτ1B,k fB,k fL,k eτ2L,k eτ2B,k fB,k

MHz J J MHz MHz J J MHz

200 0.235 0.472 200 200 0.182 0.403 200

300 0.213 0.418 300 300 0.166 0.356 300

400 0.204 0.364 400 400 0.160 0.335 400

500 0.213 0.381 500 500 0.155 0.323 500

600 0.210 0.373 600 600 0.166 0.319 600

700 0.226 700 0.179

800 0.244 800 0.191

900 0.295 900 0.237

1000 0.321 1000 0.258

1100 0.348 1100 0.279

0.356 700 1200 0.304

0.365 800 0.314 700

0.375 900 0.310 800

1200 0.381 0.328 900

0.404 1000 1300 0.335

1300 0.414 0.344 1000

0.425 1100 1400 0.353

1400 0.444 0.379 1100

0.451 1200 0.395 1200

0.443 1300 0.375 1300

0.459 1400 0.377 1400

0.495 1500 0.425 1500

0.483 1600 0.455 1600

0.528 1700 0.507 1700

0.596 1800 0.533 1800

0.670 1900 0.576 1900

0.728 2000 0.664 2000
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Algorithm 9 Task-Aware Cluster Assignment Frequencies Exploration (T-CAFE)

1: Input:
2: eΓ

L, e
Γ
B, fL and fB. . eτnL,k, e

τn
B,k are elements of the arrays eΓ

L, e
Γ
B at frequency k

3: Output:
4: ΩBL, ΩLB . Arrays which holds cluster frequencies at which τn is potentially assigned to the

other cluster.
5: Initialization:
6: ΩBL ← zero initialized N × nB array
7: ΩLB ← zero initialized N × nL array
8: for i← 1, N do
9: [firstSwitchToBig, j] ← find first fL,k and index k s.t eτnL,k > eτn

B,fcritB

10: lastSwitchToLittle ← find fB,k s.t eτnB,k > eτnL,fmaxL
11: ηL ← 1, ηB ← 1
12: if firstSwitchToBig 6= φ then
13: while true do
14: if ηL > 1 then
15: ΩLB(i, ηL) = ωL
16: else if ηL = 1 then
17: ΩLB(i, ηL) ← firstSwitchToBig
18: end if
19: ηL ← ηL + 1
20: [ωB, j]← find fB,k and index k s.t eτnB,k > eτnL,j
21: if ωB 6= φ then
22: ΩBL(i, ηB)← ωB
23: ηB ← ηB + 1
24: [ωL, j]← first fL,k and index k s.t eτnL,k > eτnB,j
25: end if
26: if ωB = lastSwitchToLittle then
27: break
28: end if
29: end while
30: end if
31: end for

5.4.2 Assign Initial Clusters Frequencies (AICF)

The aim of the ACIF algorithm is to find a frequency for the little cluster at which we

are able to fit the most tasks. At low utilization, it is likely that all tasks will fit within the

little cluster. We present this algorithm in Algorithm 10.

The AICF algorithm takes as input the set of tasks Γ alongside the supported cluster

frequencies fL and fB ordered in increasing value (Lines 1-2). Since we only consider

energy-efficient frequencies, all frequencies below the critical frequency are discarded (Line
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8). The algorithm resumes with all remaining frequencies f̃L (Line 9). For each frequency

in f̃L, we compute the scaling factor SL by dividing the maximum cluster frequencies over

the other frequencies (Line 11). We proceed by accumulating the scaled utilization of the

taskset as long as it fits within the total cluster capacity. The cluster capacity equals the

number of cores within the cluster QL. We update the number of tasks we can fit into

the little cluster for all frequencies in f̃L and store them in MaxL (Lines 10-20). The

entries of MaxL will be in non-decreasing order. We pick the first maximum and store it in

maxτ . The reason we emphasize first is due to the possibility that multiple frequencies in f̃L

might fit the same number of tasks. We opt for the first maximum because it corresponds

to the lower frequency; henceforth, lower energy footprint. We designate this frequency as

our initial frequency and assign it to ωL. The big cluster initial frequency ωB starts at

the critical frequency of the big cluster (Line 21-23). Finally, we further retain the next

frequency in f̃L that is larger than ωL. This proves beneficial in a corner case of the TCHAPI

algorithm.

