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Abstract

Let \,/ be a set of distinct points in sonle metric space. We draw the following

proximity graph on v~: For each point x E V ~ let Sr be the open baIl centered at

x with radius from x to its nearest neighbour. Then (a, b) is an edge if and only

if Sa and Sb intersect. This graph is known as the sphere of influence graph of the

point set V. In this thesis, we demonstrate that in the d-dimensional infinite-order

NIinkowski metrie. no sphere of influence graph of n vertices cantains (22d- l - 2d- l )n

edges or more. \Ve aisa prove an asymptotic lower bound of (2d+2 - 3d - -l)n/9 on

the maximum size of the graph. Lastly, we demonstrate an upper bound of 15n on

the size of the sphere of influence graph of n vertices in the Euclidean plane.

ü
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Résumé

Soit V un ensemble de points dans un espace métrique. Nous créons le graphe de

proximité suivant sur V: pour chaque point x E ~.r, soit Sr la boule ouverte de centre

x et de rayon égale à la distance entre x et son voisin le plus proche. Nous créons aussi

l'arc (a, b) du graphe si et seulement si Sa et Sb s'intersectent. Ce graphe s'appelle

le graphe d'influence de sphères de l'ensemble l/. Dans ce mémoire, nous prouvons

que dans l'espace de dimension d selon la métrique de ~Iinkowski, aucun graphe

d'influence de sphères ne peut avoir (22d- 1 - 2d- L)n arcs ou plus. Nous démontrons

aussi que la borne inférieure asymptotique de la taille maximale est au moins de

(2d+2 - 3d - 4}n/9. Finalement, nous prouvons que dans le plan euclidien, aucun

graphe d'influence de sphères de n nœuds ne peut contenir plus de I5n arcs.

üi
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Chapter 1

Introduction

Suppose you gave a sLx-year-old child Figure l.Ia on a sheet of paper and asked her

ta draw what she thaught it represented. How would she decide on the underlying

structure of these points? She might connect a few points here and there and end up

\Vith something similar ta Figure l.1 b.

If 50, on the sheet of paper now is a set of points and a set of Unes connecting

those points. She has unknowingly drawn a graph. In formaI terms, a graph is set

of points, called vertices, and a set of edges, each connecting a pair of vertices. For

example, in Figure 1.2, there are edges between p and q and between q and r. \Ve

• • • •• ~• •• •
• • • • ~• ••• •• •• • • ••• •

• • • ••• •• •
• • • • a b

Figure 1.1: Ca) A set of points and (h) a possible interpretation.

1
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Figure 1.2: A graphe

p

•

•

Figure 1.3: A directed graphe

then say that p and q are neighbours, as are q and r, since they share an edge.

We will also make reference to directed edges, which are ordered pairs of vertices.

In Figure 1.3, there are edges from p to q~ from q ta r, and from r to q. A. graph

consisting of a set of vertices and a set of directed edges is kno\vn as a directed graphe

Let's look again at the child's artwork in Figure LIb. In drawing the edges,

she didn't just arbitrarily choose pairs of vertices and connect them. Instead she

connected those vertices which she thought were close ta each other. This type of

graph, in which vertices are cannected by an edge if they satisfy sorne condition of

c1oseness, is called a proximity graphe

Sînce we can define closeness in many different ways, there are several types of

proximity graphs. We will not he describîng in great detail the various graphs; how

ever, the survey paper by Jaromczyk and Toussaint [JT92} contains an e.."'<cellent

discussion. The most famous proximity graph, the minimal spanning tree (~IST), is

demonstrated in Figure I.4a. The MST is the connected graph which uses the min

imum total edge length (which always results in one fewer edge than the number of

vertices). By connected graph, we mean that there is path of edges between any two
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vertices. In the relative neighbourhood graph (RNG), shawn in Figure 1.4b, two points

are connected with an edge if their lune contains no other vertices of the graph. The

lune of two points x and y, shawn in Figure 1.5a, is defined as the intersection of two

spheres of radius dist(x, y), one centered at x and the other at y. In the Gabriel graph

(GG), shawn in Figure 1.4c, two points x and y are connected \Vith an edge if their

diametral sphere, the sphere of diameter xy, contains no other vertices of the graph.

Figure lAd cantains another proximity graph, the Delaunay triangulation (DT). This

graph connects two points x and y if there exists sorne sphere which has the chard

xy and which contains no other vertices of the graph. AlI four graphs are planar,

meaning no two edges cross, and cannected. Furthermore, they share an interesting

relationship; for any point set, ~IST ç RNG ç GG ç DT. This hierarchy makes

these four graphs a nice mathematical tool for detecting the underlying structures of

dot patterns. If one graph is too sparse for a particular purpase, the next graph in

the relatianship may prove more useful.

In this thesis, we will foeus on a different kind of proximity graph, using the

follawing mIe ta decide closeness. For each vertex v, we draw a circle centered at

u with a radius equal ta the distance ta its nearest neighbour. This is shawn in

Figure 1.6a. For each pair of circles that properly intersect, we connect the two

correspanding vertices with an edge. We say that two circles properly intersect if

their intersection has a nonzero area (or volume, in higher dimensions), meaning that

they intersect at more than just their boundaries. We caB the circles of Figure 1.6a

the spheres of influence of the vertices, and the resulting graph in Figure 1.6b is

known as the sphere of influence graph (SIG). Since the SIG is necessarily neither

planar nor connected, it cloes not fit into the MST ç RNG ç GG ç DT hierarchy

mentioned above.

In the 1980's, Godfried Toussaint proposed the sphere of influence graph as a

geometric tool for capturing the underlying structures of dot patterns [Tou80, TouS!,
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a b
c d

4

Figure 1.4: (a) A minimal spanning tree, (h) a relative neighhourhood graph, (c) a

Gabriel graph, and (d) a Delaunay triangulation.

o

•

a b

Figure 1.5: (a) .~ lune determined by two points and (b) their diametral sphere.



• Chapter 1. Introduction

a b

.. ...... ~

.~..:..... :.-.. .. '.' .· . .· ... .• ,ft, .-
'. : : .
"."" .

5

•

Figure 1.6: A set of points, (a) its spheres of influence, and (h) its sphere of influence

graph.

TouaS}. We will concern ourselves with determining the maximum size of this graph.

In other words, given a set of n vertices, what is the ma.ximum number of edges the

resulting SIG cao have?

As we will see, this depends on the metric space in which the vertices lie. By

metric space, we mean a space on which a distance cao be applied. This is proh

ably best illustrated with an example. The most often used metric in the plane is

the Euc1idean metric, which specifies that for any two points a and b, dist(a, b) =

J(ar - br )2 + (ay - by)2. We refer ta the two-dimensional space on which the Eu

clidean metric is applied as the Euclidean plane.

We cau generalize the Euclidean metric ta create a family of distance metrics

known as the Minkowski metrics, after the mathematician of the same name. For

m ~ 1, we define the d-dimensional metric Lm as the metric snch that for any two

points a and b,

We refer ta Lm as the mth-order Minkowski metric. Note that the Euclidean metric



is a special case, the 2"d-arder ~Iinkawski metric.

Let's examine the infinite-arder lVIinkowski metric. In Equation 1.1, what happens

when m approaches infinity? The largest difference in co-ordinate values dominates

the expression, rendering all others negligible. Therefore, the distance between a and

b in Loo is max{lal - bd, la2 - b21,.··, lad - bdl}·

vVhat does this have ta do with the sphere of influence graph? The metric deter

mines the shape of the circles drawn. We know from elementary schoal that in the

Euclidean plane, we draw a circle with radius r about the origin with the equation

x2 + y2 = r2 . The equation is true for all points distance r from the origin. However,

if we are in the plane with the Loo metric, the equation is much different. Here, aIl

points distance r from the origin satisfy the equatian ma..x{x, y} = r. As we see in

Figure 1.7, the circ1es are quite different! Spheres in the Loo metric are squares in

two dimensions, cubes in three dimensions, and hypercubes in higher dimensions. It

is important to realize that these spheres therefore have corners. a fact which we will

exploit throughout Chapter 2.

Since the sphere of influence graph is based on circ1es, the resulting graphs are

different as weIl. l wauld have also liked ta demonstrate 81Gs in more than two

dimensions, but the limitations of paper prave too great.

