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Abstract

Let V' be a set of distinct points in some metric space. We draw the following
proximity graph on V": For each point z € V, let s, be the open ball centered at
z with radius from x to its nearest neighbour. Then (a,b) is an edge if and only
if s, and s, intersect. This graph is known as the sphere of influence graph of the
point set V'. In this thesis, we demonstrate that in the d-dimensional infinite-order
Minkowski metric, no sphere of influence graph of n vertices contains (22¢-! — 2¢-1)n
edges or more. We also prove an asymptotic lower bound of (2¢+? — 3d — 4)n/9 on
the maximum size of the graph. Lastly, we demonstrate an upper bound of 15n on

the size of the sphere of influence graph of n vertices in the Euclidean plane.



Résume

Soit V un ensemble de points dans un espace métrique. Nous créons le graphe de
proximité suivant sur V": pour chaque point x € V, soit s, la boule ouverte de centre
z et de rayon égale a la distance entre z et son voisin le plus proche. Nous créons aussi
I'arc (a,b) du graphe si et seulement si s, et s, s’intersectent. Ce graphe s’appelle
le graphe d'influence de spheres de I’ensemble V". Dans ce mémoire, nous prouvons
que dans 'espace de dimension d selon la métrique de Minkowski, aucun graphe
d’influence de sphéres ne peut avoir (224-! — 24~!)n arcs ou plus. Nous démontrons
aussi que la borne inférieure asymptotique de la taille maximale est au moins de
(24+2 — 3d — 4)n/9. Finalement, nous prouvons que dans le plan euclidien, aucun

graphe d’influence de sphéres de n nceuds ne peut contenir plus de 15n arcs.

il
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Chapter 1

Introduction

Suppose you gave a six-year-old child Figure 1.1a on a sheet of paper and asked her
to draw what she thought it represented. How would she decide on the underlying
structure of these points? She might connect a few points here and there and end up
with something similar to Figure 1.1b.

If so, on the sheet of paper now is a set of points and a set of lines connecting
those points. She has unknowingly drawn a graph. In formal terms, a graph is set
of points, called vertices, and a set of edges, each connecting a pair of vertices. For

example, in Figure 1.2, there are edges between p and ¢ and between q and r. We

. . D ]

Figure 1.1: (a) A set of points and (b) a possible interpretation.
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Figure 1.3: A directed graph.

then say that p and ¢ are netghbours, as are g and r, since they share an edge.

We will also make reference to directed edges, which are ordered pairs of vertices.
In Figure 1.3, there are edges from p to ¢, from ¢ to r, and from r to g. A graph
consisting of a set of vertices and a set of directed edges is known as a directed graph.

Let’s look again at the child’s artwork in Figure 1.1b. In drawing the edges,
she didn’t just arbitrarily choose pairs of vertices and connect them. I[nstead she
connected those vertices which she thought were close to each other. This type of
graph, in which vertices are connected by an edge if they satisfy some condition of
closeness, is called a prozimity graph.

Since we can define closeness in many different ways, there are several types of
proximity graphs. We will not be describing in great detail the various graphs; how-
ever, the survey paper by Jaromczyk and Toussaint [JT92] contains an excellent
discussion. The most famous proximity graph, the minimal spanning tree (MST), is
demonstrated in Figure 1.4a. The MST is the connected graph which uses the min-
imum total edge length (which always results in one fewer edge than the number of

vertices). By connected graph, we mean that there is path of edges between any two
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vertices. In the relative neighbourhood graph (RNG), shown in Figure 1.4b, two points
are connected with an edge if their lune contains no other vertices of the graph. The
lune of two points z and y, shown in Figure 1.5a, is defined as the intersection of two
spheres of radius dist(z, y), one centered at z and the other at y. In the Gabriel graph
(GG), shown in Figure 1.4c, two points z and y are connected with an edge if their
diametral sphere, the sphere of diameter T7, contains no other vertices of the graph.
Figure 1.4d contains another proximity graph, the Delaunay triangulation (DT). This
graph connects two points r and y if there exists some sphere which has the chord
Ty and which contains no other vertices of the graph. All four graphs are planar,
meaning no two edges cross, and connected. Furthermore, they share an interesting
relationship; for any point set, MST € RNG C GG C DT. This hierarchy makes
these four graphs a nice mathematical tool for detecting the underlying structures of
dot patterns. If one graph is too sparse for a particular purpose, the next graph in
the relationship may prove more useful.

In this thesis, we will focus on a different kind of proximity graph, using the
following rule to decide closeness. For each vertex v, we draw a circle centered at
v with a radius equal to the distance to its nearest neighbour. This is shown in
Figure 1.6a. For each pair of circles that properly intersect, we connect the two
corresponding vertices with an edge. We say that two circles properly intersect if
their intersection has a nonzero area (or volume, in higher dimensions), meaning that
they intersect at more than just their boundaries. We call the circles of Figure 1.6a
the spheres of influence of the vertices, and the resulting graph in Figure 1.6b is
known as the sphere of influence graph (SIG). Since the SIG is necessarily neither
planar nor connected, it does not fit into the MST C RNG C GG C DT hierarchy
mentioned above.

In the 1980’s, Godfried Toussaint proposed the sphere of influence graph as a

geometric tool for capturing the underlying structures of dot patterns [Tou80, Tou81,
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o

Figure 1.4: (a) A minimal spanning tree, (b) a relative neighbourhood graph, (c) a
Gabriel graph, and (d) a Delaunay triangulation.

O

[alb]

Figure 1.5: (a) A lune determined by two points and (b) their diametral sphere.
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n

Figure 1.6: A set of points, (a) its spheres of influence, and (b) its sphere of influence

graph.

Tou88|. We will concern ourselves with determining the maximum size of this graph.
In other words, given a set of n vertices, what is the maximum number of edges the
resulting SIG can have?

As we will see, this depends on the metric space in which the vertices lie. By
metric space, we mean a space on which a distance can be applied. This is prob-
ably best illustrated with an example. The most often used metric in the plane is

the Euclidean metric, which specifies that for any two points a and b, dist(a,b) =

\/ (az — b)) + (ay ~ b,)2. We refer to the two-dimensional space on which the Eu-
clidean metric is applied as the Euclidean plane.

We can generalize the Euclidean metric to create a family of distance metrics
known as the Minkowski metrics, after the mathematician of the same name. For
m > 1, we define the d-dimensional metric L., as the metric such that for any two

points a and b,

dist(a,b) = "\'/|01 —by|™ + |z — ba|™ + - - - + |ag — bg|™. (1.1)

We refer to L,, as the m*-order Minkowski metric. Note that the Euclidean metric
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is a special case, the 2"¥-order Minkowski metric.

Let’s examine the infinite-order Minkowski metric. In Equation 1.1, what happens
when m approaches infinity? The largest difference in co-ordinate values dominates
the expression, rendering all others negligible. Therefore, the distance between a and
bin Ly is max{|a; — 0|, [y — ba],...,|aq — ba|}-

What does this have to do with the sphere of influence graph? The metric deter-
mines the shape of the circles drawn. We know from elementary school that in the
Euclidean plane, we draw a circle with radius r about the origin with the equation
r? +3? = r2. The equation is true for all points distance r from the origin. However,
if we are in the plane with the L., metric, the equation is much different. Here, all
points distance r from the origin satisfy the equation max{r,y} = 7. As we see in
Figure 1.7, the circles are quite different! Spheres in the L, metric are squares in
two dimensions, cubes in three dimensions, and hypercubes in higher dimensions. It
is important to realize that these spheres therefore have corners, a fact which we will
exploit throughout Chapter 2.

Since the sphere of influence graph is based on circles, the resulting graphs are
different as well. I would have also liked to demonstrate SIGs in more than two
dimensions, but the limitations of paper prove too great.