Algorithm 10 Assign Initial Clusters Frequencies (AICF)

1: Input:
2: A set of tasks Γ of size N , the frequency sets for both little and big clusters fL and fB in

increasing order.
3: Output:
4: ωL, ẅL, and ωB . Initial frequencies for the little and big clusters
5: maxτ . Maximum tasks that fit little cluster at ωL
6: BEGIN:
7: MaxL = {}
8: f̃L ← (f critL .. fmaxL )
9: for i← 1, length(f̃L) do

10: sum ← 0
11: SL ← {fmaxL /f̃L,i}
12: for j ← 1, N do
13: sum← sum+ uL,j × SL
14: if sum > QL then
15: break
16: else
17: MaxL(i)← j
18: end if
19: end for
20: end for
21: maxτ ← first maximum value in MaxL vector when sequentially traversed from lowest index
22: ωL ← the frequency fL,k ∈ f̃L that corresponds to maxτ
23: ωB ← f critB

24: ẅL ← Next frequency in fL larger than ωL
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5.4.3 Task and Cluster Heterogeneity Aware Partitioning (optimize for idle

version) (TCHAPI)

Our main algorithm which we present in Algorithm 11 takes the same inputs as the AICF

and T-CAFE algorithms and produces - if feasible - task partitioning ΘL and ΘB which hold

the individual task assignments for each core within the cluster. The taskset Γ is ordered

in non-increasing order of utilization (for the little cluster). We start by invoking the

T-CAFE algorithm to obtain the sets for inter-cluster switching frequencies for each task

(Line 8). We initialize the cluster frequencies by calling the AICF algorithm once (Lines

11-13). Initially, the task partitioning arrays are empty. No tasks are given priority to be

scheduled on the big cluster (ρB is empty). We further initialize flags that are frequently

updated to control the execution path of the algorithm (Lines 14-15).

In this version of the TCHAP algorithm where we consider idling states instead of sleep

states, we skip prioritizing tasks to run on the big cluster if we are able to fit all tasks on the

little cluster. The rationale behind this stems from our experimental work. We observed

that the cost of activating a big core with idle intervals overcomes the energy-efficiency

differential when assigning few tasks to the big core. We encounter this corner case when

the system utilization is quite low. In most cases where tasks would only fit by utilizing

the capacity of both clusters, task prioritization takes place. For every task in the system,

and for the currently assigned cluster frequencies ωL and ωB, we consult the inter-cluster

switching frequencies ΩLB and ΩBL. If the task is more energy-efficient to run on the big

cluster, it is added to the priority queue ρB (Lines 16-26). This block will be invoked

any time the cluster frequencies are updated throughout the execution of the algorithm. To

clarify, suppose the current frequencies are (ωL = 1200, ωB = 800), in this case we prioritize

the task bitcnts to run on the big cluster, whereas we schedule bubblesort on the little

cluster as long as it is feasible to do so.

We use bin packing algorithms as the underlying scheduling algorithms. We use Worst

Fit Decreasing WFD for the little cluster. However, we opt for Best Fit Decreasing BFD

for the big cluster. We select BFD to minimize the number of active cores in the big cluster

and therefore reduce the energy dissipated when idling. With less active cores needed, we

can completely shutdown unused cores for further energy-minimization. For every task that

is not prioritized to run on the big cluster, we attempt to schedule it on the little cluster.

If successful, we update the assigned core total utilization. If we are not able to schedule it on

the little cluster (i.e. lack of available capacity), we append the task to the priority queue

ρB (Lines 30-35). If the little cluster is unable to accommodate any of the remaining



5 Energy and Task-Aware Partitioning on Single-ISA CHPs 108

eligible tasks, we designate it as full (Lines 33-34). We proceed to schedule any task in

the priority queue onto the big cluster as long as it has available capacity, otherwise, we

designate it as full (Lines 37-40).

If both clusters are full and the clusters are at their maximum supported capacities; yet

we still have tasks to schedule, we flag the taskset as unfeasible and terminate the algorithm

(Lines 41-45). This is one of two exit conditions to terminate the loop (Line 10). However,

if both clusters are full, yet we have not explored scheduling at all possible frequencies, we

update the current cluster frequencies ωL and ωB and restart the algorithm (Lines 46-54).

If the algorithm is able to reach a feasible schedule, it terminates (Lines 63-64). Finally,

for the corner case where we know that the taskset can be wholly scheduled on the little

cluster, yet some tasks have been assigned to the big cluster, we move to the subsequent

frequency yielded by the ACIF algorithm (Lines 55-57). This issue arises because the

ACIF algorithm considers the total capacity of the cluster whereas the WFD algorithm

deals with individual core capacities. As such, some tasks might not fit within the residual

core capacities.

5.4.4 Task and Cluster Heterogeneity Aware Partitioning (optimize for sleep

version) (TCHAPS)

This variant of the TCHAP algorithm introduces minor changes to the original algorithm.