In the next chapter, we present upper and lower bounds for the maximum size

of the SIG in d-dimensional infinite-order NIinkowski space (kl~). In Chapter 3, we

discuss a brief history of the problem and prove a new upper bound of 15n edges for

the size of a SIG of n vertices in the Euclidean plane. Chapter 4 conc1udes the thesis

and mentions a few open problems.

•

•

Chapter 1. Introduction 6
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Figure 1.7: A. set of points and its SIG in (a) the Euclidean plane and in (b) Al~ .
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Chapter 2

Sphere of Influence Graphs in M~

In this chapter, we present upper and lawer baunds for the maximum number of edges

of the sphere of influence graph (SIG) in the d-dimensional infinite-order NIinkowski

space (AJ~). Section 2.1 cantains a proof that no SIG of n vertices in AI~ has

{22d- L - 2d - l )n edges or more. In Section 2.2, we construct a lattice in AI~ whose

number of SIG edges asymptoticallyapproaches {2d+2
- 3d - 4)n/9 as n, the number

of vertices, increases.

2.1 An upper bound on the number of edges

In this section, we demonstrate that no NI~-SIG contains {22d- L - 2d- L)n edges or

more.

We start our proof by demonstrating that each intersection of spheres of influence

contains at least two corners of the spheres. Although our spheres are open: we first

prove the case for closed balls since the proof is easier.

Lemma 2.1 Let JY. and Y be two intersecting closed balls in k[~. Then the number

of corners of ..~ plus the number of corners of Y contained in X n Y is at least two.

8
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Praof. Without 10ss of generality, let )( be the srnaller of the two balls. First we show

that at least one corner of .X: is contained in Y'. Because Y cannat be fully contained

in ~Y, at least part of one facet of .."< is contained in Y. Consider the cross-section of

y along the hyperplane of that facet. Since ~Y is srnaller than Y, that cross-section

cannat fit inside the facet itself. Therefore there is sorne corner of ..Yon that facet

inside Y'. Call that corner c.

Now suppose that c is the only corner of .Y inside },.; otherwise, our lemma is

proven. This also irnplies that c is the only corner of ..Y n Y which is a corner of .Y.

Note that the polytope ~Y n Y is an isothetic (a.xis-parallel) polytope, sa let d be the

corner of .'( n y" opposite from c, i.e., the corner which does not share a facet with c.

If .Y is to have only one corner inside }( n }'.., cf cannat be on the boundary of ..'(.

Suppose it were. Since d shares no facets with c, two parallel supporting hyperplanes

of }[ are distance cd apart. Therefore, the diameter of .X, and thus the length of an

edge of .."<, is cd. Since the length of sorne edge of ."< n Y is also cd, an entire edge of

..Y, and thus two vertices of .\", belong to .Y n Y.

If d is a corner of .\" n y" not on the boundary of ..Y, then d is an intersection of

facets only on the boundary of y... Therefore, cf is a corner of Y. This completes the

proof.

o

Lemrna 2.1 discussed corners of closed balls; we now prove a corresponding lernma

for open balls.

Since spheres of influence are open balls, their corners are not inside. This poses a

problem, since in proving an upper bound for the size of the j\;f~-SIG, we will require

that we examine intersections at points contained inside the balls. To compensate,

we examine points inside the balls very close ta the corners. We refer to these points

as ê-comers and define them as follows.
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Let S he the spheres of influence of sorne point set. Let ê he one-half the smallest

width of all polytopes determined by pairwise intersections of balls in S. The width

of a polytope is the smallest distance between any pair of parallel hyperplanes which

support the polytope. For each corner c of a ball in S, we define an ê -corner as

c + vc~o where vc~o is the vector of length ê in the direction from the corner ta the

centre of the ball.

Lemma 2.2 Let J"( and Y be two intersecting open balls in l\r/:C. Then the number

of ê-corners of .Y" plus the number of ê-comers of Y contained in .X' n Y is at least

two.

Proof. If two open balls .X' and Y intersect, then their closures )( and Y also intersect.

By Lemma 2.1, two corners are contained in .Y" n Y. Since ~Y" and y~ are open, .Y" nY'

has a non-zero width. Therefore, the ê-corners corresponding to the two corners of

}( and }''' are in ..Y n y'.

o

Now that we've shawn that each intersection contains at least two ~ -corners, we

limit the number of intersections in which each ê -corner appears.

Lemma 2.3 Let p be a point in l\tI~, and S be a collection of open balls that do not

contain each other's centres. Let Q be a closed orthant of lv[~ whose corner lies at

p. Then there is at most one bail in S which contains p and whose centre lies in Q.

Proof. 'Ve prove this lemma by contradiction. Without loss of generality, let p be

the origin and Q be the orthant determined by Xi 2:: 0 for aIl 1 :5 i :5 d. Suppose

there are two balls, Sa and Sb, which contain p and whose centres, a and b, lie in Q.

Let ma he the distance from a to the origin, and let mb he the distance from b ta the

origin. Without 10ss of generality, assume that m6 ~ ma' A two-dimensional example

is illustrated in Figure 2.1.
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Q

Il

p •a

=-1

•

Figure 2.1: Lemma 2.3.

Since pis at the origin, mb is also the largest co-ordinate value of b. Then the point

( !!!b. ~ !!!.IL) • dO t ~ ~ b S' ° h d' f2 ' 2 , ..• , 2 lS at most 15 ance 2 lrom . Ince Sb cantaIns p, t e ra lUS 0 Sb

is greater than mb. Thus Sb must cantain the closed baIl centered at (T' T' ... ,T)
with radius T' CalI this ball Z.

S· Z . t d (!!!i!!!l. ~). h d' !!!k Z . h { F.Ince IS cen ere at 2' 2 , •.. , 2 Wlt ra lUS 2' contains t e set X: Jor

ail 1 $i :5 d, 0 :5 Xi :5 n~b}' Because Z i5 contained in a sphere of influence, a

cannat lie inside Z. Therefore there is one co-ordinate value af a that is greater than

mb. Thusma > -mb, and we have a contradiction.

o

Since every point in 1\tl~ can be used to define a set of 2d orthants, we can draw

the following corollary.

Corollary 2.4 Let S be a collection of open balls in i\!I~ such that no baU in S

contains the centre of any other. Then no point in NI~ is contained in more than 2d

halls of S.

We end this section with an upper bound on the size of a A;l~-SIG.

Theorem 2.5 No sphere of influence graph of n vertices in kl~ has {22d- t
- 2d- 1)n

edges or more.



Praof. Let S he the spheres of influence of sorne SIG G. Let C he the set of €-comers

of balls in S. Since S cantains n balls, and each ball has 2d €-comers, C contains 2dn

points (sorne possibly duplicated).

Let ~Y be a ball in S such that p is a €-corner of ..Y. By Corollary 2.4, each

t-comer in C is contained in no more than 2d balls. Since p E ..X, p is contained in

at most 2d - 1 ather balls of S. Therefore, p cannat be in more than 2d - 1 pairwise

intersections of balls involving ~Y.

C contains 2dn €-comers, each of which are invalved in at mast 2d -1 intersections,

and by Lemrna 2.2, each intersection cantains at least two €-corners. Thus G cantains

at most

• Chapter 2. Sphere of InBuence Graphs in kI~ 12
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edges. Since an €-corner on the convex hull of C cannot be involved in 2d - 1 in

tersections, we can be a bit more precise in saying that G must bave fewer than

(22d- 1 _ 2d - 1)n edges.

o

2.2 A lower bound on the maximum number of

edges

In this section, we construct a lattice in lV[~ space snch that each vertex bas

(22d+3 - 6d - 8}/9 sphere of influence neighbaurs. Readers who are not familiar

with lattices or their generating bases may wish to read Appendix A on page 46 for

a brief review of the subject.

The proof of the upper bound in Section 2.1 relies on the usage of corners in

intersections, specifica1ly that each corner can be used in at most 2d - 1 intersections.

Thus, if we are ta create a SIG with as many edges as possible, it seems reasonable



• Chapter 2. Sphere of Influence Graphs in lvI:1o· . . . ~ .........•
13

•
•
•

~""DJ' ··.' ..' .. .t ! ... ;o ..•.•

•..... . .

•

• • • • • • •

Figure 2.2: Two dimensional square lattice and spheres of influence.

• • • • •
•

*
•

• •
• •
• • • • •

Figure 2.3: T\Vo dimensional square lattice with SIG edges drawn from the centre

vertex.

to seek a structure in which each intersection of spheres involves as few corners as

possible, namely two (in light of Lemma 2.2). This is our aim in creating the lattice.