In the next chapter, we present upper and lower bounds for the maximum size
of the SIG in d-dimensional infinite-order Minkowski space (MZ). In Chapter 3, we
discuss a brief history of the problem and prove a new upper bound of 15n edges for
the size of a SIG of n vertices in the Euclidean plane. Chapter 4 concludes the thesis

and mentions a few open problems.
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Figure 1.7: A set of points and its SIG in (a) the Euclidean plane and in (b) M2,



Chapter 2

Sphere of Influence Graphs in Mgo

In this chapter, we present upper and lower bounds for the maximum number of edges
of the sphere of influence graph (SIG) in the d-dimensional infinite-order Minkowski
space (M%). Section 2.1 contains a proof that no SIG of n vertices in MY has
(224-1 — 24-1)p edges or more. In Section 2.2, we construct a lattice in M% whose
number of SIG edges asymptotically approaches (2¢+2 — 3d — 4)n/9 as n, the number

of vertices, increases.

2.1 An upper bound on the number of edges

In this section, we demonstrate that no M4%-SIG contains (22¢~! — 2¢~!)n edges or
more.

We start our proof by demonstrating that each intersection of spheres of influence
contains at least two corners of the spheres. Although our spheres are open. we first

prove the case for closed balls since the proof is easier.

Lemma 2.1 Let X and Y be two intersecting closed balls in M%. Then the number

of corners of X plus the number of corners of Y contained in X NY is at least two.
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Proof. Without loss of generality, let .X be the smaller of the two balls. First we show
that at least one corner of X is contained in Y. Because Y cannot be fully contained
in X, at least part of one facet of X is contained in Y. Consider the cross-section of
Y along the hyperplane of that facet. Since X is smaller than Y, that cross-section
cannot fit inside the facet itself. Therefore there is some corner of .X on that facet
inside Y. Call that corner c.

Now suppose that c¢ is the only corner of .X inside Y'; otherwise, our lemma is
proven. This also implies that c is the only corner of X NY which is a corner of X.
Note that the polytope X NY is an isothetic (axis-parallel) polytope, so let ¢’ be the
corner of X NY opposite from c, i.e., the corner which does not share a facet with c.

If X is to have only one corner inside X NY, ¢ cannot be on the boundary of .X.
Suppose it were. Since ¢’ shares no facets with ¢, two parallel supporting hyperplanes
of X are distance cc’ apart. Therefore, the diameter of .X, and thus the length of an
edge of X, is cc. Since the length of some edge of X NY is also ¢/, an entire edge of
X, and thus two vertices of .X, belong to XNY.

If ¢ is a corner of X NY not on the boundary of .X, then ¢ is an intersection of
facets only on the boundary of Y. Therefore, ¢’ is a corner of Y. This completes the

proof.

a

Lemma 2.1 discussed corners of closed balls; we now prove a corresponding lemma
for open balls.

Since spheres of influence are open balls, their corners are not inside. This poses a
problem, since in proving an upper bound for the size of the M%-SIG, we will require
that we examine intersections at points contained inside the balls. To compensate,
we examine points inside the balls very close to the corners. We refer to these points

as e-corners and define them as follows.
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Let S be the spheres of influence of some point set. Let £ be one-half the smallest
width of all polytopes determined by pairwise intersections of balls in S. The width
of a polytope is the smallest distance between any pair of parallel hyperplanes which
support the polytope. For each corner ¢ of a ball in S, we define an e-corner as
¢ + U,,o Where 4., is the vector of length ¢ in the direction from the corner to the

centre of the ball.

Lemma 2.2 Let X and Y be two intersecting open balls in M%. Then the number
of e-corners of X plus the number of e-corners of Y contained in X NY is at least

two.

Proof. If two open balls X and Y intersect, then their closures X and Y also intersect.
By Lemma 2.1, two corners are contained in X NY. Since X and Y are open, XNY

has a non-zero width. Therefore, the e-corners corresponding to the two corners of

XandY arein XNY.
]

Now that we’ve shown that each intersection contains at least two ¢ -corners, we

limit the number of intersections in which each ¢ -corner appears.

Lemma 2.3 Let p be a point in M2, and S be a collection of open balls that do not
contain each other’s centres. Let Q be a closed orthant of Mg‘, whose corner lies at

p. Then there is at most one ball in S which contains p and whose centre lies in Q.

Proof. We prove this lemma by contradiction. Without loss of generality, let p be
the origin and Q be the orthant determired by z; > 0 for all 1 < ¢ < d. Suppose
there are two balls, s, and s, which contain p and whose centres, a and b, lie in Q.
Let m, be the distance from a to the origin, and let m; be the distance from b to the
origin. Without loss of generality, assume that my > m,. A two-dimensional example
is illustrated in Figure 2.1.
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My

Figure 2.1: Lemma 2.3.

Since p is at the origin, m, is also the largest co-ordinate value of b. Then the point
(Be, Ze .. %) is at most distance T from b. Since s, contains p, the radius of s,
is greater than m,. Thus s, must contain the closed ball centered at (%5, 5, ..., 5t)
with radius Tt. Call this ball Z.

Since Z is centered at (%, 3¢, ..., 5t) with radius B¢, Z contains the set {z: for
all 1 <i<d, 0<z; < my}. Because Z is contained in a sphere of influence, a
cannot lie inside Z. Therefore there is one co-ordinate value of a that is greater than

my. Thus m, > ms, and we have a contradiction.
a

Since every point in M% can be used to define a set of 2¢ orthants, we can draw

the following corollary.

Corollary 2.4 Let S be a collection of open balls in MZ, such that no ball in S

contains the centre of any other. Then no point in M% is contained in more than 2¢

balls of S.
We end this section with an upper bound on the size of a M4 -SIG.

Theorem 2.5 No sphere of influence graph of n vertices in M2 has (224! —24-1)n

edges or more.
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Proof. Let S be the spheres of influence of some SIG G. Let C be the set of e-corners
of balls in S. Since S contains n balls, and each ball has 2¢ e-corners, C contains 2%n
points (some possibly duplicated).

Let X be a ball in S such that p is a s-corner of X. By Corollary 2.4, each
e-corner in C is contained in no more than 2¢ balls. Since p € X, p is contained in
at most 24 — 1 other balls of S. Therefore, p cannot be in more than 2¢ — 1 pairwise
intersections of balls involving X.

C contains 2¢n e-corners, each of which are involved in at most 2¢ — 1 intersections,
and by Lemma 2.2, each intersection contains at least two e-corners. Thus G contains

at most

2d_‘)d
Wnx(2¢-1)+2= (2_3,‘_)". = (9%-1 _ 9y,

edges. Since an e-corner on the convex hull of C cannot be involved in 2¢ — 1 in-

tersections, we can be a bit more precise in saying that G must have fewer than

(224-1 — 24-1)n edges.

2.2 A lower bound on the maximum number of
edges

In this section, we construct a lattice in z!{,‘o space such that each vertex has
(224+3 — 6d — 8)/9 sphere of influence neighbours. Readers who are not familiar
with lattices or their generating bases may wish to read Appendix A on page 46 for
a brief review of the subject.

The proof of the upper bound in Section 2.1 relies on the usage of corners in
intersections, specifically that each corner can be used in at most 2¢ — 1 intersections.

Thus, if we are to create a SIG with as many edges as possible, it seems reasonable
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Figure 2.2: Two dimensional square lattice and spheres of influence.

Figure 2.3: Two dimensional square lattice with SIG edges drawn from the centre

vertex.

to seek a structure in which each intersection of spheres involves as few corners as
possible, namely two (in light of Lemma 2.2). This is our aim in creating the lattice.
We achieve a tight bound on the maximum size of the SIG in two dimensions, and
trivially in one dimension. The gap between bounds is narrow in three dimensions
but widens as the number of dimensions approaches infinity.