Since we make use of sleep states instead of idling, we are no longer bounded to fit all tasks

on the little cluster whenever it is possible. We can make full use of prioritizing tasks

to run on the big cluster without the diminishing returns of idle power. Furthermore, we

revert to using WFD for the big cluster for it yields better schedulability. We highlight the

affected lines and changes to the main TCHAP algorithm in Algorithm 12.

5.5 Experimental Setup

In this chapter, we use the same tasks which we used in Chapter 4. We select 45 tasks from

the 50 tasks in Table 4.3 as we exclude tasks with pWCET of over 1000ms. We do so such

that we can build a discrete period set from all the factors of a highly composite number

(110,880) which translates to a hyper-period of 110.88 seconds (≈ 1.6 minutes) and reduce

the evaluation time on the hardware.

To assess the performance and feasibility of both our and the reference HIT-LTF algo-

rithm, we run the algorithms over utilization points that range from low to high system load.

Though it is easy to prepare tasksets which yield exact total utilizations in uniprocessor and
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Algorithm 11 Task and Cluster Heterogeneity Aware Partitioning (optimize for
idle version) (TCHAPI)

1: Input:
2: A set of tasks Γ of size N .
3: fL, fB: frequency sets for little & big clusters in increasing order.
4: eΓ

L, e
Γ
B: energy consumption arrays of taskset Γ at all frequencies.

5: Output:
6: ΘL,ΘB A feasible task partitioning, if possible.
7: Begin:
8: {ΩBL,ΩLB} ← Execute T-CAFE
9: retry ← 0, feasible ← 1

10: while feasible do
11: if retry = 0 then
12: {ωL, ẅL, ωB,maxτ} ← Execute AICF algorithm
13: end if
14: valid ← 1, FullL ← 0, FullB ← 0
15: ρB ← {},ΘL ← {}, ΘB ← {}
16: if maxτ 6= N then
17: for i← 1, N do
18: k ← kth index of first ΩLB(i, k) ≥ ωL
19: l← lth index of first ΩBL(i, l) ≥ ωB
20: if l 6= φ & k 6= φ then
21: if ωL ≥ ΩLB(i, k) & ωB < ΩBL(i, l) then
22: ρB ← {ρB, τi}
23: end if
24: end if
25: end for
26: end if

.. conitinued on next page

homogeneous multicore systems; this is further complicated in heterogeneous systems for we

don’t know a priori where each task will be allocated. To solve this, we introduce the stress

factor α ∈ {0, 0.25, 0.5, 0.75, 1}. We define the target system utilization as:

UT = (QL +QB)(1 + α)(Up) (5.5)

whereQL, QB are the number of cores in the little and big clusters, Up denotes a percentage

which falls within [0.1 - 0.9] in steps of 0.05 resulting in 17 initial simulation points (at

α = 0). Assigning the other α values extends the number of simulation points. To reduce

the number of simulations required, we remove redundant or close total utilizations. The

lowest and highest resulting system utilization points are 0.8 and 15.6, respectively. Now

that we know the total utilizations points, we generate initial individual task utilizations
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27: for i← 1, N do
28: if valid = 1 then
29: retry ← 0
30: if τi /∈ ρB then
31: Try to schedule τi on κL by WFD, update UL,j
32: if τi /∈ ΘL then ρB ← {ρB, τi} end if
33: if (1− UL,j) > uL,n,∀j ∈ [1..QL], ∀n > i then
34: FullL ← 1
35: end if
36: end if
37: if τi ∈ ρB then
38: Try to schedule τi on κL by BFD, update UB,j
39: if τi /∈ ΘB then FullB ← 1 end if
40: end if
41: if FullB & FullL & (ωL = fmaxL ) &

(ωB = fmaxB ) then
42: feasible ← 0, valid ← 0
43: ΘL ← {}, ΘB ← {}
44: break
45: end if
46: if FullB & FullL then
47: if ωL < fmaxL then
48: Given ωL = fL,k, the new ωL ← fL,k+1

49: else if ωB < fmaxB then
50: Given ωB = fB,k, the new ωB ← fB,k+1

51: if ωB ≤ fmaxB then ωL ← f critL end if
52: end if
53: valid ← 0, retry ← 1
54: end if
55: if maxτ = N & ∃τn ∈ ΘB then
56: ωL ← ω̈L, valid ← 0, retry ← 1
57: end if
58: else
59: break
60: end if
61: end for
62: if ∀τn ∈ Γ, τn ∈ ΘL || τn ∈ ΘB then
63: break
64: end if
65: end while

that sum up to the total using the randfixedsum algorithm [160]. To pair task WCETs

with discrete periods yet match the task and system utilizations, we employ the CPA-AU

algorithm that we introduced in Section 4.5.2. In applying the CPA-AU algorithm, we use
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Algorithm 12 Task and Cluster Heterogeneity Aware Partitioning (optimize for
sleep version) (TCHAPS)