We achieve a tight bound on the maximum size of the SIG in two dimensions, and

trivially in one dimension. The gap between bounds is narrow in three dimensions

but \Videns as the number of dimensions approaches infinity.

Figure 2.2 demonstrates the lattice generated by an orthogonal unit basis of the

plane. If we compute the sphere of influence graph of the lattice shawn in Figure 2.3,

we see that the origin (and thus every point) has eight neighbours. The SIG re

sulting from the two-dimensional square lattice is shown in Figure 2.3. Note that

there are sorne intersections which involve more than the minimum two corners. The

intersections between north-south and east-west neighbours each involve four corners.

If we perturb the lattice a little bit, then these corners cao be freed ta intersect
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Figure 2.4: Subset of two dimensional tilted lattice and spheres of influence.

•
•

• •

• •

•
•

Figure 2.5: Subset of two dimensional tilted lattice with SIG edges drawn from the

centre vertex.

•

other spheres. We apply rotations ta the basis vectors of the square lattice, replacing

{(1, 0), (0, 1)} with the new unit 1 basis {(1, "d, (-eS2 , 1)}, where db "2 are smalI posi

tive integers. Note that it is not necessary that eS1 = "2; in fact, in higher dimensions

it is essentiai that they are not equaH Thus the degrees of rotation applied ta the

individual basis vectors differ. This Iattice is demonstrated in Figure 2.4.

.~ shown in Figure 2.5, these rotations provide us with four more neighbours per

verte..x than cloes the square lattice. This tilting is precisely the motivation for our d

lThe reader is reminded that in kI;, the vector (1,6) is a unit vector if 161 ~ 1.
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dimensionallattice that we present next, to which we refer as the tilted d-dimensional

lattice, which will be abbreviated as Td• (The lattice in Figure 2.4 would then be

appropriately labelled T'l. .)

2.2.1 A generating basis for a tilted d-dimensional lattice

Let ûj he the unit vector for the jth dimension. (The ûj's are orthogonal.) \Ve

generate the lattice with the basis B = {li; : 1 ~ i ~ d} such that

(2.1)

where each cSi is a small positive real number, such that cS1 $ 1/4. and 8j ~ d'il for

all 2 $ j $ d. The basis B can aIsa be visualized by

b~ = (1, -61, -61, -cSh -61 .•• )

b~ = (82 , 1, -62 , -62, -62, ••• )

b~ = (83,63 , 1, -63, -63, ..• )

b~ = (84 ,6.,,84 ,1, -64 , ••• )

The 8i 's have been carefully chosen ta facilitate the counting of SIG edges; this will

be evident in Subsection 2.2.2. We end this subsection with a lemma showing the

relationship between any term 61 and the SUffi of its successive 8'5.

Lemma 2.6 For any i,
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Praof. Since dj ~ :~J' the summation is less than the geometric series

which converges ta 2di/3.

2.2.2 Counting the SIG edges of Td

16

o

We now come to the task of counting the number of sphere of influence edges in a

tilted d-dimensional lattice.

For the remainder of this section, we will often refer ta a lattice point x as a vector

in the co-ordinate system determined by our basis B. "Ve reter ta this vector as the

T-vector of the point x. For example, if a lattice point in T4 is determined by

3b~ - 46; + b~

then its T-vector would be (3, -4,0, 1). In an a'{is-paral1el unit basis of lV/~, this

vector has the co-ordinates

We refer to this vector as the û-vector. Simply put, the T-vector of a point x is the

vector of x in the co-ordinate system defined by B, and the û-vector of x is the vectar

of x in the co-ordinate system defined hy axis-parallel unit vectors in J\;/~.

Lemma 2.7 The length of any vector in kl~ is greater than 2/3 the absolute value

of the largest co-ordinate vaLue in ·its co~sponding T -vector.

Praof. Let the the T-vector of sorne point in At/~, and let 10 be its û-vector. Suppose

the largest absalute value m of f occurs at the ith co-ordinate. Then the i th value of

üi is m plus a sum of di 's. To he precise,
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Wi = ti + L:tjdj - L:tjdj.
j<i j>i

The absolute value of Wi is bounded by the expression

IWil ~ m - Ej~i Itjdil

IWil ~ 'm - E1=l Itjdj 1

IWil ~ m - E1=L l'mdjl

IWil ~ 'm(1 - Et=l dj)'

17
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Recall that the e5/s are determined by dl ~ 1/4, and 6j ~ 6,;1 for aIl 2 ~ j ::; d. The

summation E1=L Idil is thus at most a finite SUffi of the sequence

whose infinite sum converges ta 1/3. Since the finite sum is less than 1/3, IWil > 2m/3.

o

Lemma 2.8 The sphere of -influence of every vertex in Td has radius 1.

Proof. We must show that for any vertex p, its nearest neighbour is distance 1 away.

This neighbour is no more than distance 1 away, since there exists a vertex distance 1

from p, namely p + b~. Ta complete the proof, we must demonstrate that there exists

no point doser than 1.

Let x he a vertex of Td distinct from p. Let r he the T-vector of x - p, which

is non-zero. If any co-ordinate value of ris not in {-1, 0, I}, then by Lemma 2.7

the length of x - p is at Ieast 4/3. Thus we need only focus on T-vectors r whose

co-ordinate values alllie in the set {-1, 0, 1}.



If f has only one non-zero value t i , then the length of x - p is 1ti l, which is 1.

If [has more than one non-zero value, we focus on its first two non-zero values, ta

and tb (a < b). Let 'w be the 'Û-vector of x-p. Theo W a and Wb can he described by
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W a = ta + tb5b + Lj>b ti5j;

Wb = tb - tOoc}a + Li>b titij.

By Lemma 2.6.

Itadal > ItbcSbl > E ItjcSjl·
j>b

Therefore, if ta and tb have the same sign, then IWa 1 > 1 regardless of the summation.

if ta and tb have different signs, then IWbl > 1. Thus the length of x - p is at least 1.

o

Because every sphere of influence in the lattice bas radius 1, two spberes intersect

if the distance between their centres is less than 2.

Corollary 2.9 For any two distinct points I, y E Td , {x, y} is a SIG edge if and only

if dist(x, y) < 2.

Lemma 2.10 Let x and y be two lattice points ofTd• Let [ be the T-vector oly - x.

Then dist(x, y) < 2 if and only if one of the following two cases is true:

• Case 1 (ail three of the following statements are trne)

- The first non-zero co-ordinate value ofr is either -1 or +l.

- If the first non-zero value ofris-l, then aU co-ordinate values ofr are in

the set {-2,-1,O,+1}.

- If the first non-zero value ofr is +1, then ail co-ordinate values of f are in

the set {-l,D, +1,+2}.
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• Case 2 (aU four of the following statements are true)

- The first non-ze7'0 co-ordinate value of f is either -2 or +2.

There exists a second non-zero co-ordinate value of f.

19

- If the first non-zero value of [ is -27 then the second non-zero value of [

is +1, and aU co-ordinate values off are in the set {-2, -1,0, +l}.

- If the first non-zero value of t is +2, then the second non-zero 'value of [

is -1, and ail co-ordinate values off are in the set {-1, 0, +1, +2}.

Prao! Without 10ss of generality, consider x to be the origin, and y ta be a vertex of

Td distinct from x. Thus fis the T-vector of y. Letw be the û-vector of y. Recall

that in the metric space AI~, Y will be distance 2 or greater from x if one of the

co-ordinate values of lV is at least 2.

Consider lE expressed as

where (al, a2, ... ,ad) is f, and where the ,ï's are the SUffiS of the c)'s from Equation 2.1.

Thus, the ri. 's cao be expressed as

"Y' -" a·cS· - "a·c)·,1 - ~ J J L] J'
j>i. )<i.

(2.2)

•

Now we show that t satisfies one of the two cases above. From Lemma 2.7, we know

that if y is within distance 2 of x, then all co-ordinate values of t (and thus all the

a's) are in the set {-2,-1,O,+1,+2}. Thus, we assume that the a's are in this set.