Figure 2.2 demonstrates the lattice generated by an orthogonal unit basis of the
plane. If we compute the sphere of influence graph of the lattice shown in Figure 2.3,
we see that the origin (and thus every point) has eight neighbours. The SIG re-
sulting from the two-dimensional square lattice is shown in Figure 2.3. Note that
there are some intersections which involve more than the minimum two corners. The
intersections between north-south and east-west neighbours each involve four corners.

If we perturb the lattice a little bit, then these corners can be freed to intersect
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Figure 2.5: Subset of two dimensional tilted lattice with SIG edges drawn from the

centre vertex.

other spheres. We apply rotations to the basis vectors of the square lattice, replacing
{(1,0),(0,1)} with the new unit! basis {(1,4,), (—d, 1)}, where &, d, are small posi-
tive integers. Note that it is not necessary that J, = d,; in fact, in higher dimensions
it is essential that they are not equal! Thus the degrees of rotation applied to the
individual basis vectors differ. This lattice is demonstrated in Figure 2.4.

As shown in Figure 2.5, these rotations provide us with four more neighbours per

vertex than does the square lattice. This tilting is precisely the motivation for our d-

' The reader is reminded that in M2, the vector (1,4) is a unit vector if 5] < 1.
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dimensional lattice that we present next, to which we refer as the tilted d-dimensional
lattice, which will be abbreviated as Ty. (The lattice in Figure 2.4 would then be
appropriately labelled T5.)

2.2.1 A generating basis for a tilted d-dimensional lattice

Let 7; be the unit vector for the j* dimension. (The #’s are orthogonal) We

generate the lattice with the basis B = {b: : 1 < i < d} such that

G=T+6Y5-6Y T (2.1)

j<i i>i
where each 4; is a small positive real number, such that §; < 1/4, and §; < 5;—‘ for

all 2 < j < d. The basis B can also be visualized by

by = (1, =y, =0y, =8y, =0y ...)

by = (82, 1, =82, =03, =02, ....)
b = (83,03, 1, =03, =J3, ...)
by = (04,04,04,1, ~04,...)

ba = (84, 84,04, 04, . - ., 84, 1).

The §;’s have been carefully chosen to facilitate the counting of SIG edges; this will
be evident in Subsection 2.2.2. We end this subsection with a lemma showing the

relationship between any term §; and the sum of its successive d’s.

Lemma 2.6 For any 1,
d; > Z 26_1

j>i
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Proof. Since §; < 3‘!&;, the summation is less than the geometric series

26; 26 29

—— s —— e —

§ e

which converges to 24;/3.

2.2.2 Counting the SIG edges of T,

We now come to the task of counting the number of sphere of influence edges in a
tilted d-dimensional lattice.

For the remainder of this section, we will often refer to a lattice point z as a vector
in the co-ordinate system determined by our basis B. We refer to this vector as the

T-vector of the point r. For example, if a lattice point in T is determined by
36, — 462 + by
then its T-vector would be (3,—4,0,1). In an axis-paralle! unit basis of M3, this
vector has the co-ordinates
(3 + 4dy + &y, —d — 38) + g, —36) + 409 + &4, 1 — 30y + 445).

We refer to this vector as the d-vector. Simply put, the T-vector of a point z is the
vector of £ in the co-ordinate system defined by B, and the i-vector of z is the vector

of z in the co-ordinate system defined by axis-parallel unit vectors in MZ,.

Lemma 2.7 The length of any vector in M2 is greater than 2/3 the absolute value

of the largest co-ordinate value in its corresponding T -vector.

Proof. Let t be the T-vector of some point in M2, and let @ be its d-vector. Suppose
the largest absolute value m of ¢ occurs at the i* co-ordinate. Then the i** value of

w is m plus a sum of d;’s. To be precise,
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w; =t; + théj - thdj.

J<i 1>t

The absolute value of w; is bounded by the expression

lwi] > m — ;2 |tid;]
lwil > m - T3, |t;d;]
lwi| > m - Z¢=1 lm‘sjl

lwi| > m(1 - T3, 4).

Recall that the d;'s are determined by 4, < 1/4, and 4; < ‘-51:—' forall 2 < j <d. The

summation 2?:1 |0;] is thus at most a finite sum of the sequence

() + () -

4 4 4

whose infinite sum converges to 1/3. Since the finite sum is less than 1/3, |w;| > 2m/3.
O

Lemma 2.8 The sphere of influence of every vertez in Ty has radius 1.

Proof. We must show that for any vertex p, its nearest neighbour is distance 1 away.
This neighbour is no more than distance 1 away, since there exists a vertex distance 1
from p, namely p + by. To complete the proof, we must demonstrate that there exists
no point closer than 1.

Let z be a vertex of T; distinct from p. Let t be the T-vector of T — p, which
is non-zero. If any co-ordinate value of £ is not in {-1, 0, 1}, then by Lemma 2.7
the length of = — p is at least 4/3. Thus we need only focus on T-vectors £ whose

co-ordinate values all lie in the set {-1, 0, 1}.
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If ¢ has only one non-zero value t;, then the length of z — p is |t;|, which is 1.
If £ has more than one non-zero value, we focus on its first two non-zero values, ¢,

and ¢, (a < b). Let & be the @-vector of z — p. Then w, and w, can be described by

Wa = ta + tedb + L j5b 055

By Lemma 2.6,
ltadal > [tsds] > Y [365]-

j>b
Therefore, if t, and ¢, have the same sign, then |w,| > 1 regardless of the summation.

if ¢, and t, have different signs, then |w,| > 1. Thus the length of £ — p is at least 1.

a

Because every sphere of influence in the lattice has radius 1, two spheres intersect

if the distance between their centres is less than 2.

Corollary 2.9 For any two distinct points z,y € Ty, {z,y} is a SIG edge if and only
if dist(z,y) < 2.

Lemma 2.10 Let z and y be two lattice points of Ty. Let t be the T-vector of y — .

Then dist(z,y) < 2 if and only if one of the following two cases is true:
e Case 1 (all three of the following statements are irue)

— The first non-zero co-ordinate value of t is either -1 or +1.

— If the first non-zero value of t is —1, then all co-ordinate values of t are in

the set {-2,-1,0,+1}.

— If the first non-zero value of t is +1, then all co-ordinate values of t are in

the set {—1,0,+1,+2}.
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o Case 2 (all four of the following statements are true)

— The first non-zero co-ordinate value of t is either —2 or +2.
— There erists a second non-zero co-ordinate value of ¢.

— If the first non-zero value of { is 2, then the second non-zero value of t

is +1, and all co-ordinate values of t are in the set {—2,—1,0,+1}.

— If the first non-zero value of { is +2, then the second non-zero value of

is —1, and all co-ordinate values of t are in the set {—1,0,+1,+2}.

Proof. Without loss of generality, consider z to be the origin, and y to be a vertex of
T, distinct from z. Thus £ is the T-vector of §. Let & be the i-vector of 7. Recall
that in the metric space MS, y will be distance 2 or greater from z if one of the
co-ordinate values of o is at least 2.

Consider  expressed as

(al +71,0€2+’72,...,Qd+7d)

where (o, @, ...,aq) is t, and where the ;s are the sums of the &'s from Equation 2.1.

Thus, the %;’s can be expressed as

Y = z ajdj - Z ajéj. (22)

j>i I<i
Now we show that £ satisfies one of the two cases above. From Lemma 2.7, we know
that if y is within distance 2 of z, then all co-ordinate values of # (and thus all the
a’s) are in the set {—2,—1,0, +1,+2}. Thus, we assume that the a’s are in this set.
Let a, be the first non-zero value of £, and let a, be the second non-zero value,
if it exists. Then by Lemma 2.6, we can see by examining Equation 2.2 that for all
t > a, the sign of v; is dominated by the sign of —a,. The sign of 7, is dominated by

the sign of ay, if it exists.
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Due to the geometric progression of the é’s, -1 < v < 1 for all i. Since
a; € {-2,-1,0,+1,+2}, y is not within distance 2 of = if and only if there ex-
ists some k such that either o, = +2 and +, is nonnegative, or such that a; = -2
and +; is nonpositive. If a, = +1, then for i > a, all 7; are negative, and therefore
a; € {—1,0,+1,+2}. Likewise, if o, = —1, then for all ¢ > q, all v; are positive, and
therefore o; € {—2, —1,0,+1}. This proves case 1.