1: Remove lines 16 and 26 in TCHAPSI , keep the body in between
2: Remove lines 55 through 57 in TCHAPSI
3: Change the scheduling algorithm for big Cluster from BFD to WFD

task WCETs based on the little cluster. For each utilization point, we repeat this 750

times to generate 750 tasksets.

To the best of our knowledge, we do not know of any tool, methodology, or hardware

support that enables us to measure task power at the job level such that we can observe the

effects of multicore interference on actual job run-time and energy consumption. To this end,

for the purpose of running our partitioning algorithms, we start with measuring task power

without considering the effects of interference. We run each task back to back on one core of

each cluster for a duration of one minute and measured the power at intervals of 200ms. We

average the power values for each task. We repeat this procedure for all supported cluster

frequencies. This approach was similarly taken in [221] for building their power model of the

same processor. Given the tasks power matrix, and the task estimated pWCETs, we compute

the energy-consumption arrays eΓ
L and eΓ

B. However, when we measure the taskset energy

consumption on real-hardware, the effects of resource sharing, contention, and interference

will be taken into account in the final measurement.

To run our tasksets in real-time on the XU3 platform, we first patched the 3.10.y Linux

kernel with the Litmus-RT patch (refer to Section 2.1.4). For this experiment, we used the

partitioned-EDF scheduler (P-EDF) supported by Litmus-RT. We wrap each task with a

Litmus-RT API wrapper to define and launch it as a periodic real-time task. We use the

task parameters obtained through the CPA-AU algorithm for the task definition. From the

final partitioning ΘL and ΘB that we obtained for the TCHAPI , TCHAPS, and HIT-LTF

algorithms, we assign core affinities to the tasks. We release the tasks synchronously and we

run the schedule for the specified simulation time. We measure the power consumption using

the on-board sensors connected to each cluster at intervals of 200ms. Then we compute the

total energy-consumption of each taskset and aggregate the results from both clusters.

Even though our algorithms rely on the EDF schedulability test to check for the feasibil-

ity of each core’s schedule, this test highly depends on the estimated pWCETs. Our initial

assumption is that the EVT-based MBPTA estimated pWCETs do include the effects of

interference in the underlying multicore system. Yet, given that we are running our algo-

rithms on real-hardware, before evaluating the efficacy of our algorithms in system energy
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reduction, we conduct feasibility tests on the tasksets to check that they are feasible on

hardware despite the scheduler overhead and multicore interference. We automate the run

of each taskset through Litmus-RT “st-trace-schedule” tool and observe that none of the

jobs miss their deadline.

It is important to note that on the XU3 board, when the processor is idle, the scheduler

invokes the Exynos cpuidle driver which in turns invokes ARMs WFI instruction that puts

the processor into sleep mode. So by default, the idling state is a sleep state. We use this

mode when evaluating the TCHAPS algorithm. In order to evaluate the TCHAPI algorithm,

we build a Linux kernel with the configuration option “CONFIG CPU IDLE=n” such that

the scheduler will not call the default implementation of the cpuidle driver that puts the

processor to sleep. Instead, this will keep the processor idling as intended.

5.6 Experimental Results

In this section, we present our results against the latest research that we know of that utilizes

the same platform and system model. We compare our results to the HIT-LTF algorithm

[148]. We normalize our algorithms results against HIT-LTF to highlight the energy savings

we obtained.

We show the results for the first variant of our algorithm TCHAPI in Fig. 5.6. We note

that for low system utilization (U≤ 4), both algorithms exhibit the same energy performance.

This is because it is possible to fit all tasks on the little cluster and we deliberately avoid

assigning tasks to the big cluster due to the diminishing returns of the idle power of the big

cluster. For this case, our algorithm and the HIT-LTF yield the exact partitioning schedule.

This is because the LTF heuristic is basically a WFD heuristic. However, once the load

starts to increase (4 < U ≤ 9), the TCHAPI algorithm yields energy savings between 13%

and 23% on average compared to HIT-LTF with narrow variance range. Once the processor

gets heavily loaded, our algorithm yields between 5% and 10% more energy savings. This

drop in energy savings is expected. At higher utilization, it is fundamental to maintain a

schedulable system. The TCHAPI algorithm responds to the high load by increasing the

cluster frequencies to accommodate all tasks, if possible. The energy savings from running

clusters at lower frequencies are no longer viable. We attribute the energy-savings at high

utilization to the merits of our task-aware allocation and prioritization scheme.