Let Qa be the first non-zero value of ~ and let ab be the second non-zero value,

if it exists. Theo by Lemma 2.6, we can see by examining Equation 2.2 that for all

i > a, the sign of 'Yi is dominated by the sign of -Ga. The sign of "'fa is dominated by

the sign of ab, if it exists.
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Due ta the geometric progression of the 8's, -1 < 'Yi < 1 for all i. Since

Qi E {-2, -1,0, +1, +2h Y is not within distance 2 of x if and only if there ex

ists sorne k such that either Ok = +2 and rk is nonnegative, or such that Ok = -2

and ""fk is nonpositive. If Qa = +1, then for i > a, ail 'Yi are negative, and therefore

Qi E {-1,0, +1, +2}. Likewise, if Qa = -1, then for aIl i > a, aIl li are positive, and

therefore ai E {-2, -l, 0, +1}. This proves case 1.

If Qa = +2, again we draw the conclusion that for aUi > a, Qi E {-1, 0, +1, +2}.

However, unlike case 1, la becomes important. In order that y be within distance 2

of x. la must be negative. This implies the existence of the second non-zero value

Qb, which must be negative to achieve the desired sign of ra' Since rb is negative. the

only possibility for ab is -1. A symmetric argument covers the case for aa = -2.

This t'raves case 2.

Since there are no other possibilities for aa, the proof is complete.

o

Theorem 2.11 In the Infinite lattice Td , each vertex has (22d+3 - 6d - 8)/9 sphere

of influence neighbou.rs.

Proof. As shawn by Corollary 2.9, this amounts to counting the number of vertices

that are within distance 2 of the origin. Thus we simply have to count the vectors

that satisfy the conditions of Lemma 2.10. Let [he such a vector such that the first

co-ordinate value of +1 or -1 occurs at the 'i th position. Then f follows either case 1

or case 2 as outlined in Lemma 2.10.

If r follows case l, then all co-ordinate values of t preceding ti are 0, and all

succeeding values have four possibilities, -l, 0, +1, and either -2 or +2, depending

on ti. Thus for a d-dimensional vector following case 1, there are two choices for

the i th value, and after that four choices for each of the i + 1th through dth values.

Therefore, there are 2(4d- i ) = 22d-2i+l choices for vectors following case 1 whose first

non-zero value occurs at the i th position.



If t follows case 2, then ti must he the second non-zero value of t. Theo exactly

one value preceding ti, say tk, is -2ti, and all values after ti have four possibilities,

-1, 0, +1, and tk. For a d-dimensional vector following case 2, there are two choices

for the ith. value, each of which imply a single value for the kth. value. However! there

are i - 1 choices for k, since 1 ~ k $ i - 1. A.rter these values have been decided,

there are four choices for each of the i + 1st through dth. values. Therefore. there

are (i - 1)(2)(4d- i ) = (i - 1)22d-2i+l choices for vectors following case 2 whose first

non-zero value occurs at the ith. position.

Summing over cases 1 and 2 yields 22d-2i+li possible vectors for any given L Sum

ming this over all possible values of i from 1 to d yields
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d

L 22d-2i+li =22d- l + 22d- 3 (2) + 22d- S(3) + ... + 2 3 (d - 1) + 2(d) (2.3)
&=1

vectors. To facilitate the computation, we rearrange the terms ta yield a SUffi of finite

geometric series. Summation 2.3 can be expanded as

2

dIines
+22d- 5 + + 23 + 2

+22d- 3 + 22d- 5 + + 23 + 2

+22d- 1 + 22d- 3 + 22d- 5 + + 23 + 2.

For 1 ~ k ~ d, the kth. line is the geometric series

22k- 1 1 22k+1 ?
22k- L + 22k- 3 + ... + 23 + 2 = ~ 2 _ - -

1- 4 3

Summing all of the tines reveals the total number of possible vectors;

d 22k+1 _ 2 -2d d 22k+1

L =-+L-·
k=l 3 3 k=l 3
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This latest summation is another geometric series, sa

-2d d 22k+ 1 -2d 22d+1 - 2 -2d 22d+3 - 8 22d+3 - 6d - 8
-3- +{; -3- = -3- + (3)(1 - t) = -3- + 9 = 9 .

22

•

Therefore the arigin has (22d+3
- 6d - 8}/9 sphere of influence neighbaurs. Since

a lattice is invariant ta translations by integral multiples of its basis vectors, every

vertex in Td has (2 2d+3
- 6d - 8)/9 spherc of influence neighbours.

o

Corollary 2.12 There exist SIGs ofn vertices in lvf:fc whose numbers of edges asymp

totically approach (22d+2 - 3d - 4}n/9.

2.3 Conclusion

We end Chapter 2 with Table 2.1, which presents the baunds on the maximum size

of the sphere of influence graph for a few selected dimensions.
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Dimension Upper Td Gap between

(d) Bound bounds

l n n tight

2 6n 6n tight

3 28n 27n n

4 120n 112n 8n

5 496n 453n 43n

6 2016n 1818n 198n

limd-+oc (lj9)Upper

bound

Table 2.1: Selected bounds on the maximum number of edges in a lYf~-SIG .

23
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Chapter 3

Sphere of Influence Graphs in the

Euclidean Plane

In this chapter, we begin by giving a brier history of the problem, "What is the

minimum value of c such that a sphere of influence of n vertices in the Euclidean

plane (E-SIG) has at most en edges?" In Section 3.2 we present a new upper bound

of 15.

3.1 A brief history of the problem

Five years after the sphere of influence graph was introduced by Toussaint [Tou80],

the question, "Does there exist a constant c such that a E-SIG has at most en edges'?"

was solved by David Avis and Joe Horton [AH85], who provided the constant c = 29.

They proved that given a sphere of influence graph G(V) on a point set \/, the vertex

Xl that has the smallest sphere of influence has at mast 29 incoming edges. Any

edge of G(V) not touching Xl is an edge of G(V \ {Xl}) since removing Xl can only

increase the radii of the spheres. That G(V) cantains at most 29n edges now follows

by induction on the cardinality of V .

24
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It was later realized that the theorem by Avis and Horton had been proven in a

different fonn forty years earlier. In 1945, Abram Besicovitch required (and proved)

the following lemma [Bes45]:

Lemma 3.1 (Besicovitch, 1945) Given a set r of coplanar circles, the center of

no one of them being in the interior of another, and U the circle (or a circle) of r
whose radius does not exceed the radius of any other circle of r, then the number of

circles meeting U does not exceed 21.

The number 21 was improved to its lowest possible at 18 by E. R. Reifenberg in

1948 [Rei48] and independently by Paul Bateman and Paul Erdos in 1951 [BE51].

Since planar Euclidean spheres of influence are a collection of circles such that no

interior of any circle contains the centre of any other, Lemma 3.1 can be reworded to

apply directly to sphere of influence graphs. Thus by induction we can show that no

sphere of influence graph of n vertices cantains more than IBn edges. We can aiso

make a statement concerning a similar graph, the closed sphere of influence graph, in

which the spheres of influence are closed baIls rather than open. Therefore we draw

an edge between two vertices if their spheres intersect, whether or not the intersection

is proper (has non-zero area). Here tao the upper bound on the maximum size is I8n.

We can reduce this bound to 17.5n with a simple realization. Let Xl be the vertex

with the smallest sphere of influence, of radius Tl, This sphere has radius rl because

the nearest neighbour of Xl, say X2 is distance rl away. Since rl is the smallest

distance between any two vertices, then Xl is also the nearest neighbour of X2. Thus

rI and r2 (the radius of the sphere of influence of X2) are both the smallest radii over

all spheres, 50 Xl and X2 each have at most 18 neighbours. One edge is shared by Xl

and X2, 50 the two vertices have in total 35 edges. Performing the induction on two

vertices at a time instead of one yields a bound of 35n/2 edges, or I7.Sn. This bound

is attributed ta Katchalski.



• Chapter 3. Spbere of Influence Graphs in the Euc1idean Plane
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• • • • •
• • • •

• • •

Figure 3.1: Subset of the hexagonallattice.
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Where is this upper bound headed? The aim, of course, is to find the optimal

constant, joining the upper and lower bounds. For an idea of the tight bound, we

consider the closed sphere of influence graphe We see that the hexagonallattice has

18 neighbours per vertex, for 9n edges in total. In Figure 3.1, the centre vertex is

a c10sed SIG neighbour of all the other drawn vertices. David Avis conjectures that

the hexagonal lattice is optimal in that 9n is the most number of edges possible for

a closed E-SIG. Since the open E-SIG is a subset of the closed E-SIG, the conjecture

implies that the tight bound for the open E-SIG is no more than 9n.