If a, = +2, again we draw the conclusion that for all i > a, o; € {-1,0,+1, +2}.
However, unlike case 1, 4, becomes important. In order that y be within distance 2
of . 7, must be negative. This implies the existence of the second non-zero value
o, which must be negative to achieve the desired sign of v,. Since v, is negative, the
only possibility for a, is —1. A symmetric argument covers the case for a, = —2.
This proves case 2.

Since there are no other possibilities for a,, the proof is complete.
a

Theorem 2.11 [n the infinite lattice Ty, each verter has (2243 — 6d — 8)/9 sphere

of influence neighbours.

Proof. As shown by Corollary 2.9, this amounts to counting the number of vertices
that are within distance 2 of the origin. Thus we simply have to count the vectors
that satisfy the conditions of Lemma 2.10. Let ¢ be such a vector such that the first
co-ordinate value of +1 or —1 occurs at the i* position. Then ¢ follows either case 1
or case 2 as outlined in Lemma 2.10.

If ¢ follows case 1, then all co-ordinate values of ¢ preceding t; are 0, and all
succeeding values have four possibilities, —~1, 0, +1, and either —2 or +2, depending
on t;. Thus for a d-dimensional vector following case 1, there are two choices for
the i** value, and after that four choices for each of the i + 1** through d* values.
Therefore, there are 2(44-*) = 224-2+! chgices for vectors following case 1 whose first

non-zero C e 1** position.
on-zero value occurs at the i* t
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If ¢ follows case 2, then ¢; must be the second non-zero value of £. Then exactly
one value preceding t;, say i, is —2¢;, and all values after ¢; have four possibilities,
~1, 0, +1, and t;. For a d-dimensional vector following case 2, there are two choices
for the i** value, each of which imply a single value for the k% value. However, there
are ¢ — 1 choices for k, since 1 < k < i— 1. After these values have been decided,
there are four choices for each of the i + 1% through d* values. Therefore, there
are (i — 1)(2)(4¢7*) = (i — 1)2%4-%+! choices for vectors following case 2 whose first
non-zero value occurs at the :** position.

Summing over cases 1 and 2 yields 22¢-%+!{ possible vectors for any given i. Sum-

ming this over all possible values of ¢ from 1 to d yields

d
Yo 22T = 227 1 9273(9) 1 9M(3) 4+ 2%(d - 1) +2(d) (2.3)

=1
vectors. To facilitate the computation, we rearrange the terms to vield a sum of finite
geometric series. Summation 2.3 can be expanded as

Y

2

+28 +2
_ ¥ d lines

4225 4. 42342
$22-3 L 925 4 4 93 42

4221 4 923 4 925 4 423 42

For 1 < k < d, the k* line is the geometric series
22/:—1 1 22k+1 -9
22k—l+22k—3+._.+23+2= 12___
1-3 3

Summing all of the lines reveals the total number of possible vectors;

d 22k+1_2 -9 d 22k+1

,:23"3

k=l3
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This latest summation is another geometric series, so

—2d d 22k+l -9 22d+l -2 —2d 22d+3 -8 22d+3 —6d—8
—_— = + = + = .
3 = 3 3 (3)(1 - }) 3 9 9
Therefore the origin has (22¢+* — 6d — 8)/9 sphere of influence neighbours. Since
a lattice is invariant to translations by integral multiples of its basis vectors, every

vertex in T has (22¢+3 — 6d — 8)/9 sphere of influence neighbours.

a
Corollary 2.12 There ezist SIGs of n vertices in M2 whose numbers of edges asymp-

totically approach (2242 — 3d — 4)n/9.

2.3 Conclusion

We end Chapter 2 with Table 2.1, which presents the bounds on the maximum size

of the sphere of influence graph for a few selected dimensions.
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Dimension | Upper Ty | Gap between
(d) Bound bounds

1 n n tight

2 6n 6n tight

3 28n 27n n

4 120n | 112n 8&n

5 496n | 453n 13n

6 2016n | 1818n 198n
limg_, o0 (1/9)Upper
bound

Table 2.1: Selected bounds on the maximum number of edges in a M2-SIG.

23



Chapter 3

Sphere of Influence Graphs in the

Euclidean Plane

In this chapter, we begin by giving a brief history of the problem, “What is the
minimum vaiue of ¢ such that a sphere of influence of n vertices in the Euclidean
plane (E-SIG) has at most cn edges?” In Section 3.2 we present a new upper bound

of 15.

3.1 A brief history of the problem

Five years after the sphere of influence graph was introduced by Toussaint [Tou80],
the question, “Does there exist a constant ¢ such that a E-SIG has at most cn edges?”
was solved by David Avis and Joe Horton [AH85]|, who provided the constant ¢ = 29.
They proved that given a sphere of influence graph G(V') on a point set V', the vertex
z) that has the smallest sphere of influence has at most 29 incoming edges. Any
edge of G(V') not touching z, is an edge of G(V \ {z,}) since removing z, can only
increase the radii of the spheres. That G(V') contains at most 29n edges now follows
by induction on the cardinality of V.

24
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It was later realized that the theorem by Avis and Horton had been proven in a
different form forty years earlier. In 1945, Abram Besicovitch required (and proved)

the following lemma [Bes45:

Lemma 3.1 (Besicovitch, 1945) Given a set ' of coplanar circles, the center of
no one of them being in the interior of another, and U the circle (or a circle) of T
whose radius does not ezceed the radius of any other circle of ', then the number of

circles meeting U does not exceed 21.

The number 21 was improved to its lowest possible at 18 by E. R. Reifenberg in
1948 [Reid8] and independently by Paul Bateman and Paul Erdés in 1951 [BE51).
Since planar Euclidean spheres of influence are a collection of circles such that no
interior of any circle contains the centre of any other, Lemma 3.1 can be reworded to
apply directly to sphere of influence graphs. Thus by induction we can show that no
sphere of influence graph of n vertices contains more than 18n edges. We can also
make a statement concerning a similar graph, the closed sphere of influence graph, in
which the spheres of influence are closed balls rather than open. Therefore we draw
an edge between two vertices if their spheres intersect, whether or not the intersection
is proper (has non-zero area). Here too the upper bound on the maximum size is 18n.

We can reduce this bound to 17.5n with a simple realization. Let z; be the vertex
with the smallest sphere of influence, of radius r,. This sphere has radius r, because
the nearest neighbour of z,, say z; is distance r, away. Since r, is the smallest
distance between any two vertices, then z; is also the nearest neighbour of z,. Thus
ry and ro (the radius of the sphere of influence of z;) are both the smallest radii over
all spheres, so £, and z; each have at most 18 neighbours. One edge is shared by z;
and z,, so the two vertices have in total 35 edges. Performing the induction on two
vertices at a time instead of one yields a bound of 35n/2 edges, or 17.5n. This bound

is attributed to Katchalski.
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Figure 3.1: Subset of the hexagonal lattice.

Where is this upper bound headed? The aim, of course, is to find the optimal
constant, joining the upper and lower bounds. For an idea of the tight bound, we
consider the closed sphere of influence graph. We see that the hexagonal lattice has
18 neighbours per vertex, for 9n edges in total. [n Figure 3.1, the centre vertex is
a closed SIG neighbour of all the other drawn vertices. David Avis conjectures that
the hexagonal lattice is optimal in that 9n is the most number of edges possible for
a closed E-SIG. Since the open E-SIG is a subset of the closed E-SIG, the conjecture
implies that the tight bound for the open E-SIG is no more than 9n.