The results for our second variant of the TCHAP algorithm show similar energy-savings

pattern across the system utilization points. We illustrate these results in Fig. 5.7. However,

we emphasize a notable difference at lower utilization levels; in particular, for the case (2 < U
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Figure 5.6 Normalized energy consumption for the TCHAPI algorithm com-
pared to HIT-LTF (The processor remains idle in both cases)
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Figure 5.7 Normalized energy consumption for the TCHAPS algorithm com-
pared to HIT-LTF (The processor utilizes sleep states in both cases)
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Table 5.3 Percentage of tasksets delivering better energy savings than HIT-
LTF

Energy Savings Compared to HIT-LTF

Algorithms <0 0% 10% 15% 20% 25% 30% 35%

TCHAPI 16.60% 83.40% 52.31% 35.68% 12.14% 3.43% 1.27% 0.53%

TCHAPS 4.85% 95.15% 62.27% 42.76% 16.30% 4.78% 1.52% 0.56%

≤ 4). Whereas the TCHAPI algorithm matched the HIT-LTF results for the idle processor

experiments at low utilization, when we allow the processor to sleep for both algorithms, our

variant progressively achieves more energy savings. This is due to the fact that the TCHAPS

avoids aggressively fitting all tasks onto the smaller cluster. Instead, task-aware allocation

prioritization is allowed to run without the risk of incurring high energy penalty once the

big cluster is activated.

Given that the variance can be affected by outliers, we show in Table 5.3 the percentage

of all tasksets that have more energy savings over a certain percentage threshold compared

to HIT-LTF. We observe that TCHAPI algorithm delivers better energy savings over HIT-

LTF 83.4% of the time. With 52.31% of the tasksets having at least 10% more energy

savings and more than third of the tasksets delivering over 15% energy savings across all

system utilization points. Similarly, when we invoke our TCHAPS algorithm, no less than

95.15% of tasksets yield better energy savings. Around third of these savings are less than

10%, 19.41% of the tasksets yield energy savings between 10% and 15% and about a quarter

between 15% and 20%.

Finally, we compare the feasibility metric between the TCHAP and HIT-LTF algorithms

in Fig. 5.8. At high utilization, once the ability to schedule tasksets starts to decline, our

algorithm maintains around 5% to 10% marginal schedulability advantage at 13 < U ≤ 14

over HIT-LTF. As expected, pushing more capacity (U > 14) further curtails feasibility.

5.7 Chapter Summary

ARM big.LITTLE processors are ubiquitous in embedded heterogeneous computing. SoCs

employing ARM’s designs dominate the mobile computing industry due to their energy-

efficiency. Many ARM based cores are increasingly used in real-time, cyber-physical and

multi-criticality systems. To this end, and leveraging upon the energy-reduction technologies

supported by big.LITTLE platforms, we tackled the issue at the partitioning and schedul-

ing level to provide further energy-reductions. We proposed an energy-efficient partitioning
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Figure 5.8 Feasibility of the TCHAP and HIT-LTF algorithms at high uti-
lization

algorithm that is aware of the underlying cluster heterogeneity and performance / energy

variance. We further considered the different power requirements for the system tasks thus

extending our heterogeneity-aware algorithm to be equally task-aware. We presented two

variants of our algorithm; TCHAPI and TCHAPS. The former optimizes energy consump-

tion when it is not feasible to use sleep modes in real-time scenarios where overheads affects

the timeliness of the schedule. The latter optimizes for the case where we are able to make

use of DPM techniques.

We conducted our evaluation of the algorithms directly on the hardware using a Linux OS

patched with real-time extensions. We used the methodology of the previous chapter that

facilitates the evaluation of real-time systems at multiple task load points. We estimated the

task WCETs on a multicore platform using probabilistic approaches as has been suggested

by recent literature. We constructed bounded tasksets for the evaluation of our algorithms

in reasonable time. We showed that for both variants of the TCHAP algorithm, we were

able to achieve on average between 13% and 23% energy reductions compared to HIT-LTF

when the system is under medium load. We also showed that 52.31% and 62.27% of the

tasksets have at least 10% more energy savings than HIT-LTF across all utilization points for
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TCHAPI and TCHAPS algorithms, respectively, Our algorithms have also yielded slightly

better feasibility under high system load.