The problem was generalized to Euc1idean spaces of arbitrary dimension in 1993

by Leonidas Guibas, Janos Pach, and NIicha Sharir (GPS94]. They define the kth

sphere of 'influence (k 2:: 1) of a point x as the open baIl centered at x with a radius

equal to the distance between x and its k th nearest neighbour. The k th sphere of

influence graph is then the graph where two points are connected if their k th spheres

of influence intersecte A 2nd sphere of influence graph is illustrated in Figure 3.2. The

authors prove that for any d-dimensional Euclidean space~ there exists a constant Cd

(which depends exponentially on d) sucb that the kth sphere of influence graph of n

vertices contains at most Cdkn edges.

Rex Dwyer aIso posed a related problem [Dwy93], "'What is the expected size of

the sphere of influence graph?" He proves that if n points are uniformly distributed

in the d-dimensional unit ball, the expected number of edges lies between (O.162)2dn
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Figure 3.2: A set of points, (a) its 2nd spheres of influence, and (b) its 2nd E-SIG.

and (O.667)2dn, for d ~ 7 and n » d.

While these related problems are interesting and worth ooting, the remainder

of this chapter concems itself with the size of the sphere of influence graph in the

Euclidean plane. In the next section we improve the upper bound on the size of the

E-SIG to 15n.

3.2 An upper bound of 15n

In this section, we prove the following theorem, which is the main result of Chapter 3.

Theorem 3.2 No open or closed sphere of influence graph of n vertices in the Eu

clidean plane contains more than 15n edges.

To facilitate our proof, we assign weights, or numerical values, ta the edges of the

E-SIG as follows. First, we replace each undirected edge {a, b} with two directed

edges, (a, b) and (b, a). Let the radii of the spheres of influence of a and b he Ta and

Tb, respectively. Theo (a, b) is given a weight of 1 if Ta ~ 2rb/3, a weight of 1/2 if
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Figure 3.3: A sphere of influence graph in the Euclidean plane.

Figure 3.4: A weighted sphere of influence graph.
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2rb/3 < ra < 3Tb/2, and a weight of 0 otherwise. 1 vVe refer to this graph as the

weighted sphere of influence graph, or \JVSIG. A E-SIG is shawn in Figure 3.3 and its

corresponding WSIG in Figure 3.4. The thick Hnes represent edges of weight 1; the

thin lines each represent a pair of edges of weight 1/2, and the datted Hnes represent

edges of weight o.
Our goal is to utilize the WSIG in determining a new upper bound for the E-SIG.

Lemma 3.3 On any point set V~, the total weight of aU edges in the WSIG of v~ is

equal ta the number of edges in the SIG of v".

Proof. Each edge in the SIG corresponds to a pair of edges in the WSIG. Either both

edges have weight 1/2, or one has weight 1 and the other o. Thus each SIG edge

corresponds ta two WSIG edges whose weights add up to 1.

o
lIt is remarked that the values 2/3 and 3/2 have been chosen ta produce the best results as

determined through trial and error.
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Lemma 3.3 implies that if we can prove that no WSIG of n vertices has edges

whose total weight is greater than 15n, then we have also proven Theorem 3.2. This

is exactly the method behind our proof, and we begin with the follawing theorem.

Theorem 3.4 There exists no node in the WSIG for which the weights of outgoing

edges sum to greater than 15.

We will prave this theorem by demonstrating that it follows from Theorem 3.5

and then by proving the latter, which discusses fitting points into annuli.

Theorem 3.5 (modified from Reifenberg and Bateman-Erdos, 1948/1951)

Let the term admissible point of weight 1/2 refeT to a point p in the annulus

1 :5 p :5 5/3 such that no other admissible point is within distance 2/3 of p. Let

the term admissible point of weight 1 refer to a point q in the annulus 1.5 :5 P :5 2.5

su.ch that

• no other admissible point of weight 1 is within distance 1.5 of q,

• no admissible point of weight 1/2 not on the circle p = 5/3 is within distance

1.5 of q, and

• for each admissible point of weight 1/2 which has polar co-ordinates (5/3,6),

there exists a point in space (r,8) where 5/3 :5 r :5 2.5 such that (r,O) is at

least distance 1.5 /rom q.

Then it is impossible to fit any combination of admissible points in the annulus

1 :5 P :5 2.5 such that their total we'ights sum ta a value greater than 15.

We delay the praofs of the last two theorems for now and instead praye that

Theorem 3.5 implies Theorem 3.4. We first require the following lemma.
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Figure 3.5: Lemma 3.6.
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Lemma 3.6 In polar co-ordinates, let )( = (x, Br) and Y = (y,Oy) he the centres

of two circles that do not contain each other's centres but that bath intersect p = l.

Furthermore y we impose the condition that JY and Y lie outside the disk p ~ R, for

sorne R > 1. Then the points A = (R, 8r ) and B = (R, By ) are at least distance R - 1

apart'

Praof. As above, let x = O.Y, y = 01'", and tiJ = mL.X·OY, as shawn in Figure 3.5.

Then dist(.Y:, y)2 ~ ma"{{(x - 1)2, (y -1)2}, 50

Supposing x ~ y yields

x2 + y2 - (y - 1)2 1 x2 - 1
cos t/J < = - + --

- 2xy x 2xy

1 x2-1
<-+--
- x 2x2

Let this upper bound be f (x). Differentiating with respect ta x gives us

dl 1 1
-=--+
dx x2 4x3



which is negative for any x > 1. Thus f(x) is strictly decreasing as x grows. Since the

largest possible value for cos 'l/J is f (R), the smallest value possible for 'r/J is arccos f (R).

ThenmL.4.0B is also at least arecos f(R). Therefore,
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dist(A, B)2 > 2R2
- 2R2f(R)

>
.) 2 l R2 - l
_R tR + 2R2 )

> R2 -2R+1

> (R - 1)2.
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Thus dist(A, B) ~ R - 1. This proves the lemma.

o

We are now ready to prove the following theorem.

Theorem 3.7 Theorem 3.5 i'mplies Theorem 3.4.

Proo! (generalized fram a prao! by Bateman and Erdôs). Let 0 be sorne node in the

WSIG with at least one outgoing edge of non-zero weight. Without loss of generality,

assume that 0 is at the ongin and that the sphere of influence of 0 has radius 1.

Thus we have a set ~ of circles of radius at least 2/3 which intersect the circle p = 1

such that the centre of no circle is contained in any other. AIso, since the sphere of

influence of 0 has radius 1, no circle in A is centered inside p < 1.

It suffices ta show that we can construct a set ~. of admissible points where each

circle in A of radius more than 2/3 but less than 1.5 corresponds to a point in Il·

with weight 1/2, and where each circle in ~ of radius 1.5 or greater corresponds ta

a point in ~. with weight 1. Furthermore, we demand that bath correspondences be

bijective, meaning that every circle in a corresponds uniquely ta a point in a· and

vice versa.
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First, let us choose the points of weight 1. We select a point of weight 1 corre

sponding to a circ1e C of radius 1.5 or greater in the following manner: if the centre

of C lies inside p ~ 2.5, we select its centre; if not, we select the point lying on the

circle p = 2.5 with the same amplitude. As a result, the circle of radius 1.5 centered

at a point of weight 1 in ~. is contained in its corresponding circle in ~, which

cantains no other centres. Thus it remains only to demonstrate that if two circles of

~ have centres ..Y and Y outside p $ 2.5, their corresponding points a and b are at

least distance 1.5 apart. This is proven by Lemma 3.6 since a and b are on the circle

p = 2.5.

Now we are left with the selection of points of weight 1/2, which we perform in a

similar manner. vVe select a point of weight 1/2 corresponding ta a circle C in the

fallowing manner: if the centre of C lies inside p ~ 5/3, we select its centre; if not!

we select the point lying on the circle p =5/3 with the same amplitude. By the same

logic of the praof conceming points of weight 1 and by Lemma 3.6, aIl points in ~.

of weight 1/2 are mutually at least distance 2/3 apart.