The problem was generalized to Euclidean spaces of arbitrary dimension in 1993
by Leonidas Guibas, Jdnos Pach, and Micha Sharir [GPS94]. They define the k*
sphere of influence (k > 1) of a point z as the open ball centered at z with a radius
equal to the distance between z and its k* nearest neighbour. The k' sphere of
influence graph is then the graph where two points are connected if their k** spheres
of influence intersect. A 2" sphere of influence graph is illustrated in Figure 3.2. The
authors prove that for any d-dimensional Euclidean space. there exists a constant cy4
(which depends exponentially on d) such that the k** sphere of influence graph of n
vertices contains at most cgkn edges.

Rex Dwyer also posed a related problem [Dwy93], “What is the expected size of
the sphere of influence graph?” He proves that if n points are uniformly distributed
in the d-dimensional unit ball, the expected number of edges lies between (0.162)2%n
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Figure 3.2: A set of points, (a) its 2"¢ spheres of influence, and (b) its 2™ E-SIG.

and (0.667)2¢n, ford > 7 and n > d.
While these related problems are interesting and worth noting, the remainder
of this chapter concerns itself with the size of the sphere of influence graph in the

Euclidean plane. In the next section we improve the upper bound on the size of the

E-SIG to 15n.

3.2 An upper bound of 15n
In this section, we prove the following theorem, which is the main result of Chapter 3.

Theorem 3.2 No open or closed sphere of influence graph of n vertices in the Eu-

clidean plane contains more than 15n edges.

To facilitate our proof, we assign weights, or numerical values, to the edges of the
E-SIG as follows. First, we replace each undirected edge {a,b} with two directed
edges, (a,b) and (b,a). Let the radii of the spheres of influence of a and & be r, and
ry, respectively. Then (a,b) is given a weight of 1 if r, < 2r;/3, a weight of 1/2 if
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Figure 3.3: A sphere of influence graph in the Euclidean plane.

N\

Figure 3.4: A weighted sphere of influence graph.

2ry/3 < rq < 3ry/2, and a weight of O otherwise.! We refer to this graph as the
weighted sphere of influence graph, or WSIG. A E-SIG is shown in Figure 3.3 and its
corresponding WSIG in Figure 3.4. The thick lines represent edges of weight 1; the
thin lines each represent a pair of edges of weight 1/2, and the dotted lines represent

edges of weight 0.
Our goal is to utilize the WSIG in determining a new upper bound for the E-SIG.

Lemma 3.3 On any point set V', the total weight of all edges in the WSIG of V' is
equal to the number of edges in the SIG of V.

Proof. Each edge in the SIG corresponds to a pair of edges in the WSIG. Either both
edges have weight 1/2, or one has weight 1 and the other 0. Thus each SIG edge
corresponds to two WSIG edges whose weights add up to 1.

a

It is remarked that the values 2/3 and 3/2 have been chosen to produce the best results as

determined through trial and error.
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Lemma 3.3 implies that if we can prove that no WSIG of n vertices has edges
whose total weight is greater than 15n, then we have also proven Theorem 3.2. This

is exactly the method behind our proof, and we begin with the following theorem.

Theorem 3.4 There erists no node in the WSIG for which the weights of outgoing

edges sum to greater than 15.

We will prove this theorem by demonstrating that it follows from Theorem 3.5

and then by proving the latter, which discusses fitting points into annuli.

Theorem 3.5 (modified from Reifenberg and Bateman-Erdés, 1948/1951)
Let the term admissible point of weight 1/2 refer to a point p in the annulus
1 < p < 5/3 such that no other admissible point is within distance 2/3 of p. Let
the term admissible point of weight 1 refer to a point q in the annulus 1.5 < p < 2.5
such that

e no other admissible point of weight I is within distance 1.5 of q,

e no admissible point of weight 1/2 not on the circle p = 5/3 is within distance

1.5 of q, and

e for each admissible point of weight 1/2 which has polar co-ordinates (5/3,6),
there ezists a point in space (r,0) where 5/3 < r < 2.5 such that (r,0) is at
least distance 1.5 from q.

Then it is impossible to fit any combination of admissible points in the annulus

1 < p < 2.5 such that their total weights sum to a value greater than 15.

We delay the proofs of the last two theorems for now and instead prove that
Theorem 3.5 implies Theorem 3.4. We first require the following lemma.
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Figure 3.5: Lemma 3.6.

Lemma 3.6 In polar co-ordinates, let X = (z,0;) and Y = (y,0,) be the centres
of two circles that do not contain each other’s centres but that both intersect p = 1.
Furthermore, we tmpose the condition that X and Y lie outside the disk p < R, for
some R > 1. Then the points A = (R, 6;) and B = (R, 8,) are at least distance R —1
apart.

Proof. As above, let £ = OX, y = OY, and v = m/{XQY', as shown in Figure 3.5.
Then dist(X,Y)? > max{(z - 1)2, (y — 1)?}, so

z? + y* = 2zycos ¥ > max{(z — 1)% (y — 1)}

Supposing z < y yields

2 002 (112 2 _
coswgz +y*—-(y—-1) =_1__*_1: I
2zy T 2zy

1 -1

-z 212

Let this upper bound be f(z). Differentiating with respect to z gives us

df 1 1

i R
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which is negative for any z > 1. Thus f(z) is strictly decreasing as r grows. Since the
largest possible value for cos ¢ is f(R), the smallest value possible for ¥ is arccos f(R).
Then m/AOB is also at least arccos f(R). Therefore,

dist(A, B)?

v

2R? - 2R*f(R)

1 R2-1
ap2 L
..R(R+ 2

R?-2R+1
(R-1)%

v

)

v

v

Thus dist{A, B) > R — 1. This proves the lemma.

We are now ready to prove the following theorem.
Theorem 3.7 Theorem 3.5 implies Theorem 3.4.

Proof (generalized from a proof by Bateman and Erdés). Let O be some node in the
WSIG with at least one outgoing edge of non-zero weight. Without loss of generality,
assume that O is at the origin and that the sphere of influence of O has radius 1.
Thus we have a set A of circles of radius at least 2/3 which intersect the circle p =1
such that the centre of no circle is contained in any other. Also, since the sphere of
influence of O has radius 1, no circle in A is centered inside p < 1.

[t suffices to show that we can construct a set A* of admissible points where each
circle in A of radius more than 2/3 but less than 1.5 corresponds to a point in A*
with weight 1/2, and where each circle in A of radius 1.5 or greater corresponds to
a point in A* with weight 1. Furthermore, we demand that both correspondences be
bijective, meaning that every circle in A corresponds uniquely to a point in A* and

vice versa.
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First, let us choose the points of weight 1. We select a point of weight 1 corre-
sponding to a circle C of radius 1.5 or greater in the following manner: if the centre
of C lies inside p < 2.5, we select its centre; if not, we select the point lying on the
circle p = 2.5 with the same amplitude. As a result, the circle of radius 1.5 centered
at a point of weight 1 in A® is contained in its corresponding circle in A, which
contains no other centres. Thus it remains only to demonstrate that if two circles of
A have centres X and Y outside p < 2.5, their corresponding points a and b are at
least distance 1.5 apart. This is proven by Lemma 3.6 since a and b are on the circle
p=23.

Now we are left with the selection of points of weight 1/2, which we perform in a
similar manner. We select a point of weight 1/2 corresponding to a circle C in the
following manner: if the centre of C lies inside p < 5/3, we select its centre; if not,
we select the point lying on the circle p = 5/3 with the same amplitude. By the same
logic of the proof concerning points of weight 1 and by Lemma 3.6, all points in A*
of weight 1/2 are mutually at least distance 2/3 apart.