Our approach of direct evaluation on hardware allows us to avoid the shortcomings of

simulators (e.g. model simplifications, no task-awareness . . . etc). However, the accuracy of

direct evaluation on hardware is subject to the tight estimation of WCETs. Our algorithms

will benefit from future advancements in the field of WCET estimation on multicore platforms

and can also be further fine-tuned and refined once literature and industry finds a reasonable

way to measure task energy consumption at the job level, a metric highly affected by the

hardware design. As ARM and other embedded processor manufacturers keep introducing

novel architectural innovations that maximize processor isolation, determinism, or facilitate

tight and safe WCET estimation, this will aid in better energy-efficient scheduling algorithms

and the possibility of using COTS processors in future embedded real-time designs.
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Chapter 6

Conclusions and Future Work

This chapter summarizes the work that we presented in this thesis and discusses some im-

plications and limitations. It further presents few suggestions for future work.

6.1 Conclusions

The power consumption of computing systems in general, and embedded systems in partic-

ular has been a prime focus of industry and research. Advancements in processor fabrica-

tion and circuit design technologies allow for further performance improvements and lower

energy consumption. The use of DVFS hardware exploits the relationship between power-

consumption and the cores frequency and voltage to minimize energy costs. Support for

multiple sleep modes further cuts the total energy-consumption. Most operating systems

are equipped with the ability to directly control DVFS an DPM hardware. Consequently,

energy-aware scheduling has become a major approach for fine-tuning and attempting to

minimize overall system energy consumption. However, the use of DVFS does not necessar-

ily translate to energy-reductions. The extended execution time due to slowed down core

frequency increases leakage power, and certain frequencies are energy-inefficient. In addition,

deeper sleep modes incur power and performance overheads.

These issues are further complicated when energy-aware scheduling is performed within

the context of real-time systems. The system timeliness and task deadlines impose rigid

constraints to the extent on which underlying hardware technologies can be employed to ef-

ficiently reduce the system energy. Due to the NP-hard complexity of the scheduling problem,

this necessitates proposing solutions based on heuristic or mathematical approaches. This

thesis proposed a set of algorithms to reduce energy consumption on DVFS-capable uni-core

and heterogeneous multicore processors as well as a methodology and a set of algorithms
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that aid in constructing tasksets for evaluation on real hardware.

In the third chapter, the focus was real-time embedded systems that use a single core

processor with DVFS and DPM capabilities. The case considered involved system tasks with

an associated set of external devices. As such, the chapter addressed the issue of system

energy-reduction concerning both processor and devices using metaheuristics and we showed

that a micro versions of the genetic algorithm and differential evolution reach energy-savings

to within 1% of the optimal. However, the analysis was conducted offline based on worst case

estimates of the execution times. This is due to high variability of the execution times, and

due to the high timing cost of evaluating the objective function if the system was run online.

Online algorithms would be a better choice to use additional slack time to harness more

energy savings. The device model used in this early research is quite simple and assumes

that devices remain in active state during the execution of the associated task. This could

be impractical as device access and behaviour might be different in real scenarios. Future

work could benefit from recent device modelling approaches.

Even though literature relies heavily on simulation based analysis for proposed solutions,

this approach is not without limitations as it is subject to the validity of the model against

the hardware. Researchers often try to corroborate their results through running case studies

on real hardware, a straightforward approach for generic and non real-time computing. A

difficult tasks for real-time systems evaluation. The methodology in literature used in such

cases is at best ambiguous. To address this, the fourth chapter proposed a methodology that

facilitates evaluating real-time tasks on embedded hardware. The proposed methodology

allows for evaluating the tasks at multiple system load points. It further helps in overcoming

the shortcomings of simulation based analysis as it allows researchers to assess and handle

real-life issues often encountered in industrial deployments. We based our methodology on

using publicly available embedded benchmarks with realistic embedded applicability close

to industrial and commercial applications. This work built on previous research that selects

real-time parameters such as task periods and utilizations. The proposed algorithms specify

the real-time taskset parameters that are assigned to real tasks which can be used to evaluate

the taskset in a real-time operating system on real-hardware.

The approach undertaken is a bottom-up approach where we start from estimating the

tasks’ WCETs and build the taskset properties around them. This is in contrast to con-

ventional techniques which start with generating taskset properties according to certain sta-

tistical distributions and then synthesize tasks to match the WCET property. Though the

latter approach is easy, it cannot be extended to multicore platforms whereas our approach

is applicable to any platform. A heavy downside; however, is the overhead cost incurred
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during the WCET estimation phase and the trust that we base on the estimate tightness

and safety. Automating the task run and analysis through configurable scripts will simplify

the procedure for approaches relying on MBTA or MBPTA.