It remains to prove that every point of weight 1 is at least distance 1.5 from points

of weight 1/2 inside p < 5/3. 'vVe must also show that for each admissible point p of

weight 1 and every admissible point with polar co-ordinates (5/3,9) of weight 1/2,

there exists a point in space (r,9) where r ;::: 5/3 such that (r,9) is least distance 1.5

from p. Since the circle of radius 1.5 around each point p of weight 1 is contained in

the corresponding circIe of p, no circIe of weight 1/2 cao be centered within distance

1.5 of p. Thus, the ooly possibility in which a point q of weight 1/2 is within distance

1.5 of p is if q corresponds ta a circIe centered elsewhere. Then q would have ta be on

the circle p =5/3. However, the centre of the corresponding circle is at least distance

1.5 away, even if q is not. This centre lies somewhere on the line 5/3 $ p ~ 2.5 with

the same amplitude as q, sa there is sorne point on that line which lies at least distance

1.5 from p. This constraint is precisely the exception with regard ta points of weight
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1/2 lying on p = 5/3. This completes the proof of the lemma.

vVe now begin our proof of Theorem 3.5.
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Lemma 3.8 (generalized from a lemma by Bateman-Erdos, 1951) Label the

origin as O. Let r, R, and ï he such that a< R - T :5 r :5 R. Suppose that 'We

have two points P and Q which lie in the annulus r ~ p :5 Rand which have -mutual

distance T. Then the minimum value <I>T'(r, R) of 'mLPOQ has the smaller of the two

values

(R/T)2 + (r/T)2 - l
~T'(r, R) = arccos ?R ,and_ rIT

1 T
e1>T'(r, R) =arccos(l - 2(R/T)2) =2 arcsin 2R'

Proo/. It suffices to consider the case where DQ = Rand PQ = T. Let OP = p.

Our problem can be reduced to finding the p which yields the minimum value of

mLPOQ. Let f(p) = mLPOQ = arccos[(R)2 + (p)2 - T2)/(2Rp)] for p in the interval

r $ p :5 R. If we differentiate, we see that J(p) cannot have an interior minimum in

this interval. Thus the minimum is the smaller of f(r) and f(R), which are the two

values described in the lemma.

o

The following instances will be used in the course of the proof of Theorem 3.5.

<1>2/3 (1, 1.15) > 33°.5 <1>2/3(1,1.2) > 32°.2

ep2/3(l,1.3) > 29°.7 c112/3(1,1.4) > 26°.0

ep2/3(L15, 1.4) > 29°.7 c112/3(1.15,5/3) > lr.5

<1>2/3 {1.2, 1.4) > 2r.5 <»2/3(1.2,5/3) > 19Q .3
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~1.5(1, 1.6) > 55°.9

cIl loS (1.2, 2.5) > 24°.9

cf? 1.5 (1.4, 2.5) > 31°.6

~1.5(1.6, 2.5) > 34°.9

~2/3 (1.4, 5/3) > 23°.0

<1>1.5(1.15,2.5) > 22°.2

<1>1.5(1.3,2.5) > 28°.9

<1>1.s(1.5, 2.5) > 33°.5
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For the remainder of this section, the method of proof is simple. "vVe place a

configurations of admissible points inside annuli, sort the points radially, and compute

the minimum angles between each pair of radial neighbours. For example, the angle

between an admissible point of weight 1/2 in 1 $ p $ 2 and another in 1.3 $ p $ 1.4

is at least <P2/3(1, 1.4). Likewise, between two admissible points of weight 1 both in

1.5 $ p $ 2.5, the angle is at least cf? loS (1.5, 2.5). In general, let a, b, C, and d be such

that a $ b $ d and a $ c $ d. Then the angle between an admissible point of weight

1/2 in a $ p ::; band another in c $ p $ d is at least 4l2/ 3 (a, d). In the case of points

of weight 1, the angle is at least cf?l.s(a, dl.
Note that in between points of weight 1 and 1/2, the distance is 1.5, unless the

point of weight 1/2 lies on p = 5/3. In this special case, the point of weight 1 must be

distance 1.5 from sorne point in 5/3 $ p :5 2.5 with the same amplitude as the point

of weight 1/2. Thus, we must always include the interval 5/3 :5 p :5 2.5 in this case.

As an example, the minimum angle between a point of weight 1 in 1.5 :5 p :5 2 and a

point of weight 1/2 in 1.5 :5 p :5 1.6 is cf?1.5 (1.5, 2), but the minimum angle between

a point of weight 1 in 1.5 :5 p :5 2 and a point of weight 1/2 in 1.5 $ p $ 5/3 is

cf? loS (1.5,2.5).

It is worth mentioning that this method requires a little more complication if we

allowa < c < d < b, but since this case will not occur in our proof of Theorem 3.5,

we will avoid discussing it here. Additionally, there are sorne cases where this method

will not produce a tight Iower bound on the angle. When d - (r/ d) < a, then the

minimum angle between a point in a :5 p :5 b and another in C :5 p :5 d is greater
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Figure 3.6: Sample configuration of admissible points.
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than <1>r(a, dl. In all cases, ~r(a, d) still provides a vaUd lower bound, just not a tight

bound. This does not affect our proof; it is only mentioned here for completeness.

A sample configuration of admissible points is demonstrated in Figure 3.6. The

three encircled points have weight 1; the other two have weight 1/2. vVe see that

mL..-lOB ~ <1>2/3(1.2, 1.5), mLBOC ~ <1>1.5(1.2,2.5), and mLCOD ~ <1>1.5(2.0,2.5).

The proof of each lemma below proceeds by assuming a possible configuration

and then demonstrating that the sum of the subtended angles of radially consecutive

points is greater than 3600
• Since the configuration fits inside an annulas, we achieve

a contradiction.

Lemma 3.9 ft is impossible to have 11 admissible points of weight 1.

Praof. The angle between any two radially consecutive points (i.e., consecutive by

amplitude) is at least <Il 1.5 (1.5, 2.5). Since <Il1.5 (1.5, 2.5) > 33.5°, our lemma follows

from the fact that 11<ll1.5(1.5, 2.5) > 3680 .5.

o
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Therefore the following six cases suffice ta prove Theorem 3.5. We show that it is

impossible ta have

• Case 1: 10 admissible points of weight 1 and Il of weight 1/2.

• Case 2: 9 admissible points of weight land 13 of weight 1/2.

• Case 3: 8 admissible points of weight 1 and 15 of weight 1/2.

• Case 4: 7 admissible points of weight 1 and 17 of weight 1/2.

• Case 5: 6 admissible points of weight 1 and 19 of weight 1/2.

• Case 6: 26 admissible points of non-zero weight.

These caver aIl possibilities of having admissible points whose total weight exceeds

15.

The remainder of this chapter continues the praaf of Theorem 3.,5~ which implies

our main theorem that no E-SIG contains more than 15n edges. The reader who does

not wish ta see an exhaustive analysis of the above cases is advised to skip ahead ta

Chapter 4 on page 44.

Ta prave the individual cases, we require the following three lemmas, which will

be used several times in the course of this chapter.

Lemma 3.10 It is impossible ta have 11 admissible points of weight 1/2 in the an

nulus 1 :5 P:5 1.3 such that 10 of them lie in 1 :5 p :5 1.15.

Proof. Suppose we have Il admissible points in 1 :5 P :5 1.3, 10 of which lie in

1 :5 P :5 1.15. Then 9 of the angles subtended at the origin by pairs of radially con

secutive points are at least <1>2/3(1, 1.15), and the other two are at least <1>2/3 (l, 1.3).

However, 9<1>2/3 (l, 1.15) + 2<1>2/3 (l, 1.3) > 361 0 .8, so this is not possible.

o
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Lemma 3.11 It is impossible ta have 12 admissible points of weight 1/2 in the an

nulus 1 ~ P :5 1.4 such that 10 of them lie in 1 :5 p :5 1.2.

Proof. Suppose we have 12 such admissible points. Then either the 2 points in

1 :5 p :5 1.4 are each radially in between points in 1 :5 p :5 1.2, or the 2 points are

radially consecutive. In the former case, the angles subtended are 8<P2/3(1,1.2) +

4<P2/3(1! lA) > 361 0 .6. In the latter case, the angles subtended are 9<1>2/3(1,1.2) +

2ep2/3(1, 1.4) + <P2/3(1.2, 1.4) > 3690 .3. Thus we have a contradiction.

o

Lemma 3.12 It is impossible to have 1 admissible point of weight 1 in the annulus

1.5 $ p $ 1.6 and 9 admissible points of weight 1/2 in 1 $ p $ 1.2.

Proo/. In this configuration, 9 of the angles subtended at the origin by pairs of radially

consecutive points are at least <P2/3(1, 1.2), and the other two are at least <Pl.s(l, 1.6).