It remains to prove that every point of weight 1 is at least distance 1.5 from points
of weight 1/2 inside p < 5/3. We must also show that for each admissible point p of
weight 1 and every admissible point with polar co-ordinates (5/3,8) of weight 1/2,
there exists a point in space (r,8) where r > 5/3 such that (r, 8) is least distance 1.5
from p. Since the circle of radius 1.5 around each point p of weight 1 is contained in
the corresponding circle of p, no circle of weight 1/2 can be centered within distance
1.5 of p. Thus, the only possibility in which a point g of weight 1/2 is within distance
1.5 of p is if q corresponds to a circle centered elsewhere. Then q would have to be on
the circle p = 5/3. However, the centre of the corresponding circle is at least distance
1.5 away, even if ¢ is not. This centre lies somewhere on the line 5/3 < p < 2.5 with
the same amplitude as ¢, so there is some point on that line which lies at least distance

1.5 from p. This constraint is precisely the exception with regard to points of weight
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1/2 lying on p = 5/3. This completes the proof of the lemma.

We now begin our proof of Theorem 3.5.

Lemma 3.8 (generalized from a lemma by Bateman-Erd&s, 1951) Label the
ortgin as O. Let r, R, and 7 be such that 0 < R — 1 < r < R. Suppose that we
have two points P and Q which lie in the annulus r < p < R and which have mutual
distance 7. Then the minimum value ®.(r, R) of m{POQ has the smaller of the two

values

_. (R/7)’ + (r/7)> -1
&, (r, R) = arccos 3Rr)T , and

————1 )} = 2arcsi T
SR/ = csxn2R.

Proof. 1t suffices to consider the case where OQ = R and PQ = 7. Let OP = p.

®.(r, R) = arccos(l —

Our problem can be reduced to finding the p which yields the minimum value of
m/{POQ. Let f(p) = m/POQ = arccos[(R)? + (p)? — 7%)/(2Rp)] for p in the interval
r < p < R. If we differentiate, we see that f(p) cannot have an interior minimum in
this interval. Thus the minimum is the smaller of f(r) and f(R), which are the two

values described in the lemma.

The following instances will be used in the course of the proof of Theorem 3.5.

®y/3(1,1.15) > $y/3(1,1.2) > 32°.2

$y/3(1,1.3) > 2 $y/3(1,1.4) > 26°.0

®y/3(1.15,1.4) > 20°.7  ®y/3(1.15,5/3) > 17°.5
)

@2/3(1.2, 1.4) > 27°5 @2/3(1.2, 5/3) > 19°.3
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®y3(1.3,5/3) > 21°.8  @y/3(1.4,5/3) > 23°.0

®)5(1,1.6) > 55°9  @,5(1.15,2.5) > 22°.2
$,5(1.2,2.5) > 24°.9  &,5(1.3,2.5) > 28°.9
®,5(1.4,2.3) > 31°6  $5(1.5,2.5) > 33°5
®,5(1.6,2.5) > 34°.9

For the remainder of this section, the method of proof is simple. We place a
configurations of admissible points inside annuli, sort the points radially, and compute
the minimum angles between each pair of radial neighbours. For example, the angle
between an admissible point of weight 1/2in 1 < p < 2 and anotherin 1.3 < p< 1.4
is at least ®5/3(1, 1.4). Likewise, between two admissible points of weight 1 both in
1.5 € p < 2.5, the angle is at least ®;5(1.5,2.5). In general, let a,b,c, and d be such
that a < b < d and a < ¢ < d. Then the angle between an admissible point of weight
1/2in a < p < b and another in ¢ < p < dis at least ®y/3(a, d). In the case of points
of weight 1, the angle is at least ¥, 5(a, d).

Note that in between points of weight 1 and 1/2, the distance is 1.5, unless the
point of weight 1/2 lies on p = 5/3. In this special case, the point of weight 1 must be
distance 1.5 from some point in 5/3 < p < 2.5 with the same amplitude as the point
of weight 1/2. Thus, we must always include the interval 5/3 < p < 2.5 in this case.
As an example, the minimum angle between a point of weight 1in 1.5 < p<2anda
point of weight 1/2in 1.5 < p < 1.6 is $,5(1.5,2), but the minimum angle between
a point of weight 1 in 1.5 < p < 2 and a point of weight 1/2 in 1.5 < p<5/3 is
®,5(1.5,2.5).

It is worth mentioning that this method requires a little more complication if we
allow @ < ¢ < d < b, but since this case will not occur in our proof of Theorem 3.5,
we will avoid discussing it here. Additionally, there are some cases where this method
will not produce a tight lower bound on the angle. When d — (72/d) < q, then the

minimum angle between a point in ¢ < p < b and another in ¢ < p < d is greater
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Figure 3.6: Sample configuration of admissible points.

than ®.(a,d). In all cases, ®,(a, d) still provides a valid lower bound, just not a tight
bound. This does not affect our proof; it is only mentioned here for completeness.

A sample configuration of admissible points is demonstrated in Figure 3.6. The
three encircled points have weight 1; the other two have weight 1/2. We see that
mlAOB > $9/3(1.2,1.5), m{BOC > ¥,5(1.2,2.5), and m{COD > $,5(2.0,2.5).

The proof of each lemma below proceeds by assuming a possible configuration
and then demonstrating that the sum of the subtended angles of radially consecutive
points is greater than 360°. Since the configuration fits inside an annulus, we achieve

a contradiction.
Lemma 3.9 [t is impossible to have 11 admissible points of weight 1.

Proof. The angle between any two radially consecutive points (i.e., consecutive by
amplitude) is at least ®;5(1.5,2.5). Since ®;5(1.5,2.5) > 33.5°, our lemma follows
from the fact that 11®, 5(1.5,2.5) > 368°.5.
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Therefore the following six cases suffice to prove Theorem 3.5. We show that it is

impossible to have
e Case 1: 10 admissible points of weight 1 and 11 of weight 1/2.
e Case 2: 9 admissible points of weight 1 and 13 of weight 1/2.
e Case 3: 8 admissible points of weight 1 and 15 of weight 1/2.
e Case 4: 7 admissible points of weight 1 and 17 of weight 1/2.
e Case 3: 6 admissible points of weight 1 and 19 of weight 1/2.
e Case 6: 26 admissible points of non-zero weight.

These cover all possibilities of having admissible points whose total weight exceeds
15.

The remainder of this chapter continues the proof of Theorem 3.5, which implies
our main theorem that no E-SIG contains more than 15n edges. The reader who does
not wish to see an exhaustive analysis of the above cases is advised to skip ahead to
Chapter 4 on page 44.

To prove the individual cases, we require the following three lemmas, which will

be used several times in the course of this chapter.

Lemma 3.10 [t is impossible to have 11 admissible points of weight 1/2 in the an-
nulus 1 < p < 1.3 such that 10 of them lie in | < p < 1.15.

Proof. Suppose we have 11 admissible points in 1 < p < 1.3, 10 of which lie in
1 < p £ 1.15. Then 9 of the angles subtended at the origin by pairs of radially con-
secutive points are at least ®5/3(1,1.15), and the other two are at least ®5/3(1,1.3).

However, 99,/3(1, 1.15) + 2®,/3(1,1.3) > 361°.8, so this is not possible.
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Lemma 3.11 [t is impossible to have 12 admissible points of weight 1/2 in the an-
nulus 1 < p < 1.4 such that 10 of them liein 1 < p < 1.2.

Proof. Suppose we have 12 such admissible points. Then either the 2 points in
1 < p < 1.4 are each radially in between points in 1 < p < 1.2, or the 2 points are
radially consecutive. In the former case, the angles subtended are 8®,/3(1,1.2) +
4®,/3(1,1.4) > 361°.6. I[n the latter case, the angles subtended are 9dy/3(1,1.2) +
20,/3(1, 1.4) + ®9/3(1.2,1.4) > 369°.3. Thus we have a contradiction.

O

Lemma 3.12 It is impossible to have ! admissible point of weight ! in the annulus

1.5 < p < 1.6 and 9 admissible points of weight 1/2in 1 < p < 1.2

Proof. In this configuration, 9 of the angles subtended at the origin by pairs of radially
consecutive points are at least ®,/3(1, 1.2}, and the other two are at least ®,5(1, 1.6).