Finally, the fifth chapter addressed the issue of energy-aware partitioning and scheduling

on embedded processors with clustered heterogeneous cores. Performance and energy vari-

ations between processor cores add further dimensions to the optimization problem. The

thesis addressed two operational cases; the first when the system is capable of switching to

sleep modes between task runs without incurring much overhead that affects the timeliness

of the system; the other is when the processor is kept idling between tasks.

To improve on literature, this work considered the issue of task-awareness. Whereas

most literature assume that tasks consume the same power when running on the same type

of core at the same specific frequency, this work factored in the task power variance into the

energy-aware partitioning problem. This thesis further proposed algorithms that initialize

the cluster frequencies, produce a set of in-cluster transition frequencies, and partition the

tasks into heterogeneous clusters. This thesis considered the ARM big.LITTLE platforms

with two clusters as they are the most pervasive ICs for embedded heterogeneous multicores.

The recently announced ARM big.LITTLE DynamiQ allows for the use of a third “medium

power” cluster. The announced products based on this newer revision have the medium

cluster identical to the big cluster but with its cores capped at lower frequencies (e.g. Kirin

980). The technical details of the new processors are not available at the time of writing

this thesis. However, should the medium cluster share a subset of the frequencies of the big

cluster, our algorithms are easily adapted to cover three clusters. If future generations of

DynamiQ chipsets have one or more medium clusters with different performance and power

profiles than either of the big or little clusters, then our algorithms execution time will

exponentially increase. As such, a frequency pruning step might be needed to limit the

frequency search space of our TCHAP algorithm.

6.2 Future Work

There are many opportunities for research in energy-aware partitioning and scheduling. We

present possible venues for future work to extend this thesis.

6.2.1 Enhancing Real-Time Simulators with Task and Thermal Awareness

Similar to most literature, the event-driven simulator that we built in Chapter 3 is primarily

task-agnostic. The modules used to generate and launch the tasks with real-time parameters
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lacked any task-specific power consumption specification. Another project involves extend-

ing the simulator task modules to account for the differences in task power consumption. A

naive approach could simply add a power factor to differentiate between tasks. A realistic

and more elaborate approach involves modelling task power consumption on real-hardware

by measuring the power consumption on various hardware platforms at multiple frequency

levels. By taking into account the tasks instruction mix and the underlying hardware archi-

tecture, the task power consumption can be modelled. The task-aware simulator enhanced

modules will take into consideration the target platform and the user-specified instruction

mix to assign relative power factors.

Furthermore, in many-core homogeneous or heterogeneous processors, thermal-aware par-

titioning and scheduling can also be considered to avoid thermal hot spots. That is, assigning

heavy loads to certain cores while others remain lightly loaded. Cores under heavy loads will

often reach temperatures high enough (or potentially exceed) their thermal design power

(TDP) especially when the core is operating at high frequencies. In such cases, dedicated

hardware controllers override any core frequencies assigned by the operating system and

throttle the affected core speed to reduce core temperature. Another project introduces

additional modules to the simulator to model the heat dissipation of many-core processors.

Energy-Aware simulation can benefit from more accurate models that closely mirror real-

hardware and task behavior.

6.2.2 Energy-Aware Scheduling under the Limited Preemption Model

In chapters 3 and 5, and in lieu with the prevalent literature, we have assumed a fully-

preemptive scheduling model. Another project explores possible energy-savings under the

limited preemption model based on preemption thresholds. This future work considers

energy-aware scheduling under limited preemption constraints for both homogeneous and

heterogeneous processors. This involves modifying the Litmus-RT framework to support

preemption thresholds and solving the task allocation and threshold assignment concur-

rently such that the total number of task preemptions as well as total energy is reduced.

This work would be valuable in leveraging potential energy savings related to minimizing the

use of the underlying bus, cache, and memory subsystems. This project can be paired with

research pertaining to cache-aware scheduling and partitioning where reduced cache access

and block replacement pave the way to deploy cache energy reduction techniques and reduce

the effects of multicore interference on the energy and execution time of jobs.



6 Conclusions and Future Work 121

6.2.3 Enhanced Average and Worst Case Task Energy Estimation

In this thesis and most literature, the power consumed by tasks is mostly measured by

running tasks in isolation for a certain amount of time and averaging the results. This

approach while simple, does not give any guarantees about the actual energy consumed by

tasks at run time especially in complex multicore systems. Interference due to tasks evicting

cache lines related to other tasks in shared caches, contention on shared resources, and bus

arbitration and access affects the total energy consumed by task instances. An interesting

research venue is to provide proper means to measure the average and worst case energy

of tasks effectively. Such parameters could prove to be invaluable in designing more refined

and task-aware energy-efficient scheduling algorithms.
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[262] P. Wägemann, T. Distler, C. Eichler, and W. Schröder-Preikschat, “Benchmark gen-

eration for timing analysis,” in 2017 IEEE Real-Time and Embedded Technology and

Applications Symposium (RTAS), April 2017, pp. 319–330.