However, 94-2/ 3 (1,1.2) + 2<1>1.5(1, 1.6) > 369°.4, which proves the lemma.

o

We are now ready to proceed with the proofs of each of the six cases.

Lemma 3.13 (Case 1) It is impossible to have 10 admissible points of weight 1 and

Il admissible points of weight 1/2.

Sublemma 3.13.1 ft is impossible to have 10 admissible points of weight 1 in

1.5 :5 p :5 2.5 and 2 admissible points of weight 1/2 in 1.2 :5 p :5 5/3.

Proof of sublemma. If the 2 points of weight 1/2 are consecutive, then the angles

subtended are 9<1>1.5(1.5,2.5) + 2t11.5 (1.2, 2.5) + ~~/3(1.2, 5/3) > 3710 .2. If they are

not consecutive, then the angles are 8411.5(1.5,2.5) + 4~1.5(1.2, 2.5) > 3680 .2.

Sînce 10 admissible points must he in 1 $ p < 1.2, by Lemma 3.12 aU admissible

points of weight 1 are in 1.6 :5 p ~ 2.5.
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Sublemma 3.13.2 It is impossible ta have 10 admissible points of weight 1 in

1.6 ~ P ~ 2.5 and 1 admissible point of weight 1/2 in 1.3 ~ P ~ 5/3.

Proof of sublemma. This follows from the faet that 9~1.5(1.6,2.5) + 2<{)l.s(1.3, 2.5) >

3710 .9, whieh demonstrates that this configuration is not achievable.

This proves that if we have 10 admissible points of weight 1 and Il admissible

points of weight 1/2, then aIl Il points of weight 1/2 must lie in 1 ~ p ~ 1.3. But

by Lemma 3.10, 2 of the Il points of weight 1/2 must lie in 1.15 ~ p ~ 1.3. vVe now

show that this is not possible.

Sublemma 3.13.3 It is impossible to have 10 admissible points of we'ight 1 in

1.6 ~ P ~ 2.5 and 2 admissible points of weight 1/2 in 1.15 ~ P :::; 1.3.

Proof of sublemma. If the 2 points of weight 1/2 are consecutive, then the angles

subtended are g~1.5(1.6,2.5) + 2~1.5(1.15, 2.5) + <1>2/3(1.15,1.3) > 3880 .2. If they are

nat consecutive, then the angles are 8<f?1.5(1.6, 2.5) + 4~1.5(1.15, 2.5) > 3680 .0.

This proves the lemma and therefore case 1.

o

Lemma 3.14 (Case 2) It is impossible ta have 9 admissible points of weight 1 and

1j admissible points of weight 1/2.

Sublemma 3.14.1 It is impossible ta have 9 admissible points of weight 1 in

1.5 ~ P ~ 2.5 and 4. admissible points of weight 1/2 in 1.2 S p ~ 5/3.

Proof of sublemma. Na configuration of the 13 points exists such that the angles

subtended sum to 3600 or less. The smallest SUffi possible occurs when the 4 points

of weight 1/2 are each between points of weight 1. The sum of angles in this case is

5<b1.5(1.5,2.5) + 8~1.5(1.2, 2.5) > 36T' .3.
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If there are at most 3 points of weight 1/2 in 1.2 :5 P :5 5/3, then there must be

at least 10 points of weight 1/2 in 1 :5 P :5 1/2. By Lemma 3.11, this implies that

there are not 12 points of weight 1/2 within 1 :5 P :5 lA. Therefore at least 2 of

the 3 points of weight 1/2 in 1.2 :5 p :5 5/3 are in 1.4 :5 P $ 5/3. Furthermore, by

Lemma 3.12 all 9 points of weight 1 are in 1.6 ~ P ~ 2.5. We now show that this is

not possible.

Sublemma 3.14.2 It is impossible to have 9 admissible points of weight 1 in

1.6 ~ P $ 2.5 and 2 admissible points of weight 1/2 in 1.4 $ p ~ 5/3.

Proof of sublemma. No configuration of the Il points exists snch that the angles

subtended sum to 360° or less. The smallest sum possible occurs when the 2 points

of weight 1/2 are consecutive. The sum of angles in this case is 84>1.5(1.6,2.5) +

2<1>1.5(1.4,2.5) + <I>2/3(lA, 5/3) > 3650 A.

This proves the lemma and therefore case 2.

o

Lemma 3.15 (Case 3) It is impossible to have 8 admissible points of weight 1 and

15 admissible point.s of weight 1/2.

vVe follow very c10sely the proof of Case 2 (Lemma 3.14).

Sublemma 3.15.1 It is impossible ta have 8 admissible points of weight 1 in

1.5 ~ P :5 2.5 and 6 admissible points of weight 1/2 in 1.2 :5 p $ 5/3.

Proof of sublemma. No configuration of the 14 points exists such that the angles

subtended sum ta 360° or less. The smallest value possible occurs when the 6 points

of weight 1/2 are each between points of weight 1. The sum of angles in this case is

2~1.5(1.5, 2.5) + 12<b1.5(1.2, 2.5) > 366°.5.
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If there are at most 5 points of weight 1/2 in 1.2 $ p $ 5/3, then there must be

at least 10 points of weight 1/2 in 1 $ p :5 1/2. By Lemma 3.11, this implies that

there are not 12 points of weight 1/2 within 1 ~ p ~ 1.4. Therefore there are at least

4 points of weight 1/2 in 1.4 ~ p ~ 5/3. vVe now show that this is not possible.

Sublemma 3.15.2 It is impossible to have 8 admissible points of weight 1 in

1.5 S p :5 2.5 and 4 admissible points of weight 1/2 in 1.35 :5 P :5 5/:3.

Proof of sublemma. No configuration of the 12 points exists such that the angles

subtended sum ta 360° or less. The smallest value possible occurs when the 4 points

of weight 1/2 are consecutive. The sum of angles in this case is 7~1.5(1.5, 2.5) +

2cPl.s(1.4, 2.5) + 3cI>2/3(1.4, 5/3) > 366°.7.

This proves the lemma and therefore case 3.

o

Lemma 3.16 (Case 4) It is impossible to have 7 admissible points of weight 1 and

17 admissible points of weight 1/2.

Sublemma 3.16.1 It is impossible to have 7 admissible points of weight 1 ln

1.5 :5 P ~ 2.5 and 8 admissible points of weight 1/2 in 1.2 :5 P ~ 5/3.

Prao! of sublemma. No configuration of the 15 points exists such that the angles

subtended sum ta 360° or less. The smallest value possible occurs when the 7 points

of weight 1 are each between points of weight 1/2. The SUffi of angles in this case is

144Jl.s(1.2, 2.5) + cI>2/3(1.2, 5/3) > 368Q .6.

If there are at most 7 points of weight 1/2 in 1.2 5 P 5 5/3, then there must be

at least 10 points of weight 1/2 in 1 ~ p ~ 1/2. By Lemma 3.11, this implies that

there are not 12 points of weight 1/2 within 1 5 P ~ 1.4. Therefore there are at least

6 points of weight 1/2 in 1.4 ~ p 5 5/3. We now show that this is not possible.
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Sublemma 3.16.2 It is impossible to have 7 admissible points of weight 1 in

1.5 ~ P~ 2.5 and 6 admissible points of weight 1/2 in 1.4 ~ p ~ 5/3.

Proof of sublemma. No configuration of the 13 points exists such that the angles

subtended sum ta 3600 or less. The smallest value possible occurs when the 6 points

of weight 1/2 are consecutive. The sum of angles in this case is 6<Jl1.5 (1.5, 2.5) +

2<1>1.5(1.4,2.5) + 5<1>2/3(1.4,5/3) > 3790 .2.

This proves the lemma and therefore case 4.

o

Lemma 3.11 (Case 5) It is impossible ta have 6 admissible points of weight 1 and

19 admissible points of weight 1/2.

Sublemma 3.11.1 It is impossible to have 6 admissible points of weight 1 in

1.5 ~ p ~ 2.5 and 10 admissible points of weight 1/2 in 1.2 ~ P ~ 5/3.

Praof of sublemma. No configuration of the 16 points exists such that the angles

subtended sum ta 3600 or less. The smallest value possible occurs when the 6 points

of weight 1 are each between points of weight 1/2. The sum of angles in this case is

12~1.5(1.2, 2.5) + 4~2/3(1.2, 5/3) > 3760 .9.