However, 9%/3(1, 1.2) + 2¢;5(1, 1.6) > 369°.4, which proves the lemma.

We are now ready to proceed with the proofs of each of the six cases.

Lemma 3.13 (Case 1) [t is impossible to have 10 admissible points of weight ! and
11 admissible points of weight 1/2.

Sublemma 3.13.1 [t is impossible to have 10 admissible points of weight I in
1.5 < p< 2.5 and 2 admissible points of weight 1/21in 1.2 < p< 5/3.

Proof of sublemma. If the 2 points of weight 1/2 are consecutive, then the angles
subtended are 99,5(1.5,2.5) + 2®,5(1.2,2.5) + ®;/3(1.2,5/3) > 371°.2. If they are
not consecutive, then the angles are 8®, 5(1.5, 2.5) + 4®, 5(1.2,2.5) > 368°.2.

Since 10 admissible points must be in 1 < p < 1.2, by Lemma 3.12 all admissible
points of weight 1 are in 1.6 < p < 2.5.
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Sublemma 3.13.2 [t is impossible to have 10 admissible points of weight I in

1.6 < p< 2.5 and 1 admissible point of weight 1/2in 1.3 < p < 5/3.

Proof of sublemma. This follows from the fact that 9%, 5(1.6,2.5) + 2®,5(1.3,2.5) >
371°.9, which demonstrates that this configuration is not achievable.

This proves that if we have 10 admissible points of weight | and 11 admissible
points of weight 1/2, then all 11 points of weight 1/2 must liein It < p < 1.3. But
by Lemma 3.10, 2 of the 11 points of weight 1/2 must lie in 1.15 < p < 1.3. We now

show that this is not possible.

Sublemma 3.13.3 It is impossible to have 10 admissible points of weight 1 in

1.6 < p< 2.5 and 2 admissible points of weight 1/2 in 1.15 < p < 1.3.

Proof of sublemma. If the 2 points of weight 1/2 are consecutive, then the angles
subtended are 99, 5(1.6, 2.5) + 2&, 5(1.15,2.5) + P4/3(1.15,1.3) > 388°.2. If they are
not consecutive, then the angles are 89, 5(1.6,2.5) + 49, 5(1.15,2.5) > 368°.0.

This proves the lemma and therefore case 1.

g

Lemma 3.14 (Case 2) [t ts impossible to have 9 admissible points of weight | and

13 admissible points of weight 1/2.

Sublemma 3.14.1 [t is impossible to have 9 admissible points of weight I in
1.5 < p < 2.5 and 4 admissible points of weight 1/2 in 1.2 < p < 5/3.

Proof of sublemma. No configuration of the 13 points exists such that the angles
subtended sum to 360° or less. The smallest sum possible occurs when the 4 points
of weight 1/2 are each between points of weight 1. The sum of angles in this case is

50, 5(1.5,2.5) + 8B, 5(1.2,2.5) > 367°.3.
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If there are at most 3 points of weight 1/2 in 1.2 < p < 5/3, then there must be
at least 10 points of weight 1/2 in 1 < p < 1/2. By Lemma 3.11, this implies that
there are not 12 points of weight 1/2 within 1 < p < 1.4. Therefore at least 2 of
the 3 points of weight 1/2 in 1.2 < p < 5/3 are in 1.4 < p < 5/3. Furthermore, by
Lemma 3.12 all 9 points of weight 1 are in 1.6 < p < 2.5. We now show that this is

not possible.

Sublemma 3.14.2 [t is impossible to have 9 admissible points of weight 1 in

1.6 < p < 2.5 and 2 admissible points of weight 1/2in 1.4 < p< 5/3.

Proof of sublemma. No configuration of the 11 points exists such that the angles
subtended sum to 360° or less. The smallest sum possible occurs when the 2 points
of weight 1/2 are consecutive. The sum of angles in this case is 8P, 5(1.6,2.3) +
28, 5(1.4,2.5) + Baya(1.4,3/3) > 365°.4.

This proves the lemma and therefore case 2.
a

Lemma 3.15 (Case 3) [t is impossible to have 8 admissible points of weight ! and
15 admissible points of weight 1/2.

We follow very closely the proof of Case 2 (Lemma 3.14).

Sublemma 3.15.1 [t is impossible to have 8 admissible points of weight 1 in

1.5 < p < 2.5 and 6 admissible points of weight 1/2in 1.2 < p < 5/3.

Proof of sublemma. No configuration of the 14 points exists such that the angles
subtended sum to 360° or less. The smallest value possible occurs when the 6 points
of weight 1/2 are each between points of weight 1. The sum of angles in this case is

26, 5(1.5,2.5) + 124, 5(1.2,2.5) > 366°.5.
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If there are at most 5 points of weight 1/2 in 1.2 < p < 5/3, then there must be
at least 10 points of weight 1/2 in 1 < p < 1/2. By Lemma 3.11, this implies that
there are not 12 points of weight 1/2 within 1 < p < 1.4. Therefore there are at least
4 points of weight 1/2 in 1.4 < p < 5/3. We now show that this is not possible.

Sublemma 3.15.2 [t is impossible to have 8 admissible points of weight [ in

1.3 < p < 2.5 and 4 admissible points of weight 1/2 in 1.35 < p < 5/3.

Proof of sublemma. No configuration of the 12 points exists such that the angles
subtended sum to 360° or less. The smallest value possible occurs when the 4 points
of weight 1/2 are consecutive. The sum of angles in this case is 7®,5(1.5,2.5) +
20, 5(1.4,2.5) + 3P9/3(1.4,5/3) > 366°.7.

This proves the lemma and therefore case 3.

a

Lemma 3.16 (Case 4) It is impossible to have 7 admissible points of weight I and
17 admissible points of weight 1/2.

Sublemma 3.16.1 [t is impossible to have 7 admissible points of weight [ in

1.5 < p < 2.5 and 8 admissible points of weight 1/2 in 1.2 < p < 5/3.

Proof of sublemma. No configuration of the 15 points exists such that the angles
subtended sum to 360° or less. The smallest value possible occurs when the 7 points
of weight 1 are each between points of weight 1/2. The sum of angles in this case is
149, 5(1.2,2.5) + B9/3(1.2,5/3) > 368°.6.

[f there are at most 7 points of weight 1/2 in 1.2 < p £ 5/3, then there must be
at least 10 points of weight 1/2 in 1 < p < 1/2. By Lemma 3.11, this implies that
there are not 12 points of weight 1/2 within 1 < p < 1.4. Therefore there are at least
6 points of weight 1/2 in 1.4 < p < 5/3. We now show that this is not possible.
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Sublemma 3.16.2 It is impossible to have 7 admissible points of weight 1 in

1.5 < p< 2.5 and 6 admissible points of weight 1/2in 1.4 < p < 5/3.

Proof of sublemma. No configuration of the 13 points exists such that the angles
subtended sum to 360° or less. The smallest value possible occurs when the 6 points
of weight 1/2 are consecutive. The sum of angles in this case is 6®,5(1.5,2.5) +
2Q, 5(1.4,2.3) + 3Py/3(1.4,3/3) > 379°.2.

This proves the lemma and therefore case 4.
O

Lemma 3.17 (Case 5) It is impossible to have 6 admissible points of weight ! and

19 admissible points of weight 1/2.

Sublemma 3.17.1 [t is impossible to have 6 admissible points of weight | in

1.5 < p< 2.5 and 10 admissible points of weight 1/2 in 1.2 < p< 5/3.

Proof of sublemma. No configuration of the 16 points exists such that the angles
subtended sum to 360° or less. The smallest value possible occurs when the 6 points
of weight 1 are each between points of weight 1/2. The sum of angles in this case is
128, 5(1.2,2.5) + 4®y/3(1.2,5/3) > 376°.9.