[263] “Tms570ls1227 16- and 32-bit risc flash microcontroller,” Feb. 2015. [Online].

Available: http://www.ti.com/lit/ds/symlink/tms570ls1227.pdf

http://www.ti.com/lit/ds/symlink/tms570ls1227.pdf

	List of Figures
	List of Tables
	List of Acronyms
	List of Algorithms
	Introduction
	Problem Definition
	Thesis Contributions and Collaborations
	Thesis Organization

	Background and Literature Review
	Real-Time Systems Concepts
	Task Models, Parameter Definitions, and Characteristics
	WCET Estimation
	Static Timing Analysis (STA)
	Measurement-Based Timing Analysis (MBTA)
	Probabilistic Timing Analysis (PTA)

	Real-Time Scheduling
	Offline and Online Schedulers
	Real-Time Scheduling Preemption Levels
	Fixed and Dynamic Priority Schedulers
	Real-Time Scheduling in Multiprocessor Systems

	Commercial Real-Time Operating Systems and Real-Time Linux

	Processor Power Modelling
	Power Reduction Techniques
	Silicon-Level Power Reduction
	Architecture-Level Power Reduction
	Chipset-Level Power Reduction

	Related Work to Energy-Aware Scheduling
	Energy-Aware Scheduling on Single Core Processors
	Energy-Aware Scheduling on Homogeneous Multiprocessors
	Energy-Aware Scheduling on Heterogeneous Multiprocessors

	Related Work on the Use of Metaheuristics in Scheduling Problems
	Related Work on Constructing Real-Time Tasksets
	Performance Monitoring Units (PMUs)


	Evaluation of Meta-Heuristics in Energy-Aware Real-Time Scheduling
	Introduction
	Chapter Motivation and Contributions
	System Model
	System Power Model
	Task Model

	Background
	Genetic Algorithm (GA)
	Differential Evolution (DE)
	Simulated Annealing (SA)

	Algorithms
	Genetic Algorithm Frequency Scaling (GAFS)
	Differential Evolution Frequency Scaling (DEFS)
	Critical Speed – Dynamic Voltage Scaling (CS-DVS)
	Simulated Annealing Frequency Scaling (SAFS)

	Experimental Platform and Simulation
	Results and Discussion
	Sensitivity Analysis
	Algorithm Comparison and Discussion 

	Chapter Summary

	A Methodology for Constructing Tasksets for Evaluation on Embedded Hardware
	Introduction
	Chapter Contributions
	System Model
	Background
	Bounds on Simulation Time
	Approaches to Bounding the Simulation Interval
	Embedded Workloads

	Proposed Algorithms to Pair Real-Time Tasksets Parameters
	Permuted Utilization Algorithm - An Exhaustive Approach
	Compute Propagate and Adjust Algorithms (CPA)
	A Working example of CPA-AU
	Compute Propagate and Adjust Algorithms - Maximize Unique Periods (CPA-MUPx)

	Experimental Setup
	Measuring Task Execution Times
	Estimating Worst Case Execution Times
	Evaluation of the Algorithms

	Experimental Results
	Chapter Summary

	Energy and Task-Aware Partitioning on Single-ISA Clustered Heterogeneous Processors (CHPs)
	Introduction
	Chapter Contributions
	System Model
	Hardware Platform Model
	Experimental Platform

	Task Model
	Power Model
	Platform and Task Power Analysis

	Energy Model

	Our Algorithms
	Task-Aware Cluster Assignment Frequencies Exploration algorithm (T-CAFE)
	Assign Initial Clusters Frequencies (AICF)
	Task and Cluster Heterogeneity Aware Partitioning (optimize for idle version) (TCHAPI)
	Task and Cluster Heterogeneity Aware Partitioning (optimize for sleep version) (TCHAPS)

	Experimental Setup
	Experimental Results
	Chapter Summary

	Conclusions and Future Work
	Conclusions
	Future Work
	Enhancing Real-Time Simulators with Task and Thermal Awareness
	Energy-Aware Scheduling under the Limited Preemption Model
	Enhanced Average and Worst Case Task Energy Estimation


	Bibliography