If there are at most 9 points of weight 1/2 in 1.2 ~ P ~ 5/3, then there must be

at least 10 points of weight 1/2 in 1 ~ p ~ 1/2.

By Lemma 3.11, this implies that there are not 12 points of weight 1/2 within

1 ~ p ~ 1.4. Therefore there are at least 8 points of weight 1/2 in 1.4 ~ p ~ 5/3. We

now show that this is not possible.

Sublemma 3.11.2 It is impossible to have 6 admissible points of weight 1 in

1.5 ~ p $ 2.5 and 8 admissible points of weight 1/2 in 1.4 ~ p $ 5/9.
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Praof of sublemma. No configuration of the 14 points exists snch that the angles

subtended sum to 3600 or less. The smallest value possible occnrs when the 9 points

of weight 1/2 are consecutive. The sum of angles in this case is 5~1.5(1.5, 2.5) +

2<1>1.5(1.4,2.5) +7cI>2/3(1.4~5/3) > 391Q .7.

This proves the lemma and therefore case 5.

o

Lemma 3.18 (Case 6) It is impossible to have 26 admissible points.

With reasoning parallel to the proof of Lemma 3.7, we may assume that all 26 points

are of weight 1/2, creating a set ~* of 26 admissible points that alilie in 1 ~ P :5 5/3.

We make two important observations:

16cI>2/3(1.4,5/3) > 3680 .0

14cI>2/3(1, 1.4) > 364°.0

There are only three cases in which we cao achieve 26 admissible points. Either there

are 15 points in 1.4 :5 p $ 5/3 and Il in 1 ~ p :5 1.4, or there are 14 and 12, or 13

and 13. We will show that none of these are possible.

Sublemma 3.18.1 It is impossible ta have 15 admissible points in 1.4 :5 p :5 5/3

and Il in 1 :5 p ~ 1.4.

Proof of su.blemma. Note that no points are in 1.3 :5 p :5 1.4, since 14~2/3(1.4, 5/3} +
2<1>2/3(1.3,5/3) > 3650 .6. Therefore, by Lemma 3.10, 2 of the points in 1 :5 p :5 1.4

must lie in 1.15 :5 P :5 1.3. If the two points each lie between points in 1.4 :5 p :5 5/3,

then the SUffi of the angles subtended is 13<1>2/3(1.4,5/3) + 4cI>2/3(1.15, 5/3} > 3690 .0.

ff the two are consecutive, then the sum of the angles subtended is 14~2/3(1.4, 5/3} +
2<{)2/3(l.15,5/3} + 4'2/3(1.15, 1.3} > 386°.7.
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Sublemma 3.18.2 It is impossible to have 14 admissible points in 1.4 ~ P ~ 5/3

and 12 in 1 ~ P :5 1·4·

Prao! of sublemma. By Lemma 3.11, 3 of the points in 1 :5 p :5 lA must lie in

1.2 ~ p ~ 1.4. If the three points each lie between points in 1.4 ~ P ~ 5/3, then the

sum of the angles subtended is 11<1>2/3(1.4,5/3) + 6~2/3(1.2, 5/3) > 3680 .8. If two

are consecutive and the third lies between points in lA :5 P :5 5/3, then the sum is

12<1>2/3(1.4,5/3) +4<1>2/3(1.2,5/3) +<1>2/3(1.2, 1.4) > 380°.7. If aU three are consecutive,

then the sum is 13cI>2/3(lA, 5/3) + 24>2/3(1.2,5/3) + 2<1>2/3(1.2,1.4) > 392°.6.

Sublemma 3.18.3 It is impossible to have 13 admissible points in 1.4 ~ P:5 5/3

and 13 in 1 :5 p :5 1·4·

Praof of sublemma. By Lemma 3.11, 4 of the points in l ~ P ~ lA must lie in

1.2 :5 p ~ 1A. The minimum sum of the angles subtended occurs when these four

points each lie between points in lA :5 P :5 5/3. In this case, the sum of the angles

is 11<1>2/3{1.4, 5/3) + 6q>2/3(1.2, 5/3) > 3680 .8, sa this case is also impossible.

This proves the lemma and therefore case 6.

o

This completes the praof of Theorem 3.5, which implies that no node in the WSIG

has outgoing edges whose weights sum ta greater than 15. Since by Lemma 3.3 the

total weight of the WSIG equals the number of edges in the SIG, we have proven

Theorem 3.2, which states that no sphere of influence graph of n vertices in the

Euclidean plane contains more than 15n edges.
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Chapter 4

Conclusion

We have presented new bounds on the maximum size of the sphere of influence graph

(SIG) both in d-dimensional infinite-order NIinkowski space and in the Euclidean

plane. In ..\'!~, there exist SIGs whose sizes asymptotically approach (22d+2 - 3d 

4)n/9, and an SIGs contain fewer than (22d- 1 - 2d- 1)n edges. We have also shown

that no SIG in the Euclidean plane contains more than i5n edges.

We leave several problems open. The first four concern AJ~-SIGs.

Open Problem 4.1 Does there exist a function c(d) less than (22d- L - 2d- l ) such

that no .~I~ -SIG kas c(d)n edges or greater~

Open Problem 4.2 Do there exist l"I~-SIGs of n vertices with more than (22d+2 

3d - 4)n/9 edges~

Open Problem 4.3 Does there exist a d-dimensionallattice whose lvl:C-B/G con

tains more edges than Tdq If so, what is the optimallatticeq

Given the difficulties in many of the covering and kissing problems1 in higher

dimensions, Open Problem 4.3 may he quite difficult.

lThe reader is reCerred to (CS93) for an excellent book on these problems.

44
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Open Problem 4.4 We have discussed only briefly the closed sphere of influence

graph, in which the spheres of influence are closed balls. Michael and Quint [MQ94a,

MQ94bJ present an upper bound of (5d - (3/2))n in ivI~; the best known lower bound

is 5dn/2. /mprave these bounds.

The praaf in Chapter 3 that no SIG in the Euclidean plane cantains more than 15n

edges is dependent on dividing the SIG edges iota three discrete groups, each \Vith its

own weight. vVhile it is cooceivable that better results could result fram dividing the

edges into live or more groups, the resulting proof would be immense, ridden with

severa! cases to analyze. Perhaps sorne continuous weighting scheme could be devised

and the proof made more general ta avoid the many cases. This leads us to another

open problem.

Open Problem 4.5 Daes there erist a continuous weighting of the edges of the E

SIG which yields an upper bound better than 15n? Does it yield an elegant praof?

Of course, the ultimate goal is to have the upper bound and the lower hound meet.

'vVe recall the conjecture made by David Avis on the maximum size of the sphere of

influence graph in the Euclidean Plane.

Conjecture 4.6 (Avis) No E-S/G or closed E-S/G contains more than 9n edges.

We close this discussion 00 sphere of influence graphs with the heautifully simple

yet elusive open problem that has inspired this research.

Open Problem 4.1 Proue or disprove Conjecture 4.6.
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Appendix A

A review of lattices

This appendix provides a brief review of lattices and generating bases. Any introduc

tory text on linear algebra should provide a more thorough coverage.

We will start with the definitian of a basis. Given a vector space X, a basis is a set

B of vectors such that any point in X can he uniquely defined by a linear combination

of vectors in B. (We then caU the vectors linearly independent.) For example, in the

plane, the set {(I,O),(O,I)} is the usuaI basis. However! we could also use the basis

B = {(0, 1), (1, 1)}. Here the point normally labelled (6,8) can be defined uniquely

as -2(0, 1) + 8(1, 1).

Note that in an m dimensional space, any basis has exactly m vectors. For example,

in the plane the set {(O,I),(l,O),(l,l)} can't be a basis since we can express (6,8)

as -2(0, 1) + 8(1,1), or -3(0,1) + 7(1,0) + (1,1), or any other proper summation.

(There are infinitely many possibilities.) Not just any m vectors will do; the set

{CO, 1), (0,2)} will nat allow us ta express a11 vectors in the plane. The vectars (0,1)

and (0,2) are not linearly independent.

A. lattice is the set of all points that can be expressed as sums of integral multiples

of vectors of a given basis B. The basis B is said ta be the generating basis of the

lattice. Figure A.l is an example.

46
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Figure A.1: (a) A generating basis and (b) its lattice.
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