If there are at most 9 points of weight 1/2 in 1.2 < p < 5/3, then there must be
at least 10 points of weight 1/2in 1 < p < 1/2.

By Lemma 3.11, this implies that there are not 12 points of weight 1/2 within
1 < p < 1.4. Therefore there are at least 8 points of weight 1/2in 1.4 < p < 5/3. We

now show that this is not paossible.

Sublemma 3.17.2 [t is impossible to have 6 admissible points of weight 1 in
1.5 < p < 2.5 and 8 admissible points of weight 1/2in 1.4 < p < 5/3.



Chapter 3. Sphere of Influence Graphs in the Euclidean Plane 42

Proof of sublemma. No configuration of the 14 points exists such that the angles
subtended sum to 360° or less. The smallest value possible occurs when the 9 points
of weight 1/2 are consecutive. The sum of angles in this case is 59;5(1.5,2.5) +
20, 5(1.4,2.5) + 7®,/3(1.4.5/3) > 391°.7.

This proves the lemma and therefore case 5.

Lemma 3.18 (Case 6) It is impossible to have 26 admissible points.

With reasoning parallel to the proof of Lemma 3.7, we may assume that all 26 points
are of weight 1/2, creating a set A* of 26 admissible points that all liein 1 < p £ 53/3.

We make two important observations:

16(1)2/3(1.4,5/3) > 368°.0
14@2/3(1, 14) > 364°.0

There are only three cases in which we can achieve 26 admissible points. Either there
are 15 points in 1.4 < p<5/3 and 11 in 1 < p < 1.4, or there are 14 and 12, or 13

and 13. We will show that none of these are possible.

Sublemma 3.18.1 [t is impossible to have 15 admissible points in 1.4 < p < 5/3
and 11 im | <p< 1.4

Proof of sublemma. Note that no points are in 1.3 < p < 1.4, since 14®4/3(1.4,5/3) +
2®,/3(1.3,5/3) > 365°.6. Therefore, by Lemma 3.10, 2 of the pointsin 1 < p < 14
must lie in 1.15 < p < 1.3. If the two points each lie between pointsin 1.4 < p < 5/3,
then the sum of the angles subtended is 13®5/3(1.4,5/3) + 4®2/3(1.15, 5/3) > 369°.0.
If the two are consecutive, then the sum of the angles subtended is 14®,/3(1.4,5/3) +
2d/3(1.15,5/3) + P4/3(1.15,1.3) > 386°.7.
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Sublemma 3.18.2 It is impossible to have 14 admissible points in 1.4 < p< 5/3
and 12in 1 < p< 1.4.

Proof of sublemma. By Lemma 3.11, 3 of the points in 1 < p < 1.4 must lie in
1.2 < p < 1.4. If the three points each lie between points in 1.4 < p < 5/3, then the
sum of the angles subtended is 11®9/3(1.4,5/3) + 6®4/3(1.2,5/3) > 368°.8. If two
are consecutive and the third lies between points in 1.4 < p < 5/3, then the sum is
12d5/3(1.4,5/3) +4P2/3{1.2,5/3) +P2/3(1.2, 1.4) > 380°.7. If all three are consecutive,
then the sum is 13®/3(1.4,5/3) + 2®5/3(1.2,5/3) + 2d9/3(1.2, 1.4) > 392°.6.

Sublemma 3.18.3 [t is impossible to have 13 admissible points in 1.4 < p< 5/3
and 13in | <p< 1.4.

Proof of sublemma. By Lemma 3.11, 4 of the points in 1 < p < 1.4 must lie in
1.2 < p < 1.4. The minimum sum of the angles subtended occurs when these four
points each lie between points in 1.4 < p < 5/3. In this case, the sum of the angles
is 1149/3(1.4,5/3) + 6®4/3(1.2,5/3) > 368°.8, so this case is also impossible.

This proves the lemma and therefore case 6.

o

This completes the proof of Theorem 3.5, which implies that no node in the WSIG
has outgoing edges whose weights sum to greater than 15. Since by Lemma 3.3 the
total weight of the WSIG equals the number of edges in the SIG, we have proven
Theorem 3.2, which states that no sphere of influence graph of n vertices in the

Euclidean plane contains more than 15n edges.



Chapter 4

Conclusion

We have presented new bounds on the maximum size of the sphere of influence graph
(SIG) both in d-dimensional infinite-order Minkowski space and in the Euclidean
plane. In M2, there exist SIGs whose sizes asymptatically approach (22¢*2 — 3d —
4)n/9, and all SIGs contain fewer than (2%¢~! — 29-')n edges. We have also shown
that no SIG in the Euclidean plane contains more than 15n edges.

We leave several problems open. The first four concern M%-SIGs.

Open Problem 4.1 Does there ezist a function c(d) less than (22¢-! — 2971) such

that no M2 -SIG has c(d)n edges or greater?

Open Problem 4.2 Do there exist M2 -SIGs of n vertices with more than (22442 —
3d — 4)n/9 edges?

Open Problem 4.3 Does there ezist a d-dimensional lattice whose M%-SIG con-

tains more edges than T2 If so, what is the optimal lattice?

Given the difficulties in many of the covering and kissing problems® in higher

dimensions, Open Problem 4.3 may be quite difficult.

!The reader is referred to [CS93| for an excellent book on these problems.
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Open Problem 4.4 We have discussed only briefly the closed sphere of influence
graph, in which the spheres of influence are closed balls. Michael and Quint [MQ94a,
MQ94b] present an upper bound of (5% — (3/2))n in MY,; the best known lower bound

is 59n/2. Improve these bounds.

The proof in Chapter 3 that no SIG in the Euclidean plane contains more than 15n
edges is dependent on dividing the SIG edges into three discrete groups, each with its
own weight. While it is conceivable that better resuits could result from dividing the
edges into five or more groups, the resulting proof would be immense, ridden with
several cases to analyze. Perhaps some continuous weighting scheme could be devised
and the proof made more general to avoid the many cases. This leads us to another

open problem.

Open Problem 4.5 Does there ezist a continuous weighting of the edges of the E-
SIG which yields an upper bound better than 15n? Does it yield an elegant proof?

Of course, the ultimate goal is to have the upper bound and the lower bound meet.
We recall the conjecture made by David Avis on the maximum size of the sphere of

influence graph in the Euclidean Plane.
Conjecture 4.6 (Avis) No E-SIG or closed E-SIG contains more than 9n edges.

We close this discussion on sphere of influence graphs with the beautifully simple

yet elusive open problem that has inspired this research.

Open Problem 4.7 Prove or disprove Conjecture 4.6.



Appendix A

A review of lattices

This appendix provides a brief review of lattices and generating bases. Any introduc-
tory text on linear algebra should provide a more thorough coverage.

We will start with the definition of a basis. Given a vector space X, a basis is a set
B of vectors such that any point in X' can be uniquely defined by a linear combination
of vectors in B. (We then call the vectors linearly independent.) For example, in the
plane, the set {(1,0),(0,1)} is the usual basis. However, we could also use the basis
B = {(0,1),(1,1)}. Here the point normally labelled (6,8) can be defined uniquely
as —2(0,1) + 8(1,1).

Note that in an m dimensional space, any basis has exactly m vectors. For example,
in the plane the set {(0,1),(1,0),(1,1)} can’t be a basis since we can express (6, 8)
as —2(0,1) + 8(1,1), or —3(0,1) + 7(1,0) + (1, 1), or any other proper summation.
(There are infinitely many possibilities.) Not just any m vectors will do; the set
{(0,1), (0,2)} will not allow us to express all vectors in the plane. The vectors (0, 1)
and (0, 2) are not linearly independent.

A lattice is the set of all points that can be expressed as sums of integral multiples
of vectors of a given basis B. The basis B is said to be the generating basis of the

lattice. Figure A.l is an example.
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[alb]

Figure A.1: {(a) A generating basis and (b) its lattice.
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